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Lay Abstract 

There is a water scarcity problem in the world, so it is vital to have reliable 

decision support tools for effective water resources management. Researchers and 

decision-makers rely on hydrological modelling to predict water availability. 

Hydrological model results are then used for water resources allocation and risk 

mitigation. Hydrological modelling is not a simple process, as there are different 

sources of uncertainty associated with it, such as model structure, model 

parameters, and data. In this study, data-driven techniques are used with process-

driven models to develop hybrid uncertainty quantification approaches for 

hydrological modelling. The overall objectives are:  i) to generate more robust 

probabilistic forecasts; ii) to improve the computational efficiency for uncertainty 

quantification without compromising accuracy; and, iii) to overcome the limitations 

of current uncertainty quantification methods, such as parameter interdependency. 

The developed hybrid approaches can be used by decision-makers in water 

resources management, as well as risk assessment and mitigation.  
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Abstract 

Water is a scarce resource especially as the water demand is significantly 

increasing due to the rapid growth of population. Hydrological modelling has 

gained a lot of attention, as it is the key to predict water availability, optimize the 

use of water resources and develop risk mitigation schemes. There are still many 

challenges in hydrological modelling that researchers and designers are trying to 

solve. These challenges include, but not limited to: i) there is no single robust model 

that can perform well in all watersheds; ii) model parameters are often  associated 

with uncertainty, which makes the results inconclusive; iii) the required 

computational power for uncertainty quantification increases with the increase in 

model complexity; iv) some modelling assumptions to simplify computational 

complexity, such as parameter independence are, are often not realistic. These 

challenges make it difficult to provide robust hydrological predictions and/or to 

quantify the uncertainties within hydrological models in an efficient and accurate 

way. This study aims to provide more robust hydrological predictions by 

developing a set of hybrid approaches. Firstly, a hybrid hydrological data-driven 

(HHDD) model based on the integration of a physically-based hydrological model 

(HYMOD) and a data-driven model (artificial neural network, ANN) is developed. 

The HHDD model is capable of improving prediction accuracy and generating 

interval flow prediction results. Secondly, a hybrid probabilistic forecasting 

approach is developed by linking the polynomial chaos expansion (PCE) method 

with ANN. The results indicate that PCE-ANN can be as reliable as but much more 
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efficient than the traditional Monte-Carlo (MC) method for probabilistic flow 

forecasting. Finally, a hybrid uncertainty quantification approach that can address 

parameter dependence is developed through the integration of principal component 

analysis (PCA) with PCE. The results from this dissertation research can provide 

valuable technical and decision support for hydrological modeling and water 

resources management under uncertainty.   
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Chapter 1  

INTRODUCTION 

1.1. BACKGROUND 

Lately due to climate change, extreme events are becoming more frequent, 

which requires more preparedness to minimize risk and avoid catastrophic 

circumstances. Researchers, designers, and decision-makers in the hydrology area 

have been seeking to develop more robust daily (or sub-daily) probabilistic 

forecasting techniques. Hydrological modelling is essential for water resources 

allocation, flood risk management, water infrastructure operation and planning.  

There are various types of hydrological models for flow forecasting. 

Hydrological models can be classified as physically-based or data-driven models. 

Physically-based models can be divided into three categories based on spatial 

variability: lumped, semi-distributed, and fully distributed models. The lumped 

model is also called a conceptual model as the catchment is considered as a single 

unit, where a parameter takes only one value for the whole watershed with no spatial 

variability within the watershed. The semi-distributed model divides the watershed 

into sub-basins, where each sub-basin has its own parameter values. The fully 

distributed model is the most complex as it divides the catchment into grids, and 

each grid has its properties and processes. Although it seems that fully distributed 

models are the best, as the model becomes complex, it requires more input data. 

With more parameters, it also brings more uncertainties to the model. On the other 
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hand, data-driven models are based on building a relationship between input and 

output variables without taking into consideration the hydrological processes. In 

data-driven models, sometimes the input data are tailored to have more or less some 

resemblance of the hydrological processes, but the model built is purely based on 

the relationship between input and output data.  

1.2. PHYSICALLY-BASED MODELS 

 A physically-based model is a system of hydrological and/or hydraulic 

processes to simulate the catchment response to precipitation events. In physically-

based models, there are some simplifications of the real-world hydrological 

processes. The degree of simplification depends on the type of the physically-based 

model. Lumped models are the most simplified, and fully-distributed models have 

the most details of the actual catchment response. In order to provide valid and 

reliable predictions, physically-based models need to be calibrated first.   

 Depending on the model type, the number of parameters to be calibrated 

can range from less than ten to hundreds. Sensitivity analysis can be carried out first 

to reduce the computational time and requirements. During the calibration process, 

non-sensitive parameters identified from the sensitivity analysis can be excluded. 

There are two different types of sensitivity analysis: local and global sensitivity 

analysis.  Local sensitivity is done by fixing all parameters and changing only one 

parameter at a time around the value of interest to check how the output change 

accordingly. The analysis of local sensitivity is straightforward and fast, and it is 
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helpful when the computational resources are limited (Karkee and Steward, 2010; 

López-Cruz et al., 2012).  Global sensitivity analysis takes account of output change 

with respect to the changes in all parameters within the entire parameter space and 

identifies the parameters that have the most significant influence on the model 

output (Dos Santos and Lu, 2015; López-Cruz et al., 2012; Scire et al., 2001). With 

the rapid development of high-performance computing technology, global 

sensitivity is becoming more common as it provides more realistic results than local 

sensitivity. 

 Previous studies have investigated how to improve physically-based models 

through different avenues. The first avenue is to improve the simulation of 

hydrological and hydraulic processes within the model or to develop new 

hydrological models (Ehteram et al., 2018; Farzin et al., 2018). The second avenue 

is to enhance the calibration algorithms to obtain more accurate parameter values 

that can reproduce the observed outflow (Singh et al., 2013; Yang et al., 2008). The 

third avenue is to investigate the trade-off between simplicity and accuracy 

(Herman et al., 2013; Vos et al., 2010). The goal is to find hydrological models with 

a structure as simple as lumped models but could provide results as accurate as 

fully-distributed models when the data is available.  

 Currently, lumped, and semi-distributed models are more widely used than 

fully-distributed models due to the limitation of data and the fact that the fully-

distributed models require a lot of time to set up and calibrate. Both lumped and 

semi-distributed models could provide acceptable prediction with sufficient 
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watershed input data and the selection of an appropriate model. There is no 

universal model that performs well in all watersheds. The search for more robust 

hydrological models is still a very active research topic.  

1.3. DATA-DRIVEN MODELS 

Data-driven models are based on building relationships between input and 

output without explicit knowledge of the physical processes. In the past two 

decades, the development of technology has made it possible for researchers and 

decision-makers to collect more frequent and accurate data (Montáns et al., 2019). 

With the increases in data availability and computational capability, data-driven 

models have been widely investigated and used in hydrological modelling 

(Jothiprakash and Kote, 2011; Solomatine and Ostfeld, 2008; Taormina and Chau, 

2015). Data-driven models are very dependent on the quality and quantity of the 

data. To use a data-driven model for forecasting, the model has to be trained on a 

certain percentage of the data then the rest is used for validation and testing. The 

most common percentage for training is 70%, while the rest 30% are divided 

equally for validation and testing (Wu and Chau, 2010; Zeroual et al., 2016). The 

percentage can vary depending on the length of available data. Input data is a crucial 

part of data-driven models. Depending on the data-driven model and the output 

required, the input variables to be included in the model have to be selected 

carefully.  
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In data-driven hydrological modelling, the selection of input variables is a 

challenging process. Including more input variables does not always lead to better 

model performance. Although there has been a lot of research on the input variable 

selection techniques for data-driven models, there is no universally accepted 

procedure for identifying input variables. Another common issue with data-driven 

models is the overfitting of models, as data-driven models capture the noises in the 

output, which will produce errors in forecasting results. The overfitting problem 

can happen because of adding more layers and elements in the model or adding 

correlated input variables. There is still no concrete solution to address this 

problem. By applying cross-validation or testing the model for unseen data, the 

model can be detected if it is overfitting or not. Moreover, if there are extreme 

events in the forecasting period that were not included during the training period, 

then the forecasting output might not be accurate (Amasyali and El-Gohary, 2018; 

Sudheer et al., 2002). Data-driven models rely on the data fed to it during the 

training model unlike the physically-driven model which rely on the hydrological 

and hydraulics process. Data-driven models are not extensively investigated in the 

hydrological flow forecast yet.  

1.4. HYBRID MODELS 

To overcome the drawbacks of both data-driven and physically-based 

models, the hybrid modelling approach has been recently investigated.  The main 

idea of hybrid modelling is to have two or more layers of modelling techniques to 
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enhance the model performance. Hybrid modelling can be consisting of a 

physically-based model as the first layer, then a data-driven model as a second layer 

that uses the output from the physically-based model as its input (Humphrey et al., 

2016; Mekonnen et al., 2015). Another way of hybrid modelling is to have two or 

more layers of the data-driven model in sequence (He et al., 2015; Tiwari and 

Chatterjee, 2011). Hybrid modelling has shown a lot of potential for further 

applications.  

Even though the hybrid models can produce better results, there are still 

large uncertainties associated with the modeling process as a result of the different 

choices of member models. Also, by increasing the number of member models, the 

model complexity increases significantly, as each model has to be calibrated. 

Moreover, there might be errors propagating from one model to another. Hybrid 

modelling is promising; however, it requires more investigation and justification.  

1.5. UNCERTAINTY ANALYSIS 

In all hydrological models, physically-based, data-driven or hybrid, there 

are different types of uncertainties. First, model parameters are a major source of 

uncertainty. Even after the model calibration is performed, the parameter values 

might not be representing the actual values. Another source of uncertainty is 

associated with input data or observations. Moreover, the model structure is another 

source of uncertainty. Each hydrological model uses different mathematical 

representations of hydrological relationships; there could be different modeling 
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methods even for the same process in the same model (Talebizadeh et al., 2010; 

Tolessa et al., 2015). There have been many studies on the analysis and 

quantification of parameter uncertainty. To reduce the computational requirement, 

the analysis of parameter uncertainty is usually performed only on the most 

sensitive parameters identified from sensitivity analysis.  

Common techniques for analyzing parameter uncertainty and generating 

probabilistic predictions include Monte Carlo (MC), generalized likelihood 

uncertainty estimation (GLUE), and bootstrap sampling (Li et al., 2009; Wu and 

Liu, 2012; Zhang et al., 2016). A major effort is being made to find uncertainty 

quantification algorithms that can reduce the required computational time and 

resources while maintaining the accuracy of the probabilistic prediction. More 

recently, Polynomial chaos expansion (PCE) showed some potential for 

quantifying parameter uncertainties in an effective and efficient manner (Fan et 

al., 2016, 2014; Wang et al., 2015). However, it has not been widely applied in 

hydrological modeling due to a few limitations.  The existing PCE method relies 

on observations to quantify the propagation of parameter uncertainties with a 

model, which prevents it from providing hydrological forecasts under uncertainty. 

Moreover, model parameters have to be independent to be able to use PCE to 

quantify parameter uncertainties where most hydrological models have 

interdependency relationship between its parameters.  

1.6. OBJECTIVES 
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Based on the gaps in previous studies, this research aims to develop a set of 

hybrid approaches to support the analysis and quantification of uncertainties in 

hydrological modelling. The main objectives of this research include the following: 

 1) To develop a hybrid hydrological model to generate more reliable predictions 

and address model structure uncertainty: the hybrid model will leverage the 

advantages of both physically-based and data-driven models by integrating a 

physically-based modelling layer with a second data-driven modeling layer.  

 2) To improve existing methods for addressing parameter uncertainty: the 

improved methods will be able to provide reliable probabilistic forecasts and 

support effective and robust water resources planning and management. 

The developed approaches will provide results that can be used in scenario-based 

optimization models. The results of the optimization models can be used for 

planning to accommodate for any future risk or generate operation rules based on 

future scenarios. 

1.7. DISSERTATION ORGANIZATION 

The five chapters of the dissertation can be summarized as follows: 

In Chapter 1 provides the background required for this research, brief 

literature review, an overview of the objectives, and a description of the dissertation 

organization  
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In Chapter 2, a hybrid model that consists of two layers is developed to 

generate a more robust prediction and address the model structure uncertainty. The 

first layer is a lumped model named HYMOD, and the second layer is a data-driven 

model, i.e., artificial neural network (ANN). Results from HYMOD and the hybrid 

model are compared and discussed to demonstrate the advantages of the developed 

hybrid model.  

In Chapter 3, An innovative uncertainty analysis method based on the 

integration of PCE and ANN is developed. The introduction of ANN enables the 

developed PCE-ANN method to generate probabilistic forecasts, which cannot be 

done by the traditional PCE approach. The parameter uncertainty in Soil & Water 

Assessment Tool (SWAT) is analyzed using MC simulation, the traditional PCE 

method and the PCE-ANN method. The results are compared to show the 

advantages of the developed hybrid method. 

In Chapter 4, the traditional PCE is further improved to address parameter 

dependency during the analysis of parameter uncertainty. Principle component 

analysis (PCA) is integrated with PCE to enable PCE to quantify the uncertainties 

of interdependent model parameters. The new PCA-PCE method is applied to 

SWAT to demonstrate its applicability.  

Finally, Chapter 5 presents the conclusions of this dissertation research and 

recommendations for future work.  
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Chapter 2  

HYBRID HYDROLOGICAL DATA-DRIVEN APPROACH FOR DAILY 

STREAMFLOW FORECASTING  

ABSTRACT 

Hydrological forecasting is key for water resources allocation and flood risk 

management. Although a number of advanced hydrological forecasting methods 

have been developed in the past, daily (or sub-daily) forecasting remains a major 

challenge in engineering hydrology. The uncertainties associated with input data, 

model parameters, and model structure necessitate developing more robust 

modeling techniques. In this study, a hybrid machine-learning approach based on 

hydrological and data-driven modeling is developed for daily stream-flow 

forecasting. The proposed hybrid hydrological data-driven model (HHDD) 

approach succeeds in improving daily prediction compared to that predicted by the 

standard conceptual hydrological model (HYMOD). In addition, the developed 

HHDD model is more robust in terms of providing direct uncertainty analysis 

results. The results indicate that a better resemblance of streamflow pattern is 

achieved by integrating physically based and data-driven approaches into the 

developed HHDD model. DOI: 10.1061/(ASCE)HE.1943-5584.0001866. © 2019 

American Society of Civil Engineers. 

Keywords: Daily streamflow forecasting; Data-driven modeling; Hybrid 

modeling; Hydrological modeling; HYMOD; Uncertainty analysis.  
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2.1. INTRODUCTION 

The magnitude and frequency of natural disasters attributed to extreme 

metrological and hydrological hazards have been increasing in North America and 

in many regions all over the world due to climate change. Therefore, water 

resources planning, and flood risk forecasting and mitigation are priority research 

areas (Barati et al. 2012). In order to improve the resilience of water resources 

systems, accurate estimation of daily streamflow is key (Adams et al. 2018; Bagatur 

and Onen 2018). In this regard, several studies have been conducted to improve 

streamflow prediction models. 

Previously, various methods have been proposed to improve the performance 

of simulation models through adjusting model parameters (Chen et al. 2018; Zhang 

et al. 2017; Barati 2011), addressing the propagation of parameter uncertainties 

(Fan et al. 2015, 2016; Zhang et al. 2016; Zheng and Han 2016), and improving the 

representation of hydrological and hydraulics processes (Ehteram et al. 2018; 

Farzin et al. 2018; Fu et al. 2014; Wi et al. 2015). In parallel, other researchers 

attempted to augment model spatial resolution by shifting from lumped to 

semidistributed rainfall-runoff models or from semidistributed to fully distributed 

models (Mendonça et al. 2018; Singh and Marcy 2017; Wi et al. 2015), which 

enriches the representation of hydrological processes. Despite the previous re- 

search, there are still major challenges in hydrological simulations, including model 

calibration and uncertainty quantification. Particularly, for fully distributed models, 
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more data-collection efforts are necessary for the model setup. These drawbacks 

highlight the need for developing robust data-driven hydrological modeling and 

streamflow forecasting techniques. 

In the past decade, the increase of computational power and data availability 

have made the development of data-driven models more appealing (Bertone et al. 

2017; Dariane et al. 2018; Kothari and Gharde 2015; Nanda et al. 2016; Zeroual et 

al. 2016). Recent research has found promising results using data-driven techniques 

such as artificial neural network (ANN) (Khan et al. 2016; Wang et al. 2015), fuzzy 

logic (FL) (Chen et al. 2013; Özger 2009; Özger et al. 2012; Wang and Altunkaynak 

2012), and support vector ma- chine (SVM) (Ch et al. 2013; Sudheer et al. 2014; 

Wu et al. 2014) for streamflow forecasting. However, such data-driven models are 

heavily influenced by data availability, data pretreatment, and selection of input 

variables (Feng et al. 2017; Galelli et al. 2014). Another common drawback of data-

driven models is overfitting, which essentially means that noise within the data 

could negatively impact the models’ predictive performance when handling new 

data due to the lack of understanding of the physical hydrological processes. 

In order to overcome the drawbacks of the aforementioned modeling 

techniques, hybrid modeling has been recently introduced and implemented 

(Nourani et al. 2014). Hybrid models integrate both process-driven and data-driven 

models in order to enhance the overall model performance (Nourani et al. 2014). 

For example, Humphrey et al. (2016) developed a hybrid model based on the 

conceptual hydrological model Génie Rural à 4 paramètres Journalier (Agricultural 
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Engineering Model 4 Parameters Daily) (GR4J) and ANN to improve monthly 

streamflow prediction. Song et al. (2012) developed a hybrid model based on the 

semidistributed model Xinanjiang (XAJ). They took the output of each 

subcatchment as an input to the ANN to train it. The results were promising for 

event-based simulation. The results of previous studies demonstrated the potential 

of the hybrid modeling approach. However, such studies mainly focused on either 

monthly streamflow forecasting (Nourani et al. 2014; Humphrey et al. 2016) or 

hourly event-based simulation (Song et al. 2012). 

Daily streamflow forecasting, which could significantly improve flood and 

drought management, is still very challenging due to the prediction complexity 

originating from the fluctuations in daily measurements. As such, the current study 

focuses on developing a hybrid model for daily streamflow forecasting through 

integrating a lumped physically based rainfall-runoff simulation model with a data-

driven model. The hybrid hydrological data-driven (HHDD) model developed in 

this study integrates hydrological model (HYMOD) as the model’s first layer and 

ANN as a second layer. In this respect, HYMOD is first used to obtain simulated 

flow based on watershed characteristics. Subsequently, the HYMOD’s output is 

used as input for ANN for final daily flow forecasting. The objective of this study 

is to develop a robust and reliable daily streamflow forecasting method based on 

HHDD modeling. In order to demonstrate its applicability, the developed HHDD 

model is applied to a case study in the Guadalupe River Watershed in Texas. 
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2.2. METHODOLOGY 

2.2.1. HYMOD 

HYMOD is a lumped rainfall-runoff model based on conceptually simplified 

physical processes (Moore 1985; Quan et al. 2015). The modeling process can be 

divided into three steps. First, the excess infiltration method is used to calculate the 

amount of infiltration and runoff produced. Runoff is predicted as the excess water 

after evapotranspiration and infiltration are subtracted. In this step, 

evapotranspiration is an input variable, whereas the infiltration is calculated based 

on the soil infiltration capacity, which is determined by two parameters, Cmax and 

Bexp. Cmax is the maximum storage capacity, and Bexp is used to address the spatial 

distribution of water storage. Second, the runoff (i.e., excess water) is divided into 

surface runoff and base flow using an α coefficient. Three consecutive, identical 

quick reservoirs with a travel time of Rq are used to calculate surface runoff, and 

the base flow is calculated using a slow reservoir with a travel time of Rs. Finally, 

the discharge is calculated as the summation of both discharges from the quick and 

the slow reservoirs. The schematic in Figure 2-1 summarizes the modeling process. 
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Figure 2-1: Schematic of the HYMOD modeling process. 

The HYMOD model has five parameters as mentioned previously. The first 

three parameters (Cmax, Bexp, and α) are used to calculate the generated runoff, 

whereas the other two parameters (Rq and Rs) are used in the routing process to 

estimate the discharge at the catchment outlet. Because this is a lumped rainfall-

runoff model, the five parameters are not explicitly measured in the field per se; 

instead, their ranges have been defined in previous studies (Quan et al. 2015; Vrugt 

et al. 2008) as given in Table 2-1. In this study, the parameters’ distribution is 

assumed to be uniform (Quan et al. 2015; Vrugt et al. 2008). 

Table 2-1: List of HYMOD Parameters. 

 Min Max Units Description 

Cmax 1 500 mm Maximum storage capacity 

Bexp 0 15 - Degree of spatial variability in the soil capacity 

Α 0.01 0.99 - Factor of distribution of water to surface and base flow 

Rs 0.01 0.99 day Travel time of slow tank 

Rq 0.01 1.2 day Travel time of quick reservoirs (all three are identical) 

 

. 
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2.2.2. ARTIFICIAL NEURAL NETWORK 

ANNs are data-driven models that mimic the structure of the human brain to 

facilitate data mining for prediction and/or classification (Khan et al. 2016). An 

ANN can be divided into several layers: 

• Input data are the first layer, which is connected to the hidden layer(s) by a number 

of neurons (Kothari and Gharde 2015). 

• There can be one or more hidden layers depending on the depth of data mining. 

The number of hidden layers and the neuron weights can be determined by training 

the model with input and output data. 

• The final layer is the sought results, which can be a single variable or multiple 

variables. 

The performance of an ANN model depends on the quantity and quality of 

data, as well as the training processes. There is no universally accepted rule for 

determining the optimal number of input variables, neurons, or hidden layers; 

however, it has been shown that data pretreatment can effectively increase the 

performance of ANNs (Feng et al. 2017; Humphrey et al. 2016; Nanda et al. 2016). 

2.2.3. HYBRID MODELING 

As explained previously, hybrid modeling integrates two or more modeling 

techniques in order to improve the model performance. In this study, the HYMOD 

model (a process-driven model) is integrated with the ANN model (a data-driven 
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model) to develop the HHDD model. HYMOD can reflect the underlying physical 

processes for precipitation-runoff simulation, and ANN can better capture the 

nonlinear relationship between hydrological parameters and streamflow output. 

The developed HHDD model has only a few parameters to calibrate and requires 

less data collection effort, and thus is able to overcome the aforementioned 

disadvantages of both models. 

In this study, four HHDD models are built and analyzed. All models take the 

data from the best models obtained from the calibration and testing periods to train 

the ANN model (1984–1993). The first model uses HYMOD inputs (rainfall, 

temperature, and potential evapotranspiration) and output time series (runoff, 

surface water from each quick reservoir, flow from slow reservoir, and total 

outflow) to train the ANN. The total outflow predicted by HYMOD, rather than 

observed flow, is used for the HHDD model because the HHDD model is intended 

to be used for future prediction when observation flow is unavailable. In the second 

model, cumulative precipitation is added as additional input variables of the first 

model, aiming to improve prediction accuracy. The third model is developed by 

introducing lagged time series of the HYMOD out- put to the first model in order 

to take into consideration the effects of mismatching error. The fourth model 

includes all the variables from the second and third model. The selected variables 

of the four HHDD models are summarized in Table 2-2. 
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Table 2-2: HHDD model input variables. 

Model 

Name 

HyMod In-

Out variables  

Cumulative 

Precipitation* 

Previous 

flow lags** 

Number of 

parameters  

Model 1 X   7 

Model 2 X X  16 

Model 3 X  x 14 

Model 4 X X x 23 

*Cumulative Precipitation of 2, 3, 7, 10, 15, 20, 30, 45, and 60 days 

**Previous flow lags of 1, 2, 3, 4, 5, 6, and 7 days 

The HYMOD modeling process is presented in Figure 2-2. To build and 

calibrate the HYMOD model, HYMOD is run several times using the same rainfall 

and weather data but with different parameter values each time during the 

calibration period. The model performance is evaluated using the Nash-Sutcliffe 

model efficiency coefficient (NSE) and the coefficient of determination (R2). 

During each iteration, the parameters’ values are selected from the range given in 

Table 1, and the output is compared with the observation. The NSE is evaluated 

and compared with the threshold of 0.6. If the NSE value satisfies the threshold, 

then the model is evaluated for the testing period. The NSE of the model for the 

testing period has to exceed 0.5 to accept the set of parameters and be used for 

forecasting during the validation period.  
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Figure 2-2: Flowchart of the HYMOD calibration, testing, and validation 

processes. 
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The flowchart of the HHDD modeling process is shown in Figure 2-3. In the 

proposed hybrid approach, HYMOD is run first using randomly selected parameter 

values for the calibration period. The input and output time series from HYMOD 

are used as the input of ANN. Only one hidden layer is used for the ANN to keep 

the hybrid model in its simplest form. For some HHDD models, other input 

variables are included as given in Table 2-2. The number of ANN neurons is 

calibrated through an iterative process by searching for the highest R2 and lowest 

mean square error (MSE). In this study, the HHDD is trained for 250 realizations 

using the best number of neurons and the observation data during the calibration 

period. Each of the trained models is run for predicting the streamflow for the 

testing and validation periods. The time series of the streamflow is averaged from 

all the 250 iterations to avoid overfitting. 
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Figure 2-3: Flowchart of the HHDD modeling process. 
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2.3. STUDY AREA AND DATA COLLECTION 

A case study of the Guadalupe Basin in Texas is used to demonstrate the 

applicability of the proposed HHDD approach. The Guadalupe Basin is located in 

the southeast part of Texas and discharges to the Gulf of Mexico, as shown in Figure 

2-4. The basin has several subcatchments with a few flow gauges and weather 

stations. Due to limited data availability, only the upper subcatchment of the Spring 

Branch Basin was studied. The Spring Branch has only one mainstream, which 

verifies that using a lumped rainfall-runoff model, which does not consider the 

spatial distribution of subrivers or subcatchment, is reasonable. The total area of the 

Spring Branch catchment is approximately 3,500 km2, which is considered a 

medium to large basin. The difference in elevation is 345 m over a stream length of 

290 km with a mild average slope of approximate 0.12%. 

 

Figure 2-4: Study area in the Guadalupe Basin, Texas. (Base map from National 

Geographic, Esri, DeLorme, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, 

NRCAN, GEBCO, NOAA, iPC.). 
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Fourteen years of rainfall and temperature data for the Spring Branch Basin 

were collected. The weather data were obtained from the National Oceanic and 

Atmospheric Administration (NOAA) at Victoria rain gauge (USW00012912) and 

the flow data were obtained from the USGS at Spring Branch flow gauge. The data 

cover a period from 1984 to 1997 with a daily resolution and are divided into three 

parts: (1) the first 7 years (1984–1990) for calibration to choose best model 

parameters from HYMOD; (2) 3 years (1991– 1993) for testing to assess if the 

chosen HYMOD models are good enough; and (3) the last 4 years (1994–1997), 

which are used for validation to compare the performance of the HYMOD and the 

HHDD models. 

The basin lies in a moderate temperature zone with an average maximum 

temperature of 27°C and an average minimum temperature of 16°C. The basin has 

a low annual rainfall with an average of 2.3 mm/day, which leads to a relatively 

low mean annual streamflow of 16.7 m3/s; however, floods occur occasionally 

during spring and summer. There is no obvious annual or seasonal pattern of peak 

flow (Figure 2-5), and the magnitude of peak flow seems to be increasing, which 

makes it challenging to forecast streamflow. 
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Figure 2-5: Time series of daily flow at the Spring Branch gauge. 

2.4. RESULTS AND DISCUSSION 

2.4.1. PERFORMANCE OF THE HHDD MODELS 

According to Table 2-3, HHDD Models 1 and 4 both show better performance 

than the calibrated HYMOD model during the testing period, and Model 2 has the 

best performance during the validation period. Although there are some 

uncertainties about which model can provide the best performance, all four HHDD 

models perform better than the HYMOD during the validation period. Compared 
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with previous studies, the results of the Models 2 and 4 are considered very good, 

whereas HYMOD and Models 1 and 3 are considered only acceptable or good based 

on NSE (Jimeno-Sáez et al. 2018). For example, Jimeno-Sáez et al. (2018) 

compared the daily forecasting results using both the Soil and Water Assessment 

Tool (SWAT) and ANN for two different basins (Min˜ o-Sil and Segura River) in 

peninsular Spain. The NSE values for the two basins using SWAT were 0.57 and 

0.48, respectively, and the R2 values were 0.58 and 0.61, respectively. When ANN 

was used, the NSE values were 0.59 and 0.49, and the R2 values were 0.61 and 0.52, 

respectively. The results indicate that the HHDD models developed in this study 

have better performance. Meanwhile, other daily forecasting–focused studies used 

an NSE value of 0.7 as an acceptable threshold for good models (Li et al. 2010; 

Yang et al. 2007, 2008; Zhang et al. 2016). Based on the mentioned studies, the 

HHDD models have acceptable or good results and have made a significant 

improvement to the traditional modeling approach.  

Table 2-3: Performance of HYMOD and HHDD models. 

            Testing            Validation 

  NSE R2 NSE R2 

HYMOD 0.69 0.7 0.54 0.67 

HHDD 1 0.73 0.74 0.61 0.68 

HHDD 2 0.67 0.68 0.74 0.79 

HHDD 3 0.65 0.74 0.64 0.71 

HHDD 4 0.74 0.74 0.7 0.75 

Note: NSE = Nash–Sutcliffe model efficiency coefficient, and R2 = coefficient of 

determination. 
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2.4.2. SELECTION OF THE BEST HHDD MODEL 

In order to choose the best of the four HHDD models, further investigation 

has been carried out. To mitigate the impacts of uncertain HYMOD parameters, the 

set of HYMOD parameters that lead to the highest NSE values in both calibration 

and testing periods was selected. Instead of choosing only one set of the output of 

HYMOD, an uncertainty analysis was carried out to check the robustness of these 

models against the change of the HYMOD parameters. 

To conduct the uncertainty analysis, a Monte Carlo simulation was carried 

out by assuming a uniform distribution for each of the five HYMOD parameters. 

The ranges of the uniform distributions are given in Table 2-1. A total of 10,000 

simulations were conducted, and the ones with an NSE value higher than 0.6 during 

the calibration period and NSE value higher than 0.5 during the testing period were 

selected for further analysis. 

According to the aforementioned criteria, a total of 58 parameter sets were 

chosen for the development of the HHDD models. The results of HYMOD and the 

four HHDD models at Spring Branch are compared with the observations, and NSE 

values are plotted as box plots in Figure 2-6. Both Models 2 and 4 have high NSE 

values, which are absolutely higher than those of the original HYMOD model. The 

variation of Model 4’s NSE values are smaller than that of Model 2. However, 

Model 2’s performance, in terms of NSE, is better, and it also requires fewer input 

variables, which makes Model 2 more preferable. Another advantage of Model 2 
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compared with Model 4 is that Model 2 does not use previous flow calculated in 

HYMOD as Model 4 does; thus, the cascade error propagating from HYMOD to 

ANN can be avoid. 

 

Figure 2-6: Nash-Sutcliffe efficiency results for Monte-Carlo analysis during the 

validation period. 

2.4.3. ADVANTAGES OF THE HHDD MODELING APPROACH 

Based on the previous analysis, the HHDD model selected (i.e., Model 2) has 

an overall better performance than the HYMOD model. Model 2 can also generate 

satisfactory forecasts even without prior knowledge of the best combination of 

HYMOD parameters. Figure 2-7 shows the results of HYMOD and HHDD, as well 

as the observed flow, during the validation period. The HYMOD results are 

generated from the best HYMOD model with the highest NSE during both the 

calibration and testing periods, and the averaged HHDD results are from Model 2. 

As shown in Figure 2-7(a), the HHDD peaks concur with the observations, whereas 

HYMOD does not accurately predict the time of occurrence of streamflow peaks. 
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This could be attributed to the fact that the values of the HYMOD parameters are 

kept constant, which is not realistic (Herman et al. 2013; De Vos et al. 2010). For 

example, because flow velocity is a function of the quantity, Rs and Rq should be 

variables dependent on rainfall (De Vos et al. 2010). Unlike HYMOD, the HHDD 

model implicitly creates new variables that change respectively as flow change 

because the ANNs generate relationships between the HYMOD variables and 

cumulative precipitation. 

The performance of HHDD and HYMOD was further analyzed using two 

statistic criteria: the root-mean square error (RMSE) and the mean absolute error 

(MAE). The results show that the overall performance of HHDD is better than 

HYMOD in terms of modeling errors during the validation period. The RMSE 

values of HHDD and HYMOD are 34 and 44 m3/s, respectively, and the MAE 

values are 7.5 and 10 m3/s, respectively. As shown in Figure 2-7(b), although the 

HHDD model does not accurately predict the streamflow peak on June 22, 1997, it 

provides a better estimate than the HYMOD. The HHDD model was incapable of 

predicting the exact value because this value is higher than any of the training data. 
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Figure 2-7: Time series results of the best HYMOD model and the average of 

HHDD Model 2. 
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The HHDD model performed better in simulating peak flow events. For 

example, the total observed volume during June 1997 is 419 × 106 m3. The 

HHDD model estimated the volume to be 319 × 106 m3, which is more accurate 

than the HYMOD value of 230 × 106 m3. It is worth mentioning that peak flow 

estimation is one of the most challenging tasks in hydrological modeling. 

Although HHDD could provide more accurate peak flow prediction in 

comparison with HYMOD, the HHDD model can be further improved. For 

example, improving data quality and including more peak flow events when 

training the model could be helpful. Developing separate models for dry and wet 

seasons might also help better capture the peak flow patterns (Jothiprakash and 

Kote 2011). Moreover, wavelet transformation can be used to separate high flow 

and low flow before modeling to enhance the model performance in capturing the 

peak flows (Pramanik et al. 2011; Tiwari and Chatterjee 2011). Overall, the 

results demonstrated that the HHDD model has the ability to generate more 

accurate flow than that obtained from HYMOD. This is because the HHDD model 

takes into consideration the cumulative precipitation when training the model. 

Thus, the HYMOD parameters are translated into new time-dependent variables 

that is a function of the flow as well. Based on these analyses, it can be inferred 

that the HHDD model performance is affected by both the physical model 

structure and the new data fed to the data-driven model. 

Additionally, the HYMOD is a lumped rainfall-runoff model that does not 

consider spatial variability within the catchment. As such, only one rainfall time 
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series (either rainfall measured at one rain gauge or the average rainfall from 

multiple rain gauges) can be used as HYMOD model input. Although not 

demonstrated in this study, spatial variability can be accounted for using the 

improved HHDD approach. When training the ANN model, the input and output 

data of the HYMOD are used as the feeding layer. Therefore, if there are multiple 

rain gauges, all gauge data can be used instead of the averaged data. 

2.5. CONCLUSIONS 

In this study, a hybrid modeling approach for daily streamflow forecasting 

was developed by integrating a conceptual physical process-based model 

(HYMOD) and a data-driven model (ANN). The developed HHDD model was 

applied to a subcatchment in the Guadalupe Basin in Texas. The HYMOD model 

was calibrated then tested based on 7- and 3-year data, respectively. The analysis 

was carried out in two steps. The first step focused on comparing the calibrated 

HYMOD model with the four developed HHDD models based on a 4-year 

validation period. To investigate which HHDD model is better, uncertainty analysis 

was then carried out as the second step. 

The results demonstrated that integrating data-driven modeling with physical 

process–based modeling is not only promising, but it could also improve the 

performance of the model, especially when there are several parameters to be 

calibrated. In addition, including more information such as cumulative rainfall as 
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an input variable could improve the data-driven models’ capability to address 

hydrological routing without characterizing the associated physical processes. 

Overall, the developed HHDD model provides an effective way to improve 

process-based modeling while avoiding the complexity of parameter calibration. 

However, HHDD models still have some drawbacks. For example, data-driven 

models are very dependent on the quantity and quality of data, so it may not be 

suitable for an area with limited data. Introducing a new data-driven modeling 

layer(s) could also bring additional complexity and uncertainty; therefore, the 

development and integration of such layers to the data-driven model should be 

carefully considered. The developed hybrid approach has only been tested for a 

lumped hydrological model (i.e., HYMOD model) in this study. Hybrid modeling 

based on more complex hydrological models, including semidistributed and 

distributed models, could be investigated in future studies. 
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Chapter 3  

PROPAGATION OF PARAMETER UNCERTAINTY IN SWAT: A 

PROBABILISTIC FORECASTING METHOD BASED ON POLYNOMIAL 

CHAOS EXPANSION AND MACHINE LEARNING  

ABSTRACT 

Soil and Water Assessment Tool (SWAT) is one of the most widely used 

semi-distributed hydrological models. Assessment of the uncertainties in SWAT 

outputs is a popular but challenging topic due to the significant number of 

parameters. The purpose of this study is to investigate the use of Polynomial Chaos 

Expansion (PCE) in assessing uncertainty propagation in SWAT under the impact 

of significant parameter sensitivity. Furthermore, for the first time, a machine 

learning technique (i.e., artificial neural network, ANN) is integrated with PCE to 

expand its capability in generating probabilistic forecasts of daily flow. The 

traditional PCE and the proposed PCE-ANN methods are applied to a case study in 

the Guadalupe watershed in Texas, USA to assess the uncertainty propagation in 

SWAT for flow prediction during the historical and forecasting periods. The results 

show that PCE provides similar results as the traditional Monte-Carlo (MC) 

method, with a coefficient of determination (R2) value of 0.99 for the mean flow, 

during the historical period; while the proposed PCE-ANN method reproduces MC 

output with a R2 value of 0.84 for mean flow during the forecasting period. It is also 

indicated that PCE and PCE-ANN are as reliable as but much more efficient than 
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MC. PCE takes about 1% of the computational time required by MC; PCE-ANN 

only takes a few minutes to produce probabilistic forecasting, while MC requires 

running the model for dozens or hundreds, even thousands, of times. Notably, the 

development of the PCE-ANN framework is the first attempt to explore PCE’s 

probabilistic forecasting capability using machine learning. PCE-ANN is a 

promising uncertainty assessment and probabilistic forecasting technique, as it is 

more efficient in terms of computation time, and it does not cause loss of essential 

uncertainty information. https://doi.org/10.1016/j.jhydrol.2020.124854 © 2020 

Journal of Hydrology. 

Keywords: Daily streamflow simulation Data-driven modeling, Polynomial chaos 

expansion (PCE), Soil and water assessment tool (SWAT) Uncertainty analysis, 

Probabilistic forecasting 
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3.1. INTRODUCTION 

In the water resources sector, designers, researchers, and decision-makers rely 

intensively on hydrological models. Hydrological models have become widely 

applied and highly evolved along with advancements in computing technology. 

Researchers have developed many hydrological models with different structures, 

assumptions, and processes. The variety of hydrological models makes it difficult 

for users to decide which model best represents a watershed’s hydrological 

processes. The Soil and Water Assessment Tool (SWAT) has gained a lot of 

attention since Arnold et al. first proposed it in 1998. SWAT has been widely used 

for watershed modeling for several reasons: 1) SWAT is an open source model, 

which allows researchers and engineers to debug and improve the algorithm for 

higher accuracy for specific study areas (Eckhardt et al., 2002; Fu et al., 2014; D. 

Zhang et al., 2016); 2) SWAT is a semi-distributed model, which enables it to better 

balance the tradeoff between simulation efforts and accuray compared to both 

lumped and fully-distributed and models when simulating large non-homegenous 

watersheds (Eckhardt et al., 2002; Fu et al., 2014; D. Zhang et al., 2016); 3) SWAT 

has the ability to perform not only hydrological modeling but also simulate 

sediment transport and water quality processes (Arabi et al., 2008; Dagnew et al., 

2016; Debele et al., 2008; Hallouz et al., 2018; Iudicello et al., 2013); 4) SWAT is 

compatible with geographic information system software (GIS) which can present 

the results in a more informative and interactive manner to assist decision makers 



Ph.D. Thesis – M. Ghaith  McMaster University – Civil Engineering 

 

51 

 

in interpreting different scenarios (Olivera et al., 2006; Shen et al., 2013; Suliman 

et al., 2015).  

SWAT, like many other hydrological models, needs to be calibrated and 

validated. The calibration process is performed on parameters that are either not 

directly measured or very sensitive or missing; the values of these parameters are 

adjusted to minimize the deviation between simulated results and observations. One 

of the most widely used SWAT calibration toolkits is the SWAT Calibration and 

Uncertainty Procedures (SWAT-CUP) (Arnold et al., 2012).  The SWAT-CUP 

toolbox provides several techniques for uncertainty analysis, including generalized 

likelihood uncertainty estimation (GLUE), sequential uncertainty fitting-2 (SUFI-

2), parameter solution (Para-Sol), and Markov chain Monte Carlo (MCMC). The 

computational time for all of these methods is relatively long, and it increases with 

respect to watershed size and the number of parameters. Several approaches have 

been developed and tested to enhance calibration efficiency and to reduce 

computational time.  For example, Zhang et al. (2009) used a genetic algorithm 

(GA) to calibrate the SWAT model. Using Bayesian Model Averaging algorithm 

(BMA) with the best model ensembles, the GA-BMA model was able to address 

prediction uncertainty using interval estimation while requiring less computational 

time compared to MCMC. Comparing the computation time of this method to 

MCMC, almost one order of magnitude in hours was reduced while producing 

comparable results. Li et al. (2010) used a bootstrap algorithm with BMA to 

calibrate a SWAT model. The bootstrap algorithm was used to calibrate the model 
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first and to find the best set of parameters from a prior distribution. Then, the model 

was recalibrated by generating new ‘observation’ data from adding some residuals 

to the actual observation. This process was repeated for several iterations to produce 

a posterior distribution for each parameter. The bootstrap method used less 

computational time than the GA-BMA method, but its performance in terms of 

uncertainty quantification varied significantly from case to case and thus was not 

always reliable.  These previous studies indicate that there is a need for more 

reliable and efficient uncertainty analysis methods for SWAT.  

Recently, polynomial chaos expansion (PCE) has been proposed as a new 

method for uncertainty quantification. Based on previous studies, PCE requires 

much less computational time than MCMC when used for analyzing the 

propagation of parameter uncertainties. This algorithm has been used in many fields 

such as transportation (Stavropoulou and Muller, 2015), chemical process (Paffrath 

and Wever, 2007; Villegas et al., 2012), and aerodynamics (Wu et al., 2018). It has 

also been used in water-related areas, such as groundwater flow and contaminant 

transport (Deman et al., 2016; Laloy et al., 2013; Li and Zhang, 2007; Rupert and 

Miller, 2007) and computational fluid dynamics (Hosder, 2010; Najm, 2009; 

Tagade and Choi, 2014). More recently, PCE has been introduced to surface water 

modeling to quantify model uncertainty. Fan et al. (2014)  and Wang et al. (2015)  

used the PCE with the lumped model HYMOD to test the potential of PCE for 

assessing model uncertainty. Fan et al. (2014)  investigated the use of second- and 

third-order PCE to address the parameter uncertainties in HYMOD. The 



Ph.D. Thesis – M. Ghaith  McMaster University – Civil Engineering 

 

53 

 

uncertainties of two parameters were analyzed, and one year of synthetic data was 

used to compare the results generated by Monte-Carlo (MC) simulation, second-

order PCE, and third-order PCE. Both second- and third-order PCE provided 

similar results as MC. The third-order PCE generated results closer to those 

generated by MC, but was more computationally demanding relative to second-

order PCE.  Wang et al. (2015)  used PCE and reduced PCE as well as MC with 

latent hypercube sampling (LHS) to conduct the uncertainty analysis for a case 

study of the Xiangxi River Watershed in China. The HYMOD model was used to 

simulate two years of flow. The results showed that PCE and reduced PCE gave 

similar results and almost the same Nash–Sutcliffe model efficiency (NSE) as MC-

LHS. However, the time required to perform MC-LHS was 55 seconds, whereas it 

only took 4.8 and 3.5 seconds for PCE and reduced PCE, respectively. Both studies 

demonstrated the promising application of PCE in replacing MC for uncertainty 

analysis in hydrological modeling. PCE has the potential for application as an 

efficient technique that can save time and computational resources in uncertainty 

quantification, and its advantages would only be more significant when applied to 

more sophisticated hydrological models. However, the HYMOD tested in these two 

studies is only a simple conceptual model, which cannot demonstrate PCE’s 

applicability and reliability for more sophisticated hydrological models. As such, 

the application of PCE on more complicated models, such as a distributed or semi-

distributed model, requires further investigation. Besides, the existing PCE method 

relies on observations to quantify the propagation of parameter uncertainties with a 
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model, which prevents it from providing hydrological forecasts under uncertainty. 

Therefore, PCE’s capability for probabilistic forecasting should also be explored.  

The objective of this study is to investigate the capability of PCE in building a 

surrogate of SWAT and demonstrating that PCE could quantify the SWAT’s 

parameter uncertainty and provide probabilistic forecasting in a much more 

efficient way, compared to the traditional MC method. To enable PCE to generate 

hydrological forecasts under uncertainty with SWAT, an artificial neural network 

machine learning algorithm (ANN) will be integrated with PCE. The new PCE-

ANN method will be used to build a surrogate model for SWAT, which can forecast 

daily flow and quantify the uncertainties associated with the obtained forecasts 

efficiently. The proposed PCE-ANN is applied to a case study in Guadalupe River 

Watershed in Texas, USA. This paper is divided into seven sections. Section 3.2 

describes the setup of the SWAT model, as well as its automatic calibration toolbox 

SWAT-CUP. Section 3.3 illustrates the framework and development processes of 

PCE and PCE-ANN. Section 3.4 describes the study area and the data used in this 

paper. Section 3.5 discusses the results of this study. Section 3.6 discusses the 

advantages and limitations of the PCE-ANN method. Finally, section 3.7 

summarizes the conclusions of this study.  

3.2. SWAT MODEL 

SWAT is a semi-distributed model that has been widely used for hydrological 

and environmental modeling. SWAT has gained much attention as it is open-source 
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software and many databases, documentation, and publications are available to the 

public.  Additionally, several software products (such as ArcSWAT, QSWAT) are 

available for SWAT to provide users with a user-friendly interface and to present 

results as intuitive and informative maps. SWAT is standardized for US 

topographic and weather conditions and all input data required to build a SWAT 

model is integrated within the SWAT database (White et al., 2016, 2017). As shown 

in Figure 3-1, SWAT is fed by multiple databases, including the digital elevation 

models (DEMs), streamlines, soil data, and land uses.  

 

Figure 3-1: SWAT model schematic. 

To set-up a SWAT model, streamlines are first burnt to the DEM to make sure 

that automatic delineation is accurate. Second, outlet points are selected at the 

desired flow gages. Third, the delineation process is carried out based on the chosen 
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outlets. Fourth, the study area is classified according to land-use, soil 

characteristics, and slope to determine the hydrologic response units (HRUs) for 

each sub-catchment. Fifth, all weather data are fed into the model as a time-series 

table. Sixth, model parameters are estimated based on the slope, land use, soil data, 

and weather conditions. Finally, SWAT is ready for calibration and validation, 

preferably with a warmup period to avoid any initialization error. There are several 

different approaches for model calibration. One of the most widely used toolkits is 

SWAT-CUP due to its ease of use and the variety of techniques to be used for 

calibration.  

There are three automatic calibration algorithms embedded in SWAT-CUP: 

SUFI, GLUE, and Para-Sol. In this study, SUFI is used for model calibration for 

several reasons. SUFI is the fastest algorithm, as it uses the LHS technique to cover 

all the range. SUFI depends on re-running the model several times with a narrower 

parameter range each time. Additionally, in previous studies, SUFI has been found 

to have a slightly better performance compared to the other two algorithms (Khatun 

et al., 2018; Singh et al., 2013). The calibration can be done after defining the 

uniform distribution of each parameter, the number of iterations, and the objective 

function. The parameter ranges used in this study are determined based on the 

previous studies and are shown in Table 3-1. Parameters that have different values 

spatially are changed by multiplying the original value by a ratio in order to keep 

the spatial distribution relatively consistent. The Curve Number (CN2) is an 

example of the spatial parameters, so it is defined as relative change “R”. Other 
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parameters that have a specific value assigned across the catchment are changed by 

randomly selecting a value from the range distribution. These parameters are 

defined as replacement change “V”. The objective of the calibration is to maximize 

the NSE value. After running the automatic calibration tool, the best parameter set 

is chosen, and the model can be re-run in the SWAT-CUP for validation or in 

SWAT for further simulation.  

SWAT-CUP can provide a global sensitivity analysis report during the 

calibration process. The sensitivity report shows the most sensitive parameters that 

should be considered as the target parameters for uncertainty analysis. The 

sensitivity report can be in the form of scatter plots or in a statistical format (p-test 

and t-test). If the scatter plot is uniformly distributed along the range, then the 

corresponding parameter is not sensitive. If there is a clear trend in the scatter 

points, then this parameter is sensitive. The statistical format is preferred over the 

scatter plot format in order to avoid human bias. The parameter is considered 

sensitive if the p-value is lower than 0.05, which also indicates that the t-test values 

are high (Khatun et al., 2018; Yesuf et al., 2016). When two parameters have the 

same p-value, a t-test may be used for differentiating them. In this study, the five 

most significant parameters identified using this process are used for further 

uncertainty analysis.  
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Table 3-1: Model parameters. 

Parameter ID        Rule Min Max Parameter description           

R__CN2.mgt Ratio -0.2 0.2 SCS runoff curve number  

V__CH_W2.rte Replace 0 1000 Average width of main channel.  

V__CH_L2.rte Replace -0.05 500 Length of main channel.  

V__CH_K2.rte Replace 5 130 Hydraulic conductivity in main channel  

R__SOL_AWC(..).sol Ratio -0.2 0.4 Soil available water content  

R__SOL_BD(..).sol Ratio -0.5 0.6 Soil moist bulk density  

V__ALPHA_BF.gw Replace 0 1 Baseflow alpha factor (days)  

V__ESCO.hru Replace 0.8 0.95 Soil evaporation compensation factor  

V__GW_DELAY.gw Replace 30 450 Groundwater delay (days)  

R__SOL_K(..).sol Ratio -0.8 0.8 Saturated hydraulic conductivity  

V__CH_D.rte Replace 0 30 Average depth of main channel.  

V__TLAPS.sub Replace -10 10 Temperature lapse rate  

V__TIMP.bsn Replace 0.05 0.9 Snowpack temperature lag factor  

V__GWQMN.gw Replace 0 2 

Threshold depth of water in the shallow 

aquifer required for return flow to occur 

(mm) 

 

V__SMFMX.bsn Replace -5 5 
Maximum melt rate for snow during 

year (occurs on summer) 

 

V__GW_REVAP.gw Replace 0 0.2 Groundwater "revap" coefficient  

V__REVAPMN.gw Replace 0 500 
Threshold depth of water in the shallow 

aquifer for "revap" to occur (mm) 

 

V__CH_S2.rte Replace -0.001 10 Average slope of main channel.  

V__SMFMN.bsn Replace -5 5 
Minimum melt rate for snow during 

year (occurs on winter) 

 

V__SNO50COV.bsn Replace 0 0.9 
Snow water equivalent that 

corresponds to 50% snow cover 

 

V__CANMX.hru Replace 0 100 Maximum canopy storage  

V__SNOCOVMX.bsn Replace 0 500 
Minimum snow water content that 

corresponds to 100% snow cover 

 

V__CH_N2.rte Replace 0 0.3 
Manning's "n" value for the main 

channel 

 

V__SOL_ALB(..).sol Replace 0 0.25 Moist soil albedo  

V__SURLAG.bsn Replace 0.1 20 Surface runoff lag time  

V__SFTMP.bsn Replace -5 5 Snowfall temperature  

V__EPCO.bsn Replace 0 0.9 Plant uptake compensation factor  
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3.3. UNCERTAINTY QUANTIFICATION  

3.3.1. POLYNOMIAL CHAOS EXPANSION (PCE)  

PCE is a statistical method which describes the uncertainties in a system using 

normally distributed random inputs. The statistical process is a composition of 

independents centered normalized Gaussian random variables presented by 

Hermite polynomial (Fan et al., 2014; Wang et al., 2015).  The PCE equation is 

written as:  

 0 1 , 2 ,

1 1 1

( ) ( ) ......
n n i

i i i j i j

i i j

y a a a  
= = =

= +  +  +           (3-1) 

Where y is the output and 1 2( , ,.... )p p     is the polynomial chaos of order p. 

In previous studies, an approximation has been made to truncate PCE to a lower 

level to reduce the computational time while maintaining reasonable accuracy (Fan 

et al., 2014; Wang et al., 2015). The number of PCE terms (N) is a function of the 

PCE order (P) and the number of random variables used for uncertainty analysis 

(M): 

( )!

! !

M P
N

M P

+
=            (3-2) 

In this study, a second-order Hermite polynomial is used to quantify 

uncertainties associated with five parameters, giving a total of 21 PCE terms. Thus, 

the equation of the output can be written as follows: 
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3.3.2. SELECTION OF COLLOCATION POINTS 

The main idea of selecting the collocation points is to have the PCE output for 

the random input be the same as the model output at those selected points. Once the 

equations are established, the coefficients in Equation 3-3 can be obtained. This 

coefficient estimation method is called the probabilistic collocation method (PCM). 

The collocation points can be selected using the combination of the higher Hermite 

polynomial roots. Thus, for the second-order Hermite polynomial, the collocation 

points are the combination of the three roots (−√3, 0, √3) for each 𝜁 value. In this 

study, there are five analyzed parameters for a total of 243 collocation points. Since 

there are only 21 unknowns and 243 equations (realizations), this system of 

equations is overdetermined unless there is redundancy in the equations. Solving 

the system of equations using linear regression is feasible in the historical period, 

as the simulation output of the model is known (i.e., observations are available). As 

shown in Figure 3-2a, the model output can be expressed as a set of Hermite 

orthogonal polynomials in terms of standard normal random variables using PCE, 

which can be used to assess the propagation of parameter uncertainty. The PCE 

coefficients can be estimated using observation data during the historical period. 

However, for the forecasting period, the coefficients are unknown due to the lack 

of observation data, as shown in Figure 3-2b. Thus, the uncertainties associated 
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with the forecasts cannot be quantified using the traditional PCE method. In this 

study, a machine learning technique, i.e., artificial neural network (ANN), is 

introduced to the traditional PCE framework to enable the analysis of uncertainties 

associated with simulated future time series and to generate probabilistic forecasts.  

 

Figure 3-2: Flowchart PCE Framework (a) Traditional PCE in historical period 

(b) Traditional PCE in forecasting period (c) Proposed PCE-ANN in forecasting 

period. 
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3.3.3. ESTIMATION OF PCE COEFFICIENTS BASED ON MACHINE 

LEARNING 

To address the aforementioned issue, a machine learning technique is 

implemented to estimate the PCE coefficients for the forecasting period where 

observed flow data is unavailable. In the forecasting period, the coefficients and 

outputs are unknown as shown in Figure 3-2b. As shown in Figure 3-2c, ANN is 

used to build the relationships between meteorological data and PCE coefficients 

in the historical (training) period. The trained ANN model is then used to estimate 

the PCE coefficients in the forecasting period, which are directly used as the 

coefficients of the PCE terms. Finally, the Hermite polynomials can be obtained to 

build a PCE surrogate model, and thus, the uncertainties associated with the future 

flow can be quantified through probabilistic forecast. The ANN model built in this 

study consists of 18 input variables, including multi-day cumulative precipitation 

(denoted as P1, P2, P3, P4, P5, P6, P7, P15, P30, P45, P60, P90, P120, P150, and 

P180), maximum daily temperature, minimum daily temperature, and wind speed. 

The output is the 21 PCE coefficients. The ANN model is built using one hidden 

layer, which consists of 25 neurons. The number of hidden layers and neurons is 

determined based on a series of sensitivity analysis. A backpropagation algorithm 

is used to find the weights and coefficients during the training period of the ANN 

model. Since the ANN model produces different weights and coefficients every 

time the model is trained, the model is trained for hundred realizations, and the 

average is taken as the model output.  
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3.3.4. THE UNCERTAINTY FRAMEWORK 

Figure 3-3 summarizes the process of uncertainty analysis for SWAT using 

both MC and PCE-ANN. First, a SWAT model is built for the study area. Then, the 

SWAT model is calibrated using an automatic calibration tool SWAT-CUP. The 

goal of this process is to find the most sensitive parameters from the global 

sensitivity report as well as the best values for the non-sensitive parameters. After 

selecting the sensitive parameters, both MC and PCE-ANN can be performed. To 

perform MC, the chosen parameters are changed randomly along its physical range 

for 10,000 realizations to find the uncertainty in the prediction period. On the other 

hand, to perform PCE-ANN uncertainty analysis, the chosen parameters are 

assumed to be independent and are transformed to standard normal distributions. 

Collocation points are then selected from the normal distribution for each 

parameter. Then, the SWAT model is run with all the possible combinations of the 

parameter values at the collocation points, and one output value is obtained for each 

combination of parameter points at each time step. Subsequently, a linear equation, 

where the PCE coefficients are the unknowns, can be established for each parameter 

combination at each time step. The system of linear equations can be solved to find 

the values of the PCE coefficients. With the obtained PCE coefficients, the PCE 

surrogate model is built for the calibration period. In order to enable PCE to 

quantify the uncertainties in the future period, machine learning is used. A machine 

learning technique (i.e., ANN) is trained to find the relationships between 

metrological data and PCE coefficients during the historical period so that the PCE 
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coefficients can be found during the forecasting period based on meteorological 

forecasts. Finally, a PCE equation can be obtained to quantify the uncertainties at 

each time step of the forecasting period without running the SWAT Model or 

having flow observations. 

 

Figure 3-3: Uncertainty analysis framework. 
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3.4. STUDY AREA AND DATA COLLECTION  

A case study of the Guadalupe basin in Texas, USA is used to illustrate the 

applicability of the proposed PCE-ANN method. The Guadalupe basin, as shown 

in Figure 3-4, is located in southeastern Texas with an outflow into the Gulf of 

Mexico. The study area is the upper sub-catchment that is gauged at Spring Branch. 

The Spring Branch watershed is approximately 3,500 km2 and has an average slope 

of 0.12% with a 345 m elevation drop along the longest 290 km stream path. 

Accordingly, the watershed can be considered a medium to large basin with a mild 

slope. 

Four years of rainfall, temperature, and flow data for the Spring Branch 

catchment were used in this case study. Weather data is from the National Oceanic 

and Atmospheric Administration (NOAA), flow data is from the United States 

Geological Survey (USGS), soil data of a 30 m resolution is obtained from State 

Soil Geographic USD, land-cover data of a 30 m resolution is from the National 

Land-Cover Data Sets (NLCD), and DEM of 90 m resolution is from SRTM V4.1 

data that is derived from the USGS/NASA SRTM data with a square grid of a size  

5 degrees. The data cover the period between 1988 to 1997 with daily resolution. 

The data were divided into three parts for modeling purposes. First year (1988) was 

used as a warmup period; three years (1989-1991) of data were used for calibration 

and sensitivity analysis as this period is assumed to be historical; six years (1992-

1997) of data were used for flow forecasting as well as uncertainty analysis, 
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assuming it is the forecasting (i.e., ‘future’) period. The basin lies in a moderate 

temperature zone with an overall average maximum temperature of 27 ºC and an 

average minimum of 16 ºC throughout the year. The basin is in a semi-arid region 

where the average rainfall is 2.48 mm/day, resulting in a relatively low average 

streamflow most of the year of less than 17.60 m3/s. However, there are few days 

with extreme events causing high peak flow that could reach to approximately 

1,600 m3/s during the calibration period and 1,900 m3/s during the forecasting 

period. 

 

Figure 3-4: Case study map. 
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3.5. RESULTS  

3.5.1. CALIBRATION AND PARAMETER SENSITIVITY 

Calibration of the SWAT model was performed for a total of 27 parameters over 

the historical period from 1989 to 1991. During the automatic calibration process, 

four parameters were updated by a particular ratio to maintain spatial consistency, 

while the remaining parameters were replaced using values randomly chosen from 

the uniform distributions over their physical ranges shown in Table 3-1. After 

running an automatic calibration process for 2,000 iterations, the fitted values were 

extracted as shown in Table 3-2. The calibration process produces results with an 

NSE value of 0.77. This result implies that SWAT can provide satisfactory daily 

flow simulation results for the study area (Li et al., 2010; Yang et al., 2008, 2007; 

J. Zhang et al., 2016). It is worth mentioning that the model performance was also 

tested using six years of data for calibration and three years for validation. There 

was no significant change in model performance, when the length of calibration 

period is changed, which further demonstrates SWAT’s capability of simulating the 

Spring Branch catchment. 

The sensitivity analysis results as the t- and p-values are also presented in Table 

3-2. As shown in Table 3-2, there are 11 sensitive parameters based on the 

significance level of the p-value (p-value less than 0.05). CN is the most sensitive 

parameter based on the t-stat. The other 10 sensitive parameters can be classified 

into three groups: the first group describes channel properties, which can be 
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measured directly through stream and watershed survey and thus were not chosen 

as uncertain parameters. The second group contains soil moisture and density 

parameters, which are the most essential sensitive parameters as they have a 

significant impact on infiltration, runoff, and evapotranspiration processes. The 

third group of sensitive parameters is related to baseflow, which determines the 

amount of infiltrated water that recontributes to streamflow, as well as the travel 

time to reach the watershed outlet. In this study, the propagation of the uncertainties 

of five parameters were assessed. The five parameters include CN and two 

parameters from both the second and third groups. From the second group, soil 

evaporation compensation factor (ESCO) and available water content (Sol_AWC) 

were selected to represent the evaporation process and the amount of infiltration, 

respectively. From the third group, Baseflow alpha factor (alpha-bf) and 

Groundwater delay (GW_Delay) were selected to determine the ratio of 

groundwater contributing to streamflow, and the time it will take to reach the 

stream. It is worth pointing out that changing the calibration algorithm and/or the 

length of calibration period could result in different parameter values and different 

sensitive parameter sets; however, the PCE-ANN framework to be developed 

would remain the same. The proposed model is capable of analyzing the 

uncertainties of all sensitive parameters, but only the most representative five 

parameters were chosen for demonstration purposes. 
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Table 3-2: Calibrated parameter values. 

Parameter ID        Fitted t-Stat p-Value  

R__CN2.mgt 0.01 -47.36 0 

V__CH_W2.rte 294.75 -17.92 0 

V__CH_L2.rte 85.58 -15.54 0 

V__CH_K2.rte 27.22 -12.94 0 

R__SOL_AWC(..).sol 0.16 8.47 0 

R__SOL_BD(..).sol -0.29 -7.69 0 

V__ALPHA_BF.gw 0.01 7.48 0 

V__ESCO.hru 0.88 -7.45 0 

V__GW_DELAY.gw 271.18 6.48 0 

R__SOL_K(..).sol -0.7 -6.3 0 

V__CH_D.rte 5.8 2.24 0.03 

V__TLAPS.sub -2.97 -1.57 0.12 

V__TIMP.bsn 0.8 1.26 0.21 

V__GWQMN.gw 0.53 -1.21 0.23 

V__SMFMX.bsn 2.53 -1.18 0.24 

V__GW_REVAP.gw 0.12 1.17 0.24 

V__REVAPMN.gw 276.88 -1.12 0.26 

V__CH_S2.rte 2.98 1.05 0.3 

V__SMFMN.bsn -1.09 -1 0.32 

V__SNO50COV.bsn 0.22 -0.96 0.34 

V__CANMX.hru 84.58 0.92 0.36 

V__SNOCOVMX.bsn 14.38 0.89 0.37 

V__CH_N2.rte 0.29 -0.81 0.42 

V__SOL_ALB(..).sol 0.08 -0.46 0.65 

V__SURLAG.bsn 7.58 -0.33 0.74 

V__SFTMP.bsn -4.62 -0.22 0.83 

V__EPCO.bsn 0.55 0.21 0.84 

 

3.5.2. BUILDING A PCE SURROGATE FOR SWAT 

Before exploring and improving PCE’s capability of addressing forecasting 

uncertainties, the traditional PCE’s performance for quantifying the uncertainties 

during the historical period was evaluated. Based on the calibration results, 
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optimized values of SWAT’s parameters were found. However, as shown in the 

sensitivity analysis results, some sensitive parameters lead to significant 

uncertainty. The uncertainty analysis for SWAT was performed by setting all the 

parameters to fixed values (as in Table 3-1) and only changing the chosen five 

sensitive parameters. To perform the PCE on the historical period (1989-1991), the 

SWAT model was run for 243 times at the collocation point combinations. After 

performing those runs, the PCE coefficients were calculated, and the parameter 

uncertainty that propagated to the model output was described using Hermite 

Polynomials of the standard Gaussian variable, as shown in Equation 3-1. 

In order to assess PCE’s reliability in terms of quantifying SWAT’s parameter 

uncertainty, the PCE’s results were compared to those of a traditional uncertainty 

quantification technique, Monte Carlo (MC) simulation. 10,000 ensembles were 

taken from the parameter distribution and used for SWAT simulation for MC 

uncertainty. The ensembles were taken from the normal distribution to be used in 

the PCE equation (surrogate model). From the 10,000 ensembles, the mean flow 

and the variance were calculated. As shown in Figure 3-5 and Figure 3-6, the mean 

daily flow is almost the same for both MC and PCE. As shown in Figures 3-7 and 

3-8, the variance tends to be higher in the MC Results than PCE, because the 

surrogate PCE model was built based on using the collocation points which only 

accounts for approximate 90% of the parameter range. The results demonstrate that 

PCE can be considered as a reliable alternative of MC for quantifying SWAT’s 

parameter uncertainty. By building an efficient surrogate of SWAT, PCE can 
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generate uncertainty analysis results similar to MC while reducing the required 

simulation number from thousands to 243. However, it should be noted that the 

PCE approach can only be used when observations are known to be able to find the 

coefficients in the surrogate model. So, the current PCE cannot be used for 

generating forecasts under uncertainties. A machine learning algorithm was 

introduced to extend the PCE capabilities in probabilistic flow forecasting. 

 

Figure 3-5: Comparison of mean flow time series generated by MC and PCE for 

the calibration  period. 
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Figure 3-6: Scatter plot of MC and PCE mean flow for the calibration period. 

 

Figure 3-7: Time series of MC and PCE flow variation during the calibration 

period. 
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Figure 3-8: Scatter plot of MC and PCE flow variation for the calibration period. 

3.5.3. EXPLORING PCE’S FORECASTING CAPABILITY  

To enable PCE for generating flow forecasts under parameter uncertainties, 

ANN was used to find the relationships between metrological conditions and the 

corresponding PCE coefficients. The ANN model was trained several times to 

ensure the stability of the results. The mean square error for the model on average 

was 0.01 with a standard deviation of 0.08 and average coefficient of 

determination (R2) value of 0.90 for the 21 coefficients, which indicates that the 

model is reliable.  Once the model was validated, it could be used to find the 

coefficient in the forecasting period (1992-1997). 
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To perform uncertainty analysis for the forecasting period (1992-1997) using 

the proposed PCE-ANN framework, SWAT was first run for 243 times at the 

collocation point combinations for the period 1989-1991. Then, the ANN model 

was built to estimate PCE coefficients in the forecasting period. Finally, the 

uncertainties associated with the forecasted flow can be decoded using a 

composition of independents centered normalized Gaussian random variables 

presented by Hermite polynomial. For comparison purposes, a MC simulation of 

SWAT was conducted with a range of values for each of the five sensitive 

parameters, and randomly selected values for the normal distribution were plugged 

in the surrogate PCE model to generate samples of the PCE output. From the 10,000 

runs of the MC simulation and the surrogate PCE-ANN results, mean flow, 

variance, as well as the 25th and 75th percentiles, were calculated. The mean flow 

predicted by both PCE-ANN and MC is shown in Figure 3-9. Although the 

difference between PCE-ANN and MC during the forecasting period is slightly 

higher than that during the historical period, the two mean flow time series share a 

very similar pattern. There is only a small overestimation for a few values in 1992, 

1995 and 1996. This overestimation may be a result of the error propagation, which 

started during the process of PCE coefficient estimation based on ANN. Figure 3-

10 shows the linear relationship between PCE-ANN and MC mean values. The 

correlation coefficient R2 is 0.84, which indicates that there is a good fit between 

the PCE-ANN results and the MC results with only some minor deviations. The 

slope of the best fit line is slightly less than 1, which implies an overall 
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overestimation by the PCE-ANN framework compared to MC. When the mean 

flow is compared with observation, MC has an NSE value of 0.52, while PCE-ANN 

has an NSE value of 0.55. This indicates that both MC and PCE-ANN performed 

well for flow forecasting. The variability of flow generated from both PCE-ANN 

and MC is represented as the standard deviation in Figure 3-11. The variation is 

higher in MC than PCE-ANN most of the time which agrees with the deduction 

made in the historical period. It is worth mentioning that the PCE-ANN output has 

a higher variation for the peak flow in July 1997. Figure 3-12 shows the linear 

relationship between the standard deviation values of PCE-ANN and MC. Figure 

3-12 shows that the standard deviation is similar at low uncertainty conditions, 

whereas MC variation is higher at high uncertainty conditions. In general, the slope 

of best fit is greater than one, which indicated that the MC output has an overall 

higher variance as apprehended from the previous section. Figure 3-12 also shows 

that the standard deviation has an acceptable fit with a R2 value of 0.65. Figure 3-

13 shows more details for uncertainty results by presenting the 25th and 75th 

percentiles from both methods. To further compare the PCE-ANN and MC results, 

the distributions of flow on four selected days are presented in Figure 3-14. The 

histograms show that the shapes of probability distributions generated by MC and 

PCE-ANN are very similar. The histogram of MC shows more variance than PCE, 

which strengthens the other analysis conducted from previous figures. Based on a 

thorough comparison, it can be concluded that PCE-ANN is able to provide 
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probabilities forecasts close to MC’s with much less computational time and 

resources. 

 

Figure 3-9: Comparison of mean flow time series generated by MC and PCE for 

the Validation period. 

 

Figure 3-10: Scatter plot of MC and PCE mean flow for the validation period. 
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Figure 3-11: Time series of MC and PCE flow variation during the validation 

period. 

 

Figure 3-12: Scatter plot of MC and PCE flow standard deviation for the 

validation period. 



Ph.D. Thesis – M. Ghaith  McMaster University – Civil Engineering 

 

78 

 

 

Figure 3-13: Time series of MC and PCE flow percentiles during the validation 

period. 

 

Figure 3-14: Examples of flow histograms. Red: MC output, Blue: PCE-ANN 

output. 
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3.6. DISCUSSION 

The use of PCE to build a surrogate model for the semi-distributed SWAT 

model was successful. The PCE produced very similar uncertainty analysis results 

during the historical period as the MC method. This proves that PCE can be used 

to simplify the SWAT model (semi-distributed hydrological model) to a surrogate 

one. To enable PCE for probabilistic forecasting, a machine learning algorithm was 

integrated to estimate PCE coefficients for the forecasting period, where flow 

observation data is not available. ANN succeeded to mimic the relationship 

between weather input and PCE coefficients. The provided PCE-ANN method 

generated similar probabilistic outputs compared to MC simulation, in terms of 

mean and variation (with R2 being 0.84 and 0.64, respectively). Based on previous 

studies, the R2 value of 0.84 for mean flow can be considered a good fit. For 

example, Thavhana et al. (2018) obtained an R2 of 0.65 for SWAT calibration and 

0.523 for validation, and   Li et al. (2010) obtained an R2 of 0.70 for daily 

streamflow forecasting using SWAT and 0.86 for monthly forecasting. In terms of 

computation efficiency, the MC simulation took approximately 50 continuous 

hours, while it took only 30 minutes to build the PCE. Moreover, it took PCE-ANN 

several minutes to generate probabilistic flow forecasts, while MC required another 

50 hours to rerun the model for the future period. These results demonstrate that the 

use of PCE could save computation time and resources as running a surrogate model 

(PCE) thousands of realizations will take only a couple of minutes.  
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ANN is a widely used machine learning method, and its performance is very 

satisfactory for this particular case study. This is why only ANN was tested and 

integrated into the PCE framework in this study. Nevertheless, other statistical or 

machine learning methods can be further investigated for future studies. The 

selection of candidate method depends on the quality and quantity of input data, as 

well as the ability of the method itself. Ideally, a candidate method should have a 

structure well suited for multi-target prediction, in order to support the estimation 

of multiple PCE coefficients (Ibrahim and Karakurt, 2013; Mosavi et al., 2018).  

One limitation of PCE is that the uncertain model parameters are assumed 

independent. PCE is not applicable if the model has significant dependency 

between parameters. There are a few studies that attempted to address the issue of 

correlated parameters; however, only the parameter correlations in simple models 

can be tackled in those existing studies (Paulson et al., 2017; Rahman, 2018). There 

is no existing PCE framework that can quantify the effects of correlated parameters 

on the output of complex hydrological models. Further research is required to 

enable PCE to support uncertainty analysis for hydrological models with dependent 

parameters. Another assumption in this study is that the parameters all have a 

uniform distribution defined by its range, whereas in reality, the distribution varies 

depending on the catchment morphology. In future research, the use of the 

traditional GLUE method for finding more accurate parameter distributions can be 

further investigated. (Yang et al., 2008). Introducing GLUE into the PCE 

framework will increase the required computational time; however, it would still 
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be worth investigating as GLUE have the potential to address the issue of parameter 

dependency as well. 

3.7. CONCLUSIONS 

In this study, a new PCE-ANN approach for quantifying parameter 

uncertainties and generating probabilistic flow forecasts was developed. The 

proposed method can quantitatively describe the propagation of parameter 

uncertainty in a modeling system and was applied to the hydrological modeling of 

the Guadalupe basin in Texas, US. Previously, PCE has only been used to build 

surrogates for simple, lumped hydrological models such as HYMOD. In this study, 

PCE was used for a more complex, semi-distributed model SWAT for the first time.  

The traditional PCE framework requires observed flow as input to assess the 

propagation of parameter uncertainties and thus could not be used to analyze the 

uncertainties in future time series. By innovatively integrating data-driven 

techniques into the traditional PCE framework, the proposed PCE-ANN approach 

enables the PCE to generate probabilistic flow forecasts. The probabilistic 

forecasting results of PCE-ANN were compared to those of MC simulation. The 

results demonstrated that PCE-ANN was able to provide probabilities forecasts 

close to MC’s with much less computational time and resources. 

PCE-ANN’s advantage in terms of computational efficiency is expected to be 

more significantly beneficial as the model complexity increases. In the future, the 

PCE-ANN should be tested for other complex hydrological models, as well as for 

more watersheds of different sizes and types. Other advanced data-driven 
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techniques can be further investigated to improve the prediction of PCE 

coefficients. Also, one of PCE’s fundamental assumption is that the uncertain 

parameters are independent. Further research is required to address the common 

parameter dependency issue in hydrological modeling.  
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Chapter 4  

UNCERTAINTY ANALYSIS FOR HYDROLOGICAL MODELS WITH 

INTERDEPENDENT PARAMETERS: AN IMPROVED POLYNOMIAL 

CHAOS EXPANSION APPROACH 

ABSTRACT 

The use of polynomial chaos expansion (PCE) has gained a lot of attention 

due to its capability to efficiently estimate the effects of parameter uncertainty on 

model outputs. The traditional PCE technique requires the studied parameters to be 

independent. In hydrological modeling, although model parameters are often 

assumed to be independent for simplicity of computation, such an assumption is not 

always valid. Neglecting parameter correlations could significantly affect the 

analysis of uncertainty, leading to distorted modeling results. In this study, an 

improved PCE approach is proposed to address this issue and support the 

uncertainty analysis for hydrological models with correlated parameters. The 

proposed approach is based on the integration of principle component analysis 

(PCA) and PCE, where PCA is used to transform correlated parameters into 

orthogonal independent components. To demonstrate the applicability of this 

approach, SWAT model is developed for the Guadalupe River Watershed in Texas, 

US, and the integrated PCA-PCE framework is used to assess the uncertainty of 

SWAT’s dependent parameters. A traditional Monte-Carlo (MC) simulation is also 

used to address the uncertainty in the developed SWAT model. The results show 
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that PCA-PCE could generate similar probabilistic flow results compared to MC, 

while maintaining a very high computational efficiency. The coefficients of 

determination (R2) for the mean and variance are 0.998 and 0.973, respectively, and 

the computational requirement is reduced by 99% using the developed PCA-PCE 

approach. It is shown that the PCA-PCE approach is reliable and efficient in 

assessing the uncertainties in hydrological models with correlated parameters. 

Key points:  

• An improved PCE approach was proposed to assess the propagation of 

uncertainties associated with interdependent parameters. 

• The proposed method reduces computational requirements for uncertainty analysis 

by 99% compared to traditional Monte-Carlo simulation. 
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4.1. INTRODUCTION 

Hydrological models are an essential tool for designers and decision makers to 

accommodate future water demands and assess the associated risks (Halldin, 2005; 

Karlsson et al., 2016; Lin et al., 2007). In hydrological models, there are parameters 

and coefficients that need to be tuned in order for the model to accurately represent 

the watershed characteristics. The exact precise values of these parameters that 

match the model outputs with field observations are difficult to find, which 

necessitates the analysis of parameter uncertainty for hydrological modeling. 

Before uncertainty analysis, sensitivity analysis can be carried out for a 

hydrological model to find the most crucial parameters that affect the output 

responses and to determine the parameter ranges (Study, 2019; H. Wu & Chen, 

2015). The uncertainty of the most sensitive parameters can then be analyzed 

(Almeida, Pereira, & Pinto, 2018). The computational requirement for uncertainty 

analysis depends on the method chosen, as well as the structure and number of 

parameters of the hydrological model (Devak & Dhanya, 2017).  

There are a number of widely used methods for uncertainty analysis, such as 

generalized likelihood uncertainty estimation (GLUE), Monte Carlo (MC) 

simulation, and sequential uncertainty fitting algorithm (SUFI-2) (Tolessa et al., 

2015; Y. Wu & Liu, 2012; Xie & Lian, 2013). In previous studies, it is commonly 

assumed that the uncertain parameters are independent regardless of the uncertainty 

analysis method used. The assumption of parameter independency is usually made 
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to overcome computational complexity (Paulson et al., 2017). In fact, in 

hydrological models there could be many parameters that are heavily dependent on 

each other (Christiaens & Feyen, 2002; Q. Wu, Liu, Cai, Li, & Jiang, 2017; Yang, 

Reichert, Abbaspour, Xia, & Yang, 2008a). For example, Yang et al. (2008) 

performed a GLUE analysis for the soil & water assessment tool (SWAT) model 

and found that there are considerable correlations between several parameters, such 

as available water content (Sol_AWC) and curve number (CN). In the past two 

decades, there have been limited attempts to address the uncertainty of independent 

parameters (Longland, 2017; F. Wu & Tsang, 2004; Xu, 2013; Xu & Gertner, 

2008). One of the most straightforward and popular methods is MC simulation. 

Given the distributions of and correlations between uncertain parameters, MC 

simulation allows for the identification of all the possible modeling outcomes of 

events, making it easy to quantify the effects of uncertain parameters. However, 

MC is time and resource demanding, especially when the complexity of model 

structure and the number of uncertain parameters increases (Longland, 2017; F. Wu 

& Tsang, 2004). 

More recently, polynomial chaos expansion (PCE) has been applied as a 

promising approach to improve the computational efficiency of uncertainty analysis 

for complex modeling systems. PCE is a non-sampling-based method that builds 

polynomial chaos surrogates to determine the evolution of parameter uncertainty in 

a dynamic modeling system. PCE was first introduced to account for only Gaussian 

random variables (Norbert Wiener, 1938). A generalized polynomial chaos 
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framework was later proposed to generalize the method to other distributions (Xiu, 

2010). It has been proven in many applications that PCE is computationally 

superior to Monte Carlo simulation. However, the traditional PCE method can only 

be used to analyze the uncertainty of independent parameters (Fan, Huang, Huang, 

Huang, & Zhou, 2014; Wang, Huang, Huang, Fan, & Li, 2015). To overcome this 

drawback, a limited number of studies have been carried out to account for 

parameter dependency in PCE. Navarro et al. (2014) introduced an arbitrary PCE 

approach that can handle dependent parameters using Gram-Schmidt 

orthogonalization transformation. Rahman (2018) explored the use of whitening 

transformation for generating orthonormal polynomials to be used in analytical 

solutions. Both studies used a transformation method to find orthogonal 

independent variables, which successfully solved the parameter dependency 

problem for PCE; however, the transformation method could only be used for 

simple equation-based models. For more complex modeling systems like most 

hydrological models, there is currently no existing solution to this problem. An 

improved PCE approach that could tackle the uncertainty associated with dependent 

parameters in an efficient manner is needed.  

The objective of this study is to investigate how the traditional PCE 

framework could be improved to assess the uncertainty of dependent parameters in 

hydrological models. An improved approach based on the integration of principle 

component analysis (PCA) and PCE is developed and tested. PCA and the Johnson 

transformation are used to decouple correlated hydrological model parameters and 
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obtain orthonormal independent variables, which are further used for establishing 

PCEs for uncertainty analysis. A SWAT model developed for a watershed in the 

Guadalupe River basin in Texas, USA is used as case study to demonstrate the 

applicability of the proposed method. In addition to the uncertainty analysis based 

on the proposed PCA-PCE approach, a parallel analysis is conducted using MC 

simulation. The results are compared to show the advantage of the proposed 

approach. This paper is divided into five sections. Section 4.2 describes PCE, 

SWAT, PCA, Johnson transformations, and the integrated PCA-PCE framework. 

Section 4.3 describes the study area and data used in this paper. Section 4.4 

discusses the results of this study. Finally, Section 4.5 summarizes the conclusions 

of this study. 

 

4.2. METHODOLOGY 

4.2.1. POLYNOMIAL CHAOS EXPANSION 

PCE is an efficient tool for assessing the effects of parameter uncertainty on the 

output of a simulation model. Traditionally, such effects can be measured using the 

MC method, which requires inputting random parameter values into the model for 

a large number of simulations runs. PCE analyzes the propagation of the random 

behavior in parameters through hypergeometric orthogonal polynomials in the 

Askey scheme (Martinez, Crestaux, & Le Maitre, 2009; Xiu & Karniadakis, 2003). 

The general PCE equation can be written as follows: 
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y a a P a P a P     
= = = = = =

= + + + +       (4-1) 

where y is the model output, , ,i j   and k  are the random variables, 

1 2( , ,.... )n nP      is the polynomial chaos of order p, n is the number of PCE 

variables (i.e., uncertain parameters of the simulation model), and a0, ai, aij, and aijk 

are PCE coefficients.  

Although there are a number of different Askey-scheme hypergeometric orthogonal 

polynomials, the Hermite polynomial first used in PCE by Wiener (1938) is the 

most suitable and generalized (Fan et al., 2014; Fenfen, Shishi, & Ying, 2014; 

Wang et al., 2015). Hermite polynomials converge quickly and represent the 

randomness in Gaussian independent variables well (Funahashi & Kijima, 2012). 

The Hermite polynomial is expressed as follows: 

( ) 2 2, ,...... ( 1)
......

T T

j

n
n

n i

i j

H e e

   

 
 


= −

 
                                                    (4-2) 

 The terms of expansion from Hermite polynomials are determined based on 

the order of PCE and the number of uncertain variables. In the Weiner PCE, the 

random variables ( , ,i j k   …) are independent and have zero mean and unit 

variance. The dimension of the Hermite polynomial is determined based on T. For 

the one-dimensional Hermite polynomials of orders 0, 1, 2, and 3 are given as 

below: 

0 1H =                                                                                                                  (4-3) 



Ph.D. Thesis – M. Ghaith  McMaster University – Civil Engineering 

 

97 

 

1H =                                                                                                                 (4-4) 

2
2 1H = −                                                                                                           (4-5) 

3
3 3H  = −                                                                                                       (4-6) 

By substituting the polynomials in Equation 4-1 with one-dimensional Hermite 

polynomials with regard to standard normal random variables, generalized Weiner 

PCEs can be established.  

Subsequently, PCE coefficients (a0, ai, aij, and aijk…) can be determined using a 

probabilistic collocation method (PCM) (Fan et al., 2014). In PCM, a set of 

collocation points are first derived from the roots of the Hermite polynomial of one 

order higher than the chosen order. In this study, the second-order Hermite 

polynomial is used to establish PCEs. Thus, the roots of the third-order Hermite 

polynomial (6) are obtained as the collocation points. By running the simulation 

model at one possible combination of the three collocation points (−√3, 0, and √3) 

for each parameter, the corresponding output y can be obtained. The equations of 

all possible combinations of the collocation points form a system of equations, 

which can then be solved for the unknown PCE coefficients. Thus, a surrogate 

model consisting of one PCE equation for each time step can be established to 

accelerate the quantification of output uncertainty. In the existing PCE approach, 

all uncertain parameters are assumed to be independent.  

4.2.2. SWAT 
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The SWAT model is a semi-distributed model. SWAT has been widely used for 

hydrological and water quality modeling as it can simulate hydrological processes, 

as well as the transport of  sediment, nutrients and pesticide (Jeffrey G Arnold, 

Moriasi, Gassman, & White, 2012). The hydrological simulation in SWAT involves 

over thirty parameters. These parameters can be estimated using watershed data 

such as Digital Elevation Models (DEM), land use, and soil characteristics. The 

exact parameter values are challenging to determine, but parameter ranges can be 

obtained through sensitivity and uncertainty analysis based on calibration with 

observation data.  

The SWAT-CUP tool is an automatic calibration, validation, and uncertainty 

analysis engine for SWAT. There are several algorithms that are embedded within 

SWAT-CUP, including SUFI-2, GLUE, MC, and parameter solution (Para-Sol) 

(Almeida et al., 2018; Zhang, Jin, He, & Zhang, 2016). Regardless of which 

algorithm one chooses, the parameters related to the dominant processes of interest 

should be calibrated, and their ranges and distributions should be defined. 

Typically, a termination process defined by the number of iterations or a threshold 

of the error function is used by the automatic calibration algorithm. Based on the 

calibration results, a global sensitivity analysis can be carried out and sensitive 

parameters can be identified. This process is adopted in this study to identify the 

most sensitive parameters for uncertainty analysis.  

4.2.3. PRINCIPLE COMPONENT ANALYSIS  
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PCA is a widely used statistical procedure that uses orthogonal transformation 

to present the variability of a large number of correlated variables using a smaller 

number of uncorrelated variables. The produced uncorrelated variables are 

orthogonal and are called principal components (PCs) (Ma & Dai, 2011; Wold, 

Esbensen, & Geladi, 1987). Each of the PCs produced is a linear combination of 

the original variables. To avoid bias in the PC, all the variables have to be scaled 

before transformation. The first PC accounts for the most variability in the data. 

Then each PC added accounts for additional information that is not explained in 

previous components. If the number of PCs are the same as the number of variables, 

then all the information in the original data is explained with uncorrelated 

components. PCA is widely used to reduce number of variables and thus to reduce 

the computational requirements for handling the data. In this study, PCA is 

incorporated into the PCE framework to tackle parameter correlations and generate 

dependent variables for PCE analysis.  

There are different methods to perform PCA. In this study, the eigenvector 

technique is used. First, all the variables in the original data set are normalized. 

Second, the covariance matrix is calculated for the normalized centered data. The 

covariance matrix diagonal contains the variance of the variables, whereas the off-

diagonal elements are covariances between two variables. The covariance matrix is 

a generalized and unnormalized version of variable correlations. Third, the eigen-

decomposition of the covariance matrix is calculated. The results of the eigen-

decomposition consist of eigenvalues and eigenvectors. The eigen-values represent 
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the magnitudes for the dominant directions. The eigenvalue with the highest values 

represents the first direction for the most important PC. The eigenvectors are then 

sorted based on the eigenvalues in descending order to provide their rank as well as 

the cut off threshold. If the eigenvalues are the same value, then this means that the 

original data are uncorrelated and do not require PCA transformation. Finally, the 

original variables are projected on the chosen eigenvectors. To produce the PCs, 

the original data are multiplied with the transpose of each eigenvector in the ranking 

order. The produced PCs are orthogonal and uncorrelated. It has been found in 

many previous studies such as (Ma & Dai, 2011; Wold et al., 1987) that most 

variances in a dataset can be explained in the first few components. 

 

4.2.4. TRANSFORMATION TO STANDARD NORMAL 

The uncertain variables in the PCM, to obtain PCE coefficients, are assumed to 

be independent and normally distributed. Although the projected PCs from PCA 

are independent, they rarely follow normal distributions. Therefore, the projected 

PCs have to be transformed using a generalized and reliable technique.  

There are several commonly used transformation functions such as Box-Cox, 

power transformations, exponential, and logarithmic (Mach, Thuring, & Šámal, 

2006; Mateu, 1997). The Box-Cox function is a type of power transformation which 

works with many distributions as the lambda value varies from -5 to 5 which allows 

it to cover different forms of equations. The power transformation is a simpler 
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method than Box-Cox, as it is not as comprehensive, but it still gives commendable 

results. The exponential transformation is widely used with data that have a near 

lognormal distribution. The logarithmic transformation is only applicable to 

exponential and lognormal distributions. In this study, there are certain 

requirements for the transformation function: 1) it should be nonlinear to overcome 

the asymmetry in the data and transform it towards normality; 2) it should be 

monotonous to maintain the order of the data before and after the transformation 

process; 3) it should be reversible to convert the results back to its original 

distribution; and 4) there should not be any limiting assumption for the distribution 

of the original data, since the PC data do not always fit to a specific distribution.  

The Johnson distribution (Johnson, 1949) is a transformation function that 

meets all of the abovementioned requirements. It is a family of three  distributions 

that can fit any data, which makes it a generalized transformation method (Yu, 

1994). The Johnson distribution has four parameters, including two shape 

parameters (γ and δ), a scale parameter (λ), and a location parameter (ζ). δ and λ are 

always positive. The three distributions of the Johnson family are SB, SL, and SU, 

where B stands for bounded data, L stands for bounded from below or lognormal, 

and U stands for unbounded. Table 4-1 shows the equations to transform the three 

distributions to standard normal. In this study, the SB family is used as the data is 

bounded. For a domain of 𝜁 ≤ 𝑥 ≤ 𝜁 + 𝜆, the general probability density function 

is shown as below: 
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𝑓(𝑥) =
𝛿

𝜆√2𝜋𝑧(1−𝑧)
exp (−

1

2
(𝛾 + 𝛿 𝑙𝑛 (

𝑧

1−𝑧
))

2
)                               (4-7) 

where 𝑧 =
𝑥−𝜁

𝜆
.  

Table 4-1: Johnson Distributions. 

Family Transformation equation Parameter Conditions X condition 

SB 𝑍 = 𝛾 + 𝛿 ∗ ln⁡(
𝑥 − 𝜁

𝜆 + 𝜁 − 𝑥
) 

𝛿, 𝜆 > 0,−∞ < 𝛾 < ∞, 

−∞ < 𝜁 < ∞ 

 

𝜁 < 𝑥

< 𝜁 + 𝜆 

SL 𝑍 = 𝛾 + 𝛿 ∗ ln⁡(𝑥 − 𝜁) 
𝛿 > 0, −∞ < 𝛾 < ∞, 

−∞ < 𝜁 < ∞ 
𝑥 > 𝜁 

SU 𝑍 = 𝛾 + 𝛿 ∗ sinh−1(
𝑥 − 𝜁

𝜆
⁡) 

𝛿, 𝜆 > 0,−∞ < 𝛾 < ∞, 

−∞ < 𝜁 < ∞ 
−∞ < 𝑥 < ⁡∞ 

 

The transformation process is summarized as follows: 1) obtain the data of 

independent PC variables from the PCA of interdependent SWAT parameters; 2) 

transform the PC variables to independent normally distributed variables using the 

Johnson SB distribution; 3) test the normality of the transformed data. The 

maximum likelihood method is used to fit the data to the Johnson distribution. 

4.2.5. PCA-PCE FRAMEWORK 

The traditional PCE can only deal with independent parameters. First, the 

independent distributions of the parameters are transformed to independent 

standard normal distributions, and a number of the collocation points are extracted 

from each of the independent standard normal distributions. Second, the 

hydrological model is run at all combinations of the collocation points to obtain the 

corresponding model outputs. Third, the PCE coefficients at each simulation time 
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step are determined by solving a set of linear equations based on the collocation 

points and the obtained model output. Finally, once the coefficients are found, the 

PCE equation can be used as a surrogate model to assess the effects of independent 

random parameters on the model output.  

Since the traditional PCE cannot handle dependent parameters and parameter 

dependency does exists in many hydrological models, the PCA-PCE framework is 

proposed to address this issue. Figure 4-1 compares the difference between the 

traditional PCE and the proposed PCA-PCE framework. The essence of PCA-PCE 

is to decouple the correlations among dependent parameters and generate 

independent standard normal distributions for further development of PCE. In the 

PCA-PCE framework, the parameter correlations are defined either by assumptions 

based on previous studies or by generating correlated samples through an 

uncertainty analysis technique such as GLUE. A smaller number of steps are 

conducted prior to the selection of collocation points. First, a posterior distribution 

for each parameter is generated based on the defined correlations. Second, PCA is 

used to obtain two or three projected PCs with orthogonal distributions, which can 

explain the variations in and correlations among the selected parameters. Third, the 

PCs generated are fitted to Johnson SB distributions using the maximum likelihood 

method. Fourth, a standard normal distribution can be obtained from each of the 

fitted SB distributions using the SB transformation equation in Table 4-1, and the 

uncertainty associated with the selected interdependent parameters can be reflected 
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using standard normal distributions. Then, collocation points can be chosen from 

the transformed normal distributions using PCM.  

To run the simulation model at the chosen collocation points, the corresponding 

original parameter values can be found through the reverse of the abovementioned 

transformation. First, Johnson inverse transformation is used to find the 

corresponding values of the collocation points on the PC distributions. Second, the 

original values corresponding to the collocation points can be achieved by 

multiplying the PCs by the eigenvectors and adding the mean. It is worth 

mentioning that the corresponding parameter value may lie outside its predefined 

range. In this case, the collocation points set including this parameter should be 

eliminated.  After running the hydrological model at all of the chosen collocation 

points, the corresponding model output can be obtained to calculate the PCE 

coefficients at each simulation time step. With the coefficients, one PCE equation 

can be established for each time step to generate probabilistic output for uncertainty 

quantification (Figure 4-1).  

 

Figure 4-1: PCE-PCA framework 
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4.3. STUDY AREA AND DATA COLLECTION  

A SWAT model for the Guadalupe River basin in Texas, US is developed and 

used as a case study to illustrate the applicability of the PCA-PCE framework. The 

Guadalupe basin is the fourth largest river basin in Texas. In this study, only the 

upper sub-catchment defined by the Spring Branch gage (Figure 4-2) is modeled. 

The Spring Branch catchment has a total area of 3,500 km2 and an average slope of 

0.12%.  Four years (1989 to 1992) of daily rainfall, temperature, and flow data are 

used for uncertainty analysis. The weather and flow data were collected from the 

National Oceanic and Atmospheric Administration (NOAA) and the United States 

Geological Survey (USGS), respectively. The Spring Branch catchment is a semi-

arid region with moderate temperature. The average minimum temperature during 

the four years is 16 ºC, and the average maximum temperature is 27 ºC. The average 

rainfall is 2.48 mm/day, and the streamflow rate is typically less than 17.6 m3/s. 

There are some extreme rainfall events during the study period. The highest peak 

flow was 1,574 m3/s, occurred on 21st December 1991. 
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Figure 4-2: The Spring Branch in the Guadalupe River Basin, Texas, US. AMSL 

stands for above mean sea level. The land cover abbreviations can be found in 

Table A2 in Arnold et al. 2012 

Soil data with a resolution of 30 m is collected from the State Soil Geographic 

(STATSGO) dataset from the United States Department of Agriculture (USDA). 

Land-cover data with a resolution of  30 m is obtained from the National Land-

Cover Data Sets (NLCD), and the 90-m digital elevation model (DEM) is obtained 

from the Shuttle Radar Topography Mission 4.1 (SRTM V4.1) database, which is 

derived from the National Aeronautics and Space Administration (NASA) SRTM 

data with a grid size of 5°.  
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The five most sensitive SWAT parameters, including CN, soil evaporation 

compensation factor (ESCO), Sol_AWC, baseflow alpha factor (alpha-bf), and 

groundwater delay (GW_Delay), are selected for demonstration. The ranges of 

these five selected parameters are determined based on previous studies (Ghaith & 

Li, 2020; Yang et al., 2008) and the distributions are assumed to be uniform as 

shown in Table 4-2.  The correlations among these sensitive parameters are chosen 

based on (Yang et al., 2008), and are summarized in Table 4-3.  

Table 4-2: The Selected Five SWAT Parameters. 

Parameter ID        Rule Min Max Parameter description          

R__CN2.mgt Ratio -0.2 0.2 SCS runoff curve number 

V__ESCO.hru Replace 0.8 0.9 Soil evaporation compensation factor 

R__SOL_AWC(..).sol Ratio -0.2 0.4 Soil available water content 

V__ALPHA_BF.gw Replace 0 1 Baseflow alpha factor (days) 

V__GW_DELAY.gw Replace 30 450 Groundwater delay (days) 

 

Table 4-3: Covariance Matrix. 
 

CN2 ESCO SOL_AWC ALPHA_BF GW_DELAY 

CN2 1     

ESCO 0 1    

SOL_AWC 0.44 0.56 1   

ALPHA_BF 0 0 0 1  

GW_DELAY 0 0 0 0 1 

 

4.4. RESULTS  

4.4.1. DATA GENERATION AND PREPARATION 

To generate samples for the three dependent parameters (CN2, ESCO, and 

Sol_AWC), three dependent standard normal distributions are defined first based on 
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the correlations in Table 4-3. Then the standard normal distributions are 

transformed to uniform distributions, and the uniform distributions are translated 

and stretched/squeezed to fit the parameter ranges in Table 4-2. A total of 10,000 

sets of samples are generated for CN2, ESCO, and Sol_AWC. Figure 4-3 shows the 

histograms of and correlations between the three parameters. Samples of the other 

two independent parameters (Alpha_BF and GW_Delay) are also generated based 

on the uniform distributions defined by Table 4-2.  

 

Figure 4-3: Generated samples of the interdependent parameters. 

The correlated distributions are transformed to independent distributions using 

principle component analysis (PCA). Three orthogonal PCs, which explain 100% 

of the overall parameter variability are obtained and shown in Figure 4-4 (a)-(c).  

Johnson SB distribution is used to fit the PC data. As shown in Figure 4-4 (a)-(c), 

each of the fitted lines matches the corresponding PC histogram very well, which 
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demonstrates the accuracy of the Johnson SB distribution. After obtaining the fitted 

Johnson SB distributions and their distribution parameters, the SB equation in Table 

4-1 is used to transform PC distributions to standard normal distributions. As shown 

in Figure 4-4 (d)-(f), three independent standard normal distributions that represent 

each of the PCs generated.  

 

Figure 4-4: Histograms before and after the Johnson distribution transformation.  

Johnson distributions: (a) - (c); transformed standard normal distributions: (d) - 

(f). 

As previously mentioned in Section 4.2.1, collocation points are chosen from 

the standard normal distributions at (-√3,0, √3). For the two independent 

parameters, Alpha_BF and GW_Delay, the corresponding parameter values are 

obtained through a direct transformation from a standard normal distribution to a 

uniform distribution. The three collocation points of Alpha_BF and GW_Delay are 

(0.037, 0.450, 0.863) and (47.5, 240.0, 432.5), respectively. For the three 
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interdependent parameters, CN2, ESCO, and Sol_AWC, 27 (33) sets of collocation 

points are obtained from the PCs’ transformed standard normal distributions (Table 

4-4). Following the procedure of eliminating out-of-range collocation points 

described in Section 4.2.5, 11 collocation point sets are selected for the three 

interdependent parameters. Figure 4-5 shows the predefined and reconstructed 

distributions of the three parameters. The three reconstructed distributions are 

flattened normal distributions with no tails. 

A total of 99 collocation point combinations, 3 (Alpha_BF) × 3 (GW_Delay) × 

11 (CN2, ESCO, and Sol_AWC), are obtained for the development of the PCEs.  

 

Figure 4-5: Reconstructed distributions. 
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Table 4-4: Collocation Points. 

Standard Normal 

Distribution 

Johnson 

Distribution 
Actual Distribution 

Within 

Range 

PC1 PC2 PC3 PC1 PC2 PC3 ESCO CN2 
SOL  
AWC 

0.00 0.00 0.00 -0.31 -0.16 -0.04 0.81 -0.28 -0.10 No 

0.00 0.00 1.73 -0.31 -0.16 0.00 0.85 -0.27 -0.11 No 

0.00 0.00 -1.73 -0.31 -0.16 0.04 0.89 -0.27 -0.11 No 

0.00 1.73 0.00 -0.31 0.00 -0.04 0.79 -0.14 -0.17 No 

0.00 1.73 1.73 -0.31 0.00 0.00 0.83 -0.13 -0.18 Yes 

0.00 1.73 -1.73 -0.31 0.00 0.04 0.88 -0.13 -0.18 Yes 

0.00 -1.73 0.00 -0.31 0.16 -0.04 0.77 0.00 -0.24 No 

0.00 -1.73 1.73 -0.31 0.16 0.00 0.82 0.00 -0.24 No 

0.00 -1.73 -1.73 -0.31 0.16 0.04 0.86 0.01 -0.25 No 

1.73 0.00 0.00 0.00 -0.16 -0.04 0.83 -0.14 0.17 Yes 

1.73 0.00 1.73 0.00 -0.16 0.00 0.87 -0.14 0.17 Yes 

1.73 0.00 -1.73 0.00 -0.16 0.04 0.91 -0.14 0.16 No 

1.73 1.73 0.00 0.00 0.00 -0.04 0.81 0.00 0.10 Yes 

1.73 1.73 1.73 0.00 0.00 0.00 0.85 0.00 0.10 Yes 

1.73 1.73 -1.73 0.00 0.00 0.04 0.89 0.00 0.10 Yes 

1.73 -1.73 0.00 0.00 0.16 -0.04 0.79 0.14 0.04 No 

1.73 -1.73 1.73 0.00 0.16 0.00 0.83 0.14 0.03 Yes 

1.73 -1.73 -1.73 0.00 0.16 0.04 0.88 0.14 0.03 Yes 

-1.73 0.00 0.00 0.31 -0.16 -0.04 0.84 -0.01 0.45 No 

-1.73 0.00 1.73 0.31 -0.16 0.00 0.88 -0.01 0.44 No 

-1.73 0.00 -1.73 0.31 -0.16 0.04 0.93 0.00 0.44 No 

-1.73 1.73 0.00 0.31 0.00 -0.04 0.83 0.13 0.38 Yes 

-1.73 1.73 1.73 0.31 0.00 0.00 0.87 0.14 0.37 Yes 

-1.73 1.73 -1.73 0.31 0.00 0.04 0.91 0.14 0.37 No 

-1.73 -1.73 0.00 0.31 0.16 -0.04 0.81 0.27 0.31 No 

-1.73 -1.73 1.73 0.31 0.16 0.00 0.85 0.27 0.31 No 

-1.73 -1.73 -1.73 0.31 0.16 0.04 0.89 0.28 0.30 No 
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4.4.2. COMPARISON OF PCA-PCE AND MC 

After running SWAT at all of the 99 collocation point combinations, a set of 99 

equations is obtained to calculate the PCE coefficients at each time step. Then a 

time series of PCE equations is established as a surrogate model to quantify output 

uncertainties and generate probabilistic outputs. Meanwhile, another set of 

probabilistic output is generated through 10,000 runs of MC simulation. The 

probabilistic output from PCA-PCE and MC are compared based on their mean and 

standard deviation values. Figure 4-6a compares the mean values of probabilistic 

flow rates generated from PCA-PCE and MC. The mean flow results show a near-

perfect fit with a coefficient of determination (R2) of 0.998. The time series of mean 

values for both MC and PCE are presented in Figure 4-7. The two time-series are 

very similar, showing no significant differences. The flow deviation at each time 

step is also calculated and illustrated in Figures 6b and 8. It is shown in Figure 4-

6b that there is a very good fit and the R2 value is as high as 0.973. Figure 4-8 also 

implies that the standard deviations of MC output are well replicated by PCE. The 

results demonstrate that the proposed PCA-PCE approach which requires as few as 

99 simulation runs can produce probabilistic outputs very similar to that of 10,000 

runs of MC simulation. This implies that PCA-PCE can be effective as MC 

simulation in assessing the uncertainties associated with interdependent parameters 

while significantly reducing the computational time (by 99% in this study).  Also, 

the use of improved PCE with interdependent parameters for complex hydrological 

model, and not just for simple equations is a novel contribution of this work. 
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Figure 4-6: Scatter plot of MC against PCA-PCE: (a) Mean (b) Standard 

deviation. 

 

Figure 4-7: Comparison of mean flow time series generated by MC and PCA-

PCE. 
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Figure 4-8: Time series of flow deviation. 

4.4.3. SENSITIVITY OF PARAMETER INTERDEPENDENCY  

In this study, the correlations among CN2, ESCO, and Sol_AWC are assumed 

based on a previous study (Yang et al., 2008b). The actual values of the correlation 

coefficients could change from one case study to another, depending on catchment 

characteristics. To illustrate the impacts of parameter correlations and to 

demonstrate the importance of addressing parameter interdependency, a sensitivity 

analysis of the correlation coefficients of the three parameters was carried out. A 

baseline scenario with independent parameters, where the parameter correlation 

coefficients are zero, was first built. Then, 42 additional scenarios with medium, 

high, and very high parameter interdependencies (which correspond to correlation 

coefficients of 0.5, 0.75, and 0.9, respectively) were analyzed. The obtained 43 

scenarios were then run using the PCA-PCE framework. A time series of the daily 
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mean flow was generated for each of the 43 scenarios. The standard deviation value 

of mean flow at each time step was calculated and a histogram was plotted as shown 

in Figure 4-9. Figure 4-9 indicates that the standard deviation of mean flow due to 

parameter correlation can be as high as 18.5 m3/s. It is noted that the frequency of 

low deviation is high, but that is mainly because the corresponding mean flow is 

also low. The correlation of variation (CV) is also calculated, and the histogram of 

the CV is plotted in Figure 4-10. Figure 4-10 shows that on average there is a CV 

of approximately 13%. The high CV are for the low flow event while the low CV 

are for high mean flow events. The results show a clear variation among different 

scenarios, which demonstrates the necessity to address parameter interdependency. 

 

Figure 4-9: Histogram of standard deviation for mean flow due to different 

correlations. 
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Figure 4-10: Coefficient of variation for mean flow due to different correlations 

scenarios. 

To further analyze how the impacts of correlation coefficients, three days with 

25th, 50th and 75th percentiles of flow were selected from the mean flow time series 

of the baseline scenario. The three days are July 4th, 1989, April 30th, 1991, and 

February 6th, 1990, respectively. The box plots of mean flow from all 43 scenarios 

on these days are shown in Figure 4-11. Figure 4-11 shows that the flow deviation 

increases with respect to the mean flow value. This means the flow deviation due 

to parameter interdependency could be particularly high during extreme flow 

events, such as floods. Furthermore, by comparing the results from the 42 scenarios 

with interdependent parameters to the baseline scenario, it was found that 

addressing parameter interdependency in SWAT could lead to a total flow change 

ranging from -10.6% to 10.9% during 1989-1992, which is similar to the 
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aforementioned results of CV of approximately 13%. The results once again 

demonstrate the importance to analyze parameter interdependency in hydrological 

modeling. 

 

Figure 4-11: Histogram of mean flow corresponding to different correlations for 

different flow. 

Since the model output is most sensitive to the change in parameter correlations 

when the mean flow is high, the peak flow event on December 22nd, 1991 was 

chosen for detailed sensitivity analysis. All the mean flow of the 43 scenarios for 

the peak day are calculated and plotted against each of the correlation values, as 
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shown in Figure 4-12. Figure 4-12a shows how the peak flow changes with respect 

to C1 (correlation between CN2 and ESCO) while C2 (correlation between CN2 

and Sol_Awc) and C3 (correlation between ESCO and Sol_Awc) are constant. From 

Figure 4-12a, it can be deducted that from having no correlation to medium 

correlation for C1, the flow will decrease, whereas the change from high to extreme 

correlation has no effect. When C2 is higher or equal to C1 and C3 the flow will be 

lower than the relative base case scenario when both C2 and C3 equal to zero, 

otherwise, the peak flow will be higher. The outcome of this analysis can be 

summarized that C2 and C3 values have an interactive effect on the peak flow, 

while the C1 value effect is binary either no correlation or correlation. From Figure 

4-12c, it is clearly visible that the effect of C3 also is binary, the exact value does 

not affect the mean peak flow while having both C1 and C2 constant; however, as 

the C1 or C2 values increase the flow values tends to decrease. When the C1 values 

is higher than the C2 value, the flow value will be higher than for the same C1 value 

with equivalent or higher C2. From Figure 4-12b, it can be deduced from the strong 

to extreme correlation value for C2, there is no change in the mean peak flow. Thus, 

for C1, C2 and C3 values being extreme or strong, correlation won’t be significantly 

impacted. The uncertainty for the exact value of the correlation won’t have a 

significant effect on the model outputs; however, knowing an approximate 

correlation value is important. A histogram of all 43 scenarios for the peak flow is 

plotted as shown in Figure 4-13 showing the minimum, mean and maximum values. 
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Figure 4-13 shows that the variation from different scenarios in mean flow is 

different than for minimum and maximum flow. 

 

Figure 4-12: Mean flow for the peak flow day change with respect to (a) C1 

while C2 and C3 are constant (b) C2 while C1 and C3 are constant (c) C3 while 

C1 and C2 are constant. 

 

Figure 4-13: Histogram for the peak flow day on 22nd Dec. 1991 due to different 

correlation scenarios (a) Min. flow (b) Mean flow (c) Max. flow. 

4.5. CONCLUSIONS 

In this study, an integrated principle component analysis polynomial chaos 

expansion (PCA-PCE) approach is developed to support uncertainty analysis for 

hydrological models with interdependent parameters. The traditional PCE approach 

has been proven to be very efficient in quantifying parameter uncertainty; however, 

it could only be used when the model parameters are independent, which is not 
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always a valid assumption in hydrological modeling. In this improved PCE 

approach, PCA is used for orthogonal data transformation to convert interdependent 

hydrological parameters to independent variables, which are then fed into the 

traditional PCE framework to assess the propagation of parameter uncertainty in 

the hydrological model. In this study, the proposed PCA-PCE approach is applied 

on a semi-distributed hydrological model, Soil & Water Assessment Tool (SWAT). 

The SWAT model is used to simulate the rainfall-runoff relationship for the 

Guadalupe River basin in Texas, US.  

The results demonstrate that the PCA-PCE approach can be as effective as 

Monte Carlo (MC) simulation in quantifying the uncertainties associated with 

interdependent hydrological parameters, while significantly reducing the 

computational requirements. There is a near perfect fit between the mean flow 

obtained from PCA-PCE and MC, with an R2 value of 0.998, and the standard 

deviation of the flow shows an R2 value of 0.973. PCA-PCE can reduce the 

computation time to generate probabilistic flow time series for the period of 1989 

to 1992 by as much as 99% compared to MC simulation. Results of the sensitivity 

analysis on the correlation coefficients demonstrate that it is necessary to address 

parameter interdependency in hydrological modeling, particularly for the modeling 

of high flow events.  

The proposed PCA-PCE approach provides a reliable, efficient, and 

promising alternative for analyzing the uncertainties of interdependent hydrological 

parameters and could provide valuable technical support for hydrological risk 
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assessment and management. For future work, PCA-PCE can be tested for more 

correlated parameters in SWAT and for more complex hydrological models. 
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Chapter 5  

CONCLUSIONS AND RECOMMENDATIONS 

This dissertation presents three hybrid approaches to address uncertainty 

analysis for hydrological modelling. In general, there are three different types of 

uncertainties, including parameter, structure, and data uncertainties. Both the model 

parameter and structure uncertainties are addressed in this dissertation. The 

proposed hybrid approaches are based on the integration of data-driven modeling 

techniques with traditional hydrological simulation and/or uncertainty 

quantification methods. Their applicability is demonstrated using a case study of 

the Spring Branch watershed in the Guadalupe Basin in Texas, USA. These mix 

methods approaches can generate probabilistic flow forecasts with high accuracy 

in an efficient way that requires very low computational power, and thus provide 

valuable decision support for water resources planning and management.  

5.1. MAIN FINDINGS IN CHAPTER 2 

• A hybrid approach, called the HHDD approach, was developed to integrate 

a physical process-based model (HYMOD) and a data-driven model 

(artificial neural network, ANN) for hydrological forecasting.  

• The proposed HHDD model showed a better performance than the 

traditional physically-based HYMOD. 

• It was found that the accuracy of data-driven models is influenced by the 

input data. The performance of the proposed hybrid model could be 
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significantly enhanced by adding more input data, such as cumulative 

rainfall, to feed its second layer (i.e., ANN).  

• It was found that the addition of input data in data-driven modeling does not 

guarantee a better performance. The hybrid model performed better with 

additional cumulative precipitation data but worse with additional 

cumulative outflow data.  

• It was demonstrated that the proposed hybrid model is more robust than 

both physically-based and data-driven models. 

5.2. MAIN FINDINGS IN CHAPTER 3 

• Polynomial chaos expansion (PCE) was successfully used to analyze the 

parameter uncertainty of a complex, semi-distributed hydrological model 

(the Soil & Water Assessment Tool, SWAT).  

• PCE generated similar results as Montel Carlo (MC) simulation for 

uncertainty analysis with 98% less computational time.  

• An innovative approach based on the integration of a data-driven model 

(ANN) with PCE was developed. The developed PCE-ANN approach can 

enable the PCE to generate probabilistic forecasts through SWAT.  

• It was found that the PCE-ANN approach is more efficient than MC, as it 

builds a surrogate model for uncertainty quantification using historical data 

and does not require the re-run of SWAT.  
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• It was demonstrated that the PCE-ANN approach is reliable for quantifying 

parameter uncertainty and it has a significant advantage in terms of 

efficiency, especially for complex hydrological models.  

5.3. MAIN FINDINGS IN CHAPTER 4 

• An improved PCE approach was developed to overcome the difficulty of 

addressing parameter interdependency for uncertainty analysis in 

hydrological modeling. In the developed approach, principal component 

analysis (PCA) was introduce to the traditional PCE framework for the first 

time, to decode parameter interdependency.  

•  A distribution transformation method, named Johnson transformation, was 

proposed to transform PCA output for the establishment of PCE. 

• The developed PCA-PCE approach was applied to quantify the uncertainty 

of interdependent parameters in SWAT.  

• The results showed that parameter interdependency could significantly 

affect the flow prediction (especially for peak flow events) and should not 

be neglected during uncertainty analysis. 

5.4. RECOMMENDATIONS FOR FUTURE WORK 

• More case studies should be conducted to further demonstrate the 

applicability and advantages of the three proposed approaches.  

• Both the HHDD and PCE-ANN approaches could be improved by 

introducing more advanced data-driven algorithms.  
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• The performance of HHDD and PCE-ANN could be enhanced by adopting 

an input variable selection tool. 

• The potential of the PCE-ANN and PCA-PCE approaches for quantifying 

the parameter uncertainty in other hydrological models could be further 

investigated.  


