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Abstract

Object-oriented programming has had a significant impact on software development
because it provides programmers with a clear structure of a large system. It encap-
sulates data and operations into objects, groups objects into classes and dynamically
binds operations to program code. With the emergence of multi-core processors,
application developers have to explore concurrent programming to take full advan-
tage of multi-core technology. However, when it comes to concurrent programming,
object-oriented programming remains elusive as a useful programming tool.

Most object-oriented programming languages do have some extensions for con-
currency, but concurrency is implemented independently of objects: for example,
concurrency in Java is managed separately with the Thread object. We employ a
programming model called Lime that combines action systems tightly with object-
oriented programming and implements concurrency by extending classes with actions
and guarded methods. This provides programmers with a unified and straightforward
design view for a concurrent object-oriented program.

In this work, using coroutines with guarded methods and actions is proposed as
a means of implementing the concurrency extension for objects. Mapping objects
to coroutines can result in stack overflow as the number of objects increases. A dy-
namically segmented stack mechanism, which does not introduce runtime overhead,
is implemented to support large-scale concurrency. Since Lime allows guarded meth-
ods and actions to “get stuck,” a new user-level cooperative scheduler, and a fast
coroutine context switch mechanism are implemented to improve the performance.

Compared with the traditional segmented stack mechanisms, the new dynamically
segmented stack mechanism gets equal performance for more common scenarios. Be-
sides, it outperforms the contemporary stack mechanisms for deep recursion scenarios.
Above all, Lime does not only provide the programmers with a unified and straight-
forward object-oriented programming model for concurrency, but also accomplishes a
better performance than concurrent programming languages such as Erlang and Go,
in fine-grained, highly concurrent benchmarks.
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Chapter 1

Introduction

In this chapter we glance back at the history of processors, from uniprocessors to
multicore processors, to see how we got where we are now. Next, we take a close
look at the development of programming languages for large-scale applications. Then
we examine the discrepancy between models and implementations for concurrency.
Finally, this chapter presents the structure of the thesis.

1.1 Processors

1.1.1 Uniprocessors

Early uniprocessor computers allow only one program to be executed at a time. The
process model is a key component of an operating system for a uniprocessor sys-
tem. An operating system consists of several processes: one operating system process
and several user processes. All these processes can execute concurrently by a time-
sharing mechanism. Conceptually, each process has its virtual CPU with the real
CPU switching among processes.

Processes

A process is a program in execution, which includes the program code, registers, a
stack, a data section and a heap. The stack keeps local data for the program while the
heap contains the dynamically allocated data during the running of the program. The
data section contains global variables. Each process control block (PCB) represents
one process. A PCB includes all information needed by the scheduler. That is, the
PCB is the “manifestation of a process in an operating system” (Deitel, 1990). One
PCB includes:

2



Ph.D. Thesis — Shucai Yao McMaster — Computing and Software

• Process ID

• Stack Pointer

• Program Counter

• Process State

• Process’s Register Values

• Memory Management Information

• Other Data: Scheduling Information, Process Privileges, Inter-Process Commu-
nication Information, I/O Information, Accounting Information

Operating systems that support the concept of process must meet two objectives:
to maximize the CPU utilization and to switch the CPU among processes fast. To
achieve these two objectives, the scheduler schedules a process to execute the program
on the CPU. When an available process is scheduled, the scheduler performs a context
save of the current process and a context restore of the selected process. The context
of the process is represented in the PCB which contains all the scheduling information
of the process in the system.

The Limitations of Processes

First of all, the overhead of context switches can be significant. During a context
switch, the system cannot do any useful work. Therefore, the cost of the context
switch is considered as pure overhead. The overhead includes that the processor
registers (e.g., 16 registers on the X86 architecture) need to be saved and restored,
the translation lookaside buffer entries need to be reloaded, and the processor pipeline
must be flushed. Second, the overhead for creating, managing, and communicating
among processes can also be significant. Third, operating systems need to guarantee
some degree of independence and security among concurrently executing processes.
Each process has its own address space, and communication between processes relies
on inter-process communication facilities such as pipes, which requires time-consuming
system calls.

Threads

We have assumed so far that the process model involves only one thread, i.e., a light-
weight process. The thread model enables a process to contain multiple threads. In
this case, a thread becomes a basic unit of CPU utilization. A thread includes program
code, registers, a stack and a shared heap. In the operating system, one thread is
represented by a thread control block (TCB). The TCB is “the manifestation of a
thread in an operating system” (Deitel, 1990). Compared with a PCB, a TCB does
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not contain memory management information. That is, a process could have multiple
threads, and all these threads share the address space and system resources, such as
code section, data section and opened files, of the process. One TCB includes:

• Thread ID

• Stack Pointer

• Program Counter

• Thread State

• Thread’s Register Values

• Pointer to PCB

Since creation and management of processes can be expensive, opportunities for shar-
ing local resources are limited, and the communication mechanisms among processes
are relatively heavy, the concept of the thread was introduced to make further trade-
offs between autonomy and overhead. The main compromises are:

• Resource sharing. By default, all threads of one process share the address space
and the resources of the process. Compared with processes, context switching
between threads, and creating and destroying threads are more economical. “In
Solaris, creating a process is about thirty times slower than is creating a thread,
and context switching is about five times slower” (Silberschatz et al., 2014,
p. 166).

• Responsiveness. The multithreaded model provides the opportunity for a pro-
gram to continue running when some of the threads are blocked or are working
on time-consuming tasks. Thus, the system increases responsiveness to the
users. For instance, web browsers allow users to watch videos in one thread and
download files in another thread at the same time.

• Communication. There are more communication options available in the multi-
threaded model. In addition to the communication mechanisms of the processes,
threads can also use other cheaper strategies relying on memory accessing and
employing memory-based synchronization facilities such as locks.

There are two kinds of threads in the operating system: kernel-level threads and user-
level threads. The kernel-level threads are implemented in the operating system kernel
and are scheduled by the operating system’s scheduler. The user-level threads are
implemented on top of the kernel and managed entirely by the user-level library. That
is, user-level threads are “cheaper” than kernel-level threads because user threads have
less state to maintain. Because the user-level threads rely on the support of the kernel-
level threads, there are three common relationships between kernel-level threads and
user-level threads: many-to-one, one-to-one and many-to-many.
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The many-to-one model maps many user-level threads to one kernel thread. The
drawback to this model is that only one thread can access the kernel at a time. That
is, the user-level threads cannot run in parallel. The one-to-one model maps each
user-level thread to one kernel thread. The overhead of creating threads can be a
significant burden of the system when the number of threads exceeds the threshold
value (sometimes it equals to the number of cores). The many-to-many model, also
called hybrid model, maps many user-level threads to a fixed number of kernel threads.
The number of the kernel threads usually equals to the number of the cores.

The Limitations of Threads

The trade-off made in supporting threads supports a wide range of applications, but
cannot always perfectly meet all the needs of a given condition. The overhead of
thread creation is still significantly higher than the overhead for lightweight threads,
such as fibers (Shankar, 2003), green threads (SunSoft, 1997). Lightweight threads
use cooperative multitasking while standard threads use preemptive multitasking.
Because the user thread schedulers on Linux and Windows are preemptive, the sched-
ulers still need to save and restore all the registers belonging to the thread during the
context switch. When the overhead of thread creation and management becomes a
performance concern, we need to make additional trade-offs in autonomy for the sake
of the performance: lightweight threads are needed.

Coroutines

Coroutines (Knuth, 1973), a kind of lightweight thread, are computer program com-
ponents that can be suspended and resumed at specific locations. Compared with
threads, coroutines provide a cheaper and more controllable approach to avoid the
time-consuming blocking operations, such as file I/O, by suspending and resuming
coroutines. Unlike subroutines, coroutines call other coroutines as peers and transfer
the control in a symmetric way between coroutines. In this case, coroutines are im-
plemented using continuations, which require allocation of a separate stack for each
coroutine. Preallocating or caching stacks can speed up the creation of coroutines.

Coroutines are derived from an assembly language method, but are used to im-
plement the asynchronous mechanisms in more and more programming languages,
such as the asynchronous model implemented by C# (Microsoft, 2019) and EC-
MAScript (Mozilla, 2019).

As for light-weight threads, the performance improvements of coroutines come
from three aspects. First of all, coroutines are cooperatively scheduled in the userspace,
rather than relying on the kernel to manage their time sharing. So coroutines are more
efficient than threads. Second, the switch between coroutines only occurs at distinct
points, when an explicit call is made to the runtime scheduler. Therefore, the sched-
uler for coroutines just needs to handle a small number of registers during the context
switches. Third, the distinct points are the places where the coroutine has to wait
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until the computing resource is ready, which can reduce the unnecessary blocking time
of the coroutines.

The context switch between coroutines happens in the userspace. First, a runtime
system is needed for this. Second, the disadvantage of cooperative scheduling is that
if a running coroutine does not yield the control, all the other coroutines will never
be executed. Explicit transfers need to be inserted by the programmers or by the
compiler if some degree of fairness is desirable.

1.1.2 Multicore Processors

The history of parallel processors can be traced back to the Solomon computer of the
mid-1960s (Slotnick et al., 1962). Because of the promise of parallelism, parallel com-
puting has caught both researchers’ and industry’s attention for the last four decades.
However, uniprocessor computing prevailed over parallel processors computing before
2005 (Asanovic et al., 2009).

There are many reasons behind this, but the leading one is that the programmers
could wait for the uniprocessor’s hardware designers to speed their programs up by
increasing the frequency. Besides, some sequential programming models have proven
useful for the development and maintenance of large software. In contrast, switching
from sequential to modestly parallel computing raises the bar for programming and
then limits the customer base of parallel processors (Blake et al., 2009).

Due to the memory wall (the growing gap of frequency between the CPU and
memory), instruction-level parallelism wall (the increasing complexity of implement-
ing instruction-level parallelism features and the decreasing of frequency of CPU be-
cause of misprediction penalty) and power wall (the exponentially increasing temper-
ature and power consumption as the frequency increases), Intel announced in 2005
that “its high-performance microprocessors would henceforth rely on multiple proces-
sors or cores” (Geer, 2005), which meant that the computing industry significantly
changed course in 2005. Leading manufacturers of processors, including IBM, Sun
Microsystems and Intel, started to switch from uniprocessors to multicore processors.

The switch from uniprocessors to multicore processors is a milestone in the his-
tory of computing. First of all, performance becomes the programmer’s burden. To
increase the performance, the programmers must make their programs more parallel.
Second, this shift towards increasing parallelism is not based on breakthroughs in
programming models for parallelism; instead, this change occurred because there is
no other way to continue the expected performance growth from Moore’s law. Com-
pared with a uniprocessor system, a multicore system only provides the potential to
continue to improve the performance by replacing a computationally efficient, energy-
inefficient core with several slower, energy-efficient cores. To realize this full potential,
the development of new programming models for parallel computing has become a
significant area of interest.
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Nowadays general-purpose multicore processors are widely accepted from large-
scale cluster to the desktop, from the signal processing system to embedded devices,
as the need for more performance and power efficiency has grown. The increased
use of multicore processors in various work environments has led to heightened con-
cerns for software programmers with regards to obtaining sustainable performance
improvement.

Compared with uniprocessor systems, the raw performance increase of multicore
systems comes from increasing the number of cores rather than the frequency, thus
avoiding the power wall. However, to give full play to multicore’s superiority is a
significant challenge because effective parallel programming lags behind our ability to
build parallel processors.

1.1.3 Microprocessor Performance and Trends

Trends identified in Figure 1.1 (Rupp, 2018) were: the number of transistors is contin-
ually increasing, the frequency is reaching the top, and the single-thread performance
is growing slightly. We note two significant changes: First, since 2005, the clock rate
increase has been growing at less than 1% per year. Second, the number of cores has
doubled with each processor generation since 2005.

Because of the power wall, there are no significant changes in frequency and power.
The current trend in hardware is increasing the number of cores based on the tech-
nology of shrinking transistors, which can shrink both capacitance and the supply
voltage to some degree so that the number of cores can be doubled with each silicon
generation. Also, single-thread performance has kept increasing slightly by allowing
CPUs to adjust the frequency dynamically based on the actual need (Charles et al.,
2009).

According to predictions from the International Technology Roadmap for Semicon-
ductors (ITRS), higher performance is still a priority (Figure 1.2). To achieve higher
performance of processors, the manufacturers have started to increase the number
of cores, rather than increasing the CPU frequency. Therefore, the ITRS Roadmap
has predicted that there will be processors with upwards of 100 cores by 2022 (ITRS,
2007). In 2019, AMD (2019) released a processor with 128 cores and Intel (2019)
released a processor with 112 cores.

1.2 Object-Oriented Programming Languages

In this section, we focus on the object-oriented programming languages and discuss
why the object-oriented programming model is useful in sequential programming but
problematic in concurrent programming.
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1.2.1 Sequential Programming

Object-Oriented Programming Languages (OOPLs) are becoming increasingly pop-
ular because they combine numerous techniques that have proven useful for the de-
velopment, maintenance, and reusability of software. OOPLs have had a significant
impact on software development because they provide programmers with a clear struc-
ture for a large system. From the programmer’s point of view, OOPLs reduce the
complexity of the construction of large computer software.

Consider the four principles of OOPLs:

• Encapsulation combines data and operations on that data, which provides pro-
grammers with an external interface that contains various services, without
worrying about how those services are implemented.

• Abstraction hides all but the relevant data about an object, which allows pro-
grammers to concentrate on the essential characteristics and ignore what is not
relevant.

• Polymorphism allows operations to behave differently on objects depending on
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Figure 1.2: SOC Consumer Stationary Performance Trends (ITRS, 2007)

the data type or class of the objects, which enables programmers to ask for a
service without worrying about how different objects might provide it.

• Inheritance empowers new objects to obtain the properties of existing objects
which allows programmers to reuse an interface or an implementation, providing
only the pieces that are different from what was provided before.

In addition to the concepts mentioned above, OOPLs allow certain design princi-
ples, the open-closed principle: “[Classes] should be open for extension, but closed for
modification” (Meyer, 1997) and the Liskov substitution principle: “If for each object
o1 of type S there is an object o2 of type T such that for all programs P defined
in terms of T, the behavior of P is unchanged when o1 is substituted for o2, then S
is a subtype of T ” (Liskov, 1988). These principles decrease the complexity in the
development, maintenance, and extension of the computer applications.

1.2.2 Concurrent Programming

The more widespread and demanding uses of multicore processors in various areas
have increased the number of applications involving concurrent programming. The
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concurrent OOP model has become a hot area of research recently (West et al., 2015;
Heußner et al., 2015; Faes and Gross, 2018).

There are two reasons for this. First, the demand for concurrency in OOP models
stems from the real world. In real-world systems, many things are naturally paral-
lel, and hardware is typically parallel. Concurrency in OOP models can help pro-
grammers to partition a complex system into easy-to-understand concurrent software
components. A good concurrent OOP model could provide the programmer with an
efficient, scalable, correct and concurrent solution for the complex system.

Second, with the domination of multicore processors, application developers now
have to explore concurrent programming to take full advantage of multicore tech-
nology. Parallel computing can substantially speed up the computational work if
multicore processors are available. Even within a single processor, multitasking can
significantly make the program run faster by preventing unnecessary blocking; for
example, one task blocks another task while waiting for I/O.

However, when it comes to concurrent programming, OOP remains elusive as
a useful programming tool because OOP handles the objects and the concurrency
separately. Most OOPLs do have some extensions for concurrency, but concurrency is
implemented independently of objects: for example, concurrency in Java is managed
separately with the Thread object. While syntactically threads are objects, they
introduce a new control structure that has to be supported by the underlying runtime
system. The programmers have to handle two different design views for concurrent
object-oriented programs: one is a static view of classes with inheritance, the other
is a dynamic structure of communicating threads.

It has been argued that an object should be regarded as a natural “unit” of concur-
rency (Ishikawa and Tokoro, 1984). A concurrent OOP model should offer program-
mers a unified and straightforward concurrent object-oriented programming model
and make concurrency transparent to the programmer. It permits concurrency to be
considered as an implementation issue in the same way as the choice of an algorithm.
In this case, objects can be used to manage resources, very much like processes can, so
no expressiveness is lost. A programming model called Lime (Sekerinski, 2003) is em-
ployed in this work: it provides the programmers with a unified and straightforward
design view for a concurrent object-oriented program, which decreases the difficulty
of developing, maintaining, and extending the concurrent object-oriented program.

1.3 Problems This Thesis Addresses

In this section, we first discuss the problems this thesis addresses in general, and we
will elaborate their technical aspects in Section 4.2.

Lime, developed by Dr. Emil Sekerinski’s research group, is a object-oriented
action-based programming model. Lime has a notion of correctness of programs that
is based on the weakest precondition calculus and has a notion of program develop-
ment based on the refinement calculus (Sekerinski, 1996; Büchi and Sekerinski, 2000;
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Sekerinski, 2002). The unified and simple design view in Lime stems from the combi-
nation of the OOPL model and action systems. However, this combination requires
a simple and efficient implementation of Lime, which includes the guard implemen-
tation and the Lime runtime system. As a concurrent object-oriented programming
model, three problems need to be addressed: 1) how to reduce the complexity of the
implementation, 2) how to increase the efficiency of the Lime runtime system, and 3)
how to improve the stack mechanism for Lime, which should start with a small size
stack and grow on demand.

1.4 Contributions

This research is based on Lime which will be discussed in Chapter 3. My contributions
to the research are:

1. First efficient implementation of guard-based synchronizations for Lime, which
has a better performance than concurrent programming languages such as Er-
lang and Go, in fine-grained, highly concurrent benchmarks

2. First implementation of a cooperative scheduling for Lime

3. First implementation of user-level coroutines for Lime

4. First implementation of Lime runtime system which maintains a local object
queue for worker thread and a global object queue

5. First lock-free implementation of the local object queue for Lime

6. Evaluation of segmented stack mechanisms for highly concurrent objects

1.5 Structure of the Thesis

The thesis is organized as follows:

• Chapter 2 gives an overview of existing concurrency models and implementa-
tions;

• Chapter 3 discusses in detail the previous work on Lime;

• Chapter 4 lists the main contributions of this thesis;

• Chapter 5 discusses and compares the performance of stack mechanisms;

• Chapter 6 describes the guarded commands implementation;

• Chapter 7 concludes the thesis with a discussion.
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Chapter 2

Concurrency Models

The research of concurrency in computer science begins with the mutual exclusion
problem, introduced by Dijkstra (1986), which is used to prevent a shared resource
from being accessed simultaneously. All kinds of formal models, languages, and al-
gorithms have been proposed over the last four decades. Concurrency has become
essential in the modern programming world. Nevertheless, despite the diversity of
the forms, much of the work on concurrency can be classified into two fundamental
paradigms:

• Shared Variables: Communication via shared memory (e.g., Concurrent Pas-
cal (Brinch Hansen, 1975), UNITY (Chandy, 1989)): concurrent modules inter-
act by reading and writing shared variables in memory.

• Message Passing: Communication via message passing (e.g., CSP (Hoare, 1978)
and Actors (Agha, 1985)): concurrency models based on message passing pro-
vide channels and primitives for communication between processes via sending
and receiving messages. These vary in the way how the message passing is
defined and applied, and how the communication is synchronized.

The thread model we have considered in Chapter 1 is a shared memory model.
The shared memory model comes with the notion of atomicity, which is implemented
by atomic memory access instructions, for example, CompareAndSwap instruction, or
guaranteeing the atomicity of the whole code section, such as the action systems (Back
and Kurki-Suonio, 1989) and transactional memory (Harris and Fraser, 2003). If an
operation on the shared memory cannot be completed atomically, the atomicity of
the whole code section is needed. In the shared memory model, multiple threads can
access a shared resource at the same time. “The output of execution depends on
the order in which the access takes place is called a race condition”(Andrews, 1991).
Thus, to avoid a race condition, mutual exclusion is needed. The shared resource must
be protected either by locks or by synchronization constructs, such as semaphores and
monitors.
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In this chapter, we summarize existing concurrency models and implementations.
First, we examine the synchronization constructs and the inherent concurrency models
which can be combined with object-oriented concepts. Second, we introduce the con-
currency model that supports message passing. Last, we discuss the implementation
of these concurrency models.

2.1 Shared Variables

2.1.1 Synchronization

The processes in a concurrent program have to work together to solve one problem
correctly via communication. To complete the communication, one process should
be capable of exchanging information with another process. That information can
be stored in shared memory or exchanged in a communication channel, which means
communication can be completed by writing and reading shared memory or sending
and receiving messages on the channel.

Communication gives rise to the need for synchronization. In general, concurrent
programs employ two kinds of interactions: mutual exclusion and condition synchro-
nization. Mutual exclusion prevents simultaneous access to a shared resource. Mutual
exclusion is concerned with combining atomic actions that are implemented directly
into sequences of actions called critical sections. Dijkstra first introduced the critical
section problem in 1965. It was the first problem to be studied extensively and re-
mains of interest since most concurrent programs have critical sections of code. There
are n processes in the critical section problem and all of the processes alternatingly
execute a critical section then a noncritical section. Each process must obtain the
permission to enter the critical section based on the entry protocol. An exit protocol
follows the critical section. Thus, the processes have the following form:

Listing 2.1: Critical Section Problem (Andrews, 1991)

process CS [i := 1 to n]
while true do

entry protocol
critical section
exit protocol
noncritical section

We specify atomic actions using angle brackets 〈 and 〉. For example, 〈e〉 indicates
that expression e is to be evaluated atomically. We specify synchronization using
the await statement, which is a useful statement since it can be used to specify arbi-
trary, coarse-grained atomic actions. The await statement can also specify condition
synchronization as follows:

〈await B then S end〉
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This conditional atomic action 〈 await B then S end 〉 delays the executing pro-
cess until the Boolean expression B is true.

For the critical section problem, we can use one Boolean variable lock to indicate
when a process is in a critical section.

Listing 2.2: Critical Section Solution Using Locks (Andrews, 1991)

process CS [i := 1 to n]
while true do
〈await not lock then lock := true〉
critical section
lock := false
noncritical section

For the condition synchronization, the fundamental mechanism is to implement the
await statement. The naive way is to implement await by busy waiting or spinning.
The unconditional atomic section can be implemented by using the critical section
problem’s solution. We use CSenter and CSexit to represent the critical section’s
entry protocol and exit protocol, respectively. Then we can choose a random delay
time within an acceptable range to avoid the collisions, called the binary exponential
back-off protocol, to implement the await statement as follows (Andrews, 1991):

Listing 2.3: An Await Statement Implementation (Andrews, 1991)

CSenter
while not B do

CSexit Delay CSenter
S
CSexit

Implementation

In general, the critical section problem can be solved by using a simple tool — a
lock, which must be acquired before the critical section and be released after the
critical section. Many modern computer systems provide atomic instructions, such
as CompareAndSwap and TestAndSet instructions, to implement synchronization
in a relatively simple manner. These atomic instructions perform one operation on a
memory location and are guaranteed to succeed or fail in their entirety. We illustrate
this solution by using the TestAndSet instruction which can be used to solve the
critical section problem. The TestAndSet instruction works as follows: it reads the
data from the memory location into a register and then writes a non-zero value to
that location. All the operations of this instruction are guaranteed to be invisible —
the other processes cannot access the data until this instruction finishes (Andrews,
1991). If the lock is held by another process, the TestAndSet instruction returns
true. Otherwise, it returns false.
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Listing 2.4: Critical Section Solution Using TestAndSet (Andrews, 1991)

process CS [i := 1 to n]
while true do

while TestAndSet(lock) do skip
critical section
lock := false
noncritical section

2.1.2 Semaphores

The semaphore concept was first invented by Dijkstra (1962) and has been extensively
employed in operating systems. A semaphore is a shared non-negative counter that
is manipulated only by two atomic operations, P and V, and is used to control access
to the shared resources. The V operation is used to signal the occurrence of an event,
so it increments the value of a semaphore by one. The P operation waits until the
value of a semaphore is positive then decrements the value by one. That is, the P
operation can block a process until an event has occurred (which is represented by
the V operation) (Dijkstra, 1967).

Listing 2.5: Semaphore (Andrews, 1991)

var s : sem
P(s) = 〈await s > 0 then s := s− 1〉
V(s) = 〈s := s + 1〉

First, semaphores can be used for access control when the semaphore is set to the
number of resources. Second, semaphores also can be used to solve various synchro-
nization questions when the semaphore is declared as a binary semaphore: the value
can only be zero or one. Compared with locks, semaphores are more natural for the
designers to understand and verify any synchronization problems since the power of
semaphores results from the fact that P operations might have to delay.

Implementation

“Semaphores can be implemented by using busy waiting”; however, there is no rea-
son to waste CPU cycles in the operating system kernel (Andrews, 1991). When
semaphores are added to the kernel, rather than using busy waiting, the P opera-
tion of semaphores can block itself. Therefore, processes have one more state that
needs to be handled: blocked on a semaphore. In particular, a process is blocked
if it is waiting to complete a P operation. To keep track of blocked processes, each
semaphore descriptor contains a linked list of the descriptors of processes blocked on
that semaphore. The implementation of semaphore primitives is in Listing 2.6.

A semaphore descriptor contains the value of one semaphore and two linked lists:
a blocked list and a ready list. The descriptors for ready processes are stored on the
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ready list. To keep track of blocked processes, each semaphore descriptor contains a
linked list of descriptors of processes blocked on that semaphore. It is common for
each linked list to be implemented as a First-In-First-Out (FIFO) queue since this
ensures that the semaphore operations are fair. The executing variable contains the
index of the descriptor of the executing process. When the dispatcher is called at the
end of a primitive, it checks the value of executing. If it is zero, dispatcher removes
the first descriptor from the ready queue and sets executing to point it. If executing
is not zero, the current process continues to execute.

Listing 2.6: Semaphore Primitives for A Single-Processor Kernel

procedure createSem(value: int, name: int*)
get an empty semaphore descriptor
initialize the descriptor
set name to the name(index) of the descriptor
dispatcher()

procedure P(name: int*)
find semaphore descriptor of name
if value > 0 then
value := value - 1

else
insert descriptor of executing at end of blocked list
executing := 0

dispatcher()

procedure V(name: int*)
find semaphore descriptor of name
if blocked list empty then
value := value + 1

else
remove process descriptor from front of blocked list
insert the descriptor at end of ready list

dispatcher()

However, when semaphores are used as synchronization tools to construct a sizable
concurrent program, semaphores become difficult to use and error-prone (Andrews,
1991). First of all, semaphores are a low-level mechanism, which means it is easy to
make errors when using them. For example, a programmer must make sure all P and
V operations correct. One missing P or V operation can crash the whole program.
Second, semaphores are global to all processes. Thus, to see how a semaphore is used,
one must examine the entire program. Third, both mutual exclusion and condition
synchronization use the same pair of primitives: P and V. Without checking all the
related semaphores, it is difficult for the programmers to ascertain the purpose of a
given P and V.
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2.1.3 Conditional Critical Regions

Conditional critical regions (CCRs) are proposed by Hoare (1972) to solve the prob-
lems discussed in the previous section when using semaphores. CCRs provide a struc-
tured way to define synchronization. With CCRs, shared variables that need to be
accessed with mutual exclusion are declared together in resources. Mutual exclusion
guarantees that the execution of the region statement is not interleaved. Boolean
conditions in region statements provide condition exclusion.

Listing 2.7: CCRs (Hoare, 1972)

resource r (variable declarations)
region r when B → S end

The CCRs notation employs two mechanisms: resource declarations and region state-
ments. The CCR resource contains one or more variable declarations. In the region
statement, B is a Boolean guard, and S includes one or more statements. Both local
variables and the variables declared in r can be referenced by B and S.

Implementations

The key to implementing CCRs is to implement region statements. Since region state-
ments are very similar to await statements, they can be implemented in the same way
using busy waiting (Listing 2.3). Harris and Fraser (2003) “map CCRs onto software
transactional memory (STM) which groups together series of memory accesses and
makes them appear atomic. CCRs allow programmers to indicate what groups of
operations should be executed in isolation. The programmer can also guard the re-
gion by an arbitrary Boolean condition.” The CCR conditions are re-evaluated only
when the related variables have been updated. Because a native method may access
arbitrary memory, the system throws a runtime exception when a native method is
called within a CCR.

Listing 2.8: CCRs Implementation Using STM (Harris and Fraser, 2003)

bool done := false;
while ¬done

STMStart()
try

if B then
S
done := STMCommit()

else
STMWait()

catch
done := STMCommit()
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Listing 2.9: Monitor Declaration

monitor mName
declarations of permanent variables
initialization statements
procedures

However, compared with fine-grained lock-based systems, STM suffers a performance
hit on multicore processors. The overhead primarily comes from maintaining the log
and committing transactions.

2.1.4 Monitors

With CCRs, mutual exclusion is implicit, and condition synchronization is programmed
explicitly. Compared with semaphores, it is easier for programmers to understand and
use CCRs. Besides, it leads to a more straightforward proof system. However, region
statements in CCRs are more expensive to implement than semaphore operations
because guards have to be re-evaluated either every time a shared variable is up-
dated. Because CCRs are relatively inefficient, they have not been as widely used as
semaphores.

Monitors (Hoare, 1974) are program modules that provide not only more structure
than CCRs but also the same efficiency as semaphores. Monitors are a data abstrac-
tion mechanism. A monitor contains its state in variables and provides procedures
that modify these variables of the object. All variables of a monitor are private while
all procedures are public:

Mutual exclusion in monitors is provided implicitly by allowing at most one process
to execute. Condition synchronization is provided explicitly by employing condition
variables. A condition variable is used to block a process until some Boolean expres-
sions become true. The declaration of a condition variable has the form:

cond cv

The content of a condition variable cv is a queue of delayed processes (Andrews,
1991). Initially, this queue is empty. The value of cv is not directly visible to the
programmer. Instead, it is accessed indirectly by several special operations:

• wait(cv) blocks the executing process at the tail of cv ’s queue.

• signal(cv) awakens the process at the front of cv ’s queue if this queue is not
empty. Otherwise, it has no effect.
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Implementations

Monitors can also be readily implemented in the operating system kernel (Andrews,
1991). We assume that procedures execute with mutual exclusion and condition
synchronization uses the Signal and Continue discipline. That is, signalling does not
cause the signalling thread to lose occupancy of the monitor. To implement monitors
in the kernel, the following primitives are added: monitor creation, monitor entry,
monitor exit, and the operations, such as signal and wait.

Each monitor contains a lock and three queues: an entry queue, a ready queue and
a condition variable waiting queue. The entry queue is used to maintain processes
waiting to enter the monitor. When the monitor exits, one waiting process of the entry
queue is moved to the ready queue if the ready queue is not empty. The signal all
operation is implemented by moving all the elements of the condition variable waiting
queue to the ready queue. The condition variable contains the pointer of the first
waiting process of the waiting queue. Every process — except an executing process
— is linked to either the ready queue, the monitor entry queue, or the condition
variable queue.

Listing 2.10: Monitor Kernel Primitives (Andrews, 1991)

procedure enter(mName: int)
find decriptor for monitor mName
if mLock = true then
insert descriptor of executing at end of entry queue
executing := 0

else
mLock := 0

dispatcher()
procedure exit(mName: int)
find descriptor for monitor mName
if entry queue not empty then
move process from front of entry queue to rear of ready list

else
mLock := 0

dispatcher()
procedure wait(mName: int, cName: int)
find descriptor for condition variable cName
insert descriptor of executing at end of delay queue of cName
executing := 0
exit(mName)

procedure signal(mName: int, cName: int)
find descriptor for monitor mName
find descriptor of condition variable cName
if delay queue not empty then
move process from front of delay queue to rear of entry

queue
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dispatcher()

When a concurrent program uses a monitor for communication and synchroniza-
tion, this makes the concurrent program more straightforward to design and under-
stand than semaphores, to some extent. There are two critical benefits (Andrews,
1991): first, the programmer who uses a monitor does not need to know how the
procedures of the monitor are implemented; second, the developers of a monitor can
focus on how the monitor is implemented, as long as they keep the public procedures’
interface and functionality the same. That is, there is relative independence between
program and monitors.

Turing Plus is designed (Holt and Cordy, 1985) as a concurrent programming
language. The concurrency is supported by implementing processes and monitors at
the programming language level. As we discussed above, the independence between
processes and monitors simplifies the design of a concurrent program in the single-
core era. The novel feature of faithful execution proposed in Turing (Holt and Cordy,
1988) ensures that the program either executes entirely according to the mathematical
specification or generates system exceptions. The keywords checked and unchecked
are introduced to allow the programmers to verify the correctness of the program
explicitly, for example, array subscripts and initialization of variables. Faithful exe-
cution provides the programmers with a practical approach to check both language
constraints and implementation constraints of a concurrent program.

When a concurrent object-oriented program uses a monitor as a synchronization
tool, the typical structure of the method is like:

Listing 2.11: Monitor Use Case

enter(cv)
while count = 0 do wait(cv)
method body
signal(cv)

exit(cv)

However, this independence introduces one more design view for the programmers
when they develop the concurrent object-oriented program. Programmers have to
handle two different design issues: building the program with objects and handling
concurrency of the program by using condition variables, which increases the difficulty
of developing, maintaining, and extending the concurrent object-oriented program.

2.1.5 Futures

The concept of futures, first introduced by Baker and Hewitt (1977), was used for
synchronizations in concurrent programming languages. A somewhat similar concept,
called promise was proposed by Friedman and Wise (1978). They describe a value
that may not exist now but can be used subsequently because the computation has
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not finished yet.

future e

The expression e is some computation that may take some time to complete. Future
indicates computation e may run concurrently with its parent. The computation e
can be done more flexibly, starting either eagerly when the future is created, or lazily
when its result is first needed.

Compared with the concepts discussed in the previous sections, futures are a
lightweight concept for concurrent programming. That is, futures cannot be used
to implement arbitrary synchronization and communication. The implementation of
futures depends on the runtime system. Futures can be implemented implicitly as a
library or explicitly as part of the programming language.

For example, the following add operator expects two integer arguments, thus needs
to wait until the computation of factorial(100000 ) is finished:

26 + future factorial(100000)

This problem can be solved by using coroutines or generators, to create a new corou-
tine that executes factorial(100000 ). The runtime system decides how to schedule
this coroutine.

Futures can easily be implemented by using the message passing mechanism (will
be discussed in Section 2.2). The problem can be solved by sending a message to
factorial with the argument, and then a message of “+ 26 ” to the receiver. The
receiver adds 26 to the result of factorial(100000 ) and sends the final result back. By
using channels, futures can also easily be implemented by using a buffered channel.
For example, in the Go programming language, factorial can be mapped to a goroutine
which sends the result back via a buffered channel.

2.1.6 Action Systems

Guarded Commands

The Guarded Command Language was defined by Dijkstra (1975) with predicate
transformer semantics. Guarded commands were introduced as a design notation for
writing programs more abstractly. Nondeterminism is introduced when guarded com-
mands combine with alternative or repetitive constructs. Historically, nondeterminism
was first connected to concurrent programs.

The guarded command G→ S consists of a command S, proceeded by a Boolean
expression G, known as a guard.

The execution rules state that a guarded command can only be executed when
the guard is true. When control reaches an alternative or repetitive construct in

21



Ph.D. Thesis — Shucai Yao McMaster — Computing and Software

a language with guarded commands, a nondeterministic choice is made among the
guards that hold, and the command list following the chosen guard is executed.

It is illuminating to compare guarded commands with traditional clauses. Take
Euclid’s GCD algorithm as an example: the implementation of the guarded com-
mands in Listing 2.13 “has been reduced to its bare essentials” (Dijkstra, 1975). The
repetitive constructs of do ... od executes repeatedly until none of the guards are
true. For the traditional clauses, programmers need to decide which construct to
be used, if statement or while statement in Listing 2.12. The structure [] denotes
nondeterministic choices.

Listing 2.12: Euclid’s GCD Algorithm Using Traditional Clauses

while x 6= y do
if x > y then x := x - y
else x := y - x

while x 6= y do
while x > y then x := x - y
while y > x then x := y - x

Listing 2.13: Euclid’s GCD Algorithm with Guarded Commands

do
x > y → x := x - y

[]
y > x → y := y - x

od

In addition to an expressive programming notation, guarded commands also pro-
vide programmers with a more natural way to prove the correctness of the programs.
Combined with Hoare logic, guarded commands have evolved from a programming
element into a formal language for modelling concurrent systems. Further, guarded
commands become a calculus for studying systems of communicating processes rather
than a language for writing application programs.

The weakest precondition of statement list S and predicate Q, denoted
wp(S,Q), is a predicate characterizing the largest set of states such that,
if the execution of S is begun in any state satisfying wp(S,Q), then the
execution is guaranteed to terminate in a state satisfying Q (Dijkstra,
1975).

Weakest preconditions are closely related to correctness assertions {P} S {Q} in
Hoare logic, which express that under precondition P statement S terminates in
postcondition Q :

{P} S {Q} = (P =⇒ wp(S,Q))
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The wp function is defined over the structure of statements:

wp(skip, R) = R

wp(abort, R) = false

wp(S, false) = false

wp(x := E,R) = R[x\E]

wp(S1;S2, R) = wp(S1,wp(S2, R))

Weakest preconditions emphasize the calculation aspect as a precondition can be
systematically derived for a given postcondition. Following properties follow from the
definition:

wp(S, P ) ∧ wp(S,Q) = wp(S, P ∧Q)

wp(S, P ) ∨ wp(S,Q) =⇒ wp(S, P ∨Q)

The last implication can be strengthened to an equivalence if S is deterministic.
For the alternative construct, let IF denote the following:

if B1 → SL1 [] . . . [] Bn → SLn fi

If BB denotes:

∃i : 1 ≤ i ≤ n : Bi

then, by definition:

wp(IF,R) = (BB ∧ (∀i : 1 ≤ i ≤ n : Bi =⇒ wp(SLi, R)))

“The first term BB requires that the alternative construct will not lead to abortion on
account of all guards being false; the second term requires that each guarded expres-
sion in the list eligible for execution will lead to an acceptable final state” (Andrews,
1991).

For the repetitive construct: let DO denote the following:

do B1 → SL1 [] . . . [] Bn → SLn od

Let

H0(R) = (R ∧ ¬BB)

and for k > 0

Hk(R) = (wp(IF,Hk−1(R)) ∨H0(R))

Then, by definition:

wp(DO,R) = ∃k : k ≥ 0 : Hk(R)
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“Intuitively, Hk(R) can be interpreted as the weakest pre-condition guaranteeing
proper termination after at most k selections of a guarded list, leaving the system
in a final state satisfying R” (Dijkstra, 1975).

Implementations of Guarded Commands

OPS5: OPS5, developed by Forgy (2018), is a rule-based computer language. In
OPS5, guarded commands are mapped to production rules. Each production rule
contains a LHS and an RHS. The LHS includes one or more condition elements, and
the RHS includes one or more actions. Taking the Euclid’s GCD algorithm as an
example, compared with guarded commands, OPS5’s implementation is inefficient.
Koa and Hwang (1987) criticize OPS5 because “in some tasks that using OPS5 only
results in a mass of inefficient, awkward, and tedious rules”.

Listing 2.14: OPS5 Guarded Commands (OPS5, 2013)

(literalize number value id)
...
(p gcd-step
(number ˆid <id-1> ˆvalue <larger-value>)
(number ˆid <> <id-1> ˆvalue { <smaller-value> > 0 <= <larger-

value>} )
-->
(modify 1 ˆvalue (compute <larger-value> % <smaller-value>)))

...

Occam: ALT is introduced in Occam to specify a list of guarded commands. The
guards are a combination of Boolean conditions and an input expression. One of the
successful commands is selected to execute when the relevant guards hold. That is,
the Boolean expression is true, and the input channel is ready.

The program in Listing 2.15 (Talla, 1990) implements an semaphore which is
shared among N processes. The P operation is completed by executing P ! any while
the V operation is achieved by executing V ! any. The P operation must be blocked
until the value of the semaphore (val) is positive.

Listing 2.15: Occam Guarded Commands (Talla, 1990)

PROC semaphore ([N]CHAN OF BYTE P, V, end, VAL INT N)
BYTE any:
INT i, val, tot.users.term:
SEQ

val := 0
tot.users.term := 0
WHILE ( tot.users.term < N )

SEQ
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ALT i = 0 FOR N
V[i] ? any

val := val + 1
ALT i = 0 FOR N

(val > 0) & P[i] ? any
val := val - 1

ALT i = 0 FOR N
end[i] ? any

tot.users.term := tot.users.term + 1

In Occam, output processes are not allowed in guards in an ALT constructor. This
makes some algorithms harder to program but dramatically simplifies the implemen-
tation of the transputer (Whitby-Strevens, 1985), which used an unusual hardware
architecture to achieve higher performance. Occam is based on the Communicating
Sequential Processes model which will be discussed in the Section 2.2.2.

Ada: Communication in Ada is defined by declaring “entries” in the task declara-
tion. Tasks have accept alternatives in a selective wait statement. The execution of
any alternatives can be controlled by using a guard. In Ada, an alternative with a
true guard is called open. If at least two alternatives are open, one of them would
be chosen to execute by arbitrary decision of the implementation, which introduces
nondeterminism in the program.

Listing 2.16: Ada Guarded Commands (Andrews, 1991)

protected type Semaphore is
entry P;
procedure V;
private Value : Integer := 0;

end Semaphore;
protected body Semaphore is

entry P when Value > 0 is
begin

Value := Value - 1;
end P;
procedure V is
begin

Value := Value + 1;
end V;

end Semaphore;
task body Semaphore is
begin

loop
accept P;
accept V;

end loop;
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end Semaphore;

Performance is also the bottleneck of Ada’s guarded commands implementation.
Besides, the combination of concurrency and object-oriented programming in Ada
needs much work (Moore, 2010).

CIVL: CIVL, developed by Siegel et al. (2015), stands for Concurrency Intermediate
Verification Language and encompass a C-based programming language, called CIVL-
C, verification and analysis tools and the translators which translate commonly used
languages and APIs to CIVL-C. A guarded commands is defined by using a $when
statement:

Listing 2.17: CIVL-C Guarded Commands

$when (expr) stmt;

Stmt is enabled when expr is true and stmt is disable when expr is false. A
enabled stmt will be scheduled for execution. The evaluation of expr and the first
atomic action of stmt are executed atomically. However, there is no guarantee that
the execution of stmt is atomic if stmt contains more than one action.

Action Systems

Action systems were first introduced by Back and Kurki-Suonio (1989), where it
was applied to the step-wise refinement of distributed algorithms. This formalism
stems from an extended version of guarded commands language, which introduced
the concept of guards and non-determinism.

System behaviours in action systems focus on coordinating the actions, rather than
executing the sequential code of the action. There are two different execution models
for action systems: a sequential execution model and a concurrent execution model.
The sequential execution model provides programmers with a more straightforward
approach to design, understand, and reason about large concurrent programs, whereas
the concurrent execution model may exploit the inherent concurrency of the programs.

In general, actions are guarded commands of the form G→ S where G is a Boolean
expression and S is a statement. An action is enabled if the guard is true; otherwise,
the action is disabled.

Listing 2.18: Action System

A = |[ var l := l0; g := g0
do Ai[] ... [] Am od

]|

An action system A is a set of actions which operates on local and global variables.
Action system A first creates and initializes the local variables to l0 and global variables
to g0, respectively. Then, A describes computations on these variables.
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The behaviour of an action system is the same as a single repetitive construct in
a guarded command language or a production system, for example, an OPS5 pro-
gram (Kurki-Suonio and Järvinen, 1989). Compared with the other language mecha-
nisms, actions systems are designed for concurrent execution, rather than sequential
execution. Additionally, action systems allow infinite computation.

The local and global variables in action systems are distinct. An enabled action Ai

is chosen for execution nondeterministically after the initialization. Actions are ex-
ecuted atomically without any interference. In this case, actions which operate on
disjoint sets of variables can be executed concurrently. So if two actions are enabled
and do not have any read-write conflicts, they can be executed in any order. The
execution terminates if there is no enabled action; otherwise, it continues infinitely.

Action systems that model concurrency by combining actions with objects can help
programmers to simplify both the specification and design of concurrent programs.
However, this is still theoretical. There are two programming models which combine
the object-oriented concepts with action systems: Seuss and OO-action.

As a programming notation, an action system can be extended from the origi-
nal form to object orientation. Over the last couple of decades, many action-based
object-oriented concurrent models have been proposed and described in the litera-
ture (Lamport, 1994; Chandy and Misra, 1988; Back et al., 1997).

Seuss: Seuss, developed by Misra (2001), is a programming model that integrates
action systems with object-based programming. It supports features for object def-
inition and instantiation and allows designated methods of the object instances to
be executed concurrently. Seuss does not provide any particular communication or
synchronization mechanism, except procedure call. Objects in Seuss can encode the
traditional schemes for communication, synchronization, interfaces among processes,
and accesses to shared memory. Since dynamic creations of objects can lead to an
inefficient implementation, one can only declare a fixed number of objects in Seuss.
Seuss requires the execution of an action, when started in a state where its guards
hold, to terminate. An action in Seuss is viewed as an atomic “unit that is either
executed to completion or not executed at all” (Misra, 2001).

At runtime, a program in Seuss contains a set of objects and their states are
initialized before execution. Seuss has two different execution modes: a tight mode
(sequential) and a loose mode (concurrent). In the tight execution mode, “one action
is executed at a time”, while in the loose execution mode, “actions may be executed
concurrently” (Misra, 2001). The tight execution provides programmers with an easy
approach to reason about a program. The loose execution may improve the perfor-
mance of the program in Seuss.

OO-action: Bonsangue et al. (1998) proposed an approach to integrate object-
orientation concepts with action systems, so-called the OO-action system. The ex-
tended action system formalism provides the objects with the support of dynamical
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creation. “Communication between objects takes place via remote procedure calls
and shared variables” (Bonsangue et al., 1998).

Discussion of Action Systems

The enabled actions in the OO-action system can be selected and executed concur-
rently. For the actions of the same active object, they can be executed simultaneously
if they work on the disjoint sets of local and shared attributes and object fields. For
the actions from different active objects, they can be executed concurrently as long
as they operate on disjoint sets of shared attributes. The communication in the OO-
action system is achieved by using shared attributes and method calls.

In Seuss and the OO-action system, the concurrency of objects can be defined
as autonomous because the objects could be active even if there is no method call.
The communication between objects is through synchronous method calls. Condition
synchronization is achieved by using guards. Seuss can only declare a fixed number
of objects while the OO-action system allows dynamic object creation.

The OO-action system only provides a theoretical model that combines the action
concepts and object-oriented concepts. The developers follow the theory of action
systems in their implementation of the OO-action system. An action in the OO-
action system should be viewed as “a unit that is either executed to completion or
not executed at all” (Misra, 2001). In this case, if there are multiple method calls in
one action and one of the method calls is disabled, the action is therefore not enabled.
A rollback mechanism, which requires an elaborate implementation, has to be added
to the OO-action system.

Seuss not only provides a theoretical model but also discusses the outline of the
implementation strategy. To avoid the rollback in the OO-action system, Seuss decides
to allow a call to a guarded method to be only the first statement in an action or
a method. Besides being inconvenient, this forbids that an unguarded method is
refined by a guarded one because a guarded method in Seuss cannot be called by an
unguarded method body.

The models, such as Seuss and the OO-action system, aim to combine concurrent
concepts with object-oriented ones. The notion of a guard provides the programmers
with a unified and straightforward design view for the large concurrent program:
they do not need any synchronization constructs, such as P and V operations of
semaphores, or wait and signal operations of monitors. The actions are suspended or
resumed implicitly based on the value of the guards. However, “the price that must
be paid for this automatic scheme is performance” (Briot et al., 1998).

When there are multiple method calls in the actions and methods, the rule of the
atomicity of the actions and methods varies. Suppose an unguarded action contains
two method calls: the first one is calling method m of object x and the second one is
calling method n of object y. The method n of object y is not enabled. In the OO-
action systems, following the theory of action systems, the whole action is therefore
not enabled; thus, the whole action has to roll back when the second method call is
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disabled. These restrictions of the execution model make it awkward for programmers
to construct concurrent programs. Therefore, a new atomicity rule of the actions and
methods is preferred.

Implementation of Seuss

Krüger (1996) designs and implements a compiler and a runtime system for Seuss.
The compiler translates the Seuss programs into C++ code, which may be distributed
over computer networks using Parallel Virtual Machine (Geist et al., 1994). Based on
Krüger’s work, Joshi (1998) designs a language Seuss for Java, which is an adaptation
of the Seuss notation for use with Java. For both Java and C++, the overhead of
context switch becomes significant when the number of objects exceeds the available
number of cores.

2.2 Message Passing

The synchronization constructs we have discussed so far are based on shared vari-
ables. In this section, we have a look at another mechanism: message passing. With
message passing, processes share channels which provide communication paths be-
tween processes and two primitives on the channel: send and receive. Compared with
semaphores, message passing not only provides synchronization but also conveys data.

The sender process releases a message to a channel, and the receiver process ac-
quires the message from the channel. Communication is accomplished since data flows
from the sender to the receiver. Communication can be asynchronous or synchronous.

2.2.1 Asynchronous Message Passing

With asynchronous message passing, communication channels are unbounded message
queues. The send statement appends the message to the tail of the queue while the
receive statement acquires a message from the head of the queue. In this case, the
send statement does not get blocked because the queue is unbounded. The receive
statement may get blocked when the channel is empty.

Asynchronous message-passing primitives have been included in several program-
ming languages and operating systems. We illustrate the asynchronous message pass-
ing by using the actor model.

The actor model (Agha, 1985) stems from Hewitt (1971)’s work on the AI system
Planner in the early 1970’s. The actor model uses an explicitly concurrent notion,
and actors are used as concurrent primitives that can have different behaviours based
on receiving messages:

• Send messages to itself or other actors;

• Create new actors;
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• Specify a replacement behaviour which takes effect when the next message
comes.

In the actor model, a communication event is called a task, which has three parts:

• A unique tag of this task in the system;

• A target, the mail address of the receiver;

• The data conveyed by this communication event.

Actors send messages asynchronously, which means that messages will arrive in
the receiver’s mailbox eventually but may take an uncertain length of time. Also,
messages in the actor model are not guaranteed to arrive in the same order in which
they are sent. The operations of dequeue and enqueue of the messages are atomic, so
the race condition in the actor model can be avoided. An actor processes messages
from its mailbox sequentially. With actors, computation is passive and is performed as
a “response” to communication. The replacement behaviour determines the response
to the subsequent communication and takes effort for the next message.

In the actor model, because “everything is an actor” and each actor is a completely
independent instance, it is straightforward for the programmers to model inherently
concurrent systems. The communication in the actor model relies on the asynchronous
message passing. An actor can handle several requests simultaneously. Based on the
classification provided by Briot et al. (1998), the concurrency level of the actor model
can be characterized as intra-object.

For asynchronous message passing, three consequences result from the unbounded
channels. First, messages have to be buffered, yet space is finite in practice. The
program may crash if the message queue overflows. Second, message delivery is not
guaranteed if a failure occurs. If process A sends a message to process B and does not
get a reply, then process A does not know whether the message was sent, process B
crashed while acting on it, or the response could not be delivered. Third, process A
can get arbitrarily far ahead of process B.

2.2.2 Synchronous Message Passing

Synchronous message passing avoids these three consequences. With synchronous
message passing, both send and receive are blocking primitives. The sender process
delays until the receiver process receives messages from the channel. Thus, sender and
receiver synchronize at every communication point. The sender process can proceeds
only when the message was indeed delivered. Compared with asynchronous message
passing, synchronous message passing does not require dynamic buffer allocation.

The programming notation of synchronous message passing is similar to Commu-
nicating Sequential Processes (CSP), and Hoare extended the guarded command idea
in CSP (Hoare, 1978) by allowing the guards to become dependent upon the behaviour
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of another component of the program. It was first presented as a theoretical approach
to the problem of communication between concurrent processes.

In this section, we illustrate synchronous message passing by using CSP program-
ming notation.

In CSP, the notion of a guard and a guarded command are extended to include
input and output guards. Dijkstra’s guards are simple Boolean expressions and can
have two statuses: true or false. CSP introduces a third status for the guards, called
pending. In this case, the general form of the CSP guard is either a Boolean expression
or an I/O guard of the following two forms:

1. c ? v : describes the operation of accepting a value on channel c, and assigning
that value to the variable v.

2. c ! e : describes the operation of evaluating the expression e, the result of which
is delivered on the channel c.

In CSP, the fundamental operators are prefixing, recursion, and guarded alterna-
tives. The prefixing operator → takes a single event on the left and a process, which
engages in events (maybe many or even none events) on the right. Recursion can be
used to implement repetition. Guarded alternatives provide nondeterministic choices
if the guards in alternatives hold simultaneously.

Listing 2.19: Euclid’s GCD Algorithm Implemented in CSP

method GCD()
var x, y: int
Output ? args(x, y)
do

x > y → x := x - y
[]

x < y → y := y - x
od
Output ! result(x)

Method GCD waits to receive input on its args port from a single client process.
GCD then computes the answer using Euclid’s algorithm and sends the answer back to
the client’s result port. The operator→ used in Listing 2.19 is a guard, not involving
communication.

2.2.3 Implementations

The Actor Model: Erlang (Armstrong et al., 1996) is the first inherently con-
current programming language which implements the actor model. The actor model
has been applied by more and more programming languages, such as Scala, which
provides standard support for the actor model.
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The philosophy of the actor model is that “everything is an actor”. There is no
shared resource in the system. Only immutable data and addresses of actors can be
sent through massages. Because the message is asynchronous in the actor model,
the messages may not arrive in the same order in which they are sent. However, it is
possible for the sender to tag each message with a unique, increment sequence number
so that the receiver may rearrange messages into the correct order.

For message handling, Erlang provides both pattern matching and selective receive
semantics. For message passing in the actor model, the receiving operation is a
blocking operation while the sending operation is always non-blocking.

However, there are several limitations of the actor model. First, asynchronous
buffered communication is useful in many cases, but the uncertain order of message
arrival might be inconvenient in some programs. Second, objects in the actor model
can dynamically change their interfaces (behaviour) by receiving messages, which
means the class notion is fragile. This makes static analysis and optimization of the
actor’s mail system difficult. Third, there is no inheritance and other object-oriented
features in the actor model.

CSP: CSP influences the designs of Occam (INMOS Limited, 1984) and Go (Google,
2009). Occam was developed at first for a specific device, known as the transputer.
Unlike Occam, Go is a general-purpose concurrent programming language that sup-
ports a kind of coroutines and synchronous channels.

The concurrency model in Go is based on two fundamental elements: goroutines
and channels. Go supplies lightweight threads, called goroutines. The runtime sys-
tem distributes goroutines into a fixed number of underlying worker threads. The
internal scheduler organizes goroutines in a pool and works cooperatively. Channels
are implemented as the first-level language’s primitives. Go has rich support for mes-
sage passing, including both synchronous and asynchronous. Besides channels, Go
also allows shared variables and implements other synchronization constructs such as
semaphores and mutexes.
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Chapter 3

Lime

In this chapter, we first discuss why we propose Lime and then introduce Lime by
giving its syntax and several sample programs written in it.

3.1 What is Lime

Lime1 is an action-based object-oriented concurrent programming language, which
was developed by the research group of Dr. Emil Sekerinski at McMaster Univer-
sity. The most significant difference between Lime and the traditional OOPLs is
that actions and guarded methods are added to implement action systems. In Lime,
concurrency is expressed by extending classes with actions and guarded methods.
Guarded methods can be suspended when the guard does not hold. Unlike methods,
actions in Lime can only be “called” by the scheduler and are executed concurrently
in the background. Therefore, each object in Lime has a private lock at its creation.
We add the when keyword to allow a method call in Lime to be suspended when the
guard fails to hold, which means Lime allows guarded methods and actions to “get
stuck” at the method calls.

3.2 Why Lime

Action-based object-oriented programming languages simplify both the specification
and design of concurrent objected-oriented applications. Following the theory of ac-
tion systems, if there are multiple method calls in an action, either some restrictions
or roll back mechanisms have to be added. We note that for verification (proving the
implementation correct) and refinement (transformation from a specification to an
implementation) programs have to be translated such that “method calls appear only
as the first statement in methods and actions” (Sekerinski, 2002; Back et al., 1997).

1The Lime discussed in this thesis is unrelated to the IBM Lime Language.
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The underlying refinement theory (Büchi and Sekerinski, 2000) assumes this form of
program.

The OO-action system provides a rollback mechanism to recovery when not all
the methods calls are enabled in a method or an action. In Seuss, this is solved by
allowing a call to a guarded method to be only the first statement in an action or a
method.

Unlike Seuss, Lime does not have the restriction which is used to avoid rollback
but allows an action or method to get stuck at the point where a method is called.
That is, “actions and methods are atomic only up to method calls”. This atomic
rule provides programmers with a more flexible and convenient design view. Lime
compiler accepts programs which contain multiple method calls in a method or an
action.

Lime was invented as an inherently concurrent object-oriented programming lan-
guage, and concurrency is one of the essential features of Lime. The purpose of this
work is to increase the efficiency of Lime by improving the implementation.

3.2.1 Actions

Lime’s class system is similar to Java. Actions in Lime are declared inside classes and
executed automatically. Each object has a copy of the actions of the class. “They
are not referenced within the program but are invoked by the scheduler” (Lou, 2004).
Lime starts with a single instance, similar to the “main” function in C, which creates
N (usually equals to the number of cores) worker threads. Each worker thread is an
instance of the scheduler. Each worker thread has a local object queue. The worker
thread adds new objects to its local object queue and moves half of the objects to the
global queue when its local queue is full. To improve the performance, there is a lock-
free local queue implementation of Lime, discussed in Section 6.3.3, the worker thread
could steal objects from other threads. The worker thread selects one object from its
queue and then evaluates the guard. The worker thread executes the action when the
guard is evaluated to true. Otherwise, the worker thread goes to the next object. In
this case, Lime can support at most N actions to execute in parallel. Actions have no
arguments or return values. There are two kinds of actions in Lime, guarded actions
and unguarded actions.

action A
when b do

S

A is the name of the action, b is a Boolean expression and S is the body of the action.
This action is enabled if b holds, otherwise it is disabled. The action is executed when
the guard is evaluated to true. In theory, the scheduler re-evaluates the guard after
the action is executed. That is, the action should be executed forever if the guard is
always true.
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action A
S

An unguarded action means that the condition to execute this action is always true.
In other words, action A is always enabled. The worker thread maintains a first-in-
first-out local object queue. The worker thread first executes all the actions of the
object, and then adds the object to the tail of the local queue if there are enabled
actions.

3.2.2 Methods

Unlike actions, methods in Lime may have arguments and return values. There are
two types of methods in Lime, guarded methods and unguarded methods. Guarded
methods may accept or suspend the call:

method M(Arg1, ..., Argn)
when b do

S

M is the name of the guarded method, b is a Boolean expression and S is the body
of the method. The guarded method is enabled if b holds, otherwise it is disabled.

An unguarded method is the same as a method in other class-oriented program-
ming languages, such as in Java:

method M(Arg1, ..., Argn)
S

For the ease of discussion, the following terminology is defined to distinguish ob-
jects in Lime:

• Guarded Object: An object that has either at least one guarded method or at
least one action, or has both guarded methods and actions.

• Unguarded Object: An object that has neither guarded methods nor actions.

• Active Object: An object that has at least one action.

• Passive Object: An object that does not have any actions.

• Enabled Object: An active object that has at least one enabled action.

• Disabled Object: An active object that has no enabled actions.
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3.2.3 Method Calls

Each object in Lime has a private lock. The atomicity policy is that “all methods and
actions are atomic up to method calls.” That is, this lock should be released when
entering the method call while this lock should be acquired when returning from the
method call. The method call translation is described in Listing 6.15.

3.3 Lime Syntax

The current Lime syntax is based on the previous Lime syntax as presented by Lou
(2004) using indentation rather than the begin-end structure to construct a code
block. Compared with the begin-end structure, indentation takes fewer lines of code,
which is helpful for conveying the structure of a large program to the readers as well
as for publishing programs. In this section, we introduce the new concrete syntax
of Lime by giving a context-free grammar (grammar for short) for this language,
described in EBNF (Wirth, 1977). The abstract syntax of Lime is unchanged. Here,
INDENT stands for having more spaces then the previous line. This sets a new level
of indentation. NL stands for a new line and retaining the level of indentation as the
previous line. DEDENT stands for setting the level of indentation to the previous
level (Van Rossum and Drake, 2011). The construct (a | b) stands for either a or
b, [a] means that a is optional, and {a} means that a can be repeated zero or more
times.

〈compilation unit〉 ::= {〈import stmt〉} {〈const decl〉} 〈class decl〉 {〈class decl〉}
〈EOF 〉;

〈import stmt〉 ::= import 〈ID〉 ’(’ 〈type list〉 ’)’ [’:’ 〈type〉] NL;

〈const decl〉 ::= const 〈ID〉 ’=’ 〈INTEGER〉 NL;

〈class decl〉 ::= class 〈ID〉 NL INDENT {〈class member〉} DEDENT;

〈class member〉 ::= 〈field decl〉 | 〈init decl〉 | 〈method decl〉 | 〈action decl〉;

〈field decl〉 ::= var 〈id list〉 ’:’ 〈type〉 NL;

〈init decl〉 ::= init 〈parameters〉 〈block〉;

〈method decl〉 ::= method 〈ID〉 〈parameters〉 [’:’ 〈type〉]
[NL INDENT when 〈guard〉 do] 〈block〉 [DEDENT];

〈action decl〉 ::= action 〈ID〉
[NL INDENT when 〈guard〉 do] 〈block〉 [DEDENT];
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〈parameters〉 ::= ’(’ [〈type pars list〉] ’)’;

〈type pars list〉 ::= 〈pars def 〉 {’,’ 〈pars def 〉};

〈pars def 〉 ::= 〈ID〉 ’:’ 〈type〉;

〈type〉 ::= int | bool | void | 〈ID〉 | 〈array decl〉;

〈array decl〉 ::= array of (int | bool | 〈ID〉);

〈type list〉 ::= 〈type〉 {’,’ 〈type〉};

〈stmt〉 ::= 〈simple stmt〉 | 〈compound stmt〉;

〈simple stmt〉 ::= 〈small stmt〉 {’;’ 〈small stmt〉} [’;’] NL;

〈small stmt〉 ::= 〈multi assign〉 | 〈expr stmt〉 | 〈local decl〉
| 〈return stmt〉 | 〈method call〉;

〈multi assign〉 ::= 〈id list〉 ’:=’ 〈expr list〉;

〈single assign〉 ::= 〈id ele〉 ’:=’ 〈expr〉;

〈compound stmt〉 ::= 〈if stmt〉 | 〈while stmt〉 | 〈for stmt〉;

〈local decl〉 ::= var 〈id list〉 ’:’ 〈type〉;

〈expr stmt〉 ::= 〈expr list〉;

〈if stmt〉 ::= 〈if stat〉 {〈elif stat〉} [〈else stat〉];

〈if stat〉 ::= if 〈expr〉 then 〈block〉;

〈elif stat〉 ::= elif 〈expr〉 then 〈block〉;

〈else stat〉 ::= else 〈block〉;

〈while stmt〉 ::= while 〈expr〉 do 〈block〉;

〈for stmt〉 ::= for 〈single assign〉 to 〈expr〉 do 〈block〉;

〈return stmt〉 ::= return [〈expr〉];

〈block〉 ::= 〈simple stmt〉 | NL INDENT 〈stmt〉 {〈stmt〉} DEDENT;
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〈guard〉 ::= 〈guard atom〉 (’<=’ | ’>=’|’<’|’>’) 〈guard atom〉
| 〈guard atom〉 (’=’ | ’ !=’) 〈guard atom〉
| 〈guard atom〉 and 〈guard atom〉
| 〈guard atom〉 or 〈guard atom〉
| 〈guard atom〉;

〈guard atom〉 ::= 〈ID〉 | 〈INTEGER〉 | not 〈ID〉;

〈id list〉 ::= 〈id ele〉 {’,’ 〈id ele〉};

〈id ele〉 ::= 〈ID〉 [〈selector〉];

〈expr list〉 ::= 〈expr〉 {’,’ 〈expr〉};

〈expr〉 ::= ’-’ 〈expr〉
| not 〈expr〉
| 〈expr〉 (’*’ | ’/’ | ’%’) 〈expr〉
| 〈expr〉 (’+’ | ’-’) 〈expr〉
| 〈expr〉 ( ’<=’ | ’>=’ | ’<’ | ’>’) 〈expr〉
| 〈expr〉 (’=’ | ’ !=’) 〈expr〉
| 〈expr〉 and 〈expr〉
| 〈expr〉 or 〈expr〉
| 〈atom〉;

〈atom〉 ::= 〈INTEGER〉
| true
| false
| nil
| 〈ID〉
| 〈method call〉
| 〈array decl〉
| 〈array ele〉;

〈method call〉 ::= new 〈ID〉 〈args〉 | 〈ID〉 ’.’ 〈ID〉 〈args〉 | 〈ID〉 〈args〉;

〈array decl〉 ::= new (int | bool | 〈ID〉) 〈selector〉;

〈array ele〉 ::= 〈ID〉 〈selector〉;

〈selector〉 ::= ’[’ 〈expr〉 ’]’;

〈args〉 ::= ’(’ [〈expr list〉] ’)’;

A field in Lime is a local variable defined in a class. Fields can only be accessed by
the methods and actions of the same object. Local variables defined in the methods
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or actions can only be accessed inside of the methods or actions. There are no global
variables in Lime. For the guards, only the basic logic and comparison operations are
allowed. Method calls are not allowed in the guards. The current implementation
of Lime only supports static array. That is, the size of the array should be known
during the compile time. The init() is executed once when an object is created. By
default, all the fields are set to 0.

3.4 Lime Semantics

In this section, the axiomatic semantics of Lime is defined in two steps. First, a
minimal core language with verification rules is introduced. Then, the elements of
Lime are defined in terms of the core language and the verification rules of Lime
are derived. The core language is the standard guarded command language with
atomic statements, parallel composition, and recursive procedures with verification
rules based on Owicki and Gries (1976). The definition of Lime in terms of the core
language is novel in the way how each object is defined as one process and how methods
are defined to be atomic up to method calls. The definition allows the verification rules
of Lime to be easily derived from those of Owicki and Gries. The formal definition
serves as the reference of the implementation and provides a correctness theory for
Lime programs.

3.4.1 Core Language

The formalization builds on a typed, higher-order logic. Guards are Boolean expres-
sions. For the purpose of defining the core language, the exact syntax of expressions
does not need to be specified. In this section, we follow a standard exposition of verifi-
cation rules (Apt and Olderog, 2019; Apt et al., 2010; Andrews, 2000) without making
any significant changes of our own. Statements of the core language are inductively
defined as consisting of:

• skip, the empty statement ;

• x := e, the multiple assignment, for list x of variables and list e of expressions;

• x :∈ e, the nondeterministic assignment, which assigns any value of set expres-
sion e to variable x or blocks if e is empty;

• S0;S1, the sequential composition, for statements S0 and S1;

• if b0 → S0 [] b1 → S1, the conditional statement, which executes statement Si if
guard bi is true, choosing arbitrarily if both b0 and b1 are true and blocking if
neither is true;
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• do b0 → S0 [] b1 → S1, the repetitive statement, which executes statement Si if
guard bi is true and starts over again, choosing arbitrarily if both b0 and b1 are
true and terminating if neither is true;

• varx : X;S, the local variable declaration of a list x of variables of type X with
statement S as scope;

• x := m(e), the procedure call of procedure m with actual value parameters e
and actual result parameters x;

• 〈b→ S〉, the await statement with guard b and statement S;

• ‖ i ∈ I · Si, the parallel composition of statements Si, called processes.

The conditional and repetitive statements generalize to more than two alternatives
and specialize to one alternative. In the await statement, the body does not contain
repetitions, procedure calls, await statements, or parallel compositions. Thus, await
statements cannot be nested. The parallel composition specializes to a finite number
or processes, written S0 ‖ · · · ‖ Sn. When writing statements, sequential composition
binds tighter than other constructs, e.g. if b → S [] c → T0;T1 is understood as
if b→ S [] c→ (T0;T1). Indentation is used instead of explicit parenthesis and ; is left
out at the end of a line.

A concurrent program consists of a set of declarations of global variable declara-
tions, which can be uninitialized, varx : X, or initialized, varx : X := x0; a set of
(global) procedure declarations of the form procedurem(v : V )→ (w : W ) S where
v is a list of formal value parameters, w is a list of formal result parameters, state-
ment S is the body; and the main program itself, a statement. The main program
is a potentially nested parallel composition; parallel composition is only considered
on the outer levels, not inside any of the other constructs. A program is executed by
first initializing the global variables and then executing all processes in parallel such
that on termination the final state can be observed.

Statements x := e, x :∈ e, 〈b → S〉 are atomic: they are assumed to be executed
without interference by other processes. The correctness assertion

{
p
}
S
{
q
}

states
that if statement S is started in a state satisfying predicate p, the state upon termi-
nation will satisfy q. A predicate is a Boolean expression that is used in an assertion;
it does not need to be executable, unlike a Boolean expression in a program. In an
annotated statement assertions are interspersed before and after statements; these are
used to establish the correctness of statements, for which we employ their axiomatic
definition. The left side of the following definitions is a Hoare triple, whose meaning
is given on the right side.
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Definition (Statement Correctness). Let p, pi, q, qi, r be predicates.{
p
}

skip
{
q
}

if p⇒ q{
p
}
x := e

{
q
}

if p⇒ q[x\e]{
p
}
x :∈ e

{
q
}

if p⇒ (∀x ∈ e · q){
p
}
S0;S1

{
q
}

if
{
p
}
S0

{
r
}{

r
}
S1

{
q
}{

p
}

if b0 → S0 [] b1 → S1

{
q
}

if
{
p ∧ b0

}
S0

{
q
}{

p ∧ b1
}
S1

{
q
}{

p
}

do b0 → S0 [] b1 → S1

{
q
}

if
{
p ∧ b0

}
S0

{
p
}{

p ∧ b1
}
S1

{
p
}

p ∧ ¬b0 ∧ ¬b1 ⇒ q{
p
}

varx : X;S
{
q
}

if
{
p
}
S
{
q
}

x not in p, q{
p
}
x := m(e)

{
q
}

if procedurem(v : V )→ (w : W ) S{
p′
}
S
{
q′
}

w not in p′, v not in q′

p⇒ p′[v\e]
q′[w\e]⇒ q{

p
}
〈b→ S〉

{
q
}

if
{
p ∧ b

}
S
{
q
}{

p
}
‖ i ∈ I · Si

{
q
}

if (∀i ∈ I ·
{
pi
}
Si

{
qi
}

)

p⇒ (∀i ∈ I · pi)
(∀i ∈ I · qi)⇒ q

Si do not interfere with Sj for i 6= j

The notation f [x\e] stands for substituting all free occurrences of variables x in ex-
pression f with expressions e. An atomic statement S that starts in p does not
interfere with q if

{
p ∧ q

}
S

{
q
}

. Suppose (composed) statements S, T have an
annotation before each atomic statement. Then S does not interfere with T if all
atomic statements of S do not interfere with any annotation of T .

For example, consider the annotated program:{
true

}
y := x

{
x = y

}
(
{
x = y ∨ x = y + 2

}
x := x + 1

{
x = y + 1 ∨ x = y + 3

}
‖{

x = y ∨ x = y + 1
}
x := x + 2

{
x = y + 2 ∨ x = y + 3

}
){

x = y + 3
}

The assignment y := x is correct as true ⇒ (x = y)[y\x] according to the rule for
assignments. For the parallel composition, we have
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•
{
x = y ∨ x = y + 2

}
x := x + 1

{
x = y + 1 ∨ x = y + 3

}
;

•
{
x = y ∨ x = y + 1

}
x := x + 2

{
x = y + 2 ∨ x = y + 3

}
;

• x = y ⇒ (x = y ∨ x = y + 2) ∧ (x = y ∨ x = y + 1);

• (x = y + 1 ∨ x = y + 3) ∧ (x = y + 2 ∨ x = y + 3)⇒ x = y + 3;

• x := x+ 1 when started in x = y∨x = y+ 2 does not interfere with x = y∨x =
y + 1 and with x = y + 2 ∨ x = y + 3;

• x := x+ 2 when started in x = y∨x = y+ 1 does not interfere with x = y∨x =
y + 2 and with x = y + 1 ∨ x = y + 3.

According to the rule for parallel composition, it allows one to conclude:{
x = y

}
x := x + 1 ‖ x := x + 2

{
x = y + 3

}
Finally, the rule for sequential composition with x = y as the intermediate assertion
allows to conclude:{

true
}
y := x ; (x := x + 1 ‖ x := x + 2)

{
x = y + 3

}
Two generalized control structures are added to the core language. The statement

if 〈b0 → S0〉;T0[]〈b1 → S1〉;T1 executes S0;T0 if b0 holds and executes S1;T1 if b1 holds,
but the evaluation of bi and subsequent execution of Si are atomic. The statement
do 〈b0 → S0〉;T0 [] 〈b1 → S1〉;T1 executes S0;T0 and starts over again if b0 holds,
executes S1;T1 and starts over again if b1 holds, and blocks if neither b0 nor b1 holds,
but the evaluation of bi and subsequent execution of Si are atomic.

Definition (Atomic Conditional and Repetitive Statements). Let Si be statements
that do not contain repetitions, procedure calls, await statements, or parallel com-
positions and let Ti be arbitrary statements. Let C be an atomic statement that
evaluates bi, executes Si accordingly, and sets integer c to the alternative executed,
or blocks if all bi are false:

C = 〈b0 ∨ b1 → if b0 → S0 ; c := 0 [] b1 → S1 ; c := 1〉

Then:

if 〈b0 → S0〉 ; T0 = var c : integer

[] 〈b1 → S1〉 ; T1 C ; if c = 0→ T0 [] c = 1→ T1

do 〈b0 → S0〉 ; T0 = var c : integer

[] 〈b1 → S1〉 ; T1 C ; do c = 0→ T0 ; C [] c = 1→ T1 ; C
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The atomic repetitive statement blocks when all guards are false and starts over
again when one guard holds and the corresponding statement is executed, meaning
that it never terminates; the plain repetitive statement terminates when all guards
are false.

Functions are used to model both arrays and fields of objects. If g : X → Y is a
function and f : X a value of the domain, the function application is written as g(f)
(when g is an array) or as f.g (when g is a field and f is an object). If e : Y is a
value of the range, g[f ← e] denotes the modification of g to be e at f and unchanged
otherwise. Assignments to function elements and procedure calls that update function
elements are formally defined by replacing the function with a modified one:

Definition (Function updates). Let g be a variable of function type:

g(f) := e = g := g[f ← e]

g(f) := m(e) = varh ; h := m(e) ; g := g[f ← h]

Using the dot notation, g(f) := e is also written as f.g := e. Updates can be “nested”
in the sense that g(f)(h) := e and means g := g[g(f)← (g(f)[h← e])] and, using the
dot notation, can be written as f.g(h) := e.

The common if-statement and while-statement are defined in terms of the condi-
tional and repetitive statements:

Definition (if-statement, while-statement). Let b, bi be Boolean expressions and
S, Si, T be statements:

if b thenS = if b→ S [] ¬b→ skip

if b thenS elseT = if b→ S [] ¬b→ T

if b0 thenS0 elif b1 thenS1 elseT =

if b0 → S0 [] ¬b0 ∧ b1 → S1 [] ¬b0 ∧ ¬b1 → T

while bdoS = do b→ S

Finally, the atomic statement 〈S〉 abbreviates 〈true → S〉.

3.4.2 Concurrent Objects

A class is defined by mapping each field to a global variable, each method to a proce-
dure with an additional this parameter, and all actions together to one procedure that
repeatedly executes one of the enabled actions. A program consists of the parallel
composition of the actions of all allocated objects together with the main program.
Following translation scheme makes method and action bodies atomic up to method
calls. For this, an additional field, lock, is defined for each object: when a method is
entered, an action is started, or a suspended method or action is restarted, lock is set
to true. When a method or action terminates or execution leaves an object by calling
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another object, lock is set to false. Let Ref be a set of potential object references.
Abstractly, a Lime program consists of a number of class declarations of the form

Listing 3.1: Lime Class

class C
var v: V
init ()
I

method m0(u0: U0) → (w0: W0)
when g0 do M0

method m1(u1: U1) → (w1: W1)
when g1 do M1

action a0

when h0 do A0

action a1

when h1 do A1

where gi, hj are Lime guards Mi, Aj are Lime statements. Lime guards are executable
Boolean expressions that must be only over fields v; in methods, guards gi can also
be over value parameters ui. Expressions in method and actions bodies are over fields
v as well as global variables (that are used for I/O); expressions in method bodies
Mi can additionally be over value parameters ui and result parameters wi. Lime
statements are inductively defines as consisting of:

• x := e, the multiple assignment, where x may only contain fields v, global
variables (that are used for I/O), and in methods bodies Mi also ui, wi;

• S0;S1, the sequential composition;

• if b thenS, if b thenS elseT , if b0 thenS0 elif b1 thenS1 elseT , the if-statement ;

• while bdoS, the while-statement ;

• varx : X;S, the local variable declaration;

• x := o.m(e), the method call of method m of object o with actual value param-
eters e and actual result parameters x;

• o := newC(), the object creation.

The multiple assignment statement, sequential composition, if-statement, while-
statement, and local variable declaration retain their meaning. If o is an object of
class C, a call to method m is defined as calling procedure C.m and the object creation
is defined as calling procedure C.init, defined below. For every class C, a variable
C is the set of object created from the class, as defined below. Classes are used as
types, meaning that var c : C stands for var c : Ref and additionally implies that
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c ∈ C∪{nil} is (implicitly) part of any annotation in the scope of C (which is ensured
by the compiler).

Definition (Object creation, method call). Suppose o is of class C:

x := o.m(e) = this .lock := false ; x := C.m(o, e) ;

〈¬this .lock → this .lock := true〉
x := new C() = x := C.init()

Definition (Classes). Take the class C defined in Listing 3.1 as an example: Writing
I ′, g′i, M

′
i , h

′
j, A

′
j as a shorthand for the same with all occurrences of v replaced with

this .v , class C is defined as:

var C : set(Ref) := {}
var C.lock : Ref → bool
var C.v : Ref → V
procedure C .new()→ (this : Ref )
〈this :6∈ C ∪ {nil} ; C := C ∪ {this}; this.lock := true〉; I ′; this.lock := false

procedure C.m0(this : Ref, u0 : U0)→ (w0 : W0)
〈g0 ∧ ¬this.lock → this.lock := true〉; M ′

0; this.lock := false
procedure C.m1(this : Ref, u1 : U1)→ (w1 : W1)
〈g1 ∧ ¬this.lock → this.lock := true〉; M ′

1; this.lock := false
procedure C.action(this : Ref )
do 〈h0 ∧ ¬this.lock → this.lock := true〉; A′0; this.lock := false
[] 〈h1 ∧ ¬this.lock → this.lock := true〉; A′1; this.lock := false

A Lime program consists of a set of class declarations and a main program, which
is abstractly a statement and which is specified as the initialization of a class with
the name Start.

Definition (Concurrent program). A behaviour of program with classes C0, C1, Start
is defined as the statement:

(‖ x : Ref · x ∈ C0 → C0.action(x )) ‖
(‖ x : Ref · x ∈ C1 → C1.action(x )) ‖
(var s : Start; s := new Start())

A program starts to execute the main program, which can create objects with
actions that continue to execute. The whole execution may carry on indefinitely or
until the main program terminates and all actions are disabled, i.e. all procedures
Ci.action block. A program may operate on global variables through which its exe-
cution is observed.
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3.5 Lime Examples

With these examples, we show how it is easier to develop concurrent programs in Lime
compared to the other synchronization constructs, such as semaphores and channels.
The programmer only needs to create the actions the objects have and does not need
to worry about how those actions are scheduled in the background. All that scheduling
work is left to the Lime runtime system. We illustrate the primary constructs of Lime
by using various classic concurrent examples.

In this section, we first show the semaphores construct can be easily implemented
in Lime and then present the solutions of dining philosophers problem by using Lime,
semaphores and channels. Third, we discuss the solutions of Reader-Writer problem
by using semaphores and Lime. In addition, we introduce three examples in Lime:
Delayed Doubler, priority Queue and Leaf-oriented Trees.

3.5.1 Semaphores

Semaphores are a fundamental construct of a concurrent program. This example —
Listing 3.2 — shows how a general semaphore can be easily implemented in Lime.

Listing 3.2: Semaphore Using Lime

class Semaphore
var value: int
init()

value := 0
method P()

when value > 0 do
value := value - 1

method V()
value := value + 1

The Semaphore class maintains the invariant value ≥ 0. Method P is enabled
if value > 0. Method P is disabled if value ≤ 0. The atomicity policy is that “all
methods and actions are atomic up to method calls”. Hence all methods and the
initialization of the class Semaphore are executed atomically. That is, P is suspended
when value is 0.

Compared with the definition of semaphore we discussed in Section 2.1.2, the im-
plementation of semaphore in Lime has been reduced to its essential elements. More
importantly, Lime allows programmers to handle the concurrency as an implementa-
tion issue in the same way as the choice of an algorithm.

3.5.2 Dining Philosophers

The dining philosophers problem is a traditional problem in the history of concurrency
created by Dijkstra (1987) as an exam question. This example — Listing 3.5 — shows
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how to implement the dining philosophers problem in Lime. The eating process of
each philosopher is implemented as an action, and one philosopher can eat only when
the forks on both sides are picked up.

To compare with Lime, we also provide two implementations by using semaphores
and channels, respectively, for the dining philosophers problem.

Dining Philosophers Problem. Five philosophers spend their lives
thinking and eating. The philosophers share a common dining room where
there is a circular table surrounded by five chairs, each belonging to one
philosopher. In the center of the table there is a large bowl of spaghetti,
and the table is laid with five forks. On feeling hungry, a philosopher
enters the dining room, sits in his own chair, and picks up the fork on the
left of his place. Unfortunately, the spaghetti is so tangled that he needs
to pick up and use the fork on his right as well. When he has finished, he
puts down both forks, and leaves the room. (Hoare, 1978)

Semaphores can be used to solve this dining philosopher problem (Andrews, 1991).
There is one semaphore for each fork. First, a local two-phase prioritization scheme is
used to ensure that neighbouring philosophers do not eat at the same time. However,
it can result in deadlock because there is a circular waiting. To avoid deadlock, all
the Philosophers in Listing 3.3, 3.4, 3.5 pick up first the lower-number fork and then
the higher-number fork, rather than their left fork and then their right fork.

Listing 3.3: Dining Philosopher Solution Using Semaphores

var forks[1..5]: sem
process Philosopher[i: 1..4]

while true do
P(fork[i]); P(fork[i + 1])
eating
V(fork[i]); V(fork[i + 1])
thinking

process Philosopher[5]
while true do

P(fork[1]); P(fork[5])
eating
V(fork[1]); V(fork[5])
thinking

Channels can also be used to solve this dining philosophers problem. Five philoso-
phers and five forks can be represented by processes. Each fork process listens to
pickup and putdown channels. “<- chan” represents receiving a value from the chan-
nel while “chan <-” represents sending a value to the channel. In this case —
Listing 3.4 — a philosopher would need to send messages to the left fork and right
fork, respectively.
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Listing 3.4: Dining Philosopher Solution Using Channels

var pickup[1..5]: chan
var putdown[1..5]: chan
process fork[i: 1..5]

while true do
select

case <- pickup[i]:
<- putdown[i]

process philosopher[i: 1..4]
while true do

pickup[i] <- i
pickup[i + 1] <- i
eating()
putdown[i] <- i
putdown[i + 1] <- i
thinking()

process philosopher[5]
while true do

pickup[1] <- 5
pickup[5] <- 5
eating()
putdown[1] <- 5
putdown[5] <- 5
thinking()

Here the monitor mechanism is used in Lime (Listing 3.5). Compared with the so-
lutions by using semaphores and channels, although Lime uses the same strategy to
avoid deadlock, Lime provides an unified design view for the programmers to solve
the problem by introducing a guard avail to the Fork object. We add two guarded
methods: pickup and putdown to the Fork object and two unguarded actions to the
Philosopher object.

Listing 3.5: Dining Philosopher Solution Using Lime

class Fork
var avail: bool
init()

avail := true
method pickup()

when avail do
avail := false

method putdown()
when not avail do

avail := true
class Philosopher

var leftFork, rightFork: Fork
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var state: {thinking, eating}
init(left, right: Fork)

leftFork, rightFork, state := left, right, thinking
action eat

when state = thinking do
leftFork.pickup()
rightFork.pickup()
state := eating

action think
when state = eating do

state := thinking
leftFork.putdown()
rightFork.putdown()

class Start
var n, i: int
var philosophers: array of Philosopher
var forks: array of Fork
init()

n := getArg(1)
forks, philosophers := new Fork[n], new Philosopher[n]
for i := 0 to n - 1 do

forks[i] := new Fork()
for i := 0 to n - 2 do

philosophers[i] := new Philosopher(forks[i], forks[i+1])
philosophers[n-1] := new Philosopher(forks[0], forks[n-1])

3.5.3 Reader-Writer

The following example shows how to use a monitors mechanism to implement the
reader-writer problem (Courtois et al., 1971) in Lime. We also provide another pseudo-
code implementation in Listing 3.6 by using semaphores.

Listing 3.6: Reader Writer Solution Using Semaphores

var n := 0: int
var r := R: sem
var mutexR := 1: sem
var rw := 1: sem
process Reader[i: 1..N]

while true do
P(mutexR)

P(r)
n := n + 1
if n = 1 then

P(rw)
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V(mutexR)
read the data
P(mutexR)

n := n - 1
if n = 0 then

V(rw)
V(r)

V(mutexR)
process Writer[j: 1..N]

while true do
P(rw)
write the data
V(rw)

This example (Listing 3.7) needs to ensure that a resource is either accessed by
up to R readers or a single writer. Field n is the number of readers who are currently
reading the resource, R is the maximum number of readers who can read the resource
simultaneously.

Compared with semaphores (Listing 3.6), Lime and monitors provide a simpler
design view, but more importantly, Lime makes concurrency transparent to the pro-
grammers by using only one guard n.

Listing 3.7: Reader Writer Solution Using Lime

class ReaderWriter
var n, N: int
init(R: int)

n, N := R, R
method startRead()

when n > 0 do
n := n - 1

method startWrite()
when n = N do

n := 0
method endRead()

n := n + 1
method endWrite()

n := N

The class initialization sets fields N and n to the maximum number of readers.
The class maintains the invariant 0 ≤ n ≤ N . Methods startRead and startWrite are
enabled if their respective guard is true, otherwise disabled. If rw is an object created
by ReaderWriter(N ), then a typical access of the resource would be rw.startRead;
...; rw.endRead or rw.startWrite; ...; rw.endWrite. The atomicity policy is that
“all methods and actions are atomic up to method calls”. Hence all methods and
the initialization of the class ReaderWriter are executed atomically, but the calls
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rw.startRead and rw.startWrite may be suspended. We assume here that all fields
are private to an object and all methods are public in Lime.

3.5.4 Delayed Doubler

The following example is the Delayed Doubler created by Sekerinski (2002):

“Both the Doubler and DelayedDoubler classes allow an integer to be
stored and its double to be retrieved. In Doubler the operation of doubling
is performed when the number is stored. In DelayedDoubler instead a
“background” action is enabled that perform[s] the doubling, allow[ing] a
call to store to return quicker. The retrieve method needs to be suspended
until the doubling occurs, which is controlled by the additional variable
d” (Cui, 2009).

This example — Listing 3.8 — represents a universal pattern. For example, program-
mers have the illusion that writing data to a file happens instantly, but the data is
cached in a buffer, and a background program starts to write the data to the hard
disk. The same thing happens when programmers add a record to the database. In
each case, this pattern aims to increase the responsiveness of the concurrent system
which we discussed in the Section 1.1.1. This is the first example which contains a
guarded action. This DelayedDoubler class maintains the invariant (d = true) =⇒
(y = 2 * u).

It is straightforward to implement this example by using asynchronous channels or
futures. In principle, synchronous channels are capable of simulating the behaviour of
asynchronous channels, however, introducing complexity. It is difficult to implement
this example by using semaphores or monitors.

future double(x)

Listing 3.8: Delayed Doubler Example Using Lime (Cui, 2009)

class Doubler
var x: int
method store(u: int)

x := 2 * u
method retrieve(): int

return x
class DelayedDoubler

var y: int
var d: bool
init()

y, d := 0, true
method store(u: int)
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y, d := u, false
method retrieve() : int

when d do
return y

action double
when not d do

y, d := 2 * y, true

3.5.5 Priority Queue

The following example — Listing 3.9 — shows how to use Lime to implement a
concurrent priority queue as described by Sekerinski (2003):

A priority queue offers a method add(e) for storing an positive integer e, a
method remove for removing the least integer stored so far, and a method
empty for testing whether the priority queue is empty. Elements are stored
in field m in ascending order (duplicates are allowed). The priority queue
starts with a sentinel node (m = 0). Field l points to the next node or is
nil (last element of the queue). An element is added to the priority queue
by either storing it in the current node if it is the last one (and creating
a new last node), or by depositing it in field p of the current node and
enabling an action (doAdd) that will move either the new element or the
element of the current node one position down. The minimal element is
removed by returning the element of the current node immediately and
enabling an action (doRemove) that will move the element of the next
node one position up, or set the l point to nil if the node becomes the
last one. Field a represents the doAdd action while field r represents the
doRemove action.

Like the delayed doubler example, this priority queue example also implements the
early return mechanism. It is complicated to implement early return by using semaphores
and monitors. The early return can be implemented in Lime by actions. For example,
as shown in Figure 3.1, the second node is enabled, which needs to send 6 to the next
node. At the same time, the head node is available to receive a new element. There
is also a sentinel node at the end of the queue. As defined above, the return value of
q.remove() should be either a positive integer or 0, which means the priority queue is
empty. The method call l.add() in the action of doAdd means that the current node
makes a call to the next object l. The lock of the current node is released before that
call and regained on return.

Listing 3.9: Priority Queue Example Using Lime (Sekerinski, 2003)

class PriorityQueue
var m,p: int
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m	=	4

p

r	=	false

a	=false

l

m	=	0

p

r	=	false

a	=	false

l	=	nil

m	=	5

p	=	6	

r	=	false

a	=	true

l

m	=	7

p

r	=	false

a	=	false

l

	Tail	Node	(Sentinel)

Figure 3.1: Priority Queue with Input of “4, 5, 7, 6”

var l: PriorityQueue
var a,r: bool
init()

l,a,r,m := nil,false,false,0
method empty() : bool

when not r do
return l = nil

method add(int e)
when not a and not r do

if l = nil then
m, l := e, new PriorityQueue()

else
p, a := e, true

method remove() : int
when not a and not r do

r := true
return m

action doAdd
when a do

if m < p then
l.add(p)

else
l.add(m)
m := p

a := false
action doRemove

when r do
if l = nil then

r := false
return

elif l.empty() then
l := nil
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else
m := l.remove()

r := false

3.5.6 Leaf-oriented Trees

The next example — Listing 3.10 — is about parallelizing operations on sets, which
is implemented by using leaf-oriented trees (Sekerinski, 2003).

In a leaf-oriented tree, the internal nodes contain only guides and the
elements are stored in the leaves. Insertion either creates two new leaves
[one is the original element and the other is the element to be stored] or
only deposits an element in an internal node. Each node has an action
that would eventually move the deposited element one level closer to its
final position. This action needs to hold a lock only on the current node
and one of its children. Thus insertions can proceed in parallel in different
parts of the tree. The methods add and has are guarded in order to
prevent possible overtaking.

For example, as shown in Figure 3.2, the nodes which contain key = 3 and key = 5
are enabled and will send the elements, p = 2 and p = 8, to their child nodes,
respectively. At the same time, the root node is available to receive a new element.
The final structure of this leaf-oriented tree is shown in Figure 3.3. For the method
calls, for example right.add(p), it means that the current parent node makes a method
call to its right child node. The lock of the current node is released before that call
and regained on return. The class Node maintains the local invariant (left = nil
)= (right = nil) and the global invariant (left 6= nil) =⇒ (left.key ≤
key) ∧ (right.key > key).

Listing 3.10: Leaf-oriented Trees Example Using Lime

class Node
var key, p: int
var left, right: Node
var a: bool
init(x: int)

key, left, right, a := x, nil, nil, false
method add(x: int)

when not a do
if left != nil then a, p := true, x
elif x < key then

left,right, key := new Node(x), new Node(key), x
elif x > key then

left,right := new Node(key), new Node(x)
method has(x: int): bool
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Figure 3.2: Leaf-oriented Tree Example With Input: “5,4,3,7,2,8”, Intermediate State

when not a do
if left = nil then return x = key
elif x <= key then return left.has(x)
else return right.has(x)

action addToChild
when a do

if p <= key then left.add(p)
else right.add(p)
a := false
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Figure 3.3: Leaf-oriented Tree Example With Input: “5,4,3,7,2,8”, Final State
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Chapter 4

Contributions to Lime

In this chapter, we first present the previous implementations of Lime and then discuss
the problems addressed during the earlier implementations. Last, we summarize the
contributions of this work.

4.1 Previous Implementations of Lime

In this section, we discuss the previous two implementations of Lime.

4.1.1 Implementation of Lime Using Monitors

Lou (2004) presents a design and implementation of a Lime compiler written in Java.
The target language of this Lime compiler is Jasmin, a Java assembly language.
The compilation is separated into two steps. First, the program is translated into
an intermediate Lime program without actions and guarded methods. Actions and
guarded methods are translated into unguarded methods by using monitors at the
second step.

During program execution, there exist several worker threads that execute the
methods and actions of the objects. There is a constraint that one thread can lock at
most one object at a time. Each worker thread locks an object when working on it.
If an object makes a call to another object, the lock is released before that call and
regained on return, as each worker thread can lock at most one object at a time

When a worker thread executes a guarded method of an object, the thread first
evaluates the guard of the method. The thread executes the method if the guard holds;
otherwise the thread waits. The suspended threads should wake up to re-evaluate the
guards when a thread exits from the same object. This is because the execution of
the method or action of the object may affect the guards of other guarded methods
or actions. The overhead of context switch for the Java threads becomes significant
when the number of the objects exceeds the number of the available cores.
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4.1.2 Implementation of Lime Using Condition Variables

Cui (2009) implements a Lime compiler written in Pascal. The target language of
this Lime compiler is assembly code. The generated code makes calls to the Pthread
library. The guards of the object are translated into Pthread’s condition variables.
Each active object is associated with an object thread at runtime. This object thread
continuously selects enabled actions to run, and therefore never terminates. The entire
program terminates only if all object threads are blocked on a condition such that it
can no longer find an enabled action to run.

When a thread tries to invoke a guarded method, it must acquire the object’s lock
and then wait on the guard if the guard does not hold. After the execution of the
method, the other suspended threads should wake up to re-evaluate the guard.

The main thread examines the termination condition by repetitively checking a
global counter shared among the threads. This counter is initialized to the number of
the threads and is decreased by one if one thread cannot find any enabled actions to
execute. The main thread checks this counter by busy waiting and terminates when
this counter reaches zero.

Same as Lou’s implementation, Cui’s implementation also suffers from the signif-
icant overhead of the context switches. Besides, their implementations may run out
of stack space if there are too many threads created. Therefore, the stack mechanism
needs to be improved for Lime.

4.2 The Addressed Problems

4.2.1 Threads

For the previous Lime implementations, mapping active objects to threads, either
Java threads or Pthreads, can easily lead to programs with thousands of threads.
The threads getting stuck during the method calls can lead to a tremendous number
of context switches. Context switches introduce a significant amount of overhead to
the overall program execution time when the number of the active objects exceeds the
number of cores. Both Java threads and Pthreads are mapped to OS threads. During
the context switch, the scheduler needs to save and restore all registers belonging to the
thread. For instance, there are 16 registers on the x86 architecture and 32 registers on
the x86-64 architecture. The context switch overhead becomes a performance concern.

4.2.2 Stack Mechanisms

The previous implementation work on Lime showed that an improved call stack mech-
anism is needed for Lime. Every active object being concurrent can easily lead to
programs with thousands of threads. On the one hand, if stack sizes are set large
enough, virtual address space becomes quickly exhausted as the number of the threads
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increases. On the other hand, if stack sizes are “intentionally set low, stack-gobbling
features, most notably recursion, are disabled as a workaround” (Moore-Oliva et al.,
2014). In a word, the requirements for the new stack mechanism are (1) the default
stack size should be small and (2) the stack can grow and shrink on demand.

“To discover or identify an efficient multi-threaded call stack mechanism that
works as well and as transparently as the call stack mechanism for single-threaded
processes”, Moore-Oliva (2010) implements a C-like compiler in Java. This compiler
directly generates assembly code for different stack mechanisms. My work in this part
is related to improve the performance of Guard-Page stack mechanism. Segmented
stacks mechanisms are examined based on this C-like compiler, and the comparison
results for stack mechanisms are general and independent of Lime.

4.2.3 Guard Implementations

Lime can be implemented at different levels. At one extreme, a straightforward im-
plementation approach is to achieve all of the concepts on top of the existing object-
oriented programming languages, like Java. The synchronization mechanism, such as
monitors or semaphores, can be used to implement the guards. Actions are imple-
mented as daemon threads. In this case, the efficiency of the model highly depends
on the underlying programming languages. At the other extreme, these models can
be directly implemented on top of the operating systems. Instead of using synchro-
nization mechanisms provided by the library, hardware instructions can be used to
implement the locks for each object and guards for both methods and actions. The
developers have to build the runtime system for the models. That is, it is possible
to improve the efficiency of these models. Lime can be implemented by using any
approach lying at or anywhere between these extremes.

4.3 Contributions of This Work

The most significant difference between Lime and the traditional object-oriented lan-
guages is that actions and guarded methods are added to the system. According to
the theory of action systems, active objects can be executed concurrently. Therefore,
each object has a private lock.

4.3.1 Lime Compiler

Our goal is to develop an efficient implementation of Lime. The compiler should focus
on the key features, such as the guards implementation. The current implementation
of Lime compiler leaves other features for future work. Therefore, the Lime compiler
should be simple, easy to understand and maintain. Antlr4 provides not only a suite
of tools to make writing grammars easy but also proper error messages to make
debugging grammars easy (Parr, 2004). We use Antlr4 to generate the scanner and
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Figure 4.1: Lime Compiler

parser for Lime source code. Then, the compiler uses StringTemplate (Parr, 2012)
and LLVM (a collection of modular and reusable compiler and toolchain technologies)
to generate 32-bit NASM Assembly. The source code of the Lime compiler can be
found in the folder: ./Limec/Compiler/Lime4 of the gitlab project: (https:
//gitlab.cas.mcmaster.ca/yaos4/thesis_code.git).

The Lime compiler accepts one single file as input which could contain one or
more classes. The Start class in Lime is similar to the main function in C. As shown
in Figure 4.1, each class is translated into two files: classname.skeleton.s and class-
name.body.c. Classname.skeleton.s contains the skeleton assembly code for the class,
the guard evaluation code for methods and actions and the initialization code for the
object. Classname.body.c contains the methods and actions body (without guards)
of the class. The translation scheme is implemented in the skeleton assembly code.
The Lime compiler takes advantage of LLVM’s back-end such as optimizations.

4.3.2 Lime Runtime System

As we have discussed before, because the efficiency of Lime model is our priority goal,
the approach we choose to implement Lime is closer to the operating system level,
rather than the programming language level. In Lime, an efficient implementation of
private locks and guards is needed. Most programming languages do provide primi-
tives for conditional synchronization, such as semaphore and monitors. It is inefficient
to use synchronization primitives, such as wait and signal, to implement the guards for
each object. The results from the previous research show the performance decreases
dramatically when the number of objects exceeds a threshold.

The private lock for each object in Lime should be implemented by hardware
instructions, such as compare-and-swap instructions. The usage of the lock function
provided by underlying programming languages also yields an additional overhead.
The scheduler in Lime continues to search for the next available object if the current
object is locked by the other worker thread, rather than spinning.

Active objects in Lime are mapped to coroutines, rather than threads. A coroutine
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can suspend when it reaches the suspend point and return to the caller. A suspended
coroutine can resume the execution from the suspend point. Thus, coroutines are the
right primitives for active objects, as coroutines can yield execution when the guards
are disabled and resume execution when the guards become true. More importantly,
coroutines are lightweight compared to threads and processes in operating systems.
Coroutines can use a dynamically allocated segmented stack mechanism, which starts
with a small size (4KB) and grows on demand. This allows the system to create
thousands of coroutines without consuming all available RAM.

The assembly language used in this work is 32-bit x86 instructions compatible with
the open source assembler NASM. The architecture consists of eight 32-bit general
registers. The EBP register is reserved by Lime runtime system for the pointer which
points to the currently executing active object. Method arguments in Lime are passed
on the stack, and the return value is kept in the EAX register. For the other calling
conventions which pass arguments in registers, such as ARM (A32) and x86-64, extra
space is needed to allocate for register-based arguments on the stack during the context
switches.

In Lime, coroutines are scheduled by the Lime runtime system using an efficient
cooperative scheduler. The context switch of coroutines is efficient because coroutines
only switch at well-defined points and only three registers (EBP, ESP, EIP) are re-
served on the stack. Lime coroutines use segmented stacks, which start with a small
size and can grow and shrink on demand. The segmented stack mechanism needs
to insert checkpoints to determine whether a stack overflow is about to happen or
not. The overhead of these checkpoints can be accumulated, especially in loops and
deep recursive calls. In Lime, we can avoid this overhead by modifying the calling
convention.

The construction of Lime could be a significant contribution to the area of con-
current object-oriented programming. The development of Lime greatly enhances our
understanding that an object is a natural “unit” of concurrency. The contribution is
split into the following parts:

• The comparison of stack mechanisms: Compared with the traditional stack
mechanisms, a dynamic stack mechanism can eliminate the overhead for stack
checks during the runtime by modifying the calling convention. The source
code and tested benchmarks can be obtained from ./Limec/LimeCC. The
comparison of stack mechanisms is discussed in Chapter 5.

• The guards implementation: Instead of using existing synchronization primitives
to implement guards, we introduce a simple but efficient approach for the guard’s
implementation. In Lime, the method call could “get stuck” when the guard
does not hold. Thus, the coroutine can yield the execution. The scheduler will
choose the next coroutine to execute. The implementation of guards is discussed
in Chapter 6.
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• Lime runtime system: At runtime, a global active object queue is maintained.
Each worker thread has a local active object pool which contains the active
objects which belong to the worker thread. We also introduce a worker thread
pool which can dynamically create and destroy worker threads according to
the working load. The source code and tested benchmarks can be obtained
from ./Limec/Runtime. The implementation of the Lime runtime system
is discussed in Section 6.3.3.

62



Chapter 5

Stack Mechanisms

In this chapter, we first introduce the background of current stack mechanisms. Then,
we categorize and discuss existing and proposed multi-threaded stack mechanisms.
Third, we elaborate on the implementation of Lime’s stack mechanism, which we call
the Guard-Page stack mechanism. Lastly, we compare the performance with the other
stack mechanisms. All the work discussed in this chapter is based on the author’s
paper (Moore-Oliva et al., 2014), which stems from Moore-Oliva (2010). Some of the
text in this Chapter is taken from (Moore-Oliva et al., 2014). My contributions to
the joint paper are as follows:

• Found the reason why the previous work did not get positive results: it compared
the performance mainly between malloc and mprotect. The stack extension
runtime difference is minified. The Guarded-Page stacks should be pre-allocated
and reused.

• Improved the performance of the Guard-Page mechanism;

• Extended the benchmarks for different stack usages.

5.1 Introduction

The traditional stack mechanism — where the stack and heap grow from opposite
sides — is often taken for granted because it provides a simple but efficient way to
keep track of variables and control flow. For a single-threaded process, there is no
reason to use anything but the traditional call stack mechanism. In fact, with virtual
address space being so abundant, operating systems take the strategy of allocating
a “large enough” stack and do not extend it on stack overflow. For example, Turing
Plus (Holt and Cordy, 1985) uses a fixed size stack and a controlled abort (with a
system exception number) occurs when the stack overflows.

Since 2005, the trend for software development has been towards “more concur-
rency”. The fixed size “large enough” stack mechanism would exhaust the virtual
address space when the number of the threads increases.
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For a 64-bit system, the virtual address space is 16 exabytes (EB). However, it
does not allow the whole virtual address space to be used because of the overhead from
the address translation. So Windows for x64 uses just 8 TB of user space (Microsoft,
2017). That is, we can only create at most 8192 threads with a “large enough” stack
(1 GB) on Windows for x64 (we do not consider that the page tables need to take up
RAM as well). This work advocates a programming style in which programmers do
not need to be concerned about thread creation: rather every object is conceptually
concurrent. This allows an implementation to exploit all available cores and thus scale
the performance of programs with the number of processor cores. For example, in a
molecular simulation program, every molecule can be an object, leading to millions
of threads (Weber et al., 2014). Programmers should not need to map molecules to
a smaller number of worker threads (Lea, 2000), which can run thousands of corou-
tines. In addition, 32-bit processors still play a dominant role in embedded systems,
according to a study of embedded markets presented by EETimes and Embedded
(2019).

In Lime, every object being concurrent in principle can quickly lead to programs
with thousands of coroutines. Each coroutine requires a stack. That is, Lime needs
to support thousands of stacks. On the one hand, if stack sizes are set large enough,
virtual address space becomes quickly exhausted as the number of the coroutines
increases. On the other hand, if “stack sizes were intentionally set low, stack-gobbling
features, most notably recursion, were disabled as a workaround” to avoid the stack
overflow (Moore-Oliva et al., 2014). Take the priority queue in Section 6.4.1 as an
example, and one program can contain as many as ten thousand coroutines. Lime
needs a stack mechanism which can run thousands of coroutines with a small stack
growing and shrinking on demand.

5.2 Related Work

This section categorizes and discussed existing and proposed stack mechanisms. First,
we briefly discuss the existing single-threaded stack mechanism. Second, we compare
the shared stack mechanisms which allow the threads to share the stack space. Third,
we discuss cactus stack mechanisms that use the cactus stack data structure to link
multiple stack chunks into a single stack.

5.2.1 Single-Threaded Call Stack

A single-threaded program has one stack and one heap memory region. The stack
grows from high to low while the heap grows from low to high. This memory layout
allows the stack and the heap to share the available memory (heap fragmentation
issue aside). There is a potential that the heap and the stack can use up all the
available memory. Due to this, operating systems such as Solaris, Linux, Windows
and Unix (including iOS and Android) set stack space to a fixed “large enough” size.
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Figure 5.1: Single-threaded Memory Layout Extended to Multiple Threads: (a) With
Single Shared Heap and (b) With Multiple Heaps to Reduce Heap Contention.

In this case, a segment fault should be generated when the stack “collides” with the
heap (Sun Microsystems, 2008; Microsoft, 2013; Linux, 2012).

In operating systems, every process has two stacks:

• User-mode stack : is used to keep temporary data (local variables of the meth-
ods) in the user level.

• Kernel-mode stack : is used to store temporary data for the kernel. Every process
has a kernel stack that can only be accessed in the kernel level.

For the user-mode stack, the multi-threaded stack mechanism used by Solaris (Sun
Microsystems, 2008) has become the standard stack mechanism for modern operating
systems. Each thread reserves a fixed size stack of the virtual address space. By
default, a “large-enough” stack (typically 2 MB) is allocated for each thread during
thread creation. A red-zone is used to detect stack overflows. This red-zone is a page
of memory without read and write permissions and appended to a thread’s stack.
Any access to the red-zone will cause a memory fault. It could be identified at the
compile time if the stack frame for a function is larger than the red-zone. Windows
allocates by default 1 MB to each thread. MacOS allocates by default 8 MB to the
main thread and 512 KB to secondary threads ; iOS allocates by default 1 MB to the
main thread and also 512 KB to the secondary thready. Android has two separate
stacks: one for native code and one for Java code. The default Java stack size is 32
KB, while the native stack size is 1 MB.

Concurrent Oberon (Lalis and Sanders, 1994) uses a fixed size stack mechanism on
the heap. A checkpoint is inserted in the prologue of every function and stack overflow
can be detected before it occurs. Although this check increases runtime overhead, it
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does provide a solution for the system which does not have an MMU. The stack can
be recycled once the thread terminates.

US patent 7,477,829 (Wilding and Wood, 2008), depicted in Figure 5.1 (b), at-
tempts to reduce heap contention. Unlike the traditional stack/heap memory layout
for the single-threaded program, the stack and the heap start from the same base ad-
dress and grow in opposite directions. Overflow is detected via the use of dead-zone,
same as red-zone discussed previously. However, the patent does not specify how to
calculate the initial base address of the stack and the heap. In theory, this patent has
the ability to custom the stack and heap size for each thread at the thread creation.

All of the above stack mechanisms have the limitation that stack space cannot
be shared among threads, and each thread needs to have a “large enough” stack to
handle the worst-case usage. However, this can lead to the false “run out of space”
errors even if there is plenty of unused space available in the other threads’ stacks.

5.2.2 Shared Call Stacks

Hybrid stack sharing (Wong and Dagevill, 1994) attempts to share a fixed number m
of stacks evenly among n threads, where n ≤ m. On a context switch, if all stacks
are used, the used portion of the current thread’s stack is copied to the heap memory.
The scheduled thread’s stack is copied in. Hybrid stack sharing assumes the stack is
large enough, and stack overflow would never occur. This stack mechanism improves
memory usage by allowing multiple threads to share one stack. However, it introduces
runtime overhead during a context switch when all the stacks are used.

Multitask stack sharing (Middha et al., 2008) provides a multi-threaded stack
mechanism for embedded systems. Because the address space is limited, each thread
begins with a smaller stack size (compared with Solaris’ stack size). Stack overflow
is detected at runtime in the prologue of each function. Each thread reserves one
page at the end of the stack for the overflowing thread’s stack. In this case, part of
the stack can be shared among all threads, which improve the stack memory sharing.
However, the program could “run out” of the stack memory when there is plenty of
unused memory available.

5.2.3 Cactus Stacks

Stackless Python (Tismer, 2000) moves stack data into the interpreter frames, which
also contain code. In this case, the stack is allocated on the heap, and there is no
limit on stack size. However, it introduces runtime overhead because every function
call requires a heap allocation.

Thread segment stacks (Pizka, 1999) is a multi-threaded stack implementation for
GCC. Each thread has a contiguous stack space, and stack overflow is detected at
runtime in the prologue and epilogue of every function. When stack overflow occurs,
a linear extension is performed first. The linear extension attempts to append a new
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page contiguously to the current virtual address. If the following virtual address is
unavailable, a new stack segment is allocated and linked. This stack mechanism does
not have the false “out of stack space” errors and allows the thread to begin with a
smaller stack size. However, it introduces the runtime overhead for every function call
(there are eight instructions inserted to check the stack overflow for every function
call).

Google’s Go implements a segment stack mechanism by initially allocating 4 KB
for each thread (goroutine) and having the linker inserts a preamble at each procedure
(function) call. When overflow is detected, a new stack page is allocated and linked
to the previous stack page. Because of the “hot split” problem (Cheney, 2014), Go
programming language replaces this segment stack mechanism by a stack copying
mechanism, which creates the new segment stack by doubling the size and copies the
old segment stack into it. To support the stack copying, Go implements the escape
analysis by tracing the flow of the input and output values from the call graph (Google,
2018a).

IBM’s z/OS implements a segmented stack mechanism (IBM, 2010) for passing ar-
guments to external routines, which replaces the explicit inline check for overflow with
storage protect mechanism that detects stores past the end of the stack segment. A
guard page is appended to each stack segment. The guard page triggers an exception,
which causes a new stack segment allocation. To make the stack appear contiguous to
the application, all fields on the stack for the caller (including the arguments) should
be copied into the new stack segment.

Capriccio (von Behren et al., 2003) improves the runtime overhead of Thread Seg-
ment Stacks by analyzing the call graph of a program. Based on the call graph,
Capriccio calculates stack usage and inserts the stack checkpoint at compile-time,
rather than inserting checkpoints to every function. For example, there are two con-
secutive function calls, foo16 and foo32, requiring 16 bytes and 32 bytes of stack space
respectively. There is only one checkpoint for 48 bytes inserted in the prologue of the
function foo16. For the external library function calls, if the maximum stack usage is
unknown, a default “large enough” stack chunk is allocated. A checkpoint is inserted
in the prologue of every recursive function. Capriccio removes the false “out of stack”
errors and minimizes the overhead of inline stack checkpoints by analyzing the call
graph.

5.2.4 Stack Mechanisms Summary

Table 5.2.4 contains a summary of various programming languages’ stack mechanisms.
The meaning of the column is:

• Stack Type — This refers to whether the stack can grow or not.
Dynamic. The stack grows automatically as needed during the runtime.
Fixed Size. The stack has a fixed size and can not grow.
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• Thread Type - As discussed in Section 1.1.1, the concept of a thread in pro-
gramming languages is mapped to either the operating system thread or the
thread library.
Native Threads. Native threads mean that each thread (or coroutine) is di-
rectly mapped to a thread generated at the operating system level.
User-Space. User-Space means that each coroutine created by a programming
language is manipulated in the user space.
Java Threads. JVM decides how to map a Java thread to the underlying
operating system.
Pthreads. Pthreads refers to the Pthread implementation on different operat-
ing systems.

Programming Language Version Stack Type Thread Type
Go Goroutines 1.1 Dynamic, Stack Copying User-Space

Erlang Processes 20.2 Dynamic, Garbage Collector User-Space
Scala Coroutines 2.12.4 Fixed Size User-Space

Lua Corotines 5.3.4 Fixed Size User-Space
Kotlin Coroutines 1.2 Fixed Size User-Space

Rust Threads 1.24.0 Fixed Size Native Threads
Haskell Threads 2010 Fixed Size Native Threads
Kotlin Threads 1.2 Fixed Size Java Threads
Scala Threads 2.12.4 Fixed Size Java Threads

Scheme Threads 4 Fixed Size Pthreads
Lua Threads 5.3.4 Fixed Size Native Threads
JavaScript V8 Fixed Size Single Threads

Table 5.1: Stack Mechanisms Summary for Programming Languages

5.3 Experimental Setup

Our goal is to discover an efficient stack mechanism that works for both multi-threaded
and single-threaded processes. Therefore, scalability is a requirement that must be
met. In addition, there are some other requirements:

• The stack mechanism should support concurrent multithreading;

• The stack memory could be shared among threads;

• Stack data should be referenceable. That is, the stack data can not be moved
around. Because the current implementation of Lime uses pointers, moving
stack data would introduce significant complexity to the runtime system.
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The following stack mechanisms do not meet the above requirements:

• All stack mechanisms from Section 5.2.1 that lack dynamic sharing of stack
memory among threads. With these mechanisms, each thread is assigned with
an exclusive, fixed-size stack space.

• Hybrid stack sharing uses a fixed number of fixed-size stacks for all the running
threads. However, the overhead of context switching would be significant for a
large number of threads.

• Multitask stack sharing was designed for embedded systems and did not support
concurrent multi-threading. Extending this stack mechanism to support con-
current multi-threading would require synchronization to avoid race conditions
between threads.

• Go’s stack copying mechanism relies on the escape analysis, provided by Go’s
runtime system that moves stack data around.

Capriccio is the only stack mechanism that meets the criteria. Capriccio, which
we call the Look-Ahead stack mechanism, can predict stack overflow at compile time.

5.4 Moore-Oliva’s Lime Calling Convention

Instead of modifying the open-source compiler frameworks, such as GCC and LLVM,
Moore-Oliva (2010) built a C-like Lime compiler and runtime system from scratch for
the following two reasons: “First, it saves time and can avoid unforeseen complications
resulting from modifying an existing complicated code-base. Second, it was unknown
if some optimizations relied on a contiguous stack frame”.

However, how to implement the Lime compiler in LLVM has always been one
of our goals. LLVM has features that are very attractive for developing a Lime
compiler: such as portable code generation, reusable standard optimizations, and
multiple backends, including ARM, x86 and PowerPC processors.

Inspired by the XRay project (Berris et al., 2016), we found that the Lime calling
convention can be implemented by modifying LLVM’s cdecl calling convention. First,
pseudo instructions are inserted during the LLVM’s MachineFunction pass. Second,
the pseudo instructions are replaced with actual instructions when LLVM emits the
instructions. Because Lime’s calling convention changes the layout of the stack frame,
we have to modify the LLVM source code rather than utilize the public interfaces to
implement the Lime calling convention.

We first give a brief overview of the Lime calling convention, the structure in detail
will be discussed in the following section:

• The callee cleans up the arguments from the stack.
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• Any procedure call can trash any register (except EBP, ESP and EIP registers).

• The first instruction for a procedure call is to store the return address on the
stack.

• The return address is stored on the bottom of stack frame.

5.5 Implemented Stack Mechanisms

In this section, we first introduce two traditional fixed-size stack mechanisms. Then,
we discuss a straightforward segmented stack mechanism: each stack frame is allocated
on the heap. Lastly, we present the LookAhead stack mechanism and Guard-Page
stack mechanism. All these stack mechanisms are implemented in a C-like Lime
compiler to compare performance.

5.5.1 Traditional Fixed-Size Stack with “Caller-cleanup”

This call stack mechanism does not meet the criteria outlined in Section 5.3, but it is
closer to the LookAhead stack mechanism discussed later on and allows for a better
comparison of the measurements.

None of the stack mechanisms discussed in this section are restricted to Intel
X86. They can be implemented on other architectures, such as ARM. For example,
this “caller-cleanup” mechanism can be implemented on ARMv7 as shown in the
Listing 5.2 and 5.4 .

Caller Instructions The caller routines for this stack mechanism implement the
cdecl calling convention. The caller is responsible for pushing arguments to the stack,
as well as cleaning the stack on procedure exit by adding args size to the stack
pointer. The ESP (or SP on ARM) register points to the top of the stack.

Listing 5.1: “Caller-cleanup” Caller Instructions on X86

PUSH arg1
...
PUSH argn
CALL callee_name
ADD ESP, args_size

Listing 5.2: “Caller-cleanup” Caller Instructions on ARM

PUSH {r0-r3}
BX callee_name
ADD SP, #args_size
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Callee Instructions The callee ensures that the stack pointer has the same value
on return from the function call as it had on entry.

Listing 5.3: “Caller-cleanup” Callee Instructions on X86

callee_name:
SUB ESP, callee_stack_size
... #Body of procedure
ADD ESP, callee_stack_size
RET

Listing 5.4: “Caller-cleanup” Callee Instructions on ARM

callee_name:
PUSH {r4, LR}
SUB SP, #callee_stack_size
...
ADD SP, #callee_stack_size
POP {r4, PC}

5.5.2 Traditional Fixed-Size Stack with “Callee-cleanup”

This mechanism also does not meet the criteria outlines earlier, but it is closer to the
Guard-Page stack mechanism discussed later on and allows for a better comparison
of the measurements.

Caller Instructions The caller pushes arguments to the stack, but does not clean
the stack on function exit.

Listing 5.5: “Callee-cleanup” Caller Instructions

PUSH return_address
PUSH arg1
...
PUSH argn
JMP callee_name

Callee Instructions The callee ensures that the stack pointer has the same value
on return as before the caller pushed the arguments on the stack.

Listing 5.6: “Callee-cleanup” Callee Instructions

callee_name:
SUB ESP, callee_stack_size
... #Body of procedure
ADD ESP, callee_stack_size + arg_size
JMP [ESP]
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Figure 5.2: Per Procedure Heap Allocation Call Stack

5.5.3 Per Procedure “Heap” Allocation

As shown in Figure 5.2, a straightforward segmented stack mechanism allows each
function invocation to have its stack frame, just “large enough” to hold the callee’s
stack frame as well as a pointer to the caller’s stack frame. The stack frames are
structured as a linked list allocated on the heap. The caller first allocates a new stack
frame, then pushes the arguments on the new stack frame (while referring to its stack
frame), calls the callee, and finally deallocates the stack frame. Allocation is done by
calling malloc, which requires its own stack space. Neither the current nor the new
stack frame can be used for that; hence a per-thread stack region is reserved for this
purpose.

5.5.4 LookAhead Stack Mechanism

LookAhead stack mechanism is structured as a linked list of stack chunks. Unlike the
stack mechanism we discussed in Section 5.5.3, where each function has a region of
memory dynamically allocated containing just one stack frame, one stack chunk may
contain many stack frames, as depicted in Figure 5.3. When a function call would
cause an overflow, a new stack chunk is created and linked. The EBP register is
reserved for pointing to the current stack chunk. The stack overflow is detected by
using Capriccio’s (von Behren et al., 2003) mechanism.

Caller Instructions The instructions discussed here are generated when the func-
tion call needs a checkpoint. When the function call does not need a checkpoint, the
caller instructions are the same as to the code detailed in Section 5.5.1.

Listing 5.7: LookAhead Caller Instructions

MOV EAX, ESP
MOV EDX, ESP
ADD EDX, (STACK_CHUNK_SIZE

-LONGEST_PATH(callee_name)-16)
CMP EDX, EBP
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Figure 5.3: Stack Chunk for Look-Ahead Overflow Detection

JGE label_1
CALL STAMEX_OVERFLOW_HANDLER

label_1:
PUSH arg_1
...
PUSH arg_n
CALL callee_name
ADD ESP, args_size
CMP EBP, ESP
JNE label_2
CALL STAMEX_UNDERFLOW_HANDLER

label_2: ...

The overflow handler allocates a new stack chunk by calling malloc, saves the
previous values of EBP and ESP, and reserves a new thread stack. Since a subsequent
call to malloc (and free) requires its own stack space, the thread stack needs to be
reserved for this purpose. The stack pointer ESP is set so that, on return from the
handler, the caller can push all the parameters on the stack in the possibly newly
allocated chunk. The underflow handler restores the previous stack chunk and frees
the current stack chunk.

Callee Instructions The callee ensures that the stack pointer points to the same
location as it pointed on entry. The instructions are identical to the instructions
detailed in Listing 5.6.

5.5.5 Guard-Page Stack Mechanism

Guard-Page stack mechanism is structured as a linked list of stack chunks, as depicted
in Figure 5.3. On overflow, a new stack chunk is created and linked. The caller
instructions are modified to ensure that “the deepest region of memory that the
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Figure 5.4: Stack Chunk for Guard-Page Overflow Detection

callee will use is accessed first”. If the accessed memory is beyond the current stack
chunk, the SIGSEGV signal is triggered by the guard page, which is appended to
the current stack chunk. Then, the stack extension is performed for the thread. The
current Lime implementation assumes that the stack frame for a function is always
smaller than the guard page. To support the stack underflow, the first procedure’s
return address is replaced with the stack underflow procedure’s address (Procedure D
Ret Addr and Underflow Address in Figure 5.4). The following procedures store their
return address to the bottom of the stack frame (Procedure E’s Return Address in
Figure 5.4). The underflow procedure is responsible for cleaning up the current stack
chunk, restoring the previous stack chunk and executing the program.

Caller Instructions Lime stack mechanism modifies the stack frame’s layout by
moving the return address to the end of the stack frame. The caller instructions
discussed in Listing 5.4 is used for invoking Lime procedures. For the external library
functions, a trampoline procedure is needed.

To check if there is enough stack space left for the next procedure call, a store
instruction which writes the procedure’s return address (EDX register) to the stack is
performed. If the store instruction fails, a SIGSEGV is generated, and the signal han-
dler is responsible for creating a new stack chunk, loading the underflow procedure’s
address to the EDX register and executing the store instruction (executed before)
again. Also, the underflow procedure’s address is replaced with the next procedure’s
return address.

Listing 5.8: Guard-Page Caller Instructions

MOV EAX, ESP
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MOV EDX, return_label
MOV [ESP-callee_stack_size], EDX
PUSH arg1
...
PUSH argn
JMP callee_name

return_label: ...

Callee Instructions The callee ensures that the entire stack frame is cleaned up
before returning. Compared to the standard C calling convention, Lime’s callee needs
to execute the underflow procedure before returning to the previous procedure.

Listing 5.9: Guard-Page Callee Instructions

callee_name:
SUB ESP, callee_stack_size
... #Body of procedure
ADD ESP, callee_stack_size+arg_size
JMP [ESP-(callee_stack_size+arg_size)]

Stack Overflow and Underflow When a SIGSEGV is generated, the signal han-
dler will first allocate a memory aligned chunk by calling memalign, and then append
a guard page to the stack chunk, ensuring that any accesses will cause a SIGSEGV.
As the cdecl calling convention differs from the Lime calling convention and as calls
to memalign and mprotect need their own stack space, a separated stack is needed.

5.6 Experiments

In order to isolate the overhead of procedure call mechanisms from other compu-
tations, three programs with little computation but extensive calls were selected as
usage profiles, each with different characteristics: Summation, Unbalanced Binary
Tree, and Quicksort. Some experiments have a single-threaded and multi-threaded
version. Each multi-threaded version has two variations: the “cores” variation and
the “quantity” variation. The “cores” variation tests from one to eight threads to
examine the scalability over four individual cores (or eight hardware threads provided
by “Hyper-Threading Technology” (Marr et al., 2002)). The “quantity” variation
tests the scalability when the number of threads is greatly larger than the number
of available physical cores in the system. In multi-threaded experiments, the stack
address space of 1 GB is divided equally among each thread, so to keep the total used
memory constant for avoiding impacts of the virtual memory management. The size
of stack chunks is eight pages or 32 kilobytes, excluding the guard page.
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There are two summation experiments: deep summation and big summation. The
deep summation generates the stack overflow by executing a deep recursion while the
big summation produces the stack overflow by increasing the size of the stack frame.

Deep Summation. This program sums the numbers from 1 to n recursively. This
example is compiled without tail recursion optimization on purpose.

Listing 5.10: Summation

int summation(int n) {
int ret;
if (n == 0) { return 0; }
ret = n + summation(n - 1);
return ret;

}

This experiment aims to magnify the procedure invoking overhead by calling a deep
recursive procedure with a small stack frame, and that contains a minimum of com-
putation. For the multi-threaded version, each thread sums the numbers from 1 to m
(m is divisible by the number of threads). The “cores” variation was run with from
1 to 20 threads, and the “quantity” variation was run with 20, 32, 64, 128, 256, 512
and 1024 threads.

Big Summation. This experiment aims to test the effect the stack frame size has
on the various stack implementations. Programs allocate stack frames of various
sizes. To understand what the typical distribution of stack frame sizes is, we analyzed
Gnuplot 4.6.0 (we analyzed three other well-known open-source programs as well to
be sure that Gnuplot is representative). Figure 5.5 shows the relative frequency of
declared C functions for stack frame sizes from 4 to 256 bytes and the relative number
of calls in a typical run. It turns out that 98% of function calls are to functions with
a stack frame of 256 bytes or less, and about 30% are to functions with a stack frame
size of 32 bytes. The average is about 50 bytes.

The function summation above has a stack frame of 8 bytes (4 for the return
address and 4 for the parameter). We have modified it by allocating local variables
to increase the stack frame size to 16, 32, 48, 64, 80, 96, 112 and 128 bytes.

Unbalanced Binary Tree. This experiment implements an ordered binary tree,
and this tree is a balanced binary tree of integers that is 20 levels deep. There is an
unbalanced branch (1 million integers) added to the tree. The program will spend 70%
of the time in searching for the integer contained within the 20 levels deep balanced
portion and 30% of the time for the unbalanced branch, triggering a spike in stack
usage.

This experiment compares the performance among the different stack mechanisms
for a large number of highly variable-sized stacks usage. For the multi-threaded
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Figure 5.5: Distribution of stack frame sizes of Gnuplot

version, each thread performs 100 searches as the number of threads increase. The
“cores” variation was run with from 1 to 20 threads, and the “quantity” variation was
run with 20, 32 and 64 threads.

Quicksort The implementation is taken from (Kernighan and Ritchie, 1988). This
experiment is meant to be representative of programs that do not have a deep calling
structure but instead contain some computation (here the comparisons and swaps).
We compare various stack mechanisms for sorting 106, 107, and 108 random integers
with a single-threaded version only. As the calling structure is so shallow that all
stack frames are in the first chunk of Guard-Page and Look-Ahead, there would be
no contention between threads in a multi-threaded version.

5.6.1 Results

The experiments were run on the following processors:

Pentium 4 released in November 2000, 3.2GHz, containing 42 million transistors, is
based on the NetBurst architecture featuring a 20 stage pipeline to achieve a
high CPU speed.
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Core 2 Duo released in May 2007, 1.8GHz, containing 291 million transistors, has
2 (physical) processor cores and a 14 stage pipeline.

Sandy Bridge I7 released in January 2011, 3.4GHz, containing 1.16 million tran-
sistors, has a 14-17 stage pipeline and has 4 physical cores and 8 logical cores
through hyper-threading technology.

Haswell I7 released in August 2013, 3.4GHz, containing 1.4 billion transistors, has
a 14-19 stage instruction pipeline and has 4 physical cores and 8 logical cores
through hyper-threading technology. It improves the back end of the pipeline:
the instruction decode queue is not statically partitioned between the two threads
that each core can service.

Each experiment was run sixty individual times. The results reported here are the
averages with a 95% confidence interval. The difference between the maximum and
minimal total execution time, as reported in Table 5.2 for one set of experiments, is
small enough, particularly for larger running times. For the other experiments, only
the average value is reported.

5.6.2 Impact of Processor Architecture

In the first experiment, we analyze the impact of the processor architecture on the
relative efficiency of the procedure calling mechanism. We use single-threaded Deep
Summation with different depths of recursion, as Deep Summation makes the most
use of the stack; the results are reported in Figure 5.6. As expected, the running
time is linear with respect to the sum being calculated. However, while on older pro-
cessors, Guard-Page, Look-Ahead, Caller-cleanup, and Callee-cleanup perform nearly
identical, the newer the processor, the better Guard-Page and Callee-cleanup perform:
Look-Ahead and Caller-cleanup perform half the cleanup in the callee and half the
cleanup in the caller, resulting in one more instruction. A possible explanation is that
the deep pipeline of Pentium 4 can cope with that better than newer processors.

Caller-cleanup and Callee-cleanup use a fixed stack size of 1GB and are not scal-
able, whereas Guard-Page and Look-Ahead allocate chunks of eight pages (plus one
guard page for Guard-Page). Guard-Page and Callee-cleanup have a similar caller and
callee sequences. However, the extra overhead for allocating chunks makes Guard-
Page slower than Callee-cleanup: for summing up to 100 million, Guard-Page and
Look-Ahead allocate approximately 24420 chunks (due to internal fragmentation,
LookAhead needs five more chunks than Guard-Page). Surprisingly, Guard-Page
is more efficient than Caller-cleanup, the standard GCC convention, which itself is
marginally faster than Look-Ahead.

5.6.3 Impact of Usage Profile in Single-Threaded Runs

All the remaining experiments were carried out on Haswell I7.
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Figure 5.6: Single-Threaded Deep Summation on Haswell i7, Sandy Bridge i7, Core
2 Duo and Pentium 4

Deep Summation. As can be seen in Figure 5.7, the overhead of the dynamic
memory allocation for the Heap mechanism is significant. The figure also gives the
times of GCC without optimization (“gcc”) and GCC with optimization (“gcc -O2”).
GCC with optimization has the best performance because it eliminates the recursive
calls and there is no stack space used for method calls. Our Lime compiler with Caller-
cleanup performs somewhere in between. The figure also magnifies the observations
from the first experiment.

Unbalanced Binary Tree. As can be seen in Figure 5.8, the overhead of the
dynamic memory allocation for the Heap mechanism continues to be very significant.
The trends observed in Summation continue to hold; the only difference is that the
Caller-cleanup mechanism runs faster than the Guard-Page mechanism: the overhead
from dynamic memory allocation for every stack chunk is more significant than the
overhead of Caller-cleanup compared to Callee-cleanup.
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Threads 1 2 3 4 5 6 7 8
Maximum 451 551 630 720 824 927 1060 1193
Average 430 529 615 701 806 911 1042 1156
Minimum 417 502 586 659 778 898 1014 1125

Table 5.2: The Original Times in ms of the Unbalanced Binary Tree Multi-threaded
Look-Ahead Experiment Over 60 Runs

Elements 106 107 108

Callee-cleanup 152 ms 1,686 ms 19,086 ms
Guard-Page 156 ms 1,737 ms 19,618 ms
Caller-cleanup 157 ms 1,755 ms 20,007 ms
Look-Ahead 159 ms 1,775 ms 20,257 ms
Number of calls 14,703,523 160,540,046 1,855,875,685
Maximal depth 19 21 25

Table 5.3: Quicksort Single Threaded

Quicksort. As can be seen in Table 5.3, the maximal call depth (including aux-
iliary functions) is so shallow that all computation remains within the first chunk.
With Guard-Page mechanism, a guard page is not hit, and Guard-Page performs
consistently better than Look-Ahead. However, the difference is at most 3%.

5.6.4 Impact of Usage Profile in Multi-Threaded Runs

Deep Summation. The times reported in Figure 5.9 are the total running time for
all threads for summing from 1 to n, where n is divisible by the number of threads).
The Guard-Page mechanism, while starting out with better performance than Caller-
cleanup and Look-Ahead, demonstrates the worst scalability, and eventually, the worst
performance, as the number of threads exceeds the number of available cores. To iso-
late the cause, we introduced a stack chunk reuse mechanism: rather than deallocating
stack chunks; they are placed in queue for future use. On allocation, first chunks from
that queue are used before a new chunk is allocated through memalign and mprotect.
Calls to mprotect take more than 100 times as long as calls to memalign for allocating
page-aligned memory, which itself takes about twice as long as malloc. Guard-Page
needs mprotect and memalign. Calls to mprotect cause the processor’s TLB to be
flushed, thus incur a heavy penalty. The new mechanism is called “Guard-Page-with-
reuse”, the old mechanism is renamed to “Guard-Page-without-reuse”. As can be
seen in Figure 5.10, the Guard-Page-with-reuse mechanism has a better performance
than Look-Ahead when the number of threads exceeds 200. The reason is that the
concurrency is so high that some threads manage to start their cleanup phase while
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the others are still in their growth phase, in this case, the stack chunks are able to be
reused, meaning there are fewer calls to malloc and mprotect. To magnify this effect,
when summation is repeated ten times, Guard-Page outperforms Caller-cleanup and
Look-Ahead, see Figure 5.11.
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Figure 5.9: Deep Summation Multi-threaded (Guard-Page without reuse)

Big Summation. As evident from Figure 5.12, there is almost a linear increase in
the time with the increase for the stack frame size due to the need for allocating mem-
ory, despite the same computation taking place. For a single run, Guard-Page per-
forms worse than Look-Ahead because of the overhead of calling mprotect. However,
if the runs are repeated ten times and chunks are reused, Guard-Page outperforms
Look-Ahead significantly.

Unbalanced Binary Tree. The time reported in Figure 5.13 is the total time for
all threads to finish. Guard-Page-with-reuse scales identically to Caller-cleanup and
Look-Ahead. Guard-Page-with-reuse continues to show better scaling than Look-
Ahead.
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Neither the Caller-cleanup nor Callee-cleanup was tested when the number of
thread exceeds 8, as there is not enough space to share for a large number of threads
that require a fixed size and “large enough” stack.

The spike of Look-Ahead in Figure 5.13 results from mutex contention. When
threads allocate and free memory at the same time, there could be increased mutex
contention in the malloc function. To solve this problem, “Glibc creates additional
memory allocation arenas if mutex contention is detected”. The number of arenas
usually equals to the number of cores (Linux, 2018).

To summarize, Guard-Page stack mechanism tends to perform worse than Look-
Ahead, if (1) there is a deep recursion without repeats or there are a large number of
short-lived threads (so the overhead of mprotecting does not amortize), (2) the stack
frame size is large (so the guard page is more frequently hit). However, none of these
situations are typical. Thus, the conclusion we can draw is that Guard-Page performs
better in practice, particularly for languages that do not allow arrays to be allocated
on the stack and thus have small stack frames.
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Chapter 6

Guarded Commands in Lime

In this chapter, we first present an overview over existing lightweight thread im-
plementations. Then, we discuss the previous implementation in Lime for guarded
commands. Lastly, we propose the new implementation of guarded commands.

6.1 Lightweight Thread Implementations

In this section, we first discuss the lightweight thread implementations in practical
programming languages. Then we examine the lightweight thread implementations.

In this section, we examine two typical implementations of lightweight threads,
Erlang’s processes and Go’s goroutines.

6.1.1 Erlang Process

In Erlang, the concept of the lightweight thread is called a process. As the name
implies, Erlang processes are similar to OS processes: an Erlang process has its ad-
dress space and can communicate by sending messages, and a “preemptive” scheduler
controls the execution.

A process in Erlang consists of mainly four blocks of memory: a stack, a heap, a
message area, and the PCB:

• Stack: stores local variables, arguments and the return address;

• Heap: stores larger structures, such as lists and tuples;

• Mailbox: stores received messages;

• PCB: serves as a repository for the state of the process, similar idea of PCB in
an OS.

Erlang dynamically allocates the stack, the heap and the mailbox, which can grow
and shrink as needed. Like operating systems, Erlang runtime system allocates the
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Figure 6.1: Erlang’s Process Memory Layout

heap and the stack together, and the stack grows towards lower memory address while
the heap towards higher memory address. The default size of this stack-heap memory
is 233 words. If the pointers htop and stop were to meet, it would mean the process
has run out of memory and the runtime system has to do a garbage collection to free
up memory. It uses a per process copying generational garbage collector.

As a concurrent programming language, Erlang has a preemptive scheduler on
top of the cooperative scheduler. The scheduler ensures that an Erlang process can
yield within a limited time. A process can only be suspended at well-defined points,
such as at a receive or a function call. Strictly speaking, the scheduler of Erlang is
cooperative.

There are two reasons that Erlang’s scheduler can be regarded as a preemptive
scheduler on top of a cooperative scheduler. First, as a functional programming
language, there is no way for an Erlang process to run for a long time without calling
a function. Second, because there are no other loop constructs than recursion and
list comprehensions, it is impossible for an Erlang process to loop forever without a
function call. There is a reduction counter for each function. The reduction counter
is decreased by one when the function is called. The process is suspended when the
reduction counter reaches the limit 0.

6.1.2 Goroutine

In Go, the concept of the lightweight thread is called a goroutine. A goroutine in-
cludes a stack, an instruction pointer and other information for scheduling goroutines,
such as any channel it might be blocked on or the thread it binds to. Goroutines use
channels as the primary synchronization and communication primitive, and a coop-
erative scheduler controls the execution. In Go’s runtime system, the G structure (in
Listing 6.1) represents a Goroutine, which includes fields necessary to keep track of
its status (Google, 2018b).
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Listing 6.1: G Structure in Go

type g struct {
stack stack
stackguard0 uintptr
stackguard1 uintptr

_panic * panic // innermost panic
_defer * defer // innermost defer
m *m // current m;
...

}

As we have discussed in Section 1.1.1, there are three models for threading. One
is N : 1 where several userspace threads run on one kernel thread. Context switching
of this model is fast, but it cannot take advantage of all of the cores on the machine.
Another is 1 : 1 where one userspace thread matches one kernel thread. It can take
advantage of multicore systems, but context switching is slow because it has to trap
through the OS.

Figure 6.2: Go’s Execution Model

To achieve better performance, Go uses an M : N scheduler which maps an
arbitrary number of goroutines to a fixed amount (the number of available cores) of
kernel threads. This scheduler can achieve quick context switches for goroutines and
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takes advantage of all the available cores on the machine. The only disadvantage of
this approach is the complexity it adds to the scheduler and the runtime system.

There are three internal types of channels: synchronous channels, asynchronous
channels and asynchronous channels with zero-sized elements. Compared with syn-
chronous channels, asynchronous channels contain a ring buffer and position informa-
tion of the data while asynchronous channels with zero-sized elements only contain
a counter which represents the number of items in the channel. In this section, we
focus on the synchronous channels.

For each synchronous channel, as illustrated in Listing 6.2, there are two waiting
queues for the senders and the receivers. The field closed represents whether the
channel is closed or not. One lock protects a synchronous channel. When a goroutine
sends data to a synchronous channel, it locks the channel first and then checks whether
it needs to block or to wake up the receiver.

Listing 6.2: Synchronous Channels in Go (Google, 2018b)

type hchan struct {
qcount uint // total data in the queue
dataqsiz uint // capacity of the circular queue
buf unsafe.Pointer // points to an array of dataqsiz elements
elemsize uint16
closed uint32
elemtype *_type
sendx uint // send index
recvx uint // receive index
recvq waitq // list of recv waiters
sendq waitq // list of send waiters
lock mutex

}

6.2 Previous Implementations of Guarded Com-

mands in Lime

As we have discussed before, guarded commands can provide programmers with a
more natural way to prove the correctness of the program. Also, guarded commands
can give the system designer a unified and straightforward design view. However, as
we have explained, how to efficiently implement guarded commands is our current
research focus.

For the ease of discussion, we take the start read method of the Reader and Writer
problem (from Section 3.5.3) as an example to compare different implementations.
Firstly, we discuss a simple solution by using busy waiting. Secondly, we demonstrate
the previous implementations in Section 6.2.2.
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Listing 6.3: Start read Method

method start_read()
when n > 0 do

n := n - 1

6.2.1 Busy Waiting

The simplest solution is to have the disabled methods busy waiting for the guards
when the method guards do not hold. When the program enters a guarded method,
it checks whether the guard is true or not. If it is not, the program sits in a tight
loop waiting until it is. Because of the significant drawback of CPU time-wasting,
this solution is never implemented.

Listing 6.4: Reader and Writer Solution Using Busy Waiting

void start_read() {
lock();
while (rw <= 0) {unlock(); lock();}
rw--;
unlock();

}

6.2.2 Previous Implementations

Lou (2004) implements the guarded commands by using monitors in Java (List-
ing 6.5). In principle, all method calls that invoke the other objects’ methods need
to be synchronized. So the call statement is put between the two operations,
monitorenter and monitorexit (P and V operations discussed in Section 2.1.2).
For all guarded classes, the execution of the method may affect the guards of actions
or guarded methods. So when a method or an action is successfully executed, all
threads need to be notified so that the suspended threads have to re-evaluate the
guards. The body of a guarded method can be executed if the guard holds; otherwise,
the method is blocked, and the thread which is executing the method gets suspended.
If the guard of the action holds and the action is executed, otherwise it skips current
action.
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Listing 6.5: Reader and Writer Solution Using Monitors (Lou, 2004)

public synchronized void start_read() {
while (rw <= 0) {
try {wait();}
catch (InterruptedException e) {}

}
rw--;

}

Cui (2009) implements the guarded commands by using condition variables in
Pthread. Each object, mapped to a thread, has a private lock and a condition variable.
All the methods of the object have an additional parameter which points to the original
caller. The thread acquires the lock at the entry of the method and releases the lock
at the exit. The method can only be executed when the guard is true. Otherwise,
it waits on the condition variables. Before the worker thread exits the method, the
related waiting threads are wakened up to re-evaluate the guard. If the guard of the
action holds and the action is executed, otherwise it skips current action.

Listing 6.6: Reader and Writer Solution Using Condition Variables

void start_read(rw_arbiter *a) {
pthread_mutex_lock(&a->mutex);

while (a->rw <= 0)
pthread_cond_wait(&a->cv, &a->mutex);

a->rw--;
pthread_mutex_unlock(&a->mutex);

}

A fixed number of threads are created in Lou’s implementation and a false deadlock
situation may happen when all Java threads are conditionally blocked but there are
other objects that are eligible to execute. Cui’s implementation maps one object to
one thread. The threads are managed by the operating system. These two guarded
commands implementation have the same deficiency: all the blocked callers need to
re-evaluate the guard when a method or an action is successfully executed. The
performance decreases significantly when the number of active objects increases. We
can see in Section 6.4.1, for the priority queue example, if 80 active objects are mapped
to 80 threads, both monitors and condition variables implementations are around 70
times slower than the lightweight thread implementations.

6.3 Guarded Commands Implementations

Compared with previous implementations of guarded commands, a new implemen-
tation of guarded commands is illustrated on the start read method which is from
Listing 3.7. The worker thread first unlocks the object and then switches to the
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scheduler when the guard does not hold. Otherwise, the worker thread executes the
method body and then unlocks the current object. The current implementation of
Lime only supports basic Boolean expressions.

Listing 6.7: Reader and Writer Solution Expressed in Lime

method start_read()
while true do

if lock(this.lock) then
if this.rw <= 0 then

this.rw := this.rw - 1
unlock(this.lock)
return

else
unlock(this.lock)

transfer(Scheduler.schedule(originator))

6.3.1 Translation Schemes

We use the following Lime class in Listing 6.8 to demonstrate the translation scheme
for the guards.

Listing 6.8: Lime Class Example

class C
var v: int
var g1, h1: bool
init()

P
method M1() : int

when g1 do
Q1

method M2()
Q2

action A1
when h1 do

R1
action A2

R2

Class C represents a Lime class and it contains a local field v. There are two
methods in this class: M1 is a guarded method and M2 is an unguarded method.
Method M1 can be called only when the guard g1 holds. There are two actions in
this class C : Action A1 is a guarded action and A2 is an unguarded action. A1 can
be executed when the guard h1 holds. Methods in Lime may have arguments and
return values.
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The translation scheme of the guarded method is demonstrated in procedure
C M1 . The worker thread obtains the lock when entering and releases the lock
when exiting. If the guard this.g1 does not hold, the worker thread releases the lock
and calls transfer function, shown in Listing 6.14, to switch to the scheduler. The
method transfer(Scheduler.schedule(originator)) is similar to the yield method and
the parameter originator points to the source active object which executes its actions.
The method body Q1 is translated to this.Q1 in Listing 6.9 without any semantic
changes. The worker thread puts the current object to the local queue before it returns
from the method call.

Listing 6.9: Lime Guarded Method Translation Expressed in Lime

method C_M1(this) : int
while true do

if lock(this.lock) then
if this.g1 then

this.Q1
putrunq(this)
unlock(this.lock)
return

else
unlock(this.lock)

transfer(Scheduler.schedule(originator))

Unlike the guarded method, an unguarded method only needs to acquire the lock
before executing the method body this.Q2. The worker thread puts the current object
to the local queue before it returns from the method call.

Listing 6.10: Lime Unguarded Method Translation Expressed in Lime

method C_M2(this)
while true do

if lock(this.lock) then
this.Q2
putrunq(this)
unlock(this.lock)
return

else
transfer(Scheduler.schedule(originator))

Actions in Lime are executed automatically and can only be invoked by the sched-
uler. Actions have no arguments or return values. The translation scheme of the
guarded actions is demonstrated in procedure C A1. Unlike methods, actions never
return. It switches back to the scheduler at the end of actions’ execution.
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Listing 6.11: Lime Guarded Action Translation Expressed in Lime

method C_A1(this)
while true do

if lock(this.lock) then
if this.h1 then

this.R1
unlock(this.lock)

else
unlock(this.lock)

transfer(Scheduler.schedule(originator))

An unguarded action is translated as follows:

Listing 6.12: Lime Unguarded Action Translation Expressed in Lime

method C_A2(this)
while true do

if lock(this.lock) then
this.R2
unlock(this.lock)

transfer(Scheduler.schedule(originator))

6.3.2 Context Switches

As we have discussed in Section 1.1.1, the overhead of a thread context switch is still
significant. Thus Lime uses a lighter concept — coroutines. Coroutines in Lime are
cooperatively scheduled, and arguments are passed on the stack. The context switch
between coroutines only happens at well-defined points, when an explicit call is made
to the Lime runtime scheduler. The code in Listing 6.13 switches from the scheduler
to a coroutine by saving the ESP and EBP registers on the coroutine’s stack and
restoring current coroutine’s ESP and ESP registers. The return address is always
stored on the top of the current stack.

Listing 6.13: Switch to Coroutine

switch_to:
MOV ECX, [ESP + 4] ;coro_stack
MOV EAX, [ECX]
MOV EDX, [ECX + 4]
MOV [ECX], EBP
MOV [ECX + 4], ESP
MOV EBP, EAX
MOV ESP, EDX
RET

The code in Listing 6.14 switches from a coroutine back to the Lime scheduler
(transfer in Section 6.3.1).

96



Ph.D. Thesis — Shucai Yao McMaster — Computing and Software

Listing 6.14: Switch to Lime Scheduler

switch_to_sched:
MOV EAX, [EBP] ;pre EBP
MOV EDX, [EBP + 4] ;pre ESP
MOV [EBP], EBP
MOV [EBP + 4], ESP
MOV EBP, EAX
MOV ESP, EDX
RET

6.3.3 Lime Runtime System

In this section, we discuss Lime’s runtime system implementation. First, we illustrate
the communication between objects. Second, we introduce the Lime cooperative
scheduler. Third, we demonstrate the optimization strategies which are applied to
increase the performance.

There is a naive approach to implement the Lime runtime system. All the active
objects are evenly stored among worker threads. Worker threads are implemented as
daemon threads, and the main thread determines when to terminate the program.
Worker threads keep searching for enabled objects to execute. To improve the per-
formance, a next field is added to the active node to indicate which active object is
waiting for execution.

However, the performance of this naive Lime runtime system implementation de-
cays when the number of active objects increases. The worker threads are searching
for enabled objects in a cyclical order. The overhead of context switching is accumu-
lated during the search although the context switching is fast in Lime. The next field
can only relieve the problem, to some content. The Lime runtime system holds all
active objects in the pool, rather than enabled objects (Figure 6.3).

In the current implementation of Lime, each worker thread has two FIFO queues
for active objects. The suspended object queue is for active objects which “got stuck”
at method calls. The enabled object queue is for the active objects which have enabled
actions. The disabled objects are not added to the enabled objects queue until the
objects become enabled through method calls. These two object queues are initially
empty. When an active object has enabled actions, a pointer to it is added to the
enabled object queue. If the enabled object “gets stuck” at a method call, this object
is added to the suspended object queue. A worker thread requests a reference from
these two object queues and evaluates the guard. If the guard holds, the worker thread
executes the method call, respectively the enabled action. For the enabled object, the
guard needs to be evaluated because an enabled action can be disabled by a method
call (for example, the Santa Clause Problem discussed in (Sekerinski and Yao, 2018)).
If the guard does not hold or the object is accessed by another worker thread, the
current worker thread yields to the scheduler. Before the worker thread exits an
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Figure 6.3: Lime Runtime System

active object, it checks whether this active object is enabled or not. If it is enabled,
the worker thread adds the current object to the enabled object queue again. The
number of the worker threads is defined as a constant (equals the number of cores).
The worker threads are implemented as regular threads, meaning that a termination
mechanism (will discuss in Section 6.3.3) has to be introduced to determine when to
terminate the whole program.

Communication Between Objects in Lime

In Lime, the communication between objects is through synchronous method calls.
Condition synchronization is achieved through guards. As we have discussed before, to
provide the programmers with a simple design view, Lime allows method calls getting
stuck. In this case, the lock should be released when entering the method call while
the lock should be acquired when returning from the method call. For example, the
method call a.b(arg1 ) can be translated into Listing 6.15. There are two arguments
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that are added to the method call: a and originator. The argument a points to the
target object while the argument originator points to the source object which invokes
the method b of the object a. All these parameters are stored on the stack. The
worker thread puts the originator object to its local queue when the current method
call gets stuck.

Listing 6.15: Method Call Translation

unlock(this.lock)
b(arg1, a, originator)

lock(this.lock)

In Lime, method calls to other objects can be open as the exclusive access to
the first object is dropped and only regained when the call returns. By comparison,
method calls in Java are closed as exclusive access to all objects in the call chain
is retained. It is already discussed in (Andrews, 2000) that closed calls allow less
concurrency and are more prone to deadlocks.

Lime’s Cooperative Scheduler

We implement a simple but efficient cooperative scheduling strategy for the Lime
runtime system. We explain how this cooperative scheduler works in Figure 6.4.

Figure 6.4: Lime Scheduler
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Threading Model Scheduling Communication
Erlang M:N Preemptive Asynchronous message passing
Go N:1/M:N Cooperative Channels
Lime M:N Cooperative Synchronized method calls

Table 6.1: Scheduling Strategy Comparison

There are a fixed number of worker threads in Lime, which equals the number of
the cores. Each worker thread has a scheduler stack on which the thread starts. The
active objects run on their stacks. The worker thread switches to the active object’s
stack when the active object is selected. When the active object suspends for the
method call or exits from the action’s execution, the worker thread switches to the
scheduler’s stack and continues to execute the next active object. The worker thread
repeatedly switches to active objects as long as there are available active objects.

The runtime system dynamically adjusts worker threads as needed. For example,
if there are no enabled objects left in the enabled object queue, the worker thread
could sleep. If there are some new enabled objects are created, the sleeping threads
should wake up.

To illustrate Lime scheduling, we use a tabular overview in Table 6.1 to make a
comparison among Erlang scheduling, Go scheduling and Lime scheduling. Lime em-
ploys cooperative scheduling, same as Go, other than preemptive scheduling in Erlang.
The communication in Lime is through synchronous method calls. Communication
in Erlang and Go are using asynchronous message passing and channels, respectively.
Erlang and Lime use hybrid threading while Go applied user-level threads and moves
to hybrid threading from version 1.5.

Lime Runtime Optimizations

Lime implements a global enabled object queue. The enabled object is added to the
global queue when the local enabled object queue is full. When the local enabled
object queue is empty, the worker thread first tries to fetch a random number of the
enabled objects from the global queue.

The Lime runtime system needs to balance between speed and efficiency. On the
one hand, to increase efficiency, it has to keep enough running worker threads to
utilize hardware parallelism. On the other hand, it has no reason to keep excessive
running worker threads to conserve CPU resources and power. We implement schedule
algorithms which can keep enough worker threads when the system has enough work
to finish and let the excessive threads sleep when the system does not have enough
work.

The system has:

• at most W worker threads,

• currently w threads are working, meaning executing actions, and
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• currently s threads are seeking, that is, waiting for the objects from the global
queue, where s is 0 or 1.

So, W − w − s threads are sleeping, meaning doing nothing. The invariant is:

• either w = W , i.e., all threads are working, where s = 0, or

• if w < W , then s = 1, i.e., if not all are working, one thread must be seeking.

The whole program terminates when one thread is seeking and all the others threads
are sleeping.

Lock-Free Local Queue and Work Stealing

In the current implementation of Lime, each worker thread has one private local
queue. At first, there is only one worker thread working in the runtime system. The
second worker thread waits until there are some objects in the global queue. To reduce
this delay, we introduce a second implementation (Lime-LF in Section 6.4) of Lime
which contains a lock-free local queue for each worker thread and enables idle worker
threads to steal work from the others, rather than waiting for the objects from the
global queue. The load-acquire and store-release instructions are used to pass the
information between worker threads cooperatively and implement the lock-free local
queue. This work is inspired by Golang’s implementation (Google, 2019). In addition,
one active object can be accessed by multiple objects. In this case, the enabled
active objects can be distributed more efficiently. There is a visible performance
improvement when the system contains sufficient enabled objects (in Section 6.4.2).
However, the overhead of the lock-free local queue can become significant if there are
a limited number of enabled objects. More implementation details are discussed in
the gitlab repository (Documents/Lime/Lime_Runtime_LockFree.md).

The global object queue has a lock, and only one worker thread can access it at a
time. The worker thread can only access its private local queue. For the lock-free local
queue implementation, the local queue may be accessed by multiple worker threads
(work-stealing) at the same time. The load-acquire and store-release instructions can
achieve the memory barrier’s effect. Please note that the current lock-free implemen-
tation only works on X86’s memory model. The worker thread needs to acquire the
object’s lock before entering the object and release it after exiting from the object.
In this case, each object can be accessed by at most one worker thread at a time.

The performance of the lock-free local queue varies from case to case. The lock-free
local queue improves the performance if there are a large number of active objects,
for example, the test cases discussed in Section 6.4.1 and 6.4.2. However, it decreases
the performance if the number of the available active objects is small, for example,
the test cases discussed in Section 6.4.3 and 6.4.4.
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6.4 Experiments

To isolate the overhead of guarded commands implementation from other computa-
tions, three programs with little computation but representing different concurrent
models were selected as usage profiles, each with different characteristics: priority
queue, MapReduce and leaf-oriented tree. Priority queue is a linear structure while
MapReduce and leaf-oriented tree have a general tree structure.

Each experiment version has two variations: The “thread” variation tests scala-
bility between the normal thread and the lightweight thread implementations. The
“lightweight thread” variation compares scalability among the lightweight thread im-
plementations when the number of the objects significantly exceeds available cores
in the system. Each experiment contains two typical thread implementations: Java
threads and Pthreads and five lightweight thread implementations: Go, Erlang, Haskell,
Lime and Lime-LF. Lime-LF represents the Lime runtime system with the lock-free
local queue. For each test case, we use the same random numbers for all implemen-
tations.

For Java’s implementation, active objects are mapped to Java threads, and guarded
commands are implemented by using monitors. For Pthread’s implementation, active
objects are mapped to Pthreads, and guarded commands are implemented by using
condition variables. In Go and Erlang, active objects are mapped to Goroutines and
Processes, respectively. Glasgow Haskell Compiler (GHC) (GHC, 2018) is a Haskell
compiler supporting concurrency by implementing a lightweight thread system. In
Lime, active objects are mapped to coroutines.

This section describes the performance of different implementations. We use Java,
Pthread, Erlang, Go, Haskell and Lime to implement the priority queue, MapReduce,
and leaf-oriented tree examples. The full listings for these programs could be ob-
tained from Gitlab (https://gitlab.cas.mcmaster.ca/yaos4/thesis_
code.git). The experiments were run on AMD Ryzen Threadripper 1950X 16-Core
Processor (2.09GHz). All measurements were with Ubuntu 16.4 LTS in single-user
mode. Each timing measurement is run thirty times. The results reported here are
the average with a 95% confidence interval. The difference between the maximum and
minimum value was small enough, so only the average value is reported. For Erlang,
because there is a constant overhead (around 1000 ms) for the virtual machine to
start and stop, the tests are repeated for 1000 times to amortize this overhead. For
Java, the tests are repeated for 10 times to amortize this overhead. The software
environments are as follows:
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Component Version
Operating System Ubuntu 16.4 LTS

Gcc 5.4.0
Java HotSpot 1.8.0

Go 1.8
Erlang 20
GHC 8.4.2

6.4.1 Priority Queue

This experiment is an implementation of the example discussed in Section 3.5.5. This
experiment aims to test the performance in a linear structure for different program-
ming languages. A priority queue offers a method add(e) for storing positive integer
e, a method remove for removing the least integer stored so far, and a method empty
for testing whether the priority queue is empty. This priority queue is implemented
as a linked list. Elements are stored in field m in ascending order.

In this priority queue example, the head node is the data entrance. Each node
has actions that would eventually insert or remove the element in the priority queue.
These actions need to hold the locks on the current node and next node. Thus, the
insert method and remove method can proceed concurrently in the different part of
the queue (the gray nodes).

Test Program

Listing 6.16: Priority Queue Test Program in Lime

class Start
var head: PQ
var i: int
var num: int
init()

num := getArg(1)
setRand(num)
head := new PQ()
for i := 0 to num - 1 do

head.add(getRand(i))
for i := 0 to num - 1 do

head.remove()

The test program in Listing 6.16 is a simple and multi-threaded program that first
adds num elements to the priority queue and then removes all the elements. The
num varies first from 10 to 80 and in the second test the num is from 1000 to 9000.
The method getRand(i) return the i-th random numbers which are generated by the
method setRand(num). All the implementations use the same random numbers.
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Figure 6.5: Priority Queue Results

Analysis

Figure 6.5 displays the execution time for adding and removing all of the elements.
The small box in the left figure of Figure 6.5 is the zoomed graph when the number of
the objects is from 70 to 80. The results show that the lightweight thread implemen-
tations, such as Go, Erlang, Haskell and Lime coroutines outperform the heavyweight
thread implementations, such as Java thread and Pthread. Second, Go, Lime and
Lime-LF outperform the other lightweight implementations.

First of all, the creation of a Lime coroutine only requires 8KB memory for the
stack space. It becomes possible to run millions of coroutines even in a 32-bit address
space. Second, Lime coroutine setup and teardown are efficient by creating the stacks
in advance and reusing the stacks. The runtime system creates one coroutine per
active object and maintains object pools for each worker threads, which makes the
setup and teardown of a coroutine easy, requiring only a few lines of assembly code.
Third, the most critical factor that affects system performance is the cost of stack
switching. In the Lime coroutine implementation, coroutines are scheduled cooper-
atively, and when a stack switch occurs, only three registers need to be saved and
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restored. The switch between Lime coroutines happens at well-defined points when
an explicit call is made to the runtime scheduler. Places, where coroutines may yield
back to the scheduler, are method guard evaluation, action guard evaluation, and lock
acquirement.

6.4.2 MapReduce

MapReduce represents a programming model. A MapReduce program consists of a
Map method which takes the input data, and a Reduce method takes the output data
from the Map method and combines all the data until generating the final result.

In this MapReduce example, the Mapper nodes take the input data. Both Mapper
and Reducer nodes would eventually call the Reduce method. Thus, the Reduce and
Map methods can proceed concurrently in the different parts of the tree.

Test Program

Listing 6.17: MapReduce Test Program in Lime

class Reducer
var index: int
var next: Reducer
var a1, a2: bool
var e1, e2: int
init(i: int, r: Reducer)

index, a1, a2, next := i, false, false, r
method reduce1(x: int)

when not a1 do
e1, a1 := x, true

method reduce2(x: int)
when not a2 do

e2, a2 := x, true
action doReduce

when a1 and a2 do
if index = 1 then

print(e1 + e2)
e1, e2 := 0, 0

elif index % 2 = 0 then
next.reduce1(e1 + e2)

else
next.reduce2(e1 + e2)

a1, a2 := false, false
class Mapper

var next: Reducer
var a: bool
var e, index: int
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init(i: int, r: Reducer)
index, a, next := i, false, r

method map(n: int)
when not a do

e, a := n, true
action doMap

when a do
if index % 2 = 0 then

next.reduce1(e * e)
else

next.reduce2(e * e)
a := false

class Start
var i: int
var num: int
var repeat: int
var marray: array of Mapper
var rarray: array of Reducer
init()

num := getArg(1)
repeat := getArg(2)
marray := new Mapper[num]
rarray := new Reducer[num]
rarray[0] := nil
for i := 1 to num - 1 do

rarray[i] := new Reducer(i, rarray[i / 2])
for i := 0 to num - 1 do

marray[i] := new Mapper(i, rarray[(i + num) / 2])
while repeat > 0 do

for i := 0 to num - 1 do
marray[i].map(i)

repeat := repeat - 1

The test program 6.17 computes the sum of squares by taking map(x) = x2 and
reduce(x, y) = x+y for integers x, y. The input list is the integers from 0 to num−1.
The computation is repeated r times to “fill the pipeline”. The output is the square
pyramidal number of num − 1. The number of num is the power of 2, which varies
first from 8 to 64 and in the second test is from 128 to 4096.

Analysis

Figure 6.6 displays the execution time for computing sum of squares. The small box
in the left figure of Figure 6.6 is the zoomed graph when the number of the objects is
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Figure 6.6: MapReduce Results

from 32 to 64. The results show that the lightweight thread implementations, such as
Go, Erlang, Haskell and Lime coroutines outperform the heavyweight thread imple-
mentations, such as Java thread and Pthread. Second, Lime and Lime-LF continue to
outperform the other lightweight implementations. Lime-LF has better performance
than Lime because of the fast work distribution among worker threads.

6.4.3 Leaf-Oriented Tree

In the leaf-oriented tree example, the leaves contain all the elements stored, and
internal nodes include only key values to guide the search. Insertion either creates
two new leaves or only deposits a component of an internal node. Each node has
an action that would eventually move the stored element one level closer to its final
position.

For the leaf-oriented tree example, the Root is the only node which can get the
input data. Although insertions can proceed concurrently in different parts of the tree,
the real opportunity for the concurrency is low. Take 10000-leaf leaf-oriented tree as
an example: in theory, 5000 parents can be executed concurrently. However, the Root
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node is the “bottleneck”. Suppose each node spends the same time in passing the
data, and the tree is a complete tree, in this case, only 0.14% (14/10000) of nodes in
the tree can be executed concurrently because the approximate depth of the tree is
14.

Root

NodeNode

LeafLeafLeafLeaf

input

Figure 6.7: Leaf-Oriented Tree

Test Program

Listing 6.18: Leaf-oriented Tree Test Program in Lime

class Start
var root: Node
var num: int
var i: int
init()

num := getArg(1)
setRand(num)
root := new Node(5000)
for i := 0 to num - 1 do

root.add(getRand(i))
for i := 0 to num - 1 do

if not root.has(getRand(i)) then
root.add(getRand(i))

The test program in Listing 6.18 is a simple and multi-threaded program that first
adds num random elements to the leaf-oriented tree and then searches num times. An
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element is added to the tree if it does not already exist. The number of num varies
first from 10 to 80 and in the second test the number of num is from 1000 to 9000.
The method getRand(i) return the i-th random numbers which are generated by the
method setRand(num). All the implementations use the same random numbers.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10  20  30  40  50  60  70  80

T
im

e
 (

m
s
)

Objects

Lime
Lime-LF

Go
Erlang

Java
Pthread
Haskell

 0

 100

 70  80

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1  2  3  4  5  6  7  8  9
Objects (10

3
)

Figure 6.8: Leaf-oriented Tree Results

Analysis

Figure 6.8 displays the execution time for inserting data to the tree and searching for
data from the tree. The small box in the left figure of Figure 6.8 is the zoomed graph
when the number of the objects is from 70 to 80. The results show that the lightweight
thread implementations, such as Go, Erlang, Haskell and Lime coroutines outperform
the heavyweight thread implementations, such as Java thread and Pthread. Second,
Lime and Lime-LF continue to beat the other lightweight implementations. However,
Lime-LF does not outperform Lime in this experiment because there are around 14
enabled objects that existed in the system. In this case, the overhead of the lock-free
queue becomes significant when there are a limited number of enabled objects which
can be executed simultaneously.
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6.4.4 The Santa Claus Problem

In 1994, Trono proposed the Santa Claus Problem as an exercise in concurrent pro-
gramming (Trono, 1994):

“Santa Claus sleeps in his shop up at the North Pole, and can only be wak-
ened by either all nine reindeer being back from their year long vacation
on the beaches of some tropical island in the South Pacific, or by some
elves who are having some difficulties making the toys. One elf’s problem
is never serious enough to wake up Santa (otherwise, he may never get
any sleep), so, the elves visit Santa in a group of three. When three elves
are having their problems solved, any other elves wishing to visit Santa
must wait for those elves to return. If Santa wakes up to find three elves
waiting at his shop’s door, along with the last reindeer having come back
from the tropics, Santa has decided that the elves can wait until after
Christmas, because it is more important to get his sleigh ready as soon as
possible. (It is assumed that the reindeer do not want to leave the trop-
ics, and therefore they stay there until the last possible moment. They
might not even come back, but since Santa is footing the bill for their year
in paradise. . . This could also explain the quickness in their delivering of
presents, since the reindeer can not wait to get back to where it is warm.)
The penalty for the last reindeer to arrive is that it must get Santa while
the others wait in a warming hut before being harnessed to the sleigh.”

This problem requires an implementation of multi-party rendezvous with priority.

Test Program

In this section, we only discuss the result. The details of this Santa Claus Problem
are in (Sekerinski and Yao, 2018). The main program in Listing 6.19 creates active
objects for Santa, reindeer, and elves; these use the passive sleigh and shop objects
for synchronization. The times are reported as the average real/user/system times of
20 runs. Only a single run was used for Java with 1,000,000 repetitions of Santa.

Listing 6.19: Santa Claus Problem Test Program in Lime

class Santa
var s: {Sleeping, Harnessing, Riding, Welcoming, Consulting}
var b: boolean
var p: int
init()

s, b, p := Sleeping, false, 0
method back()

b := true
method harness()

when s = Harnessing do
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s := Riding
method pull()

when s = Riding do
s, b := Sleeping, false

method puzzled()
p := 3

method enter()
when s = Welcoming do

s := Consulting
method consult()

when s = Consulting do
p := p - 1
if p > 0 then

s := Welcoming
else

s := Sleeping
action action1

when s = Sleeping and b do
s := Harnessing

action action2
when s = Sleeping and p = 3 and not b do

s := Welcoming

class Sleigh
var s: {Back, Harnessing, Pulling}
var c: int
var st: Santa
init(santa: Santa)

s, c, st := Back, 9, santa
method back()

when s = Back do
c := c - 1
if c = 0 then

s, c := Harnessing, 9
st.back()

method harness()
when s = Harnessing do

c := c - 1
if c = 0 then

s, c := Pulling, 9
st.harness()

method pull()
when s = Pulling do

c := c - 1
if c = 0 then
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s, c := Back, 9
st.pull()

class Reindeer
var sl: Sleigh
init (sleigh: Sleigh)

sl := sleigh
action action1

sl.back()
sl.harness()
sl.pull()

class Shop
var s: {Puzzled, Entering, Consulting}
var c: int
var st: Santa
init(santa: Santa)

s, c, st := Puzzled, 0, santa
method puzzled()

when s = Puzzled do
c := c + 1
if c = 3 then

s := Entering
st.puzzled()

method enter()
when s = Entering do

s := Consulting
st.enter()

method consult()
when s = Consulting do

c := c - 1
if c > 0 then

s := Entering
else

s := Puzzled
st.consult()

class Elf
var sh: Shop
init(shop: Shop)

sh := shop
action action1

sh.puzzled()
sh.enter()
sh.consult()
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Repetitions
of Santa

Lime (guards) C (semaphores) Go (channels) Java (monitors)

10,000 0.04/0.04/0.00 0.87/0.26/1.18 0.08/0.12/0.01 6.38/2.48/5.30
100,000 0.30/0.30/0.00 8.82/2.50/12.0 0.77/1.18/0.06 60.3/21.6/52.0
1,000,000 2.91/2.90/0.01 93.0/24.8/123 7.51/11.6/0.55 ≈ 534/159/509

Table 6.2: The Santa Claus Problem Results: the average real/user/system times in
seconds of 20 runs

class Start
var st: Santa
var sl: Sleigh
var sh: Shop
init()

st := new Santa()
sl := new Sleigh(st)
sh := new Shop(st)
for i := 1 to 9 do new Reindeer(sl)
for i := 1 to 20 do new Elf(sh)

Analysis

Table 6.2 shows the running times for Santa with 9 reindeer and 20 elves. Santa’s division
of work is that for 10,000 rounds until retirement, he rides the sleigh 2,000 times and helps
8,000 times groups of three elves, or for 20 elves, each elf on average 1,200 times. For
100,000 and 1,000,000 rounds until Santa’s retirement the ratio is the same. The results
show that lightweight thread implementations, such as Go and Lime coroutines, outperform
the heavyweight thread implementations, such as Java thread and Pthread. Secondly, at
most 29 objects (9 reindeer and 20 elves) can execute concurrently. The overhead of the
synchronization becomes the critical factor. Lime outperforms Go’s implementation.

6.4.5 The Chameneos Game

The Chameneos game was proposed by Kaiser and Pradat-Peyre (2003) for comparing
programming styles with Ada rendezvous, Java monitors, and C/Pthread semaphores. The
Chameneos game contains one shared resource, the Mall object, which can be accessed by
all the Chameneos objects. The benchmark can be regarded as a “sequential” concurrency
benchmark.

“Consider a population of N chameneos that have a cyclic behaviour. A chame-
neos usually lives lonely eating honeysuckle leaves in the training. After a while
when feeling ready for competition, it enters a mall where a nice spring babbles
and where it occasionally plays pall mall with another chameneos and possibly
mutates before leaving the mall and returning in the forest. Given an initial
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population, examine its evolution towards a final state in which all chameneos
have the same colour, and therefore in which no one can mutate anymore. ”

Test Program

Listing 6.20: The Chameneos Game in Lime

class Chameneos
var s: {InForest, DoneAtMall, WaitingAtMall}
var col: int
var mall: Mall
init(c: int, m: Mall)

col, mall, s:= c, m, InForest
method meet(otherCol: int)

if col != otherCol then col := 3 - col - otherCol
s := DoneAtMall

action GoingToMall
when s = InForest do

s := WaitingAtMall
mall.arrive(this, col)

action BackToForest
when s = DoneAtMall do

s := InForest

class Mall
var s: {ZeroCham, OneCham, TwoCham, Done}
var firstCol, sndCol: int
var firstCham, sndCham: Chameneos
var repeat, N: int
init(arg: int)

s, repeat, N := ZeroCham, 0, arg
method arrive(ch: Chameneos, c: int)

when s = ZeroCham or s = OneCham do
if s = ZeroCham then

firstCol, firstCham, s := c, ch, OneCham
elif s = OneCham then

sndCol, sndCham, repeat := c, ch, repeat + 1
s := TwoCham

action mutate
when s = TwoCham do

firstCham.meet(sndCol); sndCham.meet(firstCol)
if repeat < N then s := ZeroCham
else exit()

class Start
var ma: Mall
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var N, rounds: int
var i: int
init()

N := getArg(1)
rounds := getArg(2)
ma := new Mall(N * rounds / 2)
for i := 1 to N do new Chameneos(i % 3, ma)

The test program in Listing 6.20 is a multi-threaded program that creates one Mall and
N chameneos. The number of rounds is set to 1000. The population of chameneos varies
first from 10 to 90 and in the second test is from 1000 to 9000. We use Lime-LF in this
benchmark.

Analysis
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Figure 6.9: The Chameneos Game Results

Table 6.9 shows the running times for the chameneos game benchmark with one mall
and N chameneos. Compared with the Santa Claus problem, this benchmark only allows
at most two chameneos to enter the mall simultaneously and has even fewer concurrency
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opportunities. The number of threads for Lime is first set to 2 and is increased to 3 in the
second test. The results show that lightweight thread implementations, such as Go and Lime
coroutines, continually outperform the heavyweight thread implementations, such as Java
thread and Pthread. The overhead of the synchronization becomes the critical factor. The
Haskell implementation only uses one core, and it outperforms the other implementations.
Lime outperforms Go’s implementation when the population of chameneos is from 1000 to
9000 and surpasses Haskell’s implementation when the population of chameneos reaches
9000.

6.4.6 Summary

We compare the performance of Lime with the other three lightweight threads: Go, Erlang,
and Haskell. The current implementation of Lime tends to perform better than the other
programming languages’ implementations in most cases. There are four different commu-
nication patterns discussed in this chapter: linear structure, tree structure with top-down
dataflow, tree structure with bottom-up dataflow and star structure.

We implement a simple but efficient runtime system for Lime. The feature of garbage
collection is not implemented in Lime for the sake of efficiency. More efficient memory models
will be considered for Lime in future work. To support garbage collection, Go, Erlang and
Haskell implement a large and complicated runtime system. Besides, cooperative scheduling
is implemented in Lime. Erlang and Haskell implement preemptive scheduling, and the
latest version of Go also implements preemptive scheduling by allowing the scheduler to
send a POSIX signal to stop a running goroutine. Compared with cooperative scheduling,
the preemptive scheduling introduces more context switch overhead during the execution of
the program.

The priority queue benchmark has a linear structure. In principle, the adjacent nodes
cannot be executed simultaneously. That is, at most 50% nodes could be executed concur-
rently. In this benchmark, Lime and Go are better than Haskell and Erlang. The imple-
mentation of Go outperforms Lime’s implementation when the number of objects exceeds
6000.

The leaf-oriented tree benchmark has a tree structure with top-down dataflow. As we
have discussed before, the leaf-oriented tree has a “bottleneck”, and there are a limited
number of objects that can be executed concurrently. We use the leaf-oriented tree bench-
mark to examine how efficient the runtime system is at giving priority to bottlenecks. In
this benchmark, Lime outperforms all the other programming languages’ implementations.

The MapReduce benchmark has a tree structure with bottom-up dataflow. All of the
nodes in the MapReduce benchmark can be executed concurrently as long as “the pipeline is
fully loaded”. Lime and Lime-LF outperform the other lightweight implementations. Lime-
LF has better performance than Lime because of the fast work distribution among worker
threads.

The Santa Claus problem has an star structure, and Santa Claus is the center node.
There are a limited number of objects that can be executed concurrently. In this benchmark,
the overhead of the synchronization becomes a critical factor. The current implementation
of Lime performs better than the other programming languages’ implementations.

The chameneos game benchmark has fewer concurrency opportunities than the Santa
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Claus problem. There are at most two chameneos that can be executed concurrently. The
efficiency of the synchronization becomes a critical factor again. The current implementation
of Lime outperforms the other implementations.
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Chapter 7

Conclusions

Lime is an action-based object-oriented concurrent programming language. An object in
Lime is a natural “unit” of concurrency, which provides programmers with a simple and
unified design view for large concurrent programs. Besides, it is easier for the designers to
reason about the code formally, or to prove the correctness of the concurrent programs.

To avoid the rollback mechanism or undesired restrictions, Lime allows that an action or
method “gets stuck” at the point where a method is called. Shortcomings with the previous
implementation of Lime include the overhead of the repeated guard evaluations and the
inefficient implementation of Lime, including the guards translation scheme and the Lime
runtime system.

This work takes a multi-pronged approach to addressing these concerns. First of all,
every object being concurrent in principle can quickly lead to programs with thousands of
threads. Stack overflow concern is addressed by proposing the guard-page stack mechanism,
which does not introduce any overhead during the runtime if there is no stack overflow. This
new stack mechanism starts with a small stack, grows as needed. It becomes possible to
run thousands of threads even in a 32-bit address space.

Since every object is regarded as a natural “unit” of concurrency in Lime, mapping every
object to a regular thread is not suitable because the overhead of context switching of the
regular threads is too significant. Our implementation maps objects to user-level coroutines,
instead of ordinary threads. Underneath the user-level coroutine, the Lime runtime system
limits the number of worker threads to the number of CPUs. To reduce the cost of stack
switching, Lime implements a fast stack switching mechanism which only needs to save and
restore three registers.

The simple and unified design view in Lime stems from the combination of object-
oriented concepts and action systems. To improve the performance, Lime implements a
fast, cooperative scheduler and maintains local queues and a global queue. The method and
action translation schemes and atomicity rules proposed in this work give the Lime runtime
system the ability to execute the enabled objects efficiently.

Lime not only provides the programmers with a unified and straightforward OOP model
for concurrency but also accomplishes a better performance than concurrent programming
languages such as Erlang and Go, in fine-grained, highly concurrent benchmarks (Figure 6.5,
Figure 6.6, Figure 6.8, Figure 6.9). This accomplishment comes from the guard commands
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transaction scheme and the efficient runtime system.
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Büchi, M. and E. Sekerinski (2000). A foundation for refining concurrent objects.
Fundamenta Informaticae 44 (1-2), 25–61. https://dl.acm.org/doi/10.5555/
2372549.2372551.

Chandy, K. M. (1989). Parallel Program Design. In Opportunities and Constraints of Par-
allel Computing, pp. 21–24. Springer. https://link.springer.com/chapter/
10.1007/978-1-4613-9668-0_6.

Chandy, K. M. and J. Misra (1988). Parallel Program Design: A Foundation. Addison-
Wesley Longman.

Charles, J., P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova (2009). Evaluation of the
Intel R© CoreTM i7 turbo boost feature. In Workload Characterization, 2009. IISWC
2009. IEEE International Symposium on, pp. 188–197. IEEE. https://doi.org/
10.1109/IISWC.2009.5306782.

Cheney, D. (2014). Five things that make Go fast. https://dave.cheney.net/2014/
06/07/five-things-that-make-go-fast/. Accessed: 2020-04-23.

Courtois, P.-J., F. Heymans, and D. L. Parnas (1971). Concurrent control with “readers”
and “writers”. Communications of the ACM 14 (10), 667–668. https://doi.org/
10.1145/362759.362813.

Cui, X.-L. (2009). An experimental implementation of action-based concurrency. Master’s
thesis, McMaster University. http://hdl.handle.net/11375/21409.

121

https://doi.org/10.1145/800228.806932
https://doi.org/10.1145/800228.806932
https://research.google/pubs/pub45287/
https://doi.org/10.1109/MSP.2009.934110
https://doi.org/10.1109/MSP.2009.934110
https://doi.org/10.1007/BFb0054286
https://doi.org/10.1109/TSE.1975.6312840
https://doi.org/10.1109/TSE.1975.6312840
https://doi.org/10.1145/292469.292470
https://doi.org/10.1145/292469.292470
https://dl.acm.org/doi/10.5555/2372549.2372551
https://dl.acm.org/doi/10.5555/2372549.2372551
https://link.springer.com/chapter/10.1007/978-1-4613-9668-0_6
https://link.springer.com/chapter/10.1007/978-1-4613-9668-0_6
https://doi.org/10.1109/IISWC.2009.5306782
https://doi.org/10.1109/IISWC.2009.5306782
https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast/
https://dave.cheney.net/2014/06/07/five-things-that-make-go-fast/
https://doi.org/10.1145/362759.362813
https://doi.org/10.1145/362759.362813
http://hdl.handle.net/11375/21409


Ph.D. Thesis — Shucai Yao McMaster — Computing and Software

Deitel, H. M. (1990). An Introduction to Operating Systems. Addison-Wesley Longman
Publishing Co., Inc.

Dijkstra, E. W. (1962). Over de sequentialiteit van procesbeschrijvingen (English). https:
//www.cs.utexas.edu/users/EWD/translations/EWD35-English.html.
circulated privately.

Dijkstra, E. W. (1967). The structure of the THE multiprogramming system. In Proceed-
ings of the First ACM Symposium on Operating System Principles, pp. 10.1–10.6. ACM.
https://doi.org/10.1145/800001.811672.

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM 18 (8), 453–457. https://doi.org/10.
1145/360933.360975.

Dijkstra, E. W. (1986). A solution designed by A. Blokhuis. http://www.cs.utexas.
edu/users/EWD/ewd09xx/EWD979.PDF. circulated privately.

Dijkstra, E. W. (1987). Twenty-eight years. http://www.cs.utexas.edu/users/
EWD/ewd10xx/EWD1000.PDF. circulated privately.

EETimes and Embedded (2019). 2019 embedded markets study. https://www.
embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_
2019_Embedded_Markets_Study.pdf. Accessed: 2020-05-23.

Faes, M. and T. R. Gross (2018). Concurrency-aware object-oriented programming with
roles. Proceedings of the ACM on Programming Languages 2 (130), 30. https://doi.
org/10.1145/3276500.

Forgy, C. L. (2018). Ops5 user’s manual. https://kilthub.cmu.edu/articles/
OPS5_user_s_manual/6608090/1. Accessed: 2020-04-23.

Friedman, D. P. and D. S. Wise (1978). Aspects of Applicative Programming for Parallel
Processing. IEEE Transaction on Computers 27 (4), 289–296. https://dl.acm.org/
doi/10.1109/TC.1978.1675100.

Geer, D. (2005). Chip makers turn to multicore processors. Computer 38 (5), 11–13. https:
//doi.org/10.1109/MC.2005.160.

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam (1994).
PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for Networked Parallel
Computing. MIT Press.

GHC (2018). Glasgow Haskell Compiler User’s Guide. https://downloads.haskell.
org/ghc/latest/docs/html/users_guide/. Accessed:2020-04-28.

Google (2009). The Go programming language. https://golang.org/. Accessed:
2020-04-23.

122

https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html
https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html
https://doi.org/10.1145/800001.811672
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD979.PDF
http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD979.PDF
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1000.PDF
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1000.PDF
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://doi.org/10.1145/3276500
https://doi.org/10.1145/3276500
https://kilthub.cmu.edu/articles/OPS5_user_s_manual/6608090/1
https://kilthub.cmu.edu/articles/OPS5_user_s_manual/6608090/1
https://dl.acm.org/doi/10.1109/TC.1978.1675100
https://dl.acm.org/doi/10.1109/TC.1978.1675100
https://doi.org/10.1109/MC.2005.160
https://doi.org/10.1109/MC.2005.160
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/
https://golang.org/


Ph.D. Thesis — Shucai Yao McMaster — Computing and Software

Google (2018a). Escape analysis and Inlining. https://github.com/golang/go/
wiki/CompilerOptimizations. Accessed: 2020-04-23.

Google (2018b). Source file src/runtime/runtime2.go. https://golang.org/src/
runtime/runtime2.go. Accessed: 2020-04-23.

Google (2019). Goroutine Scheduler. https://github.com/golang/go/blob/
master/src/runtime/proc.go. Accessed: 2020-04-23.

Harris, T. and K. Fraser (2003). Language support for lightweight transactions. SIGPLAN
Notices 38 (11), 388–402. https://doi.org/10.1145/949305.949340.

Heußner, A., C. M. Poskitt, C. Corrodi, and B. Morandi (2015). Towards practical graph-
based verification for an object-oriented concurrency model. In Proceedings of the First
Workshop on Graphs as Models, Volume 181 of EPTCS, pp. 32–47. https://doi.
org/10.4204/EPTCS.181.3.

Hewitt, C. (1971). Procedural embedding of knowledge in Planner. In Proceedings of
the 2nd International Joint Conference on Artificial Intelligence, pp. 167–182. https:
//dl.acm.org/doi/10.5555/1622876.1622895.

Hoare, C. A. R. (1972). Towards a Theory of Parallel Programming. In Operating Sys-
tems Techniques, Proceedings of Seminar at Queen’s University. Also available in (Hoare,
2002), pp. 61–71. Academic Press.

Hoare, C. A. R. (1974). Monitors: An operating system structuring concept. Communica-
tions of the ACM 17 (10), 549–557. https://doi.org/10.1145/355620.361161.

Hoare, C. A. R. (1978). Communicating sequential processes. Communications of the
ACM 21 (8), 666–677. https://doi.org/10.1145/359576.359585.

Hoare, C. A. R. (2002). Towards a theory of parallel programming. In The Origin of
Concurrent Programming: From Semaphores to Remote Procedure Calls, pp. 231–244.
Springer-Verlag. https://dl.acm.org/doi/10.5555/762971.762978.

Holt, R. C. and J. R. Cordy (1985). The Turing Plus report. http://research.cs.
queensu.ca/home/cordy/pub/downloads/tplus/Turing_Plus_Report.
pdf.

Holt, R. C. and J. R. Cordy (1988). The Turing programming language. Communications
of the ACM 31 (12), 1410–1423. https://doi.org/10.1145/53580.53581.

IBM (2010). Language Environment Vendor Interfaces. http://www.ibm.com/
e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=
SRX&PBL=SA22-7568-11. Accessed: 2020-04-23.

INMOS Limited (1984). Occam Programming Manual. Series in Computer Science. Prentice-
Hall International.

123

https://github.com/golang/go/wiki/CompilerOptimizations
https://github.com/golang/go/wiki/CompilerOptimizations
https://golang.org/src/runtime/runtime2.go
https://golang.org/src/runtime/runtime2.go
https://github.com/golang/go/blob/master/src/runtime/proc.go
https://github.com/golang/go/blob/master/src/runtime/proc.go
https://doi.org/10.1145/949305.949340
https://doi.org/10.4204/EPTCS.181.3
https://doi.org/10.4204/EPTCS.181.3
https://dl.acm.org/doi/10.5555/1622876.1622895
https://dl.acm.org/doi/10.5555/1622876.1622895
https://doi.org/10.1145/355620.361161
https://doi.org/10.1145/359576.359585
https://dl.acm.org/doi/10.5555/762971.762978
http://research.cs.queensu.ca/home/cordy/pub/downloads/tplus/Turing_Plus_Report.pdf
http://research.cs.queensu.ca/home/cordy/pub/downloads/tplus/Turing_Plus_Report.pdf
http://research.cs.queensu.ca/home/cordy/pub/downloads/tplus/Turing_Plus_Report.pdf
https://doi.org/10.1145/53580.53581
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA22-7568-11
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA22-7568-11
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SA22-7568-11


Ph.D. Thesis — Shucai Yao McMaster — Computing and Software

Intel (2019). Intel R©Xeon R©Platinum 9282 Processor. https://
ark.intel.com/content/www/us/en/ark/products/194146/
intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html.
Accessed: 2020-04-23.

Ishikawa, Y. and M. Tokoro (1984). The design of an object oriented architecture. ACM
SIGARCH Computer Architecture News 12 (3), 178–187. https://doi.org/10.
1145/800015.808181.

ITRS (2007). International technology roadmap for semiconductors, system
drivers. Semiconductor Industry Association. https://www.semiconductors.
org/wp-content/uploads/2018/08/2007System-Drivers.pdf. Accessed:
2020-04-23.

Joshi, R. (1998). Seuss for Java — Language Reference. http://rjoshi.org/bio/
papers/SeussForJava.pdf. Accessed: 2020-04-29.

Kaiser, C. and J. . Pradat-Peyre (2003). Chameneos, a concurrency game for java, ada and
others. In ACS/IEEE International Conference on Computer Systems and Applications,
2003. Book of Abstracts. https://doi.org/10.1109/AICCSA.2003.1227495.

Kernighan, B. W. and D. M. Ritchie (1988). The C Programming Language. Prentice Hall
Inc.

Knuth, D. E. (1973). Fundamental Algorithms: The Art of Computer Programming.
Addison-Wesley.

Koa, C. and C. Hwang (1987). A dietary recommendation expert system using OPS5. In
Proceedings of the 1987 Fall Joint Computer Conference on Exploring technology: today
and tomorrow, pp. 658–663. IEEE Computer Society Press. https://dl.acm.org/
doi/10.5555/42040.42144.
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Appendix A

Priority Queue Examples

A.1 Erlang

; erlc -W pq.erl
; erl -noshell -s -run pq start -s init stop -inputdir ../

InputData/ -extra 10

-module(pq).
-export([start/0, node/3]).
start()->

Root = spawn(pq, node, [0, self(), 0]),
{ok, [Path | _]} = init:get_argument(inputdir),
[Arg1 | _] = init:get_plain_arguments(),
File = string:concat(Path, Arg1),
{ok, Binary} = file:read_file(File),
Lines = string:tokens(erlang:binary_to_list(Binary), "\n"),
Numbers = lists:map(fun(X) -> {Int, _} = string:to_integer(X

), Int end, Lines),
add_num(Numbers, Root),
remove(list_to_integer(Arg1), Root).

remove(0, _)->
true;

remove(Num, Root)->
Root ! remove,
receive

{remove_ret, Val, _}->
io:format("˜p˜n", [Val])

end,
remove(Num-1, Root).

add_num([], _)->
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true;
add_num([F | Rest], Root)->

Root ! {add, F},
add_num(Rest, Root).

node(Val, From, To)->
receive

{add, Value_add}->
if To == 0->

node(Value_add, From, spawn(pq, node, [0, self(), 0
]));

true->
To ! {add, max(Val, Value_add)},
node(min(Val, Value_add), From, To)

end;
remove->

if To == 0->
From ! {remove_ret, Val, 0};

true->
From ! {remove_ret, Val, self()},
To ! remove,
receive

{remove_ret, V, To_new}->
node(V, From, To_new)

end
end

end.

A.2 Go

// go build -o PQ_GO PQ.go
// ./PQ_GO 10 ../InputData/ 4

package main
import (

"fmt"
"runtime"
"os"
"strconv"
"log"
"bufio"

)
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func link(left_input <- chan int, left_output chan <- int) {
m := 0 // value of the node
v := 0 // temp for receiving
var right_output chan int
var right_input chan int
for {

select {
case v = <- left_input:

if m == 0 {
m = v
right_output = make(chan int)
right_input = make(chan int)
go link(right_output, right_input)

} else {
if v < m {

right_output <- m
m = v

} else {
right_output <- v

}
}

case left_output <- m:
m = <- right_input

}
}

}

func main() {
if len(os.Args) != 4 {

fmt.Printf("Usage: %s num inputdata_dir thread_num\n",
os.Args[0])

return
}

m := os.Args[1]
num,err:= strconv.Atoi(m)
file_name := os.Args[2] + "/"+m
file,err := os.Open(file_name)
if err!=nil {

log.Fatal(err)
}
defer file.Close()
var input [] int
scanner := bufio.NewScanner(file)
for scanner.Scan() {
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//fmt.Println(scanner.Text())
tmp, err := strconv.Atoi(scanner.Text())
if err != nil{

log.Fatal(err)
}
input = append(input, tmp)

}

n := os.Args[3]
if err != nil {

fmt.Println(err)
os.Exit(2)

}
thread_num,err := strconv.Atoi(n)
runtime.GOMAXPROCS(thread_num)

right_output := make(chan int)
right_input := make(chan int)
go link(right_output, right_input)
for _, element := range input {

//fmt.Println( index)
right_output <- element

}
for i := 1; i<= num; i++{

//<- right_input
fmt.Println(<- right_input)
//fmt.Println(i)

}
//fmt.Printf("Done \n" )
return

}

A.3 Haskell

-- ghc -threaded -o PQ_HS --make -O -rtsopts PQ.hs
-- ./PQ_HS 10 ../InputData/

import Control.Concurrent
import System.Environment

data PQcmd = Add !Int | Remove | RemoveRet !Int | LastNode
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pqnode :: (MVar PQcmd) -> (MVar PQcmd) -> (MVar PQcmd) -> (MVar
PQcmd) -> Int -> IO ()

pqnode left_input left_output right_output right_input key = do
cmd <- takeMVar left_input
case cmd of

Add x -> do
putMVar right_output (Add (max key x))
pqnode left_input left_output right_output right_input

(min key x)
Remove -> do

putMVar left_output (RemoveRet key)
putMVar right_output Remove
k <- takeMVar right_input
case k of

RemoveRet r -> do
pqnode left_input left_output right_output

right_input r
LastNode -> do

pqnode_lastnode left_input left_output

pqnode_lastnode :: (MVar PQcmd) -> (MVar PQcmd) -> IO ()
pqnode_lastnode left_input left_output = do

right_input <- newEmptyMVar
right_output <- newEmptyMVar
cmd <- takeMVar left_input
case cmd of

Add a -> do
forkIO (pqnode_lastnode right_output right_input)
pqnode left_input left_output right_output right_input

a
Remove -> do

putMVar left_output LastNode
return ()

main = do
args <- getArgs
let path = (args!!1) ++ (args!!0)
file <- readFile path
let datas = lines file
let nums = map read datas

right_output <- newEmptyMVar
right_input <- newEmptyMVar
forkIO (pqnode_lastnode right_output right_input)
mapM_ (\ x -> putMVar right_output (Add x)) nums
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mapM_ (\ x -> do
putMVar right_output Remove
y <- takeMVar right_input
case y of

RemoveRet r -> print r
) nums

return ()

A.4 Java

// javac PQ.java
// java PQ 10 ../InputData/

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

class PQ extends Thread{
private int m, p;
private boolean a, r;
private PQ next;
private volatile boolean isRunning = true;
PQ(){

setDaemon(true) ;
this.m = 0;
this.p = 0;
this.a = false;
this.r = false;

}

public synchronized boolean empty(){
while(this.r){

try {
wait();

}
catch (InterruptedException e) {}

}
return this.next == null;

}

public synchronized void add(int n) {
while(this.a || this.r){
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try{
wait();

}
catch (InterruptedException e) {}

}
if (this.next == null){

this.m = n;
this.next = new PQ();
this.next.start();

}else{
this.p = n;
this.a = true;

}
notifyAll();

}

public synchronized int remove() {
while(this.a || this.r){

try{
wait();

}
catch (InterruptedException e) {}

}
this.r = true;
notifyAll();
return this.m;

}

private synchronized void doAdd(){
if(this.a){

if(this.m < this.p){
next.add(this.p);

}else{
next.add(this.m);
this.m = this.p;

}
this.a = false;
notifyAll();

}
}
private synchronized void doRemove(){

if(this.r){
if(this.next == null){

this.r = false;
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return;
}else if(this.next.empty()){

this.next = null;
}
else{

this.m = this.next.remove();
}
this.r = false;
notifyAll();

}
}

public void run(){
while(true){

doAdd();
doRemove();
//yield to the scheduler
Thread.yield();

}
}

/*public void kill() {
isRunning = false;

}*/
public static void main(String[] args) {

try {
int i = 0;
if(args.length < 2){

System.err.println("Usage: java -cp ./bin/PQ num
inputdata_dir");

return;
}

int num = Integer.parseInt(args[0]);
int [] input = new int[num];
Scanner scanner = new Scanner(new File(args[1],args

[0]));
while (scanner.hasNextLine()) {

//System.out.println(scanner.nextLine());
input[i] = Integer.parseInt(scanner.nextLine());
i++;

}
scanner.close();

PQ head = new PQ();
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head.start();
for (i = 0; i < num; i++){

head.add(input[i]);
}
for (i = 0; i < num; i++){

System.out.println(head.remove());
//head.remove();

}
} catch (FileNotFoundException e) {

e.printStackTrace();
}

}

A.5 Pthread

// gcc -pthread -o PQ_C PQ.c
// ./PQ_C 10 ../InputData/

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <time.h>
#include <sys/time.h>

typedef struct PriorityQueue{
pthread_mutex_t lock;
pthread_cond_t cv;
struct PriorityQueue *next;
int a, r, m, p;
int num_actions;
int (*actions[2])(void *);

}PriorityQueue;

int pq_doAdd(void * self);
int pq_doRemove(void *self);
void * pq_doActions(void * self);

void *pq_init(){
pthread_t thread_id;
PriorityQueue * pq = (PriorityQueue *)malloc(sizeof(

PriorityQueue));
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if(pq == NULL){
printf("Create priority queue failed\n");
exit(1);

}
pthread_mutex_init(&pq->lock,0);
pthread_cond_init(&pq->cv,0);
pq->next = NULL;
pq->a = 0;
pq->r = 0;
pq->m = 0;
pq->p = 0;
pq->num_actions = 2;
pq->actions[0] = pq_doAdd;
pq->actions[1] = pq_doRemove;
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE);
pthread_create(&thread_id, &attr, pq_doActions, (void *)pq);
return pq;

}

int pq_empty(PriorityQueue * self){
int tmp;
pthread_mutex_lock(&self->lock);
while(self->r){

pthread_cond_wait(&self->cv, &self->lock);
}
tmp = (self->next == NULL);
pthread_mutex_unlock(&self->lock);
return tmp;

}

int pq_remove(PriorityQueue * self){
//when not a and not r
int tmp;
pthread_mutex_lock(&self->lock);
while(self->a || self->r){

pthread_cond_wait(&self->cv, &self->lock);
}
self->r = 1;
pthread_cond_signal(&self->cv);
tmp = self->m;
pthread_mutex_unlock(&self->lock);
return tmp;

}
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void pq_add(int e, PriorityQueue * self){
// when not a and not r
pthread_mutex_lock(&self->lock);
while(self->a || self->r){

pthread_cond_wait(&self->cv, &self->lock);
}
if(self->next == NULL){

self->m = e;
self->next = pq_init();

}else{
self->p = e;
self->a = 1;
pthread_cond_signal(&self->cv);

}
pthread_mutex_unlock(&self->lock);

}

int pq_doAdd(void * self){
//when a do
int done;
PriorityQueue *this = (PriorityQueue *)self;
if(this->a){

if(this->m < this->p){
pq_add(this->p, this->next);

}else {

pq_add(this->m, this->next);
this->m = this->p;

}
this->a = 0;
pthread_cond_signal(&this->cv);
done = 1;

}else{
done = 0;

}
return done;

}

int pq_doRemove(void * self){
int done;
PriorityQueue *this = (PriorityQueue *)self;
if(this->r){

if(this->next == NULL){
this->r = 0;
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return 1;
}else if(pq_empty(this->next)){

this->next = NULL;
}else {

this->m = pq_remove(this->next);
}
this->r = 0;
pthread_cond_signal(&this->cv);
done = 1;

}else{
done = 0;

}
return done;

}

void * pq_doActions(void * self){
int i = 0, done = 0;
PriorityQueue *this = (PriorityQueue *)self;
while(1){

pthread_mutex_lock(&this->lock);
for(i=0; i < this->num_actions; i++)

done += this->actions[i](this);
pthread_mutex_unlock(&this->lock);
//yield to the scheduler
pthread_yield();

}
return NULL;

}

int main(int argc, char* argv[]){
if(argc < 3){

printf("The Usage: %s num inputdata_dir\n", argv[0]);
exit(1);

}
char *dir = argv[2];
char filename[100];
char * line = NULL;
size_t len = 0;
ssize_t read;
snprintf(filename, 100, "%s/%s", dir, argv[1]);
int num = atoi(argv[1]);
FILE *file = fopen(filename, "r");
if (file == NULL) exit(EXIT_FAILURE);
int *input = (int *)malloc(sizeof(int)*num);
int i = 0;
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while ((read = getline(&line, &len, file)) != -1) {
input[i] = atoi(line);
i++;

}
fclose(file);

PriorityQueue * head = (PriorityQueue *)pq_init();
for (i = 0; i < num; i++){

pq_add(input[i], head);
}

for (i = 0; i < num; i++){
//pq_remove(head);
printf("%d\n", pq_remove(head));

}
return 0;

}
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Leaf-oriented Tree Examples

B.1 Erlang

% erlc -W lot.erl
% erl -noshell -s -run lot start -s init stop -inputdir ../

InputData/ -extra 10

-module(lot).
-export([start/0, node/3]).

start()->
Root = spawn(lot, node, [5000,0,0]),
{ok, [Path | _]} = init:get_argument(inputdir),
[Arg1 | _] = init:get_plain_arguments(),
File = string:concat(Path,Arg1),
{ok, Binary} = file:read_file(File),
Lines = string:tokens(erlang:binary_to_list(Binary), "\n"),
Numbers = lists:map(fun(X) -> {Int, _} = string:to_integer(X

), Int end, Lines),
add_num(Numbers, Root),
Range = lists:seq(0, 10000),
has_num(Range, Root).

has_num([H], Root)->
Root !{has, H, self()},
receive

{has_result, 1}->
io:format("˜b ˜n", [H]);

{has_result, 0}->
ok

end;
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has_num([H | Rest], Root)->
Root !{has, H, self()},
receive

{has_result, 1}->
io:format("˜b ˜n", [H]);

{has_result, 0}->
ok

end,
has_num(Rest, Root).

add_num([F], Root)->
Root ! {add, F};

add_num([F | Rest], Root)->
Root ! {add, F},
add_num(Rest, Root).

node(Key, Left, Right)->
receive

{add, X}->
if Left /= 0 ->

if X =< Key ->
Left ! {add, X},
node(Key, Left, Right);

true ->
Right ! {add, X},
node(Key, Left, Right)

end;
true->

if X > Key ->
node(Key, spawn(lot, node, [Key, 0, 0]), spawn(

lot, node, [X, 0, 0]));
X < Key ->

node(X, spawn(lot, node, [X, 0, 0]), spawn(lot,
node, [Key, 0, 0]));

true ->
node(Key, Left, Right)

end
end;

{has, Y, Ret}->
if Left == 0->

if Key == Y->
Ret ! {has_result, 1};

true->
Ret ! {has_result, 0}
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end,
node(Key, Left, Right);

true->
if Y =< Key->

Left ! {has, Y, Ret},
node(Key, Left, Right);

true->
Right ! {has, Y, Ret},
node(Key, Left, Right)

end
end

end.

B.2 Go

// go build -o LOT_GO LOT.go
// ./LOT_GO 10 ../InputData/ 4

package main

import (
"bufio"
"fmt"
"log"
"os"
"runtime"
"strconv"

)

var found chan bool

func node(k int, parent chan int, find chan int) {
key := k // value of the current node
p := 0 // temp for receiving
var leftchild_parent chan int
var rightchild_parent chan int
var leftchild_find chan int
var rightchild_find chan int

for {
select {
case p = <- parent:

if leftchild_parent != nil {
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if p <= key {
leftchild_parent <- p

} else {
rightchild_parent <- p

}

} else if p < key {
leftchild_parent = make(chan int)
leftchild_find = make(chan int)
go node(p, leftchild_parent, leftchild_find)

rightchild_parent = make(chan int)
rightchild_find = make(chan int)
go node(key, rightchild_parent, rightchild_find)
key = p

} else if p > key {
leftchild_parent = make(chan int)
leftchild_find = make(chan int)
go node(key, leftchild_parent, leftchild_find)
rightchild_parent = make(chan int)
rightchild_find = make(chan int)
go node(p, rightchild_parent, rightchild_find)

}
case p = <- find:

if leftchild_parent == nil {
found <- p == key

} else if p <= key {
leftchild_find <- p

} else {
rightchild_find <- p

}
}

}
}

func main() {
if len(os.Args) != 4{

fmt.Printf("Usage: %s num inputdata_dir thread_num\n",
os.Args[0])

return
}
m := os.Args[1]
num, err := strconv.Atoi(m)
if err != nil {

log.Fatal(err)
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}
dir := os.Args[2]
filePath := dir + "/" + m
file, err := os.Open(filePath)
if err != nil {

log.Fatal(err)
}
defer file.Close()
if err != nil {

log.Fatal(err)
}
defer file.Close()
var input []int
scanner := bufio.NewScanner(file)
for scanner.Scan() {

//fmt.Println(scanner.Text())
tmp, err := strconv.Atoi(scanner.Text())
if err != nil {

log.Fatal(err)
}
input = append(input, tmp)

}
n := os.Args[3]
if err != nil {

fmt.Println(err)
os.Exit(2)

}
thread_num, err := strconv.Atoi(n)
runtime.GOMAXPROCS(thread_num)
root := make(chan int)
find := make(chan int)
found = make(chan bool)
go node(5000, root, find)

for i := 0; i < num; i++ {
root <- input[i]

}
for j := 0; j <= 10000; j++ {

find <- j
if <- found {

fmt.Printf("%d\n", j);
}

}
//t1 := time.Now()
//fmt.Printf("Go impl: %v\n", t1.Sub(t0))

146



Ph.D. Thesis — Shucai Yao McMaster — Computing and Software

}

B.3 Haskell

-- ghc -threaded -o LOT_HS --make -O -rtsopts LOT.hs
-- ./LOT_HS 10 ../InputData/

import Control.Concurrent
import System.Environment
import qualified Data.Text as Text
import qualified Data.Text.IO as Text

data LOTchannel = LOTchannel !(MVar LOTcmd)
data LOTcmd = Add !Int | Search !Int | Found !Bool
deriving (Show)

lotnode :: LOTchannel -> LOTchannel -> LOTchannel -> LOTchannel
-> Int -> IO ()

lotnode parent_C@(LOTchannel parent) found left_child_C@(
LOTchannel left) right_child_C@(LOTchannel right) key = do
cmd <- takeMVar parent
case cmd of

Add a -> do
if a > key

then do
putMVar right (Add a)
lotnode parent_C found left_child_C

right_child_C key
else if a < key

then do
putMVar left (Add a)
lotnode parent_C found left_child_C

right_child_C key
else do

lotnode parent_C found left_child_C
right_child_C key

Search b -> do
if b <= key

then do
putMVar left (Search b)
lotnode parent_C found left_child_C

right_child_C key
else do
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putMVar right (Search b)
lotnode parent_C found left_child_C

right_child_C key

lotnode_leaf :: LOTchannel-> LOTchannel -> Int -> IO ()
lotnode_leaf parent_C@(LOTchannel parent) found_C@(LOTchannel

found) key = do
cmd <- takeMVar parent
case cmd of

Add a -> do
if a /= key

then do
l_child <- newEmptyMVar
r_child <- newEmptyMVar
let left = LOTchannel l_child
let right = LOTchannel r_child
let smaller = min key a
let larger = max key a
forkIO lotnodeleafleftfoundCsmallerforkIO lotnode_leaf

right found_C larger
lotnode parent_C found_C left right smaller

else do
lotnode_leaf parent_C found_C key

Search b -> do
if b == key

then do
putMVar found (Found True)

else do
putMVar found (Found False)

lotnode_leaf parent_C found_C key

f :: [String] -> [Int]
f = map read

main = do
args <- getArgs
let path = (args!!1) ++ (args!!0)
file <- readFile path
let datas = lines file
let nums = f datas

r <- newEmptyMVar
f <- newEmptyMVar
let root = LOTchannel r
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let find = LOTchannel f
forkIO (lotnode_leaf root find 5000)
mapM_ (\ x -> putMVar r (Add x)) nums
mapM_ (\ x -> do

putMVar r (Search x)
y <- takeMVar f
case y of

Found True -> do
print x

_ -> return ()
) [0..10000]

return ()

B.4 Java

// javac LOT.java
// java LOT 10 ../InputData/

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
class LOT extends Thread{

private int key, p;
private boolean a;
public LOT right, left;

LOT(int i){
setDaemon(true) ;
this.key = i;
this.p = 0;
this.left = null;
this.right = null;
this.a = false;

}

public synchronized void add(int x){
while(this.a){

try{wait();} catch (InterruptedException e) {}
}
if(this.left != null){

this.a = true;
this.p = x;

}else if(x < this.key){
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this.left = new LOT(x);
this.left.start();
this.right = new LOT(key);
this.right.start();
this.key = x;

}else if(x > this.key){
this.left = new LOT(key);
this.left.start();
this.right = new LOT(x);
this.right.start();

}
}

public synchronized boolean has(int x){
while(this.a){

try{wait();} catch (InterruptedException e) {}
}
if(this.left == null) return x == this.key;
else if(x <= this.key) return left.has(x);
else return right.has(x);

}

private synchronized void doAdd(){
if(this.a == true){

if(this.p <= this.key) { left.add(this.p);}
else right.add(this.p);
this.a = false;
notifyAll();

}
}
public void run(){

while(true){
doAdd();
Thread.yield();

}
}

public static void main(String[] args) {
int i = 0;
int num = Integer.parseInt(args[0]);
int [] input = new int[num];
try {

Scanner scanner = new Scanner(new File(args[1],args
[0]));

while (scanner.hasNextLine()) {
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//System.out.println(scanner.nextLine());
input[i] = Integer.parseInt(scanner.nextLine());
i++;

}
scanner.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

}

LOT root = new LOT(5000);
root.start();
for(i = 0; i < num; i++){

root.add(input[i]);
}

for(i = 0; i <= 10000; i++){
if(root.has(i)){

System.out.println(i);
}

}
return;

}
}

B.5 Pthread

// gcc -pthread -o LOT_C LOT.c
// time ./LOT_C 80 ../InputData

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <time.h>
#include <sys/time.h>
#include <errno.h>

typedef struct Node{
pthread_mutex_t lock;
pthread_cond_t cv;
int key, p, a;
struct Node *left;
struct Node *right;
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int num_actions;
void (*actions[1])(void *);

}node_t;

void * LOT_doActions(void * self);
void LOT_doAdd(void * this);

struct Node * LOT_init(int x){
pthread_t thread_id;
struct Node * tmp = (struct Node *)malloc(sizeof(struct Node

));
if(tmp == NULL){

printf("Create Node failed\n");
exit(1);

}
pthread_mutex_init(&tmp->lock,0);
pthread_cond_init(&tmp->cv,0);
tmp->key = x;
tmp->left = NULL;
tmp->right = NULL;
tmp->a = 0;
tmp->num_actions = 1;
tmp->actions[0] = LOT_doAdd;
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE);
pthread_create(&thread_id, &attr, LOT_doActions, (void *)tmp

);
return tmp;

}

void LOT_add(int x, struct Node * self){
pthread_mutex_lock(&self->lock);
while(self->a){

pthread_cond_wait(&self->cv, &self->lock);
}
if(self->left != NULL){

self->a = 1;
self->p = x;

}else if(x < self->key){
self->left = LOT_init(x);
self->right = LOT_init(self->key);
self->key = x;

}else if(x > self->key){
self->left = LOT_init(self->key);
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self->right = LOT_init(x);
}
pthread_mutex_unlock(&self->lock);

}

int LOT_has(int x, struct Node * self){
int ret = 0;
pthread_mutex_lock(&self->lock);
while(self->a){

pthread_cond_wait(&self->cv, &self->lock);
}
if(self->left == NULL){

ret = (x == self->key);
}else if(x <= self->key){

ret = LOT_has(x, self->left);
}else {

ret = LOT_has(x, self->right);
}
pthread_mutex_unlock(&self->lock);
return ret;

}

void LOT_doAdd(void * self){
struct Node * this = (struct Node *)self;
if(this->a){

if(this->p <= this->key){
LOT_add(this->p, this->left);

}else{
LOT_add(this->p, this->right);

}
this->a = 0;
pthread_cond_signal(&this->cv);

}
}

void * LOT_doActions(void * self){
struct Node * this = (struct Node *)self;
while(1){

pthread_mutex_lock(&this->lock);
for(int i = 0; i < this->num_actions; i++)

this->actions[i](this);
pthread_mutex_unlock(&this->lock);
pthread_yield();

}
return NULL;
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}

int main(int argc, char* argv[]){
if(argc < 3){

printf("The Usage: %s pq_num inputdir\n", argv[0]);
exit(1);

}
char *dir = argv[2];
char filename[100];
char * line = NULL;
size_t len = 0;
ssize_t read;
snprintf(filename, 100, "%s/%s", dir, argv[1]);
int num = atoi(argv[1]);
FILE *file = fopen(filename, "r");
if (file == NULL) exit(EXIT_FAILURE);
int *input = (int *)malloc(sizeof(int)*num);
int i = 0;
while ((read = getline(&line, &len, file)) != -1) {

input[i] = atoi(line);
i++;

}
fclose(file);

struct Node * root = LOT_init(5000);

for(i = 0; i < num; i++){
LOT_add(input[i], root);

}

for(i = 0; i <= 10000; i++){
if(LOT_has(i, root) == 1){

printf("%d\n", i);
}

}
return 0;

}

154



Appendix C

MapReduce Examples

C.1 Erlang

% erlc -W mr.erl
% erl -noshell -s -run mr initial 1 1 16 -s init stop
-module(mr).

-export([initial/1, rep/2, start/1, start/2]).

initial([RR, R, N])->
rep(list_to_integer(RR), [R,N]).

rep(1, [R, N])->
start([R, N]);
%io:format("Done ˜n", []);

rep(RR, [R, N])->
start([R, N]),
rep(RR - 1, [R, N]).

start([R, N]) ->
Result = start(list_to_integer(R), list_to_integer(N)),
io:format("˜B˜n", [hd(Result)]).

start(R, N) ->
Self = self(),
Reducer = start(Self, R, 1, N),
[receive {Reducer, Result} -> Result end || _ <- lists:seq

(1, R)].

start(Parent, R, N, N) ->
spawn_link(fun() -> mapper(Parent, R, N) end);

start(Parent, R, From, To) ->
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spawn_link(fun() -> reducer(Parent, R, From, To) end).

mapper(Parent, R, N) ->
[Parent ! {self(), N * N} || _ <- lists:seq(1, R)].

reducer(Parent, R, From, To) ->
Self = self(),
Middle = (From + To) div 2,
A = start(Self, R, From, Middle),
B = start(Self, R, Middle + 1, To),
[Parent ! {Self, receive {A, X} -> receive {B, Y} -> X + Y

end end} || _ <- lists:seq(1, R)].

C.2 Go

// go build -o MR_GO MR.go
// ./MR_GO 16 1 4

package main

import (
"fmt"
"os"
"runtime"
"strconv"
//"time"

)

func mapper(in chan int, out chan int) {
for v := range in {

out <- v * v
}

}

func reducer(in1, in2 chan int, out chan int) {
for i1 := range in1 {

i2 := <- in2
out <- i1 + i2

}
}

func main() {
if len(os.Args) != 4{
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fmt.Printf("Usage: %s num repeat thread_num\n", os.Args
[0])

return
}
num := os.Args[1]
N, errw := strconv.Atoi(num)
if errw != nil {

fmt.Println(errw)
os.Exit(2)

}
R, errr := strconv.Atoi(os.Args[2]) // number of repetitions
if errr != nil {

fmt.Println(errr)
os.Exit(2)

}
// strconv.FormatInt(n, 2)
worker_num, _ := strconv.Atoi(os.Args[3])
runtime.GOMAXPROCS(worker_num)
//start := time.Now()
//const N = 1 << 10 // calculate P(N), N = 2 ** 10

r := make([]chan int, N * 2)
for i := range r {

r[i] = make(chan int)
}
//var m [N]chan int
m := make([]chan int, N)
for i := range m {

m[i] = make(chan int)
}
for i := 0; i < N; i++ {

go mapper(m[i], r[i + N])
}
for i := 1; i < N; i++ {

go reducer(r[i * 2], r[i * 2 + 1], r[i])
}

go func() {
for j := 0; j < R; j++ {

for i := 0; i < N; i++ {
m[i] <- i + 1

}
}

}()
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for j := 0; j < R; j++ {
fmt.Println(<- r[1])
//fmt.Println(<- r[1], (N * (N + 1) * (2 * N + 1)) / 6)

}
//fmt.Println(time.Since(start))

}

C.3 Haskell

-- ghc -threaded -O -rtsopts --make -o MR_HS MR.hs
-- ./MR_HS 16 1

import Control.Concurrent
import Control.Monad
import System.Environment

mapper :: MVar Int -> MVar Int -> IO ()
mapper left right = do

v <- takeMVar left
putMVar right (! v * v)
mapper left right

reducer :: MVar Int -> MVar Int -> MVar Int -> IO ()
reducer left_1 left_2 right = do

v1 <- takeMVar left_1
v2 <- takeMVar left_2
putMVar right (! v1+v2)
reducer left_1 left_2 right

repeats:: Int -> [MVar Int] -> [MVar Int] ->IO ()
repeats 0 m r = do

mapM_ (\ (e,x) -> putMVar e (x+1)) (zip m [0..])
result <- takeMVar (r!!1)
putStrLn (show result)
return ()

repeats n m r = do
mapM_ (\ (e,x) -> putMVar e (x+1)) (zip m [0..])
result <- takeMVar (r!!1)
repeats (n-1) m r

main = do
args <- getArgs
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let num = read (args!!0)
let reps = read (args!!1)
m <- replicateM num newEmptyMVar
r <- replicateM (num*2) newEmptyMVar

mapM_ (\ (mapMVar, x) -> forkIO (mapper mapMVar (r!!(num+x)
))) (zip m [0..])

mapM_ (\ x -> forkIO (reducer (r!!(x*2)) (r!!(x*2+1)) (r!!x)
)) [1..(num-1)]

repeats (reps - 1) m r

C.4 Java

// javac MR.java
// java MR 64 1

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
class Reducer extends Thread{

private int e1, e2, index;
private boolean a1, a2;
public Reducer next;
Reducer(int idx){

setDaemon(true) ;
this.index = idx;
this.e1 = this.e2 = 0;
this.a1 = this.a2 = false;
this.next = null;

}

public synchronized void reduce1(int input){
while(this.a1){

try{wait();} catch (InterruptedException e) {}
}
this.e1 = input;
this.a1 = true;

}
public synchronized void reduce2(int input){

while(this.a2){
try{wait();} catch (InterruptedException e) {}

}
this.e2 = input;
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this.a2 = true;
}

private synchronized void doreduce(){
if(this.a1 && this.a2){

if(this.index == 1){
System.out.printf("%d\n", e1 + e2);
e1 = e2 = 0;

}else{
if(this.index % 2 == 0){

this.next.reduce1(e1 + e2);
}else{

this.next.reduce2(e1 + e2);
}

}
this.a1 = false;
this.a2 = false;
notifyAll();

}
}

public void run(){
while(true){

doreduce();
Thread.yield();

}
}

}

class Mapper extends Thread{
private int e, index;
private boolean a;
public Reducer next;
Mapper(int idx){

setDaemon(true) ;
this.index = idx;
this.e = 0;
this.a = false;
this.next = null;

}
public synchronized void map(int input){

while(this.a){
try{wait();} catch (InterruptedException e) {}

}
this.e = input;
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this.a = true;
}

private synchronized void domap(){
if(this.a){

if(this.index % 2 == 0){
this.next.reduce1(this.e * this.e);

}else{
this.next.reduce2(this.e * this.e);

}
this.a = false;
notifyAll();

}
}

public void run(){
while(true){

domap();
// yield to the scheduler
Thread.yield();

}
}

}

class MR{
public Mapper[] m ;
private Reducer[] r;
int N;
MR(int x){

N = x;
m = new Mapper[N];
r = new Reducer[N];

}
private void MR_init(){

m[0] = new Mapper(0);
for(int i = 1; i < N; ++i){

m[i] = new Mapper(i);
r[i] = new Reducer(i);

}
for(int i = 1; i < N / 2; ++i){

r[i * 2].next = r[i];
r[i * 2 + 1].next = r[i];

}
for(int i = 0; i < N; ++i){

m[i].next = r[(i + N) / 2];
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}
for(int i = 0; i < N; i++){m[i].start();}
for(int i = 1; i < N; i++){r[i].start();}

}

public static void main(String[] args) {
if(args.length < 2){

System.err.println("Usage: java MR num repeat\n");
return;

}
int N = Integer.parseInt(args[0]);
int repeat = Integer.parseInt(args[1]);
int i;
MR tree = new MR(N);
tree.MR_init();
while(repeat > 0){

for(i = 1; i <= N; i++){
tree.m[i - 1].map(i);

}
repeat--;

}
try {

Thread.sleep(2000);
} catch (InterruptedException e){}
return;

}
}

C.5 Pthread

// gcc -o MR_C -pthread MR.c
// ./MR_C 64 1

#define _GNU_SOURCE
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>
#include <time.h>
#include <sys/time.h>

typedef struct Reducer{
pthread_mutex_t lock;
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pthread_cond_t cv;
int index, a1, a2, e1, e2;
struct Reducer *next;
int num_actions;
void (*actions[1])(void *);

}reducer_t;

typedef struct Mapper{
pthread_mutex_t lock;
pthread_cond_t cv;
int index, e, a;
struct Reducer *next;
int num_actions;
void (*actions[1])(void *);

}mapper_t;

typedef struct Tree{
mapper_t ** m;
reducer_t ** r;

}tree_t;

void Reducer_doReduce(void * this);
void Mapper_doMap(void * this);
void * Reducer_doActions(void * self);
void * Mapper_doActions(void * self);

struct Reducer * Reducer_init(int e){
pthread_t thread_id;
struct Reducer *tmp = (struct Reducer *)malloc(sizeof(struct

Reducer));
if(tmp == NULL){

printf("Create reducer failed\n");
exit(1);

}
pthread_mutex_init(&tmp->lock, 0);
pthread_cond_init(&tmp->cv, 0);
tmp->index = e;
tmp->a1 = 0;
tmp->a2 = 0;
tmp->e1 = 0;
tmp->e2 = 0;
tmp->next = NULL;
tmp->num_actions = 1;
tmp->actions[0] = Reducer_doReduce;
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pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE);
pthread_create(&thread_id, &attr, Reducer_doActions, (void

*)tmp);
return tmp;

}

struct Mapper * Mapper_init(int e){
pthread_t thread_id;
struct Mapper * tmp = (struct Mapper *)malloc(sizeof(struct

Mapper));
if(tmp == NULL){

printf("Create mapper failed\n");
exit(1);

}
pthread_mutex_init(&tmp->lock, 0);
pthread_cond_init(&tmp->cv, 0);
tmp->index = e;
tmp->e = 0;
tmp->a = 0;
tmp->next = NULL;
tmp->num_actions = 1;
tmp->actions[0] = Mapper_doMap;

pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE);
pthread_create(&thread_id, &attr, Mapper_doActions, (void *)

tmp);
return tmp;

}

void Reducer_reduce1(int e, struct Reducer * self){
pthread_mutex_lock(&self->lock);
while(self->a1){

pthread_cond_wait(&self->cv, &self->lock);
}
self->e1 = e;
self->a1 = 1;
pthread_mutex_unlock(&self->lock);

}

void Reducer_reduce2(int e, struct Reducer *self){
pthread_mutex_lock(&self->lock);
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while(self->a2){
pthread_cond_wait(&self->cv, &self->lock);

}
self->e2 = e;
self->a2 = 1;
pthread_mutex_unlock(&self->lock);

}

void Reducer_doReduce(void * this){
struct Reducer * self = (struct Reducer *)this;
if(self->a1 && self->a2){

if(self->index == 1){
printf("%d\n", self->e1 + self->e2);
self->e1 = 0;
self->e2 = 0;

}else{
if(self->index % 2 == 0){

Reducer_reduce1(self->e1 + self->e2, self->next);
}else{

Reducer_reduce2(self->e1 + self->e2, self->next);
}

}
self->a1 = 0;
self->a2 = 0;
//pthread_cond_signal(&self->cv);
pthread_cond_broadcast(&self->cv);

}
}

void * Reducer_doActions(void * self){
int i = 0;
struct Reducer *this = (struct Reducer *)self;
while(1){

pthread_mutex_lock(&this->lock);
for(i=0; i < this->num_actions; i++)

this->actions[i](this);
pthread_mutex_unlock(&this->lock);
//yield to the scheduler
pthread_yield();

}
return NULL;

}

void Mapper_map(int e, struct Mapper * self){
pthread_mutex_lock(&self->lock);
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while(self->a){
pthread_cond_wait(&self->cv, &self->lock);

}
self->e = e;
self->a = 1;
pthread_mutex_unlock(&self->lock);

}

void Mapper_doMap(void * self){
struct Mapper * this = (struct Mapper *)self;
if(this->a){

if(this->index % 2 == 0){
Reducer_reduce1(this->e * this->e, this->next);

}else{
Reducer_reduce2(this->e * this->e, this->next);

}
this->a = 0;
pthread_cond_signal(&this->cv);

}
}

void * Mapper_doActions(void * self){
int i;
struct Mapper * this = (struct Mapper *)self;
while(1){

pthread_mutex_lock(&this->lock);
for(i=0; i<this->num_actions; i++)

this->actions[i](this);
pthread_mutex_unlock(&this->lock);
//yield to the scheduler
//pthread_yield();

}
return NULL;

}

tree_t * tree_init(int object_num){
tree_t * n = (tree_t *) malloc (sizeof(tree_t));
n->m = (mapper_t **)malloc(sizeof(mapper_t *) * object_num);
n->r = (reducer_t **)malloc(sizeof(reducer_t *) * object_num

);
n->m[0] = (mapper_t *)Mapper_init(0);
for(int i = 1; i < object_num; ++i){

n->m[i] = (mapper_t *)Mapper_init(i);
n->r[i] = (struct Reducer *)Reducer_init(i);

}

166



Ph.D. Thesis — Shucai Yao McMaster — Computing and Software

for(int i = 1; i < object_num / 2; ++i){
n->r[i * 2]->next = n->r[i];
n->r[i * 2 + 1]->next = n->r[i];

}
for(int i = 0; i< object_num; ++i){

n->m[i]->next = n->r[(i + object_num) / 2];
}
return n;

}

int main(int argc, char* argv[]){
if(argc < 3){

printf("The Usage: %s num repeat\n", argv[0]);
exit(1);

}
int i;
int num = atoi(argv[1]);
int repeat = atoi(argv[2]);
tree_t *t = tree_init(num);
while(repeat > 0){

for(i = 1; i <= num; i++){
Mapper_map(i, t->m[i - 1]);

}
repeat--;

}
sleep(2);
return 0;

}
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Appendix D

The Chameneos Game Benchmark

D.1 Erlang

-module(chameneos).
-export([start/0]).

-import(lists, [foreach/2]).

chameneos(Mall, Color) ->
Mall ! {self(), Color},
receive

{OtherColor} ->
if Color == OtherColor ->

chameneos(Mall, Color);
true ->

chameneos(Mall, 3 - Color - OtherColor)
end

end.

mall(0, Diff, Main) ->
io:fwrite("Color changes: " ++ integer_to_list(Diff) ++ "\n"

),
Main ! {done,self()};

mall(N, Diff, Main) ->
receive

{Pid1, C1} -> nil
end,
receive

{Pid2, C2} ->
Pid1 ! {C2},
Pid2 ! {C1},
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if C1 == C2 ->
mall(N - 1, Diff, Main);

true ->
mall(N - 1, Diff + 1, Main)

end
end.

start() ->
Main = self(),
[Chame | _] = init:get_plain_arguments(),
C = list_to_integer(Chame),
Mall = spawn(fun () -> mall(C*500, 0, Main) end),
foreach(fun(Color) -> spawn(fun() -> chameneos(Mall, Color

rem 3) end) end, lists:seq(1, C)),

receive
{done, _} -> nil

end.

D.2 Go

package main
import ("fmt"

"os"
"strconv")

type Color int
const (blue Color = 0; red; yellow)

type Request struct{col Color; reply chan Color}

func chameneos(col Color, mall chan Request) {
reply := make(chan Color)
for {
// in forest
mall <- Request{col, reply}
// waiting to meet
otherCol := <- reply
// changing color
if col != otherCol {col = 3 - col - otherCol}

}
}
func mall(cham chan Request, done chan bool, Chams, Rounds int)

{

169



Ph.D. Thesis — Shucai Yao McMaster — Computing and Software

diff := 0
for r := 0; r < Chams * Rounds / 2; r++ {
fst := <- cham; snd := <- cham
fst.reply <- snd.col; snd.reply <- fst.col
if fst.col != snd.col {diff += 1}

}
fmt.Println("Color changes:", diff)
done <- true

}
func main() {
if len(os.Args) != 3{
fmt.Printf("Usage: %s numChams Rounds\n", os.Args[0])
return

}
ArgChams := os.Args[1]
ArgRounds := os.Args[2]
Chams, errC := strconv.Atoi(ArgChams)
if errC != nil {
fmt.Println(errC)
os.Exit(2)

}

Rounds, errR := strconv.Atoi(ArgRounds)
if errR != nil {
fmt.Println(errR)
os.Exit(2)

}

req := make(chan Request); done := make(chan bool)
go mall(req, done, Chams, Rounds)
for i := 0; i < Chams; i++ {go chameneos(Color(i % 3), req)}
<- done

}

D.3 Haskell

import Control.Concurrent
import System.Environment

data RequestChan = RequestChan (MVar (Int, (MVar Int)))
data DoneChan = DoneChan (MVar Bool)

chameneos :: (MVar (Int, (MVar Int))) -> Int -> IO()
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chameneos mall col = do
re <- newEmptyMVar
putMVar mall (col, re)
othercol <- takeMVar re
if col /= othercol

then do
chameneos mall (3 - col - othercol)

else do
chameneos mall col

mall :: Int -> (MVar (Int, (MVar Int))) -> MVar Bool -> IO()
mall reps cham done = do

(fstColor, fstReply) <- takeMVar cham
(scdColor, scdReply) <- takeMVar cham
putMVar fstReply scdColor
putMVar scdReply fstColor
if reps > 1

then do
-- print reps
mall (reps-1) cham done

else do
-- putStr "done"
putMVar done True

main = do
args <- getArgs
let num = read (args!!0)
let reps = read (args!!1)
r <- newEmptyMVar
d <- newEmptyMVar
request <- newMVar (0, r)
forkIO (mall (num * reps ‘div‘ 2) request d)
mapM_ (\ x-> forkIO (chameneos request (x ‘rem‘ 3))) [1..num

]
tmp <- takeMVar d
return ()

D.4 Java

class Chameneos extends Thread {
final int Blue = 0, Red = 1, Yellow = 2;
int col;
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Mall mall;
Chameneos(int c, Mall m) {
col = c; mall = m; setDaemon(true);

}
synchronized void meet(int otherCol) {
// changing color
if (col != otherCol) col = 3 - col - otherCol;
notify();

}
synchronized public void run() {
while (true) {
// in forest
mall.arrive(this, col);
// waiting to meet
try {wait();} catch (InterruptedException e) {}

}
}

}
class Mall extends Thread {
int reps;
int chams;
Chameneos fstCham, sndCham;
int fstCol, sndCol;
Object mutate = new Object();
Mall(int r) {
reps = r;

}
synchronized void arrive(Chameneos ch, int c) {
while (chams == 2) {
try {wait();} catch (InterruptedException e) {}

}
chams += 1;
if (chams == 1) {fstCham = ch; fstCol = c;
} else {
sndCham = ch; sndCol = c;
synchronized(mutate) {mutate.notify();}

}
}
public void run() {
int diff = 0;
synchronized(mutate) {
for (int r = 0; r < reps; r++) {
try {mutate.wait();} catch (InterruptedException e) {}
synchronized(this) {
fstCham.meet(sndCol); sndCham.meet(fstCol);

172



Ph.D. Thesis — Shucai Yao McMaster — Computing and Software

if (fstCol != sndCol) diff += 1;
chams = 0; notifyAll();

}
}

System.out.println("Color changes: " + diff);
}

}
public static void main(String args[]) {

if(args.length < 2){
System.err.println("Usage: java Mall Chams Rounds\n");
return;

}
int Chams = Integer.parseInt(args[0]);
int Rounds = Integer.parseInt(args[1]);

Mall m = new Mall(Chams * Rounds / 2);
m.start();
for (int i = 0; i < Chams; i++) new Chameneos(i % 3, m).

start();
}

}

D.5 Pthread

#include <pthread.h>
#include <stdio.h>
#include <semaphore.h>
#include <stdlib.h>

int Chams = 0;
int Rounds = 0;
typedef enum {blue, red, yellow} Color;

sem_t req_meet, sent_meet, req_other;
Color color;
Color *reply;

void *chameneos(void *colptr) {
Color col = *((int *) colptr);
Color othercol;
for (;;) {
// in forest
sem_wait(&req_meet);
color = col;
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reply = &othercol;
sem_post(&sent_meet);
// waiting to meet
sem_wait(&req_other);
// changing color
if (col != othercol) col = 3 - col - othercol;

}
}

void *mall(void *ptr) {
int diff = 0;
for (int r = 0; r < Chams * Rounds / 2; r++) {
sem_wait(&sent_meet);
Color fstcol = color;
Color *fstreply = reply;
sem_post(&req_meet);
sem_wait(&sent_meet);
Color sndcol = color;
Color *sndreply = reply;
sem_post(&req_meet);

*fstreply = sndcol;

*sndreply = fstcol;
sem_post(&req_other);
sem_post(&req_other);
if (fstcol != sndcol) diff += 1;

}
printf("Color changes: %d\n", diff);

}

int main(int argc, char *argv[]) {
if(argc < 3){

printf("The Usage: %s Chams Rounds\n", argv[0]);
exit(1);

}

Chams = atoi(argv[1]);
Rounds = atoi(argv[2]);
pthread_t mid;
pthread_t *cid = (pthread_t *)malloc(sizeof(pthread_t) * Chams

); // id’s of mall, chameneos
sem_init(&req_meet, 0, 1); // semaphore req_meet = 1
sem_init(&sent_meet, 0, 0); // semaphore sent_meet = 0
sem_init(&req_other, 0, 0); // semaphore req_other = 0
pthread_create(&mid, NULL, mall, NULL);
for (int i = 0; i < Chams; i++) {
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int col = i % 3;
pthread_create(&cid[i], NULL, chameneos, &col);

}
pthread_join(mid, NULL);

}
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