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Abstract

Lowering the degree of component commonality may yield a higher type-II service

level for a periodic review assemble-to-order system that aims to maximize reward.

This is achieved via separating inventories of all the shared components for differ-

ent products. We investigate the optimal bill-of-materials structure for two-product

assemble-to-order systems with arbitrary number of components. The inventory of a

shared component can be separated or common between different products. We show

that an optimal bill-of-materials can be characterized between the following two ex-

tremal configurations: either two products share all common components, or they do

not share any common component.
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Notation and abbreviations

n : number of componnets

m : number of products

i, i′ : index of component

j : index of product

Si : base stock level of component i

ci : unit base stock level cost of component i

Li : lead time of component i

L : maximum lead time among all components; that is, L = max
i
Li

wj : time window of product j

k : index of period corresponding to the duration [k, k + 1); k = 0 implies the

current period; negative values of k imply previous periods

xj,k : number of product j assembled in period k

rj,k : reward for satisfying the demand for product j in period k

ai,j : number of component i used to assemble one unit of product j; that is, the

bill-of-materials (BOM)

B : budget, i.e.,
∑

i (ci Si) ≤ B

Pj,k : demand of product j at period k
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Pj : demand of product j at the current period; that is, Pj,0

Di,k : demand of component i at period k; that is, Di,k =
∑
j

(ai,j Pj,k)

M : number of independent samples

N : number of realizations in one sample

l : index of sample l = 1, . . . ,M

h : index of realization h = 1, . . . , N

d : number of dedicated components; d = 0, (respectively d = n) implies a full

commonality, (respectively non-commonality, configuration)

x+ : the nonnegative part of x; that is, x+ = (|x|+ x)/2

MTS : make-to-stock.

ATO : assemble-to-order.

MTO : make-to-order.

ETO : engineer-to-order.

FCFS : first-come-first-served allocation rule.

BOM : bill-of-materials.

LP : linear program.

RHS : the right hand side.

SAA : sample average approximation method.

Table 1: Notations
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2.1 Akçay and Xu formulation . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 ATO system setting . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 On-hand inventory . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.4 Sample average approximation method . . . . . . . . . . . . . 29

2.2 Impact of modifying the inventory availability constraints . . . . . . . 31

2.2.1 Impact of modifying the inventory availability constraints on

the sample generation . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Impact of modifying the inventory availability constraints on

the SAA method . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Big-M method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Earlier results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Theoretical results for two-product ATO systems 37

3.1 Two-product system with full overlap . . . . . . . . . . . . . . . . . . 37

3.1.1 Non-commonality configuration (BOMN
◦ ) . . . . . . . . . . . 38

3.1.2 Full commonality configuration (BOMN
• ) . . . . . . . . . . . . 39

3.1.3 Partial commonality configuration (BOMN
• ) . . . . . . . . . . 39

3.2 Two-product system with partial overlap . . . . . . . . . . . . . . . . 40

3.2.1 Non-commonality configuration (BOMN
◦ ) . . . . . . . . . . . 41

3.2.2 Full commonality configuration (BOMN
• ) . . . . . . . . . . . . 42

3.2.3 Partial commonality configuration (BOMN
• ) . . . . . . . . . . 43

viii



3.3 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Examples contrasting and comparing (BOMN
◦ ) and (BOMN

• ) . . . . 45

3.4.1 A feasible allocation for partial commonality can be infeasible

for full commonality . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 A feasible allocation for partial commonality can be infeasible

for non-commonality . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.3 Non-commonality can be beneficial over full commonality under

some condition . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Proof of Theorem 1 48

4.1 Two-product system with full overlap . . . . . . . . . . . . . . . . . . 48

4.1.1 Case N = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Case N = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.3 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Two-product system with partial overlap . . . . . . . . . . . . . . . . 72

5 Conclusion and future work 74

ix



List of Figures

2.1 Sequence of events and decisions . . . . . . . . . . . . . . . . . . . . . 22

2.2 Ii,t−1 + Ai,t −Di,t = Ii,t . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Ai,t = Di,t−Li−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Ii,t = Si −Di[t− Li, t] . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Di[t+ k − Li, t− 1] = Di[t+ k − Li, t+ k]−Di[t, t+ k] . . . . . . . . 26

x



List of Tables

1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

3.2 BOM: non-commonality configuration with full overlap . . . . . . . . 38

3.3 BOM: full commonality configuration with full overlap . . . . . . . . 39

3.4 BOM: partial commonality configuration . . . . . . . . . . . . . . . . 40

3.5 BOM: non-commonality configuration with partial overlap . . . . . . 41

3.6 BOM: full commonality configuration with partial overlap . . . . . . 42

3.7 BOM: partial commonality configuration with partial overlap . . . . . 43

4.8 Summary for the case N = 2 . . . . . . . . . . . . . . . . . . . . . . . 65

1



Chapter 1

Introduction

Since the 1990s, due to the pressure of high capital costs and the competitive envi-

ronment in industry, more and more manufacturers have adopted assemble-to-order

(ATO) systems to provide a large product variety required by customers and reduce

response time without increasing cost. ATO systems play an important role in indus-

try, especially, in electronics industry and automobile industry. Traditional computer

manufacturers like IBM and Apple, provide product lines that offer customers few

combinations of options but have delivery lead time on the order of weeks or months,

whereas Dell Computers allow customers to select among processors, monitors, disk

drivers, etc to satisfy customer’s wishes at a reasonable price and short assembly and

delivery times. Dell’s success is heralded as a textbook success story of ATO systems

and attracts nearly every manufacturers in the personal computer market to adopt

similar ATO systems [1].

In this thesis, we study the inventory allocation problem for a periodic review

ATO system with an independent base stock policy and a FCFS allocation rule.

We analyze the formulation of Akçay and Xu [2] which jointly optimizes the base
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stock levels and the component allocation. In particular, we consider two-product

stochastic models with arbitrary number of common components and show that either

full component commonality or non-component commonality does not work worse

than partial component commonality. The works presented in this thesis are published

in Deza et al. [3] and Deza et al. [4].

1.1 Types of production environment

Hoekstra and Romme [5] state that the production environment can be classified into

four types, make-to-stock (MTS), assemble-to-order (ATO), make-to-order (MTO),

and engineered-to-order (ETO). The classification is based on the concept of customer

order decoupling point (CODP), a point in the material flow from where customer

order-driven activities take place.

In MTS, the product itself has a relatively long cycle time and the manufacturers

produce according to a forecast of customer demand. End products are inventoried

before they are ordered by customers and customer orders are fulfilled from the ex-

isting inventory. Therefore, the key competitiveness is the ability of logistics, rather

than lead time [6]. One of the goals of the scheduling policy is to regulate end prod-

uct inventory [7]. Too large inventories may result in a leftover of inventory and

increase holding cost, whereas too small inventories may incur backorder or lost sales

cost. Due to mismatch between demand and supply, the main operations issues un-

der MTS environment are inventory planning, lot size determination, and demand

forecasting [8].

3
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Strategies like ATO and MTO are developed to reduce the demand-supply mis-

matches associated with MTS. For example, manufacturers attempt to delay produc-

tion until they get better demand information [9].

In ATO, manufacturers produce components and generate bill-of-materials (BOM)

structuring from these components. When orders arrive, a variety of end products

will be assembled using the components inventories and given BOM [6]. However, a

problem may arise when customer demand must be backlogged due to lack of some

components, while other components remain unused. The main inventory manage-

ment issues for ATO systems include determining base stock levels without full infor-

mation on product demands and making component allocation decisions depending

on available component inventories and realized product demands [2].

The capability for production customization in MTO systems is greater than that

in ATO systems. MTO production is typically used to manufacture single-item or

small-batch productions, and offers a higher variety but more expensive products.

Components and raw materials are inventoried and most or all the operations neces-

sary to manufacture each specific product are only done after a receipt of a customer

order [10]. The customer selects the company due to its reputation in production

capability, price, responsiveness and service, therefore the main operations issues are

capacity planning, order acceptance or rejection and attaining high due-date adher-

ence [8].

ETO appears to be an extension of MTO. ETO products tend to be highly spe-

cialized and technical in nature, thus production output is very low and revenue is

based on high profit margin instead of unit sales volume [11]. Each customer order

results in a unique set of part numbers, BOM, and routing [10].
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Wemmerlöv [12] states that the ATO system is a “graduate” stage of both MTS

and MTO systems. An MTS manufacturer, pressed by market considerations, might

choose to get into ATO manufacturing to offer a wider variety of products, whereas

an MTO manufacturer, due to an expanding volume and a strong similarity among

products, might choose to move to ATO manufacturing to satisfy an increased demand

and to reduce response time.

1.2 Preliminary

1.2.1 Inventory management

The inventory is stocks of goods being held for future use or sale. Manufacturers use

inventory management techniques to improve their inventory policy for when and how

much to replenish their inventory. Based on the predictability of demand involved,

the mathematical inventory models used with this technique can be classified as de-

terministic models and stochastic models. The demand for a product in inventory is

the number of units that will need to be withdrawn from inventory for some use like

sale during a specific period. When the demand in future periods can be forecast with

considerable precision, it is reasonable to use a deterministic inventory model,

in which all forecasts are always assumed to be completely accurate. However, if

demand cannot well predicated, then it is necessary to use a stochastic inventory

model, in which demands in all periods are random variables with known probability

distribution [13].

A major distinction in the way inventories are managed results from the nature of

demand for those items [14]. If items are used to produce certain end-products with
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other raw materials and components, then those items are said to have dependent

demand. Conversely, independent demand is demand for an item that does not

depend on the demand for any other items produced by the company. The total

amount of raw materials or components needed to assemble cars is dependent demand

because it is a function of the number of cars that will be produced, whereas demand

for the finished car is an example of independent demand. Independent demand is

quite stable once allowances are made for seasonal variations, therefore items having

independent demand must be carried on a continual basis. Dependent demand is

supposed to be lumpy since large quantities are required at specific time while little

or no usage at other times. Consider a manufacturer that produces lawn and garden

equipments, some components like bolts and screws, which are used in most of the

items, are necessary to have a continual inventory because they are always needed.

On the other hand, some components, designed for only one item, are required only

when that item is being produced, i.e., once every month, and the demand is zero at

rest of the time. Therefore dependent-demand items need only be inventoried just

prior to the time they will be required in the production process.

1.2.2 Review period models

The review period can be classified into three types, namely single period models,

periodic review models and continuous review models.

In single period models, perishable items (fresh fruits, vegetables, seafood and

cut flowers) and items with limited useful lives (newspapers and magazines) are or-

dered. The unsold or unused items will not be carried over from one period to the

next, at least not without penalty [14]. One of typical problems is the news-vendor
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problem, in which a vendor should decide how many newspapers are needed on a

given day for his corner newsstand.

Instead of having only a single ordering to meet demand during a selling sea-

son, vendors may order products repeatedly at any time during the year, so-called

multiple-period models. However the orders placed by customers cannot be instan-

taneously satisfied due to random demand and delivery lead time, thus manufacturers

need to hold inventory on hand, perhaps inventory leftover from previous period, to

satisfy demand occurring during lead time, protect against uncertainty in demand

and balance inventory holding costs and backorder costs [15]. Based on when and

how much to order, multiple-period models can further be classified as two types:

periodic review models and continuous review models.

In periodic review models, the inventory level is reviewed at constant intervals,

i.e., at the end of each week, and decisions such as how much to order are made after

each review to keep a desired replenishment level. Manufacturers prefer to accept this

type of model if they are impossible or inconvenient to frequently review inventory

and place order when necessary. In continuous review models, the inventory level

is reviewed continuously, and order is placed when inventory reaches a reorder point.

Manufacturers with computerized inventory systems may choose this type of model

[15]. Both review models must have stockout protection until the next order arrives.

The periodic review models need protection during an order interval plus a lead

time, while the continuous review models need protection only during the lead time.

Therefore, the safety-stock in periodic review models is usually higher than that in

continuous review models.

7
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1.2.3 Linear programs

Linear programs (LP) are used to formulate a mathematical model to describe the

problem of concern and can be used to allocate limited resources among activities in

an optimal way [14]. In linear programs, decision variables, representing choices

available to decision makers in terms of amounts of either inputs or outputs, are

denoted by a column vector x = (x1, . . . , xn)T . The values of the decision variables

should satisfy certain constraints that restrict the alternative available to decision

makers. Constraints are either equality constraints having the form gi(x) = bi or

inequality constraints having the form gi(x) ≥ bi or gi(x) ≤ bi. Note that gi(x), called

the constraint function, is a given function of the decision variables and bi, called the

right hand constant. xj ≥ bj or xj ≤ bj, which give restrictions on individual variables,

are a special case of constraints and is so-called bound constraints.

If a column vector x satisfies all the constraints, then it is a feasible solution

for the problem. The objective function in the problem is mostly to minimize a

cost function or to maximize a profit function. The goal of LP is to find an opti-

mal solution, one of the feasible solutions that has the best value for the objective

function.

A linear function is a function of the form c1x1 + . . .+ cnxn, where c1, . . . , cn are

given constants. Therefore a linear program is an optimization program in which

all the constraint functions and the objective function are linear functions [16].

1.2.4 Two-stage stochastic program

Stochastic programming is an approach to model optimization problems with param-

eters which are unknown when a decision should be made. Here unknown parameters

8



M.Sc. Thesis - Xiao Jiao Wang McMaster - Computing and Software

are assumed to follow some probability distributions, which could be estimated from

historical data. The goal is to find some feasible policy for all possible parameter

realizations and optimizes the expectation of some function of the decisions.

Two-stage programs are most widely applied and studied stochastic program-

ming models.The basic idea that optimal decision should depend on data available

at the time the decisions are made and should not be based on future observations.

Inventory model is the classical two-stage stochastic programming and the corre-

sponding optimization problem is written as following [17]

max
S∈Rn

Eξ [Q (S, ξ)] (1.1)

s.t. AS ≤ b, S ≥ 0,

where Q(S, ξ) is the optimal value of the second-stage problem

max
x∈Rm

qTx (1.2)

s.t. TS +Wx ≤ v, x ≥ 0.

where S and x are vectors of the first and second stage decision variables, respec-

tively. The second stage problem depends on the data ξ = (q, v, T,W ) where any or

all elements can be random.

(1.1) is called the first-stage problem where the ordering decision should be made

before demands are known and (1.2) is called the second-stage problem where the

component allocation decision is made based on on-hand inventory and realized de-

mands.

9
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In the first-stage, ξ is viewed as a random vector with estimated probability dis-

tribution of demand, but sometime the same notation ξ is also used to represent a

random vector and its particular realization. If in doubt, we will write the random

vector as ξh to distinguish from its particular realization.

In the second-stage, a number of random vectors ξ may realize with the second-

stage problem data q, v, T and W . For each realization, the second-stage decision x

is taken, but typically, the decisions x are not the same under different realizations

of ξ. The objective function of (1.1) is the expectation of the second-stage objective

qTx taken over all realizations of the random vector ξ [13] [18].

The standard approach to numerically solve the formulated problem is to assume

that random vector ξ has a finite number of possible realizations ξ1, . . . , ξN with

respective probabilities p1, . . . , pN . Then the expectation can be written as following

Eξ [Q(S, ξ)] =
N∑
h=1

phQ(S, ξh). (1.3)

Then the two-stage problem can be formulated as one larger programming problem

max
S,x1,...,xN

N∑
h=1

phq
T
h xh (1.4)

s.t. AS ≤ b, S ≥ 0,

ThS +Whxh ≤ vh, xh ≥ 0, h = 1, . . . , N.

For each realization ξh = (qh, Th,Wh, vh), where h = 1, . . . , N , we solve the above

formulation (1.4) and obtain an optimal solution S∗ of the first-stage problem and

optimal solutions x∗h of the second-stage problem.

10
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1.2.5 Sample average approximation (SAA) method

Suppose that we can generate a sample ξ1, . . . , ξN of N realizations of the random

vector ξ by using Monte Carlo simulation or historical data. By this we mean that

each random vector ξh, h = 1, . . . , N , has the same probability distribution as the

data vector ξ. Therefore, if each ξh is distributed independently of other sample

vectors, it is said that the sample is independently identically distributed (iid). Given

a sample, we can approximate the expectation function Eξ [Q (S, ξ)] by averaging

values Q
(
S, ξh

)
, h = 1, . . . , N , and it is so-called sample average approximation

(SAA)

max

{
1

N

N∑
h=1

Q(x, ξh)

}
. (1.5)

Therefore, for a generated sample ξh, the SAA problem (1.5) can be considered

as the two-stage problem (1.1)-(1.2) with respective realizations ξh, each taken with

the same probability ph = 1/N [17].

1.2.6 Mass customization

Mass customization is a strategy for companies to produce standardized goods or

services with low cost, but incorporating some degree of customization in the final

product or service to satisfy a variety of customer requests. Delayed differentiation

and modular design are typical tactics to make mass customization possible.

In delayed differentiation, most part of products are standardized produced but

the complete process of production is postponed, and the almost-finished products are

held in inventory until customer specifications are know. When customer orders are

received, the almost-finished products will be incorporated with customized features.

11
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For example, furniture manufacturers can produce furniture without applying stain

and supply a choice of stains to customers. Once the decision is made, the stain

can be applied in such a relatively short time that the waiting time of customers

is significantly reduced. The advantage of delayed differentiation is to both enable

companies to produce high volumes of relatively low-cost standardized products and

satisfy customer desire for a wide variety of products and a short waiting time.

Modular design is a form of standardization in which a complex system is de-

composed into simple modules in order to organize complex designs and processes

more efficiently. These modules are independently created and can be easily replaced

or interchanged among different systems. One familiar example of modular design

is computer. Typical modular parts include power supply units, processors, mother-

board, graphics card and hard drives. According to customer requests, these modular

parts are arranged in different configurations and customized computer capabilities

will be achieved. Due to grouping the components into modules before customer

orders are arrived, it becomes feasible to customize large varieties of high demand

products within short customer waiting time. As long as these parts that support the

same standardized interface, they can be easily replaceable if they become defective

and easily be upgraded. Therefore, the users do not have to buy a new computer.

The main issue associated modular design is designing products, assemblies, and com-

ponents that fulfill various customer demands through the configuration of distinct

building modules [14][19].

12
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1.2.7 Supply chain

A supply chain is a network of organizations that are involved in converting raw

materials into final products and then delivering products to the final customers. This

network includes different facilities, functions, activities, information and resources.

The facilities associated with the supply chain include warehouses, factories, process-

ing centers, distribution centers, retail outlets and offices. Functions and activities

include forecasting, purchasing, inventory management, information management,

quality assurance, scheduling, production, distributions, delivery and customer ser-

vice.

For each organization, there are two components involved in the supply chain, a

supply component and a demand component. The supply component starts at the

beginning of the chain and ends with the internal operations of the organization while

the demand component starts at the point where the organization’s output is delivered

to its intermediaries and ends with the final customer in the chain. Supply chain

management is the design and management of process across all organizations with

the goal of matching supply and demand as efficiently as possible. When supply

chain management is done effectively, it can offer numerous benefits such as lower

inventories, lower overall costs, higher productivity, shorter lead times, higher profits,

and shorter response time. For example, since the 1980s, Wal-mart began to work

directly with manufacturers to cut the cost from intermediaries. Walmart’s successful

supply chain helped Wal-mart become the largest and most profitable retailer in the

world [14].

13
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1.2.8 Component commonality

Component commonality refers to a situation in which several different compo-

nents are replaced by one component. The introduction of component commonality

allows the manufacturer a decrease in safety stock owing to risk pooling and a decrease

in total component inventory cost [20]. For example, a manufacturer sells printer in

Europe and the United States. As it is known, the European printer should have

220V power supplies while the American printers should have 120V power supplies.

If the printer sells very well in Europe but very poorly in the United States, then a

shortage of 220V power supplies and a surplus of 120V power supplies will happen.

If the manufacturer decides to use a common component, i.e. a universal power sup-

ply, to replace these two unique components, the shortage of 220V power supplies

for European printers will be fulfilled by the surplus of power supplies for American

printers [21].

1.2.9 Other basic definitions

The concept of matching, first introduced by Axsäter [22], is defined for the supply

and demand of the same item. In ATO systems, we extend this concept and establish

the matching between multiple components and multiple products. This is called

multi-matching. For example, for a given component i, at period k, a demand of

Di,k =
∑m

j=1 ai,jPj,k units of component i is realized. Then we regard the
∑m

j=1 ai,jPj,k

units of components i as a whole and satisfy this demand with a supply of
∑m

j=1 ai,jPj,k

units of component i. Therefore, a multi-matching between supply and demand is

established. Furthermore, we extend such matching to all components.
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Lead time is the amount of time taken between order placement and order ful-

fillment. Cycle time is the maximum time allowed at each workstation to complete

assigned tasks from start to finish.

The Type-I service level measures the proportion of periods in which the de-

mand of a product or the aggregated demand of all products is satisfied. The Type-II

service level measures the proportion of the demand of a product or the proportion

of the aggregated demand of all products that is fulfilled [2].

Economies-of-scale is an important aspect of efficiency in production in which

larger businesses can benefit from a reduction in average costs of production as they

increase their scale of production. When a business grows and its output increases,

although total costs will increase, the cost of producing each unit will fall, and this

gives the business a competitive benefit over smaller companies [23].

In case the actual demand will exceed expected demand, it is necessary to hold

additional inventory, called safety stock, to prevent a stock-out during lead time.

Order cycle service level is the probability that on-hand inventory will be sufficient

to meet demand during lead time. For example, a service level of 95 percent indicates

a probability of 95 percent that demand will not exceed supply during lead time.

It is obvious that the customer service level increases as the risk of running out of

inventory decreases. Since it costs to hold safety stock, it is a challenge to balance the

conflicting goals of maximizing service level and minimizing inventory cost [14][24].

Risk pooling is an important concept in supply chain management. Risk pooling

suggests that demand variability is reduced if one can use centralized inventory rather

than decentralized inventory. When demand is aggregated across different locations,

it is more likely that higher than average demand from one customer will be offset by
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lower than average demand from another. This reduction in variability directly leads

to a decrease in safety stock and eventually reduces average inventory.

When involved orders are relatively lengthy, it is important to consider the order

of processing in terms of expenses associated with orders waiting for processing. Pri-

ority rules or allocation rules are simple heuristics used to determine the order of

jobs to be processed. First-come-first-served (FCFS) is one of the most common

priority rules, in which customer orders within a particular period cannot be allocated

by the system until all the earlier orders are satisfied [14].

A product in ATO system is an article needed to satisfy customer demand. A

component is a part of a product and can be used in different products. The

relationship between products and components is given by the bill-of-material (BOM).

A Bill-of-material (BOM) is a list of all of the raw materials, parts, sub-assemblies,

and assemblies needed to manufacture one unit of an end-product [14].

When implementing a base-stock policy, also known as the order-up-to level,

inventory is ordered to keep inventory position, i.e., on-hand inventory plus on-order

inventory minus backorders) equaling the base stock level [9].

1.3 Literature review

Component commonality is widely adopted and often preferred in ATO systems in or-

der to offset the reduction of economies-of-scale when providing customized products.

The economic impact of component commonality for single period models has been

extensively studied. Eynan and Rosenblatt [20] presented three models to compare

and analyze the effects of increasing component commonality, and demonstrated that

16



M.Sc. Thesis - Xiao Jiao Wang McMaster - Computing and Software

some forms of commonality might not always be beneficial. They also provided con-

ditions for which commonality should be either employed or avoided. Mirchandani

and Mishra [25] compared a non-commonality model with two different commonality

models – based on whether or not the products are prioritized – for a system with two

products and independent uniform demand distributions. They derived theoretical

conditions when component commonality is beneficial for this specific system. Both

Eynan and Rosenblatt [20] and Mirchandani and Mishra [25] allowed the common

component to be more expensive than those it replaces. However, in our formulation,

we apply component commonality to the inventory management rather than to the

design process. Thus, we assume, like Baker et al.[26] and Gerchak et al. [27], that the

costs of the dedicated component and the common component are identical. Baker

et al. [26] studied the effect of component commonality on optimal safety stock levels

for an ATO system with two end-products and two components. They considered the

problem of minimizing safety stock levels while satisfying a service level constraint

under independent uniform demand distributions and showed that component com-

monality induced a reduction in the optimal safety stock levels. Gerchak et al. [27]

extended this work by investigating whether the results hold for a system with an

arbitrary number of products and a general joint demand distribution.

In contrast to the above works where a single period model is assumed, our com-

monality study focuses on a multi-period model. Considering a simple multi-period

ATO model, Hillier [28] observed that component commonality is not always bene-

ficial. Hillier [28] studied a periodic review ATO system with zero lead times and

uniformly distributed demands, and derived a closed-form solution for a cost mini-

mization model with service level constraints. The results demonstrated that, for a
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multi-period model, the use of a common component is always beneficial if its price

does not exceed the price of the replaced components. If the common component is

more expensive than the replaced ones, then in contrast to the single period case, it is

almost never beneficial to use it. Hillier [21] further extended these results to systems

with an arbitrary number of final products and components. Song and Zhao [29]

considered a continuous-review ATO system with one common component, two end

products, and Poisson distributed demands, and showed that, while component com-

monality is generally beneficial, its added value depends strongly on the component

costs, lead times, and allocation rules.

In the literature reviewed above, minimizing inventory level or inventory cost

subject to some service level constraints is commonly used to model ATO systems.

However, the problem we consider follows another line of research: component com-

monality for systems with a given budget for all the components. Jönsson and Silver

[30] analyzed the impact of component commonality for an ATO system with two

end products and two components, with one being common to both products. Fong

et al. [31] pursued the approach of Baker et al. [26] and provided analytical for-

mulations for a commonality problem minimizing the expected shortage subject to a

fixed budget constraint and assuming independent Erlang demand distributions. In

particular, they observed that the relative reduction in the expected shortage can be

substantial when the budget level is high relative to the demand requirements for the

end products – even if the component is much more expensive. Note that all these

models assume a single period.

Another relevant work is Non̊as [32] who formulated a two-stage stochastic pro-

gram for an ATO system with three products and an arbitrary number of components,
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and introduced a gradient-based search method to find the optimal inventory levels

for a profit maximization problem. The key difference is that we consider a budget

constraint.

Akçay and Xu [2] studied a periodic review assemble-to-order (ATO) system with

an independent base stock policy and a first-come-first-served (FCFS) allocation rule.

They formulated a two-stage stochastic integer nonlinear program where the base

stock levels and the component allocation are optimized jointly. They showed that

the component allocation problem is an NP-hard multidimensional knapsack prob-

lem and proposed an order-based component allocation heuristic rule that commits a

component to an order only if it leads to the fulfillment of the order within the com-

mitted time window. They concluded that their order-based component allocation

rule outperforms the component-based allocation rules, such as the fixed-priority and

fair-shared rules, see [33, 34]. Huang and de Kok [35] studied periodic-review ATO

systems with linear holding and backlogging costs, installation stock policy, and a

FCFS allocation rule. They introduced the concept of multimatching which refers to

the coupling of multiple component units and product units. They showed that the

FCFS allocation rule decouples the problem of optimal component allocation over

time into deterministic period-by-period component allocation optimization prob-

lems. Huang [36] evaluated the impact of two non-FCFS allocation rules in a periodic

review ATO system with component base stock policy; i.e., the last-come-first-served-

within-one-period rule and the product-based-priority-within-time-windows rule. He

proposed three benchmark mathematical programming models to test the non-FCFS

allocation rules and concluded that both rules cannot only outperform FCFS alloca-

tion rule in certain areas, but also better address the differences in customer service
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requirements. Doğru et al. [37] investigated a continuous review W system and con-

cluded that the FCFS base stock policy is typically suboptimal. They also provided a

lower bound for the optimal objective value and developed a policy attaining the lower

bound under some symmetry condition for the cost parameters and a so-called bal-

anced capacity condition for the solution. Jaarsveld and Scheller-Wolf [38] developed

a heuristic algorithm for large scale continuous review ATO systems which improves

as the average newsvendor fractiles increase. They showed that, for large scale ATO

systems, the best FCFS rule is nearly optimal, and proposed a no-holdback allocation

rule which can outperform the best FCFS rule.

1.4 Thesis outline

In Chapter 2, we detail the formulations. The main results are presented in Chap-

ter 3, the proofs are given in Chapter 4, and a few future directions are presented in

Chapter 5.
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Chapter 2

The stochastic programming model

2.1 Akçay and Xu formulation

2.1.1 ATO system setting

Following the model proposed by Akçay and Xu [2], we assume

(1) a periodic review system,

(2) an independent base stock policy is used for each component,

(3) the product demands are satisfied by a FCFS rule,

(4) the product demands are correlated within each period, while the demands over

different periods are independent,

(5) the replenishment lead time for each component is constant,

(6) a product reward is collected if the assembly is completed within the given time

window.
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In addition, the following sequence of events, illustrated in Figure 2.1, is assumed

for each period:

(i) inventory position reviewed (IPR),

(ii) new replenishment order of components placed(NOP),

(iii) earlier component replenishment order arrive(ROA),

(iv) demand realized(DR),

(v) component allocated and product assembled(CAPA),

(vi) associated rewards accounted for(ARA).

Figure 2.1: Sequence of events and decisions

2.1.2 On-hand inventory

Let Ii,t represent the net inventory of component i at the end of period t, Ai,t represent

the replenishment order of component i arriving at period t, and Di,t represent the

demand for component i at period t. Then we can derive the following key equations:

Ii,t−1 + Ai,t −Di,t = Ii,t, (2.6)

Ai,t = Di,t−Li−1, (2.7)
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where Li is the lead time of component i.

Based on the sequence of events, at any given period t, the replenishment order of

component i, Ai,t, arrives and then the demand of component i, Di,t, is realized, see

Figure 2.2. Therefore, the net inventory of component i at the end of period t is equal

to the net inventory of component i at the end of previous period t−1 plus the arrival

of the replenishment order of component i at period t minus the amount of component

i used to assemble ordered products at period t, that is, Ii,t−1 + Ai,t −Di,t = Ii,t.

Figure 2.2: Ii,t−1 + Ai,t −Di,t = Ii,t

At period t−Li−1, a demand for component i, Di,t−Li−1, is realized. At the next

period t− Li, due to the base stock policy, a new replenishment order of component

i with the amount of Di,t−Li−1 is placed in order to bring the inventory position back

to the base stock level. According to the definition of lead time, this replenishment

order, which is placed at period t−Li, will arrive at period t, that is Ai,t. Therefore,

we have Ai,t = Di,t−Li−1, see Figure 2.3.

Figure 2.3: Ai,t = Di,t−Li−1

Let Si be the base stock level of component i, and let Di[s, t] and Ai[s, t] represent

23



M.Sc. Thesis - Xiao Jiao Wang McMaster - Computing and Software

the total demand and total replenishment of component i from period s through

period t respectively, that is, Di[s, t] =
∑t

µ=sDi,µ and Ai[s, t] =
∑t

µ=sAi,µ for s ≤ t.

Then we wish to point out the following key equations:

Ii,t = Si −Di[t− Li, t] (2.8)

Ii,t+k = Ii,t−1 + Ai[t, t+ k]−Di[t, t+ k]. (2.9)

Suppose that the net inventory of component i at the end of period t is under the

base stock control Si, that is, the inventory position of component i at the beginning

of period t − Li − 1 is Si and there is no replenishment order arrived from period

t − Li − 1 through period t − 1. The earliest replenishment order of component i

arrives at period t, denoted as Ai,t. The process is illustrated in Figure 2.4.

Figure 2.4: Ii,t = Si −Di[t− Li, t]

Therefore, the derivation of (2.8) is as following:

Ii,t = Si −Di,t−Li−1 −Di[t− Li, t− 1] + Ai,t −Di,t

= Si −Di[t− Li, t] (∵ Ai,t = Di,t−Li−1)
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Furthermore, we replace t by t+ k and rewrite (2.8) as following:

Ii,t+k = Si −Di[t+ k − Li, t+ k] (2.10)

If we apply (2.6) repeatedly for periods t, t+ 1, t+ 2, . . . , t+ k, then we have the

following balance equations:

Ii,t = Ii,t−1 + Ai,t −Di,t

Ii,t+1 = Ii,t + Ai,t+1 −Di,t+1

. . .

Ii,t+k−1 = Ii,t+k−2 + Ai,t+k−1 −Di,t+k−1

Ii,t+k = Ii,t+k−1 + Ai,t+k −Di,t+k

Now, we can relate the ending inventory of component i at periods t− 1 and t+k

as follows:

Ii,t+k = Ii,t+k−1 + Ai,t+k −Di,t+k

= Ii,t+k−2 + Ai,t+k−1 −Di+k−1 + Ai,t+k −Di,t+k

= . . .

= Ii,t−1 + Ai[t, t+ k]−Di[t, t+ k]

Substituting (2.10) into (2.9), we reach the following result:
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Ii,t−1 + Ai[t, t+ k]−Di[t, t+ k] = Si −Di[t+ k − Li, t+ k]

⇐⇒ Ii,t−1 + Ai[t, t+ k] = Si − (Di[t+ k − Li, t+ k]−Di[t, t+ k])

⇐⇒ Ii,t−1 + Ai[t, t+ k] = Si −Di[t+ k − Li, t− 1] (see Figure 2.5)

Figure 2.5: Di[t+ k − Li, t− 1] = Di[t+ k − Li, t+ k]−Di[t, t+ k]

We observe that Ii,t−1 + Ai[t, t+ k] is the net inventory of component i in period

t+ k after receiving all replenishment orders from periods t through t+ k, but before

fulfilling any orders arrived after period t−1. Since the system uses FCFS to fill orders,

the demand Di,t received at period t can not be realized until all earlier customer

orders are allocated. Thus, at period t+ k, provided that no inventory of component

i has been allocated to those orders since their arrival, where k = 0, 1, 2, . . . , Li, the

available on-hand inventory of component i used to fulfill the demand at period t is:

(Si −Di[t+ k − Li, t− 1])+ = max{Si −Di[t+ k − Li, t− 1], 0}. (2.11)

In addition, we can drop the time index t from the notation and use DLi−k
i to

represent the stationary version of Di[t + k − Li, t − 1], and we introduce Oi,k as a
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shorthand notation for the on-hand inventory of component i available at period t+k

that can be used for the demand at period t. We update (2.11) as follows:

Oi,k :=
(
Si −DLi−k

i

)+
:= (Si −Di[t+ k − Li, t− 1])+ , (2.12)

where 0 ≤ k ≤ Li. Note that when k = Li, the on-hand inventory
(
Si −DLi−k

i

)+
becomes Si. However, it is still possible that the demand at period t will not be

fulfilled by period t + Li. When Di,t > Si, there is Di,t − Si demand (from period t)

unfulfilled at the end of period t + Li. In this case, the demand will be completely

fulfilled by period t+ Li + 1 due to (2.7).

2.1.3 Formulation

In our model, assembly takes zero time while component lead times are greater than

zero. The model is based on a multi-matching approach proposed by Huang [36]

and Huang and de Kok [35] where multiple components are matched with multiple

products to satisfy demands. In each period within the time window, rewards are

collected by satisfying product demands. We recall that the time window is the

number of periods between the order receiving period and the order fulfillment period.

In particular, a time window equal to 0 means that the demand must be fulfilled

within the period the order is received; that is, we must have enough components to

satisfy the demand within that period in order to collect reward. The base stocks

of the ATO system are constrained by a pre-set overall budget. The approach is

based on a two-stage decision model. The first stage consists of determining a base

stock level for each component, and the second stage consists of determining products

that need to be assembled in each period with respect to some constraints reflecting
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the inventory availability. The first stage decisions are made before the second stage

decisions following a two-stage stochastic programming framework, see Birge and

Louveaux [18]. The objective of the approach is to maximize the expected total

reward collected from the products assembled within given time windows. Note that

while all products are eventually assembled within L + 1 periods, the reward are

collected only within the pre-set time windows.

The second stage corresponds to the allocation problem
(
Alloc(S, ξ)

)
, where

S = (Si) is the vector representing base stock levels, ξ = {Pj,k|j = 1, . . . ,m; k =

0,−1, . . . ,−L} is the vector representing random demands, and Oi,k is the number

of component i available at period k. Note that Oi,k = (Si −DLi−k
i )+ for 0 ≤ k ≤ Li

where DLi−k
i =

∑Li−k
s=0 Di,−s, and Oi,k = Di,0 for Li + 1 ≤ k ≤ L+ 1 are inferred from

the base stock policy and a FCFS rule, see Huang [36] and Huang and de Kok [35].

max
m∑
j=1

wj∑
k=0

(rj,k xj,k)
(
Alloc(S, ξ)

)
wj∑
k=0

xj,k ≤ Pj j = 1, . . . ,m

k∑
µ=0

m∑
j=1

(ai,j xj,µ) ≤ Oi,k i = 1, . . . , n, k = 0, . . . , L+ 1

xj,k ∈ Z+ j = 1, . . . ,m, k = 0, . . . , L+ 1

The first set of constraints guarantees that assembly will satisfy customer demand.

Please note that wj ≤ L + 1. As the system uses FCFS and base stock policy, all

the customer demands will be fulfilled by period L + 1. Therefore we can conclude

that
∑L+1

k=0 xj,k = Pj, where j = 1, . . . ,m. Recall that the reward is collected if the
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products is assembled within time window w. Consequently, replacing the constraint∑L+1
k=0 xj,k = Pj by

∑wj
k=0 xj,k ≤ Pj would yield the same optimal reward. From

the aspect of operation research, we can treat all the variables xj,k, where k = w +

1, . . . , L+ 1 as slack variables that are added to an inequality constraint to transform

it into an equality but have no effect on the objective function. The second set

of constraints – called inventory availability constraints – guarantees that assembly

could only happen when there are enough component inventories. While an optimal

allocation can be computed for a given base stock level S and demand ξ, we still need

to determine the optimal base stock levels. Thus, we use the two-stage stochastic

integer program
(
Joint(B)

)
where the first stage determines the base stock levels

and the second stage maximizes the expectation of the component allocations:

max IE[Alloc(S, ξ)]
(
Joint(B)

)
n∑
i=1

(ci Si) ≤ B

Si ∈ Z+ i = 1, . . . , n

We recall in Section 2.1.4 the sample average approximation method used to solve(
Joint(B)

)
.

2.1.4 Sample average approximation method

The sample average approximation (SAA) method, see Kleywegt et al. [39], consists

of the following steps:
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(i) generate M independent samples for l = 1, . . . ,M with N realizations for each

sample. The vector ξNl = (ξ(ω1
l ), ξ(ω

2
l ), . . . , ξ(ω

N
l )) represents the N realizations of

the l-th sample,

(ii) solve the optimization problem (INLP ) for each sample, which is the associ-

ated deterministic version of
(
Joint(B)

)
. where the objective function is set to

1
N

∑N
h=1Alloc(S, ξ(ω

h
l )) as described below. Note that (INLP ) is non-linear not only

due to the integrality constraints but also due to the right hand side of the inventory

availability constraints. Let Ŝl denote the optimal base stock levels for (INLP ) and

Ĝ(Ŝl) denote its optimal objective value.

max
1

N

N∑
h=1

m∑
j=1

wj∑
k=0

(rj,k x
h
j,k)

(
INLP

)
wj∑
k=0

xhj,k ≤ P h
j j = 1, . . . ,m, h = 1, . . . , N

k∑
µ=0

m∑
j=1

(ai,j x
h
j,µ) ≤ Oh

i,k i = 1, . . . , n, k = 0, . . . , L+ 1, h = 1, . . . , N

n∑
i=1

(ci Si) ≤ B

Si ∈ Z+ i = 1, . . . , n

xhj,k ∈ Z+ j = 1, . . . ,m, k = 0, . . . , L+ 1, h = 1, . . . , N

(iii) generate a different sample ξN
′

with N ′ � N realizations and compare the per-

formance among all the base stock vectors Ŝl solved in (ii) by solving
(
Alloc(S, ξN

′
)
)

with S = Ŝl. Let Ḡ(Ŝl) be the new optimal objective value.
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(iv) select the optimal base stock vector Ŝ∗ achieving the best performance among

all the base stock vectors; that is, Ŝ∗ = argmax{Ḡ(Ŝl) : l = 1, . . . ,M}.

Let ĜM = 1
M

∑M
l=1 Ĝ(Ŝl), ḠN ′ = Ḡ(Ŝ∗), and G∗ be the optimal objective value

of
(
Joint(B)

)
. Since ḠN ′ ≤ G∗ ≤ ĜM under certain conditions for N,M,N ′, see

Birge and Louveaux [18], ḠN ′ and ĜM are, respectively, a lower and an upper bound

for G∗. For more details concerning the statistical testing of optimality for the SAA

method, and the selection of N , M , and N ′, see Kleywegt et al. [39]. Note that

Oi,k =
(
Si −DLi−k

i

)+
is a non-convex function of Si; and we use the standard Big-M

method (see section 2.3) to check whether
(
Si −DLi−k

i

)
is positive.

2.2 Impact of modifying the inventory availability

constraints

While the (INLP ) formulation uses a plus sign in the right hand side of the inventory

constraints, Akçay and Xu [2] replace
(
Si −DLi−k

i

)+
by
(
Si −DLi−k

i

)
in the compu-

tational experiments. The obtained new formulation (ILP ) allows faster computation.

Note that the feasible region of (ILP ) is a subset of the feasible region of (INLP ).

In addition, while relaxing the integrality constraints on the variables would make

(ILP ) convex, (INLP ) would remain non-convex due to the
(
Si −DLi−k

i

)+
term in

the right hand side of the inventory availability constraints. Note that substituting(
Si −DLi−k

i

)
by
(
Si −DLi−k

i

)+
may lead to infeasibility. This issue can be addressed

by filtering out samples leading to infeasibility and by assuming sufficiently large

budget level; that is, by allowing large base stock levels. We argue that substituting
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(
Si −DLi−k

i

)
for
(
Si −DLi−k

i

)+
might yield an intractable sample generation process

for the SAA approach for low budget levels.

2.2.1 Impact of modifying the inventory availability constraints

on the sample generation

Generating enough samples such that the associated (ILP ) formulation is feasible

could be highly challenging for low budget levels. Note that under the extreme case

of setting the budget to zero, the only sample yielding a feasible formulation is the

trivial zero sample. Disregarding infeasible ones, we generate samples for (ILP ) until

the required number of samples, or a pre-set number of feasibility tests, is reached. For

a given budget, the feasibility check is done by comparing with a computed minimum

budget for a sample having a feasible solution. The computed minimum budget is

determined from the (ILP ) minimum base stock levels using Algorithm 1 described

below. The non-negativity of the left hand side of the inventory availability constrains

implies (Si −DLi−k
i ) ≥ 0. Note that while we can generate enough feasible samples

for (ILP ), the mean and variance – i.e., the distribution – of generated sample are

impacted and, thus, the SAA method.

Algorithm 1 Computing minimum feasible budget

Initialize maxS ← zeros(n)
for any realization h do

for for any component i do
if DLi

i > maxS(i) then
maxS(i)← DLi

i

end if
end for

end for
B =

∑n
i=1 ci ×maxS(i)
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2.2.2 Impact of modifying the inventory availability constraints

on the SAA method

Following the notation and discussion of Section 2.1.4, let Ḡ•N ′ , G∗•, and Ĝ•M denote

respectively the (ILP ) lower bound, optimal value, and upper bound. Since x ≤ x+,

any feasible solution of (ILP ) is a feasible solution of (INLP ). In addition, this

inclusion is typically strict as one can set some base stocks to zero to build a solution

feasible for (INLP ) but infeasible for (ILP ). To ensure a fair comparison, we only

consider samples yielding feasible (ILP ) and (INLP ) formulations. Since, for a given

sample, the optimal objective value for (INLP ) is at least the one for (ILP ), we have

G•M ≤ ĜM .

2.3 Big-M method

As stated in section 2.2, the plus sign in the inventory availability constraints plays an

important role, especially under low budget levels. Therefore, instead of dropping the

plus sign directly, we introduce a standard linearizion technique, the Big-M method,

to linearize the
(
Si −DLi−k

i

)+
term.

Let M be a big positive number, i.e. maxω{DLi
i +

∑n
j=1(ai,jPj)}, and zi,k be a bi-

nary variable. Then we rewrite the inventory availability constraints,
∑k

µ=0

∑m
j=1(ai,jxj,µ) ≤(

Si −DLi−k
i

)+
, as follows:
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k∑
µ=0

m∑
j=1

(ai,j xj,µ) ≤M zi,k (2.13)

k∑
µ=0

m∑
j=1

(ai,j xj,µ) ≤ Si −DLi−k
i +M (1− zi,k)

Si −DLi−k
i ≤M zi,k

zi,k ∈ {0, 1}.

When the value of zi,k is set to 0, (2.13) can be written as

k∑
µ=0

m∑
j=1

(ai,j xj,µ) ≤ 0 (2.14)

k∑
µ=0

m∑
j=1

(ai,j xj,µ) ≤ Si −DLi−k
i +M

Si −DLi−k
i ≤ 0,

and when the value of zi,k is set to 1, (2.13) will be written as:

k∑
µ=0

m∑
j=1

(ai,j xj,µ) ≤M (2.15)

k∑
µ=0

m∑
j=1

(ai,j xj,µ) ≤ Si −DLi−k
i

Si −DLi−k
i ≤M.

Now the plus signs in the inventory availability constraints are safe to remove

because of the existence of the Big-M. In constraints (2.14), the upper bound of
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the
∑k

µ=0

∑m
j=1(ai,j xj,µ) term is 0, and since this term is non-negative, we can get

a feasible solution, i.e. setting all the base stock levels and assembled products to

zeros. The constraints (2.15) can be simplified to
∑k

µ=0

∑m
j=1(ai,j xj,µ) ≤ Si−DLi−k

i ,

in which the plus signs are directly removed.

2.4 Earlier results

In Deza et al. [3], we studied the impact of component commonality on periodic review

ATO systems and showed that lowering component commonality may yield a higher

type-II service level. The lower degree of component commonality is achieved via

separating inventories of the same component for different products. We substanti-

ated this property via computational and theoretical approaches and showed that for

low budget levels the use of separate inventories of the same component for different

products could achieve a higher reward than with shared inventory. Finally, consid-

ering a simple ATO system consisting of one component shared by two products, we

characterized the budget ranges such that the use of separate inventories is beneficial,

as well as the budget ranges such that component commonality is beneficial. For more

details and literature review, please refer to Deza et al. [3].

A natural research question arising from Deza et al. [3] is how to allocate inven-

tories in ATO systems optimally to achieve higher reward. In this thesis, we further

study this problem for two-product stochastic models with arbitrary number of com-

mon components and show that either full component commonality or non-component

commonality does not work worse than the optimal partial component commonality.

Components with common function can be replaced by a single one; such universal

component is called common. A common component is called dedicated if it is used
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to assemble only one product, and shared if it is shared by more than one product.

A product-specific component that is irreplaceable is called non-common.
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Chapter 3

Theoretical results for two-product

ATO systems

A few additional notations are required in the remainder of the thesis. Let (BOMN
◦ ),

(BOMN
• ) and (BOMN

• ) denote, respectively, non-commonality, full commonality, and

partial commonality configurations. Let x◦hj , x•hj and x•hj denote the number of prod-

uct j assembled at realization h for, respectively, (BOMN
◦ ), (BOMN

• ) and (BOMN
• ).

Let S◦j i and S•j i denote, respectively, the base stock levels of dedicated component i

for product j for (BOMN
◦ ) and (BOMN

• ). Let S•i′ and S•i′ denote, respectively, the

base stock levels of common component i′ for (BOMN
• ) and (BOMN

• ). Finally, let

cj i denote the cost of component i for product j.

3.1 Two-product system with full overlap

In the full overlap configuration, product 1 and product 2 use exactly the same set

of components. To simplify the analysis, all the product time windows are set to 0
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and BOMs are set to 1. In other words, each unit product only contains one unit

component, and the reward can be collected only if the assembly happens in the same

period of the arrival of the demand.

3.1.1 Non-commonality configuration (BOMN
◦ )

The non-commonality configuration consists of two products, each comprising n dif-

ferent components, as shown in Table 3.2 where Cj
i denotes dedicated component i

used to assemble product j.

C1
1 C2

1 C1
2 C2

2 . . . C1
n C2

n

P1 1 0 1 0 . . . 1 0
P2 0 1 0 1 . . . 0 1

Table 3.2: BOM: non-commonality configuration with full overlap

The corresponding SAA formulation (BOMN
◦ ) is as follows:

max
1

N

N∑
h=1

(r1 x
◦h
1 + r2 x

◦h
2 )

(
BOMN

◦
)

x◦h1 ≤ (S◦1 i −Dh
1 )+ i = 1, . . . , n, h = 1, . . . , N

x◦h2 ≤ (S◦2 i −Dh
2 )+ i = 1, . . . , n, h = 1, . . . , N

x◦h1 ≤ P h
1 , x◦h2 ≤ P h

2 h = 1, . . . , N

n∑
i=1

(c1 i S
◦
1 i + c2 i S

◦
2 i) ≤ B

x◦h1 , x
◦h
2 , S

◦
1 i, S

◦
2 i ∈ Z+ i = 1, . . . , n, h = 1, . . . , N
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3.1.2 Full commonality configuration (BOMN
• )

In the full commonality configuration, component C1
i and C2

i in (BOMN
◦ ) are replaced

by a common component Ci where i = 1, . . . , n. Therefore there are n common com-

ponents in total, see Table 3.3.

C1 C2 C3 . . . Cn
P1 1 1 1 . . . 1
P2 1 1 1 . . . 1

Table 3.3: BOM: full commonality configuration with full overlap

The corresponding SAA formulation (BOMN
• ) is as follows:

max
1

N

N∑
h=1

(r1 x
•h
1 + r2 x

•h
2 )

(
BOMN

•
)

x•h1 + x•h2 ≤ (S•i′ −Dh
1 −Dh

2 )+ i′ = 1, . . . , n, h = 1, . . . , N

x•h1 ≤ P h
1 , x•h2 ≤ P h

2 h = 1, . . . , N

n∑
i′=1

ci′ S
•
i′ ≤ B

x•h1 , x
•h
2 , S

•
i′ ∈ Z+ i′ = 1, . . . , n, h = 1, . . . , N

3.1.3 Partial commonality configuration (BOMN
• )

In a partial commonality configuration, let I be a nonempty and strict subset of

{1, 2, . . . , n} such that components C1
i and C2

i in (BOMN
◦ ) are replaced by a com-

mon component Ci for i ∈ I. Without loss of generality, we can assume that 1 /∈ I

and n ∈ I, see Table 3.4 where d = n− |I| is the number of dedicated components.
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C1
1 C2

1 . . . C1
d C2

d Cd+1 Cd+2 . . . Cn−1 Cn
P1 1 0 . . . 1 0 1 1 . . . 1 1
P2 0 1 . . . 0 1 1 1 . . . 1 1

Table 3.4: BOM: partial commonality configuration

The corresponding SAA formulation (BOMN
• ) is as follows:

max
1

N

N∑
h=1

(r1 x
•h
1 + r2 x

•h
2 )

(
BOMN

•
)

x•h1 ≤ (S•1 i −Dh
1 )+ i = 1, . . . , d, h = 1, . . . , N

x•h2 ≤ (S•2 i −Dh
2 )+ i = 1, . . . , d, h = 1, . . . , N

x•h1 + x•h2 ≤ (S•i′ −Dh
1 −Dh

2 )+ i′ = d+ 1, . . . , n, h = 1, . . . , N

x•h1 ≤ P h
1 , x•h2 ≤ P h

2 h = 1, . . . , N

d∑
i=1

(c1 i S
•
1 i + c2 i S

•
2 i) +

n∑
i′=d+1

ci′ S
•
i′ ≤ B

x•h1 , x
•h
2 , S

•
1 i, S

•
2 i, S

•
i′ ∈ Z+ i = 1, . . . , n, i′ = d+ 1, . . . , n, h = 1, . . . , N

3.2 Two-product system with partial overlap

In a partial overlap configuration, some components are used only for product 1 or

product 2 by design, therefore these components are not allowed to be replaced by

common components.
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3.2.1 Non-commonality configuration (BOMN
◦ )

The non-commonality configuration consists of two products, product 1 comprising

n1 different components and product 2 comprising n2 different components.

C1
n+1 . . . C1

n1
C1

1 C2
1 . . . C1

n C2
n C2

n+1 . . . C2
n2

P1 1 . . . 1 1 0 . . . 1 0 0 . . . 0
P2 0 . . . 0 0 1 . . . 0 1 1 . . . 1

Table 3.5: BOM: non-commonality configuration with partial overlap

Let B◦1 =
∑n1

i1=n+1 c1 i1 S
◦
1 i1

, and B◦2 =
∑n2

i2=n+1 c2 i2 S
◦
2 i2

. Then the corresponding

SAA formulation (BOMN
◦ ) is as follows:

max
1

N

N∑
h=1

(r1 x
◦h
1 + r2 x

◦h
2 )

(
BOMN

◦
)

x◦h1 ≤ (S◦1 i1 −D
h
1 )+ i1 = n+ 1, . . . , n1, h = 1, . . . , N

x◦h2 ≤ (S◦2 i2 −D
h
2 )+ i2 = n+ 1, . . . , n2, h = 1, . . . , N

x◦h1 ≤ (S◦1 i −Dh
1 )+ i = 1, . . . , n, h = 1, . . . , N

x◦h2 ≤ (S◦2 i −Dh
2 )+ i = 1, . . . , n, h = 1, . . . , N

x◦h1 ≤ P h
1 , x◦h2 ≤ P h

2 h = 1, . . . , N

n∑
i=1

(c1 i S
◦
1 i + c2 i S

◦
2 i) +B◦1 +B◦2 ≤ B

x◦h1 , x
◦h
2 , S

◦
1 i, S

◦
2 i,∈ Z+ i = 1, . . . , n, h = 1, . . . , N

S◦1 i1 , S
◦
2 i2
,∈ Z+ i1 = n+ 1, . . . , n1, i2 = n+ 1, . . . , n2
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3.2.2 Full commonality configuration (BOMN
• )

In the full commonality configuration, component C1
i and C2

i in (BOMN
◦ ) are replaced

by a common component Ci where i = 1, . . . , n. Therefore there are n common com-

ponents in total, see Table 3.6.

C1
n+1 . . . C1

n1
C1 C2 C3 . . . Cn C2

n+1 . . . C2
n2

P1 1 . . . 1 1 1 1 . . . 1 0 . . . 0
P2 0 . . . 0 1 1 1 . . . 1 1 . . . 1

Table 3.6: BOM: full commonality configuration with partial overlap

Let B•1 =
∑n1

i1=n+1 c1 i1 S
•
1 i1

, and B•2 =
∑n2

i2=n+1 c2 i2 S
•
2 i2

. Then the corresponding

SAA formulation (BOMN
• ) is as follows:

max
1

N

N∑
h=1

(r1 x
•h
1 + r2 x

•h
2 )

(
BOMN

•
)

x•h1 ≤ (S•1 i1 −D
h
1 )+ i1 = n+ 1, . . . , n1, h = 1, . . . , N

x•h2 ≤ (S•2 i2 −D
h
2 )+ i2 = n+ 1, . . . , n2, h = 1, . . . , N

x•h1 + x•h2 ≤ (S•i′ −Dh
1 −Dh

2 )+ i′ = 1, . . . , n, h = 1, . . . , N

x•h1 ≤ P h
1 , x•h2 ≤ P h

2 h = 1, . . . , N

n∑
i′=1

ci′ S
•
i′ +B•1 +B•2 ≤ B

x•h1 , x
•h
2 , S

•
i′ ∈ Z+ i′ = 1, . . . , n, h = 1, . . . , N

S•1 i1 , S
•
2 i2
,∈ Z+ i1 = n+ 1, . . . , n1, i2 = n+ 1, . . . , n2

42



M.Sc. Thesis - Xiao Jiao Wang McMaster - Computing and Software

3.2.3 Partial commonality configuration (BOMN
• )

In a partial commonality configuration, let I be a nonempty and strict subset of

{1, 2, . . . , n} such that components C1
i and C2

i in (BOMN
◦ ) are replaced by a common

component Ci for i ∈ I. Without loss of generality, we can assume that 1 /∈ I and

n ∈ I, see Table 3.7 where d = n− |I| is the number of dedicated components.

C1
n+1 . . . C1

n1
C1

1 C2
1 . . . C1

d C2
d Cd+1 . . . Cn C2

n+1 . . . C2
n2

P1 1 . . . 1 1 0 . . . 1 0 1 . . . 1 0 . . . 0
P2 0 . . . 0 0 1 . . . 0 1 1 . . . 1 1 . . . 1

Table 3.7: BOM: partial commonality configuration with partial overlap

Let B•1 =
∑n1

i1=n+1 c1 i1 S
•
1 i1

, and B•2 =
∑n2

i2=n+1 c2 i2 S
•
2 i2

. Then the corresponding

SAA formulation (BOMN
• ) is as follows:
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max
1

N

N∑
h=1

(r1 x
•h
1 + r2 x

•h
2 )

(
BOMN

•
)

x•h1 ≤ (S•1 i1 −D
h
1 )+ i1 = n+ 1, . . . , n1, h = 1, . . . , N

x•h2 ≤ (S•2 i2 −D
h
2 )+ i2 = n+ 1, . . . , n2, h = 1, . . . , N

x•h1 ≤ (S•1 i −Dh
1 )+ i = 1, . . . , d, h = 1, . . . , N

x•h2 ≤ (S•2 i −Dh
2 )+ i = 1, . . . , d, h = 1, . . . , N

x•h1 + x•h2 ≤ (S•i′ −Dh
1 −Dh

2 )+ i′ = d+ 1, . . . , n, h = 1, . . . , N

x•h1 ≤ P h
1 , x•h2 ≤ P h

2 h = 1, . . . , N

d∑
i=1

(c1 i S
•
1 i + c2 i S

•
2 i) +

n∑
i′=d+1

ci′ S
•
i′ +B•1 +B•2 ≤ B

x•h1 , x
•h
2 ∈ Z+ h = 1, . . . , N

S•1 i, S
•
2 i, S

•
i′ ∈ Z+ i = 1, . . . , n, i′ = d+ 1, . . . , n

S•1 i1 , S
•
2 i2
,∈ Z+ i1 = n+ 1, . . . , n1, i2 = n+ 1, . . . , n2

3.3 Main theorem

The existence of partial commonality structure makes possible ATO systems more

challenging and significantly increases the number of possible BOMs. Theorem 1

states that an optimal BOM can be found by assuming either the full commonality

or the non-commonality configuration. Consequently, a search through possibly ex-

ponential number of BOMs can be avoided.
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Theorem 1. Given a budget B, let x•h1
∗
and x•h2

∗
denote the optimal solutions of

(BOMN
• ) for h = 1, . . . , N . Then, x•h1

∗
and x•h2

∗
are feasible solutions in either

(BOMN
• ) or (BOMN

◦ ).

3.4 Examples contrasting and comparing (BOMN
◦ )

and (BOMN
• )

Before proving Theorem 1 in Chapter 4, we wish to provide simple examples illus-

trating that a feasible allocation for partial commonality can be infeasible for full

commonality or non-commonality, and that non-commonality can be beneficial over

full commonality under some conditions.

3.4.1 A feasible allocation for partial commonality can be

infeasible for full commonality

Due to the plus sign in the (BOMN
• ) and (BOMN

• ) formulations, x•h1 ≤ (S•1 i−Dh
1 )+

and x•h2 ≤ (S•2 i−Dh
2 )+ do not always imply that x•h1 +x•h2 ≤ (S•i′−Dh

1−Dh
2 )+. Assume

that in the (BOMN
• ) formulation, S•i′ > S•1 i+S

•
2 i and consider the following example:

Partial commonality: Let S•1 i −Dh
1 > 0, S•2 i −Dh

2 ≤ 0 and S•i′ −Dh
1 −Dh

2 > 0; then

x•h1 > 0 and x•h2 = 0 forms a feasible allocation for partial commonality.

Full commonality: Let S•i′ = S•1 i + S•2 i < S•i′ and then it is possible to have S•i′ −

Dh
1 − Dh

2 ≤ 0 for i′ = 1, . . . , d. Therefore, x•h1 = 0 and x•h2 = 0 is the only feasible

allocation for full commonality.
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3.4.2 A feasible allocation for partial commonality can be

infeasible for non-commonality

Assume that in the (BOMN
• ) formulation, S•i′ < S•1 i +S•2 i and consider the following

example:

Partial commonality: Let S•1 i −Dh
1 > 0, S•2 i −Dh

2 > 0 and S•i′ −Dh
1 −Dh

2 > 0; then

x•h1 > 0 and x•h2 > 0 forms a feasible allocation for partial commonality.

Non-commonality: Let S◦1 i + S◦2 i = S•i′ < S•1 i + S•2 i and then it is possible to have

S◦1 i − Dh
1 ≤ 0 for i = d + 1, . . . , n. Therefore x◦h1 = 0 and x◦h2 > 0 is a feasible

allocation for full commonality.

All plus signs in the (BOMN
• ) formulation can be removed for this example. Thus,

any feasible allocation for partial commonality is feasible for full commonality; that

is, full commonality performs at least as well as non-commonality for such instances.

3.4.3 Non-commonality can be beneficial over full common-

ality under some condition

Consider an ATO system consisting of 2 components shared by 2 products, and as-

sume that B = 10, c1 = c2 = r1 = r2 = 1, N = 2, D1
1 = 1, D1

2 = 4, P 1
1 = P 1

2 = 1, D2
1 =

2, D2
2 = 3, and P 2

1 = P 2
2 = 1.

Full commonality: For both realizations, 5 units C1 and 5 units C2 are used to fulfill
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previous orders and, at the current period, there is no component available for further

assembly. Therefore, x•h1 = x•h2 = 0 and the optimal value is 0.

Non-commonality: Let S◦1 1 = S◦1 2 = 2 and S◦2 1 = S◦2 2 = 3. For the first realization,

1 unit C1
1 , 1 unit C1

2 and all 3 units C2
1 and 1 unit C2

2 are used to fulfill previous

orders. At the current period, there are 1 unit C1
1 and 1 unit C1

2 still available. Thus,

x◦11 = 1. For the second realization, all components are used to fulfill previous orders.

Thus, x◦21 = 0 = x◦22 = 0 and the objective value is 1.
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Chapter 4

Proof of Theorem 1

4.1 Two-product system with full overlap

Let xj,h, yj,h and zj,h denote, respectively, a feasible solution for product j in realiza-

tion h for (BOMN
◦ ), (BOMN

• ) and (BOMN
• ). In (BOMN

• ), due to the symmetry of

the structure, we can assume, at optimality, that the base stock levels of the dedi-

cated components for product 1 are equally distributed; that is, S•1 iα
∗ = S•1 iβ

∗, where

1 ≤ iα ≤ iβ ≤ d. This is also true for the dedicated components for product 2 and

shared components. The base stock levels are independent of the component indexes

i and i′, and therefore we use the following additional notations in Section 4. Let

Yj and Y denote, respectively, the base stock levels of any dedicated component for

product j and any shared component. Recall that a superscripted ∗ indicates an opti-

mal solution. Let Y ∗j denote an optimal base stock level of any dedicated component

for product j; that is, S•1 i
∗ = Y ∗1 and S•2 i

∗ = Y ∗2 for all i. Finally, let Y ∗ denote an

optimal base stock level of any shared component; that is, S•i′
∗ = Y ∗ for all i′.
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We have the following assumptions:

1. While proving y∗1,h and y∗2,h are feasible in (BOMN
◦ ), let S◦1 i = Y ∗1 and S◦2 i = Y ∗2

when i = 1, · · · , d; S◦1 i+S
◦
2 i = Y ∗, S◦1 iα = S◦1 iβ and S◦2 iα = S◦2 iβ when i, iα, iβ =

d + 1, · · · , n. To simplify the notation, let Xj and Uj denote, respectively, the

base stock levels of dedicated components for product j for (BOMN
◦ ) when

i = 1, . . . , d and when i = d+ 1, . . . , n; that is, Xj = Y ∗j and U1 + U2 = Y ∗.

2. While proving y∗1,h and y∗2,h are feasible in (BOMN
• ), let S•i′ = Y ∗1 + Y ∗2 when

i′ = 1, · · · , d; and S•i′ = Y ∗ when i′ = d + 1, · · · , n. To simplify the notation,

let Z and V denote, respectively, the base stock levels of shared components for

(BOMN
• ) when i′ = 1, . . . , d and when i′ = d + 1, . . . , n; that is, Z = Y ∗1 + Y ∗2

and V = Y ∗.

3. The cost of a shared component is equal to the cost of the dedicated component

it replaces. In the full overlap configuration, all components are potential shared

components; that is, c1 i = c2 i = ci′ for all indexes i and i′.

4.1.1 Case N = 1

We first consider the case N = 1; that is, only one realization is used in the SAA

method. The associated formulations (BOM1
◦ ), (BOM1

• ) and (BOM1
• ) correspond to

a deterministic demand where P 1
1 and P 1

2 represent the demands in the current period

for, respectively, product 1 and 2, and D1
1 and D1

2 represent the overall demands from

all previous periods.
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max r1 x1,1 + r2 x2,1
(
BOM1

◦
)

x1,1 ≤ (X1 −D1
1)

+

x1,1 ≤ (U1 −D1
1)

+

x2,1 ≤ (X2 −D1
2)

+

x2,1 ≤ (U2 −D1
2)

+

x1,1 ≤ P 1
1 , x2,1 ≤ P 1

2

X1

d∑
i=1

c1 i +X2

d∑
i=1

c2 i + U1

n∑
i=d+1

c1 i + U2

n∑
i=d+1

c2 i ≤ B

x1,1, x2,1, X1, X2, U1, U2 ∈ Z+

max r1 z1,1 + r2 z2,1
(
BOM1

•
)

z1,1 + z2,1 ≤ (Z −D1
1 −D1

2)
+

z1,1 + z2,1 ≤ (V −D1
1 −D1

2)
+

z1,1 ≤ P 1
1 , z2,1 ≤ P 1

2

Z
d∑

i′=1

ci′ + V
n∑

i′=d+1

ci′ ≤ B

z1,1, z2,1, Z, V ∈ Z+
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max r1 y1,1 + r2 y2,1
(
BOM1

•
)

y1,1 ≤ (Y1 −D1
1)

+

y2,1 ≤ (Y2 −D1
2)

+

y1,1 + y2,1 ≤ (Y −D1
1 −D1

2)
+

y1,1 ≤ P 1
1 , y2,1 ≤ P 1

2

Y1

d∑
i=1

c1 i + Y2

d∑
i=1

c2 i + Y
n∑

i′=d+1

ci′ ≤ B

y1,1, y2,1, Y1, Y2, Y ∈ Z+

First of all, we want to prove that with the constraint Y ∗1
∑d

i=1 c1 i + Y ∗2
∑d

i=1 c2 i +

Y ∗
∑n

i′=d+1 ci′ ≤ B, either the constraint X1

∑d
i=1 c1 i+X2

∑d
i=1 c2 i+U1

∑n
i=d+1 c1 i+

U2

∑n
i=d+1 c2 i ≤ B or the constraint Z

∑d
i′=1 ci′ + V

∑n
i′=d+1 ci′ ≤ B holds. The for-

mer can be proved by substituting assumptions 1 and 3, while the latter can be proved

by substituting assumptions 2 and 3.

Then, to show that y∗1,1 and y∗2,1 is feasible for either (BOM1
• ) or (BOM1

◦ ), we consider

the following three cases.

Case 1: Reward from both product 1 and 2 are 0, i.e. y∗1,1 = 0 and y∗2,1 = 0 and the

point y∗1,1 = 0 and y∗2,1 = 0 is a feasible solution for either (BOM1
• ) or (BOM1

◦ ).

Take (BOM1
• ) as an example:
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• y∗1,1 + y∗2,1 = 0 ≤ (Z −D1
1 −D1

2)
+, this is always true by the definition of +.

• y∗1,1 + y∗2,1 = 0 ≤ (V −D1
1 −D1

2)
+, this is always true by the definition of +.

• y∗1,1 = 0 ≤ P 1
1 , y∗2,1 = 0 ≤ P 1

2 , this is always true because P 1
1 andP 1

2 are both

nonnegative.

• y∗1,1, y∗2,1 ∈ Z+, this is always true because 0 is a nonnegative integer.

Note: If the optimal solution y∗j,h is zero, then the point y∗j,h = 0 is feasible for

either (BOMN
• ) or (BOMN

◦ ).

Case 2: We get some reward from exactly one of the products.

Case 2.1: Getting reward only from product 1, i.e. y∗1,1 > 0, and y∗2,1 = 0. We

want to show that the point y∗1,1 > 0, and y∗2,1 = 0 is a feasible solution for BOM1
◦ .

y∗2,1 = 0 is a feasible solution of (BOM1
◦ ). Since y∗1,1 is an optimal solution of (BOM1

• ),

the following inequalities are valid:

y∗1,1 ≤ (Y ∗1 −D1
1)

+

y∗1,1 ≤ (Y ∗ −D1
1 −D1

2)
+

To prove y∗1,1 is feasible in (BOM1
◦ ), we need to show that y∗1,1 ≤ (X1 − D1

1)
+ and

y∗1,1 ≤ (U1−D1
1)

+. Let U2 = 0; that is, all the budget spent on the shared components

is used to buy dedicated components for product 1.
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y∗1,1 ≤ (Y ∗1 −D1
1)

+ = (X1 −D1
1)

+ < substitution >

y∗1,1 ≤ (Y ∗ −D1
1 −D1

2)
+ = (U1 −D1

1 −D1
2)

+ ≤ (U1 −D1
1)

+ < recall D1
2 ≥ 0 >

Case 2.2: Getting reward only from product 2, i.e. y∗1,1 = 0, and y∗2,1 > 0. We

want to show that the point y∗1,1 = 0, and y∗2,1 > 0 is a feasible solution for (BOM1
◦ ).

The proof is the same as for Case 2.1 considering U1 = 0.

Case 3: We get reward from both products 1 and 2, i.e. y∗1,1 > 0 and y∗2,1 > 0. We

want to show that the point y∗1,1 > 0 and y∗2,1 > 0 is a feasible solution for (BOM1
• ).

Since y∗1,1 and y∗2,1 is an optimal solution of (BOM1
• ), the following inequalities hold:

y∗1,1 ≤ (Y ∗1 −D1
1)

+

y∗2,1 ≤ (Y ∗2 −D2
1)

+

y∗1,1 + y∗2,1 ≤ (Y ∗ −D1
1 −D1

2)
+

To prove y∗1,1 and y∗2,1 is feasible in (BOM1
• ), we need to show that y∗1,1 + y∗2,1 ≤

(Z −D1
1 −D1

2)
+ and y∗1,1 + y∗2,1 ≤ (V −D1

1 −D1
2)

+.

Since y∗1,1 > 0 and y∗2,1 > 0, all the plus signs can be removed.
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y∗1,1 ≤ Y ∗1 −D1
1 and y∗2,1 ≤ Y ∗2 −D2

1

=⇒ y∗1,1 + y∗2,1 ≤ Y ∗1 + Y ∗2 −D1
1 −D1

2

=⇒ = Z −D1
1 −D1

2,

and

y∗1,1 + y∗2,1 ≤ (Y ∗ −D1
1 −D1

2)
+ = (V −D1

1 −D1
2)

+. < substitution >

4.1.2 Case N = 2

We consider the case N = 2; that is the simplest random demand with only two real-

izations. We assume that both realizations have probability 0.5 and omit this constant

term in the objectives for clarity. In the associated formulations (BOMN
◦ ), (BOMN

• )

and (BOMN
• ) below, superscripts are use to distinguish different realizations. For

example, x1,2, x2,2, D
2
1, D

2
2, P

2
1 , and P 2

2 refer to the second realization.
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max r1 x1,1 + r2 x2,1 + r1 x1,2 + r2 x2,2
(
BOM2

◦
)

x1,1 ≤ (X1 −D1
1)

+

x1,1 ≤ (U1 −D1
1)

+

x2,1 ≤ (X2 −D1
2)

+

x2,1 ≤ (U2 −D1
2)

+

x1,2 ≤ (X1 −D2
1)

+

x1,2 ≤ (U1 −D2
1)

+

x2,2 ≤ (X2 −D2
2)

+

x2,2 ≤ (U2 −D2
2)

+

x1,1 ≤ P 1
1 , x2,1 ≤ P 1

2 , x1,2 ≤ P 2
1 , x2,2 ≤ P 2

2

X1

d∑
i=1

c1 i +X2

d∑
i=1

c2 i + U1

n∑
i=d+1

c1 i + U2

n∑
i=d+1

c2 i ≤ B

x1,1, x2,1, x1,2, x2,2, X1, X2, U1, U2 ∈ Z+
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max r1 z1,1 + r2 z2,1 + r1 z1,2 + r2 z2,2
(
BOM2

•
)

z1,1 + z2,1 ≤ (Z −D1
1 −D1

2)
+

z1,1 + z2,1 ≤ (V −D1
1 −D1

2)
+

z1,2 + z2,2 ≤ (Z −D2
1 −D2

2)
+

z1,2 + z2,2 ≤ (V −D2
1 −D2

2)
+

z1,1 ≤ P 1
1 , z2,1 ≤ P 1

2 , z1,2 ≤ P 2
1 , z2,2 ≤ P 2

2

Z
d∑

i′=1

ci′ + V
n∑

i′=d+1

ci′ ≤ B

z1,1, z2,1, z1,2, z2,2, X1, X2, U1, U2 ∈ Z+
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max r1 y1,1 + r2 y2,1 + r1 y1,2 + r2 y2,2
(
BOM2

•
)

y1,1 ≤ (Y1 −D1
1)

+

y2,1 ≤ (Y2 −D1
2)

+

y1,1 + y2,1 ≤ (Y −D1
1 −D1

2)
+

y1,2 ≤ (Y1 −D2
1)

+

y2,2 ≤ (Y2 −D2
2)

+

y1,2 + y2,2 ≤ (Y −D2
1 −D2

2)
+

y1,1 ≤ P 1
1 , y2,1 ≤ P 1

2 , y1,2 ≤ P 2
1 , y2,2 ≤ P 2

2

Y1

d∑
i=1

c1 i + Y2

d∑
i=1

c2 i + Y
n∑

i′=d+1

ci′ ≤ B

y1,1, y2,1, y1,2, y2,2, X1, X2, U1, U2 ∈ Z+

Case 1: Reward from both product 1 and 2 for both realizations are 0, i.e. y∗1,1 =

0, y∗2,1 = 0, y∗1,2 = 0 and y∗2,2 = 0. We want to show that this point is a feasible solution

for either (BOM2
• ) or (BOM2

◦ ).

The proof is the same as for N = 1 Case 1.

Case 2: We get some reward from exactly one of the products.

Case 2.1: Getting reward only from product 1.

Case 2.1.1: Getting reward only from the first realization, i.e. y∗1,1 > 0, y∗2,1 =

0, y∗1,2 = 0 and y∗2,2 = 0. We want to show that this point is a feasible solution for

(BOM2
◦ ).
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The proof is the same as for N = 1 Case 2.1.

Case 2.1.2: Getting reward only from the second realization, i.e. y∗1,1 =

0, y∗2,1 = 0, y∗1,2 > 0 and y∗2,2 = 0. We want to show that this point is a feasible

solution for (BOM2
◦ ).

The proof is the same as for N = 1 Case 2.1 replacing D1
1 by D2

1 and D1
2 by D2

2.

Case 2.1.3: Getting reward from both realizations, i.e. y∗1,1 > 0, y∗2,1 = 0, y∗1,2 >

0 and y∗2,2 = 0. We conclude that this point is feasible in (BOM2
◦ ) when Y ∗ ≥ Y ∗1 +Y ∗2 ,

and is feasible in (BOM2
• ) when Y ∗ < Y ∗1 + Y ∗2 .

Since y∗1,1, y
∗
2,1, y

∗
1,2 and y∗2,2 is an optimal point of BOM2

• , the following inequalities

hold:

y∗1,1 ≤ (Y ∗1 −D1
1)

+

Y ∗2 −D2
1 ≤ 0

y∗1,1 ≤ (Y ∗ −D1
1 −D1

2)
+

y∗1,2 ≤ (Y ∗1 −D2
1)

+

Y ∗2 −D2
2 ≤ 0

y∗1,2 ≤ (Y ∗ −D2
1 −D2

2)
+

When proving y∗1,1, y
∗
2,1, y

∗
1,2 and y∗2,2 is feasible in (BOM2

◦ ), we assume that Y ∗ ≥

Y ∗1 + Y ∗2 and we need to show that
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y∗1,1 ≤ (X1 −D1
1)

+ (4.16)

y∗1,1 ≤ (U1 −D1
1)

+ (4.17)

y∗1,2 ≤ (X1 −D2
1)

+ (4.18)

y∗1,2 ≤ (U1 −D2
1)

+ (4.19)

Since y∗1,1 > 0 and y∗1,2 > 0, all the plus signs can be removed. Let U2 = Y ∗2 and thus

U2 −D2
1 ≤ 0 and U2 −D2

2 ≤ 0.

For (4.16) : y∗1,1 ≤ (Y ∗1 −D1
1)

+ = (X1 −D1
1)

+; < substitution >

For (4.17) : y∗1,1 ≤ Y ∗ −D1
1 −D1

2 = (U1 −D1
1) + (U2 −D2

1) ≤ U1 −D1
1,

and U1 −D1
1 = (Y ∗ − U2)−D1

1 ≥ Y ∗1 + Y ∗2 − U2 −D1
1 = Y ∗1 −D1

1 > 0,

therefore y∗1,1 ≤ (U1 −D1
1)

+.

For (4.18) : y∗1,2 ≤ (Y ∗1 −D2
1)

+ = (X1 −D2
1)

+, < substitution >

For (4.19) : y∗1,2 ≤ Y ∗ −D2
1 −D2

2 = (U1 −D2
1) + (U2 −D2

2) ≤ U1 −D2
1,

and U1 −D2
1 = (Y ∗ − U2)−D2

1 ≥ Y ∗1 + Y ∗2 − U2 −D2
1 = Y ∗1 −D2

1 > 0,

therefore y∗1,2 ≤ (U1 −D2
1)

+.

When proving y∗1,1, y
∗
2,1, y

∗
1,2 and y∗2,2 is feasible in (BOM2

• ), we assume that Y ∗ <

Y ∗1 + Y ∗2 and we need to show that
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y∗1,1 ≤ (Z −D1
1 −D1

2)
+ (4.20)

y∗1,1 ≤ (V −D1
1 −D1

2)
+ (4.21)

y∗1,2 ≤ (Z −D2
1 −D2

2)
+ (4.22)

y∗1,2 ≤ (V −D2
1 −D2

2)
+ (4.23)

Based on Assumption 2, we have V < Z.

For (4.21) : y∗1,1 ≤ (Y ∗ −D1
1 −D1

2)
+ = (V −D1

1 −D1
2)

+; < substitution >

For (4.20) : y∗1,1 ≤ (V −D1
1 −D1

2)
+ < (Z −D1

1 −D1
2)

+ ≤ (Z −D1
1 −D1

2)
+;

For (4.23) : y∗1,2 ≤ (Y ∗ −D2
1 −D2

2)
+ = (V −D2

1 −D2
2)

+; < substitution >

For (4.22) : y∗1,2 ≤ (V −D2
1 −D2

2)
+ < (Z −D2

1 −D2
2)

+ ≤ (Z −D2
1 −D2

2)
+.

Case 2.2: Getting reward only from product 2.

Case 2.2.1: Getting reward only from the first realization, i.e. y∗1,1 = 0, y∗2,1 >

0, y∗1,2 = 0 and y∗2,2 = 0. We want to show that this point is a feasible solution for

(BOM2
◦ ).

The proof is the same as for N = 1 Case 2.2.

Case 2.2.2: Getting reward only from the second realization, i.e. y∗1,1 =

0, y∗2,1 = 0, y∗1,2 = 0 and y∗2,2 > 0. We want to show that this point is a feasible

solution for (BOM2
◦ ).

The proof is the same as for N = 1 Case 2.2 replacing D1
1 by D2

1 and D1
2 by D2

2.

Case 2.2.3: Getting reward from both realizations, i.e. y∗1,1 = 0, y∗2,1 > 0, y∗1,2 =

0 and y∗2,2 > 0. We conclude that this point is feasible in (BOM2
◦ ) when Y ∗ ≥ Y ∗1 +Y ∗2 ,
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and is feasible in (BOM2
• ) when Y ∗ < Y ∗1 + Y ∗2 .

The proof is the same as for N = 2 Case 2.1.3 setting U1 = Y ∗1 .

Case 3: We get reward from both product 1 and 2.

Case 3.1: Getting reward from same realization.

Case 3.1.1: Getting reward from the first realization, i.e. y∗1,1 > 0, y∗2,1 >

0, y∗1,2 = 0 and y∗2,2 = 0. We want to show that this point is a feasible solution for

(BOM2
• ).

The proof is the same as for N = 1 Case 3.

Case 3.1.2: Getting reward from the second realization, i.e. y∗1,1 = 0, y∗2,1 =

0, y∗1,2 > 0 and y∗2,2 > 0. We want to show that this point is a feasible solution for

(BOM2
• ).

The proof is the same as for N = 1 Case 2.2 replacing D1
1 by D2

1 and D1
2 by D2

2.

Case 3.2: Getting reward from different realization.

Case 3.2.1: Getting reward from product 1 in the first realization and from

product 2 in the second realization, i.e. y∗1,1 > 0, y∗2,1 = 0, y∗1,2 = 0 and y∗2,2 > 0. We

conclude that this point is feasible in (BOM2
◦ ) when Y ∗ ≥ Y ∗1 + Y ∗2 , and is feasible

in (BOM2
• ) when Y ∗ < Y ∗1 + Y ∗2 .

The proof is the same as for N = 2 Case 2.1.3.

Case 3.2.2: Getting reward from product 1 in the second realization and from

product 2 in the first realization, i.e. y∗1,1 = 0, y∗2,1 > 0, y∗1,2 > 0 and y∗2,2 = 0. We

conclude that this point is feasible in (BOM2
◦ ) when Y ∗ ≥ Y ∗1 + Y ∗2 , and is feasible

in (BOM2
• ) when Y ∗ < Y ∗1 + Y ∗2 .
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The proof is the same as for N = 2 Case 2.1.3.

Case 3.3: Getting reward from both realizations, but having one y∗j,h = 0.

Case 3.3.1: y∗1,1 > 0, y∗2,1 > 0, y∗1,2 > 0 and y∗2,2 = 0. We conclude that this

point is feasible in (BOM2
◦ ) when Y ∗ ≥ Y ∗1 + Y ∗2 , and is feasible in (BOM2

• ) when

Y ∗ < Y ∗1 + Y ∗2 .

Since y∗1,1, y
∗
2,1, y

∗
1,2 and y∗2,2 is an optimal point of BOM2

• , the following inequalities

hold:

y∗1,1 ≤ (Y ∗1 −D1
1)

+

y∗2,1 ≤ (Y ∗2 −D1
2)

+

y∗1,1 + y∗2,1 ≤ (Y ∗ −D1
1 −D1

2)
+

y∗1,2 ≤ (Y ∗1 −D2
1)

+

Y ∗2 −D2
2 ≤ 0

y∗1,2 ≤ (Y ∗ −D2
1 −D2

2)
+

When proving y∗1,1, y
∗
2,1, y

∗
1,2 and y∗2,2 is feasible in (BOM2

◦ ), we assume that Y ∗ ≥

Y ∗1 + Y ∗2 and we need to show that
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y∗1,1 ≤ (X1 −D1
1)

+ (4.24)

y∗1,1 ≤ (U1 −D1
1)

+ (4.25)

y∗2,1 ≤ (X2 −D1
2)

+ (4.26)

y∗2,1 ≤ (U2 −D1
2)

+ (4.27)

y∗1,2 ≤ (X1 −D2
1)

+ (4.28)

y∗1,2 ≤ (U1 −D2
1)

+ (4.29)

Since y∗1,1 > 0, y∗2,1 > 0 and y∗1,2 > 0, all the plus signs can be removed. Let U2 = Y ∗2

and thus U2−D2
2 ≤ 0. Based on Assumption 1, we have U1 +U2 ≥ Y ∗1 +Y ∗2 and thus

U1 ≥ Y ∗1 .

For (4.24) : y∗1,1 ≤ (Y ∗1 −D1
1)

+ = (X1 −D1
1)

+; < substitution >

For (4.25) : y∗1,1 ≤ (Y ∗1 −D1
1)

+ ≤ (U1 −D1
1)

+;

For (4.26) : y∗2,1 ≤ (Y ∗2 −D1
2)

+ = (X2 −D1
2)

+; < substitution >

For (4.27) : y∗2,1 ≤ (Y ∗2 −D1
2)

+ ≤ (U2 −D1
2)

+; < substitution >

For (4.28) : y∗1,2 ≤ (Y ∗1 −D2
1)

+ = (X1 −D2
1)

+; < substitution >

For (4.29) : y∗1,2 ≤ Y ∗ −D2
1 −D2

2 = (U1 −D2
1) + (U2 −D2

2) ≤ U1 −D2
1,

and U1 −D2
1 = (Y ∗ − U2)−D2

1 ≥ Y ∗1 + Y ∗2 − U2 −D2
1 = Y ∗1 −D2

1 > 0,

therefore y∗1,2 ≤ (U1 −D2
1)

+.

When proving y∗1,1, y
∗
2,1, y

∗
1,2 and y∗2,2 is feasible in (BOM2

• ), we assume that Y ∗ <

Y ∗1 + Y ∗2 and we need to show that
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y∗1,1 + y∗2,1 ≤ (Z −D1
1 −D1

2)
+ (4.30)

y∗1,1 + y∗2,1 ≤ (V −D1
1 −D1

2)
+ (4.31)

y∗1,2 ≤ (Z −D2
1 −D2

2)
+ (4.32)

y∗1,2 ≤ (V −D2
1 −D2

2)
+ (4.33)

Based on Assumption 2, we have V < Z.

For (4.31) : y∗1,1 + y∗2,1 ≤ (Y ∗ −D1
1 −D1

2)
+ = (V −D1

1 −D1
2)

+; < substitution >

For (4.30) : y∗1,1 + y∗2,1 ≤ (V −D1
1 −D1

2)
+ < (Z −D1

1 −D1
2)

+ ≤ (Z −D1
1 −D1

2)
+;

For (4.33) : y∗1,2 ≤ (Y ∗ −D2
1 −D2

2)
+ = (V −D2

1 −D2
2)

+; < substitution >

For (4.32) : y∗1,2 ≤ (V −D2
1 −D2

2)
+ < (Z −D2

1 −D2
2)

+ ≤ (Z −D2
1 −D2

2)
+.

Case 3.3.2: y∗1,1 > 0, y∗2,1 = 0, y∗1,2 > 0 and y∗2,2 > 0. We conclude that this

point is feasible in (BOM2
◦ ) when Y ∗ ≥ Y ∗1 + Y ∗2 , and is feasible in (BOM2

• ) when

Y ∗ < Y ∗1 + Y ∗2 .

The proof is the same as for N = 2 Case 3.3.1.

Case 3.3.3: y∗1,1 > 0, y∗2,1 > 0, y∗1,2 = 0 and y∗2,2 > 0. We conclude that this

point is feasible in (BOM2
◦ ) when Y ∗ ≥ Y ∗1 + Y ∗2 , and is feasible in (BOM2

• ) when

Y ∗ < Y ∗1 + Y ∗2 .

The proof is the same as for N = 2 Case 3.3.1 considering U1 = Y ∗1 .

Case 3.3.4: y∗1,1 = 0, y∗2,1 > 0, y∗1,2 > 0 and y∗2,2 > 0. We conclude that this

point is feasible in (BOM2
◦ ) when Y ∗ ≥ Y ∗1 + Y ∗2 , and is feasible in (BOM2

• ) when

Y ∗ < Y ∗1 + Y ∗2 .
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The proof is the same as for N = 2 Case 3.3.3.

Case: 3.4: Getting reward from both realizations, i.e. y∗1,1 > 0, y∗2,1 > 0, y∗1,2 > 0

and y∗2,2 > 0. We want to show that this point is a feasible solution for (BOM2
• ).

The proof is the same as for N = 1 Case 2.

The result for the case N = 2 is given in Table 4.8. Let + represent the condition

where Y ∗ ≥ Y ∗1 + Y ∗2 , and − represent the condition where Y ∗ < Y ∗1 + Y ∗2 .

y∗1,1 = 0 y∗1,1 > 0 y∗1,1 = 0 y∗1,1 > 0
y∗2,1 = 0 y∗2,1 = 0 y∗2,1 > 0 y∗2,1 > 0

y∗1,2 = 0 (BOM2
◦ )

y∗2,2 = 0 or (BOM2
• ) (BOM2

◦ ) (BOM2
◦ ) (BOM2

• )

y∗1,2 > 0 + : (BOM2
◦ ) + : (BOM2

◦ ) + : (BOM2
◦ )

y∗2,2 = 0 (BOM2
◦ ) − : (BOM2

• ) − : (BOM2
• ) − : (BOM2

• )

y∗1,2 = 0 + : (BOM2
◦ ) + : (BOM2

◦ ) + : (BOM2
◦ )

y∗2,2 > 0 (BOM2
◦ ) − : (BOM2

• ) − : (BOM2
• ) − : (BOM2

• )

y∗1,2 > 0 + : (BOM2
◦ ) + : (BOM2

◦ )
y∗2,2 > 0 (BOM2

• ) − : (BOM2
• ) − : (BOM2

• ) (BOM2
• )

Table 4.8: Summary for the case N = 2

We observe that the relationship between the base stock levels of the shared com-

ponents Y ∗ and the sum of the base stock levels of the dedicated components Y ∗1 +Y ∗2

plays an important role in deciding the feasibility. This observation is proved to be

true for general case in section 4.1.3.
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4.1.3 General case

We assume for N realizations, each with probability 1/N . Without loss of gener-

ality, we omit this constant term in the objectives. In the associated formulations

(BOMN
◦ ), (BOMN

• ) and (BOMN
• ) below, superscripts are use to distinguish different

realizations. For example, x1,h, x2,h, D
h
1 , D

h
2 , P

h
1 , and P h

2 refer to the h-th realization.

max
N∑
h=1

(r1 x1,h + r2 x2,h)
(
BOMN

◦
)

x1,h ≤ (X1 −Dh
1 )+ h = 1, . . . , N

x1,h ≤ (U1 −Dh
1 )+ h = 1, . . . , N

x2,h ≤ (X2 −Dh
2 )+ h = 1, . . . , N

x2,h ≤ (U2 −Dh
2 )+ h = 1, . . . , N

x1,h ≤ P h
1 , x2,h ≤ P h

2 h = 1, . . . , N

X1

d∑
i=1

c1 i +X2

d∑
i=1

c2 i + U1

n∑
i=d+1

c1 i + U2

n∑
i=d+1

c2 i ≤ B

x1,h, x2,h, X1, X2, U1, U2 ∈ Z+ h = 1, . . . , N
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max
N∑
h=1

(r1 z1,h + r2 z2,h)
(
BOMN

•
)

z1,h + z2,h ≤ (Z −Dh
1 −Dh

2 )+ h = 1, . . . , N

z1,h + z2,h ≤ (V −Dh
1 −Dh

2 )+ h = 1, . . . , N

z1,h ≤ P h
1 , z2,h ≤ P h

2 h = 1, . . . , N

Z
d∑

i′=1

ci′ + V
n∑

i′=d+1

ci′ ≤ B

z1,h, z2,h, Z, V ∈ Z+ h = 1, . . . , N

max
N∑
h=1

(r1 y1,h + r2 y2,h)
(
BOMN

•
)

y1,h ≤ (Y1 −Dh
1 )+ h = 1, . . . , N

y2,h ≤ (Y2 −Dh
2 )+ h = 1, . . . , N

y1,h + y2,h ≤ (Y −Dh
1 −Dh

2 )+ h = 1, . . . , N

y1,h ≤ P h
1 , y2,h ≤ P h

2 h = 1, . . . , N

Y1

d∑
i=1

c1 i + Y2

d∑
i=1

c2 i + Y

n∑
i′=d+1

ci′ ≤ B

y1,h, y2,h, Y1, Y2, Y ∈ Z+ h = 1, . . . , N

For any realization, the optimal assembly decision will fall into one of the four, mu-

tually exclusive, outcomes: y∗1,h > 0 and y∗2,h > 0; y∗1,h > 0 and y∗2,h = 0; y∗1,h = 0 and

y∗2,h > 0; and y∗1,h = 0 and y∗2,h = 0.
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Consequently the set of all realizations can be partitioned into four non-overlapping

subsets: the subset T++ of realizations in which y∗1,h > 0 and y∗2,h > 0, the subset T+0

of realizations in which y∗1,h > 0 and y∗2,h = 0, the subset T 0+ of realizations in which

y∗1,h = 0 and y∗2,h > 0, and the subset T 00 of realizations in which y∗1,h = 0 and y∗2,h = 0.

According to the definitions of Y ∗1 , Y ∗2 and Y ∗, the following inequalities are valid.

Note that the right hand side of constraints (E1) to (E7) are positive, therefore all

plus sign can be removed.

y∗1,h ≤ (Y ∗1 −Dh
1 )+ h ∈ T++ (E1)

y∗2,h ≤ (Y ∗2 −Dh
2 )+ h ∈ T++ (E2)

y∗1,h + y∗2,h ≤ (Y ∗ −Dh
1 −Dh

2 )+ h ∈ T++ (E3)

y∗1,h ≤ (Y ∗1 −Dh
1 )+ h ∈ T+0 (E4)

y∗1,h ≤ (Y ∗ −Dh
1 −Dh

2 )+ h ∈ T+0 (E5)

y∗2,h ≤ (Y ∗2 −Dh
2 )+ h ∈ T 0+ (E6)

y∗2,h ≤ (Y ∗ −Dh
1 −Dh

2 )+ h ∈ T 0+ (E7)

The T 00 cases being trivial, we just need prove that Theorem 1 holds for realizations

in T++
⋃
T+0

⋃
T 0+.

To obtain an optimal solution, we must satisfy:

Y ∗1 = max
(g,p)∈(T++×T+0)

{
Dg

1 + y∗1,g, D
p
1 + y∗1,p

}
,

Y ∗2 = max
(g,p)∈(T++×T 0+)

{
Dg

2 + y∗2,g, D
p
2 + y∗2,p

}
,

Y ∗ = max
(g,p,q)∈(T++×T+0×T 0+)

{
Dg

1 +Dg
2 + y∗1,g + y∗2,g, D

p
1 +Dp

2 + y∗1,p, D
q
1 +Dq

2 + y∗2,q
}

.
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Clearly, either Y ∗ ≥ Y ∗1 + Y ∗2 or Y ∗ < Y ∗1 + Y ∗2 .

Case 1: If Y ∗ ≥ Y ∗1 + Y ∗2 , then the point y∗1,h and y∗2,h is feasible in
(
BOMN

◦
)
. We

need to show that

y∗1,h ≤ (X1 −Dh
1 )+ h ∈ T++ (F1)

y∗2,h ≤ (X2 −Dh
2 )+ h ∈ T++ (F2)

y∗1,h ≤ (U1 −Dh
1 )+ h ∈ T++ (F3)

y∗2,h ≤ (U2 −Dh
2 )+ h ∈ T++ (F4)

y∗1,h ≤ (X1 −Dh
1 )+ h ∈ T+0 (F5)

y∗1,h ≤ (U1 −Dh
1 )+ h ∈ T+0 (F6)

y∗2,h ≤ (X2 −Dh
2 )+ h ∈ T 0+ (F7)

y∗2,h ≤ (U2 −Dh
2 )+ h ∈ T 0+ (F8)

One can check that (E1)⇒ (F1), (E2)⇒ (F2), (E4)⇒ (F5), and (E6)⇒ (F7).

Let U2 = Y ∗2 , for (F3):

U1 = Y ∗ − U2 ≥ Y ∗1 + Y ∗2 − U2 = Y ∗1 ,

thus U1 ≥ Y ∗1 = max
(g,p)∈(T++×T+0)

{
Dg

1 + y∗1,g, D
p
1 + y∗1,p

}
≥ Dh

1 + y∗1,h, h ∈ T++.

Therefore y∗1,h ≤ (U1 −Dh
1 )+, h ∈ T++.
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For (F4):

U2 = Y ∗2 = max
(g,p)∈(T++×T 0+)

{
Dg

2 + y∗2,g, D
p
2 + y∗2,p

}
≥ Dh

2 + y∗2,h, h ∈ T++

Therefore y∗2,h ≤ (U2 −Dh
2 )+, h ∈ T++.

For (F6):

U1 −Dh
1 ≥ Y ∗1 −Dh

1 = max
(g,p)∈(T++×T+0)

{
Dg

1 + y∗1,g, D
p
1 + y∗1,p

}
−Dh

1

≥ Dh
1 + y∗1,h −Dh

1 = y∗1,h, h ∈ T+0

Therefore y∗1,h ≤ (U1 −Dh
1 )+, h ∈ T+0.

For (F8):

U2 −Dh
2 = Y ∗2 −Dh

2 = max
(g,p)∈(T++×T 0+)

{
Dg

2 + y∗2,g, D
p
2 + y∗2,p

}
−Dh

2

≥ Dh
2 + y∗2,h −Dh

2 = y∗2,h, h ∈ T 0+

Therefore y∗2,h ≤ (U2 −Dh
2 )+, h ∈ T 0+.

Case 2: If Y ∗ < Y ∗1 + Y ∗2 , then the point y∗1,h and y∗2,h is feasible in
(
BOMN

•
)
. We
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need to show that

y∗1,h + y∗2,h ≤ (Z −Dh
1 −Dh

2 )+ h ∈ T++ (G1)

y∗1,h + y∗2,h ≤ (V −Dh
1 −Dh

2 )+ h ∈ T++ (G2)

y∗1,h ≤ (Z −Dh
1 −Dh

2 )+ h ∈ T+0 (G3)

y∗1,h ≤ (V −Dh
1 −Dh

2 )+ h ∈ T+0 (G4)

y∗2,h ≤ (Z −Dh
1 −Dh

2 )+ h ∈ T 0+ (G5)

y∗2,h ≤ (V −Dh
1 −Dh

2 )+ h ∈ T 0+ (G6)

One can check that (E3)⇒ (G2), (E5)⇒ (G4), and (E7)⇒ (G6).

(E1) and (E2)⇒ (G1): Since y∗1,h > 0 and y∗2,h > 0, where h ∈ T++, all the plus signs

can be removed.

0 < y∗1,h ≤ Y ∗1 −Dh
1 and 0 < y∗2,h ≤ Y ∗2 −Dh

2

=⇒ 0 < y∗1,h + y∗2,h ≤ Y ∗1 + Y ∗2 −Dh
1 −Dh

2

=⇒ = Z −Dh
1 −Dh

2 , h ∈ T++

Thus, y∗1,h + y∗2,h ≤ (Z −Dh
1 −Dh

2 )+, h ∈ T++.
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For (G3):

Z = Y ∗1 + Y ∗2 > Y ∗

= max
(g,p,q)∈(T++×T+0×T 0+)

{
Dg

1 +Dg
2 + y∗1,g + y∗2,g, D

p
1 +Dp

2 + y∗1,p, D
q
1 +Dq

2 + y∗2,q
}

≥ Dh
1 +Dh

2 + y∗1,h, h ∈ T+0.

Therefore y∗1,h < (Z −Dh
1 −Dh

2 )+ ≤ (Z −Dh
1 −Dh

2 )+, h ∈ T+0.

For (G5):

Z = Y ∗1 + Y ∗2 > Y ∗

= max
(g,p,q)∈(T++×T+0×T 0+)

{
Dg

1 +Dg
2 + y∗1,g + y∗2,g, D

p
1 +Dp

2 + y∗1,p, D
q
1 +Dq

2 + y∗2,q
}

≥ Dh
1 +Dh

2 + y∗2,h, h ∈ T 0+.

Therefore y∗2,h < (Z −Dh
1 −Dh

2 )+ ≤ (Z −Dh
1 −Dh

2 )+, h ∈ T 0+.

4.2 Two-product system with partial overlap

Given that x•h1
∗ ≤ (S•1 i1 − Dh

1 )+ and x•h2
∗ ≤ (S•2 i2 − Dh

2 )+ , where i1 = n +

1, . . . , n1, i2 = n+1, . . . , n2, h = 1, . . . , N , we want to prove that either the constrains

x•h1
∗ ≤ (S◦1 i1−D

h
1 )+ and x•h2

∗ ≤ (S◦2 i2−D
h
2 )+, or the constraints x•h1

∗ ≤ (S•1 i1−D
h
1 )+

and x•h2
∗ ≤ (S•2 i2 − Dh

2 )+ hold. Obviously, if we set S•1 i1 = S◦1 i1 = S•1 i1 and

S•2 i2 = S◦2 i2 = S•2 i2 , then the optimal solutions of
(
BOMN

•
)
, i.e., x•h1

∗
and x•h2

∗
,

trivially satisfy these constraints in both
(
BOMN

◦
)

and
(
BOMN

•
)
. Excluding the
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above constraints, the remaining part is exactly the same as the full overlap configu-

ration, whose result is already proved.
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Chapter 5

Conclusion and future work

We show that for two-product periodic ATO systems either full component commonal-

ity or non-component commonality performs at least as well as any partial component

commonality formulation. Consequently, the size of the optimal BOM search space is

cut down from an exponential in n to just 2. A possible future direction is to extend

this result to multi-product periodic-review ATO systems. While deriving the same

theoretical results may be challenging, one may consider a computational approach.

Another future direction could be to apply component commonality considering in-

ventory allocation and component design jointly.
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