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Abstract 

 In this research, a fault detection and diagnosis strategy for internal combustion 

engine is developed using measurements that are readily available in engine testing 

environment to monitor abnormal combustion. The FDD strategy is designed to monitor 

the engine on a cycle-by-cycle basis using measurements that are accessible on a running 

vehicle. Pressure measurements are easily accessible in a testing facility that provide useful 

insight into the quality of the combustion occurring inside the engine. However, due to its 

cost and complex installation procedures, it is not feasible to obtain in-cylinder pressure 

measurements from an in-vehicle engine. Faults of a mechanical system are often 

investigated using vibration. Due to the low cost and non-invasive nature of 

accelerometers, vibration measurement is used to monitor the in-vehicle engine. However, 

as vibration behaviors of complex system such as an engine is hard to characterize, in-

cylinder pressure measurement is used during the development of the FDD strategy to 

assist in characterizing the vibration measurement. Upon data acquisition, features are 

extracted from the vibration measurements using Extended-MSPCA for better 

characterization and data reduction with a multi-baseline technique. Pressure 

measurements are analyzed using thermodynamic theories to assess the combustion quality 

of each cycle. The vibration measurements are labelled corresponding to the pressure 

analysis. An artificial neural network classifier is developed using the extracted and 

labelled features. Developed classifier detected the fault and its location with an overall 

accuracy of 96.3%.   



 

 

iv 

 

 

 

 

 

 

 

To my parents, my sister & R.T for their endless love and support 

  



 

 

v 

 

Acknowledgements 

 I would like to thank my supervisor, Dr. Habibi for his guidance throughout this 

research. I would also like to thank Dr. Tjong and his team at Ford Powertrain Engineering 

Research and Development Centre for their support during my time at PERDC.  

 

  



 

 

vi 

 

Table of Contents 

Abstract .............................................................................................................................. iii 

Acknowledgements ..............................................................................................................v 

Table of Contents ............................................................................................................... vi 

List of Figures .................................................................................................................... xi 

List of Tables .....................................................................................................................xv 

List of Abbreviations ....................................................................................................... xvi 

List of Symbols ............................................................................................................... xvii 

Chapter 1: Introduction ........................................................................................................1 

1.1 Overview ....................................................................................................................1 

1.2 Research Motivation ..................................................................................................2 

1.3 Research Objectives ...................................................................................................4 

1.4 Thesis Structure .........................................................................................................4 

Chapter 2: FDD Strategies for Internal Combustion Engines .............................................6 

2.1 Background ................................................................................................................6 

2.1.1 Internal Combustion Engine .............................................................................. 6 

2.1.2 Fault Detection & Diagnosis ............................................................................ 10 

2.2 Fault Detection & Diagnosis for Internal Combustion Engines ..............................13 



 

 

vii 

 

2.2.1 FDD Approach ................................................................................................. 14 

2.2.2 Measurements for FDD.................................................................................... 15 

Vibration Signals .................................................................................................. 15 

Pressure Signals .................................................................................................... 17 

2.3 Feature Extraction Methods .....................................................................................17 

2.3.1 Time Domain Analysis .................................................................................... 17 

2.3.2 Crank Angle Domain Analysis ........................................................................ 18 

2.3.3 Frequency Domain Analysis ............................................................................ 19 

2.3.4 Order Analysis ................................................................................................. 20 

2.3.5 Time-Frequency Analysis ................................................................................ 21 

2.3.5.1 Short Time Fourier Transform .................................................................. 22 

2.3.5.2 Wavelet Transform ................................................................................... 26 

2.3.6 Principal Component Analysis ........................................................................ 36 

2.3.7 Multi-Scale Principal Component Analysis..................................................... 48 

2.3.8 Mod-MSPCA ................................................................................................... 49 

Chapter 3: Proposed FDD Strategy....................................................................................51 

3.1 Proposed Experimental Set-up & Data Acquisition ................................................55 

3.1.1 Proposed Instrumentation ................................................................................ 55 



 

 

viii 

 

3.1.2 Proposed Fault Induction Method .................................................................... 57 

3.2 Proposed Data Pre-Processing Methods ..................................................................57 

3.2.1 Proposed Crank Angle Conversion Method .................................................... 58 

3.2.2 Proposed Cycle Segmentation Method ............................................................ 58 

3.2.3 Proposed Pressure Analysis Method ................................................................ 59 

3.2.4 Proposed Data Labeling Method ..................................................................... 60 

3.3 Proposed Feature Extraction Method.......................................................................60 

3.4 Classifier Development ............................................................................................65 

Chapter 4: Data Acquisition...............................................................................................71 

4.1 Experimental Setup ..................................................................................................71 

4.1.1 Engine .............................................................................................................. 72 

4.1.2 Test Cell ........................................................................................................... 74 

4.1.2.1 Engine Assembly ...................................................................................... 74 

4.1.2.2 Dynamometer ............................................................................................ 74 

4.1.3 Encoder ............................................................................................................ 75 

4.1.4 Pressure Transducer ......................................................................................... 77 

4.1.5 Accelerometers ................................................................................................ 79 

4.1.6 Data Acquisition Hardware.............................................................................. 83 



 

 

ix 

 

4.2 Engine Test Procedure .............................................................................................84 

4.2.1 Operating Conditions ....................................................................................... 84 

4.2.2 Testing Procedures ........................................................................................... 85 

4.2.3 Raw Data Collected ......................................................................................... 85 

Accelerometer Data .............................................................................................. 85 

Encoder Data ......................................................................................................... 88 

Pressure Data ........................................................................................................ 91 

4.3 Proposed Data Pre-Processing Strategy Implementation ........................................93 

Step 1: Filtering of Accelerometer Data ................................................................... 94 

Step 2: Encoder Measurement Analysis ................................................................... 94 

Step 3: Resampling of Transducer Measurements.................................................... 99 

Step 4: Engine Cycle Segmentation ........................................................................ 100 

Step 5: Data Labeling.............................................................................................. 101 

Pre-Feature Extraction Data Summary ................................................................... 105 

Chapter 5: Proposed FDD Strategy Implementation and Results ....................................112 

5.1 Proposed Feature Extraction Strategy Implementation .........................................112 

Step 1: Wavelet Function Selection ........................................................................ 113 

Step 2: Wavelet Level Selection ............................................................................. 117 



 

 

x 

 

Step 3: Defining Baseline ....................................................................................... 118 

Feature Summary .................................................................................................... 119 

5.2 Results and Observations .......................................................................................124 

Classifier 1: Wavelet Function db4..................................................................... 126 

Classifier 2: Wavelet Function: db10 ................................................................. 128 

Classifier 3: Wavelet Function: db16 ................................................................. 130 

Chapter 6: Conclusion......................................................................................................136 

6.1 Research Contributions ..........................................................................................136 

6.2 Future Work ...........................................................................................................138 

References ............................................................................................................................ I 

 

  



 

 

xi 

 

List of Figures  

Figure 1: Four-stroke cycle of internal combustion engine with piston and crankshaft 

position [5] .......................................................................................................................... 7 

Figure 2: PV diagram of Otto cycle [6] .............................................................................. 8 

Figure 3: Transformations in FDD systems [11] .............................................................. 11 

Figure 4: Resampling for order analysis [44] ................................................................... 20 

Figure 5: Signal windowing technique [12]...................................................................... 22 

Figure 6: Spectrogram and spectrum of a non-stationary signal [12] ............................... 23 

Figure 7: High frequency resolution [12] ......................................................................... 25 

Figure 8: High time resolution [12] .................................................................................. 26 

Figure 9: Frequency and Time Resolution of analysis in different domains [46] ............ 29 

Figure 10: Discrete wavelet transform filter bank [12] .................................................... 33 

Figure 11: DWT decomposition and synthesis overview [49] ......................................... 34 

Figure 12: Wavelet Packet Transform filter banks [12] ................................................... 35 

Figure 13: Frequency distributions of DWT and WPT [22] ............................................. 36 

Figure 14: Principal component analysis [50] .................................................................. 38 

Figure 15: MSPCA schematic [12] ................................................................................... 49 

Figure 16: Mod-MSPCA schematic [12] .......................................................................... 50 



 

 

xii 

 

Figure 17: Development overview of the proposed strategy: ........................................... 54 

Figure 18: Mod-MSPCA signal transformations [12] ...................................................... 62 

Figure 19: Extended MSPCA signal transformations [12] ............................................... 62 

Figure 20: MLP with two hidden layers [57].................................................................... 66 

Figure 21: Model of a neuron [57] .................................................................................... 67 

Figure 22: Function and error signals [57] ....................................................................... 69 

Figure 23: Overhead valve vs overhead cam engine design [57] ..................................... 73 

Figure 24: Different styles of engines [58] ....................................................................... 73 

Figure 25: Engine cylinder numbering for the V8 test engine [59] .................................. 73 

Figure 26: Encoder components [61] ................................................................................ 76 

Figure 27: The mechanical load on the crystal producing electrical charge through electric 

dipole [63] ......................................................................................................................... 77 

Figure 28: Piezoelectric pressure sensor components [64] ............................................... 78 

Figure 29: IEPE accelerometer components [66] ............................................................. 80 

Figure 30: Knock sensor locations on sample V8 engine [68] ......................................... 81 

Figure 31: Accelerometer locations on sample V8 engine block [69] .............................. 82 

Figure 32: Raw accelerometer data from front valley, axis parallel with front-back 

orientation of the engine ................................................................................................... 86 



 

 

xiii 

 

Figure 33: Raw accelerometer data from front valley, axis parallel with right-left 

orientation of the engine ................................................................................................... 87 

Figure 34: Raw accelerometer data from front valley ...................................................... 88 

Figure 35: Raw accelerometer data from front left knock sensor ..................................... 88 

Figure 36: Raw encoder ticks @ 600rpm ......................................................................... 89 

Figure 37: Raw encoder trigger @ 600rpm ...................................................................... 90 

Figure 38: Raw Cylinder 1 Pressure Trace @600RPM .................................................... 92 

Figure 39: Overlay of all of the raw pressure traces from each cylinder @600RPM ....... 93 

Figure 40: Filtering of accelerometer data using Butterworth Filter ................................ 94 

Figure 41: Encoder tick signal .......................................................................................... 95 

Figure 42: Calculated engine speed @ 600RPM .............................................................. 96 

Figure 43: Pressure trace of a cylinder [62] ...................................................................... 97 

Figure 44: Overlay of trigger data and Cylinder 1 pressure trace @ 600RPM ................ 99 

Figure 45: Filtered accelerometer data in time domain .................................................... 99 

Figure 46: Filtered accelerometer data in crank angle domain ....................................... 100 

Figure 47: All pressure traces for 8 cylinder engine cycle ............................................. 102 

Figure 48: Cylinder 2 Pressure Trace of 2 Consecutive Cycles ..................................... 104 

Figure 49: Cylinder 5 Pressure Trace of 2 Consecutive Cycles ..................................... 104 



 

 

xiv 

 

Figure 50: Cylinder 8 Pressure Trace of 2 Consecutive Cycles ..................................... 105 

Figure 51: Cylinder 1 Pressure Traces for Faulty and Healthy sample cycles ............... 107 

Figure 52: Front-Back Axis Accelerometer data from Front Valley for Faulty and Healthy 

sample cycles .................................................................................................................. 108 

Figure 53: Right-Left Axis Accelerometer data from Front Valley for Faulty and Healthy 

sample cycles .................................................................................................................. 109 

Figure 54: Up-Down Axis Accelerometer data from Front Valley for Faulty and Healthy 

sample cycles .................................................................................................................. 110 

Figure 55: Axis Accelerometer data from Front Left Knock Sensor for Faulty and Healthy 

sample cycles .................................................................................................................. 111 

Figure 56: Frequency response of Daubechies wavelets [74] ........................................ 114 

Figure 57: Low and high pass filter for db16 ................................................................. 115 

Figure 58: Low pass and high pass filter for db10.......................................................... 116 

Figure 59: Low pass and high pass filter for db4............................................................ 116 

Figure 60: Features extracted from valley accelerometers ............................................. 122 

Figure 61: Features extracted from knock accelerometers ............................................. 123 

Figure 62: Confusion matrices for Classifier 1 ............................................................... 127 

Figure 63: Confusion matrices for Classifier 2 ............................................................... 129 

Figure 64: Confusion matrices for Classifier 3 ............................................................... 131 



 

 

xv 

 

List of Tables  

Table 1: Dynamometer Specifications .............................................................................. 75 

Table 2: Summary of labeled data .................................................................................. 106 

Table 3: Max wavelet level for corresponding wavelet .................................................. 118 

Table 4: Data breakdown ................................................................................................ 120 

Table 5: Time duration for each feature extraction ........................................................ 124 

Table 6: Performance Scores .......................................................................................... 135 

 

  



 

 

xvi 

 

List of Abbreviations  

 

ADC   Analog to Digital Converter 

ANN   Artificial Neural Network  

BDC   Bottom Dead Center 

CAD   Crank Angle Domain 

CMHT   Center for Mechatronics and Hybrid Technologies 

CWT   Continuous Wavelet Transform  

DWT   Discrete Wavelet Transform  

FDD   Fault Detection and Diagnosis  

ICE   Internal Combustion Engine 

IEMSPCA  Industrial Extended Multi-Scale Principal Components Analysis 

MSPCA   Multi-Scale Principal Component Analysis 

OBD    On-Board Diagnostics 

PCA    Principal Components Analysis 

PERDC  Powertrain Engineering Research and Development Center 

RBC   Reconstruction Based Charts 

RMS   Root Mean Square 

SPE   Squared Prediction Error 

STFT   Short Time Fourier Transform  

SVD   Singular Value Decomposition  

TDC    Top Dead Center 

WPT    Wavelet Packet Transform  

  



 

 

xvii 

 

List of Symbols  

 

𝜓(∙)  Mother Wavelet Function 

 
𝐶𝜓  Wavelet Admissibility Condition Parameter 

𝑋𝑤(𝑎, 𝑏)  Wavelet Transform  

 
𝑇 Principal Component Scores Matrix 

𝑃 Principal Component Loadings Matrix 

Λ  Eigenvalue Diagonal Matrix  

 
𝑋𝑇 Transpose of X 

𝒯2  Hotteling’s T-Squared Index 

𝒬  

 

Squared Prediction Error Index 

𝜑  Combined Index  

 

 

Σ𝑇 Diagonal Matrix of Principal Components  

𝛿  Upper Limit of SPE Index 

𝜏  Upper Limit of Hotteling’s Index  

 
Φ  Upper Limit of the Combined Index  

 
𝜁  Chi-Squared Distribution Upper Limit 

𝑔𝜑  Chi-Squared Distribution Weights  

 
ℎ𝜑  Chi-Squared Distribution Degree of Freedom  

 
𝐶𝑂𝑉(∙) Covariance Function 

𝐹𝑐 Fault Isolation Index  

 

 



M.A.Sc Thesis                 McMaster University  

D. Joo   Mechanical Engineering 
           

1 

 

Chapter 1: Introduction  

 

 

1.1 Overview  

Fault detection and diagnosis has been a topic of interest for many years in the 

industrial sector such as in the oil and gas, the power generation and the automotive 

industries. The origins of FDD is rooted in the field of control systems and more 

specifically, in automation technology which was enabled by the rise of computers. An 

early form of automation is called regulatory control, which allows for low level control 

actions to be performed without a human operator [1]. More recently, due to great 

improvements in computational capabilities, the realm of automation has surpassed 

regulatory control and advanced well into more complex tasks such as condition 

monitoring (including fault detection and diagnosis) of very complex processes and 

systems.  

Fault Detection and Diagnosis (FDD) has mostly been applied to industrial 

components and systems to prevent events that may bring forth tremendous amount of 

financial burden if a malfunction were to occur. However, as service and quality of 

consumer products become more and more in demand and as sophisticated data analysis 

methods arise such as machine learning algorithms, FDD technologies are in demand by a 

variety of industries that aim to provide the best quality for service and product.  



M.A.Sc Thesis                 McMaster University  

D. Joo   Mechanical Engineering 
           

2 

 

Currently, the automotive sector is at the verge of a very important change that may 

redefine the automotive sector itself and the way consumers perceive transportation and 

vehicles. The factor that are initiating such monumental changes in the automotive sector 

is the advancement of computing technology that were mentioned previously. Machine 

learning algorithms have proven that there is very useful information embedded in data 

that are being collected by sensors that are currently not being extracted. In the automotive 

industry large quantities of data are being collected every day. One of the areas that have 

great potential for extracting useful information through tools like machine learning is in 

testing, where tremendous amounts of valuable data is being collected on important 

components of the vehicle such as the engine. In this research, the potential opportunities 

for technological advancement through the access of unused data or unused data source is 

explored along with development of advanced data analytics methods.  

1.2 Research Motivation  

 The motivation for this research can be viewed from different perspectives. For 

example, the condition monitoring or FDD technology for internal combustion engines can 

be developed and utilized in a variety of different sectors of the automotive industry such 

as in the manufacturing lines, fleet operations, engine diagnostics, and engine controls.  

 For a car manufacturer, a high productivity and high-quality assurance can be 

achieved with the help of FDD technology, which could ensure the detection of faulty 

engine components. Automated FDD strategy can greatly reduce the number of human 

operators that are required in quality assurance. Automation of quality assurance would 
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reduce the time required to assess the quality of the components and increase the accuracy 

rates of the quality assessment, which allows for human operators to attend to more 

challenging tasks such as mitigating issues around faulty components discovered. 

Productivity of the manufacturer and the quality of their products can be improved 

significantly through an automated FDD strategy.  

 For a fleet operator, in-vehicle FDD technology would be useful in monitoring the 

health of the engine. Although On-Board Diagnostics (OBD) exists in every consumer 

vehicle, it can be argued that there is room for improvement in the sophistication of the 

data analysis methods to broaden the range of faults and the levels of faults that are 

monitored. 

 In an auto-shop or dealership, diagnosis of faults in engines can greatly be 

expedited with the use of the automated FDD strategy.  

For engine controls, an FDD technology that is capable of monitoring the engine’s 

combustion quality in real time would be of great significance as control systems could be 

adjusted in real time to improve engine emissions and performance. 

FDD strategies are being research internationally, including at McMaster’s Centre 

for Mechatronics and Hybrid Technologies (CMHT). This research is a continuation of the 

FDD research that was conducted by the following researchers at CMHT:  

1. S. R. Haqshenas – who introduced CAD-MSPCA for its application to 

internal combustion engines,  



M.A.Sc Thesis                 McMaster University  

D. Joo   Mechanical Engineering 
           

4 

 

2. M. Ismail – who introduced the Industrial Extended Multi-Scale Principal 

Components Analysis (IEMSPCA) for its application to alternators and starters 

using sound and vibration, and 

3. A. Doghri – who successfully applied an FDD strategy for in-vehicle 

application using vibration measurements.  

1.3 Research Objectives  

The objective of this research is to develop a FDD strategy for internal combustion 

engines that is intended to monitor the engine on a cycle-by-cycle basis to detect 

intermittent faults. The development of a FDD strategy involves three main stages as 

follows, [2]: 

1. data collection and pre-processing of time series data, 

2. feature extraction of dataset, and  

3. classifier development using machine learning algorithms.  

This research was performed in collaboration with Ford Powertrain Engineering 

Research and Development Center (PERDC). 

1.4 Thesis Structure 

This thesis consists of seven chapters that are organized as follow. Chapter 2 presents 

the literature review of FDD and feature extraction methods. Chapter 3 present the theory 

behind the feature extraction and classification strategy that is implement in this research. 

Chapter 4 presents the experimental set-up, data collection, and data pre-processing 
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implementations. Chapter 5 presents the implementations of the feature extraction strategy, 

the results, and the observations. Chapter 6 presents the noteworthy findings of the research 

and the respective recommendations for future research.  
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Chapter 2: FDD Strategies for Internal Combustion Engines 

 

 

2.1 Background 

 In this section, a review of the internal combustion engine and associated FDD 

strategies is provided. The objective of this section is not to provide an exhaustive overview 

of each topic, but only the important factors that influence their interaction and integration.  

2.1.1 Internal Combustion Engine 

An internal combustion engine functions as a prime mover for a wide range of 

applications by converting chemical energy that are contained in the fuel into useful 

mechanical power. The type of internal combustion engine that is most often used in 

consumer vehicles is the spark-ignition four stroke engine using the Otto Cycle [3]. The 

Otto cycle has four strokes that consist of intake, compression, power and exhaust. These 

occur over two full revolutions of the crank shaft [4]. As shown in Figure 1, one rotation 

of the crank shaft results in linear motion of the piston from top-dead center (TDC) to 

bottom-dead center (BDC) then back to TDC. This repetitive linear motion, which is also 

known as reciprocating motion, is achieved by the utilization of a crank that converts 

rotational motion of the shaft into linear motion of the piston and vice versa.  
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Figure 1: Four-stroke cycle of internal combustion engine with piston and crankshaft position [5] 

Each stroke in the Otto cycle can be expressed as a thermodynamic process as shown in 

Figure 2. 
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Figure 2: PV diagram of Otto cycle [6] 

1. Intake stroke: The intake stroke starts with the piston at top-dead center where the 

volume of the chamber is at its minimum and ends with the piston at (BDC) where the 

volume of the chamber is at its maximum [3]. As the piston travels down the chamber, 

the intake valve opens. During this process, the air-fuel mixture enters the chamber 

while the pressure remains relatively constant [3].  

2. Compression stroke: The compression stroke begins with the intake valve closing and 

the piston traveling up the chamber from BDC. This compression is described to be 

adiabatic and reversible which is also known as isentropic [7]. During this compression, 

the piston does work on the mixture inside the chamber by decreasing the volume and 

increasing the pressure inside the chamber [4].  

3. Power stroke: In between the compression and the power strokes, a thermodynamic 

process called combustion occurs where the air-fuel mixture is ignited. In the case of a 

spark ignition engine, which will be the focus of this research, the mixture is ignited by 

using an electrical discharge. During the very rapid combustion process, the volume 

stays constant while the pressure and temperature are significantly increased due to the 

substantial amount of heat that is released inside the chamber. The power stroke, which 

can be described as an isentropic expansion follows the combustion process [7]. During 

the power stroke, the piston is pushed from top-dead center to BDC by the gas that is 

expanded adiabatically upon the combustion of the air-fuel mixture [3]. In the power 

stroke, pressure decreases while the volume increases and the work is said to be done 

onto the piston by the gas.  
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4. Exhaust stroke: The exhaust stroke is where the residual gas is removed from the 

chamber as the piston travels back to top-dead center with the exhaust valve open. The 

piston movement decrease the volume while the open exhaust valve maintains a 

constant pressure [8].  

The analysis of each stroke shows that the power generated from the cylinder does 

not occur constantly throughout the cycle instead it occurs in bursts, specifically during the 

power stroke. This means that a single cylinder engine would deliver power in a pulsating 

form. Therefore, most engines in a vehicle are equipped with multiple cylinders to provide 

more consistent power output by staggering the occurrences of the power stroke for each 

cylinder. Although this results in more consistent power output, it does not eliminate the 

presence of the pulsation. The fluctuations observed in the multi-cylinder engine occurs 

more rapidly with smaller amplitude variations. This fluctuation in power delivery is 

reflected in the rotation of the crankshaft which is never constant in a given engine cycle.  

Heywood describes the combustion process that occurs inside the chamber as a fast-

exothermic gas-phase reaction [4]. During a normal engine operation, the fuel is mixed 

together with air and inducted into the chamber through the open intake valve during the 

intake stroke. As the air-fuel mixture enters the chamber, it gets mixed with the residual 

gas that remains in the chamber after the exhaust stroke. This mixture of fuel, air, and 

residual gas from the previous combustion process is then compressed and ignited by an 

electric discharge of a spark plug. Upon ignition, a flame develops and propagates through 

the chamber until it reaches the chamber walls where the flame is extinguished [4]. Flames 
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in a spark-ignition engine are classified as premixed unsteady turbulent flame that 

propagate in gaseous state [4]. In addition, flame development and propagation vary cycle-

by-cycle and cylinder-to-cylinder. And these variations in combustion process is caused 

by: 

1. variations in the mixture motion within the cylinder, 

2. variations in the amount of air-fuel mixture in the cylinder, and 

3. variations in the ratio of fresh mixture to residual gases in the cylinder [4]. 

This leads to the fact that no two engine cycles, even for a given cylinder, are identical. 

Due to this inconsistent nature of the engine, the combustion may not occur optimally for 

a given cycle since most engines are controlled to run at an “optimal” condition that was 

configured for an average cycle [4]. Further information regarding internal combustion 

engines that has not been covered in this section can be found in Heywood’s text [4].  

2.1.2 Fault Detection & Diagnosis  

 Fault detection is defined as the capability to recognize that a fault has occurred 

and fault diagnosis is defined as the ability to locate the fault and the cause of the fault [9]. 

Such technology was in demand to prevent potentially detrimental failures of machinery, 

which are arguably the greatest assets of an industrial company, and to prevent extreme 

costs associated with unexpected machinery or facility downtime. FDD technology poses 

great benefits as it eliminates the escalation of minor faults through their prompt 

identification and initiation of timely mitigation measures. Lately, Fault Detection and 
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Diagnosis (FDD) technology is being pursued by a wide range of industries that are simply 

looking to provide more reliable products and processes.  

 Fundamental elements of FDD include detection of malfunctions or abnormalities 

in the system, isolation and localizing of faults and identification of the fault condition 

[10]. Before delving into the different concepts of FDD, a few key terms should be 

explained and defined. A fault can be broadly defined as a state where a measured variable 

or a calculated parameter within a process or a system is out of its acceptable range [11]. 

Malfunction of a component can be defined as the root cause for the symptoms exhibited 

as a fault and leading to failures [11].  

 Venkakasubramanian suggest that FDD systems commonly follow a series of 

measurement transformations to arrive at a diagnosis [11]. Figure 3 shows three separate 

transformations that are involved in determining a fault or failure class given a set of 

measurements.  

 

Figure 3: Transformations in FDD systems [11] 

The three stage transformations in FDD systems include:  

1. Transformation of the input to the overall FDD system called measurements into 

features through a process called feature extraction. These methods use a priori 
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knowledge to analyze measurements and obtain useful features, which usually 

consists of fewer dimensions than measurements [11].  

2. Mapping of features to decision through a search or complex learning algorithms 

without the use of a priori process knowledge. This transformation is commonly 

performed to minimize misclassification of faults [11].  

3. Transformations of the decisions into classes, which indicate different, fault 

categories including the healthy category. This transformation can be executed 

using a threshold function accompanied by symbolic logic discriminant [11].  

 After reviewing the series of transformations that measurements go through in a 

given FDD system, it becomes evident that feature extraction and diagnostic search 

strategies are important elements of a FDD system.  

 When developing a FDD system, there are two different strategies called model-

based and signal-based approaches. As the name suggests, the model-based approach 

utilizes a mathematical model that formulates an expected behavior of the system. The 

variations in the parameters that results in change of the system behavior is monitored using 

observers or filters [12]. On the other hand, signal based strategies rely purely on historical 

measurement data. For complex systems that are challenging to model, signal based FDD 

may be better suited. This eliminates the need for a mathematical model and the difficulties 

and limitations of modeling [1]. Instead of mathematical models, signal based approaches 

attempt to find patterns in the historical measurements. Numerous techniques such as 
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artificial neural network algorithms and statistical methods are utilized to obtain patterns 

that is assumed to exist in the data [10].  

2.2 Fault Detection & Diagnosis for Internal Combustion Engines 

FDD strategies for internal combustion engines have been explored extensively in 

the past. Earlier FDD strategies for internal combustion engines were motivated by the 

need for improved productivity and quality in production such presented by Miller and 

Tjong [13], [14]. These researchers envisioned a system that is capable of detecting 

manufacturing and assembly defects through an online engine monitoring and diagnostic 

system [13], [14]. Utilization of such monitoring and diagnostic systems were intended to 

be integrated in the manufacturing line through a process that was later popularized as cold 

tests and hot tests [13]. During these tests, the engine is put on a test stand where it is 

operated in cold or hot modes while measurements are collected at very high sampling 

rates [15]. Cold test refers to the operation of the engine without combustion and hot test 

refers to the operation of the engine with combustion. The obtained measurements are 

analyzed to determine whether or not the engine should proceed to its next manufacturing 

process [16]. Due to its simplicity and low costs, more research efforts have been found in 

the development and improvement of cold tests. Following Miller and Tjong, a variety of 

measurement analysis methods were studied to improve the performance of the cold test 

procedures [15], [17], [18], [16], [19], [20].  

Currently, automation companies are providing fully automated FDD technologies 

that can be used in the engine manufacturing line. These strategies involve running the 
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engine in different modes such as cold testing, hot testing with load, and hot testing without 

load while obtaining measurements such as speed, torque, and pressure. Although it is not 

clear as to how the measurements are analyzed, it is noted that a variety of defects such as 

missing piston rings, leaky head gaskets, leaky intake and exhaust valves along with many 

other defects can be detected using this FDD strategy [21]. 

More recently, FDD algorithms for in-vehicle applications were explored, where 

with the appropriate hardware, online monitoring of the engine can be achieved within the 

vehicle [22]. Currently, vehicles are equipped with On-Board Diagnostic (OBD) systems 

that monitor the engine closely with a variety of measurements. However, as concepts of 

autonomous and connected vehicles are becoming closer and closer to reality, it is 

becoming increasingly important for the automotive industry to broaden the diagnostics 

for a wider range of components in the vehicle [22], [23]. With ever increasing computation 

power, more sophisticated  methods such as wavelet analysis, Principal component analysis 

and artificial neural networks (ANN) are becoming tangible for automotive applications 

[2], [20], [22], [24], [25], [26], [27]. 

2.2.1 FDD Approach  

In the literature, the widely accepted FDD approach for internal combustion 

engines is the signal-based approach. Model-based strategies have been used but with very 

limited scope. Wei applied model-based FDD to diesel engines by modeling the in-cylinder 

pressure and torque produced by each cylinder in crank angle domain based on 

thermodynamic and dynamics theory [17]. However, in Wei’s research, combustive 
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behaviors were not within the scope of the model as it was intended for the cold test 

application [17]. Chandroth confirms that signal-based strategies are preferred over the 

model-based strategies as it is very difficult to accurately model an internal combustion 

engine, especially the combustive process, given its turbulent and variable nature that was 

discussed in the previous section [27].  

2.2.2 Measurements for FDD 

 The selection of measurements is very important for signal-based strategies as the 

correlations that are assumed to exist in the measurements selected act as the a priori 

knowledge. The type of the measurement such as speed, pressure and/or voltage, the sensor 

used to obtain the selected type of measurement and the location of the measurement are 

example of all the decisions that must be made in selecting the measurements for a signal-

based strategy.  In the following section, the types of measurements that should be 

considered for the development of FDD for internal combustion engines are discussed.  

Vibration Signals 

Sound and vibration measurements are commonly used in FDD systems for 

mechanical systems [28], [29], [30], [31] . Vibration is inherent in any mechanical system 

that consists of moving components [32]. Every system has its own specific vibration 

modes that can be observed during its normal operating conditions. These modes are 

dependent on system parameters such as mass, system stiffness, fitting tolerances and 

frictions. When changes occur in these system parameters due to a faulty component, 

observable vibration behaviors may deviate from its normal signature. In addition, 
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vibration signals can be obtained through non-intrusive methods that are relatively cheap 

and easy to install. In the literature, a wide range of vibration analysis for FDD of rotating 

machines are present [1], [28], [31], [33], [34], [35], [36]. 

In comparison to vibrations of rotating machines, vibrations of internal combustion 

engines are very complex. Vibration of an engine may arise from a variety of components 

such as crank train, valve train, piston assembly, fuel system and exhaust system [37]. In 

addition, the turbulent combustion process contributes to the overall vibration of the 

engine, which further complicates the task analyzing the vibration. Tjong categorized three 

main types of faults that may contribute uniquely to vibration: 

1. Impulse impact at a specific crank angle due to incorrect clearance between 

components such as valve train, gears, connecting rod, pistons and bearing; 

2. Imbalance in rotating components such as crankshaft, camshaft, balance shaft 

and gears; and   

3. Abnormal combustion [13].  

In addition to the complexity that arise from having numerous components, 

vibration analysis of an engine is especially difficult as vibration contributed by these 

components are exhibited in different forms. For example, the engine is comprised of 

components that function in reciprocating motion and rotating motion. Vibration due to 

rotating components are exhibited harmonically whereas vibrations due to reciprocating 

motion are exhibited in impulses in the time domain or relative to the crank position. 
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Furthermore, engine vibrations also comprise of vibration components that are induced by 

combustion which are often described as stochastic.  

Pressure Signals 

In the literature, the in-cylinder pressure of an engine is shown to provide a great 

amount of information on the quality of the combustion in a cycle by cycle basis [4]. 

Researchers such as Sharkey had performed FDD studies using vibration and in-cylinder 

pressure signal trace to detect faults such as leaking intake and exhaust valves [30]. Miller, 

Tjong, Jones and Chandroth presented valuable studies that exhibit great potential for 

accurate FDD strategies using pressure traces. However, it should be noted that obtaining 

in-cylinder pressure traces require retrofitting of engine to allow for installation of very 

expensive pressure transducers.  

2.3 Feature Extraction Methods 

This section presents a review of a variety of feature extraction methods that are 

commonly utilized for signal based FDD strategies involving vibrational measurements.  

2.3.1 Time Domain Analysis  

Time domain analysis is the simplest and cheapest approach to analyzing signals 

for FDD strategies as measurements are often obtained in time domain. These time series 

signals are usually referred to as raw signal. A variety of statistical indicators such as crest 

factor, kurtosis root mean square and standard deviation have been applied to FDD 

applications for detecting bearing damages [33].  
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Time domain analysis has been performed on diesel engines for cold test 

applications, which were aimed at determining the reliable threshold values for pass or fail 

decision for the cold test given vibrational measurements with very low computational 

costs [15]. The research concluded that kurtosis coefficients and the RMS value of the 

vibration signal in time domain was successful at characterizing and detecting faults such 

as inverted piston, overpressure valve, out of housing exhaust equalizer, improperly 

tightened oil pump screw and improperly tightened oil jet during cold test operating 

conditions. Cold test operating conditions refer to conditions at which the engine is 

operated without combustion. However, time domain analysis is not the most ideal 

vibration analysis method for FDD strategies for engines at normal operating conditions, 

which includes combustion, as time domain measurements of engines are very difficult to 

understand and analysis in time domain yield information in reference to time, which is not 

very meaningful for the application of FDD on ICE. Time referenced information is not 

very valuable as engines operate in various different rotating speeds, which would indicate 

that a fault condition analyzed at one speed would not be able to correlate its learned 

features at another speed if time domain analysis is applied. 

2.3.2 Crank Angle Domain Analysis 

 As mentioned in the previous section, time domain is not a good reference domain 

for reciprocating machinery such as internal combustion engine. Instead, measurements 

obtained in reference to the angle of the crank shaft is widely used. Miller, Tjong and 

Delvecchio applied statistical indicators from time domain analysis on crank angle domain 

[13, 15, 14]. Analysis in crank angle domain allows for occurrences of abnormal behaviors 
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of a signal to be trace to a specific location in an engine cycle which gives insight into to a 

range of components that may have induced such abnormal behavior. This is because 

movement of a certain component within the engine is directly related to the position of 

the crank shaft. Sophisticated methods of converting time domain signal to crank angle 

domain are explored by Arasaratnam [38]. It is important to note that conversion methods 

cannot assumed that the crankshaft of the internal combustion engines has a constant 

rotational speed. If such assumptions were to be made during the conversion process, the 

reference of the measurements with respect to specific crank angles will be skewed 

significantly as the rotational speed of an internal combustion engine is not constant. In 

addition, analysis in crank angle domain eliminates the need for FDD strategy to operate 

only under the same operating speeds that it was previously trained on. This characteristic 

is especially important for the development of in-vehicle condition monitoring systems for 

internal combustion engines. 

2.3.3 Frequency Domain Analysis 

 Frequency domain analysis is a reversible transformation that decomposes the 

given time-domain signal into their frequency components. These frequency components 

can be used as features for a given condition. Frequency analysis are most appropriate for 

stationary signals that are periodic as time information is not available in Fourier transform.  

In the literature, frequency analysis such as Fourier transform has been used for 

FDD of machinery [39], [40], [41]. However, it is often concluded that the event of interest 

must be periodic for frequency analysis to be effective [42]. Therefore, frequency domain 
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analysis is not an ideal method to be applied for internal combustion engines where signals 

are time varying. If internal combustion engines were stationary signals such as in the case 

of motoring, frequency domain analysis may be able to detect the presence of a fault and 

narrow down the list of potential culprits. However, if multiples of a component that share 

the same frequency component exist, the features obtained from frequency domain analysis 

will not be able to tell which of those components are faulty. This is because the frequency 

analysis provides information on which frequency appears in the signal but not when the 

frequency appears in the signal [43].  

 

Figure 4: Resampling for order analysis [44] 

2.3.4 Order Analysis 

 Order analysis is a form of frequency domain analysis that is very specific to 

rotating and reciprocating machineries such as engines, turbines and pumps [45]. Instead 
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of performing FFT on time-domain signals, order analysis describes a method where FFT 

is performed on crank angle domain signals. This allows frequency components of non-

stationary signals to be extracted in reference to the primary rotating component, which in 

the case of engines would be the crankshaft. Order analysis provide behavior of harmonic 

orders of the crankshaft speed with each order corresponding to the multiple of the 

crankshaft’s rotational speed. This method is especially useful for an application where a 

wide range of speeds are being observed. However, like frequency domain analysis, order 

analysis is unable to provide information that will aid in identification of a faulty 

component unless the harmonic order associated to the faulty component is unique in the 

whole system.  

2.3.5 Time-Frequency Analysis 

Retrieving the frequency components and the occurrences of those components for 

a given signal is essential for FDD of rotating and reciprocating machines or for any 

application that requires the analysis of a non-stationary or transient signal. However, time-

domain analysis is only able to provide information on when a component of the signal 

occurred with respect to time, and frequency analysis is only able to provide information 

on the frequency components that the signal consists of. To mitigate this constraint and 

obtain time localization, a variety of approaches that are known as time-frequency analysis 

was introduced. These approaches include but are not limited to Short-Time-Fourier-

Transform, Wavelet Transform, Wigner Transform, and Hilbert-Huang Transform. These 

approaches map a one-dimensional time-domain signal into a two-dimensional function of 
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time and frequency. In this literature review, Short Time Fourier Transform (STFT) and 

Wavelet Transform will be discussed in detail. 

2.3.5.1 Short Time Fourier Transform 

Short-Time Fourier Transform is a time-frequency analysis method that results 

from a compromise between time and frequency analysis. STFT achieves the two-

dimensional representation of a transient or non-stationary signal in time and frequency 

through the utilization of windowing technique and Fourier Transform [45]. The 

windowing technique divides the given signal into short equal time-framed segments, 

which is individually analyzed using Fourier transform. This windowing technique is 

applied with the assumption that signals can be considered to be stationary if they are 

segmented into small enough segments. Figure 5 illustrates the basics of the windowing 

technique. As shown in Figure 5, the windowing function is first located at time, t = 0, then 

the window is shifted throughout the signal. The most notable characteristic of STFT is 

that its window size is kept constant throughout the whole transformation. 

 

Figure 5: Signal windowing technique [12] 
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 The STFT is defined as:  

 𝑆𝑇𝐹𝑇(𝜏, 𝜔) = 𝑋(𝜏, 𝜔) =  ∑ 𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑖𝜔𝑡

∞

𝑡= −∞

 (2.1) 

where 𝜏 is the time, 𝜔 is the frequency, 𝑡 is the offset, 𝑥(𝑡) is the signal to be transformed, 

and 𝑤(𝑡) is the windowing function. And the energy density of the signal at a given time 

and frequency can be described as: 

 𝑆𝑝𝑒𝑐𝑡𝑜𝑔𝑟𝑎𝑚(𝜏, 𝜔) = |𝑋(𝜏, 𝜔)|2 (2.2) 

 

Figure 6: Spectrogram and spectrum of a non-stationary signal [12] 
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As shown in Figure 6, STFT is capable of simultaneously capturing both the 

frequency components and its occurrences given a non-stationary signal. However, the 

compromise between time and frequency domain analysis has its limitation, which is 

described by the Heisenberg uncertainty Principal. It infers that the increase in resolutions 

cannot be achieved concurrently due to the inability to know the exact time frequency 

representation of a signal. Figure 7 and Figure 8 depict the two extreme cases of high 

frequency and high time resolution. It can be observed that when the resolution of one 

domain is increased, the resolution of the other decreases. For example, when the size of 

the window is decreased the time resolution improves while frequency resolution decreases 

and vice versa when the size of the window is increased. This phenomenon is often referred 

to as the resolution problem. 
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Figure 7: High frequency resolution [12] 

 A FDD strategy using STFT was applied to bearings by Yazici, where it was 

reported that high accuracy was achieved [46]. However, the application of STFT on 

engine measurements may not be enough for the development of an effective FDD strategy 

for engines. Localization of frequency components in the crank angle is an essential 

characteristic of the feature extraction methods for FDD of engines due to their non-

stationary and transient behavior. STFT has been applied to the analysis of engine vibration 

by Chen, where different vibration sources are attempted to be identified and characterized. 

The research concluded that STFT is capable of identifying events such as strong valve 

impact and piston slap but unable to separate closely-overlapping or weak events such as 

valve closures of different cylinders. This finding supports the prior judgment that STFT 

is simply not sophisticated enough for the objective of the FDD strategy that is being 

explored in this research [50]. Due to the fixed resolution in time and frequency in STFT, 

other Time-Frequency techniques such as wavelet analysis are suggested in the literature 

for the analysis of engine vibrations [47]. [48], [49]. 
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Figure 8: High time resolution [12] 

2.3.5.2 Wavelet Transform  

 Wavelet transform is another form of time-frequency analysis that has been 

developed as an alternative to STFT that enables analysis of signals consisting of transient, 

non-stationary and time-varying characteristics. Unlike STFT, where the resolution of the 

signal is fixed in both time and frequency domains throughout the whole transformation of 

the signal, wavelet utilizes different window sizes to develop a multi-resolution analysis 

(MRA) in the time and frequency domain of a signal. In this section, the fundamental 

review of continuous wavelet transform (CWT), discrete wavelet transform (DWT), and 

wavelet packet transform (WPT) will be discussed. 
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The word wavelet originates from the equivalent French word ondelette, which 

translates to small wave. It is defined as continuous functions that decay to zero at both 

ends at different rates, which provide compact support in comparison to continuous 

sinusoids. The rate of decay is altered by the dilation or compression of the wavelet. The 

wavelet is then translated to capture localized events along with the time domain of the 

signal that is to be analyzed. These characteristics allow wavelet transform to highlight 

details of the signal being analyzed, which other forms of analysis may not be able to. 

Therefore, the ability to detect such minor details of a signal that is very favorable in 

condition monitoring and FDD application.  

The method is established by very simple intuition regarding frequency 

components. It is known that low frequencies can be observed throughout longer time 

periods and that higher frequencies can be observed in very short time periods. With this 

intuition, it was suggested that a large window size be used to obtain information regarding 

low-frequency components and very small window sizes to obtain information regarding 

high-frequency components. The ability to capture both the time and frequency 

components of a signal with high resolution makes wavelet transform a promising method 

for analyzing transient signals that consist of both high and low-frequency components. It 

is important to note that the Heisenberg uncertainty Principal still applies to wavelets, 

however, wavelet transform is a very clever work around method. The resolution problem 

is mitigated by prioritizing the resolution that is more important at a given frequency range.  
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The difference between STFT and wavelet analysis is best presented in Figure 9. 

The wavelet transform’s multiresolution property is illustrated by the different sizes of the 

boxes. The boxes indicate the frequency and time resolution at which each transform can 

analyze the signal. As illustrated in Figure 9, time and frequency domain analysis are only 

able to provide information on the signal at their own domain. This is indicated by their 

rectangular shape that has a fixed width in the frequency domain for time-domain analysis 

and time domain for frequency domain analysis. STFT is shown to have a square shape 

with the same width for time and frequency. This infers that STFT has a fixed resolution 

in both time and frequency throughout the entire frequency ranges. On the other hand, the 

wavelet transform has both rectangular and square shapes in different sizes. Every box in 

the wavelet transform has the same area due to the Heisenberg uncertainty Principal; 

however, the widths of both frequency and time are altered, providing different proportions 

of resolutions at different frequency levels. For example, at low frequencies, the boxes 

have larger heights with thinner widths, which indicates that it has better frequency 

resolution with lower time resolution. And at high frequencies, the boxes are shorter and 

wider, indicating that it has lower frequency resolution but higher time resolution.  
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Figure 9: Frequency and Time Resolution of analysis in different domains [46] 

Continuous Wavelet Transform 

Similar to STFT, wavelet transform multiplies the signal with the wavelet function, 

which acts as STFT’s window function, at different time segments in the signal. The 

continuous wavelet transform and the inverse continuous wavelet transform are described 

in Equation 2.3 and 2.4, respectively.   

 𝑋𝑤(𝑎, 𝑏) =
1

|𝑎|
1

2⁄
∫ 𝑥(𝑡)𝜓 (

𝑡 − 𝑏

𝑎
) 𝑑𝑡

∞

−∞

, 𝑎 𝜖ℝ + 𝑎𝑛𝑑 𝑏 𝜖ℝ (2.3) 

 𝑥(𝑡) =  
1

𝐶𝜓
∬ 𝑋𝑤(𝑎, 𝑏)

∞

−∞

𝜓𝑎,𝑏(𝑡)
𝑑𝑎 𝑑𝑏

𝑎2
 (2.4) 
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where a is the scale factor, b is the translational value and 𝜓(𝑡) is the mother wavelet where 

children wavelets are derived from given the following equation. 

 
𝜓𝑎,𝑏(𝑡) =

1

|𝑎|
1

2⁄
𝜓 (

𝑡 − 𝑏

𝑎
) 

(2.4) 

Wavelet analysis is a process where different scaled and time-shifted versions of the mother 

wavelets are compared with the signal that is being analyzed to measure the similarity 

between the signal and the wavelet function. The scale parameter corresponds to frequency 

resolution of the analysis where higher scale provides more global behaviors of the signal 

and lower scale provide more detailed information that may only last for a short time span. 

Scaling parameter achieved varied frequency resolution analysis through dilation and 

compression of the wavelet function [47].  

Unlike Fourier transform, the wavelet functions are localized in both time and 

frequency [47]. Due to this localization, the wavelet functions must be translated 

throughout the time duration of the signal to ensure characterization of the entire signal. 

Similarly, wavelets must be scaled in time and shifted in frequency domain due to the 

localization of wavelets in frequency. For these reasons, the continuous wavelet is 

described as a process where the signal being analyzed is multiplied with analysis windows 

that are changed in scale and shifted in time then integrated over time. The square root of 

the scaling factor is an energy normalization term which ensures that wavelets of different 

scales have the same amount of energy.  
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All mother wavelets and its offspring have two main characteristics that are very 

important for normalizing the transformation. First characteristic is described as,  

 ∫ 𝜓𝑎,𝑏(𝑡) = 0
∞

−∞

 (2.5) 

which basically states that all wavelets must have zero average. Second characteristic is 

described as,  

 ‖𝜓‖ = 1 (2.6) 

which states that their energy must equal to unity. The ability to obtain the transformation 

inverse is very useful in Fourier transform. In wavelet transform, dual wavelet function 

which is a synthesis function for a given wavelet function is utilized to perform the inverse 

wavelet transformation. To ensure that inverse wavelet transformations are possible, 

mother wavelets are chosen under admissibility condition which is described in the 

following equations.  

 𝐶𝜓 =  ∫
|𝜓(𝜔)|

𝜔

∞

−∞

𝑑𝜔 <  ∞  (2.7) 

The admissibility condition requires that 𝜓(𝜔)  is differentiable. There are numerous 

amounts of wavelets that have been developed for different applications to analyze 

transient, time-variant, and/or non-stationary characteristics. The selection of wavelet is 

very important for the success of the application. Although the concept of wavelet 

transform is very powerful, application of wavelet transform in a continuous form is 

impractical on digitized computers. In the following section, a discrete form of wavelet 

that can be applied on computers is introduced.  
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Discrete Wavelet Transform 

 Discrete wavelet transform is implemented using multi-resolution analysis method 

to reduce computation time through elimination of redundancy while still ensuring that an 

appropriate amount of information is provided for analysis and synthesis of the signal. 

Multi-resolution analysis method suggests the decomposition of the input signal into two 

different signals using two channel filter bank and down sampling of the filtered signal. In 

order to analyze the signal at different scales, the cut-off frequencies of the filter are altered. 

The signal is essentially being decomposed into different frequency bins using a series of 

half band high and low pass filters. This process is illustrated in Figure 10 where g[n] and 

h[n] are filters which are associated with the mother wavelet and scaling function [48]. The 

following equation describes the relation between the two filters. 

 𝑔[𝑁 − 1 − 𝑛] = (−1)𝑛 ∙ ℎ[𝑛] (2.8) 

The filtering of signals is described by a convolution operation of the signal and the impulse 

response of the filter, as described in the following equation.  

 𝑥[𝑛] ∗ ℎ[𝑛] =  ∑ 𝑥[𝑘]ℎ[𝑛 − 𝑘]

∞

𝑘→ −∞

 (2.9) 

The low pass filter removes all the frequencies that are higher than the half of the full 

frequency range of the signal and the result is known as approximation. The high pass filter 

removes all the frequencies that are lower than the half of the full frequency range of the 

signal and the result is known as detail. Through this process, half of the information from 

the original signal is lost which results in the reduction of the resolution in half. The 
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filtering operation varies the frequency of the signal. The down-sampling process upon 

filtering alters the scale through the reduction of the sampling rate, which is achieved 

through the removal of samples. Down-sampling process eliminates redundancies that 

exist in the filtered signal according to the Nyquist sampling theorem and doubles the scale. 

The following equations describes how approximate and detail representations are 

obtained.  

 𝑐𝐴 = 𝑥𝑙𝑜𝑤[𝑘] =  ∑ 𝑥[𝑛] ∗ ℎ[2𝑘 − 𝑛]

𝑛

 (2.10) 

 𝑐𝐷 = 𝑥ℎ𝑖𝑔ℎ[𝑘] =  ∑ 𝑥[𝑛] ∗ 𝑔[2𝑘 − 𝑛]

𝑛

 (2.11) 

This process of filtering and downsampling to obtain detailed and approximate 

representations of a given signal can be performed iteratively to break down the original 

signal into smaller frequency ranges. The decomposition of a signal reduces the time 

resolution in half as the number of sample has been reduced by half. On the other hand, the 

decomposition of a signal doubles the frequency resolution as the frequency band of a 

signal spans only half of the original frequency band [47]. 

 

Figure 10: Discrete wavelet transform filter bank [12] 
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Reconstruction of the original signal can be obtained using Equation 2.12, where 𝑦ℎ𝑖𝑔ℎ and 

𝑦𝑙𝑜𝑤  are given by Equations 2.12a and 2.12b. The summary of the decomposition and 

synthesis of filter bank is shown in Figure 11. 

 𝑥[𝑛] =  ∑(𝑦ℎ𝑖𝑔ℎ[𝑘] ∙ 𝑔[−𝑛 + 2𝑘]) + (𝑦𝑙𝑜𝑤[𝑘] ∙ ℎ[−𝑛 + 2𝑘]) (2.12) 

 𝑦ℎ𝑖𝑔ℎ[𝑘] =  ∑ 𝑥[𝑛] ∙ 𝑔[−𝑛 + 2𝑘]

𝑛

 (2.12a) 

 𝑦𝑙𝑜𝑤[𝑘] =  ∑ 𝑥[𝑛] ∙ ℎ[−𝑛 + 2𝑘]

𝑛

 (2.12b) 

 

Figure 11: DWT decomposition and synthesis overview [49] 
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Figure 12: Wavelet Packet Transform filter banks [12] 

Wavelet Packet Transform  

 Wavelet packet transform is very similar to the discrete wavelet transform in that 

signal is transformed by passing it through a series of high-pass and low-pass filters. 

However, the wavelet packet transform differs from the discrete wavelet transform as it 

passes both approximation and detail coefficients through low and high pass filters. Figure 

12 shows the wavelet packet decomposition. The main benefit of wavelet packet transform 

is that the entire frequency spectrum is highlighted equally unlike DWT, which mainly 

highlights the high frequency components. The difference in distribution of the frequency 

bands between DWT and WPT can be observed in Figure 13.  
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Figure 13: Frequency distributions of DWT and WPT [22] 

2.3.6 Principal Component Analysis 

Measurements from multiple sensors, either from the same type or different types 

of sensors, are required as the complexity of the system that is being observed is increased. 

For fault detection and diagnosis applications, behaviors that relate to faults must be 

extracted from these multi-sensory measurements using multivariate analysis. Multivariate 
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analysis refers to statistical methods in which more than one statistical variable is observed 

and analyzed. Multivariate analysis aims to obtain relationships that exist among the 

different variables which effect the system’s behavior and to obtain dominant variables that 

contribute the most to the system’s behavior through mathematical conversion of 

measurements into statistical indices. One of the key factors that must be accounted for is 

the amount of cross-correlation that exists in the entire dataset. The level of cross-

correlation would indicate that, although many different measurements were obtained, very 

little information can be extracted from it. Depending on the situation, an additional 

measurement may reach a point of diminishing return due to the lack of uniqueness that 

exist in the supplementary measurement. Principal component analysis is an example of a 

popular statistical method for multivariate analysis in the field of engineering including 

fault detection and diagnosis. 

Additionally, Principal Component Analysis (PCA) assumes existence of 

correlations among a set of multiple variables that are provided for a given system. With 

that assumption, PCA aims to convert the dataset into principal components using 

orthogonal transformation. In other words, a dataset with many variables that are assumed 

to be correlated are transformed into a new space composed of principal components, 

which are a set of linearly uncorrelated orthogonal axes. The contribution of each principal 

component on the system’s behavior is dictated by the variance that exists in the data along 

the principal component axes. A given principal component’s contributions to a system’s 

behavior is high if large variance is observed along its axes. For example, the first principal 

component has the largest variance of the dataset, the second principal component has the 
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largest variance of the dataset given the constraint that it must be orthogonal to the first 

component and so on. This concept is illustrated in Figure 14.  

 

Figure 14: Principal component analysis [50] 

During this transformation the number of variables is significantly reduced by 

eliminating the data points that dependent on principal components with very low variances 

which are considered to have very little contribution to the system’s behavior. This 

reduction in data set is often referred to as dimensionality reduction. In addition, PCA 

performs statistical analysis on the compressed dataset to understand the dynamics of the 

system. To summarize, PCA is a simple and non-parametric form of feature extraction 

method that extracts the dominant dynamics that exist in the complex dataset, which is  
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very applicable in the field of fault detection and diagnosis. 

 PCA transform is described by Equation 2.12, where 𝑋 is the data matrix of size 

𝑛 𝑥 𝑚 , 𝑇  is the principal component scores matrix of size 𝑛 𝑥 𝑚 , 𝑃  is the principal 

component loadings matrix of size 𝑚 𝑥 𝑚, 𝑛 is the number of measurements, and 𝑚 is the 

number of variables. Principal component loadings represent the basis vectors of the new 

principal component dimension. Principal component scores correspond to the 

uncorrelated signal representation of the dataset and is organized from highest to low 

variance components. This indicates that first couple of columns of the principal 

components scores hold the most information regarding the data set when compared to the 

last couple of principal components. This implies that PCA can identify which 

measurement contains the fault signature of interest for the application.  

Every column of P represents a basis vector in the new principal component dimension. 

There are two conditions that must be met by the transformation matrix P. These conditions 

states that the basis vectors must be orthogonal and that the magnitude of variance 

influences the principal direction [24]. In addition, the principal component scores matrix 

must be a diagonal. A diagonal matrix is defined as a matrix whose entries outside of the 

main diagonal equals to zero. As described by Equation 2.12, the aim of PCA is to 

transform the data that are described by correlated variables into data that are described by 

uncorrelated variables. In other words, the main purpose of PCA is to remove cross 

correlation that exist in the raw dataset. Mathematical, this would translate to obtaining the 

orthogonal transform matrix P that maps the raw dataset into transformed diagonal 

 𝑇 = 𝑋𝑃 (2.12) 
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covariance matrix [24]. The derivation of the solution is introduced in the following series 

of equations with the calculation of covariance of the transformation matrix 𝑇, where 𝐴 =

𝑋𝑇𝑋  is a square 𝑚 𝑥 𝑚  symmetric matrix, which can be factorized using the spectral 

decomposition of a matrix formulation as shown in Equation 2.14. 

 
∑ 𝑇 =  

1

𝑛 − 1
 𝑇𝑇𝑇              

 

 
∑ 𝑇 =  

1

𝑛 − 1
 (𝑋𝑃)𝑇𝑋𝑃    

 

 
∑ 𝑇 =  

1

𝑛 − 1
 𝑃𝑇𝑋𝑇𝑋𝑃     

 

 
∑ 𝑇 =  

1

𝑛 − 1
 𝑃𝑇(𝑋𝑇𝑋)𝑃 

 

 
∑ 𝑇 =  

1

𝑛 − 1
 𝑃𝑇𝐴𝑃         

(2.13) 

 𝐴 = 𝑉Λ𝑉−1         (2.14) 

Matrix 𝑉  consists of eigenvectors of 𝐴  and Λ  is a diagonal matrix which consists of 

eigenvalues that correspond to eigenvectors in 𝑉 [24]. Due to the symmetric nature of 

matrix 𝐴, orthogonality of its eigenvectors can be inferred. A matrix property which states 

that a transpose of an orthogonal matrix is equal to its inverse is applied to Equation 2.14 

to arrive at Equation 2.15. When Equation 2.15 is substituted into Equations 2.13, Equation 

2.16 is obtained and 𝑃 is set to 𝑉  to arrive at a diagonalized covariance of the 

transformation matrix 𝑇. Equation 2.17 shows the final form of 𝛴𝑇.  
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 𝐴 = 𝑉Λ𝑉𝑇 (2.15) 

 ∑ 𝑇 =  
1

𝑛 − 1
 𝑃𝑇(𝑉𝛬𝑉𝑇)𝑃 (2.16) 

 ∑ 𝑇 =  
1

𝑛 − 1
 𝛬                    (2.17) 

A factorization method of matrices called Singular Value Decomposition (SVD) theorem 

is utilized in obtaining the eigenvectors to reduce exposure to numerical errors. Equation 

2.18 describes the SVD theorem, where 𝑋 is any arbitrary matrix with size 𝑛 𝑥 𝑚, 𝑈 is a 

unitary matrix of size 𝑛 𝑥 𝑛 called left singular matrix, 𝑉 is a unitary matrix of size 𝑚 𝑥 𝑚 

called right singular matrix, and 𝛴 is a rectangular diagonal matrix of size 𝑛 𝑥 𝑚 called 

singular values matrix.  

 𝑋 = 𝑈𝛴𝑉𝑇 (2.18) 

SVD is applied to calculate PCA as shown in Equation 2.19 given that 𝑈 is a unitary matrix 

and 𝑈𝑇𝑈 = 𝐼. The relation provided in Equation 2.20 relates the SVD and eigenvalue 

deposition which infers that transformation matrix P is equal to the right singular matrix V 

since 𝑃 = V. 

 𝑋𝑇𝑋 = 𝑉Σ𝑇𝑈𝑇𝑈𝛴𝑉𝑇  

   = 𝑉Σ𝑇𝛴𝑉𝑇 (2.19) 

   Σ = 𝑋𝑇𝑋 (2.20) 

 The application of SVD ensures that columns of 𝑉 , the eigenvectors and the 

corresponding elements of Σ, the eigen values are organized in the descending order which 

means that the first principal components will have the highest variance. The small 
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eigenvalues are often eliminated in practice as these components of the measurement have 

small signal-noise-ratio. Therefore, the elimination of negligible eigenvalues may reduce 

noise or error that exist in the dataset. 

 To summarize the procedure of PCA transformation is provided in the following:  

1. Transformation of the given data set to the principal component dimension by 

calculating the principal loadings, scores and eigenvalues; 

2. Setting of a minimum threshold for the eigenvalues; 

3. Elimination of the corresponding loadings and scores of those eigenvalues that 

do not meet the minimum threshold; 

4. Reconstruction of the remaining matrix to original dimension using the inverse 

PCA transform described in Equation 2.21, where �̂� and �̂� are the remaining 

scores and loadings upon elimination.  

 �̂� =  �̂��̂�𝑇 (2.21) 

The method of defining the threshold limit is a field of its own that is being 

researched extensively as it is crucial for the performance of PCA. Heuristic rule and 

Kaiser’s rule are two most common methods of thresholding.  

The heuristic rule states that components that consists of 95% of the total variance 

should be considered which infers that any principal component with an eigenvalue higher 

than 0.05 should remain. The Kaiser’s rule states that eigenvalues that are greater than the 

average eigenvalue must be considered. 
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In addition to thresholding methods, different pre-processing methods available for 

the application of PCA should be considered. Non-centered PCA is the method of PCA 

application with no prior processing of the raw dataset. Centered or covariance PCA is 

method where the mean value of each variable is subtracted from each instance. And 

correlation PCA is a method where dataset is scaled and normalized to have zero mean and 

unit standard deviation by subtracting the mean value and dividing it by the variable’s 

standard deviation. For applications where the variables are in different units or where the 

variances differ significantly correlation PCA is often utilized.  

PCA has been widely utilized in signal based FDD applications due to its ability to 

quantify the correlation between the components of a multivariate dataset and the system’s 

behavior. This quantification, which provides measure of the covariance, allows for the 

ability to highlight the components that have the most significant influence on the system’s 

behavior without having in depth technical knowledge or a mathematical model of the 

system. PCA technique is especially useful in signal based FDD approaches where system 

is complex, and dataset is composed of high dimensional, noisy and correlated data [51].  

 For the application of PCA on FDD, Cherry and Qin suggests decomposing the 

multidimensional data collected for a given system into two smaller sets as shown in 

Equation 2.21 [52]. �̂� represents the main features that consists of high varying principal 

components and �̃�  represents the residuals that consists of low varying principal 

components. Equations 2.22 shows how the principal component scores and loading 
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matrixes are decomposed in a similar manner. The method of decomposition is performed 

through a thresholding technique.  

 𝑋 =  �̂� +  �̃� (2.21) 

 𝑋 =  �̂��̂� +  �̃��̃� (2.22) 

       = [�̂� �̃�][�̂� �̃� ]  

 = 𝑇𝑃𝑇          

The thresholding is applied to the variance of the entire dataset by setting a criterion 

on the variance, where meeting the criterion means that the principal component in 

question belongs to �̂� subset and inability to meet the criterion means that the principal 

component in question belongs to �̃�  subset. If 𝑝  is the total number of principal 

components, 𝑧 number of principal components belong to the �̂�, feature subset while 𝑝 −

𝑧  number of principal components belong to the �̃� , residual subset. The selection of 

thresholding techniques that differ in the criterion that it uses to decompose the dataset into 

main features and residual subsets. Most popular methods of thresholding are Heuristic 

rule, Kaiser rule and manual selection. Heuristic rule categorizes the principal components 

that collectively represent 95% of the variance of all principal components into the feature 

subset and the remaining into the residual subset. Kaiser rule categorizes the principal 

components that have higher variance than the average variance of all the principal 

components into the feature subset and the remaining into the residual subset. 
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Upon decomposition of the dataset into features and residuals subsets, the 

information that are embedded in the principal components must be expressed in terms of 

statistical indices to proceed with fault detection and diagnosis methods. Indices 

popularized by Qin consist of Hoteling’s 𝒯2 , Squared Prediction Error (SPE) 𝒬 , and 

combined index 𝜑. These indices provide a measure of how different a given measurement 

is compared to the defined baseline measurement. Therefore, defining the baseline 

measurement, which can be described as a healthy measurement, is a very important 

component in executing a FDD strategy using PCA.   

Hoteling’s index is calculated using Equation 2.23, where 𝑥𝑛𝑒𝑤  is the new 

measurements, and �̂� is 𝒯2 projecting matrix. �̂� is defined in Equation 2.24, where Λ̂ is 

defined in Equations 2.25 and 𝑛  is the size of the measurements. Hoteling’s index 

calculates the distance between the feature subset of the baseline and the new measurement 

in the baseline’s Principal component feature space.  

 𝒯2 = 𝑥𝑛𝑒𝑤�̂�Λ̂−1�̂�𝑡𝑥𝑛𝑒𝑤
𝑡   

 = 𝑥𝑛𝑒𝑤�̂�𝑥𝑛𝑒𝑤
𝑡  (2.23) 

 �̂� =  �̂�Λ̂−1�̂�𝑡 (2.24) 

 
Λ̂ =  

1

𝑛 − 1
�̂��̂�𝑡 

(2.25) 

SPE index is calculated using Equation 2.26, where �̃� is the residual subspace that 

the new measurement is projected on. �̃� is defined in Equation 2.27. SPE index calculates 
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the distance between the new measurement and the residuals subset of the baseline 

measurement in the residual subspace.   

 𝑆𝑃𝐸 =  𝒬 =  ‖�̃�𝑛𝑒𝑤‖2 =  ‖�̃�𝑛𝑒𝑤�̃�‖
2
 (2.26) 

 �̃� =  �̃��̃�𝑡 (2.27) 

The combined index introduced by Yue and Qin is obtained using Equation 2.28 

and 2.29, where 𝛿 is the upper limit of 𝒬, 𝜏 is the upper limit of 𝒯2, and Φ is the projecting 

matrix. Equations 2.30 defines Φ. As shown in Equation 2.28, the combined index is a 

uniform combination of the previous indices.  

 𝜑 =  
𝒬

𝛿2
+  

𝒯2

𝜏2
 (2.28) 

 𝜑 =  𝑥𝑛𝑒𝑤Φ𝑥𝑛𝑒𝑤
𝑡  (2.29) 

 Φ =  
�̃��̃�𝑡

𝛿2
+  

�̂��̂�−1�̂�𝑡

𝛿
 (2.30) 

 The calculated indices are compared to an upper limit where exiting the limit 

indicates the presence of a fault condition in the system. Upper control limit of index 𝒯2, 

which is proportional to the F-distribution, is calculated using Equation 2.31 or 2.32 [53], 

[18]. ∝ is the assigned confidence level, 𝑛 is the sample size of the original data, and 𝑙 is 

the number of principal components. Equation 2.31 is utilized for larger sample size 

applications whereas, Equation 2.32 is more suitable for smaller sample size applications.  

 
𝜏2 =  𝜏𝛼

2 =  
𝑙(𝑛 − 𝑙)

𝑛 − 𝑙
Ƒ𝛼(𝑙, 𝑛 − 𝑙), 𝑤ℎ𝑒𝑟𝑒 ∀𝒯2,  𝒯2 ≤  𝜏2 

(2.31) 
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𝜏2 =  𝜏𝛼

2 =  
𝑙(𝑛2 − 𝑙)

𝑛(𝑛 − 𝑙)
Ƒ𝛼(𝑙, 𝑛 − 𝑙), 𝑤ℎ𝑒𝑟𝑒 ∀𝒯2,  𝒯2 ≤  𝜏2 

(2.32) 

For index 𝒬, which is quadratic in nature, the upper control limit is calculated using 

the weighted chi-squared distribution as shown in Equation 2.33, where 𝒳𝛼
2  is the chi-

square distribution, 𝑚 is the sample mean, 𝑣 is the sample variance, 𝑔 is the weight of the 

chi-squared distribution, and ℎ is the degrees of freedom of the chi-squared distribution 

[54]. Equations 2.34 and 2.35 provide definitions of 𝑔 and ℎ. 

 𝛿 = 𝛿𝒬,𝛼 = 𝑔𝒳𝛼
2 (ℎ), 𝑤ℎ𝑒𝑟𝑒 ∀𝒬, 𝒬 ≤  𝛿2 (2.33) 

 𝑔 =
𝑣

2𝑚
 

(2.34) 

 
ℎ =  

2𝑚2

𝑣
 

(2.35) 

Similar to index 𝒬, combined index, 𝜑 has been shown to be approximated using 

the chi-square distribution by Yue and Qin [15 ismail]. The upper control limit is described 

in Equation 2.36, where 𝑔𝜑 is the weight of distribution, ℎ𝜑 is the degree of freedom and 

∝ is the assigned confidence level. Definitions of the weight of distribution and degree of 

freedom are shown in Equation 2.37 and 2.38, respectively, where, 𝜃1 = 𝑡𝑟𝑎𝑐𝑒 (Λ̃), 𝜃2 =

𝑡𝑟𝑎𝑐𝑒 ( Λ̃2), and Λ̃ =
1

𝑛−1
�̃��̃�𝑇. 

 𝜁2 = 𝜁𝛼
2 = 𝑔𝜑𝒳𝛼

2 (ℎ𝜑), 𝑤ℎ𝑒𝑟𝑒 ∀𝜑, 𝜑 ≤  𝜁2, (2.36) 

 
𝑔𝜑 =  (

𝑙

𝜏𝛼
4

+  
𝜃2

𝛿𝛼
2

) (
𝑙

𝜏𝛼
2

+
𝜃1

𝛿𝛼
2

) ⁄  
(2.37) 
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ℎ𝜑 =  (

𝑙

𝜏𝛼
2

+ 
𝜃1

𝛿𝛼
2

)2 (
𝑙

𝜏𝛼
4

+
𝜃2

𝛿𝛼
4

)⁄  
(2.38) 

2.3.7 Multi-Scale Principal Component Analysis  

 As discussed in previous sections, PCA and wavelet transforms are very powerful 

tools that can be applied to FDD applications. More specifically, PCA is specialized in its 

ability to analyze multiple sensor measurements and identifying the relationships between 

those measurements whereas wavelet transform is specialized in its ability to decompose a 

time series measurement into time and frequency components. However, FDD strategy for 

complex systems such as an internal combustion engine requires the specialities of both 

PCA and wavelet transform simultaneously. In other words, for a successful FDD strategy, 

the decomposition of every measurement in time-frequency components and the 

identification of the correlation between all of the measurements at each time-frequency 

component is vital.  

Bakshi introduced a new analysis method called Multi-Scale Principal Components 

Analysis (MSCPA), which can be described as a hybrid between PCA and wavelet 

transform. MSPCA consists of decomposing every measurement signal using discrete 

wavelet transform then performing PCA on the wavelet coefficients [55]. The concept of 

MSPCA is presented in Figure 15 where the signal is shown to be decomposed using DWT 

and the resulting wavelet coefficients become inputs to PCA where the loading and scores 

matrices are calculated for each wavelet coefficient. Upon loading and scores calculation, 

upper limits of 𝒯2, 𝒬, and 𝜑 are calculated for fault detection and diagnosis that were 
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introduced in Section 2.3.6. The difference between PCA and MSPCA is Principal 

components and the upper limits are calculated for each wavelet bin.  

 

Figure 15: MSPCA schematic [12] 

2.3.8 Mod-MSPCA 

 Yoon and MacGregor introduced a modified version of MSPCA called Mod-

MSPCA [56]. The schematic of Mod-MSPCA is provided in Figure 16, which shows that 

the wavelet coefficients are not directly inputted into PCA upon decomposition through 

DWT. The wavelet coefficients in Mod-MSPCA are reconstructed using wavelet synthesis 

method then inputted into PCA at each level. The purpose of this modification is to utilize 

Reconstruction Based Charts for better detection and diagnosis of faults. RBC required 

sample size closer to the measurement sample size but due to the decomposition step prior 

to the PCA original MSPCA was not compatible with RBC. The reason for applying RBC 

for fault detection and diagnosis was to mitigate the issues of the upper limit technique 

such as inability to quickly detect changes in states of the operating conditions. Such 

limitation would manifest itself as false alarm indicating a presence of a fault even when 
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the fault has been resolved. Yoon and MacGregor states that RBC guarantees a higher 

accuracy in fault diagnosis. Further information regarding RBC can be found in Yoon and 

MacGregor’s research [56]. 

 

Figure 16: Mod-MSPCA schematic [12]
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Chapter 3: Proposed FDD Strategy 

 

 

 This section will provide the details on the proposed fault detection and diagnosis 

strategy that will be developed and tested using real engine test-data. An overview of the 

purpose, constraints and assumptions involved in the development of the proposed FDD 

strategy is presented to provide a relevant summary of the information discussed in Chapter 

2: FDD Strategies for Internal Combustion Engines as an introduction. 

The purpose of the proposed FDD strategy is to monitor the internal combustion 

engine in a cycle-by-cycle basis to detect intermittent misfire faults that may occur in 

different cylinders of the engine. In this context, intermittent faults are faults that do not 

exhibit in every engine cycle. The application of the FDD strategy is aimed at detecting the 

presence of a misfire and the location of the fault condition, in other words, in which 

cylinder the misfire has occurred.  

Due to the complexity of engine dynamics discussed in Section 2.2.1, the proposed 

FDD strategy utilizes the signal-based approach to enable rapid development of a robust 

strategy. The measurements used in the development of the FDD strategy includes 

pressure, vibration and angular position. The data acquisition for the development of the 

FDD strategy is envisioned to be incorporated smoothly into the existing engine 

development testing procedures. However, it is very important to note that the in-vehicle 
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application of the proposed FDD strategy is intended to only consider the vibration and 

angular position measurement. This is due to the very expensive cost associated with 

pressure sensors and the retrofitting of the pressure sensors in the engine as discussed in 

Section 2.2.2. The ability to detect fault conditions using only the vibration signal is 

hypothesized with an important assumption. This assumption is that there exists a 

correlation between the pressure and vibration measurement in the crank angle domain. 

With the knowledge of the pressure measurement’s ability to assess the combustion quality, 

this assumption hypothesizes that the characterization of faulty combustion conditions is 

plausible with just the vibration measurement if the knowledge of the combustion quality 

obtained through the analysis of the pressure measurement is transferred through data 

labeling. Another important concept that will be utilized in the proposed FDD strategy is 

the analysis of data in the crank angle domain to correlate signal behaviors to specific 

component or engine event as discussed in Section 2.3.2.  

 The development method of the proposed strategy is outlined in Figure 17. It 

outlines four major components of the development method: equipment set-up & data 

acquisition, data pre-processing, feature extraction and classifier development. This 

chapter will introduce detailed concept of each component of the strategy. Chapter 4 and 5 

will provide the detailed implementation of the concepts discussed in this chapter on real 

data set.  
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Figure 17: Development overview of the proposed strategy: 
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3.1 Proposed Experimental Set-up & Data Acquisition  

As mentioned before, the proposed FDD strategy utilizes the signal-based approach 

due to the complex nature of the system being monitored. From the literature review, it can 

be concluded that modeling of engines requires tremendous amount of effort and resources 

that is not feasible for the development of a FDD strategy. Therefore, the use of engine 

testing process is suggested to develop a signal based FDD strategy for internal combustion 

engines. The benefit in utilizing the testing environment for the data acquisition component 

of the FDD development process is the amount of quality measurement that is available. 

These measurements have potential to provide valuable insight into the engine conditions 

and behaviors. The specifics of the engine and test cell set-up utilized in this research is 

provided in Section 4.1.1 and 4.1.2. 

3.1.1 Proposed Instrumentation 

The main measurement being proposed to be monitored in this FDD strategy is 

vibration in crank domain due to its low cost and effectiveness in characterizing faults in 

mechanical systems as discussed in Section 2.2.2. Another measurement of interest in the 

development of the proposed FDD strategy is the pressure traces of each cylinder. Pressure 

measurement is an example of measurement that is conveniently available in an engine 

testing environment. However, pressure measurement is not a measurement that is to be 

monitored in the application of the FDD strategy as pressure sensors are extremely costly 

and require complex retrofitting of the engine. Therefore, the pressure traces are proposed 

to be incorporated only in the development of the FDD strategy. The role of the pressure 
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traces during the development of the FDD strategy is to provide valuable information, 

specifically on the combustion quality of each engine cycle. This high quality information 

is to be incorporated into the development of the FDD strategy through date labeling 

method, where each vibration cycle is labeled as healthy or faulty through the analysis of 

the pressure measurement. The specifications and the locations of the accelerometers is 

further elaborated in Section 4.1.5. Similarly, the specifications of the pressure transducer 

are provided in Section 4.1.4. The pressure analysis method proposed is explained in 

Section 3.2 and the implementation of the method in this research is presented in Section 

4.3.  

The position measurement of the crankshaft of the engine is utilized to segment the 

continuous vibration and pressure measurement for the development process and just the 

vibration measurement for the application of the developed FDD strategy into aligned 

individual engine cycles. Also, the position measurement is to be utilized to convert the 

vibration and pressure measurement into crank angle domain from time domain. The 

rotational speed of an internal combustion engine is variable and never constant which 

means that events that are referenced in time provide little information regarding what 

process or component caused that event. However, when events are referenced using crank 

angle, simple analysis can infer useful information regarding the components or the process 

that caused the observed event. Detailed information regarding the optical encoder utilized 

is provided in Section 4.1.3. The theoretical concepts involved in the analysis of the 

encoder signals will be discussed in Section 3.2 and the implantation of the method is 

provided in Section 4.3.  
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3.1.2 Proposed Fault Induction Method 

The purpose of data acquisition is to obtain engine behavioral data on healthy and 

faulty conditions under the same operating conditions to ensure that the fault condition is 

not being induced due to the change in the operating condition. The proposed method of 

fault induction during data acquisition process is to test the engine at parametric conditions 

that increases the possibility of a misfire. This method is proposed to obtain data that 

closely resembles the behavior that would be observed from an engine under normal 

operating conditions. Previously in Dohgri’s research, misfires were induced by physically 

unplugging the spark plug from the engine [22]. This provides conditions of the engine that 

does not provide a realistic representation of how a misfire may occur in an engine that is 

operating within a vehicle. The details on the test equipment such as the engine, 

dynamometer, and the data acquisition hardware are provided in Section 4.1 and the testing 

conditions and test procedures are provided in Section 4.2.  

3.2 Proposed Data Pre-Processing Methods 

 The purpose of the proposed data pre-processing method is to transform the raw 

signal that has been acquired through testing into a format that will allow the feature 

extraction method to extract the most information it can infer from the raw signals. This 

transformation includes the conversions of raw time series measurement into crank angle 

domain measurement and the segmentation of continuous measurement into individual 

engine cycles.  
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3.2.1 Proposed Crank Angle Conversion Method  

As discussed in Section 2.3.2, representing the vibration and pressure 

measurements in crank angle domain is very important for reciprocating machines such as 

the internal combustion engine, where all events of the engine are intricately timed in terms 

of the crank position. The raw measurements that are obtained during the data acquisition 

is in the time domain and engine events are difficult to accurately be inferred in this domain 

due to wide operating speed ranges and its inability to hold a constant speed, which was 

explained in Section 2.1.1. The encoder measurement provides occurrences of a defined 

angular displacement of the crank shaft in time domain. The time measurements are 

proposed to be converted into crank angle domain using the crank angle and time 

relationship provided by encoder measurement through linear interpolation. Linear 

interpolation is suggested as the method of encoder measurement analysis as it is 

computationally very efficient compared to other interpolation methods. The detailed 

calculation of the proposed conversion method is provided in Section 4.3. 

3.2.2 Proposed Cycle Segmentation Method 

 In order for the FDD strategy to monitor the engine in cycle-by-cycle manner, the 

continuous crank angle domain measurements need to be segmented into individual engine 

cycles. Engine cycle is defined as two revolution of the crankshaft which is equivalent of 

720 degrees. Using the measurements in crank angle domain, 720 degrees of the crank 

shaft can easily be obtained. However, each individual cycle must be aligned to a specific 

engine event to ensure that alignment of the entire data set of cycles. Alignment is 
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especially important for feature extraction where time-frequency information is extracted. 

If the engine cycles of the same fault condition are not aligned at the same engine event, 

the time information that is extracted from the feature extraction process will differ 

between the features extracted from the two separate cycles. This means that the 

representation of the fault condition using both of these engine cycles can be considered 

invalid. For successful characterization of each fault condition, it is crucial that aligned 

engine cycles are utilized for fault extraction. The engine event that is utilized for this 

alignment is the top-dead-center event of cylinder 1. The detailed application of this 

proposed cycle segmentation method is provided in Section 4.3.  

3.2.3 Proposed Pressure Analysis Method  

The combustion quality information of the engine cycles inferred from the pressure 

traces using thermodynamic theories are to be incorporated in the development of the 

proposed FDD strategy. The method of pressure analysis that is proposed in this research 

is the calculation of Indicated Mean Effective Pressure (IMEP). The purpose of this 

analysis is to define a misfire mathematically using thermodynamic theories. IMEP 

represents the average pressure that is acting on the piston during the engine cycle. IMEP 

is a very accurate and an easy to calculate indicator of misfires. For the pressure trace of a 

combustion chamber when an engine is motoring, which means that there are no 

combustion occurring inside the combustion chambers, the IMEP value is zero. A 

calculated value of IMEP below a set threshold limit will be defined as a misfire Therefore, 

if an IMEP of a combustion chamber during normal operating conditions of an engine is a 

value close to the threshold limit, it would indicate that a misfire has occurred in that 
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combustion chamber. The steps involved in calculating the IMEP values of each engine 

cycle is outlined in Section 4.3.  

3.2.4 Proposed Data Labeling Method  

The information regarding the combustion quality obtained through the pressure 

analysis is to be incorporated into the development strategy through a process called 

labeling. Labeling of vibration data for each engine cycle is required as the fault conditions, 

which are differentiated by its combustion quality, are not easily inferred using vibration 

signals. With the assumption that correlation exists between the vibration measurements 

and the corresponding fault condition, the label is aimed at guiding the characterization of 

each condition using vibration measurements. The true state of the combustion quality is 

to be determined through the pressure analysis discussed in the previous section. Different 

fault labels were given to misfires occurring in different cylinders to allow the classifier to 

be able to differentiate a misfire that has occurred in one cylinder or another, for fault 

diagnosis component of the FDD strategy. The main purpose of the labeling process is to 

eliminate the need for using pressure transducers in vehicles for the application of the FDD 

strategy. The process of the labeling method is provided in Section 4.3. 

3.3 Proposed Feature Extraction Method 

 Feature extraction of vibration measurements of each segmented and aligned 

engine cycle that are labeled using pressure measurements are proposed to be performed 

using Extended Multi-Scale Principal Component Analysis (Extended-MSPCA).  
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 Extended-MSPCA, which was introduced by Ismail, is a feature extraction method 

that utilizes PCA and wavelet packet transform (WPT). This method is used due to its 

ability to analyze non-transient behaviors of a complex system that have been captured 

through multiple sensors. In short, the Extended-MSPCA decomposes a given signal using 

WPT, which provides corresponding wavelet coefficients then applies PCA on those 

coefficients.  

Extended-MSPCA is very similar to Mod-MSPCA, which was discussed in Section 

2.3.7. However, the feature that differentiates the Extended-MSPCA from Mod-MSPCA 

is improved performance in the characterization of the fault conditions. The main 

difference between the two methods is that Extended-MSPCA utilizes Wavelet Packet 

Transform (WPT) while Mod-MSPCA utilizes Discrete Wavelet Transform (DWT). The 

mathematical theories regarding WPT and DWT were discussed in Section 2.3.5.2. The 

two transforms differ in the way they decompose the signal being transformed. DWT 

decomposes the signals in a way that highlights the higher frequency contents whereas, 

WPT decomposes the signal equally along the signal’s frequency spectrum. Therefore, 

WPT provides better granularity in terms of frequency in comparison to the DWT. The 

Extended-MSPCA is proposed, as opposed to the Mod-MSPCA, due to its ability to 

highlight all of the frequency bands equally. As faults may occur in both high and low 

frequencies, it is very important to utilize the feature extraction method that is capable of 

capturing both those cases.  
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In addition to the type of wavelet transform utilized, Extended-MSPCA differs 

from Mod-MSPCA in the way normalization is achieved. In Mod-MSPCA the raw signal 

is immediately decomposed using DWT and the output coefficients are normalized for 

PCA. However, Extended-MSPCA normalizes the raw measurements before decomposing 

them using WPT. Therefore, the outputs of WPT, which are the wavelet coefficient, are 

considered to be normalized which means that normalization upon WPT is unnecessary for 

PCA. The summary of the proposed normalization method is provided in Figure 18 and 

Figure 19. The proposed order of normalization allows for features extraction process to 

minimize the effects of varying scale and variances of measurements due to difference in 

the sensor’s calibration or sensitivity.  

 

Figure 18: Mod-MSPCA signal transformations [12] 

 

Figure 19: Extended MSPCA signal transformations [12] 

Given the difference between Mod-MSPCA and Extended-MSPCA, the detailed 

steps involved in executing the Extended-MSPCA is as follows. Upon data acquisition and 

necessary data pre-processing that were introduced previously in this chapter, the baseline 

measurement is to be first defined. The Extended-MSPCA generates the features for a 

given measurement by comparing how different the new measurement is in comparison to 

a defined baseline measurement. This baseline measurement is proposed to represent a 
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normal or healthy measurement. However, due to the variability that is inherent in engine 

operation, which was discussed in Section 2.1.1, the selection of the baseline measurement 

is not trivial. It is clear that the attempt to represent what normal engine cycle looks like 

with a single-engine cycle measurement is a contradiction in itself. If a single-engine cycle 

is to be plotted in the feature domain, the normal cycle will be represented as a single point. 

If all of the normal cycles were to be plotted in the feature domain, the normal cycle will 

be represented as a cluster of points. Given that cycle-to-cycle variations exists even in 

normal conditions; the cluster representation is a more realistic depiction of what normal 

conditions look like as opposed to the single point representation. Therefore, the baseline 

measurement is proposed to be represented by multiple healthy measurements as opposed 

to a single healthy measurement. The process of baseline selection is described in Section 

5.1. Multiple baseline measurements are not proposed to be manipulated to provide a 

calculated baseline data such as an average of the multiple baseline measurement. Instead, 

the utilization of the multiple baseline measurements is proposed to extract multiple 

representations of the measurement being observed. For example, if 10 individual cycles 

are selected to represent the baseline measurements of the given system.  

Upon selection of the baseline measurements, the measurement, that the feature 

will be extraction from, is proposed to be normalized using Equations 3.1 and 3.2 where 

normalization is performed based on the parameters of the assigned baseline measurement. 

The assigned baseline measurement is also normalized using its own parameters.  
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 𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑠𝑖𝑔𝑛𝑎𝑙𝑟𝑎𝑤 − 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑒𝑛𝑡𝑒𝑟)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑟𝑎𝑤 𝑠𝑖𝑔𝑛𝑎𝑙)
 (3.1) 

 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥𝑟𝑎𝑤 −

1
𝑛

∑ 𝑥𝑟𝑎𝑤,𝑖
𝑛
1

1
𝑛 − 1

∑ (𝑥𝑟𝑎𝑤,𝑖 −  
1
𝑛 ∑ 𝑥𝑟𝑎𝑤,𝑖

𝑛
1 )

2
𝑛
1

 (3.2) 

Once the measurements are normalized, it is decomposed into time-frequency domain 

using WPT. The PCA component of the proposed feature extraction method is then applied 

to calculate the principal component matrices for the healthy and the faulty measurements 

using Equations 3.3 and 3.4 given the relationship provided in Equation 3.5.  

 Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 = 𝐶𝑂𝑉(𝑇ℎ𝑒𝑎𝑙𝑡ℎ𝑦) (3.3) 

 Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 = 𝐶𝑂𝑉(𝑇𝑓𝑎𝑢𝑙𝑡𝑦) (3.4) 

 𝐶𝑂𝑉(𝑇) = 𝐸(𝑇𝑇𝑡) − 𝐸(𝑇)𝐸(𝑇)𝑡  (3.5) 

A statistical index was introduced by Ismail to enable fault diagnosis capabilities of the 

Extended-MSPCA [12]. This index, which is defined by Equation 3.6, provides a 

quantitative measure of a fault condition.   

 𝐹𝑐,𝑗 = 𝑠𝑖𝑔𝑛 (𝐿𝑗) ∘ √∑ 𝑠𝑖𝑔𝑛(𝐶𝑂𝑉(𝐹))
𝑗

∘ [𝐶𝑂𝑉(𝐹) ∘ 𝐶𝑂𝑉(𝐹)]𝑗

𝑚

𝑖=1

 (3.6) 

 Further to the above detailed overview of the theory related to Extended-MSPCA, 

specific application method is proposed. This application method is heavily focused around 
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how to perform feature extraction using multiple baselines. The proposed feature extraction 

process for the development of the FDD strategy aims to produce multiple representations 

of the fault signature based off of multiple baseline data as shown in Figure 17. This will 

lead to a clustering of healthy and faulty data in the feature domain. More representation 

of one faulty data with respect to multiple baseline data allows for the classification 

algorithm to account for the variable nature of the engine cycle. It should be noted that 

these baseline data are not used to represent a condition. In other words, a feature 

representation of baseline data is not extracted or used in the training process. It is also 

important to have healthy data represented in comparison to the multiple baseline data to 

account for the variability even within the healthy condition. 

3.4 Classifier Development  

 In this FDD strategy, a supervised machine learning algorithm is proposed to 

develop a classifier algorithm that would classify features into fault categories. Supervised 

learning algorithms take labelled data set that provide input-output examples and learns the 

relationship between the input features and the output labels [57]. During the learning 

process, the algorithm refines the mapping of the inputs and the outputs by minimizing the 

error between the desired outputs and the classifier algorithm’s output. The errors are 

represented by a cost function and it is minimized by updating the weights.  
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Figure 20: MLP with two hidden layers [57] 

A type of artificial neural network (ANN) called a multilayer perceptron (MLP) is 

proposed to be the classifier algorithm for this research due to its compatibility with 

nonlinearity and ease of application. Similar to the human brain, ANN are composed of 

fundamental information processing units called neurons. MLP consists of multiple 

clustering or a row of neurons called a layer, as shown in Figure 20. The simplest MLP 

consists of three layers: input, hidden and output layer. Figure 20 depicts MLP architecture 

with two hidden layers. It is important to note that every neuron from a layer is connected 

to every neuron in the previous and the following layer, this type of architecture is known 

as a fully connected neural network. Figure 20 also shows that the information flows from 

the input to the hidden layers then to the output layer, this type of architecture is known as 

a feedforward neural network. 
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Model of a neuron, which consist of m number of inputs, a bias, an activation 

function and an output, is depicted in Figure 21. As shown in the figure, each neuron 

receives m number of inputs which are multiplied with their respective weights. The 

weights correspond to the connection between a neuron from the previous layer and a 

neuron in the following layer. The weights are unique to each connection and are updated 

during the training process. Figure 21 also shows that each neuron consists of its own bias 

which also gets multiplied with its corresponding weight value. The values obtained 

through the weight multiplications are summed at the junction as 𝑣𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗
𝑚
𝑗=0 , which 

is fed into the activation function as an input to calculate the output of the neuron, 𝑦𝑘 =

𝜑(𝑣𝑘)  [57]. A variety of activation functions are available such as sigmoid, tangent 

hyperbolic, softmax and rectified linear units. The nonlinear behavior of these activation 

functions enables artificial neural networks to be nonlinear. As this research involves a 

multi-class classification problem, a softmax activation function is used in the output layer.  

 

Figure 21: Model of a neuron [57] 
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A MLP is trained using a technique called backpropagation. During training there 

are two types of signals that flow through the network which are called function and error 

signals as shown in Figure 22 [57]. The main distinction between the two signals are the 

direction in which they travel through the network. The forward propagation is carried out 

by the function signal and the back propagation is carried out by the error signal [57]. 

During forward propagation, the function signal travels through each layer from one neuron 

to another to transform the input into an output value. During back propagation, an error 

signal is obtained by comparing the output value of the neural network to the desired 

output. This error signal travels backwards through the network layer by layer. As the error 

signal travels, the weights associated with each neuron to neuron connection is adjusted to 

minimize the error [57]. As mentioned before, errors are represented by loss functions 

which are minimized by a gradient method. The feedforward and backpropagation is 

repeated until the loss function is minimized to a satisfactory value. For this research a 

cross-entropy loss function is proposed to be minimized using the scaled conjugate gradient 

backpropagation methods.  
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Figure 22: Function and error signals [57] 

As mentioned before, the multiple baseline strategy is proposed in this research to 

take into consideration the variable engine dynamics. Given a single engine cycle, n 

individual features are extracted if n number of baselines are used. These individual 

features are different feature representations of a single engine cycle. During the training 

of the classifier, it is suggested that each representation of a given fault is to function as an 

individual training sample. The classifier algorithm will not know that these 

representations were obtained from one engine cycle. This method is proposed to provide 

classifier with enough variations of each fault condition to learn from. Exposing the 

classifier to as many variations possible allows the classifier to understand the variable 

nature of the engine behavior. This is especially useful if the dataset obtained is small.  

Once the classifier is fully trained, the FDD strategy will utilize a majority voting 

method to detect a fault. For example, if n number of baselines are used to extract features 

from a new engine cycle, n number of feature representations will be extracted. Each of the 

feature representations will separately be classified using the trained classifier, which will 
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provide n different assessments of the fault condition. A majority voting method is utilized 

to make the final prediction on the fault condition of the new engine cycle. The concept of 

the majority voting method is to select, among all the of the different predictions that were 

provided by individual features, the prediction that had the most votes. The schematic 

process of this method is shown in Figure 17 under the classifier development subset. This 

majority voting method is utilized to reduce detection error caused by uncertainty of the 

fault condition dimensions in the feature space.  
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Chapter 4: Data Acquisition 

 

 

 In this section, the details of the proposed strategies regarding data acquisition are 

provided. These subsections include the experimental setup, the engine test procedures and 

data pre-processing.  

4.1 Experimental Setup 

This chapter provides detailed descriptions of the experimental setup utilized for 

the development of the FFD algorithm for internal combustion engines. The FDD 

algorithm monitors the engine on a cycle by cycle basis. It is a signal-based approach that 

detects intermittent combustion related to faults in different cylinders. 

The experimental setup was used to acquire data for feature extraction of different 

conditions, training of the machine learning classification tool, and testing of the classifier. 

The main elements of the experimental setup include a test cell, an engine, an engine 

dynamometer, a data acquisition system, and sensors (including an encoder, pressure 

transducers and accelerometers). The data acquired includes measurements from the 

encoder, accelerometers, and pressure sensors in time domain. 
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4.1.1 Engine  

All the experiments for data acquisition were performed on a Ford’s V8 spark 

ignition, pushrod developmental engine. The engine was provided by Ford’s Powertrain 

Engineering Research and Development Center (PERDC). Detailed specifications of the 

engine are omitted due to confidentiality. However, the focus of this research and the 

resulting conclusions are not dependent on the specifics of this particular engine. Instead, 

the measurements acquired and the strategy implemented consider phenomena that are 

universal to engines of this type, at the least; V-style, 8 cylinder, and overhead valve model. 

Figure 23 illustrates the difference between an overhead valve and an overhead cam engine 

design and Figure 24 illustrates the difference between an inline engine and a V-style 

engine.  
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Figure 23: Overhead valve vs overhead cam engine design [58] 

 

Figure 24: Different styles of engines [59] 

Figure 25 shows the cylinder numbering for the test engine utilized in this research.  

 The firing order of the engine is cylinders 1-5-4-8-6-3-7-2 as shown in Figure 22.  

  

Figure 25: Engine cylinder numbering for the V8 test engine [60] 
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4.1.2 Test Cell 

The testing facility was provided by Ford Powertrain Engineering Research and 

Development Center. The test cell is composed of an engine dynamometer, engine 

assembly and monitoring instrumentations. The test cell that was utilized for this research 

was unique amongst all of the test cells that are located at PERDC. The test cell is in a 

semi-anechoic chamber which ensures the elimination of surrounding noise and absorption 

of the energy created within the chamber. In addition, only the engine assembly, including 

the engine, was housed in the test cell to ensure that vibrations from the engine alone are 

obtained during testing. 

4.1.2.1 Engine Assembly 

The engine assembly consisted of the clutch, transmission assembly, fan belt, 

power steering pump, alternator, compressor, powertrain mounts, and mount brackets. The 

purpose of the engine assembly is to simulate the in-vehicle conditions that the engine is 

to operate within. 

4.1.2.2 Dynamometer 

The dynamometer was housed outside the chamber in a separate utility room. This 

separation ensures that only the noise and vibration from the engine assembly is being 

captured during data acquisition without external noise. The following table summarizes 

the specifications of the dynamometer that was utilized in this research. 
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Table 1: Dynamometer Specifications 

Manufacturer Meidensha Inc 

Manufacturer Date 2001 

Type FREC Dynamometer 

Model S95-355L 

Number of Poles 2 P 

Base Speed 2500/2647 RPM 

Max Speed 8000 RPM 

Absorbing Power 

(Continuous) 
370 kW 

Motoring Power 

(Continuous) 
250 kW 

  

4.1.3 Encoder  

The encoder is used to measure the rotational position of a shaft [61]. An encoder 

is equipped with an optical sensor, light source and rotating disk with either opaque and 

transparent sections or slits. The optical encoder is mounted on the rotating shaft to be 

studied and the optical sensor outputs “on” or “off” pulses. depending on whether or not it 

sensed the light that was emitted by the light source. The optical sensor would sense the 

light in the case where the transparent or the opening of the slit is passing through the light 

source and the sensor which are in line with each other with the disk rotating in between 

the two as shown in Figure 26. The output will be “off” if the light is blocked due to the 

opaque section or the solid portion of the disk. The output of the encoder is a digital signal 

which means that it will be in the form of a square wave with the high values indicating 

the “on” state and the low values indicating the “off” state. With the knowledge of the 

angular width of the sections or the angular distances between slits, the angular position of 
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the shaft can be obtained with respect to time. The angular speed and acceleration of the 

shaft can also be derived from the position and time data obtained from the encoder. 

 

Figure 26: Encoder components [62] 

In this experiment, the AVL 365 angle encoder was used as it provides high 

precision and high resolution angle information that is required for converting the 

transducer signals from time domain to crank angle domain. This encoder has a resolution 

of 0.5-degree crank angle which means that each engine cycle, which involves two 

rotations of the crankshaft, will consist of 1440 data points. A trigger signal was also 

obtained from this encoder which indicates the occurrence of the top dead centre (TDC) of 

Piston 1 with an offset. The offset of the trigger signal to TDC of Piston 1 is 131.662 degree 

which means that the trigger signal gets switched “on” 131.662 degrees after the 

occurrence of TDC of Piston 1. The trigger signal is crucial in resampling of the transducer 

signals as it ensures that every cycle is synchronized properly in crank angle domain and 



M.A.Sc Thesis                 McMaster University  

D. Joo   Mechanical Engineering 
           

77 

 

allows for the data set to be divided into cycles in the time domain. The AVL 365 angle 

encoder has the RS422 transistor-to-logic (TTL) output driver, output range of 0 – 5V and 

with a standard threshold being 3.5V for “on” signal [63].  

4.1.4 Pressure Transducer  

Pressure traces provide useful insight into the combustion happening inside the 

engine. To correctly label the data, pressure traces were used to calculate values such as 

Indicated Mean Effective Pressure (IMEP) to determine if a combustive fault has occurred 

or not in a given engine cycle.  

Two main types of transducers for sensing pressure are piezoelectric or piezo-

resistive. The application determines which type of sensor should be used. These two types 

of transducers differ in that piezoelectric pressure sensors measure the electrical charge 

produced by the piezoelectric material, whereas piezo-resistive pressure sensors measure 

the change in electrical resistance of a silicon semiconductor.  

 

Figure 27: The mechanical load on the crystal producing electrical charge through electric dipole [64] 



M.A.Sc Thesis                 McMaster University  

D. Joo   Mechanical Engineering 
           

78 

 

For the piezoelectric sensor, the electrical charge is produced by the piezoelectric 

material, such as quartz, and occurs when the surfaces of the crystal are loaded 

mechanically. This load causes the shift of positive and negative crystal lattice elements in 

relation to each other resulting in the formation of an electric dipole [64]. These sensors 

have a very high natural frequency which makes them ideal for measuring fast pressure 

rise times. However, one of the downsides of piezoelectric sensors is that the measurement 

drifts upon application of a static load.  

 
Figure 28: Piezoelectric pressure sensor components [65] 

For the data acquisition portion of the research, pressure traces were obtained 

through Kistler’s PiezoStar Type 6125C pressure sensors which are designed for in-

cylinder pressure measurement of combustion engines. Ford PERDC provided cylinder 

heads with machined holes for each cylinder that are compatible with the pressure 

transducers for testing. PiezoStar pressure transducers are piezoelectric sensors with 

PiezoStar crystals which are produced by Kistler instead of quartz. It has a measuring range 
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of 0 – 300 bar and a sensitivity of -33 pC/bar [66]. The negative sensitivity of the pressure 

transducer is due to the fact that pressure applied to a piezoelectric sensor produces 

negative charge signal. This phenomenon is not found in the output signal as external 

charge amplifier converts the negative going charge into a positive voltage signal [64]. 

Piezoelectric transducers were utilized instead of the piezo-resistive transducers as the 

nature of combustive pressure signals are highly dynamic in nature.  

4.1.5 Accelerometers 

 . Accelerometers are used to capture vibrational behaviors by measuring the 

dynamic acceleration of a mechanical component or assembly, [67]. Similar to pressure 

transducers that were discussed in the previous section, accelerometers use piezoelectric 

material to measure acceleration. An accelerometer consists of a seismic mass, 

piezoelectric material and preload bolt. The acceleration experienced by the component 

being studied is transmitted to the accelerometer and causes the seismic mass inside it to 

also accelerate. A proportional force generated by the acceleration of the seismic mass is 

induced on the piezoelectric material that is clamped between the seismic mass and the 

base of the accelerometer by a preloaded bolt. The proportional force applied to the 

piezoelectric material by the seismic mass results in an electric dipole formation due to the 

shift in the lattice structure of the piezoelectric material. This electric dipole then generates 

electrical charge proportional to the acceleration that can be acquired by the data 

acquisition hardware.  
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There are two types of accelerometers, charge type piezoelectric sensors and 

integrated electronic piezoelectric (IEPE) sensor and they differ in the way they convert 

the charge from the piezoelectric crystal. In the charge type accelerometers, the charge is 

converted through an external amplifier or inline charge converter. However, an IEPE 

sensor does not require an external amplifier as it has a built-in charge amplifier. The IEPE 

sensors require a data acquisition hardware that provides current excitation for the built-in 

amplifier.  

 

Figure 29: IEPE accelerometer components [67]  

In this research, Dytran IEPE tri-axial accelerometers were used to obtain the 

vibration from various parts of the engine. The accelerometer has a range of +/- 5000g, 

frequency response of 10 kHz and a sensitivity of 1mV/g [68]. It should be noted that some 

may argue that charge type accelerometer would have been preferred over the IEPE as they 

are suited for high temperature applications. However, given the fact that the normal 

operating temperature for an engine is anywhere between 195 to 220 degrees Fahrenheit 
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and that the operating temperature of the IEPE accelerometers are rated up to 250 degrees 

Fahrenheit, IEPE sensors are used with cautionary measures in place such as wrapping the 

exhaust and sensor cables with heat shield wraps.  

 

Figure 30: Knock sensor locations on sample V8 engine [69] 

The accelerometers were mounted on the engine with epoxy or with bolts when 

possible to ensure that the true vibrational readings are being obtained. Two accelerometers 

were placed on top of two knock sensors in the left bank of the V8 engine. From the 

accelerometer placed on top of the knock sensors, only the z-axis measurement was 

acquired. The z-axis is parallel to the vibrational measurement obtained by the knock 

sensor. Therefore, this measurement should be indicative of the vibrational components 

that knock sensors observe. This location is strategically selected as the success of the 

proposed FDD strategy using sensors and sensor locations that already exist in the 

manufacturing process would reduce cost of implementing such strategy. The locations of 
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the knock sensors for the experimental engine are shown on a similar V8 engine in Figure 

30. Two other accelerometers were placed in the valley of the V-style engine as shown in 

Figure 31. The placement of these sensors was solely explorative which aims to capture 

the overall vibrational behaviors of the engine. All 3 axes from these accelerometers were 

acquired to observe the up and down, left to right and front to back vibrations of the engine.  

 

Figure 31: Accelerometer locations on sample V8 engine block [70] 

All the accelerometers were calibrated to 100 Hz at 1g-rms as specified by Dytran 

prior to mounting. The calibrations were performed using The Modal Shop 9100D Portable 

Shaker Table.  

Y 

X X 

Y 
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4.1.6 Data Acquisition Hardware 

During a data acquisition process, sensors convert physical phenomenon to 

electrical signals which are collected and digitized by a data acquisition hardware [71]. 

Depending on the data acquisition hardware, the module may be capable of providing 

either analog input/output, digital input/output or counter operation functionality on a 

single device or all of the listed functionalities on a single multifunction device. The type 

of sensor dictates the functionality of the data acquisition hardware required to acquire the 

signal [71].  For example, the encoder signal which outputs a digital signal would require 

the digital input/output functionality whereas, the accelerometer signal which outputs an 

analogue signal would require the analogue input functionality and Analog-to-Digital 

Conversion (ADC) to acquire the data.  

For this research experimentation, signals from the encoder, accelerometers and 

pressure transducers were acquired by multifunction devices called PROSIG P8020 and 

P8012. These two modules allow for fixed channel counts of 24 low speed 24-bit ADC 

channels and 16 high speed 16-bit ADC channels to be recorded simultaneously. These 

multifunction devices have a range of +/- 10 V and an accuracy of +/- 0.1% of the range. 

The high speed and low speed modules are able to support a maximum sampling frequency 

of 400k and 100k samples/sec/channel, respectively. Given the maximum engine speed 

that the data will be acquired at, frequency component of the encoder signal was calculated.  

Although Nyquist Theorem suggests that a signal can be reconstructed with a 

sampling rate equal to twice the highest frequency of the interested component, National 
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Instruments advise that a sampling rate equal to ten times the highest frequency of the 

interested component should be used [72]. The sampling rate of the encoder was carefully 

selected to ensure that the angular position of the crankshaft is being captured as precisely 

as possible without any loss of information. All the vibration and pressure signals were 

recorded at 100kHz/channel and the encoder data was recorded at 400kHz/channel. The 

encoder signal was sampled at a much higher rate compared to the transducers as the 

encoder’s data will be used to resampled the transducer data in crank angle domain. It is 

very important to have data point that is as close to the timestamp as possible to when the 

switch occurred. Therefore, in this application a high sampling frequency of the acquisition 

system is preferred. 

Prosig data acquisition system performs filtering on the signals that are to be obtain 

through a built-in anti-aliasing filter. The cut-off frequency for the filtering is adjusted 

automatically according to the sampling rate of the signals to ensure that aliasing effects 

are not captured in the signals acquired.  

4.2 Engine Test Procedure  

4.2.1 Operating Conditions  

 The fault of interest for this research is intermittent misfire. The associated FDD 

experiment involves obtaining both healthy and faulty cycles under a same operating 

condition and by running the engine in a condition where the chances of the fault occurring 

are high. Under the normal operating range of the engine, the idle condition is considered 

to be the most unstable, with significant fluctuations in combustion quality. Heywood 
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specifies that at idle conditions, chances of partial-burning cycles are higher, [4]. 

Therefore, the data was collected at the idle condition where the engine is running without 

a load at 600 rpm. It is also mentioned that the chances of misfires can be reduced at the 

idle condition by retarding the spark timing [4]. Therefore, spark timing was advanced 

incrementally to increase the severity of the engine's instability. The following list 

summarizes the operating condition:  

 idle speed of 600 RPM 

 no load 

 engine oil temperature below 265 F 

 coolant temperature below 195 F 

 spark timing advance varied from 35 to 55 degree 

4.2.2 Testing Procedures  

The engine was warmed up at 1500 rpm with a load of 2 bar until the oil temperature 

reached 160 F, and a stable condition is reached. Once the engine is warmed up, the engine 

speed was lowered to 600 rpm, the load was removed and the appropriate spark timing 

advance was applied. The data acquisition was then triggered when steady state was 

reached further to changes made to spark timing advance.  

4.2.3 Raw Data Collected  

Accelerometer Data  

Measurement signals from eight accelerometers were recorded in this research. 

Raw accelerometer data from a three axes accelerometer located on the front valley is 
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shown in Figure 32 to Figure 34. Raw accelerometer data from an accelerometer located 

on the front left knock sensor is show in Figure 35. 

 

Figure 32: Raw accelerometer data from front valley, axis parallel with front-back orientation of the 

engine 
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Figure 33: Raw accelerometer data from front valley, axis parallel with right-left orientation of the engine 
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Figure 34: Raw accelerometer data from front valley 

 

Figure 35: Raw accelerometer data from front left knock sensor 

Encoder Data  

Two signals were obtained from the encoder: encoder ticks and trigger signal. 



M.A.Sc Thesis                 McMaster University  

D. Joo   Mechanical Engineering 
           

89 

 

 

Figure 36: Raw encoder ticks @ 600rpm 

Encoder ticks indicate the 0.5-degree travel of the crankshaft. Figure 36 is a plot of 

the raw encoder ticks data at an engine speed of 600 rpm. To verify the data, two points 

that indicate the start of an on switch on consecutive occasions are displayed. The time 

differences between these two points indicate the time it took for the crankshaft of the 

engine set to 600 rpm to travel 0.5 degrees. Assuming that the engine is running at a 

constant speed of 600 rpm the following calculation obtains the theoretical time difference 

between the two points selected in Figure 33. The difference between the theoretical and 

the actual time durations can be explained by the fact that actual engines are not capable of 

holding the speed constant. Therefore, the encoder ticks data obtained is considered to 
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accurately represent the change in the rotational position of the crankshaft with respect to 

time. 

 ∆𝑡𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 0.5° ∙  
𝑟𝑒𝑣

360°
∙  

𝑚𝑖𝑛

600 𝑟𝑒𝑣
 ∙

60 𝑠

𝑚𝑖𝑛
= 1.3889 ×  10−4𝑠 (4.1) 

 ∆𝑡𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑡2 − 𝑡1 = 0.0006875 − 0.00054 = 1.4750 × 10−4𝑠 (4.2) 

 

Figure 37: Raw encoder trigger @ 600rpm 

Trigger signal indicates the occurrence of the Top-Dead-Center (TDC) in Cylinder 

1, which occurs once per revolution of the crankshaft. Figure 37 is a plot of the raw encoder 

trigger data at an engine speed of 600 rpm. To verify the data, two points that indicate the 

start of an on switch on consecutive occasions are displayed as shown in Figure 34. With 

similar assumptions and method, the data is verified as shown in the calculations below. 



M.A.Sc Thesis                 McMaster University  

D. Joo   Mechanical Engineering 
           

91 

 

With similar reasoning for the differences observed in the two time durations, the trigger 

data is considered to accurately represent the occurrence of TDC in Cylinder 1.  

 
∆𝑡𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 1 𝑟𝑒𝑣 ∙  

𝑚𝑖𝑛

600 𝑟𝑒𝑣
 ∙

60 𝑠

𝑚𝑖𝑛
= 0.1000𝑠 

(4.3) 

 ∆𝑡𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑡2 − 𝑡1 = 0.1605 − 0.06001 = 0.1005𝑠 (4.4) 

Pressure Data  

 Raw pressure data of Cylinder 1 is plotted in Figure 38. An overlay of pressure 

traces from all the cylinders are plotted in Figure 39 to validate the firing order of the 

engine. The order of the pressure peaks is shown to align with the firing order indicated in 

Section 4.1.1 which verifies that the pressure transducers were operating and placed 

properly.  
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Figure 38: Raw Cylinder 1 Pressure Trace @600RPM 



M.A.Sc Thesis                 McMaster University  

D. Joo   Mechanical Engineering 
           

93 

 

 

Figure 39: Overlay of all of the raw pressure traces from each cylinder @600RPM 

4.3 Proposed Data Pre-Processing Strategy Implementation 

 In this section, the implementation of data pre-processing to transform the raw data 

into a compatible form for feature extraction is described in detail. As shown in Section 

4.2.3, raw data consists of three different types of measurements; encoder, pressure and 

acceleration in the time domain. The final form required for feature extraction is 

acceleration measurement in the crank angle domain that is segmented into individual 
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cycles with corresponding fault class labels. The following sections describe in detail, the 

steps taken to transform the data.  

Step 1: Filtering of Accelerometer Data 

 The accelerometer measurements were filtered using a Butterworth low-pass filter 

to remove noise. The sampling frequency of the vibration measurement was 100 kHz and 

the frequency response of the accelerometer is 1.2 Hz to 10 kHz. Therefore, the cutoff 

frequency was set to 10 kHz with a 12th order filter with phase compensation to eliminate 

phase shift. Figure 40 shows the raw accelerometer signal and the filtered signal. 

 

Figure 40: Filtering of accelerometer data using Butterworth Filter 

Step 2: Encoder Measurement Analysis 

The purpose of the encoder measurement analysis is to obtain crank angle versus 

time relationship and to obtain the occurrences of the Top-Dead-Center (TDC) of 

Cylinder1. The crank angle versus time relationship is utilized to resample the pressure and 
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acceleration measurements in crank angle domain. The timestamps at which TDC occurs 

in Cylinder 1 is utilized to segment the signals into aligned individual cycles.  

 

Figure 41: Encoder tick signal 

The relationship between crank angle and time was determined by obtaining the 

timestamps of the instances where the light indicator switch of the encoder was flipped 

from “off” to “on”. More specifically, the instances at which the voltage was equal to the 

threshold value were obtained on the rising edge. The threshold value of 3.5 V was utilized 

as specified by the manufacturer. The exact timestamp was estimated through linear 

interpolation of two points immediately before and after the threshold value on the rising 

edge as shown in Figure 41. 
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Rotational speed of the crankshaft is derived from this crank position versus time 

relationship as shown in Figure 42 to validate the alignment of the set engine speed and the 

actual engine speed. It can be observed that the average engine speed aligns with the set 

speed of 600RPM. However, significant fluctuations also exist in the speed profile, which 

aligns with the unstable behavior described by Heywood at idle conditions [4]. The 

fluctuations in engine speed is a direct reflection of the fluctuations in combustion quality 

as mentioned by Heywood [4].  

 

Figure 42: Calculated engine speed @ 600RPM 

The occurrences of TDC in Cylinder 1 referenced in time were obtained using the 

trigger signal. A similar approach was used for encoder tick signal analysis to retrieve the 
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time at which the switch was flipped as an indicator for the occurrence of the TDC in 

Cylinder 1. It is important to note that TDC occurs twice in a given engine cycle as shown 

in Figure 43. Therefore, timestamps obtained by the trigger signal are not sufficient enough 

to synchronize individual cycles in the data set. Figure 43 illustrates that a piston of an 

engine reaches TDC once at the end of the compression stroke and again at the end of an 

exhaust stroke. With this knowledge, the cycle can be synchronized with additional 

information provided by Cylinder 1 pressure trace.  

 

Figure 43: Pressure trace of a cylinder [62] 

Figure 44 shows an overlay of trigger signal and Cylinder 1 pressure trace. Given 

the timestamp of a specific occurrence of TDC of Cylinder 1, pressure trace of Cylinder 1 
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can be referenced to see if this particular occurrence was at the end of a compression stoke 

or the exhaust stroke. If the pressure trace at the given timestamp is close to 0 bar, the 

current TDC can be concluded to have occurred upon an exhaust stroke. On the other hand, 

if the pressure value is well above 0, it can be concluded that the current TDC occurred 

upon a compression stroke. The timestamp associated with the exhaust stroke was chosen 

as the engine event at which the cycles will be segmented at. Therefore, the timestamps at 

which the TDC occurred at upon the exhaust stroke was obtained and was defined as the 

start timestamps indicating the start of a new cycle. It should be noted that there exists an 

offset between the occurrence of the TDC in Cylinder 1 presented by the trigger signal and 

the TDC that can be inferred by using the pressure signal. This offset is as expected as 

specified in Section 4.1.3.  
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Figure 44: Overlay of trigger data and Cylinder 1 pressure trace @ 600RPM  

Step 3: Resampling of Transducer Measurements 

The crank position versus time relationship was used to resample the pressure and 

vibration measurements. The voltage of the transducer measurements at each crank angle 

– timestamps were obtained through linear interpolation. Figure 45 and Figure 46 show the 

plot of the transducer measurement in time and crank angle domain.  

 

Figure 45: Filtered accelerometer data in time domain 
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Figure 46: Filtered accelerometer data in crank angle domain 

Step 4: Engine Cycle Segmentation  

 The start timestamps obtained in Section 4.3.2 is used to segment the transducer 

measurements into individual cycles. The start timestamps are referenced by a specific 

engine event to ensure the alignment of all the cycles obtained from different test files. The 

alignment is required as the data acquisition was randomly triggered which means that each 

test file starts at different positions of the crank angle that relate to different events of the 

engine. In this research, an engine cycle is defined as a 720-degree rotation of the crank 

angle that is aligned at 131.662 degree after the occurrence of TDC in Cylinder 1 upon an 

exhaust stroke event. Each measurement per cycle consists of 1440 points with a crank 

angle resolution of 0.5 degrees. Due to the fact that the offset of 131.662 degree is not 
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divisible by the crank angle resolution of 0.5 degrees, the start timestamp and the crank 

angle timestamp never shared a common timestamp. Therefore, first crank angle timestamp 

that occurs after the start timestamp is used as the start of the cycle. And the end of the 

cycle is marked by the first crank angle timestamp that occurs after next start timestamp.  

Step 5: Data Labeling 

 Pressure trace provides very accurate and insightful information regarding the 

quality of the combustion occurring inside the cylinder. It would be ideal to develop a 

condition monitoring tool that utilizes in-cylinder pressure data from the engine. However, 

it is very unrealistic to have in-cylinder pressure transducers in operating vehicles due to 

their extremely high cost. Therefore, information obtained through pressure traces in test 

engines is correlated with more convenient and less costly vibration measurements. This 

correlation is performed through labeling the engine conditions of the vibration 

measurements using information extracted from the pressure traces.  

For this experiment, the analysis of the pressure trace was performed by calculating 

the Indicated Mean Effective Pressure (IMEP). IMEP was calculated by integrating the 

pressure signal from 180-degree crank angle before TDC to 180-degree crank angle after 

TDC with respect to displacement volume as shown by the following equation, where 𝑝(𝑖) 

is the cylinder pressure at crank angle position 𝑖, 𝑉(𝑖) is the cylinder volume at crank angle 

position 𝑖, 𝑉𝑠 is the cylinder swept volume, 𝜃0 is the bottom dead center (BDC) induction 

integer crank angle position, and 𝜃𝑛 is the BDC integer crank angle position [73]. 
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 𝐼𝑀𝐸𝑃 =  
∆𝜃

𝑉𝑠
∑ 𝑝(𝑖)

𝑑𝑉(𝑖)

𝑑𝜃

𝜃𝑛

𝑖=𝜃0

 (4.5) 

If the IMEP value is below the specified lower limit, it is considered to be a misfire which 

is the fault condition of interest in this research.  

Figure 47 shows a plot of all the pressure traces in one, previously defined, engine 

cycle. The plot shows that at a given engine cycle, a total of 360-degree pressure trace 

segment consisting of compression and power strokes required for IMEP calculation for 

every cylinder is not available within the specified engine cycle.  

 

Figure 47: All pressure traces for 8 cylinder engine cycle 
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Figure 48 to Figure 50 are plots from two consecutive cycles for Cylinders 2, 5, and 

8, respectively. Cylinder 2 is an example of those cylinders that have their compression 

and power strokes fully represented in the segmented engine cycle. On the other hand, 

Cylinders 5 and 8 are examples of those cylinders that do not have their compression and 

power strokes fully represented in the segmented engine cycle as shown in Figure 47. Also, 

it can be observed that the pressure trace of Cylinder 5 flows into the next engine cycle 

while the pressure trace of Cylinder 8 flows from the previous engine cycle. This infers 

that in order to calculate the IMEP of the combustion that is happening in Cylinder 5 for 

the specified engine cycle, the pressure trace for the following cycle is required. In a similar 

manner, the pressure trace of the previous cycle is required for IMEP calculation of the 

combustion happening in the Cylinder 8 for the same engine cycle. This concept was 

adopted for the IMEP calculations of those cylinders that were affected by the segmentation 

of the engine cycles. In addition, the very first and last cycles of every test were discarded 

as accurate calculation of the IMEP values for all of the cylinder were not obtainable as 

full compression and power strokes are not available.  
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Figure 48: Cylinder 2 Pressure Trace of 2 Consecutive Cycles 

 

Figure 49: Cylinder 5 Pressure Trace of 2 Consecutive Cycles 
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Figure 50: Cylinder 8 Pressure Trace of 2 Consecutive Cycles 

It should be noted that the vibration measurements were segmented without 

carrying over the vibrations that occurred during the full compression and power strokes 

of the cylinders. The vibration measurements were not carried over due to the definition of 

an engine cycle that was established earlier. This lack of data representation may lead to 

difficulty in correlating the pressure to the vibration relationship of faults occurring in the 

affected cylinders.  

Pre-Feature Extraction Data Summary  

 The following table summarizes the labeled cycles in the dataset obtained through 

engine testing. It is very important to note the imbalance of the different conditions in the 

data collected. This is primarily due to the way the faults were simulated. In previous 

research conducted, misfire faults were simulated by disconnecting the spark plug which 
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ensures that every cycle of the specified cylinder misfires [22]. This method of simulating 

the fault allows for a balanced distribution of the data to be obtained. However, in this 

research the faults were induced by simulating a condition of the engine where the 

probability of incomplete combustion is high. Therefore, the occurrence of faults or the 

distribution of faults were not guaranteed.  

Table 2: Summary of labeled data 

600 RPM Cycles 

Healthy 8002 

Fault 1 Misfire in Cylinder 1 66 

Fault 2 Misfire in Cylinder 2 9 

Fault 3 Misfire in Cylinder 3 188 

Fault 4 Misfire in Cylinder 4 7 

Fault 5 Misfire in Cylinder 5 369 

Fault 6 Misfire in Cylinder 6 81 

Fault 7 Misfire in Cylinder 7 167 

Fault 8 Misfire in Cylinder 7 76 

Three sample cycles that consist of one faulty cycle and two different healthy cycles 

that were labeled in the previous section using IMEP calculations are plotted in the 

following series of figures. The fault class of the faulty cycle is 1 which indicates that the 

fault has occurred in Cylinder 1. Figure 51 is an overlay of pressure traces from Cylinder 

1 for three different cycles. Figure 52 to Figure 54 are the vibration data from the three-

axis accelerometer located on the front valley. Figure 55 is the vibration data from the 

accelerometer located on the front left knock sensor.  
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When observing the pressure signals, the maximum pressure level and the area 

under the pressure trace of faulty cycle is noticeably smaller than that of the healthy cycles 

which would numerically be translated into the IMEP values. Therefore, it can be 

concluded that faulty cycles are easily identifiable amongst a mixture of healthy and faulty 

cycles for a given cylinder.  

 

 

Figure 51: Cylinder 1 Pressure Traces for Faulty and Healthy sample cycles 

 When observing all the vibration data, the difference between healthy and faulty 

data is not as clear. The distinguishable characteristics such as big spikes and locations of 

those big spikes do not seem to be unique for healthy cycles. When observing the spikes, 

it can be seen that there does not seem to be a commonality in the locations of the spike 
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with respect to crank angle. In terms of amplitude, it can be noticed that Healthy 2 cycle 

shows lower amplitude than the Faulty cycle in all of the vibration plots. Therefore, it can 

be concluded that faulty cycles are not easily identifiable amongst a mixture of healthy and 

faulty cycles without further analysis or without advanced FDD tools. 

 

Figure 52: Front-Back Axis Accelerometer data from Front Valley for Faulty and Healthy sample cycles  
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Figure 53: Right-Left Axis Accelerometer data from Front Valley for Faulty and Healthy sample cycles  
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Figure 54: Up-Down Axis Accelerometer data from Front Valley for Faulty and Healthy sample cycles  
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Figure 55: Axis Accelerometer data from Front Left Knock Sensor for Faulty and Healthy sample cycles 
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Chapter 5: Proposed FDD Strategy Implementation and 

Results  

 

 

5.1 Proposed Feature Extraction Strategy Implementation 

In this section, the implementation of the feature extraction strategy is described in 

detail. The purpose of the feature extraction strategy is to transform the pre-processed data, 

represented in Section 4.3, into features. The theory pertaining to the proposed strategy 

was provided in Chapter 3. This section focuses on elaborating on the parameters chosen 

to implement the strategy.  

The proposed feature extraction method takes the user-defined baseline data and 

faulty data and generates features that represent how different the faulty data is in 

comparison to the baseline data. The proposed strategy utilizes the Extended-MSPCA to 

decompose both the baseline and faulty data through wavelet packet transformation, then 

transforms them into main components using PCA and generates features using statistical 

indices. The implementation of the strategy consists of a selection of wavelet function, 

wavelet level, and baseline data.  

In this research, the algorithm is tasked to differentiate the misfiring cycle from the 

healthy data and differentiate the locations of the misfire. The difference between a misfire 
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occurring in one cylinder from the other is hypothesized to primarily depend on the 

occurrence of the misfire with respect to the crank angle domain. This hypothesis assumes 

that the differentiating characteristics of the misfire condition in comparison to the healthy 

condition will occur within the compression and power strokes of a given cylinder. 

Depending on the firing order for a given engine, each cylinder will fire at a different crank 

angle range. This infers that the wavelet function must have enough localization in the 

crank angle to be able to differentiate the same frequency components occurring 90 degrees 

apart. On the other hand, the differentiation of faulty and healthy cycles may be highly 

dependent on frequency. Therefore, a balance of frequency and time resolution must be 

achieved for the success of accurate characterization of faults.  

Step 1: Wavelet Function Selection 

 A systematic process of selecting an optimal wavelet function for a given 

application does not exist. Consequently, the wavelet function that behaves similarly to the 

signal of interest is advised to be utilized for the wavelet transform. Therefore, in the case 

of fault detection and diagnosis, the ideal wavelet function to be utilized would be one that 

resembles the faulty components of the signal. However, the faulty components are not 

easily identifiable in the signals obtained, given the resources and time allowed for further 

analysis of the signals. Therefore, a wavelet family called Daubechies, which is commonly 

used for vibration in FDD applications, is utilized in this research. Daubechies wavelets 

have been utilized in the previous studies conducted by Ismail, Doghri, and Narendiranath 

for FDD applications on alternators and starters, internal combustion engines, and journal 

bearings, respectively with successful outcomes [12], [22], [74].  
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Daubechies wavelets are said to be compactly supported, which means that it will 

provide results that are more localized as opposed to global results. Daubechies wavelets 

consist of numerous individual wavelet functions that are differentiated by its number of 

vanishing moments. Wavelet db4 represents Daubechies wavelet with vanishing moments 

of 4. The increase in vanishing moments implies that more complex behaviors of the signal 

will be captured. In addition, Figure 56 shows that higher-order mother wavelets provide 

superior frequency resolution with sharper roll-off. However, the improvements made on 

frequency resolution results in a reduction in time resolution.  

 

Figure 56: Frequency response of Daubechies wavelets [75] 

For the feature extraction process component of this research, different wavelet 

functions are utilized to study their effects on the performance of the FDD strategy. These 
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wavelet functions consist of db4, db10, and db16 were utilized. Figure 57, 55, and 56 show 

the corresponding db16, db10, and db4 low pass and high pass filters that were utilized 

during Extended-MSPCA.  

 
Figure 57: Low and high pass filter for db16 
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Figure 58: Low pass and high pass filter for db10 

 
Figure 59: Low pass and high pass filter for db4 
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Step 2: Wavelet Level Selection 

Wavelet levels dictate the number of frequency bins the given signal will be 

decomposed to. As wavelet levels increase, the number of frequency bins increases while 

the range of each frequency is decreased. In other words, the increase in wavelet levels 

leads to finer frequency resolution information. The increase in frequency resolution results 

in decreased crank angle resolution as crank angle resolution is halved at each subsequent 

decomposition level. The crank angle information is predicted to be crucial in the 

characterization of faults in different cylinders due to the cyclic operation of the engine. In 

addition, there is a maximum number of wavelet levels that can be used for a given sample 

signal and the wavelet being used for the analysis. The maximum number of wavelet levels 

can be obtained through the following expression: 

 𝐿𝑚𝑎𝑥 < 𝑙𝑜𝑔2 (
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑁𝑤𝑎𝑣𝑒𝑙𝑒𝑡
− 1) (5.1) 

Given this relationship, the maximum wavelet level for each wavelet function is 

obtained and summarized in the table below. For this research, a wavelet level of 4 will be 

utilized for all three wavelets which is limited by db16’s maximum wavelet level. The 

maximum level of wavelet is restricted in this research due to the short length of the dataset. 

In previous studies performed by Ismail and Doghri, longer sample lengths were utilized, 

which meant that higher wavelet levels could be utilized. For cycle-by-cycle monitoring, 

the only method of increasing the sample length is through the increase in angular 

resolution of the dataset.  
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Table 3: Max wavelet level for corresponding wavelet 

Wavelet Max Level 

db16 5 

db10 6 

db4 7 

  

Step 3: Defining Baseline  

As discussed in Chapter 3, it was proposed that multiple baseline data approach is 

to be taken as opposed to the single baseline data approach. For the application of this 

strategy, the method of selection and the method of determining the number of baselines 

required are important components of the feature extraction strategy that must be 

considered further for a thorough study of the feature extraction strategy. However, in this 

research, a simplified method of selection is pursued for the interest of time. The simplified 

method of selection involves randomly selecting a specified number of individual cycles 

from all the healthy data set that have been collected. In this experiment, 10 different 

baseline data will be utilized for the feature extraction component.  

In the previous study performed by Doghri where the FDD strategy was applied to 

detect constant fault conditions, averaging method of features that belong to the same fault 

condition was proposed [22]. The constant fault of an internal combustion engine can be 

defined as a condition that is known to manifest regardless of the cycle-to-cycle variations. 

The purpose of the moving average is to capture the dominant characteristics of a given 

fault signature. However, the application of a moving average is not recommended for 
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cycle-by-cycle monitoring, which is required for the detection of intermittent faults. This 

is due to the implementation methods of the developed FDD strategy and the type of fault 

the strategy is aimed to monitor. If averaging was performed during the development of 

the FDD strategy, averaging would also be required to guarantee the success of the 

classifier. If the unknown measurements are not averaged, the measurement will consist of 

noise and other cycle-specific variations that the training algorithm has not seen during the 

training process. The presence of noise and cycle-to-cycle variation of the unknown 

measurement may affect the results of the classification tool. Therefore, implementation 

methods must be taken into consideration during the development process of the FDD 

strategy.  

Feature Summary 

From all the cycles obtained and labeled, 100 randomly selected healthy cycles and 

the rest of the faulty cycles were defined as a finalized dataset, which consists of 1063 

cycles, which equates to 10630 features. The number of healthy cycles was reduced to 100 

cycles to even out the imbalance of data. Aside from 100 healthy cycles, 10 additional 

healthy cycles were randomly selected to form the baseline dataset. From the dataset of all 

the cycles, ~70%, ~20%, and ~10% of each class was randomly selected to form the 

training, validation and testing subsets. The testing subset was formed by randomly 

selecting ~10% of the total cycles in the dataset. For example, for the healthy condition 

there are a total of 100 cycles which equate to 1000 features. To select the testing set, 10 

cycles from 100 cycles were randomly chosen and the testing set was formed by 100 

features that have been generated from the 10 cycles that were selected. However, to divide 



M.A.Sc Thesis                 McMaster University  

D. Joo   Mechanical Engineering 
           

120 

 

the remaining data into training and validation, 70% of the features were randomly chosen 

per condition to form the training set and the remainder formed the validation set. The 

breakdown of total cycles and features are shown in Table 4. The method chosen to divide 

the total data into subsets were chosen to ensure that the testing set will be executed in the 

way that the classifier is to be used in real application. Further explanations of each dataset 

and its importance will be elaborated in the classifier section.  

Table 4: Data breakdown 

 Cycles / Features Training Validation Testing 

Healthy 100 / 1000 - / 630 - / 180 90 / 900 

Fault 1 66 / 600 - / 460 - / 130 7 / 70 

Fault 2 9 / 90 - / 60 - / 20 1 / 10 

Fault 3 188 / 1880 - / 131 - / 380 19 / 190 

Fault 4 7 / 70 - / 50 - / 10 1 / 10 

Fault 5 369 / 3690 - / 2580 - / 740 - / 370 

Fault 6 81 / 810 - / 570 - / 160 8 / 80 

Fault 7 167 / 1670 - / 1170 - / 330 17 / 170 

Fault 8 76 / 760 - / 530 15 / 150 8 / 80 

Total 1063 / 10630 - / 7430 - / 2120 108 / 1080 

 

The features extracted consist of 16 coefficients for each sensor signal utilized, 

which results in a feature dimension of 16 x 8 or a total of 128 coefficients. This is a great 

reduction in dimensionality from the raw signal, which consists of 1440 data points for 

each sensor signal, resulting in 11520 data points. The reduction in dimensionality will 

reduce the time and computational resources required for the classification algorithm.  

Figure 60 and Figure 61 show the features that were extracted from accelerometers 

on the valley and knock sensors, respectively. A general trend can be observed from the 
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features extracted from the valley accelerometers across all the fault conditions, including 

the healthy condition, and subtle differences that can be observed from one condition to 

the other. However, these differences are not easily translated into quantifiable 

relationships to characterize each fault condition. The difficulties found in differentiating 

each fault class from the visual representations of the feature sets validate the need for a 

sophisticated classifier algorithm that can infer subtle nuances of the features that are not 

easily identifiable.  
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Figure 60: Features extracted from valley accelerometers 
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Figure 61: Features extracted from knock accelerometers 
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The table below summarizes the time it took for the generation of features for each 

wavelet type and wavelet level used. The time of feature extraction is very important for 

both the training and utilization of the FDD strategy. The Extended-MSPCA algorithm 

used in this research is sufficient for the purposes of evaluating the analysis method and its 

ability to perform analysis on a cycle by cycle basis. However, the algorithm will require 

extensive improvement in order for it to be capable of monitoring the engine on a cycle by 

cycle basis.  

Table 5: Time duration for each feature extraction 

Wavelet Type Wavelet Level Time per Cycle/Baseline 

db4 4 1.031360s 

db10 4 1.199280s 

db16 4 2.161937s 

   

5.2 Results and Observations 

 In this section, the results of the developed FDD strategy are presented. The results 

will review the performances of three different classifiers, Classifier 1, 2 and 3, that have 

been developed using features extracted by three different wavelet functions, db4, db10, 

and db16. The hyper parameters such as number of hidden nodes, learning rate and 

stopping criteria, were tuned individually for each classifier to yield the most optimal 

classifier for the given dataset. For each classifier, the results are presented through four 

different confusion matrices. These include the training confusion matrix, validation 

confusion matrix, testing confusion matrix, and detection confusion matrix as shown in 

Figure 59 – 61. 
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The training confusion matrix shows how well the classifier was able to learn from 

the training data set. The validation confusion matrix shows how well the classifier is able 

to generalize. The testing confusion matrix shows the classifier’s ability to classify the 

features that the classifier has not seen during training. And the detection confusion matrix 

shows the ability to correctly classify the given cycle using majority voting method.   
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Classifier 1: Wavelet Function db4 
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Figure 62: Confusion matrices for Classifier 1 
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Classifier 2: Wavelet Function: db10 
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Figure 63: Confusion matrices for Classifier 2 
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Classifier 3: Wavelet Function: db16 
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Figure 64: Confusion matrices for Classifier 3 
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 Table 6 presents the performance scores of each classifier for training, validation, 

testing and detection including precision, recall and F1-sores. The following are the notable 

observations from the classifier’s and their performances.  

1. The best overall detection accuracy of 96.3% was achieved by Classifier 3 which 

was trained on features extracted from db16 wavelet function. 

2. All three classifiers were not able to classify any fault representations of fault 

classes 2 and 4 during testing. 

3. Majority voting technique improved the overall accuracy rate for all classifiers 

which is indicated by the accuracy improvement from testing to detection.  

The best detection accuracy of Classifier 3 indicates that the features extracted with 

db16 wavelet function had the most information that could be inferred to characterize the 

fault conditions. These results prove that enough information exists in the vibration 

measurements that can be correlated using in-cylinder pressure measurement to monitor 

the engine’s combustion quality. The performance of Classifiers 1 and 2 indicate that 

although the information was not as readily available for correlation as it were for Classifier 

3, there still exist information that can be utilized for FDD strategy. Even though Classifiers 

1 and 2 showed overall accuracy rate that is about 10% lower than that of Classifier 3, more 

research should be performed to improve their performance rather than ruling them out as 

potential options for future FDD strategy. The reason is due to the benefits of utilizing db4 

or db10 wavelet functions for feature extraction. And the most appealing benefit is the 

reduction in processing time.  As mentioned in Section 5.1, the processing time for 
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extracting features using db16 is double the amount of time it takes using db4. This could 

be crucial for when the FDD strategy is to be applied in real-time.  

Despite having the high accuracy rates during training and validation across all 

three classifiers, as shown in Table 6, none of the classifiers were able to detect faults from 

fault classes 2 and 4. The root cause of this phenomenon is the lack of data for fault classes 

2 and 4. The lack of representation of a given fault class in the dataset results in classifier’s 

inability to learn the characteristics that are universal to that specific fault class. The 

explanation for the very high performance observed during training and very low 

performance observed during testing could be that the classifiers were able to learn the 

characteristics of the fault classes but the extent of the engine’s variability of behavior was 

not accounted for due to the limited dataset. Another explanation could be that the classifier 

was overfitting the dataset that belong to fault classes 2 and 4 due to the imbalance of the 

dataset. The difference between the two explanations is that the first explanation is 

reflective of the dataset’s inability to provide the classifier the overall picture while the 

second explanation is reflective of the classifier’s neglect of the fault classes 2 and 4. The 

classifier is trained on the training dataset by updating its weights and biases to reduce the 

overall accuracy. Therefore, given that fault classes 2 and 4 had very small datasets, they 

were set as low priority for the classifier to learn as learning the correlation of fault class 

5, which has a very high dataset, would yield better accuracy.  

The effects of the majority voting technique are reflective in the improvement of 

overall accuracy observed from testing to detection. As discussed in Section 5.1, a total of 
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10 baselines were utilized for feature extraction of cycles for both training and testing 

datasets. The testing confusion matrix accuracy indicates the classifier’s ability to detect 

each feature representation of a single cycle. The majority voting method’s function is to 

mitigate the variations that exist among the 10 feature representations extracted. It can be 

argued that not all 10 baselines utilized for training ought to be utilized for testing as 

utilizing fewer baselines for testing would mean shorter processing time of new cycles. 

However, all 10 baselines were utilized with majority voting method in this research in 

case the dataset utilized for the development was too small. In the case where the testing 

accuracy is on par with the accuracy level required to for the FDD strategy the majority 

voting technique can be omitted.  
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Table 6: Performance Scores 

C
la

ss
if

ie
r 

1
 

T
ra

in
in

g
  Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 

Precision 91.1 100.0 95.4 100.0 91.4 98.9 96.9 97.4 91.4 

Recall 84.6 93.3 95.9 98.0 95.0 97.9 96.5 93.2 86.7 
 87.7 96.5 95.7 99.0 93.2 98.4 96.7 95.3 89.0 

V
al

id
at

io
n

  Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 

Precision 85.3 100.0 92.1 100.0 87.4 96.2 94.3 92.4 80.7 

Recall 71.5 80.0 92.3 70.0 91.9 95.6 95.5 88.7 77.5 
 77.8 88.9 92.2 82.4 89.6 95.9 94.9 90.5 79.1 

T
es

ti
n

g
  Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 

Precision 73.8 0.0 85.7 0.0 84.4 84.7 89.1 98.2 80.8 

Recall 64.3 0.0 88.4 0.0 86.5 90.0 95.9 68.8 97.0 
 68.7 0.0 87.0 0.0 85.4 87.3 92.4 80.9 88.2 

D
et

ec
ti

o
n

  Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 

Precision 57.1 0.0 88.9 0.0 84.6 80.0 94.4 100.0 90.9 

Recall 57.1 0.0 84.2 0.0 89.2 100.0 100.0 62.5 100.0 
 57.1 0.0 86.5 0.0 86.8 88.9 97.1 76.9 95.2 

C
la

ss
if

ie
r 

2
 

T
ra

in
in

g
  Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 

Precision 88.9 94.0 96.0 100.0 92.2 98.6 97.4 97.1 93.3 

Recall 83.5 78.3 96.4 100.0 95.3 98.6 96.3 94.2 90.0 
 86.1 85.4 96.2 100.0 93.7 98.6 96.9 95.6 91.6 

V
al

id
at

io
n

  Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 

Precision 87.0 94.4 92.2 100 87.6 96.8 93.8 91.2 84.0 

Recall 72.3 85.0 93.4 100 90.5 94.4 95.8 89.3 81.5 
 79.0 89.5 92.8 100.0 89.0 95.6 94.8 90.2 82.7 

T
es

ti
n

g
  Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 

Precision 51.4 0.0 82.5 0.0 86.9 94.6 93.6 78.8 92.8 

Recall 51.4 0.0 89.5 0.0 89.5 87.5 94.7 78.8 90.0 
 51.4 0.0 85.9 0.0 88.2 90.9 94.2 78.8 91.4 

D
et

ec
ti

o
n

  Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 

Precision 50.0 0.0 85.0 0.0 89.7 100.0 94.1 85.7 100 

Recall 57.1 0.0 89.5 0.0 94.6 87.5 94.1 75.0 100 
 53.3 0.0 87.2 0.0 92.1 93.3 94.1 80.0 100.0 

.C
la

ss
if

ie
r 

3
 

T
ra

in
in

g
  Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 

Precision 96.1 98.4 98.0 100.0 96.3 99.8 98.8 98.5 96.0 

Recall 91.5 100.0 98.2 96.0 97.8 99.5 99.1 98.3 93.4 
 93.7 99.2 98.1 98.0 97.0 99.7 99.0 98.4 94.7 

V
al

id
at

io
n

  Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 

Precision 90.4 100.0 94.0 100.0 90.3 96.3 96.6 94.5 86.3 

Recall 79.2 90.0 94.5 90.0 94.7 96.3 95.2 92.0 82.0 
 84.4 94.7 94.3 94.7 92.5 96.3 95.9 93.2 84.1 

T
es

ti
n

g
 

 Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 

Precision 87.7 0.0 86.5 0.0 92.6 97.5 98.8 95.7 97.8 

Recall 91.4 0.0 91.1 0.0 98.1 98.8 99.4 83.8 91.0 

 89.51 0.0 88.74 0.0 95.27 98.15 99.10 89.36 94.28 

D
et

ec
ti

o
n

  Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7 Fault 8 Fault 9 

Precision 87.5 0.0 90.0 0.0 97.4 100.0 100.0 100.0 100.0 

Recall 100.0 0.0 94.7 0.0 100.0 100.0 100.0 87.5 100.0 
 93.3 0.0 92.3 0.0 98.7 100.0 100.0 93.3 100.0 
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Chapter 6: Conclusion 

 

 

 The purpose of this research was to develop a FDD strategy that can monitor a 

combustion related fault of an internal combustion engine on a cycle-by-cycle basis. This 

research was performed in collaboration with Ford Powertrain Engineering Research and 

Development Center as a continuation of the ongoing FDD research conducted at CMHT. 

This section will summarize the research, highlight the notable contributions, and provide 

suggestions for future work.  

6.1 Research Contributions  

In this research, a FDD strategy consisting of data acquisition, data pre-processing, 

feature extraction and classifier development specific sub strategies was proposed. The 

dataset required for the development of the FDD strategy was proposed to be acquired from 

currently existing testing procedures and testing facilities. During this research, the dataset 

consisting of information rich sensor measurements were obtained. These measurements 

function to provide insight into what is occurring inside the engine. In this research, the 

combustion quality was the characteristic being monitored by the FDD strategy. Therefore, 

the state of the engine’s combustion quality was obtained through the analysis of the in-

cylinder pressure measurement. The combustion quality indicated by analysis of the 

pressure measurement functioned as the ground truth. However, due to the invasive and 
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expensive nature of the pressure transducers, they are only available in the testing 

environment. Therefore, a vibration measurement was proposed to be the monitored 

measurement for the FDD strategy due to the non-invasive and cheaper cost of 

accelerometers. The difficulty in inferring the combustion quality using vibration 

measurement was proposed to be mitigated during the classifier development through 

labeling of vibration measurement using information rich pressure measurement. To help 

with the dimensionality reduction and correlation of vibration data to the combustion 

quality, feature extraction using Extended-MSPCA was performed on vibration 

measurements in crank angle domain. Given the features extracted and its corresponding 

combustion quality obtained through pressure measurement analysis, the correlation 

between the features and the combustion quality was developed using the machine learning 

algorithm through supervised learning.  

In summary, the following are the major contributions of this research:  

1. Development of new data acquisition procedures for combustion related faults 

that seamlessly integrates into engine testing processes to obtain high quality 

engine data. 

2. Development of data pre-processing techniques unique to internal combustion 

engines that allows analysis in crank angle domain on a cycle by cycle basis.  

3. Development of vibration measurement labeling procedure through analysis of 

in-cylinder pressure measurement.  
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4. Application of Extended-MSPCA on vibration measurement using multiple 

baseline techniques customized for internal combustion engines to mitigate 

variable nature of the dataset.  

5. Development a of classifier using ANN and majority voting technique that has 

shown to be able to classify new dataset for combustion quality with 96.3% 

accuracy.  

 This research demonstrated that there are creative ways to utilized the data that are 

being collected during testing processes to enable advancements in technology through 

data analysis. More specifically, the research has shown that complex relationship between 

pressure and vibration of an engine can be extracted to develop a FDD strategy that is 

capable of monitoring the engine’s combustion quality on a cycle by cycle basis.  

6.2 Future Work 

  This research was conducted to assess the feasibility of the proposed FDD strategy 

in monitoring the engine’s combustion quality. The development of the proposed FDD 

strategy was focused more on the successful application rather than the fine tuning of 

parameters in each of the sub-strategies. Therefore, there are many aspects of the proposed 

FDD strategy that can be researched to understand the capabilities of the strategy itself and 

how it can be fine-tuned to improve the its performance or to be applied to different types 

of faults.  

 Given the set of data that was collected in this research, the following are the 

recommendations for future research:  
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1. Study of different wavelet families on the existing dataset for feature extraction.  

2. Study of different pressure analysis methods for data labeling of combustion 

related fault conditions. 

3. Study of different baseline selection methods and determination of the optimal 

number of baselines for feature extraction. 

4. Development of data imbalance mitigation methods. 

5. Development of data processing procedures for continuous monitoring in real 

time applications. 

In order to bring this technology to life, a continuous research approach is 

recommended where a set of data collection protocols are developed to acquire coherent 

data sets from different types of engines. This protocol is envisioned to standardize data 

collection properties such as the types of measurements being collected and the preferred 

location of the transducers. Data collection protocols may differ for different types of faults 

being monitored. In addition, the protocol should consist of generalized rules to enable 

application to different types of engines. With data from different types of engines, a 

research can be conducted to see if a FDD strategy developed for one engine can be applied 

to a different engine or different type of engine.  
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