
DEEP LEARNING ON THE EDGE: MODEL

PARTITIONING, CACHING, AND

COMPRESSION

DEEP LEARNING ON THE EDGE: MODEL PARTITIONING,

CACHING, AND COMPRESSION

BY

YIHAO FANG, M.Eng.

a thesis

submitted to the department of Computing and Software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

c© Copyright by Yihao Fang, April 2020

All Rights Reserved

Doctor of Philosophy (2020) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Deep Learning on the Edge: Model Partitioning, Caching,

and Compression

AUTHOR: Yihao Fang

M.Eng. (Software Engineering),

McMaster University, Hamilton, Canada

SUPERVISOR: Rong Zheng

NUMBER OF PAGES: xv, 131

ii

Lay Abstract

Edge artificial intelligence (EI) has attracted much attention in recent years. EI is a

new computing paradigm where artificial intelligence (e.g. deep learning) algorithms

are distributed among edge nodes and end devices of computer networks. There

are many merits in EI such as shorter latency, better privacy, and autonomy. These

advantages motivate us to contribute to EI by developing intelligent solutions including

partitioning, caching, and compression.

iii

Abstract

With the recent advancement in deep learning, there has been increasing interest to

apply deep learning algorithms to mobile edge devices (e.g. wireless access points,

mobile phones, and self-driving vehicles). Such devices are closer to end-users and

data sources compared to cloud data centers, therefore deep learning on the edge

leads to several merits: 1) reduce communication overhead (e.g. latency), 2) preserve

data privacy (e.g. not leaking sensitive information to cloud service providers), and 3)

promote autonomy without the need of continuous network connectivity. However,

it also comes with a trade-off that deep learning on the edge often results in less

prediction accuracy or longer inference time. How to optimize such a trade-off has

drawn a lot of attention among the machine learning and systems research communities.

Those communities have explored three main directions: partitioning, caching, and

compression to solve the problem.

Deep learning model partitioning works in distributed and parallel computing by

leveraging computation units (e.g. edge nodes and end devices) of different capabilities

to achieve the best of both worlds (accuracy and latency), but the inference time of

partitioning is nevertheless lower bounded by the smallest of inference times on edge

nodes (or end devices).

In contrast, model caching is not limited by such a lower bound. There are two

iv

trends of studies in caching, 1) caching the prediction results on the edge node or end

device, and 2) caching a partition or less complex model on the edge node or end

device. Caching the prediction results usually compromises accuracy, since a mapping

function (e.g. a hash function) from the inputs to the cached results often cannot

match a complex function given by a full-size neural network. On the other hand,

caching a model’s partition does not sacrifice accuracy, if we employ a proper partition

selection policy.

Model compression reduces deep learning model size by e.g. pruning neural network

edges or quantizing network parameters. A reduced model has a smaller size and

fewer operations to compute on the edge nodes or end device. However, compression

usually sacrifices prediction accuracy in exchange for shorter inference time.

In this thesis, our contributions to partitioning, caching, and compression are

covered with experiments on state-of-the-art deep learning models. In partitioning, we

propose TeamNet based on competitive and selective learning schemes. Experiments

using MNIST and CIFAR-10 datasets show that on Raspberry Pi and Jetson TX2 (with

TensorFlow), TeamNet shortens neural network inference as much as 53% without

compromising predictive accuracy.

In caching, we propose CacheNet, which caches low-complexity models on end

devices and high-complexity (or full) models on edge or cloud servers. Experiments

using CIFAR-10 and FVG have shown on Raspberry Pi, Jetson Nano, and Jetson

TX2 (with TensorFlow Lite and NCNN), CacheNet is 58–217% faster than baseline

approaches that run inference tasks on end devices or edge servers alone.

In compression, we propose the logographic subword model for compression

v

in machine translation. Experiments demonstrate that in the tasks of English-

Chinese/Chinese-English translation, logographic subword model reduces training and

inference time by 11–77% with Theano and Torch. We demonstrate our approaches

are promising for applying deep learning models on the mobile edge.

vi

Acknowledgements

I wish to express my deepest gratitude to Professor Rong Zheng, my Ph.D. supervisor,

for all her support towards my research accomplishment. Her editorial vigilance and

supportive nature most influence me. I feel grateful for her giving me a chance to

continue my Ph.D. study at the most difficult moment.

I want to thank my advisory committee, Dr. Frantisek Franek, Dr. Emil Sekerinski,

for their excellent constructive insights and invaluable feedback. I would like to thank

my family for their understanding, support and love.

vii

Contents

Lay Abstract iii

Abstract iv

Acknowledgements vii

Notation, Definitions, and Abbreviations xiv

1 Introduction 1

1.1 Deep Learning . 3

1.2 Edge Artificial Intelligence . 10

1.3 Main Contributions and Thesis Organization 16

2 TeamNet: Knowledge-Aware Partitioning for Collaborative Infer-

ence 19

2.1 Introduction . 20

2.2 Related Work . 22

2.3 System Architecture . 24

2.4 Training TeamNet . 25

2.5 TeamNet Inference . 35

viii

2.6 Performance Evaluation . 35

2.7 Conclusion . 43

2.8 Appendix A: Proof Sketch of Convergence 44

3 CacheNet: An Information Maximizing Caching Framework 49

3.1 Introduction . 50

3.2 Related Work . 54

3.3 System Design . 57

3.4 Training CacheNet . 59

3.5 CacheNet Inference . 70

3.6 Evaluation . 71

3.7 Conclusion . 80

3.8 Appendix A: Absence of Bélády’s Anomaly 81

4 Logographic Subword Model: Compression for Machine Translation 87

4.1 Introduction . 88

4.2 Related Work . 91

4.3 System Architecture . 93

4.4 Product Quantization . 96

4.5 Decomposition . 101

4.6 Evaluation . 102

4.7 Conclusion . 107

5 Conclusion 109

5.1 Deep Insights and Improvements . 110

5.2 Future Research Directions . 114

ix

List of Figures

1.1 Thesis Achievements . 17

2.1 TeamNet’s System Architecture Diagram 26

2.2 TeamNet’s Data Flow at Training . 28

2.3 TeamNet’s Data Flow at Inference . 29

2.4 Illustration of Momentum-induced Displacement in Counteracting the

Bias in the Past . 31

2.5 TeamNet’s Convergence in the MNIST Handwritten Digit Recognition

Task . 38

2.6 Experimental Results in the MNIST Handwritten Digit Recognition Task 39

2.7 TeamNet’s Convergence in the CIFAR-10 Image Classification Task . 40

2.8 Experimental Results in the CIFAR-10 Image Classification Task . . 41

2.9 Illustration of Specialization in TeamNet 42

3.1 CacheNet’s System Architecture Diagram 56

3.2 Illustration of Partitioning in the Stacked Autoencoder 65

3.3 Data Flow in CacheNet’s Generator 68

3.4 CacheNet’s Specialization in CIFAR-10 75

3.5 CacheNet’s Specialization in FVG . 75

3.6 CacheNet’s Convergence . 76

x

4.1 Abstract Subword Model Architecture Diagram 93

4.2 Examples of Abstract Subwords . 94

4.3 Correlation between Sentence Length and Cut-off Frequency 102

4.4 Correlation between Degree of Distinctness D and BLEU Score . . . 108

xi

List of Tables

2.1 Empirical Comparison among TeamNet, MPI, SG-MoE and the Base-

lines in the MNIST Handwritten Digit Recognition Task 47

2.2 Empirical Comparison among TeamNet, MPI, SG-MoE and the Base-

lines in the CIFAR-10 Image Classification Task 48

3.1 Experimental Results with CIFAR-10 on Jetson TX2, Jetson Nano,

and Raspberry Pi 4 - NCNN . 80

3.2 Experimental Results with CIFAR-10 on Jetson TX2, Jetson Nano,

and Raspberry Pi 4 - TensorFlow Lite 81

3.3 Experimental Results with FVG (15 FPS) on Jetson TX2, Jetson Nano,

and Raspberry Pi 4 - NCNN . 82

3.4 Experimental Results with FVG (15 FPS) on Jetson TX2, Jetson Nano,

and Raspberry Pi 4 - TensorFlow Lite 83

3.5 Experimental Results with FVG (30 FPS) on Jetson TX2, Jetson Nano,

and Raspberry Pi 4 - NCNN . 84

3.6 Experimental Results with FVG (30 FPS) on Jetson TX2, Jetson Nano,

and Raspberry Pi 4 - TensorFlow Lite 85

4.1 Terms Used in Abstract Subword Model 104

4.2 Empirical Comparison between Abstract Subword Model and the Baselines106

xii

4.3 Empirical Comparison between Abstract Subword and Subword Model 107

xiii

Notation, Definitions, and

Abbreviations

Abbreviations

AI Artificial intelligence

EI Edge artificial intelligence

MLP Multi-layer perceptron

CNN Convolutional neural network

RNN Recurrent neural network

MoE Mixture of experts

VAE variational autoencoder

IoT Internet of things

NIST National institute of standards and technology

MNIST The modified NIST dataset of handwritten digits

xiv

CIFAR Canadian institute for advanced research

CIFAR-10 A CIFAR dataset of color images in 10 different classes

CIFAR-100 A CIFAR dataset of color images in 100 different classes

FVG The frontal-view gait dataset

BLEU The bilingual evaluation understudy score

GPU Graphics processing unit

TPU Tensor processing unit

FPGA Field-programmable gate array

TCP Transmission control protocol

MPI Message passing interface

xv

Chapter 1

Introduction

Artificial intelligence (AI) is built upon algorithms that learn from a large amount of

data, find useful patterns, and make predictions when given new data. During this

process, it requires powerful and reliable computing resources to perform computa-

tion on the data, especially in cases of unstructured data like pictures and natural

languages. Typically cloud computing serves this need, thanks to centralized data

centers. However, challenges arise as more and more data need to be uploaded to the

cloud in return for intelligence. The latency incurred in transferring data to cloud is

not negligible and can be even harmful in some situations (e.g. autonomous driving).

With the rapid proliferation of IoT devices, smartphones, and assisted driving or

autonomous vehicles, there are growing interests to unlock the computing power at the

edge of networks. As edge nodes (or end devices) are physically closer to (sensor) data

sources and end-users, computation and data storage on edge nodes (and end devices)

can relieve the bandwidth (capacity) burden of network infrastructures. Furthermore,

response times can be substantially shortened due to proximity, which makes many

real-time applications possible.

1

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Edge computing is a distributed computing paradigm that brings computation

and data storage closer to the location where they are generated and needed. An

important research topic in edge computing studies AI algorithms on the edge (EI).

With the extraordinary success of deep learning in recent years (a sub-field of AI), EI

has attracted more and more attention in recent years. In computer vision, by running

deep learning model in the cloud, objects (such as human, animal and transportation

vehicles) can be detected and identified. But it is unclear whether real-time detection

and classification on the edge are feasible. In natural language processing, translations

of texts from one language to another have been done successfully by offloading the

tasks to cloud. It remains to be investigated whether offline translation on end device

can achieve the same quality.

Real-time inference on the edge is essential for human-in-the-loop interactive appli-

cations as response time is critical for good user experience. Excessive communication

latency in data transfer renders cloud computing unsuitable for such applications.

Furthermore, stable network connections are not always available between end devices

and the cloud causing large jitters in interactions.

Apart from network connectivity and latency, data privacy is another important

aspect to consider. In cloud computing, once a user’s data is stored in the cloud, she

has little control over where the data is and who has access to it. Although approaches

exist to prevent data leakage in cloud services, they often need to trade-off computation

time and inference accuracy with privacy preservation resulting in unacceptable utility

to end users. Moving deep learning models to the edge enables local data analysis

without leaking any sensitive information to third parties.

Lastly, autonomous robotic applications is an important driver for EI due to their

2

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

safety critical nature. A self-driving vehicle needs to operate safely even when network

connectivity is unavailable due to poor network coverage or shadowing effects from

obstructions in its environment. Pushing computation closer to data sources, such as

on-board camera and LiDAR sensors is essential for these applications.

Compared to cloud data centers, edge devices usually have low computation

resources and storage capabilities. Unfortunately, today’s deep learning models have

high space and time complexity making it challenging to run inference tasks on edge

devices in real time. Though many efforts and much progress have been made in the

research communities to mitigate this problem, with techniques such as deep learning

model partitioning, caching, and compression, there is still much room to realize

real-time EI. The main objective of the thesis is thus to develop effective mechanisms

to accelerate edge computation for deep learning models. In particular, we investigate

model partitioning and model caching approaches that take advantage of distributed

computing resources at the edge. We also develop a language model that reduces the

number of output classes resulting smaller network sizes in neural translation tasks.

Before elaborating on our contributions in each of these aspects, we first give a brief

introduction to deep learning and various AI tasks where deep learning algorithms

have been successfully applied. Then, classes of techniques to enable deep learning on

edge devices are briefly reviewed.

1.1 Deep Learning

Deep Learning is a sub-area in machine learning. From the learning-task points of

view, there are supervised learning, unsupervised learning and reinforcement learning.

There are two main categories of models, discriminative models, and generative

3

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

models. Discriminative models are widely used in classification, while generative

models are mostly applied to regression. Multi-layer perceptrons (MLP), recurrent

neural networks (RNN), convolutional neural networks (CNN) and memory networks

are mostly studied in the field of deep learning.

Deep learning has attracted much attention in different fields such as handwritten

digit recognition, face recognition, and machine translation. They can be mainly

classified into two group: computer vision and natural language processing. Apart

from those topics, robust AI is a newly raised topic and has drawn much attention for

the past few years. Robustness is mainly measured by uncertainty such as entropy

and mutual information.

Our approaches in model partitioning, caching and compression are evaluated

with the state-of-the-art deep learning models in the experiments. While partitioning,

caching, and compression will be elaborated in the later chapters, an brief introduction

of deep learning models are given in this section.

1.1.1 Handwritten Digit Recognition

Handwritten digit recognition is the task of recognizing human handwritten Arabic

digits. Its applications are including but not limited to handwritten courtesy amount

recognition in back cheques (Miah et al., 2015) and numerical field extraction from

handwritten incoming mail documents (Chatelain et al., 2006). For the past decades,

this task has drawn much research. On the MNIST dataset (which is a benchmark

handwritten digit recognition dataset), various models have been proposed such

as multi-layer perceptrons (MLP) (Cireşan et al., 2011) and constitutional neural

networks (CNN) (LeCun et al., 1999; Ciresan et al., 2011).

4

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

The best results on the MNIST dataset were attained by multi-column deep neural

networks (MCDNN) (Cireşan et al., 2012) and DropConnect neural networks (Wan

et al., 2013) with respectively the accuracy of 99.77% and 99.79%. MCDNN is inspired

by sparsely connected neural layers found in mammals, in which multiple neural

columns are trained to be the experts on differently preprocessed inputs. By taking

the average of those neural columns’ outputs, MCDNN decreases the error rate by

30-40% as opposed to those of the other DNN approaches.

DropConnect (Wan et al., 2013), similar to Dropout (Hinton et al., 2012), introduces

dynamic sparsity to the model in order to prevent overfitting. However, unlike Dropout,

DropConnect sets a randomly selected subset of weights (rather than activations) to

zero. On the MNIST dataset, Li Wan and his colleagues observe that DropConnect

neural networks converge slower than Dropout’s, but end with a lower error rate.

On low-power devices, faster computation is crucial at both training and inference.

It is beneficial to constrain weights to binary values (e.g. −1 or 1) during the forward

and backward propagations, as simple accumulations are much faster than multiply-

accumulate operations. BinaryConnect (Courbariaux et al., 2015), which is that kind

of neural networks, retains precision on the permutation-invariant MNIST dataset with

a comparable error rate 1.01%, while poses great advantage on specialized low-power

device.

1.1.2 Object Classification

Object classification is the task of identifying object classes in the images such as

classes of airplanes, cars, dogs, and cats. There are two important datasets in this task:

CIFAR-10 and CIFAR-100. CIFAR-10 consists of 60000 32-by-32 color images with

5

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

50000 for training and 10000 set aside for testing. There are 10 mutually exclusive

classes with 6000 images per class. On this benchmark dataset, many approaches

have been proposed such as sum-product networks (SPN) (Gens and Domingos, 2012),

ReNet (Visin et al., 2015), network in network (NIN) (Lin et al., 2013), densely

connected convolutional networks (DenseNet) (Huang et al., 2017), and shake-shake

regularization (Gastaldi, 2017).

SPNs are an expressive (Delalleau and Bengio, 2011) and tractable (Poon and

Domingos, 2011) deep architecture with full probabilistic semantics. Robert Gens and

Pedro Domingos (Gens and Domingos, 2012) first brought SPNs to discriminative

learning with the propose of an efficient backpropagation-style algorithm. They tested

their algorithm on the CIFAR-10 dataset and achieved the accuracy of 83.96% which

was the best results at the time.

ReNet (Visin et al., 2015) is a recurrent neural network architecture for object

recognition, which replaces the convolution and pooling layer with four recurrent

neural networks sweeping horizontally and vertically in both directions. The learning

algorithm Adam (Kingma and Ba, 2014) was used and dropout was applied. On the

CIFAR-10 dataset, ReNet achieved the accuracy of 87.65%. That suggests RNNs is

a viable alternative to CNNs, which dominates object classification and most of the

other computer vision tasks.

Unlike conventional convolutional layer, NIN (Lin et al., 2013) uses micro neural

networks (nonlinear function approximators) within the receptive field to abstract

the data living on a nonlinear manifold. The resulting structure is stack-able and

sub-sampling layers can be added in between as those in other CNNs. Experiments

on CIFAR-10 and CIFAR-100 datasets show that NIN outperformed other approaches

6

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

at the time with respectively the accuracy of 91.19% and 64.32%.

In DenseNet (Huang et al., 2017), short paths were created to connect the feature-

maps of all preceding layers to the current layer, in order to alleviate the vanishing

gradient problem. Different from ResNet (He et al., 2016), DenseNet establishes direct

connections where the feature-maps were sent as inputs to the subsequent layers. On

CIFAR-10 and CIFAR-100, DenseNet’s accuracy of 96.54% and 82.82% outperforms

what ResNet achieved.

Shake-shake regularization (Gastaldi, 2017) alleviates the overfit problem by replac-

ing the standard summation of parallel branches with a stochastic affine combination.

It improves published results on CIFAR-10 and CIFAR-100 to the accuracy of 97.24%

and 84.15%.

1.1.3 Face Recognition

Faces are biometric identities of human beings. Well-designed face biometric systems

should stand the test of any imposters with any deliberate attacks. The importance

of face recognition has drawn much research. Many neural network architectures have

been proposed such as DeepFace (Taigman et al., 2014), VGGFace (Parkhi et al.,

2015), FaceNet (Schroff et al., 2015), SphereFace (Liu et al., 2017) and VGGFace2

(Cao et al., 2018). There have been found several large-scale face verification and

identification datasets such as labeled faces in the wild (LFW) (Huang et al., 2008),

FGLFW (Deng et al., 2017), IJB-A (Best-Rowden et al., 2014), FaceCrub (Ng and

Winkler, 2014), CASIA-WebFace (Yi et al., 2014), and Megaface (Miller et al., 2015).

LFW contains more than 13000 images of faces with 1680 of the people pictured

having two or more distinct photos. FGLFW is a renovation of LFW. Different from

7

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

LFW, 3000 similarly-looking face pairs are deliberately rather than randomly selected

by human crowdsourcing. Megaface contains 4.7 million photos with 672057 Unique

Identities. There are about 7 photos per person.

A face recognition pipeline conventionally consists of four stages: detection, align-

ment, representation and classification. DeepFace (Taigman et al., 2014) improves

the alignment step by using an explicit 3D modeling, and employs a generalized face

representation learned from the larger Social Face Classification (SFC) dataset which

includes 4.4 million labeled faces. With the above improvements, DeepFace acquired

an accuracy of 97.35% on the Labeled Faces in the Wild (LFW) dataset.

In VGGFace2 (Cao et al., 2018), ResNet-50 (with and without Squeeze-and-

Excitation (Hu et al., 2018) (SE) blocks) are trained and evaluated. A Squeeze-

and-Excitation block captures channel-wise statistics using average pooling, then

learns channel-wise dependencies though sigmoid and ReLU (Nair and Hinton, 2010)

activation. The resulted vector multiplies and scales the input block to introduce

dynamics conditioned on the input. When the false positive rate (FAR) equals to

0.001, ResNet-50 with the SE block achieves 90.4% on the IJB-A dataset versus 89.5%

without the SE block; on the IJB-B dataset, ResNet-50 with the SE block is 1% better

as well with 88.8% versus 87.8%.

1.1.4 Machine Translation

Cho et al (Cho et al., 2014) first proposed the RNN seq2seq model by modeling it

as an RNN encoder-decoder architecture, with the encoder transforming an input

sentence into a context vector and the decoder mapping the context vector to an

output sentence (the translation hypotheses). Bahdanau et al. (Bahdanau et al., 2014)

8

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

further improved RNN seq2seq models by making the encoder as a bidirectional gate

recurrent unit (GRU) and binding the attentional mechanism to the decoder. To avoid

overfitting in RNN seq2seq models, Gal and Ghahramani (Gal and Ghahramani, 2016)

proposed to apply the variational inference based dropout technique to the model. To

speed up convergence in training, Ba and his colleagues (Ba et al., 2016) introduced

layer normalization to stabilize state dynamics in RNNs. Salimans and Kingma

(Salimans and Kingma, 2016) proposed weight normalization that reparameterizes

weight vectors from their direction. To increase the model depth, Zhou et al. (Zhou

et al., 2016) proposed fast-forward connections where the shortest paths do not depend

on any recurrent calculations. Wu et al. (Wu et al., 2016b) introduced the bidirectional

stacked encoder and Barone and his colleague (Barone et al., 2017) proposed a BiDeep

RNN by replacing the GRU cells of a stacked encoder with multi-layer transition cells.

Deviating from RNN seq2seq models, Gehring et al. (Gehring et al., 2017) proposed

convolutional seq2seq model where the encoder and decoder were fully replaced by

convolutional neural networks (CNN). Their approach allows much faster training

while retaining the BLEU scores closely comparable to those obtained with RNN

seq2seq models.

Sennrich and Haddow (Sennrich and Haddow, 2016) generalized the embedding

layer to support linguistic features such as morphological features, part-of-speech tags,

and syntactic dependency labels. Press and Wolf (Press and Wolf, 2016) proposed tier

embedding and argued that weight tying reduces the size of neural translation models.

However, no attempt has been made to reduce the size of the target dictionary through

word embedding. Significant reduction in model complexity is expected considering

words are on the order of hundreds of thousands or more in a typical dictionary.

9

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Sennrich et al. (Sennrich et al., 2015) proposed to segment words of the source

and target sentences into smaller subword units using byte pair encoding (BPE)

compression (Gage, 1994). They showed an improvement in the BLEU scores of 1.1

and 1.3 for English-German and English-Russian translations, respectively. Despite

its advantage, BPE splits an alphabetic word to multiple-letter groups, and thus it

is intrinsically not applicable to logographic languages such as Chinese, Chorti, and

Demotic (Ancient Egyptian) where a word is a glyph rather than alphabetic letters.

García-Martínez et al. (García-Martínez et al., 2016) proposed to decompose words

morphologically and grammatically into factored representations such as lemmas, part-

of-speech tag, tense, person, gender, and number. Their approach reduced training

time and out of vocabulary (OOV) rates with improved translation performance, but

also introduces unnecessary grammatical dependencies, (e.g. there are hundreds of

tenseless languages), and is not optimized in all scenarios.

1.2 Edge Artificial Intelligence

A new computing paradigm, edge artificial intelligence (EI), has emerged from the

demand of AI (e.g. deep learning algorithms) on the edge. There are various approaches

to EI, including but not limited to model partitioning, caching, model compression,

and hardware acceleration.

1.2.1 Model Partitioning

Model partitioning is a method that splits the computation flow of a task into parts

that can be executed on different computational devices. It is an attractive solution

10

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

to accelerating deep learning inference, when trade-offs exist between incurring too

much communication overhead to offload all computation to the cloud and too much

computation time if model prediction is left on local devices entirely.

Neurosurgeon (Kang et al., 2017), a partitioning algorithm, was introduced to

automatically partition the DNN computation between mobile devices and data center

at the granularity of neural network layers. It was examined that there existed a best

partition point, which improved both latency and energy consumptions. Based on this

observation, a prediction model was proposed in the Neurosurgeon to dynamically

select the best partition point in different DNN topology. Although this approach is

empirically demonstrated, the limitation is also obvious: the prediction model relies

on a network connection. In the absence of that, the prediction cannot be performed

between the cloud and the mobile devices, therefore, the scope of application is

restricted.

Distributed Deep Neural Networks (DDNNs) (Teerapittayanon et al., 2017) was

designed to perform fast and localized inference using shallow portions of the neural

network at the end devices. Using an exit point after device inference, the output

would be classified before sending back to the cloud. When multiple end devices

presented, an aggregation method would gather all output from each end device in

order to perform classification, where an exit was determined. If the classification

could not be made when the sample was not confident, it would escalate to a higher

exit point (e.g. the edge exit) in the hierarchy until the last exit (the cloud exit)

which always performed classification. By allowing multiple exit points, DDNNs could

reduce the communication cost significantly. However, when the exit point was made,

the neural network was trained based on the collected sample. Any new data from

11

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

the end devices will not be learned by the trained neural network furthermore. Lack

of transferable learning ability will be difficult for DDNNs to adapt to new local

environments and changing circumstances.

Ko et. al (Ko et al., 2018) proposed the edge-host partitioning of convolutional

neural networks. The number of operations, memory access and feature size per layer

are carefully measured. Furthermore, the correlation between energy consumption

and throughput were thoroughly tested for various wireless protocol including wifi,

Bluetooth, and Bluetooth low energy (BLE). The novelty of this work is that it

evaluated both the lossless and lossy compression methods for encoding the output

feature space being transmitted to the cloud. However, although AlexNet, VGG, and

ResNet are measured, there were not experiments and discussions showing that their

approach can be generalized to more complex (state-of-the-art) neural networks such

as neural networks with shake-shake regularization, implicit generative models and

neural networks with attention.

1.2.2 Model Caching

Model caching exploits and reuses cachable components or partitions of a deep learning

model. DeepCache (Xu et al., 2018) is a model caching approach for deep learning

inference in continuous mobile vision. It using diamond search (Xu et al., 2018) breaks

down an input video frame into smaller blocks and discovers similar blocks between

consecutive frames. Video temporal locality is discovered and exploited by DeepCache.

Regions of reusable results are propagated in DeepCache by exploiting the model’s

internal structure.

Guo et al. proposed FoggyCache Guo et al. (2018) for cross-device approximate

12

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

computation reuse. Previously computed outputs are reused in FoggyCache by

harnessing the “equivalence” between different input values. Adaptive locality sensitive

hashing (A-LSH) and homogenized k-nearest neighbors (H-kNN) were introduced to

achieve constant lookup, high-quality reuse, and tunable accuracy guarantee.

1.2.3 Model Compression

Model compression shortens inference time through computation reduction on a deep

learning model. There are two groups of compression methods that are most relevant.

They are quantization and tensor decomposition.

Quantization

Quantization methods reduce network sizes by lowering weight precision (e.g. from

32-bit floating points to 8-bit integers) with minimal loss of accuracies. Fixed point

quantization, vector quantization, and product quantization are the most-studied

quantization methods in compression.

Motivated by the significant reduction in model inference cost, Wu et al. (Wu

et al., 2016b) posed additional constraints to deep LSTM stacks during training, so

that the resulting model is quantizable at inference with minimal loss of accuracy.

Fixed point quantization was applied to replace floating point operations with 8-bit

or 16-bit integer operations.

There are other earlier studies on CNN model quantization such as fixed-point

quantization (Courbariaux et al., 2014; Gupta et al., 2015; Lin et al., 2016a) and

vector quantization (Gong et al., 2014). For compressing word embedding, Suzuki,

and Nagata (Suzuki and Nagata, 2016) applied block-wise k-means post-processing to

13

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

SkipGram with negative sampling (SGNS).

Tensor Decomposition

Tensor Decomposition methods reduce network size by replacing large weight matrix

(tensor) with multiple much smaller matrixes (tensors), considering neural networks

are in fact composed of weight matrixes (tensors)

Low-rank matrix factorization reduces the number of parameters by replacing a

weight matrix with the product of multiple lower rank matrixes. Low-rank technique

(Sainath et al., 2013) was first applied to the final weight layer of deep neural networks

considering the majority of parameters are in the final weight layer for both acoustic

modeling and language modeling. Their experiments demonstrate that a low-rank

factorization reduces the number of parameters of the network by 30− 50% without a

significant loss in accuracy.

Tucker decomposition is also known as a higher-order principal component analysis

(PCA). Tucker decomposition decomposes a tensor into a core tensor and multiple factor

matrices (principal components) by minimizing the difference between the original

tensor and the reconstructed one from the core tensor and principal components.

Tucker-tensor-train-model-compression (T3MC) (Chen et al., 2017) and one-shot

whole network compression (Kim et al., 2015) are two successful Tucker decomposition

applications to deep model compression.

Tensor train (TT) decomposition decomposes a tensor to a train of much smaller

tensors. For the Very Deep VGG networks (Novikov et al., 2015), it is reported that

TT decomposition reduces the size of the fully-connected layer up to 200000 times

achieving the compression factor of the whole network up to 7 times.

14

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Knowledge Distillation

Knowledge distillation methods reduce the model sizes by distilling knowledge from

a larger teacher network or an ensemble of teacher networks into a smaller student

network. Hinton et. al. (Hinton et al., 2015) proposed to distill the knowledge by

adding a temperature term to the final softmax function. They reported that the

distilled single model performs only slightly worse than the average predictions of

10 models in an ensemble. Sau et. al. (Sau and Balasubramanian, 2016) proposed

to distill knowledge from noisy teachers. Instead of learning from an ensemble of

teachers, they proposed to simulate the effect of an ensemble by injecting noise and

perturbing the outputs of a teacher. Codistillation, introduced by Anil et. al., restored

the symmetry of Hinton et. al.’s approach. In the codistillation’s architecture, a

neural network can be either the teacher of other students and the student of other

teachers at the same time (Anil et al., 2018).

1.2.4 Hardware Acceleration

Graphics processing units (GPU) were first used in hardware acceleration of deep

learning models (deep neural networks). GPU hardware such as Nvidia P100, GTX

1080ti, and Jetson TX1/TX2 are widely used among data centers, edge nodes and

end devices. Tensor processing units (TPU), which are application-specific integrated

circuits (ASIC), were developed specifically for acceleration of neural network inference

in data centers. With an 8-bit matrix multiplication unit, TPU offers a peak throughput

of 92 TeraOps per second. (Jouppi et al., 2017) Edge TPUs, on the other hand,

designed for Internet of thing (IoT) devices, enable high-performance neural network

inference on the edge. Field-programmable gate array (FPGA), offering superior

15

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

energy efficiency and irregular parallelism, is a great fit for hardware acceleration with

extreme customizability. (Nurvitadhi et al., 2017)

Software Libraries on Hardware: DeepX (Lane et al., 2016) significantly reduces

the latency of fully-connected layers by decomposing deep neural networks into unit-

blocks which are more efficiently run by various mobile processors such as GPUs

and CPUs. DeepMon (Huynh et al., 2017) efficiently offloads convolutional layers to

mobile GPUs with tests on phones with Adreno and Mali GPUs. TensorFlow (Abadi

et al., 2016), operating on heterogeneous embedded devices such as NVIDIA Jetson

TX2 and Raspberry Pi, represents neural networks as the data flow graphs and maps

nodes of the graphs to heterogeneous mobile processors.

1.3 Main Contributions and Thesis Organization

The thesis contributes to advancing the state-of-the-art EI techniques in devising

efficient models with small sizes and low computation complexity. The motivating

applications, the models and key achievements are highlighted in Figure 1.1.

For model partitioning, we propose TeamNet, which trains multiple models that

can be executed in parallel on distributed devices on the edge. TeamNet is a federation

of experts, each specializing in a particular subset of knowledge associated with target

tasks. Given that knowledge representation is in itself an active area of research, it

is non-trivial to qualify the amount of knowledge of a task and partition it equally

among expert models. Furthermore, one important question is to determine which

expert model has the expected knowledge partition (and thus can be trusted for

a specific input data). This essentially implies that a model needs to know what

16

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Partitioning: TeamNet Caching: CacheNet Compression: Logographic
Subword Model

Thesis Work:
Three Models

Mobile, IoTs, and
Edge Devices

Achievements

• Knowledge-aware
partitioning promotes
specialization

• Response time drops
53%

• Enable parallel
inference on edge

• FPS is 58% - 217% faster
• Accuracy at par

benefited from
specialization

• Cache replacement
does not incur Bélády's
anomaly

• Model size reduces 11%
- 77%

• Training time decreases
11% - 67%

• Inference time drops
40% - 59%

Figure 1.1: TeamNet, CacheNet, and Logographic Subword Model are applicable to
various connected mobile, IoT, and edge devices, such as smartphones, smart cameras,

drones, self-driving vehicles, and smart roadway lights.

it does not know. TeamNet addresses this problem by measuring the predictive

uncertainty of individual expert models. We develop a unique training procedure that

enables knowledge specialization among experts. Experiments show that by promoting

specialization, TeamNet achieves even slightly better predictive accuracy than baseline

models. Furthermore, TeamNet can significantly shorten inference time by as large as

57%.

In analogy to caching in memory hierarchy, we introduce CacheNet, which caches

a portion of a neural network model for unstructured data such as images and audio

signals on edge or end devices. Similar to TeamNet, CacheNet builds upon the

division of a neural network into multiple smaller specialized partitions during training.

Unlike TeamNet, the right partition (model) for caching is selected and cached during

inference. To do so, CacheNet encodes high-dimensional unstructured data into low

17

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

dimension vector representations. The low dimension representation becomes the hint

to select a particular partition to carry out inference on a particular unstructured

data input. Due to temporal locality that naturally occur in streaming data, such a

selection tends to be valid for subsequent data over a period of time.

For model compression, we propose a novel language model, namely, logographic

subword model, which significantly reduces the number of classes in the final prediction.

In language modeling and acoustic modeling, there exist a large number of output

classes. They contribute to higher model complexity in the number of weights and

biases in the output layer. ASM reduces the number of output classes by mapping a

single word or phrase to multiple subwords, which can be shared among words and

phrases. As experiments demonstrate, model sizes can be reduced by up to 77% with

inference time improved by up to 59%.

The rest of the thesis is organized as follows:

• Chapter 2: The partitioning framework TeamNet is described followed by the

evaluation in a distributed network environment.

• Chapter 3: The caching framework CacheNet is elaborated and in-depth

experiments are given with two benchmark datasets (including CIFAR-10 and

FVG

• Chapter 4: The logographic subword model in compression is elaborated

followed by thorough evaluation in machine translation. (Zhang et al., 2019))

and on four typical edge devices (including Jetson TX2, Jetson Nano, Raspberry

Pi, and the Android smartphone).

• Chapter 5: The conclusion to the thesis and the future research are discussed.

18

Chapter 2

TeamNet: Knowledge-Aware

Partitioning for Collaborative

Inference

This chapter is reproduced from “TeamNet: A Collaborative Inference Framework on

the Edge”, Yihao Fang, Ziyi Jin, and Rong Zheng, published in IEEE International

Conference on Distributed Computing Systems (ICDCS), Dallas, Texas, USA, 2019.

The author of this thesis is the first author and the main contributor of this publication.

19

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Abstract

With significant increases in wireless link capacity, edge devices are more connected

than ever, which makes possible forming artificial neural network (ANN) federations

on the connected edge devices. Partition is the key to the success of distributed ANN

inference while unsolved because of the unclear knowledge representation in most of

the ANN models. We propose a novel partition approach (TeamNet) based on the

psychologically-plausible competitive and selective learning schemes while evaluating

its performance carefully with thorough comparisons to other existing distributed

machine learning approaches. Our experiments demonstrate that TeamNet with

sockets and transmission control protocol (TCP) significantly outperforms sophisticated

message passing interface (MPI) approaches and the state-of-the-art mixture of experts

(MoE) approaches. The response time of ANN inference is shortened by as much as

53% without compromising predictive accuracy. TeamNet is promising for having

distributed ANN inference on connected edge devices and forming edge intelligence

for future applications.

2.1 Introduction

Recent advances in the Internet of Things and wireless communications witness the

arrival of a new computing paradigm, in which computation and data storage is

distributed among multiple end-user devices and near-user edge devices. Thousands

of distributed smart edge devices such as smart cameras and smart routers are con-

nected seamlessly through protocols such as 5G, LTE, and WiFi, enabling distributed

intelligence.

20

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Deep neural networks have been successfully applied to many domains such as com-

puter vision and natural language processing. In a large-scale image recognition task,

deep neural networks normally consume tens of gigabytes in RAM and significant com-

puting power on GPUs and CPUs. Their resource consumption can be accommodated

by a cloud environment, but typically cannot be handled by individual edge devices

due to their limited processing power and memory. Take the processing power as an

example. There are 256 NVIDIA CUDA cores on a Jetson TX2 board. In contrast,

the Helios cluster hosted by Compute Canada, a consortium of high-performance

computing data centers, has 120 NVIDIA K20 GPUs (with 2496 CUDA cores each)

and 96 K80 GPUs (with 4992 CUDA cores each) – roughly 3042 times more cores

than a Jetson TX2 board.

Shallow neural networks alone generally have poorer predictive accuracy compared

to state-of-the-art (SOTA) deep neural networks, but they allow real-time prediction

on the edge devices, which make them more suitable for edge computing. A question

arises that if it is possible to train and coordinate the inference of multiple shallow

neural networks (each running on an edge device) to have comparable performance as

or even outperform a single SOTA deep neural network in prediction.

In this work, we propose a novel partition approach called TeamNet based on

competitive and selective learning. TeamNet is inspired by phenomena in human

society, where knowledge is naturally partitioned among people with each individual

specializing in only one or a few subject domains. Analogous to the human society,

shallow neural networks in TeamNet do not learn the knowledge of the entire dataset,

instead, they only master one subset of it. During inference, knowing what they do

know and what they know by estimating predictive uncertainties, TeamNet devices

21

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

running shallow models aggregate their predictions to form final decisions distributively

and collaboratively. Unlike existing computation partition approaches (Kang et al.,

2017; Teerapittayanon et al., 2016) that decide where computation should be done

for pre-trained deep neural network models, TeamNet is a fundamentally different

approach to partition by training shallower models using the similar but downsized

architecture of a given SOTA deep model. Both the number of shallower models and

the SOTA deep model can be specified by users.

We have implemented TeamNet using TensorFlow and CUDA on two types of

representative edge devices, i.e., Jetson TX2 and Raspberry Pi 3 Model B+. For

comparison, we have also parallelized baseline models using the message passing

interface (MPI) and implemented the SOTA mixture of experts (MoE) approaches.

Experiments using MNIST and CIFAR-10 datasets show that TeamNet can shorten

inference latency by as much as 53% compared to baseline neural networks without

compromising the predictive accuracy. Therefore, TeamNet is promising for enabling

distributed edge intelligence for compute-intensive applications.

The rest of the chapter is organized as follows. Section 2.2 describes the related

work. System architecture is presented in Section 2.3. Section 2.4 provides more

details of TeamNet’s training algorithms. Section 2.5 described TeamNet’s inference.

In Section 2.6, we present implementation details, experimental setups and results.

Conclusions and future work are given in Section 2.7.

2.2 Related Work

In this section, we provide an overview of related work. There are two groups of work

that are relevant, namely, computation partition and the mixture of experts.

22

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Computation Partition of Neural Networks Computation partition splits a

known model represented as a data flow graph into two or more parts and executes

them on edge and in the cloud (Kang et al., 2017). For deep forward neural networks,

the partition is generally performed between layers, which trade-offs extra data transfer

time and less total computation time (due to offloading). Recently, two interesting

variants of computation partition have been proposed. In (Ko et al., 2018), Ko et al.

considered lossless and lossy compression of the output features of an intermediate layer

before transmitting them to the cloud. In (Teerapittayanon et al., 2017), Distributed

Deep Neural Networks (DDNNs) was designed to perform fast and localized inference

using shallow portions of a neural network on edge devices. Using an exit point after

device inference, an output is classified locally. When multiple end devices presented,

an aggregation method would gather all output from each end device in order to

perform classification, where an exit was determined. If the classification could not be

made due to low confidence, the task is escalated to a higher exit point (e.g. the edge

exit) in the hierarchy until the last exit (the cloud exit). With multiple exit points,

DDNNs can significantly reduce communication costs.

Computation partition approaches take a trained DNN model and divide the

pipeline among devices with different processing capabilities. Therefore, how partitions

can be made is inherently constrained by the structure of the existing model. In

contrast, in TeamNet, we train smaller and specialized expert models.

Mixture of Experts (MoE) Adaptive Mixtures of Local Experts (Jacobs et al.,

1991) was proposed to combine multiple feed-forward network experts with an adaptive

gating network (also feed-forward network). In this architecture, all experts receive

the same input and have the same number of outputs. The gating network receives

23

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

the same input as the expert networks’ and outputs a stochastic switch with the

probabilities (gate values) that the switch uses to select the outputs from experts.

The mixture of experts is partitionable in nature. It is feasible to deploy experts and

the gating network respectively to multiple edge devices.

Sparsely-Gated Mixture-of-Experts (SG-MoE) (Shazeer et al., 2017) was introduced

to increase model capacity through a sparse combination of multiple neural network

experts. Different from Jacobs’s approach (Jacobs et al., 1991), the gating network

uses noisy top-K gating that keeps only the top k gate values and set the rest gate

values to zero.

Since MoE has been introduced more than two decades ago, it has been the

topic of much research. Different MoE architectures have been proposed such as

a hierarchical structure (Jordan and Jacobs, 1994; Bishop and Svenskn, 2002; Yao

et al., 2009), infinite number of experts (Rasmussen and Ghahramani, 2002), and

sequential increment of experts (Aljundi et al., 2017). However, a majority of the

approaches target specific kinds of expert models such as Gaussian, GP, SVM, etc and

thus are not architecture independent. They fail to capture recent advances in DNN

models. SG-MoE can work with different NN architecture but its training process

is not optimized to have experts of comparable capacity. As will be demonstrated

through experiments in Section 2.6, this leads to degraded inference performance.

2.3 System Architecture

During the training stage, TeamNet takes a neural network architecture, the number

of experts K, and training data as input and produce K expert models by semantically

partitioning the dataset’s knowledge as illustrated in Figure 2.1. The number of

24

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

parameters of the expert models is hyperparameters that can be tuned using grid

search or other automated machine learning approaches. TeamNet can be thought

of as a black box from the developers’ point of view. As an example, we input to

TeamNet the convolutional neural network (CNN) architecture with 26 hidden layers

and then ask TeamNet to generate 4 expert models according to the CIFAR-10 dataset.

The outputs of TeamNet are 4 CNN models each with 8 layers, and those models

could collaborate with one another on connected edge devices.

At run-time, TeamNet expert models are deployed on edge devices connected

through a wireless network. For ease of presentation, we assume each edge device

only runs one model and each device has its own sensor input (e.g., visual or audio

data). As illustrated in Figure 2.1, in Step 1, upon a sensing event, an edge device

broadcasts the sensor data to all peer edge devices in the network (Step 2). In Step 3,

all edge devices will execute their own local models in parallel and each produces an

uncertainty measure. Finally, in Step 4 and 5, all the results are being gathered and

the output with the least uncertainty will be taken as the final result. This last step

can be done distributedly, e.g., using a leader election protocol, or done centrally by

sending the results along with the uncertainty measures to a designated device.

2.4 Training TeamNet

In this section, we present the details of the algorithm to train TeamNet. The key

challenge is the “richer gets richer" phenomenon. Specifically, regardless of how the

expert models are initialized, they are predisposed to biases – some expert is confident

about more input data than the others. Without any correction to the initial bias,

the expert that is confident about more input data will be trained with more data

25

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Figure 2.1: TeamNet’s training and inference are illustrated on two edge nodes: (a)
Initially, each expert has very limited knowledge about the dataset but each is

randomly more certain of some data than the others. (e.g. One expert is more certain
of the square data points, while the other expert is more certain of the circle data
points. However, neither of them has knowledge of the triangle data points.) (b)

With this preference, it is more likely for each expert to select the more certain data
to learn, respectively. (c) Gradually, with the help of gradient descent, each expert
has learned its more certain data from the entire dataset. (d) At the inference stage,

each expert is deployed on one edge node, and performs inference concurrently.

leading to skewed partitions of the training data. In the worst case, some experts are

subject to little training data and learn nothing.

2.4.1 Overview

Consider K experts, each modeled as a function f(x; θi), parameterized by θi, i =

1, 2, . . . , K. For multi-class classification problem with C categories, f(x; θi) can be

26

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

viewed as the parameters of a multinomial distribution of C classes. Let p(ŷ = c|x, θi)

be the predictive probability of output c = 1, 2, . . . , C for input x ∈ X from Expert i.

The predictive entropy of Expert i of input x is defined as,

H(ŷ|x, θi) := −
∑
c

p(ŷ = c|x, θi) log p(ŷ = c|x, θi).

Predictive entropy is closely related to perplexity. The predictive entropy of a model

reflects its “uncertainty” of a data instance drawn from the same distribution of the

training data.

The primary objective of TeamNet training is to divide the input data D into

K partitions D1,D2, . . . ,DK such that for any (x, y) ∈ Di, Expert i can predict the

correct label y and has the least predictive entropy for x among all experts with high

likelihood. The secondary objective is to have |Di| ≈ |D|
K
, i = 1, 2, . . . , K, where |D|

is the cardinality of set D. Thus, TeamNet is both localized and implicit. Localized

means that each expert specializes in a subset of the data, and implicit means that we

do not partition the data explicitly but let the experts compete with one another to

divide them (roughly equally). The rationale behind equal partitions of training data is

to have experts of similar capacity. Otherwise, some experts may be under-fitted while

others are over-fitted. One may argue equally divided training data does not imply

equally partitioned models. This is indeed true especially in the case of unbalanced

training data and will be considered in our future work. In this work, we assume the

training data is balanced.

The neural network used to train the experts is given in Figure 2.2. All expert

networks are initialized with random weights. Training is done in multiple epochs.

In each epoch, the training data is first reshuffled and then divided into equal-sized

27

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Figure 2.2: At the training stage, the gate Ḡ decides which data example should be
assigned to which expert to learn. Such a decision is based on the uncertainty

estimation of all experts for the particular data example.

batches. Each batch of data is given to all experts to evaluate their respective predictive

entropy values. The calculated predictive entropy values serve as inputs to the gate

network Ḡ, which are then trained to assign data samples in the batch to different

experts. After the assignment is done, the weights of the expert networks are updated

using back-propagation with their own partitions. The procedure is summarized in

Algorithm 1.

28

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Figure 2.3: At the inference stage, it is sufficient to have the arg min function to
determine which expert is least uncertain of the given data input. TeamNet’s

inference time is generally faster than other mixture of experts (MoE) approaches
since its gate is much simpler.

2.4.2 Dynamic Gating

The gate function Ḡ splits the current batch into K partitions for training. When

experts are biased, direct application of the arg min gate would result in unevenly

split data. As the experts become less biased, Ḡ should approach an arg min gate,

where the training sample is given to the model with the least uncertainty. Therefore,

it is important to update Ḡ dynamically based on some measure of the biases of the

29

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Algorithm 1 Training TeamNet
. Let r be the number of epochs

1: procedure Train(θ, η, ε,K, r)
2: Shuffle the dataset
3: Repeat the dataset for r times
4: Get the first batch β
5: while |β| > 0 do
6: H← H(ŷ|x, θi),∀i ∈ {1...K},∀x ∈ β
7: Ḡβ ← GATE_TRAIN(β,H, η, ε,K)
8: EXPERT_TRAIN (β, Ḡβ, θ, η,K)
9: Get the next batch β

10: end while
11: end procedure

experts.

We define Ḡ as:

Ḡ(x, δ) := arg min
i

δi ·H(ŷ|x, θi), (2.4.1)

where δ = (δ1, δ2, . . . , δK) are control variables to be determined. Let G(x) :=

arg miniH(ŷ|x, θi) denote the assignment of the arg min gate for input x.

Given the current batch β and δ, let

γi =

∑
x∈β 1G(x)=i

|β|
, (2.4.2)

and

γ̄i(δ) =

∑
x∈β 1Ḡ(x,δ)=i

|β|
, i = 1, 2, . . . , K, (2.4.3)

where 1 denotes the Kronecker delta function. In other words, γi and γ̄i(δ) are the

portion of data in batch β that are assigned to Expert i according to gate G and Ḡ,

respectively. Under the assumption that the data in β is balanced, the bias in Expert

i can then be characterized by γi − 1
K
.

30

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Clearly, γi − 1
K
≡ 0 for all experts implies the batch are divided equally by the

expert models trained thus far. Otherwise, by adjusting δi’s, we can “correct” the

biases by assigning more data to the expert who would have received less training

data according to gate G. Thus, we formulate the following optimization problem,

min
δ

K∑
i=1

∣∣∣∣γ̄i(δ)− (1

K
− a · (γi −

1

K
)

)∣∣∣∣, (2.4.4)

where 0 < a < 1 is a hyperparameter analogous to the gain of a proportional controller

(Figure 2.4).

Figure 2.4: The term γi is defined to reflect the bias from the past. Correcting it
induces a momentum (momentum-caused displacement) a · (γi − 1

K
). The momentum

counteracts the bias which has been incurred by the past, and brings γi to the mean
(set point) 1

K
eventually.

The optimization in (2.4.4) cannot be solved directly since there is no closed-form

expression for γ̄i’s for arbitrary K. Instead, we represent the possible values of δ

parametrically.

Let E(x) = 1
K

∑K
i=1 H(ŷ|x, θi) be the mean entropy andD(x) = 1

K

∑K
i=1 |H(ŷ|x, θi)−

E(x)| be the absolute deviation of the entropy of instance x from K experts. We

31

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

introduce ∆, the average normalized absolute deviation of batch β as

∆ =
1

|β|
∑
x∈β

D(x)

E(x)
.

In other words, ∆ measures how “diverse" the uncertainty of different expert models

is.

Next, we represent ∆ by

δ = 1 + ∆ ·W (z,Θ),

where z is a vector of length N randomly drawn from a uniform distribution U(−1, 1)

and W is a multilayer perceptron (MLP) function parametrized by Θ. Essentially, we

transform the problem of solving for δ into estimating parameters Θ. Doing so allows

us to evaluate the gradients of Θ with respect to the objective function in (2.4.4) by

approximating arg min in Ḡ with a continuous function. The gradients are then used

to update Θ until convergence.

To this end, we summarize the procedure to find Ḡ for batch β in Algorithm 2.

The proof sketch of its convergence is given in Appendix 2.8.

Soft Argument of the Minimum The arg min function in (2.4.1) is not differen-

tiable. Gradients cannot be propagated back to Θ. In order to calculate the partial

derivatives with respect to Θ, the arg min function must be softened (Chapelle and

Wu, 2010), defined by:

soft arg min(x) =
∑
i

e−bxi∑
j e
−bxj

i (2.4.5)

32

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Algorithm 2 Finding Gate Ḡ
. Let β be a mini-batch with size n
. Let H be the matrix of H(ŷ|x, θi) for all i in 1...K for all x in β
. Let ∆ be the relative mean absolute derivation of H
. Let Ḡβ be the vector of Ḡ(x, δ) for all x in β

1: procedure Gate_Train(β,H, η, ε,K)
2: Calculate ∆ for β
3: Create z ∼ U(−1, 1) . z is a latent variable
4: Calculate γi for all i in 1...K
5: while J > ε do
6: Φ← W (z,Θ) . W transforms z into Φ
7: δ ← 1 + Φ ·∆
8: Ḡβ ← arg min δ �H
9: Calculate γ̄i(δ) for all i in 1...K

10: J ← 1
K

∑K
i=1

∣∣γ̄i(δ)− (1
K
− a · (γi − 1

K
)
)∣∣

11: Θ← Θ− η∇ΘJ . Θ descends w.r.t. gradients
12: end while
13: return Ḡβ

14: end procedure

Meta-Estimator An over-large b in (2.4.5) leads to an over-steep slope in gradient

descent, while an over-small b leads to an over-gentle one. Neither benefits gradient

propagation. To solve this problem, the scalar b is found by optimizing a meta-

estimator (neural network) with the objective that minimizes the distance between

a small ε and the expectation of Ḡ(x, δ) to its closest integer. The introduction of ε

avoids from happening of an over-steep slope and smoothens the loss surface. Formally,

the objective function is written as follows:

min
b

∣∣∣∣∣
∑

x∈β mini=1,2,...,K

∣∣Ḡ(x, δ)− i
∣∣

|β|
− ε

∣∣∣∣∣ (2.4.6)

Kronecker Delta’s Approximation The Kronecker delta function 1 in (2.4.3)

is not differentiable. Thus, instead, 1 is replaced by a differentiable approximation,

33

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

denoted by:

1Ḡ(x,δ)=i ≈ tanh
(
c · ReLU(0.5− |Ḡ(x, δ)− i|)

)
,

i = 1, 2, . . . , K,

(2.4.7)

where the rectified linear unit (ReLU) (Nair and Hinton, 2010) is given by ReLU(x) =

max(x, 0), and the hyperbolic tangent function is defined as tanh(x) = ex−e−x
ex+e−x

.

The differentiable approximation in (2.4.7) is the combination of shifting (Ḡ(x, δ)−

i), ramping (ReLU), and discretization (tanh). In our experiments in Section 2.6, the

constant c is set to 10 to satisfy the needs of discretization while letting gradients

propagate through. The constant 0.5 is added to approximate rounding.

2.4.3 Expert Trainer

The training process of experts is guided by gate Ḡ. The gate decides which expert to

learn a particular data example in each batch. A mini-batch β is then partitioned into

K subsets β1, β2, ..., βK . Gradients of Expert i (i in {1, ..., K}) are calculated with

respect to the loss from the data examples in batch βi. The parameters of Expert i

(noted by θi) are then updated by subtracting the product of the learning rate η and

the normalized gradients of the batch (batch normalization) (Ioffe and Szegedy, 2015).

Details of the process are given in Algorithm 3.

At Line 4, the formula
∑

c y log f(x; θi) gives the cross entropy loss (objective) for

optimization. Only batch βi is used to update the parameters of Expert i. No expert

learns from all data examples in β.

34

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Algorithm 3 Training Experts
. Let β be a mini-batch with size n
. Let Ḡβ be the vector of Ḡ(x, δ) for all x in β

1: procedure Expert_Train(β, Ḡβ, θ, η,K)
2: β1, β2, ..., βK ← group β by Ḡβ

3: for i in 1...K do . in parallel
4: θi ← θi − η 1

|βi|
∑

(x,y)∈βi∇θi

∑
c y log f(x; θi)

5: end for
6: end procedure

2.5 TeamNet Inference

Once the experts are trained, in the inference phase, given a new instance x, each

expert makes its own prediction and computes the respective predictive entropy. A

gate function is then applied to the predictive entropy and selects the prediction of

the expert with the least uncertainty as the final output. This procedure is illustrated

in Figure 2.3.

The arg min gate in Figure 2.3 is not the only way to combine outputs of multiple

expert models. For example, one can take the (weighted) majority vote from all

experts as in ensemble learning(Littlestone and Warmuth, 1994). However, since

the experts are trained to highly specialize on a subset of the data, considering the

prediction of “non-expert” can be detrimental.

2.6 Performance Evaluation

In this section, we evaluate the proposed algorithms using two image datasets, namely,

the MNIST handwritten digit and the CIFAR-10 datasets. In addition to testing

TeamNet’s predictive accuracy, we also evaluate its inference time, memory usage and

CPU/GPU usage for image classification tasks. Its performance is compared with

35

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

three different message passing interface (MPI) implementations to parallelize baseline

models and the state-of-the-art Sparsely-Gated Mixture-of-Experts (SG-MoE).

2.6.1 Implementation

In the experiment, communication among the edge devices is done through TCP

sockets over WiFi. Each edge device runs a listening socket to accept incoming data.

Two types of edge devices (Jetson TX2 and Raspberry Pi 3 Model B+) are employed

with TensorFlow, CUDA and cuDNN pre-installed. Trained experts (neural networks)

are executed on the TensorFlow framework at the inference stage.

Message Passing Inference (MPI) Two types of neural networks are evaluated in

the experiments: MLP and convolutional neural network (CNN) with the Shake-Shake

regularization. In the first case, matrix (weights) multiplication can be split among

multiple edge nodes using the MPI protocol (MPI-Matrix). In the second case, there are

two main branches in the Shake-Shake CNN, which can be split into two edge nodes

and coordinated through the MPI protocol (MPI-Branch). Therefore, MPI-Branch

is only evaluated in experiments employing two edge devices. Alternatively, we can

distribute convolutional kernels and their associated computation onto multiple edge

devices. This approach is called (MPI-Kernel). It can be tested with multiple edge

devices.

All MPI approaches are executed on the TensorFlow framework at the inference

stage.

Sparsely-Gated Mixture-of-Experts (SG-MoE) SG-MoE requires both ex-

perts and a gate to be trained together as a joint architecture. Similar to TeamNet,

36

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

SG-MoE is trained with the TensorFlow framework on NVIDIA 1080TI GPUs. At

the inference stage, each expert is executed on one edge node, and the gate is placed

on one of the edge nodes.

Two protocols are evaluated for communication among SG-MoE experts, namely,

gRPC, an open source remote procedure call (RPC) system, and MPI. The respective

SG-MoE implementations are called SG-MoE-G and SG-MoE-M.

2.6.2 Experimental Setup

In the experiments, two datasets are evaluated: MNIST and CIFAR-10. MNIST is a

dataset of handwritten digits on grey color images. There are 10 classes in total from

digit zero to digit nine. It consists of a training set of 60000 images and a test set of

10000 images.

CIFAR-10 (Krizhevsky et al., 2010) is a benchmark dataset in image classification.

There are 10 classes in the dataset such as the airplane, automobile, bird, and dog.

It consists of 60000 32-by-32 color images, with 50000 images for training and 10000

images set aside for evaluation. CNN allows fast inference and is commonly used in

image classification such as the CIFAR-10 image classification task.

2.6.3 Handwritten Digit Recognition

Multi-layer perceptron (MLP) classifiers are trained with the MNIST dataset to

recognize handwritten digits on images. With TeamNet, four 2-layer (4xMLP-2)

and two 4-layer multi-layer perceptrons (2xMLP-4) are trained respectively. They

collaborate with each other in prediction using arg min gate in Figure 2.3. For

comparison, an 8-layer MLP (MLP-8) is trained on the same dataset with the same

37

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

(a) Double Experts (b) Quadro Experts

Figure 2.5: TeamNet’s convergence is evaluated for handwritten digit recognition by
monitoring at each iteration the proportion of data assigned to each expert. (a) With
two experts, the proportion deviates from the set point (0.5) initially and converges to
it at about the 12000th iteration. (b) With four experts, the proportion fluctuates at
the beginning, but finally reaches the set point (0.25) at about the 15000th iteration.

number of epochs as the baseline model.

The first experiment is conducted on the edge device: Raspberry Pi 3 Model

B+. Accuracy, inference time, memory and CPU usages are measured for all three

scenarios. From Figure 2.6, we observe that TeamNet with quadro experts (4xMLP-2)

has the shortest inference time, lowest memory and CPU consumption due to a smaller

model size on each edge device. At the same time, the predictive accuracy is not

compromised of both 4xMLP-2 (quadro experts) and 2xMLP-4 (double experts).

The second experiment compares TeamNet with MPI in the context of distributed

edge computing (Table 2.1). Jetson devices participate in the experiment, with WiFi

connecting with each other. Accuracy, inference time, memory, CPU and GPU usages

are measured during the experiment. The results show that TeamNet far excels MPI in

38

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

(a) Accuracy (b) Inference Time (c) Memory (d) CPU Usage

Figure 2.6: TeamNet’s performance is evaluated on Raspberry Pi 3 Model B+ for
handwritten digit recognition. With more experts in TeamNet, inference becomes
faster, and memory and CPU consumption become smaller on the edge node. The

accuracy is generally not compromised.

inference time. Inference time with MPI is even slower than the one with the baseline

model. The reason is that MPI requires frequent communication among Jetson devices

per each matrix multiplication, while TeamNet requires only communication at first

and at last. WiFi is much slower than the infinite band (mostly used in the data

center). It turns out to be overkill when the WiFi communication between edge

devices is over frequent in parallel computing. Hence, TeamNet is a better architecture

for distributed edge computing.

In the third experiment, TeamNet is compared with two SG-MoE approaches:

SG-MoE with gRPC and SG-MoE with MPI. Accuracy, inference time, memory, CPU

and GPU usages are measured during the experiment. TeamNet is more accurate

than SG-MoE most of the time since SG-MoE adopts random data assignment and

does not promote specialization on the experts (Table 2.1).

The fourth experiment is to test whether the proportion of data assigned to each

expert eventually converges to the set point. Figure 2.5a shows that the proportion

deviates from the set point (0.5) initially, and as the training goes, the proportion

39

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

(a) Double Experts (b) Quadro Experts

Figure 2.7: TeamNet’s convergence is evaluated for the image classification task by
monitoring at each iteration the proportion of data assigned to each expert. (a) The
proportion is initially close to the set point (0.5) by luck, but it deviates from the set
point (0.5) very fast since both experts had limited knowledge of the dataset at this
stage and cannot have a clear judgment on uncertainty. As the training goes, both
experts become certain of an equal amount of data, and the proportion becomes
closer and closer (and converges) to the set point (0.5). (b) With four experts in
TeamNet, the proportion deviates from the set point (0.25) at the beginning but

converges to it finally at about the 32000th iteration.

gets closer and closer to the set point (0.5) and eventually converges to it. Figure

2.5b demonstrates that with four experts in TeamNet, the proportion fluctuates at

the beginning but eventually reaches the set point (0.25).

2.6.4 Image Classification

In the first experiment, we evaluate the performance of our algorithm on CNNs with

the Shake-Shake regularization. With TeamNet, four 8-layer (4xSS-8) and two 14-layer

40

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

(a) Jetson TX2 CPU only (b) Jetson TX2 GPU and CPU

Figure 2.8: TeamNet’s performance is evaluated on both Jetson CPUs and GPUs for
the image classification task. (a) On Jetson CPUs, inference becomes faster with
more experts in TeamNet, while accuracy is generally not compromised. (b) On
Jetson GPUs, the fastest inference is acheived when there are two experts in

TeamNet. Because there is a fixed communication cost over the WiFi network, a
shorter time cannot be achieved when the communication latency is too close to the
actual latency caused by the computation unless the model size is significantly larger

and more computation is needed.

Shake-Shake CNNs (2xSS-14) are trained respectively. Predictive accuracy, inference

time, memory, CPU and GPU usages on Jetson TX2 are compared to those of the 26-

layer Shake-Shake CNN (SS-26) model. The experiments demonstrate that TeamNet

nearly halves the inference time on Jetsons with CPU only, while does not sacrifice

accuracy (Figure 2.8a). On Jetson GPUs, 2xSS-14 achieves the fastest inference. The

performance gain from smaller model size is overwhelmed by the communication cost

when 8-layer and 14-layer Shake-Shake models are running on Jetson GPUs (Figure

2.8b).

In the second experiment, TeamNet is compared with MPI and Sparsely-Gated

Mixture-of-Experts (SG-MoE) (Shazeer et al., 2017) on the Jetson TX2 edge devices.

The experiment shows that TeamNet has much shorter inference time than that of

MPI, and more accurate than SG-MoE. Faster inference time is benefited by infrequent

41

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

(a) Double Experts (b) Quadro Experts

Figure 2.9: Specialization is emphasized in TeamNet. (a) With two experts in
TeamNet, Expert One is more certain of machines such as airplanes, automobiles and
trucks, while Expert Two is more certain of animals such as cats and dogs. (b) With
four experts in TeamNet, Expert One and Expert Four are more certain of animals,

while Expert Two and Expert Three are more certain of machines.

communication among edge devices, and better accuracy is owing to the specialization

of each expert. In SG-MoE, data examples are randomly assigned to experts for

learning, thus specialization is not being emphasized. On the other hand, TeamNet

assigns the most certain data examples to the experts for learning, thus experts will

only learn the ones which they are most familiar with. That is how the specialization

being emphasized in TeamNet and why TeamNet outperforms SG-MoE (Table 2.2).

The third experiment evaluates whether the proportion of data assigned to each

expert converges eventually to the set point. Figure 2.7a demonstrates that the

proportion is close to the set point (0.5) at the beginning while very fast deviates

42

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

from it. The reason is that both experts have limited knowledge of the dataset at

this stage and cannot have a clear judgment of uncertainty. As the training goes,

both experts know more about the dataset, and the proportion is closer and closer to

the set point. Figure 2.7b shows that when there are four experts in TeamNet, the

proportion converges to the set point (0.25) eventually at about 32000th iteration.

In the fourth experiment, we further investigate the effects of specialization which

is forced by the training algorithm. The experiment is performed on the CIFAR-10

dataset. There are 10 classes in the dataset such as airplanes, birds, and cats. When

there are two experts in TeamNet, we observe that Expert One is more certain of

machines such as airplanes, automobiles, ships, and trucks; on the other hand, Expert

Two knows more about animals such as birds, cats, and horses (Figure 2.9a). When

there are four experts in TeamNet, we observe that Expert One and Expert Four are

more certain of animals, and each masters half of this category; on the other hand,

Expert Two and Expert Three are more certain of machines: Expert Two has more

knowledge about trucks and automobiles, while Expert Three knows more about ships

and airplanes (Figure 2.9b).

2.7 Conclusion

In this paper, we propose TeamNet, a novel framework for collaborative inference

among storage-and-compute-limited edge devices. Unlike existing computation-

partition solutions that take a pre-trained model and determine the best partitions

between edge devices and the cloud, TeamNet is a model partition approach by training

multiple small specialized models. It is proven to work well with the commonly used

neural networks (CNNs and MLPs) on different numbers and types of edge devices.

43

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Extensive experiments have demonstrated that TeamNet can be executed on low-end

edge devices such as Raspberry Pi and Jetson TX2 devices with superior performance

than the baseline solution and the state-of-the-art MoE approach in inference time

with marginal degradation in inference accuracy.

Currently, TeamNet is trained with the objective of equally partitioning training

samples among experts. As part of future work, we will explore other objective

functions especially those can adapt to the imbalances among different classes in

training data.

2.8 Appendix A: Proof Sketch of Convergence

In this section, we analyze the convergence of Algorithm 2 based on some simplifying

assumptions. Experimental results in Section 2.6 have shown empirically the procedure

converges.

Assumption 1. The expert model trained with x% of training data has the least

uncertainty of x% of test instances among all expert models.

Assumption 2. Each batch in training is sufficiently random.

Assumption 3. Solution to (2.4.4) gives

K∑
i=1

∣∣∣∣γ̄i(δ)− (1

K
− a · (γi −

1

K
)

)∣∣∣∣ = 0, (2.8.1)

Proof. From Assumption 3, we have

γ̄i(δ) ≈
1

K
− a · (γi −

1

K
), (2.8.2)

44

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

for all i = 1, ..., K. Let |β| be the number of examples in a batch, and ni,l be the

number of examples in the lth batch used to train Expert i. Consider the Lth batch.

From Assumption 1,

γi,L =

∑L−1
l=1 ni,l

(L− 1) · |β|
(2.8.3)

From (2.8.2), we have

γ̄i,L(δ) =
1

K
− a · (γi,L −

1

K
), (2.8.4)

where γ̄i,L(δ) is the percentage of samples in the Lth batch ith expert is least uncertain

of according to Ḡ. Since

ni,L = γ̄i,L · |β|, (2.8.5)

we have

γi,L+1 =

∑L−1
l=1 ni,l + ni,L
L · |β|

=
γi,L · (L− 1) + 1

K
− a · (γi,L − 1

K
)

L
.

Subtracting 1
K

from both sides and with further simplification, we have

γi,L+1 −
1

K
≈
γi,L · (L− 1) + 1

K
− a · (γi,L − 1

K
)− L

K

L

=
(γi,L − 1

K
)(L− 1)− a · (γi,L − 1

K
)

L

=
L− 1

L
(1− a

L− 1
)(γi,L −

1

K
)

45

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Therefore,

∣∣∣∣γi,L+1 −
1

K

∣∣∣∣ =
L− 1

L
(1− a

L− 1
)

∣∣∣∣γi,L − 1

K

∣∣∣∣
=

1

L

∏
l

(
1− a

l − 1

)
×
∣∣∣∣γi,1 − 1

K

∣∣∣∣ .
With a > 0, clearly, as L→∞, γi,L+1 → 1

K
In other words, the training data will be

equally partitioned among experts.

46

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Table 2.1: TeamNet is compared with the baseline, a MPI approach, and SG-MoE
with gRPC and MPI for handwritten digit recognition. (a) On Jetson CPUs,

TeamNet is faster than other approaches while the accuracy is not compromised.
MPI requires frequent communication among Jetson devices, thus it is slower than
other approaches. (b) On Jetson GPUs, TeamNet is still faster than MPI and the
SG-MoE approaches. However, TeamNet is not better than the baseline. The root
cause is that there is a fixed cost over the WiFi communication. The performance
gain from a smaller model is overwhelmed by the communication cost, especially
when the device’s computing power is significantly larger than the computation

needed by the model.

(a) Jetson TX2 CPU only

B
as
el
in
e Double Nodes Quadro Nodes

T
ea
m
N
et

M
P
I-
M
at
ri
x

SG
-M

oE
-G

SG
-M

oE
-M

T
ea
m
N
et

M
P
I-
M
at
ri
x

SG
-M

oE
-G

SG
-M

oE
-M

Accuracy (%) 98.8 98.7 98.7 98.6 98.6 98.7 98.7 98.5 98.5
Inference Time (ms) 3.4 3.2 108.2 5.9 6.9 3.3 189.0 4.1 10.3
Memory Usage (%) 8.2 6.0 8.55 7.8 9.1 4.4 6.78 6.1 6.6
CPU Usage (%) 55.3 30.7 31.9 21.9 54.3 21.2 34.6 11.5 48.2

(b) Jetson TX2 GPU and CPU

B
as
el
in
e Double Nodes Quadro Nodes

T
ea
m
N
et

M
P
I-
M
at
ri
x

SG
-M

oE
-G

SG
-M

oE
-M

T
ea
m
N
et

M
P
I-
M
at
ri
x

SG
-M

oE
-G

SG
-M

oE
-M

Accuracy (%) 98.8 98.8 98.8 98.7 98.6 98.7 98.8 98.5 98.5
Inference Time (ms) 0.3 1.5 104.8 5.8 3.2 2.6 187.7 4.5 6.9
Memory Usage (%) 10.0 9.9 15.1 15.3 15.1 8.3 14.5 13.9 14.0
CPU Usage (%) 37.0 21.7 30.8 15.1 49.5 15.9 34.7 9.2 42.5
GPU Usage (%) 5.0 3.8 1.9 3.4 3.0 2.8 6.8 1.6 1.6

47

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Table 2.2: TeamNet is compared with the baseline model, two MPI approaches, and
SG-MoE with gRPC and MPI for the image classification task. TeamNet is faster and
it consumes fewer resources on each edge device than the baseline model. (a) On

Jetson CPUs, SG-MoE with gPRC is slightly faster than TeamNet, but generally less
accurate. MPI approaches are slightly more accurate than TeamNet but much slower.
(b) On Jetson GPUs, TeamNet is the fastest approach among the others, though MPI

approaches are slightly more accurate.

(a) Jetson TX2 CPU only

B
as
el
in
e Double Nodes Quadro Nodes

T
ea
m
N
et

M
P
I-
K
er
ne
l

M
P
I-
B
ra
nc
h

SG
-M

oE
-G

SG
-M

oE
-M

T
ea
m
N
et

M
P
I-
K
er
ne
l

SG
-M

oE
-G

SG
-M

oE
-M

Accuracy (%) 94.0 93.7 93.9 93.9 89.7 90.1 92.4 93.6 87.1 87.8
Inference Time (ms) 378.2 179.5 2684.3 1227.8 157.3 192.4 84.8 6722.7 67.8 71.6
Memory Usage (%) 27.3 20.9 18.6 11.8 15.0 15.6 18.5 14.9 10.7 14.1
CPU Usage (%) 95.4 91.9 40.3 47.6 45.7 75.7 82.0 34.5 21.4 57.7

(b) Jetson TX2 GPU and CPU

B
as
el
in
e Double Nodes Quadro Nodes

T
ea
m
N
et

M
P
I-
K
er
ne
l

M
P
I-
B
ra
nc
h

SG
-M

oE
-G

SG
-M

oE
-M

T
ea
m
N
et

M
P
I-
K
er
ne
l

SG
-M

oE
-G

SG
-M

oE
-M

Accuracy (%) 93.9 93.8 93.9 94.0 89.4 89.0 92.8 93.5 87.3 87.3
Inference Time (ms) 14.3 11.4 2611.7 1002.7 31.7 29.4 13.1 7062.9 30.6 29.5
Memory Usage (%) 43.8 36.8 27.5 26.3 26.8 26.1 33.5 22.6 22.6 22.7
CPU Usage (%) 24.3 20.3 33.4 35.4 16.9 43.7 16.2 34.2 9.4 46.3
GPU Usage (%) 34.6 26.7 2.3 2.7 15.2 14.2 18.1 1.3 5.3 5.3

48

Chapter 3

CacheNet: An Information

Maximizing Caching Framework

This chapter is reproduced from “CacheNet: A Model Caching Framework for Deep

Learning Inference on the Edge”, Yihao Fang, Shervin Manzuri Shalmani, and Rong

Zheng, submitted on May 20, 2020 to IEEE Transactions on Mobile Computing

(TMC). The author of this thesis is the first author and the main contributor of this

publication.

49

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Abstract

The success of deep neural networks (DNN) in machine perception applications such

as image classification and speech recognition comes at the cost of high computation

and storage complexity. Inference of uncompressed large scale DNN models can only

run in the cloud with extra communication latency back and forth between cloud and

end devices, while compressed DNN models achieve real-time inference on end devices

at the price of lower predictive accuracy. In order to have the best of both worlds

(latency and accuracy), we propose CacheNet, a model caching framework. CacheNet

caches low-complexity models on end devices and high-complexity (or full) models

on edge or cloud servers. By exploiting temporal locality in streaming data, high

cache hit and consequently shorter latency can be achieved with no or only marginal

decrease in prediction accuracy. Experiments on CIFAR-10 and FVG have shown

CacheNet is 58− 217% faster than baseline approaches that run inference tasks on

end devices or edge servers alone.

3.1 Introduction

In recent years, deep neural networks (DNN) have achieved tremendous successes

in perception applications such as image classification, speech recognition, target

tracking and machine translation. In many cases, they outperform human beings

in accuracy. However, such high accuracy comes at the cost of high computation

and storage complexity due to large model sizes. For instance, ResNet-152 contains

152 layers and over 60M parameters. Inference using such large-scale DNN models

cannot be accomplished on end devices with limited computation power and storage

50

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

in real-time. As a result, many model compression techniques have been proposed to

reduce the size of DNN networks often at the expense of prediction performance (Lin

et al., 2016b; Sainath et al., 2013). Therefore, application developers face a dilemma

to choose between a highly accurate model that can only run in the cloud with extra

communication latency of uploading raw input data and getting the results back, or

local execution of compressed models with reduced accuracy.

Is it possible to get the best of both worlds? In other words, can we achieve a good

trade-off between latency and prediction accuracy? This question has to some degree

been answered by partitioning approaches (Kang et al., 2017; Teerapittayanon et al.,

2017; Fang et al., 2019). They mainly fall into two paradigms: 1) model partitioning:

concurrent computing among edge nodes and/or end devices (Fang et al., 2019),

which collaboratively performs inference in parallel per a particular sensor input; 2)

computation partitioning: partition between edge and cloud, which take a pre-trained

deep model and decide at run-time based on computation capability of local and

cloud compute nodes and communication overheads where portions of computation

should reside (Kang et al., 2017). The inference time of both paradigms is clearly

lower bounded by the smaller (or smallest) of inference times on the end device and

a cloud node (or on all end devices/edge nodes). Furthermore, as per computation

partitioning, since DNN models tend to be sequential, the possible ways of partitioning

are limited.

In this work, we take a drastically new approach in addressing the trade-off

between latency and prediction accuracy of DNNs. Our approach is motivated by

two observations of perception applications with inputs from natural scenes or human

interactions. First, despite the fact that such applications may need to handle a

51

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

large number of input classes over time, the classes of inputs commonly encountered

can be much smaller. For instance, an average English speaking person uses about

4000 words in daily life out of 171,476 words listed in the second edition of Oxford

English Dictionary. Secondly, there exists strong temporal locality in terms of the

types of inputs encountered in a short period of time. This is especially true for vision

processing where rich redundancy exists among consecutive video frames (Xu et al.,

2018; Chen et al., 2015; Huynh et al., 2017; Mathur et al., 2017).

To exploit these two properties, we propose CacheNet, a model caching framework

for deep learning inference on edge. CacheNet is inspired by caching in the memory

hierarchy. In computer architecture, the memory hierarchy separates computer storage

(e.g., register, cache, random access memory, etc.) based on response time (Mutlu

and Subramanian, 2015). Caching increases data retrieval performance (e.g. faster

response time) by reusing previously retrieved and computed data in the storage.

Analogous to the memory hierarchy, end devices are closer to data sources and thus

have faster response time but lower storage capacity; while an edge server has more

storage capacity but relatively longer network latency. However, unlike the memory

hierarchy that only stores data, CacheNet stores DNN models. To mitigate the limited

computation power on end devices, only down-sized models with high confidence in

the current input data are stored. Thanks to the temporal locality and the small

number of frequently observed classes, the cached model only needs to be replaced

infrequently.

In short, CacheNet combines model partitioning with caching. Instead of training a

single large-scale model, CacheNet generates multiple small submodels each capturing a

partition of the knowledge represented by the large model. In the proposed architecture,

52

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

the end device is responsible for selecting a locally cached model and performing the

inference; whereas the edge server stores the baseline model and submodels, and is

responsible to handle “cache misses” when there are sufficient changes in input data.

CacheNet is agnostic to the architecture of a baseline deep model. Both the number

of submodels and the baseline deep model can be specified by users.

We have implemented CacheNet in TensorFlow, TensorFlow Lite and NCNN.

Here, TensorFlow is a high-performance framework for neural network training, while

TensorFlow Lite and NCNN are lightweight inference framework optimized for edge

computing. CacheNet has been evaluated on a variety of end devices and two different

datasets (CIFAR-10 Krizhevsky et al. (2009) and FVG Zhang et al. (2019)). We

found that CacheNet outperforms end-device-only and edge-server-only approaches in

inference time without compromising inference accuracy. For CIFAR-10, CacheNet

is 2.2 times faster than the end-device-only approach and 58% faster than edge-

server-only; for FVG, it is 1.5 times faster than end-device-only and 71% faster than

edge-server-only.

The rest of the paper is organized as follows. Section 3.2 describes related work

to CacheNet from two perspectives: caching and partitioning. An overview of our

approach is given in Section 3.3 from requirements to system level design. In Section 3.4,

we elaborate on aspects of training CacheNet and formalize CacheNet mathematically.

Details of inference is provided in Section 3.5 from partition selection on the edge server

to cache replacement on end devices. Section 3.6 provides evaluations of CacheNet on

multiple end devices including Jetson TX2, Jetson Nano, and Raspberry Pi 4. The

conclusion and future works are stated in Section 3.7.

53

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

3.2 Related Work

Existing algorithmic approaches to accelerate machine learning inference on end devices

mainly fall into three categories, namely: i) model compression, ii) computation

partitioning, and iii) reduction of computation in machine learning pipelines. The

three categories of approaches are orthogonal to one another and can be applied jointly.

Among the three, the latter two are closer to CacheNet and will be discussed in further

details in this section.

3.2.1 Computation Partitioning

Partitioning splits a known neural network model into multiple parts to be executed

either sequentially or concurrently on the edge and cloud. It can be performed between

layers. By trading off between the time offloading computation to the cloud with the

time spent in local computation on edge, a shorter latency could be achieved (Kang

et al., 2017).

A more sophisticated computation partitioning was proposed in distributed deep

neural networks (DDNNs) (Teerapittayanon et al., 2017). DDNN was designed to

perform fast and localized inference using shallow portions of a neural network on end

devices. Using an exit point after device inference, an output is classified locally. If the

classification cannot be made due to low confidence, the task is escalated to a higher

exit point (e.g. the edge exit) in the hierarchy until the last exit (the cloud exit).

With multiple exit points, DDNNs can significantly reduce communication costs.

TeamNet (Fang et al., 2019) takes a different approach for computation partitioning.

Rather than dividing a pre-trained neural network structurally, it explores knowledge

specialization and trains multiple small NNs through competitive and selective learning.

54

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

During inference, the NNs are executed in parallel on cooperative end devices. By

decision-level fusion, a master node (either one of the end devices or a edge/cloud

node) outputs the final inference results. Since computation partitioning in TeamNet

is done at model level, it is also considered a model partitioning approach.

CacheNet bears similarity with TeamNet in training multiple shallower models

to represent the knowledge of a single deep model. However, unlike TeamNet that

requires concurrent execution of the shallower models, CacheNet utilizes a “selector”

to determine the suitable shallow model based on input data. In CacheNet, when

a cache hit occurs, the inference is performed on the end device only. The overall

inference time is reduced by the indexability of specialized submodels and running

the suitable submodel locally most of the time.

3.2.2 Computation Reduction

Exploiting the existence of the temporal locality in input data, several works reduce

DNN inference time by reusing all or part of previous computation results.

Glimpse is a continuous, real-time object recognition system for camera-equipped

mobile devices (Chen et al., 2015). In Glimpse, object recognition tasks are executed

on local devices when the communication latency between the server and mobile

device is higher than a frame-time. In addition to using a reduced model for faster

local inference, Glimpse uses an active cache of video frames on the mobile device. A

subset of the frames in the active cache is used to track objects on the mobile, using

(stale) hints about objects that arrive from the server from time to time. In (Xu et al.,

2018), Xu et al. proposed DeepCache, a principled cache design for deep learning

inference in continuous mobile vision. It breaks down an input video frame into

55

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

𝑦ො

𝑥 𝑥ො

lower-dimension
representation

stacked encoder

generator

entropy

stacked decoder

𝑧 𝑧̅

feedback code

argmin𝑧

𝑐̅ 𝑐̿

𝑐

cloud

(a) Train

𝑦ො

submodel selection

𝑧

trusted?𝑥

no

entropy

yes

cache replacement

𝑥

𝑧̅ 𝑐̅

edge
server

end
device

4

1
2

3

(b) Inference

Figure 3.1: (a) CacheNet first partitions a neural network into multiple smaller
specialized neural networks in the cloud. (b) Owing to the temporal locality that

exists in the video, the smaller specialized neural network will work well on
consecutive frames over a short period. An abrupt change of frame induces higher

entropy and triggers cache replacement.

smaller blocks and discovers similar blocks between consecutive frames using diamond

search (Xu et al., 2018). Computation on reusable regions (e.g., feature maps) can

thus be cached and propagated through subsequent layers without further processing.

In (Apicharttrisorn et al., 2019), to reduce energy drain while maintaining good

object tracking precision, the authors develop a software framework called MARLIN.

MARLIN only uses a DNN as needed, to detect new objects or recapture objects

that significantly change in appearance. It employs lightweight methods in between

56

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

DNN executions to track the detected objects with high fidelity. Alternatively, we

can view MARLIN as reuse the detection and classification results by associating

detected objects across multiple frames. In Guo et al. (2018), Guo et al. proposed

FoggyCache for cross-device approximate computation reuse. FoggyCache reuses

previously computed outputs by harnessing the “equivalence” between different input

values. Content lookup and high quality reuse are achieved by the adoption of adaptive

locality sensitive hashing (A-LSH) and homogenized k-nearest neighbors (H-kNN).

Harnessing reuse opportunities translates to reduced computation latency and energy

consumption.

All afore-mentioned approaches are orthogonal to CacheNet. In DeepCache and

MARLIN, a full-fledged deep model is still needed on an end device and thus the

worst-case execution time is not reduced. This is in contrast with CacheNet, which

only runs reduced submodels locally.

3.3 System Design

CacheNet is a distributed inference framework on edge. Its training phase happens

in the cloud and the inference is a collaboration between the edge server and the

end device. The intuition behind CacheNet is dividing a neural network’s knowledge

into multiple specialized partitions (neural networks). These specialized partitions

are generally a few times smaller than the original neural network, and only the

specialized partition is transferred to the end device for inference. From the end

device’s perspective, it caches only a times smaller and specialized partition of the

knowledge, and thus its inference is times faster than the original ones.

The challenges of partitioning are two folds: 1) each partition must be sufficiently

57

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

specialized and the combination (collaboration) of all partitions must behave roughly

equivalently to the original neural network; 2) There must be a selector that picks the

right partition given a specific hint at a time. The first challenge was mostly solved

by TeamNet (Fang et al., 2019), while the second one has not been solved by any

approaches at this point.

In order to solve the second challenge, it is necessary to formalize the hint as a

specific representation. Inspired by coding theory, a code vector is a good representation

as long as the mutual information between the code vector and the input image is

maximized at the training phase. Although we have the hint representation, it is

still difficult to associate the representation with a specific portion of the knowledge.

To do so, we introduce a generator that generates the neural network’s parameters

accordingly to the given code representation.

Thus, in training (Figure 3.1a), we need to 1) maximize the mutual information

between the code representation and the input image; 2) better associate the code

representation with the specialized neural network partition; 3) train each partition

with respect to their output entropy, which has been demonstrated practical in

TeamNet (Fang et al., 2019). CacheNet’s system design is therefore conducted

simultaneously with respect to the above objectives.

During inference (Figure 3.1b), CacheNet should infer the code representation

from a particular input image, and then the code representation will be used as a hint

to tell which specialized partition to be cached on the end device. Without the need

to transfer the input frames to the edge server every time, inference latency can be

shortened. The accuracy is generally not sacrificed, because there exists a temporal

locality on consecutive frames most of the time. As long as there is not an abrupt

58

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

change of the scene, a specialized partition should work well; otherwise (e.g., in regard

to edited clips from multiple cameras, or a fast-moving object/camera Kwon and Lee

(2008)), a cache replacement should be triggered, considering a partition only holds a

subset of the knowledge.

3.4 Training CacheNet

As illustrated in Figure 3.1a, to train CacheNet submodels, we need to first divide

the input data into partitions1. The index associated with a partition is taken as an

input to a neural network generator to produce the corresponding submodel for the

partition. The encoder that maps input data to partition indices and the submodels

will be optimized jointly. Next, we discuss the steps in detail.

3.4.1 Stacked Information Maximizing Variational Autoencoder

(S-InfoVAE)

The purpose of this step is to map input data into a low dimension space for further

partitioning. The low-dimension representation should preserve the proximity among

data and allow “reconstruction” of the orignal data.

Variational Bayesian autoencoder was proposed by Kingma and Welling (Diederik

et al., 2014). The basic idea is to find a lower-dimension latent variable underlying the

corresponding input distribution. Let z denote the latent variable and x represent the

input variable. Consider a dataset D = {X, Y }, where X is drawn independently from

an input probability distribution pD(x). Suppose that pξ(z) (the prior distribution
1The partitions are overlapping as will be discussed in Section 3.4.2.

59

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

of z) and the conditional probability distribution pξ(x|z) are both parameterized

by a neural network with parameters ξ. One can find the optimal parameters ξ by

maximizing the log-likelihood as:

EpD(x) [log pξ(x)] = EpD(x)

[
logEpξ(z) [pξ(x|z)]

]
. (3.4.1)

However, the integral of the marginal likelihood pξ(x) is generally intractable even

for a moderately complex neural network with a single non-linear hidden layer. A

possible approach (Diederik et al., 2014) is to rewrite log pξ(x):

log pξ(x) = DKL(qψ(z|x)||pξ(z|x)) + L(ξ, ψ;x), (3.4.2)

where

L(ξ, ψ;x) = −DKL(qψ(z|x)||pξ(z)) + Eqψ(z|x) log pξ(x|z). (3.4.3)

Since Kullback-Leibler divergence is always non-negative, L(ξ, ψ;x) is a lower

bound of log pξ(x), namely,

L(ξ, ψ;x) ≤ log pξ(x). (3.4.4)

By maximizing the lower bound L(ξ, ψ;x), the log likelihood log pξ(x) is maximized

as well. However, since the latent variable z is of lower dimension than the input

variable x, any optimization against x may be magnified compared to z. To counteract

the imbalance problem, Zhao et al. (Zhao et al., 2019) propose to put more weight on

z. Let L(ξ, ψ) be the expectation of L(ξ, ψ;x) with respect to the input distribution

60

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

pD(x). We then have,

L(ξ, ψ) =EpD(x)L(ξ, ψ;x)

=−DKL(qψ(x, z)||pξ(x, z))

=−DKL (qψ(z)||pξ(z))

− Epξ(z) [DKL (qψ(x|z)||pξ(x|z))] .

(3.4.5)

To put more weights on z, one needs to add i) a scaling parameter to the Kullback-

Leibler divergence between qψ(z) and pξ(z), and ii) a term of mutual information

between x and z (Zhao et al., 2019):

L∗(ξ, ψ) =− λDKL (qψ(z)||pξ(z))

− Epξ(z) [DKL (qψ(x|z)||pξ(x|z))]

+ αIqψ(x,z)(x; z).

(3.4.6)

In practice, L∗(ξ, ψ) can be rewritten into (3.4.7) for more effective optimization

(Zhao et al., 2019):

L∗(ξ, ψ) =EpD(x)Eqψ(z|x) [log pξ(x|z)]

− (1− α)EpD(x)DKL(qψ(z|x)||pξ(z))

− (α + λ− 1)DMMD(qψ(z)||pξ(z)),

(3.4.7)

where DMMD(qψ(z)||pξ(z)) is the maximum-mean discrepancy between qψ(z) and

61

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

pξ(z).

Experiments show that when the latent variable z is of far lower dimension than

the input variable x, the lower bound L∗(ξ, ψ) can not properly converge. To deal with

this problem, we propose the S-InfoVAE by keeping z at a relative high dimension and

introducing a second latent variable z̄ of dimension two. The corresponding parameters

(or equivalently the neural networks) of the two latency variables are stage-wisely

optimized. Formally, the second optimization objective is defined as follows:

L̄∗(ξ̄, ψ̄) = Epψ̄(z)L(ξ̄, ψ̄; z) (3.4.8)

3.4.2 Indexability of Low-dimension Representation

To divide data into overlapping partitions, sophisticated indexes are needed. Let K be

the total number of submodels, an input parameter of CacheNet. Each input sample

in D is associated with one or more indices chosen from 1 to K and will be used to

train the corresponding submodel(s). By allowing multiple indices per data sample or

equivalently shared training data, we facilitate knowledge sharing across submodels.

In this step, we determine the indices of input data solely based on the low-dimension

representations from the S-InfoVAE. In subsequent sections, we will also incorporate

feedback from the resulting submodels in the form of uncertainty.

Recall that z̄’s are 2D vectors. To calculate the angular distance between the

62

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

vector z̄ = [z̄1z̄2] and the x-axis, the arctan trigonometric function is applied:

θ =



arctan
z̄2

z̄1

z̄1 > 0

arctan
z̄2

z̄1

+ π z̄1 < 0, z̄2 ≥ 0

arctan
z̄2

z̄1

− π z̄1 < 0, z̄2 < 0

π

2
z̄1 = 0, z̄2 > 0

−π
2

z̄1 = 0, z̄2 < 0

0 z̄1 = 0, z̄2 = 0.

(3.4.9)

For better convergence, a small noise term ε is added to the θ. To keep the resulting

angles between 0 and 2π, a modulo function is applied as follows:

θ̃ = (θ + ε) mod 2π. (3.4.10)

For K partitions where each partition roughly occupies a region of 2π
K
, the midpoint

of the kth partition is given by
2π(k− 1

2)
K

, for k = 1, . . . , K. Let ζ be a vector of all such

midpoints, namely:

ζ = [ζ1 . . . ζK], ζk =
2π
(
k − 1

2

)
K

. (3.4.11)

We wish to assign input samples to partitions based on their closeness to the

K midpoints in polar coordinates. One straightforward approach is via a 1-nearest

neighbor search, namely, finding k that minimizes min
(
|θ̃ − ζk|, 2π − |θ̃ − ζk|

)
. Doing

so will result in a one-hot vector with one for the kth element and zeros for all other

63

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

elements. Instead, we choose to define a soft code c̄ as,

c̄ =
n=1∑
n=−1

exp

(
−(ζ − θ̃ + 2πn)2

2σ2

)
, (3.4.12)

where σ is a parameter that controls the speed of decay as θ̃ deviates from the

midpoints. Clearly, each element of c̄ is between 0 and 1, and the maximum value

occurs at k = arg mink

(
min

(
|θ̃ − ζk|, 2π − |θ̃ − ζk|

))
.

With the soft code c̄ of some input x and a threshold τ , we can determine which

partition(s) it belongs to as {k|c̄k ≥ τ}. Plugging (3.4.11) and (3.4.12), we have

ck ≥ τ if the following condition holds,

2π
(
k − 1

2

)
K

− σ
√
−2 log τ ≤ θ̃ ≤

2π
(
k − 1

2

)
K

+ σ
√
−2 log τ .

In other words, we can view mapping to soft codes along with a suitable choice of

τ and σ, having the effect of dividing the polar coordinate space into K overlapping

sectors with width 2σ
√
−2 log τ . An example of four partitions is given in Figure 3.2.

When z̄ of an input x falls into the overlapping area of sectors i and j, we view it

as contributing to the training of submodel i and j. Let γ be the overlapping ratio

(normalized by 2π). σ can thus be determined by,

σ =

√
−π

2(1 + γ)2

2K2 log τ
(3.4.13)

In Figure 3.2, γ is set to 30% and τ equals to 0.3. When θ̃ equals to 1
3
π, which is

outside of the overlapping region (Figure 3.2a), the data point only contributes to the

training of one submodel. When θ̃ equals to 4
9
π, which is in between two midpoints 1

4
π

64

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

and 3
4
π, the data point contributes to the training of the two corresponding submodels.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0

1
2

1

3
2

1
3

(a) Vector not in any overlap
region (τ equals to 0.3)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0

1
2

1

3
2

4
9

(b) Vector in an overlap region (τ
equals to 0.3)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0

1
2

1

3
2

1
3

(c) Vector not in any overlap
region (τ equals to 0.1)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0

1
2

1

3
2

4
9

(d) Vector in an overlap region (τ
equals to 0.1)

Figure 3.2: The red straight line denotes the angle θ̃, with the red curve indicating
the amount of decay from the maximum 1 to the minimum 0 while moving away from
θ̃. The red cross maker demonstrates a value on the midpoint, with in the brighter
area telling it is above the selection threshold while in the darker area telling below

the selection threshold.

3.4.3 Consideration of Model Uncertainty

The soft code c̄ utilizes the angular proximity of input data in a 2D representation.

However, partitioning based on the soft code alone does not always imply the trained

65

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

model is more specialized. The predictive uncertainty of a trained model with respect

to the input data is also indicative of how much the model has “specialized” on the

data. Intuitively, if a model is specialized on one partition of the input space, it should

have a lower predictive uncertainty on the prediction of the data in the partition, but

higher uncertainty on other data. In (Fang et al., 2019), we found that the entropy

computed from the softmax output of a neural network model is a good surrogate

for the uncertainty of the model on the data. Formally, we denote H(ŷk|x, φk) the

entropy of the kth submodel parameterized by φk with respect to the input x,

H(ŷk|x, φk) = −
∑
c

p(ŷk = c|x, φk) log p(ŷk = c|x, φk), (3.4.14)

where p(ŷk = c|x, φk) is the predictive probability of output c = 1, 2, ..., C for input x

from submodel k.

To encourage the assignment of x to a submodel that has the lowest predictive

uncertainty, we introduce a K-dimension vector ¯̄c as follows:

¯̄c = [¯̄c1 . . . ¯̄cK], ¯̄ck =


τ i = arg min

k
H(ŷk|x, φk)

0 otherwise.

(3.4.15)

Clearly, ¯̄c is a one-hot vector scaled by τ .

3.4.4 Partition of Input Data

To this end, we have obtained two K-dimension codes c̄ and ¯̄c for each input data x.

To decide the final partition of input data, we should take both into account. This

66

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

can done by a simple linear combination:

c = αc̄+ (1− α)¯̄c. (3.4.16)

In the experiments, we set α = 1
2
.

Let P(x) =
{
k|ck ≥ τ

2

}
denote the indices of partitions (submodels) that input x

contributes to. Clearly, P(x) cannot be an empty set since its respective ¯̄c contains

one element that equals to τ . In the case that the cardinality of P(x) is greater than

one, this implies that x will be used to train multiple submodels.

3.4.5 Neural Network Generator

The architecture of the generator network is illustrated in Figure 3.3. A neural network

generator G takes an element k in P(x) (being converted to a one-hot vector) as

input and generates the parameters φk of the kth submodel. CacheNet is agnostic

to the target neural network architecture, which is decided by the target application.

For example, for image classification, Shake-Shake (Gastaldi, 2017) has been shown

to perform well across several datasets. Given K, we scale down the target neural

network architecture to have reduced capacity.

Suppose ŷk is the prediction of the kth submodel for x, noted by ŷk = F (x;φk). To

avoid overfitting, we allow parameter sharing across the submodels. The proportion

of parameters to be shared, the depth and the width of the shared networks are

hyper-parameters to be determined by the neural network structure of the submodels.

For an input data x and its label y, we first compute P(x). The cross-entropy loss for

67

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

𝐹’s parameters (𝜙௞)

generator (𝐺)

shared

𝛿௞

Figure 3.3: The generator G takes a one-hot vector δi as input and generates the
parameters of the ith partition. Values (either 0 or 1) of each dimension in δi are used

to deactivate or activate a corresponding branch.

classification is given by,

JF (x, y) =
∑
k∈P(x)

H(ŷk, y) (3.4.17)

Minimizing EpD(x)JF (x, y) leads to a more accurate prediction with respect to the

dataset.

3.4.6 Training Algorithm

In CachNet, there are three networks that need to be trained, namely, the stacked

encoder, the stacked decoder and the generator network. Since the output of the

68

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

stacked encoder contributes to the input of the generator network, they need to be

trained jointly.

The lower-dimension representation z̄ is the most informative of a particular input x

if two lower bounds L∗(ξ, ψ) and L̄∗(ξ̄, ψ̄) are maximized, and a submodel’s predictions

are the most accurate if EpD(x)JF (x, y) is minimized. Thus, the minimization objective

J should be EpD(x)JF (x, y) added to the negation of L∗(ξ, ψ) and L̄∗(ξ̄, ψ̄):

J = EpD(x)JF (x, y)− L∗(ξ, ψ)− L̄∗(ξ̄, ψ̄). (3.4.18)

To better converge, EpD(x)JF (x, y), L∗(ξ, ψ), and L̄∗(ξ̄, ψ̄) are optimized stage-

wisely and batch-wisely. Let J (i) be J with respect to a batch (X(i), Y (i)) drawn from

the dataset D. Suppose the generator G is parameterized by χ, and κ is the set of

{ξ, ψ, ξ̄, ψ̄, χ}. The training algorithm should iteratively apply gradient updates to κ

(or χ) with respect to the loss function J (i) and descend to a minimum of J (as shown

in Algorithm 4).

Algorithm 4 Training CacheNet
. let η be the learning rate
. let ν be the epoch stopping gradient updates in ξ, ψ, ξ̄, ψ̄

1: procedure Train(η, ν)
2: while J (i) is decreasing do
3: draw the next batch (X(i), Y (i)) from D
4: if #epoch < ν then
5: κ← κ− η∇κJ

(i)

6: else
7: χ← χ− η∇χJ

(i)

8: end if
9: end while

10: end procedure

69

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

3.5 CacheNet Inference

With CacheNet, inference on end devices is accelerated by caching submodels of lower

computation complexity. Depending on storage availability, one or multiple submodels

can be stored on end devices. At any time, only one submodel is active and is used

to make predictions. Given an input data sample x, the active submodel k outputs

ŷ, the label of x and the predictive entropy H(ŷ|x, φk). If the entropy is above a

certain threshold, ŷ will be returned. Otherwise, two situations may arise, i) x is

better handled by another cached submodel, and ii) x is better handled by a submodel

not in cache. The latter case is called a cache miss. Like caching in memory hierarchy,

CacheNet needs to handle cache misses by replacing a cached “item” (model). However,

unique to CacheNet, the newly cached “item” is not the input data but a suitable

model.

3.5.1 Submodel Selection

In Section 3.4, a K-dimension code c̄ is computed for each input data sample using

S-InfoVAE and the subsequent mapping in polar coordinates. In the training stage, c̄

contributes to the input to the generator network that generates the parameters of

respective submodels. In the inference stage, c̄ can be used to select the submodel to

make prediction given an input data sample. In particular, the joint optimization of

S-InfoVAE, generator network and submodels aligns the output of S-InfoVAE with

the submodel that has lowest predictive uncertainty. Thus, we can simply select the

submodel whose index corresponds to the largest element in c̄. Note in the inference

stage, we do not need to calculate the predictive uncertainty for each submodel.

Instead, only one submodel is applied. This is one of the key differences between

70

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

CacheNet and the work in (Fang et al., 2019). S-InfoVAE can be executed on the

end device or on the edge server. In the former case, extra storage and computation

overhead are introduced. In the latter case, submodel storage and selection are

delegated to the edge server.

3.5.2 Cache Replacement

When the predictive entropy is below a preconfigured threshold using the active

submodel, the input data x is sent to the edge server, which will perform inference

on behalf of the end device. Additionally, by submodel selection, the edge server

determines a suitable model for x. A cache miss occurs on the end device. The newly

selected submodel will be downloaded to the device to replace an existing model. Here,

we adopt the Least Recently Used (LRU) policy and select the model that is least

recently used. By the virtue of LRU, such a policy does not suffer from Bélády’s

anomaly. In other words, as the cache size increases, the cache miss rate does not

increase. More detailed proof can be found in Appredix 3.8.

3.6 Evaluation

In this section, we evaluate CacheNet with two different real-world datasets (the

CIFAR-10 Krizhevsky et al. (2009) and the Frontal View Gait (FVG) dataset Zhang

et al. (2019)), and test CacheNet’s performance with respectively two different neural

network models (Shake-Shake Gastaldi (2017) and ResNet He et al. (2016)).

71

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

3.6.1 Datasets

CIFAR-10 CIFAR-10 Krizhevsky et al. (2009) is a benchmark dataset for image

classification, comprised of 60, 000, 32 × 32 colored images and 10 classes (such as

automobile, bird and horse) in total. Although CIFAR-10 is not a video dataset and

is an image classification dataset, image classification is still a valid scenario if it is in

a video processing pipeline (e.g. where the background has been removed previously

from the video). In this case, temporal locality still applies while consecutive images

would be less redundant owing to the earlier steps in the pipeline. For example, a

horse (possibly shot in different angles with different scales) in the video is still likely

to appear multiple times in the sequence, even when the background has been removed

(e.g. object detection).

For fair evaluation, test images are not supposed to be seen during training. Thus,

we set aside 10, 000 images for testing. To simulate temporal locality in a video

pipeline, the synthesized image sequence in testing is composed of a sample of the

10, 000 images in the way that images with the same label are concatenated together.

To reduce overfitting, data augmentation techniques are used, including: 1) random

cropping and 2) random flipping. Apart from data augmentation, Shake-Shake

regularization has been applied to reduce overfitting Gastaldi (2017), and batch

normalization to reduce internal covariate shift Ioffe and Szegedy (2015).

FVG FVG is a person re-identification dataset, first introduced in Zhang et al.

(2019), as a collection of frontal walking videos from 226 subjects. In total it contains

2, 856 videos at 15 frames per second with a resolution of 1920× 1080.

In contrast to other person re-identification datasets in surveillance settings, FVG

72

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

is the first to focus on the frontal view. This makes it useful for two reasons: (i) It

contains temporal locality in the form of a fixed background and the same subject

walking towards the camera, which can be leveraged for caching. (ii) Having a frontal

view means that it contains minimal gait cues.

To reduce the chance of overfitting and improve generalization ability we use

data augmentation techniques Shorten and Khoshgoftaar (2019) on this dataset as

well. We first oversample the images by interpolating between existing frames. This

technique preserves the extrinsic distribution while allowing us to experiment with

cache performance by varying the degree of temporal locality. Additionally, in the

original dataset the average frame rate of each video is 15 frames per second. That

is only half of the frame rate of a HD video (generally 30-60 frames per second).

Since each video sample is of the subject walking straight towards the camera from

a distance, it contains intrinsic depth information that can be utilized to synthesize

intermediate frames. As such, we use DAIN Bao et al. (2019), a state of the art

approach that leverages the depth information to interpolate between the frames.

3.6.2 Experimental Setup

CacheNet’s performance is evaluated on two different datasets (CIFAR-10 and FVG),

three end devices (Jetson TX2, Jetson Nano, and Raspberry Pi 4) and two deep

learning frameworks (NCNN and TensorFlow Lite). There are two baselines to

compare with: a) running a full model (Shake-Shake-26 or ResNet-50) on an end

devices (Device), and b) offloading the full model onto an edge server (Edge). Different

thresholds are evaluated to better trade off hit rate against accuracy: for CIFAR-10,

they are 0.5, 0.6, 0.7, 0.75, and 0.8; for FVG, they are 1.5, 2.0, 2.3, 2.5, and 2.7. (Here,

73

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

A larger threshold in FVG is caused by more classes (neurons) at the output layers.)

Furthermore, on the FVG dataset, we evaluate two video frame rates 15 FPS and 30

FPS (at inference) with both trained at 60 FPS (by using data augmentation).

The number of submodels K is set to 4 in the experiment. For a possible conver-

gence, CacheNet is trained on TensorFlow with 4 NVIDIA 1080TI graphic cards. Per

CIFAR-10, CacheNet partitions Shake-Shake-26 (with 26 layers) into 4 Shake-Shake-8

(with 8 layers) neural network submodels for caching; per FVG, CacheNet partitions

ResNet-50 into 4 ResNet-20 (but with fewer channels per layer).

CacheNet’s inference is distributed between the edge server and the end device in

the experiment. One submodel is cached and runs on the end device, while submodel

storage and selection are delegated to the edge server. End devices are evaluated with

limited storage to mimic that of end devices such as security cameras. One Intel Xeon

CPU core is enabled on the edge server to representatively simulate those of most

of WiFi access points (e.g. a 500 megahertz MIPS processor on the Arlo SmartHub)

with generally limited compute power. There is sufficient storage on the edge server

comparable to that of WiFi access points (e.g. a 128 gigabyte SD card on the eufy

HomeBase and a 2 terabyte USB hard drive onto the Arlo SmartHub). End devices

are connected to the edge server through a WiFi router, via WiFi 5G (802.11ac) and

an Ethernet cable, respectively.

TensorFlow submodels from training were converted to NCNN and TensorFlow

Lite submodels and stored on the edge server. Whenever a submodel is needed, the

end device initiates an HTTP/1.1 request to the edge server, and then the chosen

submodel on the edge server is encoded in an HTTP/1.1 and protobuf message then

sent back to the end device. OpenCV is also used in the experiment to read a testing

74

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

(a) Partition A

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

(b) Partition B

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

(c) Partition C

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

(d) Partition D

Figure 3.4: For CIFAR-10, partition A is more specialized in trucks and automobiles;
partition B can predict airplanes and ships better; partition C is more certain of the

horse, dog, and cat classes; partition D knows more about frogs and deer.

004
002204

017
001
192

018

012
009

191
010

007014005006
016

011
019
211

013

008
003
015

184215

(a) Partition A

004
002204

017
001
192

018

012
009

191
010

007014005006
016

011
019
211

013

008
003
015

184215

(b) Partition B

004
002204

017
001
192

018

012
009

191
010

007014005006
016

011
019
211

013

008
003
015

184215

(c) Partition C

004
002204

017
001
192

018

012
009

191
010

007014005006
016

011
019
211

013

008
003
015

184215

(d) Partition D

Figure 3.5: For FVG, partition A is more certain of person identifier (PID) 211, 019,
011, 016, 006, and 005; partition B is specialized in PID 013, 008, 003, 015, and 215;
partition C knows more about PID 010, 191, 009, 012, and 018; partition D is more

certain of PID 004, 002, 204, 017, and 001.

image sequence (video) into the memory and convert them into tensors.

3.6.3 Results

Specialization Specialization is crucial for caching because a non-specialized parti-

tion cannot match the full model’s performance by any chance even for a smaller subset

of input. There are two aspects we would investigate: (a) whether similar input images

are mapped to the same partition; (b) whether input images are partitioned roughly

evenly to fully utilize the capacities of all submodels, considering both CIFAR-10 and

FVG are approximately balanced datasets.

75

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

0

2

4

6

8

10

12

0 10000 20000

Iteration

(a) CIFAR-10

0
2
4
6
8

10
12
14

0 1000 2000

Iteration

(b) FVG

Figure 3.6: CIFAR-10’s and FVG’s losses both start high but converge closer and
closer to zero.

Figure 3.4 and 3.5 illustrate the number of input images per class being mapped

(by S-InfoVAE) to a particular partition. They answer most of our concerns: (a) A

partition roughly covers most of similar input images from the same class. e.g. for

CIFAR-10, partition A is more specialized in trucks and automobiles; partition B

knows better airplanes and ships; for FVG, partition A is more certain of person

identifier (PID) 211, 019, 011, 016, 006, and 005; and partition B is specialized in

PID 013, 008, 003, 015, and 215. (b) In both cases of CIFAR-10 or FVG, the areas

(Figure 3.4 and 3.5) that partitions occupy are roughly even. It implies the total

number of (image) instances they span are approximately the same.

Convergence Not all neural networks converge. Thus, whether CacheNet is useful

depends on whether it converges or not per the particular dataset. In CIFAR-10 and

FVG, we can see (Figure 3.6) that their losses both start high but converge closer and

closer to zero. Since FVG is a smaller dataset compared to CIFAR-10, CacheNet with

FVG converges faster (in fewer iterations) than CIFAR-10.

76

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

90

92

94

96

A
cc

u
ra

cy
 (

%
)

Accuracy

4
5
6
7
8
9

87

90

93

96

99

0.45 0.55 0.65 0.75 0.85

F
P

S

H
it

R
a

te
 (

%
)

Threshold

Hit Rate FPS

(a) CIFAR-10

95

96

97

98

99

A
cc

u
ra

cy
 (

%
)

Accuracy

0
7
14
21
28
35

51

63

75

87

99

1.3 1.7 2.1 2.5 2.9

F
P

S

H
it

R
a

te
 (

%
)

Threshold

Hit Rate FPS

(b) FVG

Figure 3.7: FPS and hit rate increase most of the time as the preconfigured threshold
increases. Accuracy generally decreases because predictions of less certainty are
considered valid. When multiple submodels outperforming the full model (in the

FVG dataset), there is a small peak observed before the accuracy declines.

Cache replacement As it is discussed in Section 3.5.2, if the predictive entropy is

below a preconfigured threshold, the inference is performed locally; otherwise, it is

done remotely on the edge server. Figure 3.7a and 3.7b demonstrate that the FPS

increases as the threshold increased most of the time for both CIFAR-10 and FVG.

The reason is that the hit rate is generally higher when the threshold is higher. Fewer

cache replacement is needed and more and more images are being processed locally,

which speeds up the inference. On the other hand, Figure 3.7a and 3.7b show that a

77

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

0

4

8

12

Device Edge CacheNet

TX2 Nano Pi

(a) CIFAR-10 FPS

0

8

16

24

Device Edge CacheNet

TX2 Nano Pi

(b) FVG FPS

80

85

90

95

100

Device Edge CacheNet

CIFAR-10 FVG

(c) Accuracy

Figure 3.8: Medians are taken and standard deviations are plotted as error bars.
CacheNet is faster than the other two baselines, while accuracy is comparable to the

full model.

higher hit rate generally comes at the cost of lower accuracy. It is because a higher

threshold allows prediction with higher entropy (uncertainty) to become valid. Higher

entropy predictions are of lower quality that decrease the overall accuracy. We find

that in practice, it is a trade-off between hit rate and accuracy.

Comparison to baselines A comparison between CacheNet and the other two

baselines (Device and Edge) are shown in Figure 3.8a and 3.8b. Medians (of all

the scenarios) are taken and standard deviations are plotted as error bars in those

figures. For CacheNet, preconfigured threshold 0.75 and 2.5 are chosen respectively

per CIFAR-10 and FVG to the best extend to trade off hit rate against accuracy. As

78

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

visualized on those figures, CacheNet is much faster than the other two baselines: for

CIFAR-10, 3.2X of Device and 1.6X of Edge; for FVG, 2.5X of Device and 1.7X of

Edge. At the same time, the accuracy of CacheNet is comparable with that of the full

model, with only a slight drop on CIFAR-10, but increasing a bit on FVG.

More details are given in Table 3.1–3.6. CacheNet generally works better on end

devices with more computing power such as Jetson TX2 and Jetson Nano. Offloading

to the edge server (Edge) releases end devices’ burden thus CPU usages are lowest

among three. However, it also implies that the computing power on the end device

has not been fully utilized. Memory usages fall into a similar pattern as that of CPU

usages. If we divide elapsed time into the time that is run on the end device and

that is performed on the edge server (including time for upload and download), we

observe that CacheNet distributes the total (computation) time between the end

device and the edge server, while the other two baselines are not taking the advantages

of distributed computing, that either runs locally (Device) or computes on the edge

server most of the time (Edge).

Comparison across frameworks NCNN and TensorFlow Lite are both lightweight

deep learning framework tailored for embedded devices with limited compute power,

memory and storage. A comparison between TensorFlow Lite and NCNN are given

in Table 3.1–3.6. CacheNet with NCNN and TensorFlow Lite both outperform the

baselines. NCNN is slightly more efficient than TensorFlow Lite for both CIFAR-10

and FVG, while TensorFlow Lite consumes far less memory than NCNN.

Comparison across devices From Figure 3.8, we observe that CacheNet performs

better on end devices with higher compute power such as Jetson TX2 and Jetson

79

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Table 3.1: Experimental Results with CIFAR-10 on Jetson TX2, Jetson Nano, and
Raspberry Pi 4 - NCNN

Jetson TX2 Jetson Nano Raspberry Pi 4

D
ev
ic
e

E
dg

e

C
ac
he
N
et

D
ev
ic
e

E
dg

e

C
ac
he
N
et

D
ev
ic
e

E
dg

e

C
ac
he
N
et

FPS 2.85 4.89 8.02 4.25 3.83 9.53 1.57 5.60 4.77
Accuracy (%) 95.47 95.47 93.20 95.47 95.47 93.20 95.47 95.47 93.20
CPU (%) 84.53 4.25 60.26 96.83 5.96 57.23 98.65 1.21 63.75
Memory (Mb) 610.71 1.86 198.76 863.14 1.94 241.80 875.53 0.91 201.75
Time (s) 124.06 72.16 44.03 83.06 92.20 37.04 224.15 63.02 74.03
Device (s) 124.06 0.80 26.25 83.06 0.66 17.89 224.15 0.63 42.28
Edge (s) 0.00 71.37 17.79 0.00 91.54 19.14 0.00 62.39 31.75

Nano. Raspberry Pi incurs more time on submodel inference, which leads to lower

FPS. Detailed numerical comparisons can be found in Table 3.1–3.6.

3.7 Conclusion

In this paper, we proposed CacheNet, a neural network model caching mechanism for

edge computing. In CacheNet, an edge (cloud) server is responsible for the storage

and selection of neural network partitions, while an end device with a cached partition

performs inferencing most of the time.

Three key features enable CacheNet to achieve short end-to-end latency without

much compromise in prediction accuracy: 1) Caching avoids the communication

latency between an end device and edge (cloud) server whenever there is a cache hit;

2) specialized cached partitions do not sacrifice prediction accuracy if properly trained

and selected; 3) the computation and storage complexities of cached model partitions

are smaller rather than those of a full model.

80

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Table 3.2: Experimental Results with CIFAR-10 on Jetson TX2, Jetson Nano, and
Raspberry Pi 4 - TensorFlow Lite

Jetson TX2 Jetson Nano Raspberry Pi 4

D
ev
ic
e

E
dg

e

C
ac
he
N
et

D
ev
ic
e

E
dg

e

C
ac
he
N
et

D
ev
ic
e

E
dg

e

C
ac
he
N
et

FPS 2.59 4.71 7.83 2.19 3.74 7.31 0.90 5.44 4.24
Accuracy (%) 95.47 95.47 93.20 95.47 95.47 93.20 95.47 95.47 93.20
CPU (%) 77.26 4.40 52.37 79.92 5.90 56.82 74.29 1.66 53.45
Memory (Mb) 213.42 29.93 113.96 226.37 108.73 133.23 210.12 106.98 99.98
Time (s) 136.05 74.91 45.08 161.04 94.29 48.30 390.31 64.90 83.25
Device (s) 136.05 0.56 29.00 161.04 0.83 34.16 390.31 0.55 60.36
Edge (s) 0.00 74.35 16.07 0.00 93.46 14.13 0.00 64.35 22.89

In future works, we plan to experiment with more datasets and neural network

models using CacheNet. The two-level caching idea can be further extended to consider

a hierarchy of caches, e.g., distributed among end devices, edge nodes and cloud servers.

Another line of research is to apply neural architecture search to CacheNet to improve

its adaptability to different types of neural networks.

3.8 Appendix A: Absence of Bélády’s Anomaly

Bélády’s anomaly is the phenomenon that a larger cache incurs more cache misses

than a smaller one. In CacheNet, there are two possible ways to take advantage of

a larger cache size: 1) each individual submodel being cached has a larger capacity

(i.e., deeper); 2) more submodels are being cached on an end device. If both do not

result in fewer cache hits, we can conclude that Bélády’s anomaly does not occur in

CacheNet.

81

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Table 3.3: Experimental Results with FVG (15 FPS) on Jetson TX2, Jetson Nano,
and Raspberry Pi 4 - NCNN

Jetson TX2 Jetson Nano Raspberry Pi 4

D
ev
ic
e

E
dg

e

C
ac
he
N
et

D
ev
ic
e

E
dg

e

C
ac
he
N
et

D
ev
ic
e

E
dg

e

C
ac
he
N
et

FPS 11.36 10.40 20.80 10.41 10.40 22.70 5.10 11.36 14.70
Accuracy (%) 97.20 97.20 98.40 97.20 97.20 98.40 97.20 97.20 98.40
CPU (%) 96.05 8.27 22.35 95.22 11.54 23.37 96.32 4.23 24.37
Memory (Mb) 312.35 7.19 10.55 436.91 7.75 11.57 454.79 6.72 8.04
Time (s) 22.01 24.05 12.02 24.02 24.04 11.01 49.04 22.01 17.01
Device (s) 22.01 0.72 2.31 24.02 0.87 1.70 49.04 0.48 4.62
Edge (s) 0.00 23.32 9.71 0.00 23.17 9.31 0.00 21.53 12.38

3.8.1 Larger Capacity

A submodel with a larger capacity is defined as follows. Given any sequence X =

x1, x2, . . . , xN of images, audio clips etc. Let Φ = φ(1), φ(2), . . . , φ(Q) be an sequence of

submodel instances for caching, with respect to 1) their depths d(1) < d(2) < . . . < d(Q),

2) any layer in φ(1) contained by φ(2), . . ., and any layer in φ(Q−1) contained by

φ(Q). According to the capacity theorem Cohen et al. (2016), submodel instance φ(1)

expresses less functions than φ(2), . . ., and φ(Q−1) less functions than φ(Q).

Let H(ŷ|xi, φ(j)) be the predictive entropy given any input xi, i = 1, 2, . . . , N

and any submodel instance φ(j), j = 1, 2, . . . , Q. For a predefined threshold T , if

H(ŷ|xi, φ(j)) < T , we say it is a cache hit, else it is a cache miss.

Theorem 1. Let M(X,φ(j)) be the number of misses (faults) given the input sequence

X and the submodel instance φ(j), j = 1, 2, . . . , Q. Then M(X,φ(1)) ≥M(X,φ(2)) ≥

. . . ≥M(X,φ(Q))

Proof. We can prove this theorem by induction.

82

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Table 3.4: Experimental Results with FVG (15 FPS) on Jetson TX2, Jetson Nano,
and Raspberry Pi 4 - TensorFlow Lite

Jetson TX2 Jetson Nano Raspberry Pi 4

D
ev
ic
e

E
dg

e

C
ac
he
N
et

D
ev
ic
e

E
dg

e

C
ac
he
N
et

D
ev
ic
e

E
dg

e

C
ac
he
N
et

FPS 7.65 10.72 20.65 7.01 10.65 21.47 3.75 10.71 16.02
Accuracy (%) 97.20 97.20 98.40 97.20 97.20 98.40 97.20 97.20 98.40
CPU (%) 69.51 8.63 18.31 72.55 10.77 21.11 62.75 4.89 18.32
Memory (Mb) 194.68 10.61 16.16 181.79 99.08 16.95 190.74 96.64 10.42
Time (s) 32.70 23.33 12.11 35.67 23.48 11.64 66.65 23.33 15.60
Device (s) 32.70 0.49 2.42 35.67 0.74 2.87 66.65 0.80 4.59
Edge (s) 0.00 22.84 9.68 0.00 22.74 8.78 0.00 22.53 11.01

1) Base case: if X = x1, both φ(j) and φ(j+1) incurs a cache miss on x1, thus,

M(X,φ(j)) = M(X,φ(j+1))

2) Induction hypothesis: we need to show if X = x1, . . . , xi, M(X,φ(j)) ≥

M(X,φ(j+1)) for an arbitrary j, when X = x1, . . . , xi+1, M(X,φ(j)) ≥ M(X,φ(j+1))

also holds.

a) If the newly input xi+1 incurs a cache hit on the submodel instance φ(j), there

should be also a cache hit on φ(j+1). This claim relies on the capacity theorem Cohen

et al. (2016) that the submodel instance φ(j+1) has more functional expressibility

than φ(j). By definition, the submodel instance φ(j) can be embedded in φ(j+1).

The submodel instance φ(j+1)’s additional layers can be made as an identity for

x1, . . . , xi+1’s intermediate outputs. Thus, the claim holds.

b) If the new input xi+1 incurs a cache miss on φ(j), there may be a cache hit or

cache miss on φ(j+1). Since the submodel instance φ(j) is embedded in φ(j+1), and

φ(j+1)’s additional layers are made as an identity for x1, . . . , xi’s intermediate outputs.

83

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Table 3.5: Experimental Results with FVG (30 FPS) on Jetson TX2, Jetson Nano,
and Raspberry Pi 4 - NCNN

Jetson TX2 Jetson Nano Raspberry Pi 4

D
ev
ic
e

E
dg

e

C
ac
he
N
et

D
ev
ic
e

E
dg

e

C
ac
he
N
et

D
ev
ic
e

E
dg

e

C
ac
he
N
et

FPS 11.62 11.09 17.84 10.86 11.88 19.98 5.05 11.62 13.89
Accuracy (%) 96.40 96.40 97.20 96.40 96.40 97.20 96.40 96.40 97.20
CPU (%) 96.94 8.46 22.78 96.91 11.84 24.05 98.10 4.43 25.30
Memory (Mb) 310.16 12.76 9.00 455.06 12.79 11.52 454.23 11.48 9.35
Time (s) 43.02 45.08 28.03 46.03 42.07 25.03 99.04 43.01 36.01
Device (s) 43.02 0.87 3.77 46.03 0.65 3.21 99.04 0.22 8.52
Edge (s) 0.00 44.21 24.26 0.00 41.42 21.82 0.00 42.79 27.49

The additional layers of φ(j+1) may have the additional capacity to represent xi+1’s

function.

In either case, M(X,φ(j)) ≥ M(X,φ(j+1)) for an arbitrary j. The induction

hypothesis holds.

3.8.2 More Submodels

When there are multiple submodels to cache on an end device, a cache miss happens

if the predictive entropy of the current submodel is less than the threshold T and

there is no suitable submodel (which is decided by the S-InfoVAE on the end device)

currently stored on the end device.

Theorem 2. Let k (1 ≤ k ≤ K) be the number of submodels cached on an end device.

Let M̄(X, k) be the number of misses (faults) given the input sequence X. Then, under

the LRU cache replacement policy, M̄(X, 1) ≥ M̄(X, 2) ≥ · · · ≥ M̄(X,K).

Proof. We can prove this theorem by induction.

84

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Table 3.6: Experimental Results with FVG (30 FPS) on Jetson TX2, Jetson Nano,
and Raspberry Pi 4 - TensorFlow Lite

Jetson TX2 Jetson Nano Raspberry Pi 4

D
ev
ic
e

E
dg

e

C
ac
he
N
et

D
ev
ic
e

E
dg

e

C
ac
he
N
et

D
ev
ic
e

E
dg

e

C
ac
he
N
et

FPS 7.82 10.49 17.76 7.15 11.08 19.43 3.43 11.53 13.49
Accuracy (%) 96.40 96.40 97.20 96.40 96.40 97.20 96.40 96.40 97.20
CPU (%) 69.98 8.60 19.89 73.13 11.52 21.24 63.68 4.52 17.17
Memory (Mb) 197.03 10.34 16.64 189.10 99.05 16.09 191.69 6.79 11.23
Time (s) 63.90 47.67 28.15 69.89 45.13 25.73 145.61 43.35 37.06
Device (s) 63.90 0.69 4.97 69.89 0.99 5.57 145.61 0.19 9.29
Edge (s) 0.00 46.98 23.18 0.00 44.14 20.16 0.00 43.16 27.78

1) Base case: if X = x1, both k and k + 1 cached submodels incur a cache miss on

x1, thus, M̄(X, k) = M̄(X, k + 1)

2) Induction hypothesis: we need to show if X = x1, . . . , xi, M̄(X, k) ≥ M̄(X, k+1)

for an arbitrary k, when X = x1, . . . , xi+1, M̄(X, k) ≥ M̄(X, k + 1) also holds.

a) If the newly input xi+1 incurs a cache hit on k cached submodels, there should

be also a cache hit on k + 1 cached submodels, because the k cached submodels are

always embedded in the k + 1 submodels under the least recently used (LRU) policy.

b) If the newly input xi+1 incurs a cache miss on k cached submodels, there may

be a cache hit or cache miss on k + 1 cached submodels, because the k submodels

are embedded in the k + 1 submodels, the one more submodel in the cached k + 1

submodels may cause the hit or not depending on whether it matches the index given

by S-InfoVAE.

No matter in either case, M̄(X, k) ≥ M̄(X, k+1) for an arbitrary k. The induction

hypothesis holds. Thus, the theorem holds.

85

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

To this end, we conclude when individual submodels have larger capacity or more

submodels can be cached on an end device, CacheNet always has higher or the same

hit rates. In other words, it does not suffer from Bélády’s anomaly.

86

Chapter 4

Logographic Subword Model:

Compression for Machine Translation

This chapter is reproduced from “Logographic Subword Model for Neural Machine

Translation”, Yihao Fang, Rong Zheng, and Xiaodan Zhu, published in International

Conference on Computational Linguistics and Machine Translation (ICCLMT), Tokyo,

Japan, 2019. The author of this thesis is the first author and the main contributor of

this publication.

87

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Abstract

A logographic subword model is proposed to reinterpret logograms as abstract

subwords for neural machine translation. Our approach drastically reduces the size

of an artificial neural network, while maintaining comparable BLEU scores as those

attained with the baseline RNN and CNN seq2seq models. The smaller model size

also leads to shorter training and inference time. Experiments demonstrate that in the

tasks of English-Chinese/Chinese-English translation, the reduction of those aspects

can be from 11% to as high as 77%. Compared to previous subword models, abstract

subwords can be applied to various logographic languages. Considering most of the

logographic languages are ancient and very low resource languages, these advantages

are very desirable for archaeological computational linguistic applications such as a

resource-limited offline hand-held Demotic-English translator.

4.1 Introduction

The sequence-to-sequence (seq2seq) models have been widely adopted in machine

translation tasks. There are two important types of seq2seq models: the recurrent

neural network (RNN) based seq2seq models (Cho et al., 2014; Sutskever et al., 2014)

and the convolutional neural network (CNN) based sequence-to-sequence models

(Gehring et al., 2017). Both types of seq2seq models have gained extensive attention

and motivated many efforts to make them faster, smaller, and more accurate, such as

tied embedding (Press and Wolf, 2016), layer normalisation (Ba et al., 2016), weight

normalisation (Salimans and Kingma, 2016), and subword byte pair encoding (BPE)

(Sennrich et al., 2015; Gage, 1994), among others. Compared to the RNN seq2seq

88

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

models, the CNN seq2seq models substitute RNN components with CNN and allow

much faster training while retaining the BLEU scores closely comparable to those

obtained with RNN seq2seq models.

Despite the success of seq2seq models in machine translation, their high computing

complexity still strongly limits their applications such as those running on offline hand-

held translators. An efficient approach to reducing models’ complexity is compacting

their output layers. A cumbersome output layer significantly increases the number of

parameters in the model and consequently slows down model inference. Furthermore,

the amount of gradient calculation in training grows as the number of model parameters

increases. In machine translation, the size of the output layer is often proportional to

the size of the target dictionary. For instance, if there are one million words in the

target dictionary, 64 examples in a batch, and 50 words in a sentence, then there are

64× 1M units in the output layer of each RNN decoder cell, and 64× 50× 1M units

in the output layer of a CNN decoder. Compacting the target dictionary consequently

reduces the model size and speeds up model training and inference.

It is non-trivial to design a new approach that can compact the target dictionary and

is directly applicable to different logographic languages without sacrificing performance.

In this paper, we propose a logographic subword model that represents logograms as

multiple “abstract subwords” (code symbols), with an encoder and decoder transforming

logograms to abstract subwords and subwords to logograms. The encoder quantizes and

decomposes the embeddings of logograms to multiple abstract subwords (code symbols).

Word embedding or equivalent vector representation of words (Pennington et al., 2014;

Mikolov et al., 2013) preserves the closeness between word pairs through their distances

in the vector space. Quantization identifies common semantic components (abstract

89

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

subwords) among logograms. Two quantizers are examined in the experiments: the

state of the art locally optimized product quantization (LOPQ) (Kalantidis and

Avrithis, 2014) and a novel density aware product quantization (DAPQ). Quantizing

embeddings of logograms helps logograms with close meanings be more likely to share

common abstract subwords in one or more dimensions. By sharing, the number of

abstract subwords can be significantly reduced in the target directory. Furthermore,

only infrequent words are decomposed into code symbols. Taking word frequency into

consideration avoids unnecessary elongation of the source and target sentences.

Using the proposed model, the sizes of RNN and CNN sequence-to-sequence models

are reduced by 37% and 77% respectively in an English-to-Chinese translation task

without sacrificing performance. The training times are about 11% and 73% shorter;

the inference time is nearly halved in RNN and 36% shorter in CNN.

Considering many of the logographic languages are ancient and low resource

languages, these advantages are also desirable for archaeological applications. Also,

reduction in model sizes is useful for resource-limited applications such as those running

on hand-held devices. Furthermore, while we discuss the proposed models in the

context of translation, the methods have implications for other tasks of NLP involving

predicting tokens, e.g., language modeling, summarization, and image captioning.

The rest of the paper is organized as follows. Section 4.2 describes the related

work in neural machine translation. The proposed approach is presented in Section

4.3. Section 4.4 provides more details about product quantization and the proposed

density aware approach. In Section 4.5, we discuss more the encoding algorithm. The

experimental setups and experimental results are given in Section 4.6, and conclusions

and future work are discussed in Section 4.7.

90

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

4.2 Related Work

Cho et al (Cho et al., 2014) first proposed the RNN seq2seq model by modeling it

as an RNN encoder-decoder architecture, with the encoder transforming an input

sentence into a context vector and the decoder mapping the context vector to an

output sentence (the translation hypotheses). Bahdanau et al. (Bahdanau et al., 2014)

further improved RNN seq2seq models by making the encoder as a bidirectional gate

recurrent unit (GRU) and binding the attentional mechanism to the decoder. To avoid

overfitting in RNN seq2seq models, Gal and Ghahramani (Gal and Ghahramani, 2016)

proposed to apply the variational inference based dropout technique to the model. To

speed up convergence in training, Ba and his colleagues (Ba et al., 2016) introduced

layer normalization to stabilize state dynamics in RNNs. Salimans and Kingma

(Salimans and Kingma, 2016) proposed weight normalization that reparameterizes

weight vectors from their direction. To increase the model depth, Zhou et al. (Zhou

et al., 2016) proposed fast-forward connections where the shortest paths do not depend

on any recurrent calculations. Wu et al. (Wu et al., 2016b) introduced the bidirectional

stacked encoder and Barone and his colleague (Barone et al., 2017) proposed a BiDeep

RNN by replacing the GRU cells of a stacked encoder with multi-layer transition cells.

Deviating from RNN seq2seq models, Gehring et al. (Gehring et al., 2017) proposed

convolutional seq2seq model where the encoder and decoder were fully replaced by

convolutional neural networks (CNN). Their approach allows much faster training

while retaining the BLEU scores closely comparable to those obtained with RNN

seq2seq models.

91

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Embedding Sennrich and Haddow (Sennrich and Haddow, 2016) generalized the

embedding layer to support linguistic features such as morphological features, part-

of-speech tags, and syntactic dependency labels. Press and Wolf (Press and Wolf,

2016) proposed tier embedding and argued that weight tying reduces the size of neural

translation models. However, no attempt has been made to reduce the size of the

target dictionary through word embedding. Significant reduction in model complexity

is expected considering words are on the order of hundreds of thousands or more in a

typical dictionary.

Decomposition Sennrich et al. (Sennrich et al., 2015) proposed to segment words

of source and target sentences into smaller subword units using byte pair encoding

(BPE) compression (Gage, 1994). They showed an improvement in the BLEU scores of

1.1 and 1.3 for English-German and English-Russian translations, respectively. Despite

its advantage, BPE splits an alphabetic word to multiple letter groups, and thus it

is intrinsically not applicable to logographic languages such as Chinese, Chorti, and

Demotic (Ancient Egyptian) where a word is a glyph rather than alphabetic letters.

García-Martínez et al. (García-Martínez et al., 2016) proposed to decompose words

morphologically and grammatically into factored representations such as lemmas, part-

of-speech tag, tense, person, gender, and number. Their approach reduced training

time and out of vocabulary (OOV) rates with improved translation performance, but

also introduces unnecessary grammatical dependencies, (e.g. there are hundreds of

tenseless languages), and is not optimized in all scenarios.

To the best of our knowledge, our work is the first to explore an abstract subword

representation for logographic languages. The abstract representation makes it appli-

cable to different logographic languages. It is a very desirable feature especially for

92

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Figure 4.1: Abstract subwords are code symbols which are independent on a
particular language. They directly participate in machine translation on behave of

words of the logographic language.

most of the low resource logographic languages.

4.3 System Architecture

The proposed logographic subword model consists of an encoder and a decoder. The

encoder transforms a word into multiple abstract subwords (code symbols), and the

decoder transforms multiple abstract subwords into a word (Figure 4.1). Only abstract

subwords directly participate in the training of the sequence-to-sequence models. This

additional layer of abstraction reduces the model size, because the smaller dictionary

that the abstract subwords form results in an output layer with the smaller number of

units in the neural network.

Abstract subwords are code symbols which are independent on a particular language.

These symbols are shared among words, and thus there will be much fewer symbols

93

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Figure 4.2: The encoder converts the word “train” in the corpus to three new abstract
subwords (symbols) “@25”, “$814” and “&778”. “Train” and “talk” share the second
symbol “$814”, and “train” and “teach” share the third symbol “&778”. Through
sharing, the number of distinct symbols in the dictionary can be greatly reduced.

in both the source and target dictionaries (Figure 4.2). Symbols are created from a

quantizer’s codebook. The code at the first dimension is left padded an “@” and the

code at the second dimension is left padded a “$”, etc.

4.3.1 Encoder

The encoder quantizes and decomposes the embeddings of words into abstract subwords.

Embedding maps words to vectors of real numbers. Similarities among words in

the corpus are reflected to a large extent by Euclidean distances, which preserve

the relationship between pairs of words. However, machine translation is generally

modeled as a classification problem rather than a regression problem. Consequently,

vectors of real numbers need to be represented by vectors of distinct symbols. This

can be accomplished via quantization.

Quantization transforms vectors of real numbers to code symbols. In contrast to

the initial word identifiers (before embedding), code symbols embed the information

about word similarities. Furthermore, the code symbols can be far fewer than the

94

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

word identifiers, and this alleviates the classification burden and reduces the size of

the neural network. To retain the translation performance, quantization also needs to

enforce a one-to-one correspondence between words and vectors of code symbols.

In order not to significantly increase the length of a long sentence, the decomposition

procedure ensures that only infrequent words are replaced by their quantized vectors

of code symbols. Code symbols (abstract subwords) participate in the training of the

sequence-to-sequence model, as opposed to word identifiers.

The encoder transforms words in the corpus to fewer distinct symbols (abstract

subwords) resulting in a smaller dictionary. A smaller target dictionary leads to

a smaller model size. With the smaller number of weights and bias, less gradient

calculation is needed, and training is sped up. On the other hand, with the smaller

number of weights and bias, there are fewer operations during inference, and inference

time is shortened.

More details of quantization and decomposition will be covered in Section 4.4 and

Section 4.5 respectively.

4.3.2 Decoder

Since code symbols are used in training, actual words are unknown to the neural

network. Inference outputs are sequences of code symbols (abstract subwords). Symbol-

level prediction errors may make it impossible to exactly locate a word by the sequence

of decoded symbols. We notice that most of the time, such errors tend to be minor,

with only one of symbols in the sequence incorrectly predicted. In order to restore the

original symbols and locate the right word, we can apply the nearest neighbor search

(Jegou et al., 2011) to efficiently decode code symbols to words of the logographic

95

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

language even in presence of prediction errors.

Experiments show that the translation performance (BLEU score) with our ap-

proach actually matches that without any preprocessing, since the nearest neighbor

search to some extent rectifies prediction errors, and with the smaller number of

output classes (neurons), the resulting neural network has lower complexity.

4.4 Product Quantization

Quantization is an important component of the encoder. In our experiments, product

quantization methods are examined. Product quantization was first proposed by Jégou

and his colleagues (Jegou et al., 2011) for nearest neighbor search. They decomposed

the space into lower dimension subspaces and perform quantization on each subspace

separately. Consider a space of n dimensions evenly divided into m subspaces each

of n/m dimensions. Quantization is then performed on each of the m subspaces

separately and maps vectors in each subspace to codes in each sub-codebook.

Formally, let X be the set of all vectors in the space, and x is a vector in X.

Assume that x can be evenly divided into m subvectors, noted by ui(x), where

i ∈ I = {1, ...,m}. We have that x is the concatenation of all ui(x), noted by

x = u1(x)||...||um(x),

where symbol || stands for concatenation. With the above definitions, subspace Xi

can be defined as the set of all ui(x) for all x ∈ X, noted by

Xi := {ui(x)|x ∈ X},∀i ∈ I

96

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

The m subspaces are quantized separately. Subquantizer qi of subspace Xi maps ui(x)

to a reference vector in Ci = {ci,1, ci,2, . . . , ci,ki}, where ki is the size of the codebook

Ci for Xi. Here, qi defines a partition of Xi, namely,

Si,j := {ui(x)|x ∈ X and qi(ui(x)) = ci,j},

where i ∈ I, j ∈ Ji = {1, 2, . . . , ki}.

Let q(x) be the concatenation of all the reference vectors, noted by

q(x) = q1(u1(x))||...||qm(um(x))

The quality of a quantizer is usually measured by the mean squared error between the

input vector x and its reproduction value q(x),

EPQ =
∑
x∈X

||x− q(x)||2

For a quantizer to be optimal, it should quantize the subvectors of x ∈ X to their

nearest centroids, namely,

ci,j =
1

|Si,j|
∑

ui(x)∈Si,j

ui(x)

4.4.1 Centroid Initialization and Gaussian Kernel Density

Product quantization (Jegou et al., 2011) is an effective quantization method. However,

the design of the quantizer is application dependent. With respect to the GloVe

(Pennington et al., 2014) or Word2Vec (Mikolov et al., 2013) vector spaces, our

97

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

experiments show that higher frequency words tend to have higher densities around

in the space. Since high-frequency words are more likely to appear in the target

sentences, intuitively, making higher frequency words more distinguishable helps

improving translation performance. Thus, we propose a new density aware product

quantization (DAPQ), which is a variant of product quantization customized for word

embedding and machine translation.

First, we estimate the Gaussian kernel density for every subspace. The log density

is used in calculating the initial centroids for the k-means++ algorithm (Arthur and

Vassilvitskii, 2007). Initially, the first centroid is selected uniformly at random from

Xi, and subsequent centroids are chosen from any vector z in Xi with probability:

pi(z) =
ρ(z)D(z)2∑
z∈Xi ρ(z)D(z)2

, z ∈ Xi, i ∈ I, (4.4.1)

where ρ(z) is the Gaussian kernel density of z and D(z) denotes the distance from z

to its nearest centroid. The density term ρ(z) allows more centroids to be initially

assigned to denser areas. Consequently, dense words, which are also frequent words,

are more likely to be grouped into distinct clusters in subspaces. Doing so increases

the chances frequent words being correctly decoded in the target sentences.

4.4.2 The Number of Clusters and Degree of Distinctness

Quantization locally minimizes the distortion in each subspace. However, there are a

number of global hyperparameters that remain to be decided. In product quantization,

there are two important hyperparameters: the number of subspaces m and the number

of clusters in each subspace k. It is observed that the selections of m and k affect

the translation performance (BLEU scores), but their effects are indirect and not

98

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

analytically tractable. However, we observe that a more distinct correspondence (e.g.

the most distinct one-to-one correspondence) tends to improve translation performance.

Thus, it is necessary to introduce a metric to measure the degree of distinctness DoD

(Figure 4.4). Intuitively, larger k tends to increase the distinctness and consequently

translation performance. Therefore, it is reasonable to use DoD as a performance

metric to find the best number of clusters k in each subspace.

Degree of Distinctness

DoD affects the reversibility of quantization. It actually tells how unique the code

vectors are. Uniqueness is critical, e.g., if both “mile” and “kilometer” are encoded to

the same code vector, ambiguity will arise. It is not reversible no matter selecting either

one (e.g., based on weights), and it will hurt the translation quality. Our experiment

demonstrates that the degree of distinctness (uniqueness) actually significantly impacts

the final BLEU score in machine translation. Thus, it is a crucial metric to consider

in designing the encoding algorithm.

Formally, let W be the set of all the words from the logographic dictionary and Q

is the set of all the distinct code vectors generated by quantization. DoD D is defined

as e to the power of the multiplication of a scaler b and the result of 1 subtracted by

the cardinality of set W divided by that of set Q, noted by:

D = eb(1−
|W |
|Q|), (4.4.2)

where | · | is the cardinality of a set.

99

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Optimizing the Number of Clusters in each Subspace

As the number of clusters increases, DoD increases at the cost of a slightly larger

dictionary. Denote Dtrgt ∈ [0, 1] be the target DoD. To find the value of k, starting

from an initial value d m
√
|X|e, we incrementally search with step size η until the

resulting DoD reaches Dtrgt.

More generally, the number of clusters can be different from subspace to subspace.

Let ki be the number of clusters in subspace Xi with an initial value of d m
√
|X|e.

Finding the optimal ki’s is an integer programming problem. We adopt a simple

heuristic similar to coordinate descent by increasing the number of clusters in one

subspace at a time. Specifically, for each i, we compute ∆Di as the change in DoD

when increasing ki by η while keeping the others the same. Let i∗ = arg maxi∈I ∆Di.

Then, we update ki∗ = ki∗ + η. The process is repeated until Dtgrt is met.

4.4.3 Reduction in Target Dictionary

The target dictionary size is given by
∑

i ki. If Dtgrt = 1, it is easy to show that∏
i ki ≥ |X|. This implies that

∑
i ki ≥ m m

√
|X|. Therefore, the maximum reduction

in vocabulary size is
∑
i ki≥m

m
√
|X|

|X| . Empirical results show that ki’s found by the

heuristics discussed previously are mostly close to their initial values m
√
|X|, resulting

significant reduction in dictionary size. For example, for |X| = 64000 and m = 3, the

maximum reduction is 64000/3 ∗ 40 = 533.

100

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

4.5 Decomposition

Decomposition is another part of the encoder. Quantizing words to multiple code

symbols can significantly reduce the target dictionary size. However, doing so for

each word of a sentence would unnecessarily increase the length of the sentence.

Experiments show that longer sentences would adversely affect BLEU scores, training

and inference times. On the other hand, a smaller dictionary is beneficial to these

metrics. Clearly, there exists a trade-off between the dictionary size and sentence

length.

To address this problem, the decomposer measures the frequency of words in the

corpus, defined as the number of occurrences of a word in the corpus divided by the

total number of words in the corpus. It is observed that most words in the corpus

are infrequent words, while most sentences are largely composed of frequent words.

Therefore, it is sufficient and beneficial to only decompose infrequent words to their

vectors of code symbols, (to reduce the dictionary size but not to significant increase

sentence length).

We introduce parameter fct as the cut-off frequency to judge whether a word is an

infrequent word or not. If a word’s frequency is larger than the cut-off frequency, it is

a frequent word, or else an infrequent word. As shown in Figure 4.3, a larger cut-off

frequency leads to a smaller target dictionary size, but a longer sentence on average,

and vice versa.

In summary, the proposed encoder (as described in Algorithm 5) takes as input

the set of all words W , the corpus of all sentence pairs C, the number of partitions m,

the distinctness objective Dtrgt, the learning rate η, and the cutoff frequency fct. It

calculates the (GloVe (Pennington et al., 2014)) embedding of W and assigns it to X.

101

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Figure 4.3: For the logographic language Chinese, as the cut-off frequency increases,
the number of symbols decreases while the average sentence length increases. The
BLEU score, training, and inference are benefited from the smaller dictionary and
shorter sentences. There is a trade-off between them since they increase/decrease in

the opposite directions with respect to the cut-off frequency.

It initiates the degree of distinctness D and the number of clusters in each subspace

k. Here, k is initialized as d m
√
|X|e, and increases iteratively until the target degree

of distinctness is reached. Product quantization takes k as the hyper-parameter and

outputs the set of code symbols with minimum distortion. Decomposition decomposes

only infrequent words to their code symbols without over elongation of the sentences

based on the cut-off frequency fct.

4.6 Evaluation

In this section, we evaluate the translation performance of the proposed logographic

subword model in both the RNN and CNN sequence-to-sequence translators.

102

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Algorithm 5 Logographic Encoder
1: procedure Encode(W,C,m,Dtrgt, η, fct)
2: X ← EMBEDDING(W)
3: D← 0
4: k ← d m

√
|X|e

5: while D < Dtrgt do
6: Q← QUANTIZE(X,m, k)

7: D← e1− |W ||Q|

8: k ← k + η
9: end while

10: for w in C do
11: if w.f < fct then
12: DECOMPOSE(w,Q)
13: end if
14: end for
15: end procedure

4.6.1 Experiment Setup

The United Nation Parallel Corpus (Ziemski et al., 2016) is used for model training and

testing. English (alphabetic language) and Chinese (logographic language) translations

are evaluated for both the RNN and CNN translators. The first 500000 pair-wise

aligned sentences are taken from the corpus’s training dataset, among which sentences

longer than 40 words are not selected, (in order to simplify the model complexity

brought unnecessarily to the experiments). This results in 259644 pair-wise aligned

sentences for English and Chinese. To be consistent with the training dataset, sentences

longer than 40 words are also not selected from the corpus’s development and test

dataset, and there are remaining 1928 and 1948 (out of 4000) pair-wise aligned

sentences for development and test respectively. In total, there are 61168 and 31700

tokens for English and Chinese respectively in those sentences.

We evaluate the baseline model, and our logographic subword model with a LOPQ

103

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Table 4.1: Terms used in the proposed system

Term Meaning
W the set of all words
X the set of all word vectors
Q the set of all code vectors
m the number of partitions
k the number of clusters per subspace
D the degree of distinctness
η the learning rate
C the corpus of all sentence pairs
Dtrgt the distinctness objective
fct the cutoff frequency

and DAPQ quantizer (L-SW-LO and L-SW-DA respectively). In the encoder of the

logographic subword model, GloVe (Pennington et al., 2014) is used to construct

embeddings of logograms, wherein every word vector has 6 dimensions. The LOPQ

and DAPQ quantizers are both outputting 3-dimension code vectors. Code vectors

are formatted to abstract subword (symbol) vectors as illustrated in Figure 4.2. In

these experiments, Dtrgt are all set to 1, thus there exists a one-to-one correspondence

between a logographic word and the vector of abstract subwords (code symbols), and

the encoding is fully reversible.

The RNN seq2seq model is trained and evaluated on Nematus (Sennrich et al., 2017)

and Theano (Al-Rfou et al., 2016). It is a 2-layer bidirectional seq2seq model with each

GRU cell having 1024 units. Input embedding to both encoder and decoder cells have

512 dimensions. In the experiments with L-SW-LO and L-SW-DA, every infrequent

word is replaced by 3 code symbols. Since infrequent words rarely appear in sentences,

the sentence lengths do not increase substantially. Thus, in those experiments, the

cut-off lengths are set to 50. Theano is used to evaluate the proposed approach with

the RNN seq2seq model. A Nvidia GTX 1080ti GPU is assigned to each translation

104

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

task for both training and inference.

The CNN seq2seq model is trained and evaluated on Fairseq (Gehring et al.,

2017, 2016) and Torch (Collobert et al., 2011). Both the encoder and decoder in the

CNN seq2seq model are fully convolutional. The target dictionary size decides the

model complexity and how the hyperparameters are set. Since there are larger target

dictionaries in the experiments with the baseline model, we define 6 convolutional

layers with 768 channels in the first four layers and 1024 channels in the last two. The

kernel sizes are set to 3 for the first five layers and 1 for the last layer. Since there

are smaller dictionaries for L-SW-LO and L-SW-DA, we define 4 convolutional layers

with 384 channels in the first two layers and 512 channels in the last two. The kernel

sizes are set to 5 for the first two layers, 3 for the third layer and 1 for the last layer.

Input embedding to both encoder and decoder have 128 dimensions. Cut-off lengths

are set to 50 for all language pairs. Torch is used to evaluate the proposed approach

with the CNN seq2seq model. Two Nvidia GTX 1080ti GPUs are assigned to each

translation task for both training and inference.

4.6.2 Results

We examine how our approach improves the performance of both the RNN seq2seq

model (Cho et al., 2014; Bahdanau et al., 2014) and the CNN seq2seq model (Gehring

et al., 2017). During encoding, every logographic word in those sentences is replaced by

their corresponding abstract subword (symbol) vectors. New dictionaries are created

from those encoded sentences. This results in much smaller dictionaries for Chinese

(as indicated by the TrgtV column in Table 4.2). We then train both the RNN and

CNN sequence-to-sequence models with them.

105

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Table 4.2: “PrePr”: preprocessing method;“TrgtV”: the number of tokens in the
target dictionary; “NN”: the sizes of the neural networks; Per RNN, “T” is the elapsed
time of 15 epochs of training on one GTX1080TI GPU; per CNN, “T” is the elapsed
time of 18 epochs of training on two GTX1080TI GPUs. “t” is the average inference
time for the translation per each sentence. “L-SW-LO” stands for the logographic

subword model with LOPQ encoding. “L-SW-DA” stands for the logographic subword
model with DAPQ encoding.

(a) RNN Seq2Seq Model

L PrePr TrgtV NN(Mb) T(hr) t(ms) BLEU

E
N
-Z
H - 31702 466.6 16.45 241.79 50.31

L-SW-LO 4997 236.4 15.39 128.53 49.95
L-SW-DA 3492 228.1 13.45 124.43 49.63

ZH
-E

N - 61170 527.0 16.81 320.84 48.73
L-SW-LO 7844 253.7 14.93 137.58 48.59
L-SW-DA 6632 234.3 14.94 130.92 49.23

(b) CNN Seq2Seq Model

L PrePr TrgtV NN(Mb) T(hr) t(ms) BLEU

E
N
-Z
H - 31703 501.8 2.54 35.93 49.22

L-SW-LO 4998 112.2 0.98 21.05 47.07
L-SW-DA 3493 107.8 0.87 21.05 47.47

ZH
-E

N - 61171 532.8 3.06 34.91 48.21
L-SW-LO 7845 115.5 1.01 21.05 47.39
L-SW-DA 6633 111.4 1.00 22.07 48.22

During testing, BLEU scores are evaluated by comparing the predicted sentences

with the candidates. It is observed that BLEU scores are comparable to the baseline

model and slightly better in the Chinese-English translation.

Model sizes (NN), training time (T) and inference time (t) are measured as shown

in Table 4.2. We observe that in the English-to-Chinese translation task, the model

sizes are reduced by 37% and 77% respectively with RNN and CNN; the training time

is 11% and 73% shorter; and the inference time is nearly halved in RNN and 36%

shorter in CNN.

106

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Table 4.3: In the task of Chinese-English translation, the BPE approach cannot
identify subwords in Chinese logograms and consequently hurts the final BLEU score.

PrePr NN(Mb) T(hr) t(ms) BLEU
SW-BPE 347.2 14.59 169.92 47.66
L-SW-LO 253.7 14.93 137.58 48.59
L-SW-DA 234.3 14.94 130.92 49.23

We compare the logographic subword approaches with the subword BPE approach

for Chinese-English translation (Table 4.3). BPE cannot identify subwords in Chinese

logograms. Consequently, it hurts the final BLEU score. Our approaches fit better to

logographic languages in this direction. In the direction from English to Chinese, we

did not observe the proposed models are better than BPE-based models.

Reversibility is critical to translation performance. We explore various values of

DoD D (at cut-off frequency fct =∞) and evaluate the translation performance and

model sizes in the CNN seq2seq model (Figure 4.4). Experiments are conducted for

language pairs with the same hyper-parameters except different D values. As expected,

the BLEU score increases as D increases and reaches the maximum when D equals

to 1, since the encoding is fully reversible at this point. Figure 4.4 demonstrates the

correlation between DoD and the BLEU score at D = e0.5(1− |W ||Q|) (b = 0.5 in Equation

4.4.2); BLEU is proportional to D in both translation tasks.

4.7 Conclusion

A logographic subword model is proposed, with an encoder and decoder transforming

logograms to abstract subwords and subwords to logograms. The encoder quantizes

and decomposes the embeddings of logograms. By sharing common abstract subwords

(code symbols), quantization reduces the dictionary size without sacrificing translation

107

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Figure 4.4: There exists a correlation between the degree of distinctness D and the
BLEU score at D = e0.5(1− |W ||Q|) on a CNN seq2seq model. The BLEU score is

polynomially proportional to D for both language pairs.

performance. A new metric, degree of distinctness, is proposed to quantify the effect

of distinctness and reversibility.

The proposed approach has been shown with experiments to reduce model sizes

as well as shorten training and inference time for both RNN and CNN sequence-to-

sequence models. It is promising for reducing the complexity of other computationally

expensive NLP problems with potential impact on large-dictionary real-time offline

applications such as translation or dialog systems on offline mobile platforms.

As future work, we will build a faster and more accurate encoder and decoder, and

explore the use of abstract subwords in other logographic languages such as Chorti

and Demotic. Those are important since the proposed techniques help to understand

different logographic languages from the subword perspective.

108

Chapter 5

Conclusion

Many merits arise to real-time applications when deep learning is on the edge such

as shorter latency, better privacy, and autonomy. Edge artificial intelligence (EI)

methods arise in minimizing the difference between the current situation and future

vision including but not limited to model partitioning, caching, and compression. For

partitioning, we proposed TeamNet which is a knowledge-aware partitioning approach

for collaborative inference on mobile edge. For caching, we proposed CacheNet, an

information maximizing framework specialized to deep learning model caching on

the edge. For compression in machine translation, we proposed logographic subword

model which enables a more compact dictionary (vocabulary) to RNN and CNN

sequence-to-sequence models.

For future research, we first highlight deep insights and potential improvements to

the current approaches, and then we introduce new directions in the field of EI.

109

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

5.1 Deep Insights and Improvements

5.1.1 Partitioning and Caching in Sequence Learning

Uncertainty (entropy) has been deeply integrated into the architectures of TeamNet

and CacheNet. However, unlike the entropy of a single class prediction, the uncertainty

(entropy) of a sequence is a joint entropy of multiple class predictions. Computation

of joint entropy is intractable with a large number of classes and even a moderate

length sequence. Without solving this problem, it is impractical to extend TeamNet

and CacheNet to natural language processing tasks such as machine translation and

question answering. Although joint entropy is not likely computable directly, an

approximation may be found.

The uncertainty of a sequence X1, X2, ..., Xn can be quantified by the joint entropy

H(X1, X2, ..., Xn) of all the items (random variables) in the sequence. By Shannon,

the definition of the joint entropy involves the calculation of the joint probabilities

p(X1, X2, ..., Xn) of the all the possible sequences, noted by:

H(X1, X2, ..., Xn) = −
∑

p(X1, X2, ..., Xn) log p(X1, X2, ..., Xn)

Joint entropy is particularly important for the measurement of uncertainty in

applications involving sequences such as machine translation, text summarization and

video captioning. However, the computation of joint entropy is very expensive. For

example, in machine translation, there are usually more than 100000 words in the

English dictionary and 10 to 20 words in the sentence (sequence). The number of

combinations of all the choices will easily exceed 10000010. It poses a huge burden to

the computation of joint entropy and prohibits its application to uncertainty estimation

110

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

in deep learning.

In order to solve the above problem, many attempts have been proposed such as

the bounds of joint entropy Madiman and Tetali (2007) and other approximation

approaches Wu et al. (2016a); Radicchi and Castellano (2018), but the computations

are still intense. There is a need for simple approximations.

We observe that in Machine Translation, most of the item probabilities are near

zero. Near-zero item probabilities contribute very little to the joint probability and

the joint entropy of the sequence.

Assume the Markov property applies, according to the chain rule, the joint prob-

ability of the sequence p(X1, X2, ..., Xn) equals to the product of the conditional

probability p(Xi|Xi−1) of all items, where i is 1, 2, ..., n.

p(X1, X2, ..., Xn) =
n∏
i=1

p(Xi|Xi−1) (5.1.1)

Any of the p(Xi|Xi−1) near zero leads to the joint probability p(X1, X2, ..., Xn) near

zero. Consequently, this contributes very little to the joint entropy H(X1, X2, ..., Xn).

Since their contributions are little, we can group them into a residual H̄ in the

calculation.

In order to calculate the residual H̄, we assume the joint probability of those

sequence follows uniform distribution. Let p̄(Xi|Xi−1) be the mean conditional prob-

ability of items in those sequences. The mean joint probability of those sequences

p̄p(X1, X2, ..., Xn) is equal to the product of the conditional probabilities of all the

items, noted by:

p̄(X1, X2, ..., Xn) =
n∏
i=1

p̄(Xi|Xi−1) (5.1.2)

111

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Since it is easy to calculate the number of combinations N in total, the residual

H̄ is approximately equal to the negation of the total number N multiplied by mean

joint probability multiplied by the logarithm of mean joint probability, noted by:

H̄ ≈ −Np̄(X1, X2, ..., Xn) log p̄(X1, X2, ..., Xn) (5.1.3)

We define a set Ω with all the sequences with noticeable joint probabilities. The

joint entropy is then approximately the negation of the sum of the joint probability

of those sequences multiplied by the logarithm of the joint probability added by the

residual H̄, noted by:

H(X1, X2, ..., Xn) ≈ −
∑

Ω

p(X1, X2, ..., Xn) log p(X1, X2, ..., Xn) + H̄ (5.1.4)

The benefits are obvious. We only have to calculate a few joint probabilities,

considering there are only a few sequences with noticeable joint probabilities but they

contribute most to the joint entropy.

5.1.2 Partitioning in a Subjective and Unlabelled Task

TeamNet is applicable to supervised learning tasks but not unsupervised ones. Is

it necessary to label all the instances in an unlabelled dataset to train TeamNet,

especially for subjective predictions such as predicting the sentiments of music or text

messages?

Sentiment analysis aims to recognize the sentiment polarity through natural

language processing. Traditional sentiment analysis identifies either positive or negative

112

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

polarity from the text. The work in Fang et al. (2015) and Hu et al. (2009) goes

beyond binary classifications. The authors proposed to recognize specific emotions

through natural language processing on the lyrics.

Russell’s circumplex model of emotion Russell (1980) has been widely adopted by

many other researchers Paltoglou and Thelwall (2012); Gobron et al. (2010) in the

field of affective computing. The advantage of Russell’s model is that they represented

emotions as a coordinate in a two-dimensional space with valence as the x-axis and

arousal as the y-axis. Any emotion in Russell’s model corresponds to the combination

of the degrees of valence and arousal.

Consider the incorporation between the machine learning classifiers and Russell’s

Circumplex model. Fang et al. (2015) proposed to define emotional states on Russell’s

model and each state stands for a coordinate subspace in Russell’s two-dimensional

space. The advantage of their definition is that the output class labels of the classifiers

can be directly associated with specific emotions in Russell’s model. Support vector

machine (SVM) is used in Fang et al. (2015), and it has been shown to effectively

recognize emotional states given the n-gram language model of the lyrics. In natural

language processing, the n-gram model has been successfully used in tasks such as

machine translation Crego et al. (2005) and sentiment analysis Kouloumpis et al.

(2011); He et al. (2008). The SVM model was trained from a corpus labeled by crowd

workers.

The disadvantages of Fang et al. (2015)’s approach are that 1) the lyrics to label

were randomly selected, and 2) SVM is unsuitable for a subject-specific sentiment

analysis task. TeamNet inherits characteristics of mixture of experts (MoE), and

trains experts for a specific subject or group of subjects.

113

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

A possible approach is that TeamNet is initially trained by a smaller set of labeled

lyrics and then it judges which unlabeled lyric is worthy of labeling based on uncertainty.

(A possible way may be that only a very uncertain lyric for all the experts is worth

to label.) The labeling is performed on a crowdsourcing (or crowdsensing) platform.

Fewer labels often lead to lower costs to task owners.

5.2 Future Research Directions

Partitioning with Neural Architecture Search: How smaller can a partition

of TeamNet be compared to the full model? Shall a partition be of similar architecture

as the full model? Those questions may be answered by the recent advances in neural

architecture search (NAS). NAS approaches have shown to outperform hand-crafted

architectures on several tasks, such as image classification Real et al. (2019) and

semantic segmentation Liu et al. (2019). NAS in model partitioning is an interesting

direction to explore.

Hierarchical Partitioning as a Soft Decision Tree: Decision trees have been

shown to be advantageous in interpretability and accuracy. Recent research in decision

trees and neural networks has demonstrated the feasibility of combining both types

of models, such as neural-backed decision tree Wan et al. (2020). TeamNet, as a

partitioning approach, inheriting characteristics of MoE models, is similar to a decision

tree hierarchy. Is it possible to take one step further to make it an interpretable soft

decision tree? If so, more AI tasks become provable rather than empirical. A rigorous

partitioning approach also improves the reliability of EI applications.

114

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Partitioning with Conditional Variational Autoencoder: It has been ob-

served in CacheNet (a combination of caching and partitioning) that variational

autoencoder (with maximizing mutual information between the input and the latent

variable) helps to diversify a dataset into specific subsets. If the dimension of latent

variables is properly chosen, a roughly balanced partition can be achieved. Conditional

variational autoencoder allows a decoder to generate an output with respect to a

particular condition. The combination of a condition and mutual information gives

more control to the partitioning process.

Compression with Gradient-Optimizing Product Quantization: Product

quantization has shown a significant reduction in the dictionary size. It is possi-

ble to further improve the compression ratio if product quantization is applied to

all the network parameters. The challenge is that it is hard to scale up with a

heuristic quantization algorithm. Combination with a gradient descent algorithm in

optimization allows a thorough quantization throughout all neural network parameters.

Edge Artificial Intelligence in Self-Driving and Driving-Assistance: Artifi-

cial neural networks have been successfully applied to self-driving and driving-assistance

tasks such as lane change prediction Dou et al. (2018); Scheel et al. (2019) and lane

detection Zou et al. (2019). Model partitioning, caching, and compression help reduce

latency substantially and enable real-time prediction and detection for self-driving

vehicles. In such applications, the input data is sequential in nature, e.g., multiple

vision or LADAR frames in lane change prediction. Thus, it is important to extend

EI approaches to be handle sequence data.

115

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,

S., Irving, G., Isard, M., et al. (2016). Tensorflow: a system for large-scale machine

learning. In OSDI, volume 16, pages 265–283.

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N.,

Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., et al. (2016). Theano: A

python framework for fast computation of mathematical expressions. arXiv preprint

arXiv:1605.02688, 472, 473.

Aljundi, R., Chakravarty, P., and Tuytelaars, T. (2017). Expert gate: Lifelong learning

with a network of experts. In CVPR, pages 7120–7129.

Anil, R., Pereyra, G., Passos, A., Ormandi, R., Dahl, G. E., and Hinton, G. E. (2018).

Large scale distributed neural network training through online distillation. arXiv

preprint arXiv:1804.03235.

Apicharttrisorn, K., Ran, X., Chen, J., Krishnamurthy, S. V., and Roy-Chowdhury,

A. K. (2019). Frugal following: Power thrifty object detection and tracking for

mobile augmented reality. In Proceedings of the 17th Conference on Embedded

Networked Sensor Systems, pages 96–109.

116

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Arthur, D. and Vassilvitskii, S. (2007). k-means++: The advantages of careful

seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473.

Bao, W., Lai, W.-S., Ma, C., Zhang, X., Gao, Z., and Yang, M.-H. (2019). Depth-aware

video frame interpolation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3703–3712.

Barone, A. V. M., Helcl, J., Sennrich, R., Haddow, B., and Birch, A. (2017). Deep

architectures for neural machine translation. arXiv preprint arXiv:1707.07631.

Best-Rowden, L., Han, H., Otto, C., Klare, B. F., and Jain, A. K. (2014). Uncon-

strained face recognition: Identifying a person of interest from a media collection.

IEEE Transactions on Information Forensics and Security, 9(12), 2144–2157.

Bishop, C. M. and Svenskn, M. (2002). Bayesian hierarchical mixtures of experts. In

Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence,

pages 57–64. Morgan Kaufmann Publishers Inc.

Cao, Q., Shen, L., Xie, W., Parkhi, O. M., and Zisserman, A. (2018). Vggface2: A

dataset for recognising faces across pose and age. In 2018 13th IEEE International

Conference on Automatic Face & Gesture Recognition (FG 2018), pages 67–74.

IEEE.

117

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Chapelle, O. and Wu, M. (2010). Gradient descent optimization of smoothed informa-

tion retrieval metrics. Information retrieval, 13(3), 216–235.

Chatelain, C., Heutte, L., and Paquet, T. (2006). Segmentation-driven recognition

applied to numerical field extraction from handwritten incoming mail documents. In

International Workshop on Document Analysis Systems, pages 564–575. Springer.

Chen, C., Batselier, K., and Wong, N. (2017). A novel tensor-based model compression

method via tucker and tensor train decompositions. In 2017 IEEE 26th Conference

on Electrical Performance of Electronic Packaging and Systems (EPEPS), pages

1–3. IEEE.

Chen, T. Y.-H., Ravindranath, L., Deng, S., Bahl, P., and Balakrishnan, H. (2015).

Glimpse: Continuous, real-time object recognition on mobile devices. In Proceedings

of the 13th ACM Conference on Embedded Networked Sensor Systems, pages 155–168.

ACM.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,

and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder

for statistical machine translation. arXiv preprint arXiv:1406.1078.

Cireşan, D., Meier, U., and Schmidhuber, J. (2012). Multi-column deep neural

networks for image classification. arXiv preprint arXiv:1202.2745.

Ciresan, D. C., Meier, U., Masci, J., Maria Gambardella, L., and Schmidhuber,

J. (2011). Flexible, high performance convolutional neural networks for image

classification. In IJCAI Proceedings-International Joint Conference on Artificial

Intelligence, volume 22, page 1237. Barcelona, Spain.

118

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Cireşan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2011). Handwrit-

ten digit recognition with a committee of deep neural nets on gpus. arXiv preprint

arXiv:1103.4487.

Cohen, N., Sharir, O., and Shashua, A. (2016). On the expressive power of deep

learning: A tensor analysis. In Conference on Learning Theory, pages 698–728.

Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011). Torch7: A matlab-like

environment for machine learning. In BigLearn, NIPS workshop, number EPFL-

CONF-192376.

Courbariaux, M., Bengio, Y., and David, J. (2014). Low precision arithmetic for deep

learning. CoRR, abs/1412.7024, 4.

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). Binaryconnect: Training deep

neural networks with binary weights during propagations. In Advances in neural

information processing systems, pages 3123–3131.

Crego, J. M., Mariño, J. B., and Gispert, A. d. (2005). An n-gram-based statistical ma-

chine translation decoder. In Ninth European Conference on Speech Communication

and Technology.

Delalleau, O. and Bengio, Y. (2011). Shallow vs. deep sum-product networks. In

Advances in Neural Information Processing Systems, pages 666–674.

Deng, W., Hu, J., Zhang, N., Chen, B., and Guo, J. (2017). Fine-grained face

verification: Fglfw database, baselines, and human-dcmn partnership. Pattern

Recognition, 66, 63–73.

119

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Diederik, P. K., Welling, M., et al. (2014). Auto-encoding variational bayes. In

Proceedings of the International Conference on Learning Representations (ICLR).

Dou, Y., Fang, Y., Hu, C., Zheng, R., and Yan, F. (2018). Gated branch neural

network for mandatory lane changing suggestion at the on-ramps of highway. IET

Intelligent Transport Systems, 13(1), 48–54.

Fang, Y., Barone, M., and Woolhouse, M. (2015). Sentiment analysis of mandarin

pop lyrics using multi-emotion profiles. In Seminar on Cognitively Based Music

Informatics Research.

Fang, Y., Jin, Z., and Zheng, R. (2019). Teamnet: A collaborative inference framework

on the edge. In 2019 IEEE 39th International Conference on Distributed Computing

Systems (ICDCS), pages 1487–1496. IEEE.

Gage, P. (1994). A new algorithm for data compression. C Users J., 12(2), 23–38.

Gal, Y. and Ghahramani, Z. (2016). A theoretically grounded application of dropout

in recurrent neural networks. In Advances in neural information processing systems,

pages 1019–1027.

García-Martínez, M., Barrault, L., and Bougares, F. (2016). Factored neural machine

translation. arXiv preprint arXiv:1609.04621.

Gastaldi, X. (2017). Shake-shake regularization. arXiv preprint arXiv:1705.07485.

Gehring, J., Auli, M., Grangier, D., and Dauphin, Y. N. (2016). A convolutional

encoder model for neural machine translation. arXiv preprint arXiv:1611.02344.

120

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convolu-

tional sequence to sequence learning. arXiv preprint arXiv:1705.03122.

Gens, R. and Domingos, P. (2012). Discriminative learning of sum-product networks.

In Advances in Neural Information Processing Systems, pages 3239–3247.

Gobron, S., Ahn, J., Paltoglou, G., Thelwall, M., and Thalmann, D. (2010). From

sentence to emotion: a real-time three-dimensional graphics metaphor of emotions

extracted from text. The Visual Computer, 26(6-8), 505–519.

Gong, Y., Liu, L., Yang, M., and Bourdev, L. (2014). Compressing deep convolutional

networks using vector quantization. arXiv preprint arXiv:1412.6115.

Guo, P., Hu, B., Li, R., and Hu, W. (2018). Foggycache: Cross-device approximate

computation reuse. In Proceedings of the 24th Annual International Conference on

Mobile Computing and Networking, pages 19–34.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015). Deep learning

with limited numerical precision. In International Conference on Machine Learning,

pages 1737–1746.

He, H., Jin, J., Xiong, Y., Chen, B., Sun, W., and Zhao, L. (2008). Language

feature mining for music emotion classification via supervised learning from lyrics.

In International Symposium on Intelligence Computation and Applications, pages

426–435. Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778.

121

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.

(2012). Improving neural networks by preventing co-adaptation of feature detectors.

arXiv preprint arXiv:1207.0580.

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 7132–7141.

Hu, X., Downie, J. S., and Ehmann, A. F. (2009). Lyric text mining in music mood

classification. American music, 183(5,049), 2–209.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely con-

nected convolutional networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708.

Huang, G. B., Mattar, M., Berg, T., and Learned-Miller, E. (2008). Labeled faces in

the wild: A database forstudying face recognition in unconstrained environments.

In Workshop on faces in’Real-Life’Images: detection, alignment, and recognition.

Huynh, L. N., Lee, Y., and Balan, R. K. (2017). Deepmon: Mobile gpu-based deep

learning framework for continuous vision applications. In Proceedings of the 15th

Annual International Conference on Mobile Systems, Applications, and Services,

pages 82–95. ACM.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

122

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive

mixtures of local experts. Neural computation, 3(1), 79–87.

Jegou, H., Douze, M., and Schmid, C. (2011). Product quantization for nearest

neighbor search. IEEE transactions on pattern analysis and machine intelligence,

33(1), 117–128.

Jordan, M. I. and Jacobs, R. A. (1994). Hierarchical mixtures of experts and the em

algorithm. Neural computation, 6(2), 181–214.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S.,

Bhatia, S., Boden, N., Borchers, A., et al. (2017). In-datacenter performance analysis

of a tensor processing unit. In Computer Architecture (ISCA), 2017 ACM/IEEE

44th Annual International Symposium on, pages 1–12. IEEE.

Kalantidis, Y. and Avrithis, Y. (2014). Locally optimized product quantization for

approximate nearest neighbor search. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2321–2328.

Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., and Tang, L.

(2017). Neurosurgeon: Collaborative intelligence between the cloud and mobile edge.

In Proceedings of the Twenty-Second International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 615–629. ACM.

Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., and Shin, D. (2015). Compression

of deep convolutional neural networks for fast and low power mobile applications.

arXiv preprint arXiv:1511.06530.

123

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Ko, J. H., Na, T., Amir, M. F., and Mukhopadhyay, S. (2018). Edge-host partitioning of

deep neural networks with feature space encoding for resource-constrained internet-

of-things platforms. arXiv preprint arXiv:1802.03835.

Kouloumpis, E., Wilson, T., and Moore, J. (2011). Twitter sentiment analysis: The

good the bad and the omg! In Fifth International AAAI conference on weblogs and

social media.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from

tiny images. Technical report, Citeseer.

Krizhevsky, A., Nair, V., and Hinton, G. (2010). Cifar-10 (canadian institute for

advanced research). URL http://www. cs. toronto. edu/kriz/cifar. html.

Kwon, J. and Lee, K. M. (2008). Tracking of abrupt motion using wang-landau

monte carlo estimation. In European conference on computer vision, pages 387–400.

Springer.

Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Jiao, L., Qendro, L., and

Kawsar, F. (2016). Deepx: A software accelerator for low-power deep learning

inference on mobile devices. In Proceedings of the 15th International Conference on

Information Processing in Sensor Networks, page 23. IEEE Press.

LeCun, Y., Haffner, P., Bottou, L., and Bengio, Y. (1999). Object recognition with

gradient-based learning. In Shape, contour and grouping in computer vision, pages

319–345. Springer.

124

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Lin, D., Talathi, S., and Annapureddy, S. (2016a). Fixed point quantization of deep

convolutional networks. In International Conference on Machine Learning, pages

2849–2858.

Lin, D., Talathi, S., and Annapureddy, S. (2016b). Fixed point quantization of deep

convolutional networks. In International Conference on Machine Learning, pages

2849–2858.

Lin, M., Chen, Q., and Yan, S. (2013). Network in network. arXiv preprint

arXiv:1312.4400.

Littlestone, N. and Warmuth, M. K. (1994). The weighted majority algorithm.

Information and computation, 108(2), 212–261.

Liu, C., Chen, L.-C., Schroff, F., Adam, H., Hua, W., Yuille, A. L., and Fei-Fei, L.

(2019). Auto-deeplab: Hierarchical neural architecture search for semantic image

segmentation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 82–92.

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L. (2017). Sphereface: Deep

hypersphere embedding for face recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 212–220.

Madiman, M. and Tetali, P. (2007). Sandwich bounds for joint entropy. In Information

Theory, 2007. ISIT 2007. IEEE International Symposium on, pages 511–515. IEEE.

Mathur, A., Lane, N. D., Bhattacharya, S., Boran, A., Forlivesi, C., and Kawsar,

F. (2017). Deepeye: Resource efficient local execution of multiple deep vision

models using wearable commodity hardware. In Proceedings of the 15th Annual

125

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

International Conference on Mobile Systems, Applications, and Services, pages

68–81. ACM.

Miah, M. B. A., Yousuf, M. A., Mia, M. S., and Miya, M. P. (2015). Handwritten

courtesy amount and signature recognition on bank cheque using neural network.

International Journal of Computer Applications, 118(5).

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Miller, D., Brossard, E., Seitz, S., and Kemelmacher-Shlizerman, I. (2015). Megaface:

A million faces for recognition at scale. arXiv preprint arXiv:1505.02108.

Mutlu, O. and Subramanian, L. (2015). Research problems and opportunities in

memory systems. Supercomputing frontiers and innovations, 1(3), 19–55.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th international conference on machine learning

(ICML-10), pages 807–814.

Ng, H.-W. and Winkler, S. (2014). A data-driven approach to cleaning large face

datasets. In Image Processing (ICIP), 2014 IEEE International Conference on,

pages 343–347. IEEE.

Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov, D. P. (2015). Tensorizing neural

networks. In Advances in neural information processing systems, pages 442–450.

Nurvitadhi, E., Venkatesh, G., Sim, J., Marr, D., Huang, R., Ong Gee Hock, J., Liew,

Y. T., Srivatsan, K., Moss, D., Subhaschandra, S., et al. (2017). Can fpgas beat

126

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

gpus in accelerating next-generation deep neural networks? In Proceedings of the

2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,

pages 5–14. ACM.

Paltoglou, G. and Thelwall, M. (2012). Seeing stars of valence and arousal in blog

posts. IEEE Transactions on Affective Computing, 4(1), 116–123.

Parkhi, O. M., Vedaldi, A., Zisserman, A., et al. (2015). Deep face recognition. In

BMVC, volume 1, page 6.

Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for word

representation. In Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), pages 1532–1543.

Poon, H. and Domingos, P. (2011). Sum-product networks: A new deep architecture.

In 2011 IEEE International Conference on Computer Vision Workshops (ICCV

Workshops), pages 689–690. IEEE.

Press, O. and Wolf, L. (2016). Using the output embedding to improve language

models. arXiv preprint arXiv:1608.05859.

Radicchi, F. and Castellano, C. (2018). Uncertainty reduction for stochastic processes

on complex networks. Physical Review Letters, 120(19), 198301.

Rasmussen, C. E. and Ghahramani, Z. (2002). Infinite mixtures of gaussian process

experts. In Advances in neural information processing systems, pages 881–888.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Aging evolution for image

classifier architecture search. In AAAI Conference on Artificial Intelligence.

127

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Russell, J. A. (1980). A circumplex model of affect. Journal of personality and social

psychology, 39(6), 1161.

Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E., and Ramabhadran, B.

(2013). Low-rank matrix factorization for deep neural network training with high-

dimensional output targets. In 2013 IEEE international conference on acoustics,

speech and signal processing, pages 6655–6659. IEEE.

Salimans, T. and Kingma, D. P. (2016). Weight normalization: A simple reparame-

terization to accelerate training of deep neural networks. In Advances in Neural

Information Processing Systems, pages 901–909.

Sau, B. B. and Balasubramanian, V. N. (2016). Deep model compression: Distilling

knowledge from noisy teachers. arXiv preprint arXiv:1610.09650.

Scheel, O., Nagaraja, N. S., Schwarz, L., Navab, N., and Tombari, F. (2019). Attention-

based lane change prediction. In 2019 International Conference on Robotics and

Automation (ICRA), pages 8655–8661. IEEE.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for

face recognition and clustering. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 815–823.

Sennrich, R. and Haddow, B. (2016). Linguistic input features improve neural machine

translation. arXiv preprint arXiv:1606.02892.

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural machine translation of rare

words with subword units. arXiv preprint arXiv:1508.07909.

128

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Sennrich, R., Firat, O., Cho, K., Birch, A., Haddow, B., Hitschler, J., Junczys-

Dowmunt, M., Läubli, S., Barone, A. V. M., Mokry, J., et al. (2017). Nematus: a

toolkit for neural machine translation. arXiv preprint arXiv:1703.04357.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J.

(2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts

layer. arXiv preprint arXiv:1701.06538.

Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmentation

for deep learning. Journal of Big Data, 6(1), 60.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning

with neural networks. In Advances in neural information processing systems, pages

3104–3112.

Suzuki, J. and Nagata, M. (2016). Learning compact neural word embeddings by

parameter space sharing. In IJCAI, pages 2046–2052.

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Closing the

gap to human-level performance in face verification. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1701–1708.

Teerapittayanon, S., McDanel, B., and Kung, H. (2016). Branchynet: Fast inference

via early exiting from deep neural networks. In Pattern Recognition (ICPR), 2016

23rd International Conference on, pages 2464–2469. IEEE.

Teerapittayanon, S., McDanel, B., and Kung, H. (2017). Distributed deep neural

networks over the cloud, the edge and end devices. In Distributed Computing

129

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

Systems (ICDCS), 2017 IEEE 37th International Conference on, pages 328–339.

IEEE.

Visin, F., Kastner, K., Cho, K., Matteucci, M., Courville, A., and Bengio, Y. (2015).

Renet: A recurrent neural network based alternative to convolutional networks.

arXiv preprint arXiv:1505.00393.

Wan, A., Dunlap, L., Ho, D., Yin, J., Lee, S., Jin, H., Petryk, S., Bargal, S. A.,

and Gonzalez, J. E. (2020). Nbdt: Neural-backed decision trees. arXiv preprint

arXiv:2004.00221.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R. (2013). Regularization

of neural networks using dropconnect. In International conference on machine

learning, pages 1058–1066.

Wu, J., Gupta, S., and Bajaj, C. (2016a). Higher order mutual information approxi-

mation for feature selection. arXiv preprint arXiv:1612.00554.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,

Cao, Y., Gao, Q., Macherey, K., et al. (2016b). Google’s neural machine translation

system: Bridging the gap between human and machine translation. arXiv preprint

arXiv:1609.08144.

Xu, M., Zhu, M., Liu, Y., Lin, F. X., and Liu, X. (2018). Deepcache: principled cache

for mobile deep vision. In Proceedings of the 24th Annual International Conference

on Mobile Computing and Networking, pages 129–144. ACM.

Yao, B., Walther, D., Beck, D., and Fei-Fei, L. (2009). Hierarchical mixture of

130

Ph.D. Thesis – Y. Fang McMaster University – Computer Science

classification experts uncovers interactions between brain regions. In Advances in

Neural Information Processing Systems, pages 2178–2186.

Yi, D., Lei, Z., Liao, S., and Li, S. Z. (2014). Learning face representation from scratch.

arXiv preprint arXiv:1411.7923.

Zhang, Z., Tran, L., Yin, X., Atoum, Y., Wan, J., Wang, N., and Liu, X. (2019).

Gait recognition via disentangled representation learning. In In Proceeding of IEEE

Computer Vision and Pattern Recognition, Long Beach, CA.

Zhao, S., Song, J., and Ermon, S. (2019). Infovae: Balancing learning and inference

in variational autoencoders. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 5885–5892.

Zhou, J., Cao, Y., Wang, X., Li, P., and Xu, W. (2016). Deep recurrent mod-

els with fast-forward connections for neural machine translation. arXiv preprint

arXiv:1606.04199.

Ziemski, M., Junczys-Dowmunt, M., and Pouliquen, B. (2016). The united nations

parallel corpus v1. 0. In LREC.

Zou, Q., Jiang, H., Dai, Q., Yue, Y., Chen, L., and Wang, Q. (2019). Robust

lane detection from continuous driving scenes using deep neural networks. IEEE

Transactions on Vehicular Technology.

131

	Lay Abstract
	Abstract
	Acknowledgements
	Notation, Definitions, and Abbreviations
	Introduction
	Deep Learning
	Edge Artificial Intelligence
	Main Contributions and Thesis Organization

	TeamNet: Knowledge-Aware Partitioning for Collaborative Inference
	Introduction
	Related Work
	System Architecture
	Training TeamNet
	TeamNet Inference
	Performance Evaluation
	Conclusion
	Appendix A: Proof Sketch of Convergence

	CacheNet: An Information Maximizing Caching Framework
	Introduction
	Related Work
	System Design
	Training CacheNet
	CacheNet Inference
	Evaluation
	Conclusion
	Appendix A: Absence of Bélády's Anomaly

	Logographic Subword Model: Compression for Machine Translation
	Introduction
	Related Work
	System Architecture
	Product Quantization
	Decomposition
	Evaluation
	Conclusion

	Conclusion
	Deep Insights and Improvements
	Future Research Directions

