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LAY ABSTRACT 

Bacterial viruses (phages) can lie dormant as prophages in their host 

bacterium until a signal triggers their activation, production of viruses, and 

rapid killing of the host. This switch from dormant prophage to active phage is 

called induction. Almost all molecules that result in prophage inductions 

belong to a limited set of compounds which elicit a specific stress response in 

bacteria. 

Screening 3936 compounds for their ability to inhibit the growth of 

bacteria carrying known prophages resulted in the identification of a small 

subset associated with increased phage production. For one Escherichia coli 

prophage—HK97, a model of induction—we found 49 compounds not 

previously known as inducers. For another model prophage—Mu, a prophage 

thought to be chemically uninducible—we identified seven such compounds. 

These compounds will serve as tools to determine what signals 

prophages can respond to, and potentially identify new stress pathways of 

interest in bacteria.
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ABSTRACT 

 
Prophages are the genomes of bacteriophages (phages, bacterial 

viruses) that integrate into the chromosome of their host upon infection, lying 

dormant until conditions favour their reactivation. A cell harbouring a 

prophage is called a lysogen, as, upon exposure to certain signals, the 

prophage will initiate a replicative cycle ending in lysis of the host bacterium 

and release of phages. This process is known as induction. Canonically, 

induction occurs through activation of the bacterial SOS-response, a DNA-

repair cascade initiated by detection of DNA damage. Studies of prophage 

induction have almost exclusively relied on challenges with compounds that 

result in the initiation of the host SOS response. 

Recent studies have identified some signals that affect prophage 

induction independently of the SOS response, but these approaches have not 

been systematic. To identify non-canonical triggers of prophage induction, I 

screened 3,936 compounds against two model lysogens. The first, carrying 

phage HK97, is a model for induction. The second, carrying phage Mu—a 

prophage thought to be uninducible—serves as a control. Any compound 

which inhibited bacterial growth in only our HK97 lysogen was considered to 

have resulted in a phage-mediated response. The 171 compounds identified in 

this screen were then used to re-challenge the lysogen at a range of 

concentrations, and monitor the resulting release of free phages associated 

with induction. Increases in phage counts were seen for 86 compounds. While 

38 of these were known SOS activators, 49 were novel, ‘non-canonical’ 
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inducers. Unexpectedly, the screening also revealed seven unique chemical 

inducers for the supposedly un-inducible model prophage, Mu.  

The 56 new phage-inducers identified by this work include compounds 

likely to be driving phage induction through non-canonical pathways. As 

prophages are thought to respond to bacterial stress, these may reflect stressors 

acting through new mechanisms. Using these compounds as tools opens up an 

avenue to probe other stress pathways in bacteria, and, as evidenced by 

induction of Mu, potentially help discover new phages that don’t respond to 

canonical inducers. 
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CHAPTER 1: INTRODUCTION 

Bacteriophages (phages) are viruses that exclusively infect bacteria. 

Temperate phages represent a category of phage which, during infection, can 

integrate into the host genome and stay in a quasi-dormant state. This 

incorporated viral genome is called a prophage, and the host cell, bearing the 

phage DNA, is called a lysogen (Ptashne 2004).  

1.1 Prophages in bacteria 

Of the sequenced bacteria, over half are lysogens (Touchon et al. 2016) 

replete with prophages, which can account for up to 20% of the bacterial 

genome (Casjens 2003; Keen and Dantas 2018). These prophages can have 

large impacts on the lifestyle, fitness and virulence of the lysogens (Howard-

Varona et al. 2017). The most prevalent of these is superinfection immunity 

where, once the phage genome integrates into the bacterial DNA, the lysogen 

is typically resistant to subsequent infections by closely related phages 

(Abedon 2015; Howard-Varona et al. 2017). 

Superinfection immunity is only one example of how a prophage is not 

completely dormant, and can confer novel phenotypes to the lysogen. This 

process of altering the bacterial host is called lysogenic conversion. Key 

virulence factors of several prominent bacterial pathogens are prophage-

encoded exotoxins e.g. Shiga-toxin-encoding E. coli (STEC), Vibrio cholerae, 

and Clostridium botulinum (Keen and Dantas 2018). In the famous case of V. 

cholerae, its toxicogenic nature is attributed to prophage CTXᵩ which encodes 
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the cholera toxin (CTX). Only CTXᵩ prophage-carrying strains of V. cholerae 

cause pandemic and epidemic cholera (Faruque & Mekalanos 2012) 

Perhaps the defining property of lysogens, from which they derive their 

name, is the potential of the prophage to start independent replication, 

resulting in the eventual lysis and killing of its host to release progeny phages. 

1.2 Induction of prophages 
 

While the quasi-dormant prophages can be stably maintained in a 

bacterial population over evolutionary timescales, they can also switch into an 

active lytic cycle. This transition from quasi-dormant prophage to 

independently replicating phage that eventually lyses the host cell is known as 

induction. 

Ecologically, the lysogenic cycle is thought to be favoured when the 

host density is low and phages that do not eradicate their hosts would be 

favoured. Conversely, when host density is high, the lytic cycle allows for and 

rapid propagation through the population (Nanda et al. 2015). In the lab, 

induction happens spontaneously, at a very low rate. 

In the majority of the cases studied in the lab, an external stressor is 

used to trigger induction of the prophage. The most well-characterized and 

canonical trigger is the bacterial host’s DNA-damage response, known as the 

SOS response (section 1.3.2).  

1.3 Canonical prophage induction 

1.3.1 Phage lambda, the model for induction  
 

Lambda is a phage that has been the subject of extensive early phage 

research (Casjens and Hendrix 2015). Work done on phage lambda from the 
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mid-1950s to mid-1980s was critical to understanding gene regulation, phage 

particle assembly, and, more specifically, the molecular nature of lysogeny 

(Ptashne 2004). Lambda lysogeny is the defining model for the integration and 

induction of prophages. The study of this model defines the closely related 

lambdoid (lambda-like) phages, like HK97 (Hendrix 2005; Lander et al. 2008) 

but also forms the foundation of all research on temperate phages. 

The initiation of a lysogenic cycle in phage lambda can be said to start 

with the site-specific integration of the phage genome into the bacterial 

chromosome (Alberts et al. 2002; Dhillon et al. 1980). For phage HK97, as for 

phage lambda, the attachment site is in the vicinity of the E. coli gal operon 

(Hatfull and Hendrix 2011). Upon integration, the prophage produces the 

repressor protein CI. This repressor protein blocks promoters of the lytic genes 

in phage lambda, thus maintaining the lysogenic state. There are other classes 

of temperate phages that infect E. coli but do not follow the same mechanism 

of integration as phage HK97 and other lambdoid phages.  

Other known temperate phages use random transposition like phage 

Mu (Bukhari 1975) or plasmid-like partitioning like phage N15 (Hatfull and 

Hendrix 2011). Any phage that has a lysogenic state unlike lambda are said to 

be the exception to the rule.  

The lambdoid phages are not only the model for integration, but also 

the model for studying induction. Induction of a lambdoid prophage begins 

with the reversal of the integration event—the excision of the phage genome 

from the bacterial chromosome. In lambda, the excision reaction requires the 

product of the phage gene xis (Griffiths et al. 2000; Ptashne 2004). The 
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repressor protein in phage lambda, CI, maintains lysogeny and by extension 

represses the expression of xis. If the repressor isn’t produced or is broken 

down, the phage will induce and start the lytic cycle. There are prophages that 

are exceptions to this rule—like Mu, which does not encode a CI-like 

repressor and, in the absence of certain specific mutations (Bukhari 1975), is 

thought not to be induced by bacterial stressors. 

While many ecological factors are thought to influence a prophage’s 

lysis/lysogeny decision, the decision is most often studied in the context of 

bacterial stress. This is often considered analogous to the prophages 

‘abandoning a sinking ship’, leaving a close association with a stressed cell to 

seek out hosts that are faring better.  

1.3.2 Bacterial SOS response  
 

Irrespective of their habitat and environment, bacterial genetic 

material is subjected to insults from multiple sources such as UV, oxidative 

damage, antibiotics and mutagens. In order to avoid DNA damage, bacteria 

have evolved repair mechanisms that are specifically expressed only when 

they sense a threat to their DNA (Michel 2005; Žgur-Bertok 2013). The 

enhanced expression of DNA repair genes was proposed by Miroslav Radman 

in 1973 who termed it the SOS response (Simmons et al. 2008). 

The SOS response in bacteria is regulated by two key proteins; RecA, 

an inducer, and LexA, a repressor. The SOS response system initiates when 

damaged DNA interacts with the RecA protein and activates it 

(Radman 1975). In the absence of this activation, LexA binds to the operator 

region of DNA-damage repair genes to prevent their expression (Sauer et al. 
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1982). However, activated RecA (RecA*) has a co-protease activity that 

causes the repressor LexA to self-cleave and consequently, initiates the SOS 

response to the DNA damage. 

As much as the SOS response plays a part in the DNA repair for the 

host by activating the RecA protein, it also results in the induction of 

prophages (Rozanov et al. 1998). The bacterial LexA repressor and phage 

lambda’s CI repressor are homologous at their carboxy-terminal domains 

(Janion 2008). Upon activation of RecA, other LexA homologues like the CI 

repressor also undergo self-cleavage (Rozanov et al. 1998; Nanda et al. 2014). 

This cleavage derepresses the xis gene and thereby allows the expression of 

exicionase, which initiates lambdoid prophage induction (Fig. 1). By 

comparison, this sequence of events does not occur in prophages like Mu, due 

to the lack of a similar CI-like repressor. 

 

Figure 1: Host SOS-response dependent prophage induction. A schematic 
showing how the RecA protein is activated when the cell encounters DNA 
damaging agents. This activation cleaves the downstream LexA protein to 
unlock the DNA repair genes. In doing so it also cleaves the CI protein which 
causes lambdoid prophage induction. 
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1.3.3 Biochemical induction assays 
 

This property of prophages responding to DNA damage has been 

extensively exploited to find and test new DNA-damaging compounds. 

Prophage induction assays are routinely used to screen antitumor agent and are 

an efficient method to predict the potency of chemotherapeutic drugs 

(Elespuru and White 1983). 

Induction of phage lambda, specifically, was used as an indicator in 

biochemical induction assays (BIA) to test antitumor reagents 

(Heinemann 1971; Elespuru and Yarmolinsky 1979; Anderson et al. 1980; 

Akeju et al. 1998). The lambda prophage is inserted to interrupt the function of 

the gal gene, and successful prophage induction reinstates the production of β-

galactosidase, allowing the cell to break down the colorimetric substrate β-

galactoside (Elespuru and White 1983). The resulting colour intensity reflected 

the potency of the antitumor drug.  

Biochemical prophage induction assays offer a framework to test 

potency of new compounds and antibiotics.  

1.3.4 Fluoroquinolones and β-lactams 
 

In addition to chemotherapeutics, phage induction has been widely 

studied using different classes of antibiotics (Majtanova et al. 1994). Sub-

inhibitory concentration of ciprofloxacin, a fluoroquinolone antibiotic actively 

prescribed for bacterial infections of the urinary and respiratory tract, was 

shown to cause prophage induction and increase phage related virulence 

factors in Staphylococcus aureus (Goerke et al. 2006). This is also observed in 

multidrug-resistant Salmonella, enterohemorrhagic E. coli and Streptococcus 
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pneumonia (Walterspiel et al. 1992; López et al. 2014; Bearson and 

Brunelle 2015), among others.  

Fluoroquinolones are one of the most widely prescribed class of broad-

spectrum antibiotics used against gram-positive and gram-negative bacteria. 

(Blondeau 2004; Kimura et al. 2008). Their mode of action is through 

interaction with DNA gyrase, preventing it from relieving the stress from 

double-stranded DNA being unwound by helicases (López et al. 2014; 

Bearson and Brunelle 2015). This can cause single stranded breaks in the DNA 

and consequently trigger the bacterial SOS response. Accordingly, 

fluoroquinolones are excellent inducers of lambdoid phages.  

Fluoroquinolones are not the only class of antibiotics known to induce 

prophages; β-lactams are also used in this fashion. β-lactams bind to penicillin-

binding proteins in bacteria (Delhaye et al. 2019). Most of these proteins are 

required for cross-linking of the peptidoglycan layer that forms the cell-wall. 

Despite no interaction with DNA damage, damage to the peptidoglycan 

through β-lactams appears to indirectly activate the SOS response, leading to 

prophage induction (Tipper and Strominger 1965; Rodríguez-Tébar and 

Vázquez 1984; Miller 2004; Adamus-Białek et al. 2019; Delhaye et al. 2019; 

Maiques et al. 2006). This has been demonstrated by inducing prophages in 

the Staphylococcus aureus genome using the clinically prescribed β-lactam 

antibiotics ceftriaxone and cloxacillin (Zeng and Lin 2013). Ampicillin and 

penicillin, two other β-lactams, also induce phages 80α and ϕ11 in S. aureus. 

No induction of these prophages was seen in recA mutants unable to initiate 

the SOS response (Maiques et al. 2006).  
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 Parallels between SOS repair and prophage induction were established 

early (Heinemann 1971). Since then, research regarding induction of 

prophages has almost always relied on the activation of the host SOS response, 

and SOS-dependent phage induction continues to be the standard for the 

discovery of inducible prophages (Oh et. al 2019). 

1.4 Non-canonical signals influencing phage life cycles 

Recent evidence shows the tendency of a temperate phage to adopt 

lysis or lysogeny depends on many more factors than simply the SOS response 

including host perception of nutrient availability, host density and even 

signaling from other prophages through mechanisms similar to quorum 

sensing (Feiner et al. 2015; Knowles et al. 2016; Silpe and Bassler 2019). 

1.4.1 Phage communication  
 

A recent study by Erez et. al. (2017) showed that phage phi3T can 

sense chemical signals released by the previous generation of phages to decide 

whether to kill upon infection, or lysogenize the host. This chemical signal 

was a phage-encoded, 6 amino acid polypeptide called ‘arbitrium’. Arbitrium 

is released out of the host bacterium every time it is lysed by phage phi3T. The 

higher the concentration of arbitrium in the media, the more hosts phi3T has 

recently killed, and consequently the lesser the availability of uninfected 

bacterial hosts for the next generation of phages. The study proved that in the 

presence of increased arbitrium in the media a phage, upon infecting the new 

host bacterium, favours lysogeny. Erez et al. also identified two additional 

phage phi3T encoded proteins which are responsible for measuring the amount 

of arbitrium responding to those levels. 
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This remarkable study showed direct phage communication between a 

phage and its predecessors to assess the density of viable host cells. These 

factors affecting the decision to influence lysogeny shed light on how 

lysis/lysogeny decisions are not always at the mercy of a host stress pathway, 

and that phage can take responsibility, as it were, for their own fate. 

In a related strategy, Silpe and Bassler (2019) showed that phage 

detection of the host-produced autoinducers, used in quorum-sensing, can also 

control the phage lysis/lysogeny switch. V. cholerae, the host of phage VP882, 

secretes the signaling molecule called DPO, made of amino acids threonine 

and alanine. DPO is involved in the activation of genes required for biofilm 

formation and toxin production in situations of high host density. 

Phage VP882—either as a prophage or a newly injected phage genome—

detects the same signal through a phage-encoded protein, using it to gauge 

bacterial abundance in the environment. This directly informs the 

lysis/lysogeny decision, favouring a lytic cycle at high host densities by 

sequestering the phage repressor.  

Prophages are detecting far more than just the host SOS-response. 

They are not only using self-encoded polypeptides (Erez et al. 2017) but also 

the small molecules that are used as QS signals of their bacterial host (Silpe 

and Bassler 2019) to decide between lysis or lysogeny. 

1.4.2 Unusual compounds  
 

Boling et. al studied the responses of three common gut bacteria 

species Bacteroides thetaiotaomicron, Enterococcus faecalis, Staphylococcus 

aureus, as well as an opportunistic pathogen Pseudomonas aeruginosa, to 117 
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commonly consumed foods, plant extracts, and chemical additives (Boling et 

al. 2020). They showed that compounds like clove, propolis (derived from 

bees), aspartame and stevia were prophage inducers.  

To demonstrate this, the authors clustered bacterial growth curves to 

which these compounds had been added, identifying 28 bacteriostatic or 

bactericidal compounds. Through flow cytometry to count stained virus like 

particles (VLPs), they determined which of these compounds resulted in 

increased viral particle counts indicative of prophage induction. Of the 28 

antimicrobial compounds, 11 resulted in higher levels of VLPs. Stevia, a plant-

derived sugar substitute, was the most potent prophage inducer, increasing the 

number of VLPs more than 400% (Boling et al. 2020). As stevia is not known 

to induce the SOS response, this work suggests that there are many other 

potential triggers of prophage induction. 

However, simply because a compound is unusual or not known to 

induce the SOS response does not mean it induces phages through non-

canonical pathways. Oh et al. (2019), demonstrated that dietary fructose 

stimulated prophage induction in Lactobacillus reuteri 6475. They found that 

L. reuteri grows poorly on fructose-supplemented media compared to media 

containing glucose, galactose, or arabinose. This reduced growth is associated 

with increased virus production as measure from VLPs increase. In contrast, 

prophage induction in culture, when supplemented with fructose, was reduced 

in an acetate kinase (ackA) mutant. The authors suggested that fructose 

utilization promotes conversion of acetyl phosphate to acetic acid, and that the 

resulting accumulation of acetic acid in the bacterial cell causes DNA damage. 
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The DNA lesions, through activation of RecA, induce a prophage in L. reuteri 

(Oh et al. 2019).  

1.5 Hypothesis   

Prophage induction is canonically achieved by activating the SOS 

response of the bacterium. However, studies have shown that prophages can 

sense a variety of non-canonical signals that can drive their lysis-lysogeny 

decisions. 

Although there has been mounting evidence for non-canonical phage 

induction, there have been no systematic characterizations of the novel signals 

capable inducing prophages. These compounds could be used as tools to probe 

additional bacterial stress pathways, induce phages not induced through 

canonical pathways, and shed light on phage lysis lysogeny decisions.  

I hypothesize that screening large compound libraries against lysogens 

containing model prophages will lead to the identification of novel chemical 

signals that result in induction.  

Due to a detailed mechanistic understanding of prophage HK97 

induction, I selected it as a model for identifying novel inducers. A high 

throughput primary screen of a compound library against an HK97 lysogen 

will help us identify antibacterial compounds on the basis of impaired bacterial 

growth. Those compounds will be further investigated through a secondary 

high throughput screen to determine if the antibacterial effect was associated 

with increased phage production. Throughout the process, I will compare the 

HK97 lysogen to a Mu lysogen. The Mu prophage does not induce in response 

to the SOS response and is generally thought not to be inducible through 
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bacterial stress pathways. As such, it will serve as a negative control with the 

potential to also identify new prophage-inducing compounds.
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CHAPTER 2: MATERIALS & METHODS 

2.1 Media and growth conditions 
 

E. coli was grown in Lysogeny broth (LB) with shaking at 130 rpm, at 

37 °C. Bacterial stocks were prepared by freezing an overnight culture which 

was pelleted then resuspended in 850 μL of LB, and transferred to a tube with 

150 μL sterile glycerol. LB plates were prepared with LB supplemented with 

1% w/v agar, unless used for streak tests or stamp plates, in which case 1.5% 

w/v agar was used instead.  

To generate bacterial lawns, with or without phages, bacteria were 

added to molten soft (0.75%) LB agar, and overlain on an LB plate—then 

grown overnight at 37 °C.  

2.2 Phage manipulation 
 
Filtrations were done using a 10 mL syringe and 0.45 µm syringe filter. Phage 

dilutions were made in LB. 

Phage amplification: Frozen phage stock (-80 °C) was scraped and 

added to 10 mL of ~0.2 OD of host bacteria and grown for 6 h. The culture 

was filtered and the lysate of the first amplification was stored at 4 °C. Of this 

lysate, 100 µL were then added to 10 mL of freshly grown ~0.2 OD host 

bacterium and incubated for 12 h. The culture was filtered and the lysate of the 

first amplification was stored at 4 °C.  

Phage Titration: Phage lysates were titred by plating 10-fold serial 

dilutions of the lysate on the host bacterium. Briefly, 100 µL of the lysate 

dilution was added to 3 mL molten overlay agar (55 °C) containing 300 µL of 
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an overnight bacterial culture. The plates were incubated overnight, and the 

plaques were counted (pfu/mL, a measure of phage particles able to 

form plaques per unit volume) on plates containing between 30 and 300 

plaques.  

2.3 Host bacterial strains and lysogen generation 
 

Strains used in this work are listed in Table 1. Lysogens of both 

HK97—our model lambdoid phage, and Mu, our model transposable phage—

were generated by co-incubation of phage and host, as follows: the host 

bacteria were grown overnight, then used to inoculate 10 mL of fresh LB at 

1% v/v. Approximately 5x108 pfu of phage were added to the culture, then left 

to incubate for 4 h. The phage-host mixture was then serially diluted in LB, 

and dilutions were plated using soft agar overlay to isolate surviving bacteria. 

This assay exploits the property of superinfection immunity, whereby a 

lysogen will be immune to subsequent infections by related phages. 

Table 1: E. coli strains and phages used. 

Organism Strain Description Source 
E. coli K-12S (amber 

suppressant) 
Host for HK97 and lambda 

vir 
F+, tyrT58 (AS), mel- 

(HER 1382)* 

40 Host for Mu whose 
provenance can be traced 
back to AI Bukhari, exact 

genotype is unclear 

(HER 1252)* 

HK97 lysogen K-12 with HK97 prophage 
insertion near gal genes 

Generated in 
this work 

Mu lysogen E. coli 40 with Mu 
prophage in ygbM gene 

Generated in 
this work 

Phage HK97 Caudovirales, Siphoviridae (HER 382)* 
Mu Caudovirales, Myoviridae (HER 253)* 

Lambdavir Caudovirales, Siphoviridae 
(virulent), not lysogenic 

(HER 37)* 

* Félix d’Hérelle Reference Center for Bacterial Viruses 
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To confirm integration of the HK97 prophage was responsible for the 

surviving bacterial colonies, purified colonies were streaked on a plate through 

phage lysates. Resistance to HK97 but susceptibility to the virulent, but closely 

related phage LambdaVir indicated a likely lysogen. These candidates were 

then confirmed by PCR of the known phage-host junction. I designed the 

primers attBF and HK97lysR, tested them in silico using geneious (Kearse et 

al., 2012), and had them synthesized by Integrated DNA Technologies (IDT, 

IA). Colony PCR resulting in a band across the phage-host junction confirmed 

the colony was an HK97 lysogen. 

Due to the random integration of Mu in the host genome, the Mu 

lysogen was confirmed by arbitrary PCR with nested primers. This involved 

two nested primers (SP1 and SP2) specific to the end of the Mu genome. The 

first PCR amplified lysogen DNA using SP1 and an arbitrary primer (arb01 or 

arb06). This second PCR used primers SP2 (Mu_circle_R) and arb02—which 

is nested within the arb01 and arb06 sequences. These products were 

sequenced with SP2 to determine the site of integration. This work on the Mu 

lysogen generation was performed by Clara Fikry (co-op student, 

Winter 2018). 
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Table 2: Primers used. 

Primer name Sequence Purpose 

HK97lysR 
GCGTGTAATTGCGGAGACTT With attBF, Detecting 

HK97 lysogens, binds 
to prophage genome 

attBF 

TGAATCCGTTGAAGCCTGCT With HK97lysR, 
Detecting HK97 

lysogens, binds to 
host genome 

Mu3_ygbN_F 
CCGATGTCTGCGTGGAGTAA Confirm Mu 

integration site in 
lysogen with arb02 

Mu_Circle_R/
SP2 

TCCAATGTCCTCCCGGTTTTT Amplifies inward for 
circle PCR to locate 

Mu 

arb01 
GGCCACGCGTCGACTAGTAC
NNNNNNNNNNGATAT 

Arbitrary PCR with 
SP1 

arb02 
GGCCACGCGTCGACTAGTAC Arbitrary PCR (SP2), 

binds tag on arb01 
and arb06 

arb06 
GGCCACGCGTCGACTAGTAC
NNNNNNNNNNACGCC 

Arbitrary PCR with 
SP1 

SP1 
CTTGCAAGCCCCACCAAATC Arbitrary PCR to find 

Mu integration site 
(arb01and arb06) 

 
2.4 Induction tests of model lysogens with ciprofloxacin 
 

To test inducibility of our model lysogens, a known SOS response 

activator, ciprofloxacin, was first used to determine the minimum inhibitory 

concentration for the host E. coli HER 1382 (Table 1). The culture was added 

to a 96 well plate with two-fold dilutions of ciprofloxacin prepared in DNAse-

free water, ranging from 0.00625 μg/mL to 0.1 μg/mL. The ability of the 
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newly generated lysogens to induce was tested at 1/2MIC and 1/4MIC 

ciprofloxacin my measuring the change in OD600nm every 30-minutes. 

2.5 High-throughput screening 
 
2.4.1 Validation tests 
 

To determine growth and concentration parameters for our high 

throughput screens, I performed validation tests in 96-well plate by adding 

ciprofloxacin and DMSO to 150 µL HK97 lysogen culture at OD600nm o of 

~0.2, ~0.4 and ~0.6. Another validation test checked any variation between the 

signals by testing eight different concentrations of a ciprofloxacin ranging 

from 1.5 µM to 100 µM, each with eight technical replicates. Both these 

validations were performed in biological duplicates with the HK97 lysogen. 

2.4.2 Pilot study  
 

The pilot test involved screening the conventional model of lysogeny—

HK97 with a subset of the library of interest. Access to the bioactive library 

was generously provided by the Center of Microbial Chemical Biology at 

McMaster University (CMCB). I selected one of the 384-well plates of the 

‘bioactive compound library’, for its high number of canonical prophage 

inducing compounds for this pilot study (Appendix II). A 10 ml overnight 

culture of the HK97 lysogen was used as a 1% v/v inoculant for 60 ml of fresh 

LB media in an 125 ml Erlenmeyer flask. The culture was then grown at 37 °C 

with shaking at 230 rpm until it reached an OD600nm of 0.2.  

The freshly grown culture was transferred independently to two 384-

well plates using the Biomek® FXP integrated liquid handler (Beckman 

Coulter, IN) at the CMCB, adding 49.5 µL ~0.2 OD600nm HK97 lysogen 
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culture using a Beckman-Coulter robotic arm attached with a 384-well channel 

head. The same device transferred 0.5 µL of a compound from the compound 

collection plates to the wells containing 49.5 µL of lysogen culture. The final 

concentration of the compound in the culture was 10 µM. An ultrasonic wash 

was performed between each transfer for the replicates to eliminate cross-

contamination. The plates were incubated at 37 °C with no shaking and 

OD600nm readings were taken every 30 min for 4 h. 

2.5.2 Z’ test for hit identification  
 

For a well-defined signal window, Z’ should be greater than 0.5; that 

is, the sum of the errors of the controls should not be more than 50% of the 

total separation between the average of the negative and positive controls 

(Mangat et al. 2014). The Z’ value was calculated at each time point. 

Screening data consists of a time zero read and an additional eight time 

points after compound addition. The screening data were normalized using the 

interquartile method (IQM) (Mangat et al. 2014) per plate basis by dividing the 

optical density at that time point of every well on the plate by the mean optical 

density of the plate. The standard cut-off to use for pilot study hit selection is 

the mean of the data minus three times the standard deviation (3 SD).  

2.5.3 OD drop method for hit identification  
 

I wrote a custom R-script using the tidyverse library in R-studio 

(Wickham et al. 2019) to look for the characteristic growth curve indicating 

prophage induction (section 2.3) for the compounds used in the pilot study. 

The OD read of the two replicates for every well at every time point was 

averaged. The OD drop was calculated from these averaged values. A 
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compound was said to be inducing the prophage if the difference between the 

maximum OD and the end point OD was ≥ 0.01 for this analysis method 

(github/anishanandy/Plate_analyses). The compounds showing an average OD 

drop of 0.01 or more were considered primary screen hits. The graphing to 

separate these curves from the non-phage inducing compounds was done using 

ggplot library, also developed in R (Villanueva et al. 2016).  

2.6 Primary screening of the compound library  
 
2.6.1 Screening method 
 

OD600nm measurements were taken at 30-min intervals as in the pilot 

study for all 3936 compounds and no compound controls. The experiment time 

was increased to 6 h after pilot screen analysis showed more hits were 

identified at the end of the screen. The assays were performed in duplicates for 

all the compounds in the library with both HK97 lysogen and Mu model. All 

these compounds were tested at a singular concentration of 10 µM.  

2.6.2 Primary screen analysis  
 

The same custom R-script was used to generate individual graphs for 

both replicates of the thirteen 384-well plates containing the 3936 different 

compounds. This R-script separated the compounds that showed a normal 

growth curve and the bacteriostatic compound from the ones that show the 

characteristic induction curve (where max OD - end point OD is ≤ 0.01) 

(github/anishanandy/Plate_analyses). All primary screen hits were grouped 

based on whether they were known, canonical prophage inducers or non-

canonical prophage inducers using another R-script. 

(github/anishanandy/Plate_analyses/circular-plot.R) (Appendix I). 
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2.7 Induction test based on compound concentration 
 
 The primary screen was performed at a singular concentration. For 

testing dose-dependent effects, a 150 μL of ~0.2 OD HK97 lysogen culture 

was added to each well of a 96-well plate. Four compounds, levofloxacin, 

meclocycline, thiamphenicol and domperidones were chosen for their primary 

screen hit OD drop and different methods of action. They were added at eight 

different concentrations from 0.375 μM to 50 μM with two-fold steps to look 

for any dose dependent phage induction. I measured the OD of each of the 

wells over 6 h with envision multiplate reader (PerkinElmer, MA). 

2.8 Secondary screening of primary hits 

2.8.1 Dose-dependent induction 

For the secondary screen, primary screen hits were tested at five 

different concentrations ranging from 1.5 μM to 25 μM with two-fold steps 

and a no-compound-added control. To prepare an induction plate the 

compounds were transferred from a source plate to a sample 384-well plate 

containing ~0.2 OD600nm lysogen culture using the Echo 555 liquid handler 

(Labcyte, CA).  

The induction plates were incubated as they were in the primary screen 

(Section 2.3). After the incubation, the dead cell debris and any bacterial 

remnants were separated from the free-floating phages by centrifuging the 

384-well plate at 15,000 x g for 10 min. The supernatant from the plates was 

then subjected to 10-fold serial dilutions to obtain dilutions from 100 to 10-4. 
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2.8.2 Phage count scoring post-induction 

The wildtype host bacterium was grown until ~0.2 OD600nm. For 

creating a lawn, 750 μL of this culture was added to 7.5 mL of 0.7% LB agar 

and then poured on 1% LB agar Nunc Omnitray plate (ThermoFisher, MA). 

Each of the dilutions from the plates obtained in section 2.8.1 were then 

pinned using 384-well disposable replicator pins (V & P Scientific, CA) on the 

lawn of susceptible bacteria, E. coli 40 for Mu and E. coli K12 for HK97 and 

incubated overnight.  

The plates were observed for plaques or cleared zones on both the 

replicates. The compounds were scored based on the baseline induction 

clearing of the culture only control. The compound concentrations resulting in 

phage counts 10 to 100-fold higher than the baseline were considered 

secondary screen hits. If compound resulted plaquing at two different dilutions 

across the replicates then highest one was recorded.
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CHAPTER 3: RESULTS & DISCUSSION 

 

3.1 HK97 & Mu lysogens serve as models for testing induction 
 

To identify new signals prophages can respond to, I chose to study a 

traditional lambdoid prophage (HK97), and compare the findings with the 

control prophage Mu. Both HK97 and Mu are model temperate phages and 

infect E. coli. HK97 follows the canonical SOS-dependent phage induction 

mechanism, whereas Mu is considered uninducible. This allows us to directly 

compare our lysogens, as they are largely identical except for the phage within 

them, and the site of insertion of that phage.  

Sequencing of the amplified phage-host junction confirmed that my 

HK97 lysogen, as expected (Alberts et al. 2002; Dhillon et al. 1980), contained 

the prophage integrated in the vicinity of the gal operon. The host for my 

control phage Mu is E. coli 40, a strain that is very closely related to the host 

for HK97. In contrast with HK97, Mu can insert anywhere in the genome of its 

host. Sequencing of the nested PCR product revealed the location of the Mu 

prophage, within the ygbM gene of E. coli 40. This disrupted the ygbM gene, 

predicted to encode of a truncated hydroxypyruvate isomerase. Disruption of 

this gene does not affect the growth rate or survival of the bacterium (Li et al. 

2014). As neither prophage is integrated in a region that would be predicted to 

affect how the host reacts to stressors, our two lysogens are readily 

comparable—the only relevant difference between them being the prophages 

themselves. 
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In order to observe how the two lysogens responded to traditional 

induction assays, I performed growth curves of both the lysogen models as 

well as the HK97 host E. coli in the presence of ciprofloxacin, a known SOS-

response inducer (Fig. 2). The MIC of ciprofloxacin was determined to be 

0.025 µg/mL for the host bacterium. At sub-MIC levels, 0.0125 µg/mL 

(1/2MIC) and 0.0625 µg/mL (1/4MIC), the HK97 lysogen showed a 

characteristic induction curve with an initial rise in OD600nm followed by an 

eventual crash (Fig. 2C). The same induction assay test was performed with 

the ‘uninducible’ Mu lysogen, which displayed no characteristic induction, and 

resembled the growth profile of the phage-free host E. coli. (Fig. 2B). The 

increased sensitivity of only the HK97 lysogen to ciprofloxacin, with its 

growth curve characteristic of induction, confirmed that our prophage models 

behaved as expected with canonical prophage inducers. This allowed me to 

proceed to tests with unknown compounds. 
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Figure 2: The canonical prophage inducer ciprofloxacin induces only the HK97 lysogen. Each panel represents a growth 
curve of E. coli over time, with each point being an average of three biological replicates. The error bars show the standard error 
in these triplicates. (A) The wild type was challenged with a range of concentrations of ciprofloxacin. The lowest concentration 
which inhibited growth was determined to be the MIC (red line). The lysogen models HK97 (C) and Mu (B) were challenged 
with 1/2MIC (Light Blue) or 1/4MIC (Dark Blue) ciprofloxacin. Only the HK97 lysogen (C) responded with a growth curve 
characteristic of phage induction.
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3.2 Pilot HTS  
 

Prior to high-throughput screens, I investigated parameters that might 

influence reproducibility of the assay in 384-well format. Validation tests 

performed with ciprofloxacin and DMSO added to HK97 lysogen culture at 

various culture densities revealed that an OD600nm of 0.2 resulted in the most 

reproducible growth curves (Fig. S1). Testing eight different concentrations of 

ciprofloxacin in biological duplicates of HK97 model revealed high levels of 

reproducibility, with small standard errors lending confidence in the approach 

(Fig. S2).  

The chosen compound library contains 3,936 compounds. To validate 

our high-throughput methodology, we performed a pilot study with one of the 

384-well plates of compounds from the library against the HK97 lysogen. This 

plate of compounds was selected because of its high number of canonical 

prophage-inducing antibiotics.  

3.2.1 IQM analysis of pilot screen 
 

 The pilot study highlighted reproducibility between replicates, as 

evidenced by the clustering of data points along the line y=x at all time points 

(Fig. 3). Based on the 3-SD cut off set up using a Z’ and the interquartile 

method, the pilot run identified 13 out of the 320 compounds as ‘hits’. As most 

of these are identified only near the end of the growth curve, I decided that 

future runs should extend observations a further 2 h. All the hits were 

antibiotics except one, phenylmercuric acetate. Encouragingly, this list of 

‘hits’ included seven of the 10 fluoroquinolones tested, therefore reproducibly 

identifying known inducers. 
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Figure 3: Pilot study shows detectable signals and reproducibility. 
OD600nmwas measured for all 384 wells, 320 of which had compounds with 
HK97 lysogen model for every 30 min from T1- 0 h to T8-3.5 h. Each of the 
replicate plots show the OD600nm normalized to the plate mean at that time 
point, for each of the 384—wells.  
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My primary conceptual objection to the IQM method of identifying 

inducers was that it would consider bacteriostatic compounds as ‘hits’, because 

their endpoint reading would differ significantly from that of the plate mean. 

These ‘flat lines indicating growth arrest would almost certainly be false 

positives, as they lack the rise-and-fall characteristic of induction. Instead I 

decided to track the shape of the growth curves for each well in order to 

identify primary hits. 

3.2.2 Growth curve analysis of pilot screen 
 

To avoid detecting bacteriostatic compounds as phage inducing 

compounds, the analysis was changed from endpoint OD to a continuous 

growth curve. The growth curves showed patterns typical of regular growth 

curves, bacteriostatic-growth arrest and induction-associated population 

crashes (Fig. 4 B). I developed an R-script to analyse the pilot screen that 

compares the final OD to the highest OD recorded for that curve. The 

threshold for a compound to be called a potential hit based on the results of the 

canonical compounds of the pilot study was set as follows—the difference 

between the maximum OD and the end point OD must be ≥ 0.01 

(github/anishanandy/Plate_analyses). This threshold was selected based on the 

lowest OD drop from all canonical compounds that resulted as hits in the pilot 

screen. Any well that resulted in an endpoint OD ≥ 0.1 lower than the highest 

OD reached was called a ‘primary hit’ by this method (Fig. 4). This increased 

the likelihood that a compound deemed a ‘hit’ would be inducing the 

prophage.  
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On comparing the primary hits derived from my R-script with the hits I 

obtained with the IQM (Fig. 3), I determined that my result also found 14 

partially overlapping with those from of the IQM analysis. The IQM analysis 

would have identified seven more compounds that were bacteriostatic as the 

hits. For a detailed listing of the hits on IQM and OD drop analysis see 

appendix II. This shows that analysing the entire growth curve rules out the 

likely false-positive bacteriostatic compounds.  

 

Figure 4: Growth curve analysis of the pilot screen data. A) Schematic of 
my separation of bacteriostatic compounds from phage inducing compounds 
for the pilot study. The data obtained from the plate reader were converted into 
.csv and edited to be read as a data frame in R-studio. The data were sorted 
into ‘hits’ and ‘no hits’ solely based on the drop of optical density. The CMCB 
database was used to assign names to the hits. The final grouping involved 
acquiring the functions of each bioactive from the source and graphing the 
OD600nm drop. (B) All pilot run growth curves sorted into ‘hits’ (left, yellow) 
and ‘no hits’ (right, grey). The red dots indicate the 13 hits identified using the 
IQM method, for comparison.  
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3.3 Primary screen: non-canonical compounds show induction-like 
growth curves 
 

To test the model phages with the full 3,936 compound library, I 

performed a high throughput primary screen on both lysogens, in duplicate. 

The primary screen results were analysed using the R-script as in the pilot 

screen. All compounds with an average OD drop ≥ 0.01 across replicates were 

also found to have had OD drops of ≥ 0.01 in each replicate.  

The library contained 259 duplicate compounds. For instance, 

ciprofloxacin was present on two different plates in the library. Both plates 

tested with separately grown culture resulted in average OD drop across 

replicates of 0.06 and of 0.049—well above our threshold. Out of the 257 

compounds repeated on two separate plates, 253 were classified as “no hits” 

and 4 were recognized as “hits” for each of the plates that they appeared on. 

This affirms the screening method and the pipeline used to analyze the data is 

reproducible, even across multiple days and separate plate preparations.  

After generating the list of compounds showing induction-like growth 

curves, I classified them on the basis of canonical (fluoroquinolone and β-

lactam) and non-canonical prophage inducers. The largest drops in OD were 

seen for compounds like cefixime and enoxacin, which are known canonical 

inducers of lambdoid prophages. The primary screen resulted in total of 175 

compounds (171 unique) hits for the HK97 lysogen (Fig. 5A). The library also 

contains compounds that are known SOS activators and out of those 

compounds 88% of the cephalosporins and 84.7% of the fluoroquinolones in 

the compound collection were hits. These canonical inducers were 
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overrepresented in our lists, comprising only 4% of the library and 25% of our 

hits. However, hits with my R-script analysis were not limited to these 

compounds, and included 127 (126 unique) “non-canonical” compounds.  

The primary screen also identified a few compounds as hits for the 

control, uninducible, phage Mu (Fig. 5B). This list consisted of 0.9% of the 

library (37 unique compounds), compared to the 4.4% (171 compounds) for 

the HK97 lysogen. Of these 37 primary hits, 24 (65%) were fluoroquinolones 

and β-lactams, suggesting that we are capturing some direct toxicity of the 

antibiotics. The remaining 13 non-canonical compounds identified were 

considered to be reflective of a false-positive rate in our screen. 
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Figure 5: Primary screen hits for the two model lysogens. The height of the bar corresponds to the average magnitude of the 
drop in OD600nm of the lysogen culture from the highest point the growth curve for that specific compound and the end point. 
Primary screen identified 171 unique ‘hit’ (175 shown here, including the duplicates) compounds for HK97 lysogen models (A) 
and 37 unique compounds as hits for Mu (B). Non-canonical compounds are in orange. The expected fluoroquinolones and β-
lactams are shown in green and red respectively. 
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A comparison between the primary hits identified for both the HK97 

lysogen and the control Mu lysogen revealed 23 overlapping compounds (Fig. 

6). Only one non-antibiotic compound was common for both my lysogen 

models: niridazole. All other compounds overlapping both hitlists were either 

β-lactams or fluoroquinolones (Fig. 6), supporting my assumption that most of 

these Mu-prophage ‘hits’ reflect toxicity of the antibiotics independent of the 

prophage. 

 
 
Figure 6: Overlaps in the primary hit list for the two model lysogens. The 
y-axis shows the average magnitude of OD drop (max OD - end point OD). 
The red bars show the effects of β-lactams and the green bars those of 
fluroquinolones. The darker shade is for HK97 and lighter one is for Mu. One 
single compound in yellow is the only common compound from the non-
canonical group.  
 

 

To verify that the exposure to these compounds actually induced the 

prophage in the model, we proceeded to a secondary screen testing our 

primary hits for increases in phage counts. 
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3.4 Secondary screen: model prophages are induced by non-canonical 
compounds 
 

The results from the primary screen growth curve analysis use host cell 

lysis, detected through a drop in OD, as a proxy for prophage induction. If 

induction is occurring, the number of phages in the compound-exposed 

cultures should be higher than the baseline counts seen resulting from 

spontaneous induction. I chose to screen all primary ‘hits’ for their ability to 

produce increases in phage titres. Additionally, in a small-scale test of our 

different primary hits over a range of concentrations, HK97 prophage 

induction was dose specific (Fig S3). Phage induction is known to be a dose-

dependent response (Goerke et al. 2006) (Fig. 2). I wished to determine if the 

effect of our compounds could be increased by optimizing the concentration of 

the suspected inducer. With only 208 compounds across both phages, I was 

also able to test a range of compound concentrations for their induction effects. 

From the secondary screen stamp plates, I compared the plaques 

resulting from filtrates of culture only (e.g. baseline induction) with the 

plaques resulting from filtrates of cultures exposed to enoxacin (a 

fluoroquinolone) at five different concentrations. Enoxacin had the highest OD 

difference in the primary screen and resulted in a 10-fold to 100-fold increase 

in phage-mediated clearing of the susceptible bacterial lawn from that of the 

baseline induction of culture only control (Fig. 7). This measurement of 

increase in phage presence at lower dilutions of lysate was used to score all the 

primary hit compounds. 
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Figure 7: Increased phage production in fluoroquinolone induced cultures 
compared to baseline induction. A) Plaques counted for the culture-only tube 
that was grown for 4 h without any compound added (baseline induction) 
compared with the plaques of the lysates with fluoroquinolone added culture. 
B) Summarizing the spot test from A) the number of phages culture only 
control is represented by a dashed line where no compound was added to the 
HK97 lysogen. The green bars represent the phage counts in the culture post 
induction with enoxacin (fluoroquinolone) and removal of the host cell 
remnants. The difference in the counts is measured over five different doses of 
the compound. The highest difference is seen at 6.25 μM, 12.5 μM and 25 μM 
of enoxacin.  

Phages plaquing on the susceptible bacterial lawn at much lower 

dilutions (10-4) compared to of the baseline induction (10-2 for HK97, 10-1 for 

Mu) shows that the compound was able to initiate the lytic cycle of the phage 

and release more phage particles in the media. With HK97 lysogens, a total of 

86 compounds showed an increased phage production, resulting in a hit rate 

from our primary screen to secondary screen of 50%. Of these, 37 were 

canonical phage inducers—β-lactams and fluoroquinolones — representing 

84% of the primary-screen ‘canonical’ compounds (Fig S4). The remaining 49 

compounds were non-canonical inducers, representing 38.5% of the primary 

screen hits in that category (Fig. 8). The historical reliance on DNA-damaging 

compounds to induce phages has clearly constrained the field — I show here 
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that there are many other compounds that can drive the prophage to induce out 

of its cell. 

The hits for Mu were identified using the same scoring method as the 

for the HK97 model as from Figure 7. However, unlike HK97, there is no 

known inducer of Mu prophage, and I did not have an enoxacin-like 

compound to serve as a positive control. Unexpectedly, for my ‘uninducible’ 

control prophage Mu, the secondary screen showed increased phage 

production with seven different compounds (Fig. 7B). Although this represents 

only 18.9% of primary screen hits, Mu is not known to be induced by any 

external agent, not even by SOS-activating antibiotics. One of the hits was 

Cefoperazone sodium—a β-lactam which curiously did not induce HK97 

prophage in my model, while the rest were non-canonical compounds.
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Figure 8: Non-canonical compounds increased phage production in the two model lysogens. The heatmap lists the 
compounds that showed increased phage production at any one of the concentrations from the range tested concentrations shown 
on the x-axis, in HK97 lysogen model (A) and Mu lysogen model (B) in the lysates after 6 h of incubation with the compounds. 
Each of the compounds showed high phage counts over a range of concentrations shown on the x-axis. The compound classes are 
highlighted in separate colours. Non-canonical compounds are in orange and the canonical β-lactam is shown in red. The increase 
in phage count is depicted by the intensity of colour.  
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This work is the first to record induction of Mu prophage as a response 

to a compound — and, as no compound was found to induce both HK97 and 

Mu, this further validates our choice of models. Furthermore, since host 

genome is almost identical, this supports a phage-specific mode of induction. 

For the secondary screen with the Mu model, none of the compounds 

causes increased phage production at the highest concentration tested, 25 μM. 

This may reflect toxicity of the compounds to the bacterium, preventing 

successful induction dependent on functional host machinery. The contrast 

with HK97 may suggest that Mu is responding to compounds closer to their 

threshold of toxicity for the host. Additionally, one hit for Mu, Trimethoprim, 

is not from the β-lactam or fluoroquinolone class of compounds, but it has 

been found to activate the host SOS response (Lewin and Amyes 1991; 

Goerke et al. 2006). These compounds and the concentration stringency can 

also support the existence of different pathway inducing Mu prophage 

compared to that of HK97. 
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Figure 9: Summary of sequential screens across the two model lysogens. (A) HK97 model has higher number of hits in 
primary and secondary screens compared to that of (B) Mu lysogen model. Non-canonical inducing compounds are in orange. 
The fluoroquinolones and β-lactams are shown in green and red respectively. The area of a coloured shape within a horizontal 
tranche of the pyramid is proportional to the number of compounds represented by that category.
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 

In summary (Fig. 9), I identified different 185 compounds that, at a 

singular concentration of 10 µM, caused crash in growth in our E. coli lysogen 

models host through the primary screen. A small overlapping subset of these 

(23, 22 of which were antibiotics) affected the host regardless of the prophage 

it carried, while the remaining 162 yielded phage-specific effects. Through a 

secondary screen across a wider range of concentrations, we confirmed that 

many of these—half for HK97 and a fifth for Mu—resulted in increased phage 

titres reflective of induction. None induced both model prophages. Of these 

compounds, 49 of the 86 inducing HK97 were not canonical phage inducers, 

and are not known to have phage-related activity (Fig. 8). All seven 

compounds resulting in Mu induction are of considerable interest, despite one 

being a canonical phage inducer, as Mu is traditionally considered 

uninducible. These 56 compounds with newfound phage-related activities will 

serve as tools to probe bacterial stress pathways, the prophage induction 

response, and potentially be used to identify new phages not inducible through 

traditional, DNA-damaging agents. 

Although the compounds are not associated with phage induction, they 

may still be acting through canonical, SOS-induction-based pathways. This 

was the case in Oh et. al. 2019. To rule this out, we would repeat our screens 

in mutants unable to activate the SOS response, such as a recA- E. coli. 

Because such mutants are pleiotropic (Bianco 2001), we may be better by 

high-throughput phenomics (e.g. (French et al. 2018), screening a library of E. 

coli reporter-gene fusions upon exposure to the compounds to see whether the 
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compounds are resulting in activation of known SOS-signatures, or those of 

other stress pathways.  

Many of our compounds are actively prescribed drugs, and our targeted 

bacterium, E. coli is native to the human gut. These compounds could easily 

already be causing phage driven microbial changes in the human gut 

microbiome (Maurice et al. 2013; Boling et al. 2020). Interestingly, six of our 

non-canonical HK97-inducing compounds were categorized as neuro-active — 

either dopaminergic or have serotonin-related functions (Table 3). Given that 

recent studies have shown that bacteria—commensal, probiotic, or pathogenic, 

in the gastrointestinal tract can activate neural pathways and central nervous 

signaling systems (Foster and McVey Neufeld 2013), I am curious to see if 

phage-mediated responses to neuroactive compounds might be contributing to 

their efficacy, modulating the microbiome through the gut-brain axis (Foster 

and McVey Neufeld 2013).  

Table 3: Neuroactive compounds identified as inducers. 

Compounds Effect 

Bromocriptine methane sulfonate Dopaminergic 

CGS-12066A maleate Serotonin 

Chlorprothixene hydrochloride Dopaminergic 

Mianserin hydrochloride Serotonin 

N-omega-Methyl-5-hydroxytryptamine oxalate Serotonin 

Domperidone Dopaminergic 

 
Finally, while most bacteria carry prophages (Touchon et al. 2016), 

many are thought to be defective remnants of past infections. This 
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categorization is largely based on the failure of these prophages to respond to 

canonical inducing agents such as ciprofloxacin or mitomycin C (Campbell 

1998). Non-canonical triggers of induction — especially those seven able to 

induce the traditionally uninducible prophage Mu could lead to the discovery 

of previously undetectable classes of phages. 
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SUPPLEMENTARY FIGURES  
 

 
 
Figure S1: OD600nm of 0.2 is optimal for the addition of a compound to study 

induction. A) HK97 lysogen at OD 0.2 challenged with sub-MIC 
concentration of ciprofloxacin. The concentrations were 2-fold increments 
starting from 0.00625 μg/mL to 0.1 μg/mL B) Same as A except HK97 
lysogen culture was at OD 0.4 and the two lines starting at a higher OD may 
be because of bubbles. Each line is an average of biological triplicate. The 
error bars represent standard error. 0 μg/mL was no compound added culture 
only control. 
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Figure S2: Reproducibility in 384-well analysis of lysogen culture. The 
ciprofloxacin data for lower concentration is shown in Figure 3c). HK97 
lysogen at OD 0.1 challenged eight different concentration of ciprofloxacin 
(A) and DMSO (B). The concentrations were two-fold increments starting 
from 1.5 μM to 100 μM Each line is an average of biological triplicate. The 
error bars represent standard error. 0 μg/mL was no compound added culture 
only control. 
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Figure S3: Four selected compounds show dose-dependent effect on HK97 
lysogen. Compounds were added to the culture after it was grown it ~ 0.15 and 
the optical density for each of these compounds was measured over 6 h after 
the compound additions. Eight different concentrations were tested with two-
fold increments. All these lines are averaged of biological triplicates and the 
standard error is represented by error bars.  
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Figure S4: HK97 secondary screen raw data including the SOS-activating 
compounds. The heatmap lists all the compounds tested over the range of 
concentrations shown on the x-axis with HK97 lysogen model, in the lysates 
after 6 h of incubation with the compounds. Pink represent the ones that 
showed less phage production than the baseline induction. classes are 
highlighted in separate colours. The phage count is depicted by the intensity of 
colour.  
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APPENDIX I: SCRIPTS USED 
All the scripts for this study were written in R and can be found on 

https://github/anishanandy/Plate_analyses. 

Separating hits vs no hits 
##### 

Library 

Calls 

#####  
   
library("tidyverse")  
library("reshape")  
   
   
   
##### Initial input section #####  
   
#The original datafile in .csv format  
df <—read.csv("data/HTSplate_3.csv", header = FALSE)  
   
#The number of time points taken  
timepoints = 9  
   
#The number of technical replicates  
replicate = 2  
   
#The number of readings per hour  
read.hour = 1  
   
#The Treshold for significance for variations  
treshold = 0.01  
   
#The path to the csv file that contains the list of all variation > 

than the threshold  
Non0_Ouput <—"NonZero_ODVariationttestalex.csv"  
   
   
##### Data wrangling section #####  
   
#Removes the empty lines in the .csv files  
df %>%   
 select(-1) %>%   
 filter(!is.na(V2))—> df2 
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#Make a list of nested dataframes for each time point  
chunk <- 17  
n <—nrow(df2)  
r <—rep(1:ceiling(n/chunk),each=chunk)[1:n]  
list_df <- split(df2,r)  
remove(n)  
remove(r)  
remove(chunk)  
remove(df2)  
   
#Rename the nested dataframes with the time point and replicate  
names.1 <—sprintf("t%d",rep(seq(1:timepoints), 

each=replicate))  
names.2 <—rep(sprintf(".%d", seq(1:replicate)),timepoints)  
fill <—paste0(names.1, names.2)  
names(list_df) <—fill  
remove(names.1)  
remove(names.2)  
   
#Remove first row from each dataframes  
list_df <—lapply(list_df, function(x) {  
 slice(x, 2:17)  
})  
   
#Make dataframes into single column  
list_df_single <—lapply(list_df, function(x) {  
 x <—data.frame(unlist(x))  
})  
   
#Creating the vertical ID column  
ID.V <— c("A01", "B01", "C01", "D01", "E01", "F01", "G01", 

"H01", "I01", "J01", "K01", "L01", "M01",  
 "N01", "O01", "P01", "A02", "B02", "C02", "D02", "E02", 

"F02", "G02", "H02", "I02", "J02",  
 "K02", "L02", "M02", "N02", "O02", "P02", "A03", "B03", 

"C03", "D03", "E03", "F03", "G03",  
 "H03", "I03", "J03", "K03", "L03", "M03", "N03", "O03", 

"P03", "A04", "B04", "C04", "D04",  
 "E04", "F04", "G04", "H04", "I04", "J04", "K04", "L04", 

"M04", "N04", "O04", "P04", "A05",  
 "B05", "C05", "D05", "E05", "F05", "G05", "H05", "I05", 

"J05", "K05", "L05", "M05", "N05", 
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 "O05", "P05", "A06", "B06", "C06", "D06", "E06", "F06", 

"G06", "H06", "I06", "J06", "K06",  
 "L06", "M06", "N06", "O06", "P06", "A07", "B07", "C07", 

"D07", "E07", "F07", "G07", "H07",  
 "I07", "J07", "K07", "L07", "M07", "N07", "O07", "P07", 

"A08", "B08", "C08", "D08", "E08",  
 "F08", "G08", "H08", "I08", "J08", "K08", "L08", "M08", 

"N08", "O08", "P08", "A09", "B09",  
 "C09", "D09", "E09", "F09", "G09", "H09", "I09", "J09", 

"K09", "L09", "M09", "N09", "O09",  
 "P09", "A10", "B10", "C10", "D10", "E10", "F10", "G10", 

"H10", "I10", "J10", "K10", "L10",  
 "M10", "N10", "O10", "P10", "A11", "B11", "C11", "D11", 

"E11", "F11", "G11", "H11", "I11",  
 "J11", "K11", "L11", "M11", "N11", "O11", "P11", "A12", 

"B12", "C12", "D12", "E12", "F12",  
 "G12", "H12", "I12", "J12", "K12", "L12", "M12", "N12", 

"O12", "P12", "A13", "B13", "C13",  
 "D13", "E13", "F13", "G13", "H13", "I13", "J13", "K13", 

"L13", "M13", "N13", "O13", "P13",  
 "A14", "B14", "C14", "D14", "E14", "F14", "G14", "H14", 

"I14", "J14", "K14", "L14", "M14",  
 "N14", "O14", "P14", "A15", "B15", "C15", "D15", "E15", 

"F15", "G15", "H15", "I15", "J15",  
 "K15", "L15", "M15", "N15", "O15", "P15", "A16", "B16", 

"C16", "D16", "E16", "F16", "G16",  
 "H16", "I16", "J16", "K16", "L16", "M16", "N16", "O16", 

"P16", "A17", "B17", "C17", "D17",  
 "E17", "F17", "G17", "H17", "I17", "J17", "K17", "L17", 

"M17", "N17", "O17", "P17", "A18",  
 "B18", "C18", "D18", "E18", "F18", "G18", "H18", "I18", 

"J18", "K18", "L18", "M18", "N18",  
 "O18", "P18", "A19", "B19", "C19", "D19", "E19", "F19", 

"G19", "H19", "I19", "J19", "K19",  
 "L19", "M19", "N19", "O19", "P19", "A20", "B20", "C20", 

"D20", "E20", "F20", "G20", "H20",  
 "I20", "J20", "K20", "L20", "M20", "N20", "O20", "P20", 

"A21", "B21", "C21", "D21", "E21",  
 "F21", "G21", "H21", "I21", "J21", "K21", "L21", "M21", 

"N21", "O21", "P21", "A22", "B22",  
 "C22", "D22", "E22", "F22", "G22", "H22", "I22", "J22", 

"K22", "L22", "M22", "N22", "O22",  
 "P22", "A23", "B23", "C23", "D23", "E23", "F23", "G23", 

"H23", "I23", "J23", "K23", "L23", 
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 "M23", "N23", "O23", "P23", "A24", "B24", "C24", "D24", 

"E24", "F24", "G24", "H24", "I24",  
 "J24", "K24", "L24", "M24", "N24", "O24", "P24")  
tAll.raw <—as.data.frame(ID.V)  
   
#Merge dataframes into 1  
list_ID <—lapply(list_df_single, function(x){  
 as.data.frame(append(tAll.raw, x))  
})  
   
merge.all <—function(x, y) {  
 merge(x, y, all=TRUE, by="ID.V")  
}  
   
tAll.raw <- Reduce(merge.all, list_ID)  
colnames(tAll.raw)[1] <- "ID.H"  
ID.H <— as.vector(tAll.raw$ID.H)  
names.1 <—sprintf("t%d",rep(seq(1:timepoints), 

each=replicate))  
names.2 <- rep(sprintf(".%d", seq(1:replicate)),timepoints)  
dataset.vector <—paste0(names.1, names.2)  
fill <—append("ID.H", dataset.vector)  
colnames(tAll.raw) <—fill  
remove(merge.all)  
remove(fill)  
remove(list_ID)  
remove(list_df)  
   
   
   
##### Data analysis section #####  
   
#Obtain the dataframe of the averages  
as.data.frame(within(tAll.raw, {  
 pair.colmeans <—sapply(seq(2, ncol(tAll.raw), 2), function(i) {  
 rowMeans(tAll.raw[, c(i, i+1)], na.rm=TRUE)  
 })  
 }))—> intermediate  
as.data.frame(intermediate$pair.colmeans, drop = F)—> tAll  
colnames(tAll) <—(sprintf("t%d",rep(seq(1:timepoints))))  
row.names(tAll) <—tAll.raw$ID.H  
remove(intermediate)  
   
#Transpose and melt the dataframe for easier graphing 
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time.vector <—seq(from = 0, to = (timepoints/read.hour)—

(1/read.hour), by = (1/read.hour))  
tAll.t <—as.data.frame(t(tAll))  
tAll.t %>%   
 mutate(time = time.vector) %>%   
 select(time, A01:P24)—> tAll.t  
tAll.long <—melt(tAll.t, id="time")  
   
#Compute the difference between the highest and last point  
tAll.t %>%  
 select(A01:P24)—> tAll_diff  
   
colMax <—function(data) sapply(data, max, na.rm = TRUE)  
   
tAll_max <—as.data.frame(colMax(tAll_diff))  
colnames(tAll_max) <—c("max")  
tAll_last <—as.data.frame(t(slice(tAll_diff, timepoints)))  
colnames(tAll_last) <—c("last")  
   
tAll_diff <—bind_cols(tAll_max, tAll_last)  
tAll_diff %>%   
 mutate(diff = max-last) %>%   
 mutate(ID = ID.H) %>%   
 select(ID, everything())—> tAll_diff  
remove(tAll_last)  
remove(tAll_max)  
   
#compute relative difference  
tAll_diff %>%  
 mutate(rel.diff = 1—(last/max))—> tAll_diff  
   
#Extract all differences above the treshold  
tAll_diff %>%   
 filter(diff>treshold)—> tAll_diff_hits  
   
#Separates the curve data into hits and non hits  
hit.ID <—as.vector(tAll_diff_hits$ID)  
tAll.long %>%  
 filter(variable %in% hit.ID) %>%   
 mutate(hit = "hit")—> tAll.hits  
   
tAll.long %>%  
 filter(!(variable %in% hit.ID)) %>%   
 mutate(hit = "No.hit")—> tAll.NotHits 
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tAll.long <—union(tAll.hits, tAll.NotHits)  
remove(tAll.hits)  
remove(tAll.NotHits)  
   
##### Output section #####  
   
#Extract csv of hits  
write.csv(tAll_diff_hits, file = Non0_Ouput, row.names = 

FALSE)  
   
   
   
##### Plotting Section #####  
   
#Example of a plot with low number of variables  
ggplot() +  
 geom_line(data = tAll.t,  
  aes(x = time, y = O22, color = "O22"),  
  size = 2) +  
 geom_line(data = tAll.t,  
  aes(x =time, y = F22, color = "F22"),  
  size = 2) +  
 geom_line(data = tAll.t,  
  aes(x =time, y = N18, color = "N18"),  
  size = 2) +  
 scale_color_manual(values = c(  
 "O22" = "#7A003C",  
 "F22" = "#FDBF57",  
 "N18" = "#5E6A71")) +  
 labs(x = "Time (H)", y = expression(OD[600]), color = "Well")  
   
#Plot all variables together with hits highlited and none hits in 

grey  
ggplot(subset(tAll.long, hit %in% c("hit"))) +  
 geom_line(aes(x = time,  
  y = value,  
  group = variable,  
  colour = hit)) +  
 scale_color_manual(values = c("#7A003C")) +   
 expand_limits(x=c(0,4), y=c(0.15, 0.4))  
   
ggplot(subset(tAll.long, hit %in% c("No.hit"))) +  
 geom_line(aes(x = time, 
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  y = value,  
  group = variable,  
  colour = hit)) +  
 scale_color_manual(values = c("#5E6A71")) +   
 expand_limits(x=c(0,4), y=c(0.15, 0.4))  
   
   
#Plot the Histogram of difference between max and last 

(removes the 0s)  
ggplot(data=tAll_diff_hits,  
 aes(tAll_diff_hits$diff)) +  
 geom_histogram(binwidth = 0.001,  
   color = "#5E6A71",  
   fill = "#7A003C") +   
 theme(legend.position="none") +  
 ylim(0,5) +  
 labs(x = expression(OD[600]~Variation), y = "Count") 

 

 

 

 

 

 

 

 

Primary hit arranged according to groups 
(adapted from—https://www.r-graph-gallery.com/297-circular-barplot-with-
groups/) 

# 

library  
library(tidyverse)  
   
list = read.csv("Final_HKhitlist(1000).csv", header = TRUE)  
sortedList <—list[order(list$ODdip),]  
#sortedList <—list[order('ODdip')]  
# Create dataset  
data=data.frame(  
 individual=(sortedList$Hit_compound), 
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 group=(sortedList$group),  
 value=(sortedList$ODdip)  
)  
   
# Set a number of 'empty bar' to add at the end of each group  
empty_bar=3  
to_add = data.frame( matrix(NA, empty_bar*nlevels(data$group), 

ncol(data)) )  
colnames(to_add) = colnames(data)  
to_add$group=rep(levels(data$group), each=empty_bar)  
data=rbind(data, to_add)  
data=data %>% arrange(group)  
data$id=seq(1, nrow(data))  
   
# Get the name and the y position of each label  
label_data=data  
number_of_bar=nrow(label_data)  
angle= 90 - 360 * (label_data$id-0.5) /number_of_bar # I 

substract 0.5 because the letter must have the angle of the center 

of the bars. Not extreme right(1) or extreme left (0)  
label_data$hjust<-ifelse( angle < -90, 1, 0)  
label_data$angle<-ifelse(angle < -90, angle+180, angle)  
   
# prepare a data frame for base lines  
base_data=data %>%   
 group_by(group) %>%   
 summarize(start=min(id), end=max(id)—empty_bar) %>%   
 rowwise() %>%   
 mutate(title=mean(c(start, end)))  
   
# prepare a data frame for grid (scales)  
grid_data = base_data  
grid_data$end = grid_data$end[ c( nrow(grid_data), 

1:nrow(grid_data)-1)] + 1  
grid_data$start = grid_data$start - 1  
grid_data=grid_data[-1,]  
   
# Make the plot  
p = ggplot(data, aes(x=as.factor(id), y=value, fill=group)) + # 

Note that id is a factor. If x is numeric, there is some space 

between the first bar  
   
 geom_bar(aes(x=as.factor(id), y=value, fill=group), 

stat="identity", alpha=0.5) + 
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 # Add a val=100/75/50/25 lines. I do it at the beginning to make 

sur barplots are OVER it.  
 geom_segment(data=grid_data, aes(x = end, y = 80, xend = start, 

yend = 80), colour = "grey", alpha=1, size=0.3 , inherit.aes = 

FALSE ) +  
 geom_segment(data=grid_data, aes(x = end, y = 60, xend = start, 

yend = 60), colour = "grey", alpha=1, size=0.3 , inherit.aes = 

FALSE ) +  
 geom_segment(data=grid_data, aes(x = end, y = 40, xend = start, 

yend = 40), colour = "grey", alpha=1, size=0.3 , inherit.aes = 

FALSE ) +  
 geom_segment(data=grid_data, aes(x = end, y = 20, xend = start, 

yend = 20), colour = "grey", alpha=1, size=0.3 , inherit.aes = 

FALSE ) +  
   
 # Add text showing the value of each 100/75/50/25 lines  
 annotate("text", x = rep(max(data$id),4), y = c(20, 40, 60, 80), 

label = c("0.02", "0.04", "0.06", "0.08") , color="grey", size=3 , 

angle=0, fontface="bold", hjust=1) +  
   
 geom_bar(aes(x=as.factor(id), y=value, fill=group), 

stat="identity", alpha=0.5) +   
 ylim(-100,120) +  
 theme_minimal() +  
 scale_fill_brewer(palette="Set1") +   
 theme(  
 legend.position = "none",  
 axis.text = element_blank(),  
 axis.title = element_blank(),  
 panel.grid = element_blank(),  
 plot.margin = unit(rep(-1,4), "cm")   
 ) +  
 coord_polar() +   
 geom_text(data=label_data, aes(x=id, y=value+10, 

label=individual, hjust=hjust), color="black", 

fontface="bold",alpha=0.6, size=2.5, angle= label_data$angle, 

inherit.aes = FALSE ) +   
   
 # Add base line information  
 geom_segment(data=base_data, aes(x = start, y = -5, xend = end, 

yend = -5), colour = "black", alpha=0.8, size=0.6 , inherit.aes = 

FALSE ) + 
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 geom_text(data=base_data, aes(x = title, y = -18, label=group), 

hjust=c(1,1,0.9,0.9,0), colour = "black", alpha=0.8, size=3, 

fontface="bold", inherit.aes = FALSE)  
   
p   
   
##https://www.r-graph-gallery.com/297-circular-barplot-with-

groups/  
   
list = read.csv("Final_Muhitlist(1000)V.csv", header = TRUE)  
sortedList <—list[order(list$ODdip),]  
#sortedList <—list[order('ODdip')]  
# Create dataset  
data=data.frame(  
 individual=(sortedList$Hit_compound),  
 group=(sortedList$group),  
 value=(sortedList$ODdip)  
)  
   
# Set a number of 'empty bar' to add at the end of each group  
empty_bar=3  
to_add = data.frame( matrix(NA, empty_bar*nlevels(data$group), 

ncol(data)) )  
colnames(to_add) = colnames(data)  
to_add$group=rep(levels(data$group), each=empty_bar)  
data=rbind(data, to_add)  
data=data %>% arrange(group)  
data$id=seq(1, nrow(data))  
   
# Get the name and the y position of each label  
label_data=data  
number_of_bar=nrow(label_data)  
angle= 90 - 360 * (label_data$id-0.5) /number_of_bar # I 

substract 0.5 because the letter must have the angle of the center 

of the bars. Not extreme right(1) or extreme left (0)  
label_data$hjust<-ifelse( angle < -90, 1, 0)  
label_data$angle<-ifelse(angle < -90, angle+180, angle)  
   
# prepare a data frame for base lines  
base_data=data %>%   
 group_by(group) %>%   
 summarize(start=min(id), end=max(id)—empty_bar) %>%   
 rowwise() %>%   
 mutate(title=mean(c(start, end))) 
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# prepare a data frame for grid (scales)  
grid_data = base_data  
grid_data$end = grid_data$end[ c( nrow(grid_data), 

1:nrow(grid_data)-1)] + 1  
grid_data$start = grid_data$start - 1  
grid_data=grid_data[-1,]  
   
# Make the plot  
q = ggplot(data, aes(x=as.factor(id), y=value, fill=group)) + # 

Note that id is a factor. If x is numeric, there is some space 

between the first bar  
geom_bar(aes(x=as.factor(id), y=value, fill=group), 

stat="identity", alpha=0.5) +  
   
 # Add a val=100/75/50/25 lines. I do it at the beginning to make 

sur barplots are OVER it.  
 geom_segment(data=grid_data, aes(x = end, y = 80, xend = start, 

yend = 80), colour = "grey", alpha=1, size=0.3 , inherit.aes = 

FALSE ) +  
 geom_segment(data=grid_data, aes(x = end, y = 60, xend = start, 

yend = 60), colour = "grey", alpha=1, size=0.3 , inherit.aes = 

FALSE ) +  
 geom_segment(data=grid_data, aes(x = end, y = 40, xend = start, 

yend = 40), colour = "grey", alpha=1, size=0.3 , inherit.aes = 

FALSE ) +  
 geom_segment(data=grid_data, aes(x = end, y = 20, xend = start, 

yend = 20), colour = "grey", alpha=1, size=0.3 , inherit.aes = 

FALSE ) +  
   
 # Add text showing the value of each 100/75/50/25 lines  
 annotate("text", x = rep(max(data$id),4), y = c(20, 40, 60, 80), 

label = c("0.02", "0.04", "0.06", "0.08") , color="grey", size=3 , 

angle=0, fontface="bold", hjust=1) +  
   
 geom_bar(aes(x=as.factor(id), y=value, fill=group), 

stat="identity", alpha=1.0) +  
 ylim(-100,140) +  
 theme_minimal() +  
 scale_fill_manual(values=c("#b0cc6d", "#61af8e", "#83d7fb")) +  
 theme(  
 legend.position = "none",  
 axis.text = element_blank(),  
 axis.title = element_blank(), 
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 panel.grid = element_blank(),  
 plot.margin = unit(rep(-1,4), "cm")   
 ) +  
 coord_polar() +   
 geom_text(data=label_data, aes(x=id, y=value+10, 

label=individual, hjust=hjust), color="black", 

fontface="bold",alpha=0.6, size=2.5, angle= label_data$angle, 

inherit.aes = FALSE ) +   
   
 # Add base line information  
 geom_segment(data=base_data, aes(x = start, y = -5, xend = end, 

yend = -5), colour = "black", alpha=0.8, size=0.6 , inherit.aes = 

FALSE ) +  
 geom_text(data=base_data, aes(x = title, y = -20, label=group), 

hjust=c(1.0,0.5,0.1), colour = "black", alpha=0.8, size=3, 

fontface="bold", inherit.aes = FALSE)  
   
 q 

 

Secondary hits graphing 
install.packages("vir

dis")  
install.packages("ggplot2")  
install.packages("hrbrthemes")  
# library  
 library(ggplot2)  
 library(viridis)  
 library(hrbrthemes)  
   
 # create a dataset  
 list = read.csv("actives_to_hits(nonSOS).csv", 

header = TRUE)  
 list2 = read.csv("Dopaminehits.csv", header = 

TRUE)  
 list3 = read.csv("Serotoninhits.csv", header = 

TRUE)  
 # # Small multiple  
 # ggplot(data, aes(fill=condition, y=value, 

x=specie)) +   
 # geom_bar(position="stack", stat="identity") +  
 # scale_fill_viridis(discrete = T) +  
 # ggtitle("Studying 4 species..") +  
 # xlab("") 



M.Sc. Thesis - A. Nandy; McMaster University - Biochemistry and Biomedical Sciences 
 

 67 

 
 #   
 # # Small multiple  
 # ggplot(list, aes(fill=name, y=Total, 

x=Compound.name)) +  
 # geom_bar(position="stack", stat="identity") +  
 # scale_fill_viridis(discrete = FALSE) +  
 # xlab("")  
 #   
 # ggplot() +  
 # geom_bar(data=list, aes(y = Total, x = 

Compound.name), width = 0.3, stat="identity",  
 #  position='stack') +  
 # coord_flip() +  
 # facet_grid( name ~ .)  
 # scale_fill_viridis()  
 #   
 # ggplot() +  
 # geom_bar(data=list, aes(y = Total, x = 

Compound.name), width = 0.3, stat="identity",  
 #  position='stack') +  
 # facet_grid( name ~ .)  
 # scale_fill_viridis()  
 #   
 # list2 = list[list$name == 'one',]  
 # theme_set(theme_gray(base_size = 7))  
 # ggplot() +  
 # geom_bar(data=list2, aes(y = Total, x = 

Compound.name), width = 0.3, stat="identity",  
 #  position='stack') +  
 # coord_flip() +  
 # scale_fill_viridis()  
 # Dummy data  
 # x <—LETTERS[1:20]  
 # y <—paste0("var", seq(1,20))  
 # data <—expand.grid(X=x, Y=y)  
 # data$Z <- runif(400, 0, 5)  
 ind <—seq(190)   
 ind2 <- seq(416,860)  
 list1 <—list[ind, ]  
 list2 <—list[ind2,]  
 # Heatmap   
 ggplot(list, aes(compound.concentration, 

Compound.name, fill= phage.dilution)) +   
 geom_tile( 
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 colour = "white",position="identity") +  
 theme(text = element_text(size=5))+  
 scale_fill_gradient2(low="#ef8a62", 

high="#67a9cf", limits=c(4,5)) +  
 

scale_x_discrete(labels=c("1.5","3.25","6.25","12.

5","25")) +   
 coord_fixed(ratio = 0.3)   
   
   
 #edited heatmap for hits  
 p <—ggplot(list, aes(compound.concentration, 

Compound.name, fill= phage.dilution)) +   
 geom_tile(  
 colour = "white",position="identity") +  
 theme(text = element_text(size=5))+  
 #scale_fill_manual(drop=FALSE, 

values=colorRampPalette(c("white","red"))(5), 

na.value="#EEEEEE", name="phage.dilution") +  
 scale_fill_gradient( low="orange", 

high="orange3" , limits = c(3,5)) +  
 

scale_x_discrete(labels=c("1.5","3.25","6.25","12.

5","25")) +   
 scale_y_discrete(labels=NULL) +  
 #coord_fixed(ratio = 0.3) +  
   
 theme_test() +  
 theme(axis.ticks.x = element_blank(), axis.title.x 

= element_blank())  
   
 p + coord_flip() #flips co-ordinates  
 # theme(axis.text.x = element_text(angle = 0, 

hjust = 1)) #changes the angle of the axis label  
   
   
q <—ggplot(list2, aes(compound.concentration, 

Compound.name, fill= phage.dilution)) +   
 geom_tile(  
 colour = "white",position="identity") +  
 theme(text = element_text(size=5))+  
 #scale_fill_manual(drop=FALSE, 

values=colorRampPalette(c("white","red"))(5), 

na.value="#EEEEEE", name="phage.dilution") + 
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 scale_fill_gradient( low="skyblue", 

high="deepskyblue3" , limits = c(3,5)) +  
 

scale_x_discrete(labels=c("1.5","3.25","6.25","12.

5","25")) +   
 scale_y_discrete(labels=NULL) +  
 #coord_fixed(ratio = 0.3) +  
   
 theme_test() +  
 theme(axis.ticks.x = element_blank(), axis.title.x 

= element_blank())  
   
 q + coord_flip() #flips co-ordinates  
 # theme(axis.text.x = element_text(angle = 0, 

hjust = 1)) #changes the angle of the axis label  
   
   
 r <—ggplot(list3, aes(compound.concentration, 

Compound.name, fill= phage.dilution)) +   
 geom_tile(  
 colour = "white",position="identity") +  
 theme(text = element_text(size=5))+  
 #scale_fill_manual(drop=FALSE, 

values=colorRampPalette(c("white","red"))(5), 

na.value="#EEEEEE", name="phage.dilution") +  
 scale_fill_gradient( low="mediumpurple3", 

high="mediumpurple4" , limits = c(3,5)) +  
 

scale_x_discrete(labels=c("1.5","3.25","6.25","12.

5","25")) +   
 scale_y_discrete(labels=NULL) +  
 #coord_fixed(ratio = 0.3) +  
   
 theme_test() +  
 theme(axis.ticks.x = element_blank(), axis.title.x 

= element_blank())  
   
 r + coord_flip() #flips co-ordinates  
 # theme(axis.text.x = element_text(angle = 0, 

hjust = 1)) #changes the angle of the axis label  
   
 #theme_ipsum()  
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 base_size <- 9  
 p + theme_grey(base_size = base_size) +   
 labs(x = "",  
 y = "") + scale_x_discrete(expand = c(0, 0)) +  
 scale_y_discrete(expand = c(0, 0)) + 

opts(legend.position = "none",  
  axis.ticks = theme_blank(), axis.text.x = 

theme_text(size = base_size *  
  0.8, angle = 330, hjust = 0, colour = "grey50"))  
   
 # Heatmap   
 ggplot(list2, aes(compound.concentration, 

Compound.name, fill= phage.dilution)) +   
 geom_tile(  
 colour = "white",position="identity") +  
 theme(text = element_text(size=5))+  
 scale_fill_gradient2(low="#ef8a62", 

mid="#f7f7f7", high="#67a9cf", midpoint=2, 

limits=c(1,5)) +  
 

scale_x_discrete(labels=c("1.5","3.25","6.25","12.

5","25")) +   
 coord_fixed(ratio = 0.3)   
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APPENDIX II: PILOT SCREEN DATA 
 
Table A1: Subset of compounds used for pilot study. The compounds 
highlighted in grey were hits by the OD drop method and the ones highlighted 
in red are IQM hits. The values for compound showing OD drop less than 0.01 
are not shown. 

Compound Name OD 
max 
R1 

OD 
final 
R1 

OD 
max 
R2 

OD 
final 
R2 

Average 
OD max- 
OD end 
point 

TOLAZOLINE 
HYDROCHLORIDE 

0.344 0.344 0.346 0.346  

SULFACHLORPYRIDAZINE 0.344 0.344 0.35 0.35  
TRIAMCINOLONE DIACETATE 0.339 0.339 0.344 0.344  
RANITIDINE 0.342 0.341 0.345 0.345  
SPARTEINE SULFATE 0.343 0.339 0.335 0.335  
FLURANDRENOLIDE 0.349 0.349 0.34 0.34  
VIDARABINE 0.356 0.354 0.337 0.337  
MERBROMIN 0.348 0.348 0.337 0.337  
PROCHLORPERAZINE 
EDISYLATE 

0.346 0.343 0.334 0.334  

AMINACRINE 0.329 0.329 0.321 0.321  
PSEUDOEPHEDRINE 
HYDROCHLORIDE 

0.341 0.341 0.328 0.328  

DROPERIDOL 0.349 0.349 0.337 0.337  
RESORCINOL 0.351 0.349 0.333 0.328  
FENBENDAZOLE 0.357 0.356 0.341 0.341  
SULFABENZAMIDE 0.351 0.349 0.337 0.331  
MEBEVERINE 
HYDROCHLORIDE 

0.355 0.354 0.343 0.337  

SULFASALAZINE 0.346 0.346 0.347 0.344  
NICERGOLINE 0.353 0.353 0.349 0.346  
TRIPELENNAMINE CITRATE 0.342 0.342 0.338 0.336  
SULFADIMETHOXINE 0.35 0.35 0.351 0.348  
EDOXUDINE 0.347 0.347 0.343 0.343  
LITHIUM CITRATE 0.355 0.355 0.355 0.355  
LISINOPRIL 0.362 0.362 0.353 0.353  
DONEPEZIL HYDROCHLORIDE 0.374 0.374 0.358 0.358  
PHTHALYLSULFATHIAZOLE 0.374 0.374 0.359 0.359  
CLORSULON 0.369 0.369 0.347 0.347  
CEFUROXIME SODIUM 0.205 0.186 0.199 0.166 0.026 
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BENAZEPRIL 
HYDROCHLORIDE 

0.366 0.366 0.349 0.349  

BEZAFIBRATE 0.373 0.373 0.351 0.351  
SIBUTRAMINE 
HYDROCHLORIDE 

0.366 0.366 0.347 0.347  

TINIDAZOLE 0.369 0.369 0.351 0.351  
TELMISARTAN 0.367 0.367 0.345 0.345  
BENZYL BENZOATE 0.368 0.368 0.348 0.348  
MEPIVACAINE 
HYDROCHLORIDE 

0.371 0.371 0.347 0.345  

QUINAPRIL HYDROCHLORIDE 0.369 0.369 0.354 0.351  
TRIFLURIDINE 0.37 0.37 0.342 0.34  
BROMHEXINE 
HYDROCHLORIDE 

0.363 0.363 0.361 0.357  

ACRISORCIN 0.355 0.355 0.348 0.348  
TENOXICAM 0.367 0.361 0.359 0.355  
GATIFLOXACIN 0.245 0.207 0.238 0.193 0.0415 
WARFARIN 0.36 0.36 0.35 0.35  
SPIPERONE 0.356 0.356 0.356 0.356  
PROCYCLIDINE 
HYDROCHLORIDE 

0.357 0.357 0.353 0.353  

ERYTHROMYCIN ESTOLATE 0.363 0.363 0.357 0.357  
PYRANTEL PAMOATE 0.372 0.372 0.352 0.352  
PHENTOLAMINE 
HYDROCHLORIDE 

0.383 0.383 0.349 0.349  

RIFAMPIN 0.366 0.366 0.345 0.345  
BEKANAMYCIN SULFATE 0.357 0.357 0.343 0.343  
SULFACETAMIDE 0.363 0.363 0.347 0.347  
FAMOTIDINE 0.366 0.366 0.347 0.347  
SULFATHIAZOLE 0.359 0.359 0.342 0.342  
MECLOCYCLINE 
SULFOSALICYLATE 

0.188 0.184 0.179 0.174  

THIABENDAZOLE 0.362 0.362 0.342 0.342  
SULFAQUINOXALINE SODIUM 0.359 0.359 0.347 0.347  
TOLMETIN SODIUM 0.365 0.365 0.349 0.347  
SULOCTIDIL 0.366 0.366 0.346 0.344  
TRICHLORMETHIAZIDE 0.366 0.362 0.37 0.366  
ESTRADIOL PROPIONATE 0.361 0.359 0.365 0.364  
PROGESTERONE 0.359 0.353 0.358 0.354  
BETAHISTINE 
HYDROCHLORIDE 

0.36 0.355 0.364 0.358  

ENOXACIN 0.292 0.187 0.283 0.204 0.092 
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HOMOSALATE 0.361 0.361 0.358 0.358  
ETHISTERONE 0.368 0.368 0.354 0.354  
ESTROPIPATE 0.371 0.371 0.358 0.358  
ISOXICAM 0.399 0.399 0.376 0.376  
FAMCICLOVIR 0.375 0.375 0.355 0.355  
AMSACRINE 0.377 0.377 0.354 0.354  
PERINDOPRIL ERBUMINE 0.376 0.376 0.351 0.351  
HYDROCORTISONE BUTYRATE 0.379 0.379 0.353 0.353  
AMINOLEVULINIC ACID 
HYDROCHLORIDE 

0.375 0.375 0.349 0.349  

THIOTEPA 0.373 0.373 0.349 0.349  
NATEGLINIDE 0.374 0.374 0.355 0.355  
RESORCINOL MONOACETATE 0.372 0.372 0.354 0.354  
MIGLITOL 0.385 0.385 0.352 0.352  
CELECOXIB 0.377 0.377 0.359 0.359  
OLANZAPINE 0.384 0.384 0.362 0.362  
NAPROXOL 0.366 0.364 0.365 0.365  
CLAVULANATE LITHIUM 0.368 0.368 0.379 0.379  
IOPANIC ACID 0.364 0.364 0.38 0.38  
AMLODIPINE BESYLATE 0.363 0.358 0.364 0.358  
ROXARSONE 0.372 0.372 0.367 0.367  
BUDESONIDE 0.361 0.361 0.359 0.359  
SULFADIAZINE 0.35 0.35 0.35 0.35  
MEFENAMIC ACID 0.361 0.361 0.351 0.351  
SULFINPYRAZONE 0.372 0.372 0.348 0.348  
SULFAGUANIDINE 0.371 0.371 0.351 0.351  
THIMEROSAL 0.25 0.25 0.23 0.23  
RONIDAZOLE 0.38 0.38 0.355 0.355  
TOLNAFTATE 0.36 0.36 0.339 0.339  
ESTRADIOL BENZOATE 0.378 0.378 0.36 0.36  
ZOMEPIRAC SODIUM 0.355 0.355 0.339 0.339  
BUTAMBEN 0.367 0.367 0.35 0.35  
SALICYL ALCOHOL 0.361 0.361 0.342 0.341  
"CANRENOIC ACID, 
POTASSIUM SALT" 

0.368 0.368 0.351 0.351  

SULFAMERAZINE 0.359 0.359 0.342 0.342  
METHACYCLINE 
HYDROCHLORIDE 

0.213 0.213 0.212 0.208  

SULFISOXAZOLE 0.357 0.357 0.355 0.351  
MINAPRINE HYDROCHLORIDE 0.361 0.361 0.36 0.357  
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THIOGUANINE 0.352 0.351 0.352 0.35  
NEFOPAM 0.362 0.362 0.361 0.356  
PARAROSANILINE PAMOATE 0.38 0.38 0.374 0.374  
ROSUVASTATIN CALCIUM 0.368 0.368 0.362 0.362  
MIDODRINE HYDROCHLORIDE 0.362 0.362 0.359 0.359  
TELITHROMYCIN 0.354 0.354 0.344 0.344  
ROXITHROMYCIN 0.382 0.382 0.36 0.36  
VENLAFAXINE 0.374 0.374 0.35 0.35  
TETROQUINONE 0.379 0.379 0.361 0.361  
METAXALONE 0.373 0.373 0.347 0.347  
AZITHROMYCIN 0.234 0.232 0.217 0.217  
IRBESARTAN 0.371 0.371 0.348 0.348  
ISOSORBIDE MONONITRATE 0.375 0.375 0.353 0.353  
VALDECOXIB 0.37 0.37 0.349 0.349  
HYDROXYCHLOROQUINE 
SULFATE 

0.375 0.375 0.358 0.357  

ALCLOMETAZONE 
DIPROPIONATE 

0.369 0.369 0.349 0.349  

PERHEXILINE MALEATE 0.372 0.372 0.359 0.359  
EZETIMIBE 0.378 0.378 0.35 0.348  
NADOLOL 0.37 0.37 0.372 0.371  
RAMIPRIL 0.359 0.359 0.355 0.353  
PIPOBROMAN 0.362 0.362 0.358 0.355  
CITALOPRAM 0.357 0.357 0.356 0.354  
TRANYLCYPROMINE SULFATE 0.355 0.355 0.352 0.352  
SULFAMONOMETHOXINE 0.365 0.365 0.355 0.355  
TUAMINOHEPTANE SULFATE 0.357 0.357 0.352 0.352  
SULFAMETER 0.369 0.369 0.354 0.354  
ACETARSOL 0.369 0.369 0.346 0.346  
ESTRADIOL ACETATE 0.373 0.373 0.357 0.357  
PYRIMETHAMINE 0.318 0.317 0.306 0.304  
ECONAZOLE NITRATE 0.354 0.353 0.342 0.342  
SALICYLAMIDE 0.365 0.365 0.345 0.345  
SUCCINYLSULFATHIAZOLE 0.377 0.377 0.355 0.355  
SULFAMETHAZINE 0.368 0.368 0.349 0.349  
ALRESTATIN 0.366 0.366 0.351 0.351  
TRIACETIN 0.368 0.368 0.348 0.348  
CARBIDOPA 0.393 0.393 0.369 0.369  
TRIMEPRAZINE TARTRATE 0.368 0.368 0.347 0.347  
BENZOYL PEROXIDE 0.388 0.388 0.352 0.352  
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TYROTHRICIN 0.345 0.331 0.331 0.328  
ABAMECTIN 0.382 0.382 0.377 0.377  
ACRIFLAVINIUM 
HYDROCHLORIDE 

0.377 0.377 0.364 0.361  

CEFTRIAXONE SODIUM 
TRIHYDRATE 

0.352 0.338 0.332 0.326  

AMCINONIDE 0.372 0.372 0.368 0.368  
AVOBENZONE 0.363 0.363 0.362 0.362  
MEPHENTERMINE SULFATE 0.372 0.372 0.363 0.363  
CLARITHROMYCIN 0.36 0.36 0.346 0.346  
NALTREXONE 
HYDROCHLORIDE 

0.384 0.384 0.356 0.356  

LEVOFLOXACIN 0.185 0.144 0.169 0.13 0.04 
OXETHAZAINE 0.382 0.382 0.365 0.365  
MOXIFLOXACIN 
HYDROCHLORIDE 

0.245 0.195 0.229 0.188 0.0445 

ETANIDAZOLE 0.381 0.381 0.362 0.362  
THIOSTREPTON 0.372 0.372 0.348 0.348  
BENZALKONIUM CHLORIDE 0.37 0.366 0.356 0.356  
ALENDRONATE SODIUM 0.383 0.383 0.364 0.364  
CLOPIDOGREL SULFATE 0.376 0.376 0.363 0.363  
OLMESARTAN MEDOXOMIL 0.374 0.374 0.349 0.349  
BUPIVACAINE 
HYDROCHLORIDE 

0.378 0.378 0.355 0.355  

DERACOXIB 0.375 0.375 0.348 0.348  
BETA-PROPIOLACTONE 0.378 0.378 0.362 0.362  
ATOVAQUONE 0.365 0.365 0.355 0.355  
METARAMINOL BITARTRATE 0.371 0.371 0.362 0.362  
ROFECOXIB 0.37 0.37 0.357 0.356  
PYRVINIUM PAMOATE 0.364 0.364 0.361 0.361  
CETRIMONIUM BROMIDE 0.33 0.33 0.336 0.336  
SODIUM SALICYLATE 0.361 0.361 0.361 0.361  
FLUNISOLIDE 0.372 0.372 0.366 0.366  
SULFAMETHIZOLE 0.369 0.369 0.349 0.349  
CARBENOXOLONE SODIUM 0.374 0.374 0.356 0.356  
THIOTHIXENE 0.362 0.362 0.344 0.344  
TRANEXAMIC ACID 0.367 0.367 0.356 0.356  
TRIAMCINOLONE 0.369 0.369 0.352 0.352  
CEFAMANDOLE SODIUM 0.352 0.352 0.343 0.343  
TRIMETHOBENZAMIDE 
HYDROCHLORIDE 

0.365 0.365 0.353 0.353  
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AKLOMIDE 0.375 0.375 0.361 0.361  
UREA 0.367 0.367 0.355 0.355  
AMIPRILOSE 0.371 0.371 0.356 0.356  
AMINOPYRINE 0.372 0.372 0.351 0.351  
CHLOROXINE 0.225 0.225 0.207 0.206  
SPIRONOLACTONE 0.369 0.369 0.361 0.361  
XYLAZINE 0.372 0.371 0.36 0.36  
SULFAMETHOXAZOLE 0.365 0.365 0.353 0.352  
CARPROFEN 0.382 0.382 0.367 0.367  
DIPYRONE 0.37 0.37 0.371 0.371  
CANDESARTAN CILEXTIL 0.371 0.371 0.373 0.373  
NAFRONYL OXALATE 0.371 0.371 0.373 0.373  
PIOGLITAZONE 
HYDROCHLORIDE 

0.369 0.369 0.359 0.359  

ALBENDAZOLE 0.374 0.374 0.358 0.358  
TILMICOSIN 0.38 0.38 0.358 0.358  
MORANTEL CITRATE 0.381 0.381 0.354 0.354  
ROPINIROLE 0.38 0.38 0.353 0.353  
ETHYLNOREPINEPHRINE 
HYDROCHLORIDE 

0.383 0.383 0.363 0.363  

CEFTIBUTEN 0.364 0.364 0.354 0.354  
HALCINONIDE 0.377 0.377 0.365 0.365  
CROTAMITON 0.377 0.377 0.359 0.359  
METHAZOLAMIDE 0.379 0.379 0.364 0.364  
CHLOROGUANIDE 
HYDROCHLORIDE 

0.375 0.375 0.354 0.354  

SULFANILATE ZINC 0.381 0.381 0.356 0.356  
SIMVASTATIN 0.386 0.386 0.365 0.365  
QUIPAZINE MALEATE 0.379 0.379 0.365 0.365  
ROSIGLITAZONE 0.367 0.367 0.354 0.354  
CIPROFLOXACIN 0.284 0.22 0.271 0.21 0.0625 
TOLTERODINE TARTRATE 0.38 0.38 0.372 0.372  
TERBUTALINE HEMISULFATE 0.363 0.363 0.353 0.353  
CEFMETAZOLE SODIUM 0.364 0.364 0.363 0.363  
TIMOLOL MALEATE 0.354 0.354 0.352 0.352  
CARBOPLATIN 0.37 0.37 0.362 0.362  
TRIAMCINOLONE ACETONIDE 0.363 0.363 0.347 0.347  
NICOTINYL ALCOHOL 
TARTRATE 

0.371 0.371 0.351 0.351  

PHENETHICILLIN POTASSIUM 0.358 0.358 0.337 0.337  



M.Sc. Thesis - A. Nandy; McMaster University - Biochemistry and Biomedical Sciences 
 

 77 

CHLORPROTHIXENE 
HYDROCHLORIDE 

0.364 0.364 0.353 0.353  

PHENACETIN 0.368 0.368 0.343 0.343  
CEFSULODIN SODIUM 0.373 0.373 0.356 0.356  
IODIPAMIDE 0.361 0.361 0.348 0.348  
MESNA 0.376 0.376 0.354 0.354  
ETOPOSIDE 0.367 0.367 0.351 0.351  
CISPLATIN 0.378 0.378 0.359 0.359  
FENBUFEN 0.367 0.367 0.345 0.345  
PIPERIDOLATE 
HYDROCHLORIDE 

0.394 0.394 0.366 0.366  

MEFEXAMIDE 0.375 0.375 0.35 0.35  
GLUCONOLACTONE 0.377 0.377 0.366 0.366  
SULCONAZOLE NITRATE 0.355 0.355 0.345 0.345  
CINNARAZINE 0.375 0.375 0.359 0.359  
SELAMECTIN 0.382 0.382 0.377 0.377  
FLUNIXIN MEGLUMINE 0.363 0.363 0.365 0.365  
BUTACAINE 0.37 0.37 0.371 0.371  
QUETIAPINE 0.374 0.374 0.355 0.355  
OXYPHENCYCLIMINE 
HYDROCHLORIDE 

0.382 0.382 0.36 0.36  

CEFDINIR 0.16 0.068 0.157 0.064 0.092 
TENIPOSIDE 0.382 0.382 0.362 0.362  
CITICOLINE 0.377 0.377 0.354 0.354  
HYCANTHONE 0.398 0.398 0.374 0.374  
ZOLMITRIPTAN 0.371 0.371 0.353 0.353  
METHYLBENZETHONIUM 
CHLORIDE 

0.353 0.329 0.345 0.331 0.019 

OXFENDAZOLE 0.372 0.372 0.35 0.35  
URETHANE 0.377 0.377 0.358 0.358  
RIFAXIMIN 0.379 0.374 0.355 0.355  
PRACTOLOL 0.378 0.378 0.357 0.357  
MODAFINIL 0.378 0.378 0.352 0.352  
ENROFLOXACIN 0.2 0.156 0.19 0.148 0.043 
METHYLDOPATE 
HYDROCHLORIDE 

0.374 0.374 0.356 0.356  

CLOBETASOL PROPIONATE 0.371 0.371 0.358 0.358  
PHENYLETHYL ALCOHOL 0.366 0.366 0.357 0.357  
SULFAMETHOXYPYRIDAZINE 0.355 0.355 0.355 0.355  
GALANTHAMINE 
HYDROBROMIDE 

0.366 0.366 0.364 0.364  
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PHENYLMERCURIC ACETATE 0.19 0.177 0.177 0.174  
CEFAMANDOLE NAFATE 0.367 0.367 0.366 0.366  
LEVOTHYROXINE 0.379 0.379 0.352 0.352  
ZIDOVUDINE [AZT] 0.315 0.311 0.302 0.297  
FLUMEQUINE 0.237 0.196 0.224 0.188 0.0385 
ANISINDIONE 0.381 0.381 0.357 0.357  
PROBUCOL 0.373 0.373 0.353 0.353  
AMINOHIPPURIC ACID 0.376 0.376 0.353 0.353  
PRAMOXINE HYDROCHLORIDE 0.358 0.358 0.345 0.345  
AZLOCILLIN SODIUM 0.24 0.223 0.224 0.205 0.018 
RITODRINE HYDROCHLORIDE 0.365 0.365 0.348 0.348  
ENALAPRIL MALEATE 0.374 0.374 0.357 0.357  
SACCHARIN 0.377 0.377 0.353 0.353  
FOSCARNET SODIUM 0.385 0.385 0.356 0.356  
ACONITINE 0.373 0.373 0.356 0.356  
CEFOXITIN SODIUM 0.218 0.2 0.212 0.19 0.02 
CIMETIDINE 0.368 0.368 0.357 0.357  
CEFOPERAZONE SODIUM 0.194 0.152 0.188 0.149 0.0405 
SILDENAFIL 0.377 0.373 0.37 0.37  
IFOSFAMIDE 0.368 0.368 0.36 0.36  
METHYLPREDNISOLONE 
SODIUM SUCCINATE 

0.374 0.374 0.371 0.371  

NATAMYCIN 0.367 0.367 0.356 0.356  
THIRAM 0.292 0.292 0.278 0.278  
AMITRAZ 0.376 0.376 0.354 0.354  
NABUMETONE 0.383 0.383 0.361 0.361  
CHLORMADINONE ACETATE 0.373 0.373 0.348 0.348  
ATORVASTATIN CALCIUM 0.387 0.387 0.371 0.371  
CEFPROZIL 0.372 0.372 0.354 0.354  
CLOPAMIDE 0.376 0.376 0.357 0.357  
ATOMOXETINE 
HYDROCHLORIDE 

0.371 0.371 0.356 0.356  

ALAPROCLATE 0.375 0.375 0.353 0.353  
ETHOXZOLAMIDE 0.371 0.371 0.352 0.352  
ACETRIAZOIC ACID 0.383 0.383 0.364 0.364  
PREDNISOLONE 
HEMISUCCINATE 

0.382 0.382 0.355 0.355  

CEFUROXIME AXETIL 0.363 0.363 0.352 0.352  
DOXORUBICIN 0.372 0.372 0.362 0.362  
TRIMETOZINE 0.376 0.376 0.36 0.36  
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NORGESTIMATE 0.36 0.36 0.357 0.357  
LIOTHYRONINE 0.365 0.365 0.351 0.351  
TROLEANDOMYCIN 0.367 0.367 0.37 0.37  
FENOPROFEN 0.359 0.359 0.361 0.361  
MEFLOQUINE 0.368 0.368 0.365 0.365  
MEBENDAZOLE 0.37 0.37 0.35 0.35  
BACAMPICILLIN 
HYDROCHLORIDE 

0.362 0.362 0.356 0.356  

MEPHENESIN 0.36 0.36 0.356 0.356  
THONZYLAMINE 
HYDROCHLORIDE 

0.368 0.368 0.367 0.367  

SULPIRIDE 0.366 0.366 0.356 0.356  
"BETAMETHASONE 17,21-
DIPROPIONATE" 

0.372 0.372 0.355 0.355  

ACETANILIDE 0.354 0.354 0.343 0.343  
FOLIC ACID 0.369 0.369 0.355 0.355  
ACEBUTOLOL 
HYDROCHLORIDE 

0.366 0.366 0.346 0.346  

BENZOIC ACID 0.373 0.373 0.357 0.357  
ALTHIAZIDE 0.369 0.369 0.347 0.347  
ADIPHENINE HYDROCHLORIDE 0.375 0.375 0.357 0.357  
FLUFENAMIC ACID 0.36 0.36 0.355 0.355  
BENDROFLUMETHIAZIDE 0.378 0.378 0.372 0.372  
NALBUPHINE 
HYDROCHLORIDE 

0.37 0.37 0.348 0.348  

THIAMPHENICOL 0.318 0.311 0.307 0.297  
LOSARTAN 0.352 0.352 0.361 0.361  
PEFLOXACINE MESYLATE 0.186 0.156 0.194 0.165 0.0295 
PIZOTYLINE MALATE 0.347 0.347 0.345 0.345  
AZAPERONE 0.339 0.339 0.338 0.338  
DPCLIOQUINOL 0.247 0.247 0.234 0.234  
RANOLAZINE 0.353 0.353 0.345 0.345  
RIZATRIPTAN BENZOATE 0.363 0.363 0.354 0.354  
DULOXETINE 
HYDROCHLORIDE 

0.356 0.356 0.351 0.351  

VALSARTAN 0.36 0.36 0.351 0.351  
BENURESTAT 0.363 0.363 0.355 0.355  
CANRENONE 0.356 0.356 0.348 0.348  
SULFISOXAZOLE ACETYL 0.348 0.348 0.342 0.342  
DIRITHROMYCIN 0.362 0.362 0.348 0.348  
ACEPROMAZINE MALEATE 0.35 0.35 0.344 0.344  
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FEXOFENADINE 
HYDROCHLORIDE 

0.308 0.308 0.298 0.298  

CEFPODOXIME PROXETIL 0.353 0.353 0.336 0.336  
ZOXAZOLAMINE 0.345 0.345 0.341 0.341  
ASPARTAME 0.342 0.342 0.345 0.345  
OXCARBAZEPINE 0.351 0.351 0.348 0.348  
AZELASTINE 
HYDROCHLORIDE 

0.347 0.347 0.343 0.343  

 

 

 

 

 

 

 

 


