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LAY ABSTRACT: 

 

 Before deciding on treatment for patients with lung cancer, a critical step in the 

investigation is finding out whether the lymph nodes in the chest contain cancer cells. This 

is accomplished through medical imaging of the lymph nodes or taking a biopsy of the 

lymph node tissue using a needle attached to a scope that is entered through the airway 

wall. The purpose of these tests is to ensure that lung cancer patients receive the optimal 

treatment option. However, imaging of the lymph nodes is heavily reliant on human 

interpretation, which can be error prone. We aimed to critically analyze and investigate the 

use of Artificial Intelligence to enhance clinician performance for image interpretation. We 

performed a search of the medical literature for the use of Artificial Intelligence to 

diagnosis lung cancer from medical imaging. We also taught a computer program, known 

as NeuralSeg, to learn and identify cancerous lymph nodes from ultrasound imaging. This 

thesis provides a significant contribution to the Artificial Intelligence literature and 

provides recommendations for future research.   
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ABSTRACT: 

Background- Mediastinal staging is the rate-limiting step prior to initiation of lung cancer 

treatment and is essential in identifying the most appropriate treatment for the patient. 

However, this process is often complex and involves multiple imaging modalities including 

invasive and non-invasive methods for the assessment of lymph nodes in the mediastinum 

which are error prone. The use of Artificial Intelligence may be able to provide more 

accurate and precise measurements and eliminate error associated with medical imaging.  

Methods-This thesis was conducted in three parts. In Part 1, we synthesized and critically 

appraised the methodological quality of existing studies that use Artificial Intelligence to 

diagnosis and stage lung cancer from thoracic imaging based on lymph node features. In 

Part 2, we determined the inter-rater reliability of segmentation of the ultrasonographic 

lymph node features performed by an experienced endoscopist (manually) compared to 

NeuralSeg (automatically). In Part 3, we developed and validated a deep neural network 

through a clinical prediction model to determine if NeuralSeg could learn and identify 

ultrasonographic lymph node features from endobronchial ultrasound images in patients 

undergoing lung cancer staging. 

Results- In Part 1, there were few studies in the Artificial Intelligence literature that 

provided a complete and detailed description of the design, Artificial Intelligence 

architecture, validation strategies and performance measures.  In Part 2, NeuralSeg and the 

experienced endosonographer possessed excellent inter-rater correlation (Intraclass 

Correlation Coefficient = 0.76, 95% CI= 0.70 – 0.80, p<0.0001). In Part 3, NeuralSeg’s 
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algorithm had an accuracy of 73.78% (95% CI: 68.40% to 78.68%), a sensitivity of 18.37% 

(95% CI: 8.76% to 32.02%) and specificity of 84.34% (95% CI: 79.22% to 88.62%). 

Conclusions- Analysis of staging modalities for lung cancer using Artificial Intelligence 

may be useful for when results are inconclusive or uninterpretable by a human reader. 

NeuralSeg’s high specificity may inform decision-making regarding biopsy if results are 

benign. Prospective external validation of algorithms and direct comparisons through cut-

off thresholds are required to determine their true predictive capability. Future work with 

a larger dataset will be required to improve and refine the algorithm prior to trials in clinical 

practice. 
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OVERVIEW OF THESIS: 

 

This master's thesis is composed of five chapters and contains three separate papers 

that will be submitted to peer reviewed medical journals. The chapters are briefly outlined 

below.  

 

Chapter 1: The first chapter presents an overview of the Canadian lung cancer literature. 

The state of lung cancer diagnosis and staging is summarized and various diagnostic 

modalities for thoracic oncology are highlighted. This chapter further discusses the recent 

work of various ultrasonographic features used for lymph node (LN) malignancy prediction 

that laid the foundation for this master’s thesis. An introduction to the use of Artificial 

Intelligence in diagnostic imaging is also explained.  

 

Chapter 2: This systematic review aims to critically appraise the current use of radiomics 

in medical imaging for the staging and diagnosis of nodal involvement in lung cancer. In 

this chapter, we aim to determine the diagnostic accuracy of radiomics for mediastinal 

staging in patients undergoing computed tomography, positron emission tomography or 

endobronchial ultrasound imaging procedures for lung cancer. Overall, a synthesis of data 

from 19 studies is provided and diagnostic statistics on various segmentation algorithms to 

predict lymph node malignancy are reported. However, many of these studies had unclear 

reporting and only one study externally validated their model.  
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Chapter 3: This chapter aimed to determine if a deep neural network could learn to identify 

and segment four ultrasonographic lymph node features (short axis, margins, central hilar 

structure, central necrosis) that were part of the Canada Lymph Node Score in order to 

reduce the operator dependency associated with the tool. We compared manual and 

automatic segmentation of ultrasonographic lymph node features and found that the deep 

neural network was able to segment the features with greater accuracy than the manual 

segmentations produced by the endosonographer. However, we identified that the proposed 

prediction model was needed and that the model would require further validation.  

 

Chapter 4: We developed and validated a deep neural network known as NeuralSeg to 

determine if it was capable of predicting LN metastasis through the segmentation of 

ultrasonographic LN features observed during EBUS imaging. This study was conducted 

in two phases: a derivation phase followed by a validation phase. In the derivation phase, 

LN images were segmented twice by a blinded experienced endosonographer using 3D 

Slicer and a 5-fold cross-validation was used for training NeuralSeg. In the validation 

phase, LN images were prospectively collected to test the algorithm. NeuralSeg showed 

excellent performance in identifying malignant LNs from EBUS images. However, future 

research with a larger dataset will be required to improve and refine the algorithm prior to 

trials in clinical practice 

 

Chapter 5: The concluding chapter summarizes the findings and methodological 

challenges that were encountered over the course of this study. We found that the deep 
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neural network was able to identify and segment ultrasonographic lymph node features 

with high accuracy. In terms of methodological frameworks, emphasis was placed on bias 

associated with diagnostic studies and the consideration of sample size, population of 

interest, internal and external validation strategies, overfitting and sources of measurement 

for machine learning.  
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CHAPTER 1: BACKGROUND 

1.1 Lung Cancer: The Canadian Setting 

Lung cancer is the most prevalent cancer in Canada, is more fatal than colon, breast, 

and prostate cancers combined, and results in 18.4% of all cancer deaths (Bray et al., 2018). 

Lung cancer accounts for 14% of all cancer cases in Canada; with 1 in 11 males and 1 in 

15 females expected to be diagnosed with lung cancer in their lifetime (Brenner et al., 

2020). In 2016, the Canadian Task Force on Preventative Health Care (CTFPC) released a 

guideline that recommended annual screening for lung cancer in high risk adults aged 55-

74 years using low dose computed tomography (CT) (Care, 2016). There has been an 

increased incidence of lung cancer in Canada due to the increased lung cancer screening 

(Akhtar-Danesh & Finley, 2015; Evans et al., 2016).  

 

In 2019, it was estimated that 29,300 individuals were diagnosed with lung cancer 

in Canada(Brenner et al., 2020). Incidence rates for lung cancer by age group followed an 

upward trend, implying that the likelihood of developing lung cancer increases with age 

(Smith et al., 2019). However, this trend may have been misleading as it was mostly driven 

by an overall increase in lung cancer rates in women aged 65 years and older. In 2020, lung 

cancer is projected to be the most commonly diagnosed cancer with an estimated 29,800 

cases (Brenner et al., 2020). Lung cancer is anticipated to be the leading cause of death for 

both males and females, accounting for 25% and 26% of cancer deaths, respectively (Bray 

et al., 2018; Smith et al., 2019). Interestingly, the age-standardized incidence rate is 
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expected to decrease for both males and females as the result of smoking cessation and 

screening programs. However, the age-standardized mortality rate is expected to be 26% 

higher (219.7 per 100,000 males and 164.2 per 100,000 females) (Figure 1; Figure 2). It 

is predicted that lung cancer will be the second most frequently diagnosed cancer (12%) 

by 2028-2032, with 80-85% of all cases consisting of non-small cell lung cancer cases 

(NSCLC) (Brenner et al., 2020). Additional efforts to improve uptake of existing programs, 

as well as to advance research, prevention, screening and treatment, are needed to manage 

the disease burden. 

 

1.2 Current Lung Cancer Detection and Investigation Guidelines 

Various biopsy and imaging techniques are used to diagnose and stage lung cancer. 

In cases where lung cancer is suspected, the preliminary diagnostic modality is chest 

radiography or CT and a clinical assessment. Key aspects of this assessment include 

ascertaining the patient’s medical history, physical examination, standard blood work and 

pulmonary function tests. From these investigations, further diagnostic tests may be 

performed according to the lung cancer diagnosis clinical pathway outlined by National 

Cancer Care Network and Cancer Care Ontario (Figure 3). 

 Patients may also present to their primary care provider with symptoms indicative 

of lung cancer’s clinical vignette, such as hemoptysis, cough, unintentional weight loss, 

loss of appetite, chest, rib or shoulder pain, and/or dyspnea. If symptoms persist for more 

than three weeks or if patients have identified risk factors (Cancer Care Ontario, n.d.) (i.e. 
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family history of cancer, smoker etc.) they are commonly referred for chest imaging via 

CT, as dictated by cancer imaging guidelines (Sampsonas, Kakoullis, Lykouras, 

Karkoulias, & Spiropoulos, 2018; Silvestri et al., 2013). If the diagnostic results are 

suspicious lung cancer, patients undergo an organized diagnostic assessment which may 

include positron emission tomography (PET), abdominal CT, magnetic resonance imaging 

(MRI) brain scans or bone scans. The location of the primary tumour, patient preferences, 

and the fitness of the patient may require a change to the diagnostic and staging pathway, 

which augments the complexity of the NSCLC clinical process. 

Accurately determining the stage of lung cancer is critical to ensure patients are 

offered the best and most appropriate treatment options. Mediastinal staging is typically 

completed via CT and PET scans. Depending on the imaging findings, patients may then 

undergo endobronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA) to 

assist with treatment decisions. If the disease has not spread to either the parabronchial, 

interlobar or hilar LNs (N1), ipsilateral LNs (N2) nodes or contralateral mediastinal, 

contralateral hilar or supraclavicular LNs (N3) (Figure 3), and the patient is otherwise 

considered fit for surgery, resection is often the treatment of choice(Barnes, See, Barnett, 

& Manser, 2017; Rena, 2016). Patients with N1-N3 nodal involvement usually undergo 

chemoradiation therapy(Burdett et al., 2015). Consequently, accurate mediastinal staging 

can ensure that the right treatment is given to the right patient and justifies the reason why 

it is the rate-limiting step prior to initiation of lung cancer treatment.  
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The staging system most commonly used for NSCLC is the American Joint 

Committee on Cancer TNM System. This system is used to describe the amount and spread 

of cancer throughout the patient’s body. T describes the tumour size, N describes the spread 

of cancer to nearby lymph nodes, and M describes the spread of cancer to distant sites of 

the body, known as metastasis. Currently, the 8th version of this staging system has resulted 

in important modifications to the stage classification, including the creation of several new 

stage groups(Carter et al., 2018; Goldstraw et al., 2016). 

 

 The gold standard for diagnostically assessing LNs for lung cancer is an invasive 

approach through surgical staging known as cervical mediastinoscopy(Silvestri et al., 

2013). This procedure is performed in an operating room under general anesthesia and 

provides access to upper and lower paratracheal (2R, 2L, 4R and 4L) and subcarinal (7) 

LNs (Figure 4). A systematic review used to update staging guidelines found that the 

median sensitivity of standard cervical mediastinoscopy was 78% and the median negative 

predictive value (NPV) was 91%, where approximately 42-57% of the false negative cases 

were due to nodes that were not accessible by a traditional mediastinoscopy (Silvestri et 

al., 2013). 

 

EBUS-TBNA is a minimally invasive approach that is completed in an out-patient 

setting without general anesthesia. EBUS-TBNA allows access to the upper and lower 

paratracheal (2R, 2L, 4R, 4L), subcarinal (7), hilar (10R, 10L) and interlobar (11R, 11L) 

LNs- allowing for the investigation of more LNs compared to mediastinoscopy (Wahidi et 
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al., 2016). A meta-analysis has shown the median sensitivity for EBUS-TBNA to be 89% 

and the NPV to be 91% (Silvestri et al., 2013). Further, a multi-centre randomized 

controlled trial with 241 patients compared surgical staging alone combined with EBUS-

TBNA followed by surgical staging if the needle approach was negative (Annema et al., 

2010). The sensitivities of surgery, endosonography, and endosonography followed by 

surgery if the surgery was negative) were 79%, 85% and 94%, respectively. As such, 

EBUS-TBNA has been shown to outperform traditional cervical mediastinoscopy in 

regards to diagnostic statistics (Navani et al., 2012).  

 

The use of EBUS-TBNA as the initial diagnostic and staging procedure in patients 

has garnered substantial support in thoracic surgery (Wahidi et al., 2016) and now is 

recommended by various guidelines (Sampsonas et al., 2018; Silvestri et al., 2013). 

However, this method is associated with wait times up to four weeks and increased costs 

resulting from needles, biopsies, specimens, cytotechnology time, pathologist time, 

endoscopy time and access to the required equipment. Additionally, the sensitivity of the 

EBUS for mediastinal LN staging depends on various factors which include skill of the 

operator, the skill of the cytotechnologist, the skill of the pathologist, the size of the LNs, 

the gauge of the needle, and the pretest probability of cancer. Consequently, inconclusive 

or non-diagnostic results are obtained in as many as 42.14% of EBUS-TBNA cases 

(Ortakoylu et al., 2015a). As treatment decisions cannot be made without accurate staging, 

this brings the lung cancer treatment cycle to a stand-still. Inconclusive and non-diagnostic 

results also mandate the need for a repeated EBUS-TBNA, which exacerbates the vicious 
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cycle of treatment delay, increased healthcare costs, and a potential increase in patient 

morbidity.  

 

1.3 Ultrasonographic Features and Predictive Tools for Lymph Node Malignancy 

Several ultrasonographic features can be observed during EBUS-TBNA for LN 

malignancy prediction: 1) length of short axis; 2) shape; 3) margins; 4) echogenicity; 5) 

central hilar structure; and 6) central necrosis. A systematic review conducted by our 

research group at McMaster University identified the optimal ultrasonographic features for 

predicting malignancy in mediastinal LNs for clinical utility. A total of 13 studies with 

1061 LNs (487) LNs were examined and all of the features were assessed by the 

endosonographer performing the procedure.  

 

A. Short Axis Length: length equal to or greater than 10 mm is thought to be 

associated with malignancy. Gogia and colleagues confirmed that a short axis 

length less than 10 mm was considered an independent predictor of benign LNs in 

a multivariate regression model (Risk Ratio- 1.31, 95% Confidence Interval (CI): 

1.107-1.549, p=0.002) (Gogia et al., 2016). 

 

B. Shape: determined in several studies by calculating the ratio of the long axis to the 

short axis of the LN. A ratio of less than 1.5 is considered round in shape and a ratio 

equal to or greater than 1.5 is considered oval in shape. Jhun et al. determined that 
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round shape was a significant predictor of malignancy in a univariate regression 

analysis (Jhun et al., 2014). 

 

C. Margin Status: may be categorized as well defined (>50% of border hyperechoic) 

or poorly defined. Well defined margin status is a predictor for malignancy while 

poorly defined margin status is a predictor of benign LNs.  An analysis performed 

by Gogia and colleagues showed that the absence of well-defined margins has a 

96% specificity for predicting benign LNs (Gogia et al., 2016). 

 

D. Echogenicity: can either be considered homogenous or heterogenous based on the 

grayscale texture of the LN from EBUS. Heterogeneous echogenicity was found to 

be a predictor of malignancy while homogenous echogenicity was found to be a 

predictor of a benign LN. In two multivariate analyses performed by Jhun et al. and 

Evison et al., heterogeneous echogenicity was found to be a significant predictor 

for LN malignancy (OR = 48, 95% CI: 8-282, P<0.001; OR= 3.1, 95% CI 1.4-6.7, 

p=0.005) (Evison et al., 2015; Jhun et al., 2014) 

 

E. Central Hilar Structure (CHS): is an ultrasonographic feature, with its presence 

being predictive of a benign LN and its absence being predictive of malignancy. 

Studies reported that CHS was an independent predictor of benign LNs (p=0.03) 

and the absence of CHS resulted in a sensitivity ranging from 89-99% sensitivity 
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and 90-92% NPV for the prediction of malignant disease (Fujiwara et al., 2010; 

Shafiek et al., 2014) .  

 

F. Central Necrosis: is defined as the presence of centrally located hypoechoic 

structure within a LN. The presence of central necrosis is a predictor of malignancy 

while its absence is a predictor for benign LNs. Fujiwara and colleagues found 

central necrosis to be a significant predictor for pathologically confirmed LNs 

(p<0.001) and associated with a hazard ratio of 5.64 (95% CI: 3.40-9.38) by logistic 

regression (Fujiwara et al., 2010). 

 

Overall, the results of the systematic review demonstrated that ultrasonographic 

features may assist during EBUS and diagnostic processes relating to LN biopsy. 

Additionally, the use of a predictive score may prevent the need for repeat EBUS 

procedures when initial biopsy results are inconclusive.  

 

1.4 Research Group’s Preliminary Work 

Based on the systematic review of 13 studies published by our research group in 

2018, it was determined that a composite of ultrasonographic features should be used when 

attempting to determine mediastinal disease (Hylton et al., 2018). A multicenter 

prospective validation clinical trial, coordinated by our research team, identified four 

ultrasonographic LN features that were clinically relevant predictors of malignancy 
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(Hylton et al., 2019). In order to improve upon the accuracy of predicting LN malignancy, 

our research group developed a highly specific predictive tool, investigating four 

ultrasonographic features predictive of malignancy (small axis length, margin, central hilar 

structure and central necrosis) (Hylton et al., 2019). Together, these four features formed 

the Canada Lymph Node Score (CLNS; Figure 5). However, when used in multiple centres 

across Canada, experienced endosonographers agreed on the CLNS diagnosis only 22.54% 

of the time (Hylton et al., 2019). This lack of consensus between endosonographers 

demonstrated that there was a high operator dependency associated with the tool.  

 

1.5 Rationale for Artificial Intelligence in Lung Cancer Staging 

Despite the fact that nodal biopsies are considered the “gold standard” of LN 

staging by clinical guidelines, recent population level data from the United States has 

shown that as many as 50% of patients with lung cancer have been sent to treatment without 

an attempt at LN biopsies (Boffa et al., 2017; Little et al., 2005a). This finding suggests 

that the thoracic surgery community has largely abandoned nodal biopsies. However, most 

lung cancer surgeons would agree that abandoning biopsies is not beneficial for patients. 

Further, when biopsy results are inconclusive or insufficient, for cytological interpretation, 

EBUS-TBNA procedures need to be repeated or the patient must undergo a 

mediastinoscopy (Jalil, Yasufuku, & Khan, 2015). EBUS-TBNA samples are deemed 

inconclusive for pathological diagnosis in as high as 42.14% of cases and 29.85% of 

patients with inconclusive results are referred to mediastinoscopy or undergo repeat EBUS-
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TBNA biopsy (NICE, 2019). Accordingly, there is a near unanimous agreement on the 

need to develop and study other methods of nodal staging.  

 

Historically, trained physicians visually assessed medical imaging for detection, 

characterization, and monitoring of disease. However, Artificial Intelligence (AI) methods 

have been found to excel at automatically recognizing complex patterns and features, 

providing quantitative assessments of imaging characteristics. Human error associated with 

diagnostic tools has also spurred research towards the development of computer-aided 

algorithms with hopes to eliminate operator dependency as it is believed that AI can 

produce more precise measurements compared to humans. For this reason, in the early 

1980s computer-aided diagnosis (CAD) systems were brought to assist doctors to improve 

the efficiency of medical image interpretation (Doi, 2007). The use of AI may be able to 

provide more accurate and precise measurements and eliminate error associated with 

CLNS. The effective implementation of AI for nodal staging could be used to develop an 

algorithm suitable for use in clinical settings.  

 

1.6 Machine and Deep Learning Framework 

A special focus has been placed on novel methods to develop more accurate 

identification of lung cancer characteristics using deep machine learning and radiomics, 

which are both a form of AI (Henzler, 2017) (Figure 6). Deep learning allows 

computational models that are composed of multiple processing layers to learn 
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representations of data with multiple levels of abstraction (Lecun, Bengio, & Hinton, 

2015). Information obtained from training allows deep learning algorithms to recognize 

patterns and perform accurate segmentations. Similarly, radiomics are textural 

mathematical constructs that capture the spatial appearance of the tissue of interest (shape 

and texture) on different types of images using texture (Parekh & Jacobs, 2019). 

Traditionally, radiomic features provide information about the grey-scale patterns, 

interpixel relationships, shape, and spectral properties within regions of interest on medical 

images. Feature extraction is the key step to adopt machine learning and various methods 

of feature extraction for different types of cancer have been investigated (Munir, Elahi, 

Ayub, Frezza, & Rizzi, 2019). However, these methods based on feature extraction have 

weaknesses and AI has faced critical appraisal. Concerns raised in this field include 

whether the study designs are biased in favour of the new technology, whether the findings 

are generalizable, and whether the study was performed in silico or in a clinical 

environment. Therefore, the degree the study results are applicable to the real-world setting 

have been questioned. As such, it is important to use rigorous methodology when designing 

and conducting machine learning studies.  

 

1.7 Objectives 

The use of AI and deep-learning computer neural networks have been shown to 

enhance clinician performance, predominantly through rapid and accurate image 

interpretation(Jha & Topol, 2016; Topol, 2019). Recent studies have investigated the use 
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of AI for the prediction of LN and tumour malignancy in positron emission tomography 

and computed tomography for NSCLC staging and diagnosis (H. et al., 2019; H. Wang et 

al., n.d.; Wnuk et al., 2014). These studies have demonstrated that computer-aided 

algorithms may result in higher performance diagnostics through the convergence of 

humans and AI. Therefore, as a potential solution to overcome the user dependency of the 

CLNS, we propose an innovative and novel approach: the use of NeuralSeg, a deep neural 

network, to segment ultrasonographic LN features to predict malignancy. 

 

This thesis will focus on the use of machine learning, specifically a deep neural 

network, for the diagnosis and staging of lung cancer through medical imaging. We will 

aim to appraise the current literature on the use of radiomics, a form of deep learning, in 

the lung cancer population as well as develop and validate an algorithm capable of 

identifying ultrasonographic LN features observed during EBUS to predict malignancy.   

 

The primary objective of this thesis was to therefore determine whether a deep 

neural AI network (NeuralSeg) can 1) segment ultrasonographic LN features from an 

existing derivation set of LN images examined during EBUS-TBNA and; 2) correctly 

apply the CLNS to a new validation set of LNs it has never seen before. The secondary 

objectives of this thesis are to 1) compare of the accuracy and reliability of the 

segmentation performed by NeuralSeg to the segmentation performed by the experienced 

endosonographer; 3) critically appraise the AI literature for the use of deep learning for 

diagnostic capabilities to diagnose and stage lung cancer.  
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CHAPTER 1 TABLES AND FIGURES: 

 

Figure 1. Age-standardized incidence rates (ASIRs) for selected cancers, in Canada 

(excluding Quebec), 1984-2020 by sex. Retrieved from Brennar et al. (2020) 

 

 
 

Figure 2. Age-standardized mortality rates (ASMRs) for selected cancers in Canada, 1984-

2020, by sex. Shading indicates projected data. Retrieved from Brennar et al (2020). 
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Figure 3. Clinical care pathway map for diagnostic imaging of lung cancer. Obtained 

from Cancer Care Ontario (https://www.cancercareontario.ca/en/pathway-maps/lung-

cancer).  

https://www.cancercareontario.ca/en/pathway-maps/lung-cancer
https://www.cancercareontario.ca/en/pathway-maps/lung-cancer
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Figure 4. International Association for the Study of Lung Cancer (IASCL) lymph node 

map. Retrieved from Rusch et al. (2009) 
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Figure 5. Canada Lymph Node Score Criteria. Benign and malignant criteria of all four 

ultrasonographic lymph node features with binary scoring. A total score of four can be 

achieved for each lymph node examined. 

 

 

 

Figure 6: Schematic graphical representation of Artificial Intelligence, machine learning 

and deep learning. Retrieved from Yang 2019 
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CHAPTER 2: APPLICATION OF RADIOMICS TO PREDICT LYMPH NODE 

MALIGNANCY FOR THE STAGING OF NON-SMALL CELL LUNG CANCER 

IN THORACIC MEDICAL IMAGING: A SYSTEMATIC REVIEW 

 

Churchill, I.F., Sullivan, K., Simone, A., Patel, Y.S., Leontiadis, G., Farrokhyar, F., Gatti, 

A.A., Hanna, W.C. 

ABSTRACT: 

Background: Medical imaging is one of the most valuable sources of diagnostic 

information, but it is heavily reliant on human interpretation, which can be error prone. 

Radiomics demonstrate the potential for objectivity in highlighting suspicious regions in 

images; detecting indeterminate nodules and tissues; and addressing the high positive rates 

that may lead to overdiagnosis. 

Research Question: We aimed to answer two research questions: 1) what is the accuracy 

of radiomics with CT, PET and EBUS for mediastinal staging of NSCLC? 2) How does 

the accuracy of radiomics with CT, PET and EBUS compare to these imaging modalities 

without radiomics? 

Study Design and Methods: The literature was systematically searched using Cochrane 

Central Register of Controlled Trials, MEDLINE, EMBASE and Web of Science for 

observational studies between the databases’ inception and January 2020.  

Results: The literature search identified 4,954 potentially relevant studies (after 1,073 

duplicates were removed). After screening abstracts (n=4,954) and full texts (n=72), 19 

studies were included, 17 which provided full reports, while two recorded provided data 

from conference findings.  Overall, 3265 patients were enrolled with a total of 3472 LNs 

(70% malignancy). The most common radiomic approach to assess images was a Support 

Vector Machine (5/19, 26%) followed by an Artificial Neural Network (4/19, 21%).  
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Sensitivity and specificity were the second most commonly reported diagnostic statistics 

with 11 studies reporting both measures and area under the curve (AUC) was the most 

reported measure, with 13 studies using AUC to discern discrimination potential. 

Sensitivities for algorithms ranged from 52-99%, while specificity for the algorithms 

ranged from 62-94%. Clinicians reported similar sensitivities and specificities ranging 

from 72-95% and 52-92%, respectively. AUC c-statistics were only reported for algorithms 

and not the clinician. C-statistics ranged from 0.64-0.94 suggesting that the algorithms 

possessed good discrimination potentials.  

Interpretation: As data could not be pooled, only a summary of the literature could be 

provided.  The estimation and comparison of the reported statistics of an index test for each 

imaging modality should be interpreted with caution as they may not have been evaluated 

at a common threshold. Analysis of staging modalities for lung cancer using radiomics may 

be useful for when results are inconclusive or uninterpretable by a human reader. However, 

prospective external validation of these algorithms and direct comparisons through cut off 

thresholds is required to determine their true predictive capability.  

PROSPERO ID: CRD42020162952 
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2.1 BACKGROUND  

Accurately determining the stage of NSCLC is important in order to ensure that 

patients are offered the best treatment options (Department of Health, 2011). Consequently, 

mediastinal staging is the rate-limiting step prior to initiation of NSCLC treatment and is 

essential in identifying the most appropriate treatment for the patient. However, this 

process is often complex and involves multiple imaging modalities including invasive and 

non-invasive imaging methods for the assessment of lymph nodes in the mediastinum. 

Mediastinal staging is usually undertaken by computed tomography (CT) scans, positron 

emission tomography (PET) scans and endobronchial ultrasound-transbronchial needle 

aspiration (EBUS-TNA) (Cancer Care Ontario, n.d.).  Other factors that may influence both 

the diagnostic and treatment pathway include the location of the tumour, the extent of 

cancer spread to the mediastinal lymph nodes (LNs), and the pulmonary fitness of the 

patient. 

Many research studies have focused on using non-invasive 18F-FDG PET/CT 

images for the diagnosis of mediastinal LN metastasis, where judgments are mostly based 

on thresholding image features and metabolic features (i.e. standard uptake values). 

However, in the past 10 years, the median sensitivity for mediastinal LN NSCLC diagnosis 

using 18F-FDG PET/CT was 62%, due to the low spatial resolution this modality possesses, 

resulting in large false-negative rates (Silvestri et al., 2013). Furthermore, invasive 

methods, such as EBUS-TBNA, are not routinely performed in every patient, especially 

those with occult lymph nodes. However, in circumstances where EBUS-TBNA is 
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indicated, as much as 40% of biopsy results are inconclusive (Ortakoylu et al., 2015a). In 

order to improve these diagnostic tests a more sophisticated classification strategy is 

needed. 

2.1.1 Target Condition 

Worldwide, NSCLC is more fatal than colon, breast and prostate cancers combined. 

Currently, lung cancer accounts for 14% of all cancers in Canada. Incidence rates for 

NSCLC by age group follow an upward trend, implying that the likelihood of developing 

NSCLC increases with age (Smith et al., 2018). In 2016, the Canadian Task Force on 

Preventive Health Care (CTFPHC) released a guideline recommending annual screening 

for lung cancer in high risk adults aged 55-74 years using low dose CT (Care, 2016). 

Accordingly, the expansion of lung cancer screening programs is resulting in an increased 

incidence of NSCLC across Canada (Akhtar-Danesh & Finley, 2015; Evans et al., 2016). 

The diagnosis of NSCLC is made by a variety of different biopsies and imaging 

techniques, some of which yield information about both diagnosis and staging (NICE, 

2019). The need to consider the location of the primary tumour, patient preferences, and 

the fitness of the patient may require a change to the diagnostic and staging pathway, thus 

augmenting the complexity of the process. If the disease has not spread to either the 

ipsilateral mediastinal nodes, subcarinal (N2) nodes, or both, and the patient is otherwise 

considered fit for surgery, resection is often the treatment of choice (Barnes et al., 2017). 

Those patients who are found to have unresectable NSCLC will usually have undergone a 

number of tests to identify affected LNs and confirm the pathological stage of their cancer. 
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Therefore, the reference standard for this review will consist of a number of tests that can 

yield pathological information to provide cytohistological confirmation of the tumour 

extent. These reference standards will include tumour review boards, export consensus, 

nodal and lung pathology. 

2.1.2 Index Tests 

In the era of precision medicine, radiomics in medical imaging is an emerging field 

offering vast potential. Radiomics is a complex multi-step process that aims to find 

associations between qualitative and quantitative information extracted from both medical 

and clinical imaging(Gillies, Kinahan, & Hricak, 2016). This process may help in clinical 

decision-making and outcome prediction through the segmentation of imaging features, by 

serving as a decision support tool. Research has shown the capacity of radiomic analyses 

to help distinguish cancerous from benign tissues and can help to determine cancer staging 

(Bi et al., 2019). As such, radiomics may be a non-invasive modality in combination with 

NSCLC imaging to identify nodal disease and may be useful for discriminating malignant 

characteristics to facilitate decision making. 

2.2. Clinical Pathways 

Patients may present with signs suspicious for lung cancer such as hemoptysis; 

cough; weight loss or loss of appetite; chest, rib or shoulder pain; and/or dyspnea (Cancer 

Care Ontario, n.d.). If symptoms are present for greater than three weeks or if patients have 

identified risk factors, they are usually referred first for chest imaging via CT, as dictated 

by cancer imaging guidelines (NICE, 2019). If results remain suspicious of NSCLC, 
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patients undergo an organized diagnostic assessment where they may undergo PET, 

abdominal CT, magnetic resonance imaging (MRI) brain scans or bone scans. Depending 

on the imaging findings, patients may then undergo EBUS-TBNA to assist with treatment 

decisions. Exclusion of N1-N3 nodal involvement dictates patients would most benefit 

from surgical resection, while those with N1-N3 nodal involvement usually undergo 

chemoradiation therapy (Burdett et al., 2015). 

2.2.1 Role of Index Tests 

Radiomics can rapidly extract innumerable quantitative features from digital 

medical images. Accordingly, radiomics can support decision-making in both the staging 

and diagnosis of NSCLC. If radiomics is demonstrated to be a clinical adjunct to PET-CT 

and EBUS clinical pathway, then it is envisioned that the diagnostic performance of 

radiomic-augmented imaging will be superior to the comparator tests alone. This may also 

eliminate the need for current biopsies and result in a substantial decrease in healthcare 

costs. 

2.2.2 Alternative Tests 

Other imaging modalities can provide similar information to PET‐CT, and these 

include contrast‐enhanced MRI and single photon emission‐computed tomography 

(SPECT) (Schmidt-Hansen et al., 2014). However, neither of these tests are commonly 

used in the lung cancer pathway. 
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2.2.3 Rationale 

Medical imaging is one of the most valuable sources of diagnostic information, but 

it is heavily reliant on human interpretation, which can be error prone. Radiomics 

demonstrate the potential for objectivity in highlighting suspicious regions in images; 

detecting indeterminate nodules and tissues; and addressing the high positive rates that may 

lead to overdiagnosis. However, for the purpose of this review, the focus of radiomics will 

be to obtain accurate information from the process of lymph node staging. CT and PET 

help determine which lymph nodes should be biopsied based on lymphadenopathy (≥1 cm) 

and hypermetabolism, respectively. Both CT and PET are associated with specificities 

above 85% and a false-negative rate ranging between 20-25% (Herth, 2013; Navani et al., 

2015). However, approximately 40% of enlarged mediastinal lymph nodes on CT are 

benign and 25% of hypermetabolic lymph nodes are false positives (Navani et al., 2015). 

Therefore, relying on CT and PET for mediastinal staging alone can both under stage and 

over stage patients. Clinicians must have a clear idea of the likelihood of false positive and 

negative PET‐CT results, in order to best manage patients and advise them on whether a 

biopsy is necessary. A false negative rate that is consistently above 20% would cause 

clinicians to question the utility of the test. Additionally, EBUS-TBNA has been reported 

to generate inconclusive results in as much as 40% of the time. Therefore, there is a need 

to eliminate the operator dependency of these diagnostic imaging tests in order to improve 

diagnostic accuracy. 
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2.2.4 Objectives 

To the best of our knowledge, radiomics for LN staging and diagnostic imaging 

applications in NSCLC have yet to be systematically summarized and reviewed in the 

clinical literature. In this review, we aimed to critically appraise the current use of 

radiomics in medical imaging for the staging and diagnosis of nodal involvement in 

NSCLC. 

 

Primary Objective: The primary objective of this review was to determine the diagnostic 

accuracy of radiomics for mediastinal staging in patients undergoing CT, PET or EBUS 

imaging procedures for NSCLC. We aimed to address the following research questions: 

1) What is the accuracy of radiomics with CT, PET and EBUS for mediastinal staging 

of NSCLC? 

2) How does the accuracy of radiomics with CT, PET and EBUS compare to these 

imaging modalities without radiomics? 

Secondary Objective: The secondary objective of this review was to investigate 

heterogeneity originating from imaging modality and study design in patients with 

suspected or confirmed NSCLC undergoing CT, PET or EBUS procedures.  
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2.3 METHODS 

This systematic review was written according to the Cochrane Handbook for 

Systematic Reviews of Diagnostic Test Accuracy(Campbell et al., 2015) and followed the 

PRISMA guidelines (Moher et al., 2016). 

2.3.1 Criteria for Considering Studies for this Review  

Eligibility criteria for studies are summarized in Table 1. 

2.3.1.1 Types of Studies 

Studies eligible for this systematic review included both prospective and 

retrospective observational studies. Quasi-randomized trials were considered for 

eligibility. However, none were identified. No protocols or editorials were included. 

Abstracts were included when data was able to be extracted. 

2.3.1.2 Participants 

Trial participants were 18 years of age or older who were undergoing nodal staging 

and diagnosis of NSCLC at a secondary or tertiary care facility. This systematic review 

was inclusive towards studies that compared NSCLC patients to those with other 

conditions or healthy controls, however none of these studies were identified. No exclusion 

criteria was applied towards NSCLC patients that presented with various comorbidities. 
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2.3.1.3 Index Tests 

The index tests were defined as the complementary addition of radiomics to the 

various diagnostic medical imaging procedures (refer to Section 2.3.1.4). Radiomics is best 

described as the process of converting medical images into quantifiable mineable data such 

that it can assist in clinical decision making (Gillies et al., 2016). Radiomics encompasses 

a wide array of algorithmic features including segmentation, deep machine learning, and 

convolutional neural networks. This systematic review focused on radiomics, specific in 

regard to diagnosis and staging (i.e. computer-assisted diagnosis), rather than those with a 

prognostic or treatment-response purpose (i.e. survival analyses, radiotherapy, 

chemotherapy response) (Hatt et al., 2011). Radiogenomics were excluded from this 

review as the algorithmic assistance in identifying molecular biomarkers is conducive of 

prognostic and treatment-response based studies. 

2.3.1.4 Comparator Tests 

Traditional diagnostic imaging procedures for NSCLC, without the inclusion of 

radiomics, were considered the comparator tests with their results interpreted by a 

radiologist or endosonographer. These standard imaging procedures encompassed: 

● Positron Emission Tomography (PET) – whole body imaging or exclusive towards 

the thorax; 
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● Computerized Tomography (CT) or Computerized Axial Tomography (CAT) – 

whole body imaging or exclusive towards the thorax; 

● Endobronchial Ultrasound (EBUS).  

2.3.1.5 Target Condition 

NSCLC was the target condition with no exclusion towards any of its clinical stages 

or histological types. This systematic review was interested in studies involved in the 

diagnosis of NSCLC compared to benignity or other health conditions. Small Cell Lung 

Cancer (SCLC) was excluded given its faster onset of metastatic spread and different 

staging characterization (Kalemkerian & Schneider, 2017). 

2.3.1.6 Reference Standards 

● Various gold reference standards were accepted as establishing the presence or 

absence of NSCLC. They included: 

● Tumour Review Boards: in which a consensus is reached amongst experts in the 

lung cancer field. 

● Lung Pathology: histopathology of the lung obtained during lung resection 

(surgical pathology), EBUS-TBNA biopsies, bronchial brush or bronchoalveolar 

lavage.  

● Nodal Pathology: histopathology of sampled LNs during lung resection (surgical 

pathology), EBUS-TBNA biopsies and mediastinoscopy.  
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2.3.2 Search Methods for Identification of Studies 

2.3.2.1 Electronic Searches 

We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 

inception to Cochrane Central Register of Controlled Trials 2020, Issue 1), Ovid 

MEDLINE® and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and 

Daily (1946 to January 14, 2020), EMBASE (1974 to 2020 Week 2), and Web of Science 

(All Databases; 1926 to January 2020). Databases were not limited from any publication 

date nor will there be any restrictions placed on language or publication status. To account 

for ongoing trials, ClinicalTrials.gov will be searched up until January 14, 2020 with the 

inclusion of any type of trial design (Appendix 1). 

 

2.3.2.2 Searching Other Resources 

Relevant systematic reviews and literature reviews identified during title and 

abstract screening were hand searched to identify any potential eligible trials and ensure 

literature saturation Moreover, for studies and conference abstracts that demonstrated 

uncertainty in their eligibility or provide insufficient details, the authors were contacted by 

email to obtain further details and/or additional data. 
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2.3.3 Data Collection and Analysis 

2.3.3.1 Selection of Studies 

Three review authors (IC, KS, and AS) independently screened the title and abstract 

of the articles derived from the search strategy, in which one review author screened all 

titles (IC) for a paired comparison. In cases of disagreement, a fourth reviewer (YP), 

determined if the study was eligible for full text screening. The three review authors (IC, 

KS and AS) completed full text screening where they independently assessed the 

potentially eligible studies for inclusion for a paired comparison. Disagreement during full 

text screening was resolved through discussion and when agreements could not be 

achieved, a fourth reviewer (YP) made the final decision. The entire screening process was 

conducted through the online systematic review screening software, Covidence ©. 

2.3.3.2 Data Extraction and Management 

For each study, two review authors (IC and KS) independently extracted data to 

obtain the following information: 

1. Study characteristics (e.g. setting, study author, study design, type of trial, 

funding, country, year of publication, participants) 

2. Performance and validation (e.g. algorithm information, reference test, 

index test, comparator test, validation method) 

3. Accuracy (Area under the curve (AUC), false positive, false negative, true 

positive, true negative, accuracy, sensitivity, specificity, positive predictive 

value, negative predictive value, odd ratios)  
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Data extraction was performed using a data collection form created on Microsoft® 

Office Excel. Extractions discrepancies were compared and discussed. When agreement 

was not reached, consultation with a third reviewer (YP) resolved discrepancies. 

2.3.3.3 Assessment of Methodological Quality 

Two review authors (IC and KS) independently assessed the methodological 

quality of each included study, using QUADAS-2 (Whitting Group). The assessment 

consisted of four domains: patient selection; index test(s); reference standard; and flow and 

timing (Appendix 2). 

2.3.3.4 Statistical Analysis and Data Synthesis 

 Diagnostic statistical data were not able to be pooled for studies due to reporting 

inconsistencies. However, we avoided meta-analysis and qualitatively synthesized and 

reported the information from included studies.  

 

2.4 RESULTS 

2.4.1 Results of Search 

There were no publication date restrictions on the search strategy. As a result, the 

search included relevant records between inception and January 2020. The literature search 

identified 4,954 potentially relevant studies (after 1,073 duplicates were removed) from the 

following databases: EMBASE (n=1,972), MEDLINE Ovid and EPub Ahead of Print, In-

Process and Other Non-Indexed Citations and Daily (n=1,083), CENTRAL (n=815) and 
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Web of Science (n=2,047) and clinicaltrials.gov (n=96). Hand-searching identified 14 

other potentially relevant studies. After screening abstracts (n=4,954) and full texts (n=72), 

19 studies were included, 17 which provided full reports (Ferreira-Junior et al., 2020; 

Flechsig et al., 2017; Gao et al., 2015; He et al., 2019; Inoue et al., 2011; X. Liu et al., 

2019; Na et al., 2018; Pham, 2018; Pham, Watanabe, Higuchi, & Suzuki, 2017; Song, Cai, 

Eberl, Fulham, & Feng, 2011; Song, Cai, Kim, & Feng, 2012; Tagaya, Kurimoto, Osada, 

& Kobayashi, 2008; Teoh et al., 2016; Toney & Vesselle, 2014; Vesselle, Turcotte, Wiens, 

& Haynor, 2003a; H. Wang et al., 2017; Zhong et al., 2018), while two provided data from 

conference findings (Bella, Dancewicz, Szczęsny, & Kowalewski, 2013; Wang et al., 

2018). In addition, a total of five studies (Genseke, Wielenberg, Schreiber, & Walles, 2019; 

He et al., 2017; Wnuk et al., 2014; Zhao & Shi, 2018; Zhu, Xu, Xiao, & Zhou, 2019) are 

awaiting classification and three studies are currently ongoing (NCT03849040, 

NCT03648151, NCT04000620). The details of the screening and selection process are 

illustrated in Figure 1. 

2.4.2 Included Studies 

The main characteristics of the eligible studies, which were published from 2003 

through 2019, are reported in Appendix 3 (Characteristics of Included Studies and Risk of 

Bias). Overall, 3265 patients were enrolled with a total of 3472 LNs (70% malignancy). 

Studies were conducted in nine different countries, with a mean age of 64 years (SD= 5 

years) and 59% (SD=12%) of the patients were male. There was a mean of 175 patients 

enrolled per study (range: 14 to 717), in which two patient cohorts were each used twice. 
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Most of these studies (11/19, 58%) were published after 2015. The available evidence came 

primarily from retrospective studies (12/19, 63%), which enrolled patients from Asian 

countries in 10 studies (53%). The target condition was lung cancer in 18 out of 19 studies 

(95%), whereas in the remaining study the authors focused on lung diseases such as non-

small cell lung cancer, small cell lung cancer and sarcoidosis (Tagaya et al., 2008). In 

regard to imaging modalities, seven studies (37%) assessed CT images, one study (5%) 

assessed EBUS images, two studies (11%) assessed PET images and nine studies (53%) 

assessed both PET/CT images. Regions of interest for segmentation varied throughout the 

studies. Eight out of the 19 studies (50%) selected LNs of their region of interest, four 

studies (21%) segmented tumours as their region of interest and six studies (32%) 

segmented both tumours and LNs as their region of interest. One study did not report the 

algorithm’s region of interest (Bella, 2013).  

2.4.3 Methodological Quality of Included Studies 

Overall, the methodological quality of studies was considered to be low as 

displayed in the risk of bias QUADAS-2 results summary (Figure 2). There was concern 

for at least one study in each domain based on the analysis of the available data. Four 

studies were considered high risk of bias for patient selection (X. Liu et al., 2019; Toney 

& Vesselle, 2014; Vesselle et al., 2003a; Zhong et al., 2018). One did not describe how 

patients were enrolled and only included patients with clinical N stage N0 (X. Liu et al., 

2019). Two studies were deemed high risk for the same reasons: although a prospective 

design was employed, consecutive patient enrollment was not utilized and there was 
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exclusion for stage IV disease (Toney & Vesselle, 2014; Vesselle et al., 2003a). Similarly, 

another study was also at high risk due to patient exclusion criteria as there was strict 

inclusion (i.e. exclusion of >N0) (Zhong et al., 2018).  

Three studies were deemed high risk for patient selection, ne study was deemed 

high risk for the index test domain, four studies were deemed high risk for the reference 

standard domain and five studies were deemed high risk for flow and timing. Innoue 

(2011), Liu (2018) and Zhong (2018) were considered to be high risk as patients were not 

consecutively sampled, nor were their exclusion criteria justifiable. Veselle (2003) was 

considered high risk as the feedback of surgical nodal staging results was provided to the 

index test assessor. Innoue (2011), Song (2011), Song (2012) and Veselle (2003) were at 

high risk of bias as it was unclear if the reference standard was able to correctly classify 

the target condition and there was no mention of blinding. Finally, five studies possessed 

a high risk of bias for the flow and timing domain as it was unclear on how clinical 

observations played a role in timeline and there was a lack of justification for patients 

included in analysis. Overall, uninterpretable index test or reference standards results were 

rarely reported. In most studies, the interval between the index test and reference test were 

unreported. However, we believe that the length of time between the index test and 

reference standard would not undermine the reliability or accuracy of the results and 

treatment plan, since the diagnosis of malignant LNs is usually an indication for  

chemoradiation, and thus pathological evaluation would have occurred within a very short 
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time since EBUS staging (some days/ a few weeks). As a result, this would unlikely be 

sufficient time for the stage of the disease to change.  

2.4.4 Findings 

Performance and validation characteristics are presented in Table 2. 

2.4.4.1 Diagnostic Statistics 

Only one study provided information regarding true positive, false positive and 

false negative results. However, as the number of LNs in the sample and the true negative 

results were not reported, we were unable to construct contingency tables nor were we able 

to calculate diagnostic statistics. However, the authors provided a malignancy prediction 

accuracy of 91% for the algorithm and 78% for the experienced clinician. Ten of the 19 

studies reported the accuracy of the algorithm. Accuracies ranged from 56-99% depending 

on the software and region of interest, while accuracies for clinicians’ segmentations 

possessed a smaller range from 78-92%.  Two studies reported odds ratios for their 

prediction models with increased odds of 4.546 (95% confidence interval= 2.347-8.806, 

p<0.001) (He, 2019) and decreased odds of 0.35 of malignancy (95% CI= 0.21-0.59, p-

value=NR) compared to standardized diagnostic imaging. (Liu, 2018) Negative predictive 

values (NPV) and positive predictive values (PPV) were reported for one study (Pham 

2017a), for their various algorithms that were assessed. Overall, their algorithm’s NPV and 

PPV ranged from 62%-86% and 62-93%, respectively. Sensitivity and specificity were the 

second most commonly reported diagnostic statistics with 11 studies reporting both 
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measures and area under the curve (AUC) was the most reported measure, with 13 studies 

using AUC to discern discrimination potential. Sensitivities for algorithms ranged from 52-

99%, while specificity for the algorithms ranged from 62-94%. Clinicians reported similar 

sensitivities and specificities ranging from 72-95% and 52-92%, respectively. AUC c-

statistics were only reported for algorithms and not the clinician. C-statistics ranged from 

0.64-0.94 suggesting that the algorithms possessed good discrimination potentials.  

2.4.4.2 Study Methods and Validation Reporting  

Sixteen out of 19 studies (84%) used a form of validation (i.e. cross-validation 

[15/16] or bootstrapping [1/16]). However, of the 19 studies, only one study externally 

validated their radiomic software (Teoh et al., 2016). No studies reported a pre-specified 

sample size calculation. 10 out of the 19 studies (53%) specified that image pre-processing 

occurred to exclude low-quality images and prepare images for segmentation. Three 

studies (16%) also tested the scenario where the clinicians’ segmentation of the regions of 

interest were compared to the deep learning algorithm. Years of experience of the clinician 

completing the segmentations ranged from 5-15 years, suggesting learning curve bias and 

that some clinicians may have been more experienced than others. In some studies, rater’s 

segmentations with differing years of experience were compared to determine if the 

learning curve affected the results produced by both the clinicians and the algorithm.  
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2.4.4.3 Index and Reference Test Reporting 

 The most common radiomic approach to assess images was a Support Vector 

Machine (5/19, 26%) followed by an Artificial Neural Network (4/19, 21%).  Seven studies 

adopted multiple algorithms to determine segmentation capabilities. Reference standards 

used a range of tests in line with the lung cancer diagnosis pathway. Eight studies (42%) 

used surgical pathology, three studies (16%) used EBUS-TBNA, two studies used the 

ground truth from expert radiologists, five studies (26%) used histopathological 

confirmation (unspecified) as their reference standard test.  

2.5 DISCUSSION 

2.5.1 Summary of Main Results 

Although early attempts at computerized analysis of medical images were made in 

the 1960s, serious and systematic investigation on computer aided diagnosis began in the 

1980s with a fundamental change in the concept for utilization of the computer output, 

from automated computer diagnosis to computer-aided diagnosis (Doi, 2007). However, 

the first reported study (Aquino et al., 2003) for the prediction of LN malignancy in lung 

cancer was published in 2003. Registration of CT and FDG–PET of 45 datasets with 130 

LNs significantly improved the specificity of detecting metastatic disease. In addition, 

registration improved the radiologic staging of lung cancer patients when compared with 

CT or FDG–PET alone (Aquino et al., 2003). Following this study, the use of radiomics 

for identifying specific features present on thoracic imaging were explored. 
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Overall, our results showed that the radiomic algorithms performed as well if not 

better than clinicians at predicting LN malignancy. Three other systematic reviews 

examining the diagnostic accuracy of malignancy prediction from medical imaging were 

identified (Jethanandani et al., 2018; X. Liu et al., 2019; Traverso, Wee, Dekker, & Gillies, 

2018). However, none of these systematic reviews investigated the use of radiomics for 

LN malignancy prediction to stage lung cancer alone. Differences in assessment measures, 

search strategies, consideration of meta-analyses and interpretation of results were clearly 

demonstrated between the systematic reviews and our own. For instance, our study was the 

only one to include a risk of bias assessment using QUADAS-2, a verified risk of bias tool, 

which allowed us to derive more conclusions regarding the current best evidence. Of the 

three reviews, Jethanandani (2018) was the most similar to ours as it was the only one to 

assess the use of radiomics in medical imaging for the prediction of one type of cancer nor 

did they appear to impose language restrictions upon the search strategy. Despite the 

improved comprehensiveness of their search strategy, the ability to pool data and the 

improved quality of evidence for studies, our systematic review arrived at the overall same 

conclusion as the other systematic reviews. That is the evidence suggests that radiomic 

algorithms have high accuracy in predicting malignancy from medical imaging.  

2.5.2 Strengths and Weaknesses of Review 

The strength of this systematic review is that it is fully bias controlled. The 

complete process was conducted independently and in duplicate. Two review authors 

independently carried out title and abstract screening, full text screening, data abstraction 
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and risk of bias assessment. Publication bias may exist as results were not able to be pooled, 

and as a result could not be assessed using the funnel plot method. Additionally, 

unpublished studies were identified through clinical trial registries, mitigating the chance 

of publication bias.  However, data from unpublished studies was not obtained and it is 

possible that studies with low diagnostic accuracy were not published. As such, publication 

bias cannot be ruled out. Nevertheless, we did our utmost to reduce such bias in the review 

process incorporating a comprehensive search strategy that had no publication date 

restriction nor any language restrictions. Another limitation was failing to quantitatively 

synthesize data from included studies due to inconsistencies and lack of sufficient 

information. We however did a comprehensive qualitative review. Finally, the included 

studies have low reporting quality. This is evident from number of “unclear risk” in our 

quality assessment.  Although our review might have been limited by “unclear risk” for 

many domains in the risk of bias assessment, we tried to limit this option to circumstances 

in which no information was provided to make an informed judgement.  

2.5.3 Applicability of Findings to Review Question 

We are confident that our comprehensive search strategy identified all relevant 

observational studies investigating the diagnostic accuracy of radiomics for lung cancer 

staging. In addition to searching various databases, a large effort was put into identifying 

grey literature and hand searching the citations of relevant systematic reviews. Our 

systematic review attempted to formulate a research question that was applicable to the 

general lung cancer population and measuring outcomes objectively when possible (e.g. 
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sensitivity, specificity, AUC, OR, NPV, PPV and accuracy). In terms of generalizability, 

our review did not exclude patients based on the stage of their disease nor the confirmation 

of lung cancer in order to capture the full range of the disease. The results presented from 

our study qualitatively answered the review questions. However, we were unable to make 

direct comparisons due to the inability to pool data. Additionally, some studies limited their 

inclusion criteria and as a result may have impacted the generalizability of results (Y. Liu 

et al., 2018; Toney & Vesselle, 2014; Vesselle, Turcotte, Wiens, & Haynor, 2003b; Zhong 

et al., 2018)  

2.6 AUTHOR’S CONCLUSION 

2.6.1 Implication for Practice 

As data could not be pooled, only a narrative summary of the literature could be 

provided.  The estimation and comparison of the reported statistics of an index test for each 

imaging modality should be interpreted with caution as they may not have been evaluated 

at a common threshold. Analysis of staging modalities for lung cancer using radiomics may 

be useful in clinical practice for when results are inconclusive or uninterpretable by a 

clinician. However, prospective external validation of these algorithms and direct 

comparisons through cut off thresholds is required to determine their true predictive 

capability.  
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2.6.2 Implication for Research 

Nearly all of the studies evaluated the performance of radiomic algorithms for 

diagnostic analysis of medical images were designed as feasibility studies and did not have 

the design features that are recommended for robust validation of the real-world clinical 

performance of radiomic algorithms. In order to make accurate comparison of deep 

learning methods, it is important to develop standards for study protocols and reporting 

that recognize specific challenges of deep learning to ensure quality and interpretability of 

future studies.  
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CHAPTER 2 TABLES AND FIGURES: 

Table 1. Eligibility criteria of studies for inclusion in systematic review 

Inclusion Exclusion 

18 years of age Small Cell Lung Cancer 

Observational (prospective & 

retrospective), randomized & quasi-

randomized controlled studies 

Case reports 

At least one study arm contains NSCLC 

patients 

Radiogenomics (molecular biomarkers) 

Radiomics are used (e.g. algorithms, 

segmentation, computer-assisted diagnosis 

[CAD], convolutional neural networks, 

deep learning, machine learning) 

Studies where main objective involves 

survival-prediction, prognostic or 

treatment-response (i.e. radiotherapy, 

SBRT, chemotherapy) 

CT, PET or EBUS MRI and X-Rays (i.e. chest radiographs) 

Must assess nodal disease (not just lung 

nodules) 
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Table 2. Performance and validation characteristics of included studies.  

Author Year Target Condition Reference Test Index Test 
Comparator 

Test 

Manual 

Segmentation 

Training? 

Segmentation 

Software  

(if manual 

segmentation) 

Years of 

Training of 

Human Rater  

(if specified) 

Region of 

Interest (ROI) 

(if specified) 

Features 
Image Pre-

Processing? 

Radiomic 

Software 

Name 

Internal 

Validation 

(Y/N) 

External 

Validation 

(Y/N) 

Bella 2013 Lung Cancer  

EBUS-TBNA or 

Mediastinoscopy or 

Lymphadenectomy 

via Thoracotomy 

Artificial Neural 

Networks (ANNs) 
CT/PET NR NR NR Mediastinal LNs 

LN weight, SUV, 

length and volume  
NR NR Yes NR 

Ferreira-

Junior 
2009 Lung Cancer 

Biopsy or Surgical 

Resection 

Volumetric 

Segmentation 
CT Yes 3D Slicer 12 years 

Lung lesions/ 

neoplasms 

2465 shape, frst-order, 

second order, and 

higher-order attributes, 

gray-level intensity, 

histogram, co-

occurrence matrix, 

neighborhood intensity 

matrix, run-length 

matrix, Tamura texture, 

Laplacian of Gaussian 

filters, Gabor filers, 

Fourier transform, Haar 

wavelet, fractal 

dimension and shape  

Yes GrowCut NR NR 

Flechsig 2017 Lung Cancer 
Histologically 

confirmed 

Volumetric CT 

Histogram Analysis 

with Semi-

automated 

Segmentation 

FDG-PET/CT Yes NR 5 years LNs 
Density, short axis and 

volume, SUVmax 
Yes NR 

Yes-Post-

procedural 

validation 

NR 

Gao 2015 
Lung Cancer 

(NSCLC) 

Surgical Resection 

(Pathological 

Results) 

Support Vector 

Machine (SVM) 
FDG-PET/CT Yes NR NR LNs 

512 histogram vectors 

from CT images and 

534 vectors from PET 

and CT. Texture 

features with gray-level 

co-occurrence matrix.  

Yes NR Yes No 

He 2019 

Lung Cancer 

(NSCLC) with 

lymphadenectomy 

Surgical Resection 

(Pathological 

Results) 

Radiomic-based 

Predictive Risk 

Score 

CT Yes NR 

15 years and 12 

years 

(Segmentation: 

10+ years) 

Lung tumor  

591 quantitative 

features (92 features 

showed independence) 

Yes 

Inhouse 

radiomics 

analysis 

software with 

algorithms 

implanted in 

Matlab.  

Yes- 

Bootstrapping 
No 

Inoue 2011 Lung Cancer 

Histologically 

confirmed or 

clinical observation 

over a year 

3D- ordered subset 

expectation 

maximization 

(OSEM) 

PET/ CT + 

2D-OSEM, 

PET/CT + 

FORE + 

OSEM 

No- human raters 

used a scoring 

system 

NA 
"Experienced" 

(Not specified) 
LNs 

Max SUV of tumor and 

LN metastasis. Contrast 

ratio, image noise, 

signal to noise ratios.  

NR 

3D-OSEM 

Algorithm, 

(VUE point, 

GE 

Healthcare)  

Yes- Phantom 

Study 
No 

Liu 2018 
Lung Cancer 

(Adenocarcinoma) 

Surgical Resection 

(Pathological 

Results) 

Cognition Network 

Technology 
CT Yes 

Definiens 

Developer XD 
3-6 years Lung tumours 219 tumor features Yes NR 

Yes- 5-fold-

cross 

validation 

No 

Na 2018 
Lung Cancer 

(NSCLC) 
Pathological 

Reports 

Convolutional 

Neural Network 
(CNN) w/ XGBoost 

classifier  

PET/CT NR NR NR Lung tumours Tumour size; SUV max Yes NR 

Yes-5-fold-

cross 

validation 

No 

Pham*a 2017 Lung Cancer 

Surgical Resection 

(Histological 

Results) 

Gray-Level Co-

Occurrence Matrix 

(GLCM). 

Unsupervised neural 

network (deep 

learning) +/- Semi-

variogram features  

CT Yes NR NR LNs 

GLCM features 
(contrast, correlation, 

energy, homogeneity) + 

20 texture features. SV 

vector features, texture 

features.  

NR NR 

Yes- 10-fold 

cross 

validation 

No 

Pham*b 2017 Lung Cancer 

Biopsy Proven 

(Histological 

Analysis) 

Gray-Level Co-

Occurrence Matrix 

(GLCM. Support 

CT Yes NR 8 years LNs 
GLCM features 

(contrast, correlation, 
NR 

Publicly 

available 

Matlab 

Yes- 10-fold 

cross 

validation 

No 
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vector Machine 

(SVM) 

energy, homogeneity) + 

20 texture features 

Program for 

GLCM 

features 

Song  2011 Lung Cancer 

Ground truth = 

expert radiologist 

identifying ROI 

Support Vector 

Machine (SVM) 
PET/CT 

No- human raters 

used a scoring 

system 

NA NR 

Lung tumor, 

LNs, 

mediastinum, 

lung lobe 

(1) texture features: the 

mean, standard 

deviation, skewness 

and kurtosis of the 

Gabor filtered T and N 

areas for both CT and 

PET; (2) shape 

features: the volume, 

eccentricity, extent and 

solidity of T and N; and 

(3) spatial features: the 

distance to the chest 

wall and mediastinum 

for tumor, and distance 

to two lung fields for 

lymph nodes, 

normalized  by the size 

of the tumor or lymph 

node itself 

Yes NR Yes No 

Song  2012 Lung Cancer 

Ground truth = 

expert radiologist 

identifying ROI 

Support Vector 

Machine (SVM) 
PET/CT Yes NR 

Senior expert 

(has read over 

8000 PET-CT 

images) 

Lung tumor and 

LNs 

Intensity, spatial and 

contextual features  
Yes Matlab 

Yes- 

Bootstrapping 
No 

Tagaya 2008 
Lung Cancer and 

Sarcoidosis 

Histologically 

confirmed 

Supervised Layered 

Artificial Neural 

Networks (ANNs) 

EBUS-TBNA No NA 

Total = 5 

surgeons (3 

without any 

experience, 1 

with two years 

and 1 with 5 

year’s 

experience) 

LNs 

5, 10, or 15 ROIs were 

randomly selected from 

each image. As a result, 

a total of 30, 60, or 90 

ROIs for metastasis, 

and a total of 15, 30, or 

45 ROIs for sarcoidosis 

were extracted  

Yes. B-mode 

images were 

prepared into 

640 x 480-

pixel still 

images, 

which were 

then 

converted to 

bitmap files 

ANN 

software 

programmed 

by one of the 

authors 

Yes - used 

teaching 

images 

No 

Teoh 2016 
Lung Cancer 

(NSCLC) 

Histopathological 

confirmation 

(Surgical or EBUS-

TBNA) 

PET/CT with 

Bayesian Penalised 

Likelihood (BPL) 

Reconstruction 

PET/CT with 

Ordered 

Subset 

Expectation 

Maximum 

(OSEM) 

Reconstructio

n 

No - rater scored 

LN status based 

on the degree of 

FDG-uptake 

compared in the 

LN to the 

background FGD 

uptake 

NA 

Senior 

radiologist with 

4 years of 

radiology (and 1 

year of PET/CT) 

experience 

LNs 

Signal-to-background 

(SBR), signal-to-noise 

(SNR), SUVmax 

Yes. 

Reconstructio

n based on the 

algorithm  

Q. Clear, GE 

Healthcare 
No No 

Toney 2014 
Lung Cancer 

(NSCLC) 

Surgical staging via 

bronchoscopy and 

mediastinoscopy 

Supervised 

Artificial Neural 

Networks (ANNs) 

PET/CT 

No - rater 

extracted SUV 

and size 

measurements 

for each PET/CT 

scan 

NA 10 years 
Lung tumour, 

LNs 

SUV of primary 

tumour and most 

metabolically active 

LN for each stations. 

Background SUV was 

used to correct ROI 

SUVs. Lymph node 

size based on short-axis 

diameter. 

NR R Core Team  

Yes - 100 fold 

cross 

validation 

No 

Vesselle 2003 
Lung Cancer 

(NSCLC) 

Surgically proven N 

status (Pathology 

Reports) 

Supervised 

Artificial Neural 

Networks (ANNs) 

PET Yes NR NR 

Primary tumour, 

hypermetabolic 

LNs 

Primary tumour size 

and SUVmax, normal 

lung and mediastinal 
SUV, nodal SUVmax 

Yes - 
reconstruction 

using PET 

Advance 
system 

DOS platform 
v4R1 of 

NevProp, 

GNU Public 
License 

Yes - 2 fold 

cross 

validation 

No 

Wang 2017 
Lung Cancer 

(NSCLC) 

Pathological 

diagnosis 

5 tests: 1- Random 

forest 2- support 

vector machine 

(SVM) 3- adaptive 

boosting 4 - back-

propagation 

artificial neural 

network 5 - 

PET/CT Yes NR 

Two of the four 

readers had over 

10 years’ 

experience 

LNs and its 

vicinity 

Short axis, area, 

volume, CT mean, CT 

contrast, SUV mean, 

SUV max, SUVstd, 1st 

order texture features, 

2nd order texture 

features, high order 

texture features  

Yes - PET 

reconstruction 

by iterative 

algorithm 

using CT 

image 

attenuation 

correction 

Classical 

machine 

learning - 

MATLAB 

R2014b, 

CNN - 

AlexNet from 

the Keras 

Yes - 10-fold 

cross 

validation 

No 
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convolutional neural 

networks (CNN) 

library for 

Python 

Wang 2018 
Lung Cancer 

(Squamous Cell) 

Pathological 

diagnosis from 

mediastinal 

lymphadenectomy 

Support vector 

machine (SVM) 
CT No NR NR Tumours, LNs 

Laplacian of Gaussian, 

gray-level co-

occurrence matrix, 

texture and 

heterogeneity features 

NR NR 

Yes - leave 

one out cross 

validation 

No 

Zhong 2018 
Lung Cancer 

(Adenocarcinoma)  

Histopathological 

confirmation 

Support vector 

machine (SVM) 
CT Yes 

Analysis Kit, 

v30.0, GE 

Healthcare 

NR Tumours 

First order features, 

gray-level co-

occurrence and gray-

level run length 

matrices, wavelet 

features.  

NR NR 

Yes - 10-fold 

cross 

validation 

No 

NSLC= Non-small Cell Lung Cancer; EBUS-TBNA=endobronchial ultrasound transbronchial aspiration; NR= not reported; 

LNs = lymph nodes; ROI = region of interest; CT= computed tomography; PET= positron emission tomography; SUV = 

standard uptake values; SVM= support vector machine; ANN= artificial neural network; OSEM= ordered subset expectation 

maximization; GLCM= Gray-Level Co-Occurrence Matrix; CNN= convolutional neural network 
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Figure 1. PRISMA flow diagram of screening, eligibility and inclusion process.  
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Figure 2. Risk of bias assessment Left: Risk of bias assessment for each included study 

for patient selection, index test, reference standard and flow and timing domains. Right: 

Overall risk of bias for each domain.  
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CHAPTER 3: COMPARISON BETWEEN MANUAL AND AUTOMATIC 

SEGMENTATIONS OF ULTRASONOGRAPHIC LYMPH NODE FEATURES 

OBSERVED DURING ENDOBRONCHIAL ULTRASOUND: ASSESSMENT OF 

INTER-RATER RELIABILITY 

 

Churchill, I.F., Gatti, A.A., Hylton, D.A., Sullivan, K., Patel, Y.S. Farrokhyar, F., 

Leontiadis, G., Hanna, W.C. 

 

 

ABSTRACT: 

 

 

Background- The endosonographic Canada Lymph Node Score (CLNS) has a 96% 

accuracy for predicting malignancy in mediastinal lymph nodes (LNs). However, its 

applicability is limited because ultrasound is operator dependent and only achieves inter-

rater reliability in 22% of cases. We hypothesized that operator dependency can be 

eliminated by a deep learning neural network that can learn the CLNS and correctly identify 

ultrasonographic LN features. 

  

Methods- Endobronchial ultrasound images from patients undergoing lung cancer staging 

were retrospectively explored. The CLNS was applied in real-time to LNs by the 

endosonographer and static images were captured. LN images were segmented twice by 

the blinded experienced endosonographer using 3D Slicer and a 5-fold cross-validation 

was used for training and testing NeuralSeg. Dice Similarity Coefficients (DSC) were used 

to measure accuracy, Intraclass Correlation Coefficient (ICC) for agreement between 

NeuralSeg’s and the endosonographer’s accuracy, and diagnostic statistics to evaluate the 
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performance of the algorithm. Pathological specimens were used as the gold standard for 

diagnostic performance. 

 

Results- In total, 298 LNs (18% malignant) from 140 patients were available for analysis. 

The expert endosonographer achieved a mean DSC of 0.77 (SD=0.21), and NeuralSeg a 

mean DSC of 0.68 (SD=0.21), with excellent inter-rater correlation (Intraclass Correlation 

Coefficient = 0.76, 95% CI= 0.70 – 0.80, p<0.0001). The percent sensitivity, specificity 

and accuracy were 18.37% (95% CI: 8.76-32.02%), and 84.34% (95% CI: 79.22-88.62%) 

and 73.78% (95% CI: 78.68%), respectively. 

 

Interpretation- We demonstrated that segmentations performed between the endoscopist 

and NeuralSeg were found to be similar. NeuralSeg also able to rule out malignancy in 

benign LNs with a high specificity. However, the development of a machine learning risk 

prediction model and external validation of this algorithm is required to determine its true 

predictive capability. 
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3.1 INTRODUCTION 

Lung cancer is the leading cause of cancer mortality worldwide, and effective 

treatment highly depends on the accuracy of information obtained from the process of 

mediastinal staging (Silvestri et al., 2013). Patients whose cancer spreads to the mediastinal 

lymph nodes (LNs) are best treated with chemotherapy and radiation, whereas patients with 

benign mediastinal LNs are best treated with surgery (Barnes et al., 2017). Consequently, 

accurate mediastinal staging can ensure that the most appropriate course of treatment is 

undertaken. Thus, mediastinal staging is the rate-limiting step prior to initiation of lung 

cancer treatment.  

 

Mediastinal staging is usually undertaken via endobronchial ultrasound 

transbronchial needle aspiration (EBUS-TBNA), as is recommended by various guidelines 

(Cancer Care Ontario, n.d.; NICE, 2019; Sampsonas et al., 2018; Silvestri et al., 2013). 

During EBUS-TBNA, the operator can report on certain ultrasonographic features that are 

predictive of malignancy. Unfortunately, the sensitivity of EBUS-TBNA for mediastinal 

staging is highly dependent on the skill of the operator and on various other factors (i.e. 

cytopathologist skill or adequacy of sample). As such, inconclusive or non-diagnostic 

results are obtained in as many as 42.14% of EBUS-TBNA cases, which brings the lung 

cancer treatment cycle to a stand-still (Ortakoylu et al., 2015b). 

 

The identification of ultrasonographic features and their capability of predicting LN 

malignancy has led to the development of predictive diagnostic tools (Hylton et al., 2018). 
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One tool known as the Canada Lymph Node Score (CLNS)- a four point score- has 96% 

accuracy for predicting malignancy in mediastinal LNs examined during EBUS (Hylton et 

al., 2019). However, its applicability is limited as it only achieves an inter-rater reliability 

in 22% of cases. This lack of consensus between endosonographers shows that there is a 

high operator dependency associated with the tool.  

 

Human error associated with diagnostic tools has spurred research towards the 

development of computer-aided algorithms to help eliminate operator dependency as it is 

believed that Artificial Intelligence (AI) is able to produce more precise measurements 

compared to humans (Topol, 2019). As there exists a significant need to eliminate operator 

dependency associated with the CLNS, the use of AI may provide more accurate and 

precise measurements. The effective implementation of AI for nodal staging could be used 

to develop a deep neural network capable of being used in a clinical setting.  

 

We hypothesized that operator dependency can be eliminated by a deep learning 

neural network, known as NeuralSeg, that can learn from LN images and correctly identify 

ultrasonographic LN features. Accordingly, the aim of this study was to determine if a 

novel deep learning neural network could segment ultrasonographic LN features according 

to the CLNS as accurately as an experienced endosonographer.  
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3.2 METHODS 

 This study was written according to the Guidelines for Reporting Reliability and 

Agreement Studies (GRRAAS) (Kottner et al., 2011). 

 

3.2.1 Study Design 

The study design is presented in Figure 1. A prospective library of 300 EBUS 

videos were retrospectively explored. These videos were recorded as part of a prospective 

clinical trial to develop the CLNS (Hylton et al., 2019). Static images of the most 

appropriate LN slice were created from the videos. At baseline, clinical features on primary 

Non-Small Cell Lung Cancer (NSCLC) (age, gender, LN stations, other staging modalities) 

and the acquisition date of the EBUS imaging were recorded.  

 

3.2.2 Participants 

 The cohort of LNs images were retrieved from 140 patients undergoing staging for 

suspected or confirmed lung or esophageal cancer between August 2016 to September 

2017 at a designated thoracic cancer surgery tertiary site. No exclusion criteria were 

applied, except for neoadjuvant chemotherapy, in order to avoid nodal down-staging as a 

confounding variable. Consecutive patients were evaluated and screened for eligibility 

prior to study entry. Informed consent was obtained from each patient prior to their 

procedure.  
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3.2.2 Testing Methods 

EBUS-TBNA Procedure 

EBUS-TBNA, ultrasonographic feature identification, and video recording were 

completed by the same endosonographer (WCH). After the administration of midazolam 

and fentanyl, an Olympus endoscope (Olympus, Shinjuku-Ku, Tokyo, Japan) with a 

convex-type probe EBUS and EU-ME1 transducer was inserted through the mouth into the 

trachea. LNs were identified using anatomical landmarks in the airway and mediastinum. 

The axes of the LNs were measured with calipers on the frozen images. The other 

ultrasonographic features were identified visually and scored in real-time. Transbronchial 

needle aspiration with a 22- gauge needle was then performed to obtain a biopsy of the LN 

under ultrasound guidance. The specimen was spread onto glass slides, fixed, and air-dried. 

The dried slides were evaluated via rapid-on-site examination by a cytopathologist to 

determine if the specimens were adequate for pathological analysis. Pathological reports 

for each LN biopsy were obtained.  

 

Assessment of Ultrasonographic LN Features 

Four ultrasonographic criteria were considered malignant based on the following 

definitions:  

1. Small axis length: ≥10 mm predictive of malignancy 

2. Central hilar structure: Absence of central hilar structure (missing, flat, central, 

echogenic structure in the LN) 
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3. Central necrosis: Presence of central necrosis (presence of central hypoechoic 

structure in the LN) 

4. Margins: >50% margin (distinguished by majority echogenic line delimiting the 

LN) 

 

A LN with a score of ≥ 2 was considered to be highly suspicious for malignancy 

based on the prediction model developed by Hylton and colleagues (Hylton et al., 2020).  

 

Manual Segmentations by Endosonographer 

Static images obtained from EBUS videos were converted to DICOM format to 

perform manual segmentations. LN images were segmented by an experienced 

endosonographer (WCH), with 7 years of experience, to produce the gold standard for 

assessment by NeuralSeg. Manual segmentations of the 4 CLNS features predictive of 

malignancy as well as the entire node were performed using 3D Slicer (3D Slicer V4.10.2, 

Boston, MA) (Figure 3). Each of the blinded LN images were segmented twice in order to 

determine expert level reliability. The endosonographer assessing the images was blinded 

to the personal identifiers, imaging, and pathology results associated with each LN. 

Additionally, images were shuffled and assigned random identification numbers to ensure 

that repeated images were not segmented in a defined order and to prevent diagnostic 

review bias (Schmidt & Factor, 2013a). The Dice Similarity Coefficient (DSC), a statistical 

validation metric, was used to evaluate the performance of the reproducibility of manual 

segmentations. The value of a DSC ranges from 0, indicating no spatial overlap between 
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two sets of binary segmentation results, to 1, indicating complete overlap (Figure 2). The 

DSC is calculated as follows: 

 

 

Deep Neural Network Architecture 

The proposed imaging process algorithm, NeuralSeg, is a convolutional neural 

network (CNN), that is a feedforward network in which the signal is processed directly 

without any loops or cycles (Figure 4). Segmentations of all tissues were computed using 

a combination of two algorithms. One algorithm was trained to segment the node and the 

contour and included the necrosis and central hilar structure within the node segmentation 

to create an aggregate node. The second algorithm was utilized to determine the presence 

of the central hilar structure and necrosis and segmented all tissues of interest (central hilar 

structure, necrosis, node, margin).  

  

Both segmentation algorithms utilized a U-Net style convolutional neural network 

(CNN). The network input was an image shaped 512x512 pixels which was down sampled, 

to fit in graphics processing unit memory, from the original image shape of 1300x975. The 

network output was a three-dimensional probability map, where dimensions 1 and 2 were 

512x512, the same as the input image, and the third dimension included n levels that 

coincided with the probability of each pixel belonging to the n tissue of interest. The n 

probabilities for each pixel always summed to 1.0, each pixel was classified according to 
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the tissue it had the highest probability of belonging to. After classifying each pixel to the 

appropriate tissue, segmentations were resampled to be the same shape as the original 

image (1300x975) using nearest neighbour interpolation. 

 

Supervised Learning 

  The network was trained using a batch sizes of 8, the Adam optimizer with a 

learning rate of 10-3, and a custom loss function which summed the negative dice similarity 

coefficients (DSC) of each of the tissues. Image augmentation including random rotation 

of up to 6 degrees and translation of up to 20% was employed. To enable robust estimation 

of the accuracy of predictions, a 5-fold cross-validation scheme was used. During training, 

both segmentations produced by the expert segmenter for each node were used. After 

training was complete, the holdout (testing) LNs were predicted only one time. Due to high 

intra-segmenter variability, while training the aggregate node and margin algorithm, only 

LNs that had an intra-segmenter DSC for the aggregate node which were greater than 0.8 

were used. This strategy was employed to reduce noise in learning the optimal 

segmentation and due to the importance of the aggregate node in calculating 2/4 of the 

CLNS features.  

 

The CLNS features were calculated for each segmentation produced by the expert 

segmenter, as well as for each segmentation produced autonomously by the trained 

network. Presence of the central hilar structure was determined by segmentation of >50 

pixels (<0.004% of the pixels in the full image) to belong to the central hilar class. Presence 
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of necrosis was determined by segmentation of >5 pixels (<0.0004% of the pixels in the 

full image) to belong to the necrosis class. Different thresholds were used for the central 

hilar structure and central necrosis due to their differences in imbalance both within and 

between images. 

 

3.2.3 Statistical Analysis 

LNs were used as the unit of analysis as machine learning methods were employed 

to detect the reliability and accuracy of the specific ultrasonographic features of each LN 

(Jiang, Yang, Wang, Li, & Sun, 2020). Sample size was estimated for ICC with precision 

for hypothesis testing (Walter, Eliasziw, & Donner, 1998; Zou, 2012). The minimum 

acceptable reliability ICC was set to 0.60 and the expected reliability to 0.7, with an alpha 

error of 0.05, power of 0.8 and an expected missing data error of 12% due to artifacts on 

images. As such, for two raters per subject, a sample size of 296 was calculated. There 

were no indeterminate results nor were there any data missing from the reference standard.  

 

The data are presented as mean ± standard deviation, median (range), or number 

(percentage). DSC scores were used to determine the accuracy of automated segmentations 

through spatial overlap. DSC scores were compared using an inter-rater correlation matrix. 

To provide a representative estimate of the automated segmentation accuracies, the 

automated segmentation accuracies were compared to the endosonographer accuracies 

using Intraclass Correlation Coefficients (ICC). Sensitivity, specificity and percent 
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correctly classified for real-time scoring, manual segmentations and automatic 

segmentations were calculated. Statistical analysis was performed using R software (R 

Foundation for Statistical Computing, 2013, Vienna, Austria).  

 

 3.3 RESULTS 

Patient baseline characteristics and pathological data of biopsied and scored LNs 

are presented in Table 1. In total, 298 LNs from 140 patients were segmented (Figure 5). 

The average age of participants was 69.92 (standard deviation [SD]=10.64), with 54.29% 

(n=76) being male. Standard of care mandates that patients undergo diagnostic imaging 

prior to mediastinal staging. As such, 99.29% of patients underwent imaging via chest 

computed tomography (CT) or positron emission tomography (PET) scan prior to EBUS. 

Of the 298 LNs sampled, the median number of LNs biopsied during EBUS was 3 

(range=1-4), and the most commonly LN stations biopsied were 7 (n=125, 41.94%) and 

4R (n=84, 28.19%).  

 

After pathological assessment, lung masses were considered malignant in 109 

(77.9%) cases and benign in 31 (22.1%) cases. Lung cancer and esophageal cancer were 

confirmed in 77 (70.6%) and 32 (22.9%) of the malignant cases, respectively. With respect 

to the 298 sampled LNs, malignancy was present in 49 (16.4%) of the LNs and benign in 

249 (83.6%) of LNs. According to standard of care treatment guidelines, 56 (40.0%) of 
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patients received surgery and 84 (60.0%) received other treatments such as chemoradiation 

or immunotherapy, based on the stage of their cancer. 

 

Analysis of segmentation spatial overlap demonstrated that the expert 

endosonographer achieved a mean DSC of 0.77 (SD=0.21), and NeuralSeg a mean DSC 

of 0.68 (SD=0.21) (Table 2). The segmentations between the expert endosonographer and 

NeuralSeg were compared and were found to possess excellent inter-rater correlation (ICC 

= 0.76, 95% CI= 0.70 – 0.80, p<0.0001) (Figure 6) (Koo & Li, 2016). The inter-rater 

correlation matrix for spatial overlap of segmentations revealed that there was a strong 

positive correlation between segmentations produced by NeuralSeg and the 

endosonographer’s segmentations both times (r=0.71, p<0.001) (Figure 7). 

 

Diagnostic statistics were evaluated for real-time scoring by the endosonographer, 

the endosonographer’s segmentations and NeuralSeg’s segmentations. Standard diagnostic 

performance measures are presented in Table 3 and 4. A CLNS of equal to or greater than 

2 produced an sensitivity, specificity and accuracy of 77.55% (95% Confidence Interval 

[CI]:63.38-88.23%), 53.82% (95% CI: 47.41-60.13%), and 57.61% (95% CI: 51.78-

63.29%) for the real-time assessment by the endosonographer in the endoscopy suite; 

46.94% (95% CI: 32.53-61.73%), 84.74% (95% CI: 79.66-88.97%) and 78.69% (95% CI: 

73.60-83.20%) for the manual segmentations performed by the endosonographer; and 

18.37% (95% CI: 8.76-32.02%), and 84.34% (95% CI: 79.22-88.62%) and 73.78% (95% 

CI: 78.68%) for NeuralSeg’s segmentations, respectively. 
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3.4 DISCUSSION  

In this study, a deep CNN was trained to apply the CLNS in order classify benign 

and malignant LNs. By means of the designed CNN, LN detection as well as benign vs. 

malignant distinction was performed with good accuracy and high specificity. Results 

showed there was no difference between NeuralSeg and the endosonographer (gold 

standard) as measured by ICC. Moreover, NeuralSeg performed with higher accuracy than 

the CLNS completed in real-time, suggesting that it may have eliminated the human error 

associated with the predictive tool.  

 

True delineation of regions of interest is important to precision medicine. As in 

previous studies, clinicians have been able to identify regions of interest through the 

manual segmentation of lung masses and/or lymph nodes in thoracic imaging for lung 

cancer (Zhang, Ferriera-Junior, Fleshig, Wang 2017, Vesselle, Pham 2017a, Liu). 

However, these studies did not report a spatial overlap measurement comparing manual 

segmentations completed by the clinician to the automatic segmentations produced by the 

deep neural network, or repeated segmentations by the same rater. Thus, inter-rater and 

intra-rater reliability and accuracy could not be determined through spatial overlap. One 

study investigated lung cancer through tumour segmentation using radiomic features 

(Owens et al., 2018). The authors reported on the two semi-automatic tools’ intra-observer 

reliability with a mean DSCs of 0.88 (SD= 0.06) and 0.88 (SD=0.08) for each model 

respectively, while they compared inter-observer reliability using an ICC. Similarly, Zhu 

and colleagues segmented multiple organs at risk in CT images for lung cancer and found 



MSc. Thesis- I.F. Churchill; McMaster University- Health Research Methodology 

 62 

that their deep neural networks were able to segment lung LNs with the best delineation 

(DSC>0.90) (Li et al., 2016). The DSC of our proposed tool was slightly lower than these 

models with a DSC of 0.68 (SD=0.21) and manual segmentations with a DSC of 0.77 

(SD=0.21). However, the literature has reported on a range of DSC scores [0.60-0.90] 

(Owens, Zhang, Xu), depending on the size, imaging modality, radiomic features and 

region(s) of interest.  

 

Accuracy in machine learning may be defined as the number of false positives, 

speed or automation level (Huidrom, Jina Chanu, & Manglem Singh, 2018). We defined 

accuracy as the overall probability that a LN is correctly classified based on the ability of 

NeuralSeg to identify ultrasonographic LNs compared to expert endosonographer (gold 

standard) or pathology reports (reference standard). According to this definition, we found 

that NeuralSeg was able to identify ultrasonographic LN features more accurately 

compared to the clinician rater in real-time. This may have been due to the elimination of 

human error associated with feature identification and uncertainties (Owens et al., 2018). 

Segmentation accuracies have ranged from 56-91% in the literature for the deep neural 

network. Our results were in the middle of this range, suggesting that our model possessed 

good accuracy.  

 

This study possessed many strengths. Our study was pragmatic as exclusion criteria 

was not limited. As such, our results may be generalizable and as we investigated all stages 

of esophageal and lung cancer. Additionally, we used an experienced endoscopist that was 
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familiar with the CLNS to mitigate the possibility of a learning curve associated with the 

tool. Finally, diagnostic review bias was minimized through blinding of both the personal 

identifiers and pathology associated with each LN during segmentation. Images were 

randomized and assigned random identification numbers to ensure that repeated images 

were not segmented in a defined order allowing for a non-biased assessment of the outcome 

being assessed (Schmidt & Factor, 2013b). 

 

This study is not without limitations. First, since this study was retrospective in 

nature, the sample size was small and lacked external validation. Sample size is an 

important factor to consider when using inferential statistics such as ICC. Small sample 

sizes may lack precision and may generate large confidence intervals (Jones, Carley, & 

Harrison, 2003).  Second, a relatively small number of malignant LNs was present in the 

sample. This low proportion of malignant LNs may have affected the accuracy when 

predicting the CLNS for each LN. Further, as segmentation was performed manually to 

train the algorithm, the segmentations may be susceptible to subject factors (systemic bias 

in the placement of the boundary or learning curve associated with manual segmentation 

software) (Warfield, Zou, & Wells, 2008). Finally, as the dataset was obtained from a 

single institution in one country, results may not be generalizable to other settings. As ICC 

depends on the heterogeneity of LNs in the patient population of the study, populations 

that are more heterogeneous will yield higher ICC values than more homogenous 

populations (Bartlett & Frost, 2008). Due to this limitation, both patient population 
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demographics and LN characteristics were reported to give an idea of the between- LN 

heterogeneity.  

 

To our knowledge, this is the first study to compare manual to automatic 

segmentation of LN features observed during EBUS. Our findings showed segmentations 

performed between the endoscopist and NeuralSeg were found to be similar. Further, the 

algorithm is also able to rule out malignancy in benign LNs with a high specificity when a 

cut off of a CLNS ≥2 is used. However, the development of a machine learning risk 

prediction model and external validation of this algorithm is required to determine its true 

predictive capability. An important future study would be to evaluate the effect that 

contouring can play in building outcome models to improve feature reliability. 
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CHAPTER 3 TABLES AND FIGURES: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Study design to assess inter-rater reliability and accuracy. A library of EBUS 

images were explored retrospectively. Segmentation occurred after the collection of 

images. *Denotes steps that occurred retrospectively. 
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Figure 2. Dice Similarity Coefficient (DSC) diagram representing spatial overlap. Left: 

visual representation of segmentation overlap. DSC score is calculated by the DSC is a 

measure of overlap between the two segmentations being compared and is defined as: DSC 

= (2|A∩B|) ⁄ (|A∪B|). Right: DSC calculated based on spatial overlap. A DSC of 0 means 

that no pixels were the same between the two segmentations, and a DSC of 1.0 indicates 

perfect overlap of every pixel.  
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                      (A)                                          (B)      

 

Figure 3: Example of lymph node station 4R assessed with Canada Lymph Node 

Score criteria during manual segmentation. (A) Still image of lymph node imaged on 

EBUS during mediastinal staging (B) Segmentation of lymph node performed by an 

experienced endoscopist using 3D Slicer for size (green), margin (yellow), central hilar 

structure (brown) and central necrosis (blue). 
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Figure 4: NeuralSeg with its convolutional neural network components and 

feedforward framework. Endobronchial ultrasound images were used as an input to learn 

lymph node features. The input and output layers as well as hidden layers are displayed in 

a series of convolutional layers.  
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Figure 5. Flow diagram of lymph node images through study. 300 potential lymph node 

images were retrospectively explored, and 298 lymph node images were available for 

segmentation analysis. All results were compared to pathological analysis (gold standard 

reference test). 
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Figure 6:  Inter-rater comparisons as measured by Dice Similarity Coefficient Scores. 

*NS= NeuralSeg; S1= 1st manual segmentation by endosonographer; S2= 2nd manual 

segmentation by endosonographer 
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Figure 7: Correlation matrix for comparison of spatial overlap of segmentations. 

Correlation coefficients were (left to right/ top to bottom: r=1.00; r=0.39; r=0.42; B2) 

r=1.00; r=0.71;  r=1.00).  *S1= 1st manual segmentation by endosonographer; S2= 2nd 

manual segmentation by endosonographer 
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Table 1: Patient characteristics and pathological results for lymph nodes. 

 

 

Variable 

Patients (n=140) 

LNs sampled (n=298) 

Age (years) [mean ± SD] 69.92 ±10.64 

Males, n (%) 76 (54.3) 

Pre-planned imaging modalities completed 

    Chest CT or PET, n (%) 

    Head CT, n (%) 

    MRI, n (%) 

 

139 (99.3%) 

10 (7.1%) 

27 (19.3%) 

Median (range) of LNs scored/biopsied per patient 3 (1-4) 

Scored/ Biopsied LN Stations (n=298) 

    7, n (%) 

    4R, n (%) 

    4L, n (%) 

    10, n (%) 

    11, n (%) 

    Other (1,2L,2R,12), n (%) 

 

125 (41.9%) 

84 (28.2%) 

57 (19.1%) 

14 (4.7%) 

7 (2.3%) 

5 (1.7%) 

Pathology Diagnosis: Lung Mass 

    Primary Lung Cancer 

    Primary Esophageal Cancer 

    Benign Cases 

 

77 (55.0%) 

32 (22.9%) 

31 (22.1%) 

Pathology Diagnosis: LNS 

    Malignant, n (%) 

    Benign, n (%) 

 

49 (16.4%) 

249 (83.5%) 

Malignant Ultrasonographic Features based on 

CLNS Unblinded (in Endoscopy Suite) (n=298) 

   Small axis, n, (%) 

   Margins, n (%) 

   Central Hilar Structure, n (%) 

   Central Necrosis, n (%) 

 

 

65 (21.8%) 

150 (50.3%) 

150 (50.3) 

137 (46.0%) 

Treatment 

    Surgery, n, (%) 

    Other treatment, n (%) 

 

56 (40.0%) 

84 (60.0%) 

SD= standard deviation; LN= lymph node 
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Table 2: Dice Similarity Coefficients of Canada Lymph Node Score for manual and 

automatic segmentations of lymph node and entire contents. 

 

Rater Comparison Dice Similarity Coefficient  

S1 vs S2  0.7677 ± 0.2131 

NeuralSeg vs S1 0.6847 ± 0.2101 

NeuralSeg vs S2 0.6818 ± 0.2175 

*S1= 1st manual segmentation; S2= 2nd manual segmentation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MSc. Thesis- I.F. Churchill; McMaster University- Health Research Methodology 

 74 

 

Table 3. Diagnostic statistics of ultrasonographic lymph node features and  ≥ 2 CLNS 

determined by NeuralSeg (gold standard = endosonographer) 

 

Feature/Score Total  

 

TP TN FP FN Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

**Accuracy 

(95% CI) 

Small Axis 

Length 

    >10 mm (1) 

    < 10 mm (0) 

 

298 

 

37 

 

 

99 

 

 

134 

 

28 

 

56.92% 

(44.04% to 

69.15%) 

 

42.49% 

(36.06% to 

49.11%) 

 

44.80% 

(39.06% to 

50.64%) 

Margins 

    >50% (1) 

    <50% (0) 

 

298 

 

33 

 

 

123 

 

 

25 

 

 

117 

22.00% 

(15.65% to 

29.49%) 

83.11% 

(76.08% to 

88.76%) 

73.33%  

(67.93% to 

78.27%) 

CHS 

    Absent (1) 

    Present (0) 

 

298 

 

39 

 

129 

 

20 

 

111 

26.00% 

(19.19% to 

33.79%) 

86.58% 

(80.03% to 

91.60%) 

76.88%  

(71.69% to 

81.54%) 

Central Necrosis 

    Present (1) 

    Absent (0) 

 

0 

 

- 

 

- 

 

 

- 

 

 

- 

 

- 

 

- 

 

- 

CLNS 

   <2 (Benign) 

    ≥ 2 (Malignant)  

 

298 

 

33 

 

130 

 

15 

 

120 

 

21.57% 

(15.34% to 

28.94%  

 

89.66% 

(83.51% to 

94.09%) 

 

78.76% 

(73.67% to 

83.27%) 

CHS = central hilar structure; CI = confidence interval 

** accuracy determined based off of prevalence of malignancy 
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Table 4: Assessment of performance measurements for the Canada Lymph Node 

Scores on a binary scale (≥2 considered malignant) according to each rater. Pathology 

report used as gold standard comparison. 

 

Rater Performance Measurement 

Total TP FP TN FN Sensitivity (95% 

CI) 

Specificity 

(95% CI) 

**Accuracy 

(95% CI) 

Real-time 

Assessment 

(Endoscopy 

Suite) 

298 38 115 134 11 77.55% 

(63.38% 

 to  

88.23%) 

53.82% 

(47.41%  

to  

60.13%) 

57.61% 

(51.78% to 

63.29%) 

Blinded 

Assessor 

(Manual 

Segmenations) 

298 23 38 211 26 46.94% (32.53%  

to  

61.73%) 

84.74% 

(79.66%  

to  

88.97%) 

78.69% 

(73.60% to 

83.20%) 

NeuralSeg 

Assessment 

(Automatic 

Segmentations) 

298 9 40 210 39 18.37% 

(8.76% 

 to  

32.02%) 

 

84.34% 

(79.22%  

to  

88.62%) 

73.78% 

(68.40% to 

78.68%) 

*CI = confidence interval; TP= true positive; FP= false positive; TN= true negative; FN= 

false negative 

**Accuracy calculated based on prevalence 
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CHAPTER 4: DEVELOPMENT AND VALIDATION OF DEEP NEURAL 

NETWORK FOR PREDICTING LYMPH NODE MALIGNANCY USING THE 

CANADA LYMPH NODE SCORE IN LUNG CANCER PATIENTS 

UNDERGOING MEDIASTINAL STAGING 

 

Churchill, I.F., Gatti, A.A. Hylton, D.A., Sullivan, K., Patel, Y.S. Farrokhyar, F., 

Leontiadis, G., Hanna, W.C. 

 

 

ABSTRACT: 

 

Background- NeuralSeg, a deep learning neural network, has a specificity of 83.34% for 

ruling in benign lymph nodes (LNs) observed during endobronchial ultrasound procedures. 

However, its applicability is limited as it requires validation to determine its true predictive 

capability. Our study sought to develop and externally validate NeuralSeg, a deep neural 

network, capable of predicting LN metastasis through the segmentation of 

ultrasonographic LN features observed during EBUS imaging. 

 

Methods- We conducted this study in two phases, a derivation phase followed by a 

validation phase. In the derivation phase, LN images were retrospectively explored. The 

images were segmented twice by a blinded experienced endosonographer using 3D Slicer 

and a 5-fold cross-validation was used for training NeuralSeg. In the validation phase, LN 

images were prospectively collected to test the algorithm. Logistic regression, c-statistic 

and receiver operator characteristic curve were used to test the performance, and 

discrimination, respectively. Pathologic specimens from EBUS biopsies/surgical 

resections were used as the ground truth. 
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Results- In total, 298 LNs (16.4% malignant) from 140 patients were used for derivation 

and 108 LNs (29.8% malignant) from 47 patients for validation. Overall, NeuralSeg had 

an accuracy of 73.78% (95% CI: 68.40% to 78.68%), a sensitivity of 18.37% (95% CI: 

8.76% to 32.02%) and specificity of 84.34% (95% CI: 79.22% to 88.62%). Further, 

external validation showed that NeuralSeg had higher diagnostic discrimination in the 

validation sample compared to the derivation sample (c-statistic= 0.60 [0.47-0.27] vs c-

statistic=0.51 [0.42-0.63). 

 

Interpretation- NeuralSeg had excellent performance in identifying malignant LNs from 

EBUS images. We demonstrated that an AI algorithm is able to rule out malignancy in 

benign LNs with a specificity of 84.34% and an accuracy of 73.78%. Its high specificity 

may inform decision-making regarding biopsy if results are benign. Future work with a 

larger dataset will be required to improve and refine the algorithm prior to trials in clinical 

practice. 

 

 

  



MSc. Thesis- I.F. Churchill; McMaster University- Health Research Methodology 

 78 

4.1 INTRODUCTION 

 Lung cancer is the most commonly diagnosed cancer, accounting for 11.6% of 

cancer cases and the leading cause of cancer mortality worldwide, thus warranting the need 

for accurate mediastinal staging in order to determine treatment accordingly. Effective 

treatment of lung cancer is almost entirely dependent upon the accuracy of information 

obtained from the process of lymph node (LN) staging (Ortakoylu et al., 2015a), which is 

usually undertaken by the procedure of Endobronchial Ultrasound Transbronchial Needle 

Aspiration (EBUS-TBNA), as is recommended by various guidelines (Sampsonas et al., 

2018; Silvestri et al., 2013). However, EBUS-TBNA has been reported to generate 

inconclusive results  as much as 40% of the time (Silvestri et al., 2013). This significant 

percentage of inconclusive results occurs as the sensitivity of the procedure is dependent 

on multiple factors including the skill of the operator, the skill of the cytotechnologist, the 

skill of the pathologist, the size of the LNs, the gauge of the needle, and the pretest 

probability of cancer. Despite a copious amount of research conducted over the past 

decade, the diagnostic yield of EBUS-TBNA has not improved. As a result, the medical 

community is beginning to abandon LN biopsies, and as many as 50% of lung cancer 

patients are being sent to treatment without nodal staging (Boffa et al., 2017; Little et al., 

2005b) The exclusion of nodal staging jeopardizes good patient care. There is near-

universal consensus on the need to develop and study prediction models for LN staging. 

  

Deep learning, a form of Artificial Intelligence (AI), offers considerable promise 

for improving the accuracy and speed of diagnosis through medical imaging via the 
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extraction of quantitative image descriptors non-invasively (Doi, 2007). Recent advances 

in deep learning have provided insight into tumour detection and subtype classification 

(Jha & Topol, 2016; X. Liu et al., 2019; Topol, 2019). Most notably, the recent studies 

have indicated that radiomics predictive models have been accepted as reliable tools to 

quantify risk by incorporating and illustrating important factors for and prediction (Huang 

et al., 2016; H. Wang et al., 2017). Computed tomography (CT) and/or positron emission 

tomography (PET) radiomics features assessments have been applied and demonstrated to 

be useful for nodal involvement prediction in patients with Non-Small Cell Lung Cancer 

(NSCLC) (Ferreira-Junior et al., 2020; Flechsig et al., 2017; He et al., 2019; Pham et al., 

2017), and one study has assessed the use of deep learning for LN disease for lung cancer 

and sarcoidosis (Tagaya et al., 2008). However, to our knowledge, no published study has 

determined whether the individual prediction of LN metastasis from lung cancer patients’ 

mediastinal EBUS images could be achieved by a radiomics through the use of clinical 

scoring system.  

 

In search for a method to optimize the prediction of LN malignancy, our research 

group developed, validated, and published the Canada Lymph Node Score (CLNS)- a very 

accurate 4-point scale used to predict malignancy based on ultrasonographic LN 

characteristics that are observed during the EBUS procedure. The CLNS was prospectively 

validated across 7 centres in Canada and was found to be highly specific (99.59%) for 

ruling in cancer in the LNs (Hylton et al., 2019). We also demonstrated that a deep neural 

network is able to identify and score mediastinal LNs as accurately (Chapter 3). However, 
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the development of a deep neural network risk prediction model and external validation of 

this algorithm is required to determine its true predictive capability. 

 

As such, the aim of the study was twofold: 1) to  develop a deep neural network 

known as NeuralSeg, in order to identify and segment ultrasonographic LN features based 

on a validated four-point score and 2) to validate NeuralSeg to see if it able to predict LN 

malignancy in patients undergoing EBUS to accurately stage lung cancer.  

 

4.2 METHODS 

This study was written according to the Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD) reporting guidelines 

(Collins, Reitsma, Altman, & Moons, 2015; Moons et al., 2015). This study was composed 

of two phases. Phase A utilized a derivation set to develop the algorithm and Phase B used 

a validation set to prospectively validate the algorithm. The study design is presented in 

Figure 1.  

 

4.2.1 Source of Data 

In Phase A, a derivation set of retrospectively explored LN images was used to 

develop the deep neural network and a set of prospectively collected LN images were used 

to validate a deep neural network, NeuralSeg, to predict LN malignancy (NCT03849040). 

Retrospective images were collected between August 2016 to September 2017. In Phase 
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B, prospective images were collected between April and September 2019. All images in 

both phases collected ultrasonographic LN features and images from consecutive patients 

undergoing EBUS for mediastinal investigation of confirmed or suspected lung cancer 

were collected. EBUS procedures was recorded and static images of the most appropriate 

LN slice were captured and saved onto an external hard drive. At baseline, clinical features 

of lung cancer (age, gender, LN stations, imaging modalities) and the acquisition date of 

the EBUS imaging were documented. This study received ethics clearance from prior to 

conducting research (HiREB #5636). 

 

4.2.2 Participants 

Consecutive patients were evaluated and screened for eligibility prior to study 

entry. Informed consent was obtained from each patient prior to their procedure. Based on 

staging results, patients with cancer present in the hilar or mediastinal LNs were referred 

to chemoradiation therapy and patients with cancer absent from the hilar or mediastinal 

lymph nodes were referred for surgical resection. 

 

Phase A: The cohort of LNs images were retrieved from adult patients undergoing staging 

for suspected or confirmed lung or esophageal cancer at a designated thoracic cancer 

surgery tertiary site. No exclusion criteria were applied, except for neoadjuvant 

chemotherapy, in order to avoid nodal down-staging as a confounding variable.  
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Phase B: Adult patients (≥ 18 years) with suspected or confirmed lung cancer (based on 

CT and/ or PET investigation) undergoing mediastinal staging at a tertiary thoracic cancer 

centre, were enrolled in the study. There were no exclusion criteria in order to not limit the 

stage and range of disease.  

 

4.2.3 Outcomes 

For both Phase A and B, LN malignancy (outcome) was determined based on 

EBUS biopsy/ surgical specimen pathological results (gold standard). During EBUS, 

transbronchial needle aspiration with a 22- gauge needle was performed to obtain a biopsy 

of the LN under ultrasound guidance. The specimen was spread onto glass slides, fixed, 

and air-dried. The dried slides were evaluated via rapid-on-site examination by a 

cytopathologist to determine if the specimens were adequate for pathological analysis. If 

patients underwent surgical resection for their lung cancer, evaluation of nodal status was 

undertaken through the excision or biopsy of all LNs surrounding the tumour and sent for 

histopathological analysis. Pathology reports from EBUS biopsies and surgical specimens 

were obtained within 3 weeks from the date of both EBUS and surgery. The presence or 

absence of cancer in LNs was determined without knowledge of the ultrasonographic LN 

features (predictors used for the study).  
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4.2.4 Predictors 

 In both Phase and B, the following baseline data were extracted for each patient: 

age, gender, imaging modalities, LN stations, LN features, date of EBUS procedure and 

planned treatment. Clinical features were obtained from patient charts. Ultrasonographic 

LN features were identified by both the endosonographer and NeuralSeg. The 

endosonographer used the Canada Lymph Node Score- a highly accurate four-point scale 

used to predict LN malignancy (Hylton et al., 2019) to identify ultrasonographic LN 

features in the endoscopy suite. NeuralSeg then used its previously developed algorithm to 

apply the CLNS through the segmentation of ultrasonographic LN features to the EBUS 

images. NeuralSeg was blinded to both the CLNS measured by the endosonographer as 

well as demographic and clinical characteristics of the patients. A LN with a score of ≥ 3 

was considered to be highly suspicious for malignancy. Ultrasonographic criteria were 

considered malignant based on the following definitions:  

 

● Small axis length: ≥10 mm predictive of malignancy 

● Central hilar structure: Absence of central hilar structure (missing, flat, central, 

echogenic structure in the LN) 

● Central necrosis: Presence of central necrosis (presence of central hypoechoic 

structure in the LN) 

● Margins: >50% margin (distinguished by majority echogenic line delimiting the 

LN) 
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4.2.5 Sample Size 

 We calculated the study sample sizes needed according to the requirement of 

malignancy as the outcome of interest and LNs as the unit of analysis. LNs were chosen to 

determine sample size rather than number of patients as machine learning methods were 

employed. As such, although we were interested in determining the correct staging of each 

patient, our primary outcome was interested in determining the discrimination and 

diagnostic potential of the algorithm to determine malignancy in each LN.  

Phase A: 

The derivation sample size was extrapolated from the computer-aided diagnostic 

literature and predicted based on the number of events per variable needed for a prediction 

model (Figueroa, Zeng-Treitler, Kandula, & Ngo, 2012). In accordance with our previous 

findings (Hylton et al.), we calculated a LN sample based on a prevalence of 0.18, four 

independent predictors (based on the CLNS scoring criteria) and at least 10 events per 

variable. The total needed sample size was calculated to be 223 LNs. However, due to the 

use of machine learning, it was decided to use the entire dataset of LN images available for 

the training and testing of the algorithm.  

Phase B:  

The validation sample size was calculated based on accuracy whereby assuming a 

95.00% confidence interval z-score (1.96), 0.05 accuracy level, a prevalence of 0.18 and 

specificity of 0.96 (Jones et al., 2003). It was determined that a sample size of 72 LNs 

would enable diagnostic statistics to be calculated accurately.  
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4.2.6 Missing Data 

 If an outcome was missing, or an image was of unsatisfactory quality, the patient 

and LN data were excluded from analysis for both the derivation and validation set.  

4.2.7 Statistical Analysis  

The data are presented as mean ± standard deviation, median (range), or number 

(percentage). Baseline continuous variables were compared between the derivation and 

validation cohort using the Student’s t-test (parametric) or Mann-Whitney U test (non-

parametric), and categorical variables compared using Chi-Square. All statistical tests used 

two-sided hypotheses with p-values less than 0.05 considered statistically significant. 

Statistical analysis was performed using R software (R Studio, 2013, Vienna, Austria). 

Phase A: 

Pearson’s chi-square test was used to test the likelihood of the presence or absence 

of certain ultrasonographic features being independently associated with malignant or 

benign LNs. Logistic regression was used to develop the regression model, the Hosmer-

Lemeshow test was used to evaluate the model’s calibration and the receiver operator 

characteristic (ROC) curves with corresponding c-statistics to evaluate the model’s 

discrimination. Multivariable logistic regression with backward stepwise selection with a 

p-value greater than 0.05 for removal of variables was used, but predictors that we 

considered to have great clinical relevance based on the CLNS were forced back into the 

model.  
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Phase B 

Sensitivity, specificity and accuracy, negative predictive value (NPV), positive 

predictive value (PPV) and area under the curve (AUC) for NeuralSeg’s rating of the CLNS 

were calculated. Predictions of malignancy produced using automated segmentations were 

compared to the ground truth findings of malignancy (pathology reports) and benchmarked 

against predictions produced using the CLNS. 

4.2.8 Risk Groups 

A diagnostic rule was derived to estimate the probability of LN malignancy. 

Thresholds for ruling in and ruling out LN malignancy were introduced based on a score 

of 2 or more on the  CLNS (Hylton et al., 2019). 

 

4.2.9 Development and Validation 

Deep Neural Network Architecture 

 Segmentations of all images were computed using a combination of two algorithms. 

One algorithm was trained to segment the node and the contour and included the necrosis 

and central hilar structure within the node segmentation, known as the aggregate node. The 

second algorithm was utilized to determine the presence of the central hilar structure and 

necrosis and segmented all tissues of interest (central hilar structure, necrosis, node, 

contour). Both segmentation algorithms utilized a U-Net style convolutional neural 

network (CNN). The network architecture is described in Figure 1.  
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The network input was an image shaped 512x512 pixels which was downsampled, 

to fit in graphics processing unit (GPU) memory, from the original image shape of 

1300x975. The network output was a three-dimensional probability map, where 

dimensions 1 and 2 were 512x512, the same as the input image, and the third dimension 

included n levels that coincided with the probability of each pixel belonging to the n tissue 

of interest. The n probabilities for each pixel always summed to 1.0, each pixel was 

classified according to the tissue it had the highest probability of belonging to. After 

classifying each pixel to the appropriate tissue, segmentations were resampled to be the 

same shape as the original image (1300x975) using nearest neighbour interpolation. 

 

  For both algorithms, the network was trained using a batch size of 8, the Adam 

optimizer with a learning rate of 10-3, and a custom loss function which summed the 

negative dice similarity coefficients (DSC) of each of the tissues. Image augmentation 

including random rotation of up to 6 degrees and translation of up to 20% was employed. 

To enable robust estimation of the accuracy of predictions, a 5-fold cross-validation 

scheme was used. 

 

 The definition of variables and setting of the study were identical between the 

development and validation of the algorithm. However, inclusion criteria slightly differed 

as patients with esophageal cancer were also included and patients undergoing adjuvant 

chemotherapy were excluded from the derivation set.  
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Phase A- Retrospective Algorithm Development: Derivation Set 

During training, segmentations produced by the expert endosonographer for each 

LN were used. After training was complete, the holdout (testing) LNs were predicted only 

one time. Using cross validation for this assessment provides testing errors/accuracies for 

the entire dataset, allowing for a more robust estimate of accuracy. Due to high intra-

segmenter variability, while training the aggregate node and margin algorithm, only LNs 

that had an intra-segmenter Dice Similarity Coefficient for the aggregate node which were 

greater than 0.8 were used. This strategy was employed to reduce noise in learning the 

optimal segmentation and due to the importance of the aggregate node in calculating 2/4 

of the CLNS features. 

 

Phase B- Prospective Prediction Validation Set 

Prediction of the CLNS score for the prospective dataset was completed using an 

ensemble of the 5 networks trained for the initial cross-validation. First, each LN was 

segmented using both of the trained algorithms (1. aggregate node and contour, 2. node, 

central hilar structure, necrosis, margin) for each of the 5 cross-validations. Next, the 

appropriate segmentations were used to calculate a set of CLNS features for each of the 5 

cross-validations. The final CLNS feature score was determined for each node using the 

median of the 5 predictions. 
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 4.3 RESULTS 

4.3.1 Participants 

 The flow of patients for both Phase A and B is presented in Figure 3. Patient 

baseline characteristics and pathological data of biopsied and scored LNs for the derivation 

and validation set are presented in Table 1. The following sets of LNs were used: 

 

• Phase A- Derivation Set: 298 LNs from 140 patients were used for training and 

testing of the deep neural network algorithm. 

• Phase B- Validation Set: 108 LNs from 47 patients were used for the validation of 

the deep neural network algorithm.  

 

Overall, there were no differences in the derivation and validation samples except 

for the proportion of patients that underwent MRI imaging (19.3% vs 59.6%, p=0.0002), 

the proportion of malignant cases and LNs (55.0% vs 89.9% [lung cancer]; 16.4% vs 28.6% 

[malignant LNs] p<0.0001), and the proportion of malignant features (small axis features 

[21.8% vs 44.6%, p<0.00001], margin features [50.3% vs 29.5%, p=0.00016], central hilar 

structure features [50.3% vs 32.1%, p=0.00096] and central necrosis features [46.0% vs 

21.4% ,p<0.0001]).  

 

The presence and absence of ultrasonographic features in malignant and benign and 

LNs in the derivation set were examined. Results were not statistically significant for small 
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axis length (Chi-Square=0.354, p=0.636), margins (Chi-Square=0.033, p=0.845) and CHS 

(Chi-Square=0.259, p=0.695), suggesting that the features were independent of 

pathological outcome (Table 2). Predictive probabilities for LNs that were benign versus 

those that were malignant were presented in Figure 4.  Central necrosis could not be 

evaluated as NeuralSeg did not identify this ultrasonographic feature.  

 

4.3.2 Model Development and Specification 

 In order to develop a predictive model using the derivation set in Phase A, 

univariate analysis was conducted to identify which features were independent predictors 

of malignancy (Table 3 and 4). None of the binary ultrasonographic features were found 

to be statistically significant (small axis, OR=1.209 [95% CI=0.646-2.264], p=0.552; 

margins OR=1.209 [95% CI=0.646-2.264], p=0.552; and CHS OR=1.209 [95% CI=0.646-

2.264], p=0.552). However, when continuous variables produced by NeuralSeg were 

examined, it was found that small axis length was significant (p=0.010). As such, small 

axis length measured on a continuous scale was included in the model and the other features 

were investigated in a backwards entry process. None of the variables were found to be 

significant. Therefore, variables were forced back into the model based on the clinical 

significance determined by the CLNS. The final model is presented in Table 5 and the 

calibration of the model is presented in Figure 5. The Hosmer and Lemeshow Test showed 

that the data fit the model well (Chi-square= 5.84, p-value=0.666) 
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4.3.3 Model Discrimination and Calibration 

Phase A 

The derivation set showed that a LN with a small axis measured on a continuous 

scale a margin >10mm measured on a continuous scale, and the absence of a central hilar 

structure had an increased odds of 2.392 (95% CI: 1.321-4.322), 3.972 (95% CI: 0.417-

37.851) and 1.415 (95% CI: 0.657-3.045) for being malignant, respectively. However, only 

the small axis length was shown to be significant (p=0.004).  

 

Phase A and B 

Model discrimination for the derivation set (0.631 [95% CI: 0.543-0.719]) and 

validation set (0.748 [95% CI: 0.648-0.847]) are presented in Figure 6 and 7, respectively. 

Performance of our proposed algorithm compared to other algorithms in the literature are 

presented in Table 6. 

 

4.3.4 Model Performance 

Phase A 

Diagnostic statistics were calculated for the accuracy between NeuralSeg and the 

endosonographer (Table 7). NeuralSeg was found to have an accuracy of 44.80% (95% 

CI: 39.06% to 50.64%) for small axis length, 73.33% (95% CI: 67.93% to78.27%) for 

margin and 76.88% (95% CI: 71.69% to 81.54%) for CHS. When a CLNS of ≥ 2 was taken 

into account, NeuralSeg was found to have an accuracy of 78.76% (95% CI: 73.67% to 
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83.27%), specificity of 84.34% (95% CI: 79.22% to 88.62%) and Negative Predictive 

Value of 84.34% (95% CI: 84.26% to 86.22%).   

 

Phase B 

NeuralSeg was found to have an accuracy of 72.87% (95% CI: 63.46% to 80.98%), 

73.33% (95% CI: 67.93% to78.27%) for margin and 76.88% (95% CI: 71.69% to 81.54%), 

specificity of 90.79% (95% CI: 81.94% to 96.22%) and Negative Predictive Value of 

75.92% (95% CI: 71.51% to 79.85%).   

 

Diagnostic statistics and discrimination of ≥ 2 CLNS assigned by NeuralSeg for the 

derivation and validation set are presented in Table 8. 

4.4 DISCUSSION 

NeuralSeg was able to accurately identify and segment ultrasonographic features 

in LNs examined by EBUS. As a result, diagnostic statistics produced by NeuralSeg were 

similar to those found in the literature (Flechsig et al., 2017; Gao et al., 2015; Pham et al., 

2017; Tagaya, Kurimoto, Osada, & Kobayashi, n.d.; H. Wang et al., 2017) Overall, 

NeuralSeg had an accuracy of 73.78% (95% CI: 68.40% to 78.68%), a sensitivity of 

18.37% (95% CI: 8.76% to 32.02%) and specificity of 84.34% (95% CI: 79.22% to 

88.62%). Our algorithm showed that NeuralSeg was in the middle of the range of accuracy 

(56-91%) and the higher end for specificity (23-93%) compared to other algorithms (Table 

6). Although we were able to generate a prediction model based on NeuralSeg’s 
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segmentation capabilities, central necrosis was not included in the model. As a result, risk 

groups (i.e. cut-off value of CLNS 2) could not be applied to the regression model. As 

such, the production of a modified regression model would be required in order to 

determine a cut-off that would be clinically significant.  

 

Several studies have stressed the importance of test-retest evaluations for diagnostic 

prediction models. Major clinical journals such as Journal of the American Medical 

Association and New England Journal of Medicine have appreciated the reporting of model 

discrimination and calibration in independent samples and others recommend that a full 

independent external validation with data not available at the time of prediction model 

development is important (Steyerberg & Harrell, 2016). A systematic review found that 

when comparing performance validation on internal versus external validation, internal 

validation was shown to overestimate diagnostic accuracy for both the healthcare 

professional and deep learning algorithm. This highlights the need for an out-of-sample 

external validation for predictive models (X. Liu et al., 2019). Based on our study design, 

we were able to validate NeuralSeg on a new sample of LNs it has never seen before. 

Further, our external validation showed that NeuralSeg had higher diagnostic 

discrimination in the validation sample compared to the derivation sample (c-statistic= 0.60 

[0.47-0.27] vs c-statistic=0.51 [0.42-0.63), suggesting that prediction model performed 

better in the validation set in regard to sensitivity and specificity. 
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Four measures were taken in order to ensure the protection against sources of bias. 

First, consecutive sampling was employed to obtain the prospective validation set. 

Consecutive sampling is typically better than convenience sampling in controlling 

sampling bias as patients are enrolled in a systematic manner. Second, statistical analysis 

and sample size was determined a priori, thereby reducing the risk of an underpowered 

result. Third, inclusion criteria was not limited as to increase generalizability and mitigate 

diagnostic spectrum bias (Schmidt & Factor, 2013a). Finally, all patients received both the 

index test (NeuralSeg) and the reference standard (histopathology) in order to prevent 

verification bias. 

 

However, this study is not without its limitations. First, we only tested four 

ultrasonographic features instead of an exhaustive list of radiomics features. One 

ultrasonographic feature that is worth mentioning is the margin feature (Echegaray, Bakr, 

Rubin, & Napel, 2018; Echegaray et al., 2016). On the basis of its construction, we expect 

that the margin may be correlated with the short axis feature. For example, the short axis 

length would be influenced by the smoothness of the LNs’s boundary, with smoother 

boundaries making it more difficult to delineate where the LN margins are located. Because 

both axis length and margin features are dependent on the LN boundary, we believe that 

boundary features may exhibit similar feature variability. Second, as necrosis was not 

identified by NeuralSeg, there were too few events per the variable in order to include this 

feature in the prediction model. As such, we were only able to create a prediction model 

using three ultrasonographic features. Third, as there were varying baseline differences for 
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important features between the derivation and validation cohort. This may have affected 

the ability to make accurate predictions in the validation cohort. Finally, this study 

possessed a small sample size for machine learning. As a result, the study may have been 

underpowered to generate precise diagnostics statistics, as it was evident from wide 

confidence intervals. 

 

We demonstrated that an AI algorithm that may be able to rule out malignancy in 

benign LNs with a specificity of 84.34% and an accuracy of 73.78%. NeuralSeg has the 

potential to decrease and eliminate retesting and ensure more rapid access to cancer 

treatment by shortening staging time and improving patient outcomes. Additionally, this 

prediction model may also obviate the need for many tissue samples that are currently 

obtained for the staging of lung cancer. This in turn will substantially decrease healthcare 

costs associated with tissue biopsies (needles, sampling equipment, storage, pathological 

analysis, databases etc.). As biopsies are estimated to cost $1,120 per procedure, it is 

estimated that $3,496,000 to $5,360,000 per year is spent on EBUS procedures in Canada 

(Canadian Agency for Drugs and Technologies in Health (CADTH), 2010). Therefore, this 

new tool could save approximately between $1,398,400 and $2,144,000 on repeat biopsies 

due to inconclusive results. Future work with a larger dataset will be required to improve 

and refine the algorithm prior to trials in clinical practice. 
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CHAPTER 4 TABLES AND FIGURES: 

 

Table 1: Clinical characteristics and pathology results for derivation and validation 

sets.  

 

 

 

Variable 

DERIVATION  

Patient Population 

(n=140) 

LNs (n=298) 

VALIDATION  

Patient Population 

(n=47) 

LNs (n=108) 

 

 

 

P-Value 

Age (years) [mean ± SD] 69.92 ±10.64 70.64 ± 11.02  0.6912 

Males, n (%) 76 (54.3) 22 (46.8%) 0.3735 

Pre-planned imaging modalities 

completed 

    Chest CT or PET, n (%) 

    Head CT, n (%) 

    MRI, n (%) 

 

 

139 (99.3%) 

10 (7.1%) 

27 (19.3%) 

 

 

46 (91.5%) 

3 (6.4%) 

28 (59.6%) 

 

 

0.4122 

0.8572 

0.0002 

Median (range) of LNs scored per 

patient 

 

3 (1-4) 

 

3 (1-5) 

 

-- 

Scored LN Stations  

    7, n (%) 

    4R, n (%) 

    4L, n (%) 

    10, n (%) 

    11, n (%) 

    Other (1,2L,2R,12), n (%) 

 

125 (41.9%) 

84 (28.2%) 

57 (19.1%) 

14 (4.7%) 

7 (2.3%) 

5 (1.7%) 

 

36 (31.9%) 

39 (34.5%) 

25 (22.1%) 

4 (3.5%) 

3 (2.7%) 

5 (4.5%) 

 

0.0703 

0.1902 

0.4715 

0.6171 

0.8493 

0.1031 

Pathology Diagnosis: Mass 

    Lung Cancer 

    Esophageal Cancer 

    Benign Cases 

 

77 (55.0%) 

32 (22.9%) 

31 (22.1%) 

 

42 (89.9%) 

NA 

5 (10.6%) 

 

<0.0001 

-- 

<0.0001 

Pathology Diagnosis: LNs 

    Malignant, n (%) 

    Benign, n (%) 

    Insufficient, n (%) 

 

49 (16.4%) 

249 (83.6%) 

NR 

 

32 (28.6%) 

76 (67.9%) 

4 (3.6%) 

 

<0.0001 

<0.0001 

-- 

Malignant Features**  

   Small axis, n, (%) 

   Margins, n (%) 

   *CHS, n (%) 

   Central Necrosis, n (%) 

 

65 (21.8%) 

150 (50.3%) 

150 (50.3) 

137 (46.0%) 

 

50 (44.6%) 

33 (29.5%) 

36 (32.1%) 

24 (21.4%) 

 

<0.00001 

0.00016 

0.00096 

<0.00001 

Treatment 

    Surgery, n, (%) 

    Other treatment, n (%) 

 

56 (40.0%) 

84 (60.0%) 

 

20 (42.6%) 

27 (57.4%) 

 

0.7566 

 

*CHS= central hilar structure; SD= standard deviation; CT= computed tomography; 

MRI= magnetic resonance imaging; PET= positron emission tomography 

** Based on unblinded scoring by endosonographer using CLNS in endoscopy suite 
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Table 2. Ultrasonographic feature presence in malignant and benign lymph nodes in 

derivation set identified by NeuralSeg (reference standard = histopathology) 

 

 

Feature 

Malignant* 

n=49 LNs 

Benign*  

n=249 LNs 

Pearson’s Chi 

Square 

Statistic  

 

P-Value 

Small Axis 

Length 

    >10 mm 

    < 10 mm 

 

 

30 (61.2%) 

19 (38.8%) 

 

 

141 (56.6%) 

108 (43.4%) 

 

 

0.354 

 

 

0.636 

Margins 

    >50% 

    <50% 

 

10 (20.4%) 

39 (79.6%) 

 

48 (19.3%) 

201(80.7%) 

 

0.033 

 

0.845 

CHS 

    Absent 

    Present 

 

38 (77.6%) 

11 (22.4%) 

 

201(80.7%) 

48 (19.3%) 

 

0.259 

 

0.695 

Central Necrosis 

    Present 

    Absent 

 

NR 

NR 

 

NR 

NR 

 

- 

 

- 

*Histopathologically confirmed 

LNs= lymph nodes; CHS = central hilar structure 
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Table 3. Univariate analysis of binary ultrasonographic features with logistic 

regression for derivation set. 

 

 

Ultrasonographic 

Feature (Binary) 

 

 

Odds Ratio 

95% 

Confidence 

Interval 

 

Standard 

Error 

 

 

P-Value 

Small Axis 1.209 0.646-2.264 0.320 0.552 

Margins 1.074 0.501-2.302 0.389 0.855 

Central Hilar Structure 1.212 0.578-2.544 0.378 0.611 

 

 

Table 4. Univariate analysis of continuous ultrasonographic features with logistic 

regression for derivation set.  

 

 

Ultrasonographic 

Feature (Continuous) 

 

 

Odds Ratio 

95% 

Confidence 

Interval 

 

Standard 

Error 

 

 

P-Value 

Small Axis 2.023 1.186-3.453 0.273 0.010 

Margins 1.293 0.192-8.717 0.974 0.792 

 

 

Table 5. Multivariate analysis of ultrasonographic features with logistic regression 

for derivation set. 

 

 

Ultrasonographic 

Feature  

 

 

Odds Ratio 

95% 

Confidence 

Interval 

 

Standard 

Error 

 

 

P-Value 

Small Axis 

(continuous) 

2.392 1.321-4.322 0.303 0.004 

Margins  

(continuous) 

3.972 0.417-37.851 1.150 0.230 

Central Hilar Structure 1.415 0.657-3.045 0.391 0.375 

Constant 0.037 0.009-0.087 0.718 <0.001 
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Table 6. Comparison of NeuralSeg’s predictive algorithm with previously published 

studies with lymph node segmentation algorithms 
 

Study Proportion 

of 

Malignant 

LNs 

 

 

Imaging 

Modality 

 

 

Sensitivity 

 

 

 

Specificity 

 

 

 

Accuracy 

 

 

Negative 

Predictive 

Value 

 

 

Positive 

Predictive 

Value 

 

Fleschig 

(2017) 

52% PET/CT 92% 77% NR NR NR 

Gao 

(2015) 

NR PET/CT 52-95% 

(depending 

on model) 

60-75% 

(depending 

on model) 

56-86% 

(depending 

on model) 

NR NR 

Pham 

(2017a) 

NR CT 76-89% 

(depending 

on model) 

60-93% 

(depending 

on model) 

NR 62-89% 

(depending 

on model) 

62-93% 

(depending 

on model) 

Pham 

(2017b) 

49% CT 75% 90% NR NR NR 

Tagaya 

(2008) 

73% EBUS 21-100% 

(depending 

on model) 

23-88% 

(depending 

on model 

91% NR NR 

Wang 

(2017) 

91% PET/CT 72-86% 

(depending 

on model) 

84-87% 

(depending 

on model) 

80-85% NR NR 

Proposed 

Model 

16% EBUS 18% 

 

84% 74% 84%  18% 

 

CT= computed tomography; PET=positron emission tomography; EBUS= endobronchial 

ultrasound; NR= not reported 
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Table 7. Diagnostic statistics of ultrasonographic lymph node features and ≥ 2 CLNS 

determined by NeuralSeg in derivation set (gold standard = endosonographer) 

 

Feature/Score Total TP TN FP FN Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

**Accuracy 

(95% CI) 

Small Axis Length 

    >10 mm (1) 

    < 10 mm (0) 

 

298 

 

37 

 

 

99 

 

 

134 

 

28 

 

56.92% 

(44.04% to 

69.15%) 

 

42.49% 

(36.06% to 

49.11%) 

 

44.80% 

(39.06% to 

50.64%) 

Margins 

    >50% (1) 

    <50% (0) 

 

298 

 

33 

 

 

123 

 

 

25 

 

 

117 

22.00% 

(15.65% to 

29.49%) 

83.11% 

(76.08% to 

88.76%) 

73.33% 

(67.93% to 

78.27%) 

CHS 

    Absent (1) 

    Present (0) 

 

298 

 

39 

 

129 

 

20 

 

111 

26.00% 

(19.19% to 

33.79%) 

86.58% 

(80.03% to 

91.60%) 

76.88% 

(71.69% to 

81.54%) 

Central Necrosis 

    Present (1) 

    Absent (0) 

 

0 

 

- 

 

- 

 

 

- 

 

 

- 

 

- 

 

- 

 

- 

CLNS 

   <2 (Benign) 

    ≥ 2 (Malignant)  

 

298 

 

33 

 

130 

 

15 

 

120 

 

21.57% 

(15.34% to 

28.94%  

 

89.66% 

(83.51% to 

94.09%) 

 

78.76% 

(73.67% to 

83.27%) 

CHS = central hilar structure; CI = confidence interval 

** accuracy determined based off of prevalence of malignancy 
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Table 8. Diagnostic statistics and discrimination of ≥ 2 CLNS assigned by NeuralSeg 

(reference standard = histopathology) 

 

 

Measure 

Derivation Set 

(n=298) 

Validation Set 

(n=108) 

Area Under the Curve 

(95% CI) 

0.63 

(0.54 to 0.72) 

0.75 

(0.65 to 0.85) 

Sensitivity 

(95% CI) 

18.37% 

 (8.76% to 32.02%) 

28.12%  

(13.75% to 46.75%) 

Specificity  

(95% CI) 

84.34% 

 (79.22% to 88.62%) 

90.79%  

(81.94% to 96.22%) 

Positive Predictive Value  

(95% CI) 

 

18.26%  

(10.38% to 30.11%) 

 

55.02%  

(33.27% to 75.00%) 

Negative Predictive Value 

(95% CI) 

 

84.43%  

(82.46% to 86.22%)  

 

75.92%  

(71.51% to 79.85%) 

Positive Likelihood Ratio 

(95% CI) 

 

1.17  

(0.61 to 2.26) 

 

3.05 

 (1.24 to 7.49) 

Negative Likelihood Ratio 

(95% CI) 

 

0.97  

(0.84 to 1.12) 

 

0.79  

(0.63 to 0.99) 

Accuracy 

(95% CI) 

73.78%  

(68.40% to 78.68%) 

72.87% 

(63.46% to 80.98%) 

*CI= confidence interval 
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Figure 1. Study design. *Phase A commences before Phase B.  
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Figure 2: A representation of NeuralSeg’s network with a U-Net style architecture.  
The figure legend describes all symbols. The network followed a U-Net style architecture and included long 

residual connections from the compression to decompression branches. The network used short residual 

connections at each stage in the compression and decompression branches. All short residual connections 

used a summation methodology, and all long residual connections used concatenation. In each stage of the 

compression branch each image dimension was compressed to be ½ its previous size by using a stride of 2 

with a regular convolution, and in each stage of the decompression branch each image dimension was doubled 

to be 2 times its previous size by using a stride of 2 with a transpose convolution. The number of outputted 

filters from each convolution operation are printed on the associated symbol; in general, the number of filters 

tripled after the first down convolution and then doubled after each successive down convolution until the 

image dimensions reached their smallest size (after 4 down convolutions). Then, each stage of the 

decompression branch included the same number of filters as the equivalent level on the compression branch. 

All convolutions are described by their respective symbol, generally they all used a convolution filter of 3x3, 

and were followed by batch normalization, dropout (probability of being dropped = 0.6), and a parametric 

rectified linear unit (PReLU). In addition to traditional U-Net compression and decompression branches, the 

network included a form of deep-supervision. The deep supervision more directly passed data from the deep 

layers directly to the final output, using the same number of filters (equivalent to the number of labels in the 

image) at each stage. The main difference between the current architecture and that described previously is 

that we used a PReLU activation instead of a logistic or softmax function. The final convolution filter used 

a softmax activation to give probabilities of each pixel belonging to each of the potential tissue classes. 
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Figure 3. Flow of participants through study. Phase A: development of NeuralSeg using 

a derivation set of 298 lymph node images. Phase B: validation of NeuralSeg using a new 

sample of 108 prospectively collected lymph node images. Phase A occurred before Phase 

B.  
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Figure 4. Boxplots displaying the predicted probabilities for lymph nodes that were 

malignant versus those that were benign based on a multivariate model for the 

derivation set. Malignancy (category = 1) versus benign (category = 0). Medians of 

predicted probabilities differed between benign and malignant lymph nodes (p=0.29) 

Outliers denoted with a circle are more than 1.5 the interquartile range. 
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Figure 5. NeuralSeg multivariate model calibration plot for derivation set. NeuralSeg 

CLNS Score of equal to or greater than 2 is considered highliy suspicious for malignancy. 

NS score of 2 has a 0.70 probability of malignancy NeuralSeg CLNS of 3 has a 0.67 

probability of malignancy. Hosmer and Lemeshow Test goodness of fit (Chi-square= 5.84, 

p-value=0.666)  
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Figure 6. NeuralSeg multivariate model receiver operator characteristic curve for 

derivation set (c-index = 0.631, st. error=0.045, 95% confidence interval=0.543-0.719). 

 

 



MSc. Thesis- I.F. Churchill; McMaster University- Health Research Methodology 

 108 

 
Figure 7. NeuralSeg multivariate model receiver operator characteristic curve for 

validation set (c-index = 0.748, st. error= 0.051, 95% confidence interval=0.648-0.847). 
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CHAPTER 5: SUMMARY OF FINDINGS AND METHODOLOGICAL 

CHALLENGES 

5.1 THESIS FINDINGS AND LESSONS LEARNED 

One of the major hurdles for successful translation of deep learning algorithms from 

research to practice in precision medicine is their interpretability to physicians. NeuralSeg 

aimed to learn a binary four-point score capable of predicting LN malignancy. However, 

due to NeuralSeg’s limited ability to identify all four ultrasonographic features, it was 

determined that the predictive model that was developed and validated only contained three 

features (small axis length, margins and CHS) two of which were continuous 

measurements. Initially, the CLNS was developed as a binary scoring system in order to 

assist clinicians in predicting LN malignancy. This binary scale allowed for easy 

interpretability and ease of administration during practice. In contrast, NeuralSeg’s 

predictive model included two features with continuous measurements. Consequently, this 

modified predictive model may be difficult to implement in a clinical setting due to the 

potential need to have the algorithm score the LNs in real time. This may pose as a 

challenge in a clinical setting.  
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5.2 METHODOLOGICAL CHALLENGES AND MITIGATION STRATEGIES 

Several methodological challenges associated with diagnostic studies and machine 

learning were encountered throughout the process of this thesis. The explanation of the 

challenges and their mitigation strategies and/or solutions are presented below.  

 

“Lucky Good Fit” and Overfitting 

 The use of a smaller dataset in machine learning can lead to a “lucky good fit” when 

determining the goodness of fit for the prediction model (James, Witten, Hastie, & 

Tibshirani, 2000; Mutasa, Sun, & Ha, 2020). In order to mitigate this methodological 

challenge, we sought to have more data in the training phase of the prediction model and 

employed K-fold cross validation (Rodriguez-Roisin, 2000). Additionally, the K-fold cross 

validation was also used to prevent overfitting. Overfitting refers specifically to the case in 

which a less flexible model would have yielded a smaller test mean square error (James et 

al., 2000). This occurs as a result of the model learning details and noise specific to the 

training set (Yamashita, Nishio, Do, & Togashi, 2018). Further, we also performed a 

routine check on the training data to monitor the loss and accuracy on the training set and 

used testing to ensure proper performance evaluation of the algorithm.  

 

Appropriate Internal and External Validation 

 

When conducting prediction model studies using machine learning, it is important 

to use rigorous methodologies. In our study we used a five-fold-cross validation. Using 
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cross validation for this assessment provides testing errors/accuracies for the entire dataset, 

providing a more robust estimate of accuracy.  Furthermore, this method included training 

the algorithm from the project’s outset using 5 different sets of data and therefore 

represents its generalizability to learning from different inputs (James et al., 2000). 

However, before considering whether to use a clinical prediction model, it is essential that 

its predictive performance be empirically evaluated in datasets that were not used to 

develop the model(Steyerberg & Harrell, 2016). This process is often referred to as external 

validation. Predictive performance is typically characterised by evaluating a model’s 

calibration and discrimination(Steyerberg & Harrell, 2016). Calibration is the agreement 

between predicted and observed risks, whilst discrimination is the ability of the model to 

differentiate between patients with different outcomes(Collins et al., 2015). In our study, 

we assessed the discrimination and calibration of both the development and validation 

samples in order to objectively evaluate the models and determine if the prediction model 

may be applied in a clinical setting.  

 

Generalizability  

 The term generalizability refers to the extension of research findings and 

conclusions from a study conducted on a sample population to the population at large 

(Debray et al., 2015). In order for this to occur, it is important to use a diverse dataset for 

study samples. In our study, inclusion criteria were not limited so that the range of disease 

and all stages of lung cancer would be captured. Additionally, we used consecutive 

sampling so as to avoid sampling bias and further ensure the study sample was 
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representative of the patient population. Further, considering the role of generalizability is 

important in retest studies as some studies have specific case mix groupings or low 

prevalence of disease (Tugwell & Knottnerus, 2015).  

 

Diagnostic Review Bias 

These types of bias occur when the interpretation of the reference test is not 

independent of the index test, which weakens the results of retrospective studies(Schmidt 

& Factor, 2013a). A rigorous study would require either reporting that the results are 

blinded, or that the cases were reviewed again to obtain a blinded diagnosis. In our study, 

the endosonographer assessing the images was blinded to the personal identifiers, imaging, 

and pathology results associated with each LN. Additionally, images were shuffled and 

assigned random identification numbers to ensure that repeated images were not segmented 

in a defined order and to prevent diagnostic review bias.  

 

Spectrum Bias 

A spectrum effect occurs when there is a variation in the performance of tests for 

the prediction for the diagnosis of disease among population subgroups(Usher-Smith, 

Sharp, & Griffin, 2016). A patient’s probability of a disease is in part determined by the 

test’s result (Guyatt et al., 2000). As such, it is essential to have a reliable estimate of the 

test’s performance in order to make good decisions and ensure appropriate patient 

management. Unfortunately, studies tend to report weighted average estimates across 
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broad patient populations and result in inaccurate predictions at the individual and 

population level due to case mixes.  

 

To avert such a problem and guarantee clinicians can use a specific tool in practice, 

investigators should test all relevant subgroups and be explicit in the case mix in the study 

sample. In this study, we were able to stratify patients based on their risk of malignancy 

(CLNS greater than or equal to 2) and we also reported the prevalence of LN malignancy 

in each sample. The aforementioned steps taken are critical as a test developed in a 

population with a higher prevalence of disease will typically have a lower sensitivity and 

higher specificity when applied to a new population with lower disease prevalence. 

However, it is critical to note that the opposite occurred in our study, in which the 

derivation sample had a lower LN malignancy prevalence (16.4%) compared to the 

validation sample (26.8%).  

 

Verification Bias 

Standard methods for assessing the accuracy of diagnostic tests require the 

determination of true disease status for each study patient. As such, if the decision to verify 

a patient is influenced by the knowledge of a test result, or if only certain cases are verified, 

this may introduce biased results, known as verification bias (Cronin & Vickers, 2008). In 

order to mitigate verification bias, only patients that had both the index test and reference 

standard were included in the study. Verification bias can affect the accuracy of an index 

test as partial verification bias will underestimate the number of false negative patients and 
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thus carries a risk of overestimating the sensitivity (O’Sullivan, Banerjee, Heneghan, & 

Pluddemann, 2018).  
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APPENDICES 

 

Appendix 1. Search Strategy 

 

Databases 

EMBASE (OvidSP Interface) 

1974 to 2020 Week 3 

# Search Results 

1 exp machine learning/ 185488 

2 "neural networks (computer)".mp. 165 

3 supervised machine learning/ or unsupervised machine learning/ 1774 

4 (naive bayes or random forest or boosting or deep learning or machine 

intelligence or computational intelligence or computer reasoning or 

convolutional neural network or residual network or variational auto encoder 

or principal components analysis or k nearest neighbours or linear 

discriminant analysis or genetic algorithm or regression analysis or LASSO 

regression or ridge regression or decision tree).ti,ab,kw. 

364787 

5 (radiomics or learning algorithm or coding algorithm or computer 

heuristics).ti,ab,kw. 

8483 

6 (comput* language or comput* prediction or comput* simulation or 

comput* aided diagnosis).ti,ab,kw. 

22320 

7 exp algorithms/ 292045 

8 1 or 2 or 3 or 4 or 5 or 6 or 7 775569 

9 (lung? adj3 (cancer* or neoplasm? or tumo?r* or malignan*)).ti,ab,kw. 280813 

10 exp respiratory tract neoplasms/ or lung neoplasms/ or "adenocarcinoma of 

lung"/ or bronchial neoplasms/ or carcinoma, non-small-cell lung/ 

448973 

11 (lung? adj3 (lesion* or mass* or neoplas*)).ti,ab,kw. 27931 

12 ((mediastin* or thoracic or chest or hilar or interlobar or lobar or segmental 

or subsegmental) adj2 lymph nod*).ti,ab,kw. 

13403 

13 9 or 10 or 11 or 12 535550 
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15 exp Positron-Emission Tomography/ 163271 

16 image interpretation, computer-assisted/ or exp tomography computed/ 38650 

17 Endoscopic Ultrasound-Guided Fine Needle Aspiration/ 3139 

18 ((Endobronchial or Endoscopic) adj2 Ultrasound Guided Needle 

Aspiration).ti,ab,kw. 

68 

19 ((CT or PET or CAT) adj2 scan).ti,ab,kw. 117395 

20 ((PET or CT or CAT) adj2 image).ti,ab,kw. 12198 

21 (electron adj3 tomography).mp. 6984 

22 exp tomography emission-computed/ 197183 

23 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 352296 

24 8 and 13 15179 

25 22 and 23 2022 

26 Animal/ not (human/ and animal/) 1065416 

27 25 not 26 1972 

 

 

MEDLINE (Ovid MEDLINE® and Epub Ahead of Print, In-Process & Other Non-

Indexed Citations and Daily) 

1946 to January 14, 2020 

# Searches Results 

1 exp Machine Learning/ 17590 

2 "neural networks (computer)".mp. [mp=title, abstract, original title, name of 

substance word, subject heading word, floating sub-heading word, keyword 

heading word, organism supplementary concept word, protocol 

supplementary concept word, rare disease supplementary concept word, 

unique identifier, synonyms] 

25284 
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3 supervised machine learning/ or unsupervised machine learning/ 841 

4 (naive bayes or random forest or boosting or deep learning or machine 

intelligence or computational intelligence or computer reasoning or 

convolutional neural network or residual network or variational auto encoder 

or principal components analysis or k nearest neighbours or linear 

discriminant analysis or genetic algorithm or regression analysis or LASSO 

regression or ridge regression or decision tree).ti,ab,kw,kf. 

256113 

5 (radiomics or learning algorithm or coding algorithm or computer 

heuristics).ti,ab,kw,kf. 

5947 

6 (comput* language or comput* prediction or comput* simulation or comput* 

aided diagnosis).ti,ab,kw,kf. 

18701 

7 exp algorithms/ 317189 

8 1 or 2 or 3 or 4 or 5 or 6 or 7 575635 

9 (lung? adj3 (cancer* or neoplasm? or tumo?r* or malignan*)).ti,ab,kw,kf. 191099 

10 exp respiratory tract neoplasms/ or lung neoplasms/ or "adenocarcinoma of 

lung"/ or bronchial neoplasms/ or carcinoma, non-small-cell lung/ 

286706 

11 (lung? adj3 (lesion* or mass* or neoplas*)).ti,ab,kw,kf. 24018 

12 ((mediastin* or thoracic or chest or hilar or interlobar or lobar or segmental or 

subsegmental) adj2 lymph nod*).mp. [mp=title, abstract, original title, name 

of substance word, subject heading word, floating sub-heading word, keyword 

heading word, organism supplementary concept word, protocol 

supplementary concept word, rare disease supplementary concept word, 

unique identifier, synonyms] 

8518 

13 "Adenocarcinoma of Lung"/pa [Pathology] 858 

14 Lung Neoplasms/pa [Pathology] 73517 

15 Mediastinum/pa [Pathology] 1775 

16 9 or 10 or 11 or 12 or 13 or 14 or 15 361661 
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17 diagnostic imaging/ or image interpretation, computer-assisted/ or 

radiography/ or radionuclide imaging/ or tomography/ or ultrasonography/ or 

whole body imaging/ 

655544 

17 exp Positron-Emission Tomography/ 59746 

19 image interpretation, computer-assisted/ or exp tomography computed/ 44684 

20 ((CT or PET or CAT) adj2 scan).ti,ab,kw,kf. 60494 

21 ((PET or CT or CAT) adj2 image).ti,ab,kw,kf. 6521 

22 (electron adj3 tomography).mp. [mp=title, abstract, original title, name of 

substance word, subject heading word, floating sub-heading word, keyword 

heading word, organism supplementary concept word, protocol 

supplementary concept word, rare disease supplementary concept word, 

unique identifier, synonyms] 

4756 

23 exp tomography emission-computed/ 111028 

24 ((Endobronchial or Endoscopic) adj2 Ultrasound Guided Needle 

Aspiration).ti,ab,kw,kf. 

36 

25 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 814692 

26 8 and 16 8426 

27 25 and 26 1137 

28 Animal/ not (human/ and animal/) 4663765 

29 27 not 28 1083 

 

CENTRAL 

Inception to 2020, Week 3 

#1 (supervised OR unsupervised) “machine learning” OR naive bayes OR random forest 

OR deep learning OR comput* (intelligence OR reasoning OR heuristic* OR language OR 
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prediction OR simulation OR aided diagnos*) OR boosting OR radiomics OR “algorithm” 

OR convolutional neural network OR residual network OR variational auto encoder in Title 

Abstract Keyword AND (lung (cancer* OR (cancer diagnos*) OR neoplas* OR lesion* 

OR mass* OR tumo?r OR malignan*)) OR “non small cell lung cancer” OR ((mediastin* 

OR chest OR thoracic OR interlobar OR lobar OR segmental OR subsegmental) lymph 

node*) OR medistin* in Title Abstract Keywork AND “diagnostic imag*” OR “computer 

assisted” OR ultrasonograph* OR (positron emission OR comput*) tomograph* (imag* 

OR scan*) OR (CT OR PET OR CAT) (imag* OR scan*) OR ((endobronchial OR 

endoscopic ultrasound) in Title Abstract Keyword (815) 

 

Web of Science (All Databases) 

1926 to January 14, 2020 

#1 TS= (supervised machine learning OR unsupervised machine learning) (34,815) 

#2 TS= (naive bayes OR random forest OR boosting OR deep learning OR machine 

intelligence OR comput* intelligence OR comput* reasoning OR support vector machine 

OR “neural networks (computer)” OR radiomics) (932,786) 

#3 (#2 OR #3) (935,866) 

#4 TS=(lung (lesion* OR mass*)) (158,928) 

#5 TS= (respiratory tract neoplasm* OR lung neoplasm* OR “adenocarcinoma of the lung” 

OR bronchial neoplasm* OR carcinoma, non-small cell lung cancer) (540,032) 

#6 TS= (lung (lesion* OR mass*)) (158,928) 
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#7 TS=((mediastin* OR thoracic OR chest OR hilar OR interlobar OR lobar OR segmental 

OR subsegmental) lymph nod*)) (36,721) 

#8 TS= (mediastin*[pathology]) (42,384) 

#9 (#8 OR #7 OR #6 OR #5 OR #4) (689,340) 

#10 TS= ((Positron Emission OR Compute*) Tomography) (983,448) 

#11 TS= ((Endobronchial OR Endoscopic) Ultrasound Guided Needle Aspiration)) (7,371) 

#12 TS= ((CT OR PET OR CAT) scan OR imag*) (568,190) 

#13 (#12 OR #11 OR #10) (1,159,472) 

#14 (#13 AND #9 AND 3#) (2,063) 

#15 TS= (animal* NOT (human* AND animal*)) (12,390,410) 

#16 (#14 NOT #15) (2,047) 

 

Ongoing Studies 

Clinicaltrials.gov 

Inception to January 14, 2020 

#1 (deep learning OR computer OR neural OR algorithm OR radiomics) AND (EBUS or 

endobronchial ultrasound OR CT OR PET OR CAT OR tomography OR diagnostic 

imaging OR lymph nodes) AND (lung cancer) (96) 
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Appendix 2. QUADAS-2 Guideline for Risk of Bias Assessment 

 
 

Domain Yes Unclear No 

Patient selection 

1. Consecutive or 

random sample 

enrolled? 

A consecutive or random 

sample of patients was 

enrolled in the study. 

It is unclear whether a 

consecutive or random 

sample of patients was 

enrolled in the study. 

There was no consecutive 

or random sample 

included in the study (e.g. 

only patients already 

suspected or confirmed 

lung malignancy with/ 

without 

lymphadenopathy). 

2. Case control 

design avoided? 

There was no case control 

design. 

It is unclear if there was a 

case control design   

There was a case control 

design 

3. Inappropriate 

exclusions 

avoided? 

There are no patients 

inappropriately excluded 

(e.g. patients with 

confirmed lung cancer, 

who will already be 

operated on) 

It is unclear if there was 

avoidance of 

inappropriate exclusions 

There is inappropriate 

exclusion of patients (e.g. 

exclusion of patients with 

high risk of malignancy) 

Index test 

1. Index test 

results interpreted 

without knowledge 

results reference 

standard? 

The index test did not have 

any clinicopathological 

information added to the 

algorithm. 

It is unclear whether the 

index test had knowledge 

of the reference standard. 

The index test had 

clinicopathological 

information added to the 

algorithm. 
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2. Pre‐specified 

threshold? 

There was a pre‐specified 

cut‐off level. 

It is unclear if there was a 

pre‐specified cut‐off level 

There was no pre‐

specified cut‐ff level. 

Reference standard 

1. Reference 

standard likely to 

correctly classify 

target condition? 

  

In patients receiving 

surgery there is adequate 

histopathological 

examination of lymph 

node tissue. 

 

In patients receiving 

surgery it's unclear how 

histopathological 

examination is performed. 

In patients receiving 

surgery histopathological 

examination is not 

adequate. 

 

2. Reference 

standard results 

interpreted without 

knowledge results 

index test? 

  

The outcome assessor of 

histopathological and 

follow‐up results was not 

aware of results. 

It is not clear if the 

outcome assessor of 

histopathological and 

follow‐up results was 

aware of results. 

The outcome assessor of 

histopathological and 

follow‐up results was 

aware of results. 

Flow and timing 

1. Appropriate 

interval between 

index test and 

reference 

standard? 

Time between radiomic 

testing and 

histopathological 

examination is < 3 months 

It is unclear what the time 

period between reference 

standard and index test is. 

Time between radiomic 

analysis testing and 

histopathological exceeds 

3 months. 

2. All patients 

received the 

reference 

standard? 

All patients received 

surgery, and patients who 

did not receive surgery 

have clinical follow‐up 

with oncology or CT 

surveillance. 

It is not clear if the whole 

sample did receive surgery 

or follow‐up with 

oncology or CT 

surveillance. 

Only a selected subset of 

the patients received or 

surgery or not all patients 

have clinical follow‐up 

with oncology or CT 

surveillance. 
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3. Patients 

received the same 

reference 

standard? 

All patients were 

operated, and 

histopathological 

examination of the lymph 

nodes was performed. 

It is not clear if all 

patients were operated on 

and received 

histopathological 

examination. 

Not all patients were 

operated, or 

histopathological 

examination was not 

performed in all patients. 

4. All patients 

included in the 

analysis? 

All patients enrolled were 

included in the analysis 

It is not clear if all 

patients were included in 

the analysis.  

Not all patients enrolled 

were included in the 

analysis (e.g. patients lost 

to follow‐up) 
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Appendix 3. Characteristics of Included Studies and Risk of Bias Assessment [ordered 

by study ID 

 

 

Author Bella 2013 

Country Poland 

Participants Patient population: n = 150 (derivation), n = 26 (validation) 

Diagnosis of Interest: NSCLC 

Prevalence: NR 

Mean Age: NR 

% Male: NR 

LNs imaged/ biopsied: n = 467 for derivation, n = 80 for validation 

Inclusion Criteria: NSCLC patients treated at the study’s thoracic surgery 

department  

Study 

Design 

Retrospective Derivation Cohort & Prospective Validation Cohort  

Imaging 

Modality 

PET/CT 

Index Test Artificial Neural Networks  

Reference 

Test 

EBUS-TBNA, mediastinoscopy or lymphadenectomy 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 
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Patient 

Selection 

Unclear Risk Study did not appear to have a case-control design, but it 

did not describe its exclusion criteria nor was it clear 

whether a consecutive sampling was employed for the 

prospective validation. 

Index Test Unclear Risk Insufficient information to make a judgement. 

Reference 

Test 

Unclear Risk Insufficient information to make a judgement. 

Flow and 

Timing 

High Risk The interval between index test and reference tests was 

not specified. Given that EBUS-TBNA, mediastinoscopy 

and surgical resection were used as possible reference 

tests, the timing intervals could have varied amongst 

patients because EBUS-TBNA often occurs before 

mediastinoscopy and surgery. 

 

Author Ferreira-Junior 2009 

Country Brazil 

Participants Patient population: n = 85 

Diagnosis of Interest: Lung Cancer 

Prevalence: n = 39 patients (46%) 

Mean Age: 67 years 

% Male: 54 

LNs imaged/ biopsied: n = NR 

Inclusion Criteria: Patients with histologically or surgically confirmed 

lung cancer 

Study 

Design 

Retrospective Cohort 

Imaging 

Modality 

CT 
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Index Test Volumetric Segmentation 

Reference 

Test 

Pathology from biopsy or surgical resection 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Unclear Risk Study did not appear to have a case-control design, but it 

did not describe its exclusion criteria nor was it clear 

whether a consecutive sampling was employed for the 

prospective validation. 

Index Test Unclear Risk The study did not specify whether the trained reader was 

blinded to the reference tests results while segmenting.  

Reference 

Test 

Low Risk The reference tests were likely to classify the target 

condition correctly. Moreover, the study was 

retrospective, therefore, the reference test assessors did 

not have knowledge of the index test results.  

Flow and 

Timing 

High Risk The study excluded patients with missing clinical data, 

and the interval between index test and reference test was 

not specified. Given that biopsy and surgical resection 

were both used as possible reference tests, the timing 

intervals could have varied amongst patients because 

biopsies are often done before surgery.  

 

Author Flechsig 2017 

Country Germany 
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Participants Patient population: n = 122 

Diagnosis of Interest: Lung Cancer  

Prevalence of Malignancy: n = 73 patients (60%), n = 130 LNs (52%) 

Median Age: 59 years 

% Male: 56 

LNs imaged/ biopsied: n = 248 

Inclusion Criteria: Patients with histologically or surgically confirmed 

lung cancer whom did not receive neoadjuvant radiation and/or 

chemotherapy 

Study 

Design 

Retrospective Cohort 

Imaging 

Modality 

PET/CT 

Index Test Volumetric CT Histogram Analysis with Semi-Automated Segmentation 

Reference 

Test 

Histological pathology via surgical resection with mediastinal lymph 

node, mediastinoscopy or transbronchial biopsy 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Unclear Risk While the study avoided inappropriate exclusions, 

consecutive patient enrollment and exclusion criteria 

were not provided by the authors.  

Index Test Low Risk Radiologist was blinded to clinical information.  

Reference 

Test 

Low Risk The reference tests were likely to classify the target 

condition correctly. Moreover, the study was 

retrospective, therefore, the reference test assessors did 

not have knowledge of the index test results.  
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Flow and 

Timing 

Low Risk All patients had their imaging conducted within one 

week of the reference test, which was appropriate. 

Although multiple ways to obtain histological 

confirmation were used, all were effective ways to 

obtain the pathological ground truth.  

 

Author Gao 2015 

Country China 

Participants Patient population: n = 132 

Diagnosis of Interest: NSCLC 

Prevalence: NR 

Median Age: 61 years 

% Male: 61 

LNs imaged/ biopsied: n = 768 

Inclusion Criteria: Patients diagnosed with lung cancer that underwent 

lobectomy combined with nodal dissection. Did not receive any therapy 

for their tumour beforehand. 

Study Design Prospective Cohort 

Imaging 

Modality 

PET/CT 

Index Test Support Vector Machine 

Reference 

Test 

Surgical Resection (Pathology Results) 

Risk of Bias 
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Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Low Risk Patients were consecutively enrolled and it was not a 

case-control design. Exclusion criteria was justifiable. 

Index Test Low Risk Radiologists were blinded to clinical information. 

Reference 

Test 

Unclear Risk Although the reference test is likely to classify the 

target condition correctly, it is unclear whether the 

pathologists were blinded to the index test results. 

Flow and 

Timing 

Low Risk All patients had their imaging conducted within one 

week of the reference test, which was appropriate. 

They also received the same reference test. 

 

 

Author He 2019 

Country China 

Participants Patient population: n = 717 

Diagnosis of Interest: NSCLC 

Prevalence: n = 325 patients (45%) 

Median Age: 61 years 

% Male: 59 

LNs imaged/ biopsied: NR 

Inclusion Criteria: Patients that underwent surgical resection with 

systematic mediastinal lymphadenectomy for primary NSCLC.  

Study 

Design 

Retrospective Cohort 

Imaging 

Modality 

CT 
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Index Test Radiomic-based Predictive Risk Score 

Reference 

Test 

Surgical Resection (Pathological Results) 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Unclear Risk Information on consecutive patient enrollment was not 

provided by the authors.  Moreover, the study excluded 

patients for unjustified reasons (i.e. patients that were 

harder to diagnose). 

Index Test Unclear Risk Although the threshold was pre-specified, there is 

insufficient information to determine if the radiologists 

had access to reference test results during segmentation. 

Reference 

Test 

Low Risk The reference tests were likely to classify the target 

condition correctly. Moreover, the study was 

retrospective, therefore, the reference test assessors did 

not have knowledge of the index test results.  

Flow and 

Timing 

Low Risk Although not all patients were included within analysis 

due to missing data, this population comprised less than 

20% of patients. Remaining patients had their imaging 

conducted within two weeks of the reference test, which 

was appropriate. They also received the same reference 

test. 

 

Author Inoue 2011 

Country Japan 
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Participants Patient population: n = 14 

Diagnosis of Interest: Lung Cancer 

Prevalence: n = 100% 

Mean Age: 65.85 

% Male: 86 

LNs imaged/ biopsied: n = 23 

Inclusion Criteria: Patients that received PET/CT covered by medical 

insurance, were diagnosed with mediastinal and/or hilum LN metastases 

and had blood sugar below 150 ml/dl 

Study 

Design 

Retrospective Cohort 

Imaging 

Modality 

3D - Ordered Subset Expectation Maximization (3D-OSEM) 

Index Test PET/CT with 2D-OSEM and PET/CT with FORE + OSEM 

Reference 

Test 

Histologically confirmed or clinical observation for over a year 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

High Risk The study did not justify why they excluded 79 patients. 

Index Test Unclear Risk Insufficient information to determine if the radiologists 

had access to reference test results while scoring. 

Reference 

Test 

High Risk Although the reference tests assessors did not have 

knowledge of the index test results, two drastically 
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different reference tests were used. Specifically, clinical 

observation for more than a year is subjective compared 

to histological confirmation. 

Flow and 

Timing 

High Risk The study excluded patients with missing clinical data; 

the interval between index test and reference test was 

not consistent; and patients could have received two 

completely different reference tests. 

 

Author Liu 2018 

Country United States 

Participants Patient population: n = 187 

Diagnosis of Interest: Peripheral Lung Adenocarcinoma 

Prevalence: n = 34 patients (18.2%) 

Median Age: 59 years 

% Male: 41 

LNs imaged/ biopsied: n = NR 

Inclusion Criteria: underwent  lobectomy  or  pneumonectomy  with 

systematic lymph node dissection of both hilar and medi-astinal lymph 

nodes; acquisition of preoperative thin-section CT scan and the location of 

the lung tumor was 

peripheral  (tumor  involving  subsegmental  bronchus  or smaller airway); 

(c) clinical N stage was N0. 

Study 

Design 

Retrospective Cohort 

Imaging 

Modality 

CT 

Index Test Cognition Network Technology 
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Reference 

Test 

Surgical Resection (Pathological Results) 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

High Risk Patients were not consecutively or randomly selected 

(already confirmed to have peripheral lung 

adenocarcinoma). 

Index Test Low Risk Radiologists were blinded to clinical information. 

Reference 

Test 

Low Risk The reference tests were likely to classify the target 

condition correctly. Moreover, the study was 

retrospective, therefore, the reference test assessors 

did not have knowledge of the index test results.  

Flow and 

Timing 

Low Risk All patients had their imaging conducted within one 

month of the reference test, which was appropriate. 

They also received the same reference test. 

 

Author Na 2018 

Country South Korea 

Participants Patient population: n = 468 

Diagnosis of Interest: NSCLC 

Prevalence: n = 157 patients (34%) 

Mean Age: NR 

% Male: NR 

LNs imaged/ biopsied: n = NR 

Inclusion Criteria: Patients with NSCLC smaller than 3 cm (T1 stage) 
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Study Design Prospective Cohort 

Imaging 

Modality 

PET/CT 

Index Test Convolutional Neural Network with XGBoost Classifier 

Reference 

Test 

Surgical Resection (Pathology Results) 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Unclear Risk Study did not appear to have a case-control design, but 

it did not describe its exclusion criteria nor was it clear 

whether a consecutive sampling was employed. 

Index Test Unclear Risk Insufficient information to make a judgement. 

Reference 

Test 

Unclear Risk Although the reference test is likely to classify the 

target condition correctly, it is unclear whether the 

pathologists were blinded to the index test results. 

Flow and 

Timing 

Unclear Risk Patients received the same reference test, however, the 

time between index test and reference test was not 

specified. 

 

 

 

 

Author Pham I 2017 
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Country Japan 

Participants Patient population: n = 148 

Diagnosis of Interest: Lung Cancer 

Prevalence: n = NR 

Mean Age: NR 

% Male: 63 

LNs imaged/ biopsied: n = NR 

Inclusion Criteria: Patients with biopsy-proven primary lung malignancy, 

pathological mediastinal nodal staging, and underwent unenhanced CT 

Study 

Design 

Retrospective Cohort 

Imaging 

Modality 

CT 

Index Test Unsupervised Neural Network with Gray-Level Co-Occurrence Matrix 

and Semi-Variogram Features 

Reference 

Test 

Surgical Resection (Pathology Results) 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Unclear Risk While the study avoided inappropriate exclusions, 

consecutive patient enrollment and exclusion criteria 

were not provided by the authors.  

Index Test Low Risk Index test utilized unsupervised learning, thus 

minimizing human influence. 
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Reference 

Test 

Low Risk The reference test was likely to classify the target 

condition correctly. Moreover, the study was 

retrospective, therefore, the reference test assessors did 

not have knowledge of the index test results.  

Flow and 

Timing 

Unclear Risk Patients received the same reference test, however, the 

time between index test and reference test was not 

specified. 

 

Author Pham II 2017 

Country Japan 

Participants Patient population: n = 148 

Diagnosis of Interest: Lung Cancer 

Prevalence: n = 133 LNs (49.1%) 

Mean Age: 69.41 years 

% Male: 63 

LNs imaged/ biopsied: n = 271 

Inclusion Criteria: Patients with biopsy-proven primary lung malignancy, 

pathological mediastinal nodal staging, and underwent unenhanced CT 

Study 

Design 

Retrospective Cohort 

Imaging 

Modality 

CT 

Index Test Support Vector Machine with Gray-Level Co-Occurrence Matrix and 

Semi-Variogram Features 

Reference 

Test 

Biopsy-Proven (Pathology Results) 

Risk of Bias 
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Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Unclear Risk While the study avoided inappropriate exclusions, 

consecutive patient enrollment and exclusion criteria 

were not provided by the authors.  

Index Test Low Risk Thoracic surgeon was blinded to clinical information 

during segmentation. 

Reference 

Test 

Low Risk The reference test was likely to classify the target 

condition correctly. Moreover, the study was 

retrospective, therefore, the reference test assessors did 

not have knowledge of the index test results.  

Flow and 

Timing 

Low Risk All patients had their imaging conducted within three 

months of the reference test, which was appropriate. 

They also received the same reference test. 

 

Author Song 2011 

Country Australia 

Participants Patient population: n = 50 

Diagnosis of Interest: NSCLC 

Prevalence: n = 23 patients (46.0%) 

Mean Age: NR 

% Male: NR 

LNs imaged/ biopsied: NR 

Inclusion Criteria: Patients diagnosed with NSCLC 

Study 

Design 

Not Reported 
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Imaging 

Modality 

PET/CT 

Index Test Support Vector Machine 

Reference 

Test 

Expert Radiologist Identifying Region of Interest 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Unclear Risk Study did not appear to have a case-control design, but 

it did not describe its exclusion criteria nor was it clear 

whether a consecutive or random sampling was 

employed. 

Index Test Unclear Risk Insufficient information to make a judgement. 

Reference 

Test 

High Risk Reference test was subjective in its diagnosis of 

abnormal LNs. Did not specify what classified an 

abnormal LN nor did it rely on histological 

confirmation. Was based on the similarities of images.  

Flow and 

Timing 

Unclear Risk Patients received the same reference test, however, the 

time between index test and reference test was not 

specified. 

 

Author Song 2012 

Country Australia 
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Participants Patient population: n = 85 

Diagnosis of Interest: NSCLC 

Prevalence: n = 23 patients (46%) 

Mean Age: NR 

% Male: NR 

LNs imaged/ biopsied: n = 72 

Inclusion Criteria: Patients diagnosed with NSCLC 

Study 

Design 

Retrospective Cohort 

Imaging 

Modality 

PET/CT 

Index Test Support Vector Machine 

Reference 

Test 

Expert Radiologist Identifying Region of Interest 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Unclear Risk While the study avoided inappropriate exclusions, 

consecutive patient enrollment and exclusion criteria 

were not provided by the authors.  

Index Test Unclear Risk Insufficient information to make a judgement. 

Reference 

Test 

High Risk Reference test was subjective in its diagnosis of 

abnormal LNs. Did not specify what classified an 

abnormal LN nor did it rely on histological 

confirmation. Was based on the similarities of images.  
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Flow and 

Timing 

Unclear Risk Patients received the same reference test, however, the 

time between index test and reference test was not 

specified. 

 

 

 

Author Tagaya 2008 

Country Japan 

Participants Patient population: n = 91 (n = 66 Lung Cancer) 

Diagnosis of Interest: Lung Cancer & Sarcoidosis 

Prevalence: n = 66 (73%) 

Mean Age: NR 

% Male: NR 

LNs imaged/ biopsied: n = 91 (n = 66 Lung Cancer) 

Inclusion Criteria: Patients undergoing EBUS-TBNA for lung cancer or 

sarcoidosis 

Study 

Design 

Prospective Cohort 

Imaging 

Modality 

EBUS 

Index Test Supervised Layered Artificial Neural Networks 

Reference 

Test 

Transbronchial Needle Aspiration (Pathology Results) or Cytological 

Examination 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 
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Patient 

Selection 

Unclear Risk Study did not appear to have a case-control design, but it 

did not describe its exclusion criteria nor was it clear 

whether a consecutive or random sampling was 

employed. 

Index Test Low Risk Thoracic surgeons were blinded to clinical information 

during assessments. 

Reference 

Test 

Low Risk Although cytology is not as accurate as the TBNA 

pathology results for diagnosis, the study specified that 

the cytology results were confirmed by surgery.  

Flow and 

Timing 

High Risk The interval between index test and reference tests was 

not specified. Given that TBNA pathology results and 

cytology were both used as possible reference tests, the 

timing intervals likely varied amongst patients because 

cytology often occurs before histological assessment of 

TBNA samples.  

 

Author Teoh 2016 

Country England 

Participants Patient population: n = 47 

Diagnosis of Interest: NSCLC 

Prevalence: n = 18 patients (38.3%) 

Mean Age: 69 years 

% Male: 61.7 

LNs imaged/ biopsied: n = 112 

Inclusion Criteria: Patients who underwent PET/CT for staging of 

NSCLC and had subsequent nodal station histopathological diagnosis 

Study 

Design 

Retrospective Cohort 
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Imaging 

Modality 

PET/CT with Ordered Subset Expectation Maximum Reconstruction 

Index Test Bayesian Penalized Likelihood Reconstruction 

Reference 

Test 

Surgical Resection or EBUS-TBNA (Pathological Results) 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Unclear Risk While the study avoided inappropriate exclusions, 

consecutive patient enrollment and exclusion criteria 

were not provided by the authors.  

Index Test Low Risk Although the radiologist was not blinded to the nature of 

the reconstruction, they were blinded to clinical 

information and a predefined SUV threshold of 2.5 was 

used to distinguish malignant and benign LNs.  

Reference 

Test 

Low Risk The reference tests were likely to classify the target 

condition correctly. Moreover, the study was 

retrospective, therefore, the reference test assessors did 

not have knowledge of the index test results.  

Flow and 

Timing 

High Risk The interval between index test and reference tests was 

not specified. Given that EBUS-TBNA and surgical 

resection were both used as possible reference tests, the 

timing intervals could have varied amongst patients 

because EBUS-TBNA often occurs before surgery. 

 

Author Toney 2014 
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Country United States 

Participants Patient population: n = 133 

Diagnosis of Interest: NSCLC 

Prevalence: n = 67 (50.4%) 

Mean Age: 64.4 years 

% Male: 64.7 

LNs imaged/ biopsied: NR 

Inclusion Criteria: NSCLC patients with surgically proven nodal status. 

Could NOT have pleural implants or evidence of stage IV disease. 

Study Design Prospective Cohort 

Imaging 

Modality 

PET/CT 

Index Test Supervised Artificial Neural Networks 

Reference 

Test 

Surgical Resection (Pathology Results) 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Unclear Risk Study did not appear to have a case-control design and 

the exclusion criteria was justifiable, but it was not 

clear whether a consecutive or random sampling was 

employed.  

Index Test Low Risk Expert reader was blinded to surgical pathology.  

Reference 

Test 

Low Risk The reference test was likely to classify the target 

condition correctly. Moreover, nodal status was 

performed independent of index test.  
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Flow and 

Timing 

Unclear Risk Patients received the same reference test, however, the 

time between index test and reference test was not 

specified. 

 

Author Vesselle 2003 

Country United States 

Participants Patient population: n = 133 

Diagnosis of Interest: NSCLC 

Prevalence: n = 67 (50.4%) 

Mean Age (years): N0) 67.7, N1) 67.4, N2) 63.7, N3) 56.0 

% Male: 64.66 

LNs imaged/ biopsied: NR 

Inclusion Criteria: Patients with potentially resectable NSCLC after chest 

CT and clinical evaluation. Could NOT have type 1 diabetes, stage IV 

disease, chemotherapy/radiotherapy prior to PET. 

Study Design Prospective Cohort 

Imaging 

Modality 

PET 

Index Test Supervised Artificial Neural Networks 

Reference 

Test 

Surgical Resection (Pathology Results) 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 
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Patient 

Selection 

Unclear Risk Study did not appear to have a case-control design and 

the exclusion criteria was justifiable, but it was not 

clear whether a consecutive or random sampling was 

employed.  

Index Test High Risk Feedback of surgical nodal staging results was 

provided to the index test assessor.  

Reference 

Test 

High Risk Results of index test were provided to the surgeon 

prior to confirming mediastinal nodal status.  

Flow and 

Timing 

Unclear Risk Patients received the same reference test, however, the 

time between index test and reference test was not 

specified. 

 

 

Author Wang 2017 

Country China 

Participants Patient population: n = 168 

Diagnosis of Interest: NSCLC 

Prevalence: n = 1270 LNs (90.91%) 

Median Age: 61 years 

% Male: 54.17 

LNs imaged/ biopsied: n = 1397 

Inclusion Criteria: Patients who had PET/CT within 1 week of surgery 

Study 

Design 

Retrospective Cohort 

Imaging 

Modality 

PET/CT 

Index Tests 1. Random Forest  

2. Support Vector Machine 

3. Adaptive Boosting 

4. Back-Propagation Artificial Neural Network 
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5. Convolutional Neural Networks 

Reference 

Test 

Surgical Resection (Pathology Results) 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Unclear Risk While the study avoided inappropriate exclusions, 

consecutive patient enrollment and exclusion criteria 

were not provided by the authors.  

Index Test Unclear Risk Insufficient information to determine if the radiologists 

had access to reference test results while segmenting. 

Reference 

Test 

Low Risk The reference test was likely to classify the target 

condition correctly. Moreover, the study was 

retrospective, therefore, the reference test assessors did 

not have knowledge of the index test results.  

Flow and 

Timing 

Low Risk All patients had their imaging conducted within 1 week 

of the reference test, which was appropriate. They also 

received the same reference test. 

 

Author Wang 2018 

Country China 

Participants Patient population: n = 93 

Diagnosis of Interest: Squamous Cell Lung Cancer 

Prevalence: n = 31 with N2 (33.3%) 
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Mean Age: NR 

% Male: NR 

LNs imaged/ biopsied: NR 

Inclusion Criteria: patients with squamous cell lung cancer that 

underwent pretreatment CT scans 

Study 

Design 

NR 

Imaging 

Modality 

CT 

Index Test Support Vector Machine 

Reference 

Test 

Surgical Resection (Pathology Results) 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 

Patient 

Selection 

Unclear Risk Study did not appear to have a case-control design, but 

it did not describe its exclusion criteria nor was it clear 

whether a consecutive sampling was employed for the 

prospective validation. 

Index Test Unclear Risk Insufficient information to make a judgement. 

Reference 

Test 

Unclear Risk Insufficient information to make a judgement. 

Flow and 

Timing 

Unclear Risk Insufficient information to make a judgement. 

 



MSc. Thesis- I.F. Churchill; McMaster University- Health Research Methodology 

 158 

Author Zhong 2018 

Country China 

Participants Patient population: n = 492 

Diagnosis of Interest: Adenocarcinoma 

Prevalence: n = 78 (15.85%) 

Mean Age: 61.4 years 

% Male: 35.16 

LNs imaged/ biopsied: NR 

Inclusion Criteria: underwent surgical resection and systematic LN 

dissection (removal of at least three hilar stations and three mediastinal 

stations), had no enlargement of the hilar or mediastinal LNs, at CT had a 

clinical diagnosis of no LN metastasis (clinical N0), and had no distant 

metastasis (M0). Excluded if: IV administration of contrast material, 

unsatisfactory image quality due to respiratory artifact and surgical 

resection not performed within 90 days of CT 

Study 

Design 

Retrospective Cohort 

Imaging 

Modality 

CT 

Index Test Support Vector Machine 

Reference 

Test 

Surgical Resection (Pathology Results) 

Risk of Bias 

Domain Author’s 

Judgement 

Support of Judgement 
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Patient 

Selection 

High Risk Although the authors investigated occult disease, which 

justifies the exclusion of >N0 patients, the rationale for 

why they solely included these patients with 

adenocarcinoma was not convincingly explained.  

Index Test Unclear Risk Insufficient information to determine if the radiologists 

had access to reference test results while segmenting. 

Reference 

Test 

Low Risk The reference test was likely to classify the target 

condition correctly. Moreover, the study was 

retrospective, therefore, the reference test assessors did 

not have knowledge of the index test results.  

Flow and 

Timing 

Low Risk All patients had their imaging conducted within 90 days 

of the reference test, which was appropriate. They also 

received the same reference test. 
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Appendix 4. Ongoing and Awaiting Classification Studies 

 

Ongoing 

1. NCT03849040 

2. NCT03648151 

3. NCT04000620 

 

Awaiting Classification  

1. Genseke 2019 

2. He 2017 

3. Wnuck 2014 

4. Zhao 2018 

5. Zhu 2019 
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