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ABSTRACT 

BACKGROUND: Brown adipose tissue (BAT) has emerged as an attractive target to address 

the dramatic rise in obesity and non-alcoholic fatty liver disease (NAFLD) in adults and children 

due to its ability to clear lipids through thermogenesis when activated with cold stimulation. 

Cross-sectional studies have identified an inverse relationship between BAT and NAFLD in 

adults, although no linking mechanism or relevance in children is known. Metabolomics 

provides a non-invasive platform to investigate BAT physiology and its relationship with hepatic 

fat in an effort to identify potential targets for further investigation.  

PROJECT OBJECTIVES:  

1) To explore the associations between the plasma metabolome and BAT in adults and 

children. 

2) To explore the associations between the plasma metabolome and hepatic fat in adults and 

children. 

3) To identify metabolites associated with both BAT and hepatic fat as potential linking 

mechanisms for further study.  

METHODOLOGY: We recruited 63 male and female adults aged 18 to 57 years and 25 healthy 

male children aged 8 to 10 years into this cross-sectional study. Study participants underwent 

blood work, body composition measurement (dual energy X-ray absorptiometry; DXA) and 

magnetic resonance imaging (MRI) - proton density fat fraction (PDFF) measurements of whole 

liver hepatic fat, pre- and post-cold supraclavicular fat. BAT activity was calculated as the 

percent change between post and pre-cold BAT PDFF with the cold stimulus consisting of a 

water-perfused suit maintained at 18°C for 3-hours (adult) or 1-hour (pediatric). Targeted liquid-

chromatography/mass spectrometry metabolomics of 102 metabolites was conducted on fasted 
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plasma and multivariate linear regression with multiple testing correction was used to examine 

metabolite predictors of BAT measures and hepatic fat.  

RESULTS: In the adult cohort (n=63, median age 25.9 years, median body mass index (BMI) 

25.4 kg/m2), five metabolites were associated with baseline BAT lipid content, where an elevated 

lipid content may indicate a whiter adipose tissue-like phenotype. Aconitate and creatine 

commonly predict increased baseline BAT lipid content (β=0.420, P=0.001 and β=0.408, 

P=0.001, respectively), and reduced BAT activity (β=-0.462, P=0.002 and (β=-0.402, P=0.002, 

respectively). Alanine and two acyl-carnitines also predicted reduced BAT activity. Glutamic 

acid was similarly related to higher baseline BAT (β=0.480, P<0.001) and hepatic lipid content 

independent of age and sex (β=0.392, P=0.002). Three other metabolites were directly related to 

hepatic fat, and serine inversely. In children (n=25, median age 9.89 years, mean BMI Z-score 

1.25), cysteine and cystine were trending towards a significant relationship with higher baseline 

BAT lipid content, and were both related to elevated hepatic fat independent of adiposity 

(cysteine: quadratic β=-0.714, p<0.001 and cystine: quadratic β=0.592, p<0.001). Two hydroxy-

proline isomers and L-carnitine were associated with reduced BAT activity. 

CONCLUSION: In adults, several metabolites were associated with reduced BAT activity and 

with a higher baseline BAT lipid content in the non-stimulated state – aconitate and creatine 

were related to both. Acylcarnitines or their metabolites related to BAT in both children and 

adults, which may suggest areas for subsequent investigation of BAT metabolism. Glutamic acid 

in adults and cysteine and cystine in children were weakly related to elevated baseline BAT and 

hepatic fat content. Further, amino acids such as glutamic acid and cysteine may be markers of 

increased ectopic fat accumulation – and are also associated with a whiter ambient BAT 

phenotype. Cumulatively, these findings highlight targets for further investigation into BAT 

physiology and the link to the liver.   
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CHAPTER 1: LITERATURE REVIEW 

Obesity has risen to epidemic levels across Canada and the world. Statistics Canada has 

reported almost two-thirds of Canadian adults and one-third of children are overweight or obese1. 

Furthermore, obesity is associated with cardiometabolic and other complications increasing the 

morbidity and mortality related to this condition1. One major comorbidity is non-alcoholic fatty 

liver disease (NAFLD), consequently becoming the most common cause of liver disease in 

adults with an estimated world-wide prevalence of 25%2. The prevalence of NAFLD in children 

is also progressively rising, which is now estimated to be between 3-10% or up to 40-70% in 

children with obesity3. NAFLD is an umbrella term of liver diseases along a spectrum ranging 

from simple hepatic steatosis (≥ 5% lipid content) to hepatic inflammation (i.e., non-alcoholic 

steatohepatitis, NASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC)4. Progression 

along that spectrum is, however, not fully understood and treatment options are limited.  

Obesity is classically defined as excess adiposity, but it is important to recognize that two 

types of adipose tissue exist. Best known is white adipose tissue (WAT), which is the storage 

vessel for excess energy as fat. Brown adipose tissue (BAT), on the other hand, has a largely 

opposite role from WAT. Rather than energy storage, BAT takes up circulating glucose and 

lipids and metabolizes them as fuel for non-shivering thermogenesis (NST) when 

sympathetically activated by cold exposure. BAT is prevalent in varying amounts in adults and 

children and, amongst adults, BAT activity is lowest in those with obesity and/or diabetes with 

insulin resistance5–7. The physiological significance of ambient and cold-stimulated BAT is not 

fully elucidated in humans and much of our mechanistic understanding comes from pre-clinical 

models. Metabolomics may provide valuable insight into BAT physiology or targets for novel 

BAT biomarkers as metabolites are produced and consumed in the process of NST. Research 
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relating the circulating metabolome to BAT presence or activity is very limited in adults, and 

completely absent in children. Therefore, one objective of this project is to fill the gap in 

knowledge of human BAT physiology from a metabolomic perspective and propose novel 

biomarkers of BAT presence or activity to be tested further.     

As noted above, the underlying risk factors and pathophysiology of NAFLD are not fully 

elucidated and treatment options remain limited2. Therefore, novel strategies to fully understand, 

diagnose and treat NAFLD in adults and children are being investigated. Given the thermogenic 

and lipid-clearing potential of BAT, several investigators have considered whether stimulation of 

BAT tissue might improve NAFLD. Cross-sectional data provides evidence that BAT and 

NAFLD are inversely related in adult humans, although the mechanistic connection has yet to be 

discovered8,9. This relationship has not yet been investigated in a pediatric population. Pre-

clinical studies have utilized metabolomics to propose a causal relationship between BAT 

activity and reduced hepatic fat accumulation, with acyl-carnitine and branched-chain amino acid 

(BCAA) metabolism among the pathways of interest10,11. An overarching objective of this 

project is thus to examine the metabolome associated with BAT activity and hepatic fat 

accumulation in humans and to compare these and identify if there are any potential metabolic 

connections that may prompt future mechanistic studies.  

1.1 Brown Adipose Tissue  

Adipose tissue can be divided into two distinct and unique populations: WAT and BAT. 

WAT is much more widely regarded as ‘classic’ fat in that its main role is the storage of lipids. 

Thus, WAT is key in the development of obesity. BAT, however, has a unique role in NST due 

to the high abundance of uncoupling protein-1 (UCP-1) and other thermogenic genes. UCP-1 

effectively uncouples mitochondrial respiration from energy production enabling fuel sources to 
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flux through the mitochondria and produce heat rather than be stored as energy (i.e., adenosine 

triphosphate; ATP). BAT is maximally activated under both acute and chronic environmental 

cold conditions, and activity is reversed to baseline when returned to warmth12. BAT contains a 

high abundance of mitochondria and is highly vascularized by sympathetic nerve fibres13. In 

contrast, WAT cells are composed of one large storage vacuole and are largely poorly 

vascularized. Given these characteristics of BAT, it may have therapeutic potential for treatment 

of obesity and related health issues due to its ability to metabolize and clear lipids through 

thermogenesis. Brown adipocytes are also found within WAT depots and so called ‘brite’ or 

‘beige’ adipocytes, represent an intermediary phenotype.  

In humans, BAT was thought to be only present in infants and to progressively disappear 

in adulthood. However, the use of positron-emission tomography (PET) with computed 

tomography (CT) and labelled glucose (18F-fluorodeoxyglucose, 18F-FDG) has allowed 

researchers to confirm the presence of BAT depots in adult humans5–7. These depots of high 

metabolic activity and immunoreactivity for UCP-1 were found in the supraclavicular (SCV), 

mediastinal, paravertebral and perirenal regions14. Human BAT activity was classically assessed 

by 18F-FDG PET-CT after acute cold exposure, with researchers finding a very high prevalence 

of active BAT (>95%) in a cohort of healthy male volunteers7. BAT activity in this study also 

positively correlated with resting metabolic rate in cold and thermoneutral conditions, further 

supporting the involvement of BAT in whole-body energy metabolism7. The ability to detect 

cold-stimulated BAT activity by PET-CT was further supported by Yoneshiro et al.15 in a larger 

cohort of 162 male and female adults across a wide age range of 20 to 73 years. 
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1.2 Measuring BAT 

1.2.1 PET-CT 

The use of PET-CT with 18F-FDG is considered the gold standard to assess BAT activity. 

18F-FDG is a radiolabelled analogue of glucose and is taken up by tissues in the same manner as 

glucose, and specifically in BAT when sympathetically activated. The tracer becomes 

phosphorylated and trapped in the tissue allowing quantification of BAT volume and metabolic 

activity. However, the main fuel source for BAT is fatty acids from intracellular lipolysis rather 

than glucose and therefore this tracer is not the most accurate at reflecting BAT activity16,17. 

Glucose uptake by BAT is also insulin-dependent and therefore the use of 18F-FDG in subjects 

with diabetes or insulin resistance may further compromise this as a measure of BAT activity.  

Additional challenges with this method include exposure to ionizing radiation and costs 

and together these have limited the usefulness of 18F-FDG PET-CT in research, especially in a 

pediatric population. In children, most BAT studies are in retrospectively analyzed PET-CT 

images in those who have otherwise required a PET-CT scan. Retrospective analysis has 

contributed to low reproducibility in that, of 2934 participants with a retrospective analysis of 

PET-CT images, only 13.3% of patients with an initial positive BAT scan had a positive result 

on repeated scanning5. Thus, 18F-FDG PET-CT has limited usefulness for assessing BAT in 

humans, especially in the pediatric population.  

1.2.2 Magnetic Resonance Imaging  

More recent studies have made use of non-invasive imaging modalities such as magnetic 

resonance imaging (MRI) to evaluate BAT activity to avoid radiation exposure18. This technique 

makes use of the physiological differences between BAT, WAT and other tissues in terms of 

water and fat content. MRI uses a strong magnetic field to create oscillations which provide 
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energy to excite hydrogen atoms which then emit a radiofrequency detectable by the scanner and 

translatable into an image19. These protons resonate with a different frequency based on their 

origin, such that protons in fat produce a higher resonance than those in water. The fat-water 

composition is used to create a proton-density fat fraction map (PDFF%= fat/(fat+water)) and is 

then used in MRI image analysis for BAT quantification. BAT has a higher water and lower fat 

content than WAT, as confirmed by histology, which can be used to distinguish the tissues20,21. 

This was also confirmed in more recent studies noting a significantly lower PDFF% in BAT 

versus WAT in both adults and children, which was then reflected in the 18F-FDG PET-CT 

signal differences between these tissues22–24. Researchers have thus attempted to reproducibly 

standardize PDFF% values for BAT and WAT, but challenges exist due to the overlapping 

PDFF% ranges and heterogeneity between children and adults23–27. There is unlikely to be a 

simple solution to this challenge, though, due to the heterogenous mixture of brown, beige and 

white adipocytes in human SCV fat pads and variations across age groups15,28. Therefore, a 

higher baseline PDFF% within the SCV region is generally considered a “whiter” BAT 

phenotype, but difficulties still exist in creating rigid guidelines for MRI analysis of human BAT.   

Furthermore, as opposed to 18F-FDG PET-CT which is only used to measure glucose 

uptake by BAT in an active state, MRI PDFF% can be used to detect both baseline fat fraction 

and cold-stimulated BAT activity. BAT activity is quantified by the reduction in PDFF% after 

cold exposure as triglycerides are oxidized as thermogenic fuel by BAT29,30. This marker of BAT 

activity was then validated by researchers noting both a significant correlation with PET-CT-

assessed activity and no paralleled change in WAT PDFF%31,32. This PDFF% decline may be 

confounded by an increased blood perfusion upon cold exposure, however, but a brief warming 

period was shown to eliminate this effect while still accurately quantifying BAT activity31,33. 

Overall, the ability of MRI to accurately detect both a baseline BAT phenotype and cold-induced 
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activity, along with the lack of ionizing radiation exposure, are favourable properties of this 

imaging modality as compared to PET-CT23,34. 

In our laboratory, MRI analysis of BAT was conducted in 64 adults (61% male) before 

and after a 3-hour cold exposure35. The mean (standard deviation, SD) pre-cold SCV PDFF% 

was 72.14 (7.91) % and post-cold SCV PDFF% was 69.46 (9.72) %, resulting in a PDFF% 

reduction of 2.98% (pre-post difference P<0.001, paired samples t-test). No change was seen in 

subcutaneous abdominal PDFF% (i.e., a predominately WAT depot). Additionally, a higher pre-

cold SCV PDFF% (i.e., a whiter BAT phenotype) correlated with a smaller cold-stimulated 

PDFF% decline (r=-0.616, P<0.001). These results are consistent with the notion that upon BAT 

activation with cold, PDFF% values will decline due to the increased utilization of triglycerides. 

Subcutaneous abdominal adipose tissue has a significantly higher PDFF% than the SCV region 

reflecting the higher fat content of WAT (P<0.001, paired samples t-test). These findings are 

similar to those of Holstila et al.22 who reported a lower baseline SCV PDFF% compared to that 

of WAT, and Gifford et al.23 who similarly reported a significant difference between BAT and 

WAT PDFF% and between pre- to post-cold SCV PDFF%.  

1.2.3 Other Imaging Modalities  

Infrared thermography (IRT) is another potential safe imaging technique to quantify the 

change in BAT activity with cold exposure based on infrared radiation emitted by overlying skin 

in the SCV region when BAT is activated. Although BAT activity assessed by IRT strongly 

correlated with that from PET-CT imaging in adult males, there is questionable validity of IRT 

use in those with obesity due to the overlying subcutaneous WAT in the SCV region36. Proton 

magnetic resonance spectroscopy is another radiation-free imaging modality shown to correlate 

with PET-CT-assessed BAT activity in a small adult cohort, but similar limitations to use in 
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those with obesity exist37 . Therefore, MRI appears to be the gold standard for non-invasive BAT 

imaging.   

1.3 Therapeutic Potential of BAT in Obesity and NAFLD 

As mentioned previously, BAT is an attractive target to combat obesity and related 

complications due to its ability to consume circulating glucose and lipids as thermogenic fuel. In 

fact, BAT presence or activity as assessed by 18FDG PET-CT or MRI is repeatedly reported to be 

inversely correlated to BMI or body fat in humans7,38,39. This relationship was replicated in 

children, where lean children exhibited a significantly lower baseline SCV PDFF% than children 

with overweight or obesity25. Furthermore, researchers have also noted significantly higher 

insulin sensitivity and glucose and free fatty acid (FA) oxidation in those with detectible cold-

induced BAT activity on PET-CT, again inversely correlating with adiposity33,40. Rodent models 

were then used to causally examine this relationship, such as by Lowell et al.41 using two lines of 

transgenic mice with reduced BAT and obesity, with one line undergoing BAT regeneration after 

16 days. The mice with BAT regeneration displayed a resolution of obesity, suggesting the 

ability of BAT to individually support metabolic homeostasis41. Overall, beyond its thermogenic 

capacity, little is known about the physiological mechanisms by which BAT exerts its beneficial 

metabolic effects in humans.  

Furthermore, NAFLD is one of the most significant comorbidities of obesity with an 

estimated worldwide prevalence of 80-90% in adults with obesity3. There is limited evidence that 

BAT may show therapeutic potential against NAFLD as well, as two cross-sectional studies have 

retrospectively analyzed PET-CT images for BAT activity and hepatic fat content8,9. A 

significantly lower prevalence of NAFLD was identified in adults with active BAT compared to 

those lacking active BAT, independent of age, gender, BMI and serum glucose8,9. It is important 
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to note that both studies found an extremely low population of participants with discernable BAT 

activity (2% or below of all scans analyzed), likely as a result of the use of non-cold-stimulated 

imaging8,9. Additionally, MRI analysis of 61 male and female adults showed a significant 

positive correlation between SCV PDFF% at ambient temperature and hepatic fat content (i.e., 

liver PDFF%) independent of age and sex42. Thus, further investigation is required to understand 

the connection between these tissues. In pre-clinical models, BAT transplantation or activation 

downregulates hepatic lipogenic genes, and reverses hepatic steatosis and other adverse 

metabolic outcomes in obese mice43–45. Metabolomics is an interesting non-invasive platform to 

investigate the physiological relevance of human BAT and the mechanistic link with hepatic fat 

accumulation. This platform will thus be outlined below prior to a discussion about the current 

literature relating the metabolome with BAT and NAFLD, both individually and in connection.  

1.4 Metabolomics  

Metabolomics is the method of using analytical chemistry to examine a large number of 

low-molecular weight molecules (i.e., metabolites) in a wide range of biological samples. The 

human metabolome is downstream of the genome, transcriptome and proteome and therefore can 

provide functional information on human health or pathophysiology46. Metabolites are used and 

produced by metabolic processes, such as BAT thermogenesis, and thus can provide insight into 

wide-reaching physiological roles47. Metabolomics can also be used to correlate particular 

metabolites to specific physiological or pathological states to provide non-invasive biomarker 

discovery48. 

Biological samples such as tissue extracts, blood, urine and stool can be used in a targeted 

metabolic profiling or untargeted metabolic fingerprinting46. Targeted metabolomics relies on a 

priori knowledge of specific metabolic pathways of interest, which can then be sensitively and 
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selectively analyzed with optimized methodology, and will be the focus of this report47. 

Untargeted metabolomics provides an unbiased analysis of the biological sample, resulting in a 

large and complex data set requiring bioinformatic tools for metabolic identification and 

correlation47. Untargeted datasets must be interpreted with caution, however, as metabolite 

identities have not been verified to a reference standard to be confident in the true identity. Some 

of the other difficulties in running untargeted metabolomics are that analytical conditions (i.e., 

pH, solvent, ionization technique, etc.) affect which metabolites are recovered, and a large 

number of metabolites remain unidentified47. A targeted approach to specific metabolites often 

follows an initial exploratory untargeted approach to verify exact concentrations of metabolites 

in the sample47.  

1.4.1 Metabolomics Methodology 

Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two main 

methods for metabolomic analysis49. NMR relies on the energy absorption and re-emission of a 

targeted atomic nuclei, most often hydrogen (i.e., 1H-NMR) due to its natural abundance50. NMR 

approaches require little-to-no sample preparation and are highly reproducible and quantitative, 

but lack sensitivity51. I will direct the reader to recent relevant review papers for further NMR 

metabolomics methodology52. MS-based methods, on the other hand, are the most common due 

to the extremely high sensitivity and reliability, and will be the focus of this report51. Samples in 

the liquid or gaseous form are introduced into the MS system, vaporized, and then ionized by an 

electric source49. Such ionization methods include electrospray ionization (ESI) and matrix-

assisted laser desorption ionization (MALDI)53,54. The mass analyzer (i.e., Orbitraps, quadrupole 

mass analyzers) then uses electric and/or magnetic fields to deflect the ions onto a detector based 

on their unique mass-to-charge ratio (m/z)55. Integrated computational software uses the detector 
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data to produce a spectral peak for each ion based on the m/z ratio and the retention time, which 

will be described below53.  

Due to the high complexity of biological samples, a sample separation step precedes the 

MS analysis. Liquid and gas chromatography (LC and GC, respectively) are the most common 

separation techniques, both of which rely on the partitioning of a sample between a stationary 

phase (i.e., a column) and a mobile phase (i.e., liquid or gas, respectively)56. Compounds within 

the sample will partition along the stationary phase column at different times (i.e., retention time) 

based on a specific property, such as molecular size or mass. Therefore, metabolites within the 

sample will be produce a spectral peak at their specific retention time as determined by the 

chromatography step and m/z by MS56. Tandem MS can then be used as a second MS analysis on 

isolated ions to identify molecular fragments and distinguish ions from structural isomers47. The 

additional sample preparation required for an MS-based method with a separation step may 

cause metabolite loss and slightly lower reproducibility57. 

After collecting the m/z and retention time, the metabolite identities can be determined 

with the help of computational software and metabolite databases, and in the case of targeted 

metabolomics, confirmed with reference standards47,58. For example, as will be further described 

in Methodology Section 2.4, the TraceFinder software used in this project collects the m/z ratio 

and retention time for a pre-determined set of known metabolite standards loaded with the 

biological samples. This way, the software is pre-set to integrate the spectral peaks at the known 

retention times and m/z such that these targeted metabolites can be confidently identified within 

the biological samples. This clearly limits the fraction of the vast human metabolome covered in 

this dataset and is thus better suited for hypothesis testing rather than creation as compared to 

untargeted metabolomics, but significantly increases the quantitative reliability59. Metabolite 

abundance is then quantified as the area under the spectral peak relative to heavy labelled 
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internal standards. Metabolomic data can be analyzed further by placing metabolites into 

relevant pathways and networks, which is done by referencing metabolite pathway databases 

such as MetaboAnalyst60,61. Currently, however, these databases only capture a subset of the 

human metabolome and therefore may be a source of bias towards the pathways available61.  

1.5 Metabolomics and BAT in Humans 

BAT presence and activity are reliably measured by 18F-FDG PET-CT and MRI 

techniques in humans. However, BAT is highly metabolically active and consumes and produces 

metabolites in the thermogenic process when sympathetically stimulated and therefore 

metabolomics may provide novel information about BAT physiology62. There are very few 

studies done to date relating the human metabolome to BAT presence and/or activity. Firstly, 

Boon et al.63 aimed to discover a novel biomarker of BAT activity in serum from 22 lean, 

healthy male adults (mean age 24 years) using a targeted metabolomic approach. A strong 

positive correlation was found between 18F-FDG PET-CT-measured BAT activity after a 2-hour 

cold exposure and the three metabolites lysophosphatidylcholine (LysoPC)-acyl C16:1 (r=0.35, 

P<0.001), LysoPC-acyl C16:0 (r=0.22, P=0.002), and PC-diacyl C32:1 (r=0.08, P=0.04) in non-

cold stimulated serum63. Similar relationships with cold-induced BAT volume were noted63. 

After replication in three similar cohorts consisting of 37 male participants in total, LysoPC-acyl 

C16:0 remained robustly correlated with BAT activity and metabolite concentration tended to 

increase after cold exposure63. LysoPC-acyl C16:0 is likely generated by the esterification of 

cholesterol with fatty acids (FA) liberated from a phosphatidylcholine during reverse cholesterol 

transport64. This process links to BAT as BAT activation reportedly strongly enhances high-

density lipoprotein (HDL)-cholesterol turnover and reverse cholesterol transport in mice65 and 

was positively correlated with HDL-cholesterol levels in men66. 
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Lynes and colleagues provided evidence for a second novel biomarker for BAT activity 

in human plasma; also with a targeted metabolomic approach67. They found that the oxygenated 

FA (i.e., oxylipin) 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) is significantly 

increased in circulation after a 1-hour cold exposure at 14°C (P=0.003), and is correlated with 

cold-induced BAT activity as determined by 18F-FDG PET-CT in nine healthy male and female 

adults (r=0.63, P=0.005)67. The researchers also noted that these results were consistent with 

their pre-clinical observations67. However, in a lipidomics study of BAT and WAT biopsies from 

14 participants, the global oxylipin profile could not distinguish BAT and WAT, unlike the 

findings in a murine model68. These investigators concluded that the global oxylipin profile may 

be a surrogate marker of the abundance of brown adipocytes in a homogenous BAT depot, as is 

often found in mice, but the heterogeneity within human BAT depots (i.e., a mix of white and 

brown adipocytes) limits this ability68.  

Yoneshiro et al.11 recently undertook an untargeted metabolomic analysis of baseline and 

cold-stimulated (19°C, 2-hours) serum from 33 healthy male adults. The cohort was divided, 

based on 18F-FDG PET-CT into high BAT and low BAT activity groups based on the median 

tracer uptake11. They focused on BCAA (i.e., valine, leucine, isoleucine) metabolism and 

demonstrated that circulating valine levels decreased after cold exposure in high BAT 

participants (P=4x10-4) , and cold-induced declines in valine, leucine and total BCAA correlated 

with BAT activity (r=-0.530, P=0.0015)11. Importantly, there was no correlation between these 

reductions and skeletal muscle mass, another organ that readily metabolizes such amino acids11. 

These authors concluded that cold-induced BAT acts as a sink for BCAA oxidation and 

clearance from circulation, which then has significant metabolic benefits in terms of energy 

balance and nutrient homeostasis11. 
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Finally, one other study examined cold-induced changes in circulating FA levels in 15 

healthy male adults, with only three subjects also undergoing 18F-FDG PET-CT imaging for 

cold-induced BAT activity69. Interestingly, one saturated FA increased in circulation after a 100-

minute adaptation period at 18°C (P=0.04), while one saturated FA and two monounsaturated 

FAs decreased after a 300-minute euglycemic steady state period at 18°C (P=0.02, P<0.001 and 

P<0.001, respectively)69. The cold-stimulated 18F-FDG PET-CT BAT imaging was used as a 

proof-of-concept to assume the FA alterations occur concurrently with BAT activation69. 

Overall, the authors suggested that BAT is a mediating factor in the cold-induced lipidomic 

alterations, although without direct correlations with BAT activity69. To summarize the above 

work, a limited number of metabolites from diverse biological pathways were shown to be 

correlated with PET-CT-assessed BAT activity, specifically in healthy adults (Figure 1). 

However, no comparisons have been made in children, and underlying mechanisms regulating 

these metabolomic changes are still unknown. It will be interesting to contrast the findings of this 

project to those above due to the inclusion of children and use of MRI for BAT analysis.     
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Figure 1. Summary of the literature relating the metabolome to BAT activity in adults. 
Abbreviations: LysoPC-acyl lysophosphatidylcholine-acyl, 12,13-diHOME 12,13-dihydroxy-9Z-
octadecenoic acid, BCAA branched-chain amino acid. 
 

1.6 Metabolome and BAT in Rodents  

Rodent models allow for analyses of both the metabolome in circulation and in tissue 
extracts, the latter of which is clearly limited in human studies, and therefore a broader 
understanding of the relationship with BAT in rodents is available. Findings from pre-clinical 
metabolomic research are summarized in  

Figure 2. Multiple studies have found an alteration of glucose and lipid oxidation 

pathways and associated metabolites in BAT with cold stimulation10,58,70,71. For example, 

Hiroshima et al.70 analyzed the metabolome of rat BAT extracts at thermoneutrality and after a 

48-hour cold exposure, noting a cold-induced reduction in glycolysis/gluconeogenesis 

intermediates (with no change in the glycolytic end-product pyruvic acid) and an increase in 

metabolites of the tricarboxylic acid (TCA) cycle, b-oxidation, and FA uptake. Similarly, Lu et 

al.71 compared the cold-induced metabolomic effects in murine BAT and WAT extracts and 

noted an enhanced upregulation of pathways of amino acid, purine and pyrimidine metabolism 

and redox regulation in BAT versus WAT. More specifically, metabolites of mitochondrial 

metabolism were shown to be critical in the BAT thermogenic process. For example, succinate, a 

TCA cycle intermediate and regulator of cellular redox status, is specifically highly expressed in 

BAT, enhanced with cold exposure in mice, and promotes BAT thermogenesis upon treatment58. 

Additionally, liver-derived acyl-carnitines, required for mitochondrial FA oxidation, were found 

to increase robustly in circulation and were taken up and metabolized specifically by BAT after 

cold stimulation10.  
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Although the findings in humans are not as comprehensive as those in rodents, certain 

similarities can be found. As discussed previously, the oxylipin 12,13-diHOME was found to be 

correlated with BAT activity and elevated in circulation and BAT tissue after acute or prolonged 

cold in mice, mirroring the authors’ results in humans67. The authors also noted that 12,13-

diHOME is synthesized and released from BAT after cold exposure to then promote BAT lipid 

uptake and UCP-1 activity, which emphasizes the role of BAT in lipid oxidation when 

sympathetically activated67. Yoneshiro et al.11 also supported their human findings of BCAAs as 

a thermogenic fuel for BAT in pre-clinical models, by noting that labelled leucine was primarily 

taken up and oxidized mouse BAT mitochondria after cold exposure, and BAT-specific BCAA 

oxidation-deficient mice exhibited cold and glucose intolerance, weight and fat gain, and 

increased liver fat11. Cumulatively, clinical and pre-clinical metabolomics research points 

towards a mechanistic role of BAT in glucose, lipid and amino acid uptake and catabolism when 

sympathetically stimulated, particularly involving mitochondrial oxidation. How BAT-specific 

functional changes may influence whole-body energy balance and chronic disease development, 

such as obesity and NAFLD, however, requires further investigation.  
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Figure 2. Summary of the 
literature relating the 
metabolome to BAT activity in 
rodents. Also associated with 

cycle flux is b-increased TCA 
oxidation activity. 
Abbreviations: BCAA 
branched-chain amino acid, 
12,13-diHOME 12,13-dihydroxy-9Z-octadecenoic acid, TCA tricarboxylic acid.  
 

1.7 Non-Alcoholic Fatty Liver Disease 

It is clear that NAFLD places a significant burden on the health of the world’s 

population, and both adults and children are susceptible to this chronic disease. It is therefore 

critical to understand the pathophysiology of NAFLD across the disease spectrum to enable 

accurate diagnosis and effective treatments. Although continued research is required, it is 

generally accepted that hepatic steatosis develops due to a chronic excess hepatic uptake and 

synthesis of FAs and other metabolic substrates72–74. This leads to the accumulation of toxic lipid 

species (i.e., FA metabolites), which then promote hepatocyte oxidative stress, injury, and 

death72–74. Insulin resistance is generally accepted as having a major central role in this lipotoxic 

cascade in two manners: (1) dysregulated adipose tissue lipolysis causing release of excess free 

FAs into the circulation and delivery to the liver, and (2) decreased peripheral glucose disposal 
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and promoting hepatic update and subsequent de novo lipogenesis (DNL)74–76. This increased 

flux of free FAs into the liver and incomplete lipid oxidation also promotes hepatocellular 

production of reactive oxygen species (ROS) beyond homeostatic levels, thereby inducing 

inflammation and cellular injury74.  

1.8 Risk Factors Associated with NAFLD 

It is also important to understand factors that drive the development and progression of 

NAFLD to aid in disease screening, treatment and management. Generally accepted risk factors 

for development of NAFLD include metabolic syndrome, ethnicity, genetic factors, age and 

sex77. However, the presence of metabolic syndrome (MetS; i.e., obesity, hyperglycemia, 

dyslipidemia, systemic hypertension) is largely considered to have the strongest overall 

influence2. A meta-analysis conducted in 2016 by Younossi et al.78 concluded that the pooled 

estimated prevalence of MetS in patients with NAFLD and NASH were 42.5% and 70.7%, 

respectively. The specific pooled prevalence estimates for components of MetS in NAFLD and 

NASH, respectively, were as follows: obesity; 51.3% and 81.8%, dyslipidemia; 69.2% and 

72.1%, and type 2 diabetes; 22.5% and 43.6%78. This relationship between NAFLD and 

comorbidities is likely bi-directional, as another meta-analysis concluded that there was 65% 

increased risk of fatal or nonfatal cardiovascular events in the 34,000 patients with NAFLD 

included in the study79.  

Ethnicity and genetic factors are also risk factors for NAFLD development. In a recent 

meta-analysis of 368569 participants, the prevalence of NAFLD (as defined by hepatic steatosis 

on ultrasound or MRI or elevated liver enzymes) was highest in those of Hispanic descent, 

intermediate in Whites, and lowest in African-Americans80. These differences between groups 

were minimized in high-risk cohorts (i.e., cohorts composed of predominantly those with 
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obesity, diabetes, or a history of liver disease)80. While lifestyle factors are believed to partially 

account for these inter-ethnic differences, a number of genetic polymorphisms are associated 

with NAFLD as well, of which the best characterized is the PNPLA3 gene polymorphism81. 

Male sex and increased age are other generally accepted risk factors for NAFLD 

development78,82. The overall prevalence of NAFLD is higher in males than in females, as was 

concluded in the recent systematic review by Ballestri et al.83. These authors concluded this was 

due to the protective effects of estrogen in premenopausal women. The influence of age and 

gender may differ based on ethnicity, however. NAFLD is more common at a younger age in 

Asian and Indian populations compared to Western populations77. Discrepancies also exist in the 

age of NAFLD development by gender, as the prevalence of ultrasound-diagnosed NAFLD was 

shown to increase consistently across the lifespan in females but remained consistent in males of 

a Korean descent84. NAFLD can, however, occur at all ages, and the prevalence of NAFLD in 

pediatric populations is rapidly increasing world-wide and is now considered the most common 

pediatric chronic liver disease85. In general, although there exists a plethora of epidemiological 

research conducted on world-wide NAFLD prevalence, more knowledge about the influence of 

these, and other, driving factors on development and progression across disease stages is needed. 

1.9 Measurement and Diagnosis of NAFLD 

Considering the huge burden that NAFLD management places on the world’s population, 

reliable imaging techniques are required for accurate diagnosis across the disease stages and 

implementation of the appropriate treatment. The choice of appropriate diagnostic technique 

must be chosen in light of its unique strengths and limitations, as will be discussed below.  
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1.9.1 Liver Biopsy 

Currently, liver biopsy is the gold standard for assessing NAFLD disease severity, 

specifically in the diagnosis of NASH and fibrotic stage. Unfortunately, major limitations exist 

with the use of histological assessment, as liver biopsy is invasive, costly and prone to sampling 

variability86. The risk of complications such as pain, bleeding, and morbidity as well as the lack 

of suitability for screening of low-risk individuals further promotes the need for continued 

development of non-invasive techniques for NAFLD assessment87. Biopsy is still required for 

definitive diagnosis of NAFLD and disease staging but application to a broader patient 

population is challenging for the reasons described above.  

1.9.2 Magnetic Resonance-Based Techniques 

In contrast to liver biopsy, magnetic resonance-based techniques provide a non-invasive 

platform to accurately measure liver triglyceride content (i.e., hepatic steatosis). The gold 

standard for quantification of hepatic steatosis is magnetic resonance spectroscopy (MRS), where 

NAFLD is defined as a hepatic fat content of 5.6% or higher88. MRS is highly sensitive to even 

trace amounts of hepatic fat, as measured by the differing signal intensities corresponding to 

water versus fat proton resonance. However, some challenges with MRS exist including that the 

analysis is dependent on the location of the single voxel chosen and thus is susceptible to 

sampling variability87.  

In contrast, MR-based imaging techniques without spectroscopy were developed to 

estimate hepatic fat across the entire liver using PDFF%. As described above, the PDFF% 

method accurately quantifies whole-liver fat content by detecting the ratio of fat protons to total 

fat and water protons. This method is advantageous as it is much less labour- and time-intensive, 

and whole-liver images allow for longitudinal monitoring of patients as the region of interest 
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where fat was measured is exactly known87. PDFF% was also shown to strongly correlate with 

histologically-measured steatosis grade and outperforms ultrasonography for quantitative hepatic 

steatosis assessment89,90. The MRI PDFF% method is therefore a strong, non-invasive alternative 

to liver biopsy for hepatic steatosis assessment but is not capable of NASH diagnosis or fibrotic 

staging. To combat this limitation, MR elastography (MRE) is an emerging technique that takes 

advantage of the mechanical properties (i.e., stiffness and elasticity) of the liver, which strongly 

correlate with biopsy-assessed fibrosis91.  

1.9.3 Other Techniques 

Finally, circulating concentrations of liver enzymes involved in glucose and amino acid 

metabolism such as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and 

gamma-glutamyltransferase (GGT) were once attractive targets as surrogate markers of liver 

injury92. This notion was largely refuted though as several studies report that aminotransferase 

levels are highly variable in NAFLD patients and have a poor predictive value93,94. Composite 

scores may combine liver enzymes with other known NAFLD indicators of age, body 

composition and blood chemistry to increase the predictive value of these measures on presence 

or severity of NAFLD with varying efficacy95. Metabolomics may be an easy and relatively non-

invasive tool to identify novel circulating NAFLD biomarkers to add predictive value to 

established scoring systems. 

1.10 The Metabolome in NAFLD 

While numerous accurate and reliable techniques exist for assessment of liver pathology, 

such as MRI-PDFF% for hepatic steatosis, there are still limitations in non-invasive diagnosis 

and monitoring across the stages of NAFLD. Metabolomics however allows further analysis of 

NAFLD pathophysiology to aid in development of effective interventions and identify novel 
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biomarkers. Much of the work in this field is currently focused on the latter objective, 

concluding that individual metabolites and combined biomarker panels exist to aid in non-

invasive disease diagnosis with varying degrees of efficacy. However, as this project is not 

focused on biomarker discovery, we will direct readers to recent comprehensive reviews96,97. We 

will instead highlight the main alterations in amino acid, lipid, carbohydrate and bile acid 

metabolism associated with NAFLD in adults from a metabolomic point of view in the following 

sections and summarized in Figure 3. Then, any relevant literature from pediatric populations 

will be summarized for comparison to adults. A recent narrative review of the adult serum 

metabolomic profile in NAFLD is also available by Gitto et al.98.  

1.10.1 Amino Acids 

To begin, the liver is a main site of amino acid (AA) regulation and is therefore 

intricately entwined with whole-body metabolism. Broad alterations to circulating AAs were 

noted in NAFLD such as BCAAs, aromatic AAs (AAA), and multiple non-essential AAs. 

Firstly, increased plasma and hepatic BCAAs are found in adults with NAFLD, with or without 

obesity, in numerous metabolomic studies99,100. However, Kawanaka et al.101 reported a 

correlation between decreased plasma BCAAs (measured by an amino assay rather than 

metabolomics) and increasing liver fibrosis grade in adults, highlighting the complexity of 

NAFLD as a disease spectrum. In general, it was proposed that BCAAs and NAFLD are linked 

through an impaired cross-talk between hepatic and/or peripheral mitochondrial TCA cycle 

leading to inefficient BCAAs catabolism and cellular stress98,102.  

Additionally, the liver is the main site of AAA catabolic enzymes so hepatocyte function 

is required for AAA regulation100. In fact, increased AAAs such as tyrosine and phenylalanine 

were seen in plasma in adults with NAFLD, and was even cited as the most dysregulated 

pathway in adolescents with NAFLD99,103. This may be a result of increased hepatic oxidative 
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stress from the incomplete catabolism of excess metabolic substrates, which drives an increased 

intracellular demand for anti-oxidant molecules such as glutathione (GSH)104. This is because 

cysteine acts as both an intermediate in GSH production and an inhibitor of hepatic tyrosine 

transaminase (i.e., inhibitor of tyrosine breakdown); results by Kalhan et al.99 supported this 

notion as circulating cysteine-GSH conjugate was decreased while tyrosine was increased in 

adults with hepatic steatosis.  

Finally, the non-essential AAs glycine and serine are also critical to GSH production as 

rate-limiting substrates, and glutamate is released into circulation after GSH is transaminated by 

GGT100. Consequently, glycine and serine levels are decreased and glutamate levels are 

increased in the circulation of adults with NAFLD99,100,104. Gaggini et al.100 also eloquently 

summed up this relationship in their novel glutamate-serine-glycine-index 

(glutamate/[serine+glycine]). Glutamate is also considered an anaplerotic substrate for the TCA 

cycle when converted to α-ketoglutarate, which has shown to accumulate in circulation of adults 

with NAFLD105,106. Thus, the broad changes in circulating AAs associated with NAFLD provide 

insight into hepatocellular impairments and likely have wide-spread impacts in whole-body 

metabolic health.       

1.10.2 Lipid Metabolism 

NAFLD is also well-known to be characterized by alterations in the complex process of 

lipid metabolism, but fortunately metabolomics has allowed for analysis of a wide spectrum of 

lipid classes in patients with NAFLD and NASH. A lipidomic analysis was conducted in 

participants with biopsy-proven NAFLD or NASH compared to healthy controls by Puri et al.107, 

and patients with NAFLD had increased total, saturated and monounsaturated FAs (MUFA; 

specifically palmitoleic and oleic acids). An elevated rate of DNL in adults with NAFLD and 

NASH was suggested as evidenced by an increased incorporation of MUFA relative to 
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polyunsaturated FAs into circulating lipid pools through increased activity of lipogenic 

enzymes107–109. Furthermore, LysoPCs are considered toxic metabolites of FA oxidation and thus 

an indirect mediator of hepatic cytotoxicity seen in NAFLD110. Papandreou et al.111 found that 

adults with a reversion of NAFLD after a Mediterranean diet intervention and mean follow-up 

period of 3.8 years showed reduced circulating LysoPC species as a possible result of reduced 

hepatic lipotoxicity111. Phosphatidylcholines (PC) and LysoPCs were generally reported to be 

most prevalent in favourable high-density lipoprotein cholesterol which is reduced in NAFLD 

and thus may partially explain an increase in these lipids in circulation112,113. However, 

phospholipid metabolism is highly complex and may differ with disease severity as researchers 

have noted reduced LysoPCs in adults with NASH versus healthy controls99. Finally, several 

studies have reported increases in circulating or hepatic carnitine species in patients with 

NAFLD and NASH99,107,114. An increased acylcarnitine production is considered to be due to the 

high FA load and mitochondrial lipotoxicity associated with NAFLD115. Increased plasma long 

chain acylcarnitines is reported to be strongly correlated with the NAFLD-associated rise in 

circulating BCAAs as fuel for increased mitochondrial TCA flux102. Overall, changes to 

circulating total lipid load and composition, phospholipid metabolism and mitochondrial FA 

uptake are characteristic of NAFLD, but continued metabolomic investigation is warranted to 

fully understand the role of the lipidome in liver pathophysiology.  

1.10.3 Carbohydrate Metabolism 

NAFLD is likely to be accompanied with insulin resistance, hyperglycemia and 

hyperinsulinemia2. Consequently, metabolomic studies in both mice116,117 and adult humans99,118 

have reported increased circulating lactate concentrations in NAFLD, likely explained by the 

above metabolic disturbances and resulting shift towards anaerobic metabolism. Toye et al.117 

stated that increased plasma lactate in mice with high-fat diet-induced NAFLD reflects enhanced 
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muscle lactate production in a hyperglycemic state and increased availability of gluconeogenic 

substrates. Increased circulating pyruvate, alanine and mannose were also seen in varying stages 

of NAFLD, reflecting a proposed rise in cytosolic glycolysis through the use of glucose to 

produce alanine and lactate via pyruvate99,117,119.  

1.10.4 Bile Acids 

Lastly, bile acids (BAs) are metabolites of cholesterol breakdown in liver and have a 

critical role in glucose and lipid homeostasis120. Primary bile acids (i.e., cholic acid and 

chenodeoxycholic acid) can then be converted into secondary BAs by the gut microbiome or 

conjugated with amino acids121. BAs can alter intestinal fat absorption and induce growth factor 

expression, which then has a multitude of downstream effects on hepatic insulin signaling, 

glucose and lipid metabolism, and inflammation121. García-Cañaveras et al.122 analyzed the 

metabolome from steatotic and non-steatotic human liver samples, concluding that elevated total 

BAs are found in simple steatosis. An altered BA profile is more commonly associated with 

increased NAFLD severity, though, with researchers regularly noting elevated total serum and 

hepatic BAs in patients with NASH, but with differing distribution of specific BA species108,123. 

For example, Jiao et al.120 found a four-fold increased percent of serum secondary BAs but 

reduced percent of chenodeoxycholic acid in adults with NASH versus healthy controls. 

Therefore, it is clear that changes to BA regulation in adults with NAFLD and/or NASH 
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accompany the plethora of other metabolomic impairments highlighted above and summarized in 

Figure 3, including amino acids, lipids and carbohydrates.  

Figure 3. Summary of the major findings relating the metabolome to NAFLD in adults. Toxic 
lipid intermediates include PCs and Lyso-PCs. Abbreviations: ROS reactive oxygen species, 
GSH glutathione, BCAA branched-chain amino acids.  
 

1.10.5 The Metabolome in Pediatric NAFLD 

High-throughput methods such as metabolomics have become of great interest in order to 

study the differences in NAFLD pathogenesis between adults and children for precise diagnosis 

and treatment. A number of similarities between adults and younger populations are noted. 

Goffredo and colleagues124 noted elevated circulating BCAAs (valine and isoleucine) and 

tryptophan in 78 male adolescents with hepatic steatosis in a targeted metabolomics study. The 

authors also reported that circulating valine concentration was predictive of steatosis progression 

at two year follow-up124. Likewise, Jin et al.103 found that while many pathways of FA 

metabolism and DNL were dysregulated in adolescents with hepatic steatosis, the tyrosine 

metabolism pathway was the most dysregulated. In a targeted metabolomics study in 76 Chinese 

children with and without NAFLD on ultrasound, an increase in palmitoleic acid was noted as 
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was also seen in adults125. In contrast to adult studies, no change in total saturated FA, MUFA or 

BA levels in these children with NAFLD were noted, and the direction of change in a number of 

BA species (i.e., CDCA) differed between adults and children125. Finally, Khusial et al.126 

identified a panel of metabolites that were altered in plasma from 222 children (11-18 years) 

with biopsy- or MRI-diagnosed hepatic steatosis versus 337 control participants in effort to 

identify pediatric-specific biomarkers126. They noted lower serine, increases in the BCAAs 

leucine/isoleucine and increased tryptophan, consistent with previously described findings in 

adults126. However, these authors also noted a reduced plasma abundance of three LysoPCs, 

which is contrary to some adult findings111,126. In conclusion, research relating the metabolome 

to pediatric NAFLD highlights a number of similar results as that in adults, such as BCAAs, 

AAAs, other amino acids and certain FAs. However, discrepancies also exist between adults and 

children in terms of the BA profile and certain phospholipids, and therefore further investigation 

into similarities and differences between circulating metabolomic features is warranted.  

1.11 The Metabolomic Link Between BAT and NAFLD  

 Metabolomics may be informative in investigating common biochemical mechanisms 

linking BAT and liver to support the cross-sectional data that suggests a relationship between 

these tissues. These findings relate to carnitine metabolism and AA metabolism. Simcox et al.10 

identified a robust increase in circulating acylcarnitines derived by the liver after cold 

stimulation by untargeted lipidomics in mice. Further, labelled acylcarnitines were taken up and 

metabolized primarily by BAT, and a knock-down of hepatic acylcarnitine genes resulted in cold 

intolerance10. In the discovery of plasma succinate accumulation after cold exposure and its 

metabolism as a thermogenic substrate in mouse BAT, Mills et al.127 also noted a reduced 

hepatic lipid deposition in succinate-treated mice. Elevated circulating BCAAs are also 

characteristic of NAFLD and obesity in humans99,100,114 and Yoneshiro et al.11 noted that BCAAs 
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are selectively taken up and oxidized by cold-stimulated BAT in humans and mice. Furthermore, 

in vitro BCAA treatment induces human brown adipocyte oxygen consumption11. Mice 

generated with a BAT-specific catabolic defect not only had increased circulating BCAA and 

were cold intolerant, but also showed increased body mass, liver mass, and liver fat content11. 

Finally, although not analyzed with metabolomics, reduced peripheral serotonin resulted in 

decreased liver fat accumulation in a UCP-1-dependant manner in mice (i.e., BAT thermogenesis 

was required to see such effects)128. Collectively, pre-clinical mechanistic studies have identified 

molecular targets that may mediate the observed inverse relationship between BAT and hepatic 

fat, such as acylcarnitines for BAT FA uptake and various TCA cycle substrates to support 

mitochondrial oxidation. It is now crucial to investigate if any of these results are translatable to 

the human metabolome for further exploration of the BAT-liver connection.   

1.12 Summary and Study Significance  

BAT may have an important role in combatting the ever-rising rates of obesity, diabetes 

and NAFLD due to its thermogenic and metabolic capacities. However, many questions about 

the significance of human BAT still exist, particularly in its role in whole-body energy balance. 

Metabolomics is a platform that, through the analysis of circulating metabolites, can investigate 

substrates and products for BAT thermogenesis. Cross-sectional studies have also reported an 

inverse relationship between BAT and the presence of NAFLD in adults, but potential linking 

mechanisms are poorly studied and understood8,9. Research is available studying NAFLD from a 

metabolomic perspective in adults and to a lesser extent, children, with notable discrepancies 

between these age groups. While a handful of pre-clinical studies have proposed linking 

metabolic processes between BAT and NAFLD, such as the BAT-specific oxidation of 

acylcarnitines, succinate and BCAAs supporting reduced liver fat and mass, metabolomics 

studies linking these in humans, especially in children, are currently not available10,11,58. 
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Therefore, the purpose of this project was to examine the relationship of the circulating 

metabolome with BAT and hepatic liver accumulation in both adults and children. This may 

contribute to increased understanding of the underlying physiology of these tissues and how they 

may be linked.  
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CHAPTER 2: STUDY DESIGN AND METHODOLOGY 

2.1 Study Objectives and Hypothesis 

2.1.1 Study Objectives  

We know that BAT is present and can be stimulated to metabolize circulating glucose and lipids 

for NST in both adults and children. Observational data has reported an inverse correlation 

between BAT activity and the presence of NAFLD in adults, but the mechanisms at play are 

unknown. This relationship has also yet to be investigated in a pediatric population. Therefore, 

this project aims to fill this gap in the literature as an initial evaluation of potential mechanistic 

links between BAT and hepatic fat accumulation through examination of the circulating 

metabolome while comparing and contrasting results between adults and children. 

Primary Objective 1: To explore the associations between the plasma metabolome and BAT in 

adults and children and to compare and contrast these findings.  

Secondary Objective 1: To examine if associations between the metabolome and BAT measures 

differ between adult female and male participants. 

Primary Objective 2: To explore the associations between the plasma metabolome and hepatic 

fat in adults and children and to compare and contrast these findings. 

Secondary Objective 2: To examine if associations between the metabolome and hepatic fat 

differ between adult male and female participants. 

Primary Objective 3: To identify metabolites associated with both BAT and hepatic fat in adults 

or children as potential linking mechanisms for further study.  
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Sensitivity Analysis: Primary Objectives 1 and 2 will be repeated with an alternative statistical 

analysis method to compare results. 

2.1.2 Study Hypothesis 

It was hypothesized that circulating metabolites may be related to either or both baseline BAT 

lipid content and cold-induced BAT activity due to the highly metabolic process of NST. 

Additionally, it was hypothesized that the plasma metabolome is related to hepatic fat content as 

seen in other studies. Finally, considering the observational data that has suggested an inverse 

connection between BAT activity and NAFLD, it was hypothesized that certain metabolites will 

similarly predict both baseline BAT and hepatic fat, and/or inversely predict cold-induced BAT 

activity and hepatic fat8,9. With limited literature available on the analysis of human BAT or the 

BAT-NAFLD axis from a metabolomic perspective, this study is largely exploratory. This means 

that any identified significant metabolites relating to BAT activity and/or NAFLD may be targets 

for future mechanistic studies in pre-clinical models to confirm or deny our conclusions 

2.2 Study Methodology 

To accomplish the above objectives, this project used a subset of the data collected from the 

Gene Environment Team on Brown/Beige Adipose Tissue (GETBAT) study at McMaster 

University. This is a cross-sectional study designed to investigate the relationships between BAT 

presence, cold-stimulated BAT activity, liver fat, the serotonin pathway and the gut microbiome 

in adults and children. Only data pertaining to BAT activity and hepatic fat will be examined in 

this study. Two study cohorts exist in the GETBAT study; an adult cohort and a pediatric cohort.   

2.2.1. Study Design and Population 

The adult cohort included participants 18 to 57 years of age who met the inclusion criteria 

(Appendix A1). The pediatric cohort included male children eight to ten years of age meeting 
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the eligibility criteria (Appendix A2). Briefly, the inclusion criteria for both studies targeted 

healthy participants of any body size who could have MRI imaging done and who were not on 

medications thought to influence BAT metabolism or hepatic fat. The study was approved by the 

Hamilton Health Sciences Research Ethics Board. All adult participants consented, all pediatric 

participants assented, and their legal guardian provided informed consent. The reason for only 

including male children was to limit the influence of pubertal status and sex on outcomes as 

reported by previous studies129,130. Upon consent, each participant was provided with a 

participant identification number, and any potentially-identifiable information was stored in 

locked cupboards or in password-protected spreadsheets. 

Subject Recruitment. Study participants were recruited from the community utilizing approved 

recruitment posters and social media advertising and from clinics at Hamilton Health Sciences. 

Adults with diabetes were recruited through the Boris Diabetes and Endocrinology clinic at 

McMaster University Medical Centre after receiving consent to contact. Pediatric participants 

were recruited through the Children’s Exercise and Nutrition Centre, Growing Healthy Pediatric 

Weight Management program at McMaster Children’s Hospital after consent to contact was 

obtained from clinic personnel.  

All participants completed two visits less than one month apart: Visit 1 held at McMaster 

University Medical Centre and Visit 2 held at St. Joseph’s Healthcare Hamilton. Participants 

were contacted by email and phone prior to each visit with reminders to refrain from vigorous 

physical activity 48 hours prior, avoid caffeine 12 hours prior, and avoid serotonergic foods 24 

hours prior to each visit, and arrive fasted for at least 8 hours prior to each visit.  Female adult 

participants with regular menstruation or using oral contraceptives were scheduled within seven 

days of their next anticipated menstrual cycle. For those with irregular menstruation, participants 

were asked to contact the research team at the start of their next menstruation to limit the 
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hormonal influence on thermoregulation. The following methods only include study components 

relevant to the current investigation/analysis. 

2.2.1 Adult Study Visit Breakdown  

Visit 1 Breakdown. Written informed consent was first obtained from each participant and all 

participants were re-screened for eligibility. Trained research personnel then collected height and 

weight measurements, repeated three times. Weight (kg) was measured by an electronic platform 

scale (BMI Scale Model 882; Seca, Hamburg, Deutschland) and height (cm) by a wall-mounted 

stadiometer (Height Measuring Rod Model 240; Seca, Hamburg, Deutschland). BMI was 

subsequently calculated as weight (kg) divided by squared height (m) (BMI=kg/m2), where the 

WHO classifies normal weight as BMI < 25 kg/m2, overweight as BMI ≥ 25 kg/m2, and obese as 

BMI ≥ 30 kg/m2 131. Body composition, including body fat and lean mass, was assessed using 

dual energy X-ray absorptiometry (DXA) on a GE Lunar Prodigy Advance (Model #8743) 

scanner. Fasting blood work was collected for measures of glucose, insulin, lipids, liver 

enzymes, and metabolomic analysis. A 75g oral glucose tolerance test (OGTT) was obtained for 

participants without known Type 2 diabetes. See Appendix A5 for a full Visit 1 timeline.  

Visit 2 Breakdown. Visit 2 began with re-screening for eligibility and collection of all sensors, 

logs, and urine and stool samples. Participants then acclimatized to the room temperature for 30 

minutes, prior to the baseline MRI scanning sessions. Cold was then applied through a full-body 

water-perfused suit connected to a water bath for 180 minutes at 18°C. Post-cold MRI scanning 

sessions were completed immediately following cold exposure. See Appendix A6 for a Visit 2 

timeline. 
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2.2.2 Pediatric Study Visit Breakdown  

Visit 1 Breakdown. Written informed assent from each child and consent from their parent or 

guardian were first obtained, and all participants were re-screened for eligibility. Height and 

weight were collected using the same protocol as in the adult cohort. Average height and weight 

measures were subsequently used to calculate BMI Z-score, which is a value of standard 

deviations from the median BMI for a given sex and pediatric age-group. BMI Z-score was 

calculated using the WHO AnthroPlus anthropometric calculator, with the World Health 

Organization defining normal weight as a Z-score < 1, overweight as a Z-score ≥ 1 and obese as 

a Z-score ≥ 2132,133. Fasting blood work was collected for measures of glucose, insulin, lipids, 

liver enzymes, and metabolomic analysis. An OGTT was obtained for all participants, dosed 

appropriately to the child’s body weight (1.75 g glucose/kg body weight to a maximum of 75 g). 

Body composition was assessed using DXA. See Appendix A7 for a full Visit 1 timeline. 

Visit 2 Breakdown. Visit 2 began with re-screening for eligibility and collection of all sensors, 

logs, and urine and stool samples. Participants then acclimatized to the room temperature for 30 

minutes, prior to the baseline MRI scanning sessions. Cold was applied for 60 minutes at 18°C 

through a child-sized, full-body water-perfused suit connected to a water bath. Post-cold MRI 

scanning sessions were completed immediately following cold exposure. See Appendix A6 for a 

timeline of Visit 2.  

2.3 Primary Outcome Measures 

The primary outcomes of this project are: (1) baseline BAT lipid content as quantified by pre-

cold SCV PDFF%; (2) cold-stimulated BAT activity as quantified by the change in SCV PDFF% 

after cold exposure relative to baseline; and, (3) baseline hepatic lipid content. MRI was used for 

evaluation of all primary outcomes, and the methodology has been outlined below. 
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2.3.1 Pre- and Post-Cold BAT Lipid Content 

Acquisition. A 3-Tesla whole-body MRI scanner (Discovery 750; GE Healthcare, Waukesha, 

WI, USA) was used with an HNS (Head/Neck/Spine) coil for the acquisition of images from the 

C3 to T5 region. Subjects underwent MRI scanning before and after a three-hour (adult cohort) 

or one-hour (pediatric cohort) cold exposure at 18°C. 

Sequence. A commercially available chemical-shift based fat-water separation MRI sequence 

(IDEAL-IQ) was used for PDFF% imaging. This sequence provides three-dimensional 

volumetric imaging to create triglyceride fat fraction and R2* maps, and corrects for T2* decay 

to accurately measure triglyceride content134. See Appendix A9 for specific MRI parameters.  

Analysis. The software program Analyze Pro (Version 1.0; Mayo Clinic, Biomedical Imaging 

Resource, AnalyzeDirect, Overland Park, KS, USA) was used for all MRI analysis. Analysis of 

all adult images was completed by GETBAT study personnel Dr. Basma Ahmed, Frank Ong and 

Stephan Oreskovich with high inter-rater reliability demonstrated by excellent intra-class 

correlation coefficient (ICC) values (i.e., ICCconsistency and ICCagreement ≥ 90%). Analysis of all 

pediatric images was subsequently completed by Dr. Basma Ahmed. 

Fat Mask Application. To ensure the adipose tissue is isolated from surrounding non-fatty 

tissues (i.e., muscle) in the image analysis, a fat mask was applied. It relies on the inherent 

intensity differences between adipose and non-adipose tissues in MR images and lessens the fat-

water swaps that occur in this region. The fat mask was applied to all participants at the C7/T1 

vertebral disk for standardization. 

Fat Fraction Threshold Application. After application of the fat mask, thresholding of the fat 

fraction map to between the range of 30-100% was applied to further ensure adipose tissue is 

differentiated from non-adipose tissues. 
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Defining the SCV ROI. The ROI for BAT analysis was contained within the supraclavicular 

(SCV) fossa as delineated by the trapezius muscle posteriorly, sternocleidomastoid muscle 

medially and the clavicle inferiorly. The C5/C6 disk of the vertebral column was used as the 

reference for the start of segmentation, and the T1/T2 disk was used as a reference for the end of 

segmentation. The SCV region of interest (ROI) was delineated with the “free-hand draw” tool 

within the 30-100% fat fraction threshold in the axial plane view. All slices between the C5/C6 

disk and T1/T2 disk were used for ROI application in the adult cohort. However, we noticed that 

the pediatric participants were often not in the exact same placement in the MRI from pre- to 

post-cold scanning, potentially due to increased shivering from the cold exposure. Thus, to avoid 

missing some of the SCV ROI in the post-cold images by using the above method, the end of the 

SCV region segmentation would be determined by visual comparison to the pre-cold SCV 

region. This resulted in slight discrepancies between slice numbers in pre- versus post-cold 

ROIs, but there was no significant difference in SCV ROI volume between analyses (mean pre-

cold SCV volume = 24.03 cm3, mean post-cold SCV volume = 23.67 cm3, P=0.623; paired-

samples t-test). 

Erosion of the ROI. The “erosion” function was used as a post-processing step after the ROIs 

were defined to correct for any inherent partial volume effects present in the image. The 2D-

Erode (1x3 jack structural element) function was used to remove a single voxel (i.e., a single 

layer) from the image (1 voxel = 1.4844mm3). Voxel sizes may change dependant on the field of 

view (FOV) and acquisition matrix size, but care was taken to attempt to maintain consistency in 

all MRI parameters across the study. In instances of fat-water swaps present in the images 

altering the FOV may attenuate this issue, but then it was important to use similar parameter 

settings between pre- and post-cold MRI images. It should be noted that the research staff were 

not blinded to the pre- or post-cold scans during image acquisition or analysis.     
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Application of a T2* Mask. Just as the 30-100% fat fraction threshold was applied to distinguish 

adipose from surrounding non-adipose tissues, a mask was applied to discriminate BAT from 

WAT in the SCV region. This T2* relaxation (T2*) mask was applied to the FF mask to select 

voxels between 2 and 25 ms. The T2* map was originally obtained from the R2* map generated 

by the IDEAL-IQ sequence and transformed into T2* values with the formula T2* (ms) = 

1000/R2* (s1). This range was chosen because previous reports have concluded that a T2* value 

³ 26 ms includes mostly muscle, fluids and white adipose tissue, while 2 ms falls at the lower 

limit of this MR sequence’s ability to detect T2* values135. The pre-cold SCV PDFF% values 

were then collected and averaged for quantification of the baseline BAT lipid content.  

2.3.2 Cold-induced BAT Activity 

After the analysis of pre- and post-cold SCV PDFF%, BAT activity was quantified as the percent 

change (Δ) in SCV PDFF% from pre- to post-cold relative to the baseline SCV PDFF% (i.e., 

ΔSCV PDFF%/pre-cold SCV PDFF% * 100). This quantification is in line with the studies by 

Lundström et al.31 and Ang et al.136, where the cold-stimulated BAT activity measured by MRI 

or infrared thermography, respectively, were represented by the change in PDFF% or skin 

surface temperature as a percentage of the baseline level. No current consensus in the literature 

exists as to what is the most physiologically-relevant measure of MRI-measured BAT activity, 

though. For example, Gashi et al.137 recently used the absolute change in SCV PDFF% from pre- 

to post-cold as the marker of BAT activity, and therefore this data will also be presented as a 

comparator outcome. 

2.3.3 Baseline Hepatic Lipid Content  

In the completion of the second primary objective of this project, baseline hepatic fat was 

quantified by MRI as outlined below. 
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Acquisition. The same 3-Tesla whole-body MRI scanner as above was used with a 32-channel 

torso array coil for acquisition of the liver in the axial plane.  

Sequence and Analysis. Liver analysis also used the IDEAL-IQ MRI sequence to measure liver 

triglyceride content as quantified by PDFF% and the Analyze Pro (Version 1.0; Mayo Clinic, 

Biomedical Imaging Resource, AnalyzeDirect, Overland Park, KS, USA) software. See 

Appendix A9 for specific MRI parameters. Analysis of all adult images was completed by 

GETBAT study personnel Frank Ong, and all pediatric images by Dr. Basma Ahmed. There 

again was high inter-rater reliability as demonstrated by ICCconsistency and ICCagreement ≥ 90%. 

Segmentation and ROI. The whole liver was segmented after a brief breath-hold (approximately 

17 seconds) to reduce motion artifacts. The ROI was drawn over the entire liver using a “smart 

trace” tool to ensure that the edge of the ROI is “snapped” to the point where voxel intensity 

differs significantly. The number of slices differed between participants in order to segment the 

entire liver.  

Erosion of the ROI. A similar 2D 3x3 jack structural element was used as an erosion tool to 

correct for inherent partial volume effects. Liver PDFF% values were then collected and 

averaged for each participant without the application of PDFF% thresholds or masks.  

2.4 Main Exposure: Metabolite Identity and Relative Abundance 

In order to assess the relationship of BAT and hepatic fat with the circulating metabolome, 

participant samples were analyzed by the laboratory of Dr. E Chouchani, Harvard University, 

Boston, MA, USA.  

Sample Collection. Fasted bloodwork was collected in a 4mL EDTA-coated vacutainers, then 

centrifuged at 3000rpm for 10 minutes at 4°C by research staff. After processing, plasma was 

collected in either 300µL (adults) or 200µL (children) aliquots and snap frozen and stored at -
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80°C. The timeline of the study visits differed between the adult and pediatric cohorts in that the 

blood samples were centrifuged and aliquoted up to three hours after collection in the adult 

cohort, but most often done within 30 minutes in the pediatric cohort. Within each cohort, time 

to snap freezing for plasma was fairly consistent between participants but may have been delayed 

in some cases dependant on research staff availability, although exact timing was not collected.  

2.4.1 LC-MS Metabolomics 

An LC-MS system was used for targeted metabolomic analysis in this project, composed of an 

UltiMate 3000 Ultra-High Performance LC (Thermo Fisher Scientific; Waltham, MA) with a 

Luna NH2 column (Phenomenex; Torrance, CA) coupled to a Q Exactive Plus Hybrid 

Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific; Waltham, MA).  

Metabolite Preparation and Analysis. Participant samples were analyzed using an LC-MS 

model as described previously by Mills et al. (2018)58. Briefly, analytes were extracted in buffer 

composed of 80% methanol containing inosine-15N4, thymine-d4 and glycocholate-d4 internal 

standards (Cambridge Isotope Laboratories; Andover, MA). The analytes were injected onto the 

separation column and then eluted with 10% mobile phase A (20 mM ammonium acetate and 20 

mM ammonium hydroxide in water), 90% mobile phase B (10 mM ammonium hydroxide in 

75:25 v/v acetonitrile/methanol) and final linear gradient to 100% mobile phase A. Electrospray 

ionization in the negative ion mode was then used for mass spectrometry analysis. For certain 

metabolites that were not detectable in negative ion mode, the positive ion mode was used. 

Specific mass spectrometry settings are also described by Mills et al.58. Progenesis Qi software 

version 1.0 (NonLinear Dynamics) was used for raw data processing (i.e., feature alignment and 

signal detection/integration). Finally, TraceFinder software version 4.1 (Thermo Fisher 

Scientific) was used to integrate a targeted set of known metabolite and isotopologue peaks so 
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that detected peaks within the biological samples could be confirmed by comparison to these 

reference standards. Heavy-labelled internal standards were also loaded to correct for any human 

errors. Metabolite abundance is quantified as the area under their spectral peak relative to the 

average area under the peak of the heavy-labelled internal standards.     

2.4.2 Covariates 

Several covariates were included in our analyses due to their previously identified relationships 

with our primary outcomes. These include age, sex and body fat percentage. Age is a 

significant predictor of BAT presence in humans, with increasing age correlated to decreasing 

BAT activity or mass15,38,39,138. A controversial relationship between sex and BAT has been 

proposed by a number of studies reporting higher BAT prevalence in females6,38, while others 

show no sex dimorphism139,140 or a male bias in youth participants130. Measures of adiposity such 

as body mass index (BMI), body fat percentage and visceral fat accumulation are strongly 

inversely related to BAT presence in multiple studies.6,33,141.  We were thus interested in 

examining the relationship of the metabolome with ambient and cold-induced BAT, and 

considered this relationship with, and without, these covariates in the model. 

Similarly, as described above, NAFLD prevalence is higher with increasing age, in males and in 

those with obesity – so age, sex and body fat percentage were also considered in examining the 

relationship between the metabolome and hepatic fat. Thus, to maintain consistency in both 

primary objectives, age, sex and percent body fat were included as covariates in all adult 

analyses. Only percent body fat was included for the pediatric analysis as all participants were 

male within a narrow age range. We decided to assess body composition by body fat percentage 

rather than BMI as BMI is an indirect estimate of adiposity that cannot differentiate between fat 

and lean mass. Body fat percentage, as measured by DXA, provides a highly accurate and 

precise quantification of adiposity in both adults and children with a very low radiation dose142–
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144. DXA is considered the gold standard for body composition assessment as it is an easy and 

direct measurement of fat mass in a single region or a whole-body scan, and is well correlated to 

CT, MRI and bioelectrical impedance analysis (BIA)145.  

2.5 Statistical Analysis 

All statistical analysis has been completed using SPSS Statistics 23 and GraphPad Prism 8.4.0. 

Participant demographics are presented as n or n (%) with mean (standard deviation, SD) for 

normally-distributed variables or median [interquartile range, IQR] for non-normally-distributed 

variables. Normality was assessed for all variables using the Shapiro-Wilk test, which has been 

proposed by some researchers as the best choice for normality test as it provides better power 

than the alternative Kolmogorov-Smirnov test146. Metabolite values represent the relative 

abundance of each metabolite in the plasma of each participant, and all metabolite variables were 

log transformed for normalization of the scale and normality was subsequently assumed. Any 

participant with a metabolite relative abundance of 0 was assumed to be below the detectable 

limit of the LC-MS platform. The minimal detectable value was predicted to be the minimum 

value in the dataset for that particular metabolite, and this value was then halved and imputed for 

any zero value to avoid missing data due to methodological limitations.  

To investigate the associations between metabolite abundance and BAT or hepatic fat, 

metabolites were used as explanatory variables in univariate linear regression models for each 

primary outcome variable described previously. As this dataset includes 102 distinct metabolites, 

102 univariate linear regressions were run in parallel to assess each metabolite individually. 

Considering the high risk of false positives (Type I error) when numerous comparisons are being 

testing in parallel, a multiple testing correction via false-discovery rate (FDR) with the 

Benjamini-Hochberg (BH) procedure was used147. The FDR is defined as the proportion of tests 
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within a set that are falsely considered as significant148. The p-corrected value (q-value) was set a 

0.05, where a q-value of 0.05 means that only 5% of metabolomic features with p < q will be 

false positives147. An important property of the q-value to keep in mind is that it sets an FDR at 

the designated level for each set of comparisons (i.e., statistical tests) rather than individual 

comparisons, and thus the significance level is not consistent between different statistical 

analyses148. All p-values reported are raw values, and grey shading in the Results tables 

represents significance after BH correction. Any metabolites with p < q in univariate models 

were included in multivariate linear regression models with step-wise inclusion of the three 

covariates age, sex and total percent body fat (only percent body fat for children). In all 

regression models, a scatterplot was used to visually inspect for linearity. Quadratic terms were 

included if a non-linear relationship was evident. In all multivariate analyses (i.e., other than 

initial univariate test), P<0.05 was considered statistically significant. 

To address secondary objectives in the adult cohort, sex interaction effects were included into all 

multivariate regression models in step-wise manner where sex interaction = metabolite 

abundance * sex to determine if sex is a mediating factor149. For any significant sex interaction 

terms, sex-stratified multivariate regression models were performed. This sex interaction term 

was included to identify the presence or absence of interaction between two independent 

variables – metabolite relative abundance and sex150. In other words, this is a method to identify 

if the metabolome is impacted directly by sex when analyzed in relation to BAT or hepatic fat. 

This is different than just including each independent variable in the linear regression, which 

evaluates the impact of each independent variable on the dependent outcome (i.e., the impact of 

sex on BAT activity). 
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2.5.1 Sensitivity Analysis 

Due to the large number of metabolites available for analysis compared to the number of 

participants, studies in the metabolomics field often rely on dimension reduction techniques151. 

Dimension reduction refers to the grouping of independent, linearly correlated variables into 

distinct “components” to reduce the complexity of the dataset while maintaining maximal 

variation152. One such example is Principal Component Analysis (PCA). This was implemented 

in this study as an alternative sensitivity analysis for comparison to univariate testing described 

above for the primary analysis. By clustering metabolites into components, the relevant 

metabolome of each participant can be explained with fewer correlated variables to reduce the 

FDR152. PCA is an unsupervised data reduction technique, meaning that components are 

dependant only on explanatory variables without user intervention or participant groupings152. 

While there is no consensus on minimum required sample size for PCA, it is largely accepted 

that the number of participants must exceed the number of variables153. As this dataset does not 

adhere to this rule, an initial metabolite screening step was employed in the adult cohort. Pearson 

or spearman correlation coefficients were assessed for each metabolite, and any metabolites with 

a very weak correlation (r or rho < 0.250) with all outcomes were excluded. PCA was not 

performed in the pediatric cohort as the sample size of 25 was too small.  

To define each component by a group of metabolites, each metabolite received a “factor loading” 

representing its correlation with the component, where the magnitude of the factor loading shows 

the strength of this correlation154. Varimax (orthogonal) rotation was then applied to increase the 

simplicity and interpretability of the final structure by maximizing factor loadings and 

minimizing overlap between components154. Factor scores were derived as new explanatory 

variables by multiplying each factor loading by the original relative abundance and summing 
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these products for all metabolites within the component154. This is a standardized z-score and 

indicates each participant’s metabolome profile adheres to the component pattern154. 

As a PCA identifies an equal number of components as there are original variables, a choice 

must be made as to how many components will be retained to explain maximal variation. This is 

one of the limitations of PCA, as there is a degree of subjectivity in the process of selecting 

components to retain. Common and valid examples include retaining all components with an 

“eigenvalue” (i.e., the amount of variation captured by said component) greater than one or those 

before the inflection point of the scree plot arm (i.e., eigenvalues plotted against their component 

number)155. In this project, the scree plot method was used for component selection. 

After selecting the total number of components and derivation of the factor scores, multivariate 

linear regressions were performed to assess the relationship of each metabolite component with 

the same outcome variables and covariates as above. Similar methodology has been used 

previously in metabolomic studies154,156.  

2.5.2 Calculation of Sample Size 

A “rule of thumb” model was used to determine sample size required for the outlined statistical 

analyses, which states that ten subjects had to be recruited per variable included in each 

model157. In the adult study, 60 participants were recruited to provide sufficient power for the 

following variables to be included in regression analyses: age, sex, body fat percentage, and the 

BAT or liver primary outcome. In the pediatrics study, 25 children were recruited to allow for 

inclusion of percent body fat and the BAT or liver primary outcome. 
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CHAPTER 3: RESULTS 

3.1 Adult Cohort Recruitment 

This project consists of two cohorts of the GETBAT study: (1) an adult cohort and (2) a pediatric 

cohort, and the data will be discussed by cohort before comparisons are made. To begin, adult 

recruitment took place between June 2016 and March 2018 and is shown in Figure 4,. A total of 

483 potential participants from the community (415) or the Boris Diabetes and Endocrinology 

clinic (68) were in contact with research staff. A total of 73 participants met eligibility criteria, 

consented to the GETBAT study and completed Visit 1 (15% enrollment rate), and 64 

participants completed both study visits (88% completion rate).   
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Figure 4. Adult GETBAT recruitment and study flow. Study recruitment took place between 
June 2016 and March 2018. Abbreviations: BMI body mass index. 
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3.2 Adult Cohort Demographics 

The adult cohort consisted of 63 male and female participants between the ages of 18 and 57 

years (one participant was excluded due to missing metabolomic data). The median age was 25.9 

years and 62% were male and 38% were female. The median [IQR] BMI was 25.4 kg/m2 [22.4, 

31.7] with 52% of the participants being classified as overweight or obese according to WHO 

cut-offs, and the median percent body fat was 28.5%, with one participant exceeding the weight 

threshold of the DXA scanner, so no body composition was available131.  

The MRI based BAT and liver measures are described in Table 1. All participants underwent 

pre-cold MRI scanning and had a baseline BAT lipid content measurement (i.e., pre-cold SCV 

PDFF%); mean value of 72.1 ± 7.96%. It is important to note that an increased pre-cold SCV 

PDFF% represents a less “brown” phenotype in this BAT depot. Of the 63 participants, 59 

participants had complete post-cold MRI data enabling the calculation of the absolute change in 

BAT lipid content with cold stimulation (i.e., SCV PDFF% reduction); mean value of 2.95 ± 

2.43%. The median value for the percent change in SCV PDFF% was 3.44% [1.49, 6.53]. The 

post-cold MRI images from four participants could not be analyzed due to excess motion 

(shivering) in the scanner. 

As described in Methodology Section 2.3.3, participants also underwent measurement of hepatic 

lipid content in the pre-cold state. In the 62 who completed this measure, the median baseline 

hepatic lipid content (pre-cold liver PDFF%) was 5.37% [4.54, 6.71]. Furthermore, 55% of 

participants  were NAFLD- and 45% of participants were NAFLD+ based on the established 

hepatic fat cut-off value of 5.6%88. 

Table 1. Adult participant demographics, BAT and hepatic fat measures. 

 n (%) 
Mean (SD) 

Median [Q1, Q3] 



M.Sc. Thesis – N. Varah; McMaster University – Medical Sciences 

 47 

Participant Demographics 
Age, y 63 25.92 [22.75, 35.80] 
Sex 63 - 

Male 39 (62%) - 
Female 24 (38%) - 

BMI (kg/m2) 63 25.4 [22.4, 31.7] 
Normal 30 (48%) 22.2 (1.6) 
Overweight/Obese 33 (52%) 31.7 [26.6, 36.6] 

Percent Body Fat 62 28.5 [19.5, 38.0] 
MRI Results 
Pre-Cold SCV PDFF% 63 72.09 (7.96) 
SCV PDFF% Reduction 59 2.95 (2.43) 
Percent Change SCV PDFF% 59 3.44 [1.49, 6.53] 
Pre-Cold Liver PDFF% 62 5.37 [4.54, 6.71] 

NAFLD- 34 (54%) 4.62 (0.57) 
NAFLD+ 28 (46%) 7.24 [6.23, 8.73] 

 

3.3 Association Between BAT and the Plasma Metabolome in Adults  

The adult plasma metabolome was analyzed in relation to BAT to investigate if any metabolomic 

features are able to predict each BAT measure. Results for measures of baseline BAT lipid 

content and cold-stimulated BAT activity are presented below, and similarities and differences 

are highlighted. As mentioned previously, the percent change in BAT PDFF% is considered the 

BAT activity outcome in this project, and data for the absolute reduction in BAT PDFF% is 

presented for comparison. 

In the initial univariate analysis relating pre-cold SCV PDFF% to each metabolite with 

correction for multiple testing, five metabolites significantly predict this BAT measure: 

aconitate, asparagine, glutamic acid, methionine and creatine (Table 2). Aconitate, glutamic acid 

and creatine were directly related to baseline SCV PDFF% suggesting that higher values of these 

are associated with a “whiter” BAT phenotype. Higher levels of asparagine and methionine were 
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related to a lower baseline SCV PDFF% representing a “browner” BAT phenotype. The direct 

relationship of aconitate and glutamic acid and inverse relationship of asparagine persisted even 

when age and sex were included in the model. There was a significant sex interaction for 

aconitate with baseline BAT lipid content, such that aconitate was directly related to pre-cold 

SCV PDFF% in males only (Table 3). Glutamic acid was related to increased baseline BAT lipid 

content independent of age, sex and total body fat percentage. See Figure 5 for scatter plots of 

the correlation between each of these five metabolites with baseline BAT lipid content. 

Table 2. Stepwise linear regression models for Pre-Cold SCV PDFF% in adults. *Denotes that 
a quadratic function was used as it fit better than a linear function for labeled variables. Grey 
shading and bolding denote P<0.05. 

Predictor 

Model 1 
Univariate 

Model 2 
+ Age 

Model 3  
+ Age 
+ Sex 

Model 4  
+ Age 
+ Sex 

+ % Body Fat 
β 

 

t p-
value 

β 

 

t p-
value 

β 

 

t p-
value 

β 

 

t p-
value 

Aconitate .420 3.584 .001 .224 2.072 .043 .213 1.873 .066 .074 .973 .335 

Creatine: 
Linear 

.408 3.503 .001 .198 1.775 .081 .185 1.606 .114 -.019 -.238 .813 

Creatine: 
Quadratic* 

.170 1.463 .149 .110 1.078 .285 .110 1.071 .289 -.051 -.720 .474 

Glutamic 
Acid: Linear 

.480 4.241 <.001 .374 3.997 <.001 .488 5.164 <.001 .214 2.758 .008 

Glutamic 
Acid: Quad* 

-.198 -1.751 .085 -.180 -1.961 .055 -.217 -2.510 .015 -.157 -2.508 .015 

Asparagine -.441 -3.808 <.001 -.282 -2.740 .008 -.321 -3.080 .003 -.066 -.847 .400 

Methionine -.409 -3.474 .001 -.184 -1.634 .108 -.176 -1.547 .127 -.060 -.793 .431 

 
Table 3. Sex-stratified aconitate regression models for Pre-Cold SCV PDFF%. Grey shading 
and bolding denote P<0.05. 

Predictor 

Model 1  
Univariate 

Model 2  
+ Age 

Model 3 
+ Age 

+ % Body Fat 
β 
 

t p-value β 
 

t p-value β 
 

t p-value 
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Figure 5. Correlation scatter plot for Pre-Cold SCV PDFF% in adults. (A) Aconitate, (B) 
creatine, (C) glutamic acid, (D) asparagine, and (E) methionine.  
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For BAT activity (i.e., the percent change in PDFF% reduction from baseline), no 

metabolites were significant after multiple testing correction. Table 4 and Figure 6 however 

presents any significant metabolites from the absolute reduction SCV PDFF% models with 

relative SCV PDFF% decline for comparison. Five metabolites were negatively related to 

absolute SCV PDFF% reduction: aconitate, alanine, acetyl-carnitine, creatine and hexanoyl-

carnitine ( 

Table 5, Figure 7). This suggests that a higher abundance of these metabolites predicts 

lower cold-induced BAT activity when the absolute decline in SCV PDFF% is considered. 

Although very similar patterns can be seen in univariate and age-corrected models for the 

relative SCV PDFF% decline, these metabolites did not meet the significance criteria after 

adjustment for multiple comparisons. Graphically, the relationship of each of these metabolites 

to both BAT activity variables is also similar. Aconitate and both carnitine species remained 

significant even when age, sex and percent body fat were included in the model. Alanine 

remained significant with age and sex correction, and creatine with age in the model. No sex 

interaction for aconitate with change in SCV PDFF% was seen. Thus, aconitate, alanine, acetyl-

carnitine, hexanoyl-L-carnitine and creatine were lower in adults with higher BAT activity, but 

significance was lost when the baseline SCV PDFF% was included in the analysis (i.e., when 

looking at decline relative to baseline). 

Table 4. Stepwise linear regression models for Percent Change SCV PDFF% in adults. 
Abbreviations: NS non-significant after multiple testing correction (raw p-value). 

Predictor 

Model 1 
Univariate 

Model 2 
+ Age 

Model 3  
+ Age 
+ Sex 

Model 4  
+ Age 
+ Sex 

+ % Body Fat 
β 
 

t p-value β 
 

t p-value β 
 

t p-value β 
 

t p-value 

Aconitate -.371 -2.991 NS 
(.004) 

-.243 -1.892 .064 -.211 -1.59 .118 -.127 -1.083 .284 
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Creatine -.412 -3.386 NS 
(.001) 

-.281 -2.165 .035 -.255 -1.92 .060 -.129 -1.068 .290 

Alanine -.419 -3.45 NS 
(.001) 

-.310 -2.531 .014 -.285 -2.251 .028 -.165 -1.429 .159 

Acetyl-
carnitine 

-.413 -3.391 NS 
(.001) 

-.288 -2.259 .028 -.258 -1.93 .059 -.210 -1.817 .075 

Hexanoyl-
L-carnitine 

-.412 -3.382 NS 
(.001) 

-.350 -3.064 .003 -.320 -2.697 .009 -.285 -2.874 .006 
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Figure 6. Correlation scatter plot for Percent Change SCV PDFF% in adults. (A) Aconitate, 
(B) creatine, (C) alanine, (D) acetyl-carnitine and (E) hexanoyl-L-carnitine.  
Table 5. Stepwise linear regression models for SCV PDFF% Reduction in adults. *Denotes 
that a quadratic function was used as it fit better than a linear function for labeled variables. Grey 
shading and bolding denote P<0.05. 
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t p-value β 
 

t p-value β 
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Aconitate: 
Linear 

-.462 -3.183 .002 -.363 -2.554 .014 -.331 -2.245 .029 -.278 -2.152 .036 

Aconitate: 
Quadratic* 

.201 1.381 .173 .274 1.958 .055 .265 1.882 .065 .327 2.652 .011 

Creatine -.402 -3.285 .002 -.282 -2.143 .037 -.255 -1.899 .063 -.141 -1.123 .267 

Alanine: 
Linear  

-.411 -3.217 .002 -.312 -2.395 .020 -.290 -2.171 .034 -.203 -1.652 .105 

Alanine: 
Quadratic* 

-.011 -.084 .934 -.013 -.110 .913 -.002 -.019 .985 .112 .962 .340 

Acetyl-
carnitine: 
Linear 

-.453 -3.464 .001 -.337 -2.467 .017 -.305 -2.149 .036 -.256 -2.015 .049 

Acetyl-
carnitine: 
Quadratic* 

.167 1.278 .207 .167 1.324 .191 .171 1.347 .184 .154 1.368 .177 

Hexanoyl-L-
carnitine: 
Linear 

-.423 -3.447 .001 -.362 -3.099 .003 -.357 -3.073 .003 -.305 -2.906 .005 

Hexanoyl-L-
carnitine: 
Quadratic* 

-.003 -.024 .981 .033 .285 .777 .026 .225 .823 .012 .119 .906 
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Figure 7. Correlation scatter plot for SCV PDFF% Reduction in adults. (A) Aconitate, (B) 
creatine, (C) alanine, (D) acetyl-carnitine, and (E) hexanoyl-L-carnitine.  
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within are: glutamic acid (component 8), aconitate (component 3), creatine (component 4), 

asparagine (component 6) and methionine (component 6 and 8). In examining the relationship 

between these components and pre-cold SCV PDFF% (Appendix B5), findings from our 

primary analysis were re-confirmed.  Specifically, components 3 and 4, which include aconitate 

and creatine respectively, were directly related to pre-cold SCV PDFF% and component 6, 

containing asparagine and methionine, was inversely related. These findings support the 

observation from the primary analysis that aconitate and creatine are higher in those with higher 

baseline BAT lipid content (i.e., a whiter BAT phenotype), and asparagine and methionine are 

lower in those with higher baseline BAT lipid content. Component 8, which includes glutamic 

acid was not, however, related. 

Components 2 and 4 were inversely related to both the relative and absolute reduction in SCV 

PDFF% in response to cold; in other words, those with higher levels of these components had 

less cold-induced BAT activity (Appendix B6-B7). This is consistent with the observation that 

creatine (component 4), alanine (component 4), acetyl-carnitine (components 2 and 4) and 

hexanoyl-L-carnitine (component 4 and 7) are also higher in those with less decline in SCV 

PDFF% (non-significant for component 7). Thus, the sensitivity analysis confirms some of the 

findings from the analysis of individual metabolites. However, two components that were 

significant for all three BAT measures (components 9 and 11) had no metabolites within them 

that were significant in the primary analysis. These components include the metabolites thymine, 

aminobenzoic acid, hippurate, orotate, propionate and succinate in component 9 and cysteine, 

cystine and orotate in component 11. 
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3.4 Association Between Hepatic Fat and the Plasma Metabolome in 
Adults  

In examining the relationship of the metabolome to hepatic fat, we were interested especially in 

those metabolites that were also related to hepatic fat independent of age, sex and body fat 

percentage (i.e., metabolites that may predict hepatic fat accumulation independent of obesity 

status). Three metabolites, tyrosine, xanthine and pyridoxal, were elevated in those with 

increased hepatic fat, while higher serine levels were associated with lower hepatic fat 

independent of all covariates (Table 6). Glutamic acid also significantly predicted higher hepatic 

fat, but this relationship was not independent of total body fat percentage. Scatter plots for each 

identified metabolite are presented in Figure 8. None of the below significant metabolites 

showed a sex interaction and therefore no sex-stratified regression models were performed.  

Table 6. Stepwise linear regression models for Pre-Cold Liver PDFF% in adults. *Denotes that 
a quadratic function was used as it fit better than a linear function for labeled variables. Grey 
shading and bolding denote P<0.05. 

Predictor 

Model 1 

Univariate 

Model 2 

+ Age 

Model 3 

+ Age 

+ Sex 

Model 4 

+ Age 

+ Sex 

+ % Body Fat* 

β 

 

t p-value β 

 

t p-value β 

 

t p-value β 

 

t p-value 

Glutamic 
Acid 

.392 3.305 .002 .326 2.858 .006 .367 2.978 .004 .201 1.566 .123 

Tyrosine: 
Linear 

.405 3.604 .001 .374 3.535 .001 .384 3.487 .001 .283 2.734 .008 

Tyrosine: 
Quadratic* 

.271 2.408 .019 .231 2.174 .034 .225 2.084 .042 .216 2.218 .031 

Pyridoxal .387 3.253 .002 .296 2.502 .015 .306 2.543 .014 .241 2.206 .032 

Xanthine .428 3.664 .001 .322 2.645 .010 .323 2.612 .011 .272 2.487 .016 

Serine -.390 -3.279 .002 -.289 -2.398 .020 -.289 -2.377 .021 -.223 -2.048 .045 
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Figure 8. Correlation scatter plot for hepatic fat (%) in adults. (A) Glutamic acid, (B) Tyrosine, 
(C) pyridoxal, (D) xanthine, and (E) serine.  
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component, but the relationship was no longer significant when body fat percentage was 

included in the model. Xanthine and pyridoxal were both included in component 4, which was 

non-significantly trending (P=0.055) towards a positive relationship with hepatic fat, although 

only in the univariate model.   

Glutamic acid was the sole metabolite that predicted both higher baseline BAT lipid content and 

hepatic fat content after controlling for the influence of age and sex. Interestingly, component 9 

was inversely related to hepatic fat independent of age, sex and body fat, and was similarly 

related to elevated baseline BAT lipid content. None of the individual metabolites in this 

component (thymine, aminobenzoic acid, hippurate, orotate, propionate, succinate) were 

significant in the individual metabolite analysis, although succinate has been previously noted to 

be associated with BAT metabolism58.  

In summary, in adults, five metabolites of the 102 tested were related to baseline BAT lipid 

content and two of these, aconitate and creatine were also related to BAT activity (in terms of 

absolute SCV PDFF%). The directionality of these models was in line with expectations (i.e., 

higher metabolite abundance predicts a whiter baseline BAT phenotype and decreased cold-

induced BAT activity). Alternative statistical analysis (i.e., PCA) also corroborates these results 

for creatine with both BAT measures and aconitate with pre-cold SCV PDFF%, further 

supporting both metabolites linkage to BAT activity. Of the 5 metabolites associated with BAT 

activity (measured as the absolute cold-induced decline in SCV PDFF%), three (alanine, 

hexanoyl-L-carnitine and acetyl-carnitine) were not associated with baseline BAT lipid content. 

None of these metabolites were also linked to hepatic fat accumulation, however. Glutamic acid 

is a candidate metabolite linked to both increased baseline BAT and hepatic lipid content but lost 

its relationship with hepatic fat when adiposity was included in the model thus weakening the 

evidence.  
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3.5  Pediatric Study Recruitment 

Next, each of the primary objectives of this project were similarly analyzed in the pediatric 

GETBAT cohort and these results were compared to those from the adult cohort. Recruitment for 

the pediatric cohort took place between February 2018 and August 2019; flowchart presented in 

Figure 9. Of the 152 children in contact with research staff, 54 were from the Children’s 

Exercise and Nutrition Clinic at McMaster Children’s Hospital, and 98 were from the 

community. A total of 35 children consented to the GETBAT study and completed the first study 

visit (23% enrollment rate), and 26 children completed both study visits (74% completion rate). 

Of the nine participants who did not complete both study visits, two participants either withdrew 

or were lost to follow-up after the first study visit. Seven participants did not complete the 

second visit due to claustrophobia in the MRI.  
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Figure 9. Pediatric GETBAT study recruitment. Study recruitment took place between February 
2018 and August 2019. Abbreviations: LTFU lost to follow-up, V1 visit 1, V2 visit 2, MRI 
magnetic resonance imaging. 
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3.6 Pediatric Cohort Demographics 

The pediatric cohort consisted of 25 male children between the ages of eight and ten years 

(median age 9.89 years) who completed the pre-cold MRI. Of those who completed the baseline 

MRI, three participants did not have metabolomics data due to the completion of the initial 

metabolomics analysis before the completion of recruitment and were thus excluded. The mean 

BMI Z-score, a standardized scale of BMI for children, was 1.25 ± 2.06; 48% of the participants 

were overweight or obese according to WHO cut-offs132. The median body fat percentage was 

25.0% [15.40, 43.35].  

MRI-based measures of BAT and hepatic fat are available in Table 7. All participants underwent 

baseline MRI scanning for pre-cold SCV PDFF%; mean value of 63.03 ± 11.48%. This value is 

lower than the mean baseline value from the adult cohort, representing a “browner” BAT 

phenotype, which is in line with previously-reported age-related BAT decline15. Twenty-three 

participants also completed post-cold imaging, and the mean decline in BAT lipid content (i.e., 

SCV PDFF% reduction) with cold stimulation was 1.86 ± 2.48%. The relative decline in BAT 

lipid content from baseline (i.e., percent change SCV PDFF%) was then calculated; mean value 

of 3.12 ± 4.02%. Two participants did not undergo post-cold imaging due to claustrophobia. 

Finally, the same 23 participants also underwent MRI scanning for baseline liver fat; median 

value of 3.25% [2.83, 4.61]. Thus, 17% of participants were NAFLD+ using the same threshold 

of PDFF ≥ 5.6% as for the adult cohort.  

Table 7. Pediatric participant demographics, BAT and hepatic fat measures. 

 n (%) Mean (SD) 
Median [IQR] 

Participant Demographics 
Age, y 25 9.89 [9.16, 10.60] 
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3.7 Association Between BAT and the Plasma Metabolome in Prepubertal 
Males 

One of the main goals of this project was to investigate if there are differences in the plasma 

metabolome in relation to BAT measures in children compared to adults. Thus, a similar analysis 

was undertaken except that no correction for age or sex was required due to the single sex and 

tight age group of this cohort. 

No metabolites were significantly related to pre-cold SCV PDFF% after multiple testing 

correction. However, multivariate regression analysis was performed for two metabolites 

approaching significance, cysteine and cystine (Table 8, Figure 10), as it was interesting to note 

that they were both significantly related to hepatic fat (see Results Section 3.8). It is crucial to 

interpret these results with caution as neither metabolite was significant after BH adjustment.  

Table 8. Stepwise linear regression models for Pre-Cold SCV PDFF% in children. 
Abbreviations: NS non-significant after multiple testing correction (raw p-value). 

% Body Fat 25 25.00 [15.40, 43.35] 
BMI Z-score 25 1.25 (2.06) 

Normal 13 (52%) -0.49 (0.66) 
Overweight/Obese 12 (48%) 3.14 (1.13) 

MRI Results 
Pre-Cold SCV PDFF% 25 63.03 (11.48) 
SCV PDFF% Reduction 23 1.86 (2.48) 
Percent Change SCV 
PDFF% 

23 3.12 (4.02) 

Pre-Cold Liver PDFF% 23 3.25 [2.83, 4.61] 
NAFLD- 19 (83%) 3.38 (0.85) 
NAFLD+ 4 (17%) 15.94 (10.39) 

Predictor 

Model 1 

Univariate 

Model 2 

+ % Body Fat 



M.Sc. Thesis – N. Varah; McMaster University – Medical Sciences 

 62 

 

 

 

 

 

 
Figure 10. Correlation scatter plot for Pre-Cold SCV PDFF% in children. (A) Cysteine, and 
(B) cystine. Abbreviations: NS non-significant after multiple testing p-value correction.  

Three metabolites, 4-hydroxy-L-proline, cis-4-hydroxy-D-proline and L-carnitine were inversely 

related to percent change in SCV PDFF% in the univariate model and after correction for percent 

body fat (Table 9, Figure 11). Similarly, 4-hydroxy-L-proline, cis-4-hydroxy-D-proline were 

also inversely related to the absolute change in SCV PDFF% in this cohort (Appendix B9-B10). 

Unlike in the adult cohort, there were no metabolite similarities between baseline or cold-

stimulated BAT measures. No sensitivity analysis was performed due to the small sample size.  

Table 9. Stepwise linear regression models for Percent Change SCV PDFF% in children. Grey 
shading and bolding denote P<0.05. 
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Figure 11. Correlation scatter plot for Percent Change SCV PDFF% in children. (A) 4-
hydroxy-L-proline, (B) cis-4-hydroxy-proline, and (C) L-carnitine.  
 

3.8 Association Between Hepatic Fat and the Plasma Metabolome in 
Prepubertal Boys 

Two metabolites, cysteine and cystine, were directly related to hepatic fat accumulation in these 

boys after multiple testing correction. Increased levels of both were quadratically associated with 

increased hepatic fat and this relationship was independent of total body fat. (Table 10, Figure 

12). This is particularly interesting as these metabolites were also trending towards significantly 

related to a higher pre-cold BAT lipid content, or a whiter BAT phenotype.  
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Table 10. Stepwise linear regression models for Pre-Cold Liver PDFF% in children. *Denotes 
that a quadratic function was used as it fit better than a linear function for labeled variables. Grey 
shading and bolding denote P<0.05.  
 

 

 

 

 

 

 

 

 
Figure 12. Correlation scatter plot for hepatic fat (%) in children. (A) Cysteine, and (B) cystine.  

It is important to compare and contrast our findings in adults and in children. A summary figure 

of these results is presented in Figure 13. Interestingly, there were no exact consistencies in any 

of the BAT or liver analyses between the children and adults. However, the most notable 

similarity was in the BAT activity analyses, where acetyl-carnitine and hexanoyl-L-carnitine 

were associated with SCV PDFF% decline and trending towards significance in relative SCV 

PDFF% decline in the adults. In the children, neither of these carnitine species were significantly 

related to BAT activity, but a metabolite of hexanoyl-L-carnitine, L-carnitine, was similarly 

associated to relative SCV PDFF%. Thus, higher circulating levels of carnitine related 
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metabolites were associated with lower cold-induced decline in BAT lipid content suggesting a 

potential role of circulating carnitines in BAT physiology regardless of age.  

Notable findings in the adult cohort only included the relationship of aconitate and creatine with 

both increased baseline BAT lipid content and less absolute cold-induced change in BAT lipid 

content. Glutamic acid was the sole metabolite that predicted both baseline BAT and liver 

measures in the adult cohort, independent of age and sex. In contrast, in the pediatric cohort, 

aconitate was not related to pre-cold BAT lipid content (β=0.125, P=0.551) or absolute BAT 

activity (β=-0.461, P=0.027) after multiple testing correction though the directionality of the 

relationship was similar to that seen in the adult findings. Creatine was also not related to BAT in 

the children. Glutamic acid, similarly, was not a significant predictor of pre-cold BAT lipid 

content (β=0.135, P=0.521) or pre-cold hepatic fat (β=0.372, P=0.080) in the children though the 

relationship with hepatic fat neared significance.  

On the other hand, in children, both cystine and cysteine trended toward a relationship with BAT 

and were related to hepatic fat. In adults, neither cysteine nor cystine were related to pre-cold 

BAT lipid content after multiple testing correction (β=0.284, P=0.024 and β=0.300, P=0.017, 

respectively). In adult liver analysis, neither metabolite was significantly associated, but it is 

interesting to note that they both appear to be trending towards significance (β=0.903, P=0.005 

and β=0.721, P=0.004) when correcting for multiple testing. Cysteine and cystine were both 

included in component 11 in the adult sensitivity analysis which predicted increased pre-cold 

BAT lipid content independent of all covariates, but not cold-induced BAT activity or hepatic 

fat. Taken together, these findings suggest a potential role of cysteine and cystine in both BAT 

and liver physiology across age groups, though the evidence from this study is relatively weak 

and inconsistent. 
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Figure 13. Summary of significant study findings. Values refer to standardized linear or 
quadratic regression coefficients for the univariate model in all BAT analyses (P < BH adjusted 
P) and covariate-adjusted model for hepatic fat analyses (P<0.05). Abbreviations: A adult, P 
pediatric NS non-significant trend. 
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CHAPTER 4:  DISCUSSION 

4.1 Associations Between BAT and the Plasma Metabolome in Adults 

The first primary objective of this project was to investigate the associations between the 

plasma metabolome and baseline and cold-stimulated BAT in adults and children. See Figure 14 

for a summary of the metabolites identified in adults or children that may play a role in 

supporting a “browner” baseline BAT phenotype or increased cold-induced BAT activity. 

Considering that the results differed between cohorts, however, the findings in the adults will be 

discussed first. 

 As previously mentioned, five metabolites (aconitate, asparagine, glutamic acid, 

methionine and creatine) were related to baseline BAT lipid content in adults. Similarly, five 

metabolites (aconitate, alanine, acetyl-carnitine, hexanoyl-L-carnitine and creatine) were related 

to BAT activity measured as the absolute decline in lipid content. Of these metabolites, aconitate 

and creatine predicted both elevated baseline BAT lipid content and reduced cold-induced BAT 

activity. We also show that these relationships hold with alternative statistical modeling to 

emphasize the significance of aconitate and creatine as candidate metabolites to characterize 

BAT in adults. Although none of these metabolites have been reported in the literature as related 

to human BAT, I will attempt to interpret the findings in light of what we know about BAT 

physiology from pre-clinical research.   

Aconitate is a critical metabolite in the TCA cycle as an intermediate of the conversion of 

citrate to isocitrate. We know BAT primarily uptakes and metabolizes lipids for thermogenesis, 

so β-oxidation and specifically the TCA cycle are crucial pathways for regulation of BAT 

activity158. Increased concentration of numerous TCA cycle intermediates, including cis-aconitic 

acid (i.e., the unconjugated form of aconitate), were elevated in rat BAT tissue after cold 
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exposure indicating increased β-oxidation70. Other intermediates such as succinate and fumaric 

acid have also been found to be increased in BAT tissue with cold exposure in pre-clinical 

models by these authors and others58,70. This methodology is different from our study though, as 

we are analyzing the circulating aconitate abundance rather than that in BAT tissue, and have 

only measured this in the pre-cold, fasted state. However, our reported positive association 

between circulating aconitate level and elevated BAT lipid content and decreased BAT activity 

may suggest decreased aconitate oxidation within BAT as is proposed in the above pre-clinical 

studies. This causal relationship, however, cannot be explored in a cross-sectional study. 

Additionally, creatine plays a critical role in energy (ATP) production and cycling from the 

mitochondria particularly in skeletal muscle and brain tissues. It has been recently proposed that 

creatine also regulates brown and beige fat energy expenditure in a UCP-1-independent 

manner159. Murine beige adipocytes, considered more reflective of human brown fat, and human 

brown adipocytes both showed increased mitochondrial respiration, energy expenditure and 

thermogenic induction with creatine treatment, which was further validated in a murine in vivo 

model159. Although again no causal relationship can be proposed in our study, higher baseline 

BAT lipid content (i.e., a whiter BAT phenotype) and decreased BAT activity were associated 

with higher creatine levels in this adult cohort, which may represent decreased creatine-

dependent BAT energy expenditure.  

Another interesting concept to consider when interpreting these findings is the role that 

mechanistic target of rapamycin complex 1 (mTORC1) plays in cell growth and nutrient sensing 

in many different tissues, including BAT. Cold exposure activates mTORC1 in BAT and is 

necessary for cold-induced BAT expansion and oxidative metabolism of glucose and lipids160. In 

addition to the BAT thermogenic impairment with an mTORC1 defect, Labbé et al.160 reported a 

reduced abundance of many TCA cycle intermediates in BAT suggesting defective pyruvate 
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catabolism. It has also been reported that mTORC1 can be activated by multiple amino acids, 

such as glutamine, asparagine, methionine and alanine161. In our findings, reduced ambient BAT 

lipid content (i.e., a browner BAT phenotype) was associated with increased circulating 

methionine and asparagine; both proposed activators of mTORC1 for BAT function. On the 

other hand, Labbé et al.160 also suggested increased glutaminolysis of mTORC1-defective mice 

considering their reported increase in α-ketoglutarate, glutamine and glutamate in BAT. Our 

reported higher circulating glutamic acid levels associated with higher baseline BAT lipid 

content is also in line with these findings. Finally, we report an inverse relationship between two 

carnitine species and BAT activity. Mitochondrial lipid oxidation relies on acylcarnitine function 

for FA uptake and catabolism; the production of which was shown to be blunted with an 

mTORC1 defect160. Here, we report higher carnitine associated with lower cold-induced change 

in BAT triglyceride suggesting potential challenges in uptake of acylcarnitines into BAT for 

lipid oxidation. Pre-clinical studies have also shown a cold-induced increase in circulating 

acylcarnitines and subsequent uptake and metabolism by BAT for β-oxidation10,58. 

4.2 Association Between Hepatic Fat and the Plasma Metabolome in 
Adults 

Three metabolites were directly associated with increased hepatic fat; tyrosine, xanthine and 

pyridoxal, and serine with reduced hepatic fat independent of age, sex and adiposity. Glutamic 

acid was related to increased hepatic fat independent of age and sex, but this relationship was 

lost with inclusion of total body fat percentage. All of these metabolites have been established in 

the literature as playing a causal or consequential role in NAFLD development in humans, 

consistent with our findings.  

Glutamic acid and serine are extensively studied in the NAFLD metabolomic literature as 

critical metabolites in the maintenance of hepatic redox balance; an especially central process in 
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NAFLD. Glutamic acid, serine and glycine are all substrates for GSH production, which is the 

central anti-oxidant compound in the hepatocyte and is upregulated in a state of oxidative stress 

such as NAFLD100. Glycine and serine have been found to be rate-limiting GSH substrates and 

therefore are often reported as reduced in circulation in NAFLD100,104,162. Glutamic acid, 

although also a GSH substrate, is readily transaminated from GSH by GGT, aspartate by AST 

and α-ketoglutarate by ALT for release into circulation. Therefore, an increased abundance of 

glutamic acid in circulation is often noted in NAFLD, both due to redox regulation and TCA 

cycle alterations from lipid overload99,100,124. Our findings for both glutamic acid and serine are 

thus consistent with the literature, and the significance of glutamic acid is further strengthened 

by the consistency seen in our sensitivity analysis. Unfortunately, since our dataset uses a 

relative abundance of each metabolite within the cohort, no conclusions can be drawn on the 

circulating concentration of these notable metabolites compared to previous work. 

Furthermore, pyridoxal is a critical component of the active form of vitamin B6, which is a 

cofactor for many reactions such as all of the amino acid transaminations noted above163. 

Vitamin B6 is also known to be a necessary cofactor in the transsulfuration pathway regulating 

homocysteine and cysteine concentration, both clearly implicated in NAFLD in the GSH 

pathway164. Although circulating pyridoxal abundance has not been specifically analyzed in 

relation to NAFLD presence or hepatic fat content, Sookoian et al.119 noted an interesting 

relationship between serum pyridoxal 5’-phosphate concentration and liver ALT and AST 

transcript levels. A significant inverse correlation was found between this cofactor and levels of 

both enzyme transcripts in liver tissue, which appears to contradict our findings119. However, 

while these authors noted an increase in transcript levels of both enzymes, they also found a 

corresponding decrease in hepatic protein expression of one isoform each of ALT and AST and 

therefore concluded that the regulation of such enzymes is overall dysregulated119. The 
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abundance of serum pyridoxal 5’-phosphate was never analyzed in relation to serum ALT or 

AST, only hepatic transcript levels, which thus makes it difficult to compare our results with this 

study119. The findings in this study and our project do nonetheless expose a potential role that 

this cofactor may play in NAFLD.  

Finally, xanthine is an intermediate metabolite in the uric acid production pathway, which is 

commonly reported as upregulated as either a cause or consequence of NAFLD165,166. Liver-

derived xanthine oxidoreductase (XOR) catalyzes this reaction and concomitant rise in ROS, and 

its activity has also been shown to both be upregulated in response to FA treatment and able to 

promote triglyceride accumulation in hepatocytes167,168. An increase in plasma xanthine 

associated with elevated hepatic fat as shown in our study thus confirms these notions. 

Unfortunately, we cannot confirm if this relationship also holds with uric acid or if xanthine 

individually produces the same detrimental hepatic effects.   

Many of these metabolomics studies, however, make use of liver biopsy in those with 

confirmed NAFLD as the gold standard for hepatic analysis rather than our use of MRI. The 

consistencies between our findings in this second objective and the NAFLD literature support the 

validity of analyzing the metabolome in relation to MRI-assessed hepatic steatosis as a non-

invasive imaging substitute. Additionally, our ability to detect individual metabolites that predict 

hepatic fat accumulation on a linear scale is a strength compared to the vast majority of NAFLD 

studies that rely on discrete groupings between those with and without the disease. We now have 

reason to believe that the circulating metabolome may be altered with hepatic fat accumulation 

prior to NAFLD diagnosis, as no participants were being treated for liver disease. It is also a 

strength of this study that we had a near-equal stratification between participants with and 

without NAFLD so that the results are not skewed towards one group over the other. In 

conclusion, while we do report various metabolites that are related to BAT or hepatic fat, we 
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were unable to find metabolites common to both outcomes. We report that circulating glutamic 

acid may play a role in both ambient BAT and hepatic fat accumulation, but the evidence is weak 

as this relationship is lost when considering the influence of adiposity on hepatic fat.  

4.3 Association Between BAT and the Plasma Metabolome in Prepubertal 
Males 

The second arm of each primary objective in this project was to replicate the above analyses 

in our pediatric GETBAT cohort, and then compare and contrast any findings with those in the 

adults (see Figure 14 for a summary of adult and pediatric BAT findings). We first examined the 

metabolome in relation to BAT and found three metabolites that were negatively related to 

relative BAT activity: two proline isomers and L-carnitine. While no metabolites were related to 

baseline BAT lipid content, cysteine and cystine were closely trending towards significance and 

therefore I will discuss them as consistent findings with those in Section 4.4.  

L-carnitine is a metabolite of hexanoyl-L-carnitine, differing by the lack of acyl group on the 

common backbone of methionine and lysine169. It similarly functions to support mitochondrial 

function through FA uptake and oxidation169. The directionality of the relationship between L-

carnitine and BAT activity in the children is in agreement with hexanoyl-L-carnitine and acetyl-

carnitine in the adults, and thus consistent with the findings in previous pre-clinical studies. In 

adults, carnitine levels were associated with absolute rather than relative BAT activity, but both 

carnitine species were very close to reaching significance in both models. It appears therefore 

that circulating carnitines are implicated in cold-induced BAT physiology, and that higher 

circulating levels are associated with lower BAT activity in men, women and boys, in spite of 

some differences in the cold stimulation protocol which was shorter in children.  

The two proline isomers (4-hydroxy-L-proline and cis-4-hydroxy-D-proline) that were 

inversely related to relative BAT activity in the children are, however, distinct findings from the 
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adult cohort. Proline is a non-essential proteinogenic amino acid that can be catabolized by 

proline oxidase (POX), a mitochondrial inner membrane enzyme, into glutamate and α-

ketoglutarate170. This proline cycle is generally stimulated under conditions of nutrient stress to 

aid in ATP production and anaplerosis of substrates into the TCA cycle170. More specially, POX 

activation in adipocytes under a state of nutrient stress or hypoxia was shown to induce the 

expression of adipose triglyceride lipase (ATGL), which promotes mitochondrial oxidative 

metabolism and prevents adipocyte inflammation and death171. A similar role of POX has been 

seen in the BAT of mice lacking a critical enzyme for nutrient homeostasis after prolonged 

fasting172. Although direct relationships between proline abundance and BAT physiology have 

not been reported in rodents or humans, it is conceivable to hypothesize that the relationship seen 

in our study may be due to increased catabolism of proline by BAT for support of the elevated 

mitochondrial oxidative metabolism for thermogenesis. In light of the relationship with L-

carnitine and the above adult BAT analysis, this hypothesis is plausible considering the general 

trend of our findings relating BAT with mitochondrial metabolism. Additionally, all analyzed 

plasma samples were collected in the fasted state, which may promote POX activation for 

proline catabolism within adipocytes. Mechanistic pre-clinical research is required, however, to 

be able to confirm or deny these notions.  

Finally, since this project is largely a hypothesis-generating study, it is interesting to note the 

trend to a direct relationship between cysteine and cystine and baseline BAT lipid content in 

light of a similar relationship to hepatic fat accumulation. Importantly, although neither 

metabolite was a predictor in the adult BAT analysis, cysteine, cystine and orotate made up a 

component that was significantly positively related to baseline BAT lipid content in our 

sensitivity analysis in adults. Cysteine is a critical substrate for intracellular GSH production; a 

potent anti-oxidant molecule known to be upregulated in inflammatory states such as obesity173. 
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Since the transamination of GSH into its component amino acids (i.e., cysteine, glutamic acid 

and glycine) then occurs by GGT at the cell surface, the intracellular redox state is a driving 

force in regulation of circulating cysteine and its dimerized form, cystine. In a pre-clinical study, 

Galinier et al.173 found an increased intracellular GSH concentration in WAT from obese mice, 

as well as enhanced triglyceride deposition, cellular maturation and GSH concentration in pre-

adipocytes after anti-oxidant treatment. Taking this one step further, Lettieri Barbato et al.174 

studied the role of GSH in both WAT and BAT from mice in basal and cold-stimulated states 

with consistent findings. BAT, a more pro-oxidant tissue, had lower intracellular GSH than 

WAT at baseline, but then cold exposure or adrenergic stimulation reduced GSH in WAT to a 

similar level to BAT as evidence of WAT browning174. Finally, GSH depletion promoted weight 

loss, reduced adipose tissue mass and lipid droplet size, and thermogenic gene induction from 

WAT depots174. These pre-clinical studies support the increased GSH requirement in adipose 

tissue with a whiter phenotype, which may explain the trend we have reported here with cysteine 

and cystine. However, there is reason to believe that circulating cysteine may be a determinant of 

obesity in humans independent of the GSH pathway, as a large cross-sectional study Elshorbagy 

et al.175 found cysteine was a strong predictor of BMI independent of GGT (i.e., the enzyme 

required for GSH transamination). This notion is supported by early in vitro work that reported 

the ability of cysteine to independently promote adipose tissue lipogenesis in an oxidative stress-

dependent manner176,177. Therefore, unanswered questions still exist in terms of cysteine and 

cystine regulation and their role in human WAT and BAT function and overall metabolic health.  
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Figure 14. Summary of the metabolites in adults or children associated with ambient or cold-
induced BAT. Abbreviations: TCA tricarboxylic acid. 

 

4.4 Association Between Hepatic Fat and the Plasma Metabolome in 
Prepubertal Boys 

Finally, analysis of the plasma metabolome in relation to the liver in this cohort of male 

children identified a positive relationship between both cystine and cysteine and hepatic fat 

independent of total body adiposity. Cysteine, again, is a sulfur-containing amino acid and is 

readily dimerized in the extracellular space to produce cystine. Cysteine can be produced from 

hepatic methionine metabolism, progressing through the intermediary metabolite 

homocysteine178. Cysteine and by extension, cystine, play important roles in hepatic redox 

balance as substrates for hepatic GSH production particularly in NAFLD99. As mentioned 

previously, GSH can also be transaminated by GGT to release cysteine, glycine and glutamate 

into circulation100. Studies have reported increased homocysteine and cysteine, as well as 
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decreased GSH in circulation in both children and adults with NAFLD99,178,179. Our pediatric 

findings are therefore in line with the literature, and further support the notion of an increased 

anti-oxidant requirement with hepatic fat deposition.  

Although it is interesting to note that while neither cysteine nor cysteine were related to 

hepatic fat in adults, both trended towards significance and therefore may warrant further 

investigation in future studies. This, combined with the significance of glutamic acid and serine 

in the adults, emphasizes the role of GSH metabolism and redox balance in hepatic fat 

accumulation in both adults and children. The lack of exact consistency between cohorts may 

also be a result of the difference in hepatic fat content, where the adults had a significantly higher 

median baseline hepatic PDFF% than the children (P<0.05, Mann-Whitney U-test). This is an 

expected difference, considering the well-known positive relationship between increasing age 

and NAFLD development. However, the trend in the adults showing a similar result as the 

children despite significant differences in cohort characteristics and the small sample size may 

even further underscore the generalizability of the relationship between cystine, cysteine and 

hepatic fat. Therefore, although not the exact same metabolites, many of the significant findings 

from both cohorts have implications in the same biological processes (i.e., glutamic acid, serine, 

cysteine and cystine) and therefore support the importance of hepatic redox balance in NAFLD 

across a wide range of ages. 

4.5 Linking BAT and the Liver 

Cumulatively, we identified three metabolites with a consistent relationship with both 

baseline BAT and hepatic lipid content; glutamic acid in the adults and cysteine and cystine in 

the children (trending in the BAT analysis) (Figure 15). All three metabolites followed a similar 

pattern, where an increased abundance was associated with an elevated ambient BAT and liver 



M.Sc. Thesis – N. Varah; McMaster University – Medical Sciences 

 77 

fat deposition. This pattern between BAT and hepatic fat is to be expected considering the 

previously published correlation between these tissues in humans8,9. Although cysteine and 

cystine were not individually related to BAT in adults, they were related to elevated baseline 

BAT lipid content when analyzed in combination with orotate by PCA. Unfortunately, we cannot 

know if these metabolites casually link BAT and hepatic fat deposition due to the cross-sectional 

nature of this study. Alterations to levels of circulating glutamic acid, cysteine or cystine may be 

simply a result of wide-spread metabolic disturbances such as insulin resistance that promotes 

lipid deposition. This is particularly relevant for glutamic acid, which was not significantly 

related to hepatic fat after correction for adiposity. However, the relationship held true with 

inclusion of all covariates for glutamic acid in the adult BAT analysis and cysteine and cystine in 

the pediatric hepatic fat analysis, which strengthens our findings.  

To the best of our knowledge, this is the first study that analyzed the human metabolome 

from both a BAT and hepatic fat perspective and identified linking metabolites. In rodents, 

however, a limited number of studies have reported on compounds that may characterize this 

relationship, including Nrg4, serotonin, acylcarnitines and BCAAs (see Introduction Section 

1.11)10,11,45,128. In the acylcarnitine case, it was shown that these metabolites were being 

produced by the liver with cold stimulation and subsequently taken up and metabolized by BAT 

as a thermogenic fuel10. Similarly, BCAAs were found to be BAT-specific thermogenic 

substrates, and a loss-of-function mutation in BCAA oxidation caused liver derangements11. 

Both of these mechanisms rely on substrate oxidation by BAT mitochondria, and specifically 

have been shown to require mTORC1 activation11,160. Considering this requirement for 

mitochondrial oxidation for BAT function, and the known alterations in mitochondrial oxidative 

and anaplerotic fluxes that promote hepatic lipid deposition, it is plausible to think that the link 

between these tissues lies in the mitochondria180. Finally, as highlighted above, glutamic acid, 
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cysteine and cystine are all involved in maintaining cellular redox balance through the GSH 

pathway in adipose and hepatic tissues, which is another possible explanatory mechanism99,171.  

 

Figure 15. Summary of the common BAT and liver findings in this project and potential 
mechanistic link. Abbreviations: ROS reactive oxygen species, GSH glutathione, GGT gamma-
glutamyltransferase.  
 

4.6 Limitations 

There are a number of limitations to comment on in this project. First of all, the cross-

sectional nature of this study limits our ability to propose any causal relationships between the 

metabolome and our primary outcomes beyond speculation. Any proposed mechanisms would 

have to be studied in pre-clinical models and, eventually, intervention trials. The purpose of this 

study is thus for hypothesis creation rather than mechanistic testing. Also, all plasma was 

collected on a different day from the MRI measurements, in the fasted state and without cold 

stimulation. Therefore, any findings in relation to cold stimulated BAT activity are simply 

associations, rather than providing evidence how these metabolites might change as BAT is 

activated.  
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All metabolomic data used in this project was analyzed by the laboratory of Dr. E. 

Chouchani using their LC-MS platform, which relied upon previously validated methodology58. 

Though our study is strengthened by the work this team has undertaken to optimize and verify 

the reference standards, we were limited in the metabolites we could consider, and the focus was 

primarily on metabolites of mitochondrial metabolism. While this use of internal validated 

standards to identify the targeted metabolites produces a high-quality dataset, other metabolites 

shown previously to be associated with BAT or NAFLD like bile acids or oxylipins could not be 

assessed in this project. Also, as mentioned previously, we cannot compare the absolute 

concentration of any metabolites in our dataset to those of previous studies, as all metabolites are 

represented as a relative abundance to the reference metabolite peaks as quantified by the 

TraceFinder software.  

Additionally, although MRI has been validated against liver biopsy as a reliable and 

reproducible method of hepatic steatosis assessment, this methodology does not tell us anything 

about other stages along the NAFLD spectrum (i.e., NASH, fibrosis or cirrhosis). Therefore, we 

cannot draw any conclusions about the plasma metabolome in relation to increasing severity of 

NAFLD in this cohort. 

Methodological differences between the adults and children are also limitations in the 

comparison of findings across cohorts. The duration of the cold exposure differed between 

cohorts, with adults undergoing 180 minutes of cold versus only 60 minutes in the children, 

which may affect the magnitude of change in BAT lipid content with cold stimulation. The effect 

of this difference may be marginal though, as previous work from our laboratory provides 

evidence that BAT was maximally activated in 12 healthy adults after only 35 minutes of cold 

exposure35. Also related to BAT imaging limitations, the image analysis program was limited in 

that the post-cold images could not be automatically aligned to the pre-cold images and thus 
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slight differences in the SCV region segmentation may exist. This is especially a limitation in the 

pediatric image analysis, where we noticed many participants were in different positions from 

pre- to post-cold scanning so that the pediatric segmentation protocol was adjusted to account for 

this (see Methodology Section 2.3.1). This would impact both the absolute and relative change 

in SCV PDFF%, though not the pre-cold measurement. Finally, there was a sizable difference in 

the cohort sizes (63 adults versus 25 children) which results in differing statistical power 

between cohorts and therefore may play a role in the metabolite findings. However, studies in the 

metabolomics field in relation to both BAT and NAFLD have been published with sample sizes 

equal or smaller than our pediatric cohort68,120. This small pediatric sample size also limited our 

ability to perform PCA as the sensitivity analysis as well, as it is generally accepted that the 

sample size should be larger than the number of variables for PCA181. The cohorts also differed 

considerably in the prevalence of NAFLD although this was partially accounted for by using 

regression models with continuous outcome variables.  

4.7 Future Directions 

With the limited understanding of the physiological significance of baseline and activated 

BAT in humans, it is important to continue analyzing this tissue from a variety of different 

avenues, such as metabolomics. The identified significant metabolites from this project can be 

used as starting points in further studies to better understand how BAT influences human 

metabolism. To strengthen our findings, these results must be replicated and validated in larger 

and more diverse cohorts of adults and children. This would be necessary to be able to assess the 

ability of any of these identified metabolites to act as sensitive and specific BAT biomarkers. We 

also focused our pediatric cohort on prepubertal boys to limit the effects of pubertal status on 

BAT physiology, so a logical next step would be to conduct a similar study in prepubertal 

females and note any similarities or differences. Ideally, plasma should be collected before and 
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after the cold exposure to better assess the relationship between cold-stimulated BAT activity 

and cold-induced changes in the circulating metabolome.  

It is also crucial to investigate the proposed mechanisms in pre-clinical models to be able to 

draw causal relationships between the metabolome and our primary outcomes. For example, it 

would be interesting to measure BAT thermogenesis or oxygen consumption before and after 

treatment with one of the related metabolites such as 4-hydroxy-L-proline. The BAT-related 

metabolites could also be analyzed in a rodent model with a specific BAT knockout model or 

labelled with an appropriate tracer to determine if they are being taken up or metabolized by 

BAT with cold or adrenergic stimulation. To assess the proposed link between BAT and NAFLD 

from this project, such as glutamic acid in the adults and cysteine and cystine in the children, a 

mouse model of NAFLD could be developed using the methionine and choline deficient diet and 

samples could be collected before and after cold exposure. This would allow researchers to 

investigate such metabolites in relation to baseline BAT lipid content and cold stimulated BAT 

activity in a NAFLD model without the influence of other metabolic syndrome characteristics 

like obesity or insulin resistance182. 

Finally, although not a specific objective of this project, we have quantified cold-stimulated 

BAT activity in two different ways and noticed slight discrepancies in the results between them. 

For example, in the adult cohort, five metabolites were significantly related to absolute BAT 

PDFF% reduction, but none were related when considering relative BAT PDFF% reduction from 

baseline after multiple testing correction. It is important to validate both measurements against 

the gold standard of BAT activity imaging, 18F-FDG PET-CT, or in histological samples from 

pre-clinical models. This would ideally help us better understand which variable is more 

representative of BAT physiology in terms of energy expenditure or substrate utilization.  
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4.8 Conclusion 

In this current study, we set out to analyze the relationship between baseline and cold-

stimulated BAT as well as hepatic fat and the circulating metabolome in adults and children. We 

initially identified a lack of research available in the BAT field from a metabolomic perspective 

in humans as a method to better understand how this tissue influences human metabolic health. 

Research was particularly absent on this topic in children. Although a plethora of studies have 

been conducted relating NAFLD to the circulating metabolome, we do not currently understand 

how hepatic fat is related to ambient and cold-induced BAT despite observing inverse 

correlations between these. In adults, we observed multiple metabolites predicting baseline BAT 

lipid content and cold-induced BAT activity, with aconitate and creatine showing consistency 

between these outcomes. Similarly, glutamic acid predicted both baseline BAT and hepatic lipid 

content in adults. These notable findings represent novel metabolites in the BAT literature, 

particularly in the common relationship with hepatic fat.  

In children, three metabolites characterized the relationship with BAT activity, with L-

carnitine being consistent with findings in the adult cohort. Cysteine and cystine comparably 

predicted baseline BAT (trending) and hepatic lipid content in the children, again representing 

novel findings to begin to understand the link between BAT and liver physiology. Further 

investigation of these metabolites of interest in pre-clinical studies will be important in order to 

test biochemical mechanisms and establish whether this is a direct or causal relationship. It will 

also be important to determine whether findings can be replicated in larger more diverse human 

populations. In conclusion this study has identified multiple metabolites that may be important 

for BAT and NAFLD in both children and adults and serves as a starting point for future 

research.   
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APPENDIX 

A. Supplementary Figures and Tables (Methods) 

Appendix A1. Adult GETBAT exclusion criteria. 

1. Any contradictions for MRI (claustrophobia, implanted metal, metallic injuries, recent 

tattoo or weight > 300lbs) 

2. Prior bariatric surgery or liver transplant 

3. Use of any of the following medications: b adrenergic, steatogenic, anti-hyperglycemic, 

antidepressant, anti-psychotic, anxiolytic, thyroid, antiemetic – 5HT3 antagonists or 

serotonergic drug - [see Appendix A3] 

4. Any condition associated with brown adipose tissue, hepatic steatosis or liver disorders - 

[see Appendix A4] 

5. Self-reported alcohol intake greater than 7 drinks/week without exceeding 3 drinks/day 

(men) and 2 drinks/day (women) 

6. Nicotine or tobacco use (smoking, nicotine patch, chew tobacco, nicotine gum, e-

cigarette or cigar) 

7. Pregnant or nursing 

Appendix A2. Pediatric GETBAT exclusion criteria. 

1. Any contradictions for MRI (claustrophobia, implanted metal, metallic injuries, recent 

tattoo or weight > 300lbs) 

2. Prior bariatric surgery or liver transplant 
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3. Use of any of the following medications: b adrenergic, steatogenic, anti-hyperglycemic, 

antidepressant, anti-psychotic, anxiolytic, thyroid, antiemetic – 5HT3 antagonists or 

serotonergic drug - [see Appendix A3] 

4. Any condition associated with brown adipose tissue, hepatic steatosis or liver disorders - 

[see Appendix A4] 

Appendix A3. List of excluded medications. 
Class of Drugs List 

Drugs affecting β-
adrenergic receptor 

β -Blockers 
● Acebutolol (Sectral) 
● Atenolol (Tenormin) 
● Bisoprolol (Zebeta) 
● Metoprolol (Lopressor, Toprol-XL) 
● Nadolol (Corgard) 
● Propranolol (Inderal LA, InnoPran XL) 

 
 Asthma/COPD beta-adrenergic agonists 

● Bambuterol (Bambec, Oxeol) 
● Bitolterol mesylate (Tornalate) 
● Clenbuterol (Dilaterol, Spiropent, Ventipulmin) 
● Fenoterol (Berotec N) 
● Formoterol (Foradil, Zenhale, Symbicort, Forpack Discair, 

Oxeze/Oxis) 
● Isoprenaline/ Isoproterenol (Isuprel) 
● Levosalbutamol (Levalbuterol, Xopenex) 
● Metaproterenol (Alupent) 
● Olodaterol (Striverdi) 
● Pirbuterol (Maxair) 
● Procaterol 
● Salbutamol (Albuterol, Ventolin) 
● Salmeterol (Serevent Diskus) 
● Terbutaline (Bricanyl) 
● Vilanterol (Breo Ellipta, Relvar Ellipta) 

 
Others  

● Mirabegron (Myrbetriq) 
● Methylphenidate (Ritalin) 

Steatogenic 
medications 

Corticosteroids 
● Betamethasone (Celestone) 
● Budesonide (Pulmicort, Entocort EC) 
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● Cortone Acetate (Cortone) 
● Cotolone 
● Dexamethasone (Decadron) 
● Fludrocortisone (Florinef Acetate) 
● Methylprednisolone (Medrol, Methylpred-DP) 
● Prednisone (Bubbli-Pred, Deltasone, Prednicot, Prelone, 

Pediapred 5, Pms-prednisolone) 
● Triamcinolone (Aristocort) 

 
Tetracycline 

● Demeclocycline (Declomycin) 
● Doxycycline (Doryx, Vibramycin) 
● Minocycline (Dynacin, Minocin, Monodox) 
● Oxytetracycline (Terramycin) 
● Tetracycline (Achromycin) 
● Tigecycline (Tygacil) 

 
 Other 

● Amiodarone (Cordarone, Nexterone, Pacerone) 
● L-asparaginase (Elspar) 
● Methotrexate (Rheumatrex, Trexall) 
● Tamoxifen(Nolvadex) 
● Valproic acid (Depakote, Depakote ER, Depakote Sprinkle, 

Depakene, Depacon, Stavzor) 
Anti-hyperglycemic 
drugs 

Alpha-Glucosidase Inhibitor 
● Acarbose (Precose) 
● Miglitol (Glyset) 

 
Biguanides 

● Metformin (Glucophage, Glucophage XR, Glumetza, Fortamet, 
Riomet) 

● Metformin combination drugs 
o Actoplus Met  
o Avandamet 
o Duetact 
o Glucovance 
o Janumet 
o Jentadueto  
o Komboglyze 
o Metaglip  
o PrandiMet 

 
Dipeptidyl peptidase-4 (DPP-4) inhibitor 

● Alogliptin (Nesina)  
● Canagliflozin (Invokana) 
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● Dapagliflozin (Farxiga) 
● Linagliptin (Tradjenta)  
● Saxagliptin (Onglyza)  
● Sitagliptin (Januvia) 

 
Glucagon-like peptide 

● Exenatide (Exendin-4, Byetta) 
● Liraglutide (Victoza) 
● Lixisenatide (Lyxumia) 

 
Meglitinides 

● Repaglinide (GlucoNorm, Prandin, NovoNorm) 
● Nateglinide (Starlix)  

 
Insulin 
Sulfonylurea 

● Chlorpropamide (Diabinese) 
● Glimepiride (Amaryl) 
● Glipizide (Glucotrol, Glucotrol XL) 
● Glyburide (DiaBeta, Glynase PresTab, Micronase) 
● Tolbutamide 
● Yolazamide  

  
Thiazolidinediones 

● Pioglitazone (Actos) 
● Rosiglitazone (Avandia) 

HIV drugs • HAART 
Antidepressants, 
anxiolytic drugs, 
anti-psychotic drugs 

5-HT2 Receptor Antagonists 
● Trazodone (Desyrel, Oleptro, Trazorel, Trialodine, Trittico) 

 
5-HT3 Receptor Antagonists 

● Vortioxetine (Brintellix, Trintellix) 
 

Dopamine Reuptake Blocker 
● Bupropion (Wellbutrin) 

 
MAOIs (Monoamine oxidase inhibitors) 

● Isocarboxazid (Marplan) 
● Phenelzine (Nardil) 
● Selegiline (Emsam) 
● Tranylcypromine (Parnate) 
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SNRIs (Serotonin and norepinephrine reuptake inhibitors) 
● Desvenlafaxine (Pristiq) 
● Duloxetine (Cymbalta) 
● Venlafaxine (Effexor XR) 

 
SSRIs (Selective serotonin reuptake inhibitor) 

● Citalopram (Celexa) 
● Escitalopram (Lexapro) 
● Fuoxetine (Prozac) 
● Fuvoxamine (Luvox) 
● Paroxetine (Paxil) 
● Sertraline (Zoloft) 

 
Tetracyclic Antidepressant 

● Maprotiline (Teva-Maprotiline) 
● Mirtazapine (Tera-Mirtazapine) 

 
Tricyclic medication 

● Amitriptyline (Elavil) 
● Amoxapine (Asendin) 
● Clomipramine (Anafranil) 
● Desipramine (Norpramin) 
● Doxepin (Silenor) 
● Imipramine (Tofranil) 
● Nortriptyline (Pamelor) 
● Protriptyline (Vivactil) 
● Trimipramine (Surmontil) 

Thyroid drugs Anti-thyroid 
● Methimazole (Tapazole) 
● Propylthiouracil (Propyl-Thyracil or PTU) 

 
Thyroid 

● Levothyroxine (T4) (Levothroid, Levoxyl, Synthroid, Tirosint, 
Unithroid) 

● Liothyronine (T3) (Cytomel) 
● Liotrix (T3 and T4) (Thyrolar) 

Antiemetic (5HT3 
antagonists) 

● Dolasetron (Anzemet) 
● Granisetron (Granisetron Hydrochloride) 
● Ondansetron (Zofran) 
● Palonosetron (Aloxi) 

Drugs affecting 
serotonin 

● Amphetamine 
● Dextromethorphan 
● Metoclopramide 
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Table A4. List of excluded conditions. 
Conditions List 

Diseases that affects brown adipose 
tissue 

● Adrenal gland disorder (i.e. 
pheochromocytoma) 

● Hibernoma 
Diseases associated with hepatic 
steatosis and liver disorders 

● Abetalipoproteinemia  
● Celiac disease  
● Cystic fibrosis 
● Galactosemia 
● Glycogen storage disease 
● Hemochromatosis 
● Hepatitis B or C 
● Hepatocellular carcinoma (HCC) 
● Homocystinuria 
● Inflammatory bowel disease 
● Lipodystrophy 
● Polycystic liver disease 
● Tyrosinemia 
● Weber-Christian syndrome 
● Wilson’s disease 

 

 

Appendix A5. Visit 1 Timeline (McMaster University Medical Centre).  
 

 

Appendix A6. Adult Visit 2 Timeline (St. Joseph’s Healthcare Hamilton). 
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Appendix A7. Pediatric Visit 1 Timeline (McMaster University Medical Centre). 
 

 

Appendix A8. Pediatric Visit 2 Timeline (St. Joseph’s Healthcare Hamilton). 
 

Appendix A9. MRI protocol parameters for IDEAL-IQ sequence. 
Pulse Sequence: IDEAL-IQ 

Parameter SCV Liver 

Patient Entry Head First Feet First 

Patient Position Supine 

Coil HNS Head/Neck/Chest NeoCoil 32 Channel Torso 
Array 

Orientation Axial 

Flip angle 4 3 

TE Min Full 

Number of echoes 6 

Echo Train Length  3 

Number of shots 2 

Bandwidth  111.11 

Frequency axis Bottom/Up 
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Phase axis Right/Left 

Spatial resolution (mm) 1.48 x 1.48 1.33 x 1.33 

Acquired slice thickness 
(mm) 

4 8 

Imaging Options EDR, Fast, IDEAL, ARC 

 

B. Supplementary Figures and Tables (Results) 

Results for the PCA with varimax rotation (see Results Section 3.2) for the adult cohort can be 

seen in Appendix B1-B4. Eleven components were selected for analysis prior to the inflection 

point of the scree plot (Appendix B2) which cumulatively explained 75% of the variation 

(Appendix B1). The rotated loadings matrix can be seen in Appendix B3, where factor loadings 

< 0.4 were excluded, and metabolites with a factor loading ≥ 0.4 are considered to constitute that 

component149. Clearly, there is a lack of simple structure on the rotated loadings matrix as many 

metabolites load highly on more than one component which makes interpretability more 

difficult. Negative loadings simply imply an inverse correlation between such metabolite and 

others within the component152. Metabolite identities within each component are provided in 

Appendix B4. 

Appendix B1. Total variance for 11 identified principal components. 
Component Eigenvalue % of Variance Cumulative % 

1 9.32 15.53 15.53 
2 7.28 12.13 27.66 
3 4.82 8.04 35.70 
4 4.32 7.20 42.90 
5 3.95 6.58 49.48 
6 3.69 6.15 55.62 
7 2.96 4.94 60.56 
8 2.72 4.53 65.09 
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9 2.44 4.06 69.15 
10 1.88 3.13 72.28 
11 1.87 3.12 75.40 

 

Appendix B2. Scree plot displaying eigenvalues for identified principal components. The 
inflection point in the scree plot arm was determined to occur at component 11.  
 

Appendix B3. Varimax rotated loadings matrix from PCA in the adult cohort. Loadings < 0.4 
were excluded.  

  Component 

1 2 3 4 5 6 7 8 9 10 11 

4-Hydroxy-L-proline .87                     

Cis-4-Hydroxy-D-proline .87                     

Glutamine .73                     

D-Glucose .71   .41                 

Fructose-galactose-glucose-mannose .70   .46                 

Carnitine .68     .43               
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Gluconic acid .67                     

L-carnitine .67     .43               

Xylose-ribose-arabinose .55   .54                 

Tyrosine .53             .46       

Hypoxanthine -.48                     

Oleic acid   .87                   

Linoleic acid   .85                   

Palmitoleic acid   .83                   

Ethyl-myristate   .78 -.40                 

Adenonsine-2,3-cyclic-monophosphate   .46                   

3-Hydrox-butyric acid   .44   .41               

3-Hydroxy-3-methylglutaric acid     .83                 

Aconitate     .65                 

Ocatadecanoyl-carnitine     -.63                 

Propionate      .62           -.47     

Succinate     .57           -.49     

2-Phosphoglycerate     -.44         .43       

Creatine       .81               

Alanine       .81               

MDA       .76               

Pyridoxal         .46               

Xanthine       .44               

Acetyl-carnitine   .41   .43               

D-Glucose-6-phosphate         .97             

D-Fructose-6-phosphate         .97             

a-D-glucose-1-phosphate         .97             

Taurine         .77             

Homoserine           .90           

Threonine           .90           

Asparagine           .73           

Serine           .57           

Lauryl-L-carnitine             .92         

Dodecanoyl-carnitine             .92         
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Hexanoyl-L-carnitine       .43     .60         

Uracil             .57         

Phosphocreatine                       

Proline               .70       

Uridine-5-monophophate               .63       

Phenylalanine               .60   .41   

Methionine           .53   .58       

L-Pyroglutamic acid               .48       

a-ketoglutarate     .43         .47       

Glutamic acid               .40       

Thymine                 .75     

Aminobenzoic acid                 .74     

Hippurate                  .64     

Histamine                    .84   

Histidine                   .81   

Glycine                       

Cysteine                     .81 

Cystine                     .80 

Orotate                  .40   -.46 

 

 
Appendix B4. Metabolite identities within each principal component. Metabolites with rotated 
loadings > 0.4 were included. Bolded metabolite names represent positive loadings, non-bolded 
metabolites represent negative loadings. 
Component Metabolites 

1 Fructose-galactose-glucose-mannose, D-glucose, 4-hydroxy-L-proline, cis-4-
hydroxy-D-proline, gluconic acid, xylose-ribose-arabinose, glutamine, carnitine, L-
carnitine, tyrosine, hypoxanthine 

2 Linoleic acid, oleic acid, palmitoleic acid, ethyl-myristate, adenosine-2,3-
cyclicmonophosphate, acetyl-carnitine, 3-hydroxybutyric acid 

3 D-glucose, fructose-galactose-lactose-glucose-mannose, xylose-ribose-arabinose, 3-
hydroxy-3-methylglutaric acid, aconitate, propionate, succinate, a-ketoglutarate, 2-
phosphoglycerate, ocatadecanoyl-carnitine, ethyl-myristate 

4 Carnitine, L-carnitine, 3-hydroxybutyric acid, creatine, alanine, MDA, pyridoxal, 
xanthine, acetyl-carnitine, hexanoyl-L-carnitine 

5 D-glucose-6-phosphate, D-fructose-6-phosphate, a-D-glucose-1-phosphate, taurine 
6 Homoserine, threonine, asparagine, serine 
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7 Lauryl-L-carnitine, dodecanoyl-carnitine, hexanoyl-carnitine, uracil 
8 Tyrosine, 2-phosphoglycerate, proline, uridine-5-monophosphate, phenylalanine, 

methionine, L-pyroglutamic acid, a-ketoglutarate, glutamic acid 
9 Thymine, aminobenzoic acid, hippurate, orotate, propionate, succinate 
10 Histamine, histidine, phenylalanine 
11 Cysteine, cystine, orotate 

 

In multivariate linear regression analysis, component 9 significantly negatively predicted pre-

cold SCV PDFF%, and positively predicted both SCV PDFF% reduction and percent change in 

SCV PDFF% independent of age and sex (Appendix B5-B7). Other significant models can be 

identified by grey shading, although there were no other similarities between outcome variables. 

Appendix B5. Metabolite component regression models for Pre-Cold SCV PDFF%. Grey 
shading and bolding denote P<0.05. 

Predictor: 
Component 

Scores 

Model 1  
Univariate 

Model 2  
+ Age 

Model 3 
+ Age 
+ Sex 

Model 4  
+ Age 
+ Sex 

+ % Body Fat 
β 
 

t p-
value 

β 
 

t p-
value 

β 
 

t p-
value 

β 
 

t p-
value 

1 0.103 0.802 0.426 -0.147 -1.328 0.189 -0.130 -1.132 0.262 -0.152 -2.113 0.039 

2 0.042 0.325 0.746 -0.058 -0.557 0.580 -0.098 -0.887 0.379 -0.101 -1.444 0.154 

3 0.313 2.557 0.013 0.157 1.474 0.146 0.144 1.328 0.189 0.078 1.107 0.273 

4 0.394 3.320 0.002 0.188 1.711 0.092 0.184 1.670 0.100 0.004 0.049 0.961 

5 0.136 1.061 0.293 0.100 0.964 0.339 0.121 1.156 0.253 0.219 3.495 0.001 

6 -0.325 -2.665 0.010 -0.126 -1.141 0.259 -0.152 -1.354 0.181 -0.023 -0.308 0.759 

7 -0.214 -1.695 0.095 -0.129 -1.247 0.217 -0.114 -1.063 0.292 0.042 0.582 0.563 

8 -0.117 -0.910 0.367 -0.045 -0.428 0.670 -0.025 -0.236 0.814 -0.029 -0.414 0.680 

9 -0.238 -1.898 0.063 -0.254 -2.576 0.013 -0.274 -2.765 0.008 -0.066 -0.922 0.361 

10 -0.092 -0.713 0.479 -0.062 -0.595 0.554 -0.073 -0.700 0.487 0.037 0.544 0.588 

11 0.292 2.365 0.021 0.190 1.847 0.070 0.182 1.752 0.085 0.150 2.283 0.026 

 
Appendix B6. Metabolite component regression models for Percent Change SCV PDFF%. 
Grey shading and bolding denote P<0.05. 

Predictor: 
Component 

Scores 

Model 1  
Univariate 

Model 2  
+ Age 

Model 3 
+ Age 
+ Sex 

Model 4  
+ Age 
+ Sex 
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+ % Body Fat 
β 
 

t p-
value 

β 
 

t p-
value 

β 
 

t p-
value 

β 
 

t p-
value 

1  -0.003 -0.023 0.982 0.200 1.534 0.131 0.161 1.174 0.245 0.136 1.248 0.218 

2 -0.259 -2.003 0.050 -0.187 -1.539 0.130 -0.149 -1.165 0.249 -0.178 -1.803 0.077 

3 -0.203 -1.554 0.126 -0.097 -0.774 0.442 -0.064 -0.500 0.619 -0.062 -0.616 0.541 

4 -0.345 -2.754 0.008 -0.211 -1.629 0.109 -0.206 -1.603 0.115 -0.080 -0.754 0.454 

5 0.103 0.778 0.440 0.131 1.080 0.285 0.105 0.859 0.394 0.162 1.595 0.117 

6 0.217 1.665 0.102 0.076 0.583 0.562 0.117 0.893 0.376 0.008 0.074 0.941 

7 0.053 0.398 0.692 -0.019 -0.152 0.879 -0.046 -0.372 0.711 -0.169 -1.740 0.088 

8 0.139 1.048 0.299 0.083 0.677 0.501 0.049 0.388 0.699 -0.045 -0.447 0.657 

9 0.222 1.700 0.095 0.241 2.047 0.045 0.264 2.265 0.028 0.119 1.193 0.238 

10 0.032 0.237 0.814 0.007 0.059 0.953 0.032 0.261 0.795 0.055 0.545 0.588 

11 -0.242 -1.865 0.067 -0.168 -1.372 0.176 -0.153 -1.255 0.215 -0.089 -0.916 0.364 

 
Appendix B7. Metabolite component regression models for SCV PDFF% Reduction. Grey 
shading and bolding denote P<0.05. 

Predictor: 
Component 

Scores 

Model 1  
Univariate 

Model 2  
+ Age 

Model 3 
+ Age 
+ Sex 

Model 4  
+ Age 
+ Sex 

+ % Body Fat 
β 
 

t p-
value 

β 
 

t p-
value 

β 
 

t p-
value 

β 
 

t p-
value 

1 0.000 -0.003 0.997 0.191 1.441 0.155 0.150 1.080 0.285 0.186 1.518 0.135 

2 -0.296 -2.316 0.024 -0.230 -1.890 0.064 -0.197 -1.529 0.132 -0.214 -1.890 0.064 

3 -0.179 -1.365 0.178 -0.079 -0.619 0.538 -0.045 -0.343 0.733 -0.006 -0.055 0.956 

4 -0.332 -2.638 0.011 -0.208 -1.581 0.120 -0.203 -1.555 0.126 -0.088 -0.719 0.475 

5 0.155 1.176 0.245 0.181 1.490 0.142 0.157 1.274 0.208 0.091 0.813 0.420 

6 0.203 1.555 0.126 0.071 0.536 0.594 0.112 0.842 0.403 0.013 0.105 0.916 

7 0.033 0.244 0.808 -0.036 -0.284 0.777 -0.064 -0.506 0.615 -0.177 -1.569 0.123 

8 0.099 0.743 0.461 0.046 0.368 0.714 0.009 0.072 0.942 0.001 0.007 0.994 

9 0.241 1.855 0.069 0.259 2.181 0.033 0.283 2.404 0.020 0.159 1.393 0.169 

10 0.019 0.140 0.889 -0.004 -0.034 0.973 0.021 0.165 0.869 -0.052 -0.463 0.645 

11 -0.223 -1.710 0.093 -0.153 -1.231 0.224 -0.138 -1.114 0.270 -0.118 -1.068 0.290 

In the hepatic fat analysis, component 9 was significantly negatively associated with hepatic fat 

after controlling for all covariates, which is the only common component in both BAT and liver 



M.Sc. Thesis – N. Varah; McMaster University – Medical Sciences 

 118 

outcome models (Appendix B8). Component 8 was also significantly positively associated with 

hepatic fat across all models. 

Appendix B8. Metabolite component regression models for Pre-Cold Liver PDFF%. *Denotes 
that a quadratic function was used as it fit better than a linear function for labeled variables. Grey 
shading and bolding denote P<0.05. 

 
Appendix B9. Stepwise linear regression models for SCV PDFF% Reduction in children. Grey 
shading and bolding denote P<0.05. 

Predictor: 

Component 
Score 

Model 1  

Univariate 

Model 2  

+ Age 

Model 3 

+ Age 

+ Sex 

Model 4  

+ Age 

+ Sex 

+ % Body Fat 

β 

 

t p-
value 

β 

 

t p-
value 

β 

 

t p-
value 

β 

 

t p-
value 

1 – Linear* 0.307 2.519 0.015 0.185 1.423 0.160 0.176 1.320 0.192 0.133 1.112 0.271 

1 – 
Quadratic* 

0.260 2.128 0.038 0.188 1.533 0.131 0.198 1.557 0.125 0.147 1.263 0.212 

2 0.164 1.286 0.203 0.101 0.839 0.405 0.122 0.954 0.344 0.119 1.075 0.287 

3 0.155 1.214 0.230 0.046 0.371 0.712 0.053 0.414 0.680 -0.019 -0.169 0.867 

4 0.245 1.959 0.055 0.106 0.821 0.415 0.107 0.825 0.413 -0.024 -0.204 0.839 

5 -0.175 -1.379 0.173 -0.200 -1.717 0.091 -0.213 -1.782 0.080 -0.106 -0.938 0.352 

6 -0.309 -2.518 0.014 -0.190 -1.517 0.135 -0.192 -1.489 0.142 -0.102 -0.876 0.385 

7 -0.115 -0.896 0.374 -0.058 -0.484 0.630 -0.068 -0.546 0.587 0.035 0.308 0.759 

8 0.280 2.255 0.028 0.332 2.966 0.004 0.343 2.965 0.004 0.320 3.135 0.003 

9 -0.347 -2.869 0.006 -0.358 -3.257 0.002 -0.362 -3.231 0.002 -0.233 -2.145 0.036 

10 -0.045 -0.347 0.729 -0.025 -0.209 0.835 -0.022 -0.183 0.855 0.105 0.955 0.344 

11 0.108 0.843 0.403 0.037 0.308 0.759 0.041 0.331 0.742 0.040 0.365 0.716 

Predictor 

Model 1 

Univariate 

Model 2 

+ % Body Fat 

β 

 

t p-
value 

β 

 

t p-
value 

4-Hydroxy-L-Proline -.677 -4.216 < .001 -.648 -3.589 .002 
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Appendix B10. Correlation scatter plot for SCV PDFF% Reduction in children. (A) 4-
hydroxy-L-proline, and (B) cis-4-hydroxy-proline. 
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