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LAY ABSTRACT 

 

Approximately 1 in 3 Canadians live with at least one genetically linked chronic disease. 

Together, these diseases constitute a large economic burden on the healthcare system and well-

being of individuals. Recent advancements in genetics allow risk prediction of developing 

complex, but common chronic diseases such as cardiovascular disease. Termed as polygenic risk 

scores, they have the potential to carry beneficial clinical outcomes such as an improved quality 

of life. However, the economics is not yet understood. This study determined that when targeting 

heart attacks, approximately $750,000 is required to gain an additional life-year for an adult. 

Although this may seem high, the result is closer to an upper-limit estimate than the true cost 

since polygenic risk scores have more benefits than solely for heart attacks. In the future, when 

accounting for their entire potential, the cost per life-year is likely to be lower, and perhaps even 

a money-returning investment.  
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ABSTRACT 

 

Introduction: There are no economic evaluations to determine the value of PRSs. The objective 

of this study was to determine if the addition of a PRS to traditional risk factors to guide statin 

therapy is a cost-effective intervention for the prevention of primary MI cases in the Ontario 

healthcare payer perspective.  

 

Methods: A PRS cost-effectiveness model was constructed to produce various statin prescription 

strategies in conjunction with the FRS. Upper PRS thresholds (between 25% to 70%) were set 

such that individuals falling into them would be eligible for statins while those in lower PRS 

thresholds (between 1% to 25%) were deemed protected and removed from consideration. The 

model determined number of incident MIs saved or not saved by statins, costs, quality of life, 

and the effect of statins on preventing MIs over a 10-year time horizon, discounted at 1.5% 

annually. One-way sensitivity analysis and a PSA were performed by varying all model 

parameters. Non-related participants of white British descent from 96,736 participants in the UK 

Biobank at intermediate risk for cardiovascular disease, determined using the Canadian 

Cardiovascular Society dyslipidemia guidelines of 2016, were used for the study. 

 

Results: The optimal clinical and economic strategy was one whereby the top 70% PRS 

individuals are eligible for statins, with the lower 5% PRS excluded. A base-case analysis at a 

PRS cost of $70 produced an ICER of $747,184.10/QALY, ranging from $525,678.90/QALY to 

$930,144.40/QALY in a one-way sensitivity analysis. In the PSA, the intervention has 

approximately a 50% probability of being cost-effective at $750,000/QALY. At a genotyping 
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cost of $0, statin strategies guided by PRS dominated standard care when at least 12% of the 

lower PRS individuals were withheld from statins. When the predictive performance of the PRS 

is increased, the ICER drops drastically depending on the cost of genotyping and statin strategy. 

 

Conclusion: The cost-effectiveness model considers MI cases exclusively and a short, 10-year 

time horizon which likely overestimate the ICER. However, this study elucidates that the PRS 

has the potential to be extremely cost-effective in the future.  
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1.0. INTRODUCTION 

 

1.1. BASIC CONCEPS OF ECONOMIC EVALUATIONS 

 

In a society of resource scarcity, a multitude of decisions have to be made about 

allocating healthcare resources to optimise health and economic outcomes.1 In the pursuit of 

healthcare system efficiency, these resources are selected such that priority is given to treatments 

or interventions with the greatest benefit (efficacy or effectiveness) per unit cost.2 To fulfil this 

goal, which is central to public health, a set of methods to summarise the costs and benefits of 

interventions against standard care in a systematic, analytical manner is required.3  

 

Economic evaluations (EEs) are studies that can shed light on this objective as they 

measure the costs and effects of a specific intervention in comparison to another, or more 

generally, standard care.3 The definitions of benefits, described below, vary widely depending on 

the research question and study design, however, costs are universal.2 It should be noted, these 

studies are not simply accounting or attempting to cut costs, but rather, to highlight strategies 

with the intent of maximising benefits while acknowledging that resources are not unlimited. 

This is important as the least costly intervention might not pose clinical outcomes of suitable 

standards.3  

 

The general framework of EEs poses two criteria; first, both costs and outcomes must be 

analysed, and second, at least one alternative strategy must be compared against the strategy of 

interest. Should a study solely examine the costs and benefits of a single strategy, the end result 
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is a cost-outcome description, not an EE. Subsequently, comparisons of two or more strategies 

with only cost as an outcome is also only a partial evaluation, known as a cost analysis. The most 

familiar studies in health science compare two or more strategies while only measuring benefits. 

Depending on the design, they are, for example, randomised controlled trials (RCTs) or an 

observational study.4 Other important parameters in EE are the study perspective, time horizon, 

and discounting.4,5  

 

The study perspective refers to the point of view adopted when deciding which costs and 

benefits are to be included in the study. This party is responsible for the delivery, payment, and 

receipt of care. The most comprehensive perspective is societal, which encompasses all direct 

and indirect (opportunity) costs, including loss of productivity such as reduced wages from the 

inability to work due to the illness or transportation, and changes in these losses associated with 

the new intervention. This perspective allows decision makers to compare between programs 

across the entire economy. However, it biases against individuals who might not be able to work 

prior to treatment onset due to old age or a pre-existing condition.6 A more common approach is 

to use the healthcare payer perspective, which is simply tabulating the costs incurred on the 

healthcare system. As a result, productivity, lost income, or costs associated with taking care of 

kin are not included. However, different jurisdictions might have different varieties of health 

outcome information which are used as indicators of cost-effectiveness. In private healthcare 

systems, insurance and pharmaceutical companies might use large databases of real-world 

evidence to track which interventions and programmes deliver health outcomes of interest to 

subscribers.6–8 The National Institute for Health and Care Excellence (NICE), based in England, 

and the Canadian Agency for Drugs and Technologies in Health (CADTH) agencies, which 
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publish guidelines on health technology assessment (HTA), recommend a public healthcare 

payer perspective.5,9  

 

The time horizon is an important methodological consideration in EEs. It should be long 

enough to capture the major health and economic consequences relevant to the perspective. For 

patients, this includes all health states, both intended effects and unintended side-effects. It is 

common to see time horizons as long as a lifespan to capture the natural course of the condition, 

but also as short as one year depending on the study design or the sources of the parameters used 

in the EE. Longer time horizons, especially when extrapolation is necessary, should be 

performed in tandem with analyses of uncertaintly.4,5 Discounting aims to adjust for the 

phenomenon that costs and health outcomes that are predicted to occur in the future are usually 

valued less than present costs. Every subsequent year, the discounting factor increases based on a 

constant rate such that EE costs and benefits increasingly diminish. The NICE guidelines 

recommend that costs and health outcomes be discounted at 3.5% per year, while CADTH 

recommends 1.5% per year.5,9 Nonetheless, discounting is a heavily debated topic, ranging from 

the rate itself to whether the same discount rate should be used for costs and health outcomes.10 

Common forms of EE are described below. 

 

1.2. COST-EFFECTIVENESS ANALYSES 

 

The difference between EEs lies in the manner that benefits or outcomes are reported. In 

a cost-effectiveness analysis (CEA), the outcomes are measured in unidirectional natural units 

such as lives saved, diagnosed strokes averted, change in a pain score, or change in blood 
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pressure. There are advantages to this approach. The use of natural units eliminates 

methodological issues related to outcome evaluation, most prominently observed during utility 

measurements (see 1.3. Cost-Utility Analyses). The outcomes are also more intuitive to grasp 

since the study objectives are engrained in the benefits, leading to easier knowledge translation 

for decision makers.11 Nonetheless, while the intra-study comparisons between the intervention 

and comparator are straightforward, this is at the expense of inter-study results comparability, 

most prominently across different conditions. For example, it is difficult to ascertain the risk and 

benefits when comparing costs per stroke averted to costs per change in a pain score. The lack of 

amalgamation of benefits affects the applicability of CEAs because the impact of the 

intervention is not expressed in a single, common metric. This primary limitation is resolved 

when a universal method of measuring benefits is enacted.4,11,12 

 

1.3. COST-UTILITY ANALYSES 

 

Analogous to CEAs, cost-utility analyses (CUAs) also consider healthcare costs and 

health effects. However, outcomes of health care interventions are measured in units of health 

outcome that combine both, quality and quantity of life, and are therefore comparable across 

different interventions and health conditions.13 This method produces a single numeric value to 

combine the duration and the quality of life gained in reference to a health state, known as the 

quality-adjusted life year (QALY).2,14 

 

QALYs are calculated by estimating the total life years gained from a procedure and 

weighting each year to reflect the quality of life in that year. The quality weights are measured 
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using health utility values, which are measured based on the population preference.1,13 They are 

anchored at 0 and 1, corresponding to death and perfect health, respectively. The conversion 

from utility values to QALYs is fairly straightforward with the multiplication of the former by 

the duration spent in its respective state.15  

 

Utility values for preference-based measures can be found either directly or indirectly 

from numerous groups, including members of the general population, patients affected with the 

specific disease, carers, and health care professionals.16 Common methods for direct 

measurements of health states include the standard gamble, time trade-off, and a rating scale. 

However, they are all resource intensive as they require the accurate development of health state 

descriptions and access to a representative sample. Since this is not a feasible endeavour for most 

CUAs, utility values from published literature are used with a gender, age, or disease specific 

population of interest. Next, indirect, or preference-based health state classification systems, are 

produced from questionnaires designed to determine respondents’ health states with a scoring 

algorithm. Common examples of such tools include the EQ-5D, the Health and Utilities Index, 

the Quality of Well-Being scale, and SF-6D.17 

 

The limitations to CUA are centred around the benefits aspect of the EE, or more 

specifically, the utility values and subsequent QALYs. First, there is significant variation in 

health utilities of a specific states depending on the tool. The standard gamble generally produces 

higher values compared to the rating scale. Such a variation in health utilities, which are key 

inputs to EE could alter the cost-effectiveness conclusion. This pattern of dissonance is also 

found in indirect methods of measuring health states.14,18 Second, utility values are generally 
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elicited from the general public, as recommended by agencies such as the NICE and 

CADTH.5,16,19 The rationale is that healthcare is (at least partially) publicly funded and members 

of general public, unlike patients with the disease in question, do not have a vested interest in the 

EE results. However, since “quality of life” is a vague concept, they might not grasp hypothetical 

health states compared to patients who have, or are experiencing the condition, leading to 

different valuations. As a result, the choice of values can impact the conclusion of the CUA.16,20 

Third, QALY values are dependent on the time at which utility values were measured or 

calculated and therefore, have a time-preference..14 Although this issue can be solved with 

discounting, a related problem with respect to time preference comes from the backend analysis 

of QALYs. When using a differential discounting rate for costs and QALYs, whereby the latter 

is lower, a technical flaw in the CUA outcome, coined “postponing paradox” takes place. The 

effect is that continuously postponing an intervention would lead to a more favourable cost-

effectiveness conclusion.21 Fourth, all QALYs are assumed to be equal. However, lower 

valuation could be attached to later life years than to earlier years which would underestimate the 

true QALYs of given individuals.22 Additionally, with the influence of other factors such as the 

study time horizon or the severity of the health state, individual patient utility values might not 

be accurately represented.23 Fifth, there has been concern over the additive structure of utility 

values across time, such as years, coined as intertemporal utility independence. Although this 

allows for simplifications in analysis, utilities in different health states that are additively 

separable suggests their independence. Few issues of this assumption are that utilities values are 

not independent of each other, resource consumption could vary depending on the health states, 

and neutrality over the timing of health states is not an accurate depiction of disease 

trajectory.24,25 Sixth, health states that are “worse than death” pose difficulties in measurement of 
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utility values themselves. However, understanding respondents’ thought process for these unique 

health states is the scope of further research.26 Finally, there are ethical considerations when 

assigning QALYs on individuals of different ages or livelihoods as CUAs assume utilitarianism, 

which emphases on the net sum of, or societal benefits without regard to the individual 

distribution of benefits, as the acceptable doctrine.27 A balance between community preferences 

and individual preferences or patient autonomy is challenging, but necessary when decisions 

regarding clinical judgement and resource allocation are required.28 

 

 CUA and the associated QALY approach are recommended EEs by a few HTA bodies 

including NICE and CADTH.5,9 However, the appeal to using QALYs as a measure of 

determining cost-effectiveness lies in its comparability across diverse conditions and 

interventions. Nonetheless, the limitations, especially when different instruments are used, need 

to be taken into consideration when calculating single values to estimate health states. This will 

ensure credibility of CUA in decision making.18 

 

1.4. COST-BENEFIT ANALYSES 

 

CEAs and CUAs express health benefits in non-monetary units such as changes in blood 

pressure or QALYs. However, the cost-benefit analysis (CBA) is unique since both, costs and 

benefits are reported in monetary units. The theoretical framework behind the CBA is welfare 

economics, whereby the contribution of a certain good to social welfare as a whole is determined 

by deducting all social costs from all social benefits.29 In a healthcare context, the final 

evaluation, or net monetary benefit is calculated by taking the difference in benefits subtracted 
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by costs of the intervention or program of interest. Benefits are generally measured through 

willingness-to-pay (WTP) surveys or discrete choice experiments (DCEs). The WTP method 

requires participants to value healthcare outcomes by asking them how much they are willing to 

pay to obtain the benefits or avoid the associated costs of illness.30 In DCEs, participants are 

asked to state their preference of several scenarios that correspond to the attributes of 

interventions. Preferences are revealed without participants explicitly being asked to state their 

preferred level for each individual attribute.31 

 

It should be noted that a comprehensive, societal perspective is required when performing 

a CBA. This enables decision makers to compare the monetary returns on investment of one 

program against the returns of, for example, another program which could possibly exist in a 

different area of the economy. Therefore, CBA aims to determine whether an individual 

intervention offers an overall net welfare gain to society in addition to how this gain compares 

against alternative interventions.29,32 CEA and CUA, however, are centred around constrained 

optimisation whereby individual well-being should be maximised under a budget constraint.33  

 

  There are several limitations of CBAs, primarily due to the difficulty in cost and benefit 

measurement. First, accounting for all the costs in a large-scale health intervention is 

challenging, more so when the program impacts many agencies. Second, public and institutional 

behavioural change might occur when policies are implemented, flawing original estimates.34 

Third, WTP thresholds are heavily dependent on the characteristics of the individuals. A 

prominent factor is income because answers correspond to the differential valuation of money 
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and the health benefits amongst participants.35 CBAs, while common in other fields, are rare in 

HTA.3 

 

1.5. METHODS OF PERFORMING ECONOMIC EVALUATIONS 

 

To inform decision making for finite resource allocation, the two most common methods 

of performing EEs are either via RCTs or decision-analytical models, shorthanded to trial-, and 

model-based, respectively. The rationale of RCTs as vehicles for determining cost-effectiveness 

is clear; since at least two groups are compared with the sole difference being the intervention of 

interest, the only additional steps include tabulating costs (and utility values if performing a 

CUA). Models, however, use pre-existing evidence from multiple sources for clinical, resource 

use, and outcome data. They create mathematical relationships between various health states to 

produce clinical pathways characterising the range of possible disease prognoses for simulated 

patients, with and without the intervention.4,36 

 

RCTs are generally commissioned due to lack of high-quality existing evidence in 

literature on the treatment effect. Therefore, they provide early opportunities to produce reliable 

estimates of cost-effectiveness data. The individual-level data used in these studies also allow 

researchers to apply a wide variety of statistical and econometric techniques to test hypotheses 

between clinical and economic parameters. Additionally, although running RCTs are generally 

expensive, the marginal cost of adding variables to study the economics of a certain intervention 

is low. Coupled with the rich data they provide, trial-based EE are a powerful set of methods in 

HTA. However, general criticisms against the structure of RCTs, derived from their low external 
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validity, spill over to cost-effectiveness studies as well.37,38 Their focus is narrow as they are 

limited by the number of interventions and comparators. This is further problematic when the 

study population or country of origin is not relevant to other populations or countries. 

Additionally, since RCT-based EE only use evidence from one study, they fail to incorporate all 

other relevant evidence such as other trials, observational studies, or real-world evidence.38 

 

Decision-analytical models to determine cost-effectiveness of interventions are primarily 

motivated by the lack of either long-term outcome data or information comparing all relevant 

treatments within RCTs.39 Additionally, they are not constrained in the initial study design, but 

rather, intrinsically modular in structure that allow for the comparison of many treatments and 

patient trajectories. Mentioned above, although models can draw from a variety of sources for 

their input parameters, caution must be taken to ensure they are of high quality and relevant to 

the research question. As a result, it is vital to subject the model to sensitivity analyses to test 

uncertainty. Assessment of uncertainty also permits a more nuanced set of decision options 

related to the strategies in the EE compared to the possibly fewer outcomes provided in a trial-

based EE. Finally, the modular nature of parameters provides flexibility to characterise the 

heterogeneity in different patient groups or subgroups of populations.4 

 

 The simplest decision analytical models found in literature are decision trees. All patient 

trajectories are laid out with their associated probabilities and outcomes listed at terminal nodes. 

The mean value of each branch is calculated by summarizing the aforementioned probabilities 

and outcomes. This method is only practical for interventions with simple prognoses, short time-

horizons, and few reoccurring events. Modelling individual heterogeneity and interaction 
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between individuals are not possible. Next, the most common models found in literature are 

Markov models, which allow for longer time horizons and events to repeat. Mutually exclusive 

and exhaustive health states are defined such that simulated individuals cannot occupy more than 

one at a point in time, or cycle. The simulated participants transition from one state to another 

based on predefined transition probabilities. Time spent in each state corresponds to a cost and 

utility, which is then aggregated to determine a summary of an intervention or comparator, 

followed by the cost-effectiveness. Markov models do not allow for transition probabilities to 

change and health states that simulated individuals occupy in previous cycles have no effect on 

the health states occupied in subsequent cycles. Similar to decision trees, interaction between 

individuals is not possible. Last, individual-based models such as microsimulations, agent-based 

models, or discrete event simulations resolve the issues faced in decision trees and Markov 

models. They can program patient history such as previous health conditions or events to more 

accurately depict health trajectories and allow for individual-individual interaction.4,36,39,40 

However, individual-based models are more challenging to program. 

 

1.6. INTREPRETATION OF ECONOMIC EVALUATIONS 

 

As described in a previous section (1.1. Basic Concepts of Economic Evaluations), 

formal EEs have the costs and benefits of an intervention strategy in addition to a comparator to 

objectively assess the value of the former. Since CEAs and CUA are studies that are functions of 

constrained optimisation, examining the incremental, rather than absolute, costs and health 

benefits allow clinicians and policymakers to make more rational decisions regarding clinical 

care and resource allocation.6,33  
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A single metric that allows for comparisons is the incremental cost-effectiveness ratio 

(ICER), defined as the ratio between the difference in costs (currency) and the difference in 

health benefits (for example, number of strokes averted, QALYs) of the intervention and 

comparator. The ICER is not a difference of two cost-benefit ratios. This would have a different 

meaning and would not allow for incremental comparisons. The interpretation of ICER values is 

fairly intuitive: a value of $100,000/QALY means that one would expect to gain one QALY for 

an additional $100,000 spent towards the intervention on the study population. The benefits of 

CUAs are clear in conjunction with ICER values as different health programs become 

comparable. Frequently in literature, the abbreviation ICUR is used in lieu of ICER when the EE 

is a CUA. 6,41  

 

However, EE and their corresponding ICER values cannot dictate decisions. Rather, they 

are instruments to inform decision makers about the evidence to either support or reject the 

reimbursement of an intervention. They can also inform national clinical guidelines or 

institutional practice standards and governmental research funding directions.4,5 Implementation 

is dependent on several known and unknown factors such as the cost-effectiveness threshold (if 

one exists), the type of decision maker, purpose of the EE, and perspective.41 Thresholds are a 

controversial and heavily debated topic in the HTA sphere due to the lack of consistent 

theoretical and empirical criteria. Unofficial figures are scattered throughout literature but few 

jurisdictions have explicitly acknowledged a specific value.42 The analytical method to arrive at a 

threshold is not clear and any consensus would likely be met with various political and societal 

hurdles.41 Canada does not have a threshold.5 Additionally, should an official threshold exist in 
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any jurisdiction, it is likely decision makers would feel greater obligations and public pressure to 

introduce an intervention to the healthcare system.43 The perspective of an EE is also important 

because it determines which costs and benefits the authors included in the analysis. Depending 

on the healthcare system, patients themselves might have different thresholds and could possibly 

have a higher WTP for improved quality or length of life. Insurance companies might also have 

multiple thresholds depending on the demands of their subscribers and corresponding plans, 

which itself is loosely related to personal thresholds.41 

 

 Results of an EE can also be visualised using a two-dimensional plot referred to as a cost-

effectiveness plane with the benefits on the abscissa (x-axis) and the costs on the ordinate (y-

axis). Generally, the current practice or standard care is plotted on the origin to ensure that all 

subsequent datapoints represent incremental values and that the ratio between the coordinate 

points produces the respective ICER value. New interventions are located on the right or left if 

they are more or less clinically effective, and above or below the origin if they are more or less 

costly, respectively.6 When an intervention is both less costly and clinically beneficial, the 

datapoint is located on the southeast quadrant is referred as the dominant strategy. Subsequently, 

a dominated strategy is neither less costly or clinically beneficial and occupies the northwest 

quadrant. These interventions can be discarded as not cost-effective under any threshold. The 

majority of studies report interventions that are more costly and clinically beneficial, and as a 

result, occupy the northeast quadrant. For such interventions, cost-effective thresholds are one of 

many tools at the disposal of decision makers to determine cost-effectiveness.44 When more than 

two datapoints are plotted on the same plane, the resulting line connecting them is the cost-

effectiveness frontier. Interventions located to the northwest of a comparator datapoint on the 
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frontier are strictly dominated by the latter as they are both more costly and less clinically 

beneficial. Interventions that are northeast of a datapoint on the frontier, having more benefits 

and costs, are referred to have extended dominance. These terms are relative to the comparator 

and cost-effectiveness should ideally, but not always, evaluated in conjunction with defined cost-

effective thresholds.4,6,44,45 

 

1.7. SENSITIVITY ANALYSES   

 

Measuring uncertainty in EEs is paramount to inform decision making in health services 

as it allows evaluators to assess the methods, increase the study generalisability, make the results 

more comprehensible during extrapolation, and explore the implications of selecting a particular 

analytical method amongst alternatives when no widely accepted approach exists.46  

 

Base-case analysis refers to the economic model or analysis from the preferred set of 

parameters and assumptions. In matured fields, accepted methods and assumptions are outlined 

such that the analysis is referred to as the reference case. This ensures a baseline level of 

consistency between studies for assessment by, for example, a regulatory agency.4 

 

 There are numerous forms of sensitivity analysis, which are 2nd order, or parameter 

uncertainty. Deterministic sensitivity analyses involve varying one (one-way or univariate) or 

more (multi-variate) parameters simultaneously of an EE to observe their respective effects on 

the ICER value. Plotting the range of ICER values with each shifted parameter informs decision 

makers of the main drivers in uncertainty; a variable producing a wide range of ICER values 
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would cause for further investigation and analysis. Several limitations exist against the 

deterministic sensitivity analyses. First, the range of values chosen is generally arbitrary, leaving 

ambiguity as to the importance of a variable and the effect of the corresponding ICERs. Second, 

deterministic approaches do not take into the account of correlations or non-linearities between 

two or more variables. This leads to biased estimates of costs and benefits. Last, the results 

contain no information on the likelihood that a specific range is observed in practice. In fact, 

tornado diagrams, the plots produced from deterministic sensitivity analyses, might mislead 

decision makers by overrepresenting variables with large ranges, even if the probability that their 

true value equalling an extreme value is low frequency. As a result, overly pessimistic factors 

could cloud judgement.46–48 

 

The probabilistic sensitivity analysis (PSA) is a stochastic technique that resolves these 

issues by assigning each parameter a range and distribution. In a worst-case scenario, no 

information apart from the minimum-maximum range is known and all distributions are uniform. 

Generally, the mean, standard deviation, and distribution is known (or specific distribution 

parameters). Monte Carlo simulations are performed to simultaneously sample a value from each 

parameter range in the model and produce ICER values. The values can be plotted on a cost-

effectiveness plane and the proportion that lie under a certain WTP threshold can be 

consequently assigned a datapoint on a cost-effectiveness acceptability curve (CEAC). By 

adjusting the WTP threshold from a minimum to maximum value, many datapoints can populate 

the CEAC to produce a curve describing the probability of an intervention being cost-effective at 

a given WTP threshold.48 It is important to highlight that a PSA does not reduce the uncertainty 
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of a given EE, but simply represents it more accurately.47 Both, NICE and CADTH recommend 

the use of PSA.5,9 

 

1.8. CARDIOVASCULAR AND CORONARY ARTERY DISEASE 

 

Atherosclerotic cardiovascular diseases (CVD) are some of the leading causes of death in 

Canada for both, men and women.49 Together, they constitute a large economic burden on the 

country; in the magnitude of $6.4 billion for direct costs and $1.9 billion for indirect costs. The 

latter is likely underestimated, however, as it includes short-term disability exclusively.5,50 

Hence, there is a public health and economic desire to improve the prediction of CVD onset in 

order to treat susceptible individuals. 

 

Coronary artery disease (CAD) is a type of CVD that refers to the remodelling and 

narrowing, or blockage of the coronary arteries via LDL-derived plaque. This process is 

atherosclerosis and with time, can result in the partial or total restriction of blood flow to the 

heart. CAD can have various clinical manifestations, including stable angina, unstable angina, 

MI, or sudden cardiac death.51 Risk is a function of lifestyle, environmental, and genetic factors 

with the likely possibly of interaction. Specific risk factors include, but are not limited to, 

smoking, diabetes mellitus, hyperlipidaemia (increased levels lipids such as triglycerides or low-

density lipoprotein [LDL] and decreased levels of high-density lipoprotein [HDL] cholesterol), 

hypertension, obesity, lack of exercise, and psychosocial stress.52 The current framework of CVD 

risk assessment in Canada uses modifiable, phenotypic risk factors such as the aforementioned 

parameters, some of which are outlined in the Framingham Heart Study.53–55 Repeated 
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measurement of these traditional risk factors would improve prediction by accounting for their 

accumulated nature, such continuous smoking or rising blood pressure.55 However, genetic 

factors with predictive capacity can illustrate susceptibility of CAD in addition to the role of 

environmental interactions which leads to disease onset in the first place.56,57  

 

1.9. MODIFIABLE RISK FACTORS IN THE FRAMINGHAM RISK SCORE 

 

 The hallmark longitudinal Framingham Heart Study in 1961 formalised phenotypic risk 

factors that are used in North America as a validated means of predicting CVD.58 These sex-

specific factors include age, total and HDL cholesterol, systolic blood pressure, treatment for 

hypertension, smoking, and diabetes status.59 A Framingham risk score (FRS) is outlined in the 

Canadian Cardiovascular Society dyslipidemia guidelines of 2016 as a 10-year risk percentage 

which can be derived from a simple tabulation of the aforementioned factors to classify 

individuals as low (< 10%), intermediate (10 – 19%), and high risk (≥ 20%).54 Statins are 

prescribed to patients who either fall in high risk; have a stain-indicated condition (e.g. chronic 

kidney disease or certain a particular profile of diabetes such as being over the age of 40); or 

other parameters (e.g. a high waist circumference) in conjunction with intermediate risk.54 

 

 Although FRSs are ubiquitously used to determine patient CVD risk in clinical settings, 

they were based on an American population. This has caused a discussion regarding their 

validity on other populations, which can have large implications in health economic analyses to 

predict the risk for future CVD events.60 There are slight deviations depending on the specific 

cohort, such as ethnicity or sex, however, the FRS are fairly accurate in primary care settings.61,62 
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There are some populations whereby events are overestimated, however, in European, notably 

British individuals, the FRS is reasonable accurate.60 

 

1.10. GENETIC ARCHITECTURE OF CORONARY ARTERTY DISEASE 

 

Hereditary, defined as the proportion of phenotypic variation in a population (not 

individual) that can be explained by genetic variation, has been shown to confer CAD risk at 

varying levels of genetic complexity, as described below.63 Early studies have reported that it 

increases with greater numbers of affected relatives and onset in a young age.64 A concordance 

study with approximately 10,000 twin pairs found that when one sibling died from CAD, the 

relative hazard of death by CAD for the other was double in males and nearly six times in 

females. Heritability ranged between 38% to 57% for females and males, respectively.63,65 A 

different, older study of nearly 8,000 like-sexed twin pairs reported 53% for both, females and 

males, however, discrepancy between the two studies has been explained.66 Family history is a 

very important factor, such that an increased risk of CAD is at least two-fold when a first-degree 

relative also has CAD. In populations associated with early-onset CAD, a subset of individuals 

who had a first-degree relative with CAD had up to a five-fold increased risk of concurring it 

themselves.67  

 

The most basic form of CAD genetic architecture follows a Mendelian pattern of 

inheritance. For example, familial hypercholesterolaemia is a disorder caused by a single, rare, 

mutation. However, when observing families with a high incidence of CAD and MI events, they 

do not appear to fit this Mendelian pattern, suggesting a more complex form of CAD inheritance. 
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In fact, current evidence suggests that CAD and most common diseases have a genetic 

architecture that is polygenic in nature rather than the more familiar, monogenic form.68 The 

effect can very pronounced, such that 1 in 53 individuals with early-onset CAD have a polygenic 

contribution of risk at the same magnitude as familial hypercholesterolemia.69 Nonetheless, the 

presentation of CAD is likely multifactorial, reflecting the presence of shared genetic and 

environmental factors.51,52 

 

1.11. POLYGENIC RISK SCORES IN CARDIOVASCULAR DISEASE 

 

A polygenic inheritance pattern suggests that many common genetic variants of small 

effect play a greater role compared to single or few rare monogenic mutations.70 Genome-wide 

association studies (GWASs) help identify these variants by analysing subsets of the genome of 

individuals with and without the disease of interest. Using single-nucleotide polymorphisms 

(SNP) arrays, the SNPs of cases and controls can be compared against each other to determine 

which variant is associated with the disease. It is important to note that thresholds of association 

exist to prevent every variant from being implicated with the disease.71 

 

The polygenic risk score (PRS) is a product of GWASs. The risk-conferring SNPs or 

alleles are summed up and weighted by effect sizes derived from the GWAS results. As a result, 

the PRS can quantify individual-level risk via a weighted sum of risk-conferring common 

variants, as shown in Equation 1:72,73 
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whereby ri represents the value of the risk score for the ith individual, i represents the number of 

individuals, j is the number of SNPs, βj (“beta values”) is the weight for each SNP that were 

derived from the GWAS, and xij is the number of alleles for the jth SNP of the ith individual. The 

result is a personalised score for each patient which can reflect the relative risk of developing the 

trait using regression. It follows that using genotypic factors in addition to phenotypic factors 

could yield a stronger prediction and stratification of disease than phenotypic factors alone.74,75 

This has clinical importance since genetic disposition is the earliest measurable risk factor 

against all others, for example, serum lipid testing. As a result, PRSs allow clinicians to enact 

preventative interventions with known benefits in the clinical settings before disease onset. 

These interventions can vary from changes in lifestyle such as diet and exercise, to 

pharmacological interventions such as the use of statins.68  

 

Clinical trials and meta-analyses have shown the application of PRSs produced improved 

screening strategies as well as surrogate health endpoints, such as guiding statin therapy to lower 

low-density lipoprotein levels and possibly CAD events as well as selecting patients who might 

have the greatest benefits from statins.74,76–80 Individuals with the highest burden of genetic risk 

would have the largest relative and absolute clinical benefit from statin therapy.74,78,79 Therefore, 

their application to directly target CVD with clear, preventative interventions might have 

beneficial clinical outcomes with positive health effects, notably by guiding statin therapy.5,55 

 

(1) 
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There are several technical limitations which could reduce the predictiveness of the PRS 

in practice. First, genetic markers cannot intrinsically capture the entirety of a disease phenotype. 

The former cannot account for the huge variation in the latter. The added burden is that, ideally, 

all genetic variants affecting the trait of interest should be known and estimated without error. 

Environmental factors add an additional layer of complexity. Second, since the effects of SNPs 

that lead to a PRS are produced from a finite number of individuals, the effects might have some 

degree of sampling error. This is cause for concern since most complex traits, such as CAD, are 

not products of few genetic variants, but rather, millions. When the effect of each SNP is very 

small, the accuracy of the estimate could be low.81 Third, linkage disequilibrium, which is the 

phenomenon that alleles are non-randomly dispersed in the genome, is necessary to correct in 

GWASs.71,81–83 It is possible that a risk conferring SNP is physically close to another SNP, which 

could result their inheritances to be associated. As a result, both SNPs might be erroneously 

labelled as risk conferring. Statistical adjustments exist to correct for linkage disequilibrium, 

however, there is a debate over which method is ideal.81,83 
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2.0. STUDY RATIONALE AND OBJECTIVES 

 

2.1. RATIONALE 

 

The field of medicine is undergoing a paradigm shift whereby personalised therapies, 

fuelled by ‘omics’, can have profound implications in the capacity to understand the breadth of 

disease. Additionally, over the past decade, there has been a rapid increase in the volume, 

variety, and velocity of individual-level data generation coupled with improved data collection, 

storage, cleaning, processing and interpretation. With the increasing sample size of GWASs, the 

validity and clinical utility of PRSs will further improve.84 Additionally, as public perceptions of 

genetic testing become more positive, policymakers might find the rise of personalised medicine 

inevitable and convenient.85,86 

 

PRSs hold great promise, from CVD prediction to preventative measures taken by 

individuals to curb major events.87 However, as of now, there are no formal EEs surrounding the 

PRS. Currently, literature on precision or personalised medicine falls short of assessing both, the 

costs and consequences of the PRS with a suitable comparator. Reporting the low cost of 

genotyping is a cost description at best, and is therefore not an effective analysis to argue for the 

value of PRS in the clinic.55 
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2.2. PRIMARY RESEARCH QUESTION 

 

In the UK Biobank cohort, is the addition of the PRS on top of modifiable risk factors to 

guide statin therapy a cost-effective intervention for the prevention of primary MI cases in the 

Ontario healthcare payer perspective over a time horizon of 10 years? 

 

2.3. SECONDARY RESEARCH QUESTION 

 

Does the PRS have clinical effectiveness, as assessed by the number of primary MI cases 

captured by statin therapy over modifiable risk factors alone?  
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3.0. METHODS 

 

3.1. POPULATION 

 

The UK Biobank is a prospective cohort study, started in 2006 and, until 2010, recruited 

approximately 500,000 individuals aged 40 to 69 years across the United Kingdom at 22 

assessment centres.88 Due to downstream analyses using the PRS, only non-related participants 

of white British descent were used. Furthermore, participants were excluded if they had a high (≥ 

20%) or low FRS (< 10%), statin-indicated condition, or were on lipid-lowering therapy. Finally, 

non-incident CAD cases were removed to create a sample size of 96,736 individuals. This study 

followed the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) 

reporting guideline.89 

 

3.2. DERIVATION OF THE POLYGENIC RISK SCORE 

 

The PRS was derived from 343,725 unrelated British participants in the UK Biobank. For 

each SNP within a participant’s genotype, GWAS summary statistics, from 

CARDIoGRAMplusC4D, provided weights (“beta values”) corresponding to the significance of 

association between the SNP and CAD.90,91 A p-value threshold of 0.1 was used to capture many 

SNPs. The ICD-10 and OPCS-4 codes for CAD are defined elsewhere.70 A linkage 

disequilibrium window of 300 base pairs was selected to correct for SNP weights. Scores were 

produced as per the Equation 1 and then normalised to have a mean of 0 and a standard deviation 
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(SD) of 1. The final result is a PRS for each individual with predictive capacity for CAD.91 The 

analysis was performed using PLINK.91,92 

 

3.3. STATIN TREATMENT STRATEGIES AND CLINICAL OUTCOME 

 

Following the Canadian Cardiovascular Society dyslipidemia guidelines of 2016, each 

participant was assigned a FRS to inform treatment decisions.54 Additional risk factors, such as 

LDL-C, non-HDL-C, Apo B, low HDL-C, impaired fasting glucose, high waist circumference, 

smoker, and hypertension were also used.  Statin medication status was assigned to each 

participant as the standard care strategy. Next, various PRS thresholds, from the top 70% down 

to the top 25%, were treated as risk factors. Additionally, individuals with protective PRS, such 

as the lowest 25% down to the lowest 1% were removed from statin eligibility. Combinations of 

the two criteria were sequentially tested to produce different courses of statin program strategies 

for clinical and economic effectiveness. A generalised algorithm, based on the existing 

guidelines, incorporating these upper and lower PRS thresholds is shown in Table 1. 

 

3.4. DECISION ANALYTICAL MODEL STRUCTURE AND OUTCOMES 

 

Using the statin strategies described above, a clinical model was developed to determine 

the effect on the number of MI cases over a 10-year time horizon, corresponding to the validated 

risk estimates in the Canadian Cardiovascular Society dyslipidemia guidelines.54 All participants 

started at perfect health and, if a MI was not recorded, remained in perfect health as controls. 

However, participants with cases could either fall into the captured and saved MI (statin 
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successfully prescribed, and MI prevented), captured and unsaved MI (statin successfully 

prescribed, but MI was not prevented), or uncaptured and therefore, unsaved (statins 

unsuccessfully prescribed, and MI was therefore not prevented) category. After the MI event, 

cases transition back to normal life in terms of quality of life and costs. Since identical cohorts 

with differing statin strategies were subjected to the same health states, multiple variations of 

PRS interventions could be compared against standard care. Participants transition among stages 

on a 1-year cycle since cost and utility parameters were measured on a yearly basis. A schematic 

of the decision analytical model is shown in Figure 1A. If participants had missing data, the 

multiple imputation by chained equations (predictive mean matching) method was used such that 

20 datasets were generated with 30 iterations.93,94 All simulations, including the effect of the 

statins and participant transitions were performed in R.95 

 

3.5. DATA SOURCES AND PARAMETERS 

 

The clinical parameters, such as participant modifiable risk factors and PRS were directly 

from the UK Biobank. The effect of statins, costs, and utility values were derived from relevant 

literature. A key parameter of in the model is the effect of statins on LDL-C reduction and 

subsequently MI event reduction. For the former, a 54% reduction was used and the latter, a 

relative risk of 0.76 in major coronary events per 1.0 mmol/L reduction in LDL from a meta-

analysis of individual participant data based on a Cholesterol Treatment Trialists’ meta-

analysis.96,97 Costs were considered from the Ontario public health care sector perspective and 

were adjusted to 2019 Canadian dollars using the consumer price index accounting for 

inflation.98 Base case analysis costs included direct costs of statins, MIs, and PRS genotyping.   
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PRS was assumed to cost $70 based on expert knowledge, accounting for materials and 

human resources but not computational analyses or time spent devising the scripts required to 

estimate risk. However, a cost of $0 was also considered due to an increasingly larger subset of 

the population engaging with direct-to-consumer genetic testing or existing genotyping for 

cancer testing, as the public healthcare system would have this PRS information without 

expense.99 Statin therapy, which was assumed to be atorvastatin at 40 mg or 80 mg, were the 

same cost in the Ontario Drug Benefit Formulary at $85.54/year for the base-case scenario.100 

The PRS odds ratio (OR) was previously found to be 1.211.91 Additionally, the information 

conferred from the PRS was assumed to not have additional physician visits, personnel training, 

or ancillary costs such as computing or data storage fees. The cost of acute MI was $13,983.78, 

which included all public payer costs during the hospitalisation period. This value was derived 

from literature with a population similar to the UK Biobank.101 

 

 Since the UK Biobank did not conduct any utility measurements, quality of life 

measurements were sourced from literature. A value of 0.708 was assigned to individuals during 

their year of event, and pre- and post-event years were assumed to be at perfect health (1.00).102–

104 Given that the number of individuals in most of the statin strategies, with and without PRS, 

were roughly the same, side effects were not included. 

 

Costs, QALYs, and ICERs were calculated for base-case and sensitivity analyses. Costs 

and QALYs were discounted at a recommended 1.5% discount rate as per the CADTH 

guidelines for EEs.5 WTP thresholds were not considered to determine cost-effectiveness due to 

the unique nature of the PRS intervention. 
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3.6. SENSITIVITY ANALYSES 

 

Univariate sensitivity analysis was performed to assess the impact of each of the 

parameters described above, with the respective ICER values plotted on a tornado diagram. Next, 

a PSA via 10,000 Monte Carlo simulations was performed to estimate a distribution for the 

model outputs (total costs, total QALYs, and the ICER). The input parameters and respective 

distributions, which were sampled with replacement and subjected to the model are shown in 

Table 13. Next, the proportion of PSA ICERs under WTP thresholds from $1,000/QALY to 

$1,500,000/QALY were used to produce CEACs. Only select strategies of the PRS intervention 

were subjected to the sensitivity analyses since many prescription combinations could be 

dominated by standard care. The cost of PRS was excluded from sensitivity analysis since it 

represents different real-world scenarios rather than uncertainty. 

 

Since the predictive capacity of the PRS is likely to improve in the future and its changes 

cannot easily be shown in the aforementioned sensitivity analyses, a separate, 2nd order 

sensitivity analysis was performed.106 Artificial PRSs predictive for CAD, were generated for all 

study participants at varying population ORs per SD. The ICER was plotted against OR per SD 

tuned from approximately 1.3 to 2.5 in increments of 0.1 with 100 bootstraps each to produce 

95% confidence intervals (CI). Additionally, to show the trend, a generalised additive model fit 

was used. The sensitivity analysis was performed at a PRS cost of $70 at various statin strategies, 

described above (3.3. Statin Treatment Strategies and Clinical Outcome).  
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4.0. RESULTS 

 

4.1. POPULATION AND STATIN TREATMENT 

 

The baseline characteristics of the UK Biobank subpopulation are shown in Table 2. A 

total of 96,736 intermediate-risk individuals passed the exclusion criteria, with 3648 CAD cases 

and 853 MI cases (incidence proportion, 0.882%) over a span of 10 years. The sample included 

50,894 women (52.6%) and 45,842 men (47.4%). The validation of PRS, showing the number of 

CAD cases against each decile is shown in Figure 1. Generally, lower-decile PRS risk bands had 

fewer cases compared to higher-decile PRS risk bands. 

 

Under standard care, as per the Canadian Cardiovascular Society dyslipidemia guidelines 

of 2016, 82,083 (84.85%) individuals were eligible for statins with 748 MIs (87.7%) captured 

with statins. The number of MI cases captured per 1000 statin prescriptions was 9.113, as shown 

in Table 2. With respect to the statin strategies based on PRS, the number of individuals eligible 

for statins ranges from 65,318 (67.52%) to 91,148 (94.22%), as shown in Table 3 through Table 

12. The former corresponds to a strategy whereby the top 25% PRS individuals are eligible for 

statins, with the lower 25% PRS excluded, while the latter, top 70% PRS individuals are eligible 

for statins, with the lower 1% PRS excluded. Invariably, the number of captured MIs is 

correlated with the number of statin prescriptions, ranging from 650 (76.2%) to 824 (96.6%) 

with 9.951 to 9.040 MIs per 1000 statin prescriptions, respectively, corresponding to 

aforementioned strategies. When more statins are prescribed, a greater number of MIs are 

captured, albeit less precisely. 
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4.2. COST-EFFECTIVENESS ANALYSIS 

 

Based on clinical outcomes alone, the best statin strategy is one that is most liberal. 

However, the number of statin prescriptions is directly proportional to the total cost of statins 

while the number of captured MIs may not continuously drop at the same rate. This was evident 

in the number of MIs captured per 1000 statin prescription metric.  

 

The economic model was subjected to all combinations of upper and lower PRS 

thresholds for statin eligibility. Since the cost of PRS, at $70 or $0 represents different scenarios 

rather than a possible range in cost, the two values were each treated as a base-case analysis. The 

value of each parameter used in the model is shown in Table 13. At PRS costing $70, the ICERs 

range enormously as shown in Table 14 through Table 23. However, due to ethical concerns, 

only strategies with positive incremental QALYs were considered as they would capture more 

MIs compared to standard of care. With this criterion, the lowest ICER is $747,184.10/QALY, 

corresponding to the strategy whereby the top 70% PRS individuals are eligible for statins, with 

the lower 5% PRS excluded. The cost-effectiveness plane with strategies exhibiting a positive 

incremental QALY, however, is shown in Figure 2. The effect of the lower percent PRS 

exclusion on the ICER exhibits an increasing trend, as shown in Figure 3, for the same positive-

incremental QALY strategies. For upper thresholds between 40% and 70%, the lower percent 

PRS exclusion from 1% to 5% does not make a drastic difference in the ICERs. 

 

 When the cost of the PRS is set to $0 and only positive incremental QALY values are 

considered, the worst-case scenario ICER is $395,363.67/QALY, representing the strategy 
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whereby the top 70% PRS individuals are eligible for statins with the lower 1% PRS excluded. 

The cost-effectiveness plane with strategies displaying positive incremental QALYs is shown in 

Figure 4. The effect of the lower percent PRS exclusion on the ICER exhibits a decreasing trend. 

Every PRS strategy exhibits potential for being dominant (clinically superior and cost saving) 

relative to Canadian Cardiovascular Society dyslipidemia guidelines of 2016, as shown in Figure 

5. Some strategies were removed since the difference in QALYs is close to 0. The resultant 

ICER might not be accurate. To maintain the effect of an ICER less than $0/QALY, the upper 

PRS percentage threshold of individuals eligible for statins needs to increase while the lower 

percent PRS of excluded individuals also increases. The $0/QALY effect is dependent the upper 

PRS percentage threshold. However, when at least 12% of the lower PRS individuals are 

withheld from statins, the ICER is less an $0/QALY regardless of upper the threshold.  

 

4.3. SENSITIVITY ANALYSES 

 

Amongst the $70 PRS scenario, the lowest ICER value was the strategy whereby the top 

70% PRS individuals are eligible for statins, with the lower 5% PRS excluded at 

$747,184.10/QALY. As a result, this treatment path was subjected to one-way sensitivity 

analysis by varying the cost and utility of an MI, the discount rate, and effect of statins from the 

estimates and ranges in Table 13, as shown in Figure 6. The largest drivers of the ICER value, in 

order, are the rate of discounting, utility of MI, cost of the PRS, the effect of statins, and cost of a 

MI. At a PRS cost of $0, the worst-case statin strategy is where the top 70% PRS individuals are 

eligible with the lower 1% PRS excluded. However, a sensitivity analysis was not performed. At 

base-case parameters, this strategy represented the highest ICER. Any adjustment in the model 
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parameters would only improve the ICER value, and therefore, would not be an accurate 

depiction of cost-effectiveness uncertainty at PRS at $0.  

 

 Using the parameter ranges shown in Table 13, a PSA was performed on the lowest ICER 

strategy, whereby the top 70% PRS individuals are eligible for statins, with the lower 5% PRS 

excluded. A total of 10,000 simulations were performed to determine to range of the incremental 

costs and incremental QALYs, and plotted on a cost-effectiveness plane, as shown in Figure 7. 

The dotted line and dot represent an ICER of $747,73/QALY, the base-case analysis value. To 

determine the cost-effectiveness of the PRS at specific WTP thresholds, a CEAC is shown in 

Figure 8. The vertical line corresponds to an WTP of $747,184.10/QALY, the base-case analysis 

value, which has a 48.1% probability of being cost-effective. Since a shift from 1.5% to 3% in 

the discounting rate had a large effect on the ICER, as shown in Figure 6, a PSA at the latter 

percent was warranted. Using the same strategy (top 70% PRS individuals are eligible for statins, 

with the lower 5% PRS excluded), a cost-effectiveness plane and CEAC were generated, as 

shown in Figure 9 and Figure 10, respectively. The dotted line and dot in Figure 9 represent an 

ICER of $525,678.90/QALY, the value derived from the one-way sensitivity analysis. The 

vertical line in Figure 10 corresponds to a WTP the same as the ICER, which has a 49.2% 

probability of being cost-effective. 

 

Finally, for the secondary, 2nd order sensitivity analysis, the ICER was plotted as a 

function of different PRS predictiveness, represented by the OR per SD for CAD. Using the 

optimal base-case at a PRS cost of $70, whereby the top 70% PRS individuals are eligible for 

statins with the lower 5% PRS excluded is shown in Figure 11. The PRS predictiveness is 
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represented by the OR per SD for CAD. At a PRS cost of $70, the ICER ranges from 

approximately $675,000/QALY to $350,000/QALY at ORs per SD of 1.35 to 2.50, respectively. 

The trend is similar at every PRS cost. As the OR per SD increases, the ICER drops since more 

individuals with MI cases are correctly assigned to be eligible for statins.   
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5.0. DISCUSSION 

 

5.1. MAIN FINDINGS 

 

While there are many research articles on the clinical effectiveness of the PRS, with 

varying levels of defining criteria, there is little evidence on cost-effectiveness.68,107 As 

previously defined (1.1. Basic Concepts of Economic Evaluations), formal EEs have costs and 

benefits of an intervention strategy in addition to a comparator to objectively assess the value of 

the former.4 There is currently one study that has preliminary information on the possible cost-

effectiveness of a PRS, however, there are limitations to the conclusions since the study design 

doesn’t allow strict comparisons.108 However, in this study, a decision analytical model was built 

to demonstrate the cost-effectiveness of the addition of a PRS to modifiable risk factors, as 

described in the Canadian Cardiovascular Society dyslipidemia guidelines of 2016, to guide 

statin therapy for the prevention of primary MI cases in Ontario.54 Using this model, the clinical 

utility of the PRS, assessed by the number of primary myocardial infarction cases captured by 

statin therapy over modifiable risk factors alone was also determined. 

 

Many strategies were able to prescribe statins in a manner that captured more MIs 

compared to the standard guidelines alone, demonstrating the clinical utility of PRS. Although to 

fully support this idea, a clinical study such as an RCT is required to show a head-to-head 

comparison with and without PRS. However, there are several variables, described below (5.2. 

Strengths and Limitations), which could influence the validity of the PRS clinical utility. For 

example, a greater number of statin prescriptions would mean a proportional increase in adverse 
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side-effects.109 However, as shown in Table 3 through Table 12, there are strategies across every 

upper threshold where the number of individuals eligible for statins is roughly the same (a 

difference of less than 1%) as the standard care, while capturing more MI cases. This 

corresponds to a larger ratio of number of MI cases captured per 1000 statin prescriptions. In 

fact, the same number of cases captured as standard care can be achieved by a lower cumulative 

number of statin prescriptions, also corresponding to a larger ratio of number of MI cases 

captured per 1000 statin prescriptions. Reducing the total number of adverse events caused by 

statins without compromising CVD events could be profound.  

 

The results for the EE require a more nuanced analysis as there are more variables 

involved. The base-case ICER with the cost of PRS at $70 under in the optimal strategy is 

$747,184.10/QALY, while at a discounting rate of 3.0%, is $525,678.90/QALY. As the rate of 

discounting is a controversial topic with a wide range between jurisdictions, an ICER at 3.0% 

should be considered as a plausible value for decision-makers. There has been advocacy for a 

rate of 5% as well, however, this was excluded in this EE as the current CADTH guidelines 

suggest 1.5% with an upper sensitivity analysis threshold of 3.0%.10  

 

Nonetheless, based on the one-way sensitivity analysis, as shown in Figure 5, discounting 

had the largest effect on the ICER due to the 10-year time horizon. The value of costs and 

QALYs diminish significantly with time. Furthermore, it can be seen that the utility of the MI is 

also a large driver of the ICER, suggesting that the PRS would be far more cost-effective for 

severe cases as opposed to mild ones. The cost of PRS, effect of statins, and cost of MI 

parameters do not have as large of an effect since their variance is lower. The direction of the 
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ICER and cost of MI are inversely proportional since more cases are captured using the PRS. A 

greater cost per event means that a larger sum of dollars is saved by preventing those expenses to 

accrue for the healthcare system. Although the ICERs reported might not be optimal under 

official or unofficial WTP thresholds such as $50,000/QALY, the possibility that PRS is not 

cost-effective cannot be supported due to the limitations of the study, described below.42  

 

When the cost of PRS is set to $0, regardless of the upper threshold, when the at least 

12% of the lower PRS are withheld from statins, the ICER is less an $0/QALY and is dominant 

against the Canadian Cardiovascular Society dyslipidemia guidelines of 2016.54. The difficulty of 

this analysis arose because when the number of MI cases captured using the PRS and standard 

guidelines is the same, the difference in QALYs is close to zero and therefore, the model 

artificially inflates the magnitude of the ICER. As a result, individual ICER values are not 

reported since discriminating between an artificially negative ICER or a true negative ICER is 

difficult. A difference of one additional MI case captured between a PRS strategy and standard 

care is likely noise. However, difference in cases not attributed to noise was not the scope of this 

study. Although the worst-case scenario is $395,363.67/QALY, there are numerous of strategies 

with large differences in MI cases compared to standard care where an ICER value of less than 

$50,000/QALY or even $0/QALY is possible. As a result, achieving more benefits, or an 

increase in incremental QALYs from MI cases, while reducing costs is a likely possibility in a 

population where genotypic information is available. 

 

To account for the changes in PRS predictiveness, artificial scores were generated and 

subjected to the cost-effectiveness model at various costs and statin strategies. In the base-case 
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optimal strategy, whereby the top 70% PRS individuals are eligible for statins with the lower 5% 

excluded, there were no combination of parameters that dropped the ICER under 

$150,000/QALY. There are certain costs that cannot change in this strategy. Statins, which make 

up the largest fraction of the total costs, must be prescribed. The costs associated with a MI also 

cannot change. While the number of statin prescriptions or treated MI cases changes with a more 

predictive PRS, this difference is not negligible compared to the cost of the PRS. The cost-

effectiveness of the PRS is very dynamic and dependent on several factors such as the cost and 

predictiveness of the PRS, as well as the statin strategy implemented. In fact, as the PRS OR per 

SD increases, the number of statin prescriptions should drop since a stronger, more predictive 

tool is used to guide the intervention. This implies that the strategy should also change, such as 

increasing the number of individuals who are deemed to have a protective PRS and therefore 

removed from statin eligibility. In the current analysis, the prescription strategy was not varied. 

The dynamic nature of the parameters and the model suggests that introducing the PRS into the 

clinic is not very straightforward. The ICER value, input costs, and the statin strategy are not 

independent of each other. 

 

5.2. LIMITATIONS 

 

Although this is the first formal EE performed to assess the cost-effectiveness of the PRS, 

there are several limitations that need to be taken into account. The sample included white 

British descent exclusively, which is not generalisable to many jurisdictions, especially 

Ontario.110 The performance of the PRS is partly dependent on the ethnicity, with the highest 

among European populations.72 This has cause for concern as an Ontario-based PRS might not 
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demonstrate the same predictive performance as this study. Next, the UK Biobank, while 

extensive in the number of biomarkers measured at multiple time points, is not designed for HTA 

studies. Costing data was likely not included due to the logistical challenges when tracking all 

resource uses at each centre, especially by disease breakdown since CVD conditions are not 

always mutually exclusive.111 Additionally, it is unlikely that the heterogeneity of healthcare 

personnel and treatment protocols across the entire UK can be standardised to produce accurate 

costing information. In lieu of this data, a top-down approach was implemented using aggregated 

costs from other studies with similar population characteristics. Utility measurements are not 

included in the UK Biobank, which limits the ability to measure the difference in clinical 

benefits before and after an event, and subsequently compromises the calculation of QALYs. 

The lack of direct or indirect tools to measure utilities also has the consequence of using 

literature derived from similar populations to estimate the true values.  

 

Frequently, the source studies of EEs are RCTs as it is straightforward to tabulate the 

costs, benefits, incremental costs, incremental benefits, and ICER.3,4 However, depending on the 

design of the RCT, the incremental benefits can be overestimated for the specific risk-reduction 

intervention. This can happen by reducing the heterogeneity of the recruitment population by 

avoiding enrolment of patients with other diseases, those whom the disease disappears 

spontaneously, as well as finding patients who are more likely to have an event of interest, and 

who are more likely to respond.112–114 These biasing enrichment factors are not present in 

longitudinal studies such as the UK Biobank or other study designs that encapsulate the essence 

of real-world evidence or a true representation of disease in a population.112 Less MI cases and a 

reduced effect of the PRS in the UK Biobank produces diminished clinical and economic 
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valuations. As a result, an ICER of $747,184.10/QALY is likely to lower if an RCT with the 

PRS intervention is conducted due to the lack of practical, prognostic, and predictive 

enrichment.112 Additionally, the lower threshold for the exclusion of statins to reach a dominant 

ICER value was 12% in this study. However, with a greater number of total cases and more 

favourable study population, which could be possible in an RCT, the PRS would have greater 

potential to reduce the number of uncaptured cases. The effect is a lowering of the ICER at a 

PRS cost of $0 by way of reducing incremental costs and increasing incremental benefits. It 

should be noted, the enrichments methods are intended to demonstrate the effectiveness of 

interventions, which is an important purpose of an RCT.115 However, this study design might be 

not optimal for an EE, as described above. 

 

 The cost-effectiveness model constructed in this study is robust enough to calculate the 

effect of statins on MI cases by using the intervention of statins targeted by PRS strategies, or 

standard care, which is outlined by the Canadian Cardiovascular Society dyslipidemia guidelines 

of 2016.54 However, the model does not account for every CVD outcome or the breadth of major 

coronary events that can be treated by statins such as unstable anginas or even nonfatal 

strokes.97,116 Increasing the number of total primary events that can be better predicted using the 

PRS would lead to a decrease in the ICER. With more cases captured via statin therapy, more are 

prevented compared to standard care. The difference in costs and QALYs over a 10-year time 

horizon would likely be very large, especially since some major coronary events are costlier and 

lead to greater utility decrements than nonfatal MIs.101–103 During the 10-year time horizon, it is 

also likely that the health of all participants, especially those who experienced an event, would 

deteriorate.107 Modelling this effect would also be advantageous for PRS strategies since there 
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are less individuals who had an uncaptured event compared to standard care. A larger number of 

healthier individuals in the PRS-guided statin therapy cohort would result in an increased 

incremental QALY, thereby reducing the ICER. 

 

The 10-year time horizon was chosen for straightforward reasons. The absolute CVD 

risks found in the Canadian Cardiovascular Society dyslipidemia guidelines of 2016, based on 

the FRS has a time horizon of 10-years. In order to consistently compare the aforementioned 

guidelines with PRS strategies, the latter should also have a time-horizon of 10 years. 

Additionally, the UK Biobank has follow-up data of 10 years. It would be unwise to truncate this 

timespan since it would reduce the total number of events without providing any benefits as 

shorter follow-up durations are not accurate depictions of CVD trajectory. A lifetime horizon is 

ideal to compare both, clinical and economic utility, however, due to the study restrictions, this 

was not possible.4,5 The perspective and rate of discounting, which were the public health care 

payer and 1.5%, respectively, were chosen as per the recommendations in the CADTH 

guidelines.5 A societal perspective displays a more holistic image of CVD, especially when spill 

over costs such as caregiver use and loss of productivity are considered. However, unless these 

variables are accurately measured, it might not be appropriate to include them as they can distort 

the ICER. These issues are amplified when different costs are sourced from fragmented sources 

or databases. Since spill over costs are challenging to measure especially in the UK Biobank, a 

societal perspective, while more advantageous and informative when done correctly, should be 

approached with caution.5,6,117 
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5.3. FUTURE DIRECTIONS AND CONSIDERATIONS 

 

The cost-effectiveness model can be improved to use finer resolutions of individual-level 

data. This study had a clinical outcome of primary MI cases prevented, however, including other 

primary and secondary CVD events would showcase the effectiveness of the PRS more 

accurately. Additionally, treatment regimens apart from statins were not modelled. Patients with 

high CVD risk tend to be on multiple drugs alongside statins, including angiotensin-converting 

enzyme inhibitors for treating hypertension.97,108 Many patients also experience statin intolerance 

or are not responsive to the them for lowering LDL. As a result, they are prescribed protein 

convertase subtilisin/kexin type 9 inhibitors. Modelling the use of this new class of lipid-

lowering medication would improve the generalisability of the results.118 With respect to the 

PRS, it is possible that the cost of genotyping will decrease in the years to follow.119 As shown in 

the one-way sensitivity analysis in Figure 5, the potential for the ICER lower is not without 

merit. Adding unrelated diseases with a predictive PRS, such as breast cancer, would have the 

additional effect of lowering the ICER since the marginal cost associated with generating a 

second score is likely immensely overshadowed by the cost of genotyping itself. This strategy of 

having a single genotype associated with multiple, unrelated diseases is not analogous to 

multiple diseases with one treatment path.120 The PRS could also increase in predictive 

performance in the future, having the potential to guide statin therapy more optimally than 

shown in this study. This would also drop the ICER, as shown in Figure 11.108 Additionally, this 

study used a PRS created from genotyping, but scores derived from exome-sequencing can 

further improve the predictive performance. Rare variants, which may have major effects are 

seen too infrequently to judge whether they are associated with the phenotype or disease.121 
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However, the cost of exome-sequencing is magnitudes higher than genotyping and therefore 

poses several downstream restrictions.122,123 Large scale projects are not as feasible and with less 

individuals for exome analysis, the capabilities of the PRS would be limited.123 An EE 

incorporating a higher PRS derivation cost via exome sequencing in exchange for risk-conferring 

rare variants would provide valuable information into the trajectory of precision medicine.  

 

In the future, genetic data could be stored alongside clinical records. Widespread use of 

PRSs to predict disease onset, treatment response, and disease prognosis is a possibility.106 

Before reaching this goal, however, there are ethical considerations that must be resolved.124 

First, the PRS could exacerbate health inequalities due to the ancestry of the study population. 

Most GWASs have been performed in high-income countries and within these contexts, have 

included mostly participants of European ancestry. Therefore, their PRS predictive ability is 

higher than those in underrepresented, non-European ancestries, such as African populations. 

The underperformance of the PRS for populations which already experience healthcare injustices 

is a serious ethical challenge. Studying more genetically diverse populations will enhance 

clinical outcomes and could pose as a solution for these inequalities.124,125 EEs, especially this 

study centred around Ontario, would benefit from more diverse, representative populations rather 

than homogenous populations. Second, PRSs for complex traits could stigmatise certain 

populations when incorrectly translated to the population. Genetic associations for substance use, 

intelligence, and anti-social behaviours have been generated.126–128 Knowledge translation, which 

can involve oversimplifications and exaggerated claims have devastating consequences. 

Misinterpretations could amplify pre-existing stigmas against individuals with medical 

conditions, especially mental disorders. Under the worst-case scenario, discriminatory practices 
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could take place for employment or insurance purposes in certain jurisdictions. Strict laws should 

ideally protect the genetic information of individuals.124 Fair treatment has the possibility of more 

preventative treatments, which are more cost-effective than reactive measures.129 Last, this study 

focused on a PRS associated with CAD on adult populations. Other PRSs for disorders with high 

heritability, such as schizophrenia, would impose a further set of challenges with prenatal testing 

or the testing of minors. Adolescents receiving unfavourable PRS feedback for disorders may be 

at particularly high risk for internalised stigma and potentially detrimental effects associated with 

negative self-labelling.130 The negative effects are intensified when deterministic assumptions are 

made about traits, or when they are unable to modify other, non-genetic risk factors.124 This 

amount of variability in human behaviour adds an additional level of complexity when creating 

EE models. Further research is warranted to fully understand the clinical and economic 

implications of PRS risk internalisation.  
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6.0. CONCLUSIONS 

 

The case for clinical implementation of PRSs is controversial.131 The lack of genetic 

diversity in large genetic studies in addition to the methods used to produce a PRS results in 

differing opinions about its clinical utility. In this study, a CUA was performed to determine if a 

single PRS could guide statin therapy cost-effectively, compared to using modifiable risk factors 

alone for the prevention of primary MI cases. Although common WTP thresholds were not met, 

the limitations of the study design and model construction elucidate that PRS is likely to be cost-

effective in the future. In a world where healthcare costs are increasing at an ever faster rate 

while resources are scarce, novel techniques should be considered despite their unique 

challenges.1 With the democratisation of genotyping, there exists a real possibility where PRSs 

can be used in primary care for their clinical and economic utility.99 
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8.0. TABLES 

 

Table 1. Initiation of statin treatment based on CVD risk categories via a combination of the 

FRS and PRS 

CVD risk category Statin eligibility in the 

cost-effectiveness model 

High FRS (≥ 20%) 

All 

Yes  

Intermediate FRS (10% to 19%) without protective PRS ≤ [Lower 

threshold percentage] 

LDL-C ≥ 3.5 mmol/L,  

or non-HDL-C ≥ 4.3 mmol/L, 

or ApoB ≥ 1.2 g/L, 

or men ≥ 50 and women ≥ 60 years and 1 additional CVD risk 

factor, 

or risk conferring PRS ≥ [Upper threshold percentage] 

Yes 

Intermediate FRS (10% to 19%) with protective PRS ≤ [Lower 

threshold percentage] 

No 

Low FRS (< 10%) No 

Statin-indicated conditions 

Clinical atherosclerosis, 

or abdominal aortic aneurysm, 

Yes 
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or DM with age ≥ 40 years, or 15-year DM 1 duration for age 

≥ 30 years, 

or microvascular disease, 

or chronic kidney disease (age ≥ 50 years) with eGFR < 60 

mL/min/1.73 m2 or ACR > 3 mg/mmol,  

or LDL-C ≥ 5.0 mmol/L  

Abbreviations: CVD, cardiovascular disease; FRS, Framingham risk score; PRS, polygenic risk 

score; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; 

ApoB, apolipoprotein B; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; 

ACR, albumin: creatinine ratio. 

Although high FRS, low FRS, and statin-indicated conditions CVD risk categories are shown 

(for holistic illustrative purposes), they are excluded from the study sample, which consists of 

individuals with intermediate FRS only.  
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Table 2. Baseline characteristics of UK Biobank subpopulation 

 n = 96,736 

Age, mean (SD) 58.46 (6.68) 

Female, N (%) 50,894 (52.6) 

Male, N (%) 45,842 (47.4) 

Current smoking, N (%) 9,196 (9.51) 

Antihypertensive therapy, N (%) 13,109 (13.6) 

Total cholesterol, mean (SD), mmol/L 6.158 (1.07) 

LDL-C, mean (SD), mmol/L 3.918 (0.800) 

HDL-C, mean  1.473 (0.384) 

Systolic blood pressure, mean (SD), mmHg 143.5 (15.9) 

FRS, mean (SD), points 13.73 (1.64) 

ApoB, mean (SD), g/L 1.121 (0.227) 

Creatinine, mean (SD), µmol/L 71.93 (15.0) 

Waist circumference, mean (SD), cm 90.81 (12.3) 

Hip circumference, mean (SD), cm 103.7 (9.00) 

Abbreviations: SD, standard deviation; LDL-C, low-density lipoprotein cholesterol; HDL-C, 

high-density lipoprotein cholesterol; FRS, Framingham risk score; ApoB, apolipoprotein B. 
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Table 3. Clinical parameters of participants on different statin exclusion strategies with PRS greater than 25% as a risk factor 

Strategy Number of MIs captured Controls given statins Captured MIs/1000 statin prescriptions 

Canadian Cardiovascular Society 

dyslipidemia guidelines of 2016 

748 81,335 9.113 

Top 25% PRS eligible for statins 

with lower threshold excluded: 

      

1% 776 83,865 9.168 

2% 773 83,031 9.224 

3% 772 82,194 9.305 

4% 767 81,456 9.328 

5% 765 80,692 9.391 

6% 760 79,899 9.422 

7% 755 79,059 9.459 

8% 752 78,302 9.512 

9% 742 77,456 9.489 

10% 739 76,679 9.546 
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11% 735 75,887 9.593 

12% 729 75,100 9.614 

13% 722 74,289 9.625 

14% 718 73,444 9.682 

15% 713 72,680 9.715 

16% 706 71,868 9.728 

17% 697 71,031 9.717 

18% 688 70,222 9.702 

19% 683 69,458 9.738 

20% 678 68,645 9.780 

21% 672 67,863 9.805 

22% 666 67,096 9.829 

23% 661 66,251 9.879 

24% 656 65,440 9.925 

25% 650 64,668 9.951 

Abbreviations: MI, myocardial infarction; CCSDG16, Canadian Cardiovascular Society dyslipidemia guidelines of 2016; PRS, 

polygenic risk score 
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Table 4. Clinical parameters of participants on different statin exclusion strategies with PRS greater than 30% as a risk factor 

Strategy Number of MIs captured Controls given statins Captured MIs/1000 statin prescriptions 

Canadian Cardiovascular Society 

dyslipidemia guidelines of 2016 

748 81,335 9.113 

Top 30% PRS eligible for statins 

with lower threshold excluded: 

      

1% 783 84,587 9.172 

2% 780 83,753 9.227 

3% 779 82,916 9.308 

4% 774 82,178 9.331 

5% 772 81,414 9.393 

6% 767 80,621 9.424 

7% 762 79,781 9.461 

8% 759 79,024 9.513 

9% 749 78,178 9.490 

10% 746 77,401 9.546 
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11% 742 76,609 9.593 

12% 736 75,822 9.614 

13% 729 75,011 9.625 

14% 725 74,166 9.681 

15% 720 73,402 9.714 

16% 713 72,590 9.727 

17% 704 71,753 9.716 

18% 695 70,944 9.701 

19% 690 70,180 9.736 

20% 685 69,367 9.778 

21% 679 68,495 11.102 

22% 673 67,818 9.826 

23% 668 66,973 9.876 

24% 663 66,162 9.921 

25% 657 65,390 9.947 

Abbreviations: MI, myocardial infarction; CCSDG16, Canadian Cardiovascular Society dyslipidemia guidelines of 2016; PRS, 

polygenic risk score 
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Table 5. Clinical parameters of participants on different statin exclusion strategies with PRS greater than 35% as a risk factor 

Strategy Number of MIs captured Controls given statins Captured MIs/1000 statin prescriptions 

Canadian Cardiovascular Society 

dyslipidemia guidelines of 2016 

748 81,335 9.113 

Top 35% PRS eligible for statins 

with lower threshold excluded: 

      

1% 787 85,262 9.146 

2% 784 84,428 9.201 

3% 783 83,591 9.280 

4% 778 82,853 9.303 

5% 776 82,089 9.365 

6% 771 81,296 9.395 

7% 766 80,456 9.431 

8% 763 79,699 9.483 

9% 753 78,853 9.459 

10% 750 78,076 9.515 



M.Sc. Thesis - M. Kiflen; McMaster University – Health Research Methods, Evidence, and Impact 

 69 

11% 746 77,284 9.560 

12% 740 76,497 9.581 

13% 733 75,686 9.592 

14% 729 74,841 9.647 

15% 724 74,077 9.679 

16% 717 73,265 9.692 

17% 708 72,428 9.681 

18% 699 71,619 9.666 

19% 694 70,855 9.700 

20% 689 70,042 9.741 

21% 683 69,260 9.765 

22% 677 68,493 9.787 

23% 672 67,648 9.836 

24% 667 66,837 9.881 

25% 661 66,065 9.906 

Abbreviations: MI, myocardial infarction; CCSDG16, Canadian Cardiovascular Society dyslipidemia guidelines of 2016; PRS, 

polygenic risk score 
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Table 6. Clinical parameters of participants on different statin exclusion strategies with PRS greater than 40% as a risk factor 

Strategy Number of MIs captured Controls given statins Captured MIs/1000 statin prescriptions 

Canadian Cardiovascular Society 

dyslipidemia guidelines of 2016 

748 81,335 9.113 

Top 40% PRS eligible for statins 

with lower threshold excluded: 

      

1% 796 85,931 9.178 

2% 793 85,097 9.233 

3% 792 84,260 9.312 

4% 787 83,522 9.335 

5% 785 82,758 9.396 

6% 780 81,965 9.427 

7% 775 81,125 9.463 

8% 772 80,368 9.514 

9% 762 79,522 9.491 

10% 759 78,745 9.547 
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11% 755 77,953 9.592 

12% 749 77,166 9.613 

13% 742 76,355 9.624 

14% 738 75,510 9.679 

15% 733 74,746 9.711 

16% 726 73,934 9.724 

17% 717 73,097 9.714 

18% 708 72,288 9.699 

19% 703 71,524 9.733 

20% 698 70,711 9.775 

21% 692 69,929 9.799 

22% 686 69,162 9.821 

23% 681 68,317 9.870 

24% 676 67,506 9.915 

25% 670 66,734 9.940 

Abbreviations: MI, myocardial infarction; CCSDG16, Canadian Cardiovascular Society dyslipidemia guidelines of 2016; PRS, 

polygenic risk score 
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Table 7. Clinical parameters of participants on different statin exclusion strategies with PRS greater than 45% as a risk factor 

Strategy Number of MIs captured Controls given statins Captured MIs/1000 statin prescriptions 

Canadian Cardiovascular Society 

dyslipidemia guidelines of 2016 

748 86,669 
9.146 

Top 45% PRS eligible for statins 

with lower threshold excluded: 

  
  

1% 800 86,669 9.146 

2% 797 85,835 9.200 

3% 796 84,998 9.278 

4% 791 84,260 9.300 

5% 789 83,496 9.361 

6% 784 82,703 9.391 

7% 779 81,863 9.426 

8% 776 81,106 9.477 

9% 766 80,260 9.454 

10% 763 79,483 9.508 
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11% 759 78,691 9.553 

12% 753 77,904 9.573 

13% 746 77,093 9.584 

14% 742 76,248 9.638 

15% 737 75,484 9.669 

16% 730 74,672 9.681 

17% 721 73,835 9.671 

18% 712 73,026 9.656 

19% 707 72,262 9.689 

20% 702 71,449 9.730 

21% 696 70,667 9.753 

22% 690 69,900 9.775 

23% 685 69,055 9.822 

24% 680 68,244 9.866 

25% 674 67,472 9.891 

Abbreviations: MI, myocardial infarction; CCSDG16, Canadian Cardiovascular Society dyslipidemia guidelines of 2016; PRS, 

polygenic risk score 
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Table 8. Clinical parameters of participants on different statin exclusion strategies with PRS greater than 50% as a risk factor 

Strategy Number of MIs captured Controls given statins Captured MIs/1000 statin prescriptions 

Canadian Cardiovascular Society 

dyslipidemia guidelines of 2016 

748 81,335 9.113 

Top 50% PRS eligible for statins 

with lower threshold excluded: 

      

1% 802 87,412 9.092 

2% 799 86,578 9.144 

3% 798 85,741 9.221 

4% 793 85,003 9.243 

5% 791 84,239 9.303 

6% 786 83,446 9.331 

7% 781 82,606 9.366 

8% 778 81,849 9.416 

9% 768 81,003 9.392 

10% 765 80,226 9.445 
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11% 761 79,434 9.489 

12% 755 78,647 9.509 

13% 748 77,836 9.518 

14% 744 76,991 9.571 

15% 739 76,227 9.602 

16% 732 75,415 9.613 

17% 723 74,578 9.601 

18% 714 73,769 9.586 

19% 709 73,005 9.618 

20% 704 72,192 9.658 

21% 698 71,410 9.680 

22% 692 70,643 9.701 

23% 687 69,798 9.747 

24% 682 68,987 9.789 

25% 676 68,215 9.813 

Abbreviations: MI, myocardial infarction; CCSDG16, Canadian Cardiovascular Society dyslipidemia guidelines of 2016; PRS, 

polygenic risk score 
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Table 9. Clinical parameters of participants on different statin exclusion strategies with PRS greater than 55% as a risk factor 

Strategy Number of MIs captured Controls given statins Captured MIs/1000 statin prescriptions 

Canadian Cardiovascular Society 

dyslipidemia guidelines of 2016 

748 81,335 9.113 

Top 55% PRS eligible for statins 

with lower threshold excluded: 

      

1% 809 88,106 9.099 

2% 806 87,272 9.151 

3% 805 86,435 9.227 

4% 800 85,697 9.249 

5% 798 84,933 9.308 

6% 793 84,140 9.337 

7% 788 83,300 9.371 

8% 785 82,543 9.421 

9% 775 81,697 9.397 

10% 772 80,920 9.450 
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11% 768 80,128 9.494 

12% 762 79,341 9.513 

13% 755 78,530 9.523 

14% 751 77,685 9.575 

15% 746 76,921 9.605 

16% 739 76,109 9.616 

17% 730 75,272 9.605 

18% 721 74,463 9.590 

19% 716 73,699 9.622 

20% 711 72,886 9.661 

21% 705 72,104 9.683 

22% 699 71,337 9.703 

23% 694 70,492 9.749 

24% 689 69,681 9.791 

25% 683 68,909 9.814 

Abbreviations: MI, myocardial infarction; CCSDG16, Canadian Cardiovascular Society dyslipidemia guidelines of 2016; PRS, 

polygenic risk score 
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Table 10. Clinical parameters of participants on different statin exclusion strategies with PRS greater than 60% as a risk factor 

Strategy Number of MIs captured Controls given statins Captured MIs/1000 statin prescriptions 

Canadian Cardiovascular Society 

dyslipidemia guidelines of 2016 

748 81,335 9.113 

Top 60% PRS eligible for statins 

with lower threshold excluded: 

      

1% 814 88,830 9.080 

2% 811 87,996 9.132 

3% 810 87,159 9.208 

4% 805 86,421 9.229 

5% 803 85,657 9.288 

6% 798 84,864 9.316 

7% 793 84,024 9.350 

8% 790 83,267 9.398 

9% 780 82,421 9.375 

10% 777 81,644 9.427 
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11% 773 80,852 9.470 

12% 767 80,065 9.489 

13% 760 79,254 9.498 

14% 756 78,409 9.550 

15% 751 77,645 9.580 

16% 744 76,833 9.590 

17% 735 75,996 9.579 

18% 726 75,187 9.564 

19% 721 74,423 9.595 

20% 716 73,610 9.633 

21% 710 72,828 9.655 

22% 704 72,061 9.675 

23% 699 71,216 9.720 

24% 694 70,405 9.761 

25% 688 69,633 9.784 

Abbreviations: MI, myocardial infarction; CCSDG16, Canadian Cardiovascular Society dyslipidemia guidelines of 2016; PRS, 

polygenic risk score 
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Table 11. Clinical parameters of participants on different statin exclusion strategies with PRS greater than 65% as a risk factor 

Strategy Number of MIs captured Controls given statins Captured MIs/1000 statin prescriptions 

Canadian Cardiovascular Society 

dyslipidemia guidelines of 2016 

748 81,335 9.113 

Top 65% PRS eligible for statins 

with lower threshold excluded: 

      

1% 818 89,574 9.049 

2% 815 88,740 9.101 

3% 814 87,903 9.175 

4% 809 87,165 9.196 

5% 807 86,401 9.254 

6% 802 85,608 9.281 

7% 797 84,768 9.315 

8% 794 84,011 9.363 

9% 784 83,165 9.339 

10% 781 82,388 9.391 
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11% 777 81,596 9.433 

12% 771 80,809 9.451 

13% 764 79,998 9.460 

14% 760 79,153 9.510 

15% 755 78,389 9.540 

16% 748 77,577 9.550 

17% 739 76,740 9.538 

18% 730 75,931 9.522 

19% 725 75,167 9.553 

20% 720 74,354 9.591 

21% 714 73,572 9.612 

22% 708 72,805 9.631 

23% 703 71,960 9.675 

24% 698 71,149 9.715 

25% 692 70,377 9.737 

Abbreviations: MI, myocardial infarction; CCSDG16, Canadian Cardiovascular Society dyslipidemia guidelines of 2016; PRS, 

polygenic risk score 
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Table 12. Clinical parameters of participants on different statin exclusion strategies with PRS greater than 70% as a risk factor 

Strategy Number of MIs captured Controls given statins Captured MIs/1000 statin prescriptions 

Canadian Cardiovascular Society 

dyslipidemia guidelines of 2016 

748 81,335 9.113 

Top 70% PRS eligible for statins 

with lower threshold excluded: 

      

1% 824 90,324 9.040 

2% 821 89,490 9.091 

3% 820 88,653 9.165 

4% 815 87,915 9.185 

5% 813 87,151 9.242 

6% 808 86,358 9.270 

7% 803 85,518 9.302 

8% 800 84,761 9.350 

9% 790 83,915 9.326 

10% 787 83,138 9.377 
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11% 783 82,346 9.419 

12% 777 81,559 9.437 

13% 770 80,748 9.446 

14% 766 79,903 9.496 

15% 761 79,139 9.524 

16% 754 78,327 9.535 

17% 745 77,490 9.523 

18% 736 76,681 9.507 

19% 731 75,917 9.537 

20% 726 75,104 9.574 

21% 720 74,322 9.595 

22% 714 73,555 9.614 

23% 709 72,710 9.657 

24% 704 71,899 9.697 

25% 698 71,127 9.718 

Abbreviations: MI, myocardial infarction; CCSDG16, Canadian Cardiovascular Society dyslipidemia guidelines of 2016; PRS, 

polygenic risk score 
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Table 13. Decision analytical model parameters with ranges used for base-case and sensitivity analyses 

 Base case Range for sensitivity analysis Standard 

deviation 

Distribution Source 

Costs Low High 

PRS $70 $55 $85 $15 Gamma Assumption 

MI (event) $13,983.78 $10,189.19 $17,778.38 $3,510 Gamma 101,132 

Statins (yearly) $85.54 N/A N/A N/A N/A 100 

Utilities       

Pre-MI 1.00 N/A N/A N/A N/A Assumption 

MI 0.708 0.610 0.806 0.098 Beta 102–104 

Post-MI 1.00 N/A N/A N/A N/A Assumption 

Other 

parameters 

      

Discount rate 0.015 0 0.03 N/A N/A 5 

RR reduction of 

statins on MI 

0.74 0.73 0.79 0.03 Beta 97 
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Table 14. Incremental costs, incremental QALYs, and ICERs of UK Biobank subpopulation on different statin exclusion strategies 

with PRS greater than 25% as a risk factor, costing $70 

Strategy Incremental costs ($) Incremental QALYs 

(QALY) 

ICER ($/QALY) 

Top 25% PRS eligible for statins 

with lower threshold excluded: 

      

1% 8,626,597.81 6.189 1,393,861.83 

2% 7,976,849.97 5.619 1,419,589.19 

3% 7,312,724.04 5.420 1,349,157.12 

4% 6,752,215.56 4.305 1,568,351.98 

5% 6,152,529.68 3.921 1,569,121.72 

6% 5,548,542.66 2.604 2,131,096.78 

7% 4,906,213.19 1.610 3,047,286.16 

8% 4,318,596.94 0.846 5,105,780.41 

9% 3,702,990.54 -1.731 -2,139,791.17 

10% 3,098,961.58 -2.339 -1,324,769.22 
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11% 2,488,917.12 -3.095 -804,153.70 

12% 1,895,807.66 -4.599 -412,205.32 

13% 1,289,389.74 -6.256 -206,114.62 

14% 636,900.39 -7.049 -90,350.50 

15% 55,496.32 -8.119 -6,835.39 

16% -552,514.21 -9.438 58,541.72 

17% -1,167,771.13 -11.446 102,021.38 

18% -1,760,702.80 -13.503 130,388.96 

19% -2,341,859.26 -14.621 160,169.30 

20% -2,961,393.40 -16.184 182,988.23 

21% -3,550,980.47 -17.517 202,713.87 

22% -4,128,394.50 -18.897 218,464.74 

23% -4,774,891.20 -19.851 240,530.98 

24% -5,393,758.19 -20.924 257,781.21 

25% -5,975,023.92 -22.406 266,670.07 

Abbreviations: QALY, quality-adjusted life year; ICER, incremental cost-effectiveness ratio; PRS, polygenic risk score 
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Table 15. Incremental costs, incremental QALYs, and ICERs of UK Biobank subpopulation on different statin exclusion strategies 

with PRS greater than 30% as a risk factor, costing $70 

Strategy Incremental costs ($) Incremental QALYs 

(QALY) 

ICER ($/QALY) 

Top 30% PRS eligible for statins 

with lower threshold excluded: 

      

1% 9,161,608.65 7.992 1,146,417.61 

2% 8,511,860.81 7.422 1,146,896.67 

3% 7,847,734.89 7.223 1,086,532.02 

4% 7,287,226.40 6.108 1,193,099.01 

5% 6,687,540.53 5.724 1,168,430.93 

6% 6,083,553.50 4.406 1,380,702.51 

7% 5,441,224.03 3.413 1,594,475.83 

8% 4,853,607.78 2.648 1,832,694.55 

9% 4,238,001.38 0.072 58,875,966.98 

10% 3,633,972.43 -0.537 -6,770,625.80 
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11% 3,023,927.96 -1.293 -2,339,494.31 

12% 2,430,818.50 -2.797 -869,185.41 

13% 1,824,400.59 -4.453 -409,685.57 

14% 1,171,911.23 -5.247 -223,361.68 

15% 590,507.16 -6.316 -93,487.20 

16% -17,503.36 -7.635 2,292.39 

17% -632,760.28 -9.644 65,613.05 

18% -1,225,691.95 -11.701 104,751.54 

19% -1,806,848.42 -12.819 140,954.89 

20% -2,426,382.56 -14.381 168,721.43 

21% -3,015,969.63 -15.715 191,920.46 

22% -3,593,383.65 -17.095 210,203.52 

23% -4,239,880.36 -18.049 234,910.22 

24% -4,858,747.34 -19.121 254,101.79 

25% -5,440,013.08 -20.604 264,033.02 

Abbreviations: QALY, quality-adjusted life year; ICER, incremental cost-effectiveness ratio; PRS, polygenic risk score 
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Table 16. Incremental costs, incremental QALYs, and ICERs of UK Biobank subpopulation on different statin exclusion strategies 

with PRS greater than 35% as a risk factor, costing $70 

Strategy Incremental costs ($) Incremental QALYs 

(QALY) 

ICER ($/QALY) 

Top 35% PRS eligible for statins 

with lower threshold excluded: 

      

1% 9,677,972.04 8.760 1,104,803.32 

2% 9,028,224.20 8.190 1,102,341.91 

3% 8,364,098.27 7.991 1,046,672.65 

4% 7,803,589.79 6.876 1,134,868.24 

5% 7,203,903.91 6.492 1,109,672.93 

6% 6,599,916.89 5.175 1,275,463.77 

7% 5,957,587.42 4.181 1,424,939.26 

8% 5,369,971.17 3.417 1,571,665.47 

9% 4,754,364.77 0.840 5,657,425.87 

10% 4,150,335.81 0.232 17,915,023.84 
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11% 3,540,291.35 -0.524 -6,754,191.54 

12% 2,947,181.89 -2.028 -1,453,052.99 

13% 2,340,763.97 -3.685 -635,252.27 

14% 1,688,274.62 -4.478 -376,989.76 

15% 1,106,870.55 -5.548 -199,506.05 

16% 498,860.02 -6.867 -72,645.55 

17% -116,396.90 -8.875 13,114.52 

18% -709,328.57 -10.933 64,882.26 

19% -1,290,485.03 -12.050 107,092.11 

20% -1,910,019.17 -13.613 140,312.55 

21% -2,499,606.24 -14.946 167,239.23 

22% -3,077,020.27 -16.326 188,469.12 

23% -3,723,516.97 -17.281 215,474.50 

24% -4,342,383.96 -18.353 236,605.18 

25% -4,923,649.69 -19.835 248,228.64 

Abbreviations: QALY, quality-adjusted life year; ICER, incremental cost-effectiveness ratio; PRS, polygenic risk score 
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Table 17. Incremental costs, incremental QALYs, and ICERs of UK Biobank subpopulation on different statin exclusion strategies 

with PRS greater than 40% as a risk factor, costing $70 

Strategy Incremental costs ($) Incremental QALYs 

(QALY) 

ICER ($/QALY) 

Top 40% PRS eligible for statins 

with lower threshold excluded: 

      

1% 10,158,873.85 10.734 946,389.94 

2% 9,509,126.01 10.164 935,525.31 

3% 8,845,000.08 9.966 887,555.97 

4% 8,284,491.59 8.851 936,032.48 

5% 7,684,805.72 8.466 907,687.72 

6% 7,080,818.70 7.149 990,468.23 

7% 6,438,489.22 6.155 1,045,993.95 

8% 5,850,872.97 5.391 1,085,268.20 

9% 5,235,266.58 2.815 1,859,898.08 

10% 4,631,237.62 2.206 2,099,281.92 
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11% 4,021,193.16 1.450 2,772,709.66 

12% 3,428,083.70 -0.054 -63,682,360.12 

13% 2,821,665.78 -1.710 -1,649,768.09 

14% 2,169,176.42 -2.504 -866,330.88 

15% 1,587,772.36 -3.574 -444,303.96 

16% 979,761.83 -4.893 -200,253.66 

17% 364,504.91 -6.901 -52,819.25 

18% -228,426.76 -8.958 25,499.43 

19% -809,583.22 -10.076 80,349.30 

20% -1,429,117.36 -11.638 122,795.75 

21% -2,018,704.44 -12.972 155,621.89 

22% -2,596,118.46 -14.352 180,889.58 

23% -3,242,615.17 -15.306 211,851.06 

24% -3,861,482.15 -16.378 235,766.29 

25% -4,442,747.89 -17.861 248,744.31 

Abbreviations: QALY, quality-adjusted life year; ICER, incremental cost-effectiveness ratio; PRS, polygenic risk score 
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Table 18. Incremental costs, incremental QALYs, and ICERs of UK Biobank subpopulation on different statin exclusion strategies 

with PRS greater than 45% as a risk factor, costing $70 

Strategy Incremental costs ($) Incremental QALYs 

(QALY) 

ICER ($/QALY) 

Top 45% PRS eligible for statins 

with lower threshold excluded: 

      

1% 10,725,287.34 11.678 918,457.23 

2% 10,075,539.51 11.108 907,082.07 

3% 9,411,413.58 10.909 862,741.50 

4% 8,850,905.09 9.794 903,724.75 

5% 8,251,219.22 9.410 876,901.66 

6% 7,647,232.20 8.092 945,021.90 

7% 7,004,902.72 7.099 986,808.97 

8% 6,417,286.47 6.334 1,013,095.09 

9% 5,801,680.08 3.758 1,543,831.71 

10% 5,197,651.12 3.149 1,650,432.37 
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11% 4,587,606.66 2.393 1,916,744.81 

12% 3,994,497.20 0.889 4,491,581.66 

13% 3,388,079.28 -0.767 -4,416,276.09 

14% 2,735,589.92 -1.561 -1,752,790.88 

15% 2,154,185.85 -2.630 -818,939.87 

16% 1,546,175.33 -3.949 -391,491.98 

17% 930,918.41 -5.958 -156,251.38 

18% 337,986.74 -8.015 -42,169.53 

19% -243,169.72 -9.133 26,626.45 

20% -862,703.87 -10.695 80,664.18 

21% -1,452,290.94 -12.029 120,735.56 

22% -2,029,704.96 -13.409 151,371.21 

23% -2,676,201.67 -14.363 186,326.78 

24% -3,295,068.65 -15.435 213,476.57 

25% -3,876,334.39 -16.918 229,131.08 

Abbreviations: QALY, quality-adjusted life year; ICER, incremental cost-effectiveness ratio; PRS, polygenic risk score 
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Table 19. Incremental costs, incremental QALYs, and ICERs of UK Biobank subpopulation on different statin exclusion strategies 

with PRS greater than 50% as a risk factor, costing $70 

Strategy Incremental costs ($) Incremental QALYs 

(QALY) 

ICER ($/QALY) 

Top 50% PRS eligible for statins 

with lower threshold excluded: 

      

1% 11,308,158.24 12.062 937,518.72 

2% 10,658,410.40 11.492 927,469.17 

3% 9,994,284.48 11.293 884,996.56 

4% 9,433,775.99 10.178 926,870.27 

5% 8,834,090.12 9.794 902,007.86 

6% 8,230,103.09 8.476 970,941.74 

7% 7,587,773.62 7.483 1,014,024.45 

8% 7,000,157.37 6.719 1,041,902.65 

9% 6,384,550.97 4.142 1,541,318.55 

10% 5,780,522.02 3.534 1,635,892.95 
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11% 5,170,477.55 2.778 1,861,405.53 

12% 4,577,368.09 1.274 3,593,979.64 

13% 3,970,950.17 -0.383 -10,371,026.08 

14% 3,318,460.82 -1.176 -2,820,827.48 

15% 2,737,056.75 -2.246 -1,218,546.41 

16% 2,129,046.23 -3.565 -597,182.48 

17% 1,513,789.31 -5.574 -271,603.15 

18% 920,857.64 -7.631 -120,678.62 

19% 339,701.17 -8.748 -38,830.33 

20% -279,832.97 -10.311 27,140.02 

21% -869,420.04 -11.644 74,664.21 

22% -1,446,834.06 -13.024 111,085.58 

23% -2,093,330.77 -13.979 149,751.93 

24% -2,712,197.76 -15.051 180,200.75 

25% -3,293,463.49 -16.533 199,202.43 

Abbreviations: QALY, quality-adjusted life year; ICER, incremental cost-effectiveness ratio; PRS, polygenic risk score 
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Table 20. Incremental costs, incremental QALYs, and ICERs of UK Biobank subpopulation on different statin exclusion strategies 

with PRS greater than 55% as a risk factor, costing $70 

Strategy Incremental costs ($) Incremental QALYs 

(QALY) 

ICER ($/QALY) 

Top 55% PRS eligible for statins 

with lower threshold excluded: 

      

1% 11,820,963.95 13.642 866,497.93 

2% 11,171,216.11 13.072 854,567.34 

3% 10,507,090.18 12.873 816,182.55 

4% 9,946,581.69 11.759 845,903.30 

5% 9,346,895.82 11.374 821,759.93 

6% 8,742,908.80 10.057 869,348.79 

7% 8,100,579.32 9.063 893,781.45 

8% 7,512,963.07 8.299 905,278.33 

9% 6,897,356.68 5.723 1,205,262.46 

10% 6,293,327.72 5.114 1,230,609.40 
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11% 5,683,283.26 4.358 1,304,054.80 

12% 5,090,173.80 2.854 1,783,487.51 

13% 4,483,755.88 1.198 3,744,118.59 

14% 3,831,266.52 0.404 9,482,832.49 

15% 3,249,862.46 -0.666 -4,881,651.66 

16% 2,641,851.93 -1.985 -1,331,097.83 

17% 2,026,595.01 -3.993 -507,524.43 

18% 1,433,663.34 -6.050 -236,960.30 

19% 852,506.88 -7.168 -118,933.82 

20% 232,972.74 -8.730 -26,685.60 

21% -356,614.34 -10.064 35,434.77 

22% -934,028.36 -11.444 81,616.84 

23% -1,580,525.06 -12.398 127,479.99 

24% -2,199,392.05 -13.471 163,274.18 

25% -2,780,657.79 -14.953 185,962.17 

Abbreviations: QALY, quality-adjusted life year; ICER, incremental cost-effectiveness ratio; PRS, polygenic risk score 
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Table 21. Incremental costs, incremental QALYs, and ICERs of UK Biobank subpopulation on different statin exclusion strategies 

with PRS greater than 60% as a risk factor, costing $70 

Strategy Incremental costs ($) Incremental QALYs 

(QALY) 

ICER ($/QALY) 

Top 60% PRS eligible for statins 

with lower threshold excluded: 

      

1% 12,369,779.97 14.921 829,035.58 

2% 11,720,032.14 14.351 816,680.22 

3% 11,055,906.21 14.152 781,230.53 

4% 10,495,397.72 13.037 805,047.65 

5% 9,895,711.85 12.653 782,102.90 

6% 9,291,724.83 11.335 819,715.47 

7% 8,649,395.35 10.342 836,359.22 

8% 8,061,779.10 9.578 841,739.64 

9% 7,446,172.71 7.001 1,063,563.07 

10% 6,842,143.75 6.392 1,070,347.71 
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11% 6,232,099.29 5.637 1,105,644.83 

12% 5,638,989.83 4.133 1,364,542.55 

13% 5,032,571.91 2.476 2,032,538.61 

14% 4,380,082.55 1.682 2,603,352.07 

15% 3,798,678.49 0.613 6,199,630.80 

16% 3,190,667.96 -0.706 -4,517,696.51 

17% 2,575,411.04 -2.715 -948,711.19 

18% 1,982,479.37 -4.772 -415,460.03 

19% 1,401,322.91 -5.889 -237,937.69 

20% 781,788.76 -7.452 -104,912.43 

21% 192,201.69 -8.786 -21,877.12 

22% -385,212.33 -10.166 37,893.68 

23% -1,031,709.04 -11.120 92,781.56 

24% -1,650,576.02 -12.192 135,380.92 

25% -2,231,841.76 -13.674 163,213.65 

Abbreviations: QALY, quality-adjusted life year; ICER, incremental cost-effectiveness ratio; PRS, polygenic risk score 
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Table 22. Incremental costs, incremental QALYs, and ICERs of UK Biobank subpopulation on different statin exclusion strategies 

with PRS greater than 65% as a risk factor, costing $70 

Strategy Incremental costs ($) Incremental QALYs 

(QALY) 

ICER ($/QALY) 

Top 65% PRS eligible for statins 

with lower threshold excluded: 

      

1% 12,940,754.86 15.937 812,003.71 

2% 12,291,007.02 15.367 799,833.74 

3% 11,626,881.10 15.168 766,537.95 

4% 11,066,372.61 14.053 787,467.29 

5% 10,466,686.74 13.669 765,733.97 

6% 9,862,699.71 12.351 798,506.34 

7% 9,220,370.24 11.358 811,805.68 

8% 8,632,753.99 10.594 814,898.78 

9% 8,017,147.59 8.017 999,982.42 

10% 7,413,118.64 7.409 1,000,612.56 
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11% 6,803,074.17 6.653 1,022,595.73 

12% 6,209,964.71 5.149 1,206,136.00 

13% 5,603,546.79 3.492 1,604,619.65 

14% 4,951,057.44 2.699 1,834,670.27 

15% 4,369,653.37 1.629 2,682,649.38 

16% 3,761,642.85 0.310 12,139,385.26 

17% 3,146,385.92 -1.699 -1,852,437.85 

18% 2,553,454.26 -3.756 -679,898.88 

19% 1,972,297.79 -4.873 -404,713.18 

20% 1,352,763.65 -6.436 -210,197.09 

21% 763,176.58 -7.769 -98,228.78 

22% 185,762.55 -9.149 -20,303.08 

23% -460,734.15 -10.104 45,600.84 

24% -1,079,601.14 -11.176 96,600.33 

25% -1,660,866.87 -12.658 131,208.49 

Abbreviations: QALY, quality-adjusted life year; ICER, incremental cost-effectiveness ratio; PRS, polygenic risk score 
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Table 23. Incremental costs, incremental QALYs, and ICERs of UK Biobank subpopulation on different statin exclusion strategies 

with PRS greater than 70% as a risk factor, costing $70 

Strategy Incremental costs ($) Incremental QALYs 

(QALY) 

ICER ($/QALY) 

Top 70% PRS eligible for statins 

with lower threshold excluded: 

      

1% 13,505,187.40 17.032 792,949.84 

2% 12,855,439.56 16.462 780,929.62 

3% 12,191,313.63 16.263 749,643.99 

4% 11,630,805.14 15.148 767,817.29 

5% 11,031,119.27 14.764 747,184.07 

6% 10,427,132.25 13.446 775,470.75 

7% 9,784,802.77 12.453 785,762.90 

8% 9,197,186.52 11.688 786,863.59 

9% 8,581,580.13 9.112 941,783.75 

10% 7,977,551.17 8.503 938,166.63 
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11% 7,367,506.71 7.748 950,951.39 

12% 6,774,397.25 6.243 1,085,048.53 

13% 6,167,979.33 4.587 1,344,696.01 

14% 5,515,489.97 3.793 1,453,981.61 

15% 4,934,085.91 2.724 1,811,592.21 

16% 4,326,075.38 1.405 3,079,864.05 

17% 3,710,818.46 -0.604 -6,146,283.67 

18% 3,117,886.79 -2.661 -1,171,751.43 

19% 2,536,730.33 -3.779 -671,348.18 

20% 1,917,196.19 -5.341 -358,962.95 

21% 1,327,609.11 -6.675 -198,904.14 

22% 750,195.09 -8.055 -93,137.38 

23% 103,698.38 -9.009 -11,510.70 

24% -515,168.60 -10.081 51,101.93 

25% -1,096,434.34 -11.563 94,818.83 

Abbreviations: QALY, quality-adjusted life year; ICER, incremental cost-effectiveness ratio; PRS, polygenic risk score 
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9.0. FIGURES 

 

Figure 1. Number of CAD cases as a function of PRS deciles 
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Figure 2. Cost-effectiveness plane of PRS base-cases analysis at $70 genotyping per person 
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Figure 3. ICER as a function of lower PRS percent exclusion in base-cases analysis at $70 genotyping per person 
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Figure 4. Cost-effectiveness plane of PRS base-cases analysis at $0 genotyping per person 
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Figure 5. ICER as a function of lower PRS percent exclusion in base-cases analysis at $0 genotyping per person 
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Figure 6. ICER as a function of lower PRS percent exclusion in base-cases analysis at $70 genotyping per person 
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Figure 7. Cost-effectiveness plane of PRS PSA at $70 genotyping per person and a discounting rate of 1.5% 
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Figure 8. Cost-effectiveness acceptability curve of PRS PSA at $70 genotyping per person and a discounting rate of 1.5% 
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Figure 9. Cost-effectiveness plane of PRS PSA at $70 genotyping per person and a discounting rate of 3.0% 
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Figure 10. Cost-effectiveness acceptability curve of PRS PSA at $70 genotyping per person and a discounting rate of 3.0% 
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Figure 11. ICER as a function of OR per SD with different genotyping costs with statins for the top 70% PRS individuals and lower 

5% PRS excluded 
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10.0. APPENDIX 1: COST-EFFECTIVENESS MODEL CALCULATIONS 

 

This section provides a step-by-step schematic of the calculations leading to the base-case 

analysis ICER value ($747,184.10/QALY, corresponding to the strategy whereby the top 70% 

PRS individuals are eligible for statins with the lower 5% PRS excluded). The parameters are 

shown in Table 13. The schematic of the clinical model, which is frequently referenced in this 

section, is shown in Figure 1A. 

 

10.1. COSTS OF THE STANDARD CARE GROUP 

 

In the cohort guided using the Canadian Cardiovascular Society dyslipidemia guidelines 

of 2016, individuals with statin eligibility (n = 82,083) were subjected to the total cost of statins 

for 10 years of $800.70, as shown in Table 1A, and the cost of a MI event at $13,983.78. First, 

the total number of MI events (n = 748) was reduced by 0.5455 (corresponding to reduction of 

MI events by ‘prescribing’ statins) and multiplied by $13,983.78. The total cost of MI events was 

$5,594,276.00 and the total cost of the corresponding statins for 10 years was $523,822.50. The 

total cost of statins who were eligible (n = 81,335) but had no event was $65,126,005.00. There 

were no further costs associated with individuals eligible for statins without an MI event. 

 

Individuals without statin eligibility (n = 14,653) required a more nuanced analysis. First, 

the total cost of MI events (n = 105) was $1,439,660.00. There was no reduction due to statins 

since this group was not eligible for pharmacological intervention. However, statin therapy was 

started at the year of the event till the end of the 10-year time horizon. The cost of statins was 
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therefore dependent on the year of MI, as per Table 1A. The total cost of statins for individuals 

who were initially not eligible for statins in the standard care group and subsequently had an MI 

(n = 105) was $48,813.90. Individuals who were not eligible for statins with no MI event had no 

costs (n = 14,548).  

 

10.2. COSTS OF THE POLYGENIC RISK SCORE INTERVENTION GROUP 

 

In the cohort guided using the Canadian Cardiovascular Society dyslipidemia guidelines 

of 2016 in addition to the PRS, the cost of genotyping at $70 was applied as a one-time cost for 

all participants in the 10-year duration. The total was $6,771,520.00. Individuals with statin 

eligibility (n = 87,964) were subjected to the same $800.70 cost of statins for 10 years, as shown 

in Table 1A and the cost of a MI event at $13,983.78. The total number of MI events (n = 813) 

was reduced by 0.5455 and multiplied by $13,983.78. The total cost of MI events was 

$6,080,410.00 and the total cost of the corresponding statins for 10 years was $569,341.90. The 

total cost of statins who were eligible (n = 87,151) but had no event was $69,782,953.00. There 

were no further costs associated with individuals eligible for statins without an MI event. 

 

For individuals without statin eligibility (n = 8,772), the total cost of MI events (n = 40) 

was $548,441.80. There was no reduction due to statins since this group was not eligible for 

pharmacological intervention. Analogous to the standard care group, statin therapy was started at 

the year of the event till the end of the 10-year time horizon, as per Table 1A. The total cost of 

statins for individuals who were not eligible for statins in the PRS intervention group and 
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subsequently had an MI (n = 40) was $19,088.30. Individuals who were initially not eligible for 

statins with no MI event had no costs (n = 14,548).  

 

10.3. QUALITY-ADJUSTED LIFE YEARS OF THE STANDARD CARE GROUP 

 

The QALYs in the cohort using the Canadian Cardiovascular Society dyslipidemia 

guidelines of 2016 revolve around MI cases as they are the sole adverse events. The UK Biobank 

cohort started with perfect health with utility values of 1.00. Individuals with statin eligibility 

and a MI event (n = 748) could take two trajectories based on the reduction of their event by 

statins. Approximately 54.55% of these cases were prevented and therefore, remained at perfect 

health for 10 years. The total QALYs for individuals who had a MI prevented was 3399.876. 

However, approximately 45.45% of cases experienced an MI. During the year of event, utility 

dropped to 0.708 and subsequently restored to perfect utility for the rest of the time horizon 

barring discounting, as per Table 2A. The QALYs associated with an individual who had a MI is 

dependent on the time of event. The total QALYs of individuals with statin eligibility with a MI 

event was 3874.418. Individuals without statin eligibility and a MI event (n = 105) had no 

possibility of reduced events. Their trajectory was identical to individuals who were on statin 

therapy but nonetheless, experienced a MI, as per Table 2A. The total QALYs for this group was 

1016.401.  

 

All other individuals did not experience a MI. This included non-cases with statin 

eligibility (n = 81,335) and without statins (n = 14,548) who had perfect health for the entire 10-



M.Sc. Thesis - M. Kiflen; McMaster University – Health Research Methods, Evidence, and 
Impact 

 119 

year time horizon. Their trajectories were identical to MI cases that were prevented by statins. 

The total QALYs for controls was 910,011. 

 

10.4. QUALITY-ADJUSTED LIFE YEARS OF THE POLYGENIC RISK SCORE 

INTERVENTION GROUP 

 

The QALYs in the cohort using the Canadian Cardiovascular Society dyslipidemia 

guidelines of 2016 in addition to PRS also revolve around MI cases. Approximately 54.55% of 

individuals with statin eligibility and a MI event (n = 813) were prevented and therefore, 

remained at perfect health for 10 years. The total QALYs for individuals who had a MI 

prevented was 3695.32. However, approximately 45.45% of cases experienced a MI and 

followed a utility trajectory as per Table 2A. The total QALYs of individuals with statin 

eligibility with a MI event was 4211.257. Individuals without statin eligibility and a MI event (n 

= 40) have a trajectory identical to individuals who were on statin therapy but nonetheless, 

experienced a MI, as per Table 2A. The total QALYs for this group was 398.8826.  

 

All other individuals did not experience a MI. This included non-cases with statin 

eligibility (n = 87,151) and without statins (n = 8,732) who had perfect health for the entire 10-

year time horizon. Their trajectories were identical to MI cases that were prevented by statins. 

The total QALYs for this set of controls was also 910,011 since the total number of non-MI 

cases is constant. The driver for the nonzero incremental QALY is the number of MI cases 

prevented due to statins. 
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10.5. INCREMENTAL COST-EFFECTIVENESS RATIO CALCULATION  

 

The incremental cost was calculated by taking the difference of the standard care group 

costs summation and the PRS intervention group costs summation. The incremental QALYs 

were calculated in a similar manner, as shown in Table 3A. The final ICER, $747,729.90, was 

the ratio of the two values. 
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Figure 1A. Schematic of the statin eligibility clinical model 
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Table 1A. Cost of statins per year with a discounting rate of 1.5% 

Year Discounting factor Cumulative cost of statin ($ CAD) 

1 1.000 85.54 

2 0.9852 169.82 

3 0.9707 252.90 

4 0.9563 334.70 

5 0.9422 415.30 

6 0.9283 494.70 

7 0.9145 572.90 

8 0.9010 650.00 

9 0.8877 725.90 

10 0.8746 800.70 
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Table 2A. Utility trajectories of MI cases with a discounting rate of 1.5% 

Year of MI Utility value per subsequent year after MI 

1 0.708 0.985 0.971 0.956 0.942 0.928 0.915 0.901 0.888 0.875 

2 1.000 0.708 0.985 0.971 0.956 0.942 0.928 0.915 0.901 0.888 

3 1.000 1.000 0.708 0.985 0.971 0.956 0.942 0.928 0.915 0.901 

4 1.000 1.000 1.000 0.708 0.985 0.971 0.956 0.942 0.928 0.915 

5 1.000 1.000 1.000 1.000 0.708 0.985 0.971 0.956 0.942 0.928 

6 1.000 1.000 1.000 1.000 1.000 0.708 0.985 0.971 0.956 0.942 

7 1.000 1.000 1.000 1.000 1.000 1.000 0.708 0.985 0.971 0.956 

8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.708 0.985 0.971 

9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.708 0.985 

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.708 
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Table 3A. Breakdown of total costs, total QALYs, incremental costs, incremental QALYs, and 

ICER 

Description of cost or QALY Value 

Canadian Cardiovascular Society dyslipidemia guidelines of 

2016: 

 

Costs  

Cost of MI cases, statin prescribed $5,594,276.00 

Cost of statins for MI cases, statin initially prescribed $523,822.50 

Cost of MI cases, statin not prescribed $1,439,660.00 

Cost of statins after MI cases, statin initially not prescribed $48,813.90 

Cost of statins for non-MI cases $65,126,005.00 

Total costs associated with standard care $72,732,577.40 

QALYs  

QALYs of MI cases, statin prescribed and prevented 3,399.876 QALYs 

QALYs of MI cases, statin prescribed and not prevented 3,874.418 QALYs 

QALYs of MI cases, statin not prescribed 1,016.401 QALYs 

QALYs of controls 910,011 QALYs 

Total QALYs associated with standard care 918,301.70 QALYs 

Canadian Cardiovascular Society dyslipidemia guidelines of 

2016 in addition to PRS: 

 

Costs  

Cost of genotyping $6,771,520.00 

Cost of MI cases, statin prescribed $6,080,410.00 
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Cost of statins for MI cases, statin initially prescribed $569,341.90 

Cost of MI cases, statin not prescribed $548,441.80 

Cost of statins after MI cases, statin initially not prescribed $19,088.30 

Cost of statins for non-MI cases $69,782,953.00 

Total costs associated with intervention $83,771,754.00 

QALYs  

QALYs of MI cases, statin prescribed and prevented 3,695.320 QALYs 

QALYs of MI cases, statin prescribed and not prevented 4211.257 QALYs 

QALYs of MI cases, statin not prescribed 398.8826 QALYs 

QALYs of controls 910,011 QALYs 

Total QALYs associated with PRS intervention 918,316.5 QALYs 

ICER calculations  

Incremental costs $11,039,177.30 

Incremental QALYs 14.76359 QALYs 

ICER $747,729.90/QALY 

 


