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Abstract

We study the nonlinear Schrödinger (NLS) equation on star graphs with the Neumann-
Kirchhoff (NK) boundary conditions at the vertex. We analyze the stability of standing
wave solutions of the NLS equation by using different techniques.

We consider a half-soliton state of the NLS equation, and by using normal forms,
we prove it is nonlinearly unstable due to small perturbations that grow slowly in time.
Moreover, under certain constraints on parameters of the generalized NK conditions, we
show the existence of a family of shifted states, which are parametrized by a translational
parameter. We obtain the spectral stability/instability result for shifted states by using
the Sturm theory for counting the Morse indices of the shifted states. For the spectrally
stable shifted states, we show that the momentum of the NLS equation is not conserved
which results in the irreversible drift of the family of shifted states towards the vertex of
the star graph. As a result, the spectrally stable shifted states are nonlinearly unstable.

We also study the NLS equation on star graphs with a δ interaction at the vertex.
The presence of the interaction modifies the NK boundary conditions by adding an
extra parameter. Depending on the value of the parameter, the NLS equation admits
symmetric and asymmetric standing waves with either monotonic or non-monotonic
structure on each edge. By using the Sturm theory approach, we prove the orbital
instability of the standing waves.
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Chapter 1

Introduction

1.1 Differential equations on star graphs
One of the first justifications of differential equations on graph models was published in
1953 in the Journal of Chemical Physics [65]. The study was based on the analysis of
the free-electron model for the conjugated system of naphthalene molecule, which has
alternating single and double bonds. Each atom in the conjugated system is associated
with two "fixed" σ electrons and one "free" π electron. Under the effect of the charge
potential, "free" π electrons move close to the network N constructed by the "fixed"
σ electrons connection. Since the electrons could possibly transport along the entire
network, the natural interest was to descibe the electronic motion around the vertices
where three edges meet, see Figure 1.1. Hence, in [65] authors considered an ε-thin three-
dimensional neighborhood (tube) around the vertex, and approximated the electronic
motion in the neighborhood by a molecular orbital function Φ(xj, yj, zj) satisfying the
three-dimensional Schrödinger equation inside the tube as

Φ(xj, yj, zj) ≈ φ(xj) sin(πyj/ε) sin(2πzj/ε), (1.1.1)

where 0 ≤ yj ≤ ε, − ε
2 ≤ zj ≤ − ε

2 , and φ(xj) is the scalar molecular orbital with xj
being the space coordinate of the branch j emerging from the vertex. According to the
representation (1.1.1), the electronic motion of the π electrons can be described by the
scalar functions φ(xj), which turns out to be the limiting case of the three-dimensional
model. As the ε-tube squeezes, the domain near the vertex p approaches a graph with
three edges (Figure 1.1), and φ(xj) satisfies the stationary Schrödinger equation on the
branch j. The boundary conditions for Φ(xj, yj, zj) imply connection formulas for φ1,
φ2 and φ3 at the vertex p given asφ1(p) = φ2(p) = φ3(p), the continuity condition,

φ′1(p) + φ′2(p) + φ′3(p) = 0, the flux condition.
(1.1.2)

The graph with three edges in Figure 1.1 is the example of a metric graph which
can be analyzed in the Hilbert and Sobolev spaces. The well-posedness of the Cauchy

1
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Figure 1.1: Left: the network N constructed by the "fixed" σ electrons.
The "free" π electron moves along N . Right: the local region in N around
the vertex p. This is an example of the graph with three branches.

problem associated with the differential equations and the existence of particular solu-
tions heavily depend on the boundary conditions at the vertex (1.1.2). The connection
formula (1.1.2) is the simpliest example of so-called classical Kirchhoff conditions. Jus-
tifications of Kirchhoff conditions on other types of metric graphs has been obtained
in many realistic physical experiments involving wave propagation in thin waveguides
and quantum nanowires, where multi-dimensional models were approximated by scalar
partial differential equations (PDEs) on graphs, see [11, 16, 34, 38, 39, 49] and references
therein.

It is relatively less known that the classical Kirchhoff conditions similar to (1.1.2) are
not the only possible boundary conditions arising when the narrow waveguides shrinks to
a metric graph. By working with different values of the thickness parameters vanishing
at the same rate, it was shown in [50, 64] (see also [27, 31, 32, 48, 53]) that generalized
Kirchhoff boundary conditions can also arise in the asymptotic limit. In the generalized
Kirchhoff boundary conditions, the wave functions have finite jumps across the vertex
points and these jumps are compensated reciprocally in the sum of the first derivatives
of the wave function. The nature of the jumps at the vertex points is related with
the coefficients which appear when the thickness parameter converges to zero. As an
example, we refer to [50] and consider a graph Γ with three edges and its neighborhood
M ε as in Figure 1.2.

The quadratic form for the Laplace operator ∆ε in L2(Γε) is given by

Qε(u, u) = −
∫

Γε
|∇u|2dA,

where u is in the appropriate H1 Sobolev space, and dA stands for the integration
over the area. In such configuration, it has been proven in [50] that, as ε → 0, the
discrete eigenvalues λn(−∆ε) converge towards the discrete eigenvalues λn(−∆0) of the
self-adjoint Laplace operator ∆0 defined on the graph Γ by

∆0Ψ = (ψ′′1 , ψ′′2 , ψ′′3),

2
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Figure 1.2: Left: the graph Γ with three edges. The vertex is assumed
to be the origin, and the space coordinate takes positive values. Right:
the ε-thin neighborhood Γε of Γ. The bold region around the edge j is
called to be the tube Γεj , and the width of the tube Γεj is equal to α−2

j ε
with αj > 0. The neighborhood of the vertex partially bounded by the
tubes Γεj is allowed to have almost arbitrary boundaries in between Γεj ’s.

where Ψ = (ψ1, ψ2, ψ3) with ψj defined on the edge j only, and the derivatives in ψ′′j are
computed with respect to the space parameter xj, see Figure 1.2. The domain of the
operator ∆0, D(∆0) is given by H2 functions ψj satisfyingψ1(0) = ψ2(0) = ψ3(0), the continuity condition,

α−2
1 ψ′1(0) + α−2ψ′2(0) + α−2ψ′3(0) = 0, the generalized flux condition,

(1.1.3)

where the coefficients (α1, α2, α3) are defined in Figure 1.2. The domain D(∆0) is the
subspace of the weighted L2 space L2(Γ, α−2

j dx), where the quadratic form of ∆0 is

Q(u, u) = −
3∑
j=1

∫
Γj
α−2
j |u′j(x)|2dx (1.1.4)

with Γj denoting the edge j of the graph Γ in Figure 1.2.

The natural simplification of the above structure on the graph Γ is to normalize the
weighted L2 space by mapping the element Ψ = (ψ1, ψ2, ψ3) ∈ L2(Γ, α−2

j dx) into the
element Φ = (φ1, φ2, φ3) ∈ L2(Γ, dx) via the transformation

φj = α−1
j ψj. (1.1.5)

Then, under the transformation (1.1.5), the quadratic form (1.1.4) of the Laplacian ∆0
becomes

Q(u, u) = −
3∑
j=1

∫
Γj
|u′j(x)|2dx,

3
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and the boundary conditions in the domain of ∆0 becomeα1φ1(0) = α2φ2(0) = α3φ3(0), the generalized continuity condition,
α−1

1 φ′1(0) + α−1φ′2(0) + α−1φ′3(0) = 0, the generalized flux condition.
(1.1.6)

We refer to the boundary conditions (1.1.6) as to generalized Kirchhoff conditions.

Througth the limiting process above, when Γε → Γ and λn(−∆ε) → λn(−∆0) as
ε → 0, we assumed that the vertex neighborhood (Figure 1.2) decays at the same rate
as the ε-thin tubes Γεj. In general, one can remove such assumption [49], and obtain the
boundary conditions on the graph Γ with δ interaction at the vertex given asα1φ1(0) = α2φ2(0) = α3φ3(0),

α−1
1 φ′1(0) + α−1φ′2(0) + α−1φ′3(0) = γφ1(0).

(1.1.7)

The parameter γ is real, and defines the strength of the δ interaction.

Repeating the process described above for graphs with higher number of edges justi-
fies the choice of the boundary conditions used in the thesis. Numerical confirmations
of validity of the classical and generalized Kirchhoff boundary conditions are reported
in a number of recent publications in physics literature [19, 71, 77].

1.2 Background literature
Spectral properties of Laplacian and other linear operators on graphs have been inten-
sively studied in the past twenty year [15, 30]. The time evolution of linear PDEs on
graphs is well defined by the standard semi-group theory, once a self-adjoint extension of
the graph Laplacian is constructed. On the other hand, the time evolution of nonlinear
PDEs on graphs is a more challenging problem involving interplay between nonlinear
analysis, geometry, and the spectral theory of non-self-adjoint operators. The nonlinear
PDEs on graphs, mostly the nonlinear Schrödinger equation (NLS), has been studied in
the past decade in the context of existence, stability, and propagation of solitary waves
[54].

Among the limitless amount of possible graph models, we are particularly interested
in the class of star graphs which we define as follows:

Definition 1.1. We call a graph Γ to be a star graph if it is constructed by attaching
N edges of finite or infinite length at a common vertex.

The example of the star graph Γ with N = 3 edges is given in Figure 1.1.

Below, we overview the recent results related to existence and stability of station-
ary states for the nonlinear Schrödinger (NLS) equation on star graphs with boundary
conditions of type (1.1.2), (1.1.6) and (1.1.7). Further works on stationary states on un-
bounded star graphs have been developed in the context of the logarithmic NLS equation

4
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[9, 61], the power NLS equation with δ′ interactions [60], the power NLS equation on
the tadpole [55, 18] and dumbbell [35, 51], double-bridge [56] and periodic ring graphs
[29, 33, 58, 63]. A variational characterization of standing waves was developed for
general metric graphs [8, 17, 28] and graphs with compact nonlinear core in [67, 68, 75].

1.2.1 Classical Kirchhoff conditions
The recent works of Adami, Serra, and Tilli [6, 7] were devoted to the existence of
ground states on the unbounded graphs that are connected to infinity after removal
of any edge. It was proven that if the infimum of the constrained NLS energy on the
unbounded graph coincides with the infimum of the constrained NLS energy on the
infinite line, then it is not achieved (that is, no ground state exists) for every such a
graph with the exception of graphs isometric to the real line [6]. The reason why the
infimum is not achieved is a possibility to minimize the constrained NLS energy by a
family of NLS solitary waves escaping to infinity along one edge of the graph.

The star graph Γ with classical Kirchhoff conditions (1.1.2) is an example of the
unbounded graphs with no ground states. When the number of edges in Γ is odd, there
is only one stationary state of the NLS equation on the star graph [1]. This state is
represented by the half-solitons along each edge glued by their unique maxima at the
vertex. By using a one-parameter deformation of the NLS energy constrained by the
fixed mass, it was shown that the half-soliton state is a saddle point of the constrained
NLS energy [2]. The study in [6] provides a general argument of the computations in [2],
where it is shown that the one-parameter deformation of the half-soliton state with the
fixed mass reduces the NLS energy and connects the half-soliton state with the solitary
wave escaping along one edge of the star graph. The saddle point geometry of energy
at the half-soliton state was not related in [2] to the instability of the half-soliton state
in the time evolution of the NLS equation.

It is known that the saddle point geometry does not necessarily imply instability
of stationary states in Hamiltonian systems. In the linearized Hamiltonian systems,
eigenvalues of the negative energy may be accounted in the neutrally stable modes that
are bounded for all times [46]. Nonlinear instability of such states may still appear in
the nonlinear Hamiltonian systems due to resonant coupling between neurally stable
modes of negative energy and the continuous spectrum [47], however, this coupling can
be avoided in some Hamiltonian systems [26].

1.2.2 Generalized Kirchhoff conditions
In a series of papers [66, 72, 73], it was shown that if the parameters (α1, α2, . . . , αN) in
the generalized Kirchhoff conditions (1.1.6) on a star graph are related to the parameters
of the nonlinear evolution equations and satisfy a constraint

K∑
j=1

1
α2
j

=
N∑

j=K+1

1
α2
j

(1.2.1)

5
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for some K, then the nonlinear evolution equation on the star graph can be reduced to
the homogeneous equation on the infinite line. In other words, singularities of the star
graph are unfolded in the transformation and the vertex points become regular points
on the line. In this case, we partition the graph Γ into two sets of {K,N −K} edges
with coefficients (α1, α2, . . . , αN) satisfying the constraint (1.2.1). In the transmission
problems, it is natural to think that K edges represent incoming bonds for the solitary
wave propagation whereas the remaining N − K edges represent outgoing bonds for
the solitary wave propagation. Under the constraint (1.2.1), a transmission of a solitary
wave through the vertex point is reflectionless [73].

In such configuration of a star graph, there exists a family of shifted states parametrized
by a translational parameter. The shifted states appear naturally in the case of classical
Kirchhoff boundary conditions when the number of edges is even [4]. These states can
be considered to be translations of the half-soliton states, which exist for any number
of edges. In the variational characterization of the NLS stationary states on a star
graph, such shifted states were mentioned in Remarks 5.3 and 5.4 in [4], where it was
conjectured that all shifted states are saddle points of the action functional and are thus
unstable for all star graphs with even number of edges exceeding two.

1.2.3 Kirchhoff conditions in the presence of δ interaction
The existence, stability and variational properties of stationary states for the NLS on the
star graph with a δ interaction at the vertex were analyzed in [1, 3, 4, 5]. In particular,
in case of focusing delta interaction in the Kirchhoff conditions (1.1.7) with γ < 0, it
was proven in [3] that there exists a global minimizer of the constrained NLS energy
for a sufficiently small mass below the critical mass. This minimizer coincides with the
N -tail state symmetric under exchange of edges, which has monotonically decaying tails
and which becomes the half-soliton state if the delta interaction vanishes. In [5], it was
proven that although the constrained minimization problem admits no global minimizers
for a sufficiently large mass above the critical mass, the N -tail state symmetric under
exchange of edges is still a local minimizer of the constrained NLS energy on the star
graph, when a delta interaction is added on the vertex. Due to local minimization
property, the N -tail state symmetric under exchange of edges is orbitally stable in the
time evolution of the NLS in the presence of the focusing delta impurity. Although
the second variation of the constrained energy was mentioned in the first work [1], the
authors obtained all the variational results in [3, 4, 5] from the energy formulation
avoiding the linearization procedure.

Besides the N -tail symmetric state, the NLS equation on the star graph with focusing
delta interaction admits the family of asymmetric states which is the combination of
monotonic and non-monotonic components on the edges. The asymmetric states are
not the constrained energy minimizers, and their instability has been conjectured in [54]
and studied in [59].

6
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1.3 The outline of the thesis
Here, we give the brief description of the main results in the next chapters.

• InChapter 2, we define the NLS equation on the star graph Γ, and set the Hilbert
and Sobolev spaces on Γ. We also review the well-posedness of the Cauchy problem
for the NLS, the existence of standing wave solutions, and the tools required to
study their spectral and orbital stability.

• In Chapter 3, we consider a half-soliton state of the stationary NLS equation
on a star graph Γ with N edges. For the subcritical power nonlinearity, the half-
soliton state is a degenerate critical point of the action functional under the mass
constraint such that the second variation is nonnegative. By using normal forms,
we prove that the degenerate critical point is a nonlinear saddle point, for which
the small perturbations to the half-soliton state grow slowly in time resulting
in the nonlinear instability of the half-soliton state. The result holds for any
N ≥ 3 and arbitrary subcritical power nonlinearity. It gives a precise dynamical
characterization of the previous result in [2], where the half-soliton state was shown
to be a saddle point of the action functional under the mass constraint for N = 3
and for cubic nonlinearity.

The content of Chapter 3 is based on [41]:

A. Kairzhan and D. Pelinovsky, "Nonlinear instability of half-solitons on star
graphs", J. Diff. Eqs. 264 (2018) 7357–7383.

• In Chapter 4, we consider the NLS equation with the subcritical power nonlin-
earity on a star graph consisting of N edges under generalized Kirchhoff conditions
(1.1.6). Under the constraint (1.2.1), the stationary NLS equation admits a family
of solitary waves parameterized by a translational parameter, which we call the
shifted states. We obtain the general counting results on the Morse index of the
shifted states, from which we prove that the shifted states with 1 < K < N in
(1.2.1) are saddle points of the action functional which are spectrally unstable
under the NLS flow. Since the NLS equation on a star graph with shifted states
can be reduced to the homogeneous NLS equation on an infinite line, the spectral
instability of shifted states is due to the perturbations breaking this reduction.

We also prove that the shifted states with the monotone profiles in the N−1 edges
(for K = 1 case) are spectrally stable. We give a simple argument suggesting that
the spectrally stable shifted states are nonlinearly unstable under the NLS flow due
to the perturbations breaking the reduction to the homogeneous NLS equation.

The content of Chapter 4 is based on [42]:

A. Kairzhan and D. Pelinovsky, "Spectral stability of shifted states on star graphs",
J. Phys. A: Math. Theor. 51 (2018) 095203

• In Chapter 5, we prove that the spectrally stable states obtained in Chapter 4
with N−1 monotonic tails are nonlinearly unstable because of the irreversible drift

7
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along the incoming edge towards the vertex of the star graphs. When the shifted
states reach the vertex as a result of the drift, they become saddle points of the
action functional, in which case the nonlinear instability leads to their destruction.

The content of Chapter 5 is based on [43]:

A. Kairzhan, D. Pelinovsky and R. Goodman, "Drift of Spectrally Stable Shifted
States on Star Graphs", SIAM J. Appl. Dyn. Syst. 18 (2019), 1723–1755.

• InChapter 6, we consider the NLS equation on a star graph Γ with a δ interaction
at the vertex. The strength of the interaction is defined by a fixed value γ ∈ R.
In [1, 5], it was shown that for γ 6= 0 the NLS equation on Γ admits the unique
symmetric standing wave and all other standing waves are asymmetric. Also, it
was proven that for γ < 0, the unique symmetric standing wave is orbitally stable.

We analyze stability of asymmetric standing waves for an arbitrary γ 6= 0. By
extending the Sturm theory to Schrödinger operators on the star graph, we give
the explicit count of the Morse index for each standing wave, from which the
orbital instability result follows for every γ 6= 0.

The content of Chapter 6 is based on [44]:

A. Kairzhan, "Orbital instability of standing waves for NLS equation on star
graphs", Proc. Amer. Math. Soc. 147 (2019), 2911–2924.

• In Chapter 7, we describe the set of possible research questions which are related
to the results obtained in the thesis.

8
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Chapter 2

The NLS equation on star graphs

2.1 The domain of the graph Laplacian
We denote a star graph consisting of N half-lines to be Γ, see Figure 2.1. All N half-lines
are connected at a common vertex, which we chose to be the origin, and each edge of
the star graph is parameterized by R+.
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Figure 2.1: Left: The star graph with N = 3 edges. Right: The star
graph with N = 4 edges.

The Hilbert space of squared integrable functions on the graph Γ is given by

L2(Γ) = ⊕Nj=1L
2(R+).

Elements in L2(Γ) are represented in the componentwise sense as vectors

Ψ = (ψ1, ψ2, . . . , ψN)T

with each component ψj ∈ L2(R+) defined on the j-th edge. The inner product and the
squared norm of such L2(Γ)-functions are given by

〈Ψ,Φ〉L2(Γ) :=
N∑
j=1

∫
R+
ψj(x)φj(x)dx, ‖Ψ‖2

L2(Γ) :=
N∑
j=1
‖ψj‖2

L2(R+),

for every Ψ = (ψ1, ψ2, . . . , ψN)T and Φ = (φ1, φ2, . . . , φN)T in L2(Γ).

Similarly, we define the L2-based Sobolev spaces on the graph Γ to be

Hk(Γ) = ⊕Nj=1H
k(R+), k ∈ N

9
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and equip them with suitable boundary conditions at the vertex. We also define the
squared Hk(Γ)-norm as

‖Ψ‖2
Hk(Γ) :=

N∑
j=1
‖ψj‖2

Hk(R+).

Throughout the thesis we are mainly interested in the Sobolev spaces with k = 1 and
k = 2. In what follows, for k = 1, we set the generalized continuity boundary condition
at the vertex as in

H1
Γ := {Ψ ∈ H1(Γ) : α1ψ1(0) = α2ψ2(0) = · · · = αNψN(0)}, (2.1.1)

where α1, α2, . . . , αN are positive coefficients. These coefficients arise naturally, ac-
cording to Section 1.1, when the one-dimensional star graph is obtained as a limit of
a narrow two-dimensional waveguide with different values of the thickness parameters
that go to zero at the same rate, [31, 32, 64].

For k = 2, we set an additional generalized Kirchhoff boundary condition as follows:

H2
Γ :=

Ψ ∈ H2(Γ) ∩H1
Γ :

N∑
j=1

1
αj
ψ′j(0) = 0

 , (2.1.2)

where derivatives are defined limx→0+ .

One advantage of the generalized boundary conditions (2.1.1)–(2.1.2) is related to
self-adjointness of the graph Laplacian operator ∆ defined as

∆Ψ = (ψ′′1 , ψ′′2 , . . . , ψ′′N)T

for every Ψ ∈ H2
Γ ⊂ L2(Γ). Indeed, the following result is a consequence of Theorem

1.4.4 in [15].

Proposition 2.1. The Laplacian operator

∆ : H2
Γ ⊂ L2(Γ)→ L2(Γ)

is self-adjoint.

Proof. We only include integral computations below to show the necessity of both con-
ditions in (2.1.2). The full proof is given in the original theorem in [15].

If Ψ ∈ H2(Γ), then each ψj ∈ H2(R+). By Sobolev embedding theorem, this requires
ψj(x), ψ′j(x)→ 0 as x→∞ for every j. Therefore, for every Ψ,Φ ∈ H2(Γ), integration

10

http://www.mcmaster.ca/


Ph.D. Thesis – A. Kairzhan McMaster University– Mathematics

by parts and the generalized boundary conditions (2.1.1)–(2.1.2) yield

〈∆Ψ,Φ〉L2(Γ) = 〈Ψ,∆Φ〉L2(Γ) +
N∑
j=1

ψj(0)φ′j(0)−
N∑
j=1

ψ′j(0)φj(0)

= 〈Ψ,∆Φ〉L2(Γ) + α1ψ1(0)
N∑
j=1

α−1
j φ′j(0)− α1φ1(0)

N∑
j=1

α−1
j ψ′j(0)

= 〈Ψ,∆Φ〉L2(Γ).

2.2 Well-posedness of the Cauchy problem
Throughout the thesis we consider the nonlinear Schrödinger (NLS) equation on the
star graph Γ with the power-type nonlinearity given as:

i
∂Ψ
∂t

= −∆Ψ− (p+ 1)α2p|Ψ|2pΨ, x ∈ Γ, t ∈ R, (2.2.1)

where Ψ = Ψ(t, x) = (ψ1, ψ2, . . . , ψN)T ∈ CN , ∆ : H2
Γ ⊂ L2(Γ)→ L2(Γ) is the Laplacian

operator in Proposition 2.1, α ∈ L∞(Γ) is a piecewise constant function with components
(α1, α2, . . . , αN) ∈ RN

+ defined on the edges of Γ, and the nonlinear term α2p|Ψ|2pΨ is
interpreted as a symbol for

(α2p
1 |ψ1|2pψ1, α

2p
2 |ψ2|2pψ2, . . . , α

2p
N |ψN |2pψN)T .

That is, the NLS equation (2.2.1) on each edge j can be written as

i
∂ψj
∂t

= −ψ′′j − (p+ 1)α2p
j |ψj|2pψj, x ∈ R+, t ∈ R. (2.2.2)

Remark 2.2. The constant coefficients (α1, α2, . . . , αN) in (2.2.2) coincide with the
coefficients in the generalized boundary conditions (2.1.1) and (2.1.2).

The local well-posedness for the Cauchy problem associated with (2.2.1) with α = 1
was initially given in Proposition 2.2 in [4]. In fact, the result and its proof in [4] hold
for every α.

Proposition 2.3. For every p > 0 and every Ψ(0) ∈ H1
Γ, there exists t0 ∈ (0,∞] and a

local solution
Ψ(t) ∈ C((−t0, t0), H1

Γ) ∩ C1((−t0, t0), H−1(Γ)) (2.2.3)

to the Cauchy problem associated with the NLS equation (2.2.1).

11
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Proof. Local well-posedness of the NLS equation (2.2.1) in H1
Γ is proved by using a

standard contraction method thanks to the isometry of the semi-group eit∆ in H1
Γ and

the Sobolev embedding of H1
Γ into L∞(Γ).

We note that the NLS equation (2.2.1) is invariant under the phase rotation Ψ 7→ eiθΨ
and under the time translation Ψ(t, x) 7→ Ψ(t + t0, x) with θ ∈ R and t0 ∈ R. This
motivates to consider the energy and mass functionals, which are defined as

E(Ψ) := ‖Ψ′‖2
L2(Γ) − ‖α

p
p+1 Ψ‖2p+2

L2p+2(Γ), Q(Ψ) := ‖Ψ‖2
L2(Γ), (2.2.4)

respectively. In the case of α = 1, Proposition 2.3 in [4] shows that these functionals
are constant under the time flow of the NLS equation (2.2.1). The result and its proof
in [4] hold for every α. Below we state the energy and mass conservation, and provide
the alternative proof of this result.

Proposition 2.4. Let p > 0. For every solution Ψ in Proposition 2.3 the mass and
energy functionals in (2.2.4) are constant under the time flow of the NLS equation
(2.2.1).

Proof. Here, we give an alternative proof of the mass and energy conservation under
simplifying assumptions p > 1/2 and p ≥ 1 respectively.

If p > 1/2 and Ψ(0) ∈ H2
Γ, it follows from the contraction method that there exists

t0 > 0 and a local strong solution

Ψ(t) ∈ C((−t0, t0), H2
Γ) ∩ C1((−t0, t0), L2(Γ)) (2.2.5)

to the NLS equation (2.2.1). Applying time derivative to Q(Ψ) and using the NLS
equation (2.2.1) yield the mass balance equation:

d

dt
Q(Ψ) = −i〈−∆Ψ− (p+ 1)α2p|Ψ|2pΨ,Ψ〉L2(Γ) + i〈Ψ,−∆Ψ− (p+ 1)α2p|Ψ|2pΨ〉L2(Γ)

= i〈∆Ψ,Ψ〉L2(Γ) − i〈Ψ,∆Ψ〉L2(Γ) = 0,

where the last equality is obtained by Proposition 2.1. Thus, the mass conservation is
proven for Ψ(0) ∈ H2

Γ.

If p > 1/2 and Ψ(0) ∈ H1
Γ but Ψ(0) /∈ H2

Γ, then in order to prove the mass conserva-
tion, we define an approximating sequence {Ψ(n)(0)}n∈N in H2

Γ such that Ψ(n)(0)→ Ψ(0)
in H1

Γ as n → ∞. For each Ψ(n)(0) ∈ H2
Γ, there exists a local strong solution Ψ(n)(t)

given by (2.2.5) for t ∈ (−t(n)
0 , t

(n)
0 ). By Gronwall’s inequality, there exists a positive

constant K which only depends on the H1(Γ) norm of the Ψ(0) such that

‖Ψ(n)′′(t)‖L2(Γ) ≤ K‖Ψ(n)′′(0)‖L2(Γ), t ∈ (−t(n)
0 , t

(n)
0 ),

hence, the local existence time t(n)
0 is determined by the H1(Γ) norm of the initial data

Ψ(n)(0). Due to the convergence Ψ(n)(0)→ Ψ(0) in H1
Γ, this implies that there is t0 > 0

12
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that depends on the H1(Γ) norm of Ψ(0) such that t(n)
0 ≥ t0 for every n ∈ N. Moreover,

Ψ(n)(t) → Ψ(t) in H1
Γ as n → ∞ for every t ∈ (−t0, t0). Since Q(Ψ(n)(t)) = Q(Ψ(n)(0))

for every t ∈ (−t0, t0), the limit n→∞ and the strong convergence in H1
Γ implies that

Q(Ψ(t)) = Q(Ψ(0)) for every t ∈ (−t0, t0).

In order to prove the energy conservation, let us define the space H3
Γ compatible with

the NLS flow:

H3
Γ :=

{
Ψ ∈ H3(Γ) ∩H2

Γ : α1ψ
′′
1(0) = α2ψ

′′
2(0) = · · · = αNψ

′′
N(0)

}
. (2.2.6)

If p ≥ 1 and Ψ(0) ∈ H3
Γ, it follows from the contraction method that there exists t0 > 0

and a local strong solution if Ψ(0) ∈ H3
Γ

Ψ(t) ∈ C((−t0, t0), H3
Γ) ∩ C1((−t0, t0), H1

Γ) (2.2.7)

to the NLS equation (2.2.1). Applying time derivative to E(Ψ) and using the NLS
equation (5.1.1) yield the energy balance equation:

d

dt
E(Ψ) = i〈Ψ′′′,Ψ′〉L2(Γ) − i〈Ψ′,Ψ′′′〉L2(Γ)

+i(p+ 1)〈α2p(|Ψ|2p)′Ψ,Ψ′〉L2(Γ) − i(p+ 1)〈Ψ′, α2p(|Ψ|2p)′Ψ〉L2(Γ)

+i(p+ 1)〈Ψp+1, α2pΨp∆Ψ〉L2(Γ) − i(p+ 1)〈α2pΨp∆Ψ,Ψp+1〉L2(Γ)

= i
N∑
j=1

ψ′j(0)
[
ψ
′′
j (0) + (p+ 1)α2p

j |ψj(0)|2pψj(0)
]

−i
N∑
j=1

ψ
′
j(0)

[
ψ′′j (0) + (p+ 1)α2p

j |ψj(0)|2pψj(0)
]
,

where the decay of Ψ(x), Ψ′(x), and Ψ′′(x) to zero at infinity has been used for the
solution in H3

Γ. Due to the boundary conditions in (2.1.1), (2.1.2), and (2.2.6), we
obtain d

dt
E(Ψ) = 0, that is, the energy conservation of (2.2.4) is proven for Ψ(0) ∈ H3

Γ.
The proof for p ≥ 1 and Ψ(0) ∈ H1

Γ but Ψ(0) /∈ H3
Γ is achieved by using an approximating

sequence similarly to the argument above.

Finally, the proof can be extended for all values of p > 0 by using other approximation
techniques, see, e.g., Theorems 3.3.1, 3.3.5, and 3.39 in [20].

Remark 2.5. Due to the validity of the energy and mass conservation laws in Propo-
sition 2.4, it is natural to ask for existence of other conserved quantities. However, the
translational symmetry of the infinite line R is broken in the star graph Γ due to the
vertex at x = 0. As a result, a momentum functional is not generally conserved under
the NLS flow, see also Section 4.4 below.

Global existence of solutions under the NLS flow only holds in the subcritical case
p ∈ (0, 2), see Corollary 2.1 in [4].
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Proposition 2.6. For every p ∈ (0, 2), the local solution (2.2.3) in Proposition 2.3 is
extended globally with t0 =∞.

Proof. This follows by the energy conservation and the Gagliardo-Nirenberg inequality

‖α
p
p+1 Ψ‖2p+2

L2p+2(Γ) ≤ Cp,α‖Ψ′‖pL2(Γ)‖Ψ‖
p+2
L2(Γ),

for every α ∈ L∞(Γ), Ψ ∈ H1
Γ, p > 0, where the constant Cp,α > 0 depends on p and α

but does not depend on Ψ.

Remark 2.7. For p = 2, the H1-norm of the solution (2.2.3) is bounded uniformly by
the energy and mass functionals only if the initial datum Ψ(0) ∈ H1

Γ in Proposition 2.3
has sufficiently small L2-norm. In this case, since the energy and mass are conserved
under the NLS flow, the solution (2.2.3) can be extended globally with t0 =∞.

2.3 Stationary states
Stationary states of the NLS are given by the solutions of the form

Ψ(t, x) = eiωtΦω(x),

where (ω,Φω) ∈ R×H2
Γ is a real-valued solution of the stationary NLS equation,

−∆Φω − (p+ 1)α2p|Φω|2pΦω = −ωΦω. (2.3.1)

No solution Φω ∈ H2
Γ to the stationary NLS equation (2.3.1) exist for ω ≤ 0 because

σ(−∆) ≥ 0 in L2(Γ) and Φω(x),Φ′ω(x)→ 0 as x→∞ if Φω ∈ H2
Γ by Sobolev’s embed-

ding theorem. Therefore, we only consider ω > 0 in the stationary NLS equation (2.3.1).
Since Γ consists of edges with the parametrization on R+, the scaling transformation

Φω(x) = ω
1
2pΦ(z), z = ω

1
2x (2.3.2)

can be used to scale the positive parameter ω to unity. The normalized profile Φ is now
a solution of the stationary NLS equation

−∆Φ + Φ− (p+ 1)α2p|Φ|2pΦ = 0, Φ ∈ H2
Γ. (2.3.3)

For every N and α ∈ RN
+ , the stationary NLS equation (2.3.3) has a particular

solution

Φ(x) =


α−1

1
α−1

2
...

α−1
N

φ(x), with φ(x) = sech
1
p (px). (2.3.4)
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Throughtout the thesis, this solution is labeled as the half-soliton state. We are also
interested in the families of solitary waves parameterized by a translational parameter,
which are labeled as the shifted states. Such families exist if (α1, α2, . . . , αN) satisfy
the constraint

K∑
j=1

1
α2
j

=
N∑

j=K+1

1
α2
j

(2.3.5)

with integer K satisfying 0 < K < N . The origin of the constraint (2.3.5) was discussed
in Chapter 1, and we refer to the K edges corresponding to coefficients α1, α2, . . . , αK
as incoming, whereas the remaining edges are thought to be outgoing.

Remark 2.8. If N = 2 and K = 1, then the constraint (2.3.5) is only satisfied if
α1 = α2. In this case, the NLS equation (2.2.1) on the graph Γ is equivalent to the
homogeneous NLS equation on the infinite line R.

The following lemma gives the existence of a family of shifted states under the con-
straint (2.3.5)

Lemma 2.9. For every p > 0 and every (α1, α2, . . . , αN) satisfying the constraint
(2.3.5), there exists a one-parameter family of solutions to the stationary NLS equa-
tion (2.3.3) with any p > 0 given by Φ(x; a) = (φ1, . . . , φN)T with components

φj(x; a) =

α
−1
j φ(x+ a), j = 1, . . . , K
α−1
j φ(x− a), j = K + 1, . . . , N,

(2.3.6)

where φ(x) = sech
1
p (px) and a ∈ R is arbitrary.

Proof. A general solution to the stationary NLS equation (2.3.3) decaying to zero at
infinity is given by Φ = (φ1, . . . , φN)T with components

φj(x; a) = α−1
j φ(x+ aj), 1 ≤ j ≤ N,

where (a1, . . . , aN) ∈ RN are arbitrary parameters. The generalized continuity boundary
condition in H2

Γ imply that |a1| = · · · = |aN |. Hence for every j = 1, . . . , N , there exists
mj ∈ {0, 1}, such that aj = (−1)mj |a| for some a ∈ R. The generalized Kirchhoff
boundary condition in H2

Γ is equivalent to

φ′(|a|)
N∑
j=1

(−1)mj
α2
j

= 0. (2.3.7)

If a = 0, the equation (2.3.7) holds since φ′(0) = 0 and this yields the half-soliton state
in the form (2.3.4). If a 6= 0, then the equation (2.3.7) holds due to the constraint (2.3.5)
if either

mj =

1 for 1 ≤ j ≤ K

0 for K + 1 ≤ j ≤ N
or mj =

0 for 1 ≤ j ≤ K

1 for K + 1 ≤ j ≤ N
(2.3.8)
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In both cases, the shifted state appears in the form (2.3.6) with either a < 0 or a > 0.

Remark 2.10. The half-soliton state Φ(x) in (2.3.4) corresponds to the shifted state
Φ(x; a) of Lemma 2.9 with a = 0, that is Φ(x) ≡ Φ(x; 0).

Remark 2.11. By using the scaling transformation (2.3.2), we can convert the shifted
states Φ(x; a) in Lemma 2.9 into the ω-dependent shifted states Φω(x; a) which solve the
stationary NLS equation (2.3.1).

Remark 2.12. Besides the two choices specified in the proof of Lemma 2.9, there might
be other N-tuples (m1,m2, . . . ,mN) ∈ {0, 1}N such that the bracket in (2.3.7) becomes
zero. Such N-tuples generate new one-parameter families different from the one given
by Lemma 2.9 under the same constraint (2.3.5). For instance, if αj = 1 for all j and
K = N/2, there exist CN different shifted states given by Lemma 2.13 below with CN
computed in (2.3.9).

The following lemma gives a full classification of families of shifted states in case
α = 1, see also Theorem 5 in [4].

Lemma 2.13. For α = 1 and for even N , there exists CN one-parameter families of
solutions to the stationary NLS equation (2.3.3) with any p > 0, where

CN = N !
2[(N/2)!]2 . (2.3.9)

Each family is generated from the simplest state Φ(x; a) = (φ1, . . . , φN)T with compo-
nents

φj(x; a) =

φ(x+ a), j = 1, . . . , N2
φ(x− a), j = N

2 + 1, . . . , N
(2.3.10)

where φ(x) = sech
1
p (px) and a ∈ R is arbitrary, after rearrangements between N/2 edges

with +a shifts and N/2 edges with −a shifts.

Proof. A general solution to the stationary NLS equation (2.3.3) decaying to zero at
infinity is given by

(φ(x+ a1), . . . , φ(x+ aN))T ,

where φ(x) = sech
1
p (px), and (a1, . . . , aN) ∈ RN are arbitrary parameters. The conti-

nuity condition in H2
Γ imply that |a1| = · · · = |aN |. The Kirchhoff condition in H2

Γ is
equivalent to

φ(a1)
N∑
j=1

tanh(aj) = 0, (2.3.11)

which together with the continuity condition implies that the set (a1, . . . , aN) has exactly
N
2 positive elements and exactly N

2 negative elements.
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The number of all possible solutions is given by rearrangements of N/2 edges from
N edges,

CN = 1
2

(
N
N/2

)
,

where the factor 1
2 is due to the double count of rearrangements with a > 0 and a <

0.

Remark 2.14. For α = 1 and odd N , the half-soliton state (2.3.4) is the unique sta-
tionary solution to (2.3.3). Indeed, in this case the equation (2.3.11) holds if and only
if a1 = a2 = · · · = aN = 0.

Remark 2.15. If N = 2, then C2 = 1. The only branch of shifted states in Lemma 2.13
corresponds to the NLS solitary wave translated along an infinite line R, see Remark 2.8.

Remark 2.16. If N = 4, then C4 = 3. The three branches of shifted states in Lemma
2.13 correspond to the three NLS solitary waves translated along an infinite line R de-
fined by the union of either (1, 2) or (1, 3), or (1, 4) edges of the star graph Γ, with
mirror-symmetric NLS solitary waves translated along another line R defined by the two
complementary edges of the star graph Γ. 
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Figure 2.2: Schematic representation of the shifted states (2.3.10) with
a 6= 0 for N = 4 (left) and N = 6 (right).
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Figure 2.3: Schematic representation of the shifted states (2.3.6) with
K = 1, N = 3, and either a > 0 (left) or a < 0 (right).
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For graphical illustrations, we present some of the shifted states on Figures 2.2 and
2.3. Figure 2.2 shows the shifted states corresponding to Lemma 2.13 with N = 4
(left) and N = 6 (right). If a 6= 0, the profile of Φ contains N/2 monotonic and N/2
non-monotonic tails in different edges of the star graph Γ. Figures 2.3 shows the shifted
states corresponding to Lemma 2.9 with N = 3 and K = 1. If a > 0 (left), the profile of
Φ contains 1 monotonic and 2 non-monotonic tails whereas if a < 0 (right), the profile
of Φ contains 2 monotonic and 1 non-monotonic tails.

2.4 The action functional Λ(Ψ) and its Hessian
Every stationary state Φω(x; a) satisfying the stationary NLS equation (2.3.1) is a critical
point of the action functional

Λω(Ψ) := E(Ψ) + ωQ(Ψ), Ψ ∈ H1
Γ, (2.4.1)

where Q and E are conserved mass and energy in (2.2.4) under the NLS flow, see
Proposition 2.3.

Substituting Ψ = Φω(·; a) + U + iW with real-valued U,W ∈ H1
Γ into Λω(Ψ) and

expanding in U,W yield

Λω(Ψ) = Λω(Φω(·; a)) + 〈L+(ω)U,U〉L2(Γ) + 〈L−(ω)W,W 〉L2(Γ) +N(U,W ), (2.4.2)

where

〈L+(ω)U,U〉L2(Γ) :=
∫

Γ

[
(∇U)2 + ωU2 − (2p+ 1)(p+ 1)α2pΦω(·; a)2pU2

]
dx,

〈L−(ω)W,W 〉L2(Γ) :=
∫

Γ

[
(∇W )2 + ωW 2 − (p+ 1)α2pΦω(·; a)2pW 2

]
dx,

and N(U,W ) = o(‖U + iW‖2
H1(Γ)) for every p > 0. The quadratic forms are defined by

the two Hessian operators

L+(ω) = −∆ + ω − (2p+ 1)(p+ 1)α2pΦω(·; a)2p : H2
Γ ⊂ L2(Γ)→ L2(Γ), (2.4.3)

L−(ω) = −∆ + ω − (p+ 1)α2pΦω(·; a)2p : H2
Γ ⊂ L2(Γ)→ L2(Γ), (2.4.4)

Using the scaling transformation similar to (2.3.2), we simplify the consideration to
ω = 1. We also assume that Φ ≡ Φω=1(·; a) is the shifted state defined in Lemma 2.9
for an arbitrary a ∈ R.

We denote L+ := L+(ω = 1) and L− := L−(ω = 1) as in (2.4.3) and (2.4.4),
respectively. With the use of Proposition 2.1, we observe that the operators L+ and
L− are self-adjoint in L2(Γ). The spectrum σ(L±) ⊂ R consists of the continuous
and discrete parts denoted by σc(L±) and σp(L±), respectively. Since the bounded
and exponentially decaying potential α2pΦ2p is a relatively compact perturbation to the
unbounded operator L0 := −∆ + 1, the absolutely continuous spectra of L±, by Weyl’s
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Theorem, is
σc(L±) = σ(L0) = [1,∞). (2.4.5)

Therefore, we are only interested in the eigenvalues of σp(L±) in (−∞, 1).

Definition 2.17. The number of negative eigenvalues of L± is called the Morse index
of L±. Also, the multiplicity of the zero eigenvalue is called the degeneracy index.

2.4.1 The operator L−
The following result shows that σp(L−) is nonnegative, 0 ∈ σp(L−) is a simple eigenvalue
with the eigenvector Φ, and all other eigenvalues in σp(L−) are bounded away from zero.
In other words, the Morse index of L− is zero, see also Theorem 3.12 in [60].

Lemma 2.18. For any W ∈ H1
Γ,

〈L−W,W 〉L2(Γ) = 0 if and only if W ∈ span{Φ}.

Moreover, there exists C > 0 such that

〈L−W,W 〉L2(Γ) ≥ C‖W‖2
H1(Γ), (2.4.6)

for every W ∈ H1
Γ ∩ L2

c, where L2
c is defined by

L2
c :=

{
V ∈ L2(Γ) : 〈V,Φ〉L2(Γ) = 0

}
, (2.4.7)

Proof. By using (2.3.6), we write for every W = (w1, w2, . . . , wN)T ∈ H1
Γ,

〈L−W,W 〉L2(Γ) =
N∑
j=1

∫ +∞

0

[ (
dwj
dx

)2

+ w2
j − (p+ 1)ϕ2p

j w
2
j

]
dx, (2.4.8)

where

ϕj(x) =

φ(x+ a), j = 1, . . . , K
φ(x− a), j = K + 1, . . . , N,

(2.4.9)

with φ(x) = sech
1
p (px). By using ϕ′′j = ϕj−(p+1)ϕ2p+1

j , (ϕ′j)2 = ϕ2
j−ϕ

2p+2
j , integration

by parts, the boundary conditions in (2.1.1) and the constraint (2.3.5), we obtain
∫ +∞

0
pw2

jϕ
2p
j dx =

∫ +∞

0
2wj

dwj
dx

ϕ′j
ϕj
dx

and ∫ +∞

0

(
w2
j − ϕ

2p
j w

2
j

)
dx =

∫ +∞

0
w2
j

(
ϕ′j
ϕj

)2

dx,

19

http://www.mcmaster.ca/


Ph.D. Thesis – A. Kairzhan McMaster University– Mathematics

so that the representation (2.4.8) is formally equivalent to

〈L−W,W 〉L2(Γ) =
N∑
j=1

∫ +∞

0
ϕ2
j

∣∣∣∣ ddx
(
wj
ϕj

)∣∣∣∣2dx ≥ 0. (2.4.10)

Since ϕj(x) > 0 for every x ∈ R+ and ∂x logϕj ∈ L∞(R), the representation (2.4.10) is
justified for every W ∈ H1

Γ. It follows from (2.4.10) that 〈L−W,W 〉L2(Γ) = 0 if and only
if W ∈ H1

Γ satisfies

d

dx

(
wj
ϕj

)
= 0 almost everywhere and for every j. (2.4.11)

Sobolev’s embedding of H1(R+) into C(R+) and equation (2.4.11) imply that wj = cjϕj
for some constant cj. The generalized continuity boundary conditions in (2.1.1) and the
equality φ(a) = φ(−a) for (2.4.9) then yield

c1α1 = c2α2 = · · · = cNαN

which means that 0 is a simple eigenvalue of the operator L− in (2.4.4) with the eigenvec-
tor W ∈ span{Φ}. Since eigenvalues of σp(L−) ∈ (−∞, 1) are isolated, the variational
characterization of eigenvalues implies the L2(Γ)-coercivity

〈L−W,W 〉L2(Γ) ≥ C0‖W‖2
L2(Γ)

for every W ∈ H1
Γ ∩ L2

c and some C0 > 0. The H1(Γ)-coercivity comes by contra-
diction. There exists no sequence {Wn}n∈N ⊂ H1

Γ ∩ L2
c such that ‖Wn‖H1(Γ) = 1 and

〈L−Wn,Wn〉L2(Γ) → 0, see also Lemma 5.2.3 in [45].

2.4.2 The operator L+

We are interested in the discrete spectrum of the Hessian operator L+ given by (2.4.3)
with ω = 1. Below we show the reduction of the spectral problem for L+ on the star
graph Γ to the eigenvalue problem for scalar Schrödinger equations.

By using the representation (2.3.6), the general form of components for the spectral
problem L+U = λU on Γ is given by the following second-order differential equation

−u′′(x) + u(x)− (2p+ 1)(p+ 1) sech2(p(x+ a0))u(x) = λu(x), x ∈ (0,∞), (2.4.12)

where a0 represents either +a or −a shift in (2.3.6) depending on the edge. By the
Sobolev’s embedding of H2(R+) into C1(R+), we consider only the exponentially decay-
ing solutions to (2.4.12). By means of the substitution u(x) = v(x+ a0) for x ∈ (0,∞),
exponentially decaying solutions u to the equation (2.4.12) are equivalent to exponen-
tially decaying solutions v of the second-order differential equation

−v′′(x) + v(x)− (2p+ 1)(p+ 1) sech2(px)v(x) = λv(x), x ∈ (a0,∞). (2.4.13)
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The following lemmas extend some well-known results on the scalar Schrödinger
equation (2.4.13).

Lemma 2.19. For every λ < 1, there exists a unique solution v ∈ C1(R) to equation
(2.4.13) such that

lim
x→+∞

v(x)e
√

1−λx = 1. (2.4.14)

Moreover, for any fixed x0 ∈ R, v(x0) is a C1 function of λ for λ < 1 such that
v′(x0)
v(x0) → −∞ as λ→ −∞. The other linearly independent solution to equation (2.4.13)
diverges as x→ +∞.

Proof. The proof is based on the reformulation of the boundary–value problem (2.4.13)–
(2.4.14) as Volterra’s integral equation. By means of Green’s function, the solution to
(2.4.13)–(2.4.14) can be found from the inhomogeneous integral equation

v(x) = e−
√

1−λx − (2p+ 1)(p+ 1)√
1− λ

∫ ∞
x

sinh(
√

1− λ(x− y)) sech2(py)v(y) d y. (2.4.15)

Setting w(x;λ) = v(x)e
√

1−λx yields the following Volterra’s integral equation with a
bounded kernel:

w(x;λ) = 1 + (2p+ 1)(p+ 1)
2
√

1− λ

∫ ∞
x

(1− e−2
√

1−λ(y−x)) sech2(py)w(y;λ) d y. (2.4.16)

By standard Neumann series, there exists a unique solution w(·;λ) ∈ C1(x0,∞) satis-
fying limx→∞w(x;λ) = 1 for every λ < 1 and sufficiently large x0 � 1. By the ODE
theory, this solution is extended globally as a solution w(·;λ) ∈ C1(R) of the integral
equation (2.4.16). This construction yields a solution v ∈ C1(R) to the differential
equation (2.4.13) with the exponential decay as x → +∞ given by (2.4.14). Since the
Volterra’s integral equation (2.4.15) depends analytically on λ for λ < 1, then v(x0) is
(at least) C1 function of λ < 1 for any fixed x0 ∈ R. Thanks to the x-independent
and nonzero Wronskian determinant between two linearly independent solutions to the
second-order equation (2.4.13), the other linearly independent solution diverges expo-
nentially as x→ +∞.

It remains to prove that v′(x0)
v(x0) → −∞ as λ → −∞ for any fixed x0 ∈ R. Using the

setting w(x;λ) = v(x)e
√

1−λx, we get

v′(x0)
v(x0) = −

√
1− λ+ w′(x0;λ)

w(x0;λ) . (2.4.17)

Since w(·, λ) ∈ C1(R) and limx→∞w(x;λ) = 1, we get w(·, λ) ∈ L∞[x0,∞). The
construction (2.4.16) yields that ‖w‖L∞[x0,∞) ≤ 2 for large enough negative λ, and so,
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as λ→ −∞, (2.4.16) implies

|w(x0;λ)− 1| ≤ Cp√
1− λ

‖w‖L∞[x0,∞) ≤
2Cp√
1− λ

→ 0,

where Cp is constant which depends on p only. Therefore,

w(x0;λ)→ 1 as λ→ −∞. (2.4.18)

Differentiating the equation (2.4.16) in x, we get

w′(x;λ) = −(2p+ 1)(p+ 1)
∫ ∞
x

e−2
√

1−λ(y−x) sech2(py)w(y;λ) d y.

Since the integrand in the latter expression is bounded for λ < 1, for λ→ −∞ we get

|w′(x0;λ)| ≤ Ĉp‖w‖L∞[x0,∞) ≤ 2Ĉp, (2.4.19)

where Ĉp is constant which depends on p only.

Finally, by using the bounds in (2.4.18) and (2.4.19), the expression (2.4.17) implies
that v′(x0)

v(x0) → −∞ as λ→ −∞.

Lemma 2.20. Let v be the solution defined in Lemma 2.19. If v(0) = 0 (resp. v′(0) = 0)
for some λ0 < 1, then the corresponding eigenfunction v to the Schrödinger equation
(2.4.13) is an odd (resp. even) function on R, whereas λ0 is an eigenvalue of the associ-
ated Schrödinger operator defined in L2(R). There exists exactly one simple eigenvalue
λ0 < 0 corresponding to v′(0) = 0 and a simple eigenvalue λ0 = 0 corresponding to
v(0) = 0, all other possible points λ0 are located in (0, 1) bounded away from zero.

Proof. Extension of v to an eigenfunction of the associated Schrödinger operator defined
in L2(R) follows by the reversibility of the Schrödinger equation (2.4.13) with respect
to the transformation x 7→ −x. The count of eigenvalues follows by Sturm’s theorem
since the odd eigenfunction for the eigenvalue λ0 = 0,

φ′(x) = − sech
1
p (px) tanh(px) (2.4.20)

has one zero on the infinite line. By Sturm’s theorem, λ0 = 0 is the second eigenvalue
of the Schrödinger equation (2.4.13) with exactly one simple negative eigenvalue λ0 < 0
that corresponds to an even eigenfunction.

Remark 2.21. For p = 1, the solution v in Lemma 2.19 is available in the closed
analytic form:

v(x) = e−
√

1−λx3− λ+ 3
√

1− λ tanh x− 3 sech2 x

3− λ+ 3
√

1− λ
.
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In this case, the eigenvalues and eigenfunctions in Lemma 2.20 are given by

λ = −3 : v(x) = 1
4 sech2 x,

λ = 0 : v(x) = 1
2 tanh x sech x.

No other eigenvalues of the associated Schrödinger operator on L2(R) exist in (−∞, 1).

Lemma 2.22. Let v = v(x;λ) be the solution defined by Lemma 2.19. Assume that
v(x;λ1) has a simple zero at x = x1 ∈ R for some λ1 ∈ (−∞, 1). Then, there exists
a unique C1 function λ 7→ x∗(λ) for λ near λ1 such that v(x;λ) has a simple zero at
x = x∗(λ) with x∗(λ1) = x1 and x′∗(λ1) > 0.

Proof. By Lemma 2.19, v is a C1 function of x and λ for every x ∈ R and λ ∈ (−∞, 1).
Since x1 is a simple zero of v(x;λ1), we have ∂xv(x1;λ1) 6= 0. By the implicit function
theorem, there exists a unique C1 function λ 7→ x∗(λ) for λ near λ1 such that v(x;λ)
has a simple zero at x = x∗(λ) with x∗(λ1) = x1. It remains to show that x′∗(λ1) > 0.

   𝜐(𝑥) 

                                     

                     

    

 

      

    

      

     

         𝑥∗(𝜆)     

   

 

 

                              

                                
 

                                      

      

 

                         𝑥 𝜆 < 𝜆0 
 

            𝑥       𝜆 = 𝜆0 

              

      𝑥      𝜆0 < 𝜆 < 0 

                   

             𝑥  𝜆 = 0 

 

                                                  

    

                                                                                                
 

Figure 2.4: Profiles of the solution v in Lemma 2.19 for different values
of λ.

Differentiating v(x∗(λ);λ) = 0 in λ at λ = λ1, we obtain

∂xv(x1;λ1)x′∗(λ1) + ∂λv(x1;λ1) = 0. (2.4.21)

Let us denote ṽ(x) = ∂λv(x;λ1). Differentiating equation (2.4.13) in λ yields the inho-
mogeneous differential equation for ṽ:

−ṽ′′(x)+ ṽ(x)−(2p+1)(p+1) sech2(px)ṽ(x) = λ1ṽ(x)+v(x;λ1), x ∈ (a,∞). (2.4.22)

By the same method based on the Volterra’s integral equation as in Lemma 2.19, the
function ṽ is C1 in x and decays to zero as x→∞. Therefore, by multiplying equation
(2.4.22) by v(x;λ1), integrating by parts on [x1,∞), and using equation (2.4.13), we
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obtain
−∂xv(x1;λ1)ṽ(x1) =

∫ ∞
x1

v(x;λ1)2dx, (2.4.23)

where we have used v(x1;λ1) = 0 as well as the decay of v(x;λ1), ∂xv(x;λ1), ṽ(x), and
ṽ′(x) to zero as x→∞. Combining (2.4.21) and (2.4.23) yields

(∂xv(x1;λ1))2x′∗(λ1) =
∫ ∞
x1

v(x;λ1)2dx > 0, (2.4.24)

so that x′∗(λ1) > 0 follows from the fact that ∂xv(x1;λ1) 6= 0.

Remark 2.23. We can obtain same results for a general ω > 0 by using the scaling
transformation (2.3.2).

The results of Lemmas 2.19, 2.20, and 2.22 are illustrated on Figure 2.4 which shows
profiles of the solution v satisfying the limit (2.4.14) for four cases of λ in (−∞, 0]. The
even eigenfunction for λ0 < 0 and the odd eigenfunction for λ = 0 correspond to the
solutions of the Schrödinger equation defined in L2(R). The only zero x∗(λ) of v appears
from negative infinity at λ = λ0 and it is a monotonically increasing function of λ in
(λ0, 0) such that x∗(0) = 0.
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Chapter 3

Nonlinear Instability of
Half-Solitons on Star Graphs

This chapter is devoted to the study of nonlinear stability of the half-soliton state Φ
defined in (2.3.4) with α = 1. According to Lemma 2.13 and Remark 2.14, the stationary
NLS equation (2.3.1) on the star graph Γ for every N admits the half-soliton state.

The analysis of variational properties of the half-soliton state on star graphs was
initiated in [2]. Namely, it was shown that the half-soliton state is a saddle point of the
constrained energy functional associated to the cubic NLS equation on Γ with N = 3
edges. The saddle point geometry was not related to the instability of the half-soliton
state in the time evolution of the NLS, and was obtained by considering two constrained
families of states on Γ such that the half-soliton state minimizes the energy along one
family, but maximizes along the other.

The main result of this section is to provide a dynamical characterization of the result
in [2] for the NLS with the power nonlinearity and in the case of an arbitrary star graph.
By using dynamical system methods (in particular, normal forms), we will verify that
the half-soliton state is the saddle point of the constrained NLS energy on the star graph
and moreover it is dynamically unstable due to the slow growth of perturbations. This
nonlinear instability is likely to result in the destruction of the half-soliton state pinned
to the vertex and the formation of a solitary wave escaping to infinity along one edge of
the star graph.

For every p > 0, we define the orbital stability and instability of the half-soliton state
Φ with respect to its orbit {eiθΦ : θ ∈ R} as the following:

Definition 3.1. The stationary state Φ is orbitally stable if for every ε > 0 there is
δ > 0, such that for every Ψ0 ∈ H1

Γ with ‖Ψ0 − Φ‖H1(Γ) < δ, the unique global solution
Ψ(t) ∈ C(R, H1

Γ) ∩ C1(R, H−1
Γ ) to the NLS equation (3.1.1) starting with the initial

datum Ψ(0) = Ψ0 satisfies

inf
θ∈R
‖e−iθΨ(t)− Φ‖H1(Γ) < ε for all t > 0.

Otherwise, it is orbitally unstable.
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3.1 Main results
We consider a star graph Γ with N ≥ 3 edges, and set α = 1 in the boundary conditions
(2.1.1) and (2.1.2). Then, the NLS equation (2.2.1) is

i
∂Ψ
∂t

= −∆Ψ− (p+ 1)|Ψ|2pΨ, x ∈ Γ, t ∈ R, (3.1.1)

and the half-soliton state (2.3.4) solving the stationary NLS equation (2.3.3) with ω = 1
is given by

Φ(x) = φ(x)(1, 1, . . . , 1)T , with φ(x) = sech
1
p (px). (3.1.2)

Our main results are given as follows. Thanks to the scaling transformation, we set
ω = 1 and use the notation Λ for Λω=1.

Theorem 3.2. Let Λ′′(Φ) be the Hessian operator for the second variation of Λ(Ψ) at
Ψ = Φ in H1

Γ. For every p ∈ (0, 2), it is true that 〈Λ′′(Φ)V, V 〉L2(Γ) ≥ 0 for every
V ∈ H1

Γ ∩ L2
c, where L2

c is defined in (2.4.7) as

L2
c :=

{
V ∈ L2(Γ) : 〈V,Φ〉L2(Γ) = 0

}
.

Moreover, 〈Λ′′(Φ)V, V 〉L2(Γ) = 0 if and only if V ∈ H1
Γ ∩ L2

c belongs to a (N − 1)-
dimensional subspace Xc := span{U (1), U (2), . . . , U (N−1)} ⊂ L2

c. Consequently, V = 0 is
a degenerate minimizer of 〈Λ′′(Φ)V, V 〉L2(Γ) in H1

Γ ∩ L2
c.

Remark 3.3. If p = 2, then 〈Λ′′(Φ)V, V 〉L2(Γ) = 0 if and only if V ∈ H1
Γ∩L2

c belongs to
a N-dimensional subspace of L2

c with an additional degeneracy. For p > 2, the second
variation is not positive in H1

Γ ∩ L2
c.

Theorem 3.4. Let Xc = span{U (1), U (2), . . . , U (N−1)} ⊂ L2
c be defined in Theorem 3.2.

For every p ∈
[

1
2 , 2

)
, there exists δ > 0 such that for every c = (c1, c2, . . . , cN−1)T ∈ RN−1

satisfying ‖c‖ ≤ δ, there exists a unique minimizer of the variational problem

M(c) := inf
U⊥∈H1

Γ∩L2
c∩[Xc]⊥

[
Λ(Φ + c1U

(1) + · · ·+ cN−1U
(N−1) + U⊥)− Λ(Φ)

]
(3.1.3)

such that ‖U⊥‖H1(Γ) ≤ A‖c‖2 for a c-independent constant A > 0. Moreover, M(c) is
sign-indefinite in c. Consequently, Φ is a nonlinear saddle point of Λ in H1

Γ with respect
to perturbations in H1

Γ ∩ L2
c.

Remark 3.5. The restriction p ≥ 1
2 is used in order to expand Λ(Φ + U) up to the

cubic terms with respect to the perturbation U ∈ H1
Γ ∩ L2

c and then to pass to normal
forms. If p = 2, Φ is still a nonlinear saddle point of Λ in H1

Γ ∩ L2
c but the proof needs

to be modified by the fact that Xc is N-dimensional. If p > 2, it follows already from
the second derivative test that Φ is a saddle point of Λ in H1

Γ ∩ L2
c.
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Theorem 3.6. For every p ∈
[

1
2 , 2

)
, there exists ε > 0 such that for every δ > 0

(sufficiently small) there exists V ∈ H1
Γ with ‖V ‖H1

Γ
≤ δ such that the unique global

solution Ψ(t) ∈ C(R, H1
Γ) ∩ C1(R, H−1

Γ ) to the NLS equation (3.1.1) starting with the
initial datum Ψ(0) = Φ + V satisfies

inf
θ∈R
‖e−iθΨ(t0)− Φ‖H1(Γ) > ε for some t0 > 0. (3.1.4)

Consequently, the orbit {Φeiθ}θ∈R is unstable in the time evolution of the NLS equation
(3.1.1) in H1

Γ.

Remark 3.7. If p = 2, the instability claim of Theorem 3.6 follows from the same
analysis as in the case of the NLS equation on the real line [22, 57]. If p > 2, the
instability claim of Theorem 3.6 follows from the spectral instability [37].

3.2 Degeneracy of the second variation
This section is devoted to the proof of Theorem 3.2.

It follows from the expansion of the action functional Λ(Ψ) with Ψ = Φ + V around
Φ, that the second variation Λ′′(Φ) satisfies

1
2〈Λ

′′(Φ)V, V 〉L2(Γ) = 〈L+U,U〉L2(Γ) + 〈L−W,W 〉L2(Γ) with V = U + iW, (3.2.1)

where U,W ∈ H1
Γ are real-valued. In the strong formulation, the operators L+ and L−

are equivalent to the Hessian operators in (2.4.3) and (2.4.4), respectively, with ω = 1
and α = 1:

L+ = −∆ + 1− (2p+ 1)(p+ 1)Φ2p : H2
Γ ⊂ L2(Γ)→ L2(Γ),

L− = −∆ + 1− (p+ 1)Φ2p : H2
Γ ⊂ L2(Γ)→ L2(Γ).

Recall that the continuous spectrum of L± is given in (2.4.5), and the point spectrum
is located in (−∞, 1). Moreover, by Lemma 2.18, the operator L− is coercive in the
subspace H1

Γ ∩ L2
c . Therefore, we are only concerned with the eigenvalues of L+.

By using Lemmas 2.19 and 2.20, we can now characterize σp(L+) in (−∞, 1). The
following result shows that σp(L+) includes a simple negative eigenvalue and a zero
eigenvalue of multiplicity N − 1.

Lemma 3.8. Let u be a solution of Lemma 2.19 for λ ∈ (−∞, 1). Then, λ0 ∈ (−∞, 1)
is an eigenvalue of σp(L+) if and only if either u(0) = 0 or u′(0) = 0 (both u(0) and
u′(0) cannot vanish simultaneously). Moreover, λ0 in σp(L+) has multiplicity N − 1 if
u(0) = 0 and multiplicity 1 if u′(0) = 0.
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Proof. Let λ0 ∈ (−∞, 1) be an eigenvalue of σp(L+) and denote the eigenvector by
U ∈ H2

Γ. Since U(x) and U ′(x) decay to zero as x → +∞, by Sobolev’s embedding of
H2(R+) to the space C1(R+), we can parameterize U ∈ H2

Γ by using u from Lemma
2.19 as follows

U(x) = u(x)


c1
c2
...
cN

 ,
where (c1, c2, . . . , cN) are some coefficients. By using the boundary conditions in the
definition of H2

Γ in (2.1.2), we obtain a homogeneous linear system on the coefficients:

c1u(0) = c2u(0) = · · · = cNu(0), c1u
′(0) + c2u

′(0) + · · ·+ cNu
′(0) = 0. (3.2.2)

The determinant of the associated matrix is

∆ = [u(0)]N−1u′(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0
1 0 −1 . . . 0
1 0 0 . . . 0
... ... ... . . . ...
1 1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= N [u(0)]N−1u′(0). (3.2.3)

Therefore, U 6= 0 is an eigenvector for an eigenvalue λ0 ∈ (−∞, 1) if and only if ∆ = 0,
which is only possible in (3.2.3) if either u(0) = 0 or u′(0) = 0. Moreover, multiplicity of
u(0) and u′(0) in ∆ coincides with the multiplicity of the eigenvalue λ0 because it gives
the number of linearly independent solutions of the homogeneous linear system (3.2.2).
The assertion of the lemma is proven.

Corollary 3.9. There exists exactly one simple negative eigenvalue λ0 < 0 in σp(L+)
and a zero eigenvalue λ0 = 0 in σp(L+) of multiplicity N − 1, all other possible eigen-
values of σp(L+) in (0, 1) are bounded away from zero.

Proof. The result follows from Lemmas 2.20 and 3.8.

Remark 3.10. For the simple eigenvalue λ0 < 0 in σp(L+), the corresponding eigen-
vector is

U = u(x)


1
1
...
1

 ,
where u(x) > 0 for every x ∈ R+ with u′(0) = 0. For the eigenvalue λ0 = 0 of multi-
plicity N − 1 in σp(L+), the invariant subspace of L+ can be spanned by an orthogonal
basis of eigenvectors {U (1), U (2), . . . , U (N−1)}. The orthogonal basis of eigenvectors can
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be constructed by induction as follows:

N = 3 : U (1) = φ′(x)

 1
−1
0

 , U (2) = φ′(x)

 1
1
−2

 ,

N = 4 : U (1) = φ′(x)


1
−1
0
0

 , U (2) = φ′(x)


1
1
−2
0

 , U (3) = φ′(x)


1
1
1
−3

 ,

and so on.

The following result shows that the operator L+ is positive in the subspace L2
c asso-

ciated with a scalar constraint in (2.4.7), provided the nonlinearity power p is in (0, 2),
and coercive on a subspace of L2

c orthogonal to ker(L+).

Lemma 3.11. For every p ∈ (0, 2), 〈L+U,U〉L2(Γ) ≥ 0 for every U ∈ H1
Γ∩L2

c, where L2
c

is given by (2.4.7). Moreover 〈L+U,U〉L2(Γ) = 0 if and only if U ∈ H1
Γ ∩ L2

c belongs to
the (N − 1)-dimensional subspace Xc = span{U (1), U (2), . . . , U (N−1)} ⊂ L2

c in the kernel
of L+. Consequently, there exists Cp > 0 such that

〈L+U,U〉L2(Γ) ≥ Cp‖U‖2
H1(Γ) for every U ∈ H1

Γ ∩ L2
c ∩ [Xc]⊥. (3.2.4)

Proof. Since σc(L+) = σ(−∆ + 1) = [1,∞) by (2.4.5), the eigenvalues of σp(L+) at
λ0 < 0 and λ = 0 given by Corollary 3.9 are isolated. Since 〈U (k),Φ〉L2(Γ) = 0 for every
1 ≤ k ≤ N − 1, L−1

+ Φ exists in L2(Γ) and is in fact given by L−1
+ Φ = −∂ωΦω|ω=1 up to

an addition of an arbitrary element in ker(L+). By the well-known result (see Theorem
3.3 in [37]), L+|L2

c
(that is, L+ restricted on subspace L2

c) is nonnegative if and only if

0 ≥ 〈L−1
+ Φ,Φ〉L2(Γ) = −〈∂ωΦω|ω=1,Φ〉L2(Γ) = −1

2
d

dω
‖Φω‖2

L2(Γ)

∣∣∣∣∣
ω=1

. (3.2.5)

Moreover, ker(L+|L2
c
) = ker(L+) if 〈L−1

+ Φ,Φ〉L2(Γ) 6= 0. By the direct computation, we
obtain

‖Φω‖2
L2(Γ) = Nω

1
p
− 1

2

∫ ∞
0

φ(z)2dz

so that
d

dω
‖Φω‖2

L2(Γ) = N

(
1
p
− 1

2

)
ω

1
p
− 3

2

∫ ∞
0

φ(z)2dz, (3.2.6)

so that L+|L2
c
≥ 0 if p ∈ (0, 2] and ker(L+|L2

c
) = ker(L+) if p ∈ (0, 2). This argument

gives the first two assertions of the lemma. The coercivity bound (3.2.4) follows from
the spectral theorem in L2

c and Gårding inequality.

Proof of Theorem 3.2. The result of Theorem 3.2 follows by Lemmas 2.18 and 3.11
applied to (3.2.1).
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3.3 Half-solitons as saddle points of Λ(Ψ)
To prove Theorem 3.4, it is sufficient to work with real-valued perturbations U ∈ H1

Γ∩L2
c

to the critical point Φ ∈ H1
Γ of the action functional Λ. Assuming p ≥ 1

2 , we substitute
Ψ = Φ + U with real-valued U ∈ H1

Γ into Λ(Ψ) and expand in U to obtain

Λ(Φ +U) = Λ(Φ) + 〈L+U,U〉L2(Γ)−
2
3p(p+ 1)(2p+ 1)〈Φ2p−1U2, U〉L2(Γ) +S(U), (3.3.1)

where

S(U) =

 o(‖U‖3
H1(Γ)), p ∈

(
1
2 , 1

)
,

O(‖U‖4
H1(Γ)), p ≥ 1.

Compared to the expansion (2.4.2), we have set W = 0 and have expanded the cubic
term explicitly, under the additional assumption p ≥ 1

2 . In what follows, we inspect
convexity of Λ(Φ + U) with respect to the small perturbation U ∈ H1

Γ ∩ L2
c .

The quadratic form 〈L+U,U〉L2(Γ) is associated with the same operator L+ given
by (2.4.3). By Lemma 3.11, ker(L+) ≡ Xc = span{U (1), U (2), . . . , U (N−1)} for every
p > 0, where the orthogonal vectors {U (1), U (2), . . . , U (N−1)} are constructed inductively
in Remark 3.10. Furthermore, by Lemma 3.11, if U ∈ H1

Γ ∩ L2
c , that is, if U satisfies

〈U,Φ〉L2(Γ) = 0, then the quadratic form 〈L+U,U〉L2(Γ) is positive for p ∈ (0, 2), whereas
if U ∈ H1

Γ ∩ L2
c ∩ [Xc]⊥, the quadratic form is coercive. Hence, we use the orthogonal

decomposition for U ∈ H1
Γ ∩ L2

c :

U = c1U
(1) + c2U

(2) + · · ·+ cN−1U
(N−1) + U⊥, (3.3.2)

where U⊥ ∈ H1
Γ ∩L2

c ∩ [Xc]⊥ satisfies 〈U⊥, U (j)〉L2(Γ) = 0 for every j and the coefficients
(c1, c2, . . . , cN−1) are found uniquely by

cj =
〈U,U (j)〉L2(Γ)

‖U (j)‖2
L2(Γ)

, for every j.

The following result shows how to define a unique mapping from c = (c1, c2, . . . , cN−1)t ∈
RN−1 to U⊥ ∈ H1

Γ ∩ L2
c ∩ [Xc]⊥ for small c.

Lemma 3.12. For every p ∈
[

1
2 , 2

)
, there exists δ > 0 and A > 0 such that for every

c ∈ RN−1 satisfying ‖c‖ ≤ δ, there exists a unique minimizer U⊥ ∈ H1
Γ ∩ L2

c ∩ [Xc]⊥ of
the variational problem

inf
U⊥∈H1

Γ∩L2
c∩[Xc]⊥

[
Λ(Φ + c1U

(1) + c2U
(2) + · · ·+ cN−1U

(N−1) + U⊥)− Λ(Φ)
]
. (3.3.3)

satisfying
‖U⊥‖H1(Γ) ≤ A‖c‖2. (3.3.4)
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Proof. First, we find the critical point of Λ(Φ+U) with respect to U⊥ ∈ H1
Γ∩L2

c ∩ [Xc]⊥
for a given small c ∈ RN−1. Therefore, we set up the Euler–Lagrange equation in the
form F (U⊥, c) = 0, where

F (U⊥, c) : X × RN−1 7→ Y, X := H1
Γ ∩ L2

c ∩ [Xc]⊥, Y := H−1
Γ ∩ L2

c ∩ [Xc]⊥ (3.3.5)

is given explicitly by

F (U⊥, c) := L+U
⊥−p(p+1)(2p+1)ΠcΦ2p−1

N−1∑
j=1

cjU
(j) + U⊥

2

−ΠcR

N−1∑
j=1

cjU
(j) + U⊥

 ,
where Πc : L2(Γ) 7→ L2

c ∩ [Xc]⊥ is the orthogonal projection operator and R(U) satisfies

‖R(U)‖H1(Γ) =

 o(‖U‖2
H1(Γ)), p ∈

(
1
2 , 1

)
,

O(‖U‖3
H1(Γ)), p ≥ 1.

Operator function F satisfies the conditions of the implicit function theorem:

(i) F is a C2 map from X × RN−1 to Y ;

(ii) F (0, 0) = 0;

(iii) DU⊥F (0, 0) = ΠcL+Πc : X 7→ Y has a bounded inverse from Y to X.

By the implicit function theorem (see Theorem 4.E in [80]), there are r > 0 and δ > 0
such that for each c ∈ RN−1 with ‖c‖ ≤ δ there exists a unique solution U⊥ ∈ X of the
operator equation F (U⊥, c) = 0 with ‖U⊥‖H1(Γ) ≤ r such that the map

RN−1 3 c→ U⊥(c) ∈ X (3.3.6)

is C2 near c = 0 and U⊥(0) = 0. Since DU⊥F (0, 0) = ΠcL+Πc : X 7→ Y is strictly
positive, the associated quadratic form is coercive according to the bound (3.2.4), hence
the critical point U⊥ = U⊥(c) is a unique infimum of the variational problem (3.3.3)
near c = 0.

It remains to prove the bound (3.3.4). To show this, we note that

F (0, c) = −p(p+ 1)(2p+ 1)ΠcΦ2p−1

N−1∑
j=1

cjU
(j)

2

− ΠcR

N−1∑
j=1

cjU
(j)


satisfies ‖F (0, c)‖L(Γ) ≤ Ã‖c‖2 for a c-independent constant Ã > 0. Since F is a C2 map
from X × RN−1 to Y and DcF (0, 0) = 0, we have DcU

⊥(0) = 0, so that the C2 map
(3.3.6) satisfies the bound (3.3.4).

Proof of Theorem 3.4. Let us denote

M(c) := inf
U⊥∈H1

Γ∩L2
c∩[Xc]⊥

[
Λ(Φ + c1U

(1) + · · ·+ cN−1U
(N−1) + U⊥)− Λ(Φ)

]
, (3.3.7)
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where the infimum is achieved by Lemma 3.12 for sufficiently small c ∈ RN−1. Thanks
to the representation (3.3.1) and the bound (3.3.4), we obtain M(c) = M0(c) + M̃(c),
where

M0(c) := −2
3p(p+ 1)(2p+ 1)

N−1∑
i=1

N−1∑
j=1

N−1∑
k=1

cicjck〈Φ2p−1U (i)U (j), U (k)〉L2(Γ) (3.3.8)

and

M̃(c) =
{

o(‖c‖3), p ∈
(

1
2 , 1

)
,

O(‖c‖4), p ≥ 1.

In order to show that M0(c) is sign-indefinite near c = 0, it is sufficient to show that at
least one diagonal cubic coefficient in M0(c) is nonzero. Since∫ +∞

0
φ2p−1(φ′)3dx = −

∫ +∞

0
sech

2p+2
p (px) tanh3(px)dx = − p

2(p+ 1)(2p+ 1) ,

we obtain

〈Φ2p−1U (j)U (j), U (j)〉L2(Γ) = pj(j2 − 1)
2(p+ 1)(2p+ 1) 6= 0, j ≥ 2, (3.3.9)

where the algorithmic construction of the orthogonal vectors {U (1), U (2), . . . , U (N−1)} in
Remark 3.10 has been used. Since the diagonal coefficients in front of the cubic terms
c3

2, c
3
3, . . . , c

3
N−1 inM0(c) are nonzero,M0(c) and henceM(c) is sign-indefinite near c = 0.

Remark 3.13. We give explicit expressions for the function M0(c):

N = 3 : M0(c) = 2p2(c2
1 − c2

2)c2,

N = 4 : M0(c) = 2p2(c2
1c2 + c2

1c3 − c3
2 + 3c2

2c3 − 4c3
3),

and so on. Note that the diagonal coefficients in front of c3
2 and c3

3 are nonzero, in
agreement with (3.3.8) and (3.3.9).

3.4 Nonlinear instability of half-solitons
The half-soliton state Φ is a degenerate saddle point of the constrained action functional
Λ. We develop the proof of nonlinear instability of Φ by using the energy method. The
steps in the proof of Theorem 3.6 are as follows.

First, we use the gauge symmetry and project a unique global solution to the NLS
equation (2.2.1) with p ∈ (0, 2) in H1

Γ to the modulated stationary state {eiθΦω}θ,ω
with ω near ω0 = 1 and the symplectically orthogonal remainder term V . Second, we
project the remainder term V into the 2(N − 1)-dimensional subspace associated with

32

http://www.mcmaster.ca/


Ph.D. Thesis – A. Kairzhan McMaster University– Mathematics

the (N − 1)-dimensional subspace Xc defined in Theorem 3.4 and the symplectically or-
thogonal complement V ⊥. Third, we define a truncated Hamiltonian system of (N − 1)
degrees of freedom for the coefficients of the projection on Xc. Fourth, we use the energy
conservation to control globally the time evolution of ω and V ⊥ in terms of the initial
conditions and the reduced energy for the finite-dimensional Hamiltonian system. Fi-
nally, we transfer the instability of the zero equilibrium in the finite-dimensional system
to the instability result (3.1.4) for the NLS equation (2.2.1).

3.4.1 Modulated stationary states
We start with the standard result, which holds if 〈Φω, ∂ωΦω〉L2(Γ) 6= 0.

Lemma 3.14. For every p ∈ (0, 2), there exists δ0 > 0 such that for every Ψ ∈ H1
Γ

satisfying
δ := inf

θ∈R
‖e−iθΨ− Φ‖H1(Γ) ≤ δ0, (3.4.1)

there exists a unique choice for real-valued (θ, ω) and real-valued U,W ∈ H1
Γ in the

orthogonal decomposition

Ψ = eiθ [Φω + U + iW ] , 〈U,Φω〉L2(Γ) = 〈W,∂ωΦω〉L2(Γ) = 0, (3.4.2)

satisfying the estimate
|ω − 1|+ ‖U + iW‖H1(Γ) ≤ Cδ, (3.4.3)

for some positive constant C > 0.

Proof. Let us define the following vector function G(θ, ω; Ψ) : R2 ×H1
Γ 7→ R2 given by

G(θ, ω; Ψ) :=
[
〈Re(e−iθΨ− Φω),Φω〉L2(Γ)
〈Im(e−iθΨ− Φω), ∂ωΦω〉L2(Γ)

]
,

the zeros of which represent the orthogonal constraints in (3.4.2).

Let θ0 be the argument in infθ∈R ‖e−iθΨ−Φ‖H1(Γ) for a given Ψ ∈ H1
Γ satisfying (3.4.1).

Since the map R 3 ω 7→ Φω ∈ L2(Γ) is smooth, the vector function G is a C∞ map from
R2×H1

Γ to R2. Thanks to the bound (3.4.1), there exists a δ-independent constant C > 0
such that |G(θ0, 1; Ψ)| ≤ Cδ. Also we obtain that the matrix D := D(θ,ω)G(θ0, 1; Ψ) is
given by

D = −
[

0 〈Φ, ∂ωΦω|ω=1〉L2(Γ)
〈Φ, ∂ωΦω|ω=1〉L2(Γ) 0

]

+
[

〈Im(e−iθ0Ψ− Φ),Φ〉L2(Γ) 〈Re(e−iθ0Ψ− Φ), ∂ωΦω|ω=1〉L2(Γ)
−〈Re(e−iθ0Ψ− Φ), ∂ωΦω|ω=1〉L2(Γ) 〈Im(e−iθ0Ψ− Φ), ∂2

ωΦω|ω=1〉L2(Γ)

]
,

where 〈Φ, ∂ωΦω|ω=1〉L2(Γ) 6= 0 if p ∈ (0, 2) and the second matrix is bounded by Cδ with
a δ-independent constant C > 0. Because the first matrix is invertible if p ∈ (0, 2) and
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δ is small, we conclude that there is δ0 > 0 such that D(θ,ω)G(θ0, 1; Ψ) : R2 → R2 is
invertible with the O(1) bound on the inverse matrix for every δ ∈ (0, δ0). By the local
inverse mapping theorem (see Theorem 4.F in [80]), for any Ψ ∈ H1

Γ satisfying (3.4.1),
there exists a unique solution (θ, ω) ∈ R2 of the vector equation G(θ, ω; Ψ) = 0 such
that |θ − θ0| + |ω − 1| ≤ Cδ with a δ-independent constant C > 0. Thus, the bound
(3.4.3) is satisfied for ω.

By using the definition of (U,W ) in the decomposition (3.4.2) and the triangle in-
equality for (θ, ω) near (θ0, 1), it is then straightforward to show that (U,W ) are uniquely
defined in H1

Γ and satisfy the bounds in (3.4.3).

By global well-posedness theory, see Proposition 2.6, if Ψ0 ∈ H1
Γ, then there exists

a unique solution Ψ(t) ∈ C(R, H1
Γ) ∩ C1(R, H−1

Γ ) to the NLS equation (2.2.1) with
p ∈ (0, 2) such that Ψ(0) = Ψ0. For every δ > 0 (sufficiently small), we set

Ψ0 = Φ + U0 + iW0, ‖U0 + iW0‖H1(Γ) ≤ δ, (3.4.4)

such that
〈U0,Φ〉L2(Γ) = 0, 〈W0, ∂ωΦω|ω=1〉L2(Γ) = 0. (3.4.5)

Thus, in the initial decomposition (3.4.2), we choose θ0 = 0 and ω0 = 1 at t = 0.

Remark 3.15. Compared to the statement of Theorem 3.6, the initial datum V :=
Ψ(0)−Φ = U0 + iW0 ∈ H1

Γ is required to satisfy the constraints (3.4.5). A more general
unstable solution can be constructed by choosing different initial values for (θ0, ω0) in
the decomposition (3.4.2).

Let us assume that Ψ(t) satisfies a priori bound

inf
θ∈R
‖e−iθΨ(t)− Φ‖H1(Γ) ≤ ε, t ∈ [0, t0], (3.4.6)

for some t0 > 0 and ε > 0. This assumption is true at least for small t0 > 0 by the
continuity of the global solution Ψ(t). Fix ε = δ0 defined by Lemma 3.14. As long as a
priori assumption (3.4.6) is satisfied, Lemma 3.14 yields that the unique solution Ψ(t)
to the NLS equation (2.2.1) can be represented as

Ψ(t) = eiθ(t)
[
Φω(t) + U(t) + iW (t)

]
, (3.4.7)

with
〈U(t),Φω(t)〉L2(Γ) = 〈W (t), ∂ωΦω|ω=ω(t)〉L2(Γ) = 0. (3.4.8)

Since Ψ(t) ∈ C(R, H1
Γ) ∩ C1(R, H−1

Γ ) and the map R 3 ω 7→ Φω ∈ H1
Γ is smooth, we

obtain (θ(t), ω(t)) ∈ C1([0, t0],R2), hence U(t),W (t) ∈ C([0, t0], H1
Γ) ∩ C1([0, t0], H−1

Γ ).
The proof of Theorem 3.6 is achieved if we can show that there exists t0 > 0 such that
the bound (3.4.6) is true for t ∈ [0, t0] but fails as t > t0.
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Substituting (3.4.7) into the NLS equation (2.2.1) yields the time evolution system
for the remainder terms:

d

dt

(
U
W

)
=
(

0 L−(ω)
−L+(ω) 0

)(
U
W

)
+(θ̇−ω)

(
W

−(Φω + U)

)
−ω̇

(
∂ωΦω

0

)
+
(
−RU
RW

)
, (3.4.9)

where L+(ω) and L−(ω) are given by (2.4.3)–(2.4.4) with α = 1, and

RU = (p+ 1)
[(

(Φω + U)2 +W 2
)p
− Φ2p

ω

]
W, (3.4.10)

RW = (p+ 1)
[(

(Φω + U)2 +W 2
)p

(Φω + U)− Φ2p
ω (Φω + U)− 2pΦ2p

ω U
]
. (3.4.11)

By using the symplectically orthogonal conditions (3.4.8) in the decomposition (3.4.7),
we obtain from system (3.4.9) the modulation equations for parameters (θ, ω):(

〈Φω,W 〉L2(Γ) −〈∂ωΦω,Φω − U〉L2(Γ)
〈∂ωΦω,Φω + U〉L2(Γ) −〈∂2

ωΦω,W 〉L2(Γ)

)(
θ̇ − ω
ω̇

)
=
(
〈Φω, RU 〉L2(Γ)
〈∂ωΦω, RW 〉L2(Γ)

)
. (3.4.12)

The modulation equations (3.4.12) and the time-evolution system (3.4.9) have been
studied in many contexts involving dynamics of solitary waves [24, 52, 62, 74]. In the
context of orbital instability of the half-soliton states, we are able to avoid detailed
analysis of system (3.4.9) and (3.4.12) by using conservation of the energy E and mass
Q defined by (2.2.4). The following result provide some estimates on the derivatives of
the modulation parameters θ and ω.

Lemma 3.16. Assume that ω ∈ R and U,W ∈ H1
Γ satisfy

|ω − 1|+ ‖U + iW‖H1(Γ) ≤ ε (3.4.13)

for sufficiently small ε > 0. For every p ∈
[

1
2 , 2

)
, there exists an ε-independent constant

A > 0 such that

|θ̇ − ω| ≤ A
(
‖U‖2

H1(Γ) + ‖W‖2
H1(Γ)

)
, |ω̇| ≤ A‖U‖H1(Γ)‖W‖H1(Γ). (3.4.14)

Proof. Since 〈Φω, ∂ωΦω〉L2(Γ) 6= 0 for p 6= 2 and under assumption (3.4.13), the coefficient
matrix of system (3.4.12) is invertible with the O(1) bound on the inverse matrix for
sufficiently small ε > 0. For every p ≥ 1

2 , the Taylor expansion of the nonlinear functions
RU and RW in (3.4.10) and (3.4.11) yield

RU = 2p(p+ 1)Φ2p−1
ω UW + R̃U (3.4.15)

and
RW = p(p+ 1)Φ2p−1

ω

[
(2p+ 1)U2 +W 2

]
+ R̃W , (3.4.16)
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where R̃U and R̃W satisfies

‖R̃U‖H1(Γ) + ‖R̃W‖H1(Γ) =

 o(‖U + iW‖2
H1(Γ)), p ∈

(
1
2 , 1

)
,

O(‖U + iW‖3
H1(Γ)), p ≥ 1.

The leading-order terms in (3.4.15)–(3.4.16) and the Banach algebra property of H1(Γ)
yield the bound (3.4.14).

3.4.2 Symplectic projections to the neutral modes
Let us recall the orthogonal basis of eigenvectors constructed in Remark 3.10. We denote
the corresponding invariant subspace by

Xc := span{U (1), U (2), . . . , U (N−1)}.

For each vector U (j) with 1 ≤ j ≤ N − 1, we construct the generalized vector W (j) from
solutions of the linear system L−W

(j) = U (j), which exists uniquely in L2
c thanks to the

fact that U (j) ∈ L2
c in (2.4.7) and ker(L−) = span{Φ}. Let us denote the corresponding

invariant subspace by X∗c := span{W (1),W (2), . . . ,W (N−1)}.

Lemma 3.17. Basis vectors in Xc and X∗c are symplectically orthogonal in the sense

〈U (j),W (k)〉L2(Γ) = 0, j 6= k and 〈U (j),W (j)〉L2(Γ) > 0. (3.4.17)

Moreover, basis vectors are also orthogonal to each other.

Proof. Let us represent U (j) by

U (j)(x) = φ′(x)ej,

where ej ∈ RN is x-independent and φ(x) = sech
1
p (px). Then W (j) can be represented

by the explicit expression
W (j)(x) = −1

2xφ(x)ej.

The orthogonality of the set {e1, e2, . . . , eN−1} implies the orthogonality of the set
{W (1),W (2), . . . ,W (N−1)}, and its orthogonality with respect to the set {U (1), U (2), . . . , U (N−1)}.
Normalization is computed from

〈U (j),W (j)〉L2(Γ) = 1
4‖φ‖

2
L2(R+)‖ej‖2 (3.4.18)

such that 〈U (j),W (j)〉L2(Γ) > 0 for each j. Thus, (3.4.17) is proved.

Although the coercivity of L+ was only proved with respect to the bases in Xc, see
Lemma 3.11, the result can now be transferred to the symplectically dual basis.
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Lemma 3.18. For every p ∈ (0, 2), there exists Cp > 0 such that

〈L+U,U〉L2(Γ) ≥ Cp‖U‖2
H1(Γ) for every U ∈ H1

Γ ∩ L2
c ∩ [X∗c ]⊥. (3.4.19)

Proof. It follows from Lemma 3.11 that 〈L+U,U〉L2(Γ) ≥ 0 for p ∈ (0, 2) if U ∈ H1
Γ ∩L2

c .
Moreover, 〈L+U,U〉L2(Γ) = 0 if and only if U ∈ Xc. Thanks to the orthogonality and
positivity of diagonal terms in the symplectically dual bases in Xc and X∗c , see (3.4.17),
the coercivity bound (3.4.19) follows from the bound (3.2.4) by the standard variational
analysis.

Similarly, the coercivity of L− was proved with respect to the constraint in L2
c ,

see Lemma 2.18. The following lemma transfers the result to the symplectically dual
constraint.

Lemma 3.19. For every p ∈ (0, 2), there exists Cp > 0 such that

〈L−W,W 〉L2(Γ) ≥ C‖W‖2
H1(Γ) for every W ∈ H1

Γ ∩ (L2
c)∗, (3.4.20)

where (L2
c)∗ = {W ∈ L2(Γ) : 〈W,∂ωΦω|ω=1〉L2(Γ) = 0}.

Proof. It follows from Lemma 2.18 that 〈L−W,W 〉L2(Γ) ≥ 0 if W ∈ H1
Γ. Moreover,

〈L−W,W 〉L2(Γ) = 0 if and only if W ∈ span(Φ). Due to the positivity of the expression
〈∂ωΦω|ω=1,Φ〉L2(Γ) > 0 in (3.2.5) and (3.2.6) for p ∈ (0, 2), the coercivity bound (3.4.20)
follows from the bound (2.4.6) by the standard variational analysis.

Remark 3.20. By using the scaling transformation (2.3.2), we can continue the ba-
sis vectors for ω 6= 1. For notational convenience, ω is added as a subscript if the
expressions are continued with respect to ω.

Recall the symplectically orthogonal decomposition of the unique solution Ψ(t) to
the NLS equation (2.2.1) in the form (3.4.7)–(3.4.8). Let us further decompose the
remainder terms U(t) and W (t) in (3.4.7) over the orthogonal bases in Xc and X∗c ,
which are also symplectically orthogonal to each other by Lemma 3.17. More precisely,
since ω(t) changes we set

U(t) =
N−1∑
j=1

cj(t)U (j)
ω(t) + U⊥(t), W (t) =

N−1∑
j=1

bj(t)W (j)
ω(t) +W⊥(t), (3.4.21)

and require

〈U⊥(t),W (j)
ω(t)〉L2(Γ) = 〈W⊥(t), U (j)

ω(t)〉L2(Γ) = 0, 1 ≤ j ≤ N − 1. (3.4.22)

Since {〈U (j)
ω ,W (k)

ω 〉L2(Γ)}1≤j,k≤N−1 is a positive diagonal matrix by the conditions (3.4.17),
the projections c = (c1, c2, . . . , cN−1) ∈ RN−1 and b = (b1, b2, . . . , bN−1) ∈ RN−1 in
(3.4.21) are uniquely determined by U and W and so are the remainder terms U⊥ and
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W⊥. Because ω(t) ∈ C1([0, t0],R) and U(t),W (t) ∈ C([0, t0], H1
Γ) ∩ C1([0, t0], H−1

Γ ), we
have c(t), b(t) ∈ C1([0, t0],RN−1) and U⊥(t),W⊥(t) ∈ C([0, t0], H1

Γ) ∩ C1([0, t0], H−1
Γ ).

When the decomposition (3.4.21) is substituted to the time evolution problem (3.4.9),
we obtain

dU⊥

dt
+

N−1∑
j=1

[
dcj
dt
− bj

]
U (j)
ω = L−(ω)W⊥ + (θ̇ − ω)W (3.4.23)

−ω̇

∂ωΦω +
N−1∑
j=1

cj(t)∂ωU (j)
ω

−RU

and

dW⊥

dt
+
N−1∑
j=1

dbj
dt
W (j)
ω = −L+(ω)U⊥−(θ̇−ω) [Φω + U ]−ω̇

N−1∑
j=1

bj(t)∂ωW (j)
ω +RW , (3.4.24)

where RU and RW are rewritten from (3.4.10) and (3.4.11) after U and W are expressed
by (3.4.21).

By using symplectically orthogonal projections (3.4.22), we obtain from (3.4.23) and
(3.4.24) a system of differential equations for the amplitudes (cj, bj) for every 1 ≤ j ≤
N − 1:

〈W (j)
ω , U (j)

ω 〉L2(Γ)

[
dcj
dt
− bj

]
= R(j)

c , 〈W (j)
ω , U (j)

ω 〉L2(Γ)
dbj
dt

= R
(j)
b , (3.4.25)

where

R(j)
c = ω̇

[
〈∂ωW (j)

ω , U⊥〉L2(Γ) −
N−1∑
i=1

ci〈W (j)
ω , ∂ωU

(i)
ω 〉L2(Γ)

]
+(θ̇ − ω)〈W (j)

ω ,W 〉L2(Γ) − 〈W (j)
ω , RU〉L2(Γ),

R
(j)
b = ω̇

[
〈∂ωU (j)

ω ,W⊥〉L2(Γ) −
N−1∑
i=1

bi〈U (j)
ω , ∂ωW

(i)
ω 〉L2(Γ)

]
−(θ̇ − ω)〈U (j)

ω , U〉L2(Γ) + 〈U (j)
ω , RW 〉L2(Γ),

and we have used the orthogonality conditions:

〈U (j)
ω ,Φω〉L2(Γ) = 〈W (j)

ω , ∂ωΦω〉L2(Γ) = 0, 1 ≤ j ≤ N − 1.

The terms ω̇ and θ̇− ω can be expressed from the system (3.4.12), where U and W are
again expressed by (3.4.22).
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3.4.3 Truncated Hamiltonian system
The truncated Hamiltonian system of (N−1) degrees of freedom follows from the formal
truncation of system (3.4.25) with ω = 1 at the leading order:

γ̇j = βj,

〈W (j), U (j)〉L2(Γ)β̇j = p(p+ 1)(2p+ 1)
N−1∑
k=1

N−1∑
n=1
〈Φ2p−1U (k)U (n), U (j)〉L2(Γ)γkγn.

(3.4.26)

By using the functionM0(γ) given by (3.3.8), we can write the truncated system (3.4.26)
in the Hamiltonian form{

2〈W (j), U (j)〉L2(Γ)γ̇j = ∂βjH0(γ, β),
2〈W (j), U (j)〉L2(Γ)β̇j = −∂γjH0(γ, β), (3.4.27)

which is generated by the Hamiltonian

H0(γ, β) :=
N−1∑
j=1
〈W (j), U (j)〉L2(Γ)β

2
j +M0(γ). (3.4.28)

The reduced Hamiltonian H0 arises naturally in the expansion of the action functional
Λ. The following result implies nonlinear instability of the zero equilibrium point in the
finite-dimensional Hamiltonian system (3.4.27)–(3.4.28).

Lemma 3.21. There exists ε > 0 such that for every δ > 0 (sufficiently small), there is
an initial point (γ(0), β(0)) with ‖γ(0)‖ + ‖β(0)‖ ≤ δ such that the unique solution of
the finite-dimensional system (3.4.26) satisfies ‖γ(t0)‖ > ε for some t0 = O(ε−1/2).

Proof. We claim that γ1 = γ2 = · · · = γN−2 = 0 is an invariant reduction of system
(3.4.26). In order to show this, we compute coefficients of the function M0(γ) in (3.3.8)
that contains γiγjγN−1 for i, j 6= N − 1:

〈Φ2p−1U (i)U (j), U (N−1)〉L2(Γ) = 〈ei, ej〉
∫ ∞

0
φ2p−1(φ′)3dx

Since 〈ei, ej〉 = 0 for every i 6= j, the function M0(γ) depends on γN−1 only in the terms
γ2

1γN−1, γ2
2γN−1, . . . , γ2

N−2γN−1, as well as γ3
N−1. Therefore, γ1 = γ2 = · · · = γN−2 = 0 is

an invariant solution of the first (N −2) equations of system (3.4.26). The last equation
yields the following second-order differential equation for γN−1:

Cγ̈N−1 = p(p+ 1)(2p+ 1)〈Φ2p−1U (N−1)U (N−1), U (N−1)〉L2(Γ)γ
2
N−1, (3.4.29)

where the coefficient C = 〈W (N−1), U (N−1)〉L2(Γ) is nonzero thanks to (3.3.9) and (3.4.18).
Since the zero equilibrium is unstable in the scalar equation (3.4.29), it is then unstable
in system (3.4.26). If γ(t) = O(ε) for t ∈ [0, t0], then ε2t20 = O(ε), hence the nonlinear
instability develops at the time span [0, t0] with t0 = O(ε−1/2).
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Remark 3.22. For N = 3, we have M0(γ) = 2p2(γ2
1 − γ2

2)γ2. Computing the normal-
ization conditions (3.4.18), we obtain the following finite-dimensional system of degree
two: {

‖φ‖2
L2(R+)γ̈1 = −4p2γ1γ2,

3‖φ‖2
L2(R+)γ̈2 = −2p2(γ2

1 − 3γ2
2). (3.4.30)

For N = 4, we have M0(γ) = 2p2(γ2
1γ2 + γ2

1γ3 − γ3
2 + 3γ2

2γ3 − 4γ3
3). Computing the

normalization conditions (3.4.18), we obtain the following finite-dimensional system of
degree three: 

‖φ‖2
L2(R+)γ̈1 = −4p2γ1(γ2 + γ3),

3‖φ‖2
L2(R+)γ̈2 = −2p2(γ2

1 − 3γ2
2 + 6γ2γ3),

3‖φ‖2
L2(R+)γ̈3 = −p2(γ2

1 + 3γ2
2 − 12γ2

3).
(3.4.31)

Remark 3.23. For N = 3, the zero point (γ1, γ2) = (0, 0) is the only equilibrium point
of system (3.4.30). For N = 4, the zero point (γ1, γ2, γ3) = (0, 0, 0) is located at the
intersections of three lines of equilibria of system (3.4.31): γ1 = 0, γ2 = 2γ3; γ1 = 3γ3,
γ2 = −γ3; and γ1 = −3γ3, γ2 = −γ3. The lines of equilibria correspond to the shifted
states in Lemma 2.9 studied in Chapter 4.

3.4.4 Expansion of the action functional Λ(Ψ)
Recall the action functional Λ(Ψ) = E(Ψ) + Q(Ψ), for which Φ is a critical point. By
using the scaling transformation (2.3.2), we continue the action functional for ω 6= 1
and define the following function:

∆(t) := E(Φω(t) + U(t) + iW (t))− E(Φ) (3.4.32)
+ω(t)

[
Q(Φω(t) + U(t) + iW (t))−Q(Φ)

]
.

As long as a priori bound (3.4.6) is satisfied, one can expand ∆ by using the primary
decomposition (3.4.7) as follows:

∆ = D(ω) + 〈L+(ω)U,U〉L2(Γ) + 〈L−(ω)W,W 〉L2(Γ) +Nω(U,W ), (3.4.33)

where the dependence of all quantities on t is ignored, D(ω) is defined by

D(ω) := E(Φω)− E(Φ) + ω [Q(Φω)−Q(Φ)] ,

and

Nω(U,W ) =

 o(‖U + iW‖2
H1(Γ)), p ∈

(
0, 1

2

)
,

O(‖U + iW‖3
H1(Γ)), p ≥ 1

2 ,

is a continuation of N(U,W ) defined by (2.4.2) with respect to ω.
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Since D′(ω) = Q(Φω) − Q(Φ) thanks to the variational characterization of Φω, we
have D(1) = D′(1) = 0, and

D(ω) = (ω − 1)2〈Φ, ∂ωΦω|ω=1〉L2(Γ) + D̃(ω), (3.4.34)

where D̃(ω) = O(|ω−1|3). Thanks to conservation of the energy E and mass Q defined
by (2.2.4) and to the phase invariance in the NLS, we represent ∆(t) in terms of the
initial data ω(0) = ω0 = 1, U(0) = U0, and W (0) = W0 as follows:

∆(t) = ∆0 + (ω(t)− 1) [Q(Φ + U0 + iW0)−Q(Φ)] , (3.4.35)

where

∆0 := E(Φ + U0 + iW0)− E(Φ) +Q(Φ + U0 + iW0)−Q(Φ) (3.4.36)

is a constant of motion.

Let us now consider the secondary decomposition (3.4.21)–(3.4.22). If the solution
given by (3.4.7) and (3.4.21) satisfies a priori bound (3.4.6) for some t0 > 0 and ε > 0,
then the coefficients of the secondary decomposition (3.4.21) are required to satisfy the
bound

|ω(t)− 1|+ ‖c(t)‖+ ‖b(t)‖+ ‖U⊥(t) + iW⊥(t)‖H1(Γ) ≤ Aε, t ∈ [0, t0], (3.4.37)

for an ε-independent constant A > 0. We substitute the secondary decomposition
(3.4.21)–(3.4.22) into the representation (3.4.33) and estimate the corresponding expan-
sion.

Lemma 3.24. Assume that ω ∈ R, c, b ∈ RN−1, and U⊥,W⊥ ∈ H1
Γ satisfy the bound

(3.4.37) for sufficiently small ε > 0. For every p ≥ 1
2 , there exists an ε-independent

constant A > 0 such that the representation (3.4.33) is expanded as follows:

∆ = D(ω) + 〈L+(ω)U⊥, U⊥〉L2(Γ) + 〈L−(ω)W⊥,W⊥〉L2(Γ)

+
N−1∑
j=1
〈W (j), U (j)〉L2(Γ)b

2
j +M0(c) + ∆̃(ω, c, b, U⊥,W⊥), (3.4.38)

with

|∆̃(ω, c, b, U⊥,W⊥)| ≤ A
(
µ(‖c‖) + ‖c‖2‖U⊥‖H1(Γ) + ‖U⊥‖3

H1(Γ) + |ω − 1|‖b‖2

+‖c‖‖b‖2 + ‖c‖‖W⊥‖2
H1(Γ) + ‖b‖2‖U⊥‖H1(Γ) + ‖U⊥‖H1(Γ)‖W⊥‖2

H1(Γ)

)
, (3.4.39)

where M0(c) is given by (3.3.8) and

µ(‖c‖) =
{

o(‖c‖3), p ∈
(

1
2 , 1

)
,

O(‖c‖4), p ≥ 1.
(3.4.40)
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Proof. For every p ≥ 1
2 , Taylor expansion of Nω(U,W ) yields

Nω(U,W ) = −2
3p(p+ 1)(2p+ 1)〈Φ2p−1U2, U〉L2(Γ) − 2p(p+ 1)〈Φ2p−1W 2, U〉L2(Γ) + Sω(U,W ),

where

Sω(U,W ) =

 o(‖U + iW‖3
H1(Γ)), p ∈

(
1
2 , 1

)
,

O(‖U + iW‖4
H1(Γ)), p ≥ 1.

is a continuation of S(U,W ) defined by (3.3.1) with respect to ω. The expansion (3.4.38)
holds by substituting of (3.4.21) into (3.4.33) and estimating the remainder terms thanks
to Banach algebra property of H1(Γ) and the assumption (3.4.37). Only the end-point
bounds are incorporated into the estimate (3.4.39).

We bring (3.4.35) and (3.4.38) together as follows:

∆0 −H0(c, b) = D(ω)− (ω − 1) [Q(Φ + U0 + iW0)−Q(Φ)] (3.4.41)
+〈L+(ω)U⊥, U⊥〉L2(Γ) + 〈L−(ω)W⊥,W⊥〉L2(Γ) + ∆̃(ω, c, b, U⊥,W⊥),

where H0(c, b) is given by (3.4.28). Recall that the energy E(Ψ) and mass Q(Ψ) are
bounded in H1

Γ, whereas Φ is a critical point of E under fixed Q. Thanks to the bound
(3.4.4) on the initial data, the orthogonality (3.4.5), and the representation (3.4.36),
there is an δ-independent constant A > 0 such that

|∆0|+ |Q(Φ + U0 + iW0)−Q(Φ)| ≤ Aδ2. (3.4.42)

Thanks to the representations (3.3.8) and (3.4.28), there is a generic constant A > 0
such that

|H0(c, b)| ≤ A
(
‖c‖3 + ‖b‖2

)
. (3.4.43)

The value of ω near ω0 = 1 and the remainder terms U⊥,W⊥ in the H1(Γ) norm can
be controlled in the time evolution of the NLS equation (2.2.1) by using the energy
expansion (3.4.41). The following lemma presents this result.

Lemma 3.25. Consider a solution to the NLS with p ≥ 1
2 given by (3.4.7) and (3.4.21)

with ω(t) ∈ C1([0, t0],R), c(t), b(t) ∈ C1([0, t0],RN−1), and U⊥(t),W⊥(t) ∈ C([0, t0], H1
Γ)

satisfying the bound (3.4.37) for sufficiently small ε > 0. Then, there exists an ε-
independent constant A > 0 such that for every t ∈ [0, t0],

|ω − 1|2 + ‖U⊥ + iW⊥‖2
H1(Γ) ≤ A

[
δ2 + |H0(c, b)|+ µ(‖c‖) + ‖c‖‖b‖2 + ‖b‖3

]
, (3.4.44)

where µ(‖c‖) is the same as in (3.4.40).

Proof. The bound on |ω − 1|2 follows from (3.4.34), (3.4.39), (3.4.41), and (3.4.42)
thanks to the positivity of D′′(1) = 2〈Φ, ∂ωΦω|ω=1〉L2(Γ). The bounds on ‖U⊥‖2

H1(Γ) and
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‖W⊥‖2
H1(Γ) follow from (3.4.39), (3.4.41), and (3.4.42) thanks to the coercivity of L+(ω)

and L−(ω) in Lemmas 3.18 and 3.19.

3.4.5 Closing the energy estimates
By Lemma 3.21, there exists a trajectory of the finite-dimensional system (3.4.26) near
the zero equilibrium which leaves the ε-neighborhood of the zero equilibrium. This
nonlinear instability developes over the time span [0, t0] with t0 = O(ε−1/2). The second
equation of system (3.4.26) shows that if γ(t) = O(ε) for t ∈ [0, t0] and t0 = O(ε−1/2),
then β(t) = O(ε3/2) for t ∈ [0, t0]. It is also clear that the scaling is consistent with the
first equation of system (3.4.26). The scaling suggests to consider the following region
in the phase space RN−1 × RN−1:

‖c(t)‖ ≤ Aε, ‖b(t)‖ ≤ Aε3/2, t ∈ [0, t0], t0 ≤ Aε−1/2, (3.4.45)

for an ε-independent constant A > 0. The region in (3.4.45) satisfies a priori assumption
(3.4.37) for c and b. The following result shows that a trajectory of the full system
(3.4.25) follows closely to the trajectory of the finite-dimensional system (3.4.26) in the
region (3.4.45).

Lemma 3.26. Consider a solution γ(t), β(t) ∈ C1([0, t0],RN−1) to the finite-dimensional
system (3.4.26) in the region (3.4.45) with sufficiently small ε > 0. Then, a solution
c(t), b(t) ∈ C1([0, t0],RN−1) to system (3.4.25) remains in the region (3.4.45) and there
exist an ε-independent constant A > 0 such that

‖c(t)− γ(t)‖ ≤ Aν(ε), ‖b(t)− β(t)‖ ≤ Aε1/2ν(ε), t ∈ [0, t0], (3.4.46)

where
ν(ε) =

{
o(ε), p ∈

(
1
2 , 1

)
,

O(ε3/2), p ≥ 1.
(3.4.47)

Proof. By the bounds (3.4.43) and (3.4.44), as well as a priori assumption (3.4.45), there
exists an (δ, ε)-independent constant A > 0 such that

|ω(t)− 1|+ ‖U⊥(t) + iW⊥(t)‖H1(Γ) ≤ A
(
δ + ε3/2

)
, t ∈ [0, t0]. (3.4.48)

It makes sense to define δ = O(ε3/2) in the bound (3.4.4) on the initial data, which
we will adopt here. By using the decomposition (3.4.21) and the bounds (3.4.45) and
(3.4.48) in (3.4.14), we get

|θ̇ − ω| ≤ Aε2, |ω̇| ≤ Aε5/2, (3.4.49)

for an ε-independent constant A > 0. By subtracting the first equation of system
(3.4.26) from the first equation of system (3.4.25), we obtain

ċj − γ̇j = bj − βj + [F (c, b)]j, (3.4.50)

43

http://www.mcmaster.ca/


Ph.D. Thesis – A. Kairzhan McMaster University– Mathematics

where the vector F (c, b) ∈ RN−1 satisfies the estimate

‖F (c, b)‖ ≤ Aε5/2, (3.4.51)

thanks to (3.4.15), (3.4.21), (3.4.48), and (3.4.49). By subtracting the second equation
of system (3.4.26) from the second equation of system (3.4.25), we obtain

ḃj − β̇j = [G(c, b)]j (3.4.52)

+p(p+ 1)(2p+ 1)
N−1∑
k=1

N−1∑
n=1

〈Φ2p−1U (k)U (n), U (j)〉L2(Γ)

〈W (j), U (j)〉L2(Γ)
(ckcn − γkγn)

where the vector G(c, b) ∈ RN−1 satisfies the estimate

‖G(c, b)‖ ≤ Aεν(ε), (3.4.53)

thanks to (3.4.16), (3.4.21), (3.4.48), and (3.4.49), where ν(ε) is given by (3.4.47).

Let us assume than γ(0) = c(0) and β(0) = β(0). Integrating equations (3.4.50) and
(3.4.52) over t ∈ [0, t0] with t0 ≤ Aε−1/2 in the region (3.4.45), we obtain

‖c(t)− γ(t)‖ ≤
∫ t

0
‖b(t′)− β(t′)‖dt′ + Aε2 (3.4.54)

and
‖b(t)− β(t)‖ ≤ Aε

∫ t

0
‖c(t′)− γ(t′)‖dt′ + Aε1/2ν(ε), (3.4.55)

for a generic ε-independent constant A > 0. Gronwall’s inequality for

‖b(t)− β(t)‖+ Aε1/2‖c(t)− γ(t)‖

yields (3.4.46).

Proof of Theorem 3.6. Let us consider the unstable solution (γ, β) to the finite-dimensional
system (3.4.26) according to Lemma 3.21. This solution belongs to the region (3.4.45).
By Lemma 3.26, the correction terms satisfy (3.4.46), hence the solution (c, b) to system
(3.4.25) also satisfies the bound (3.4.45) over the time span [0, t0] with t0 = O(ε−1/2).

By Lemma 3.25 and the elementary continuation argument, the components ω, U⊥,
and W⊥ satisfy the bound (3.4.48) with δ = O(ε3/2), so that the solution to the NLS
equation (2.2.1) given by (3.4.7) and (3.4.21) satisfies the bound (3.4.6) for t ∈ [0, t0].

Finally, the solution γ to the finite-dimensional system (3.4.26) grows in time and
reaches the boundary in the region (3.4.45) by Lemma 3.21. The same is true for the full
solution to the NLS equation (3.4.21) thanks to the bounds (3.4.46) and (3.4.48). Hence,
the solution starting with the initial data satisfying the bound (3.4.4) with δ = O(ε3/2)
reaches and crosses the boundary in (3.1.4) for some t0 = O(ε−1/2).
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Chapter 4

Spectral stability of shifted states
on star graphs

In this chapter we explore the NLS equation on star graphs with the generalized Kirch-
hoff boundary conditions in (2.1.1)–(2.1.2) satisfying the constraint (2.3.5). We study
the stability of shifted states, existence of which was obtained in Lemma 2.9.

In the variational characterization of NLS stationary states on star graphs, the shifted
states with α = 1 were mentioned in Remarks 5.3 and 5.4 in [4], where it was conjectured
that all shifted states are saddle points of the action functional and are thus unstable if
the even number of edges in the star graph exceeds two.

Here we will prove this conjecture with an explicit count of the Morse index for the
shifted states. By extending the Sturm theory to Schrödinger operators on the star
graph, we give a very precise characterization of the negative and zero eigenvalues of
the linearized Schrödinger operators, avoiding the theory of deficiency indices for star
graphs with point interactions [60]. As a result of our analysis, we prove that these
shifted states are saddle points of energy subject to fixed mass, which are spectrally
unstable under the NLS flow. In comparison, the half-soliton states are degenerate
saddle points of energy and they are spectrally stable but nonlinearly unstable under
the NLS flow.

We also show that the shifted states with α 6= 1 satisfy the reduction of the NLS
equation on the star graph to the homogeneous NLS equation on the infinite line. Nev-
ertheless, with one exception, for α 6= 1 the shifted states are spectrally unstable under
the NLS flow due to perturbations that break this reduction.

4.1 Main results
Let Γ be the star graph withN ≥ 2 infinite edges. Consider the scaled (ω = 1) stationary
NLS equation (2.3.3) with the domain H2

Γ as in (2.1.2), and assume that the coefficients
α = (α1, α2, . . . , αN) ∈ RN

+ in (2.1.2) satisfy the constraint (2.3.5) for some K. Let Φ
denote the shifted state solution given in Lemma 2.9.
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Let Ψ = Φ +U + iW with real valued U,W ∈ H2
Γ be the complex perturbation of Φ.

Substituting Ψ into the NLS equation (2.2.1), we obtain the linearized time evolution
system for the perturbation terms as in

d

dt

[
U
W

]
=
[

0 L−
−L+ 0

] [
U
W

]
, (4.1.1)

where the operators L+ and L− are equivalent to the Hessian operators in (2.4.3) and
(2.4.4), respectively, with ω = 1:

L+ = −∆ + 1− (2p+ 1)(p+ 1)α2pΦ2p : H2
Γ ⊂ L2(Γ)→ L2(Γ),

L− = −∆ + 1− (p+ 1)α2pΦ2p : H2
Γ ⊂ L2(Γ)→ L2(Γ).

The spectral stability of the shifted state Φ is related to the spectral problem associated
with the linearized system (4.1.1), and we define it as follows:

Definition 4.1. The shifted state Φ is spectrally stable if the spectrum of the spectral
problem

λ

[
U
W

]
=
[

0 L−
−L+ 0

] [
U
W

]
(4.1.2)

in L2(Γ) satisifes λ ∈ iR. If there exists λ with Re(λ) > 0, then Φ is spectrally
unstable.

Existence of unstable eigenvalues λ of the spectral problem (4.1.2) with Re(λ) > 0
depends on the number of negative eigenvalues of the operators L±. It is known from
[25], [36], [40] that the spectral problem (4.1.2) admits a positive real eigenvalue if
the Morse indices of the operator L− and constrained operator L+ differ by one. The
following theorem gives the explicit count of the Morse indices.

Theorem 4.2. Let Φ be a shifted state given by Lemma 2.9 with a 6= 0. Then σp(L−) ≥ 0
and 0 is a simple eigenvalue of L−, whereas the non-positive part of σp(L+) consists of
a simple eigenvalue λ0 < 0, another eigenvalue λ1 ∈ (λ0, 0) of multiplicity K − 1 for
a < 0 and N −K − 1 for a > 0, and a simple zero eigenvalue. The rest of σp(L−) and
σp(L+) is strictly positive and is bounded away from zero.

Remark 4.3. If a = 0, it was established in Corollary 3.9 that the non-positive part of
σp(L+) for the half-solitons (2.3.4) consists of a simple eigenvalue λ0 < 0 and a zero
eigenvalue of multiplicity N − 1.

By using the Theorem 1.2 in [36] (see also [40]), we can deduce spectral instability
of the shifted states from Theorem 4.2.

Corollary 4.4. If 1 < K < N − 1 in Lemma 2.9, the shifted states with a 6= 0 are
spectrally unstable in the time evolution of the NLS equation (2.2.1), in particular,
there exists real positive eigenvalues λ in the spectral stability problem (4.1.2). To be
precise, for p ∈ (0, 2), there exist K−1 real positive eigenvalues λ of the spectral stability
problem (4.1.2) for a < 0 and N −K − 1 real positive eigenvalues λ for a > 0.
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Remark 4.5. The result of Theorem 4.2 and Corollary 4.4 in case of α = 1 and
even N agrees with the qualitative picture described in Remark 5.3 in [4] and proves the
conjecture formulated in Remark 5.4 in [4] that all shifted states (2.3.10) given by Lemma
2.13 are unstable for all even N ≥ 4. In case N = 2, we have K = 1, and Theorem
4.2 implies that the shifted states are spectrally stable. In fact, since α1 = α2 by the
constraint (2.3.5), the spectrally stable shifted states are also orbitally stable because the
NLS equation on the star graph with N = 2 becomes equivalent to the NLS equation on
the real line.

Remark 4.6. By construction in Lemma 2.9, the shifted states with K = 1 and a > 0
are equivalent to the shifted states with K = N−1 and a < 0. In such case, by Theorem
4.2 and Theorem 1.2 in [36], the shifted state is spectrally stable. However, compared
to Remark 4.5, the orbital instability is more challenging problem since the orbit of the
shifted state has to be two-parametric due to phase rotation and translation in space,
whereas the star graph Γ with N ≥ 3 edges is not equivalent to the real line R. We
prove the orbital (nonlinear) instability of the spectrally stable shifted states in Chapter
5 analyzing symmetry breaking perturbations.

4.2 The count of the Morse index
This section is devoted to the proof of Theorem 4.2.

Since the discrete spectrum of the operator L− is described by Lemma 2.18 and
σc(L±) is given in (2.4.5), we are mainly concerned by the eigenvalues of L+ in (−∞, 1).
By using the results of Lemmas 2.19, 2.20, and 2.22, we determine the sufficient condi-
tions for the presence of eigenvalues in σp(L+).

Lemma 4.7. Let a ∈ R be arbitrary, and v be the solution defined by Lemma 2.19.
Then, λ∗ ∈ (−∞, 1) is an eigenvalue of σp(L+) if and only if one of the following
equations holds:

(a) v(a) = 0,

(b) v(−a) = 0,

(c) v(−a)v′(a) + v(a)v′(−a) = 0.

Moreover, λ∗ ∈ σp(L+) has multiplicity K − 1 in the case (a), N −K − 1 in the case
(b), and is simple in the case (c). If v satisfies several cases, then multiplicity of λ∗ is
the sum of the multiplicities in each case.

Proof. Let U ∈ H2
Γ be the eigenvector of the operator L+ for the eigenvalue λ∗ ∈ σp(L+).

By Sobolev embedding of H2(R+) into C1(R+), both U(x) and U ′(x) decay to zero as
x → +∞. By using the representation (2.3.6) and the transformation of (2.4.12) to
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(2.4.13), we can write U = (u1, . . . , uN)T in the form

uj(x) =

cjv(x+ a), j = 1, . . . , K,
cjv(x− a), j = K + 1, . . . , N,

where (c1, c2, . . . , cN) are coefficients and v is the solution defined in Lemma 2.19. The
boundary conditions for U ∈ H2

Γ in (2.1.1) and (2.1.2) imply the homogeneous linear
system on the coefficients on (c1, c2, . . . , cN):

c1α1v(a) = · · · = cKαKv(a) = cK+1αK+1v(−a) = · · · = cNαNv(−a) (4.2.1)

and
K∑
j=1

cjα
−1
j v′(a) +

N∑
j=K+1

cjα
−1
j v′(−a) = 0. (4.2.2)

The associated matrix is



α1v(a) −α2v(a) 0 . . . 0 0 . . . 0 0
α1v(a) 0 −α3v(a) . . . 0 0 . . . 0 0

...
...

... . . . ...
... . . . ...

...
α1v(a) 0 0 . . . −αKv(a) 0 . . . 0 0
α1v(a) 0 0 . . . 0 −αK+1v(−a) . . . 0 0

...
...

... . . . ...
... . . . ...

...
α1v(a) 0 0 . . . 0 0 . . . 0 −αNv(−a)
b1 b2 b3 . . . bK bK+1 . . . bN−1 bN


where

bj =
{
α−1
j v′(a), 1 ≤ j ≤ K
α−1
j v′(−a), K + 1 ≤ j ≤ N.

In order to calculate the determinant of the associate matrix, we perform elementary
column operations and obtain a lower triangular matrix. Let the associate matrix be
of the form [A0

1A
0
2 . . . A

0
N ], where A0

j represents the j-th column of the matrix in the
beginning of the algorithm. We perform the following elementary column operation:

[A0
1 A

0
2 A

0
3 . . . A

0
N ] −→ [A1

1 A
1
2 A

1
3 . . . A

1
N ] := [A0

1 A
0
2 + α−1

1 α2A
0
1 A

0
3 . . . A

0
N ],

then

[A1
1 A

1
2 A

1
3 . . . A

1
N ] −→ [A2

1 A
2
2 A

2
3 . . . A

2
N ] := [A1

1 A
1
2 A

1
3 + α−1

2 α3A
1
2 . . . A

1
N ],
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and so on, until the K-th step. At the K-th step, we need to take into account the
change of v(a) to v(−a) in the (K + 1)-th column, hence the K-th step involves

AK−1
K+1 −→ AKK+1 := AK−1

K+1 + αK+1v(−a)
αKv(a) AK−1

K .

At the (K + 1)-th and subsequent steps, no further changes of v(−a) occurs, so that we
apply the same rule as the one before the K-th step in all subsequent transformations.
Finally, after (N − 1) transformations, we obtain a lower triangular matrix in the form:



α1v(a) 0 0 . . . 0 0 . . . 0 0
α1v(a) α2v(a) 0 . . . 0 0 . . . 0 0
α1v(a) α2v(a) α3v(a) . . . 0 0 . . . 0 0

...
...

... . . . ...
... . . . ...

...
α1v(a) α2v(a) α3v(a) . . . αKv(a) 0 . . . 0 0
α1v(a) α2v(a) α3v(a) . . . αKv(a) αK+1v(−a) . . . 0 0

...
...

... . . . ...
... . . . ...

...
α1v(a) α2v(a) α3v(a) . . . αKv(a) αK+1v(−a) . . . αN−1v(−a) 0
B1 B2 B3 . . . BK BK+1 . . . BN−1 BN


where {Bj}Nj=1 are some numerical coefficients, in particular, B1 = α−1

1 v′(a) and

BN = αN
v(a)

 K∑
j=1

α−2
j v′(a)v(−a) +

N∑
j=K+1

α−2
j v′(−a)v(a)

 .
Under the constraint (2.3.5), the determinant of the lower triangular matrix is evaluated
in the form:

∆ =
 N∏
j=1

αj

 K∑
j=1

α−2
j

 v(a)K−1v(−a)N−K−1 [v(−a)v′(a) + v(a)v′(−a)] .

Therefore, U 6= 0 is the eigenvector of L+ for the eigenvalue λ∗ ∈ (−∞, 1) if and only if
∆ = 0, or equivalently, if either v(a) = 0 or v(−a) = 0 or v(−a)v′(a) + v(a)v′(−a) = 0.

In the case of v(a) = 0 and v(−a) 6= 0, it follows from the linear system (6.3.4) that
cj = 0 for all K + 1 ≤ j ≤ N and cj ∈ R are arbitrary for all 1 ≤ j ≤ K. The linear
equation (6.3.5) implies that ∑K

j=1 cjα
−1
j = 0, since v′(a) 6= 0 when v(a) = 0. Therefore,

the eigenvalue λ∗ has a multiplicity K − 1.

Similarly, the eigenvalue λ∗ has a multiplicity N −K − 1 if v(a) 6= 0 and v(−a) = 0.

In the case v(−a)v′(a) + v(a)v′(−a) = 0 but v(a) 6= 0 and v(−a) 6= 0, the linear
system (6.3.4) implies that all coefficients are related to one coefficient. The linear
equation (6.3.5) is then satisfied due to the constraint (2.3.5), hence λ∗ is a simple
eigenvalue.
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If several cases are satisfied simultaneously, then it follows from the linear system
(6.3.4) and (6.3.5) that multiplicity of λ∗ is equal to the sum of the multiplicities for
each of the cases.

Proof of Theorem 4.2. The result on σp(L−) is proved in Lemma 2.18. The construction
of σp(L+) follows from Lemma 4.7.

The condition (c) in Lemma 4.7 is satisfied if the solution v in Lemma 2.19 is either
odd or even function of a. For the simple eigenvalue λ0 < 0 in Lemma 2.20, the
eigenfunction is even and positive. Hence, v(a) 6= 0 and v(−a) 6= 0, so that λ0 is a
simple eigenvalue in σp(L+) by the case (c) in Lemma 4.7. The corresponding eigenvector
U ∈ H2

Γ is strictly positive definite on Γ.

For the simple zero eigenvalue in Lemma 2.20, the eigenfunction (2.4.20) is odd and
positive on (−∞, 0). Since v(a) 6= 0 and v(−a) 6= 0 if a 6= 0. then 0 is a simple
eigenvalue in σ+(L+) by the case (c) in Lemma 4.7. The corresponding eigenvector
U ∈ H2

Γ can be represented in the form:

U(x) =

α
−1
j φ′(x+ a), j = 1, . . . , K
−α−1

j φ′(x− a), j = K + 1, . . . , N
. (4.2.3)

which represent the translation of the shifted state (2.3.6) with respect to parameter a.

No other values of λ exists in (−∞, λ2) such that the condition (c) in Lemma 4.7
is satisfied, where λ2 > 0 is either the positive eigenvalue of the scalar Schrödinger
equation (2.4.13) or the bottom of σc(L+) at λ2 = 1.

If a > 0, then we claim that v(a) > 0 for every λ ∈ (−∞, 0]. Indeed, by Lemma 2.22,
simple zeros of v are monotonically increasing functions of λ, whereas no multiple zeros
of v may exist for a nonzero solution of the second-order differential equation. Since the
only zero of v bifurcates from x = −∞ at λ = λ0 < 0 and reaches x = 0 at λ = 0, v(x)
remains positive for every x > 0 for λ ∈ (−∞, 0]. Hence the condition (a) in Lemma
4.7 is not satisfied for every λ ∈ (−∞, 0].

We now consider vanishing of v(−a) for a > 0 for the condition (b) in Lemma 4.7. By
the same continuation argument from Lemma 2.22, there exists exactly one λ1 ∈ (λ0, 0)
such that v(−a) = 0 for any given a > 0. Since v′(−a) 6= 0 and v(a) 6= 0, λ1 is an
eigenvalue of σp(L+) of multiplicity N −K − 1.

For a < 0, the roles of cases (a) and (b) are swapped. The condition (b) is never
satisfied, while the condition (a) is satisfied for exactly one λ1 ∈ (λ0, 0), which becomes
an eigenvalue of σp(L+) of multiplicity K − 1. The assertion of Theorem 4.2 is proved.

Remark 4.8. By Remark 2.21, the solution v in Lemma 2.19 for p = 1 is available
in the closed analytic form, and has a simple negative eigenvalue λ0 = −3 with the
corresponding eigenvector v(x) = 1

4 sech2 x and a simple zero eigenvalue corresponding
to v(x) = 1

2 tanh x sech x. If a 6= 0, the negative eigenvalue λ1 ∈ (λ0, 0) in the proof of
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Theorem 4.2 is given by the root of the following equation

3− λ− 3
√

1− λ tanh |a| − 3sech2(a) = 0,

or explicitly, by
λ1 = −3

2 tanh |a|
[
tanh |a|+

√
1 + 3 sech2(a)

]
,

We note that λ1 → 0 when a→ 0 and λ1 → λ0 = −3 when |a| → ∞.

4.3 Morse index = Sturm index
Definition 4.9. Let the first nonnegative discrete eigenvalue λ of the operator L+ be
simple. Then, we define the Sturm index of the operator L+ as the number of nodes
of the eigenfunction corresponding to the eigenvalue λ.

One of the consequences of the well-known Sturm comparison theorem (see e.g. [23,
76]) is that the Morse index of Schrödinger operators on the real line is equal to the
number of eigenfunction nodes correponding to its first nonnegative eigenvalue. In the
case of the NLS equation with a power-type nonlinearity on the real line, the equivalence
was used, for example, in the works of Weinstein [78, 79]. Theorem 4.2 confirms the
equality for the operator L+ by considering the star graph Γ with N = 2 edges. In this
case, we have K = 1 and α1 = α2 by (2.3.5), and the NLS equation on the star graph
with N = 2 becomes equivalent to the NLS equation R. As a result, applying Theorem
4.2 with an arbitrary a 6= 0, the Morse index of L+ is equal to 1, which coincides with
the number of nodes of the eigenfunction (4.2.3) corresponding to the first nonnegative
eigenvalue of L+, namely λ = 0.

Considering the operators L− and L+ on the star graph with even N edges, we can
observe the relation of the structure of the shifted states on the graph model with the
case on the real line. If N is even, the graph can be considered as a set of K = N/2
copies of the real line and the shifted state can be interpreted as K = N/2 identical
solitary waves on each real line translated by the shift parameter a ∈ R. Since L−
is positive at each solitary wave with a simple zero eigenvalue and L+ has a simple
negative and a simple zero eigenvalue at each solitary wave for a 6= 0, the number of
zeros for the eigenfunction (4.2.3) gives N/2 negative eigenvalues (with the account of
their multiplicity), in agreement with the statement of Theorem 4.2.

For a general case of a bounded star graph with an arbitrary number of edges N ≥ 3,
the equality of the Morse index of Schrödinger operators with the number of eigenfunc-
tion nodes corresponding to its first nonnegative eigenvalue was obtained in [14, 69],
because the Betti number of the star graph is zero. Although the previous result was
proven only for compact star graphs, the result of Theorem 4.2 confirms the equality for
the operator L+ on the unbounded star graph also. By the count of Theorem 4.2, the
Morse index of L+ is K if a < 0 and N −K if a > 0. On the other hand, the number of
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zeros for the eigenfunction (4.2.3) corresponding to the eigenvalue λ = 0 is K if a < 0
and N −K if a > 0. Hence, the two indices are equal to each other for a 6= 0.

4.4 Homogenization of the star graph
The translational symmetry of the infinite line R is broken in the star graph Γ due to
the vertex at x = 0. As a result, a momentum functional is not generally conserved
under the NLS flow. However, we will show here that if the coefficients (α1, α2, . . . , αN)
satisfy the constraint (2.3.5), then there exist solutions to the NLS equation (2.2.1), for
which the following momentum functional is conserved:

P (Ψ) :=
N∑
j=1

(−1)mj
∫
R+

Im
(
ψ′jψj

)
dx, (4.4.1)

where the N -tuple (m1,m2, . . . ,mN) is given by (2.3.8). The following lemma yields the
momentum balance equation.

Lemma 4.10. For every p > 0 and every (α1, α2, . . . , αN) satisfying the constraint
(2.3.5), the local solution (2.2.3) in Lemma 2.3 satisfies the following momentum balance
equation:

d

dt
P (Ψ) =

N∑
j=1

(−1)mj |ψ′j(0)|2. (4.4.2)

for all t ∈ (−t0, t0), where P is given by (4.4.1).

Proof. If p ≥ 1, we can consider the smooth solutions (2.2.7) to the NLS equation (2.2.1)
in H3

Γ and compute the following momentum balance equation for P in (4.4.1):

d

dt
P (Ψ) =

N∑
j=1

(−1)mj
∫
R+

Im
(
ψ′j∂tψj + ψj∂tψ

′
j

)
dx. (4.4.3)

By substituting the NLS equation (2.2.1) into (4.4.3), we integrate by parts and obtain:

d

dt
P (Ψ) =

N∑
j=1

(−1)mj
∫
R+

Re
(
ψjψ

′′′
j − ψ′jψ

′′
j + pα2p

j (|ψj|2p+2)′
)
dx

=
N∑
j=1

(−1)mj
(
−Re[ψj(0)ψ′′j (0)] + |ψ′j(0)|2 − pα2p

j |ψj(0)|2p+2
)
,

where the decay of Ψ(x), Ψ′(x), and Ψ′′(x) to zero at infinity has been used for the
solution in H3

Γ. Applying the boundary conditions in (2.1.1) and (2.2.6), the constraint
(2.3.5), and the choice of values of mj in (2.3.8) yields the momentum balance equation
in the form (4.4.2).
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Although our derivation was restricted to the case p ≥ 1 and to solutions in H3
Γ,

the proof can be extended to the local solution (2.2.3) for all values of p > 0 by using
standard approximation techniques [20].

The momentum P (Ψ) is conserved in t if the boundary conditions for derivatives
satisfy the additional constraints:

(−1)m1α1ψ
′
1(0) = (−1)m2α2ψ

′
2(0) = · · · = (−1)mNαNψ′N(0), (4.4.4)

which are compatible with the boundary conditions in (2.1.2) under the constraint
(2.3.5). Indeed, equation (4.4.2) with the constraint (4.4.4) yields:

d

dt
P (Ψ) = (−1)m1α2

1|ψ′1(0)|2
 K∑
j=1

1
α2
j

−
N∑

j=K+1

1
α2
j

 = 0,

hence P (Ψ) is conserved in t.

In order to make sure that the constraint (4.4.4) is satisfied for every t, we observe the
following reduction of the NLS equation (2.2.1) on the star graph Γ to the homogeneous
NLS equation on the infinite line R.

Lemma 4.11. Under the constraint (2.3.5), there exist solutions of the NLS equation
(2.2.1) on the graph Γ which satisfy the the following homogeneous NLS equation on the
infinite line:

iUt + Uxx + (p+ 1) |U |2p U = 0, x ∈ R, t ∈ R, (4.4.5)

where U = U(t, x) ∈ C.

Proof. The class of suitable solutions Ψ to the NLS equation (2.2.1) on the star graph
Γ must satisfy the following reduction:{

α1ψ1(t, x) = · · · = αKψK(t, x),
αK+1ψK+1(t, x) = · · · = αNψN(t, x), x ∈ R+, t ∈ R, (4.4.6)

subject to the boundary conditions at the vertex point x = 0:

αKψK(t, 0) = αK+1ψK+1(t, 0), αK∂xψK(t, 0) = −αK+1∂xψK+1(t, 0). (4.4.7)

Note that the boundary conditions (4.4.6) and (4.4.7) are compatible with the general-
ized Kirchhoff boundary conditions in (2.1.2) under the constraint (2.3.5). Thanks to
the reduction (4.4.6), the following function can be defined on the infinite line:

U(t, x) :=

αjψj(t,−x), 1 ≤ j ≤ K, x ∈ R−,
αjψj(t, x), K + 1 ≤ j ≤ N, x ∈ R+.

(4.4.8)
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Thanks to the boundary conditions (4.4.7), U is a C1 function across x = 0. Substitution
(4.4.8) into the NLS equation (2.2.1) on the graph Γ yields the homogeneous NLS
equation (4.4.5), where the point x = 0 is a regular point on the infinite line R.

Remark 4.12. The shifted state (2.3.6) corresponds to the NLS soliton in the homo-
geneous NLS equation (4.4.5), which is translational invariant along the line R. The
eigenvalue count of Theorem 4.2 and the instability result of Corollary 4.4 are related to
the symmetry-breaking perturbations, which do not satisfy the reduction (4.4.6). These
perturbations satisfy the NLS equation (2.2.1) on the graph Γ but do not satisfy the ho-
mogeneous NLS equation (4.4.5) on the line R. Such symmetry-breaking perturbations
were not considered in the numerical experiments in [66, 72, 73].

4.5 Variational characterization of the shifted states
Here we give a simple argument suggesting that the spectrally stable shifted states with
K = 1 and a < 0 in Remark 4.6 are nonlinearly unstable under the NLS flow. This
involves the variational characterization of the shifted states in the graph Γ as critical
points of energy under the fixed mass, where the mass and energy are defined by (2.2.4).

The mass and energy are computed at the shifted states (2.3.6) as follows:

Q(Φ) =
 K∑
j=1

α−2
j

 ‖φ‖2
L2(R) (4.5.1)

and

E(Φ) =
 K∑
j=1

α−2
j

(‖φ′‖2
L2(R) − ‖φ‖

2p+2
L2p+2(R)

)
, (4.5.2)

where the constraint (2.3.5) has been used. In the case K = 1, the mass and energy at
the shifted states is the same as the mass and energy of a free solitary wave escaping
to infinity along the only incoming edge. This property signals out that the infimum of
energy is not achieved, as is discussed in [7].

Furthermore, the constraint (2.3.5) implies that α2, . . . , αN > α1 (if N ≥ 3). Pick
the j-th outgoing edge for 2 ≤ j ≤ N and fix the mass at the level µ > 0. Then, it is
well-known [7] that the energy of a free solitary wave escaping to infinity along the j-th
outgoing edge is given by

Ej = −Cpα
4p

2−p
j µ

p+2
2−p < −Cpα

4p
2−p
1 µ

p+2
2−p = E(Φ), (4.5.3)

where p ∈ (0, 2) and Cp is a universal constant that only depends on p. Thus, a free
solitary wave escaping the graph Γ along any outgoing edge has a lower energy level
at fixed mass compared to the shifted state. This suggests that any shifted state is
energetically unstable.

54

http://www.mcmaster.ca/


Ph.D. Thesis – A. Kairzhan McMaster University– Mathematics

Let us now give a simple argument suggesting nonlinear instability of the shifted
states (2.3.6) with K = 1 and a < 0 under the NLS flow. If K = 1, it follows from the
momentum balance equation (4.4.2) in Lemma 4.10 that the momentum P (Ψ) defined
by (4.4.1) is an increasing function of time if m1 = 1 and a decreasing function of time
if m1 = 0, for the two choices in (2.3.8). Indeed, we obtain the following chain of
transformations by using the boundary conditions in (2.1.2) and the constraint (2.3.5):

d

dt
P (Ψ) = (−1)m1+1

 N∑
j=2
|ψ′j(0)|2 −

N∑
j=2

N∑
i=2

α2
1

αjαi
ψ′j(0)ψi

′(0)
 (4.5.4)

= (−1)m1+1

 N∑
j=2

N∑
i=2
i 6=j

α2
1
α2
i

|ψ′j(0)|2 −
N∑
j=2

N∑
i=2
i 6=j

α2
1

αjαi
ψ′j(0)ψi

′(0)


= 1

2(−1)m1+1
N∑
j=2

N∑
i=2
i 6=j

α2
1

α2
jα

2
i

∣∣∣αjψ′j(0)− αiψ′i(0)
∣∣∣2

Hence d
dt
P (Ψ) ≥ 0 if m1 = 1 and d

dt
P (Ψ) ≤ 0 if m1 = 0.

Since the shifted states (2.3.6) satisfies P (Φ) = 0, monotonicity of the momentum
P (Ψ) in time t immediately implies nonlinear instability of the shifted states (2.3.6) with
a < 0 under the NLS flow, despite that these shifted states are spectrally stable. Indeed,
if a < 0 (or m1 = 1), the value of the momentum P (Ψ) is monotonically increasing in
time as soon as the right-hand side of (4.5.4) is nonzero. Therefore, if P (Ψ) is initially
near zero, which is the value of P (Φ) for every shifted state (2.3.6) with a ∈ R, then
P (Ψ) grows far away from the zero value. By this simple argument, we expect that the
branch of shifted states (2.3.6) with K = 1 and a < 0 is nonlinearly unstable under the
NLS flow. We give a rigorous proof of this observation in Chapter 5.
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Chapter 5

Drift of spectrally stable shifted
states

In Chapter 4, we proved that the shifted states on star graphs with exactly K = 1
incoming edge and N − 1 outgoing edges are spectrally stable if their monotonic tails
are located on the outgoing edges, see Figure 5.1. These shifted states are constrained
minimizers of the energy and the only degeneracies of the second variation of energy
are due to phase rotation and the spatial translation of the shifted state along the star
graph. However, in contrast to the well-known result, that standing waves in the NLS
equation on the real line with symmetry-related degeneracies are orbitally stable, we
show in this paper that the shifted states are orbitally unstable in the NLS equation on
the star graph.

 

 

                                

                     ∞ 

           

                                                                                     

        −∞            ∞ 

                                                                                   0          

                                                                                                        

            ∞ 

 

 

 

Figure 5.1: A shifted state on a star graph with one incoming and three
outgoing edges. The shifted state has symmetric monotonic tails on the
outgoing edges and a non-monotonic tail on the incoming edge.

The instability is related to the following observation. The shifted state is symmetric
with respect to the exchange of components on the outgoing edges. If the initial per-
turbation to the shifted state preserves this symmetry, then the NLS on the balanced
star graph can be reduced to the NLS equation on a line, and the solution of the time
evolution problem has translational symmetry. Perturbations that lack this exchange
symmetry also break the translational symmetry and the solution fails to conserve mo-
mentum. Moreover, the value of the momentum functional increases monotonically in
the time flow of the NLS equation and this monotone increase results in the irreversible
drift of the shifted state along the incoming edge towards the outgoing edges of the
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balanced star graph. When the center of mass of the shifted state reaches the vertex,
the shifted state becomes a saddle point of energy under the fixed mass. At this point
in time, orbital instability of the shifted state develops as a result of the saddle point
geometry similar to the instability studied in Chapter 3.

The main novelty of this result is that degeneracy of the positive second variation of
energy may lead to orbital instability of constrained minimizers if this degeneracy is not
related to the symmetry of the Hamiltonian PDE. The orbital instability appears due
to irreversible drift of shifted states from a spectrally stable state towards the orbitally
unstable states.

5.1 Main results
For simplicity, consider the cubic (p = 1) NLS equation (2.2.1) on the star graph Γ with
N ≥ 3 edges given by

i
∂Ψ
∂t

= −∆Ψ− 2α2|Ψ|2Ψ, (5.1.1)

In the construction of the graph Γ, we change the parametrization of half-lines, so that
one edge represents an incoming bond and the remaining N−1 edges represent outgoing
bonds. We place the vertex at the origin and parameterize the incoming edge by R−
and the N − 1 outgoing edges by R+. We assume the coefficients (α1, α2, . . . , αN) in
(2.1.1)–(2.1.2) satisfy the constraint (2.3.5) with K = 1, and we set the incoming edge
to be the edge, where the NLS equation is given by (2.2.2) with j = 1. The star graph
Γ with one incoming and three outgoing edges is illustrated on Fig. 5.1.

The new parametrization changes the structures of spaces and the boundary condi-
tions compared to the definitions in Section 2.1. That is, we re-define the Hilbert space
L2(Γ) as

L2(Γ) = L2(R−)⊕ L2(R+)⊕ · · · ⊕ L2(R+)︸ ︷︷ ︸
(N-1) elements

, (5.1.2)

and Sobolev spaces Hk(Γ) as

Hk(Γ) = Hk(R−)⊕Hk(R+)⊕ · · · ⊕Hk(R+)︸ ︷︷ ︸
(N-1) elements

for k = 1, 2. The generalized Kirchhoff boundary conditions in (2.1.1)–(2.1.2) become
equivalent to

H1
Γ := {Ψ ∈ H1(Γ) : α1ψ1(0) = α2ψ2(0) = · · · = αNψN(0)} (5.1.3)

and

H2
Γ :=

Ψ ∈ H2(Γ) ∩H1
Γ : α−1

1 ψ′1(0) =
N∑
j=2

α−1
j ψ′j(0)

 . (5.1.4)
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where derivatives are defined as limx→0− for the incoming edge and limx→0+ for the
(N − 1) outgoing edges.

Under such configuration, we can re-write the shifted states Φ(x; a) with ω = 1 given
in Lemma 2.9 as

φj(x; a) = α−1
j φ(x+ a), 1 ≤ j ≤ n, (5.1.5)

with φ(x) = sech(x). Here, we also replace the parameter a ∈ R in Lemma 2.9 by
−a ∈ R for convenience.

Remark 5.1. As a result of re-parametrization of Γ, φ1(x) in (5.1.5) is defined for
x ∈ R−, while all other φj(x) are defined for x ∈ R+.

The shifted state (5.1.5) with K = 1 satisfies the symmetry (4.4.6). Under the
symmetry, the free parameter a in the family of shifted states (5.1.5) is related to the
translational symmetry of the NLS equation (5.1.1) in x. However, the translational
symmetry is broken for the NLS equation (5.1.1) on the star graph Γ due to the vertex
at x = 0. As a result, the momentum functional P (Ψ)

P (Ψ) := Im〈Ψ′,Ψ〉L2(Γ) =
∫
R−

Im
(
ψ′1ψ1

)
dx+

N∑
j=2

∫
R+

Im
(
ψ′jψj

)
dx (5.1.6)

is no longer constant under the time flow of (5.1.1). Note that (5.1.6) is obtained
from (4.4.1) after the parametrization (5.1.2) applied. By (4.5.4), for every strong
solution Ψ ∈ C(R, H2

Γ) ∩ C1(R, L2(Γ)) to the NLS equation (5.1.1) the map t 7→ P (Ψ)
is monotonically increasing, thanks to the following inequality:

d

dt
P (Ψ) = 1

2

N∑
j=2

N∑
i=2
i 6=j

α2
1

α2
jα

2
i

∣∣∣αjψ′j(0)− αiψ′i(0)
∣∣∣2 ≥ 0. (5.1.7)

If the strong solution Ψ satisfies the symmetry (4.4.6) with K = 1, then P (Ψ) is con-
served in time.

In Section 4.5 we presented simple arguments on nonlinear instability of the shifted
state Φ(·; a) given in (5.1.5), which we rigorously prove below. First, we give the follow-
ing definition of nonlinear instability of a shifted state Φ(·; a).

Definition 5.2. Fix a ∈ R. The shifted state Φ(·; a) is said to be nonlinearly unstable
in H1

Γ if there exists ε > 0 such that for every δ > 0 there exists an initial datum Ψ0 ∈ H1
Γ

satisfying
‖Ψ0 − Φ(·; a)‖H1(Γ) ≤ δ

and T > 0 such that the unique global solution Ψ ∈ C(R, H1
Γ) ∩ C1(R, H−1

Γ ) to the NLS
equation (5.1.1) with Ψ(0, ·) = Ψ0 satisfies

inf
θ∈R
‖Ψ(T, ·)− eiθΦ(·; a)‖H1(Γ) > ε.
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Our first main result shows that the monotone increase of the map t 7→ P (Ψ) as in
(5.1.7) leads to a drift along the family of shifted states (5.1.5) in which the parameter
a decreases monotonically in t towards a = 0. This drift induces nonlinear instability
of the spectrally stable shifted states in Lemma 2.9 with a > 0 according to Definition
5.2. The following theorem formulates the result.

Theorem 5.3. Fix a0 > 0. For every a ∈ (0, a0) there exists ε0 > 0 (sufficiently small)
such that for every ε ∈ (0, ε0), there exists δ > 0 and T > 0 such that for every initial
datum Ψ0 ∈ H1

Γ satisfying
‖Ψ0 − Φ(·; a0)‖H1(Γ) ≤ δ (5.1.8)

and P (Ψ0) ≥ C0δ for some independent constant C0 > 0, the unique global solution
Ψ ∈ C(R, H1

Γ) ∩ C1(R, H−1
Γ ) to the NLS equation (5.1.1) with Ψ(0, ·) = Ψ0 satisfies

inf
θ∈R
‖Ψ(t, ·)− eiθΦ(·; a(t))‖H1(Γ) ≤ ε, t ∈ [0, T ], (5.1.9)

where a ∈ C1([0, T ]) is a strictly decreasing function such that limt→T a(t) = a.

By Theorem 5.3, the shifted state (5.1.5) with a > 0 drifts towards the half-soliton
state with a = 0. The half-soliton state is more degenerate than the shifted state
with a > 0 because the zero eigenvalue of the linearized operator to the stationary NLS
equation (2.3.3) is simple for a > 0 and has multiplicity N−1 for a = 0. Moreover, while
the shifted state Φ(·; a) with a > 0 is a degenerate minimizer of the action functional
Λω=1(Ψ) = E(Ψ) + Q(Ψ), the half-soliton state Φ0 := Φ(·; a = 0) is a degenerate
saddle point of the same action functional. The following theorem shows the nonlinear
instability of the half-soliton state according to Definition 5.2. This nonlinear instability
is related to the saddle point geometry of the critical point Φ0.

Theorem 5.4. Denote Φ0 := Φ(·; a = 0). There exists ε > 0 such that for every
small δ > 0 there exists V ∈ H1

Γ with ‖V ‖H1
Γ
≤ δ such that the unique global solution

Ψ ∈ C(R, H1
Γ)∩C1(R, H−1

Γ ) to the NLS equation (5.1.1) with the initial datum Ψ(0, ·) =
Φ + V satisfies

inf
θ∈R
‖e−iθΨ(T, ·)− Φ‖H1(Γ) > ε for some T > 0. (5.1.10)

Remark 5.5. The result of Theorem 5.4 is very similar to the instability result in
Theorem 3.6.

5.2 Linear estimates
Recall that the scaling transformation (2.3.2) converts the normalized shifted states Φ
in (5.1.5) to the ω-dependent family Φω of the shifted states. We note the following
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elementary computations:

D1(ω) = −〈Φω(·; a), ∂ωΦω(·; a)〉L2(Γ) = −1
2
d

dω
‖Φω‖2

L2(Γ) = − 1
2α2

1ω
1
2

(5.2.1)

and

D2(ω) = −〈Φ′ω(·; a), (·+ a)Φω(·; a)〉L2(Γ) = 1
2‖Φω‖2

L2(Γ) = ω
1
2

α2
1
. (5.2.2)

We discuss separately the linearization of the shifted state with a 6= 0 and the half-soliton
state with a = 0.

5.2.1 Linearization at the shifted state with a 6= 0
For every standing wave solution Φω(·; a) we recall two self-adjoint linear operators
L±(ω, a) : H2

Γ ⊂ L2(Γ)→ L2(Γ) given in (2.4.3)–(2.4.4):{
L−(ω, a) = −∆ + ω − 2α2Φω(·; a)2,
L+(ω, a) = −∆ + ω − 6α2Φω(·; a)2.

We recall the spectral properties of these operators for general ω > 0.

The continuous spectrum is strictly positive thanks to the fast exponential decay of
Φω(x; a) to zero as |x| → ∞ and Weyl’s Theorem:

σc(L±(ω, a)) = [ω,∞)

with ω > 0. The discrete spectrum σp(L±(ω, a)) ⊂ (−∞, ω) includes finitely many
negative, zero, and positive eigenvalues of finite multiplicities.

Eigenvalues of σp(L+(ω, a)) ⊂ (−∞, ω) are known explicitly, see Remarks 2.21 and
4.8. For ω = 1, these eigenvalues are given by:

• a simple negative eigenvalue λ0 = −3;

• a zero eigenvalue λ = 0 which is simple when a 6= 0;

• the additional eigenvalue λ = λ1(a) of multiplicity N − 2 given by

λ1(a) = −3
2 tanh(a)

[
tanh(a)−

√
1 + 3 sech(a)

]
. (5.2.3)

It is negative for a < 0, zero for a = 0, and positive for a ∈ (0, a∗), where
a∗ = tanh−1

(
1√
3

)
≈ 0.66. The eigenvalue merges into the continuous spectrum as

a↗ a∗.

The spectrum of L+(ω, a) for ω = 1 is illustrated in Fig. 5.2.
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Figure 5.2: The spectrum of L+(ω, a) for ω = 1. The continuous
spectrum is [1,∞), while the discrete spectrum is given by the eigenvalues
λ = 0, λ = −3, and λ = λ1(a) in (5.2.3).

Eigenvalues of σp(L−(ω, a)) ⊂ (−∞, ω) are non-negative and the zero eigenvalue is
simple, see Lemma 2.18. If a 6= 0, the zero eigenvalues of L+(ω, a) and L−(ω, a) are
each simple with the eigenvectors given by

L+(ω, a)Φ′ω(·; a) = 0, L−(ω, a)Φω(·; a) = 0. (5.2.4)

The eigenvectors in (5.2.4) induce the generalized eigenvectors in

L+(ω, a)∂ωΦω(·; a) = −Φω(·; a), L−(ω, a)(·+ a)Φω(·; a) = −2Φ′ω(·; a). (5.2.5)

The following lemma gives coercivity of the quadratic forms associated with the opera-
tors L+(ω, a) and L−(ω, a) for a > 0.

Lemma 5.6. For every ω > 0 and a > 0, there exists a positive constant C(ω, a) such
that

〈L+(ω, a)U,U〉L2(Γ) + 〈L−(ω, a)W,W 〉L2(Γ) ≥ C(ω, a)‖U + iW‖2
H1(Γ) (5.2.6)

if U and W satisfy the orthogonality conditions
〈W,∂ωΦω(·; a)〉L2(Γ) = 0,
〈U,Φω(·; a)〉L2(Γ) = 0,
〈U, (·+ a)Φω(·; a)〉L2(Γ) = 0,

(5.2.7)

Proof. The first orthogonality condition in (5.2.7) shifts the lowest (zero) eigenvalue of
L−(ω, a) to a positive eigenvalue thanks to the condition (5.2.1) (see Lemma 3.19) and
yields by Gårding’s inequality the following coercivity bound

〈L−(ω, a)W,W 〉L2(Γ) ≥ C(ω)‖W‖2
H1(Γ)
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independently of a. The second orthogonality condition in (5.2.7) shifts the lowest
(negative) eigenvalue of L+(ω, a) to a positive eigenvalue thanks to the same condition
(5.2.1) (see Lemma 3.11) and yields

〈L+(ω, a)U,U〉L2(Γ) ≥ 0

with 〈L+(ω, a)U,U〉L2(Γ) = 0 if and only if U is proportional to Φ′ω(·; a). The zero
eigenvalue of L+(ω, a) is preserved by the constraint since

〈Φω(·; a),Φ′ω(·; a)〉L2(Γ) = 0.

Finally, the third orthogonality condition in (5.2.7) shifts the zero eigenvalue of L+(ω, a)
to a positive eigenvalue thanks to the condition (5.2.2). By Gårding’s inequality, this
yields the coercivity bound

〈L+(ω, a)U,U〉L2(Γ) ≥ C(ω, a)‖U‖2
H1(Γ),

where C(ω, a) depends on a because the gap between the zero eigenvalue and the rest
of the positive spectrum in σp(L+(ω, a)) exists for a > 0 but vanishes as a→ 0.

Remark 5.7. For every ω > 0, the positive constant C(ω, a) in (5.2.6) satisfies

C(ω, a)→ 0 as a↘ 0.

This is because the zero eigenvalue in σp(L+(ω, a = 0)) has multiplicity (N − 1) and the
(N−2) eigenvectors of L+(ω, a = 0) satisfy the last two orthogonality conditions (5.2.7)
as is seen from the proof of Lemma 5.11.

Remark 5.8. For a < 0, the result of Lemma 5.6 is false because σp(L+(ω, a)) includes
another negative eigenvalue as is seen from Fig. 5.2.

Remark 5.9. The orthogonality conditions in (5.2.7) are typically referred to as the
symplectic orthogonality conditions, because they express orthogonality of the residual
terms U and W for the real and imaginary parts of the perturbation to Φω(·; a) to the
eigenvectors and generalized eigenvectors of the spectral stability problem expressed by
L+(ω, a) and L−(ω, a) and the symplectic structure of the NLS equation. Compared to
the classical approach of four orthogonality conditions and four parameters of modulated
states [78], we do not use the orthogonality condition 〈W,Φ′ω(·; a)〉L2(Γ) = 0 and work
with three parameters for modulations of the orbit {eiθΦω(·; a)}θ∈R,a∈R+,ω∈R+. The reason
for this is that the coercivity (5.2.6) is already obtained under the three orthogonality
conditions (5.2.7) and that it is difficult to control the fourth parameter, corresponding
to the velocity of the shifted state, with the energy method.
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5.2.2 Linearization at the half-soliton state
For a = 0, we denote operators L±(ω) ≡ L±(ω, a = 0). The kernel of the operator L+(ω)
is spanned by an orthogonal basis consisting of N − 1 eigenvectors, which we denote by
{U (1)

ω , U (2)
ω , · · · , U (N−1)

ω }. The following lemma specifies an explicit construction of these
basis eigenvectors.

Lemma 5.10. There exists an orthogonal basis {U (1)
ω , U (2)

ω , · · · , U (N−1)
ω } of the kernel

of L+(ω) satisfying the orthogonality condition

〈U,Φω〉L2(Γ) = 0. (5.2.8)

The eigenvectors can be represented in the following way: for j = 1,

U (1)
ω := (α−1

1 φ′ω, α
−1
2 φ′ω, . . . , α

−1
N φ′ω), (5.2.9)

and for j = 2, . . . , N − 1,

U (j)
ω := ( 0, . . . , 0︸ ︷︷ ︸

(j-1) elements

, rjφ
′
ω, α

−1
j+1φ

′
ω, . . . , α

−1
N φ′ω), rj = −

 N∑
i=j+1

1
α2
i

αj, (5.2.10)

where φω(x) = ω
1
2 sech(ω 1

2x), x ∈ R.

Proof. Let U = (u1, u2, . . . , uN) ∈ H2
Γ be an eigenvector for the zero eigenvalue of the

operator L+(ω). Each component of the eigenvalue problem L+(ω)U = 0 satisfies

−u′′j (x) + ωuj(x)− 6ω sech2(
√
ωx)uj(x) = 0, (5.2.11)

where x ∈ R− on the first edge and x ∈ R+ on the remaining edges. Since H2(R±) are
continuously embedded into C1(R±), if U ∈ H2(Γ), then both uj(x) and u′j(x) decay to
zero as |x| → ∞. Such solutions to the differential equations (5.2.11) are given uniquely
by uj(x) = ajφ

′
ω(x) up to multiplication by a constant aj. Therefore, the eigenvector U

is given by
U = (a1φ

′
ω, a2φ

′
ω, . . . , aNφ

′
ω). (5.2.12)

The eigenvector U ∈ H2
Γ must satisfy the boundary conditions in (5.1.4). The continuity

conditions hold since φ′ω(0) = 0, whereas the Kirchhoff condition implies

a1

α1
=

N∑
j=2

aj
αj
. (5.2.13)

Since the equation (5.2.13) relatesN unknowns, the space of solutions for (a1, a2, . . . , aN)
is (N−1)-dimensional and the kernel of the operator L+(ω) is (N−1)-dimensional. Let
{U (1)

ω , U (2)
ω , . . . , U (N−1)

ω } be an orthogonal basis of the kernel, which can be constructed
from any set of basis vectors by applying the Gram-Schmidt orthogonalization process.
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Direct computations show that if U is given by (5.2.12), then

〈U,Φω〉L2(Γ) =
 N∑
j=2

aj
αj
− a1

α1

 〈φ′ω, φω〉L2(R+),

which means that the condition (5.2.13) is equivalent to 〈U,Φω〉L2(Γ) = 0. Therefore, all
elements in the orthogonal basis satisfy the orthogonality condition (5.2.8).

It remains to prove that the orthogonal basis can be characterized in the form given
in (5.2.9)–(5.2.10). From the constraint (2.3.5), we can take aj = α−1

j for all j in (5.2.13)
to set the first eigenvector U (1)

ω to be defined by (5.2.9). The last eigenvector U (N−1)
ω

can be defined by
U (N−1)
ω := (0, . . . , 0, rN−1φ

′
ω, α

−1
N φ′ω), (5.2.14)

where rN−1 is defined to satisfy the orthogonality condition 〈U (1)
ω , U (N−1)

ω 〉L2(Γ) = 0 and
the condition (5.2.13). In fact, both conditions are equivalent since the first (N − 2)
entries of U (N−1)

ω are zero and

〈U (1)
ω , U (N−1)

ω 〉L2(Γ) = ‖φ′ω‖2
L2(R+)

(
rN−1

αN−1
+ 1
α2
N

)

with ‖φ′ω‖2
L2(R+) 6= 0. Hence rN−1 is defined by

rN−1 = −αN−1

α2
N

.

The remaining eigenvectors U (j)
ω in (5.2.10) are constructed recursively from j = N − 2

to j = 2. By direct computations the orthogonality condition 〈U (1)
ω , U (j)

ω 〉L2(Γ) = 0
is equivalent to the constraint (5.2.13). Moreover, all the eigenvectors are mutually
orthogonal thanks to the recursive construction of U (j)

ω ,

We denote the kernel of L+(ω) by

Xω := span{U (1)
ω , U (2)

ω , · · · , U (N−1)
ω }. (5.2.15)

For each j = 1, 2, . . . , N − 1, we construct the generalized eigenvector W (j)
ω ∈ H2

Γ by
solving

L−(ω)W (j)
ω = U (j)

ω ,

which exists thanks to the orthogonality condition (5.2.8) since Φω spans the kernel of
L−(ω). Explicitly, representing U (j)

ω from (5.2.9)–(5.2.10) by

U (j)
ω = φ′ωej (5.2.16)

with some x-independent vectors ej ∈ RN , we get for the same vectors ej

W (j)
ω = χωej, (5.2.17)
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where χω(x) = −1
2xφω(x), x ∈ R. We denote the generalized kernel of L−(ω) by

X∗ω := span{W (1)
ω ,W (2)

ω , · · · ,W (N−1)
ω }, (5.2.18)

The following lemma gives coercivity of the quadratic forms associated with the opera-
tors L+(ω) and L−(ω).

Lemma 5.11. For every ω > 0, there exists a positive constant C(ω) such that

〈L+(ω)U,U〉L2(Γ) + 〈L−(ω)W,W 〉L2(Γ) ≥ C(ω)‖U + iW‖2
H1(Γ) (5.2.19)

if U ∈ X∗ω and W ∈ Xω satisfying the additional orthogonality conditions{
〈W,∂ωΦω〉L2(Γ) = 0,
〈U,Φω〉L2(Γ) = 0. (5.2.20)

Proof. We claim that basis vectors in Xω and X∗ω satisfy the following orthogonality
conditions:

• {〈U (j)
ω , U (k)

ω 〉L2(Γ)}1≤j,k≤N−1 is a positive diagonal matrix;

• {〈W (j)
ω ,W (k)

ω 〉L2(Γ)}1≤j,k≤N−1 is a positive diagonal matrix;

• {〈U (j)
ω ,W (k)

ω 〉L2(Γ)}1≤j,k≤N−1 is a positive diagonal matrix.

Indeed, the orthogonality of {U (1)
ω , . . . , U (N−1)

ω } is established by Lemma 5.10. Therefore,
the vectors {e1, . . . , eN−1} in (5.2.16) are orthogonal in RN−1.

The orthogonality of {W (1)
ω , . . . ,W (N−1)

ω } follows by the representation (5.2.17) due
to the orthogonality of the vectors {e1, . . . , eN−1} in RN−1. The sets {U (1)

ω , . . . , U (N−1)
ω }

and {W (1)
ω , . . . ,W (N−1)

ω } are mutually orthogonal by the same reason. Finally, we have
for every j = 1, . . . , N

〈U (j)
ω ,W (j)

ω 〉L2(Γ) =
α2
j

4

 N∑
i=j

1
α2
i

 N∑
i=j+1

1
α2
i

 ‖φω‖2
L2(R+)(> 0). (5.2.21)

The rest of the proof is similar to the proof of Lemma 5.6 with the only difference being
that the third orthogonality condition (5.2.7) is replaced by the (N − 1) orthogonality
conditions in U ∈ X∗ω. The constraint U ∈ X∗ω provide the shift of the zero eigenvalue of
L+(ω) of algebraic multiplicity (N − 1) to positive eigenvalues thanks to the condition
that {〈U (j)

ω ,W (k)
ω 〉L2(Γ)}1≤j,k≤N−1 is a positive diagonal matrix.

5.3 Drift of the shifted states with a > 0
The proof of Theorem 5.3 is divided into several steps. First, we decompose the unique
global solution Ψ to the NLS equation (5.1.1) into the modulated stationary state
{eiθΦω(·; a)}θ∈R,a∈R,ω∈R+ and the symplectically orthogonal remainder terms. Second,
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we estimate the rate of change of the modulation parameter a(t) in time t and show
that a′(t) < 0 for t > 0. Third, we use energy estimates to control the time evolution of
the modulation parameter ω(t) and the remainder terms. Although the decomposition
works for any a(t), we only consider a(t) > 0 in order to use the coercivity bound in
Lemma 5.6.

5.3.1 Symplectically orthogonal decomposition
Any point in H1

Γ close to an orbit {eiθΦ(·; a0)}θ∈R for some a0 ∈ R can be represented by
a superposition of a point on the family {eiθΦω(·; a)}θ∈R,a∈R,ω∈R+ and a symplectically
orthogonal remainder term. Here and in what follows, we denote Φ ≡ Φω=1. The
following lemma provides details of this symplectically orthogonal decomposition.

Lemma 5.12. Fix a0 ∈ R. There exists some δ0 > 0 such that for every Ψ ∈ H1
Γ

satisfying
δ := inf

θ∈R
‖Ψ− eiθΦ(·; a0)‖H1(Γ) ≤ δ0, (5.3.1)

there exists a unique choice for real-valued (θ, ω, a) ∈ R × R+ × R and real-valued
(U,W ) ∈ H1

Γ ×H1
Γ in the decomposition

Ψ(x) = eiθ [Φω(x; a) + U(x) + iW (x)] , (5.3.2)

subject to the orthogonality conditions
〈W,∂ωΦω(·; a)〉L2(Γ) = 0,
〈U,Φω(·; a)〉L2(Γ) = 0,
〈U, (·+ a)Φω(·; a)〉L2(Γ) = 0,

(5.3.3)

where ω, a, and (U,W ) satisfy the estimate

|ω − 1|+ |a− a0|+ ‖U + iW‖H1(Γ) ≤ Cδ, (5.3.4)

for some δ-independent constant C > 0. Moreover, the map from Ψ ∈ H1
Γ to (θ, ω, a) ∈

R× R+ × R and (U,W ) ∈ H1
Γ ×H1

Γ is Cω.

Proof. Define the following vector function G(θ, ω, a; Ψ) : R×R+×R×H1
Γ 7→ R3 given

by

G(θ, ω, a; Ψ) :=

 〈Im(Ψ− eiθΦω(·; a)), ∂ωΦω(·; a)〉L2(Γ)
〈Re(Ψ− eiθΦω(·; a)),Φω(·; a)〉L2(Γ)
〈Re(Ψ− eiθΦω(·; a)), (·+ a)Φω(·; a)〉L2(Γ)

 ,
the zeros of which represent the orthogonality constraints in (5.3.3).

Let θ0 be the argument of infθ∈R ‖Ψ − eiθΦ(·; a0)‖H1(Γ) for a given Ψ ∈ H1
Γ. The

vector function G(θ, ω, a; Ψ) is a Cω map from R × R+ × R ×H1
Γ to R3 since the map

R+ × R 3 (ω, a) 7→ Φω(·; a) ∈ L2(Γ) is Cω in both variables. Moreover, if Ψ ∈ H1
Γ
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satisfies (5.3.1), then
‖G(θ0, 1, a0; Ψ)‖R3 ≤ Cδ (5.3.5)

for a δ-independent constant C > 0. Also we have

D(θ,ω,a)G(θ0, 1, a0; Ψ) = D +B,

where D = diag(d1, d1, d2) with entries d1 ≡ D1(ω = 1) and d2 ≡ D2(ω = 1) given
by (5.2.1) and (5.2.2), whereas B is a matrix satisfying the estimate ‖B‖M3×3 ≤ Cδ
for a δ-independent constant C > 0. Since d1, d2 6= 0, the matrix D is invertible and
there exists δ0 > 0 such that the Jacobian D(θ,ω,a)G(θ0, 1, a0; Ψ) is invertible for every
δ ∈ (0, δ0) with the bound

‖[D(θ,ω,a)G(θ0, 1, a0; Ψ)]−1‖M3×3 ≤ C (5.3.6)

for a δ-independent constant C > 0. By the local inverse mapping theorem, for the
given Ψ ∈ H1

Γ satisfying (5.3.1), the equation G(θ, ω, a; Ψ) = 0 has a unique solution
(θ, ω, a) ∈ R3 in a neighborhood of the point (θ0, 1, a0). Since G(θ, ω, a; Ψ) is Cω with
respect to its arguments, the solution (θ, ω, a) ∈ R × R+ × R is Cω with respect to
Ψ ∈ H1

Γ. The Taylor expansion of G(θ, ω, a; Ψ) = 0 around (θ0, 1, a0),

G(θ0, 1, a0; Ψ)+D(θ,ω,a)G(θ0, 1, a0; Ψ)(θ−θ0, ω−1, a−a0)T+O(|θ−θ0|2+|ω−1|2+|a−a0|2),

together with the bounds (5.3.5) and (5.3.6) implies the bound (5.3.4) for |ω − 1| and
|a − a0|. From the decomposition (5.3.2), and with use of the triangle inequality for
(θ, ω, a) near (θ0, 1, a0), it follows that (U,W ) are uniquely defined in H1

Γ and satisfy the
bound in (5.3.4). In addition, (U,W ) ∈ H1

Γ are Cω with respect to Ψ ∈ H1
Γ.

Let the initial datum Ψ0 ∈ H1
Γ to the Cauchy problem associated with the NLS

equation (5.1.1) be defined in the form:

Ψ0(x) = Φ(x; a0) + U0(x) + iW0(x), ‖U0 + iW0‖H1(Γ) ≤ δ, (5.3.7)

subject to the orthogonality conditions
〈W0, ∂ωΦω|ω=1(·; a0)〉L2(Γ) = 0,
〈U0,Φ(·; a0)〉L2(Γ) = 0,
〈U0, (·+ a0)Φ(·; a0)〉L2(Γ) = 0.

(5.3.8)

Remark 5.13. By Lemma 5.12, the orthogonal decomposition (5.3.7) with (5.3.8) im-
plies that θ(0) = 0, ω(0) = 1, and a(0) = a0 initially. Although this is not the most
general case for the initial datum satisfying (5.1.8), this simplification is used to il-
lustrate the proof of Theorem 5.3. A generalization for initial datum Ψ0 ∈ H1

Γ with
θ(0) 6= 0, ω(0) 6= 1, and a(0) 6= a0 is straightforward.
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By the well-posedness theory [4, 42], the NLS equation (5.1.1) with the initial datum
Ψ0 ∈ H1

Γ generates the unique global solution Ψ ∈ C(R, H1
Γ) ∩ C1(R, H−1

Γ ). By con-
tinuous dependence of the solution on the initial datum and by Lemma 5.12, for every
ε ∈ (0, δ0) with δ0 in the bound (5.3.1) there exists t0 > 0 such that the unique solution
Ψ satisfies

inf
θ∈R
‖e−iθΨ(t, ·)− Φ‖H1(Γ) ≤ ε, t ∈ [0, t0] (5.3.9)

and can be uniquely decomposed in the form:

Ψ(t, x) = eiθ(t)
[
Φω(t)(x; a(t)) + U(t, x) + iW (t, x)

]
, (5.3.10)

subject to the orthogonality conditions
〈W (t, ·), ∂ωΦω|ω=ω(t)(·; a(t))〉L2(Γ) = 0,
〈U(t, ·),Φω(t)(·; a(t))〉L2(Γ) = 0,
〈U(t, ·), (·+ a(t))Φω(·; a(t))〉L2(Γ) = 0.

(5.3.11)

By the smoothness of the map in Lemma 5.12 and by the well-posedness of the time
flow of the NLS equation (5.1.1), we have U,W ∈ C([0, t0], H1

Γ) ∩ C1([0, t0], H−1
Γ ) and

(θ, ω, a) ∈ C1([0, t0],R× R+ × R).

In order to prove Theorem 5.3, we control ω(t), U(t, ·), and W (t, ·) from energy
estimates and a(t) from modulation equations, whereas θ(t) plays no role in the bound
(5.1.9). Note that the modulation of a(t) captures the irreversible drift of the shifted
states along the incoming edge towards the vertex of the balanced star graph. We would
not see this drift without using the parameter a(t) and we would not be able to control
ω(t), U(t, ·), and W (t, ·) from energy estimates without the third constraint in (5.3.11)
because of the zero eigenvalue of L+(ω, a), see Lemma 5.6.

5.3.2 Monotonicity of a(t)
We use the orthogonal decomposition (5.3.10) with (5.3.11) in order to obtain the evolu-
tion system for the remainder terms (U,W ) and for the modulation parameters (θ, ω, a).
By analyzing the modulation equation for a(t), we relate the rate of change of a(t) and
the value of the momentum functional P (Ψ) given by (5.1.6).

Lemma 5.14. Assume that the unique solution Ψ ∈ C([0, t0], H1
Γ) ∩ C1([0, t0], H−1

Γ )
represented by (5.3.10) and (5.3.11) satisfies

|ω(t)− 1|+ ‖U(t, ·) + iW (t, ·)‖H1(Γ) ≤ ε, t ∈ [0, t0] (5.3.12)

with ε ∈ (0, δ0) and δ0 defined in (5.3.1). The time evolution of the translation parameter
a(t) is given by

ȧ(t) = −α2
1ω
− 1

2P (Ψ)
[
1 +O(‖U + iW‖H1(Γ))

]
+O(‖U + iW‖2

H1(Γ)), (5.3.13)

where P (Ψ) is given by (5.1.6).
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Proof. By substituting (5.3.10) into the NLS equation (5.1.1) and by using the rotational
and translation symmetries, we obtain the time evolution system for the remainder
terms:

d

dt

(
U
W

)
=

(
0 L−(ω, a)

−L+(ω, a) 0

)(
U
W

)
+ (θ̇ − ω)

(
W

−(Φω + U)

)

−ω̇
(
∂ωΦω

0

)
− ȧ

(
Φ′ω
0

)
+
(
−RU

RW

)
, (5.3.14)

where Φω ≡ Φω(x; a), the prime denotes derivative in x, the dot denotes derivative in t,
and the residual terms are given by{

RU = 2α2 (2ΦωU + U2 +W 2)W,
RW = 2α2 [Φω(3U2 +W 2) + (U2 +W 2)U ] . (5.3.15)

By using the orthogonality conditions (5.3.11), we obtain the modulation equations for
parameters (θ, ω, a) from the system (5.3.14):

A

θ̇ − ωω̇
ȧ

 =

 0
0

−2〈Φ′ω(·; a),W 〉L2(Γ)

+

 〈Φω(·; a), RU 〉L2(Γ)
〈∂ωΦω, RW 〉L2(Γ)

−〈(·+ a)Φω(·; a), RW 〉L2(Γ)

 , (5.3.16)

where the matrix A is given by

A =

 0 D1(ω) 0
−D1(ω) 0 0

0 0 −D2(ω)


−

 −〈Φω(·; a),W 〉L2(Γ) −〈∂ωΦω(·; a), U〉L2(Γ) −〈Φ′ω(·; a), U〉L2(Γ)
−〈∂ωΦω(·; a), U〉L2(Γ) 〈∂2

ωΦω(·; a),W 〉L2(Γ) 〈∂ωΦ′ω(·; a),W 〉L2(Γ)
〈(·+ a)Φω(·; a),W 〉L2(Γ) 〈(·+ a)∂ωΦω(·; a), U〉L2(Γ) 〈(·+ a)Φω(·; a)′, U〉L2(Γ)

 ,
where D1(ω) and D2(ω) are given by (5.2.1) and (5.2.2). If (U,W ) = (0, 0), the matrix
A is invertible since

A0 =

 0 D1(ω) 0
−D1(ω) 0 0

0 0 −D2(ω)

 .
Therefore, under the assumption (5.3.12) with small ε > 0, we have

‖A−1‖M3×3 ≤ C (5.3.17)

for an ε-independent constant C > 0. This bound implies that the time-evolution of the
translation parameter a(t) is given by

ȧ =
2〈Φ′ω(·; a),W 〉L2(Γ)

D1(ω)
[
1 +O(‖U + iW‖H1(Γ))

]
+O(‖U + iW‖2

H1(Γ)). (5.3.18)
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On the other hand, the momentum functional P (Ψ) in (5.1.6) can be computed at the
solution Ψ in the orthogonal decomposition (5.3.10) as follows

P (Ψ) = 〈Φω(·; a),W ′〉L2(Γ) − 〈Φ′ω(·; a),W 〉L2(Γ) +O(‖U + iW‖2
H1(Γ))

= −2〈Φ′ω(·; a),W 〉L2(Γ) +O(‖U + iW‖2
H1(Γ)), (5.3.19)

where the integration by parts does not result in any contribution from the vertex at
x = 0 thanks to the boundary conditions in (5.1.4) and the constraint (2.3.5). Combining
(5.3.18) and (5.3.19) with the exact computation (5.2.2) yields expansion (5.3.13).

Corollary 5.15. In addition to (5.3.12), assume that Ψ0 in (5.3.7) is chosen such
that P (Ψ0) ≥ C0δ with C0 > 0. There exists ε0 sufficiently small such that for every
ε ∈ (0, ε0) there exists δ > 0 such that the map t 7→ a(t) is strictly decreasing for
t ∈ [0, t0].

Proof. The map t 7→ P (Ψ) is monotonically increasing, as can be seen from the expres-
sion (5.1.7). Therefore, if the initial datum Ψ0 in (5.3.7) satisfies P (Ψ0) ≥ C0δ, then

P (Ψ) ≥ P (Ψ0) ≥ C0δ for all t ∈ [0, t0]. (5.3.20)

It follows from (5.3.12), (5.3.13), (5.3.19), and (5.3.20) that there exist δ- and ε-independent
constants C1, C2 > 0 such that

−ȧ ≥ C1δ − C2ε
2.

If δ satisfies δ ≥ Cε2 for a given small ε > 0 with an ε-independent constant C > C−1
1 C2

then −ȧ ≥ (C1C − C2)ε2 > 0 so that the map t 7→ a(t) is strictly decreasing for
t ∈ [0, t0].

5.3.3 Energy estimates
The coercivity bound (5.2.6) in Lemma 5.6 allows us to control the time evolution of
ω(t), U(t, ·), andW (t, ·), as long as a(t) is bounded away from zero. The following result
provides this control from energy estimates.

Lemma 5.16. Let Ψ be the unique solution to the NLS equation (5.1.1) given by
(5.3.10)–(5.3.11) for t ∈ [0, t0] with some t0 > 0 such that the initial data Ψ(0, ·) = Ψ0
satisfies (5.3.7)–(5.3.8). Assume that a(t) ≥ ā for t ∈ [0, t0]. For every ā > 0, there
exists a δ-independent positive constant K(ā) such that

|ω(t)− 1|2 + ‖U(t, ·) + iW (t, ·)‖2
H1(Γ) ≤ K(ā)δ2, t ∈ [0, t0]. (5.3.21)
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Proof. Recall that the shifted state Φω(·; a) is a critical point of the action functional
Λω(Ψ) = E(Ψ) + ωQ(Ψ) in (2.4.1). By using the decomposition (5.3.10) and the rota-
tional invariance of the NLS equation (5.1.1), we define the following energy function:

∆(t) := E(Φω(t)+U(t, ·)+iW (t, ·))−E(Φ)+ω(t)
[
Q(Φω(t) + U(t, ·) + iW (t, ·))−Q(Φ)

]
.

Expanding ∆ into Taylor series, we obtain

∆ = D(ω) + 〈L+(ω, a)U,U〉L2(Γ) + 〈L−(ω, a)W,W 〉L2(Γ) +Nω(U,W ), (5.3.22)

where Nω(U,W ) = O(‖U + iW‖3
H1(Γ)) and D(ω) is defined by

D(ω) := E(Φω)− E(Φ) + ω [Q(Φω)−Q(Φ)] .

Since D′(ω) = Q(Φω) − Q(Φ) thanks to the variational problem for the standing wave
Φω, we have D(1) = D′(1) = 0, and

D(ω) = (ω − 1)2〈Φ, ∂ωΦω|ω=1〉L2(Γ) +O(|ω − 1|3).

It follows from the initial decomposition (5.3.7)–(5.3.8) that

∆(0) = E(Φ + U0 + iW0)− E(Φ) +Q(Φ + U0 + iW0)−Q(Φ)

satisfies the bound
|∆(0)| ≤ C0δ

2 (5.3.23)

for a δ-independent constant C0 > 0. On the other hand, the energy and mass conser-
vation in (2.2.4) imply that

∆(t) = ∆(0) + (ω(t)− 1) [Q(Φ + U0 + iW0)−Q(Φ)] , (5.3.24)

where the remainder term also satisfies

|Q(Φ + U0 + iW0)−Q(Φ)| ≤ C0δ
2 (5.3.25)

for a δ-independent constant C0 > 0. The representation (5.3.24) together with the
expression (5.3.22) allows us to control ω(t) near ω(0) = 1 and the remainder terms
(U,W ) in H1

Γ as follows:

∆(0) = (ω − 1)2〈Φ, ∂ωΦω|ω=1〉L2(Ω) − (ω − 1) [Q(Φ + U0 + iW0)−Q(Φ)]
+〈L+(ω, a)U,U〉L2(Γ) + 〈L−(ω, a)W,W 〉L2(Γ) +O(|ω − 1|3 + ‖U + iW‖3

H1(Γ)).

By using this expansion, the coercivity bound (5.2.6), and the bounds (5.3.23) and
(5.3.25), we obtain

C0δ
2 ≥ 1

2α2
1|ω|

1
2

(ω−1)2−C0δ
2|ω−1|+C(ω, a)‖U+iW‖2

H1(Γ)+O(|ω−1|3+‖U+iW‖3
H1(Γ)),
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from which the bound (5.3.21) follows.

Remark 5.17. By Remark 5.7, for every ω > 0, we have C(ω, a) → 0 as a → 0.
Therefore, we have K(ā)→∞ as ā→ 0.

5.3.4 Monotonic drift towards the vertex
Here we give the proof of the irreversible drift of the shifted states towards the vertex
of the star graph.

Proof of Theorem 5.3.

The initial datum satisfies the initial decomposition (5.3.7)–(5.3.8) with small δ and
initial conditions θ(0) = 0, ω(0) = 1, and a(0) = a0 with a0 > 0. Thanks to the
continuous dependence of the solution of the NLS equation (5.1.1) on initial datum,
the solution is represented by the orthogonal decomposition (5.3.10)–(5.3.11) on a short
time interval [0, t0] for some t0 > 0. Hence, it satisfies the apriori bound (5.3.9). The
modulation parameters θ(t), ω(t), and a(t) are defined for t ∈ [0, t0] and a(t) ≥ ā for
some ā > 0 for t ∈ [0, t0]. By energy estimates in Lemma 5.16, the parameter ω(t)
and the remainder terms (U,W ) ∈ H1

Γ satisfy the bound (5.3.21) with a δ-independent
positive constant K(ā). For given small ε > 0 and a > 0 in Theorem 5.3, let us define

Ka := max
ā∈[a,a0]

K(ā), δ := K
− 1

2
a ε. (5.3.26)

Then, the bound (5.3.21) provides the bound (5.3.12) of Lemma 5.14 for all t ∈ [0, t0].
Assume that the initial datum also satisfies P (Ψ0) ≥ C0δ. By Corollary 5.15, the map
t 7→ a is strictly decreasing for t ∈ [0, t0] if δ satisfies δ ≥ Cε2 for a δ and ε-independent
constant C > 0. The definition of δ in (5.3.26) is compatible with the latter bound if
ε ∈ (0, ε0) with

ε0 := 1
C
√
Ka

.

If in addition ε0 ≤ δ0, where δ0 is defined in Lemma 5.12, then the solution Ψ(t, ·) ∈ H1
Γ

for t ∈ [0, t0] satisfies the conditions of Lemma 5.12 so that the orthogonal decomposition
(5.3.10) with (5.3.11) is continued beyond the short time interval [0, t0] to the maximal
time interval [0, T ] as long as a(t) ≥ a for t ∈ [0, T ]. Thanks to the monotonicity
argument in Lemma 5.14 and Corollary 5.15, for every ε ∈ (0, ε0), there exists a finite
T > 0 such that limt→T a(t) = a. Note that T = O(ε−2) as ε → 0. Theorem 5.3 is
proved.

Remark 5.18. It follows that Ka → ∞ as a → 0 by Remark 5.17 so that ε0 → 0 as
a→ 0. As a result, it does not follow from Theorem 5.3 that the half-soliton Φ(·; a = 0)
is attained from the drifted shifted state Φ(·; a(t)) in a finite time.
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Remark 5.19. If the initial datum Ψ0 ∈ H1
Γ in (5.3.7) preserves the symmetry con-

straints (4.4.6), then the map t 7→ P (Ψ) is constant so that P (Ψ) = P (Ψ0). The condi-
tion P (Ψ0) ≥ C0δ with C0 > 0 in Theorem 5.3 ensures that the shifted state Φ(·; a(t))
drifts towards the vertex at x = 0 even under the symmetry-preserving perturbations.
This already implies the instability according to Definition 5.2.

5.4 Instability of the half-soliton state
The proof of Theorem 5.4 follows the same steps as the proof of Theorem 3.6. However,
since the orthogonal basis of the kernel of L+(ω = 1) given by elements in (5.2.9)–(5.2.10)
is not compatible with the orthogonal basis defined in Remark 3.10, the truncation of
the system (3.4.25) admits a different unstable direction for the zero equilibrium point.
That is, to establish the result of Theorem 5.4 it suffices to appropriately extend the
result of Section 3.4.3.

5.4.1 Truncated Hamiltonian system, revised
Estimates (3.4.14) in Lemma 3.16 and (3.4.44) in Lemma 3.25, as well as the repre-
sentation of (RU , RW ) in (3.4.10)–(3.4.11) applied to the vectors (5.2.9)–(5.2.10) imply
that the time-evolution system (3.4.25) is a perturbation of the following Hamiltonian
system of degree N − 1:  〈W

(j), U (j)〉L2(Γ)
dγj
dt

= ∂H0
∂βj

,

〈W (j), U (j)〉L2(Γ)
dβj
dt

= −∂H0
∂γj

,
(5.4.1)

where H0(γ, β) is the Hamiltonian given by

H0(γ, β) = 1
2

N−1∑
j=1
〈W (j), U (j)〉L2(Γ)β

2
j − 2

N−1∑
j=1

N−1∑
k=1

N−1∑
n=1
〈α2ΦU (j), U (k)U (n)〉L2(Γ)γjγkγn.

Direct computation with the help of the representations (5.2.9) and (5.2.10) for U (j)

imply that if j ≥ k > n, then

〈α2ΦU (j), U (k)U (n)〉L2(Γ) =
 rk
αk

+
N∑

i=k+1

1
α2
i

∫ ∞
0

φ(φ′)3dx = 0

due to the explicit formula for rk in (5.2.10). Therefore, one can rewrite the Hamiltonian
H0(γ, β) in the explicit form:

H0(γ, β) = 1
2

N−1∑
j=1

Mjb
2
j − 2

N−1∑
j=2

Rjγ
3
j − 6

N−1∑
j=1

N−1∑
k>j

Pkγjγ
2
k, (5.4.2)
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where

Mj := 〈W (j), U (j)〉L2(Γ),

Rj := 〈α2ΦU (j), U (j)U (j)〉L2(Γ),

Pk := 〈α2ΦU (j), U (k)U (k)〉L2(Γ).

Note that the coefficient Pk is independent of j if k > j. Thanks to the construction of
the eigenvectors in (5.2.9) and (5.2.10), the explicit expressions for coefficients Rj and
Pk are given by

Rj = α4
j

 N∑
i=j

1
α2
i

 N∑
i=j+1

1
α2
i

 1
α2
j

−
N∑

i=j+1

1
α2
i

∫ ∞
0

φ(φ′)3dx, (5.4.3)

and

Pk = α2
k

(
N∑
i=k

1
α2
i

) N∑
i=k+1

1
α2
i

∫ ∞
0

φ(φ′)3dx. (5.4.4)

It follows from (5.2.21) and (5.4.4) that Mj > 0 and Pk < 0 since φ(φ′)3 < 0 on R+.
Also it follows from (2.3.5) and (5.4.3) that R1 = 0.

The following lemma states that the zero equilibrium point is nonlinearly unstable
in the reduced system (5.4.1) with the Hamiltonian (5.4.2).

Lemma 5.20. There exists ε > 0 such that for every sufficiently small δ > 0, there is an
initial point (γ(0), β(0)) ∈ RN−1 ×RN−1 with ‖γ(0)‖+ ‖β(0)‖ ≤ δ such that the unique
solution of the reduced Hamiltonian system (5.4.1) with (5.4.2) satisfies for some t0 > 0:
‖γ(t0)‖ = ε and ‖γ(t)‖ > ε for t > t0. Moreover, if ε > 0 is small then t0 = O(ε−1/2),
γ(t) = O(ε), and β(t) = O(ε3/2) for all t ∈ [0, t0].

Proof. First, we claim that there exists an invariant subspace of solutions of the reduced
Hamiltonian system (5.4.1) with (5.4.2) given by

S := {γ1 = Cγ2, γ3 = γ4 = · · · = γN−1 = 0} (5.4.5)

for some constant C 6= 0. Indeed, eliminating βj, we close the reduced system (5.4.1)
on γj for every j = 1, . . . , N − 1:

Mj
d2γj
dt2

= 6Rjγ
2
j + 12

j−1∑
i=1

Pjγiγj + 6
N−1∑
k=j+1

Pkγ
2
k. (5.4.6)

It follows directly that γ3 = γ4 = · · · = γN−1 = 0 is an invariant solution of the last
(N − 3) equations of system (5.4.6). Since R1 = 0 from (2.3.5) and (5.4.3), the first two
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(remaining) equations of system (5.4.6) are given by{
M1

d2γ1
dt2

= 6P2γ
2
2 ,

M2
d2γ2
dt2

= 6R2γ
2
2 + 12P2γ1γ2,

(5.4.7)

The system is invariant on the subspace S in (5.4.5) if the constant C is a solution of
the following quadratic equation:

2M1P2C
2 +M1R2C −M2P2 = 0.

The quadratic equation admits two nonzero real solutions C if the discriminant is posi-
tive:

D := M2
1R

2
2 + 8M1M2P

2
2 > 0,

which is true thanks to the positivity of M1 and M2 in (5.2.21). The reduced sys-
tem (5.4.6) on the invariant subspace (5.4.5) yields the following scalar second-order
equation:

C2M1
d2γ1

dt2
− 6P2γ

2
1 = 0, (5.4.8)

where C 6= 0, M1 > 0 and P2 < 0. The zero equilibrium (γ1, γ̇1) = (0, 0) is a cusp point
so that it is unstable in the nonlinear equation (5.4.8).

Next, we prove the assertion of the lemma. For every sufficiently small δ > 0, we
choose the initial point (γ(0), β(0)) ∈ RN−1×RN−1 in the invariant subspace S in (5.4.5)
satisfying ‖γ(0)‖+‖β(0)‖ ≤ δ. Since (0, 0) is a cusp point in the reduced equation (5.4.8)
there exists a t0 > 0 such that ‖γ(t0)‖ = ε and ‖γ(t)‖ > ε for t > t0 for any fixed ε > 0.

Let us consider a fixed sufficiently small value of ε > 0. We have γ(t) = O(ε) for
t ∈ [0, t0] by the construction Setting γ̇1 = β1, we assume that β1(t) = O(ε3/2) for
t ∈ [0, t0] by the choice of initial condition. The evolution equation (5.4.8) implies that
for every t ∈ [0, t0] there is an (ε, δ)-independent constant A > 0 such that |γ1(t)| ≤

∣∣∣∫ t0 β1(s)ds
∣∣∣+ |γ1(0)| ≤ Aε3/2t0 + δ

|β1(t)| ≤ A
∣∣∣∫ t0 γ2

1(s)ds
∣∣∣+ |β1(0)| ≤ Aε2t0 + δ.

If δ ∈ (0, Aε3/2), then γ1(t) = O(ε) and β1(t) = O(ε3/2) holds for t ∈ [0, t0] with
t0 = O(ε−1/2). The assertion of the lemma is proven.

As explained above, all other steps in the proof of Theorem 3.6 apply verbatim to
the proof of Theorem 5.4.
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Chapter 6

Orbital instability of stationary
states in presence of δ interaction

Unlike the previous chapters, here we study the NLS equation on a star graph with a δ
interaction at the vertex. The δ interaction appears as the strength parameter γ in the
boundary conditions (1.1.7).

For every γ ∈ R, the existence and explicit construction of stationary states to
the NLS equation are known [3]. In particular, for γ 6= 0, the NLS equation admits
the unique symmetric stationary state and all other states are asymmetric. By using
the classical results in [21] and [37], it has been proven for γ < 0, that the unique
symmetric stationary state is a constrained energy minimizer and is orbitally stable
[4, 5]. The energy of each asymmetric state in case of γ < 0 is higher than the energy
of the symmetric state inside the manifold with fixed mass constraint. As a result, the
asymmetric states are saddle points of the constrained energy, and one can expect the
instability for all asymmetric states. In [54] orbital instability of all asymmetric states
has been conjectured, mentioning the difficulty in the explicit computations of the Morse
indices of associated operators L±.

In this chapter, we overcome such difficulty by using the extension of the Sturm theory
to Schrödinger operators on star graphs as in Chapter 4, and give the exact count of
the negative and zero eigenvalues of the operators L±. We also consider the case γ > 0
and show the orbital instability of all stationary states (including a symmetric one).

6.1 Stationary states
In this chapter we return to the standard parametrization of a star graph Γ by the union
of N half-lines connected at the origin. The presence of the δ-interaction at the vertex
incorporates an additional term γ into the boundary conditions for the domain of the
Laplacian ∆,

D(∆) :=

Ψ ∈ H2(Γ) : ψ1(0) = · · · = ψN(0),
N∑
j=1

ψ′j(0) = γψ1(0)

 , (6.1.1)
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where we set α = 1 compared to the boundary conditions in (2.1.2).

Remark 6.1. In case of γ = 0, D(∆) in (6.1.1) is equivalent to (2.1.2) with α = 1.

The NLS equation (2.2.1) with α = 1 is given by

i
∂Ψ
∂t

= −∆Ψ− (p+ 1)|Ψ|2pΨ, t ∈ R, x ∈ Γ. (6.1.2)

The stationary NLS equation (2.3.1) becomes equivalent to

−∆Φω − (p+ 1)|Φω|2pΦω = −ωΦω, (6.1.3)

with (ω,Φω) ∈ R+ ×D(∆).

In case of γ 6= 0, there exists a symmetric stationary state Φω,0 if the parameter ω
exceeds γ2

N2 [4]. Additional asymmetric stationary states Φω,K appear when ω exceeds
bifurcation values γ2

(N−2K)2 , where 1 ≤ K ≤
[
N−1

2

]
. For sufficiently large positive values

of ω, all
[
N−1

2

]
+ 1 stationary states {Φω,0,Φω,1,Φω,[(N−1)/2]} are present. The explicit

representation of the stationary states is given in the following lemma which initially
was proven in [4].

Lemma 6.2. Let p > 0, γ ∈ R\{0} and K = 0, ...,
[
N−1

2

]
. Then, if the condition

ω > γ2

(N−2K)2 is satisfied, there exists a solution Φω,K to the stationary NLS equation
(6.1.3) given, up to permutations of edges, by

(Φω,K)j(x) =

φω(x+ aK), j = 1, ..., K
φω(x− aK), j = K + 1, ..., N

(6.1.4)

where φω(x) = ω1/2p sech1/p(p
√
ωx) and aK = 1

p
√
ω

arctanh
(

γ
(N−2K)

√
ω

)
.

Proof. The proof is similar in spirit to the proof of Lemma 2.9. A general solution to
the stationary NLS equation (6.1.3) is given by Φω = (φ1, φ2, . . . , φN)T with components

φj(x) = φω(x+ aj),

where (a1, a2, . . . , aN) ∈ RN are arbitrary parameters. The continuity conditions in
D(∆) yields |a1| = |a2| = · · · = |aN |, so that for every j, there exists mj ∈ {0, 1} such
that aj = (−1)mja for some a ∈ R. The second boundary condition in D(∆) implies

φ′ω(a)
N∑
j=1

(−1)mj = γφω(a). (6.1.5)
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Since φ′ω(a) = −
√
ω tanh(p

√
ω)φω(a), the equation (6.1.5) is equivalent to

tanh(p
√
ωa)

N∑
j=1

(−1)mj = − γ√
ω
. (6.1.6)

Setting

mj =

0 for 1 ≤ j ≤ K

1 for K + 1 ≤ j ≤ N

we obtain
tanh(p

√
ωa) = γ

(N − 2K)
√
ω
.

Since the range of the tanh function is (−1, 1), we obtain that a = 1
p
√
ω

arctanh
(

γ
(N−2K)

√
ω

)
if ω > γ2

(N−2K)2 , and the lemma is proven.

According to the represention (6.1.4), the profile of Φω,K on each edge of the graph
Γ is either a bump (nonmonotonic profile) or a tail (monotonic profile). The presence
of such bumps or tails on the edges depends on the shift aK . If γ < 0, the shift value
aK is negative. Therefore, the solution φω(x + aK) on each edge 1, ..., K in (6.1.4) is
nonmonotonic and represents a bump, whereas the solution φω(x − aK) on each edge
K + 1, ..., N is monotonic and represents a tail. Notice that, in this case, the number
of bumps in the profile of Φω,K is equal to K, and since K < N

2 , there are strictly more
tails than bumps. As an example, if N = 3 then K ∈ {0, 1} in Lemma 6.2, and there
are only two possible stationary states, namely, Φω,0 and Φω,1, see Figure 6.1. 
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Figure 6.1: Case γ < 0 and N = 3: Φω,0 has three tails and no bumps
(left) and Φω,1 has two tails and one bump (right).

If γ > 0, the shift value aK is positive, and K represents the number of tails in the
profile of Φω,K . Here, in contrast to the case with negative γ, the number of tails is
strictly less than the number of bumps. Figure 6.2 illustrates the only possible stationary
states Φω,0 and Φω,1 when N = 3. 
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Figure 6.2: Case γ > 0 and N = 3: Φω,0 has no tails and three bumps
(left) and Φω,1 has one tails and two bumps (right)
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6.2 Main results
Let Φω,K be the stationary state in Lemma 6.2. Recall that the time evolution of the
perturbation terms of the stationary state Φω,K is given by (4.1.1), which is

d

dt

[
U
W

]
=
[

0 L−
−L+ 0

] [
U
W

]
,

where L± are Hessian operators with domain D(∆) and the differential expression given
by

L+ := −∆ + ω − (2p+ 1)(p+ 1)Φ2p
ω,K (6.2.1)

L− := −∆ + ω − (p+ 1)Φ2p
ω,K , (6.2.2)

Note that the operators L+ and L− are self-adjoint in L2(Γ) [15], and the continuous
spectrum is given by σc(L±) = [ω,∞). In what follows, we are interested in the discrete
spectrum of these operators in (−∞, ω).

The main result is the count of the Morse and degeneracy indices of L± associated
with the stationary state Φω,K :

Theorem 6.3. Let p > 0, γ ∈ R\{0}, K = 0, ...,
[
N−1

2

]
and ω > γ2

(N−2K)2 . Let L+ and
L− be the Hessian operators associated with Φω,K and defined by (6.2.1)-(6.2.2). Then,
σp(L−) ≥ 0 and 0 is a simple eigenvalue, whereas the nonpositive part of σp(L+) consists
of K + 1 negative eigenvalues (counting multiplicities) for γ < 0 and N − K negative
eigenvalues (counting multiplicities) for γ > 0. More precisely,
• if γ < 0 and K = 0, n(L+) consists of a simple eigenvalues λ1;
• if γ < 0 and K ≥ 1, n(L+) consists of two simple eigenvalues λ1 < λ2 and another
eigenvalue λ∗ ∈ (λ1, λ2) of multiplicity K − 1;
• if γ > 0 and K ≥ 0, n(L+) consists a simple eigenvalue λ1 and another eigenvalue
λ∗ ∈ (λ1, 0) of multiplicity N −K − 1.

By using the well-known instability results for the NLS equation [36, 70], Theorem
6.3 implies the following:

Corollary 6.4. If γ < 0, then every stationary state Φω,K with K ≥ 1 is spectrally and
orbitally unstable, in sense of Definitions 3.1 and 4.1. If γ > 0, then every stationary
state Φω,K with K ≥ 0 is spectrally and orbitally unstable.

Remark 6.5. For γ < 0 and K = 0, our count of Morse and degeneracy indices
coincides with the count in Proposition 6.1 in [4]. In this case, the stationary state Φω,0
is orbitally stable for p ∈ (0, 2) [5].

Remark 6.6. Partial results of Theorem 6.4 have been obtained in the recent work [59]
by using the extension theory of symmetric operators. In particular, for the case γ < 0
with p > 2, authors showed the existence of some ω∗K such that the instability result holds
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for all ω ∈
(

γ2

(N−2K)2 , ω
∗
K

)
. It has been noted by authors that no results were obtained

for ω > ω∗K. Corollary 6.4 extends these results to all ω ∈
(

γ2

(N−2K)2 ,∞
)

and for all
p > 0.

6.3 The count of the Morse and degeneracy indices
In this section we prove Theorem 6.3 by using the extension of the Sturm theory to star
graphs developed in Chapter 4.

Recall that using the scaling (2.3.2), we can transform the unique solutions v given
in Lemma 2.19 to the ω-dependent family of solutions vω which satisfy

lim
x→+∞

vω(x)e
√
ω−λx = 1,

and solve the ω-dependent form of the second-order differential equation (2.4.13) given
by

−v′′ω(x) + ωvω(x)− (2p+ 1)(p+ 1)ω sech2(p
√
ωx)vω(x) = λvω(x), (6.3.1)

with λ < ω. For simplicity, we denote the ω-dependent solution vω as v.

Next two lemmas provide us with the useful tools to compute the Morse and degen-
eracy indices of the operator L+ given in (6.2.1).

Lemma 6.7. Let γ 6= 0, K ≥ 0 and v be the ω-dependent solution to (6.3.1) given
by Lemma 2.19, and L+ be the Hessian operator (2.4.3) associated with Φω,K. Then,
λ ∈ (−∞, ω) is an eigenvalue of σp(L+) if and only if at least one of the following
conditions holds:

(a) v(aK) = 0 with K ≥ 1,

(b) v(−aK) = 0,

(c) Kv′(aK)v(−aK) + (N −K)v(aK)v′(−aK)− γv(aK)v(−aK) = 0.

Moreover, λ ∈ σp(L+) has mutliplicity K− 1 in the case (a), N −K− 1 in the case (b),
and is simple in the case (c). If λ satisfies several cases, then its multiplicity is the sum
of the multiplicities of each case.

Proof. First, assume K ≥ 1. Denote a := aK . Let λ be the eigenvalue of L+ with the
eigenvector U = (u1, ..., uN)T ∈ D(∆). Then, in the eigenvalue problem L+U = λU ,
each component can be written as the second order differential equation

−u′′j (x) + ωuj(x)− (2p+ 1)(p+ 1)ω sech2
(
p
√
ω(x+ (−1)mja)

)
uj(x) = λuj(x), (6.3.2)
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where x ∈ (0,∞) and

mj =

0 for j = 1, ..., K,
1 for j = K + 1, ..., N.

The substitution uj(x) = cjv(x + (−1)mja) with coefficient cj transforms (6.3.2) into
(2.4.13). By Sobolev embedding of H2(R+) into C1(R+), uj(x) → 0 and u′j(x) → 0 as
x→ +∞ for each j = 1, ..., N . To satisfy the latter condition, we need

uj(x) =

cjv(x+ a), j = 1, . . . , K,
cjv(x− a), j = K + 1, . . . , N.

(6.3.3)

The boundary conditions for U ∈ D(∆) in (6.1.1) imply the homogeneous linear system
on the coefficients

c1v(a) = · · · = cKv(a) = cK+1v(−a) = · · · = cNv(−a), (6.3.4)

and
K∑
j=1

cjv
′(a) +

N∑
j=K+1

cjv
′(−a) = γcNv(−a). (6.3.5)

The associated matrix is

M =



v(a) −v(a) 0 . . . 0 0 . . . 0 0
v(a) 0 −v(a) . . . 0 0 . . . 0 0
...

...
... . . . ...

... . . . ...
...

v(a) 0 0 . . . −v(a) 0 . . . 0 0
v(a) 0 0 . . . 0 −v(−a) . . . 0 0
...

...
... . . . ...

... . . . ...
...

v(a) 0 0 . . . 0 0 . . . 0 v(−a)
v′(a) v′(a) v′(a) . . . v′(a) v′(−a) . . . v′(−a) v′(−a)− γv(−a)


Doing elementary column operations, we can obtain a lower triangular matrix with the
determinant

detM = v(a)K−1v(−a)N−K−1 [Kv′(a)v(−a) + (N −K)v′(−a)v(a)− γv(a)v(−a)] .

Therefore, U 6= 0 is the eigenvector of L+ for the eigenvalue λ ∈ (−∞, ω) if and only if
detM = 0, or equivalently, one of the conditions (a), (b), (c) is true. The multiplicity
of λ in cases (a)-(c) comes directly from the linear system (6.3.4)–(6.3.5).

For K = 0, the boundary conditions (6.3.4)-(6.3.5) do not contain terms v(a) and
v′(a), and the determinant of the associated matrix M becomes

detM = v(−a)N−1 [Nv′(−a)− γv(−a)] .
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Then, detM = 0 if and only if one of the conditions (b), (c) is true.

Lemma 6.8. Let γ 6= 0, K ≥ 0 and v be the ω-dependent solution to (6.3.1) given by
Lemma 2.19. Consider the function of λ as

F (λ) := K
v′(aK ;λ)
v(aK ;λ) + (N −K)v

′(−aK ;λ)
v(−aK ;λ) : (−∞, 0]→ R. (6.3.6)

Then, the following hold:
• v(|aK |;λ) > 0 for all λ ∈ (−∞, 0];
• there exists unique λ∗ ∈ (−∞, 0) such that v(−|aK |;λ) = 0;
• if γ < 0 with K = 0, then F (λ) = γ has the unique root λ1 ∈ (−∞, 0];
• if γ < 0 with K ≥ 1, then F (λ) = γ has exactly two solutions λ1 < λ2 on (−∞, 0].
Moreover, λ1 < λ∗ < λ2 < 0;
• if γ > 0 with K ≥ 0 then F (λ) = γ has the unique root λ1 ∈ (−∞, 0], and λ1 < λ∗.

Proof. Since v is the nonzero solution of the second order differential equation (6.3.2),
it has only simple zeros which, according to Lemma 2.22, are monotonically increasing
functions of λ. At λ = λ0, by Lemma 2.20, we have positive even v(x;λ0) exponentially
decaying as |x| → ∞. Therefore, v(x;λ) has the only zero x0(λ) which bifurcates from
x = −∞ at λ = λ0 and moves strictly monotonically towards x = 0 as λ → 0 with
x0(0) = 0, see Figure 2.4. As a result, for λ ≤ λ0, v(x;λ) is positive on the entire real line,
whereas, for λ ∈ (λ0, 0], v(x;λ) is positive for every x ∈ (x0(λ),∞) and v(x0(λ);λ) = 0.
We denote λ satisfying x0(λ) = −|aK | as λ∗. Since aK 6= 0, then λ∗ < 0. The uniqueness
of λ∗ is guaranteed by the monotonicity of x0(λ). This proves the first two assertions of
this Lemma.

By Lemma 2.19, v(±aK ;λ) is a C1 function of λ for λ ≤ 0. Therefore, using the first
two assertions of this lemma, for γ < 0 with K ≥ 1 and for γ > 0 with K ≥ 0, F (λ) is
C1((−∞, 0])\{λ∗}) and has a simple pole at λ = λ∗.

To investigate the behaviour of the function F , we first show that F is a monotonically
increasing function. Differentiating the equation (6.3.1) in λ, multiplying it by v and
integrating by parts on [c,∞] for some c ∈ R, we get

P (c) := ∂λv
′(c)v(c)− v′(c)∂λv(c)

v2(c) = 1
v2(c)

∫ ∞
c

v2(x)dx > 0 if v(c) 6= 0.

Therefore, F ′(λ) = KP (aK) + (N −K)P (−aK) > 0 for all λ ∈ (−∞, 0]\{λ∗}.

By Lemma 2.19, for every c ∈ R, limλ→−∞
v′(c;λ)
v(c;λ) = −∞. Then, taking c = ±aK , we

have that limλ→−∞ F (λ) = −∞. By Lemma 2.22 on the monotonicity of a simple zero
of v, in case of γ < 0 with K ≥ 1 and γ > 0 with K ≥ 0, the behaviour of F (λ) around
the simple pole λ∗ is given by

lim
λ→λ−∗

F (λ) = +∞ and lim
λ→λ+

∗

F (λ) = −∞.
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At λ = 0, the unique solution v = v(x; 0) of (6.3.1) in Lemma 2.19 is known to be
v(x) = −Cφ′ω(x), where φω = is given by Lemma 6.2 and C = 2−1/pω−(1+p)/2p. Then,
using the explicit formulations of v and aK , direct computations give

F (0) = p(γ2 − (N − 2K)2ω)
γ

+ γ.

Since ω > γ2

(N−2K)2 , then p(γ2 − (N − 2K)2ω) < 0. Hence, for γ < 0 we have F (0) > γ,
whereas for γ > 0 we have F (0) < γ. As a result, in case of γ < 0 with K ≥ 1 and
γ > 0 with K ≥ 0, the equation F (λ) = γ has a unique root λ1 ∈ (−∞, λ∗). Moreover,
in case of γ < 0 with K ≥ 1, there is an additional root λ2 which is unique in (λ∗, 0),
see Figure 6.3.

Figure 6.3: The graph of the function F in (6.3.6) for λ < 0 and K ≥ 1.
The eigenvalue λ∗ is the singularity of F . The blue line is the γ < 0 level.
We can see that F (λ) = γ has exacty two roots on (−∞, 0] in agreement
with the statement of Lemma 6.8.

In case of γ < 0 withK = 0, the first term in (6.3.6) vanishes, and F (λ) is C1(−∞, 0])
since v(−aK ;λ) > 0 for all λ ∈ (−∞, 0]. In what follows, F (λ) is C1(−∞, 0]) and
monotonically increasing with limλ→−∞ F (λ) = −∞ and F (0) > γ. Therefore, F (λ) = γ
has the unique root λ1 ∈ (−∞, 0].

Proof of Theorem 6.3. The count of the Morse and degeneracy indices of the operator
L− in (6.2.2) is based on Lemma 2.18. Hence, below we only provide the count for the
operator L+ given in (6.2.1).

Let λ̂ ∈ σp(L+)∩(−∞, 0] be an eigenvalue of σp(L+) with the eigenvector U ∈ D(∆).
Then, by Lemma 6.7, one of the conditions (a), (b), (c) must be satisfied by v(x; λ̂).

For the case γ < 0 and K = 0, both parts (a) and (b) of Lemma 6.7 are never true,
and the part (c) has a unique root λ1 ∈ (−∞, 0] by Lemma 6.8. Thus, z(L+) = 0 and
n(L+) = 1.

Next, we consider γ < 0 and K ≥ 1 or γ > 0 and K ≥ 0. Recall that aK < 0 for
negative γ, and aK > 0 for positive γ. Then, for γ < 0 and K ≥ 1, by Lemma 6.8,
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the part (a) of Lemma 6.7 is satisfied for unique λ∗ ∈ (−∞, 0] and the part (b) is never
true. For γ > 0 and K ≥ 0, the part (a) is never true and the part (b) is satisfied for
unique λ∗ ∈ (−∞, 0].

It remains to consider the part (c) of Lemma 6.7, namely, to find all values λ̂ ∈
(−∞, 0] such that v(x) = v(x; λ̂) will satisfy

Kv′(aK)v(−aK) + (N −K)v′(−aK)v(aK)− γv(aK)v(−aK) = 0 (6.3.7)

Since v(|aK |) 6= 0, and v′(−|aK |) 6= 0 if v(−|aK |) = 0, the eigenvalue λ = λ∗ is not
a solution of (6.3.7). Therefore, all solutions λ̂ of (6.3.7) coincide with all solutions of
F (λ) = γ, where F is given by (6.3.6). The last two assertions of Lemma 6.8 complete
the proof of Theorem 6.3.
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Chapter 7

Open problems and future
directions

In this thesis we considered the NLS equation with a power-type nonlinearity on the
star graphs. In particular, we verified the existence of stationary states for different
boundary conditions at the vertex, and investigated their stability. The tools used in
the stability analysis depended on the structure of the stationary states, in particular,
on the spectrum of the linearized operators associated with the states and the presence
of symmetries in the NLS equation. The nature of instabilities in Chapters 3, 4, 5 and
6 is different. In Chapter 3, the constrained linear operator associated with the half-
soliton state is nonnegative, however it has a high degeneracy index which produces
certain perturbations slowly growing in time. The instability in Chapters 4 and 6 was
due to the presence of the negative spectrum whereas in Chapter 5, the constrained
linear operator was strictly positive, and the instability appeared due to the lack of
translational symmetry.

Below we will list the set of open problems which naturally arise from the results of
the thesis.

• The stationary states for the NLS equation on the star graphs has been discussed
in Chapter 2, and it was shown that they have a soliton structure on half-lines
with the appropriate translational parameter. The interesting question which
arise is the existence and structure of stationary states of the NLS equation with
a power-type nonlinearity on more complicated graph models with both bounded
and unbounded edges. In such case, if half-lines are attached to different vertices,
one can expect the soliton profiles on half-lines to depend on different translational
parameters which complicates the structure of the stationary states. Moreover,
due to the Kirchhoff conditions at the vertex, we also expect that the stationary
states admit bifurcations. To obtain more information on possible bifurcations,
one need to analyze the spectrum of a linearized Schrödinger operator as L+.

• The count of the Morse index of the operators L± in Chapters 4 and 6 has been
done via the extension of the Sturm theory to the star graphs. However, similar
extension might fail for more complicated graphs. One of the ways to overcome
such issue is to develop relatively new method for the count of discrete eigenvalues.
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The "surgery principles", described initially in [13], allow to modify graphs with
finite edges by cutting edges, gluing vertices etc. and observe the change of spectral
properties of Laplacian operator under these modifications. Similar results can be
obtained for graphs with both finite and infinite edges, and one can further extend
these result to linear Schrödinger operators with a potential. The latter result
proven for potentials exponentially decaying at infinity will have a big impact to
the study of spectral stability of solutions to nonlinear PDEs on graphs. One
of the tools to count the Morse index is to use the Courant nodal theorem on
graphs, [10, 12, 14] and references therein, which states that the Morse index of the
operator depends on the number of internal zeros on the graph of an eigenfunction
corresponding to the first nonnegative eigenvalue.

In many applications, the stationary solution Φ to nonlinear PDEs on graphs
is known explicitly, and the derivative of the solution, Φ′, satisfies the spectral
equation for the operator L+ with 0 (zero) eigenvalue, but often fails to satisfy
boundary conditions at the vertices. Therefore, Φ′ is not an eigenfunction for the
spectral problem, and the Courant nodal theorem is not applicable. However, one
can extend "surgery principles" to reduce the L+-associated spectral problem to
be defined on simpler graph models. The latter step makes the spectrum of the
operators flexible, and playing with the boundary conditions which is allowed by
the "surgery principles", we manually create the zero eigenvalue with the explicit
eigenfunction. Based on such explicit formulation, Courant nodal theorem gives
the approximate count of the Morse index, which might be enough to state spectral
stability or instability of the stationary solution.

• The operator L− in (2.4.4) was nonnegative by Lemma 2.18, and so the spectral
stability of stationary states in Chapters 4 and 6 depended on the Morse index of
the operator L+ given by (2.4.3). In particular, the stationary state was spectrally
unstable if the number of negative eigenvalues of L+ exceeded one.

In general, such approach might be inconclusive for stationary states of the NLS
equation on more complicated graphs. As an example, in [55] for certain stationary
states of the NLS equation on the tadpole graph, the Morse indices of the operator
L− and the constrained operator L+ are equal, and so the classical results in [36, 37]
are not applicable. In what follows, one can try to extend the spectral stability
analysis to such examples, and adopt it to graph models.

• The asymptotic stability is a stronger type of stability compared to spectral or
orbital stabilities. The difficulties in asymptotic analysis of standing waves were
discussed in [54], and it has been mentioned that the standard analytical tools,
e.g. Strichartz estimates, work only for certain nonlinearities. As a result, the
asymptotic stability of stationary states for the NLS equation on many simple
metric graphs is still an open problem.
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