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Lay Abstract

The power savings opportunities available by exploiting the tight correlation between

computing equipment and cooling unit behavior are explored in this thesis. Recogniz-

ing different aspects of thermal heterogeneity in data centers using thermal models is

the key to our work. We first design a workload assignment algorithm that leverages

differences in the thermal behavior of servers. The promising results of this approach

inspire us to scrutinize the power savings opportunities that exist from the cooling

unit point of view, in the sense that different locations in the data center differ in

their susceptibility to cooling (cooling heterogeneity). This initial work relies on the

analytic development of physical models to describe thermal behavior. Due to the

difficulties in generating such models, we then develop a data-driven thermal model

for temperature predictions in data centers. The accuracy and low complexity of

this model are conducive to deployment in practice. In the next phase, cost-saving

opportunities arising from considering cooling and server heterogeneity together are

shown. Finally, a holistic infrastructure control system leveraging the thermal model

is implemented on a real data center.
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Abstract

Data centers are struggling with inefficient power usage, which is one of their crucial

challenges. Information technology (IT) and cooling infrastructure are the major con-

tributors to power consumption in data centers. Server over-cooling, inefficient power

management of cooling units, and thermal-oblivious assignment of server workload

are significant contributors to the considerable power wastage in data centers. These

issues can be addressed by recognizing cooling units’ ability to dissipate heat from

different locations inside a data center (cooling heterogeneity) and thermal proper-

ties of individual servers (server heterogeneity). This problem has not been studied

thoroughly in the literature.

This dissertation consists of five phases aiming to exploit the correlation between

IT and cooling units in data centers for the efficient use of power. The study be-

gins with exploiting thermal differences between servers and ends with implementing

a complete holistic thermal-aware control system. The first phase identifies server

differences due to their cooling requirements and power consumption. Hence, the

problem of distributing workload to minimize power consumption while respecting

the thermal differences between servers (server heterogeneity) is considered. The re-

sulting optimization problem is addressed using an effective heuristic. This heuristic

distributes workload among servers in a way that minimizes their cooling requirements
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and sets the cooling set-point accordingly.

The second phase investigates data center cooling heterogeneity, exploring the

thermal differences among servers and between server locations that need to be cooled

by cooling units. A physics-based thermal model is used to calculate the inlet tem-

peratures of servers based on cooling and IT settings. It is shown that both the

assignment of workload and the adjustment of cooling parameters affect the cooling

cost, revealing a possible trade-off that can be optimized. Potential power-savings

obtained by optimal assignment of workload and choices of cooling unit operational

variables are explored.

Due to their complexity (both operationally and in their development), exploring

synergies between IT and cooling units using physics-based thermal models is chal-

lenging. So, during the third phase of this work, an adaptive data-driven thermal

model using time series prediction methods is developed. This thermal model, to

a great extent, solves the problem of temperature predictions in data centers. This

learning-based thermal model is fast, adapts to thermal changes in a data center, and

does not require prior knowledge of heat transfer rules.

Holistic thermal-aware workload management and infrastructure control for het-

erogeneous data centers using machine learning is the subject of the next phase,

which considers the problem of workload assignment and cooling control, combining

the main aspects of thermal heterogeneity in data centers. It assumes thermal differ-

ences between servers and between locations in a data center using the thermal model

constructed in the previous phase. The results show a potential to save a considerable

amount of power as a result of leveraging synergies between the workload scheduler

and control of the cooling unit.
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Finally, a real-time control system is implemented which jointly controls cooling

units and workload assignment in a data center. The controller in this system consid-

ers the thermal differences of servers to generate the expected thermal requirements

corresponding to servers using a temperature requirement map. The capability of the

cooling unit and also the thermal effects of servers are accounted for in this map. The

system determines the operational variables of the cooling units using model predic-

tive control to minimize the cooling power while satisfying the required temperatures

given by the temperature map.
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Chapter 1

Introduction

Data centers are amongst the largest power consumers on Earth [1]. On the one hand,

IT equipment is becoming more compact, resulting in higher densities of computing

power. On the other hand, the computing landscape has moved towards migrating

processes, applications, and services to data centers. This trend necessitates more IT

infrastructure to support the increasing demand by expanding data centers [2]. Hence,

this power-hungry infrastructure requires great attention with respect to its power

efficiency. The dissipation of generated heat in data centers, mainly by servers, is a

significant challenge. So, the efficient use of power to cool data centers has motivated

many investments and studies. There is much effort (both in industry and academia)

towards decreasing the energy consumed by the IT installed in data centers as well

as corresponding cooling costs [3].

Addressing the power consumption of IT has been done at different levels. For

example, low power transistor and IC designs [4, 5], different power states of devices

and processors [6], powering off unneeded servers considering the affected performance

[7], and high-performance power supplies, transformers, and power distribution units
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(PDUs) [8]. Additionally, the design of cooling units has been explored at various

levels from high-performance air blade, fan, and chiller designs to the design of ef-

ficient cooling architectures that couple with IT infrastructure, such as raised floor

architectures [9].

There is a body of work on thermal-aware workload assignment approaches that

use thermal models for temperature predictions to discover cooling heterogeneity in

data centers. Tang et al. [10] develop a thermal-aware workload manager to mini-

mize the peak server inlet temperature through an optimal assignment of workload.

Their work is based on a static heat re-circulation matrix (HRM). Abbasi et al. [11]

minimize the total amount of heat re-circulation to increase the cooling unit supply

air temperature. Mukherjee et al. [12] extend Abbasi’s work [11] by considering job

deadlines as extra constraints in the power minimization process. Moreover, servers

can be slowed down to throttle temperature peaks.

Fang et al. [13] propose a data center control and management framework by

jointly making IT and cooling decisions to save power. The solution to the underlying

optimization problem finds the optimal active server set, job assignment, and set-

points of cooling units to minimize the total power consumption. Their thermal model

corresponds to an HRM. Zhao et al. [14] present a control method to reduce power

consumption, using a control loop to maintain inlet temperatures of servers at an

appropriate set-point by dynamically adjusting operating frequencies and utilizations

of servers. Their thermal model is also based on an HRM.

In general, these methods suffer from a couple of issues. An HRM is neither

accurate enough for temperature predictions nor appropriate for the dynamic envi-

ronment of a data center. Even extensions to a static HRM, such as the HRM-based

2
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approach enhanced by considering airflow changes proposed by Wang et al. [15] have

drawbacks with respect to implementation. Additionally, in [15], the only cooling

unit parameter is the set-point, more granular controllable variables of the cooling

units are not considered.

The literature lacks a method for fully IT-aware cooling control or holistic control

of data centers. We show that exploiting thermal heterogeneity in a data center can

allow for effective joint workload assignment and cooling control for saving power.

This consideration can considerably decrease the data center power consumption.

One aspect of data center thermal heterogeneity is the thermal characteristics

of servers. We show that even servers of the same type or make could have differ-

ent thermal characteristics, leading to different cooling costs. Also, we show that

power-saving potentials exist when considering cooling heterogeneity in data centers.

However, the main issue in accurately modeling the cooling heterogeneity is a thermal

model that estimates temperatures in a data center — the traditional method has

been to use physics-based thermal models. We investigate learning-based methods

through regression and neural network methods. We find that through an appropriate

implementation of neural networks, an accurate thermal model can be constructed.

This model is a promising alternative to computationally expensive and difficult to

scale physics-based thermal models. This neural network thermal model is used in

another work to construct a framework that jointly assigns workload and adjusts the

operational parameters of the cooling units in a power-efficient manner. In our last

piece of work, a model predictive control method is used to cool servers based on

temperature requirements of servers. Our work is performed and described in five

consecutive papers, which we now outline.

3
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In the first paper [16], a workload assignment method is designed considering

thermal differences between servers. It uses a polynomial regression method to relate

the temperature of critical components inside a server to its inlet air temperature and

processing load. An optimization process, considering thermal models of all servers,

assigns workload in a manner that decreases the overall temperature requirements of

servers while respecting temperature constraints of server components. This process

also provides feedback for cooling units to adjust their supply air temperature.

Determining power savings opportunities by considering cooling heterogeneity is

the matter of our next work [17]. Exploiting cooling heterogeneity requires relating the

cost of cooling different locations inside a data center. We use a zonal-based thermal

model for the temperature estimates. This thermal model is based on laws of physics

and heat-transfer equations for calculating the temperature of thermal zones at the

front of the servers. It is shown that both adjusting the cooling units’ operational

parameters and the assignment of workload considerably affects the cooling power.

We form an optimization problem and find that an optimal choice of operational

parameters and assignment of workload can result in a considerable amount of power

savings.

We address the problem of constructing the thermal model in our next work [18].

The physics-based thermal models used in the previous work are design-specific, and

are somewhat simplified. We desire to have a thermal model that is fast, accurate,

adaptable to thermal changes in a data center, and does not require prior knowledge

of heat transfer rules between data center entities. Hence, we present a high precision

learning-based thermal model using neural networks that predicts the temperature of

critical zones using data center operational variables. The operational variables are

4
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controllable parameters of IT and cooling units, such as server loads and fan speeds.

In the next step of our study [19], data center thermal heterogeneity is exploited

from all aspects for workload assignment and cooling control, resulting in a consider-

able amount of savings in the total data center power consumption. A neural network

thermal model (as described in the previous paragraph) is used for the temperature

predictions for the inlet air temperature of servers. A thermal model of servers pro-

vides the required inlet temperature of servers as a function of their utilization. The

frameworks for obtaining thermal models are presented. The thermal models are

then incorporated as the core of an optimization process for the workload assignment

and cooling control. We observe considerable power saving possibilities as a result of

using our methods.

The final step of this study is to construct a holistic thermal-aware workload

assignment and cooling controller for data centers [20]. The fast and accurate tem-

perature estimates of the neural network thermal model provide us with an excellent

tool for implementing real-time control. We introduce a control mechanism which

can cool servers based on a given map of required server inlet temperatures rather

than a single set-point. This pattern of required temperatures is optimized through

another process that considers cooling units’ ability to cool different locations and

the assigned workload of servers. Implementing the framework on a data center with

in-row cooling shows the potential for considerable power savings compared to other

conventional controllers.

The rest of this dissertation is as follows. To aid the reader in navigating the the-

sis, the logical connections between the chapters are provided in Figure 1.1. The next

chapter (Chapter 2) considers thermal heterogeneity of servers, with the title EAWA:

5
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Figure 1.1: The logical connections between the chapters

Energy-aware workload assignment in data centers. Chapter 3 is Joint data center

cooling and workload management: A thermal-aware approach, which exploits cooling

heterogeneity using a physics-based thermal model. ALTM: Adaptive learning-based

thermal model for temperature predictions in data centers is the subject of Chapter 4,

which demonstrates the use of neural networks for the time-series predictions. Chap-

ter 5 includes a complete heterogeneity-aware framework for workload assignment and

cooling control in data centers. Holistic thermal-aware workload management and in-

frastructure control for heterogeneous data centers using machine learning is the title

of this work. Chapter 6, IT-aware cooling control framework for data centers: A

machine learning control approach, explains the design of a system for workload and

data center control. This work describes the physical implementation of a controller

that considers the transient behavior of a data center. Finally, the last chapter con-

cludes our achievements and remarks on the highlights. It also discusses possibilities

for improvements and plans for future work.
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Chapter 2

EAWA: Energy-Aware Workload

Assignment in Data Centers

This chapter is reproduced from “EAWA: Energy-Aware Workload Assignment in

Data Centers”, SeyedMorteza MirhoseiniNejad, Ghada Badawy, and Douglas G.

Down, published in International Conference on High Performance Computing &

Simulation (HPCS), pp. 260 - 267, IEEE, 2018.

The author of this thesis is the first author and the main contributor of this

publication. His contributions to this work consist of introducing the idea of server

heterogeneity, writing the manuscript, formulating the optimization problem, con-

ducting the experiments, implementing the framework, and generating the numerical

results.
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Abstract

One of the challenges that today’s cloud computing infrastructures, and more

specifically data centers, are struggling with is related to their energy consumption.

Information technology (IT) equipment and cooling infrastructure are key parts of

the total energy expenditure in a data center. A considerable amount of power is

wasted due to workload management inefficiencies and the lack of coordination be-

tween cooling units and IT equipment. In this paper, server differences in terms of

their cooling requirements and power consumption are taken into account for work-

load distribution. An optimal workload assignment problem that takes both server

power consumption and thermal models into account is formulated. A simple low

complexity algorithm is proposed. The algorithm not only assigns workload but it

also adjusts the cooling unit set-point accordingly. Results show that the proposed

algorithm can significantly reduce the total power consumed in a data center, in

particular when compared to the uniform workload distribution algorithm.

Keywords: data center scheduling, thermal model, workload management, power

efficiency, cooling efficiency

2.1 Introduction

Cloud computing infrastructures are currently drawing 3 to 5% of the world’s elec-

tricity [1, 2]. These facilities are crucial in the shift from powerful personal computing

devices. It has been estimated that cloud services demand will grow more rapidly in

the near future [3]. These cloud services need to be run in data centers and large

vendors such as Google, Microsoft, Apple and Amazon are rapidly deploying data
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centers throughout the world [4].

Such a shift to use cloud services and the resulting high demand for cloud ap-

plications require data centers with an increasing number of resources. There are

many ongoing research projects on the efficient use of data center facilities, aiming to

minimize power consumption.

A number of techniques have been considered to make data centers more energy

efficient. Some IT devices support low power states to save energy if the quality of ser-

vice (QoS) is not impacted. At the component level, dynamic voltage and frequency

scaling (DVFS) is a method that provides different levels of power consumption and

performance for processors [5, 6]. At the server level, several studies consider dy-

namic suspension of unneeded servers, called server consolidation. This saves both

IT and cooling power due to the considerable length of low workload periods [7, 8, 9].

However, the trade-off between system performance and the number of On servers is

a matter of debate [10, 11]. Additionally, the power efficiency of the cooling system

itself is also a significant concern [12, 13].

One of the most important topics in this area is server workload management,

for which there is a significant body of literature. The workload manager should

distribute the offered load between servers. Inefficient distribution of workload might

impose both extra cooling and computing power costs [14, 15]. Some studies that

have addressed workload assignment and the resulting thermal effects are reviewed

in the next section.

The work presented in this paper exploits the opportunities that arise from consid-

ering server differences. Two different servers may have different power consumption

models and cooling requirements. Servers of different types/models might process a

9
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Figure 2.2: Wires blocking at the back of servers

given workload with different levels of power consumption. Even for servers of the

same type/model, there are some contributing factors that change thermal charac-

teristics that in turn alter their cooling requirements.

Location, internal design, age, obstructions (at the front or back) alter the ther-

mal characteristics of each server. Individual server characteristics result in different

degrees of thermal resistance and consequently each server has its own required cool-

ing power with respect to its thermal condition. For example, long-term operation

changes the thermal characteristics of servers. If a server works continuously, dust

and small particles can stick to the edges of vents, heat sinks, fins, etc. The physics

of heat transfer can be used to show that the covered surface needs more power to

remove the increased temperature beneath the cover [16]. Server location is also a

contributing factor defining the thermal condition of a server, because different lo-

cations might have different airflows. Altered airflow of a server changes its thermal

resistance [17]. Fig. 2.2 shows an example of obstructions made by network and

power cables at the back of a set of servers. Such obstructions clearly alter the air

flow and unfortunately are typical features of data center environments.

We would like to quantify the opportunity (in terms of cost savings) of taking

into account the individual characteristics of servers. In addition, we would like to

10
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address the fact that cooling control and workload assignment are typically performed

independently. If there is an estimate of the cost of assigning a job to each server,

an optimal solution for workload assignment can be developed. In terms of cooling

control, the current practice it to set the cooling set-point to the lowest possible value

to consider the worst case scenario in a data center; this happens when all servers are

heavily utilized. Such a requirement can be relaxed if an entity reports the current

cooling requirement of servers to the cooling unit. The cooling unit can then increase

its set-point to match the server cooling requirements, which will decrease cooling

cost. Our method, energy aware workload assignment or in short EAWA, addresses

these concerns. We also note that our algorithm includes performance constraints.

In particular, our main contributions are as follows:

� Introducing a thermal model to measure the maximum allowable inlet temper-
ature of servers.

� Formalizing a power minimization problem to optimize the workload distribu-
tion.

� Preventing over-cooling.

� A low complexity solution for the optimization problem.

First of all, two models for the power and thermal condition of servers are in-

troduced. Then a constrained power consumption minimization problem is proposed

that uses the aforementioned models for workload distribution. A solution is pre-

sented for the optimization problem. An alternative to simplify the application of

EAWA is discussed in the results.

11
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2.2 Background

In [18] Mukherjee et al. developed a thermal-aware workload assignment algorithm

using a model that they introduced for heat recirculation in a data center. It min-

imizes the power consumption with respect to given performance constraints. Tang

et al. [12] also study the heat recirculation model in data centers. They tried to

distribute the workload in a way that makes the temperature at the front of servers

as uniform as possible.

Sharma et al. [19] presented a framework for thermal load balancing. They ap-

plied load monitoring to guide workload assignment decisions to smooth the thermal

distribution in a data center. In this way, temperature is distributed uniformly and

hot-spots are reduced.

In [13] Bash and Forman presented a method which they called cool job assign-

ment. They suggest placing jobs in cool-efficient locations. To rank locations an index

is defined. This index quantifies the response at the ith rack inlet sensor to a step

change in the supply temperature of the jth cooling unit. The resulting algorithm

for assigning workload is simple. Upon arrival of a batch of jobs, the longest job is

assigned to the corresponding server of the highest ranked location and so on.

Abbasi et al. [20] presented a method to find an optimal set of On servers and

optimal means of workload assignment; these are called thermal aware server provi-

sioning (TASP) and thermal aware workload assignment (TAWA), respectively. The

latter is related to our work. In TAWA they design an algorithm that distributes the

workload among servers in a manner that minimizes the total power consumption

in a data center. A key component of their approach is the quantification of heat

recirculation effects via a heat recirculation matrix. TAWA tries to minimize this
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heat recirculation.

EAWA considers individual differences between servers. The differences originate

from processing power and thermal requirements of servers. However, none of the pre-

vious works take these differences into account for assigning workload to servers. To

the best of our knowledge, no previous study has looked at the workload assignment

problem from this perspective.

2.3 Energy-aware workload Assignment

Inefficient workload distribution can cause extra heat production in data centers and

cooling over-provisioning leads to a surplus in cool air generation. Both inefficiencies

result in extra power consumption. We model servers from both perspectives of direct

power consumption and thermal requirements.

The core of our idea is that workload should be assigned to servers that require

less power to process the assigned workload and at the same time to those servers

that impose low cooling demand. In other words, a given workload should be assigned

to servers that are efficient in both processing and cooling power. In this way we not

only have processing power savings from such a distribution, but additional savings

can be realized from preventing over-cooling by adjusting the set-point temperature

(Tset) of the cooling unit. Our data center model is equipped with n servers and a

single cooling unit. An ideal cooling unit is assumed in this paper. Both cooling

unit supply-air temperature (Tsup) and the temperature at the front of servers (inlet)

(Tin) are assumed to be equal to the set-point temperature of the cooling unit. These

assumptions are made for ease of presentation and the interests of space. Relaxing

these assumptions is not difficult.
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Table 2.1: Notations

Variable Definition

n Total number of servers
D Offered Load or workload demand
u Utilization vector of length n
ui CPU utilization of ith server
umax Maximum allowed CPU utilization
ci,j ith coefficient of power model of jth server
βi,j ith coefficient of thermal model of jth server

Pserver,i ith server power consumption (Watt)
Ptotal Total power consumption (Watt)
Pit Power consumption of IT units (Watt)
Pcool Cooling infrastructure power (Watt)
Pcpu,i CPU power consumption of ith server (Watt)
Tcpu,i CPU temperature of ith server (◦C)
Tsup Supply air temperature of cooling unit (◦C)
T redcpu CPU red-line temperature (◦C)
Tin,i Inlet temperature of ith server (◦C)
T reqin,i Maximum allowable inlet temp. of ith server (◦C)
T reqin Vector of maximum allowable inlet temp. of servers
Tset Set-Point temperature of cooling unit
CoP Coefficient of performance
δu Workload unit which can be assigned to a server

In this section, both thermal and power models are first presented. We then

provide a means to distribute workload amongst servers in a way that minimizes

total power consumption of the data center. The method determines an appropriate

amount of workload to distribute to each server. In addition, the method sets the

cooling set-point to the maximum possible temperature while ensuring that servers

will not overheat. The notation used in this paper is listed in Table 2.1.
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2.3.1 Power model

Ham, in [17], has developed a power consumption model for servers. He shows that

the power consumption of a server (Pserver,i) can be approximated by the CPU power

(Pcpu,i) which is represented as a function of CPU utilization ui and the CPU tem-

perature (Tcpu,i) as shown in (2.3.1). The subscript i denotes the ith server.

Pserver,i ≈ Pcpu,i = c1,i + c2,i · ui + c3,i · Tcpu,i + c4,i · T 2
cpu,i. (2.3.1)

This model has one significant contributing factor, the CPU utilization, ui. Although

(2.3.1) shows that temperature affects CPU power consumption, it is negligible in

comparison with CPU utilization. The authors in [17] simplified the model to (2.3.2)

but there are also other works such as [12, 20, 21] that have also used (2.3.2). Zapater

et al. [21] investigated the effect of the die or CPU temperature on the overall power

consumption of servers in a thorough study, and their work confirms the impercep-

tibility of the impact of Tcpu,i. Therefore, we use the model (2.3.2) throughout this

paper.

Pserver,i = c1,i + c2,i · ui (2.3.2)

Using this power model, we ran a series of experiments to find the coefficients c1,i

and c2,i for several servers. We saw that the difference between two servers of the

same model/type is negligible, but servers of different models or manufacturers have

completely different coefficients c1,i and c2,i.
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2.3.2 Thermal model

The thermal model plays an important role in formulating the workload assignment

problem. Our experiments on servers show that different thermal conditions con-

siderably affect servers’ CPU temperature. Using the model leverages differences in

thermal conditions to assign workload. If servers have the same processing speed and

power consumption, it makes more sense to send a given workload to servers that are

located in favorable thermal conditions. In other words, workload should be sent to

servers that are less expensive to cool.

Thermal model matters

To have a proper sense and understanding of the thermal condition and how it might

affect cooling requirements of a server, an experiment was performed. We measured

the cooling requirements of an HP ProLiant DL380 server under two different con-

figurations. In Configuration 2, we partly blocked vents of the server. However in

Configuration 1, the experiment was performed without the blockage of the server

vents. Configuration 1 has less restrictive airflow than Configuration 2 and can be

cooled down easily.

To determine thermal condition differences, we assigned the same workload to

both configurations, installed them in the middle of a rack while other servers were

working. The inlet temperature of the server was controlled by an in-row cooling unit,

and all doors of the enclosure were closed during the experiment. With the same CPU

utilization and the same Tin = 26°C, we found that Tcpu for Configuration 1 was 65°C

and Tcpu for Configuration 2 was 72°C. Both temperatures are steady-state values.

To compensate the increased Tcpu, in Configuration 2, and lower it back to 65°C, we
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had to decrease the set-point of the cooling unit to Tin = 21°C. Reducing Tcpu would

be at the expense of increasing cooling power consumption.

Returning to workload management, the server in Configuration 1 would be pre-

ferred to assign workload because its total power consumption -the sum of server and

cooling power- is lower than the server in Configuration 2. This idea can be applied in

general to select servers that are less expensive to cool if they are otherwise identical.

We now introduce a thermal model to be used for workload distribution.

Thermal model

Server CPU temperature is critical and it should be kept below a certain threshold.

The maximum allowable CPU temperature is called the red-line temperature (T redcpu ).

Our experiments show that the CPU temperature of a server (Tcpu,i) has two con-

tributing factors, CPU utilization (ui) and inlet temperature (Tin,i). We curve-fitted

data measured from a series of experiments. Equation (2.3.3) provides the model,

where ui is a second order factor and Tin,i is a first order factor. The interesting

aspect of the obtained model is that all server types that we studied follow (2.3.3),

however with different coefficients.

Tcpu,i = β1,i + β2,i · ui + β3,i · Tin,i + β4,i · u2
i + β5,i · ui · Tin,i. (2.3.3)

Coefficients of (2.3.3) for the server in Configuration 1 are: β1 = 13.4, β2 = 10.3,

β3 = 1.5, β4 = 26.5 and β5 = −.25. Using (2.3.3), we define the notion of maximum

allowable inlet temperature (T reqin,i) using T redcpu . For the sake of simplicity, T redcpu is con-

sidered to be equal for all servers. If Tcpu,i is set to the red-line temperature (T redcpu ),
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Figure 2.3: Maximum required inlet temperature for two different configurations

the maximum allowable inlet temperature can be calculated with respect to ui.

T reqin,i =
T redcpu − (β1,i + β2,i · ui + β4,i · u2

i )

β3,i + β5,i · ui
(2.3.4)

The curves in Fig. 2.3 show the maximum allowable inlet temperature for both

settings as a function of CPU utilization. As expected, Configuration 2 requires

a lower inlet temperature. Moreover, the required inlet temperature decreases when

CPU utilization increases. One thing that is important to note is that in what follows,

different thermal models could easily be incorporated. The only requirement is that

the maximum inlet temperature be expressible as a function of utilization.

2.3.3 Optimization problem

In our workload assignment problem, the aim is to assign the offered load or demand,

(D) to a set of servers so that the total power consumption is minimized. The total

power consumption (Ptotal) is the sum of server power Pit and cooling power Pcool,
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i.e.,

Ptotal = Pit + Pcool. (2.3.5)

Obtaining Pit is straightforward; it is determined by adding the power consumptions

(Pserver,i) of all of the servers. Recalling the power model for each server allows Pit

to be written as:

Pit =
n∑
i=1

(c1,i + c2,i · ui). (2.3.6)

The Coefficient of Performance (CoP) of a cooling system is the ratio of useful cooling

provided to work required [22]. Higher CoPs equate to lower cooling cost and CoP is

usually greater than one. The CoP is given by:

CoP =
Pit
Pcool

or Pcool =
Pit
CoP

. (2.3.7)

Using (2.3.5) and (2.3.7), the total power consumption is thus expressed as:

Ptotal = (1 +
1

CoP
) · Pit. (2.3.8)

CoP is typically a quadratic function of supply air-temperature (Tsup), see [23]. To be

precise,

CoP = γ1 + γ2 · Tsup + γ3 · T 2
sup. (2.3.9)

As mentioned previously, we have assumed an ideal cooling unit. Hence Tset = Tsup

and both are equal to Tin. Tset should be assigned in a way that satisfies the temper-

ature requirements of all servers. So, the set-point should be equal to the smallest
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required inlet temperature of all servers:

Tsup = Tset = min(T reqin ). (2.3.10)

Combining (2.3.8) and (2.3.9),

Ptotal = (1 +
1

CoP (Tsup)
) ·

n∑
i=1

(c0,i + c1,i · ui). (2.3.11)

In (2.3.11), the power consumption of the data center decreases with higher inlet tem-

perature. This happens because a higher Tin yields a higher CoP in the denominator.

We first formulate our optimization problem and we will then proceed to discuss it

in more detail.

minimize
u

Ptotal

subject to
n∑
i=1

ui = D,

0 ≤ ui ≤ umax, i = 1, . . . , n

Tcpu,i ≤ T redcpu , i = 1, . . . , n

In the minimization problem, Ptotal is given in (2.3.5) or equivalently in (2.3.11). The

variable u is the utilization vector of all of the servers, where the ith entry, ui is

the utilization of the ith server. The value umax is determined to meet performance

constraints, as simply minimizing the power consumption may result in unacceptable

performance. For example, one can use queuing-theoretic techniques to determine

umax [24]. We have chosen to constrain the performance indirectly through the uti-

lization, but it is possible to include explicit performance constraints. This may be

at the cost of a more complex optimization problem. In this problem D is supposed
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to be a cap for the current status of the offered load to the system.

2.3.4 Solution to optimization problem

The optimization problem can be solved using sequential quadratic programming

(SQP). However, we provide a heuristic algorithm which is attractive for implemen-

tation. We then compare the results of our algorithm with SQP to show the accuracy

of our algorithm.

The heuristic solution to the problem is a greedy approach. Here, we assume that

workload can be assigned in quanta δu and the offered load consists of an integral

number of such quanta. Starting from a fully zero utilization vector, δu will succes-

sively be added to the currently preferred server. The sum of the assigned δus to a

server should not exceed umax, and the process is continued to the point that all of

the offered workload is assigned.

In each step, the optimal server to receive δu is the server that increases the sum of

Pit and Pcool by the smallest amount. This can be done using a linear search amongst

the server set. At each step, δu is assigned to the server that was previously selected,

unless assigning δu to this server changes the minimum required inlet temperature. In

other words, the algorithm tries to maximize the minimum required inlet temperature

while taking into account server power consumption.

Algorithm 1 provides the details of our approach. The first for loop under main,

at each iteration adds δu to the current load of the best server to accept this additional

load. The ith entry of u denotes the utilization of the ith server; optimalServer points

to a server that executes the additional workload δu with the minimum total power

cost. This optimal server (optimalServer) is returned by the getOptimalServer
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Result: Opt. WL assignment and set-point adjustment
void main ( void ):

global n=num-of-servers,D=offered-load; % Both are integers that need to be
initialized

global u=zeros; % A vector of length n
global c1, c2; %Vectors of servers’ power model coefficients (unique for each server)
global β1, β2, β3, β4, β5; %Vectors of servers’ thermal model coefficients (unique for
each server)

global δu=delta-utilization; % The smallest fraction of the utilization that can be
assigned to a server

for index=0 : δu : D do
optimalServer = getOptimalServer(δu);
u(optimalServer)+ = δu;

end

Input: δu is the only input of this function
Output: Index of the optimal server to accept δu
integer getOptimalServer ( float ):

for i=1 to n do
if u(i) ≤ umax then

δpwr(i) = deltaPower(i, δu);
end
return index of the minimum element in δpwr;

end

Input: server index (Indexserver) & delta utilization (δu)
Output: Power increase of a server w.r.t. δu
float deltaPower ( integer, float ):

global u;
power1 = totalPower(u);
u(Indexserver) = u(Indexserver) + δu;
power2 = totalPower(u); %Adds δu on top of the current utilization of a servers
which is shown by serverindex
u(Indexserver) = u(Indexserver)− δu; %Restores the u vector
return power2− power1;

Input: Vector of server utilizations (u)
Output: Total power consumption
float totalPower ( vector of floats ):

global c1, c2;
global β1, β2, β3, β4, β5;
inletTemp = Tin(u, βis); %From (2.3.4)
CoPval = CoP (min(inletTemp)); %From (2.3.9)
Pit=c1 + c2. ∗ u; %Element-wise operation
P totalit = sum(Pit);

return P totalit ∗ (1 + 1/CoPval);

Algorithm 1: Optimization algorithm
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function.

The function getOptimalServer simply searches all possibilities to find the opti-

mal server to accept δu. In other words, getOptimalServer adds δu to the current

load of each server and saves the power increase in another vector, δpwr; the index

of the minimum value in δpwr is then returned. However, this can be written in a

more efficient way. For example, optimalServer can be the previously selected server,

unless the given δu decreases min(T reqin ).

The getOptimalServer function calls another function, deltaPower. deltaPower

returns the power increase with respect to the current load of all servers. It requires

two inputs, the index of the server (serverindex) and δu. The function adds δu to the

current utilization of the server specified by serverindex and then returns the increased

power consumption. deltaPower calls another function totalPower that returns the

total power consumption of the data center, considering both cooling unit and server

power consumption. This function uses (2.3.11) to calculate the total power. In

the totalPower function there is a vector inletTemp which stores the required inlet

temperature of each server. The cooling unit should set its set-point to the minimum

value stored in inletTemp.

The complexity of this solution is easily derived. The solution requires two main

loops, the outer loop counts δus to assign them one by one to the optimal server, and

the inner loop locates the optimal server. As each loop is of O(n), the complexity of

the algorithm is O(n2).

Using the proposed algorithm to solve the optimization problem is preferred. The

algorithm gives almost the same results as compared to SQP, as shown in Table 2.2.

In fact, SQP is allowed to have finer-grained utilization values which fits a little better
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Table 2.2: Workload assignment of first few servers and the corresponding power
consumption for both solutions

Server 01 02 03 04 · · · Power(W)

SQP 0.4541 0.6144 0.5504 0.2625 · · · 2496.4
Greedy 0.4500 0.6100 0.5500 0.2600 · · · 2496.9

to the optimization cost function as shown in the last column of the table. While it

may appear that the performance of the second solution is limited by the size of δu,

we have varied the value of δu and found that as long as it is chosen to be reasonably

small, the results are not very sensitive to its value. The greedy approach is the

preferred solution for two main reasons. First, it exploits the problem structure and

is easily implemented. It has simple steps with reasonable running time. Second,

if we already have the solution for a given load D, the solution for an offered load

D + δu is simply assigning the additional δu to the best server.

2.3.5 Results

The most reasonable way of demonstrating the performance of our method is com-

paring power consumption curves. Our method is compared with the Thermal aware

workload assignment (TAWA) method which was presented first by Tang [12] and then

improved by Abbasi [20]. Basically, TAWA minimizes hot-air recirculation within a

data center. It sends a given load to a server that has less contribution to the recircu-

lated hot air. In addition, we compared our method with the policy where workload

is dispensed evenly between all servers, a policy that we call Uniform Distribution.

Uniform workload assignment is a near optimal workload distribution policy in many
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Table 2.3: Coefficient of the baseline models per each type

Server Type 1 Type 2 Type 3

c1 110 99 103
c2 119 102 132
β1 13.4 12.1 14.5
β2 10.3 11.1 9.3
β3 1.5 1.3 1.6
β4 26.5 23.3 25.8
β5 -0.35 -0.23 -0.19

studies (ignoring air-recirculation effects) see [20, 23, 25]; in addition, it is preferred

in terms of response time performance [24].

To run the algorithm, we need a power consumption model and thermal model

for each server. This is because obtaining the total power consumption (2.3.11) -

the objective function of the minimization problem- requires cis and βis of all servers.

Having them, we generated random values for the required coefficients using a normal

random generator with the mean of the baseline model coefficients. Table 2.3 shows

the coefficients for the baseline model under type 1 to use as the means for the

normal distribution. We used the variance of 20% of the mean for the normal random

generator.

A system with 100 servers and umax=0.8 is considered. So, the maximum offered

load D cannot exceed 80. The result of comparing the power consumption of our

method with the uniform workload assignment method is shown in Fig. 2.4. The

method not only saves a considerable amount of energy compared to uniform workload

assignment, but it also leads to a simple means to control the cooling unit set-point

(this is discussed in more detail later). The amount of power consumption reduction
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Figure 2.4: Power consumption of data center for two workload assignment methods

is notable. Significant savings come from reducing over-cooling.

2.4 Discussion

In this section, we examine EAWA for different data center settings. A data center

can be built up with servers of one type or servers of multiple types. Additionally, two

methods for generating the energy models for servers are studied, the exact model and

average model. The exact model considers each individual server model for workload

assignment and the average model uses a baseline model as a representative for all

servers of the same type. So, all coefficients (βis and cis) of servers of the same

type are assumed to be equal in the average model. However, in the exact model all

coefficients (βis and cis) of servers are specific to servers and they are drawn from

a normal random generator around the type’s baseline (Table 2.3) as explained in

Section 2.3.5. In this section, the data center includes 100 servers and umax = 0.8.
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Figure 2.5: Comparing power consumption of EAWA and uniform assignment

2.4.1 Servers of one type

First we consider a simple scenario for workload distribution to present the effective-

ness of our method, a data center with only one type of servers. Fig. 2.5 shows power

consumption curves for three workload assignment methods based on the offered load.

As expected, if EAWA uses the exact model, it consumes less power compared to when

it uses the average model. It can also be noted from the figure that when we have a

light load using the average model works fine, however, as the load increases, workload

distribution using the exact model becomes increasingly advantageous. A consider-

able decrease in power consumption is obtained using our method (EAWA) compared

to uniform workload distribution.

2.4.2 Servers of different types

Usually data canters contain several types/models of servers. Each server has its

own architecture and technology. If we consider a data center with different types of

servers, we need to define a baseline model for each type. The means of generating
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Figure 2.6: Total power consumption of data center for three workload assignment
methods

exact models for each server of a specific type is explained at the beginning of this

section. To use average models, it is required to assign the corresponding baseline

models to servers.

Data centers with servers of multiple types have configurations for which our

workload distribution method works very well and shows significant savings. Each

server manufacturer employs certain hardware designs for different server types. Two

different server types, even from the same manufacturer, might have different power

profiles or thermal characteristics. When we consider different types of servers, there

is more room for our method to exploit their differences and save power. We examined

our method for the cases with multiple types of servers. For example, Fig. 2.6 shows

the result for three types of servers.

2.4.3 Average model versus exact model

In Fig. 2.5 and Fig. 2.6 results for both exact models and average models are pre-

sented. Using each of these models for workload assignment purposes has pros and
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Table 2.4: Difference between power consumption of exact and average models in
percentages

Number of types 1 2 3 4

Percentage 12 9 6 5

cons. The differences between these two models can be compared with respect to

both performance and implementation concerns. All figures show that using the ex-

act models outperforms using the average models in the power consumption aspect;

however, the difference appears negligible in some scenarios. On the other hand, prac-

tically speaking, using exact models has more limitations than using average models.

Exact models require scripts to run on each machine and each server is individually

responsible for calculating its own model. This might hinder the acceptance of this

method by some data center operators, due to security concerns, for example.

The alternative is to use the average model. In comparison with the exact model,

it uses more power; however, using this model is straightforward to implement. This

is because there is no need for each server to compute its own model and an average

model will be used for all. To obtain the average model it would be enough to test one

server of the candidate model, and find the coefficients of (2.3.2) and (2.3.3) using a

polynomial curve fitting method.

Table 2.4 presents the power consumption reduction between these two models in

percentages. It shows how much the exact model outperforms the average model with

respect to the number of server types/models. The table shows that if the number

of server types increases, the performance of these two models becomes very close to

each other.
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All in all, if the data center is homogeneous and there are no security or accessi-

bility concerns, it does make sense to use the exact model for the proposed algorithm.

On the other hand, using the average model is reasonable if there are a variety of

servers or using the exact model is limited by some security or technical concerns.

2.4.4 Set-Point Adjustment and Cooling Unit Control

One of the contributions of this work is adjusting the set-point of the cooling unit,

which we now discuss in more detail. Implementing a control mechanism for the

cooling unit was not the initial purpose of this paper, in particular our observations

here are limited to steady-state behavior, whereas a full control system design would

necessarily consider transient behavior. Having said that, our experiments do yield

insight on cooling control.

Plotting the set-point gives rise to an interesting observation. Fig. 2.7 shows the

set-point of the cooling unit versus the offered load. The key observation is that the

curve begins as a flat line until it reaches a high offered load, at which point it drops.

The reason for this is that servers are utilized up to the point that they require more

cooling power. At this point, if there is any server that can serve the given workload

without changing the set-point, it is preferred to send the workload to that server.

A sudden decrease in the set-point happens when there is no server to accept the

workload without reducing the set-point.

This suggests that a simple control mechanism may be appropriate. As mentioned,

data centers usually experience a low amount of workload during the majority of their

life because of over-provisioning that exists during their design. On the other hand,

Fig. 2.7 shows that if the offered load is light, the set-point curve is flat. The set-point
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Figure 2.7: Temperature of the cooling unit set-point for two methods

could then be set to the minimum required value (that occurs at maximum load) once

the offered load rises above a threshold.

2.5 Conclusion

An energy-aware workload assignment method is proposed in this paper. We have

leveraged the fact that the power requirements of servers can differ both in their direct

power consumption and also their indirect cooling requirements. The work takes

the power profiles and thermal models of servers into account to assign workloads to

servers. Moreover, the cooling unit adjusts itself with the current cooling requirements

of servers. An optimization problem is defined for the assignment of offered loads to

servers. Two ways of modeling a server are proposed and compared; one of them is

very easy to implement and provides near optimal results. The results of the paper

show a way to achieve considerable amounts of savings in power consumption. It also

offers the additional insight that cooling control with two set-points is near optimal.

31



Ph.D. Thesis – S.Morteza M.Nejad McMaster University – Computer Science

Acknowledgment

This research was supported by Grant CRDPI 506142-16 from the Natural Science

and Engineering Research Conceal of Canada.

Bibliography

[1] K. C. Armel, A. Gupta, G. Shrimali, and A. Albert, “Is disaggregation the holy

grail of energy efficiency? the case of electricity,” Energy Policy, vol. 52, pp. 213–

234, 2013.

[2] M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu,

M. Halverson, D. Winiarski, M. Rosenberg, et al., “Us department of energy

commercial reference building models of the national building stock,” 2011.

[3] V. Cisco, “Cisco visual networking index: Forecast and methodology 2014–2019

white paper,” Cisco, Tech. Rep, 2015.

[4] Y. Jadeja and K. Modi, “Cloud computing-concepts, architecture and chal-

lenges,” in Computing, Electronics and Electrical Technologies (ICCEET), 2012

International Conference on, pp. 877–880, IEEE, 2012.

[5] E. Aldahari, “Dynamic voltage and frequency scaling enhanced task scheduling

technologies toward green cloud computing,” in Applied Computing and Infor-

mation Technology/3rd Intl Conf on Computational Science/Intelligence and Ap-

plied Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science &

Engineering (ACIT-CSII-BCD), 2016 4th Intl Conf on, pp. 20–25, IEEE, 2016.

32



Ph.D. Thesis – S.Morteza M.Nejad McMaster University – Computer Science

[6] R. Ge, X. Feng, and K. W. Cameron, “Performance-constrained distributed dvs

scheduling for scientific applications on power-aware clusters,” in Supercomput-

ing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pp. 34–34, IEEE,

2005.

[7] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch,

“Power management of online data-intensive services,” in Computer Architecture

(ISCA), 2011 38th Annual International Symposium on, pp. 319–330, IEEE,

2011.

[8] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic right-sizing

for power-proportional data centers,” IEEE/ACM Transactions on Networking

(TON), vol. 21, no. 5, pp. 1378–1391, 2013.

[9] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz, “Nap-

sac: Design and implementation of a power-proportional web cluster,” ACM

SIGCOMM computer communication review, vol. 41, no. 1, pp. 102–108, 2011.

[10] V. J. Maccio and D. G. Down, “Asymptotic performance of energy-aware multi-

server queueing systems with setup times,” tech. rep., Technical report, McMas-

ter University, 2016.

[11] V. J. Maccio and D. G. Down, “Exact analysis of energy-aware multiserver

queueing systems with setup times,” in Modeling, Analysis and Simulation of

Computer and Telecommunication Systems (MASCOTS), 2016 IEEE 24th In-

ternational Symposium on, pp. 11–20, IEEE, 2016.

[12] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-efficient thermal-aware

33



Ph.D. Thesis – S.Morteza M.Nejad McMaster University – Computer Science

task scheduling for homogeneous high-performance computing data centers: A

cyber-physical approach,” IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 19, no. 11, pp. 1458–1472, 2008.

[13] C. Bash and G. Forman, “Cool job allocation: Measuring the power savings of

placing jobs at cooling-efficient locations in the data center.,” in USENIX Annual

Technical Conference, vol. 138, p. 140, 2007.

[14] S. V. Patankar, “Airflow and cooling in a data center,” Journal of Heat transfer,

vol. 132, no. 7, p. 073001, 2010.

[15] J. Cho, J. Yang, and W. Park, “Evaluation of air distribution system’s airflow

performance for cooling energy savings in high-density data centers,” Energy and

Buildings, vol. 68, pp. 270–279, 2014.

[16] T. Bergman, A. Lavine, F. Incropera, and D. DeWitt, “Fundamentals of heat

and mass transfer, 2011,” USA: John Wiley & Sons. ISBN, vol. 13, pp. 978–0470,

2015.

[17] S.-W. Ham, M.-H. Kim, B.-N. Choi, and J.-W. Jeong, “Simplified server model to

simulate data center cooling energy consumption,” Energy and Buildings, vol. 86,

pp. 328–339, 2015.

[18] S. Mullender, ed., Distributed systems (2nd Ed.). New York, NY, USA: ACM

Press/Addison-Wesley Publishing Co., 1993.

[19] R. K. Sharma, C. E. Bash, C. D. Patel, R. J. Friedrich, and J. S. Chase, “Bal-

ance of power: Dynamic thermal management for internet data centers,” IEEE

Internet Computing, vol. 9, no. 1, pp. 42–49, 2005.

34



Ph.D. Thesis – S.Morteza M.Nejad McMaster University – Computer Science

[20] Z. Abbasi, G. Varsamopoulos, and S. K. Gupta, “Tacoma: Server and workload

management in internet data centers considering cooling-computing power trade-

off and energy proportionality,” ACM Transactions on Architecture and Code

Optimization (TACO), vol. 9, no. 2, p. 11, 2012.

[21] M. Zapater, O. Tuncer, J. L. Ayala, J. M. Moya, K. Vaidyanathan, K. Gross,

and A. K. Coskun, “Leakage-aware cooling management for improving server en-

ergy efficiency,” IEEE Transactions on Parallel and Distributed Systems, vol. 26,

no. 10, pp. 2764–2777, 2015.

[22] C. Patel, R. Sharma, C. Bash, and M. Beitelmal, “Energy flow in the information

technology stack: coefficient of performance of the ensemble and its impact on

the total cost of ownership, hp labs external technical report,” tech. rep., HPL-

2006-55, 2006.

[23] J. D. Moore, J. S. Chase, P. Ranganathan, and R. K. Sharma, “Making

scheduling” cool”: Temperature-aware workload placement in data centers.,”

in USENIX annual technical conference, General Track, pp. 61–75, 2005.

[24] M. Harchol-Balter, Performance modeling and design of computer systems:

queueing theory in action. Cambridge University Press, 2013.

[25] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-

aware server provisioning and load dispatching for connection-intensive internet

services.,” in NSDI, vol. 8, pp. 337–350, 2008.

35



Chapter 3

Joint Data Center Cooling and

Workload Management: A

Thermal-Aware Approach

This chapter is reproduced from “Joint Data Center Cooling and Workload Manage-

ment: A Thermal-Aware Approach”, SeyedMorteza MirhoseiniNejad, Hosein Moaza-

migoodarzi, Ghada Badawy, and Douglas G. Down, published in Future Generation

Computer Systems, vol. 104, pp. 174 - 186, 2020.

The author of this thesis is the first author and the main contributor of this pub-

lication. His contributions to this work consist of introducing the main idea, writing

the manuscript, formulating the optimization problem, implementing the framework,

and generating the numerical results.

36



Ph.D. Thesis – S.Morteza M.Nejad McMaster University – Computer Science

Abstract

Information technology (IT) equipment and cooling infrastructure are key contrib-

utors to the total energy expenditure in a data center. There is typically significant

power wastage due to inefficient cooling control and thermal-oblivious management

of workload. Recent thermal-aware data center management techniques have not

taken a unified approach in controlling IT and cooling systems. In this paper, we

find that considering thermal effects of server workloads, in conjunction with con-

trol parameters of the cooling unit saves more power than optimizing each of them

separately. We leverage a low complexity holistic data center model that considers

thermal interactions between IT and cooling unit entities. This thermal model pro-

vides control decisions with fine-grained control variables. We propose joint cooling

and workload management (JCWM), which has the potential to save a considerable

amount of power by exploring synergies between the workload scheduler and oper-

ational parameters of the cooling unit. In addition, we provide a significant caveat

for the power efficiency of server consolidation methods when taking into account

associated thermal effects.

Keywords: data center workload assignment, cooling unit control, thermal-aware

scheduling, thermal model, data center power efficiency, efficient cooling

3.1 Introduction

Data centers in the United States consumed 70 billion kWh in 2014, 1.8 percent

of the domestic power consumption [1]. In contrast, the power consumption of data

centers in 2000 was 30 Billion kWh [2]. This increase in the power consumption is the
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result of increasing public use of cloud platforms, on-line applications, and Internet

services [3]. It has been estimated that from 2015 to 2020 the incoming load to data

centers will double [4]. Foreseeing this increase and power usage constraints have

led large data center vendors to invest more in the efficient use of power. There are

many ongoing research projects on the efficient use of data center facilities, aiming to

decrease the power consumption [1].

There are a number of methods and techniques to reduce power consumption at

different levels of a data center. At the device level, some electronic devices support

low power states to save energy, if performance of the device is not impacted [5, 6]. For

example, dynamic voltage and frequency scaling (DVFS) is a method that provides

different levels of power consumption and performance for processors [7, 8]. At the

server level, dynamic suspension of unneeded servers, server consolidation and the

ability to choose different levels of power and performance are key approaches for

energy efficiency. For instance, server consolidation aims to save power by turning

unneeded servers off during low workload periods [9, 10, 11]. At the facility level,

power efficiency of the cooling system itself is also a significant concern [12, 13, 14].

Our goal is to decrease power wastage that is initiated from cooling and IT over-

provisioning. Efficient solutions to these problems can lead to considerable cost sav-

ings and performance gains. Previously, we showed that there can be significant power

savings through considering cooling unit control and workload management together

[15]. In this paper, we expand our previous work by considering fine-grained cooling

variables along with workload assignment.

A key component of our work is the derivation of a fast and accurate thermal

model for a micro data center that provides inlet server temperature distribution
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given server workloads and cooling parameters. This model can be extended to larger

data centers.

Appropriately constraining the temperature at the front of servers is a factor that

affects server health [16]. Thus, we investigate the variations of temperature distri-

bution along with cooling power consumption. It is shown that there is an optimal

operational point for the cooling unit parameters to satisfy thermal requirements of

servers. Moreover, we show that workload assignment and cooling variables can be

jointly optimized, minimizing the cooling power consumption.

We noticed a very important thermal effect when a server is turned off, that may

need to be considered in server consolidation techniques. A server that is turned off

results in a pathway for hot air from the back of servers to the front, which increases

the inlet temperatures of adjacent servers. Compensating for this excess heat might

be at the expense of increased cooling power. Using the proposed thermal model

we show that this extra cooling power might be greater than the amount saved by

turning off servers.

With this introduction in mind, we now list our main contributions:

� Applying low complexity physical models (zonal models) to calculate the tem-
perature distribution within a data center

� Illustrating the trade-off that exists between cooling operational parameters

� Showing that the optimality of cooling parameters depends on the assignment
of workload

� Formulating an optimization problem that jointly considers workload assign-
ment and cooling control

� Introducing a hidden thermal challenge raised by server consolidation methods

� Investigating the optimization possibilities considering adverse thermal effects
of server consolidation
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Table 3.1: Notation

Variable Definition

n Total number of servers
d Offered workload
ui CPU utilization of ith server
ū Utilization vector of length n (vector of uis)

umax Maximum allowed CPU utilization
ci ith coefficient of server power model

Qrmcu
water Water flow-rate (cfm)

Qrmcu
air Air flow-rate (cfm)

Qserver
air,i Air flow-rate of server

Twaterinlet Temperature of inlet water (◦C)
T serverinlet,i Air temperature at the front of ith server (◦C)
T̄ serverinlet Vector of T serverinlet,i s
T serverred Red line temperature of servers (◦C)
P dc Total power consumption of data center (Watt)
P it Power consumption of IT (Watt)

P cooling Total power consumption of cooling unit (Watt)
P fan Power consumption of cooling fans (Watt)
P chiller Power consumption of chiller (Watt)
P server Power consumption of server (Watt)

A summary of the notation used in this paper is listed in Table 3.1.

3.2 Literature review

There is a significant body of literature that considers various methods of efficient

workload assignment and cooling control. In this section, a number of previous works,

related to our contributions, are reviewed: thermal-aware workload assignment, data

center control, and server consolidation methods.

Assigning workload to servers while considering associated thermal effects has

a significant literature. Sharma et al. [17] presented a framework for thermal load
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balancing. Workload is assigned to servers inversely proportional to the exhausted air

temperature. The same workload assignment decision is considered by Chaudhry et

al. [18], but for a different problem statement. Moore et al. [19] introduced a number

of temperature-aware methods. Their first method, which is based on [17], uses server

inlet temperature and current workload of neighboring servers to assign workload to a

server. Their second approach assigns workload to servers based on the recirculation

of heat between servers. Although, these methods could somewhat save power, none

of them necessarily minimizes the power consumption, as is shown later in this paper.

In [13], Bash and Forman presented a method that they called cool job assignment.

They suggested to place jobs in cooling-efficient locations, ranked according to an

index. This index quantifies the response at the ith rack inlet sensor to a step change in

the supply temperature of the jth cooling unit. The resulting algorithm for assigning

workload is simple. Upon arrival of a batch of jobs, the longest job is assigned to the

corresponding server of the highest ranked location and so on. This approach could be

efficient to minimize the power consumption if the cooling-efficient location does not

change. However, air pattern changes due to fan speed variations. As is illustrated

in this paper, different air patterns create different cooling-efficient locations.

Tang et al. [12] developed a thermal-aware workload manager. Peak inlet temper-

ature is minimized through optimal assignment of workload based on a static heat

recirculation matrix (HRM). The utilization of each server is assumed to be 0 or

1. They used two optimization methods to determine the optimal utilizations. The

other work that is highly motivated by Tang’s paper [12] is Abbasi et al. [20], who

tried to minimize total power consumption of a data center while maintaining a ser-

vice level agreement (SLA). Their algorithm consists of two phases, thermal-aware
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server provisioning (TASP) and thermal-aware workload assignment (TAWA). TASP,

a server consolidation method, considers turning a subset of servers off. An optimiza-

tion problem is formulated based on the current workload to find the most energy

efficient active set of servers during a given time window. In TAWA they designed an

algorithm that distributes workload among servers in a manner that minimizes total

power consumption. TAWA tries to minimize the total amount of heat recirculation;

however, the main difference between TAWA and the approach that is taken in [12]

is that finer-grained workload can be assigned to a server.

In [21], Mukherjee et al. developed a thermal-aware workload assignment algo-

rithm that minimizes the power consumption while respecting given performance

constraints (deadlines). Their approach assigns jobs to energy efficient servers and

reduces heat recirculation. Their main contribution is that they allow jobs to be

slowed down to throttle temperature peaks. The main drawback for Tang’s [12], Ab-

basi’s [20], and Mukherjee’s [21] works is that their thermal model relies on a static

HRM that may not be appropriate for the dynamic environment of a data center.

Wang et al. [22] presented a learning-based method which reflects the influence

of air flow-rates on the parameters of the HRM. In this work, using an optimal air

flow pattern, the hot-spot temperature is minimized. This is one of the few papers

that demonstrates the inefficiency of HRMs and tries to adapt to changing air flows.

However, while they do consider dynamic air flows, just one air flow is considered

for each rack. From top to bottom, each rack may have a variety of air flows and

assuming just one air flow for a rack endangers the model accuracy. Moreover, the

air flow profile is the result of the action of multiple fans. The feasibility of providing

the optimized air flow patterns by tuning fan parameters is not clear.
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Wang et al. [23] considered the problem of optimal control of fan speeds. This

work is interesting with respect to the thermal and heat transfer models that are

used. They stated that fan speed in systems employing blade servers is typically over-

provisioned. They employed a multi-input/multi-output (MIMO) control method to

match fan speed to the requirements of the blades. They asserted that their control

method could reduce power consumption of a blade by as much as 20%. Although

this work introduced more accurate thermal models (in contrast with HRM-based

models), there are opportunities to increase the resolution of fan effects on the cooling

efficiency of cooling units.

Zhao et al. [24] presented a feedback controller to reduce power consumption

in a data center. This work uses a control loop to maintain inlet temperatures of

servers at an appropriate set point by dynamically adjusting operating frequencies

and utilizations of servers. Their thermal model is based on an HRM. The idea

of modelling heat generation via two factors, core frequency and utilization, and

forecasting its effects in the future is a novel contribution to the literature. However,

the drawbacks of their approach are the unrealistic thermal models and over-simplified

cooling power models.

Fang et al. [25] presented a dynamic controller that considers both the IT and

cooling decisions together to save power. The solution to the underlying optimization

problem finds the optimal active server set, job assignment and set points of cooling

units to minimize the total power consumption. The thermal model which is used

in this work corresponds to an HRM. This work has a couple of issues. Firstly, the

only cooling unit parameter is the set point, so they did not consider internal control

of the cooling units. Secondly, the use of CFDs to calculate the HRM is not truly a
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dynamic approach, as CFD calculations cannot be made on the same time scales as

the thermal dynamics of the data center.

There are a number of works that have taken into account both energy sustain-

ability and thermal-aware job assignment, notably the work of Zapater et al. [26] and

Li et al. [4]. Zapater el al. [26] considered utilizing free cooling when the outside tem-

perature is sufficiently low. They assumed a data center with in-row cooling (IRC)

architecture. Additionally, a form of thermal-aware workload scheduler is suggested.

The workload scheduler places similar jobs, in terms of their CPU and memory usage,

physically close to each other. They stated that this grouping method, which they

called the power-balance policy, balances per-rack temperature and increases cooling

efficiency. The idea is that the same amount of cold air is required for servers that ex-

ecute similar jobs. The control of each IRC unit avoids over-cooling or under-cooling

of servers that are similar in their workloads. The ideas of using bypassing chillers,

outside cold weather, and power-balancing are justifiable. However, it is not clear

how practical their power balance policy is.

Li et al. [4] considered renewable energy options. Workload shifting is a mechanism

that they suggest for this practice. Based on delay sensitivity of jobs and availability

of renewable energy supplies, jobs are shifted toward maximizing using the renewable

supplies. In order to satisfy cooling requirements, an HRM underlies the thermal

model used in their optimization problem. The issues with the use of an HRM have

already been discussed and we perform comparisons between the use of an HRM and

our approach later in this paper.

In [15], we previously presented a thermal-aware cooling control and workload

assignment method that has the potential to save a considerable amount of energy.
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The method distributes workload amongst servers such that cooling requirements of

servers are minimized. At the same time, the workload manager provides feedback

to the cooling unit to work accordingly, which prevents over-cooling. Yao et al. [27]

used an adaptive predictive control method for workload balancing in data centers.

An adaptive thermal model is used to predict inlet temperatures. They formulate an

optimization problem with a goal to smooth server inlet temperatures and decrease

total power consumption. The cost function is formulated based on total power

(cooling unit and IT racks) and tracking error of a predictive model. The controller

adjusts the inputs (server workloads) to set the inlet temperatures while minimizing

the total power consumption.

Later in this paper, thermal effects of server consolidation are investigated. Server

consolidation methods simply turn unnecessary servers off, if there is a low offered

workload for a period of time. We will show an important and interesting potential

trade off for server provisioning decisions and to the best of our knowledge no work

has considered the thermal effects of server consolidation. A number of works have

investigated different server consolidation methods. These mostly provision servers

based on forecasts of the offered workload [9, 10, 11, 20, 28]. The obvious side

effect of turning servers off is performance degradation; the trade-off between data

center performance and power consumption has been the subject of a number of

studies [11, 29, 30]. Dabbagh et al. [31, 32] used a prediction method for the offered

workload, based on Google Cluster workload traces. They used their prediction model

for virtual machine placement and server provisioning decisions.

A summary of the most related literature is presented in Table 3.2.
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Table 3.2: Summary of related work

Ref. Goal Thermal Model Power
Model

Optimiz.
prob-
lem

Granularity Validation Approach Cooling
control

[17] Reducing over-
cooling

No CoP-
based

No Rack or re-
gion

CFD Assigning workload inversely
proportional to exhaust air
temperature of a server

No

[19] Uniform exhaust
air temperature

No CoP-
based

No Server CFD Assigning workload propor-
tional to inlet temperature of
a server and state of adjacent
servers

No

[18] Reducing hot spot
temperature

Inlet tempera-
ture sensitivity
profile

Heat
transfer
equa-
tions

No Server Data cen-
ter

Algorithm for relocating
servers

No

[13] Reducing the cool-
ing cost

Workload
placement
index

No No Servers
of cooling
region

Data cen-
ter

Assigning long jobs to servers
of cool-efficient locations

No

[12] Minimizing hot
spot temperature

HRM-based CoP-
based

Yes Server CFD Reducing heat re-circulation
effects

Set-point

[20] Minimizing hot
spot temperature

HRM-based CoP-
based

Yes Server Power
model

Selecting active set of
servers and reducing heat
re-circulations

Set-point

[21] Minimizing hot
spot temperature

HRM-based CoP-
based

Yes Server
chassis

CFD CPU throttling while keeping
deadlines

Set-point

[22] Minimizing hot
spot temperature

Adaptive HRM No Yes Rack CFD Tuning air flow-rates of racks Yes

[23] Minimizing fan
power and prevent-
ing over cooling

Heat transfer
equations

Heat
transfer
equa-
tions

Yes Server
blade

Power
model

Controlling blade fan-speed
to adjust the temperature of
blades

No

[24] Balanced inlet
temperature

HRM-based CoP-
based

Yes Server CFD An MPC controls CPU fre-
quencies and utilizations, and
cooling set-point while main-
taining system performance

Set-point

[15] Increasing required
inlet temperature

No CoP-
based

Yes Server Power
model

Assigning workload inversely
proportional to server cooling
requirements

Set-point
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3.3 Thermal-aware workload scheduling and cool-

ing control

Cooling units do not provide a uniform temperature distribution within a data center.

Some locations are easy to cool, while others are not. These differences stem from

the physics of heat transfer and air recirculation. Taking such information into con-

sideration when making cooling control and workload assignment decisions has the

potential to yield significant power savings. One objective of this work is to optimize

the operational parameters of the cooling unit and assignment of workload to minimize

total power consumption. Operational factors are the control parameters of a cooling

unit that affect the temperature distribution at the front of servers. So, a model is

required to relate the operational parameters and the assigned workload to the tem-

perature distribution. For this study, a model representing the power consumption

of the cooling unit based on the current workload and operational parameters is also

required.

3.3.1 Data center models

This section presents two important models for our study. The first model calculates

the temperature at the front of each server based on assigned workload and opera-

tional parameters of the cooling unit. The second model returns the cost of tuning

the operational parameters. The former is called the thermal model and the latter

the power model. It is worth noting that the thermal model will be used as a mon-

itoring tool to control servers’ intake air by capturing thermal effects of each server

and operational parameters of the cooling unit.
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Figure 3.1: Schematic of the IT enclosure integrated with a single rack and an
RMCU with separated cold and hot chambers.

Thermal model

We used a simple, low complexity zonal model to obtain the temperature distribution

at the front of servers. Moazami et al. [33] developed this model for temperature

prediction within a micro data center. A single rack with separated hot and cold

chambers is considered in which a rack mountable cooling unit (RMCU) is installed

at the bottom of the rack (Figure 3.1). The temperature prediction is based on

a zonal approach that applies energy conservation to each zone. The zonal model

is an intermediate method between full CFD simulations and multi-node lumped

models. Physical quantities, such as temperature, are assumed uniform within a

zone, simplifying spatial dependence. Here, the volume at the front of each server is

considered as a zone as well as the volume at the back of each server.

Each server is considered as a heat source with specific heat transfer rate and

predefined thermal capacity. Assuming no heat or mass transfer between the enclosure

and the ambient, four control volumes are identified: (1) the cold chamber at the front

of each server, (2) the hot chamber at the back of each server, (3) each server itself,
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and (4) the RMCU. Due to the specific geometry of the enclosed rack integrated

with the RMCU, the air flow-rates are predictable by applying mass conservation

and characterizing the relation between air flow-rates and pressure drops for each

component. After calculating all entering and exiting air flow-rates for each zone,

using initial temperature values, we can apply the first law of thermodynamics (energy

balance) for each zone.

To calculate air flow-rates the following steps are performed (in what follows, we

will refer to a server that is on, either busy or idle, as an on server):

1. Determine the total air flow-rate for all on servers.

2. Obtain the air flow-rate of the cooling unit (a function of fan speed).

3. Determine the flow-rate mismatch between the cooling unit and all on servers.

4. Map the flow-rate mismatch to the pressure difference between the chambers.

5. Determine the flow-rates of off servers [33].

6. Determine the leakage flow-rate for each zone.

7. Determine the cold air flow input to each zone in the front chamber from the

RMCU.

8. Find the output air flow-rate of the first zone in the front chamber using a mass

balance equation and then use the result as the input air flow-rate of the second

zone.

9. Calculate the input air flow-rate of other zones in sequence by repeating step 8.

10. Repeat steps 7 to 9 for the back chamber zones.
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After calculating all input and output air flow-rates for each zone and given initial

temperature values, we can apply the first law of thermodynamics (energy balance)

for each zone to calculate the temperature at the next time step in a discretized

version of the temperature dynamics. According to [33], the energy balance equation

for a server can be written as:

X

2

(
dT serverout,i

dt
+
dT serverinlet,i

dt

)
= ρacp,aQ

server
air,i (T serverinlet,i − T serverout,i ) + P server

i (3.3.1)

In (3.3.1), T serverinlet,i and T serverout,i are the server inlet and outlet temperatures, ρa is the

air density, cp,a is the specific heat of air, Qserver
air,i is the air flow-rate of the server, X

is the thermal mass of the server [34], and P server
i is the total power consumption of

the corresponding server. For air flow within the RMCU, based on [33], we have:

ρacp,aVa

(
dT rmcuoutlet

dt
+
dT rmcuinlet

dt

)
=

ρacp,aQ
rmcu
air (T rmcuinlet − T rmcuoutlet)−

UA

2

(
T rmcuinlet + T rmcuoutlet − Twaterinlet − Twateroutlet

) (3.3.2)

and for water flow within the RMCU,

ρwatercwaterVw

(
dTwaterinlet

dt
+
dTwateroutlet

dt

)
=

ρwaterQrmcu
waterc

water
(
Twaterinlet − Twateroutlet

)
+

UA

2

(
T rmcuinlet + T rmcuoutlet − Twaterinlet − Twateroutlet

) (3.3.3)

where T rmcuoutlet is the air temperature at the RMCU outlet, T rmcuinlet is the air temperature

at the RMCU inlet, Twaterinlet and Twateroutlet are the water inlet and outlet temperatures,
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Figure 3.2: Depiction of energy sources at the inlet and outlet zones of a server

Qrmcu
air is the air flow-rate of the cooling unit, Qrmcu

water is the water flow-rate of the

cooling unit, cwater is the specific heat of water, ρwater is the density of water, U is

the overall heat transfer coefficient inside the RMCU (as a function of Qrmcu
air and

Qrmcu
water [34]), A is the contact area of water, and Va and Vw are the air and water

volumes inside the heat exchanger [33]. The energy balance equations for each cold

and hot chamber zone can be written based on Figure 3.2. For the sake of simplicity,

the energy balance equation is only shown for a zone in the cold chamber in (3.3.4);

similar equations are derived for all of the cold and hot chamber zones.

ρacp,aVcγ

(
dT serverinlet,i

dt

)
= Φr + Φiw + Φow + Φl + Φsw (3.3.4)

In (3.3.4), γ is a correction factor for the thermal masses, Φr corresponds to the

energy that the zone receives from the RMCU, Φl is the leakage, Φiw is in-ward, Φow is

out-ward and Φsw is server-ward energy transfer of the zone. In Figure 3.2, the Φ and

Φ′ equations are the products of ρa, cp,a, corresponding flow-rate, and corresponding

temperature; for example, Φsw = −ρacp,aQs,iT
server
inlet,i .

The model has been validated with extensive experiments and measurements. The

geometry and zones for a rack within an enclosure that is cooled by an RMCU are

shown in Figure 3.1. The RMCU is a heat removal module that transfers heat to a
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chilled water loop supplied from an external chilled water system. The details of the

air flow-rate calculations and energy balance equations are thoroughly explained in

[33]. The proposed model captures the transient effect of server thermal mass on the

temperature variation when switching servers on or off.

In this model, hot air recirculation through all possible media, in particular servers

that are switched off, is considered. Turning a server off (as opposed to idling)

provides a path for hot air from the hot chamber to the cold chamber. Capturing

thermal effects of off servers will be used in this paper to consider the thermal effects

of server consolidation methods. The thermal model can calculate the temperature

profile of the cold chamber (temperature at the front of each server) as a function

of water flow-rate, water inlet temperature, fan speeds or air flow-rate of the cooling

unit, and power consumption of each server.

Power models

The total power consumption of a data center, P dc is the sum of the power consump-

tion of servers (which we call IT power or P it) and cooling units (P cooling):

P dc = P it + P cooling (3.3.5)

The major contributing factor of IT power (P it) is the power consumption of

servers. Power consumption of a server is modeled as an affine function of its utiliza-

tion (ui) [15]:

P server
i = c1 + c2 · ui (3.3.6)

In (5.3.3), c1 is the power consumption of an idle server and c1 + c2 is the power
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consumption of a fully utilized server. In this paper, we will assume that servers are

homogeneous, so, c1 and c2 do not depend on the server (our approach is easy to

modify if these values do depend on the server). Power consumption of the cooling

unit is dominated by the chiller and fans:

P cooling = P fan + P chiller. (3.3.7)

A chiller provides cool water to the RMCU. The inlet water temperature (Twaterinlet )

is the temperature of cool water provided to the RMCU by the chiller. The lower the

value of Twaterinlet the higher the power consumption of the chiller. The model given in

(5.3.6) represents the power consumption of the chiller [14]:

P chiller = P heat ·

α1 + α2 ·
T chiller
evap

Pheat + α3 · (T chillercnd − T chillerevap )
T chiller
evap

T chiller
cnd

− α4 · Pheat

T chiller
cnd

− 1

 . (3.3.8)

In (5.3.6), P heat is the total amount of heat that should be removed by the chiller

(equal to P it in our case). T chillerevap is the evaporator temperature, which is approx-

imately equal to Twaterinlet , and T chillercnd is the condenser temperature. The evaporator

and condenser are the two main chiller components. Both T chillerevap and T chillercnd are in

kelvins and the quantities αi are constants. While temperatures in these models are

in kelvins, later in the paper temperatures will be reported in degrees Celsius.

The other contributing factor of the power consumption of the cooling unit is the

power consumed by fans to provide the air flow-rate (Qrmcu
air ). A higher air flow-rate

(Qrmcu
air ) requires higher fan speeds, which means greater power consumption by the

53



Ph.D. Thesis – S.Morteza M.Nejad McMaster University – Computer Science

fans (P fan). The power consumption of the RMCU fans is given by

P fan = β1 + β2 ·Qrmcu
air + β3 · (Qrmcu

air )2 (3.3.9)

where βi, i = 1, 2, 3 are constants.

3.3.2 Optimal settings of cooling parameters and workload

assignment

Fan speed and water inlet temperature are the contributing factors of the RMCU

that determine both the server inlet temperature distribution and cooling unit power

consumption. First in this section, the role of the cooling parameters in determining

the temperature distribution is identified. We show that there exists a trade-off

between different cooling parameters. We then investigate the effect of considering

the distribution of workload as another factor. As workload assignment affects the

optimal values of the operational parameters, we formulate an optimization problem

that minimizes power consumption through joint control of cooling unit parameters

and the distribution of workload.

Trade-off in cooling parameters

As mentioned previously, a micro data center is our system under study. It consists

of a rack that contains thirty homogeneous servers and an RMCU mounted at the

bottom of the rack. Cold water provided by the chiller enters the RMCU. The RMCU

is equipped with a number of fans that recirculate air in the rack. The total power

consumption is given by equations (5.3.2) through (5.3.5).
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Servers should be kept below a certain temperature, called the red line tempera-

ture (T serverred ). It is the maximum allowed inlet temperature that a server can tolerate

(exceeding this temperature can affect a server’s reliability). Using our notation,

max(T̄ serverinlet ) must be less than or equal to T serverred . The contributing operational

parameters of the cooling unit are Twaterinlet and Qrmcu
air . Adjusting these two factors

can address this constraint, and the choice of parameters is not unique. For exam-

ple, considering a utilization of 50% for all servers, either the tuple (Twaterinlet = 12◦C,

Qrmcu
air = 580cfm) or (Twaterinlet = 18◦C, Qrmcu

air = 710cfm) can provide an appropriate

temperature distribution at the server inlets. In both cases, the maximum temper-

ature at the front of servers is set to 28◦C. Of course, a (large) number of other

pairs of Twaterinlet and Qrmcu
air can satisfy this condition. Figure 3.3 shows temperature

distribution at the front of servers for different combinations of Twaterinlet and Qrmcu
air ,

while servers are 50% utilized.

As shown in Figure 3.3, the cooling constraint is satisfied in all three cases. In

this example, the cooling constraint is to set the maximum temperature at the front

of servers (or T̄ serverinlet ) to T serverred = 28◦C. As air flow increases, the temperature

variations at the front of servers decrease, making the average of T̄ serverinlet closer to

Twaterinlet . Moreover, a higher Twaterinlet can be used as the air flow increases.

From the power consumption viewpoint, decreasing Twaterinlet increases chiller power

consumption but requires less air circulation. On the other hand, increasing Twaterinlet ,

which lessens the power consumption of the chiller, must be compensated by increased

Qrmcu
air (greater P fan). To study if there is a power saving opportunity in the trade-off

between operational parameters of the cooling unit, the curve of power consumption

of the cooling unit is drawn as a function of Twaterinlet (Figure 3.4). For each value of
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(a) Twaterinlet = 14◦C and
Qrmcuair = 619cfm

(b) Twaterinlet = 18◦C and
Qrmcuair = 692cfm

(c) Twaterinlet = 22◦C and
Qrmcuair = 785cfm

Figure 3.3: The temperature distribution at the front of servers for different
combinations of operational parameters of the cooling unit

Twaterinlet (which ranges from 10◦C to 23◦C), Qrmcu
air is adjusted in a manner such that

max(T̄ serverinlet ) is set to T serverred (the resolution of curves is 1◦C).

In Figure 3.4, three curves are plotted that correspond to three red line tempera-

tures: T serverred = 26◦C, 27◦C and 28◦C. The power consumption curves clearly show

that there is an optimal setting for the operational parameters. For example, un-

der T serverred = 28◦C, the power consumption of the cooling unit achieves a minimum

of 3579W when Twaterinlet = 19◦C and Qrmcu
air = 890cfm. This trade-off is due to the

nonlinearity of the power consumption models for both the chiller and the fans.

To this point, we have demonstrated that the operational parameters of the cool-

ing unit create a trade-off from the power consumption point of view and the reason

for this trade-off has been discussed. However, this work is done for a particular

choice of workload allocation (all servers 50% utilized). Different patterns of server
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Figure 3.4: The trade-off between operational parameters of the cooling unit for
different red line temperatures.

utilization result in different patterns of heat generation inside a rack and as a result

the trade-off in choosing cooling parameters will be a function of the workload allo-

cation. Therefore, in the next section, the thermal effects of heat source locations, or

spatial distribution of workload and its potential incorporation with the operational

parameters is studied, and an optimization problem is formulated that determines

both the workload and operational parameters.

Workload distribution and optimality of operational parameters

In the previous section, the trade-off between the operational parameters of a data

center cooling unit was investigated. This was performed in a scenario where the

workload allocation was considered as an uncontrollable input. In this section, it is

shown that assignment of workload is a contributing factor that affects the cooling

unit efficiency.

As in the previous section, our data center consists of a single rack with thirty
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homogeneous servers and an RMCU at the bottom of the rack (similar to Figure 3.1).

Servers are numbered from 1 to 30, with the bottom server (closest to the RMCU)

labeled 1 and the top server (furthest from the RMCU) labeled 30. In total, there

are 30 single CPU servers.

The data center is tested under three different assignments of workload, with the

constraint that half of the total computational capacity of the data center needs to

be utilized, equivalent to 15 fully utilized servers. First, the workload is assigned

to servers furthest from the RMCU. So, servers 1 to 15 are idle and servers 16 to

30 are fully utilized. Second, workload is distributed evenly between all servers and

each server has utilization 50%. Third, workload is assigned to servers closest to the

RMCU. Therefore, servers 1 to 15 are fully utilized and servers 16 to 30 are idle.

These workload assignments are referred to respectively as the first, second and third

assignment methods.

The power consumption of the cooling unit is calculated using Twaterinlet and the ad-

justed air flow-rate for each assignment of workload. The cooling air flow-rate orQrmcu
air

is adjusted according to the given Twaterinlet to set the max(T̄inlet) to T serverred = 28◦C.

The sum of the chiller power consumption (5.3.6) and the fans power consumption

(5.3.5) is used to calculate the power consumption for the cooling unit.

Figure 3.5 shows the adjusted air flow-rate (red) as a function of Twaterinlet that

satisfies temperature constraints. The power consumption of the cooling unit (blue),

a function of both Twaterinlet and Qrmcu
air , is plotted against the inlet water temperature.

In this figure, Twaterinlet is constrained to take on integer values.

Three different line styles represent the three methods of assigning workload. The

dotted curve represents the first, dashed represents the second, and solid represents
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Figure 3.5: The trade-off between operational parameters of a cooling unit under
different workload assignments.

the third method of workload assignment. The first insight is that the closer the

workload is to the cooling unit, the less power is required to remove heat. Another

insight is that the optimal values of the operational parameters are different under

each assignment of the workload. For example, the minimum cooling power consump-

tion when the first method of workload assignment is used requires Twaterinlet = 18◦C

and Qrmcu
air = 740cfm. However, the third workload assignment method requires

Twaterinlet = 19◦C and Qrmcu
air = 660cfm to minimize the cooling unit’s power consump-

tion.

Analyzing the temperature distribution at the front of the servers helps to under-

stand the difference in power consumption for the three workload assignment meth-

ods. Figure 3.6 illustrates the temperature distributions. In each figure, operational

parameters are optimally adjusted to minimize cooling power with respect to the

workload assignment method. Figure 3.6a corresponds to the first, Figure 3.6b to the
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(a) First method of
workload assignment

(b) Second method of
workload assignment

(c) Third method of
workload assignment

Figure 3.6: Temperature distribution at the front of servers. (a) Servers 1 to 15 are
idle and 16 to 30 are fully utilized. Twaterinlet = 18◦C, Qrmcu

air = 740cfm, and
P cooling = 3794W . (b) All servers have utilization 0.5. Twaterinlet = 19◦C,

Qrmcu
air = 710cfm, and P cooling = 3666W . (c) Servers 1 to 15 are fully utilized and 16

to 30 are idle. Twaterinlet = 19◦C, Qrmcu
air = 660cfm, and P cooling = 3500W .

second, and Figure 3.6c to the third workload assignment method.

In Figure 3.6, from left to right the assignment of the workload becomes closer to

the cooling unit and the cooling power consumption becomes lower. Figure 3.6a shows

that temperature variation is greater than in Figure 3.6b and Figure 3.6c, resulting

in higher power consumption. We see that some servers are highly over-cooled. For

example, the provided cool air for the first server, in Figure 3.6a, is about 20◦C which

is significantly lower than the red line temperature. As the workload becomes closer

to the cooling unit, servers become less over-cooled and the result is a reduction in

cooling power consumption. This figure clearly shows that the assignment of workload

affects the temperature distribution and the best way of assigning workload is one
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that leads to more uniform temperature distribution.

3.4 Formulating the optimization problem and com-

paring the results

In Section 3.3.2, the trade-off between cooling parameters was demonstrated. Next, in

Section 3.3.2, the optimality of the cooling parameters as a function of the workload

assignment was discussed. In general, we would like to determine the values of the

cooling parameters and assignment of workload (or ū) to minimize the cooling power.

In this section, a single optimization problem is formulated to return the optimal

values of cooling variables and workload assignment. This problem is solved for two

different data center configurations. We compare the results of our framework with

a number of representative workload assignment methods which suggest that our

method has the potential to yield significant improvements.

For our optimization problem, the decision variables are Twaterinlet , Qrmcu
air , and ū. The

goal is to find the optimal values of the variables to minimize the cooling power while

maintaining the inlet temperatures of servers below the red line temperature T serverred .

The cost function is cooling power, P fan + P chiller, so the resulting optimization
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problem is:

minimize
Twater
inlet ,Qrmcu

air ,ū
P fan + P chiller

subject to
n∑
i=1

ui = d,

0 ≤ ui ≤ umax, i = 1, . . . , n

max(T̄ serverinlet ) ≤ T serverred

(3.4.1)

The optimization problem (3.4.1) is multidimensional with nonlinear constraints.

ui is the utilization of the ith server while the sum of all uis should be d, the offered

workload. The second constraint allows for performance guarantees and the cooling

constraint is enforced by the third constraint. Evaluating the third constraint requires

the (nonlinear) thermal model to calculate T̄ serverinlet . To solve the optimization problem

the MATLAB function fmincon is used as it can support nonlinear constraints.

The optimization problem is solved for two different data center configurations.

The thermal model described in Section 3.3.1 is used for both configurations. The first

configuration has thirty servers stacked over each other on top of the RMCU (Figure

3.7a). However, the second configuration has 26 servers and an empty space just above

the RMCU. The size of the gap is equivalent to four 1U servers (one U equals 1.75 inch

or 44.45 mm). Moreover, it is assumed that all servers are homogeneous. The offered

workload is considered to be half of the data center capacity. So, for the first and

second configurations the offered workload d is 15 and 13, respectively. We assumed

that utilization 100% would not hurt the performance of a single server; therefore,

umax = 1. The inlet temperature of servers should be capped by T serverred = 28◦C.
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(a) Configuration 1 (b) Configuration 2

Figure 3.7: Data center schema for two configurations of the data center and servers

Solving the optimization problem (3.4.1) for each configuration returns the opti-

mal values for the operational parameters and utilizations as shown in Figure 3.8.

The figure depicts the assignment of the workload for both configurations with cor-

responding inlet temperatures of servers and is captioned by the optimal value of

cooling parameters. For the first configuration (Figure 3.8a), servers 1 to 15 are fully

utilized and servers 16 to 30 are idle. The results are as expected, servers closer to

the cooling unit are easier to cool and thus assigning workload to them is more cost

effective.

Although results for the first configuration suggest that the intuitive approach of

locating workload as close as possible to the cooling unit is desirable, results for the

second configuration are not as intuitive. This is because determining the proximity

to the cooling unit is not as simple as observed in the first setting. The second

configuration has more complicated air patterns and temperature distribution. This

configuration suggests that simply assigning the workload to the servers that are in

close proximity to the cooling unit does not always result in the optimal solution.
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(a) Configuration 1 (Qrmcuair = 564cfm,
Twaterinlet = 14◦C)

(b) Configuration 2 (Qrmcuair = 474cfm,
Twaterinlet = 20◦C)

Figure 3.8: Optimized workload assignment and temperature distribution for both
configurations

To better demonstrate the effectiveness of our proposed method, which we call

joint cooling and workload management (JCWM), we compare it with four base-

line and representative workload distribution algorithms: (1) TAWA, (2) TASA, (3)

coolestInlets, (4) OnePass, and (5) Uniform distribution.

TAWA, or thermal-aware workload assignment, considers an HRM as a proxy for

the thermal exchange or thermal model of a data center which is the core method

of several works [4, 12, 20, 35]. Workload assignment in TAWA uses the HRM to

determine the contribution of each heat source on the total accumulated heat for a

thermal zone, aiming to minimize the peak inlet temperature.

TASA is a thermal-aware scheduling algorithm which allocates a new task to the

server with the lowest CPU temperature [36]. CoolestInlets operates like TASA, but
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makes decisions based on the inlet temperature of servers [19]. CoolestInlets is se-

lected as, similar in philosophy to our approach, it considers server inlet temperatures

as a key factor in satisfying thermal constraints. However, we will see that it does

make substantially different decisions.

OnePass avoids generating hot spots by trying to set the exhausted air tempera-

tures of servers to be as uniform as possible [17, 18]. Executing the algorithm requires

a calibration phase where a uniform workload is assigned to all servers. This phase is

for determining reference points for power (Pref ) and outlet temperature (T outref ) of a

server or an average of multiple servers. Having the reference point, based on (3.4.2),

the power can be determined for each server:

Pi =
T outref

T outi

· Pref . (3.4.2)

Finally, the last method for comparison to our algorithm is the Uniform workload

assignment method. Uniform workload assignment is prefered in terms of response

time performance [37, 38].

Figure 3.9 shows differences between various workload assignment decisions. Based

on these workload assignments, we observe that JCWM makes somewhat different de-

cisions. JCWM does not assign workload to the coolest server (TASA), or the server

with the lowest inlet temperature (CoolestInlets). It also does not minimize the heat

recirculation (TAWA) or variance of the outlet temperatures of servers (OnePass).

Obviously, JCWM does not distribute workload evenly between all servers (Uniform).

Figure 3.10 shows the temperature distribution at the front of each server for

each workload assignment method and the corresponding power consumptions. As

expected, JCWM by optimal assignment of operational parameters and workload
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(a) TAWA (b) TASA (c) CoolestInlets (d) OnePass (e) JCWM

Figure 3.9: Optimal utilization for different workload assignment methods

achieves the lowest cooling power amongst all of the methods. The figure clearly shows

that JCWM over-cools servers less than other methods. In this specific configuration,

JCWM decreased the total power consumption of the cooling unit by 11% compared to

its closest competitor (Uniform). It is worth mentioning that due to the linear model

of power consumption for the servers, P it is independent of the workload assignment.

3.5 Thermal effects of server consolidation

In the previous section, the potential cost saving opportunities through optimizing

operational parameters of the cooling unit and assignment of workload were investi-

gated. An important assumption is that if a server does not receive any workload,
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Figure 3.10: Temperature distribution of servers for different methods of workload
assignment

it just remains idle and is not turned off. Server consolidation techniques turn un-

needed servers off, and have been the subject of many studies [20, 29, 30, 39]. There

are many debates on the power and performance balance of this method. However,

there is almost no work related to this topic that investigates the thermal effects of

turning servers off. We suggest that there is the potential for some adverse thermal

effects, if the choice of servers to be consolidated is not made wisely. In this section,

we show that neglecting the thermal effects of server consolidation could cause extra

cooling efforts and consequently greater cooling power consumption. However, sav-

ings in server consolidation can be gained through turning servers off and generating

less heat. So, the possibility of a trade-off when considering server consolidation is

demonstrated and discussed.

Figure 3.11 shows the temperature distribution at the front of servers in three dif-

ferent configurations. In all configurations, the same workload is distributed between

servers, with the offered workload being d = 20. Operational parameters are opti-

mized to satisfy the cooling constraint (T serverred = 28◦C) while minimizing the cooling
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(a) All server are on (b) Server 29 is off (c) Server 5 is off

Figure 3.11: Thermal effects of server consolidation, (a) Twaterinlet = 19◦C
Qrmcu
air = 724cfm P cooling = 3698W , (b) Twaterinlet = 21◦C Qrmcu

air = 771cfm
P cooling = 3828W , (c) Twaterinlet = 18◦C Qrmcu

air = 643cfm P cooling = 3669W
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power. In the first configuration, Figure 3.11a, no servers are allowed to be turned off

and an equal amount of workload is assigned to each server, so ui = 0.667 for i = 1

to 30. The second configuration, Figure 3.11b, the 29th server is turned off; without

this server, the data center is still capable of processing the offered workload. The

CPU utilization of all servers, excluding server 29, is 0.69. The third configuration is

the same as the second configuration, but the 5th server is off.

The figure shows that turning a server off might increase the cooling power (Figure

3.11b), or decrease it (Figure 3.11c). The minimum cooling power of each configu-

ration is obtained based on assigned workload and optimized operational parameters

to satisfy the red line temperature constraint. When all servers are on, Figure 3.11a,

the power consumption of the cooling unit is 3698W. The second configuration, Fig-

ure 3.11b, exhibits a power consumption which is more than the first configuration,

3828W. The third configuration, Figure 3.11c, shows that the cooling power is the

lowest amongst the three configurations.

Analyzing these results reveals that server consolidation is not always reducing the

power consumption of the system. The main reason that justifies this phenomenon

is that if a server turns off, it allows hot air from the back zone to leak to the front

zone, which in turn impacts T̄ serverinlet . In other words, if a server turns off, hot air

recirculation alters, and max(T̄ serverinlet ) might exceed T serverred . So, the cooling unit must

work harder to compensate for this increase. As mentioned, this power increase might

outweigh the power savings from turning a server off. On the other hand, turning

off another server might decrease P cooling simply due to generating less heat and the

altered pattern of hot air recirculating might have minimal impact. Therefore, not

only performance degradation is a concern when turning unneeded servers off, but
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adverse thermal effects of server consolidation should also be considered.

3.5.1 Workload assignment under server consolidation

The optimization problem in Section 3.4 assigns workload “as close as possible” to the

cooling unit. However, this adjacency is related to the physics of heat transfer and

air recirculation in a data center as opposed to simply the distance from the cooling

unit. The previous section showed that server consolidation disturbs air recirculation

and might affect cooling efficiency through altering the recirculation of air.

We give one example here of how workload assignment and cooling unit opera-

tional parameters can be simultaneously optimized given a particular choice for server

consolidation. The architecture of the data center remains the same as in the previous

section. However, it is assumed that servers 11 to 13 are turned off. It is assumed

that the overall workload is d = 13. Solving the optimization problem (3.4.1) yields

Twaterinlet = 19.1◦C and Qrmcu
air = 651.1cfm. The optimal assignment of workload is illus-

trated in Figure 3.12. One interesting observation is that, being close to the cooling

unit is not the optimal solution in this case.

Optimizing server consolidation

Turning a server off provides a means for hot air to leak to the front zone of servers.

This effect has been investigated in the previous section. Both the number and

location of off servers have significant impact on air recirculation and hence the power

required to cool the data center. So, in addition to the operational parameters and

distribution of the workload, the server consolidation policy itself should be part of the

overall optimization problem. So far, we have found no means other than exhaustive
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Figure 3.12: Heat recirculation inside a data center

search. We plan to perform further work on this problem, with the goal of presenting

a heuristic solution that performs well for at least a large proportion of the design

space.

3.6 Conclusion

We studied the detailed relation between cooling operational parameters and work-

load assignment and also highlighted synergies between simultaneously controlling the

cooling parameters and workload assignment. Moreover, we have presented a novel

approach to minimizing power consumption in data centers. The proposed approach

jointly optimizes workload assignment and cooling unit operational parameters. Re-

sults have shown that the proposed joint optimization has the potential to save a
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considerable amount of total cooling power when compared to other workload assign-

ment algorithms. We have also shown that when consolidating servers care has to be

taken as to which servers are being turned off as this might have an adverse affect on

the power consumption due to hot air recirculation through turned off servers.
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ALTM: Adaptive learning-based
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Abstract

To design effective control schemes for energy efficiency in data centers, it is crucial

to have a thermal model of the system. Constructing thermal models of data cen-

ters for temperature prediction is extremely challenging, due to inherent complexity.

Computational fluid dynamics (CFD) simulations or physical heat transfer equations

are conventionally used to construct such thermal models. More recent approaches

combine physical heat transfer rules and data-driven methods in an effort to obtain

more accurate models.

Our proposed adaptive learning-based thermal model (ALTM) is fast, adapts to

thermal changes in the data center environment, and does not require prior knowledge

of heat transfer rules between data center entities. Unlike other methods, ALTM

is a holistic thermal model that predicts temperature of critical zones using data

center operational variables as inputs. The operational variables are the controllable

parameters and easily obtained measurements from IT and cooling units. A key use

case for ALTM is that it can be effectively used for thermal-aware workload schedulers

or cooling system controllers. Our results confirm the accuracy and adaptability of

the model.

Keywords:thermal model, thermal-aware workload scheduling, data center tem-

perature prediction, adaptive cooling control, neural network thermal model

4.1 Introduction

Air cooling systems continue to be the most common cooling systems in data centers.

These can be simply building-designed coolers such as normal air conditioners (AC)
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or conventional heating, ventilation, and air conditioning (HVAC) units. Many large

scale data centers use computer room air conditioning (CRAC) units, in the form of

a raised-floor architecture [1]. In-row cooling units and rack mountable cooling units

(RMCUs) are more recent and power-efficient cooling system designs [2].

Cooling systems should provide sufficient cool air for servers. Maintaining the

intake air of servers below a certain temperature ensures a safe working environment

for servers and does not compromise their performance (due to automatic throttling

of computing nodes [3]) or reliability [4]. The current practice of today’s data centers

is to keep the maximum temperature of a zone affected by a cooling unit below a

certain temperature. Implementing this practice inevitably results in many servers

being far below the required temperature, such servers are said to be over-cooled.

Reducing over cooling of servers is an obvious opportunity for power savings [5]. The

key component in achieving the minimum amount of over-cooling is to have a holistic

thermal model. This model should give the distribution of air temperatures inside

a data center based on the operational parameters of the cooling units and the heat

generation profiles of servers [6].

A thermal model simply answers the question “what will be the temperature at

the front of each server?”. The answer should be in the form of a vector containing

the temperature distribution, at a given future time. This can be obtained with

respect to the current status of a data center, such as cooling unit configurations or

the arrangement of heat sources (servers). Tracking server temperatures is crucial for

operational control of cooling systems and server workload management.

There are a number of works and methods presenting thermal models of data
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centers. In our previous work, we showed that using a holistic thermal model, a sig-

nificant portion of the cooling power could be saved through an optimized assignment

of workload and appropriate adjustment of cooling parameters [7]. Computational

fluid dynamics (CFD) methods [8] can estimate the temperature of every point within

a data center with high precision, however, they are very computationally intensive

and are not appropriate for real-time decisions. There are a number of faster models

using zonal-based methods and physical energy balance equations [6, 9]; however,

these methods do not adapt with physical changes within data centers and also their

accuracy deteriorates within large-scale settings. This is because determining incom-

ing and outgoing air flows of thermal zones becomes very complicated in such chaotic

environments.

In this paper, we present a means to predict the inlet temperatures of servers

with high precision. This is a transient model (as opposed to steady state) that

adapts to physical changes and can estimate the temperature over a time horizon.

The inputs to our model are the operational parameters of the cooling unit and server

workload assignment. With this in mind, we set up an infrastructure monitoring tool

to provide the required data to predict future temperatures. We compared a linear

regression (least squares) model and a neural network approach and concluded that

an appropriate neural network can predict the temperature more accurately, further

into the future. An important application of our work is as a key component for

holistic system management to both schedule the incoming workload and control the

cooling unit parameters efficiently in order to minimize total power consumption.

The next section provides a review of works related to temperature prediction in

data centers. Next, the details of our experimental data center architecture and data
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acquisition phase are explained. In Section (6.3.2), the framework to implement two

model estimators is illustrated and discussed. Finally, results of implementing the

framework are provided and analyzed.

4.2 Literature review

The literature lacks adaptive and/or practical solutions capturing all factors affecting

air recirculation in a data center. Computational fluid dynamics (CFD) simulations

are the predominant way of constructing thermal models for data centers. CFD sim-

ulations are based on thermodynamic laws and have heavy computational require-

ments. Although CFD methods have high precision and resolution, they cannot be

evaluated at the time scales of data center dynamics [10].

The majority of works on thermal-aware workload assignment either simplified

the effects of air recirculation using a static recirculation matrix [11, 12] or used a

simple auto-regression method, simply based on IT load [13]. The drawback to these

methods is that they have not considered the effects of all operational variables of a

data center.

Moore et al. [14] used a neural network to compute the temperature of inlet

air for all servers. The inputs of their model are pairs of power and heat profiles.

Specifically, workload, cooling settings, and room layout measurements are used to

train the model. However, it is a steady-state model that uses a limited number of

influential parameters of the cooling unit as inputs to the model. So, the accuracy of

the model can potentially be compromised by changes in parameters that have not

been considered, such as a change in the air flow rates.
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Zhang et al. [15, 16] developed a machine learning-based framework for temper-

ature prediction of server cores. Several measurements of a running task are used

as the features of the neural network model such as the CPU frequency, the number

of instructions, floating-point operations, and cache hits or misses in different cache

levels. Appropriate features are selected using a correlation feature selection (CFS)

algorithm. They used this prediction model for application scheduling on different

servers to reduce the maximum average core temperature.

Yao et al. [13] used a linear function that relates the outlet temperatures of IT-

racks and CRACs to the inlet temperatures of IT-racks. Y = WX is used as the linear

model where X contains the outlet temperatures, Y contains the inlet temperatures,

and W contains the weights. They used the recursive least squares (RLS) method to

determine the weights (W ) of the linear model.

Li et al.[17] presented an approach for energy-efficient thermal-aware workload

scheduling. They used CFD methods to model the temperature distribution in a data

center. Although it is asserted that the thermal model captures features of CRACs

holistically, the simplified thermal model may be far from reality (for example, fan

speeds are supposed to be constant, or the closest CRAC unit to a server is considered

to be the only cooling unit that influences the server temperature) and the model lacks

cooling unit details.

Li et al. [9] proposed ThermoCast, a thermal prediction model to predict tem-

peratures in a data center, based on temperature and air flow measurements. This

approach considers the most recent measurements of IT power consumption, temper-

ature, and air flow rates to update the model coefficients. The main issue with this

method is that the model requires a structure based on physical laws. They simplify
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the air flow equations to obtain the structure. So, errors due to simplification may

propagate for large scale data centers. The other issue is that the model uses air

flow measurements at the front of servers, which we have found to be problematic as

directly controllable (or measurable) variables.

4.3 Thermal model

The main objective of constructing a thermal model is the estimation of the temper-

ature distribution within a data center. The model should be able to predict the inlet

temperatures of servers based on the operational parameters of cooling units and the

data center workload. We start with illustrating outputs and inputs of the model.

The outputs are the temperatures of thermal zones. A zone is the cubical volume

at the front of a number of adjacent servers. For example, the data center shown in

Fig. 5.1 has 25 thermal zones. Adjacent servers typically have small differences in

their inlet temperatures; as a result, we use the inlet temperature of a server and the

temperature of a zone interchangeably throughout this paper. Inputs of the model are

manipulatable or controllable variables which here are workload profiles and cooling

profiles; the former is related to the IT facilities and the latter corresponds to the

cooling facilities.

Workload profile For the sake of simplicity, this work simply considers the work-

load of a server to be its utilization.

Cooling profile The cooling profiles are the set of dynamic variables that can be

measured and controlled and also affect the temperature distribution.
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Figure 4.1: Front view of an in-row cooling data center with two cooling units at
two sides and five IT racks

In this paper, we show that a reasonably accurate temperature prediction is gained

using the suggested framework with the help of readily available inputs. The imple-

mentation of the framework is straightforward and there is no need for understanding

the physics of the heat transfer within the data center. The determination of server

inlet temperature estimates is both on-line and adaptive. To the best of our knowl-

edge, this is the first thermal modeling approach that directly uses cooling and IT

parameters for its predictions and adapts to changing thermal conditions. Changes

in the thermal condition of a data center are to be expected. These changes can

be initiated from component changes due to system maintenance, room alterations,

device replacements, dust accumulation, modifications of the compartments and air

vents, etc. An example later in the paper shows the necessity of being adaptive.

Next, the procedure for data acquisition for model estimation is described in

detail. We then show the implementation of on-line model estimators and describe a

framework for using them. Finally, we discuss the accuracy of using different model

estimators, and illustrate the results.

86



Ph.D. Thesis – S.Morteza M.Nejad McMaster University – Computer Science

Figure 4.2: The top view of the in-row cooling data center

4.3.1 Data acquisition

An important aspect of this work was setting up equipment and reporting tools

to acquire data. The setup was implemented in a data center which has two in-

row cooling units at two sides and five IT racks (Fig. 5.1). We developed a data

acquisition tool to both apply our desired configurations and acquire all operational

variables of cooling units and server profiles. Fig. 5.2 shows the top view of the

data center under study, consisting of two major parts: IT and cooling units. IT is

considered to be the servers and cooling units include the facilities that provide cool

air at the front of servers.

Fig. 5.3 shows the architecture of each cooling unit. As shown, each cooling unit

has a number of fans that draw hot air from the hot chamber, pass the air through

a heat exchanger and blow the cold air to the cold chamber. Water flow within the

heat exchanger transfers the generated heat out of the facility. In other words, cold

water enters the heat exchanger, and warm water exits.

Cooling unit operational parameters can be controlled and monitored using the

simple network management protocol (SNMP); these parameters include the speed of

each fan and the water flow rate inside the heat exchanger of the cooling unit. On the

other hand, the IT consists of servers that process the given workload. We can apply
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Figure 4.3: In-row cooling schema

the given workload to servers and collect real-time reports using SSH commands.

Each server is able to report the current utilization and temperature of its cores.

Temperatures at the front of servers obtained via thermal sensors (DS18B20 digital

thermometers) which are placed in each zone. The height of each rack is divided into

five equal height thermal zones.

Our designed tool connects to cooling units using SNMP, to servers by SSH, and to

thermal sensors via serial ports. It takes operational scenarios as an input. A scenario

is a time series of values that needs to be applied to the controllable variables of the

data center at specified times. The operational scenario should be rich in parameter

variation to be suitable to train the model. Upon executing a scenario workload

patterns are applied to servers and patterns of operational parameters are applied

to cooling units. At the same time, reported data including measurements from the

thermometers (installed at 25 thermal zones), the utilization and CPU temperature of

servers, and operational parameters of the two cooling units are saved in a data base.
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The operational parameters of the cooling units consist of the inlet water temperature

(Twaterinlet ), the water flow (Qwater) and fan speeds (Sfani ).

Gathered data is preprocessed and saved into corresponding matrices, input X

and output Y, to be applicable for a model estimator. Each row of X includes all

input variables and each row of Y includes all output measures are obtained at the

same time step. The values in X and Y are normalized to be in comparable scales.

A bold capital letter, such as Y, represents a matrix and a bold small letter, such as

yi, denotes a vector corresponding to the ith row of a matrix.

A top-level view of the thermal model can be formulated as (4.3.1). This is a

transient model that predicts the inlet temperatures of servers at the next time step,

shown by ŷk+1. So, the model is a discrete function of the current and previous inputs

and outputs. The output vector is represented by yk and xk is the input vector, both

at the kth time step. The vector xk consists of the operational parameters of cooling

units, S̄fan, Q̄water and T̄waterin , and the workload profile given by server utilizations

(Ū). The vectors xk−i and yk−i are the input and output in the ith previous time

step.

ŷk+1 = f(xk,xk−i,yk,yk−i) i = 1, 2, · · · (4.3.1)

4.3.2 The model framework and algorithms

We explored two different approaches for temperature estimation. The first uses

weighted recursive least squares (wRLS) for the estimation of a linear model, and

the second trains a neural network model. We selected two off-the-shelf adaptive

model estimators; one of them works well for a linear system and the other can better
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model a non-linear system. We arranged to make a fair comparison between them by

exposing them to the same input data.

Weighted recursive least squares We used wRLS for the parameter estimation

of a linear thermal model [18]. Without loss of generality, the problem can be con-

sidered as a simple linear model Y = ΦX; here X and Y are matrices of inputs and

measured output values, respectively. wRLS is an on-line model estimator which is

able to adapt to changes in the system being estimated. The algorithm forgets the

past data using a forgetting factor λ.

wRLS has an update phase that updates the model parameters (or Φ) upon re-

ceiving new data. For the sake of simplicity, we do not explain the wRLS process. We

just denote the update phase in the form of Φnew = parameterUpdate(Φold,X,Y, λ).

Here, Φnew is the newly calculated model parameters with respect to Φold and up-

dated X and Y. Φold is the latest calculation of the model parameters. The matrices

X and Y are updated with new data during each iteration.

The wRLS algorithm considers a number of previous data samples p, often referred

to as a pth order filter. So, a window of length p is updated with the most recent

data samples. X is a p by i matrix, Y is a p by o matrix, and Φ is an i by o matrix

in which i is the number of linear terms of the input and o is the number of outputs

being estimated.

Algorithm 2 gives a simple form of wRLS to estimate the linear thermal model.

In this algorithm, one iteration is performed upon receiving a new vector of data d.

The function dataGeneration() returns the vector of new samples of inputs and the

corresponding outputs. The new data d is used to update input and output matrices

using dataInsertion(). Finally, parameterUpdate(), using the new matrices of inputs
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and outputs, updates the previously obtained parameters in Φ.

Result: Estimation of the linear thermal model
X=[0]p,i;
Y=[0]p,o;
Φ=[0]i,o;
λ=0.9;
while true do

d = dataGeneration();
[X Y]=dataInsertion(X,Y,d);
Φ=parameterUpdate(Φ,X,Y,λ);

end

Algorithm 2: Adaptive linear thermal model

Neural Networks The second method is training an adaptive neural network for

the thermal model. For the neural network model, we used a MATLAB toolkit in

which the standard back-propagation method uses the Levenberg-Marquardt algo-

rithm to train the model. Our job is to see how well an off-the-shelf neural network

performs. As a result, analyzing and comparing different neural network methods is

out of the scope this paper. However, it is certainly an interesting topic for future

work.

As explained previously, the model should be updated as time progresses. There

are a number of methods that consider updating neural networks upon system changes

[19]. For example, an update can be performed upon detecting a notable mismatch

between the desired and estimated data. We chose the statistical batch selection

method for updating [20], as it is straightforward to implement for our scenario.

Statistical batch selection updates the neural network model upon receiving a

number of new data points. Randomly generated numbers are used as indexes to

select data samples from the previously saved data. The batch selection approach is
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more likely to return recent data for the next iteration of the algorithm. To implement

the adaptive neural network and batch selection method, we used Algorithm 3. The

algorithm stores the recent data in a buffer of length i. It then selects the batch of

data using the function batchSel(), as described. This batch is used to train the new

neural network. The network uses the previous iteration weights and biases.

Result: Estimation of the neural network model
X=[0]p,i;
Y=[0]p,o;
Φ = initialize();
l = 10;
n = 1;
net = backpropagation(n);
while true do

D = dataGeneration(l);
[X,Y] = dataInsertion(X,Y,D);
[Xb,Yb] = batchSel([X,Y]);
train(net,Xb,Yb,Φ);
Φ = net.weights();

end

Algorithm 3: Adaptive neural network thermal model

Algorithm 3 first initializes input and output data windows (X and Y), and the

internal neural network weights (Φ) using the function initialize(). It requires a

specific number of data samples (l) at the beginning of each iteration. In our imple-

mentation, we set l to be 10. We chose one hidden layer and the back-propagation

method for the neural network (n).

In the loop, after receiving a certain number of data points (l), the new data

samples (D) are inserted in the data window [X, Y] and the outdated data points are

discarded from the window. After constructing [X, Y], the batch [Xb,Yb] of selected

data is constructed by the batchSel() function. The neural network is then trained
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Figure 4.4: Temperature prediction of the neural network vs wRLS models

using the selected batch and the previously calculated network weights.

4.4 Results

We first compare the estimation results of the linear and neural network models.

For the neural network the accuracy for the validation set is set to 0.001◦C. The

termination of the neural network training happens after 9 epochs, on average. The

neural network computational complexity was not limiting for our settings, however,

this aspect should be be studied in the future. Fig. 4.4 depicts the estimation horizon

of the neural network and a linear model. Curves represent the average temperature

of the 25 temperature sensors. The solid line is the value of measurements and non-

solid lines are the estimates. The figure shows that the neural network model has

greater accuracy than the linear model.

To demonstrate the accuracy of the neural network model, the measured and
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Figure 4.5: The box plot representation of the 25 measured temperatures vs their
estimates (blank rectangles show the measured values and filled blue rectangles are

estimates of the temperatures using neural networks)

estimated values are shown in the same plot. A box plot representation is chosen to

plot 25 estimates and 25 measured values at each time step. For each box, the average

is indicated by the central mark. The 75th and the 25th percentiles are shown by the

top and the bottom edges of each box, respectively. In Fig. 4.5, the blank rectangles

with red central marks show the measured values and filled blue rectangles with the

central circle marks are the model estimates. The figure shows that the estimates

follow the measured values accurately enough. The average estimation error for the

100 time step projection is 1.5◦C.

The neural network model is designed to be adaptive to changes that might occur

in thermal conditions. We performed an experiment to demonstrate the adaptivity of

the thermal model. We introduced thermal changes at the 1550th time step. At that

time, the front doors of the cooling units were left partially open, having been closed
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Figure 4.6: 100 steps projection error for the neural networks model - An
environmental change happened at the 1550th time step

before the 1550th time step. Fig. 4.6 shows that at the time of the change a large

error occurs in the estimates. The model then adapts to the new thermal conditions

and the error decreases.

In Section 5.2, CFD models and a number of physics-based thermal models were

reviewed. It was stated there that the main issue with using these is that none of

them are adaptive to the thermal changes in the data center environment. Fig. 4.7

shows the behavior of an adaptive and a non-adaptive neural network model. The

figure clearly demonstrates the difference between these two models. The average

error for the adaptive model is 1.15◦C and for the non-adaptive model is 2.1◦C. The

errors of non-adaptive models can potentially diverge for longer prediction horizons,

so these errors are exacerbated as time increases.
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Figure 4.7: The comparison between adaptive and non-adaptive thermal models

4.5 Conclusion

We introduced a novel, low-complexity, easy to implement, and adaptive model es-

timator which captures the thermal dynamics of a data center. It can be applied in

any data center and provides up-to-date information that could be used by a thermal-

aware workload manager. The model is also attractive because it only requires readily

available inputs. Other means of constructing thermal models have some deficiencies.

Many of them are just fixed models that do not change with the changes within a data

center, which is a serious drawback due to the dynamic nature of data centers. Some

suggested adaptive thermal models do not consider the cooling infrastructure at the

same level of detail as we have. Considering every operational variable of the cooling

units provides the opportunity of controlling cooling together with the assignment of

workload which can lead to significant power savings. Our adaptive thermal modeling

approach appears to be an attractive option to incorporate into workload schedulers
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or control algorithms.
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Chapter 5

Holistic thermal-aware workload

management and infrastructure

control for heterogeneous data

centers using machine learning

This chapter is reproduced from “Holistic thermal-aware workload management and

infrastructure control for heterogeneous data centers using machine learning”, Seyed-

Morteza MirhoseiniNejad, Ghada Badawy, and Douglas G. Down, submitted to Fu-

ture Generation Computer Systems, 2020. The author of this thesis is the first author

and the main contributor of this publication. His contributions to this work consist of

introducing the idea of a holistic thermal-aware framework for data centers, writing

the manuscript, formulating the optimization problems, conducting the experiments,

and implementing the framework.
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Abstract

Two key contributors to the energy expenditure in data centers are information

technology (IT) equipment and cooling infrastructures. The standard practice of data

centers lacks a tight correlation between these two entities, resulting in considerable

power wastage. Considering the cooling cost of different locations inside a data center

(cooling heterogeneity) and various cooling capabilities of servers (server heterogene-

ity) has significant potential for saving power, yet has not been studied thoroughly

in the literature. There is a necessity for state-of-the-art approaches to integrate the

control of IT and cooling units. Moreover, the literature still lacks an accurate and

fast thermal model for temperature prediction inside a data center. In this paper,

innovative approaches to create thermal models for data centers and servers are pre-

sented, which quantify data center thermal heterogeneities. Employing the models,

the cost of providing cold air at the front of servers can be (indirectly) calculated,

and the capability of servers to be cooled is formulated. Our approach assigns jobs to

locations that are efficient to cool (from the perspectives of both servers and cooling

units) and tunes cooling unit parameters. The method, called holistic data center in-

frastructure control (HDIC), has the potential to save a considerable amount of power

by exploiting synergies between the workload scheduler and operational parameters

of cooling units.

Keywords: data center workload assignment, cooling unit control, thermal-aware

scheduling, neural network modeling, data center model, efficient cooling, server ther-

mal model
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5.1 Introduction

Two percent of power consumption in the United States in 2014 was due to data

centers, equivalent to approximately 70 billion kWh [1]. In contrast, the power con-

sumption of data centers in 2000 was 30 billion kWh [2]. It has been estimated that

from 2015 to 2020, the incoming load to data centers will double [3]. The increasing

number of online and mobile applications, public interest to access cyber entertain-

ment, and cloud services for both personal and business users have a significant role

in this jump [4]. Anticipating this increase, in addition to power usage constraints

have led large data center vendors to invest more in the efficient use of power [1].

There are several methods and techniques to reduce power consumption at differ-

ent levels of a data center. At the device level, some electronic devices support low

power states to save energy, if the performance of the device is not impacted [5, 6].

For example, dynamic voltage and frequency scaling (DVFS) is a method that pro-

vides different levels of power consumption and performance for processors [7, 8]. At

the server level, dynamic suspension of unneeded servers, server consolidation, and

the ability to choose different levels of power and performance are vital approaches

for energy efficiency. For instance, server consolidation aims to save power by turning

unneeded servers off during low workload periods [9, 10, 11]. At the facility level,

power efficiency of the cooling system itself is also a significant concern [12, 13, 14].

Different servers and locations in data centers are not cooled equally, resulting in

what we call data center thermal heterogeneity. In other words, servers are different

in their cooling requirements (server heterogeneity), and locations are also different

in their cooling cost (cooling heterogeneity). Cooling heterogeneity refers to the fact

that from a particular cooling unit, all locations in a data center do not benefit to
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the same degree. Related works in the literature have either simplified or ignored

heterogeneity that exists in the data center environment when studying workload

assignment or cooling control. We have studied the cost-saving opportunities that

exist due to server heterogeneity during workload assignments [15], and also due to

cooling heterogeneity [16], however no study has considered all aspects of data center

thermal heterogeneity to control cooling unit parameters and assign workload.

In this paper, a holistic data center infrastructure control (HDIC) framework is

presented. HDIC is a novel method to exploit all aspects of data center thermal

heterogeneity and uses them as an opportunity to save power during data center

control. The proposed framework employs neural networks to construct thermal

models for the data center and individual servers. Server thermal models are used to

estimate the core temperature of servers, and a data center thermal model is used to

predict the inlet temperatures of servers. These have the attraction of being data-

driven models, as building accurate physical models for data center thermal dynamics

is notoriously tricky.

The generated thermal models incorporate both cooling and server heterogeneity.

These models can then be used by an optimizer to control the system in a power-

efficient manner. We demonstrate that the solutions to the underlying optimization

problem lead to considerable power savings while maintaining IT performance. Our

contributions in this paper can be summarized as follows:

� We model the thermal differences between servers and locations in a data center

using a novel thermal model.

� We incorporate low complexity data-driven thermal models to take thermal

heterogeneity in data centers into account during workload assignment and
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cooling control.

� We present an optimization framework that can jointly optimize the assign-

ment of workload and the operational parameters of the cooling unit(s), while

respecting the expected performance of IT equipment.

In the next section, related work is classified and reviewed. In Section 5.3, the

architecture of the system under study is illustrated and the required models to

formulate the problem are explained in Section 6.3.2. In Section 6.3, the methodology

for cooling control and workload assignment is discussed and techniques to optimize

the data center control parameters are explained. The solution of the developed

optimization problems is discussed in Section 5.5, and HDIC is compared with other

representative methods. Finally, concluding remarks are in Section 6.6. A summary

of the notation used in this paper is listed in Table 5.1.

5.2 Literature review

There is a significant literature on this topic, studying various control methods, work-

load assignment frameworks, and thermal models for data centers. In this section,

a number of previous works related to our contributions are reviewed: data center

thermal models, thermal-aware workload assignment frameworks and thermal-aware

control methods.

There are various methods of temperature prediction for data centers (data center

thermal models). Computational fluid dynamics (CFD) is a traditional method for

data center thermal simulations. This approach is based on fluid mechanics, using

heat transfer relations and laws of physics. Having an accurate simulation requires
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Table 5.1: Notation

Variable Definition

�̄ Vector of a variable (� is any variable)
ns Total number of servers
d Offered workload to data center (percent)
ρ CPU utilization of server (percent)

ρmax Maximum allowed CPU utilization

Qcooling
water Cooling unit inlet water flow-rate (cfm)

Qcooling
air Air flow-rate generated by fans (cfm)

Qcooling
fan Fan speed (percent of maximum)

T coolingwater Cooling unit inlet water temperature (◦C)
T serverinlet Inlet temperature of server (◦C)

T coolingsetpoint Set-point temperature of cooling unit (◦C)
T serverred Red line temperature of servers (◦C)
T servercpu Temperature of server CPU (◦C)
T cpured Red line temperature of CPU (◦C)
T chillerevap Evaporator temperature of chiller (◦C)
T chillercnd Condenser temperature of chiller (◦C)
P dc Total power consumption of data center (Watt)
P it Power consumption of IT (Watt)

P cooling Total power consumption of cooling unit (Watt)
P fan Power consumption of cooling fans (Watt)
P chiller Power consumption of chiller (Watt)
P heat Total amount of generated heat (Watt)
Ci Server power model coefficient

αi , βi Chiller and fan power model coefficient, respectively
nu , ny System model input and output delay, respectively
u(t), y(t) System model input and output at time t, respectively
ŷ(t) Predicted output of the system
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the discretization of the volume of the simulated object and solving numerous si-

multaneous equations for the discretized dynamics. This method is computationally

complex and needs powerful computing devices [14]. In [17], Moazamigoodarzi et al.

presented a zonal-based method for temperature prediction. Their method considers

heat-transfer differential equations and energy conservation laws between adjacent

thermal zones to model the thermal dynamics. Due to simplifications to form heat-

transfer equations, this method suffers with respect to both scalability and accuracy

for a heterogeneous data center environment.

Li et al. [18] presented a learning-based temperature forecasting method for data

centers. They simplified a full-fledged fluid dynamic model by combining physical

laws and sensor observations. Their model constantly measures temperatures and

air flow-rates surrounding each server. A learning algorithm is used to relate the

sensor observations to the IT load. Although the idea of combining machine learning

models and physical laws is attractive, the method needs accurate temperature and

air-flow measurements from surrounding servers. There are complex air flow patterns

in data centers and it is not clear that measurements from one sensor per thermal

zone would result in sufficient fidelity for acceptable performance. In addition, this

method requires what may be an inordinate number of sensor installations.

In addition to the above mentioned methods of temperature prediction in data

centers, there are two methods which are data-driven (instead of using laws of physics

and heat transfer) and resemble more closely our thermal model. Moore and Ran-

ganathan [19] developed an approach based on neural networks for estimating tem-

perature in data centers. In this approach the IT profile, air flow-rates, supply air

temperatures, and the geometry of a data center are provided as inputs to the model.
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The main issue with this approach is that it requires an extensive number of steady-

state data points. Additionally, the geometry such as locations of compartments,

walls, and servers, does not allow the model to be adaptive to any physical change in

a data center. Wang et al. [20] presented a method for temperature prediction in data

centers also based on neural networks, but with a different perspective. This method

considers thermal effects on the temperature distribution caused by a server when it

runs a task, which they call the task-temperature profile. The main issue with this

method is that it does not consider the effects of other operational variables inside a

data center which also impact the temperature distribution such as a change in the

speed of a fan.

There are a number of works aiming to deal with cooling heterogeneity via the

current status (temperature) of a data center without providing any feedback to

cooling units, for example, assigning workload inversely proportional to the exhausted

air temperature [21], or assigning workload based on server inlet temperature and

current workloads of neighboring servers [22]. Bash and Forman [13] presented a

method to rank cooling efficiency of a server location for workload assignment. Servers

are ranked based on their response to a step change in the supply air temperature

of cooling units. The longest jobs are then assigned to the highest ranked servers.

Chaudhry et al. [23] presented a thermal-aware server relocation algorithm based on

monitoring server inlet temperatures. The goal of this paper is to decrease the peak

outlet temperature of servers by relocating them.

There is another group of thermal-aware workload assignment approaches that

provide simple feedback to the cooling unit (usually a set-point) and use a simplified

thermal model for temperature prediction. Using this simple thermal model is one
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way to consider cooling heterogeneity. Tang et al. [12] developed a thermal-aware

workload manager to minimize the peak server inlet temperature through optimal

assignment of workload. Their work is based on a static heat recirculation matrix

(HRM). The utilization of each server is assumed to be 0 or 1. Abbasi et al. [24]

minimized the total amount of heat recirculation to increase the cooling unit supply

air temperature. The main difference between [12] and [24] is that in [24] a finer-

grained workload can be assigned to a server.

Zhao et al. [25] used a control loop to regulate inlet temperatures of servers through

adjusting operating frequencies and utilizations of servers with a goal of minimizing

the total power consumption. The thermal model used in this work is based on an

HRM. Fang et al. [26] presented a framework for optimizing server and cooling unit

settings to reduce power consumption. An optimization process, employing an HRM,

is used for selecting the active set of servers, controlling the servers, and adjusting

the set-points of the cooling units. They used CFDs to obtain the HRM, resulting in

over-simplification. Moreover, the only parameter to control cooling units is the set-

point, controlling fine-grained cooling parameters is not performed by the framework.

This limitation restricts the potential to save power.

Another category of work studies the cost saving opportunities available when

considering cooling heterogeneity. Mukherjee et al. [27] enhanced Abbasi et al. [24]

by considering job deadlines as extra constraints in the power minimization problem.

Moreover, servers can be slowed down to throttle temperature peaks. The main

drawback for the work in [12, 24, 26, 27] is that their thermal models rely on a

static HRM that may not be appropriate for the dynamic environment of a data

center. To this end, Wang et al. [28] enhanced the HRM-based approach by making

109



Ph.D. Thesis – S.Morteza M.Nejad McMaster University – Computer Science

it adaptive to air flow changes. Their method uses a learning-based method that

reflects variations of air flows in the HRM. This work admits the inadequacy of a

static HRM for thermal-aware workload assignment methods. However, while they

do consider dynamic air flows, just one air flow is considered for each rack. From

top to bottom, each rack may have a variety of air flows and assuming just one air

flow for a rack endangers the model accuracy. Moreover, the air flow profile is the

result of the action of multiple fans. The feasibility of providing the optimized air

flow patterns by tuning fan parameters is not clear.

There is a body of work that considers finer-grained cooling unit variables than

just a set-point. Wang et al. [29] studied the problem of optimal control of fan

speeds using a multi-input/multi-output (MIMO) method with the aim of preventing

fan speed over-provisioning in server blades. The control method is able to reduce

power consumption of a blade by as much as 20%. This work is interesting with

respect to the thermal and heat transfer models that are used. Although this work

introduced more accurate thermal models (in contrast with HRM-based models),

there are opportunities to increase the resolution of fan effects on the cooling efficiency

of cooling units.

Yao et al. [30] used an adaptive predictive control method for workload balancing

in data centers. An adaptive thermal model is used to predict inlet temperatures.

They formulate an optimization problem with a goal to smooth server inlet tempera-

tures and decrease total power consumption. Their cost function is formulated based

on total power (cooling unit and IT racks) and tracking error of a predictive model.

The controller adjusts the inputs (server workloads) to set the inlet temperatures

while minimizing the total power consumption.
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In [15], we developed a thermal-aware cooling control and workload assignment

method which has the potential to save a considerable amount of power. The method

assigns more workload to cooling-efficient servers and less to cooling-inefficient servers.

In this way, a higher set-point could be set for the cooling unit while satisfying the

cooling requirements of all of the servers. The higher the cooling unit set-point, the

less power is consumed. This method saves power mainly by preventing server over-

cooling. Additionally, we showed in [16] that the operational parameters of the cooling

unit and assignment of the given workload could be configured in multiple ways with

different costs while providing the same cooling and IT capacity. In particular, taking

cooling cost information into account when making cooling control and workload

assignment decisions has the potential to yield significant power savings. However,

none of these methods considered all aspects of cooling heterogeneity. Moreover, the

model is physics-based and evaluation is made via simulation. Such an approach may

have issues with respect to accuracy, adaptability, and scalability.

5.3 System architecture and models

In this section, the architecture of the data center under study is provided. The steps

to acquire data and then to build data center and server thermal models are explained

and the power consumption is formulated.

5.3.1 System architecture

For generating the data center thermal model, we used our on-site data center, shown

in Figure 5.1. The data center consists of five IT racks and two in-row cooling
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Figure 5.1: Front view of data center with two in-row cooling units at either side
and five IT racks

Figure 5.2: Top view of data center

units. The height of each rack is divided into five equal height thermal zones. We

developed a data acquisition tool to both apply our desired configurations and acquire

all operational variables of cooling units and server profiles. Figure 5.2 shows the top

view of our data center.

Figure 5.3 shows the architecture of each cooling unit. As shown, each cooling unit

has a number of fans that draw hot air from the hot chamber, pass the air through

a heat exchanger and blow the cold air to the cold chamber. Water flow within the

heat exchanger transfers the generated heat out of the facility. In other words, chilled
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Figure 5.3: In-row cooling unit

water enters the heat exchanger, and warm water exits.

Cooling unit operational parameters can be controlled and monitored using the

simple network management protocol (SNMP) [31]; these parameters include the speed

of each fan and the water flow-rate inside the heat exchanger of the cooling unit. On

the other hand, the IT consists of servers that process the given workload. We can

apply the given workload to servers and collect real-time reports using SSH commands

[32]. Each server is able to report the current utilization and temperature of its cores.

Temperatures at the front of servers are obtained via thermal sensors (DS18B20

digital thermometers) placed in each zone.

Our tool connects to cooling units using SNMP, to servers by SSH, and to thermal

sensors via serial ports. It takes operational scenarios as inputs. A scenario is a time

series of values that needs to be applied to the controllable variables of the data center.

The operational scenario should be rich in parameter variation to be suitable to train

the model. Upon executing a scenario, workload patterns are applied to servers and
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patterns of operational parameters are applied to cooling units. At the same time,

reported data including measurements from the thermometers (installed at 25 thermal

zones), the utilization and CPU temperature of servers, and operational parameters

of the two cooling units are saved in a database. The operational parameters of the

cooling units consist of the inlet water temperature (T coolingwater ), the water flow-rate

(Qcooling
water ) and fan speeds (Qcooling

fan ).

5.3.2 Data center thermal model

An accurate prediction of server inlet temperatures is crucial for effective data center

control methods, as inlet temperatures are key to safe operation of IT equipment. In

[33], we provided a framework for constructing a data center thermal model using

neural networks.

In this work, we use time series forecasting to model inlet temperatures of servers.

It has been shown that neural networks outperform traditional time series forecasting

[34]. Thus, we use a neural network model to predict the inlet temperatures of servers

several time steps in the future. In particular, a nonlinear auto-regressive network

with exogenous input (NARX) is chosen, where the exogenous variables are all the

control variables of the data center. The choice of the NARX network is due to its

ability to model nonlinear dynamic systems and capture time dependencies [35]. The

NARX network has the representation

ŷ(t+ 1) = f (y(t), · · · , y(t− ny), u(t), · · · , u(t− nu)) , (5.3.1)

where y and u are (a finite number of) past outputs and inputs, and ŷ is the pre-

dicted output. The values ny ≥ 1 and nu ≥ 1 are the orders of the delays for the
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Figure 5.4: Closed-loop NARX network

Figure 5.5: MATLAB implementation of Closed-loop NARX network

included outputs and inputs and f is a nonlinear function. Unlike recurrent neural

networks, feedback to the network in Figure 5.4 is directly from the output and there

is no feedback in the hidden layer. This architecture has been shown to be more

computationally efficient than fully connected recurrent neural networks [35].

The model takes IT and cooling unit parameters as inputs and predicts temper-

ature. These input parameters of the thermal model are the utilization profile of

servers, inlet water temperatures, water flow-rates, and fan speeds of cooling units.

A MATLAB implementation of a NARX network is shown in Figure 5.5 for nu = 5

and ny = 5. One hidden layer with size 20 is chosen and the model is trained using

the Levenberg-Marquardt back-propagation method.

The performance of the network is demonstrated by comparing the measured and
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Figure 5.6: Temperature of Zone 1

estimated temperatures and errors in both the immediate time step and multiple

future time steps. The average error for estimating the next time step is 0.1◦C and

for 100 steps in the future is 1.2◦C (Figure 5.6) for a time step of 10 seconds. For

this work, steady state estimation of the inlet temperatures of servers with respect to

the cooling variables and workload profile is required.

5.3.3 Server thermal model

Thermal heterogeneity of servers is the result of different thermal conditions of servers

which in turn cause different patterns of CPU temperature change [15]. This hetero-

geneity can be captured by server thermal models. Therefore, a model for the CPU

temperature of each server, or server thermal model, is required to be generated.

The maximum allowable CPU temperature is called the red-line temperature

(T cpured ). The CPU temperature of a server, T servercpu , depends on two contributing fac-

tors, CPU utilization (ρ) and inlet temperature (T serverinlet ) of the server [15]. Increasing

each of them (T serverinlet or ρ) increases T servercpu . So, a server thermal model is required

to return T servercpu for all servers as a function of the server inlet temperatures (T̄ serverinlet )

and the CPU utilizations (ρ̄). This model would allow an optimizer to assign server
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Figure 5.7: CPU temperature of a server in Zone 2

utilizations to maximize the required T serverinlet subject to keeping CPU temperatures

below T cpured .

The same method as used for the data center thermal model is chosen for con-

structing server thermal models. However, as we are looking at individual servers, the

implementation of the method is somewhat simpler. A closed-loop NARX network

is chosen with T serverinlet and ρ as the inputs of the network and the CPU temperature

(T servercpu ) as its output. Figure 5.7 shows that the NARX network is able to track

temperature changes accurately.
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5.3.4 Power model

The total power consumption of a data center, P dc is the sum of the power consump-

tion of servers (which we call IT power or P it) and cooling units (P cooling):

P dc = P it + P cooling. (5.3.2)

The major contributing factor for the IT power (P it) is the power consumption

of servers, which is modeled as an affine function of its utilization (ρ) [15]:

P it =
ns∑
i=1

c1,i + c2,i · ρi. (5.3.3)

In (5.3.3), c1,i is the power consumption of an idle server and c1,i + c2,i is the

power consumption of the ith server when it is fully utilized. The other contributing

factor of the data center power consumption is the cooling power. The cooling power

(P cooling) consists of the power consumption of fans (P fan) and the power consumed

by the chillers P chiller:

P cooling = P fan + P chiller. (5.3.4)

P fan is the power consumed by fans to circulate air inside the data center to facil-

itate heat transfer. Higher fan speed means greater fan power consumption (P fan).

The power consumption of the cooling unit fans is given by

P fan = β1 + β2 ·Qcooling
fan + β3 · (Qcooling

fan )2 + β4 · (Qcooling
fan )3, (5.3.5)

where βi, i = 1, 2, 3, 4 are constants, and Qcooling
fan is the fan speed in percentage of

maximum.
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A chiller provides chilled water to the cooling units. The inlet water temperature

(T coolingwater ) is the temperature of chilled water provided to cooling units by the chiller.

The lower the value of T coolingwater the higher the power consumption of the chiller. The

model given in (5.3.6) represents the power consumption of the chiller [14]:

P chiller = P heat ·

α1 + α2 ·
T chiller
evap

Pheat + α3 · (T chillercnd − T chillerevap )
T chiller
evap

T chiller
cnd

− α4 · Pheat

T chiller
cnd

− 1

 . (5.3.6)

In (5.3.6), P heat is the total amount of heat that should be removed by the chiller

(equal to P it in our case). T chillerevap is the evaporator temperature, which is approxi-

mately equal to T coolingwater , and T chillercnd is the condenser temperature. The evaporator

and condenser are the two main chiller components. Both T chillerevap and T chillercnd are in

kelvins and the quantities αi are constants. While temperatures in these models are

in kelvins, later in the paper temperatures will be reported in degrees Celsius.

In the next sections, only the cooling power consumption is considered and not the

total power consumption of the data center. This follows from the observation that for

our model the IT power is independent of the workload assignment. Note that these

approaches for generating thermal and power models are not unique. The literature

on power models is well established and as a result these models are appropriate

for our use [14]. On the other hand, the thermal models are generated using data-

driven approaches. This is mainly due to the impracticality and/or complexity of the

existing thermal models in the literature.
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5.4 Thermal-aware cooling control and workload

assignment

Exploring data center thermal heterogeneity is possible through thermal models. In

this section, two different approaches are discussed to be compared later as a demon-

stration of the efficiency of HDIC. In the first approach, cooling heterogeneity is

only considered via the data center thermal model. This approach is called cooling

heterogeneity-aware infrastructure control or CHIC. The second approach is HDIC

which uses both the data center and server thermal models for control decisions. An

optimization problem for each method, CHIC and HDIC, is formulated and justified.

CHIC keeps the inlet temperatures of servers below a threshold temperature,

T serverred . HDIC maintains the CPU temperatures of servers below T cpured . Violating

the device threshold temperature dramatically increases the chance of device failure

[36]. These two thresholds or red-line temperatures are chosen based on ASHRAE

guidelines [37].

5.4.1 Cooling heterogeneity-aware infrastructure control (CHIC)

Cooling units do not provide a uniform temperature distribution throughout a data

center. Some locations receive more cool air than others. From a cost point of view,

the cooling costs of different locations in a data center are different; some locations

are cooled with less cost than other locations. These differences stem mainly from

the physics of heat transfer and hot air recirculation.

A cooling unit can reach a temperature target through multiple settings. The tem-

perature target specifies the maximum allowed server inlet temperature. For example,
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(a) (b)

Figure 5.8: Server inlet air heat-map (a) T coolingwater = 12◦C, Qcooling
fan from Fan 1 to Fan

5: 39%, 39%, 0%, 32%, 0% , P cooling = 1418W , (b) T coolingwater = 18◦C, Qcooling
fan from

Fan 1 to Fan 5: 62%, 57%, 34%, 51%, 51% , P cooling = 1366W

two patterns of the temperature distribution are shown in Figure 5.8, corresponding

to two different settings. T serverred is set to 28◦C. Both settings are able to satisfy

the cooling target, however with different costs. The cooling cost for the settings of

Figure 5.8b is less than for the settings of Figure 5.8a.

In this paper, a data-driven neural network model is used to study the possible

solutions for the power-efficient data center operations. Figure 5.9 shows the optimal

adjusted values (red) and the corresponding power consumption of the cooling unit

(blue) for the fan speeds versus the inlet water temperature. The target temperature

is set to 24◦C. Tracing the power curve clearly explains the necessity of optimizing

the operational variables of the data center. The figure shows that as T coolingwater in-

creases fans should compensate by increasing the air flow, which is reflected in the

Qcooling
fan curves. P chiller and P fan are monotonically increasing functions of T coolingwater

and Qcooling
fan , respectively. Their sum, as shown in the power curve of Figure 5.9,

reaches a minimum point with the optimal selection of the operational valuables.
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Figure 5.9: Demonstration of the trade-off within cooling operational parameters

The optimization problem (6.3.1) finds the optimal values for the controlled pa-

rameters to minimize P cooling while keeping the inlet temperatures of servers below

the red-line (T serverred ) and respecting a number of additional constraints.

min
ρ̄,Q̄cooling

fan ,T cooling
water

P cooling = P fan + P chiller (5.4.1a)

subject to: 0 ≤ ρi ≤ ρmax (5.4.1b)

ns∑
i=1

ρi = d · ns (5.4.1c)

0% ≤ Qcooling
fan ≤ 100% (5.4.1d)

11◦C ≤ T coolingwater ≤ 24◦C (5.4.1e)

T̄ serverinlet = f(ρ̄, Q̄cooling
fan , T coolingwater ) (5.4.1f)

T̄ serverinlet ≤ T serverred (5.4.1g)

This nonlinear optimization problem (6.3.1) minimizes the power consumption

of the cooling units (P cooling). P cooling is the sum of the power consumption of the
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fans and the chiller. P fan is a function of the fan speeds (Q̄cooling
fan ) and P chiller is

determined by T coolingwater , as addressed in Section 5.3.4. Equation (6.3.1d) constrains

the assigned values to the servers between 0 and ρmax (choosing ρmax strictly less than

one could be done to satisfy performance constraints). Equation (6.3.1e) guarantees

the assignment of the total given load. The bounds for fan speeds and the inlet water

temperature are given by (6.3.1f) and (6.3.1g), respectively. Equation (6.3.1h) uses

the data center thermal model to generate inlet temperatures of servers, as explained

in Section 6.3.2. The last constraint enforces the maximum allowed inlet temperature

of a server (6.3.1i).

5.4.2 Holistic data center infrastructure control (HDIC)

Considering cooling heterogeneity during cooling control and workload assignment

is able to save a considerable amount of power, as will be shown in Section 5.5. In

this part, server heterogeneity along with cooling heterogeneity is considered. We use

both data center and server thermal models to (1) adjust cooling unit parameters in

a power-efficient way and (2) assign workload to servers that can be cooled efficiently.

Figure 5.10 gives an intuitive example of power saving capabilities of considering

server heterogeneities using two settings, both with three servers. The total workload

is equal for both settings. In Setting 1, the utilization of each server is 50% when

T serverinlet = 21.8◦C and the maximum CPU temperature is T cpured . In Setting 2, to keep

the CPU temperature of servers below T cpured the inlet temperature of servers should

be T serverinlet = 22.6◦C, which means lower cooling power consumption. This example

shows how workload assignment considering server heterogeneity can potentially save

cooling power.
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(a) Setting 1 (b) Setting 2

Figure 5.10: Server heterogeneity intuition

The data center thermal model gives the server inlet temperature distribution as

explained in Section 6.3.2. It uses cooling variables and the workload profile in the

form of a utilization vector (ρ̄) to return the inlet temperatures of servers (T̄ serverinlet ).

In addition, server thermal models give the required inlet temperatures of servers to

keep the entries in T̄ servercpu below the red-line temperature (T cpured ).

The optimal selection of the cooling variables and workload assignment is the
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solution to the optimization problem (6.3.2).

min
ρ̄,Q̄cooling

fan ,T cooling
water

P cooling = P fan + P chiller (5.4.2a)

subject to: 0 ≤ ρi ≤ ρmax (5.4.2b)

ns∑
i=1

ρi = d · ns (5.4.2c)

0% ≤ Q̄cooling
fan ≤ 100% (5.4.2d)

11◦C ≤ T coolingwater ≤ 24◦C (5.4.2e)

T̄ serverinlet = f(ρ̄, Q̄cooling
fan , T coolingwater ) (5.4.2f)

T̄ servercpu = g(ρ̄, T̄ serverinlet ) (5.4.2g)

T̄ cpuserver ≤ T cpured (5.4.2h)

This nonlinear optimization problem (6.3.2) is similar to (6.3.1). The differences

are the use of both the data center thermal model (5.4.2f) and the server thermal

model (5.4.2g). Moreover, (5.4.2h) constrains CPU temperatures instead of inlet

temperatures, as in (6.3.1i).

5.5 Results and comparison

Both optimization problems (6.3.1) and (6.3.2) should be solved by nonlinear solution

methods as both the cost function and the thermal models are nonlinear. We used

interior-point methods to solve the optimization problem. A complete description of

the data center configuration is illustrated in Section 5.3.1. Briefly, for this data center

configuration, the decision variables are the utilizations of 40 servers, the speed of five
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Figure 5.11: Power consumption of the cooling using CHIC

fans, and one inlet water temperature. Due to the computational simplicity of the

thermal models, a solution can be obtained relatively fast. In the next subsection,

the solutions to the first and the second optimization problems are discussed and

compared. The comparison shows advantages of using HDIC over CHIC. In the

second subsection, HDIC is compared with other representative control methods,

suggesting that HDIC outperforms these other methods.

5.5.1 Results and discussion

The solutions of the optimization problems (6.3.1) and (6.3.2) are compared in this

section. The minimized cooling power (in Watts) along with power consumption for

the fans and chiller corresponding to (6.3.1) are shown in Figure 5.11. Figure 5.12

shows the optimized values for the cooling unit operational parameters with respect

to the offered load to the system. The first optimization problem only uses the data

center thermal model (cooling heterogeneity only).

As seen in Figure 5.11, the cooling power is an increasing function of the offered

load to the data center. The majority of the power consumption is due to the chiller.

The optimal solution sets the fan power and the chiller power such that the maximum
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Figure 5.12: The optimized operational variables of the cooling unit using CHIC

Figure 5.13: Power consumption of the cooling unit using HDIC

air temperature at the front of the servers is below T serverred which in this case is chosen

to be 24◦C.

The results for the second optimization problem (6.3.2), are shown in Figure 5.13

and Figure 5.14. Figure 5.13 shows P cooling, P chiller, and P fan. Figure 5.14 shows the

optimal values for fan speeds and inlet water temperature. The upper-bound for the

CPU temperature (T cpured ) is set to 75◦C. This optimization problem considers both

the server and data center thermal models (both cooling and server heterogeneity).

Comparing the optimal values of the cooling parameters corresponding to CHIC
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Figure 5.14: The optimized operational variables of the cooling unit using HDIC

and HDIC shows that T coolingwater decreases and fan speeds increase faster under CHIC.

Figure 5.15 and Figure 5.16 compare the power consumption and the cooling coef-

ficient of performance (CoP) for CHIC and HDIC as a function of d. The CoP is

the ratio of the heat removed by the cooling system to the work required, which is

usually greater than one. The higher the CoP the more efficient the cooling unit [14].

HDIC is able to save 16% more power than CHIC, between d = 30% and 70%. This

saving arises mainly from the fact that the second optimization problem uses both

the data center thermal model and the server thermal model. On the one hand, the

server thermal model provides the CPU temperature of a server based on the inlet

temperature of the server and its CPU utilization. In other words, the required inlet

temperature to keep the CPU temperature below a certain threshold is controlled

by the utilization of a server. On the other hand, the contribution of the generated

heat by a server is accounted for by the data center thermal model. Therefore, the

optimizer simultaneously provides power efficient cool air for servers by tuning the

cooling variables and the assignment of workload, and adjusts cooling requirements
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Figure 5.15: Cooling power comparison

Figure 5.16: Coefficient of performance of CHIC vs HDIC

of servers.

Table 5.2 shows the CPU and inlet temperatures of servers for both HDIC and

CHIC when d = 60%. The cooling power consumption to satisfy temperature con-

straints via CHIC and HDIC methods is 1574W and 1209W , respectively. There are

two key insights comparing the table values. First, the inlet temperatures of servers in

the HDIC method are generally at least as high as for the CHIC method. This is the

main reason HDIC saves more power, due to less over-cooling. Second, the CPU tem-

peratures for CHIC in a few cases are higher than T cpured = 75◦ and the maximum CPU

temperature of CHIC reaches 81.2◦C. Exceeding the CPU red-line temperature can

reduce server reliability (increased failure rate) and result in decreased performance
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Table 5.2: Inlet and CPU temperature of servers corresponding to CHIC and HDIC

Server
No.

01 02 03 04 05 06 07 08 09 10 11 12 · · · 38 39 40 min max

CHIC
T̄ servr
inelt (◦C) 23.4 22.0 21.7 21.7 21.7 21.7 21.9 22.0 21.5 22.0 22.0 22.0 · · · 21.9 21.5 23.4 20.5 23.9
T̄ servr
cpu (◦C) 79.7 65.7 65.2 69.0 67.3 75.2 70.6 67.6 64.7 61.2 68.7 70.8 · · · 71.7 67.2 73.7 58.0 82.1

HDIC
T̄ servr
inelt (◦C) 25.5 24.3 24.2 24.2 24.2 24.7 25.0 23.5 23.5 24.3 25.0 25.0 · · · 24.9 24.6 25.5 21.8 25.5
T̄ servr
cpu (◦C) 75.0 74.9 75.0 74.5 73.8 75.0 73.7 74.9 72.9 70.0 74.7 73.7 · · · 73.2 73.2 72.2 64.1 75.0

(for example, due to CPU throttling).

5.5.2 Comparison

We proceed with comparing HDIC with other representative workload assignment

and cooling control methods. The representative methods are categorized according

to two baseline approaches that are used as the core of a number of recent data

center workload assignment and control methods: HRM-based approaches and set-

point tracking approaches.

HRM-based approaches include works that simplify the data center thermal model

via a matrix of coefficients [12, 24, 25, 27, 28]. A heat recirculation matrix or HRM

is a cross-interference square matrix that represents the heat transfer rate between

nodes. Having both the supply air temperature and the HRM an estimate of the inlet

temperature of each server can be obtained using

T̄ serverinlet = T̄ coolingsetpoint +HP̄ . (5.5.1)

In this equation, H is the heat recirculation matrix. The maximum amount of

recirculated heat determines the supply air temperature (T̄ coolingsetpoint) that should be

provided by the cooling unit. The higher the supply air temperature the less power

is drawn by the cooling unit. Hence, the optimal power distribution (or workload
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assignment) minimizes the maximum amount of recirculated heat which in turn max-

imizes the required supply air temperature. Maximizing T coolingsetpoint means minimizing

the cooling power. In the HRM-based approach the only feedback to the cooling units

is the cooling set-point.

In order to compare this approach with HDIC H is calculated for our on-site

data center. An optimization problem decides on P̄ (equivalent to the workload

distribution) for maximizing T coolingsetpoint. The operational variables related to this method

are obtained based on set-point tracking methods explained later in this section.

The other widely used method for cooling control in data centers is set-point

tracking. In this approach, the cooling unit controller tries to meet the desired set-

point as fast as possible with minimum undershoot and overshoot. In this method,

the heat generation profile (workload distribution) is not considered. Comparing this

method with HDIC, the workload is distributed uniformly between servers. The inlet

water temperature is set to its minimum value, and all fans of a cooling unit are set

to the same speed. The inlet temperatures of all servers are less than or equal to the

set-point temperature (T coolingsetpoint). An optimization problem determines the fan speed

for each cooling unit.

Comparing the results of HRM-based and set-point tracking approaches with

HDIC reveals that our control framework outperforms these methods. Table (5.3)

presents a number of performance metrics for each of the methods. As shown in the

table, the HDIC approach has the lowest power consumption and the highest CoP.

Clearly, our suggested method outperforms other representative methods due to

using the thermal and power models. If one desires to only consider the problem

from the view of inlet air temperature and efficiency of its distribution, without
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Table 5.3: Comparing HDIC with HRM-based and Set-point Tracking approaches

Approach Power (W) CoP T cooling
water Q̄fan

HDIC 1209 4.4 18 [0 0 100 29 29]
CHIC 1574 3.7 11.5 [59 54 0 53 52 ]

HRM-based 1621 3.5 11.0 [45 45 72 72 72]
Set-point tracking 1697 3.4 11.0 [61 61 61 88 88]

considering server differences, CHIC is also brought into the comparison in Table 5.3.

The calculations were performed when d = 50%. The power consumption and CoP

of both CHIC and HDIC are better than the other two methods.

5.6 Conclusion

Considering all aspects of data center thermal heterogeneity for workload assignment

and cooling control results in a considerable amount of savings in cooling power

consumption. Data center heterogeneity can be obtained by means of data center

and server thermal models. The data center thermal model predicts the temperature

of different locations as a function of IT and cooling parameters. This thermal model

is used to indirectly calculate the cost of providing cool air for a specific server with

given cooling parameters. In addition, the server thermal model gives the required

inlet temperature of a server to maintain CPU temperature constraints, based on

the workload of the server. We proved that as a result of specific thermal conditions

for each server, the temperature requirements of servers are different given the same

workload. We presented methods to obtain these thermal models for a data center

and then incorporated them in an optimization framework in order to minimize the

cooling power. It is shown that our method is able to outperform other cooling control

approaches and workload assignment methods.
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IT-aware cooling control
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approach
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Abstract

We present a complete system for the joint control of cooling units and workload

assignment in a modular data center. The system aims to minimize power con-

sumption while respecting temperature constraints, all in a thermally heterogeneous

environment. Unlike traditional cooling controllers, our framework does not have a

single set-point to satisfy. Instead, the system returns the thermal requirements of

servers in the form of a temperature map and uses these thermal requirements as an

input to the controller. We provide details of three phases of the system. First, a ther-

mal model is built to predict temperatures within a data center. Second, the system

assigns workloads to locations that are optimal to be cooled, considering the thermal

effects of assigned workloads. Based on this assignment, a pattern for the required

temperatures of servers is generated, called the required temperature distribution

matrix (RTDM). The last phase uses model predictive control (MPC) to regulate the

operational variables of cooling units in a power-efficient fashion to comply with the

RTDM. Within each iteration of the MPC loop, an optimization problem involving

the thermal model is solved, and the thermal model is updated. From an implemen-

tation on an actual modular data center, we find the potential for considerable power

savings compared to other control methods.

Keywords: data center workload assignment, cooling unit control, thermal-aware

scheduling, thermal model, data center power efficiency, efficient cooling, model pre-

dictive control, multi set-point control
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6.1 Introduction

A massive portion of IT investment is toward data center development and expansion

due to opportunities provided by the increasing use of mobile, cloud, and processing

services [1]. This increase stems mainly from binding mobile applications and services

to daily life, and migrating processes from end-user devices (such as laptops or cell

phones for the sake of battery life, security, and integrity) to the server-side [2]. These

changes have made data centers among the most power-hungry infrastructures [3].

Powering computing devices and cooling them are the two main sources of power

consumption in data centers. There has been much research on the efficient use of the

provided power to data centers. Power efficiency can be studied in different levels of

data centers from small electronic components such as transistors and ICs to decisions

on the geographical distribution of multiple data centers [4].

Cooling units present a notable opportunity to reduce power consumption since

they are the second-largest power consumers (besides the servers themselves) in data

centers [5, 6]. Cooling units are power inefficient, and over-cooling of servers is the

primary cause of power wastage [7]. Decreasing over-cooling has been addressed

extensively in the literature. In a number of studies, considering servers as heat

sources is addressed through different methods of workload assignment [8, 9, 10, 11]

to provide a uniform temperature distribution at the front or even back of servers.

Reducing heat re-circulation to minimize the peak temperature and adjusting the

cooling unit set-point accordingly are methods that involve both IT and cooling units

to address the problem of over-cooling [12, 13].

In our previous work [14], we have addressed the importance of considering cor-

relations between IT and cooling behaviors. In another work [15], we also showed
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that the required inlet temperatures of servers could be determined as a function of

their processing loads. Moreover, our suggested temperature estimation method [16]

motivated us to put these different pieces together, in this paper, to construct a real-

time holistic controller for a data center. This holistic controller, to a great extent, is

capable of addressing thermal heterogeneity and the server over-cooling issue in data

centers.

In this work, a system is constructed for holistic control of data center infrastruc-

ture in a power-efficient manner. The designed holistic temperature controller, unlike

ordinary controllers, does not have just one reference temperature to regulate. In-

stead, it receives a set of required inlet temperatures of servers and tries to maintain

these values using a power-efficient approach. The temperatures are calculated as the

result of an optimization process. The optimization process, based on the thermal

effects of servers and operational parameters of cooling units, determines the set of

temperatures to minimize the cooling power consumption. The system uses a neural

network model to consider the transient thermal effects of all contributing factors,

including the IT and cooling equipment.

We use a model predictive control (MPC) algorithm and modify it to be able to

satisfy the temperature requirements indicated by the set of optimized temperatures.

The controller operates in real-time, and applies the optimized inputs to the sys-

tem periodically, minimizing the cooling cost and satisfying temperature constraints.

During the optimization, the thermal model is used for temperature predictions and

evaluating the effects of future inputs. Temperature predictions are made using a

time series method trained using a neural network. This model is capable of high

precision predictions of the temperature of desired locations in a data center. The
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accuracy and low complexity of this model are the crucial features that enable MPC

to operate effectively and in real-time. The optimization process does not practically

limit the duration of MPC iterations.

The system is implemented according to an algorithm that includes three phases;

it starts with building the thermal model that is further used as the core of the

workload assignment and control processes. In this work, the implementation process

and the system under-study are described in detail. Our framework is compared with

other methods of data center cooling unit control. The results are considerable power

savings using our method.

In the next section, related work is reviewed. Our methodology is thoroughly

explained in Section 6.3. This section describes the framework in detail, including

explaining the algorithm, illustrating the system under-study, and describing the three

components of the framework. Each component is studied in a subsection of Section

6.3. The results of the implementation of the framework on a data center are shown,

compared with other methods, and discussed in Section 6.4 and Section 6.5. Finally,

concluding remarks are provided in Section 6.6.

6.2 Literature review

An on-off thermostat based controller is the traditional way of controlling the tem-

perature of IT equipment within data centers [17]. Controllers of this form turn

the cooling on when the temperature exceeds a certain threshold and switches it off

when the temperature reaches another (lower) threshold. Using this method typically

results in poor performance in terms of both power consumption and the resulting

output.
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Proportional integral derivative or PID controllers are another simple method for

adjusting the level of cooling in data centers [18]. A PID control loop employs system

feedback of the current difference between the desired and the measured temperature

to correct and adjust the inputs within each loop iteration. PID controllers use

proportional (P), integral (I), and derivative (D) terms. P applies inputs proportional

to the error, I considers the cumulative error, and D controls the current rate of

change in the system [19].

Model predictive control or MPC is another approach that has also been suggested

for cooling control in data centers [5, 20]. MPC relies on a dynamic model of the

system; for obtaining the model, a system identification process is required. The

strength of MPC comes from the fact that it determines the inputs for the current

time-slot while taking into account the impact on future behavior. The future effects

of the current inputs are determined from a model of the system [21]. MPC is an

iterative process that calculates system inputs within each iteration. It repeatedly

measures the status of the system and minimizes the cost of inputs over a time

horizon. However, only the first time-step inputs are implemented, and in the next

iteration, the whole process is repeated, and the prediction horizon is shifted forward.

It is worth mentioning that this forecasting of future states of the system is an ability

that PID controllers lack.

Several approaches use new control methods to control data center cooling units.

DeepMind uses a machine learning approach to construct a model for power usage

efficiency (PUE), which is, in turn, optimized by adjusting the cooling water temper-

ature [22]. Lazic et al. [23] use the fan speeds and the water flow rate of the cooling

unit to regulate the inlet temperatures of servers. They use reinforcement learning
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for controlling the fans and valves. In both works, an MPC controller with a data-

driven linear model is used. Although these methods employ a model for adjusting

the operational variables of cooling units, they use just one set-point temperature,

and the assignment of workload is not considered; in addition, the problem of server

over-cooling is not addressed.

The closest work to ours is Kheradmandi et al. [20], who use MPC. In this work,

controller feedback is provided by multiple sensor measurements, and each is taken

into account for the next time-step control decisions (in particular, the individual

measurements are all considered, not their average). The system identification process

is performed via a physics-based model to generate data for constructing a linear

model, and MPC is used to control the fan speeds of cooling units. This method

does not consider the thermal effects of workload assignment, it uses limited control

variables, and the process of thermal model construction is not scalable.

Cooling control of data centers can also involve other aspects, such as adjusting

air exhaust vents. Raised floor data centers have ventilation tiles that allow cold

air to blow to the front of servers from the floor. Zhou et al. [24] use MPC to

control adaptive vent-floor tiles to handle the generated cold air efficiently. Different

applications of cooling-related MPC with data-driven models have been studied in

other types of cooling systems, such as building HVAC systems [25, 26, 27, 28].

Due to their complexity, creating thermal models for data centers has been a

challenge. Computational fluid dynamics used to be the first choice for observing

the thermal changes in data centers. However, they are computationally complex

and unable to adapt to system changes; hence, using them inside MPC models is

problematic [29]. Some simpler physics-based thermal models return the temperature
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of critical points in data centers. For example, Moazamigoodarzi et al. [30] use a

zonal-based physical model that generates the temperatures of thermal zones for a

small scale data center. Their method considers heat-transfer differential equations

and energy conservation laws between adjacent thermal zones to model the thermal

dynamics. This thermal model is used by Kheradmandi et al. [20] (discussed earlier

in this section). Although this method does not have the computational complexity

of CFD methods, the model must be redeveloped for each application. However,

the more significant issue is that such models are not scalable and do not adapt to

changing thermal conditions within data centers.

Data-driven thermal models are the new generation of system identification for

MPC controllers. ThermoCast [31] is a lighter version of the full-fledged fluid me-

chanics equations. It infers the IT load using a machine learning approach based on

data obtained from air-flow and temperature sensors. The calculated IT load is then

combined with physical laws to predict temperatures. An objection to this method

is that it needs accurate temperature and air-flow measurements from surrounding

servers, and this method requires what may be an excessive number of sensor installa-

tions. Moore and Ranganathan [10] use neural networks for steady-state temperature

estimation based on the IT profile, air flow-rates, supply air temperatures, and geo-

metric data of a data center. The main issue with this approach is that it requires

a large number of steady-state data points. Additionally, the geometric data, such

as locations of compartments, walls, and servers, does not allow the model to be

adaptive to any physical changes. In our previous work [16], we provide a framework

for constructing a transient data center thermal model using neural networks. This

is a data-driven model that uses the workload profile and operational variables for
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its temperature predictions. The model is adaptive to the thermal changes, easy to

implement, and suitable to be used in MPC loops.

6.3 The methodology

We build a holistic control framework that provides the required inlet temperatures

for servers in a data center. This framework incorporates workload assignment and

cooling control to cool servers efficiently, based on their current cooling requirements

and the existing thermal heterogeneity in the data center environment.

This framework consists of three major components: data center thermal model

generation, optimal zone selection, and the model predictive control (MPC) loop. The

first component generates the data center thermal model to predict the inlet temper-

atures of servers. The second component calculates the required inlet temperatures

of servers. It determines the optimal locations in a data center to cool and assigns

workload based on the current offered load. This component provides the tempera-

ture requirements of servers as a temperature distribution map (RTDM) to the next

component. The final component controls the cooling unit to satisfy the given RTDM.

These three components are embedded in an algorithm for holistic control of a data

center. In this section, we describe the system under-study (Section 6.3.1) before

detailing the framework (Section 6.3.2).

6.3.1 System description

Our framework is implemented in our on-site data center (Fig. 6.1). The data center

consists of five IT racks and is cooled using two in-row cooling units installed at the
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Figure 6.1: Data center front view: location of fans and arrangement of thermal
zones

Figure 6.2: Top view of the data center

sides. The cooling units use chilled water provided by a chiller installed outside of

the building. Fig. 6.2 shows the top view of the data center; cooling units receive

hot air from the zone at the back of the servers (hot chamber) and provide cold air

to the front zone of the servers (cold chamber).

Each cooling unit is equipped with several fans (five fans in total, see Fig. 6.1).

Fans facilitate air circulation inside the data center. The cold chamber volume at the

front of servers is divided into 25 thermal zones, in a five by five grid. There are five

IT racks (five columns), and the height of each IT rack is considered as five equal
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Figure 6.3: DS18B20 digital thermometer

height thermal zones (five rows). The zone arrangement is shown in Fig. 6.1. Due to

the negligible temperature difference throughout a thermal zone, we assume that the

temperature is uniform within each zone.

Control of cooling units is achieved through the Simple Network Management

Protocol (SNMP). SNMP is a widely used protocol for collecting and organizing in-

formation about managed devices on IP networks and for modifying that information

to change the device behavior [32]. Data center cooling units typically support SNMP.

Using the Linux shell tools IPMI [33] and TOP [34], we can manage and monitor the

server load via SSH scripts [35]. Twenty-five temperature sensors are installed at the

centers of the thermal zones. We used DS18B20 digital thermometers, which have

±0.5◦C accuracy from −10◦C to +85◦C and provide programmable resolution from

9 bits to 12 bits. Fig. 6.3 shows an installed temperature sensor. Temperature data

is collected using a Raspberry Pi�.
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INITIALIZATION
timeStep; % Sampling and control time-step in seconds
d; % Total offered load (percent)
horizon; % The prediction horizon of the controller
MODELparam = {PRDparam,TRAINparam};

THERMAL MODEL GENERATION
dt = dataAcquisition(timeStep);
dcThermalModel = modelGen(dt, MODELparam)

OPTIMAL ZONE SELECTION
(inputMatrix,outputMatrix) = systemMonitor();
RTDM = zoneOptimizer(dcThermalModel,d,inputMatrix,outputMatrix);

MPC LOOP
time0 = clock(); % Current time of the system
while true do

(currentOutput,currentInput) = sensorRead();
inputMatrix(end+1,:) = currentInput;
outputMatrix(end+1,:) = currentOutput;
dt = prepare(dcThermalModel,inputMatrix,outputMatrix);
dcThermalModel = adapt(netc,dt);
controlVars = optimizer(RTDM,horizon,dcThermalModel, inputMatrix,

outputMatrix);
pause(timeStep - clock() - time0);
time0 = clock();
applyInputs(controlVars);

end

Algorithm 4: Data center holistic control algorithm

6.3.2 The framework

The designed framework for the holistic control of a data center is summarized in

Algorithm 4. The algorithm consists of three components, data center thermal model

generation, optimal zone selection, and the model predictive control (MPC) loop.

Algorithm 4 first initializes a number of essential parameters. The parameter

timeStep is the time between two consecutive control commands; it is also used as the

sample time for collecting training data. The parameter d is the total server demand
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or offered load to the data center in percentage of maximum, and horizon indicates

the number of time-steps for output predictions used by the controller. Input and

output feedback delay size are the important parameters of time series predictions

(explained in Section 6.3.2) and are given by PRDparam. NNparam includes the size

of the hidden layers, training algorithms and portions of training, validation, and

test data to train the model. We choose the Levenberg-Marquardt back-propagation

method, 20 neurons in one hidden layer, and [75%,15%,10%] as the proportions of

training, validation, and testing data.

After the initialization, the algorithm generates the data center thermal model us-

ing two functions dataAcquisition() and modelGen(). The function dataAcquisition()

generates data to train the model. It reads raw data from the sensors and returns

ready-to-use data via the variable dt. The function modelGen() has two inputs, dt and

MODELparam. MODELparam has the required parameters for both the time-series

prediction process and the neural network training process.

In the next component, the algorithm decides on workload assignment and gener-

ates the required temperature distribution map (RTDM) to be used by the controller.

It first monitors the system, using systemMonitor(), which provides the initial values

for the thermal model. The function zoneOptimizer() returns the RTDM. The cal-

culation of the RTDM requires the offered load d, the thermal model, and the initial

values of the model in the form of two matrices. The function prepare() prepares the

new data to be used by adapt() to update the model. We note that rolling back the

updated model if the re-trained model is affected adversely can be internally embed-

ded in the adapt() function. However, for the sake of simplicity, we do not consider

this in our implementation.
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The last component of the algorithm is the MPC loop, which takes the RTDM,

and with the help of the thermal model, controls the system inputs through solving

an optimization problem. In the beginning of the MPC loop (the while loop), sen-

sorRead() reads the current status of the system and the new readings are stored in

outputMatrix and inputMatrix.

The key functionality of the MPC loop is the optimization of controllable variables,

performed by the function optimizer(). The function optimizer() employs the thermal

model and updated inputs and outputs of the system in an optimization problem

(explained in Section 6.3.2) and returns the optimal inputs to be applied to the system

via applyInputs(). Briefly, the objectives of this optimization problem are minimizing

the costs of both the inputs and input fluctuations, while being constrained by the

required server inlet temperatures given by the RTDM. Just before applying the

inputs, the timing for the control loop is handled. It uses the function clock() which

returns the current system time. The function pause() holds the execution of the

algorithm until the next time-step. The different components of the algorithm are

explained in more detail as follows:

First component - Construction of the data center thermal model

The data center thermal model estimates the temperature of different locations in a

data center, with a focus on the front of servers. The thermal model that is used in

this work takes the operational parameters and the current thermal status and returns

the temperature estimates in the next time-step. The operational parameters of the

data center are the inlet water temperature, the chilled water flow rate, the speed of

cooling units’ fans, and workloads of servers. There are two kinds of variables in this
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system, state variables and controllable variables. State variables are those that affect

the air temperature but are not controllable, such as the water inlet temperature to

the cooling units. The controllable variables, such as fan speeds, are adjusted by

the controller. For our purposes, the data center environment is the system, the

operational variables are the system inputs, and the air temperatures of the different

thermal zones are the system outputs.

Specifically, the first component of Algorithm 4 is the thermal model generation.

This component consists of data acquisition (via the dataAcquisition() method) and

model generation (via the modelGeneration() method). For simplicity, we are not

going to describe the details of the functions, but we provide a general description of

their functionality. Data acquisition is performed by applying the pseudo-random bit

stream (PRBS) method to the inputs of the system [36], which is a suitable method

for exploring the state space of this multiple input system. This process might be

different in different settings.

The method modelGen() takes raw data returned by dataAcquisition() to build

the thermal model. We use a nonlinear autoregressive exogenous (NARX) model for

time series prediction. The characteristics of the feedback and neural network are

given as the model parameters to modelGen(). The thermal model should be able

to predict the system output based on the current status of the system, the previous

inputs, and the previous outputs. In our earlier work [14, 16], we showed that the use

of neural networks for temperature prediction in data centers is a suitable method,

with several advantages over existing methods.
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Second component - Optimal temperature distribution

One of the important contributions of this work is that unlike traditional control

methods, our algorithm does not have a single set point. Specifically, a required

temperature distribution map (RTDM) must be satisfied in a power-efficient manner

by the co-operation of all of the cooling units. The RTDM is obtained based on the

steady-state thermal effects of workload assignment and cooling cost. Two different

combinations of a set of temperatures might result in different cooling costs. For

example, suppose two RTDMs, R1 and R2, are given by

R1 =



24◦C 24◦C 24◦C 24◦C 24◦C

24◦C 24◦C 24◦C 24◦C 24◦C

24◦C 24◦C 24◦C 24◦C 24◦C

24◦C 24◦C 24◦C 24◦C 24◦C

35◦C 35◦C 35◦C 35◦C 35◦C


and

R2 =



35◦C 35◦C 35◦C 35◦C 35◦C

24◦C 24◦C 24◦C 24◦C 24◦C

24◦C 24◦C 24◦C 24◦C 24◦C

24◦C 24◦C 24◦C 24◦C 24◦C

24◦C 24◦C 24◦C 24◦C 24◦C


.

The optimal control solution to satisfy R1 and R2 results in the temperature

distributions shown in Fig. 6.4. The figure shows that the solution to cool servers

based on R2 can be achieved in a more power-efficient manner than R1. The difference

between R1 and R2 is that the former allows the bottom row of thermal zones to have
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(a) Inlet temperatures of servers
corresponding to R1

(b) Inlet temperatures of servers
corresponding to R2

Figure 6.4: Heat-map representation of inlet temperatures of servers based on
different RTDMs

Table 6.1: Comparison of R1 and R2

Fan speed in percent (%) Power
Fan 1 Fan 2 Fan 3 Fan 4 Fan 5 (W)

R1 74 23 63 74 40 3813
R2 55 27 0 81 50 3095

higher temperatures (35◦), but the latter allows the top row of the thermal zone to

have higher temperatures.

Table 6.1 shows the optimal parameters corresponding to each of the RTDMs.

The power consumption corresponding to R1 is 3813W , as opposed to 3095W for R2.

Because of the tendency of hot air to rise, the better results for R2 appear intuitive;

however, the optimal solution is not always so obvious. This example clearly shows

that there is a trade-off in the combinations of the required temperatures given by an

RTDM.

The previous example suggests the feasibility of having an optimal RTDM. We
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minimize
ρ̄,v̄opr

Pcooling (6.3.1a)

subject to: Pcooling = F(v̄opr) (6.3.1b)

ρi ∈ {0, 1}, for i = 1, . . . , n (6.3.1c)
n∑
i=1

ρi ≥ d · n (6.3.1d)

LowerBound ≤ v̄opr ≤ UpperBound (6.3.1e)

T̄inlet =M(v̄opr, ρ̄) (6.3.1f)

T̄inlet ≤ RTDM (6.3.1g)

z̄ = zoneMap(ρ̄) (6.3.1h)

RTDM = Tidle − (Tidle − Tbusy) · z̄ (6.3.1i)

formulate an optimization problem that minimizes the cooling power based on an

optimal adjustment of operational variables of cooling units and assignment of work-

load. Considering the optimal workload assignment, an RTDM is generated. Entries

of the RTDM are calculated based on workloads of servers of corresponding thermal

zones. We have assumed that a server could only be either idle (ρi = 0) or always

busy (ρi = 1). Based on our previous work [15], the required inlet temperature of

servers can be determined due to their load. So, two different red-line temperatures,

Tidle and Tbusy, are considered for idle and busy servers, respectively. The red-line

temperature is an upper bound for the inlet temperature of servers. In [15], we showed

that an idle server could operate with a relatively higher red-line temperature than

a busy server. Using the thermal model described in Section 6.3.2 an optimization

problem respecting all of the practical constraints can be formulated as in (6.3.1):

In this minimization problem, decision variables consist of two types, the assign-

ment of workload (ρ̄) and operational variables of cooling units (v̄opr). The binary

vector ρ̄ contains the CPU utilization of servers whose elements (ρi) are either 0 (idle
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server) or 1(busy server). Pcooling is the cooling power consumption, obtained using

F(), which is calculated based on the vector of operational variables (v̄opr). In our

case, the vector v̄opr consists of the fan speeds; it can be different according to the

controllable variables for various data centers. Our system uses the cooling power

model given in [14].

Equation (6.3.1c) constrains the utilization of each server to be either 0 or 1 and

(6.3.1d) ensures that the assigned capacity is not less than the total demand d · n

(n is the total number of servers). The constraint (6.3.1e) confines the choices of

operational variables between feasible values of lower-bounds and upper-bounds. For

example, fan speeds should have a lower bound of 0% and an upper bound of 100%.

In (6.3.1f), the vector T̄inlet contains inlet air temperatures of the servers and M

represents the thermal model that predicts inlet temperatures. The component-wise

inequality in (6.3.1g) ensures that estimated temperatures are not greater than the

corresponding elements in the RTDM. Without loss of generality, the RTDM is the

vector version of the matrix in this optimization problem.

The auxiliary binary vector z̄, used in (6.3.1h), encodes the active thermal zones

and is used to calculate the RTDM. A thermal zone is active when at least one of its

corresponding servers is busy, indicated by 1 in the corresponding element of z̄. In

this equation, the function zoneMap(), using the map of servers and thermal zones,

returns the vector z̄ based on ρ̄. The vector z̄ is used in (6.3.1i) for writing Tidle and

Tbusy values in the RTDM according to the respective values of 0 and 1 read from z̄.

As discussed in Section 6.5, the assignment of workload could be performed with

higher precision beyond considering servers to be idle or always busy. Consequently,
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minimize
u(k+i|k),Ψ(i);
i=0,··· ,m−1

m−1∑
j=0

(
w1f1(Ψ(j)) + w2‖∆u(k + j|k)‖22 + w3f2(u(k + j|k))

)
(6.3.2a)

subject to: umin ≤ u(k + j|k) ≤ umax, j = 0, · · · ,m− 1 (6.3.2b)

∆umin ≤ ∆u(k + j|k) ≤ ∆umax, j = 0, · · · ,m− 1 (6.3.2c)

y(k + j|k) =M(u(k + j|k)), j = 0, · · · ,m− 1 (6.3.2d)

ymin ≤ y(k + j|k) ≤ RTDM + Ψ(j), j = 0, · · · ,m− 1 (6.3.2e)

generating the RTDM would need be modified in (6.3.1h) and (6.3.1i). This mod-

ification requires precise thermal models of servers. More accurate required inlet

temperatures of servers can be calculated by including thermal models of servers;

this increases the complexity of (6.3.1). The current solution to the problem, to a

great extent, is capable of representing our idea, while the refined RTDM is proposed

for future work.

Third component - The control loop

Once the RTDM is obtained, it is passed to the controller. We build an MPC con-

troller that uses the thermal model, described in Section 6.3.2, for its internal calcula-

tion and optimization. This controller performs real-time optimization (6.3.2) in each

time-step to obtain optimal inputs to apply to the operational variables of the cooling

unit. The thermal model empowers the optimizer to estimate the output trajectory.

Zanin et al. [37] and De Souza et al. [38] showed the integration of real-time

optimization into MPC. We modified this optimization to be compatible with the

definition of the RTDM in (6.3.2).

In this equation, u and y are the system input and output, respectively, and m is

the prediction horizon. The optimal control input u(k+ j|k) should be applied to the
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system at time-step k+ j; however, only u(k+ 1|k) is actually applied to the system.

The vector y(k + j|k) is the output estimate at the future time-step k + j.

The cost function of the optimization problem is the sum of three terms, each

with a non-negative weight (wi). The cost of the slack variable Ψ(j) used in (6.3.2e)

is calculated by f1(Ψ(j)). The reason for using the slack variable Ψ(j) is to guar-

antee feasibility of the optimization problem. Another term in the cost function is

‖∆u(k + j|k)‖2
2 which measures the difference between two consecutive inputs, or

input fluctuation, where ∆u(j + k|k) = u(j + k|k) − u(j + k − 1|k). Limiting input

fluctuations is of interest to extend device lifetimes [39]. The last term of the cost

function is f2(u(k + j|k)) which calculates the cost of inputs. Equation (6.3.2d) uses

the thermal model M() for temperature predictions.

As shown in Algorithm 4, this optimization problem should be solved within each

control loop. So, time complexity is essential. The interior-point algorithm is used to

solve this nonlinear optimization problem. The solution of the interior-point method

is similar to other algorithms, such as sequential quadratic programming, however,

with fewer iterations. The number of iterations during the optimization process is

limited to have a solution within the control interval (20 seconds). In our experiments,

the solution is obtained more than 90% of the time without reaching the execution

limit.

6.4 Results

In this section, the performance of the framework is evaluated by implementing it on a

real system (the system was described in Section 6.3.1). The evaluation is performed

for two scenarios. In the first scenario, an RTDM with identical entries is used by
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the controller. In other words, the goal is to keep the temperature of all zones below

a certain threshold. In the second scenario, an optimal RTDM is provided to the

controller. This allows us to measure the potential gains from using a heterogeneous

RTDM. Finally, both scenarios are compared with set-point-tracking controllers.

During the system implementation, red-line temperatures of Tbusy and Tidle are set

to 24◦C and 35◦C, respectively, appropriate values for the servers in our data center.

The red-line temperatures may need to be adjusted for a particular application. To

perform a fair comparison, we started with the same initial conditions; the speed of all

fans is set to 100% in the first few time-steps. The figures depicting the temperature of

thermal zones (system output) show this effect in the initial time-steps. The controller

solves an optimization problem during each time-step, and then optimal inputs are

applied to the system at the beginning of the next time-step. The duration of the

time-steps depends on the system and the resulting complexity of the optimization

problem. For our problem, we found a time-step of 20 seconds is reasonable for the

control loop calculations and the dynamics of the system.

First, the output of the system (temperature of the thermal zones) is shown when

the RTDM used by the controller (the third component of Algorithm 4) is a five by

five matrix with all of its elements equal to Tbusy. This means that the controller

should adjust system inputs to keep all the server inlet temperatures below 24◦C.

Fig. 6.5 shows temperature variations of the 25 thermal zones over time.

After the first few time-steps, the controller is activated and adjusts the system

inputs to keep the inlet temperatures of servers below the RTDM entries while mini-

mizing the cooling cost. Fig. 6.6 shows the variation of inputs (fan speeds) over time.

The maximum possible fan speeds are employed at the beginning until all outputs are

161



Ph.D. Thesis – S.Morteza M.Nejad McMaster University – Computer Science

Figure 6.5: System outputs (first scenario) - Temperature of 25 thermal zones

Figure 6.6: System inputs (first scenario) - Fan speeds

below 24◦C. This happens due to the dominating cost imposed by the slack variable

(Ψ) in (6.3.2b). When the measured temperatures of thermal zones are above the cor-

responding RTDM entries, it is reflected in the slack variable in (6.3.2e), forcing the

controller to decrease these temperatures. However, weights (wi) in (6.3.2b) should

be carefully tuned to prevent either slow or sudden reactions to suppress the slack

variable [38]. As shown, measured temperatures become relatively steady over time,

and the maximum temperature of thermal zones reaches 24◦C. Fig. 6.7 provides the

cooling power consumption corresponding to the outputs shown in Fig. 6.5.

In the next experiment, an RTDM is obtained using the second component of our
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Figure 6.7: Cooling power consumption (first scenario)

framework. It uses the optimization process (6.3.1) while d is 75%. The RTDM is

obtained as the following:

RTDM =



35◦C 35◦C 35◦C 24◦C 24◦C

24◦C 24◦C 24◦C 24◦C 24◦C

24◦C 24◦C 24◦C 24◦C 24◦C

24◦C 24◦C 24◦C 24◦C 24◦C

24◦C 24◦C 24◦C 24◦C 24◦C


.

As shown in the matrix above, zones 1, 2, and 3 (the zone numbering is shown

in Fig. 6.1) are those that are set to be hotter than the rest of the thermal zones.

Fig. 6.8 and Fig. 6.9 show the temperatures and the corresponding inputs using the

optimized RTDM. Fig. 6.8 clearly shows that the temperatures of the three zones

(zones 1, 2, and 3) become greater than Tbusy, while the temperatures of the other

zones are kept below Tbusy, as desired. The controller adjusts inputs in a manner

that respects the different temperatures required by the RTDM entries. This ability

is given to the controller by embedding the thermal model of desired thermal zones

in the MPC process. Fig. 6.10 depicts the corresponding power consumption of the

cooling units.
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Figure 6.8: System outputs (second scenario)- Temperature of 25 thermal zones

Figure 6.9: System inputs (second scenario) - Fan speeds

Figure 6.10: Cooling power consumption (second scenario)
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Figure 6.11: System outputs (set-point-tracking) - Temperature of 25 thermal zones

We compare our method with set-point-tracking control methods. Almost all

methods for cooling unit control try to meet a set-point temperature while the devi-

ation from that reference is minimized. We implemented a model predictive control

(MPC) approach for this comparison. The MPC controller uses the temperature of

a single point for the control decisions. For our experiments, this point is the middle

top point in the data center, (typically) the hottest spot in the data center. The given

set-point for the MPC controller is Tbusy. We call it the set-point-tracking controller

in our comparisons. Fig. 6.11 shows the temperature of thermal zones resulting from

running the set-point-tracking controller. The corresponding inputs are shown in Fig.

6.12.

The average temperature of thermal zones in the data center is one way to mea-

sure the level of cooling required. This average corresponding to the first (Fig. 6.5)

and the second (Fig. 6.8) scenarios is 18.48 and 20.02, respectively. However, the av-

erage temperature of thermal zones is 17.66 for the set-point-tracking control method

(Fig. 6.11)–meaning that it has increased over-cooling of servers as compared to our

methods.
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Figure 6.12: System inputs (set-point-tracking) - Fan speeds

Figure 6.13: Comparing power consumption

Fig. 6.13 compares the cooling power consumption of our framework and the

set-point-tracking controller. The power consumption of our framework without an

optimized RTDM (first scenario) and with an optimized RTDM (second scenario)

are represented using dashed-line and solid-line curves, respectively. The power con-

sumption of the set-point-tracking controller is also drawn via a dash-dot-line curve

in Fig. 6.13. This figure shows that our framework consumes less power than the

set-point-tracking method. It also shows that using the framework with and without

an optimal RTDM is preferred; however, an optimal RTDM can save a considerable

amount of power.
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6.5 Discussion

Our proposed algorithm for cooling the data center environment is capable of a sig-

nificant reduction in power consumption by respecting IT thermal requirements and

having a model for the effects of cooling units. It is observed that equipping thermal

zones (as described in Section 6.3.1) with temperature sensors and controlling cooling

units through a learning-based thermal model can reduce cooling power consumption

significantly.

The introduced system identification methods, RTDM generator, and the con-

troller are not the only methods of implementing the details of this framework. For

example, in a large up-and-running data center, the process of data accumulation and

constructing models might be different. The resolution of thermal zones can vary from

server-size to rack-size zones. Depending on the application, the cost function for the

control loop can be different, especially with respect to the weights and functions (fi).

If there are considerable changes in the offered load, the RTDM calculation can be

called as needed. Additionally, calculating the RTDM by using only two thresholds

(24◦C and 35◦C) could be considerably improved. A function for calculating the

exact thermal requirements of a server using its thermal model can be used to obtain

the RTDM.

There are a number of suggestions for future work. The implementation of re-

inforcement learning can be considered for workload assignment and cooling control

with respect to data center thermal heterogeneity. The assignment of workload to

servers could be performed with greater granularity than considered in this work.

Moreover, the thermal demands of the combination of workload type and server hard-

ware can be studied. One promising enhancement to this work could be considering
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constraints on the core temperatures of servers rather than their inlet temperatures.

6.6 Conclusion

As opposed to computationally expensive physics-based models, learning-based and

data-driven thermal models can provide accurate temperature prediction tools suit-

able for real-time control. Their adaptability and low computational complexities

empower new control methods to be applied to complicated temperature-sensitive

environments such as data centers. We devised a novel control approach using these

techniques and changed the notion of set-point in this context. The to-be-cooled vol-

ume is divided into several thermal zones, and an optimal temperature requirement

is determined for each zone. The optimized temperature requirements of servers are

provided to a controller which controls the cooling units. All the processes, from

generating the thermal model to applying the control inputs to the system, are in-

cluded in the framework. Implementing the framework on a data center with in-row

cooling shows the potential for considerable power savings compared to other popular

controllers.
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Chapter 7

Conclusion

This work follows a logical path in the development of a complete system for joint

workload assignment and cooling control for data centers. The following steps are

performed:

� Quantify thermal differences between servers.

� Exploit the difference between different locations in a data center from the

perspective of cooling units.

� Construct a thermal model for data centers that does not require knowledge

of physical laws and heat-transfer equations, adapts to thermal changes, and is

computationally inexpensive.

� Construct a framework that jointly considers servers and cooling thermal het-

erogeneity for workload assignment and cooling control.

� Implement a holistic control system for workload assignment and cooling control

while considering the transient behavior of the system under control.
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Exploiting data center thermal heterogeneity using thermal models is feasible, and

it can potentially solve this problem. Being more specific about the stages above, the

first stepping stone of this work considers the thermal differences between servers

(server thermal heterogeneity). We find that assigning workload can be optimized

based on these differences to reduce the cooling cost. During the next step, the

consideration of the thermal heterogeneity from the perspective of the cooling units

is investigated. A considerable amount of power savings is obtained by optimizing the

assignment of workload and adjusting the cooling system parameters. These results

are obtained without considering server heterogeneity.

Up to this point, decisions for the cooling unit are based on a physical zonal-based

thermal model, which is not desirable due to a number of implementation issues for

larger scale data centers. This issue triggers our next step, which is building a data-

driven, adaptive, accurate temperature prediction method. We use a neural network

time-series prediction method for this thermal model. In the paper Holistic thermal-

aware workload management and infrastructure control for heterogeneous data centers

using machine learning, thermal models of both a data center and servers are used in

an optimization process for the infrastructure control of the data center. In this part

of our work, the thermal model generated in the previous step is used in the core of

the optimization process. We see remarkable results considering all aspects of thermal

heterogeneity in data centers during workload assignment and cooling control.

The last piece of this work is the implementation of a system for the infrastructure

control of the data center. This work, unlike other parts, considers the transient be-

havior of the system under-study. In this paper, the actual temperature requirements

of servers (considering server heterogeneity) are provided to the cooling controller via
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a required temperature distribution map. The controller uses an enhanced version

of model predictive control (MPC) to satisfy the given temperature requirements of

servers. The system implementation proves the effectiveness of this method through

considerable power savings.

There are several aspects which could be done differently or improved in future

work. These aspects are as follows:

� Considering the performance and thermal effects of the combination of a server

and an application can be counted as another aspect of server heterogeneity.

However, in this work, we focus on the thermal effects of affected thermal

changes by CPU utilization.

� The sensitivity of the results to the size of the thermal zones could be explored,

as the coarser the granularity, the simpler the control implementation, but there

is an inherent trade off with accuracy/performance.

� Due to the availability of accurate cooling power models in the literature, we

use a specific power model for the cooling units in our study, based on a physical

model. While the physical properties of cooling units tend to be well understood,

a data-driven model is another possible alternative.

� The controller system constructed in the last part of our work, uses a neural

network within the MPC controller. Due to probabilistic and nondeterminis-

tic properties of neural networks, controllers may require a preventive layer of

action for the purposes of fault tolerance.

� The process of acquiring data for model training and updates might be different

from one system to another.
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� The model predictive control method, used in the last paper, could possibly

be replaced by other control methods, such as reinforcement learning meth-

ods. Having said that, it does appear that MPC is very well suited for this

application.

� In the paper, Joint data center cooling and workload management: A thermal-

aware approach, a significant caveat for the power efficiency of server consolida-

tion methods is shown when considering associated thermal effects. Exploiting

this caveat is a suggestion for future work.
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