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Abstract

With the recent advances in sensor technology and resulting sensor resolution, conven-

tional point-based target tracking algorithms are becoming insufficient, particularly

in application domains such as autonomous vehicles, visual tracking and surveillance

using high resolution sensors. This has renewed the interest in extended target (ET)

tracking, which aims to track not only the centroid of a target, but also its shape and

size over time.

This thesis addresses three of the most challenging problems in the domain of

ET tracking applications. The first investigated challenge is the need for an accu-

rate shape and centre estimate for the ET object with an arbitrary unknown star-

convex shape in presence of non-Gaussian noise. The proposed method is based on a

Student’s-t process regression algorithm which is defined in a recursive framework to

be applicable for on-line tracking problems.

The second problem tries to relax any constraints, including the star-convex con-

straint, that is imposed on the shape of the ET object during the course of estimation

by defining a novel Random Polytopes shape descriptor. Also, the proposed solution

introduces a method to mitigate the troubles caused as a result of self-occlusion in

ET tracking applications which its ignorance may cause catastrophic divergence in

the ET state estimate.
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Finally, a framework for tracking multiple ET objects in the presence of clutter and

occlusion is studied and a solution is proposed. The proposed method can estimate

the centre and shape of the ET objects in a realistically scenario with the self- and

mutual-occlusion challenges being considered. The proposed approach defines a time

varying state-dependent probability of detection for each ET that enables the track

to prolong even under adverse conditions caused due to mutual-occlusion. Plus, the

proposed algorithm uses set-membership uncertainty models to bound the association

and target shape uncertainties of occluded ET, to obtain more accurate state and

shape estimates of an ET object.

The performance of the proposed methods are quantified on realistically simulated

scenarios with self- and mutual-occlusions and their results are compared against

existing state-of-the-art methods for ET tracking applications.
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Chapter 1

Introduction

1.1 Extended Target Tracking: A Brief Review

One of the main assumptions in target tracking algorithms is that each target can

generate at most one measurement per scan. This is the so called famous point target

tracking problem. This assumption may be true in situations where the distance

between the target and sensor is considerably large or the sensor resolution is not high

enough for the target to occupy more than one cell in the sensor’s field of view (FoV).

But, for long-range applications involving high resolutions modern sensors, such as

airborne surveillance, or short-range applications, such as autonomous vehicles, this

assumption does not hold true and the target will generate multiple measurements per

scan. Figure (1.1) represents the measurements generated from a point target versus

an extended target (ET). The point target only resulted in a single measurement

whereas the extended target has resolved into multiple scattering points and only

some of the scattering points have generated measurements.

Thus, the need for an ET tracking method to handle this situation arises. ET

1
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(a) Point target (b) Extended target

Figure 1.1: A side-by-side comparison of Point and Extended target. (a): Single
source of measurement for a point target and generated measurement. (b): Multiple

scattering points and generated measurements from ET.

tracking has applications in several areas including airborne, marine and ground

surveillance using high-resolution sensors, such as radar and lidar, autonomous ve-

hicular systems and in video tracking.

The ET tracking algorithms are not only capable of estimating the trajectory of

centre of the target but also its size, shape and orientation over time. This additional

information about targets can be exploited as input to classification and decision

making algorithms. The literature on ET tracking problems is considerably rich. In

general three main lines of works to solve the ET tracking problem can be seen in

literature.

The first line of work focuses on clustering the observations in each scan and

replacing all the measurements in each cluster by a single measurement such as the

centroid of the cluster. From there after, these algorithms treat the problem similar

to the conventional point target tracking case [1, 2]. In contrast to its simplicity, the

major drawback of this approach is that it removes some crucial information about

targets such as their shape and orientation through the clustering procedure.

Algorithms belonging to the second line of work try to model the observations

generated by targets over the sensor’s FoV by some spatial distribution such as a

Poisson point process [3, 4, 5]. In these situations the number of observations from the

2



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

ET is assumed to be Poisson distributed. Based on this approach Poisson likelihood

models for group and extended object tracking were developed. Also, some methods

for tracking single extended objects based on random-set techniques are proposed

in [6].

The last and most extensive approach in dealing with ET objects is trying to

model the ET object extent by simple or sometimes complex geometrical shapes,

such as sticks, rectangle and ellipse, and estimate shape parameter by construction of

feasible measurement to source assignment hypotheses and their probabilities. Some

of the well-known methods belonging to this category are reviewed in the following

paragraphs.

In [7], a Bayesian approach, called the random matrices (RM) method, is used

to simultaneously estimate the elliptical contour and kinematic state of the ET. The

RM method models the extended state by using an inverse Wishart (IW) distribution.

This method offers notable performance on ET tracking problems and a number of

enhanced versions of this algorithm has also been introduced. For example in [8], a

generalized algorithm for estimating ET objects whose its shape can not be modelled

with one ellipse is proposed. In this algorithm, the ET object extent is modelled by

using Ns elliptic sub-objects, where Ns is assumed known. In [9] the RM method is

extended further to handle multiple ET objects in the presence of measurement origin

uncertainty by introducing a RM based labelled random finite sets filter. The other

proposed method, which belongs to shape-based ET tracking algorithms category, is

the random hypersurface model (RHM) [10]. The RHM method relies on the Fourier

series expansion of the contour, and different sampling of the contour as the source

of measurement.

3
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Another shape-based approach to estimate the ET extent along with the its kine-

matics through a Bayesian framework, introduced in [11], is to use the Gaussian

process (GP). Here, the ET object shape is assumed to be star-convex which can be

represented with the help of a radial basis function by means of GP, which underpins

a GP-based extended Kalman filter (GP-EKF) algorithm. The GP-EKF algorithm

has been used as a basis for some extensions, such as a GP based probabilistic data

association (PDA) filter and a GP convolution particle filter in [12, 13], respectively.

B-spline curves, which are a generalized version of Bèzier curves, have also drawn

some attention in recent years in the field of ET tracking and shown promising results

in modelling the extent of ET objects [14, 15, 16].

Although modeling the contour with a geometrical shape has received consider-

able effort, existing algorithms are still limited regarding the assumptions about the

environment, sensing capability of sensors and problem formulation.

One of the major assumptions in previously proposed ET tracking algorithm is

that the system is corrupted with a well-known Gaussian noise. However, the major-

ity of the real-world problems seldom adhere to the assumptions of Gaussian noise

models. Thus, the performance of the existing algorithms, with Gaussian noise as-

sumption degrades in the presence of non-Gaussian noise with the problem ascribed

to the lightweight tail of the Gaussian distribution [17]. In fact, this problem is com-

monly seen in high quality sensors which are mainly used in ET tracking applications,

such as visual tracking sensors, high resolution radars and robotic platforms [18].

The other base-line assumption of most of the proposed algorithms is that the

ET object shape falls in a predefined category, which is known prior. For example

the RM method proposed in [7] assumes only elliptical objects are present in the

4
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(a) (b)

Figure 1.2: (a): Self-occlusion phenomena in ET objects; (b): Mutual occlusion in a
road surveillance framework.

scenario. GP-EKF and RHM method have relaxed the shape constraint more to fall

in category of star-convex shape. However, the constraint still remains and makes the

algorithms inaccurate for applications involving non-convex ET objects. Extension of

ET tracking algorithm to handle 3 dimensional (3D) spaces is also another drawback

of existing algorithms.

For an ET object, as well as different sections of the object, the necessary con-

dition to be observable by a sensor is that sensor’s line of sight should be clear and

not blocked either by another or the same object. Self-occlusion [19] happens when

some parts of the object is blocking another part of the same object. Whereas, the

occlusions caused by a different object is called mutual-occlusion [20]. Figure 1.2

illustrates the self- and mutual-occlusions in a road surveillance framework.

The negligence of the loss of detection due to mutual-occlusion results in track

loss, when a new track following the same target is initialized and confirmed after

several frames for the same object and leaving a gap between these two confirmed

track with different labels [21]. This is one of the difficulties in multiple object

tracking applications for which some solutions have been proposed in [22, 23, 24],

which mainly focuses on the visual feature extracted from video data and are not

5
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applicable in applications using radar and lidar sensors.

In contrast to mutual-occlusion, self-occlusion has not received much attention in

previous works and ignoring it may cause large errors in ET object shape, size and

orientation estimation. Consequently, the algorithm which uses these data as their

input such as classification and decision making algorithms will have large errors as

well.

In this thesis, we address some of the aforementioned flaws in existing ET tracking

algorithms by relaxing some of the assumptions and formulating the problem closer

to its true nature, to make them more applicable for real world applications.

1.2 Theme and Objectives of Dissertation

In compliance with the terms and regulations of McMaster University, this disserta-

tion has been written in sandwich thesis format by assembling three articles. These

articles represent the independent research performed by the author of this disserta-

tion, Mehrnoosh Heidarpour.

The articles in the dissertation are focused on extended target tracking methods

for modern sensor applications under realistic conditions. The general focus of the

thesis is as follows:

i) To introduce a geometrical shape descriptor for representing the extent of ET

object, which is appropriate for being formulated in a Bayesian framework and

being estimated online (Paper I, Paper II and Paper III ).

ii) To derive an ET tracking framework appropriate for realistic sensor and system

noise models, specially for heavy tailed noise (Paper I).

6
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iii) To introduce a novel shape-descriptor, which is free from any constraints in

terms of convexity and space dimensions, suitable for using in an ET tracking

framework (Paper II).

iv) To address the self-occlusion trouble existing in ET tracking scenarios by defin-

ing observable and non-observable sections of tracked ET objects (Paper II and

Paper III).

v) To analyse the multiple ET object tracking scenario in presence of false alarm

and measurement origin uncertainty (Paper III).

vi) To address the challenges caused by mutual-occlusion in ET tracking applica-

tions and improve estimation results (Paper III).

1.3 Summary of Enclosed Articles

The papers included in this thesis are listed as follows:

1.3.1 Paper I (Chapter 2)

Mehrnoosh Heidarpour, Ratnasingham Thamarasa, Jeyarajan Thiyagalingam, Michael

Bradford and Thiagalingam Kirubarajan

”Extended Target Tracking Using Student’s-t Process With Heavy-Tailed Process and

Measurement Noises”, Submitted to IEEE Transactions on Signal Processing, May.

2020.

Preface: This paper studies the ET tracking problem by representing the shape of a

star-convex ET object with a radial function which is modelled using a Student’s-t

7
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process (TP). TP has several benefits compared to the conventional Gaussian process

(GP). First of all, since the TP relies on a non-stationary kernel function it is more

suitable for modeling the shape of an ET object which is evolving in time compared

to the GP that has a stationary kernel function and its performance degrades when

the shape evolves or measurements are arising from interior of object as well as the

contour of object. In the paper an online, state-space model-based, recursive version

of the TP regression algorithm is derived which can be used in a Bayesian setting to

estimate the kinematic state of ET object which is augmented by the extent state.

Another property of resulting TP filter is that the tails of Student’s-t distribution,

which are modeling the noise, are heavier compared to the light-tails of Gaussian

distribution and can reject the outliers (glint-noise). This property matches the real-

world problems underlying noise model, which hardly adhere to the assumptions of

Gaussian noises. A novel gating algorithm is derived in the paper to enable the

proposed TP based filter to be used in the presence of clutter. The efficiency of

the proposed filter is quantified by comparing the results with previously proposed

algorithms and also a conditional-Posterior Cramer-Rao lower bound (PCRLB).

1.3.2 Paper II (Chapter 3)

Mehrnoosh Heidarpour, Jeyarajan Thiyagalingam, Ratnasingham Thamarasa, Michael

Bradford and Thiagalingam Kirubarajan

”Two- and Three-Dimensional Extended Target Tracking Using Random Polytopes”,

Submitted to IEEE Transactions on Aerospace and Electronic Systems, August 2020.

Preface: This paper studies the ET tracking problem by representing the shape of

an arbitrary ET object with Random Polytopes (RP) shape descriptor. The novel

8
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proposed RP shape descriptor has several benefits compared to the state-of-the-art

shape descriptors used to model the extent of the ET objects in the literature. First

of all, there is no constraint on the shape of the ET object and it can vary among all

arbitrary random non-convex shapes. The second benefit of using RP in ET tracking

algorithm is a result of the information which RP provides to mitigate the challenges

caused due to self-occlusion. In the paper an online, auxiliary probability of detection

is assigned to different parts of each ET object for considering the effects of observable

and non-observable parts of ET object in the received measurements. Also, a new

metric to evaluate the similarity between the estimated shape and true shape of ET

object is proposed and is calculated for comparison purposes. The efficiency of the

proposed filter, in terms of the kinematic and extent estimates and tolerance to the

different noise levels is quantified by comparing the results with two existing state-of-

the-art ET tracking methods and the Posterior Cramer-Rao lower bound (PCRLB).

1.3.3 Paper III (Chapter 4)

Mehrnoosh Heidarpour, Ratnasingham Thamarasa, Michael Bradford, Jeyarajan Thiya-

galingam and Thiagalingam Kirubarajan

”Tracking Multiple Extended Targets In Occlusion Using Splines and Set-Membership

Uncertainty Models”, Submitted to IEEE Transactions on Signal Processing, July

2020.

Preface: This paper studies the multiple ET tracking problem in the presence of mea-

surement origin uncertainty, clutter and occlusions. In the proposed algorithm, that is

called the splines gamma Gaussian mixture probability hypothesis density (S-GGM-

PHD) filter, the shape of the ET object is replaced with the B-splines approximation.
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The local controllability of shapes approximated by B-splines is exploited by the pro-

posed method to mitigate the challenges caused due to self-occlusion in ET tracking

application. To deal with the difficulties in estimating the true state of ET objects

caused due to mutual-occlusion an online state-dependent probability of detection is

defined and used in the update step of the proposed filter in contrast to a constant

state-independent probability of detection that is used in the previous state-of-the-

art ET tracking algorithms. The set-membership uncertainty models are used in

the proposed algorithm to bound the uncertainties associated in the estimation of

occluded ET objects. The efficiency of the proposed algorithm, in terms of the the

kinematic state estimates, the extent state estimates and the track continuity under

adverse conditions caused by occlusion is quantified by comparing the results with

two existing state-of-the-art ET tracking methods.

10



Chapter 2

Extended Target Tracking Using

Student’s-t Process With

Heavy-Tailed Process and

Measurement Noises

2.1 Abstract

With the recent advances in sensor technology and resulting sensor resolution, conven-

tional point-based target tracking algorithms are becoming insufficient, particularly

in application domains such as autonomous vehicles, visual tracking and surveillance

using high resolution sensors. This has renewed the interest on extended target track-

ing, which aims to track not only the centroid of a target, but also its shape and size
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over time. On this problem, Gaussian process (GP)-based extended target track-

ing algorithms have played an important role, and have been central to the solution

space, often with numerous extensions and enhancements. However, the main limi-

tation of the GP, which relies on the squared exponential (SE) kernel, is its inability

to completely and correctly model the target extent over time.

In this chapter, by using an Inverse Wishart (IW) distribution as a prior to the

SE kernel of the GP, we propose a novel extended target tracking algorithm that

addresses the shortcomings of the GP-based filters. Our approach, which prefixes the

SE kernel with an IW kernel, results in the Student’s-t process (TP), which becomes

an ideal option for handling heavy-tailed noise conditions. By carefully formulating

and constructing necessary mathematical foundations, we develop a rather sophisti-

cated filter, which we refer to as TP-EKF (T-Process Extended Kalman Filter), to

work in the extended target tracking setting. Our simulation studies show that the

proposed TP-EKF can outperform a number of contemporary filters, including GP-

EKF, Random Matrices, and Random Hypersurface Models-based extended target

tracking algorithms, both in terms offering near (conditional) posterior Cramér-Rao

Lower Bound (PCRLB) performance, and better shape estimation, including under

heavy-tailed noise conditions, and clutter.

2.2 List of Notations

Throughout this chapter, scalars or scalar-valued functions are denoted with non-bold

symbols, e.g., yk, vectors or vector-valued functions are denoted with bold symbols,

e.g., uk, and matrices are denoted with capitalized symbols, e.g., A. Furthermore,

a list of some of the notations used through this chapter and their explanations are

12
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listed below.

A Positive definite matrix

µ Mean of distribution

v Degree of freedom of distribution

K Kernel matrix of distribution

f(u) Real-valued function

yk Noisy measurement of the function f

uk Corresponding inputs of function f for measurement yk

uf Test inputs

κ(u, u′) Kernel function of distribution

Xk Augmented target state

xk Target center kinematic state

xsk Target extent state

xcenterk Target center state

fk(θ) ET radial function at input θ

sk Contour scaling factor at time k

ojk Orientation vector

H Gradient of the measurement function hjk

13
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2.3 Introduction

With recent advances in sensor technologies, receptive resolution of modern sensors

has improved so much that they can easily capture the extended nature of objects.

The ability to track extended targets, or extended target tracking (ETT), has a num-

ber of applications in several areas including airborne, marine and ground surveillance

using high-resolution sensors, autonomous vehicular systems and in video tracking.

In ETT, objects can no longer be modeled as point targets, and the assumption of one

measurement per target (even under ideal conditions) no longer holds. In fact, the

ETT algorithms are required not only to estimate the trajectory of a given target,

but also the size, shape, and orientation over time. As such, ETT algorithms are

considerably more intricate than conventional tracking algorithms.

The literature on ETT methods is considerably rich. One common approach is to

rely on the measurement partitioning technique [25, 26, 27, 28, 29, 30], which aims to

explicitly avoid data association. The majority of these techniques are underpinned by

random finite sets (RFS). For instance, PHD-filter [25], and its derivatives, including

the cardinalized probability hypothesis density (CPHD) filter [26], extended target

Gaussian mixture PHD filter (ET-GM-PHD) [28], extended target Gaussian mixture

CPHD filter (ET-GM-CPHD) [27], and other filtering methods, essentially operate on

this principle. Here, the PHD and the CPHD filters explicitly avoid the data associ-

ation step by moment approximation while the σ-generalized labeled multi-Bernoulli

(σ-GLMB) [30] and the Poisson multi-Bernoulli mixture (PMBM) in [29] filters ex-

plicitly avoid the data association uncertainty by developing conjugate multitarget

distributions.

In addition to this, another successful family of methods rely on the modeling
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of the scattering points of extended targets using some spatial distribution [7, 10,

31, 32, 33]. In such algorithms, the kinematic state and extent of the target are

tracked simultaneously. In [7], a Bayesian approach, called the Random Matrices

(RM) method, is used to simultaneously estimate the elliptical contour and kinematic

state of the target. RM method models the extended state by using an Inverse Wishart

(IW) distribution. This method offers notable performance on ETT problems, and

a number of enhanced versions of this algorithm can be found in [10, 31, 32, 33]. A

version of the extended algorithm is in [31], where any non-ellipsoidal target shape is

represented by a combination of multiple ellipsoidal sub-objects, each represented by

a random matrix. Another extension of this model is the random hypersurface model

(RHM) [10]. The RHM method outperforms the original RM method, by relying on

the Fourier series expansion of the contour, and different sampling of the contour

as the source of measurement. This sampling-based approach provides a means for

covering the interior scattering points of the extended target. There have also been

some attempts to incorporate the RM approach into PHD and GLMB filters, such as

the GIW-PHD and GGIW-GLMB filters presented in [32] and [33].

Another way to estimate the target contour along with the target kinematics,

introduced in [11], is to use the Gaussian process (GP) to define the target contour

function. Here, a radial basis function of a star-convex shape is defined by means

of a GP, which underpins a GP-based EKF (GP-EKF) algorithm. The GP-EKF

algorithm has been used as a basis for many extensions, such as [12, 13], particularly

to handle scenarios characterized by clutter and measurement origin uncertainty. For

example, in [12], a GP-PDA filter has been developed to facilitate track an extended

target with measurement origin uncertainty. In [13], a GP convolution particle filter
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for multiple extended targets has been proposed.

One of the shortcomings of the GP-EKF algorithm [11] is its susceptibility for

errors when the measurements originate from the target surface rather than from

the contour, leading to a sub-optimal performance on the kinematic state estimation

when compared against RM or RHM methods [10]. The GP-EKF algorithm, which

is derived from GP, inherently relies on the covariance function to capture the as-

sumptions and properties of the function being learned [34]. A closer inspection of

the raw GP algorithm reveals that a squared exponential (SE) function, a Gaussian

kernel, is used as the covariance function. Albeit being simple, the SE function is

not sophisticated enough to learn complex or hidden features. Thus, by using an

appropriate and/or problem-specific kernel, the overall tracking performance can be

improved [13].

This chapter aims to overcome this shortcoming by proposing a new kernel func-

tion to enhance the overall ETT performance. More specifically, we propose prefixing

the standard SE kernel of a GP with an IW kernel. Given the role and importance

of the IW distribution in other methods, such as RM, and its capability to properly

model the densities of the target extent [35], IW is a logical choice. However, prefixing

the SE kernel with an IW kernel makes the GP become Student’s-t process (TP) [36].

The resulting TP has a number of properties that are ideal for our case. However, in

order to leverage those properties in an ETT context, a number of formulations must

be considered. In our case, this transformation yields a particular benefit regarding

noisy measurements, due to the capabilities of the TP to handle heavy-tailed (glint)

noise cases [37]. The majority of the real-world problems seldom adhere to the as-

sumptions of Gaussian noise models. For instance, the performance of the GP-based
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EKF algorithm [11], degrades in the presence of non-Gaussian noise — with the prob-

lem ascribed to the lightweight tail of the Gaussian distribution [17]. In fact, this

problem is commonly seen in high quality sensors, such as visual tracking sensors, high

resolution radars and robotic platforms [18]. Although, several other non TP-based

approaches, such as [38, 39, 40], have been proposed to overcome these heavy-tailed

cases, they are often impractical in real-world cases, owing to the computational com-

plexities. Apart from exploiting TP for handling heavy-tailed noise conditions, TP

has also successfully been used to model uncertainties [41, 42, 43, 44, 45, 46]. In fact,

there is growing interest in using TP as an alternative to GP, which can be found in

several application areas ranging from data mining, to machine learning, to economics

and statistics [47, 48, 49, 50, 51, 52, 53].

In utilizing the TP in place of GP for handling ETT problems, we make the following

key contributions:

1. We propose to use prefix the standard SE kernel with an IW distribution, so

as to transform the GP regression algorithm into a TP regression algorithm to

model the target shape;

2. We derive an online, state-space model-based, recursive version of the TP re-

gression algorithm, called TP-EKF, allowing the target extent to be augmented

by the target kinematic state;

3. We develop a TP-based measurement model that can be embedded as part of

the TP-EKF algorithm to estimate the augmented state;

4. We develop a modified gating technique to enable the TP-EKF algorithm to be

used in the presence of clutter; and
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5. We develop a recursive, TP-EKF-aware, conditional PCRLB model to evaluate

the efficiency of the proposed TP-EKF algorithm.

The rest of this paper is organized as follows: In Section 2.4, we provide the

necessary background by introducing the properties of the IW distribution and derive

the TP from GP with IW as a prior. We then state and formulate the problem in

Section 2.5 by developing a recursive TP to be used in the proposed ETT algorithm

along with a TP-based augmented target state and a measurement model for the

extended target. This is then followed by Section 2.6, where we introduce the TP-

EKF algorithm to compute the posterior distribution of a target state and discuss

some of the crucial aspects that underpin the TP-EKF. In Section 2.8, we formulate

the gating algorithm to work with the proposed TP-EKF algorithm, and a recursive,

online version of the conditional PCRLB so that the overall RMSE errors resulting

from the TP-EKF can be compared. We then present the the evaluation results in

Section 2.10, before concluding the chapter in Section 2.11.

2.4 Student’s-t Process

This section is devoted to the development of TP with an IW inserted prior to the

SE kernel. The online recursive TP, which is necessary for online applications of TP

regression, has been developed for use in the proposed filter.

2.4.1 Inverse Wishart Distribution

For an n × n symmetric, real valued and positive definite matrix A, the Wishart

distribution with parameter v and positive semi-definite (PSD) kernel K is given
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by [54]

W(A; v,K) = cn(v,K)|A|(v−n−1)/2 exp

(
−1

2
tr
(
K−1A

))
, (2.4.1)

for v > n− 1, tr denotes the trace operator and cn is given by

cn(v,K) =
(
|K|

v
2 2

vn
2 Γ
(v

2

))−1

. (2.4.2)

One of the attractive properties of the Wishart density is that any n1×n1 (n1 < n)

sub-matrix A′ of A itself follows the same Wishart distribution. i.e., A′ ∼ Wn(v,K ′).

However, for defining positive definite process with Wishart distribution, the param-

eter v should become infinity. This particular property renders the direct Wishart

distribution being less useful as a prior over nonparametric Bayesian modeling such as

GP [35]. However, the IW distribution, which has the same properties as those of the

direct Wishart distribution, does not suffer from this drawback. The IW distribution,

for a real valued positive definite matrix A, is defined as

IW(A; v,K) =

cn (v,K) |A|−(v+2n)/2 exp

(
−1

2
tr
(
KA−1

))
, (2.4.3)

where v > 2 and cn is defined as

cn(v,K) =
|K|(v+n−1)/2

2(v+n−1)n/2Γn ((v + n− 1) /2)
. (2.4.4)

The fact that the parameter v is independent of the size of X ensures that the
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marginalization step in the Bayesian modeling will not encounter any computational

issues. The first and second moments of this distribution can be found in [54].

2.4.2 Student’s-t Distribution

A Student’s-t random variable A can be characterized by a multivariate Student’s-t

distribution (MVT ), characterized by a degree of freedom v, its mean µ = µ(A), and

a PSD kernel K, as follows:

MVT (A;µ, v,K) =
Γ(v+n

2
)

Γ(v
2
)
×

1

((v − 2)π)
n
2

|K|−
1
2

(
1 +

(A− µ)TK−1(A− µ)

v − 2

)− v+n
2

. (2.4.5)

2.4.3 Embedding Gaussian Kernel into the Student’s-t Pro-

cess

In [11], it was shown that by using GP, one can model the extent of a large variety of

objects in target tracking applications, and it demonstrated the possibility of applying

the GP for modeling the contour of extended targets. However, the underlying kernel

of the GP, namely, the SE, encodes only the prior knowledge about the contour and

nothing about the interior of the targets. As such, this algorithm can be sub-optimal

for measurements coming from the interior points of the targets. However, IW distri-

bution is used to represent the target extents in RM algorithm [7]. The hypothesis is

that, if the same can be applied in the context of GP-based ETT algorithms, a better

ETT algorithm can be derived. More specifically, IW is incorporated as part of the

kernel function of the GP. However, the GP-based tracking algorithms predominantly
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use the SE kernel for modeling the contour characteristics. Motivated by the discus-

sions in [36], we propose to use the IW kernel in conjunction with the SE kernel, so

that both exterior and interior measurements can be accounted for during tracking.

To formulate this, consider a real valued random function f such that f : u → R.

The traditional GP process with kernel function κ is used in conjunction with IW

distribution, such that

Ω ∼ IW(v,K(u,u′))

f(u)|Ω ∼ GP(µ(u), (v − 2)Ω). (2.4.6)

Given that IW is a conjugate prior for the kernel of GP, under marginalization, for

given data f(u) where µ(u) = (µ(u1), µ(u2), . . . , µ(un)), one can derive

p (f(u)|v,K) =

∫
p (f(u)|Ω) p (Ω|v,K) dΩ. (2.4.7)

which, when using the IW distribution, can be expressed as

p(f(u)|v,K) ∝∫
exp(−1

2
tr((K + (f(u)−µ(u))(f(u)−µ(u))T

v−2
)Ω−1))

|Ω|(v+2n+1)/2
dΩ

∝
(

1 +
(f(u)− µ(u))TK−1(f(u)− µ(u))

v − 2

)− v+n
2

. (2.4.8)

Except for a constant term that is independent of u, (2.4.8) is same as (2.4.5).

Thus, the GP in (2.4.6) can be expressed as a generalization of the multivariate
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Student’s-t distribution that is expressed in (2.4.9) as follows:

f(u) ∼MVT ((f(u);µ(u), v,K) (2.4.9)

where

K =


κ(u1, u1) . . . κ(u1, un)

...
...

κ(un, u1) . . . κ(un, un)


Here, in (2.4.9), the parameter v determines how heavy-tailed the process is. As

v → ∞, TP will converge to GP, implying that the GP is a special case of TP.

Thus the use of TP in an ETT algorithm can capture more information relating to

interior and contour points of the targets . This can easily lead to an improvement

in the overall tracking performance. However, one of the drawbacks of the TP is that

the Student’s-t distribution is not closed under addition, which makes the TP less

attractive for modeling noisy conditions — a critical aspect in tracking [55].

2.4.4 Student’s-t Process Regression

In general, the TP concept predicts the unknown function values f , [f(uf1 ), . . . ,

f(uf
Nf )]

T for a given set of inputs uf , [uf1 , . . . , u
f
N ]T and a set of measurements

y , [y1, . . . , yN ]T with their corresponding inputs u , [u1, . . . , uN ]T , where f is

assumed to follow a zero-valued mean Student’s-t distribution. Assume that the

observations are corrupted by a Student’s-t noise εk. i.e., the noisy process will be

yk = f(uk) + εk (2.4.10)
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However, the same can be expressed as yk = f(uk) if the noise is incorporated into

the covariance function. This is a common practice when using regression algorithms,

which effectively resolves the closure problem mentioned above. The direct solution to

the TP regression for the latent function can be derived with the help of the following

joint distribution of f and y:

y
f

 ∼MVT (0, v,K). (2.4.11)

where

K =

K(u,u) + IN ⊗R K(u,uf )

K(uf ,u) K(uf ,uf )

 .
where IN and R are identity matrix (with relevant dimensions), and power spectral

density of the noise εk. From the joint distribution p(f ,y), the moments of conditional

distributions of f and y, which are also Student’s-t distributions, can be computed

as follows:

(f |y) =MVT (f ;Ky, v + n, P ), (2.4.12a)

K = K(uf ,u)T (K(u,u) + IN ⊗R)−1, (2.4.12b)

P =
(v − 2) + yT (K(u,u) + IN ⊗R)−1y

v − 2 + n

(K(uf ,u)(K(u,u) + IN ⊗R)−1K(u,uf )). (2.4.12c)

where ⊗ denote the Kronecker product. The computational complexity of the TP

regression is O(n3), where n is the number of observations.
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2.4.5 Recursive Student’s-t Process

Most of the regression algorithms, including GP and TP, assume that whole training

data set is available at the time of processing. Although this assumption is perfectly

suited for offline applications, applications like target tracking are often online, and

they rely on sequentially arriving measurements, where these algorithms cannot be

used directly. Recursive algorithms, which allow sequential training are, however,

suitable for online processing. In [56], a recursive GP is presented using the Kalman

filter as a state space model. As the core of the contribution of the current chapter

relies on TP, having a similar recursive model is crucial. Although the literature is

rich with a variety of TP algorithms, such as [47, 57, 58], including extensions for

seeking better approximations [47] or for improved computational complexity [57, 58],

all of these algorithms are designed to work offline, and hence unsuitable for online

processing.

In order to derive a recursive regression method for TP, we reformulate the recur-

sion as a state space model that can be updated by means of a Student’s-t filter. For

the regression model in (2.4.10), with the assumption of f and ε being independent,

the following joint TP process can be formulated:

(
fi
εi

)
∼ T P

(µi0 ), v,
κi 0

0 κε


 . (2.4.13)

As f is modeled as a TP, the initial distribution p0(f) is

p0(f) =MVT (f ;µf0 , v0, C
f
0 ) (2.4.14)
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where v, µf0 , m(u) and Cf
0 , κ(u, u) represent degrees of freedom, mean, and the

kernel function, respectively. For the purpose of deriving a recursive formulation,

assume the following squared exponential as the kernel function:

κ(u, u′) = α2. exp

(
−1

2
(u− u′)TΣ−1(u− u′)

)
. (2.4.15)

where, Σ represents the characteristic length-scale of the process, which determines

the length of the wiggles in function f and α2 denotes the prior output variance,

which determines the average distance of the function f from the mean µ.

The overall objective, particularly in the context of online application, is to derive

the posterior distribution p(f |y1:k) by updating the prior distribution of f from time

k − 1 with y1:k ≡ (y1, ...,yk). On this note, it can be noticed that the prior (and

hence the posterior) distributions include a vector of hyper-parameters, for instance,

η = [σ, α, v]T , which may need to be accounted when updating the posterior distri-

bution, which makes the whole approach intractable. However, this concern can be

overcome by assuming the hyper-parameter vector η = [σ, α, v]T as a known prior,

which essentially eliminates the need for learning it online. This assumption is ac-

ceptable for ETT problems [11], as the main priority lies in estimating the kinematic

states of the targets. Although, this issue can be overcome by using the sigma-point

method when using TP regression [56], we do not address this issue here, and thus

assume that the hyper-parameter vector is a known prior. With this assumption, the

posterior distribution p(f |y1:k) can be expressed by the following recursive formulation

p(f |y1:k) ∝ p(yk|f , y1:k−1)︸ ︷︷ ︸
likelihood

p(f |y1:k−1)︸ ︷︷ ︸
prior

. (2.4.16)
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Given the Markovian property, (i.e., current measurement is independent of past

measurements y1:k−1), the likelihood term can be approximated as p(yk|f), i.e.,

p(yk|f , y1:k−1) ∼ p(yk|f)

This approximation will be exact if the prior measurements were included in the

input value for f . However, if the input values y1:k−1 are to remain close to the

characteristic length-scale of the kernel function [11], this approximation will be ac-

ceptable. One method for ensuring that the input values remain close to the function

f , is to utilize a well-defined, yet small, number of basis angles, when modeling the

target shape using TP.

Now, as per (2.4.11), the measurement yk and the model f are jointly Student’s-t

distributed. Thus,

yk
f

 ∼MVT (0, v,

κ(uk, uk) +R K(uk,u
f )

K(uf , uk) K(uf ,uf )

 (2.4.17)

Using (2.4.17) in (2.4.16), assuming (2.4.14) holds true, one will obtain

p(yk|f) =MVT (yk;G
s
tf , v + n,Rs

k), (2.4.18a)
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where

Gs
t , K(uk,u

f )(K(uf ,uf ))−1, (2.4.18b)

Rs
t =

(v − 2)

(v − 2) + n
B +

∆

(v − 2) + n
B, (2.4.18c)

∆ , (f)T (K(uf ,uf ))−1(f), (2.4.18d)

Cs
0 = K(uf ,uf ). (2.4.18e)

where B is defined as,

B =
(
κ(uk, uk) +R−K(uk,u

f )(K(uf ,uf ))−1K(uf , uk)
)

With the possibility of expressing both the likelihood and prior terms using mul-

tivariate Student’s-t distribution, a recursive filter, based on the state space model,

can now be formulated. However, Kalman filter or its non-linear extensions cannot be

used as state space model here owing to the fact that they are minimum mean square

error (MMSE) estimators intended for transition models corrupted by the Gaussian

noise. If used, the heavy-tailed non-Gaussian noise and outliers can simply add a no-

table bias leading to a sub-optimal performance. Instead, one can use the Student’s-t

filter (STF) [59], which offers a route for estimating the posterior probability using

Student’s-t distribution, particularly where the process and measurement noise are

heavy-tailed non-Gaussian.

Consider a linear system with the following state space model

fk−1(xk−1) = Fk−1xk−1 + Vk (2.4.19)
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where Vk ∼ MVT (0, v, Qk) is a heavy-tailed process noise and Fk−1 is the state dy-

namic model. Also assume that the initial state vector x0 follows x0 ∼MVT (x̂0|0, v, P0|0),

and a corresponding measurement space

hk(xk) = Hkxk +Wk (2.4.20)

where Wk ∼ MVT (0, v, Rk) is a heavy-tailed measurement noise and Hk is the

measurement matrix model. In order to use the STF filter in conjunction with the

proposed recursive TP regression algorithm, the state-, and the measurement-updates

have to be derived for the linear system defined in (2.4.19)and (2.4.20), respectively.

These are covered by lemmas L1 and L2 below. The lemma L1 is derived using

the Chapman-Kolmogorov and affine transformation of Student’s-t random variables,

while L2 is derived by exploiting the Bayes theorem [59].

Lemma 1 The prediction step for the state space model is

x̂k|k−1 = Fk−1x̂k−1|k−1, (2.4.21a)

Pk|k−1 = Fk−1Pk−1|k−1Fk−1 +Qk−1. (2.4.21b)

Lemma 2 Using Student’s-t distribution, the posterior can be updated as follows:

p(xk|zk) =MVT (x̂k|k, v, Pk|k). (2.4.22)
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where

v′ = v + nz, (2.4.23a)

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1), (2.4.23b)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1, (2.4.23c)

dk = (zk − ẑk|k−1)T (HkPk|k−1H
T
k +Rk)︸ ︷︷ ︸

S

−1

(zk − ẑk|k−1), (2.4.23d)

P ′k|k =
v + dk
v + nz

(I −KkHk)Pk|k−1, (2.4.23e)

ẑk|k−1 = Hkx̂k|k−1. (2.4.23f)

Although these developments enable the use of the STF, the presence of a state-

dependent measurement noise Rs
k in (2.4.18) will add a conditional bias to the final

estimation, which is highly undesirable. We will be addressing this by considering the

dependency in the conventional STF context, and by deriving a new filter, namely,

the generalized STF (GSTF), which is similar to the one introduced in [60] for an

additive state-dependent measurement noise Kalman filter.

Before formulating an expression for GSTF, we separate the state component Rs
t

into two parts: state-dependent component Rs,D, and state-independent component
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Rs,I . With this,

Rs,I
k ,

(v − 2)

(v − 2) + n

(
κ(uk, uk) +R−K(uk,u

f )

(K(uf ,uf ))−1K(uf , uk)
)

(2.4.24)

Rs,D
k ,

1

(v − 2) + n

(
κ(uk, uk)(K(uf ,uf ))−1+

R(K(uf ,uf ))−1 −K(uk,u
f )(K(uf ,uf ))−2K(uf , uk)

)
,

(2.4.25)

To facilitate the derivation, the structure of a measurement equation with dependent

noise v, defined by y = Hx + J(x)v can be changed to have an independent noise

vL, where L denotes linear, with zero-mean noise with covariance RL = J(x)RJ(x)T .

This can be achieved by replacing v by two additive terms eIk and eDk , as follows [61, 62]

:

yk = Gsf + feDk + eIk

= Gsf + e′k (2.4.26)

where

eIk ∼ MVT (0, v, Rs,I
k ),

eDk ∼ MVT (0, v, Rs,D
k ),

e′k ∼ MVT (0, v, R′k).
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and

R′k = Cov{e′k, e′k} = Rs,D
k Mk +Rs,I

k , (2.4.27a)

Mk = diag{fPk|k−1f
T}. (2.4.27b)

This new measurement covariance leads to the same update equation in conventional

STF in Lemma 2, with the only difference being the replacement of Rk by R′k.

2.5 Problem Formulation

In the context of extended target tracking, the majority of the existing algorithms

rely on scattering points at the contour of the target. In this chapter, a generalized

version of the solution is provided accounting scattering points both from the interior

surface and contour of the targets, addressing the shortcomings of the GP-based ETT

solutions. We achieve this by replacing the GP by TP. In this section, we develop

TP-based augmented target state and measurement models, focusing on the two-

dimensional ETT case. Although we have not explicitly covered the three-dimensional

extension of this work, an effort for that extension is trivial. Prior to developing an

extended target and measurement model, we illustrate the basis of our target and

coordinate space in Figure 2.1.
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Figure 2.1: Illustration of target extent and measurements. Here, each measurement
is referred with respect to a global and local coordinate spaces (X, Y ), and

(XL, Y L), and corresponding angles θ and θL.

2.5.1 Extended Target Model

To derive the extended target model in the context of TP, consider the following state

space system:

Xk = FkXk−1 + Vk−1, (2.5.1)

where Fk = diag[Fk, F
s
k ] is the state transition matrix with Fk and F s

k representing

the dynamic behaviour of target center and extent, respectively, Xk−1 = [(xk−1)T , (xsk−1)T ]

is the target state consisting of two parts xk−1 and xsk−1. The process noise Vk−1, as

outlined in Section 2.4, is a combination of two independent Student’s-t distributions,

and can be expressed as

Vk−1 ∼MVT (0, vk−1,diag[Tk−1, T
s
k−1]). (2.5.2)

where Tk−1 and T sk−1 are covariance matrices of process noise for kinematic and extent

state, respectively. Furthermore, xk−1 represents the kinematic state vector, i.e., the
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kinematic attributes of the extended target center, and xsk−1 represents the extended

target extent state. These can be expressed as follows:

xk−1 = [xk, yk, ẋk, ẏk, ψk, ψ̇k]
T , (2.5.3)

and

xsk−1 = [fk(θ1), . . . , fk(θn)]T . (2.5.4)

where fk(θ) is the radius function represented as a TP, modeled by

fk(θ) ∼ T P(µ(θ), v, κ(θ, θ′)). (2.5.5)

Also, the term xcenter used in the following section is defined according to

xcenter = [xk, yk]
T . (2.5.6)

2.5.2 Measurement Model

The recursive state space TP regression model introduced in 2.4.5 enables the aug-

mentation of the target kinematic state with the target contour information, and

recursive estimation of the state information. As such, the TP regression model can

be used for tracking an extended target. More specifically, when using TP in an ETT

application, the inputs are angles expressed by a vector Θ = [θ1, . . . , θi, . . .] such that

θi ∈ [0, 2π], and corresponding outputs are the radius of the target contour for each

θi. From (2.4.10), the measurement yk and the function f are joint Student’s-t,

33



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

yk
f

 ∼MVT (0, v,K), (2.5.7)

where

K =

κ(θk, θk) +R K(θk,Θ)

K(Θ, θk) K(Θ,Θ)


The relevant prior in (2.4.14) and the conditional distribution p(yk|f) resulting from

the joint Student’s-t distribution p(f , y) can be computed as

p(f |y) = MVT (yk;G
s,j
k f , v, Rs,j

k ), (2.5.8)

p(f) = MVT (f ; 0, v, P s
0 ) (2.5.9)

where f = xsk = [fk(θ1), . . . , f(θn)]T , and

Gs,j
k , Gs,j

k (θj,Localk ) = K(θj,Localk ,Θ)K(Θ,Θ)−1 (2.5.10a)

Rs,j
k , Rs,j

k (θj,Localk ) =
(v − 2) + ∆

(v − 2) + n

(
κ(θj,Localk , θj,Localk )+

R−K(θj,Localk ,Θ).K(Θ,Θ)−1.K(Θ, θj,Localk )
)

(2.5.10b)

∆ = (xsk)
TK(Θ,Θ)−1(xsk) (2.5.10c)

P s
0 = K(Θ,Θ). (2.5.10d)
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where K(Φ,Ξ) is defined over input vectors Φ and Ξ such that

K(Φ,Ξ) ,


κ(Φ,Ξ) . . . κ(Φ,Ξ)

...
...

κ(Φ,Ξ) . . . κ(Φ,Ξ)

 . (2.5.11)

with the definition of κ being the modified SE kernel, which will be used as the

covariance function [11], and defined as,

κ(θ, θ′) = σ2
f exp(−2 sin2(θ − θ′)/2

l2
) + σ2

r . (2.5.12)

From (2.4.27a), the state dependent noise Rs,j
k is now replaced by a modified noise

term R′s,jk to conform with the GSTF formulation. Having the likelihood and prior

both in Student’s-t distribution form, allows one to use the STF filter on the state

space model for estimating target contours. Thus,

xsk+1 = xsk, (2.5.13)

yk = Gs,j(θk)x
s
k + e′s,jk , (2.5.14)

xs0 ∼MVT (xs0; 0, v, P s
0 ). (2.5.15)

where

e′s,jk ∼MVT (0, v, R′s,jk (xsk)),

and
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xsk = [f(θ1), . . . , f(θNs)]T .

To classify the measurements originating from the target, which are variable,

and may originate either from interior or contour points of the target, a parameter

sjk ∈ [0, 1] is defined, with the definition of sjk = 1 representing the measurements from

the target contour and sjk 6= 1 representing interior measurements. With this, each

measurement can be expressed as a summation of the target center state, xcenterk ,

radial function fk(θ
j,Local
k ) associated with angle θ, and measurement noise wjk, as

follows:

zjk = xcenterk + sjko
j
k(x

center
k )fk(θ

j,Local
k ) + wj

k. (2.5.16)

where wjk follows a Student’s-t distribution wjk ∼ MVT (0, v2, R), and ojk(x
center
k ) is

the orientation vector, which can be computed using

ojk(x
center
k ) =

zjk − xcenterk

||zjk − xcenterk ||2
=

[
cos(θj,Gk ), sin(θj,Gk )

]
. (2.5.17)

and,

θj,Lk = θj,Gk − ψk. (2.5.18)

In a Bayesian framework-driven algorithm, the measurement model is used to

generate the predicted measurement and innovation covariance matrix. However,
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the measurement model in (2.5.16) is not accurate. However, replacing the radial

function with its TP model outlined in (2.5.14) can circumvent this issue. In other

words, by replacing the TP model of contour in (2.5.16), a finalized form of the

TP-based measurement model can be derived as

zjk = xcenterk + sjko
j
kG

s,j
k xsk + sjko

j
ke
′s,j
k + wj

k (2.5.19)

In [10], with the assumption that the scattering points are uniformly distributed

over the star-convex region of ET object, it was proved that the scaling factor satisfies

sjk
2 ∼ U(0, 1). The mean and variance of the sjk was computed analytically in [11] and

is equal to µs = 2
3

and σ2
s = 1

18
, respectively. Thus, the distribution is approximated

by following the Student’s-t distribution

sjk ∼MVT (µs, v,
v − 2

v
σ2
s).

Let

sjko
j
kG

s,j
k xsk = µjso

j
kG

s,j
k xsk + (sjk − µs)o

j
kG

s,j
k xsk, (2.5.20)

and

ŵj
k = (sjk − µs)o

j
kG

s,j
k xsk + sjko

j
ke
′s,j
k + wjk. (2.5.21)

Using (2.5.20) and (2.5.21) in (2.5.19) results in

zjk = xcenterk + µso
j
kG

s,j
k xsk︸ ︷︷ ︸

hjk(Xk)

+ŵj
k. (2.5.22)
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The first moment of the derived Student’s-t noise ŵjk can be computed based on the

assumption of independence between the scaling parameter sjk and e′s,jk by E[ŵjk] = 0.

The second moment of term ŵjk can be computed simply by using the properties of

the Student’s-t distribution, as shown in Appendix 2.12.1:

Var[ŵjk] = Var
[
(sjk − µs)o

j
kG

s,j
k xsk + sjko

j
ke
′s,j
k + wjk

]
=

(
µ2
s +

(
v − 2

v
σs

)2
)[

ojk

(
v − 2

v
R′s,jk (xsk)

)
(Oj

k)
T

]
+

(
v − 2

v
σs

)2 [
(ojkG

s,j
k xsk)(o

j
kG

s,j
k xsk)

T
]

+ µ2
so

j
kG

s,j
k (ojk)

T (∇xR
′s,j
k )P s

k +
v − 2

v
R. (2.5.23)

Here, note that the degrees of freedom of noise is constant under this transformation.

If one would like to consider only the measurements that are generated from the

target contour, the terms µs, and σs may need to be updated accordingly, i.e., by

setting µs = 1 and σs = 0.

2.6 TP-EKF Filter with State-Dependent Noise

Observation

In this section, a new filter for simultaneously estimating the target kinematic and ex-

tent state is proposed. The proposed TP-EKF filter is an extension to the traditional

EKF method, and is capable of tracking extended targets with multiple unstable

and unknown scattering points. However, an augmented measurement model, where
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all measurements within one scan are accounted, is essential to recursively update

the posterior, if TP is to be under in conjunction with EKF. Consider the following

augmented models for measurements,

zk = [zTk,1, . . . , z
T
k,nk

]T (2.6.1a)

Rk = diag[Rk,1, . . . , Rk,nk ]
T (2.6.1b)

hk(Xk) = [h1
k(Xk), . . . ,h

nk
k (Xk)]T . (2.6.1c)

and corresponding state and measurement models,

Xk+1 = FkXk + vk (2.6.2a)

zk = hk(Xk) + wk (2.6.2b)

X0 ∼MVT (µ0, v0, P0). (2.6.2c)

where vk ∼ MVT (0, v, Qk) and wk ∼ MVT (0, v, Rk) are multivariate Student’s-t

distributions. Using the derived state and measurement models in (2.6.2a) and (2.6.2b),

one can use the STF update procedure described in Lemma 2, for estimating the aug-

mented state. The partial derivatives of the relevant measurement equation are shown

in Appendix 2.12.2, since the recursion in Lemma 2 needs the H = dhk(Xk)
d(Xk)

.
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2.7 Approximations for TP-EKF

As discussed in previous sections, the core contribution of this manuscript relies on

Student’s-t distribution. However, a Student’s-t distribution can become a Gaussian

distribution when the underlying degrees of freedom v becomes large, i.e. when

v →∞. This is a particular concern in our case, especially when k →∞, the degrees

of freedom vk, outlined in (2.4.23a) in Section 2.4, becomes very large, i.e. infinity.

With the underlying Student’s-t distribution becoming a Gaussian distribution, all

the benefits of the TP-EKF will dissipate. From [37, 63], the heavy-tailed distribution

of the posterior density can be preserved as,

MVT (X ; X̂ , vk, Pk) ≈MVT (X ; X̂ , v̄k, τPk), (2.7.1)

where v̄k is a user-defined, application-sensitive degrees of freedom, and τ is the

perspective parameter computed by using Kullback-Leibler [64] or other moment

matching methods [59], as follows:

τ ,
vk(v̄k − 2)

(vk − 2)v̄k
. (2.7.2)

Here, the computation of τ in (2.7.2) follows [65]. We define Lemma 3, for rendering

a more generic TP-EKF algorithm.

Lemma 3 The proposed TP-EKF algorithm assumes similar degrees of freedom for

process noise, measurement noise, and initial state vector. Although, this was helpful
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in the derivation of the final algorithm, in reality, it is seldom that they have similar

values. Consider a realistic process noise, measurement noise, and initial state vector

with non-equal degrees of freedom, defined by

vk ∼MVT (0, v1, Qk) (2.7.3)

wk ∼MVT (0, v2, Rk) (2.7.4)

x0 ∼MVT (x̂0|0, v3, P0|0) (2.7.5)

The original TP-EKF algorithm can be utilized by the following approximations:

vk ∼MVT (0, v, Q̃k), (2.7.6a)

Q̃k , cQQk. (2.7.6b)

wk ∼MVT (0, v, R̃k), (2.7.7a)

R̃k , cRRk. (2.7.7b)

and

x0 ∼MVT (x̂0|0, v, P̃0|0), (2.7.8a)

P̃0|0 , cPP0|0. (2.7.8b)
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Here, cP , cQ, and cR are constants, which can be computed using the same moment

matching method discussed above. With this approximation, the proposed filter

becomes applicable to real-world scenarios with an unequal degree of freedom among

measurement noise, process noise, and prior Student’s-t distribution.

2.8 TP-EKF Gating

In formulating a generic TP-based ETT algorithm, we have been gradually relaxing

the constraints laid out when the original algorithm was derived. Along this line,

the proposed algorithm assumes a clutter-free environment with perfect detections.

However, in a problem that inherently deals with multiple targets and measurement

origin uncertainty, this assumption is unrealistic. One simple yet effective method for

handling the measurement origin uncertainty caused by clutter and missed detections

is, data association. The extension of our work to the general multitarget tracking

problem using the Random Finite Sets (RFS) [66] and Probabilistic Data Associa-

tion (PDA) [67] frameworks is the topic of a forthcoming work. The most commonly

used method for data association is the tracking gate, by which valid measurements

are distinguished from invalid ones, and passed on to the subsequent processes. Al-

though, rectangular and ellipsoidal gating are the most commonly used [68] algo-

rithms, the latter accounts for the distribution of target measurements, and hence

more appropriate for our case, particularly when used incorporating the Mahalanobis

distance. Traditional gating approaches consider Gaussian noise, and the Maha-

lanobis distances becomes Chi-square distributed. In the context of measurements

with Student’s-t distribution, the Mahalanobis distance Dk for a measurement zk,

p(zk) =MVT (zk; ẑk, vk, Sk), follows an F distribution [59]. Thus,
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1

nz
Dk(z) ∼ f(z; d1, d2)

=
1

B (d1/2, d2/2)

(
d1

d2

) d1
2

z
d1
2
−1

(
1 +

d!

d2

z

)− d1+d2
2

(2.8.1)

for d1, d2 > 0, and B(a, b) = Γ(a)Γ(b)
Γ(a+b)

denotes the Beta function. With this, the

Mahalanobis distance for the proposed TP-EKF becomes,

Dk(zk) = (zk −HX̂k+1|k)
TS−1

k+1(zk −HX̂k+1|k) (2.8.2)

where H and S are the same as in (2.4.23c) and (2.4.23d), respectively. Then, the

measurement zk will be within the gating region

V(k, Thg) = {zk : D2 ≤ Thg} (2.8.3)

with the corresponding probability defined by the gating threshold Thg. The gat-

ing threshold can be obtained from the inverse cumulative distribution function

of f(nz, vz) at a desired level of significance α. Typical values for α are usually

0.95 ≤ α ≤ 0.99. Lowering the value of α implies that (1 − α) of the true measure-

ments are rejected, and thus lower gating performance.
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2.9 Conditional Cramér-Rao Lower Bound for TP-

EKF

The posterior Cramér-Rao lower bound (PCRLB) [69] provides a performance bound

on the mean square error (MSE) general nonlinear filtering problems. The PCRLB

is defined as the inverse of the posterior Fisher information matrix (PFIM), where

the Fisher information matrix is derived using the expected value of the observed

random variables, namely the measurements and the system states. This formulation,

and hence the conventional notion of PCRLB, relies on sequential updates of the

measurement and state models, and is, hence bound to be an offline method. However,

the updated covariance matrix of the proposed EKF filter is partially dependent on the

actual and underlying system dynamics. This presents a circular dependency problem,

where the covariance matrix cannot be computed offline, and thus, the conventional

PCRLB, which is offline bound, cannot be used to evaluate the performance of the

proposed EKF filter.

There are a number of techniques outlined in the literature to circumvent this

problem. For instance, in [70], a time-varying, observation-dependent lower bound

on the performance of a variational Bayes (VB) estimator is presented to handle non-

Gaussian measurement noise and well-behaved process noise. In [71], a concept of

conditional PCRLB that is dependent on the actual measurement up-to the current

time is presented, which is generic enough to be extended for our case. More specif-

ically, we will use the recursive formula derived in [71] to compute the conditional

PCRLB for the proposed filter with a Student’s-t based noise.

To begin with, the conditional mean square error (MSE) is defined as
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MSE(X̂0:k+1|Zk) ,

E
[
(X̂0:k+1 −X0:k+1)(X̂0:k+1 −X0:k+1)T |Z1:k

]
=

∫
(X̂0:k+1 −X0:k+1)(X̂0:k+1 −X0:k+1)Tpck+1dZk+1,

(2.9.1)

where pck+1 , p(X0:k+1, Zk+1|Z1:k). The conditional Fisher information matrix, de-

noted by I(X0:k+1, Zk+1|Z1:k), is defined as

I(X0:k+1|Z1:k) , E
[
−∆

X0:k+1

X0:k+1
log pck+1|Z1:k

]
= −

∫ [
−∆

X0:k+1

X0:k+1
log pck+1|Z1:k

]
pck+1dX0:k+1dZk+1.

(2.9.2)

Furthermore, following [71, 72], the MSE of any estimator cannot go below the inverse

of the conditional Fisher information matrix. Thus,

E
[
(X̂0:k+1 −X0:k+1)(X̂0:k+1 −X0:k+1)T |Z1:k

]
≥

I−1(X0:k+1|Z1:k). (2.9.3)

The direct method for computing I−1(X0:k+1|Z1:k) in (2.9.2) involves dealing with

large matrices at every time step k. Instead, we resort to computationally efficient
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techniques outlined in [69, 71], where the conditional FIM, LA(Xk+1|Z1:k), and thus

the conditional PCRLB, are computed recursively. Thus,

LA(Xk+1|Z1:k) = B22
k +B21

k (LA(Xk|Z1:k) +B11
k )−1B12

k , (2.9.4a)

where

∆XkXk , ∇Xk∇Xk (2.9.4b)

LA(Xk|Z1:k) = N22
k −N21

k [N11
k + LA(Xk−1|Z1:k−1)]−1N12

k (2.9.4c)

B11
k = Epck+1

{−∆XkXk log p(Xk+1|Xk)} (2.9.4d)

B12
k = [B21

k ]T = Epck+1
{−∆

Xk+1

Xk log p(Xk+1|Xk)} (2.9.4e)

B22
k = Epck+1

{−∆
Xk+1

Xk+1
log p(Xk+1|Xk)}+

E{−∆
Xk+1

Xk+1
log p(zk+1|Xk+1)} (2.9.4f)

N11
k = Ep(X0:k|Z1:k){−∆

Xk−1

Xk−1
log p(Xk|Xk−1)} (2.9.4g)

N12
k = (N21

k )T = Ep(X0:k|Z1:k){−∆XkXk−1
log p(Xk|Xk−1)}

(2.9.4h)

N22
k = Ep(X0:k|Z1:k){−∆XkXk [log p(Xk|Xk−1) + log p(zk|Xk)]} (2.9.4i)

The partial derivatives used in (2.9.4b) are derived in Appendix 2.12.3, and the in-

tegration corresponding to the expected values are approximated by numerical inte-

gration.
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2.10 Simulations

In this section, we perform a number of simulation-based evaluations to assess the

efficacy of the proposed TP-EKF filter. In doing that, we use the GP-EKF filter, Ran-

dom Matrix (RM) and Random Hyper-surface Matrix (RHM) methods as different

baselines. We perform our evaluations as follows:

• Evaluation Scenarios: We consider three different scenarios, namely, S1, S2

and S3, with relevant maneuvering motion models and shapes. These scenarios

are outlined in Table 2.1

Table 2.1: Scenarios for the experimental evaluation.

Scenario Measurement Noise Process Noise Clutter Number of Baselines
Noise Noise Shapes

S1 Gaussian Gaussian - 2 GP-EKF, RHM
S2 Student’s-t Student’s-t - 2 GP-EKF, RHM
S3 Student’s-t Student’s-t Uniform 1 RM

It is worth noting that, given the fact the RHM method (used in Scenarios S1

and S2) is overly sensitive to the parameter initialization step [11], particularly

to the number of Fourier Coefficients and their covariances, we observed that

no set of common parameters can satisfy both shapes T1 and T2. Hence, careful

initializations were carried out to maximize the performance of RHM as in [10].

• Performance Metrics: We consider three performance metrics: Mean Square

Error (MSE), Intersection-Over-Union (IOU) [73], and PCRLB, in assessing

their performance. Here, the IOU is used to assess the performance of different
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filters in their target shape estimation, which is defined by

IOU(R, R̂) =
A(R̂ ∩R)

A(R̂ ∪R)
. (2.10.1)

where A(.) denotes the area operator that returns the area of a region, R repre-

sents the true region that is occupied by the extended target, and R̂ represents

the estimated region of the extended target. With this definition, the closer the

value of the IOU to unity, the better the shape estimation is;

• Reproducibility: All evaluations were repeated across 100 Monte Carlo runs,

and we only show the average performances.

• Computational Costs: To ensure that the improvements from the proposed

method do not come with unacceptably large computational costs, we measured

the average CPU time for the prediction and update stages upon receiving

each measurement, averaged across multiple runs. We report these runtimes in

relevant sections below.

In all cases, the target moves across a two-dimensional surveillance region with the

dimensions of [−1000, 1000]m× [−1000, 1000]m over a 100-second time interval, and

surface scattering points are considered to be the source of measurements. The num-

ber of scattering points is assumed to be known for the tracker, which follows a Poisson

distribution with event rate λ = 5× 10−2m−2. The number of angle segments, N , is

set to N = 10.
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2.10.1 Evaluation of Scenario S1

In this scenario, which mimics a system without heavy-tailed noise, we evaluate the

performance of the proposed TP-EKF algorithm against two baselines GP-EKF and

RHM, using two different shapes of extended targets, namely T1 and T2. In both

cases the motion has three stages. In the first stage, 1-25s, the target moves with

a nearly constant velocity. In the second stage, 26-75s, the motion model changes

to a constant turning model with a small turn rate. Finally, during the final stage,

76-100s, the target moves with the original constant velocity model. The relevant

parameters of the simulation are shown in Table 2.2.

Table 2.2: Parameter values for the simulation of scenario S1.

Parameter Notation Value (Range)

Sampling time of the sensor T Sampling 1s
SD of the sensor noise covariance σRx,y 0.25 ms−1

Initial state of the target XTrue
0 [0m, 2.4 ms−1, 0m, 0 ms−1, 0 rad, 0 rads−1]T

SD of the process noise covariance (velocity) σQx,y 0.1 ms−1

SD of the process noise covariance (heading) σQψ 0.001 rads−1

The filter is initialized as,

x0 = xTrue0 + x̃, (2.10.2a)

x̃ ∼ N (0, P0). (2.10.2b)
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(a) (b)

Figure 2.2: Performance Results for Scenario S1 for Shape T1: (a) Estimated
trajectory and shape. (b) RMSE of the position against target center and

conditional PCRLB.

where

P0 = diag



2.5m

0.15 ms−1

2.5m

0.15 ms−1

0.1 rad

0.001 rads−1


. (2.10.3)

We show the resulting performance of the evaluation for shapes T1 and T2 in Fig-

ures 2.2 and 2.3, respectively. In both cases, we show (Figures 2.2(a) and 2.3(a)) the

estimated trajectories, and estimated shapes for different values of k. To avoid clut-

tering the illustration, we show these for three different values of k, k = {1, 60, 100} s.

In addition to this, for both cases, in Figures 2.2(b) and 2.3(b), we show the evolution

of RMSE compared to the PCRLB.
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Table 2.3: Performance Results for Scenario S1 using IOU and average RMSE
values of the heading estimates (Gaussian noise).

Target IOU RMSE (rad)
Shape GP-EKF RHM TP-EKF GP-EKF TP-EKF

T1 0.9100 0.7300 0.9400 0.0716 0.0641
T2 0.8700 0.8500 0.8900 0.0807 0.0763

(a) (b)

Figure 2.3: Performance Results for Scenario S1 for Shape T2: (a) Estimated
trajectory and shape. (b) RMSE of the position against target center and

conditional PCRLB.

These results show that the proposed TP-EKF method outperforms both GP-

EKF and RHM methods, especially in terms of target contour estimation, for both

the shapes. Furthermore, it is evident that although RMSEs of all the methods

converge, the overall absolute error between the theoretical PCRLB and the RMSE

of the proposed method is significantly lower than GP-EKF and RHM. We then

show the the IOU performance and the average steady-state RMSE values of the

heading estimates in Table 2.3. It is worth noting that the RHM method does not

offer heading angle estimation (since the state information does not capture this).

When comparing the runtime performance of the TP-EKF and GP-EKF, there is no
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notable difference in their performance, with both the methods taking an average 2.3

ms for the overall computation. It can be seen that this tuned RHM initialization

offers some occasional benefits, but these benefits are not sustained throughout the

simulation. However, the proposed method does not suffer from such issues. Overall,

the proposed TP-EKF method can outperform the GP-EKF and RHM methods on

ETT in the presence of Gaussian noise (both measurement and process) conditions.

2.10.2 Evaluation of Scenario S2

Although this scenario is similar to S1 in terms of settings (see Table 2.2) and shapes

of targets, this scenario simulates the heavy-tailed noise by considering the additive

measurement and process noise, to follow the Student’s-t distribution. Following [74],

the heavy-tailed process and measurement noises are generated by relying on the

following model:

Vk ∼


N (0, Q), with probability 0.9

N (0, 2Q), with probability 0.1

wk ∼


N (0, R), with probability 0.9

N (0, 100R), with probability 0.1.

where Q and R denotes the same process and measurement noise models used in Sec-

tion 2.4, namely, the Gaussian Noise. The main intention of this particular simulation

scenario is to demonstrate the ability of the model to robustly handle a heavy-tailed

noise case when estimating the shapes of extended targets. As such, the process noise

is not accounted to be an extreme case of heavy-tailed noise, and hence the trajectory
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estimations are expected to be similar to scenario S1.

We show the resulting performance of the evaluation for shapes T1 and T2 in Fig-

ures 2.4 and 2.5, respectively. In both cases, like before, we show (Figures 2.4(a)

and 2.5(a)) the estimated trajectories, and estimated shapes for different values of

k = {1, 60, 100}s, and the evolution of RMSE compared against the PCRLB in Fig-

ures 2.4(b) and 2.5(b). In addition to these, we also show the performance of target

orientation estimation, for one of the shapes, namely, T1, in Figure 2.6. Although

a number of observations, similar to that of Scenario S1, can be drawn here, it is

worth noting that the proposed TP-EKF method outperforms the GP-EKF method,

when compared using RMSE and heading orientation estimations. It can be clearly

seen that the estimations from GP-EKF suffers high variations while the same from

TP-EKF method are very stable, both on RMSE and heading. Finally, we show the

IOU performance and the average steady-state RMSE values of the heading esti-

mates in Table 2.4. When comparing the runtime performance of the TP-EKF and

RHM methods, we found that the runtimes were 2.3 ms and 3.5 ms, respectively,

indicating that TP-EKF can outperform the RHM method. Overall, the proposed

TP-EKF method can outperform the GP-EKF and RHM methods on ETT in the

presence of Student’s-t noise (both measurement and process) conditions.

2.10.3 Evaluation of Scenario S3

In the previous sets of simulation scenarios, S1 and S2, the baselines were GP-EKF

and RHM. Although these were sufficient enough to demonstrate the capability of

the proposed filter, given the fact that RM method can also offer complex shape

deductions, a more compelling evaluation would to assess the TP-EKF against RM
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(a) (b)

Figure 2.4: Performance Results for Scenario S2 for Shape T1: (a) Estimated
trajectory and shape. (b) RMSE of the position against target center and

conditional PCRLB.

Table 2.4: Performance Results for Scenario S2: IOU and average RMSE values of
the heading estimates (TP noise).

Target IOU RMSE (rad)
Shape GP-EKF RHM TP-EKF GP-EKF TP-EKF

T1 0.6800 0.4800 0.9300 0.0972 0.0642
T2 0.6300 0.5300 0.8900 0.1180 0.0714

method. Scenario S3 attempts to offer this, particularly in a more realistic setting

with clutter. However, to avoid complex experimental combinations, and to simplify

the analysis, especially in line with the RM method, we opt for a simpler target shape

T3, which is ellipsoidal. Such an assumption is perfectly valid given that the RM-

method assumes that the shape of the extended target is ellipsoidal. The presence

of clutter mimics a case whereby the shape inferencing is done amidst false alarms.

Apart from the target shape and clutter, other parameter settings, and sensor and

target configurations remain similar to scenarios S1 and S2, except:
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(a) (b)

Figure 2.5: Performance Results for Scenario S2 for Shape T2: (a) Estimated
trajectory and shape. (b) RMSE of the position against target center and

conditional PCRLB.

• The motion model of the target is split into three phases: In the first phase,

0-40s, the target follows a nearly constant velocity model with velocity vectors

of Vx = 1 ms−1, Vy = 0 ms−1. In the second stage, 41-55s, it switches to a

constant turn model with turn rate of 6.14◦ s−1. Finally, in the third stage,

from 76 -100s, the target returns back to the constant velocity model of Vx =

0 ms−1, Vy = 1 ms−1;

• Sensor’s field of view(FoV) contains a uniformly distributed clutter. The num-

ber of clutters are Poisson distributed with a rate parameter of λc = 1e−4 m−2.

The gating strategy used in this section ensures that 99% of target generated

measurements fall into the gating region of the target (α = 0.99). The gating

region for TP-EKF is constructed with the strategy proposed in section 2.8, and

the gating region for the RM method is calculated according to the traditional

Chi-Square distribution.
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Figure 2.6: Performance on target orientation estimation for Scenario S2 for Shape
T1 (TP noise).

We show the resulting performance of the evaluation for the shape T3 in Fig-

ures 2.7 and 2.8. Figure 2.7(a) shows the estimated trajectory, and the estimated

shapes at different time points of k = {15, 30, 45, 60, 75, 90}s, and the evolution of

RMSE compared against the PCRLB in Figure 2.7(b). Figure 2.8 shows the variation

of the estimation of the target orientation with time. From these results, it is clear

that both RM and the proposed method offers similar accuracy in terms of centroid

estimation, when compared against the PCRLB. However, this is an expected out-

come, as the RM method, as opposed to TP-EKF, uses the average of all centroid

measurements. However, a closer inspection of these algorithms revealed that there

was a notable difference in terms of IOU criteria. The average IOU for the proposed

algorithm (over 100 Monte Carlo runs) is 0.93, which is far superior to the IOU

resulting from RM, which was 0.64. Furthermore, the variation of the orientation es-

timation shows the proposed TP-EKF easily outperforming the RM method. When
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(a) (b)

Figure 2.7: (a) True and estimated trajectory and shape. (b) The position Error
corresponding to target center and conditional PCRLB.

comparing the runtime performance of the TP-EKF and RM methods, we found that

the runtimes were 2.5 ms and 1.1 ms, respectively. Although the RM method was able

to outperform the proposed technique in terms of runtime performance, the overall

performance on shape inference, orientation and path tracking was remarkably good.

Overall, the proposed method offers excellent results when compared against the RM

method albeit taking extra runtime.

2.11 Conclusions

In this chapter, a novel TP-based approach for the extended target tracking problem

was proposed. We proposed the use of TP for modeling the hidden target extent,

in parallel to estimating the kinematic state of the target. An efficient recursive TP

algorithm that does not suffer from dimensionality increase was derived. In doing

so, we have considered all necessary (re)formulations for addressing extended target
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Figure 2.8: Ellipsoidal ET orientation estimation in presence of clutter, Student’s-t
process and measurement noise.

tracking problems using the proposed TP-EKF algorithm, including TP-based state-

space and measurement models, gating, and online PCRLB models for assessing the

RMSE errors. We evaluated the proposed algorithm under different conditions, using

different target shapes and baselines, and the results show that the proposed algo-

rithm outperforms a number of baseline methods, including in complex cases, where

clutter, heavy-tailed noise and outliers are present. These results render the proposed

algorithm as a better option for object classification and recognition purposes. In the

future, we aim to use non-linear measurement models, multiple model estimators and

the RFS and PDA frameworks to further increase the applicability of the proposed

algorithm for general multitarget tracking problems.
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2.12 Appendices

2.12.1 Moment of Measurement Noise

According to the common properties of Student’s-t and Gaussian distribution [59],

for a random variable z = Ax+ b, the associated probabilities are

p(x) =MVT (x; x̂, v, P ), (2.12.1a)

p(z) =MVT (z;Ax̂+ b, v, APAT ). (2.12.1b)

This property follows from deriving the Student’s-t distribution with an IG kernel,

prior to the Gaussian kernel. The relevant affine transformation of Gaussian random

variables is, following [64], as follows:

V ar[sjk(o
j
kG

s,j
k xsk + ojke

j
k)] = E[(sjk(o

j
kG

s,j
k X

s
k + ojke

j
k))

2]

−E[sjk(o
j
kG

s,j
k X

s
k + ojke

j
k)]

2 = E[(sjko
j
kG

s,j
k xsk + sjko

j
ke
j
k)

2]

−µ2
s[o

j
kG

s,j
k xsk][o

j
kG

s,j
k xsk]

T , (2.12.2)

E[(sjko
j
kG

s,j
k xsk + sjko

j
ke
j
k)

2] = (ojkG
s,j
k xsk)E[(sjk)

2]

(ojkG
s,j
k xsk)

T + E[(sjk)
2]ojkE[(ejk)

2](ojk)
T = (µ2

s+

(
v − 2

v
σs)

2)[(ojkG
s,j
k xsk)(o

j
kG

s,j
k xsk)

T + ojk(
v − 2

v
Rs,j
k

(xsk))(o
j
k)
T ] + 2µ2

sG
s,j
k ojk(∇xR

s,j
k )P s

k (ojk)
T . (2.12.3)
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2.12.2 Partial Derivative of Measurement Equation

The partial derivatives of the measurement equation, with respect to the augmented

state for linearization purposes, is as follows:

Hk =
dhk(Xk)
dXk

=

d

dXk
[h1
k(Xk)T , . . . ,hnk(Xk)T ] =

d

dXk
hjk(Xk) =

[
dhjk(Xk)

dxk

dhjk(Xk)

dxsk
]

]
(2.12.4)

The kinematic state partition can be calculated by

dhjk(Xk)
dxk

=

[
dhjk(Xk)

dxcenterk

dhjk(Xk)

dψk

]
(2.12.5a)

dhjk(Xk)
dxcenterk

= I +
∂ojk(b)

∂b
|b=xcenterk

Gs(θLocal,jk (xcenterk , ψk))x
s
K + ojk(x

center
k )

∂Gs(u)

∂u
|u=θLocal,jk (xcenterk ,ψk)

∂θGlobal,jk (a)

∂a
|a=xcenterk

xsk

(2.12.5b)

dhjk(Xk)
dψk

= −ojk(x
center
k )

∂Gs(u)

∂u
|u=θLocal,jk (xcenterk ,ψk) (2.12.5c)

∂θGlobal,jk (a)

∂a
=

1

||zjk − a||2

[
zyk − ay, −(zxk − ax)

]
(2.12.5d)
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∂Gs(u)

∂u
=
∂K(u,uf )

∂u
[K(uf ,uf )]−1 (2.12.5e)

∂K(u,uf )

∂u
=

∂

∂u
[κ(u, us1), . . . , κ(u, usNs)] (2.12.5f)

∂ojk(b)

∂b
=

(zjk − b)(zjk − b)T

||zjk − b||3
− 1

||zjk − b||
I. (2.12.5g)

where

∂K(u,uf )

∂u
= − 1

l2
sin(u− ufi )κ(u, ui).

Furthermore, the extent state portion can be calculated based on the following:

dhjk(Xk)
dxsk

= ojk(x
center
k )Gs

k(θ
Local,j
k (xcenterk , ψk)). (2.12.5h)

2.12.3 TP-CRLB Derivation

The following statements are derived according to the Student’s-t distribution,

− log p(Xk+1|Xk) = c1+

(
−n

2
− v
)

log

T︷ ︸︸ ︷(
1 + [Xk+1 −FkXk]T (

Q−1
k

v − 2
)[Xk+1 −FkXk]

)
,

(2.12.6a)
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− log p(zk+1|Xk+1) = c2 +
(
−n

2
− v
)

log

(
1 + [zk+1 −Hk+1Xk+1]T (

R−1
k+1

v − 2
)[zk+1 −Hk+1Xk+1]

)
︸ ︷︷ ︸

Y

,

(2.12.6b)

− log p(Xk|Xk−1) = c′1 +
(
−n

2
− v
)

log

E︷ ︸︸ ︷(
1 + [Xk −Fk−1Xk−1]T (

Q−1
k−1

v − 2
)[Xk −Fk−1Xk−1]

)
,

(2.12.6c)

− log p(zk|Xk) = c′2 +
(
−n

2
− v
)

log

(
1 + [zk −HkXk]T (

R−1
k

v − 2
)[zk −HkXk]

)
︸ ︷︷ ︸

U

. (2.12.6d)

where c1, c2, c′1 and c′1 are constants, which are independent of X•, and n is the dimen-

sion of the state space model. Assuming that F and H being linear and logarithmic,

the following intermediate formulations can be made:

−∇Xk log p(Xk+1|Xk) =

(−v − n

2
)×

(FTk )(
Q−1
k

v−2
)(Xk+1 −FkXk)
T

, (2.12.7a)
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−∇Xk+1
log p(Xk+1|Xk) =

(−v − n

2
)×

(
Q−1
k

v−2
)(Xk+1 −FkXk)

T
, (2.12.7b)

−∇Xk+1
log p(zk+1|Xk) =

(−v − n

2
)×

(HT
k )(

R−1
k+1

v−2
)(zk+1 −Hk+1Xk+1)

Y
, (2.12.7c)

−∇Xk−1
log p(Xk|Xk−1) =

(−v − n

2
)×

(FTk−1)(
Q−1
k−1

v−2
)(Xk −Fk−1Xk−1)

E
, (2.12.7d)

−∇Xk log p(Xk|Xk−1) =

(−v − n

2
)×

(
Q−1
k−1

v−2
)(Xk −Fk−1Xk−1)

E
, (2.12.7e)

−∇Xk log p(zk|Xk) =

(−v − n

2
)×

(HT
k )(

R−1
k

v−2
)(zk −HkXk)
U

. (2.12.7f)
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With these, the derivatives in (2.9.4a) can be derived as:

B11
k = E{−∆XkXk log p(Xk+1|Xk)} = (−v − n

2
)×

E

{
FTk (

Q−1
k

v−2
)Fk × T− [FTk (

Q−1
k

v−2
)(Xk+1 −FkXk)]2

T2

}
,

(2.12.8a)

B12
k = [B21

k ]T = E{−∆
Xk+1

Xk log p(Xk+1|Xk)} = (−v − n

2
)×

E

{
FTk (

Q−1
k

v−2
)× T−FTk

[(Q−1
k

v−2

)
(Xk+1 −FkXk)

]2
T2

}
, (2.12.8b)

B22
k = E{−∆

Xk+1

Xk+1
log p(Xk+1|Xk)}︸ ︷︷ ︸
B22a

+

E{−∆
Xk+1

Xk+1
log p(zk+1|Xk+1)}︸ ︷︷ ︸
B22b

, (2.12.8c)

B22a = (−v − n

2
)×

E

{
(
Q−1
k

v−2
)× T +

[
(
Q−1
k

v−2
)(Xk+1 −FkXk)

]2
T2

}
, (2.12.8d)
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B22b = (−v − n

2
)× E

{
HT
k+1(

R−1
k+1

v−2
)Hk+1

Y
−

[HT
k+1(

R−1
k+1

v−2
)(zk+1 −Hk+1Xk+1)]2

Y2

}
, (2.12.8e)

N11
k = E{−∆

Xk−1

Xk−1
log p(Xk|Xk−1)} = (−v − n

2
)×

E

{
FTk−1(

Q−1
k−1

v−2
)Fk−1

E
−

[FTk−1(
Q−1
k−1

v−2
)(Xk −Fk−1Xk−1)]2

E2

}
, (2.12.8f)

N12
k = [N21

k ]T = E{−∆XkXk−1
log p(Xk|Xk−1)} = (−v − n

2
)×

E

{
FTk−1(

Q−1
k−1

v−2
)× E−FTk−1

[(Q−1
k−1

v−2

)
(Xk −Fk−1Xk−1)

]2
E2

}
, (2.12.8g)

N22
k = E{−∆XkXk log p(Xk|Xk−1)}︸ ︷︷ ︸

N22a

+E{−∆XkXk log p(zk|Xk)}︸ ︷︷ ︸
N22b

, (2.12.8h)

N22a = (−v − n

2
)×

E

{
(
Q−1
k−1

v−2
)× E + [(

Q−1
k−1

v−2
)(Xk −Fk−1Xk−1)]2

E2

}
, (2.12.8i)
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N22b = (−v − n

2
)×

E

{
[HT

k ](
R−1
k

v−2
)[HT

k ]T × U− [HT
k (
R−1
k

v−2
)(zk −HkXk)]2

U2

}
.

(2.12.8j)
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Chapter 3

Two- and Three-Dimensional

Extended Target Tracking Using

Random Polytopes

3.1 Abstract

Extended Target (ET) generates multiple measurements in a single scan from un-

known sources of measurements distributed along their bodies. In this paper, a

novel extended target tracking approach for filled extended objects in two- and three-

dimensional spaces with arbitrary shapes using a Random Polytope (RP) shape con-

structor is introduced. The proposed algorithm is capable of handling the important

challenge that arises when tracking extended targets, namely, self-occlusion. The

proposed shape function based on the Random Polytopes leads to a recursive Gaus-

sian state estimator for tracking extended targets in the presence of measurement

noise and occlusions. The performance of proposed algorithm is demonstrated using
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a number of simulations covering two- and three-dimensional cases. Our result indi-

cate that the proposed algorithm outperforms other relevant methods both in terms

of state estimation, when compared against the Posterior Cramer-Rao Lower Bound,

and in shape estimation, evaluated based on a distance metric defined based on the

proposed RP shape description.

3.2 List of Notations

Throughout this chapter, scalars or scalar-valued functions are denoted with non-bold

symbols, e.g., yk, vectors or vector-valued functions are denoted with bold symbols,

e.g., uk, and matrices are denoted with capitalized symbols, e.g., A. Furthermore, a

list of some of the used notations and their explanations are listed below.

Φ(x,w) Random Polytopes shape function

h(xi) Half-space over point xi

w Weights of half-spaces

xk Augmented state

x̄k Kinematic state

xshapek Extent state

w Weights of half-space

yk Actual measurements

zk Source of measurements
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ω Measurement noise

sk Contour scaling factor

3.3 Introduction

Extended target (ET) tracking (ETT) has a number of applications in several areas,

including airborne, maritime, and ground surveillance using high-resolution sensors,

autonomous vehicular systems, and in video tracking [7]. The key challenge in ETT

compared with conventional target tracking is that targets are no longer point targets,

and as such, they can take any filled shape. This difference leads to an important

phenomenon: more than one measurement can be returned per target whereas in

point target (PT) tracking (PTT), at-most one measurement is received per target

per scan. The actual number of measurements often varies with time, depending on

the shape of the target, location of the sensor, and whether any part of the target

is occluded by another part of the same target (self-occlusion). Inevitably, ETT

algorithms are required not only to estimate kinematic states of the target, but also

their shapes. Although the kinematic state estimation problem is often simplified by

treating the target as a point target, where the centroid of the ET represents the

target as a PT, the shape estimation still remains a challenge in ETT.

Several methods are proposed in the literature for shape estimation [4, 6, 7, 10, 11,

31, 75, 76, 77, 78, 79, 80]. Often the shape of a target is assumed as rectangular [75,

76], elliptical [7, 10], or sticks [77]. Complex shapes are often estimated using the

composition of geometrical shapes, such as multiple overlapping ellipses [31]. The

star-convex shape descriptor using the radial function is proposed in [11, 78], where
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the radial basis functions are used for recursively estimating the extent and kinematic

state of a target using the Gaussian Process (GP). In [4], an approach for shape

description is provided using the Random Finite Sets (RFS) theory. The key idea

here is to represent a set of measurements over the field of view of a sensor as a

spatial point process, such as an inhomogeneous Poisson Point process. A number of

enhancements to this approach have also been developed in [6, 79].

However, one major assumption in existing literature is that the observations are

generated only from the contour points (and/or a scaled version of the contour points)

of the target [80]. Although this assumption is acceptable in some cases, it effectively

disregards the notion of filled objects, and thus possible measurements from the of

the ETs. Assuming measurements originating only from the contour points can limit

the ability of the algorithms to accurately estimate the centroid of the target, in

addition to yielding poor shape estimates when measurements indeed originate from

the interior points of targets.

One of the subtle, but important aspects that underpins the shape inferencing pro-

cedure is self or mutual occlusion [81], where a part of an extended target occludes

another part of itself or that of another, respectively. This poses a serious challenge

to the shape estimation process due to potentially conflicting sets of measurements

over time. Without accounting for the possibility of occlusion, these measurements

can misguide not only the shape inferencing process with temporally varying shapes,

but also the kinematic state estimation process with incorrect, time-varying centroids.

The issues become more pronounced in the presence of noise and clutter. ETT in

the presence of self or mutual occlusion has not received much attention in the liter-

ature. In [73, 81], self occlusion is handled using the concept of observable sides from
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multiple measurements. However, this approach is limited to two primitive shapes,

namely, rectangular and ellipsoidal, and more importantly limited to measurements

originating only from target contours. In [82], self occlusion is handled using partial

likelihoods. However, this approach is also limited to measurements originating from

contour points and the notion of self occlusion is limited to specific cases.

To the best of our knowledge, the only work in the ETT literature we are aware

of that accounts for filled targets and measurements from the interior of the target

is the generalized Random Hyper-surface Models using Level-Sets (LS-RHM) algo-

rithm [80]. The LS-RHM approach has some limitations:

• It requires a regularization term to capture different features of the extended

object. For instance, regularization is used as a correction mechanism for han-

dling incorrect initialization or the curvature of the estimated shape [80]. This

is because the LS-RHM approach inherits the non-parametric characteristics of

the underlying level-set methods [83];

• Its computational time complexity is O(n3), which may be prohibitive in real-

time tracking applications; and

• It cannot be generalized both in terms of regularization term (between appli-

cations) and in terms of dimensionality. That is, there is no generalization to

higher dimensional spaces, and it is not directly usable for three-dimensional

object tracking.

In this paper, we propose a novel ETT algorithm that is capable of estimating both

the shape and kinematic states, while addressing the above shortcomings. More

specifically, we use Random Polytopes (RPs) [84, 85], to approximate the shapes of

71



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

convex bodies. Although the notion of using RPs for approximating shapes has long

existed in computer science (see [84, 85, 86, 87]), the use of RPs in the context of

ETT has not been done before. We see this as a major step towards deriving realistic

and practically useful ETT algorithms. However, this is not without challenges. One

of the key challenges is embedding shape inferencing using RP as part of a state

estimation framework. This has to be achieved while ensuring low and accurate

estimations. The proposed RP-based algorithm for shape inferencing results in a

simplified and effective approach to handle self occlusions. This paper makes the

following key contributions:

• introduces the notion of using RPs for shape inferencing in the context of ETT;

• enables the definition of any extended target shapes, going beyond simple shapes

such as rectangles, ellipses or star-convex shapes, that have been studied hith-

erto;

• embeds shape inferencing using RP as part of the Bayesian framework for kine-

matic state and shape estimation;

• provides an estimation approach for accounting for all measurements from an

extended target, without being limited to contour points; and

• results in robust approach for handling self occlusions by correctly partitioning

target measurements;

• yields a generic and extensible shape inferencing algorithm for extended targets

that can operate in higher dimensions and is free from the notion of regulariza-

tion.
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These contributions render the proposed algorithm applicable to real world prob-

lems in higher dimensions. The rest of this paper is organized as follows. We first

present the relevant mathematical background into RPs and shape descriptor func-

tions in Section 3.4. We then show how the self occlusion problem can be addressed

in the proposed algorithm with the help of shape descriptor functions in Section 3.5.

This is then followed by Section 3.6, where we address RP-based shape inferencing in

a Bayesian framework. To facilitate the benchmarking process, we derive the Poste-

rior Cramér-Rao Lower Bound (PCRLB) for our case in Section 3.7. We present our

simulation studies in Section 3.8 before concluding the paper in Section 3.9.

3.4 Random Polytopes as Shape Function For Ex-

tended Target

3.4.1 Random Polytopes

Let S be a set containing a number of non-empty, convex, compact bodies in a d-

dimensional Euclidean space. Furthermore, let S ∈ S be one of those compact bodies.

Let there be n independent random points, {x1, x2, . . . , xn}, chosen uniformly over

S. Then, the convex hull constructed by these points is called a Random Polytope

(RP) in the convex set S. Here, it is a Polytope since it is the convex hull of a set of

points, and it is random as these points are randomly distributed across the compact

body [84, 88, 89, 90, 91].

RPs are used in several application areas, including algorithmic complexity, com-

pilers, mathematical optimization, statistics and biology [92, 93]. In our case, the

primary interest is on expressing the shape of a compact body (in a d-dimensional
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Euclidean space) using a set of RPs. This technique provides a method for capturing

the complex shapes of extended targets, and thus underpins the key contributions of

this paper.

An RP can be constructed using a number of methods, including convex hulls of

random points, Gaussian polytopes, intersections of random half-spaces, and random

projections of high-dimensional polytopes [94, 95]. The exact choice of methods for

generating RPs, can often be subjective, based on a number of factors, including the

asymptotic outcome, computational complexity, and algorithmic simplicity. In this

paper, we will be using the intersections of the random half-spaces method where the

RPs are generated by computing the intersection of the supporting half-spaces (due

to its simplicity). More specifically, intersections are calculated over a set of random

points xi on the differentiable boundary of the shape S of the extended target. The

half-spaces over the set of points xi are denoted by h(xi).

3.4.2 Shape Function of Random Polytopes

The shape function, Φ, of RPs can be defined as the intersection of supporting lines

(in two-dimensional cases) and hyperplanes (in higher dimensions) at chosen points

on their line/plane boundaries. Thus, the shape function Φ(x) defined over the in-

tersection of half-spaces on a set of n points x = {x1,x2, . . . ,xn} is given by

Φ(x) =
n⋂
i=1

h(xi) (3.4.1)

The d-dimensional half-space h(xi) over point xi on the boundary of RP can be

defined as
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h(xi) =


1, l ≥ 0

0, Otherwise

(3.4.2)

where

l =
d∑
p=0

wp.xp (3.4.3)

with wp being the coefficients of the given half-space, and points xi are represented

in homogeneous coordinate form [96]. That is, xi = [x, y, 1]T and xi = [x, y, z, 1]T

in R2 and R3 respectively. Now, as per set theory, a point x(∈ Rd) belongs to an

intersection set, φ(n), iff:

(x ∈ h(x1)) ∧ (x ∈ h(x2)) ∧ · · · ∧ (x ∈ h(xn)) =
n∧
i=1

h(xi) (3.4.4)

Given that each half-space is represented as a binary value in (3.4.2), the logical

operator (∧) can be replaced by the product operator (
∏

). Thus,

Φ(x) =
n∏
i=1

h(xi) (3.4.5)

However, the shape function defined in (3.4.2) is not continuously differentiable,

and hence its direct use in filtering algorithms is limited. This issue, however, can

be overcome by replacing the shape function with an approximated version of it, so
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Figure 3.9: Examples of approximated versions of shape functions in R2.

that it can be differentiated everywhere. We show a number of such approximations

in Figure 3.9. These include hyperbolic tangent (tanh) and logistic sigmoid, both

continuous and differentiable across the domain. However, the range of the raw

hyperbolic tangent can be negative, and hence the derivative can reach negative

values. This can be addressed by using the modified version, namely, 1+tanh(l)
2

, instead

of tanh(l). These functions, and their derivatives are shown in Table 3.5. We also

illustrate how these shape functions can be used to capture a realistic shape of an

extended target in Figure 3.9.

Table 3.5: Derivatives of approximated half-space functions

Function h(xi) h′(xi)

Original tanh tanh(xi) (1− tanh(xi)
2)

Modified tanh 1+tanh(xi)
2

1
2
(1− tanh(xi)

2)
Sigmoid (σ(xi))

1
1+e−xi

σ(xi)(1− σ(xi))

A number of shape functions can now be obtained by replacing h(xi) with the
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(a) (b) (c)

Figure 3.10: (a) Original shape (b) RP-based target shape constructed using the
sigmoid shape function (c) RP-based target shape constructed using the tanh shape

function.

corresponding half-space functions. For instance, in our case, shape functions when

using the logistic sigmoid and modified hyperbolic tangent half-space functions are

given by

Φ(x,w)1 =
n∏
i=1

1

1 + exp(l)
(3.4.6)

Φ(x,w)2 =
n∏
i=1

1

2

(
1 +

exp(−2l)− 1

exp(−2l) + 1

)
(3.4.7)

where l is defined in (3.4.3), and w = [w0, . . . ,wn] represents the weights of the half-

spaces. Both approximations of the half-spaces can generate the value of the shape

function Φ between [0, 1]. However, half-space approximations with the hyperbolic

tangent results in a much sharper contour than the sigmoid counterpart, owing to the

differences in their slopes. Although it is possible to define additional transformations

to the sigmoid function to increase its slope, the hyperbolic tangent is simpler, and
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hence, is preferred over the sigmoid. Furthermore, we make two assumptions in

defining the shape of an arbitrary target with the proposed method. The first is

that the intersection of half-spaces is bounded, and the second assumption is that the

computational complexity of deciding the existence of a point inside (or outside) the

intersection is a constant.

Representing an extended target using the proposed RP shape function leaves

parameters wp (for p = 0, . . . , d) to be computed. In fact, wp (for p = 0, . . . , d) are

the coefficients and biases (intercepts) of the linear tangent half-spaces that form the

contour of the extended target. These are used as adaptive variables and are up-

dated during the filtering process. When using the hyperbolic tangent-based shape

function as in (3.4.7), the level sets Φ(x,w) R 0.5, for a given point x, and decides

where the point x lies in relation to the contour. That is, level sets Φ(x,w) > 0.5,

Φ(x,W ) = 0.5, and Φ(x,w) < 0.5 denote that the point x is at the interior, bound-

ary, and exterior of the extended target, respectively. This method, in comparison to

the signed Mahalanobis distance shape function used in the RHM method [80], is rel-

atively simple and has a constant-time computational complexity. More specifically,

the signed Mahalanobis distance can assume different values at different sampling

times due to occlusion, and additional computations are needed for eliminating such

variability, rendering the method heavily compute-bound with a time complexity of

O(n3).

3.4.3 Representing Non-Convex Shapes

The use of RPs for capturing convex shapes can be extended to represent non-convex

shapes by defining a generalized shape function that represents a non-convex shape
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as a union of m convex RPs [97]. This can be achieved using the DeMorgan Law as

follows:

Φ(x,W) = 1−
m∏
j=1

1−

ConvexPolytope︷ ︸︸ ︷
n∏
i=1

1 +
exp(−2

∑d
D=0 w

D
j,i.x

D)−1

exp(−2
∑d
D=0 w

D
j,i.x

D)+1

2


 (3.4.8)

where w = [w0, . . . ,wm], as before, represents the weights of half-spaces of each

polytope.

3.4.4 Augmented Extended Target State and Evolution Model

Let xk be the augmented state of an extended target that is defined as

xk =

 x̄k

xshapek

 (3.4.9)

where x̄k and xshapek are the kinematic, and shape extension parts of the target.

The kinematic part of the state often contains the positions and their derivatives as

determined by the state transition model of choice, while the shape component, as

discussed before, is expressed by the weights of half-spaces, namely, w, whose length

may vary depending on the number of half-spaces used in the shape description. To

simplify the process, assume a two-dimensional spatial domain where the extended

targets are moving with a constant velocity motion model, and a shape description

using n half-spaces. Thus,
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x̄k =



xk

ẋk

yk

ẏk


(3.4.10)

and

xshapek =



w1(k)

w2(k)

...

wn(k)


(3.4.11)

If the assumptions on the spatial domain can be relaxed to consider a three-

dimensional space, the kinematic and shape components will be extended using the

homogeneous coordinate system. The state evolution model for an extended target

then becomes

xk+1 = Fkxk + vk (3.4.12)

where Fk and vk are representing the state transition matrix and the process noise

at time k, where

Fk = diag{F̄k, F shape
k }
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with F̄ and F shape
k modeling the transitions of target centroid and target shape with

time, respectively. Given that the shape of a target is invariant to time, F shape
k can

be replaced by an identity matrix, I. The process noise vk is modeled by a zero mean

Gaussian distribution with covariance matrix

Qk = diag{Q̄k, Q
shape
k }

The extended target representation used in the generalized RHM method that uses

the level-set method [80] is a chain of two-dimensional points constructing a polygon.

Thus, it is a special case of the augmented state-space model outlined above, where

the shape component is replaced by the vertices constructed by the intersection of

half-spaces.

In our case, the number of half-spaces required to represent an extended target

is assumed to be known a priori, and the RP shape function was observed to be less

sensitive to the number of discriminate half-spaces. Although it is possible to develop

a technique that dynamically estimates the number of discriminate half-spaces, it is

beyond the scope of this paper.

3.4.5 Measurement Model for Extended Targets

As the core contributions of this paper rely on the augmented state-space model

outlined above, it is essential to develop a pseudo-measurement model that conforms

to the augmented model. In order to develop a pseudo-measurement model, we will

rely on the following lemma:

Lemma 1. Implicit Measurement Equation: Consider a circular extended
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target. In the augmented state-space model, the extension part of the state vector

xshapek = rk. This is defined in [10] using a signed Euclidean distance shape function

as follows:

Φc(xk, zk) = rk − ||zk|| (3.4.13)

where ||zk|| is represents the Euclidean norm of measurement.

Here, the value of the shape description function Φc becomes Φc = 0 if the mea-

surement zk is on the boundary of the shape, positive for observations belonging

to the interior of the target, and negative for measurements falling outside the tar-

get. By assuming that the measurements only originate from the boundary of the

target, and the actual noise-corrupted measurements are represented by yk, a pseudo-

measurement model can be expressed as

h(xk,yk, ωk) := Φc(xk,yk − ωk︸ ︷︷ ︸
zk

) = 0 (3.4.14)

where ωk is the noise term and zk is the actual source of the measurements on the

contour of the target. Thus, this pseudo-measurement model aids the filter in esti-

mating the state of the target Xk in (3.4.9) when h(xk, zk, wk) is as close as possible

to zero.

To account for the measurements originating from the interior of the target, a

transformation parameter, sk ∈ [0, 1], can be used to tune this model further [78].

The derivation of a new implicit measurement model entails a practical value for
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sk, chosen from a known prior distribution, which is independent of the state, and

scalable with the radius rk. To aid this, the following transformed shape description

function can be derived:

Φs(xk, zk) = sk.rk − ||zk|| (3.4.15)

By replacing Φc in (3.4.14) with Φs, an implicit measurement model that accounts

for measurements originating from the interior of the targets can be developed. Using

the concepts of RP and Lemma 1, the following pseudo-measurement model, which

is the cornerstone of the proposed algorithm, can be derived:

h(xk,yk, ωk, sk) := s−1
k .Φ(yk − ωk︸ ︷︷ ︸

zk

,xshapek ) = 0.5 (3.4.16)

where yk, ωk and zk are the actual observation, noise and the source of the mea-

surement, respectively. Furthermore, function Φ represents the RP shape function

described before. We describe the method for finding an optimal value for the scaling

factor sk ∈ [1, 2] in the latter sections of this paper.

3.5 Handling Self Occlusion

In estimating the shape of extended targets, self occlusion is an important aspect

that requires careful attention. The relative position, and the angle of the observer

with respect to the object influence the overall outcome of the estimation. This
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effect is more pronounced in the three-dimensional case. We illustrate this problem

in Figure 3.11, where the observable sides, and thus of the derived shape, of an

extended target in a three-dimensional observable space is heavily influenced by the

relative positioning of the target with respect to the observer.

Figure 3.11: Dependency of observable sides on object and observer location in
three-dimensional space.

Thus, algorithms producing shape estimations that are less influenced by the

target-observer relationship, are useful in real world applications. In our case, we can

optimize the pseudo-measurement model to differentiate between the measurements

originating from the interior points and the contour points, and thereby infer the

unobservable sides (or facets) of the targets. With these, it is possible to accurately

estimate the true shape of an extended target over time.

Consider the plane hf (i) that contains the facet s1 of the constructed RPs. The

facet s1 is observable from a point if the point lies in the open half-space on the other

side of plane hf (i) [99]. For example, the facet s1 in Figure 3.12(a) is observable from

point A, but not from point B. Equally, the edge L1 is observable from point A but

not from point B, as shown in Figure 3.12(b).

The observability of a facet is underpinned by the fact that the center of an

extended target is defined as a feasible interior point for the convex body built by
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(a) (b)

Figure 3.12: The visibility of a facet from two different half-spaces.

intersection of half-spaces. This intersection of half-spaces also defines the border of

the extended target. Thus, at every time step, it is possible to estimate the side where

the sensor is located. If the sensor is located on the open half-space, measurements can

originate from that facet. This is repeatedly exploited for computing the probability of

detection for each side of the extended target. However, the uncertainty in estimating

the center and the RP representing the shape of target, must be accounted for, to

ensure that the probability of detection is acceptable.

For each of the half-spaces constructing the convex body of the target, we define

the probability of detection (Pd), as follows:

PD(hi) = 1− h(wi)

= 1−

1 +
exp(−2

∑d
D=0 w

D
i .sD)−1

exp(−2
∑d
D=0 w

D
i .sD)+1

2

 (3.5.1)

where sD is the sensor location denoted by a homogeneous coordinate system, and wD

are the weights corresponding to the half-space for which the Pd is computed. Since,
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the weights corresponding to half-space hi are associated with some uncertainty, their

covariances must be accounted for. For this purpose, instead of computing the exact

Pd for a half-space hi as in (3.5.1), the following Pd value is assigned to each of the

facets:

Pd(hi) = σh · PD(hi) (3.5.2)

which accounts for the uncertainty in weights of the intended half-space (3.5.2). Fur-

thermore, σh is the half-space measure of predictability. This value can be defined by

inverse of the largest eigenvalue, inverse of the sum of the eigenvalues and continuous

entropy of the covariance function of the corresponding facet. The entropy H(w), for

an information w, can be computed as follows:

H(w) =

∫
p(w) log p(w)dL (3.5.3)

for random variable L. If the random variable follows a multivariate Gaussian distri-

bution with covariance Σ, which represents our case, the entropy will be computed

as follows:

H(w) =
1

2
log((2 ∗ πe)n det(Σ−1)) (3.5.4)

where n is the dimension of the random variable. To ensure that the this entropy falls
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into the standard half-space representation, the resulting entropy must be mapped

onto the interval [0, 1]. This can be achieved as follows:

σh =
sin(H(w)) + 1

2
(3.5.5)

Therefore, at each time step k, the probability that the half-space i is observable

by the sensor is now known.

3.5.1 Scaling Parameter as an Association Hypothesis

The distribution of the transformation parameter sk in the pseudo-measurement

model plays an important role in estimating the true shape of the extended target.

However, in the literature, the distribution of sk is assumed to be known a priori [10].

For instance, for the measurements originating from the contour of the extended tar-

gets, sk = 1, with no spread. However, when considering extended targets, where

measurements can also originate from the interior part of objects, the distribution of

sk becomes application-specific.

For extended targets, measurements are considered to be uniformly distributed

along the target contour [101]. This can be used to find an approximate distribution

of the scaling factor, p(sk), by using the RP shape function Φ. More specifically, a

histogram of sk can be generated across a number of measurements based on different

RPs defining different half-spaces. However, as the histogram is relying on the shape

function, it is heavily influenced by the shape of the target. We illustrate this for

three different shapes in Figure 3.13.

As can be seen in Figure 3.13, the valid interval for the scaling parameter sk is,

1 ≤ sl ≤ 2. Apart from this, the shape of the target decides the exact distribution
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(a) (b) (c)

Figure 3.13: Distribution of scaling parameter sk for different shapes (circle,
arbitrary, and ellipse).

of the parameter. As such, there is no general approximation for the scaling factor.

In fact, self occlusions exacerbate this problem even more. Even if self occlusions

are to be ignored, in most tracking applications, target shapes are seldom known in

advance. Hence, opting for a pre-determined scaling parameter is infeasible.

A common method for choosing the transformation parameter sk is the Greedy

Association Model (GAM), which does not need the distribution of transformation

parameter sk as a prior [82, 102]. However, GAM attempts to find the distribution of

sk by seeking the best source of measurements on the boundary of the extended target,

which are closest to the measurements using a chosen metric. Widely used metrics

include Mahalanobis distance [103], radial distance [78] and signed distance [104].

We illustrate this in Figure 3.14, where the GAM method is used to estimate the

transformation parameter s.

However, when using RPs, and thus RP shape function Φ, the value of the half-

space itself is a quantifiable metric for finding the best source corresponding to a given

measurement. This eliminates the need for any additional metrics. More specifically,

each particular value of the parameter sk is similar to a distinct association hypothesis

where a correct observation z is associated to a source z̃ on the boundary of an RP.

Furthermore, assuming that the sensor covariance noise is isotropic, the source, which

88



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

Figure 3.14: Finding the most likely source on the contour for a given observation.

can be traced back to a measurement z, is the one that maximizes the following

likelihood function:

z̃x,s′ = arg max
z̃x,s∈Z̃x

N (z− z̃x,s, Cw) (3.5.6)

where z̃x represents all possible sources on the boundary of the object, and Cw is

sensor noise. In reality, z̃x is replaced by an analytic expression using the proposed

RP implicit shape function introduced in (3.4.8). Furthermore, the spatial probability

mass function of the scaling parameter s is modeled with the Dirac delta function, δ,

as follows:

p(s) = δ(s− s′) (3.5.7)

where all probability is concentrated in value s′ that is dependent to the observation z.
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The problem of finding the most probable half-space that is responsible for generating

the measurement z can be formulated as the following optimization problem,

w′s =


minwi∈{Observable half spaces}

1+tanh(z,wi)
2

− 0.5, if Φ(z) > 0.5

minwi∈{Observable half spaces}
1+tanh(z,wi)

2
, if Φ(z) < 0.5

(3.5.8)

where the observable half-spaces are chosen according to a threshold, which is applied

to the auxiliary Pd of half-spaces. In cases where (3.5.8) leads to multiple minima,

one is chosen randomly.

3.6 Filtering

3.6.1 Initialization

As mentioned in Section 3.4, the RP shape function is less sensitive to the num-

ber of half-spaces defining the shape of the extended target. That is, the num-

ber of hyperbolic-tangent components, N , becomes application-specific. From our

simulations in Section 3.8, it is observed that, to obtain a smooth boundary in a

two-dimensional domain, N ≈ 8. In order to achieve a similar smoothness in a

three-dimensional domain, N ≈ 2d2, where d2 is the number of half-spaces in R2.

In the absence of any prior knowledge about the shape of the extended targets,

the initial shape is assumed be either a disk or sphere, both with a fixed radius r, in

two-dimensional and three-dimensional spaces. Let

πi =
πi

N
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and

π1
i =

π(i− 1)

N

The parametric representations of weights of half-spaces for these initial shapes

are given by [97]

WD =



cos(2πi), k = 0

sin(2πi), k = 1

−
[
r + x cos(2π1

i ) + y sin(2π1
i )

]
. k = 2

(3.6.1)

and

WD =



sin(πi) cos(2πi), k = 0

sin(πi) sin(2πi), k = 1

cos(πi), k = 2

−
[
r + x sin(π1

j ) cos(2π1
i ) + y sin(π1

i ) sin(2π1
i ) + z cos(π1

i )

]
. k = 3

(3.6.2)

where x, y and z are the coordinates of the centroid of the extended target and

i ∈ 0, . . . , N − 1 is representing the index of the half spaces. However, this is method

is applicable only if r is known a priori. When this is not the case, the corresponding r

value can be initialized using the RHM method. More specifically, the RHM algorithm

with circle or sphere shapes is used in the first few iterations of the loop to obtain an
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initial estimation for r.

3.6.2 Prediction

The prediction step is performed using the model that describes the evolution of the

target over time, similar to (3.4.12) in Section 3.4.4. In our work, in line with the

literature, we will be using an identity matrix to model the evolution of the target

extension over time [80]. This will result in the following prediction step in the

proposed algorithm.

xk = Fk.xk−1 + vk (3.6.3)

where Fk = [F̄k, I] is the model transition matrix, with I being the identity matrix,

and vk is the Gaussian process noise.

3.6.3 Gating

The gating step is crucial for handling measurement origin uncertainty [105], partic-

ularly in the context of multitarget tracking applications. The gating is performed

before the update step, and handles the measurement origin uncertainty by differenti-

ating possible false alarms from possible target-originated observations, by processing

each measurement individually. In our case, this is performed using the following pre-

dictive likelihood function
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p(zk|z1:k−1) = N (ẑk|k−1, Sk) (3.6.4)

where Sk is the measurement prediction covariance given by

Sk = HkPk|k−1H
T
k +Rk (3.6.5)

where Hk is the Jacobian of the pseudo-measurement model defined in Section 3.4.5.

More specifically, each measurement is verified whether it is originating from inside

or outside the gating region. This is achieved using the residual distance between the

predicted and observed values. This is usually denoted as z̃ = |ẑk − zk|. Thus,

z̃TS−1z̃ ≷ g2 (3.6.6)

where g is the gating threshold. In practice, g relies on a user-defined parameter ε,

where 0 < ε ≤ 1. As ε→ 1, the acceptance rate of measurements increases. Since the

measurements are assumed to follow a Gaussian distribution, the left side quadratic

form in (3.6.6) has a Chi-Square distribution [106] as follows:

g2 ∼ X 2
n (3.6.7a)

p(g2) =
1

2
n
2 Γ(n

2
)gn−2 exp

g2

2

(3.6.7b)
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where n is the degrees of freedom, and in our case, n = 1. Thus, the value of the

gating threshold can be chosen using the inverse of the cumulative Chi-distribution

with a unit degree of freedom [105].

3.6.4 Update

For recursively updating the posterior distribution using Bayes’ theorem, all measure-

ments {zk,l}nl=1 up-to time step k are augmented as follows:

zk = [zk,1, . . . , zk,l]
T (3.6.8)

By assuming that all measurements are independent, and assuming that scal-

ing parameter sk and measurement noise are uncorrelated, the likelihood function

p(zk|X̂k) can be constructed as follows:

p(zk|xk) =
n∏
l=1

p(zk,l|xk) (3.6.9)

Furthermore, as the measurement noise model is additive, the likelihood value for

each single measurement zk,l can be expressed as follows:

p(zk,l|xk) =

∫
p(zk,l|z)︸ ︷︷ ︸

sensor model

. p(z|xk)︸ ︷︷ ︸
source model

dz (3.6.10)

By assuming the scaling factor s as an iterator, which iterates through all possible
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actual source of measurements, z̃x,s, and by assuming that the noise model follows

the Gaussian distribution, (3.6.10) can be transformed into

p(zk,l|xk, sk) =

∫
N (zk,l − z,Σω).δ(z− z̃xk,s)dz (3.6.11)

where δ is the Dirac delta function and Σω is the covariance of the sensor noise. Thus,

each s represents an association hypothesis. There are at least two different options

to handle these different hypotheses. One approach is to fuse all of these different

hypotheses into a single best hypothesis. The other approach is to retain all of the

hypotheses along with a set of relevant likelihoods and posteriors, and compute the

final hypothesis similar to the Joint Probabilistic Data Association (JPDA) method

[105]. However, in this work, to reduce the computational complexity, we use the

former approach, which is outlined in Section 3.5.1. Once the products of likelihoods

are found, using the Bayes’ formula, the posterior distribution can be expressed as

follows:

p(xk|zk) ∝ p(zk|x̂k)︸ ︷︷ ︸
Likelihood

. p(xk−1)︸ ︷︷ ︸
Prior

. (3.6.12)

The best estimate of the extended target state can then be established by max-

imizing the posterior distribution in (3.6.12). For simplicity, we use the extended

Kalman Filter (EKF), which is an approximate maximum a posteriori (MAP) algo-

rithm for nonlinear estimation problems. Better alternatives to nonlinear filtering,

such as the unscented Kalman filter (UKF) [107] and the particle filter (PF) [108],

95



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

can be used as well.

3.6.5 Extended Kalman Filter

One of the key benefits of modeling extended targets by the RP shape function,

which conforms to the pseudo-measurement model in (3.4.16), is that it is differen-

tiable everywhere. Hence, the first order Extended Kalman Filter (EKF) [109], which

approximates the nonlinear measurement model with its first order Taylor series ex-

pansion, can be used for the update step. The derivative of the non-linear pseudo-

measurement model can be calculated analytically (See Appendix 3.10.1). Hence, the

updated values of state and covariance matrices for the proposed RP-EKF algorithm

can be computed as follows:

dh(xk)

dxk
= H(xk), (3.6.13a)

K = Pk|k−1 ×Hk × S−1
k , (3.6.13b)

xk = xk|k−1 +K ×WeightT × (zk − sk × 0.5), (3.6.13c)

Pk|k = Pk|k−1 −WeightT ×K × Sk ×KT . (3.6.13d)

where WeightT is the vector containing the thresholded auxiliary Pd values for each

half-space in the augmented state vector. The value of sk for each measurement is

computed based on the GAM concept, as outlined in Section 3.5.1, and as follows:

sk =

1+tanh(zk,l,w
′
s)

2

0.5
. (3.6.14)

96



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

Figure 3.15: Block diagram for the proposed RP-EKF.

where w′s is as defined in (3.5.8).

3.7 Posterior Cramér-Rao Lower Bound

The posterior Cramér-Rao lower bound (PCRLB) [69] is a standard method for quan-

tifying a performance bound on the mean square error (MSE) for nonlinear filtering

problems. As such, a derivation of PCRLB is required for our proposed approach. In

deriving the PCRLB, which is defined as the inverse of the posterior Fisher informa-

tion matrix (PFIM), it is worth stating the following two crucial assumptions:

• The shape and kinematic parts of the target state are independent of each other;

and

• The evolution of the shape and kinematic parts over time are also independent

of each other.

That is, the measurements at time k from an extended target provides additional

information about the target. Furthermore, given a ground truth state xk+1 and its
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corresponding unbiased estimated state x̂k+1, which is conditioned upon the measure-

ment set z1:k+1, the PFIM, denoted by J(k + 1), is a lower bound for the covariance

matrix Pk+1 [69]. Thus,

Pk+1 = E{(X̂k+1 −Xk+1)(X̂k+1 −Xk+1)T} ≥ J−1(k + 1) (3.7.1)

However, the PFIM can be computed using the Riccati-like recursion [69] as follows:

J(k + 1) = (Fk × J−1
k × F

T
k +Qk)

−1 + Jz,k+1 (3.7.2)

where the initial value J0 = P−1
0 , and the measurement contribution is denoted by

Jz,k+1. For scenarios without any clutter,

Jz,k+1 = WeightTk ×Hk ×Rk ×HT
k (3.7.3)

where H is the Jacobian of the pseudo-measurement, and Weightk is the vector con-

taining the thresholded auxiliary information Pd, for each facets of the target extent

state at time k. In the presence of clutter, the loss of information extracted from

observations due to measurement origin uncertainty is to be accounted for. This is

usually achieved by scaling (3.7.3) by q, where 0 ≤ q ≤ 1, to signify the information

reduction.
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3.8 Results

3.8.1 Overview of Evaluation

To effectively asses the performance of the proposed RP-EKF algorithm, we consider

the shape estimations under the following conditions:

1. different noise conditions

2. in a two-dimensional space, and

3. in a three-dimensional space.

Each of these conditions stresses on different aspects of the proposed approach.

More specifically, (1) assesses the capability of the proposed approach to handle dif-

ferent noise conditions, and (2) and (3) evaluate the capability of the proposed filter

to handle the shape estimation problem in two- and three-dimensional spaces, respec-

tively. In addition to the evaluation under different conditions, we also summarize

the computational performance at the end of this section. To compare the perfor-

mance of different algorithms in their capability to estimate target shapes, we use

two different metrics. One is the intersection-over-union (IOU) measure [73], which

has been used in state-of-the-art ET tracking algorithms to compare the accuracy of

shape estimates. The IOU metric defined for the interval of ∈ [0, 1] and is defined as

follows:

IOU(R̂, RG) =
A(R̂ ∩RG)

A(R̂ ∪RG)
(3.8.1)

where A(•) represents the area, R̂ is the region that is covered by the estimated shape
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and RG is the region covered by the true shape. An IOU value closer to one shows

better performance in shape estimation.

The second metric is a custom, polytope-aware distance metric D(., .), which is

defined as the difference between the normalized weights of the half-spaces constructing

true and estimated polytopes. Here, the polytopes are representing the extended

target. Thus,

D(Ŵ , W̌ ) =
n∑
i=1

d∑
D=0

(∣∣∣∣ŵiD − w̌iDw̄D

∣∣∣∣) . (3.8.2)

where ŵ, w̌, and w̄ are the estimated, ground truth and the average weights among

all half-spaces building the required RP. It is worth noting that this metric is, in

fact, based on the notion of overlapping regions, similar to the IOU metric [80] or

area error [11]. However, a metric that helps identifying the subtle cases of visually

different shapes with overlapping regions is more desirable. On this note, this met-

ric results in a very high-score, effectively differentiating the visually non-identical

shapes using to the discriminant half-spaces [97]. Furthermore, we use this metric

in conjunction with two state-of-the-art algorithms, one for two-dimensional and one

for three-dimensional spatial domains, to benchmark the performance of the proposed

approach. We describe these baseline algorithms in the following subsection, prior to

the actual evaluations.

3.8.2 Baseline Algorithms

As stated above, in the absence of any universal algorithm that can work across

multiple spatial dimensions, we rely on two different baseline algorithms, namely, the
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LS-RHM [80] and Gaussian processes [110], for evaluating the proposed approach for

the two- and three-dimensional cases, respectively.

Baseline algorithm for two-dimensional cases: LS-RHM

The LS-RHM is a Bayesian algorithm capable of tracking two-dimensional non-convex

extended and filled targets [80]. The original LS-RHM method relies on a sequence of

Cartesian points in a two-dimensional space for representing a polygon S(xk), with

the Mahalanobis distance as its shape function. The signed distance function of the

LS-RHM method is given by

Φπ(xk, z) =


d(xk, z), if z ∈ S(xk)

−d(xk, z). otherwise

(3.8.3)

where d is the minimum Mahalanobis distance between the polygon and an observa-

tion z, and defined as

d(xk, z) = min
√

(z− zπ)Σ−1(z− zπ) (3.8.4)

where point zπ is the closest point from the measurement z to the polygon and

Σ is measurement noise covariance. Furthermore, the implicit measurement model

expressed by
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h(sk,yk,xk, ωk) = sk.Φ
max(xk)− Φb(xk,yk − ωk). (3.8.5)

is used update the state information in linear filters that use the LS-RHM method.

However, the LS-RHM method cannot easily be generalized and extended to three-

dimensional targets.

Baseline algorithm for three-dimensional cases: Gaussian Process

In [110], an approach for expressing a three-dimensional extended target as a radial

function is presented. This radial function can be, in fact, modeled by a Gaussian

Process. More specifically, the relationship between the extent of the surface and the

radial function is modeled by the following Gaussian Process:

f(γ) = GP(0, κ(γ, γ′) + σ2
r). (3.8.6)

where f(γ) is the radial function with an input γ that captures both the azimuth and

elevation of the target, and κ is a covariance function of the GP. Here, the covariance

function is often replaced by the Squared Exponential function. Thus,

κ(γ, γ′) = σ2
f exp(−||γ − γ

′||2

2l2
). (3.8.7)
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where l represents the length scale, and σ2
f represents the prior variance. The aug-

mented state space model xk is then updated through an EKF filter, as follows:

xk+1 = Fkxk + ωk, (3.8.8a)

mk,l = hk(xk) + ek

= ck + pk,l(ck)[H
f (γk,l(ck, qk))fk + efk,l] + ēk,l, (3.8.8b)

pk,l(ck) =
mk,l − ck
||mk,l − ck||

, (3.8.8c)

Hf (γk,l(ck, qk)) = K(γk,l(ck, qk), γ
f )[K(γf , γf )]−1. (3.8.8d)

where ckand qk are representing centre and heading angle of target and

efk,l ∼ N (0, Rf
k,l), (3.8.9a)

ēk,l ∼ N (0, R), (3.8.9b)

x0 ∼ N (µ0, P0). (3.8.9c)

3.8.3 Tolerance to Noise Conditions

The fidelity of the proposed algorithm to different noise conditions can be evaluated in

a number of different ways. However, to simplify the analysis, we limit the scope of the

evaluation to three immobile, static targets, in a two-dimensional space, namely Z-,

H-, and L-shaped, non-convex objects from [80]. We then corrupt the measurements

with three different sensor noise levels, namely low (σ = 10−4m), medium (σ = 0.1m)

and high (σ = 1.5m). We then estimate the shape using the proposed approach
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under these noise conditions, before evaluating them against the ground truth using

the distance metric in (3.8.2), and we report the average metrics over 50 Monte Carlo

runs. To benchmark the relative performance, we use the LS-RHM method outlined

in [80], which considers the same shapes in their evaluation. Since the objective here

is to assess the noise tolerance capability of the filter in estimating the extended

state, the occlusion assumption is relaxed, and thus, it is assumed that all parts of

the objects are observable and can generate observations.

One of the main advantages of the proposed shape function is that the value of

the shape parameter is bound within the interval of [0, 1]. In contrast, in the case of

LS-RHM, an extra step is required to find the maximum possible value of the shape

function. The values of the proposed RP shape function, for all three shapes, are

shown in Figure (3.16).

Figure 3.16: The values of shape function for the H-, M- and Z-shaped non-convex
two-dimensional targets.

We show the overall performance in Figures 3.17 and 3.18, and in Table 3.6.

Figure 3.17 shows the said non-convex shapes under three different noise conditions

while Figure 3.18 shows the average distance errors in estimating different shapes

under different noise conditions, compared against the LS-RHM method. Finally,
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Table 3.6: Average steady state distance (m) between true and estimated shapes of
targets under different noise conditions, namely low (σ = 10−4m), medium

(σ = 0.1m), and high (σ = 1.5m).

Low Noise Medium Noise High Noise
Filter / Target Shape Z H M Z H M Z H M

LS-RHM 1.15 2.18 1.02 2.40 2.62 1.42 4.60 3.50 1.75
RP-EKF 1.16 2.18 1.15 2.43 2.56 1.33 3.72 2.89 1.54

Table 3.7: Average steady state IOU between true and estimated shapes of targets
under different noise conditions, namely low (σ = 10−4m), medium (σ = 0.1m), and

high (σ = 1.5m).

Low Noise Medium Noise High Noise
Filter / Target Shape Z H M Z H M Z H M

LS-RHM 0.92 0.89 0.94 0.79 0.84 0.89 0.63 0.66 0.71
RP-EKF 0.93 0.91 0.93 0.83 0.86 0.89 0.68 0.71 0.72

Table 3.6 summarizes the overall performance.

Finally, Table 3.7 summarizes the overall performance of both filters in terms of

IOU metric.

A number of conclusions can be drawn from these results:

• as the measurement noise level increases, the number of observations required

for the true shape estimation increases;

• the mean absolute difference of the steady state errors between the two filters

increases with noise levels; and

• the proposed filter can reconstruct the true shape with fewer measurements

when compared against the LS-RHM.

Overall, the proposed filter is more tolerant to different noise conditions.
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(a) Z-Shape (Low Noise) (b) Z-Shape (Medium Noise) (c) Z-Shape (High Noise)

(d) H-Shape (Low Noise) (e) H-Shape (Medium Noise) (f) H-Shape (High Noise)

(g) M-Shape (Low Noise) (h) M-Shape (Medium Noise) (i) M-Shape (High Noise)

Figure 3.17: An example set of runs, with three different noise conditions, for three
non-convex-shaped objects. The sample measurements and corresponding

uncertainty in noise are shown with a + and ◦ symbols.
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(a) Z-Shape (Low Noise) (b) Z-Shape (Medium Noise) (c) Z-Shape (High Noise)

(d) H-Shape (Low Noise) (e) H-Shape (Medium Noise) (f) H-Shape (High Noise)

(g) M-Shape (Low Noise) (h) M-Shape (Medium Noise) (i) M-Shape (High Noise)

Figure 3.18: The average distance errors in estimating target shapes by the
proposed approach vs. LS-RHM method under different noise conditions.

3.8.4 Evaluation for the Two-Dimensional Scenario

For this case, we use a convex-shaped extended target. The targets are fully-filled,

and only a single target is used to assess the performance. Other relevant data for

the simulation, which are common to these cases, are as follows:

• The initial kinematic state of the target for this case is given by x0 = xTrue0 + x̃0

where x̃0 ∼ N (0, P0).

• The process noise covariance matrices for the position, velocity, and heading

angle have the standard deviation of σq = 0.1m, σqv = 0, and σqψ = 0.001rad/s,
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respectively.

• The standard deviation of the sensor noise covariance matrix, however, is set to

σz = 0.001m.

• The motion model is such that the initial dynamic state x0 is x0 = {0, 1, 0, 0}

following a constant velocity motion model from time 0 to 150s, followed by a

constant turn model from 150 to 250s, followed by another constant velocity

model from 250 to 400s and finally another constant turn model. The extent of

the target is modeled similar to a car in a two-dimensional space.

For the convex-shaped extended target, we use an object mimicking the shape of

a car in a two-dimensional space. During the simulations, the position of the sensor

platform and the center of the target are used to detect the visible facets of the object,

and thus to generate the measurements. Here, the LS-RHM method is initialized by a

polygon. In contrast, the proposed RP-EKF method is initialized using three convex

polytopes, assuming that the number of convex polytopes required for estimating the

true shape is known in advance. The center location of the three convex polygons

are chosen to cover all parts of the target. We show the results of the shape and

trajectory estimations for the target in Figures 3.19 and 3.20.

First, from Figures 3.19a and 3.19b, it can be seen that the proposed RP-EKF

can estimate the shape better than the LS-RHM method. In addition to this, in

Figure 3.20, we use the PCRLB to show the lower bound of the RMSE. From these

results, it can be observed that the proposed RP-EKF method outperforms the LS-

RHM method with its steady state RMSE being significantly closer to the PCRLB.

This shows that accounting for occlusion can significantly improve the performance.
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(a) Results of LS-RHM (b) Results of the RP-EKF

Figure 3.19: The state and shape estimates for the two-dimensional scenario for a
convex target (a) LS-RHM (b) proposed RP-EKF.

The average values of the IOU metric for the convex shape by the LS-RHM and

proposed RP-EKF filters are summarized in Table 3.8.

Table 3.8: Average IOU values for the convex target for the two-dimensional case.

Filter / Target Shape Convex
LS-RHM 0.45
RP-EKF 0.79

3.8.5 Evaluation for the Three-Dimensional Scenario

For this case, only one type of extended target is considered, namely, the convex-

shaped extended target. Although it is possible to assume a filled interior, and to gen-

erate corresponding measurements, we will only be using a self-occluding boundary-

frame model in our study here for two reasons. One is that the probability of the

sensor receiving measurements from the interior of a three-dimensional object is con-

siderably low [110]. The other is that there is no baseline algorithm against which the
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(a) PCRLB and RMSE
(b) Polytope distance D

Figure 3.20: The RMSE and polytope distance metrics compared for the
two-dimensional scenario for a convex target (a) RMSE (b) distance metric D.

proposed approach can be benchmarked. More specifically, we will be using the algo-

rithm outlined in [110] as our baseline version. Other relevant data for the simulation

are the same as in the two-dimensional case, except that the initial kinematic state

of the target x0 is x0 = xTrue0 + x̃0, where x̃0 ∼ N (0, P0). A cubic object with the

length 3m is simulated. The motion model has a number of stages. First, it travels

with a constant velocity motion model with v = 12m/s from time 0 to 150s. This is

then followed by a constant turn model with small rotation rate of 0.0305rad/s from

time 150 to 250s. This is then followed by a constant velocity model of v = 12m/s

during time interval 250 to 400s before switching back to the constant turn model

from time 450 to 550s.

Since the baseline recursive Gaussian Process algorithm supports observations

only from the contour of the target, all measurements are generated from the contour

as stated above. This results in replacing the s parameter with a constant value of
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s = 1. The initial shape estimate is an arbitrary icosahedron, with the assumption of

non-zero, non-negative height, matching the geometric properties of road or terrain.

We show the resulting performance in Figures 3.21 and 3.22.

(a) (b)

Figure 3.21: The state and shape estimates compared for the three-dimensional
scenario for a convex target (a) GP (b) proposed RP-EKF.

In Figure, 3.21, the extended target is in cyan. Measurements are uniformly gen-

erated from the surface of the target along with a Gaussian noise term with covariance

of R = 0.1I. Furthermore, the number of measurements are modeled with a Poisson

distribution and the hyper-parameters of recursive Gaussian Process are set to be

σf = 2, σr = 2 and l = π/4 following the original method in [110]. The results show

the effectiveness of the proposed RP-EKF algorithm in estimating the true shape of

the target.

3.8.6 Computational Complexity

We assess the computational complexity of the different algorithms using their run-

time, more specifically the elapsed CPU time of the kernels of concern. All versions
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Figure 3.22: The RMSE values compared for the three-dimensional scenario for a
convex target for the GP and RP-EKF algorithms.

Table 3.9: Average CPU runtimes for processing a single measurement and for
single scan of the RP-EKF, GP and LS-RHM algorithms.

Filter Single measurement (/s) One scan (/s)

LS-RHM (2D) 0.82 12.09

RP-EKF (2D) 0.03 6.43

GP (3D) 1.35 9.42

RP-EKF (3D) 0.65 3.94
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were implemented in Python (Version 3.6), and they were run on a system (Oper-

ating System: Windows 10, Build 19041.329, Processor: Intel i7-7th Gen, Number of

Cores: 4, RAM: 16 GB at 2666 MHz) with 50 Monte Carlo runs. We report the av-

erage runtimes for the proposed RP-EKF, recursive GP and the LS-RHM algorithms

are shown in Table 3.9. From these results, it can be seen that the proposed RP-EKF

is computationally much cheaper than the baseline versions.

3.9 Conclusions

In this paper, we presented a novel extended target tracking algorithm using Random

Polytopes shape function in a recursive Bayesian framework. The proposed method

is capable of providing better shape estimation along with kinematic estimations for

filled extended targets in two- and three-dimensional tracking scenarios. In particular,

special attention was given to self-occlusions to handle practical applications, which

is one of major limitations of existing algorithms in literature.

The utility of the proposed approach was evaluated under different conditions,

such as varying measurement/sensor noise conditions, and two- and three-dimensional

tracking scenarios, using a number of realistic simulations. The performance of the

proposed algorithm, both shape and kinematic estimations, when compared against

respective state-of-the-art methods, is significantly better. The proposed method can

be extended further through a number of avenues. Examples include, but are not

limited to, utilizing data association models such as JPDA or PMHT for handling

heavy clutters, and handling inter-target occlusions caused by other objects. These

extensions are likely to benefit a number of challenging real world applications.
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3.10 Appendices

3.10.1 Jacobian Of Pseudo-Measurement Equation

The First derivative of the hyperbolic tangent function, which we will need for deriving

the gradient of Random Polytope shape function, is derived below.

∂

∂ℵ
tanh(ℵ) =

∂

∂ℵ
sinh(ℵ)

cosh(ℵ)
=

∂
∂ℵ sinh(ℵ)× cosh(ℵ)− ∂

∂ℵ cosh(ℵ)× sinh(ℵ)

cosh2(ℵ)

=
cosh2(ℵ)− sinh2(ℵ)

cosh2(ℵ)
= 1− sinh2(ℵ)

cosh2(ℵ)

= 1− tanh2(ℵ) = 1− (
exp(2ℵ)− 1

exp(2ℵ) + 1
)2 (3.10.1)

The general case of RP shape function that represents objects with multiple convex

Random Polytope is given by

∂

∂w
Φ(n) =

∏
k 6=i

(1− φk(n))
∂φ(n)

∂w
(3.10.2)

where ∂φ(n)
∂w

is the derivative of a convex Polytope function that can be derived from

(3.10.1) as follows:

∂φ(n)

∂w
= 1− tanh2(ℵ)xD (3.10.3)
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Chapter 4

Tracking Multiple Extended

Targets In Occlusion Using Splines

and Set-Membership Uncertainty

Models

4.1 Abstract

This paper presents a new technique for tracking a time-varying number of Extended

Targets (ET) in the presence of occlusion and data association ambiguity. Extended

target is an object whose size is not negligible compared to the sensor resolution,

resulting in multiple measurements from different parts of the object in a sensor scan.

A group of closely-spaced targets may also appear as a single extended target. In

extended target tracking applications, such as autonomous vehicles and surveillance
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systems, the shape of a target should be estimated along with its kinematic state.

To achieve this, the technique proposed in this paper models the shape of a target

using B-spline curves. Self and mutual occlusion of targets can significantly degrade

the performance of existing ET tracking algorithms. To overcome this limitation, in

this work, we first define the observable parts of an ET in the B-spline representation

to handle self occlusion. Then, to deal with mutual occlusion, the probability of de-

tection (pD) of each ET is modeled by an adaptive state-dependent model, which is

then used in the update equations of the conventional Gaussian mixture probability

hypothesis density (GM-PHD) filter that normally uses a constant state-independent

pD. The proposed approach enables the track to prolong even under adverse condi-

tions caused by occlusion. In addition, the proposed algorithm uses set-membership

uncertainty models to bound the association and target shape uncertainties due to

occlusion using virtual (negative) observations. The capabilities of the proposed algo-

rithm are demonstrated on simulated vehicle-tracking scenarios and the advantages

are quantified against the state-of-the-art ET tracking algorithms.

4.2 List of Notations

A list of used notations and their explanations are listed below.

xk,n Target n state at time k

Xk Multiple target state at time k

vk Intensities associated with target multiple target posterior density

Zk Multiple target measurement at time k
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ζ Target previous state

vS,k|k−1(x) Predicted intensity of surviving targets

vB,k|k−1(x) Predicted intensity of spawned targets

γk(x) New born targets intensity

vk|k−1(x) Predicted intensities

vk Updated posterior density

vD,k(•; z) Detection intensity for each measurement z

Xk Augmented target state

xck Kinematic target state

xsk Extent target state

γk Rate parameter of number of measurements

pi ith control point of B-spline curve

Pk Set of all control points of B-spline curve

pD Adaptive state-dependant probability of detection

φ Maximum bearing angle of arc spanned by ET object

φ′ Minimum bearing angle of arc spanned by ET object

R Range of an ET object center from sensor

pD,max Maximum possible probability of detection
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pO Probability of occlusion of an ET object

zk Actual measurement at time k

z−k Negative (virtual) measurement at time k

W Cluster of measurements (cell)

S(k) Vector of sensor location

4.3 Introduction

One major assumption in traditional multiple target tracking (MTT) applications

is that each target can generate at most one measurement per scan. As a result,

most tracking algorithms can only handle point targets [7]. However, in short-range

applications such as autonomous vehicles [11, 111] or long-range applications such

as airborne surveillance using high-resolution sensors [112] this assumption may be

violated, necessitating extended target (ET) tracking methods [16]. Even with point

targets, the true origin of a received measurement is unknown to the tracker, which

is known as the data association problem [105]. That is, measurements may arise

from true targets or from clutter (false alarm), and hence, the tracker needs to use

appropriate data association methods to resolve the origin of each measurement [21].

With ET, the data association problem is exacerbated further due to multiple mea-

surements in a scan per target.

In general, there are three main approaches to address the ET tracking problem.

The first approach tries to group the observations that may have originated from each

ET object and summarizes the group of observations as a joint measurement such as
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the center of the cluster. After summarizing all observations as a single measurement

(e.g., weighted centroid), the ET tracking problem is handled using conventional point

target tracking algorithms [2, 113]. The major drawback of this approach is that it re-

moves some of the crucial information about targets such as its shape and orientation

through the grouping process. The second approach tries to model measurements in a

sensor’s field-of-view using some spatial distribution such as the Poison point process

[4]. In this approach, the mean number of measurements generated from ET objects

and the spatial extent (or shape) of ET objects are assumed to be constant and known

to the filter. However, both parameters may change and depend on the geometry be-

tween the ET objects and the sensor. The third approach tries to model the shape

of an ET object using geometric shapes such as sticks, rectangles and ellipses, and

then estimates the shape parameters by constructing feasible measurement-to-source

assignment hypotheses and their probabilities [7, 10, 11]. With computational load,

accuracy and shape description in mind, the algorithm proposed in this paper relies

on shape-modeling.

To model the target shape as an ellipse using a positive semi-definite matrix, the

random matrices (RM) method is proposed in [7]. Extensions of the RM method to

the multiple target case are proposed in [32] based on the Gaussian mixture probabil-

ity hypothesis density (GM-PHD) filter, in [114] based on the probabilistic multiple

hypothesis tracking (PMHT) algorithm, and in [115] based on the generalized labelled

multi-Bernoulli (GLMB) filter.

Another shape-based ET tracking method uses the recursive Gaussian process

(GP) approach in [11]. A box particle filter method is introduced in [116] and a GP
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convolutional particle filter is proposed in [117] to extend the algorithm to the mul-

titarget case. The random hyper surface model (RHM) proposed in [10] is another

shape-based ET tracking algorithm that is expanded to handle multiple target sce-

narios in [118] and [119]. In addition to the above techniques, to model the extent or

shape of an ET object, B-spline curves are used as shape descriptors in [16] and [15].

In these existing methods to track multiple ET objects, the critical and real-world

problem of occlusion of targets is neglected, which may significantly degrade track-

ing performance in scenarios with self and mutual occlusions. Self-occlusion happens

when a part of an object blocks another part on the same object [19]. Mutual-

occlusion happens when one object blocks another [20]. Not accounting for the re-

duction in the detection probability due to self- or mutual-occlusion may result in

track breakage or even track loss, resulting in track segmentation. Thus, it is ne-

cessity to account for the variation in the detection probability and its dependence

on self- or mutual-occlusion to ensure accurate tracking. This challenge provides the

motivation for this paper.

In this paper, we model the extent of an ET object using B-spline curves [16]. With

B-splines as the shape descriptor, we define an adaptive probability of detection (pD)

model to calculate the pD of an object in each scan according to its location in the

sensor’s field-of-view (FoV). Then, we use a time- and target-dependent variable pD

in the update equation of the GM-PHD filter instead of a fixed value.

Furthermore, the modeling of the extent of an ET object using B-splines has an-

other advantage in that the self-occlusion of a target can also be modeled naturally.

A B-spline curve can be controlled locally using only a few control points. Although
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local shape control may help the filtering algorithm to obtain accurate shape esti-

mates, it may also lead to catastrophic errors in estimation. For example, if the filter

assumes that all the control points representing the shape of an ET are observable

to the sensor in every scan, which may not be true in practice, the quality of state

and shape estimates may suffer. To mitigate this, in this work, we define a weight

parameter that can be seen as an auxiliary pD for each control point in the B-spline

representation of an ET object to improve the shape estimates, which in turn can

lead to better state estimates.

Although an adaptive state-dependent pD in the update stage of the filter may

help mitigate the track segmentation caused by mutual occlusion, the accuracy of the

state estimates of an occluded target may still suffer due to the pD being almost zero

and the filter continuing with prediction and skipping the update step. To alleviate

this problem, we propose to take advantage of set-membership uncertainty models

[120], which are useful in modeling bounded uncertainties whereas the stochastic un-

certainties are useful in modeling unbounded noises such as false alarm rates [121].

With occluded targets, the occlusion phenomenon can be modeled as a bounded un-

certainty with an unknown distribution [122]. That is, even the lack of ET detections

contains some useful information about the object’s centroid and extent state that

may improve the corresponding estimates. The set-membership uncertainty bounds,

in case of an occluded ET object, are the constraints that are imposed on the angu-

lar and range span of the occluded ET object by the current sensor-to-group-target

geometry. Since modelling these constraints directly is rather difficult, they are im-

posed using virtual or negative observations similar to the concept introduced in [111].

Thus, the region where an occluded target may exist is bounded by these negative
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measurements [121].

To model the number of measurements generated from each ET object, several

methods are proposed in the literature. For example, in [4] and [3], the number of mea-

surements are modelled using an non-homogeneous Poisson distribution with an un-

known rate parameter to be estimated form measurements. These algorithms may not

work well in the case of closely spaced targets. In [16], the measurement rate is mod-

elled using a Poisson mixture and the Poisson mixture variational Bayesian (PMVB)

method is proposed to simultaneously estimate the measurement rate parameter along

with kinematic and extent states. However, this method is computationally expen-

sive. In the method proposed in our paper, we use a recursive Bayesian approach with

exponential forgetting factor to estimate the gamma distributed measurement rate

parameter [123]. The gamma distribution is chosen to model the measurement rate

parameter since it is assumed that the number of measurements generated from each

ET object follows a Poisson distribution and the gamma distribution is the conjugate

prior of the Poisson distribution [124].

To summarize, the main contribution of this works are as follows:

1. Using a B-spline representation of an ET, we define the observable parts of an

object and use that knowledge to improve the ET-GM-PHD filter [28] to handle

the problem of self-occlusion that is inevitable in real-world scenarios. The

proposed algorithm is called the spline gamma Gaussian mixture probability

hypothesis density (S-GGM-PHD) filter.

2. Using the Gaussian components in the ET-GM-PHD filter, the proposed method

finds an adaptive state-dependent pD for each ET target to identify and account

for partially or fully occluded targets in the sensor’s FoV. This reduces the track
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segmentation caused by the occlusion due to dynamic or static obstacles.

3. The proposed method exploits the concept of set-membership uncertainties to

find the bounded region where the occluded target may be present and uses this

as negative information to obtain more accurate state and shape estimates of

an ET object.

4. The performance improvements by the proposed algorithm are quantified on

realistically simulated scenarios with self- and mutual-occlusions.

The rest of the paper is organized as follows. In Section 4.4, the standard GM-

PHD filter is reviewed and the ET tracking problem is discussed. The use of B-splines

to model the shape of an ET object is also discussed in Section 4.5.1. In Section 4.6,

the adaptive state-dependent pD and B-spline control point weights are derived. The

derivation of the negative information used in the update stage of proposed filter

is described in Section 4.7. The proposed S-GGM-PHD filter with adaptive pD is

presented in Section 4.8. Finally, simulation results along with comparison discussions

are presented in Section 4.9. Conclusions are discussed in Section 4.10.

4.4 Background

This Section reviews the formulation of the multiple target tracking problem using

the random finite set (RFS) theory using the standard Gaussian mixture probability

hypothesis density (GM-PHD) filter. Then, the preprocessing of measurement sets

from extended targets to make the observations ready for use within the standard

GM-PHD filter framework is discussed. The augmented extended target state that is

used in the proposed GM-PHD filter extension is also defined in this Section.
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4.4.1 Standard GM-PHD Filter

In a Bayesian RFS setting, both the target states and the measurements are modelled

using respective RFS. The PHD filter is an effective approximation to mitigate the

computational intractability of the optimal multitarget tracking problem. In this

paper, the same assumptions as in the original PHD framework [125], except for the

one about a constant state-independent pD are made. The following two equations

represent the predicted and the posterior density steps of the RFS MTT algorithm

based on the Chapman-Kolmogorov equation and Bayes’ theorem [125]:

pk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|Xk−1)pk−1(X|Z1:k−1)dx (4.4.1)

pk(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)dx

(4.4.2)

where fk|k−1(Xk|Xk−1) and gk(Zk|Xk) are multiple-target transition density and multiple-

target likelihood, respectively, for an appropriate reference measure µs that belongs

to all feasible subsets of X.

The above prediction and posterior recursion equations will become the following

intensities in the PHD framework:

vk|k−1(x) =

∫
pS,k(ζ)fk|k−1(x|ζ)vk−1(ζ)dζ +

∫
βk|k−1(x|ζ)vk−1(ζ)dζ + γk(x) (4.4.3)

vk(x) = [1− pD,k(x)]vk|k−1(x) +
∑
z∈Zk

pD,k(x)gk(z|x)vk|k−1(x)

κk(z) +
∫
pD,k(ζ)gk(z|ζ)vk|k−1(ζ)

(4.4.4)

where pS,k is the probability that the target exists at time k given its previous state

ζ, γk is the intensity of target birth, βk|k−1 is the intensity of target spawning, κk

is the intensity of clutter and pD,k(x) is the target probability of detection of given
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state x. The detailed derivations of the prediction and update steps of the GM-

PHD filter using only the positive information based on the measurements actually

received by the sensor with state-independent constant probability of detection (pD,k)

and probability of survival (pS,k) are given in [125]. The GM-PHD filter is a closed-

form approximate solution to the PHD recursion with linear-Gaussian assumptions

[125]. In the GM-PHD filter, each target follows a linear-Gaussian dynamical model

and the sensor model is also linear and Gaussian, i.e.,

f(xk|xk−1) = N (xk;Fk−1xk−1, Qk−1) (4.4.5)

g(zk|xk) = N (zk;Hkxk, Rk) (4.4.6)

where Fk−1 and Hk are state transition and measurement matrices, respectively, while

Qk and Rk are the process noise and measurement noise covariance matrices, respec-

tively. It is also assumed that the birth, spawning and posterior intensities at time

tk are Gaussian mixtures of the form

v•,k =

J•,k∑
i=1

ω
(i)
•,kN (x;m

(i)
•,k, P

(i)
•,k) (4.4.7)

where • denotes a place holder for operands, and can be replaced by γ to determine

birth intensity, β for spawning intensity and S for surviving from the last time step and

J , ω, m and P are model parameters to determine the shape of the PHD intensities

Thus, the following two equations show how the Gaussian components from time

k − 1 are propagated to the next time step k, replacing the prediction and posterior
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recursions in (4.4.3) and (4.4.4), respectively:

vk|k−1(x) = vS,k|k−1(x) + vβ,k|k−1(x) + vγ,k(x) (4.4.8)

vk(x) = [1− pD,k(X)]vk|k−1(x) +
∑
z∈Zk

vD,k(x; z) (4.4.9)

where

vD,k(x; z) =

Jk|k−1∑
j=1

ω
(j)
k N (x;m

(j)
k|k(z), P

(j)
k|k) (4.4.10)

with ω
(j)
k being weight of the jth Gaussian component. Note that the summation in

the posterior calculation step in (4.4.9) is over all possible partitions of measurements

and not over individual observations. More details are given in Section 4.8 and a

brief review of existing techniques for generating the partitions for ET applications

is given in the following sub-section.

4.4.2 Observation Set Partitioning

In point target tracking algorithms, the update step is carried out using each (actually

received) measurement. On the other hand, in ET tracking algorithms, the update

step often uses each partition (cluster) of measurements formed using a measurement

partitioning algorithm [16]. Measurements in each partition are assumed to have

originated from the same source, which can be either an ET or a false alarm.

Various techniques for measurement partitioning, such as distance partitioning

and sub-partitioning [28], K-means clustering [126], and predictive partitioning and

Expectation-Maximization (EM) [79], are discussed in the literature. Also, a method

126



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

to combine multiple partitioning techniques is proposed in [32] with improved results.

In [127, 128], another algorithm for partitioning the measurements and generating

clusters is proposed based on the Variational Bayesian technique [64]. Due to the

computation efficiency of the VB technique, it is used in the partitioning stage of the

multiple ET tracking algorithm proposed in this paper (S-GGM-PHD). More details

on the VB technique can be found in [128].

4.4.3 Augmented Target State

The joint single target state X contains the kinematic state, extent state and the

measurement rate, given by

Xk = [xck, x
s
k, γk]

T (4.4.11)

where the kinematic state (xck) contains the Cartesian position, velocity and possibly

the acceleration of the ET object’s centroid, extent state (xsk) contains the parame-

ters describing spatial shape of the ET and γk is the rate parameter of the Poisson

distribution modeling the number of measurements generated by each ET.

In this work, the extent state xsk consists of the Cartesian coordinates (and their

derivatives) of the closed B-spline curve control points representing the shape of the

ET object. The extent state is further discussed in the following Section.
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4.5 Extended Target Tracking Problem Formula-

tion

In this Section, we present a brief review of the B-splines used to model the ex-

tent of the ET object in this paper. Then, the models for ET state dynamics and

measurement generation used in this paper are presented.

4.5.1 Modeling Of Extended Target Extent Using B-splines

The B-spline [129] is a generalization of Bèzier curves [130] to represent arbitrary

curves. The local controllability of a curve represented by B-splines with control

points makes B-splines amenable for use in the Bayesian estimation of the shape

of an ET and the continuity of B-splines makes it applicable in continuous state

estimation [131]. The B-spline of curve C(x) is defined as a linear combination of

control points P = {p1, p2, . . . , pN} and basis functions Bi,ρ,t(x) given by

C(x) = ΣN
i=1piBi,ρ,t(x) (4.5.1)

where t = {t1, . . . , tτ} is the knot vector that consists of ascending real valued numbers

and N is the total number of control points. The local controllability of a B-spline is

the result of the basis functions being non-zero just for a short interval always being

smaller than [t1, tτ ]. The order of a B-spline is defined using the length of the knot

vector and the number of control points according to

ρ = τ −N (4.5.2)
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and the degree of the corresponding B-spline is ρ− 1.

The basis function of a B-spline curve is defined using the Cox–de Boor recursive

formula [132]. Thus, a basis function of order ρ, which can also be seen as a polynomial

of degree ρ− 1, is defined by

Bi,1(x) =


1, if ti ≤ x ≤ ti+1

0, otherwise

(4.5.3)

Bi,ρ(x) =
x− ti

ti+ρ+1 − ti
Bi,ρ−1(x) +

ti+ρ − s
ti+ρ − ti+1

Bi+1,ρ−1(x) (4.5.4)

with ti being the knot element.

There are three types of knot vectors that can be used in B-spline curve represen-

tation [133]. The first one is the uniform knot vector, which contains elements with

equal distance from each other, ti+1 − ti = constant,∀i. The second is the open uni-

form knot vector, which contains elements that are uniformly distributed from each

end. The third is the non-uniform knot vector, which contains elements in ascending

order with no special constraint. To define a closed curve using B-splines, we need to

design a uniform knot and repeat the first ρ control points from the beginning of the

knot to the end of the control points sequence.

To generalize a unidimensional B-spline like the one defined in (4.5.1) to a mul-

tidimensional one, we need to define the B-spline subspace for each dimension and

multiply them together, which is called the tensor product spline construction as
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represented by

C(x1, . . . , xm) = ΣN
i1
. . .ΣN

impi,...,imBi1,ρ1,t1(x1) . . . Bim,ρm,tm(xm) (4.5.5)

In the proposed method, the control points of a closed B-spline curve replaces the

extent (or shape) state of an ET object similar to the one proposed in [16]. However,

the proposed technique for updating the extent state is novel and mitigates the chal-

lenges posed by self- and mutual-occlusion by exploiting the local controllability of

B-splines.

4.5.2 Extended Target Kinematic and Measurement Model

The target kinematic state xck is evolving in time according to the following dynamic

motion model:

xck = Fxck−1 + wk

wk ∼ N (0, Qk) (4.5.6)

with the covariance matrix Qk of the dynamic process noise vector wk and state

transition matrix F being respectively given by

Qk+1 =

σ2
Q
T 4

4
σ2
Q
T 3

2

σ2
Q
T 3

2
σ2
QT

2

⊗ Σk (4.5.7)

F =

1 T

0 1

⊗ Id (4.5.8)

130



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

where σQ is the process noise standard deviation, T is the sampling interval of the

sensor and the symbol ⊗ represents the Kronecker product [54] and Id is the identity

matrix with appropriate dimensions. Thus, the process noise covariance is propor-

tional to the covariance of the extent state Σk.

Following the random matrices (RM) algorithm [7], the actual measurements are

modelled as the measurement of the ET object’s centroid corrupted by a measurement

error that is proportional to the ET object extent. An ET object that is present

within the sensor’s FoV and is not blocked will generate multiple measurements zk =

{z1
k, . . . , z

|W |
k } according to the following model

zik = Hxck + vk, i ∈ {1, |W |}

vk ∼ N (0,Σk) (4.5.9)

where H is the measurement generation model and the covariance matrix Σk of the

measurement noise vector vk is the covariance of control points Pk that define the

extent state of the ET object. The measurement covariance is calculated at each

time step according to the sample covariance of the received measurements as defined

in (4.8.12d).

4.6 Adaptive Detection Probability Model

As discussed in Section 4.4.1 the conventional GM-PHD assumes that both the prob-

ability of survival pS,k and the probability of detection pD,k are fixed and independent

of target state, although a generalization to handle certain classes of state depen-

dent pD,k and pS,k is proposed in [125]. However, pD,k is assumed to be constant and
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state-independent in most PHD filter related works, specifically those for ET tracking

[134, 135, 136].

Time-varying and state-dependent pD,k using GM-PHD for point target applica-

tions can be found in the literature. In [137], a GM-CPHD filter with time-varying

adaptive pS,k is proposed based on terrain data to handle the possibility that a target

may leave the surveillance region. A GM-PHD filter with a variable pD,k for tracking

targets in a radar’s Doppler blind zone is proposed in [138]. A GM-PHD filter capa-

ble of estimating the pD,k using the amplitude information by augmenting the target

kinematic state with amplitude state is proposed in [139].

In this Section, we discuss how to use the B-spline concept, which is used to model

the ET extent and target position, to address the occlusion problem. For a point on

an object to be observable by the sensor, the line-of-sight between the sensor and

that point on the target should be clear and not blocked either by a different object

or some other part of the same object. To address the self-occlusion problem, the

local-controllability of B-splines can be used. Although B-splines is used as the shape

descriptor in [16] to model the extent of an ET, the assumption in [16] is that as long

as the ET is within the sensor’s FoV, it is fully observable. Thus, in real scenarios

with self- and mutual-occlusion the performance of the algorithm in [16] suffers. In

this paper, we propose an algorithm to alleviate the effects of occlusion.

First, we model the observable and unobservable parts of an object using the

estimated B-splines at the current time handle self-occlusion. Figure 4.23 illustrates

the observable and non-observable parts of a closed curve from the sensor’s point of

view.

It can be seen that an object’s observable section can be represented with an arc
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Figure 4.23: Observable (solid) and non-observable (dashed) parts of a closed curve
from the sensor (blue star).

spanned by the ET object’s minimum and maximum bearings. Each control point in

the B-spline representation of a shape model is observable if it is on the same side of

the line connecting the start and the end points of the arc spanned by the minimum

and maximum bearings. Figure 4.24 illustrates the observable and occluded control

points of the closed curve in Figure 4.23.

Figure 4.24: Observable and non-observable control points in the B-spline
representation of a closed curve from a sensor. Control points corresponding to the

minimum and maximum bearings are in red.

Thus, each control point located on the same side of the line connecting the two
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control points corresponding to the minimum and the maximum bearings as the sensor

will be observable with a pD value of one. In contrast, the control points located on

the opposite side of line will be unobservable with a pD of zero. Time complexity

of this algorithm to identify the observable and unobservable control points is O(n)

where n is the number of control points.

The proposed method can also associate a real value representing the probability

of detection in the closed interval [0, 1] to each control point instead of making a hard

(binary) decision on being observable or occluded as described below. This approach

has the advantage of considering the distance of each control point from the sensor

in assigning the corresponding pD.

If we assume that the line connecting the control points corresponding to the

minimum and maximum observable bearings has a slope of m and a y-intercept of b,

then the pD of each control point pi = [xpi, ypi]
T of the ET can be approximated by

following sigmoid function:

Weighti = σ(pi) =
1

1 + exp(−mxpi − ypi + b)
(4.6.1)

with real values in the interval [0, 1]. This is based on the fact that the line connecting

the two extreme bearings is a halfspace that can be approximated with the tangent

hyperbolic function or the sigmoid function [140].

The values of the pDs of the control points defining the shape represented at Figure

4.24 are listed in Table 4.10. The final probability of detection of each control point

in P = {p1, p2, . . . , pN} is calculated by multiplying the probability of detection of the
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Table 4.10: Probability of detection of each control point

Control point pD Control point pD

a 0.7 g 0.008
b 0.69 h 0.01
c 0.77 i 0.007
d 0.5 j 0.022
e 0.17 k 0.09
f 0.022 l 0.5

ET object’s center and the corresponding pD from Table 4.10. Then,

Pd
(j)(pi) = Weighti × p

(j)
D (Xk), I ∈ 1, 2, . . . , N (4.6.2)

where p
(j)
D (Xk) is the adaptive state-dependent probability of detection of the jth ET

object and may be calculated as described below.

The calculated probability of detection for each control point in the extent state of

the ET object can be used in a data association algorithm such as the joint probabilis-

tic data association (JPDA) [105] algorithm or the game theoretic data association

technique [141]. The equations in Section 4.8 are based on the JPDA algorithm.

The adaptive probability of detection of each B-spline gamma-Gaussian compo-

nent used in the proposed PHD filter to mitigate the effects of mutual-occlusion is

described next. First, the conditions for full and partial occlusion are investigated. A

target is not observable by a sensor if there is another target at a range less than that

of the first target within the bearing span of the first target. Figure 4.25 illustrates

the case where target B is fully occluded by target A.

The necessary and sufficient conditions for target B to be fully occluded by target
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Figure 4.25: Full occlusion: Target A is occluding target B completely and sensor
does not get any detection from target B.

A can be summarized as

BearingfA,B = {(φA ≥ φB) ∩ (φ′A ≤ φ′B)} (4.6.3)

RangefA,B = {RA ≤ RB} (4.6.4)

where R• is the range of an object form the sensor, φ• is the maximum bearing and

φ′• is the minimum bearing angle corresponding to the target denoted by •. In the

above, BearingfA,B and RangefA,B represent the bearing and the range value pairs of

target A and target B, respectively, with full occlusion. The partial occlusion case

needs different angle conditions than the ones in (4.6.3). Based on Figure 4.26, the

following conditions for partial occlusion of target B by target A are derived:

BearingpA,B = {(φA ≥ φ′B) ∩ (φB ≥ φ′A)} (4.6.5)

BearingpA,B = {(φ′A ≥ φB) ∩ (φB ≥ φ′A)} (4.6.6)

where BearingpA,B means the bearing value pair of target A and target B with partial

occlusion.

The cases in Figure 4.26(a) and 4.26(b) are represented by (4.6.5) and (4.6.6),
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(a) (b) (c)

Figure 4.26: Three different geometries that may result in the partial occlusion of
target B by target A.

respectively. Note that the case in Figure 4.26(c) in depicting partial occlusion is

satisfied by the intersection of the conditions in (4.6.5) and (4.6.6).

The probability p
(i)
D (Xk) calculated in (4.6.7) represents the probability of detec-

tion of the ith component with respect to all existing components and is given by

p
(i)
D (Xk) = max

(
(1−

Jk|k−1∑
j=1

ω
(j)
k p

(i),(j)
O )pD,max, 0

)
(4.6.7)

where pD,max is the maximum possible probability of detection, which is set to 0.99

in our work, R(i) and R(j) are the ranges to the the center of the ith and the jth com-

ponents, respectively, and p
(i),(j)
O is the probability of occlusion of the ith component

by jth component.
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The occlusion probability p
(i),(j)
O is computed as

p
(i),(j)
O =



Φ( φ(j)−φ(i)√
σ
(i)
φ +σ

(j)
φ

)× Φ( φ′(i)−φ′(j)√
σ
(i)

φ′ +σ
(j)

φ′

)+

Φ( φ(j)−φ′(i)√
σ
(i)

φ′ +σ
(j)
φ

)× Φ( φ(i)−φ′(j)√
σ
(i)
φ +σ

(j)

φ′

) + Φ( φ′(j)−φ(i)√
σ
(i)
φ +σ

(j)

φ′

)
]
×

Φ( φ(i)−φ′(j)√
σ
(i)
φ +σ

(j)

φ′

)− Φ( φ(i)−φ(j)√
σ
(i)
φ +σ

(j)
φ

)× Φ( φ′(j)−φ′(i)√
σ
(i)

φ′ +σ
(j)

φ′

), hif R(j) < R(i)

0, hrif R(j) > R(i)

(4.6.8)

where σφ and σφ′ are the converted standard deviations of the two extreme control

points and Φ(•) is the cumulative distribution function of the Normal distribution [?

].. More details on deriving (4.6.8) are given in Appendix 4.11.1.

Thus, the adaptive probability of detection for component X
(i)
k given by p

(i)
D is

a function of each component weight ω
(i)
k in the proposed S-GGM-PHD algorithm,

estimated control points P(i)
k and the transformed uncertainties in these control points

Σ
(i)
k . We analyse the occlusion at any time only for existing targets and newborn

targets are assumed not to be occluded. This is not a major limitation since the

occlusion conditions can be updated at subsequent times.

4.7 Set-Membership Uncertainty Model

When a target is under occlusion and its corresponding probability of detection is set

to the minimum based on the adaptive model proposed in Section 4.6, the update

step of the filter is skipped and the uncertainty in state estimation continues to

grow. Although there is no direct measurement from the occluded ET, there are
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some constraints on its state imposed by the sensor-to-target geometry and these

constraints are modelled in this work using the set-membership concept with the

help of virtual sensor evidence, also called negative measurements. The negative

measurements limit the space that the occluded object can occupy in the sensor’s

FoV based on the current information about the geometry, i.e., the probability of an

occluded target being in non-occluded space of the sensor’s FoV is zero.

4.7.1 Virtual Measurements for Angular Constraints of an

Occluded Target

As discussed above, the ET object’s center in the kinematic state and control points

in the extent state representing the shape of the occluded ET should fall between the

minimum and the maximum bearings of the occluding target. The use of negative

measurements directly to reduce the uncertainties in the occluded ET object’s state

estimate is challenging due to the nature of the negative measurement likelihood [111].

Thus, appropriate approximations are necessary to compute the likelihood and to

derive the measurement model.

In this work, to bring the negative measurements and impose the constraints on

the ET object state, a set of virtual measurements are generated to impose the same

constraints and to make their likelihoods computable. Each positive (actual) mea-

surement zk,i, i = 1, 2, . . . ,mk in cluster W , which contains mk measurements with

its center being within a range less than the range of the occluded target, go through

a post-processing algorithm and the corresponding bearings angles are calculated.

Later, the minimum and the maximum angles are found and the angular extent of

the ET object is defined using only the two measurements that correspond to the
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minimum and the maximum angles, represented by Z̄k = {zk,min, zk,max}. Then, an

imaginary line from the sensor to infinity in the following direction is drawn:

n̂k,l(j) =
Z̄k(j)− S(k)

||Z̄k(j)− S(k)||2
, j = 1, 2 (4.7.1)

where S(k) is the sensor location in Cartesian coordinates at time k.

Then, each line is checked if it intersects with the surface of the occluded ET

object. In case of intersection, each intersection point Ik,j is described as a virtual

measurement and is used to update the two extreme control points of the occluded

ET object. The measurement model for these virtual observations can be described

by

Ik,j = h(X) + vIk,j (4.7.2)

where h is a nonlinear function that computes the expected extreme control points of

the object based on the sensor location and vIk,j is a zero-mean Gaussian random noise

with covariance RIk,j . This measurement model imposes the essential constraints on

the ET object’s state by assigning a low likelihood value to the states that do not

satisfy the angular constraints. The nonlinear model in (4.7.2) is difficult to derive

directly due to the arbitrary shapes represented by B-spline curve and therefore, it

needs to be computed numerically as follows.

Using the sensor location S(k) at the current time and the control points xsk = P(k)

of the occluded object’s B-spline curve, the corresponding angle to each control point
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pi = [xpi, ypi]
T is calculated by

Bearing(pi) = tan−1
( ypi − Sy(k)

xpi − Sx(k)

)
(4.7.3)

Among the computed angles, the minimum and the maximum angles are determined.

4.8 S-GGM-PHD Filter For Multiple Extended Tar-

get Tracking Application

In this section, the B-spline gamma Gaussian mixture PHD (S-GGM-PHD) filter with

negative information for ET tracking will be derived in detail. The adaptive state-

dependant probability of detection helps the S-GGM-PHD filter to track an occluded

ET with a time-varying probability of detection. Exploiting the negative information

will result in more accurate estimates of occluded targets’ states.

To derive the prediction and update equations of the S-GGM-PHD filter with

negative information for ET tracking, we model different parts of the augmented

state Xk in (4.4.11) as follows:

• The kinematic state of the ET object center xck is modelled by a Gaussian

distribution.

• The extent state xsk is modelled by a spatial probability distribution that is

derived from the control points of the B-spline curve representation of the object

shape. Since the measurement model derived in Section 4.5.2 is Gaussian and

the ET object control points are functions of this measurements, the extent

state follows a Gaussian density function.
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• The rate parameter γk is modelled by the gamma distribution. Because the

gamma distribution is known to be the conjugate prior for the Poisson distri-

bution [124], which models the number of measurements generated by each ET

in each scan.

Therefore, for the ET state Xk−1 the posterior distribution at time k − 1 is defined

according to the following density:

p(Xk−1|Z1:k−1) = p(xck−1|Z1:k−1, x
s
k−1)p(xsk−1|Z1:k−1)p(γk−1|Z1:k−1) (4.8.1)

The prediction step of the proposed S-GGM-PHD filter is derived by solving the

(4.4.1) in Section 4.8.1 and the update step resulting from Bayes’ theorem is given in

Section 4.8.2 with consideration to an adaptive pD,k and negative observations.

4.8.1 Prediction Equations of the S-GGM-PHD Filter

Since an adaptive pD,k and the negative information will only affect the update step

of the filter the prediction equations of the B-spline gamma Gaussian components

in the S-GGM-PHD filter are similar to the ones proposed in previous works with

no occlusion assumptions [28]. Based on (4.4.1) and the independence assumption

among the kinematic state xck and the extent state xsk, which is usually made in many

ET tracking applications [7], the predicted density of the ET state at time k is given

by

p(Xk|Z1:k−1) =

∫
p(xck−1|Z1:k−1, x

s
k−1)f(xck|xck−1, x

s
k)dx

c
k−1×∫

p(xsk−1|Z1:k−1)f(xsk|xsk−1)dxsk−1 ×
∫
p(γk−1|Z1:k−1)f(γk|γk−1)dγk−1 (4.8.2)
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The first integral in (4.8.2) corresponds to the Gaussian kinematic state and has

the following closed from solution for the linear-Gaussian dynamic motion model

defined in Section 4.5.2:

∫
N (xck−1;mk−1, Pk−1 + Σk−1)N (xck;Fx

c
k−1, Q+ Σk−1)dxck−1

= N (xck;mk, Pk + Σk) (4.8.3)

where mk = Fmk−1 is the predicted mean, Pk = FPk−1F
T + Q is the predicted

covariance, F is state transition model, Q is the process noise covariance matrix and

Σk−1 represents the covariance of the control points in the extent state xsk−1.

The second term, which represents the extent state prediction, will be approx-

imated with the following spatial distribution where each control point evolves in

time with the same linear-Gaussian model as the kinematic state, xck, except with a

different noise covariance:

∫
p(xsk−1|Z1:k−1)N (xsk;FPk−1,Σk−1)dxsk−1

≈ Sk(xsk;Pk) (4.8.4)

where Sk is the B-spline curve determined by the predicted control points Pk =

FPk−1 +ωk−1, F is the kinematic state transition model and ωk−1 is a white Gaussian

noise with covariance Σk−1. The closed B-splines are constructed using the method

described in Section 4.5.1.

The final integral, which models the density of the predicted rate parameter, is ap-

proximated by the exponential forgetting prediction method, similar to the approach
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in [112], according to

∫
Γ(γk−1, αk−1, βk−1)f(γk|γk−1)dγk−1

≈ Γ(γk;αk, βk) (4.8.5)

where Γ represents that the predicted rate parameter γk has a gamma distribution

function with αk = αk−1

u
and βk = βk−1

u
being its predicted shape and rate parameter,

respectively, and u is a positive scaling factor (forgetting factor) that guaranties that

the expectation of γ remains the same but its uncertainty increases. The effective

length of the window for this prediction is we = u
u−1

, which means that we only trust

the information that are contained in the measurements from the last we time steps

[143]. The expected value and the variance of the measurement rate are respectively

given by

E[γk] =
αk
βk
, V ar[γk] =

αk
β2
k

(4.8.6)

With the predicted densities of the kinematic, extent and measurement rate states

calculated above, the final predicted intensity in the S-GGM-PHD framework (4.4.3)

can be rewritten as

vk|k−1(X) =

Jk|k∑
j=1

ω
(j)
k|k−1Γ(γk, α

(j)
k , β

(j
k )N (xck;m

(j)
k , P

(j)
k + Σ

(j)
k )S(xsk;Pk)+

Jb,k∑
j=1

ω
(j)
b,kΓ(γk, α

(j)
b,k, β

(j)
b,k)N ((xck;m

(j)
b,k, P

(j)
b,k + Σ

(j)
k )S(xsk;P

(j)
b,k) (4.8.7)
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where the jth surviving component’s weight is ω
(j)
k|k−1 = ps×ω(j)

k−1|k−1, ps is the state-

independent probability of survival and ω
(j)
b,k is the jth birth component weight.

Following previous works [16, 28] the spawning term in the predicted density is

neglected since the partitioning algorithm used as a preprocessor to the update step

can efficiently capture the spawning event in multiple-ET tracking scenarios.

4.8.2 Update Equations of S-GGM-PHD Filter

The correction step in the proposed S-GGM-PHD filter for a single ET object, with

its predicted density (4.8.7) and receiving measurements set W at time k, is described

in this Section. Prior to deriving the correction step of the proposed algorithm, the

distribution to model the clutters in the surveillance region should be chosen. Here,

the false alarm numbers are modelled using a Poisson distribution with application-

dependant rate parameter λk and the false alarms are Uniformly positioned over the

sensor’s FoV. Thus, if the surveillance region has area or volume S, the mean number

of false alarms is λk × S in each scan.

According to (4.4.4), the corrected S-GGM-PHD intensity of an ET object has

the following form:

vk(Xk) ,
(

(1− pD(Xk)) + pD(Xk)×
∑

wp
∑ γ(Xk)

|W |

dW

∏ g(W |Xk)

βFA,k

)
vk|k−1(X)

(4.8.8)

where pD(Xk) is the state-dependant probability of detection, | • | represents the

counting operator, ωp and dW are two coefficients defined for each partition p and cell

W as defined in the following Section, γ(Xk)is a non-negative measurement rate, βFA,k

is the intensity of clutter and gk(W |Xk) is the single ET likelihood. The single ET
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likelihood term gk(W |Xk) used in (4.8.8) can be derived assuming the independence

of measurements in cell W , that is one of the cell in the partitions generated by VB

technique describe in Section 4.4.2, and using the measurement equation of the ET

defined in Section 4.5.2 as

gk(W |Xk) = PS(|W |; γk)
|W |∏
j=1

N (zj;Hkx
c
k,Σk) (4.8.9)

where PS represents a Poisson distribution to capture the number of observations

generated form the ET object with rate parameter γk, Hk is measurement matrix and

Σk is the covariance of the Cartesian coordinates of control points of the ET object.

Then, by substituting the likelihood function (4.8.9) and the predicted density

(4.8.7) into (4.8.8) and applying the product formula for the normal densities, as

documented in Appendix 4.11.2, the updated intensities are computed by

vk(Xk|Z1:k) =

Jk|k∑
j=1

ω
(j)
k|kΓ(γk, α

(j)
k|k, β

(j
k|k)×N (xck;m

(j)
k|k, P

(j)
k|k + Σ

(j)
k|k)× S(xsk;Pk|k)

=

Jk|k−1∑
j=1

ω
(j)

k|k,z−Γ(γk, α
(j)

k|k,z− , β
(j

k|k,z−)×N (xck;m
(j)

k|k,z− , P
(j)

k|k,z− + Σ
(j)

k|k,z−)× S(xsk;Pk|k,z−)+

∑
W (Zk)∈Pi(Zk)

∑
W∈W (Zk)

Jk|k−1∑
j=1

ω
(j)
k|k(W )Γ

(
γk, α

(j)
k|k(W ), β

(j
k|k(W )

)
×N

(
xck;m

(j)
k|k(W ), P

(j)
k|k(W )

+ Σ
(j)
k (W )

)
× S
(
xsk;Pk|k(z)

)
(4.8.10)

where Pi represents the ith partition that partitions the positive (actual) measure-

ments Zk into non-vacant cells W and when used under the summation it means that
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the summation is over all possible partitions. Also, cell W represents one of the cells

belonging to the ith partition and when used under summation it means that the

summation is over all cells in the corresponding partition. In the above, Jk|k is the

updated number of components, Jk|k−1 is the predicted number of components, w
(j)
k|k is

the weight of the jth component, and z− represents negative observations. Each set of

the components in the correction equation in (4.8.10) is updated based on the follow-

ing procedure whose details are given in Appendix 4.11.3. The jth component with

weight ω
(j)

k|k,z− in the first line of (4.8.10) and its sufficient statistics X
(j)

k|k,z− , which are

the result of updating with negative measurement if occluded and conventional missed

detection in case of no occlusion, are calculated below. Note that the nonlinearity of

the negative measurement update step is handled using the unscented Kalman filter

(UKF) [107], since the measurement equation (4.7.2) for negative measurements is

highly nonlinear and exact equations are not available. Then,

z̄− =
1

|z−|

|z−|∑
i=1

z−i (4.8.11a)

m
(j)
k|k(z

−) = m
(j)
k|k−1 +K(j)(z̄− − ẑ(j)

k ), P
(j)
k|k(z−) = P

(j)
k|k−1 −K

(j)Pz,k(K
(j))T

(4.8.11b)

α
(j)

k|k,z− = α
(j)
k|k−1 , β

(j)

k|k,z− = β
(j)
k|k−1 (4.8.11c)

147



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

Σ
(j)
k|k(z

−) =
1

|z−| − 1

|z−|∑
i=1

(z−i − z̄−)(z−i − z̄−)T , Pk|k(z−) = P(j)
k|k−1 (4.8.11d)

ω
(j)

k|k,z− = (1− (1− e−γ
(j)
k )p

(j)
D )ω

(j)
k|k−1 (4.8.11e)

where z̄− is the negative measurement’s sample mean and represents the measurement

of the occluded ET object center, m
(j)
k|k−1 is the predicted mean, P

(j)
k|k−1 is the predicted

covariance, α
(j)
k|k−1 is the predicted shape parameter of gamma distribution, β

(j)
k|k−1 is

the predicted rate parameter of gamma distribution, P(j)
k|k−1 contains the predicted

control points of the ET object and Σ
(j)
k|k−1 is the predicted covariance of the control

points in S-GGM-PHD for the jth component as defined in (4.8.7), ẑk is the mean of

the measurement vector and Pz,k is the covariance of the measurement vector, which

is calculated using the unscented transformation technique [144]. The Kalman gain

K(j) in the UKF framework is calculated by multiplying the cross covariance, Pzx,k,

and inverse of measurement covariance, Pz,k. The term (1 − e−γ(j))p(j)
D is called the

effective probability of detection [6] to account for the effect of measurement rate

parameter γk.

A close look into (4.8.11c)–(4.8.11d) reveals that the measurement rate state γ and

the control points P are kept equal to their predicted values for occluded components

and are not updated by the negative measurements. This is due to the fact that

the negative measurements are defined to impose the necessary constraints due to

the sensor-to-group-target geometry and do not contain any information about the

measurement rate or the extent of the occluded ET object.

The jth component with weight ω
(j)
k|k(W ) in the second line of (4.8.10) is obtained
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by processing the positive (actual) measurements. Then,

z̄ =
1

|W |

|W |∑
i=1

zi (4.8.12a)

m
(j)
k|k(W ) = m

(j)
k|k−1 +K(j)(z̄ −Hm(j)

k|k−1), P
(j)
k|k(W ) = P

(j)
k|k−1 −K

(j)S(K(j))T

(4.8.12b)

α
(j)
k|k(W ) = α

(j)
k|k−1 + |W |, β(j)

k|k,0(W ) = β
(j)
k|k−1 + 1 (4.8.12c)

Σ
(j)
k|k(W ) = 1

|W |−1

∑|W |
i=1(zi − z̄)(zi − z̄)T , Pk|k(W ) = P(j)

k|k−1 +K(j)(W −H
∑|W |

r=1 Θm
r P

(j)
k|k−1)

(4.8.12d)

ω
(j)
k|k(W ) =

wpp
(j)
D (Xk)gk(W |Xk)

(j)ω
(j)
k|k−1

dWβ
|W |
FA,k

(4.8.12e)

where z̄ is the positive measurement sample mean representing the measurement of

the ET object center, ω
(j)
k|k(W ) is the updated weight, m

(j)
k|k(W ) is the updated mean,

P
(j)
k|k(W ) is the updated covariance, α

(j)
k|k(W ) is the updated shape parameter of gamma

distribution, βk|k(j)(W ) is the update rate parameter of gamma distribution, P(j)
k|k(W )

is the updated control points of the ET object and Σ
(j)
k|k(W ) is the updated covariance

of the control points of the jth component using the positive measurements in cell

W . The details on deriving the likelihood term gk(W |Xk)
(j) in (4.8.12e) is presented

149



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

in Appendix 4.11.3. The use of |W | − 1 instead of |W | in (4.8.12d) improves the

statistical properties of the estimated covariance, resulting in an unbiased estimate

whereas using |W | will lead to a biased estimate.

Coefficient wp, which can be regarded as the probability of the partition P being

the true partition among all possible partitions, is calculated according to

wp =

∏
W∈P d

(j)
W∑

P ′Zk

∏
W ′∈P ′ dW ′

(4.8.12f)

dW = δ|W |,1 +

Jk|k−1∑
j=1

p
(j)
D g

(j)
k (W |Xk)ω

(j)
k|k−1

βFA,k
(4.8.12g)

where δ|W |,1 is the Kronecker delta.

Once the ET center and rate parameter are updated, the control points that define

the extent state of the ET are updated in according to (4.8.12d).

The JPDA data association technique [105] is used to update the control points

using the measurements in cell |W |. The procedure for calculating Θm
r is explained

here. First, the validation matrix Ω for the N control points and the measurements in

cell |W | is constructed. Assuming that feasible data association events are represented

by Ξ(Ω̂), their conditional probability is calculated by the formula proposed in [105]

as

P{Ξ(Ω̂)||W |} =
1

c
P

min(N,|W |)−Wa

0

∏
r:η̂rm=1

Prm (4.8.13)

where W is the set of all measurements in the current partition, c is a normalization

constant, Wa is the number of control points detected in this feasible event Ξ(η̂),
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ηrm = 1 indicates that measurement r is associated with control point m in the event

and terms Prm and P0 are calculated according to

Prm =


P

(i)
d (pm)N (z̃pmj ; 0, Spm), if η̂rm = 1

0, otherwise

(4.8.14)

P0 = (λkS)(1− P (i)
d (m)) (4.8.15)

where λk is the density of clutter, S is the surveillance region area (or volume) and

P
(i)
d (m) is the calculated probability of detection for control point m given in (4.6.2).

Then, the posteriori probability Θm
r that the rth measurement in partition W is

the correct measurement arising from the corresponding control point (pm) is com-

puted from the conditional probability in (4.8.13) according to

Θm
r =

∑
Ξ(Ω̂)

P (Ξ(Ω̂)|W )η̂rm (4.8.16)

Θm
0 = 1−

m∑
r=1

Θm
r (4.8.17)

The summary of the proposed S-GGM-PHD filter update is given in Algorithm 1

given the partitions Pi generated by a measurement set partitioning algorithm and

a predefined threshold pD,th on the minimum probability of detection to identify the

occluded targets.

Since the number of B-spline gamma Gaussian components may increase over

time, a pruning and merging step is necessary to keep the number of components low

[125].
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Algorithm 1 Summary of the update step in the proposed algorithm given partition
Pi

Input:{ω(j)
k|k−1,m

(j)
k|k−1, P

(j)
k|k−1, α

(j)
k|k−1, β

(j)
k|k−1,Σ

(j)
k|k−1,P

(j)
k|k−1} and the measurement set

cells |W | ∈ Pi.
Output:{ω(j)

k|k,m
(j)
k|k, P

(j)
k|k , α

(j)
k|k, β

(j)
k|k,Σ

(j)
k|k,P

(j)
k|k}.

for j = 1, . . . , Jk|k−1 do

Compute pD using (27) and save the value of p
(j)
D

if P
(j)
D ≤ pD,th then
Find the cells in Pi that have range values less than the jth components

range
Find the two measurements in each cell that correspond to the minimum and

the maximum bearings of source of measurements in cell W : z̄k = {zk,min, zk,max}
Find the intersection of the line connecting the sensor to zk,min and zk,max

with the jth component extent state: z−(j)
Compute the following using (42(a)–42(e)):

{ω(j)
k|k = ω

(j)
k|k(z

−(j)),m
(j)
k|k = m

(j)
k|k(z

−(j)), P
(j)
k|k = P

(j)
k|k(z−(j)), α

(j)
k|k =

α
(j)
k|k(z

−(j)), β
(j)
k|k = β

(j)
k|k(z

−(j)),Σ
(j)
k|k = Σ

(j)
k|k(z

−(j)),P(j)
k|k = P(j)

k|k(z
−(j))}

else
Compute the following:

{ω(j)
k|k = (1 − (1 − e−γ

(j)
k )p

(j)
D )ω

(j)
k|k−1,m

(j)
k|k = m

(j)
k|k−1, P

(j)
k|k = P

(j)
k|k−1, α

(j)
k|k =

α
(j)
k|k−1, β

(j)
k|k = β

(j)
k|k−1,Σ

(j)
k|k = Σ

(j)
k|k−1,P

(j)
k|k = P(j)

k|k−1}
end

end
l = 0
for for each W ∈ Pi do

l = l + 1
for j = 1, . . . , Jk|k−1 do

Compute the following using (43(a)–43(e)):

{ω(l.Jk|k−1+j)

k|k ,m
(l.Jk|k−1+j)

k|k , P
(l.Jk|k−1+j)

k|k ,α
(l.Jk|k−1+j)

k|k , β
(l.Jk|k−1+j)

k|k ,Σ
(l.Jk|k−1+j)

k|k ,

P(l.Jk|k−1+j)

k|k }
end

end
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4.9 Simulations

To show the superiority of the proposed method over the state-of-the-art methods

in multiple ET tracking application, two different scenarios are considered. Each

scenario has multiple ET objects with non-identical kinematic states, extent states

and measurement rates. The performance of different methods are evaluated using

their run-time, track loss, cardinality and a metric based on the modified optimal

sub-pattern assignment (m-OSPA) [123].

Track loss is calculated according to the circular position error probability (CPEP)

method [125] as follows:

CPEPk =
1

Xk

∑
xck∈Xk

ρk(x
c
k, r) (4.9.1)

for some position error radius r, with

ρk(x
c
k, r) = Prob{||Hx̂ck −Hxck||2} > r (4.9.2)

where H is the transformation to select only the location indexes of the ET kinematic

state, i.e., H =

1 0 0 0

0 0 1 0

, and || • ||2 is the 2-norm operator.

The cardinality estimate is calculated according to the sum of the weights
∑

l ω
(l)
k|k.

The m-OSPA metric is a modification to the conventional OSPA [145]. This metric

considers the errors in the estimated measurement rate (γ), in the estimated extent

state (xsk), in the estimated kinematic state (xck) and in the estimated target cardinal-

ity. The distance between the ET measurement rate parameter and the target center
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is calculated as follows [123]:

d
(cγ)
j,i = min

(
cγ, |γ(j)

k − γ̂
(i)
k|k|
)

(4.9.3)

d
(cxc )
j,i = min

(
cxc , ||xc(j)k − x̂c(i)k|k ||2

)
(4.9.4)

The distance between the true extent and the estimated extent of ET object is cal-

culated as [16]

d
(cxs )
j,i = min

(
cxs ,

1

B

B∑
|r
(
x
s(j)
k

)
− r
(
x̂
s(i)
k|k
)
|2
)

(4.9.5)

where r(•) represents the radial function that calculates the distance of a point on the

contour of an object from its distance in a specific angle and B is the number of such

points on the contour of the ET object. The constants cxc , cγ and cxs represent the

maximum expected error in the center, measurement rate and the extent, respectively.

Thus, the distance between the sufficient statistic X
(j)
k and X̂

(i)
k|k is equal to

d
(
X

(j)
k , X̂

(i)
k|k
)

=
ωγ
cγ
d

(cγ)
j,i +

ωxc

cxc
d

(cxc )
j,i +

ωxs

cxs
d

(cxs )
j,i (4.9.6)

where ωγ + ωxc + ωxs = 1.

The optimal assignment π̄ of order p with cut-off c = cxc + cγ + cxs is computed

as [145]

π̄ = arg min

NX,k∑
i=1

(
d

(c)
j,i

)p
(4.9.7)

d
(c)
j,i = min

(
c, d
(
X

(j)
k , X̂

(i)
k|k
))

(4.9.8)
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Thus, the metric m-OSPA to measure the performance of multiple ET target tracking

algorithms is given by

m-OSPA(c)
p =

( 1

n

NX,k∑
i=1

(d
(c)
i,π̄(i))

p + cp
(
N̂X,k −NX,k

)) 1
p

(4.9.9)

where N̂X,k is the cardinality estimate, which is equal to sum of the weights in this

work and the optimal point assignment (π̄) is calculated using the Hungarian method

[146].

To analyze the performance of the proposed algorithm, two existing state-of-the-

art ET tracking methods are implemented in addition to the proposed S-GGM-PHD

filter. The first existing algorithm used for comparison is the ET Gaussian-mixture

PHD (ET-GM-PHD) filter [28], which tracks multiple ET objects and handles situa-

tions where the targets are closely spaced. The ET-GM-PHD models the extent of an

ET object according to the RM [7] method. The second existing method implemented

for comparison is the ET generalized labeled multi-Bernoulli (ET-GLMB) filter [16]

for tracking multiple extended targets. In ET-GLMB, the shape of an ET objects is

modelled using the B-spline approximation.

The clutter (or false alarm) measurements are generated with λk×S = 50 in both

scenarios, where λk is the rate parameter of Poisson distribution and S is the surveil-

lance area in each scenario. Also, the spatial distribution of clutter measurements is

assumed uniform over the surveillance area as described in Section 4.8.
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4.9.1 Scenario 1

In this scenario, three targets are tracked. All three targets are present during the

whole 80 seconds that the scenario lasts. Target 1 follows a straight line path, while

target 2 starts with a constant velocity model followed by a moderate constant turn

at intersection A. At this time, target 2 blocks the line-of-sight from the sensor to

target 1 as illustrated in Figure 4.27. Target 2 continues with the constant velocity

model until intersection B and changes to another constant turn model, clearing the

line-of-sight from the sensor to target 1, followed by a constant velocity motion. The

third target follows a constant velocity model until intersection A and then switches

to a constant turn model followed by another constant velocity model.

Figure 4.27: Occlusion of target 1 by target 2 at time 12s.

The ET objects’ extent and kinematic state estimates in a single run by ET-GM-

PHD versus the proposed filter and those by ET-GLMB versus the proposed filter are

shown in Figure 4.28 and Figure 4.29, respectively. It can be seen that S-GGM-PHD is

able to estimate the center, size, shape and orientation of the targets more accurately

compared to the other algorithms. The increased accuracy in the estimated kinematic

and extent states is a direct result of incorporating the self-occlusion concept in the

update step of proposed filter.
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(a) (b) (c)

Figure 4.28: The true ET centers and control points along with corresponding
estimates by the proposed algorithm and by ET-GM-PHD.

Figure 4.30a and Figure 4.30b illustrates the m-OSPA and CPEP performance

metrics of all three algorithms over 100 Monte Carlo runs, respectively. The figures

show that the proposed filter outperforms ET-GM-PHD and ET-GLMB in terms

of both accuracy of estimates and track loss. The improvement in track continu-

ity is achieved by using an adaptive state-dependent probability of detection in the

update step of S-GGM-PHD to mitigate the challenges posed by mutual-occlusion.

The proposed algorithm’s lower m-OSPA values is a consequence of using a dynamic

pD for each control point contained in the extent state of ET objects and negative

measurements.

Figure 4.31 compares the uncertainties in the occluded ET object’s (target 1)
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(a) (b) (c)

Figure 4.29: The true ET centers and control points along with corresponding
estimates by the proposed algorithm and by ET-GLMB.

estimated state by S-GGM-PHD when using the negative measurements versus not

using the negative measurements. The uncertainties in the kinematic state and the

extreme control points in the ET extent state, which is approximated using the control

points of a B-spline curve, are lower when using the negative measurements generated

by target 2.

To compare the computational times of three algorithms, false alarm density,

which may affect the run-times of algorithms, is set to two different values. The

first false alarm rate results in an average of 50 false alarms per scan while the second

results in an average of 90 false alarms. The average run-times of the three algorithms

over 100 Monte Carlo runs are given in Table 4.11.
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(a) (b)

Figure 4.30: (a): m-OSPA measure (solid line) ± one standard deviation (shaded
area) over 100 Monte Carlo runs. (b): CPEP measure over 100 Monte Carlo runs.

Figure 4.31: The 1− σ ellipse with and without negative information for center and
two extreme control points of occluded ET (target 1).
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Table 4.11: Run-times of algorithms for two different clutter densities

Algorithm run-time
S × λk = 50 S × λk = 90

ET-GM-PHD 7.7s 9.01s
ET-GLMB 8.69s 11.01s

S-GGM-PHD 10.37s 11.01s

4.9.2 Scenario 2

In this simulation, there are 6 ET objects during the course of tracking. Each ET

object has a different shape, measurement rate and birth/death times. The scenario

parameters are given in Table 4.12.

Table 4.12: Target parameters in Scenario 2

Target Measurement rate Target birth time Target death time
γk tb td

1 17 1s 40s
2 10 1s 100s
3 15 12s 80s
4 20 1s 100s
5 8 75s 100s
6 10 50s 90s

Since not all targets are present for the whole tracking duration, the accuracy of

the cardinality estimates are more important than in the previous scenario. The errors

in the cardinality estimates are shown in Figure 4.34. Also, in scenario 2, an ET may

be occluded by multiple objects, in contrast to scenario 1 where an ET object was

occluded only by one other object. Thus, the closest object to the sensor generates

negative measurements to impose the constraints on the state of the occluded ET

object. Also, in addition to the mobile ET objects, we simulate a stationary obstacle

on the road. The location and extent of the obstacle are assumed to be known as
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(a) (b)

Figure 4.32: (a): The trajectories of existing ET objects. Circle and diamond
represent the start and end positions of each ET, respectively. (b): Road map.

prior and are used in generating the negative measurements of occluded objects.

The targets’ true trajectories with road maps and the targets’ shapes are shown in

Figure 4.32 and Figure 4.33, respectively. One snapshot of the results for the exiting

targets is depicted in Figure 4.35 for a single run at time 32s. To see how negative

measurements can reduce the uncertainties in the state estimates of an occluded ET,

the 1-σ ellipse for the occluded object’s kinematic state with and without the negative

measurements are shown in the magnified window.

Figures 4.36a and 4.36b illustrate the m-OSPA and CPEP performance metrics

of the three algorithms over 100 Monte Carlo runs, respectively. Similar to scenario

1, the performance metrics demonstrates that the proposed algorithm outperforms

ET-GM-PHD and ET-GLMB in terms of the accuracy of kinematic and extent state

estimates, the error in the estimated number of the targets and track loss.

In scenario 2, at least one target is occluded at all times and as a result, the

CPEP value does not provide a meaningful measure of the quality of algorithms.
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Figure 4.33: Contours of 6 ET objects.

Figure 4.34: Error in the estimated number of ETs.

The average number of track breakages (TB) [147], which quantifies the ability of

an algorithm in maintaining track continuity, is then used as an additional metric.

The average TB over 100 Monte Carlo runs for the proposed S-GGM-PHD filter is

1.7 compared to the the corresponding values of 11.7 and 12.3 for ET-GM-PHD and

ET-GLMB, respectively. The lower value of TB by the proposed algorithm is another

indication of improved track continuity in complex environments such as urban areas

with occlusions.
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Figure 4.35: Occlusion of one target by two targets at time 32s.

4.10 Conclusions

In this paper, we proposed a new algorithm for tracking multiple extended targets

in the presence of clutter and occlusion. The algorithm is based on the probabil-

ity hypothesis density filter to track the centroids of multiple ET targets and their

shapes or extents using a B-spline approximation. The challenges posed by self- and

mutual-occlusion are mitigated in the proposed method using the observable arc of

each object and an adaptive state-dependent probability of detection, respectively.

Another advantage of the proposed algorithm is the use of negative information to

bound the uncertainties in estimating the states of occluded objects. The superi-

ority of our method was demonstrated on two realistically simulated scenarios with

improved state and shape estimates compared to the existing methods.
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(a) (b)

Figure 4.36: (a): m-OSPA measure (solid line) ± one standard deviation (shaded
area) over 100 Monte Carlo runs. (b): CPEP measure over 100 Monte Carlo runs.

4.11 Appendices

4.11.1 Probability Of Occlusion

To find the statistics of the conditions for partial and full occlusion in multiple ET

object tracking scenarios, we can use some of the properties of the Gaussian distribu-

tion. The distribution of the bearing angle corresponding to each control point follows

a normal Gaussian distribution, which this is the direct result of the measurement

model in (4.5.9). Each condition on the bearing angle of ET objects is constructed

from the intersection of two independent conditions on minimum and maximum bear-

ings. The independence among these two allows us to write their joint distribution

as a product as

p(φA ≥ φB) ∩ p(φ′A ≤ φ′B) = p(φA ≥ φB)× p(φ′A ≤ φ′B) (4.11.1)
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With Normal distributions, we have [148]

p(φA ≥ φB) = p(φA − φB ≥ 0) = N (φA − φB;σ2
φA

+ σ2
φB

) (4.11.2)

Therefore, we can find the probability of the difference being greater than zero by

means of the cumulative distribution function (CDF) of the underlying Gaussian

variable as

p(φA ≥ φB) = Φ
( φA − φB√

σ2
φA

+ σ2
φB

)
(4.11.3)

where the CDF of a Normal distribution is equal to

Φ(x) =
1

2

(
1 + erf(

x√
2

)
)

(4.11.4)

4.11.2 Product Formula For Normal Densities

The product of two Normal densities with appropriately dimensioned matrices H, R

and P can be calculated according to

N (z;Hx,R)N(x;m,P ) =

N (z;Hm,S)N (x;m+G(z −Hm), P −KSKT ) (4.11.5)

where S = HPHT + R and K = PHTS−1 represents the innovation covariance and

the Kalman gain, respectively. Note that matrices P and R are positive definite.
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4.11.3 Derivation of The Update Step

According to the measurement model defined in Section 4.5.2, the likelihood of |W |

measurements is

gk(D|Xk) = PS(|W |; γk)
|W |∏
j=1

N (zj;Hx
c
k,Σk)

=
γ
|W |
k e−γk

|W |!
(2π)

−|W |d
2 |Σk|

−|W |
2 × etr

(
− 1

2Σk

( |W |∑
j=1

(zj −Hxck)(zj −Hxck)T
))
(4.11.6)

where d is the dimension of the kinematic state, etr(•) = exp(Trace(•)), |Σ| denotes

determinant of Σ and |W | is the number of measurements in partition W . By replac-

ing the kinematic measurement z̄ and its spread Cz̄ , 1
|W |−1

∑|W |
j=1(z − z̄)(z − z̄)T , we

can rewrite (4.11.6) as follows:

gk(D|Xk) =
γ
|W |
k e−γk

|W |! (2π)
−|W |d

2 |Σk|
−|W |

2 × etr
(
− 1

2
Cz̄Σ

−1
k

)
× etr

(
− |W |

2Σk
(z̄ −Hxck)(z̄ −Hxck)T

)

=
γ
|W |
k e−γk

|W |!
(2π)

−(|W |−1)d
2 |Σk|

−(|W |−1)
2 |W |

−d
2 × etr(− 1

2
Cz̄Σ

−1
k
)N (

z̄;Hxck,
Σk

|W |
)

(4.11.7)

Then, with the predicted target distribution at time k according to (4.8.7) being

equal to

vk|k−1(X) = Γ(γk, αk|k−1, βk|k−1)N (xck;mk|k−1, Pk|k−1 + Σk)S(xsk;Pk|k−1) (4.11.8)
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the posterior distribution can be calculated by multiplying the predicted distribution

(4.11.8) and the measurement likelihood in (4.11.7) according to

vk(X|Z1:k) =
γ
|W |
k e−γk

|W |! × Γ(γk, αk|k−1, βk|k−1)× (2π)
−(|W |−1)d

2 |Σk|
−(|W |−1)

2 |W |−d2 ×

etr(−1

2
Cz̄Σ

−1)×N (z̄;Hxck,
Σk

|W |
)×N (xck;mk|k−1, Pk|k−1 + Σk)× S(xsk;Pk|k−1)

(4.11.9)

The first line of (4.11.9) represents the corrected gamma distribution, which is

recursively estimated using the sequence of measurement Zk as follows:

p(γk|k||W |) =
γ
|W |
k e−γk

|W |!
×
β
αk|k−1

k|k−1 γ
αk|k−1+−1

k e−βk|k−1γk

Γ(αk|k−1)

=
β
αk|k−1

k|k−1 γ
αk|k−1+|W |−1

k e−(βk|k−1+1)γk

Γ(αk|k−1)|W |!

=Γ(γk, αk|k−1 + |W |, βk|k−1 + 1)×
Γ(αk|k−1 + |W |)βαk|k−1

k|k−1

Γ(αk|k−1)(βk|k−1 + 1)αk|k−1+|W |W !

=Γ(γk, αk|k−1 + |W |, βk|k−1 + 1)× Lγ(αk|k−1, βk|k−1, |W |) (4.11.10)

where Lγ is the measurement rate likelihood that follows a negative Binomial distri-

bution [149].

The second and the third lines of (4.11.9) capture the corrected Gaussian distribu-

tion with the following mean and covariance, which are calculated using the product
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formula for Normal densities as described in Appendix 4.11.2. Then,

p(xck|k|W ) = N (xck|k;mk|k, Pk|k + Σk) (4.11.11a)

mk|k = mk|k−1 +K(z̄ −Hmk|k−1) (4.11.11b)

Pk|k = Pk|k−1 −KSKT (4.11.11c)

where S = HPk|k−1H
T + 1

|W | and K = Pk|k−1H
TS−1 are the innovation covariance

and the Kalman gain, respectively.

Thus, (4.11.9) becomes

vk(X|Z1:k) = Γ(γk, αk|k, βk|k)× Lγ ×N (xck|k;mk|k, Pk|k + Σk)× S(xsk;Pk|k)× Lx
c,s

(4.11.12)

where Lxc,s is the likelihood of the kinematic and extent states and S representing

the spline density is the pdf of the control points, which according to measurement

model in this work is Gaussian distributed. The updated control points and their

covariance are calculated according to

Pk|k = Pk|k−1 +K(W −HPk|k−1) (4.11.13a)
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Σk|k =
1

|W | − 1

W∑
j=1

(zj − z̄)(zj − z̄)T (4.11.13b)

with respect to the data association method described in Section 4.6.

The term Lxc,s can be calculated from (4.11.9) by using the product formula for

Gaussian distribution as

Lx
c,s

= (2π)
−(|W |−1)d

2 |Σk|
−(|W |−1)

2 |W |−d2 × etr
(
− 1

2
Cz̄Σ

−1
k

)
× (2π)

−d
2 |SΣk|−1etr

(
− 1

2(SΣk)
(z̄ −Hmk|k−1)(z −Hmk|k−1)T

)

=(2π)
−|W |d

2 |Σk|−
|W |+1

2 |W |− d2 |S|−1etr

(
− 1

2

(
Cz̄ + S−1(z −Hmk|k−1)(z −Hmk|k−1)T

)
Σ−1
k

)
(4.11.14)

where |S| is the determinant of the innovation matrix S and |W | is the number

of measurements in cell W .
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, the ET tracking problem in modern sensor applications has been stud-

ied. The proposed algorithms try to address some of the major drawbacks in previ-

ously developed ET tracking methods.

The non-Gaussian system and sensor noise which can cause divergence in different

stages of a tracking algorithms, such as the data association stage and the shape esti-

mation stage, have been addressed through modeling the shape of ET object using the

Student’s-t process and recursively estimating it using a novel Student’s-t extended

Kalman filter (EKF). The model takes advantage of the desirable characteristics of

the Student’s-t distribution like its heavy tails, which can handle outliers and results

in a more accurate center and extent estimation in ET object tracking framework.

Considering the previously imposed constraints on the shape of ET objects, a

novel shape descriptor using random Polytopes (RP) has been introduced to relax

any constraint on the shape of ET objects in chapter 2. Formulating the shape of ET
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object with RP concept provides a valuable information that can be used for solving

the self-occlusion challenge of ET objects. Using the sensor’s current location and

current ET estimated shape of ET object the observable parts and non-observable

parts can be determined and feed to the proposed filtering method to improve the

center and shape estimation results. The proposed RP-based algorithm has been

applied to track an ET object both in 2 dimensional and 3 dimensional spaces with

self-occlusions and the promising simulation results have been reported.

Due to the nature of real world applications, a multiple ET object tracking method

has been introduced in the third chapter, which tries to wrap up all critical conditions

which may usually be neglected in ET tracking frameworks. In the proposed method

the shape of ET objects are modeled with the help of B-splines. The measurement

origin uncertainty is handled using a modified Gaussian mixture probabilistic hypoth-

esis density (GM-PHD) framework which uses a non-constant adaptive probability of

detection ,in contrast to the traditional GM-PHD filter, which is calculated accord-

ing to the ET estimated kinematic state, extent state and sensor’s location. Also,

the self-occlusion is solved by taking advantage of local controllability provided by

B-spline shape descriptors.

5.2 Future Work

The field of ET tracking is an open problem and further researches may be conducted

to address the existing challenges and make the algorithm more efficient. To name

some of the existing problems, which might be worth working on, we can point to the

dependency among the motion models of multiple ET objects, which are present in

each scenario. For example, the motion model that a particular vehicle (ET) follows
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in a road is dependent to the other vehicles on the road. Some attempts toward

defining such models for point targets can be found in [150] but an extension to ET

application may be beneficial. Also, exploiting the constraints imposed by the road

map [151, 152] as prior can significantly improve the tracking and uncertainty result.

In the development of Student’s-t process EKF in chapter 2, we assumed only one

ET object is present. The forthcoming extension would be to expand the algorithm to

handle multiple ET objects using probabilistic data association (PDA) and random

finite set (RFS) frameworks. The same approach can be applied for the method intro-

duced in chapter 3 using RP shape descriptor, since the single ET object assumption

also holds there and needs to be expanded to a multitarget case.

The RP method developed in chapter 2 only addresses the troubles caused by self-

occlusion in ET tracking. The algorithm can be combined with similar approaches in

chapter 4 for handling the mutual-occlusion in a multitarget framework.

One of possible extension to the algorithm proposed in forth chapter is to use

the road map, when available, as some additional constraints on existing targets

extent and center by using the same negative measurement approach for improving

the estimation results.
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Springer Science & Business Media, 2013.

190



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

[131] K. Punithakumar, M. McDonald, and T. Kirubarajan, “Spline filter for mul-

tidimensional nonlinear/non-Gaussian Bayesian tracking,” in Signal and Data

Processing of Small Targets 2008, vol. 6969. International Society for Optics

and Photonics, 2008, p. 69690K.

[132] S. R. Buss, 3D Computer Graphics: A Mathematical Introduction with OpenGL.

Cambridge University Press, 2003.

[133] L. Piegl and W. Tiller, “Curve and surface constructions using rational B-

splines,” Computer-aided Design, vol. 19, no. 9, pp. 485–498, 1987.

[134] J. Yang, P. Li, Z. Li, and L. Yang, “Multiple extended target tracking algo-

rithm based on Gaussian surface matrix,” Journal of Systems Engineering and

Electronics, vol. 27, no. 2, pp. 279–289, 2016.

[135] E. Pollard, A. Plyer, B. Pannetier, F. Champagnat, and G. Le Besnerais, “GM-

PHD filters for multi-object tracking in uncalibrated aerial videos,” in 2009

12th International Conference on Information Fusion, 2009, pp. 1171–1178.

[136] Y. Zhang and H. Ji, “A novel fast partitioning algorithm for extended tar-

get tracking using a Gaussian mixture PHD filter,” Signal Processing, vol. 93,

no. 11, pp. 2975–2985, 2013.

[137] M. Yazdian-Dehkordi and Z. Azimifar, “Refined GM-PHD tracker for tracking

targets in possible subsequent missed detections,” Signal Processing, vol. 116,

pp. 112–126, 2015.

[138] W. Wu, W. Liu, J. Jiang, L. Gao, Q. Wei, and C. Liu, “GM-PHD filter-based

191



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

multi-target tracking in the presence of Doppler blind zone,” Digital Signal

Processing, vol. 52, pp. 1–12, 2016.

[139] C. Li, W. Wang, T. Kirubarajan, J. Sun, and P. Lei, “PHD and CPHD filtering

with unknown detection probability,” IEEE Transactions on Signal Processing,

vol. 66, no. 14, pp. 3784–3798, 2018.

[140] D. B. Epstein and A. Marden, “Convex hulls in hyperbolic space, a theorem of

sullivan, and measured pleated surfaces,” Analytical and Geometric Aspects of

Hyperbolic Space, vol. 111, pp. 113–253, 1987.

[141] P. Chavali and A. Nehorai, “Concurrent particle filtering and data association

using game theory for tracking multiple maneuvering targets,” IEEE Transac-

tions on Signal Processing, vol. 61, no. 20, pp. 4934–4948, 2013.

[142] L. C. Andrews, Special Functions of Mathematics for Engineers. SPIE Press,

1998, vol. 49.

[143] K. Granström and U. Orguner, “Estimation and maintenance of measurement

rates for multiple extended target tracking,” in 2012 15th International Con-

ference on Information Fusion. IEEE, 2012, pp. 2170–2176.

[144] S. J. Julier, “The scaled unscented transformation,” in Proceedings of the 2002

American Control Conference, vol. 6. IEEE, 2002, pp. 4555–4559.

[145] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for performance

evaluation of multi-object filters,” IEEE Transactions on Signal Processing,

vol. 56, no. 8, pp. 3447–3457, 2008.

192



Ph.D. Thesis–M. Heidarpour McMaster-Electrical & Computer Engineering

[146] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms

and Complexity. Courier Corporation, 1998.

[147] S. Zhang and Y. Bar-Shalom, “Track segment association for GMTI tracks

of evasive move-stop-move maneuvering targets,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 47, no. 3, pp. 1899–1914, July 2011.

[148] K. Wyffels and M. Campbell, “Negative information for occlusion reasoning

in dynamic extended multiobject tracking,” IEEE Transactions on Robotics,

vol. 31, no. 2, pp. 425–442, 2015.

[149] R. A. Fisher, “The negative binomial distribution,” Annals of Eugenics, vol. 11,

pp. 182–187, 1941.

[150] D. Song, R. Tharmarasa, T. Kirubarajan, and X. N. Fernando, “Multi-vehicle

tracking with road maps and car-following models,” IEEE Transactions on In-

telligent Transportation Systems, vol. 19, no. 5, pp. 1375–1386, 2017.

[151] Y. Cheng and T. Singh, “Efficient particle filtering for road-constrained target

tracking,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43,

no. 4, pp. 1454–1469, 2007.

[152] C. Hasberg, S. Hensel, and C. Stiller, “Simultaneous localization and mapping

for path-constrained motion,” IEEE Transactions on Intelligent Transportation

Systems, vol. 13, no. 2, pp. 541–552, 2011.

193


	Abstract
	Acknowledgements
	Abbreviations
	Declaration of Academic Achievement
	Introduction
	 Extended Target Tracking: A Brief Review
	Theme and Objectives of Dissertation
	Summary of Enclosed Articles

	Extended Target Tracking Using Student's-t Process With Heavy-Tailed Process and Measurement Noises
	Abstract
	List of Notations
	Introduction
	Student's-t Process
	Problem Formulation
	TP-EKF Filter with State-Dependent Noise Observation
	Approximations for TP-EKF
	TP-EKF Gating
	Conditional Cramér-Rao Lower Bound for TP-EKF
	Simulations
	Conclusions
	Appendices

	Two- and Three-Dimensional Extended Target Tracking Using Random Polytopes 
	Abstract
	List of Notations
	Introduction
	Random Polytopes as Shape Function For Extended Target
	Handling Self Occlusion
	Filtering
	Posterior Cramér-Rao Lower Bound
	Results
	Conclusions
	Appendices

	Tracking Multiple Extended Targets In Occlusion Using Splines and Set-Membership Uncertainty Models
	Abstract
	List of Notations
	Introduction
	Background
	Extended Target Tracking Problem Formulation
	Adaptive Detection Probability Model
	Set-Membership Uncertainty Model
	S-GGM-PHD Filter For Multiple Extended Target Tracking Application
	Simulations
	Conclusions
	Appendices

	Conclusions and Future Work
	Conclusions
	Future Work


