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Abstract  

To combat diabetes mellitus(DM), a chronicle metabolic disease, from which 

more than 400 million people suffered in the world, the patients must check the 

blood glucose level 4-5 times daily with an enzyme-based blood glucose meter 

and adjust blood glucose levels accordingly. The problem is that enzymatic 

glucose meters become unstable in the tropics. Therefore, the non-enzymatic 

method has been urged for blood glucose monitoring, among which the 

transition metal oxide electrode was found to be promising. However, despite the 

prolonged effort, its linear detection range is usually much smaller than the 

glucose level of diabetic patients, calling for an effective solution. Despite many 

previous attempts, none have solved the problem. Such a challenge has now been 

conquered by raising the NaOH concentration in the electrolyte, where 

amperometry, X-ray diffraction, Fourier-transform infrared spectroscopy, and 

Nuclear magnetic resonance measurements have been conducted. The linear 

range has been successfully enhanced to 40 mM in 1000 mM NaOH solution, 

and it was also found that NaOH affected the degree of glucose oxidation, which 

influenced the current response during sensing. It was expected that the alkaline 

concentration must be 25 times higher than the glucose concentration to enhance 

the linear range, much contrary to prior understanding. 

  



M.A.Sc Thesis – W. YANG .               McMaster university -Materials Science and Engineering  

 

13 

1 Introduction 

1.1 Diabetes and glucose detection 

Diabetes mellitus is a chronic metabolic disease in which the human body cannot 

produce or respond to the hormone insulin, resulting in abnormal blood glucose 

levels(Chen et al., 2019; O’Connell et al., 2006; Renard, 2005; Risérus et al., 

2009). It may cause severe complications including blindness, kidney failure, 

heart attack, stroke, and lower limb amputation, etc.(Liu et al., 2019; O’Connell 

et al., 2006; Turner, 1998; UK Prospective Diabetes Study Group, 1998; Van 

Den Berghe et al., 2006). According to the International Diabetes 

Federation(IDF) currently, as shown in Figure.1, there are 463 million adults 

aged from 20 to 79 years old (9.3% of the population) with diabetes, which 

means that 1 in 11 adults is with diabetics(International Diabetes Federation., 

2017; Risérus et al., 2009). Furthermore, it’s estimated that more than 550 

million people worldwide will have diabetes by 2030, and the number is 

expected to increase by 55% for the next 25 years(Brauker, 2009; Tamborlane et 

al., 2008). Based on the data provided by the IDF, about 5 million deaths were 

attributed to diabetes in 2014 alone, which will be the 7th lethal disease in 

2030(Hwang et al., 2018; Liu, 2006; Park et al., 2006). 
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Figure. 1 Number of diabetic patients worldwide(International Diabetes 

Federation., 2017) 

Moreover, according to IDF, in Figure.2, it demonstrated that global diabetes 

healthcare spending had increased by 79%, from 362 billion USD in 2009 to 673 

billion USD in 2015(12% of total expenditures on global healthcare) and was 

projected that spending on diabetes control and treatment would increase to 802 

billion USD in 2040. This increasing figure showed that diabetes would impose a 

substantial economic burden on society(Cho et al., 2018; da Rocha Fernandes et 

al., 2016; Whiting et al., 2011). 



M.A.Sc Thesis – W. YANG .               McMaster university -Materials Science and Engineering  

 

15 

 

 

Figure. 2 Healthcare costs for people with diabetes(da Rocha Fernandes et al., 

2016) 

Recent researches have shown that the risk of mortality and of complications in 

people with diabetes can be reduced through strict sugar control(Cho et al., 2018; 

Luo et al., 2012; Raveendran et al., 2017; Zhuang et al., 2008). As such, regular 

monitoring of blood glucose levels and reducing budgets are of great importance 

in fighting against diabetes and preventing those complications, and the patients 

must puncture their fingers 5–7 times every day to monitor the blood glucose 

level via enzyme-based glucose test-strips, which currently dominate the market. 

(Cha and Meyerhoff, 2017; Chase et al., 2010; Yadav et al., 2015) 
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Figure. 3 Commercial glucometer for diabetes monitoring(Liberman et al., 

2011) 

1.2 Glucose monitoring by electrochemical mothed 

The detection technology which measures the concentration of glucose is 

thought of as the vital component of a glucose monitoring device. Over the last 

four decades, in order to modify the performance of this technology, huge 

amount of effort has been made. Since the enzymatic electrode was first invented 

in 1962 by Clark and Lyons, an increasing number of researchers have paid 

attention to developing and improving biosensors for practical 

application(Hwang et al., 2018; Park et al., 2006; Toghill and Compton, 2010; 

Yoo and Lee, 2010).  
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There are many reports on the improvement of blood glucose sensors. In general, 

the development of electrochemical glucose sensors can be divided into four 

generations(Alwarappan et al., 2009; Park et al., 2006; Wu et al., 2012; Zhang 

and Chen, 2017; Zhang and Li, 2004). Actually, the first three generations are 

enzymatic glucose sensors; while the fourth generation is non-enzymatic glucose 

sensors(Putzbach and Ronkainen, 2013; Wang et al., 2013). 

1.2.1 The enzymatic glucose sensor 

The enzyme- oxidase (GOx), which was the crucial catalytic component, was 

immobilized on the enzymatic electrode(Gonzales et al., 2019; Tremey et al., 

2014). Actually, Wilson and Turner described the GOx as the "ideal enzyme" for 

glucose oxidation in a 1992’review because of its excellent performance, such as 

high sensitivity and good selectivity(Wilson and Elizabeth, 2016). Glucose 

oxidase (GOx) molecule is shown in Fig. 4. The redox center flavin adenine 

dinucleotide (FAD) is the core component of this huge protein molecule and 

protected by a thick protein matrix(Editor, n.d.; Fajardo et al., 2016). Usually, as 

shown in Fig. 4, FAD, existing in the form of quinone, gains electrons, and is 

reduced to FADH2 (living in the form of hydroquinone when it interacts with 

glucose(Toghill and Compton, 2010). Besides, glucose also is oxidized to 

gluconolactone, in accordance with Fig. 5(Chen et al., 2013). 
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Figure. 4 Glucose oxidase (GOx) molecule showing the FAD cofactor embedded 

within the protein matrix(Wilson and Elizabeth, 2016)   

 

 

Figure. 5 FAD/ FADH2 redox couple conversion reaction(Liu et al., 2008) 
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1.2.1.1 The 1st generation glucose sensor 

In fact, because FAD is located deep in GOx and surrounded by a thick protein 

layer, electron transfer between the electrode and the active centre becomes the 

main factor limiting glucose detection(Liu et al., 2008; Wilson and Elizabeth, 

2016). 

 

Figure. 6 Schematic diagrams of the 1st generation enzymatic glucose sensors  

As shown in Fig. 6, in the first-generation glucose sensors, oxygen was used as 

an electron mediator between enzyme(GOx) and the electrode surface. The 

mechanism of the 1st enzyme sensor is as follows: when glucose was present, 

GOx oxidized glucose to gluconolactone and FAD was reduced to FADH2, and 

next dissolved oxygen oxidized FADH2 to generate hydrogen peroxide and FAD 
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which was used to oxidized glucose(Besteman et al., 2003; Liu, 2006; Liu et al., 

2008; Park et al., 2006). Therefore, the generation rate of hydrogen peroxide or 

the consumption rate of oxygen is directly proportional to the glucose 

concentration that can be determined by an increase in hydrogen peroxide or a 

decrease in oxygen(Malitesta et al., 1990). The first commercial glucose 

biosensor fabricated by the Yellow Spring Instrument Company in 1975 (Fig. 7) 

used this mechanism(Turner, 2014). Owing to its high cost of the working 

electrode (Pt), the application of this amperometric glucose detector was limited 

and only used for glucose measurement clinical laboratories(Wang et al., 2020; 

Xu et al., 2019). 

However, the most essential problem of first-generation glucose sensors is 

insufficient oxygen(Wang et al., 2000). In detail, there is not sufficient dissolved 

O2 in the real blood to make sure that glucose can be efficiently oxidized so that 

blood glucose levels can’t be detected accurately when O2 is deficient(Toghill 

and Compton, 2010). Although many approaches had been proposed, including 

the use of specific films that allow more O2 passing through the film and using 

an oxygen-rich material as an electrode to increase the reactive O2(Armour et al., 

1990; Kashyap and Lu, 1998). But these methods need a more complicating 

fabrication approach and enlarge the overall sensor volume. 
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Figure. 7 The original YSI serum-glucose biosensor for diabetes clinics 

1975(Turner, 2014)   

1.2.1.2 The 2nd generation glucose sensor 

Fig. 8 depicts the usual structure of the 2nd generation glucose monitor. This type 

of sensor replaced O2(electron mediator of 1st generation glucose sensor) with 

artificial mediators to solve the problem brought by oxygen deficit in the real 

measured sample(Newcomer, 2005; Scheller et al., 1991). In second-generation 

glucose sensors, small redox-active molecules such as ferrocene derivatives, 

ferrocyanide, conductive organic salts and so on, were used as electron 

mediators. These mediators improved the electron transfer rate between the FAD 

(redox center of the active site of the enzyme) and the electrode surface through 

a fast and reversible redox reaction(Harper and Anderson, 2010; Nagata et al., 

1995; Shim et al., 2009; Yu et al., 2003; Zhang et al., 2005). In fact, on the 

electrode surface, redox mediators instead of oxygen are used to oxidize FADH2. 
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Then this mediator was oxidized on the electrodes to generate a monitorable 

current signal and redox mediators were regenerated(Cui et al., 2001). 

Unfortunately, there are some problems still existing in the second-generation 

sensors. Firstly, it’s quite difficult to keep the mediator near the enzyme and 

electrode surface since the small molecules are diffusive, which is terrible for 

prolonged use and requires more complicated and elaborate ways to tether the 

mediator between enzyme and electrode(Gorton et al., 1991). Secondly, although 

the reaction rate between enzyme and mediator is faster than that of O2; 

dissolved oxygen is also completive with the mediator, which reduces the 

accuracy of the system(Toghill and Compton, 2010). Furthermore, the mediator 

may also oxidize the other interference species, which further decreases the 

accuracy and efficiency(Wang, 2001).  
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Figure. 8 Schematic diagrams of the 2nd generation enzymatic glucose sensors 

1.2.1.3 The 3rd generation glucose sensor 

As shown in Fig. 9, in the third-generation glucose sensors, there is no need for 

natural or artificial mediators between the redox centre of the active site of the 

enzyme and electrode, and electrons can be transformed between them 

directly(Karunakaran et al., 2015). Although it was an ambitious idea, the 

mediator-free glucose sensor was realistic due to the development of nano and 

porous materials(Viet et al., 2018). Originally, the biggest problem for direct 

electron transfer between the electrode and enzyme is the existence of thick 

protein in which the redox sites are embedded(Chen et al., 2014; Wang and Lee, 

2015; Wang, 2001; Zhai et al., 2013). However, currently, electrically wiring the 

electrode and the active redox sites of the enzyme or using porous materials as  
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the working electrode that could help entrap and encompass the protein, could 

realize the direct electron transfer between the electrode and enzyme(Chaubey 

and Malhotra, 2002; Habermüller et al., 2000; Kang et al., 2009; Léger et al., 

2003).  

The most valuable point of this system is the successful elimination of possible 

interferences and transforms the enzymatic recognition events of glucose to 

amperometric signals directly irrespective of the concentration of oxygen or 

redox mediators(De Poulpiquet et al., 2014; Freire et al., 2003; Martins et al., 

2014; Pumera et al., 2007). In summary, this new system would avoid the 

complications of tailored mediators and improve selectivity and sensitivity. By 

this strategy, Gooding and co-workers electrically connected enzyme and 

electrode by exploiting carbon nanotubes to connect the active site of apo-GOx 

to the electrode surface(Liu et al., 2005). 
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Figure. 9  Schematic diagrams of the 3rd generation enzymatic glucose sensors  

1.2.2  The non-enzymatic glucose sensor 

In the fourth-generation glucose sensors, the enzyme used in those three former-

generation sensors would be replaced by nano or porous materials as catalysts, 

called non-enzymatic sensors. 
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Figure. 10 Schematic diagram of the 4th generation non-enzymatic glucose 

sensors (Liu et al., 2005; Wani et al., 2016; Zayats et al., 2002) 

The stability problem is the leading and most serious problem of traditional 

enzyme sensors, which derives from the inherent characteristics of 

enzymes(Spanning and Neujahr, 1990; Yadav et al., 2015). Enzyme-based 

glucose sensors are difficult to get rid of deformations, including thermal or 

chemical deformation, during their fabrication, packing, storing, and use. In 

detail, when the temperature is higher than 40 °C or pH< 2 and pH>8 could 

cause severe damage to the sensor. Besides, storing or in-use sensors would also 

be damaged by high or low humidity(Gupta et al., 2013; Spanning and Neujahr, 

1990; Wang et al., 2011; Zhuo et al., 2011). Therefore, because of the intrinsic 

shortcomings of enzymes, non-enzymatic glucose sensors have entered the field 

of vision of researchers in recent years(Bernards et al., 2008; Cherevko and 

Chung, 2009; Li et al., 2013; Rolland et al., 2006). As we all know, non-

enzymatic glucose sensors can be free from restrictions such as temperature, 

7

GOx

FAD
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humidity, solvents, and manufacturing processes(Hwang et al., 2018; Park et al., 

2006). Hence, establishing a dependable mass production process would become 

easier. More importantly, traditional subcutaneous enzymatic glucose sensors 

need to sterilize during the entire manufacturing line, while the non-enzymatic 

blood glucose sensors need to be sterilized only before packaging, which 

decreases manufacturing costs(Bruen et al., 2017; Niu et al., 2016). This 

advantage of enzyme-free sensors is expected to reduce significantly the unit 

price of a continuous glucose monitoring system (CGM system)(Oliver et al., 

2009; Vashist, 2013; Wang et al., 2010). 

As shown in Figure.11, the number of publications in the field of enzyme-free 

glucose sensors has been demonstrated in the past 15 years, and the number of 

publications has increased dramatically from 2001 to 2015, indicating an 

increasing number of researchers in the development(Zhu et al., 2016) 
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Figure. 11 Diagram of the number of recent publications on non-enzymatic 

glucose sensors as a function of the year published(Zhu et al., 2016)  

Although non-enzymatic glucose sensors show many advantages, their detection 

range is limited to up to several mmol/L(mM), which is much smaller than the 

blood glucose levels of patients with diabetes (1–30 mM)(Dong et al., 2018; Jia 

et al., 2018; Kim et al., 2018; Song et al., 2010; Zang et al., 2018). As shown in 

Fig.12, when measuring glucose concentration, the current response first enters a 

linear range within which a linear relationship between the current response and 

the glucose concentration can be expected(Hwang et al., 2018; Shadlaghani et 

al., 2019). Next, a non-linear relationship is observed in a region called the non-

linear range in which the relationship between the current response and the 

glucose concentration is unpredictable(Shadlaghani et al., 2019). Eventually, the 

current reaches the saturation point, beyond which the current response begins to 

decrease. 
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Figure. 12 relationships between concentration and current 

response(mmol/L=18mg/L) (Gonzales et al., 2019) 

In the linear detection range, the glucose levels can be easily calculated from 

linear relationships between the current signal and glucose concentration. We all 

know that although current can increase in a non-linear range (that is, between a 

linear range and a saturation point), as blood glucose levels rise, the range is 

useless because saturation is not fixed(Chinnadayyala et al., 2018; Wang et al., 

2015). Therefore, only the linear range is meaningful for patients to measure 

blood glucose levels. We can only calculate glucose concentration based on the 

current response in the linear range, which leaves a challenge to improving the 

linear range(Hwang et al., 2018). 

Many techniques have been tried to improve the linear range. Some researchers 

believed that the linear range was restricted by the working potential 
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(Annalakshmi et al., 2019). By changing the ratio of Pt, Ni, and Co metal 

elements, the working potential was adjusted from 0.45 V vs. Saturated calomel 

electrode (SCE) to 0.4 V vs. SCE. Still, the linear range of the measurement was 

basically unchanged (from 1.5 μM– 8 mM to 1 μM–8.5 mM)(Mahshid et al., 

2013). On the other hand, others believed that the problem was mainly related to 

the specific surface area of the electrode(Ding et al., 2011; Pradhan et al., 2010; 

Rong et al., 2007; Yuan et al., 2005). Mian Li et al. synthesized a 3D 

nanostructured electrode with a large specific surface area, but the linear range 

(50 μM–8 mM) did not increase to any appreciable level(Li et al., 2014). This 

suggests that the reason of the limited linear range must be found form an 

effective strategy, as all the blind trials have not been able to solve this problem. 

It was, therefore, the purposes of the current research to find the factors that 

limited the linear range and extend the range to the required level. Among 

electro-catalysts used in enzyme-free glucose sensors, metal oxides possess 

certain outstanding advantages for this application, e.g., low cost, controllable 

synthesis, functional biocompatibility, chemical stability, so that we took the 

Ni(OH)2 as an example and employed amperometry, Fourier-Transform Infrared 

Spectroscopy (FTIR), and Nuclear Magnetic Resonance Spectroscopy(NMR). 

Eventually, it is found that the hydroxide ion concentration affects the linear 

measurement range, and the ion concentration must be 25 times higher than the 

glucose concentration. In detail, the higher OH level could promote the 

conversion of glucose to enediol, which lowered the energy barrier of the 

subsequent electrooxidation reaction, so that more than four electrons were 

transferred to the counter electrode. Meanwhile, the final product was glucuronic 

acid instead of gluconolactone, which would increase the current response and 
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the linear range to 40 mM. Therefore, the real cause we have revealed for the 

limited linear range can not only promote a conceptual understanding of the 

working mechanism of non-enzymatic glucose sensors but also distinguish 

various assumptions and conflicts. Hopefully, these discoveries are able to 

improve sensor performance and accelerate their commercialization. 
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2 Experimental 

2.1 Materials 

NaOH pellets (ACS reagent, ≥ 99.0%) were purchased from E-Merck. Dextrose 

(99.0%, SRL, India) and 5 wt% Nafion solution (Sigma-Aldrich) were adopted 

for all electrochemical analyses. Deionized water (DI water) (Molecular Biology 

Reagent, purchased from Sigma-Aldrich, Mississauga, ON, Canada) ethanol 

(95.0%, Sigma-Aldrich, Mississauga, ON, Canada) and acetone(95.0%, Sigma-

Aldrich, Mississauga, ON, Canada) were adopted as the solvents. Ni 

(NO3)2·6H2O, KBr, Ni sheet (0.05 m thick), and D2O (analytical reagent grade) 

were purchased from Sigma-Aldrich.  

2.2 Ni (OH)2/Ni foil electrode preparation 

Firstly, Ni (OH)2 powders were synthesized according to the precipitation 

method reported in the literature.(Yang et al., 2014). Concentrated sodium 

hydroxide solution was dropped into 1mol/L Ni (NO3)2 solution. The 

precipitation reaction was at 45 with stirring (700rpm). The resulting green 

precipitate of Ni (OH)2 powders were filtered, dried, and washed with DI water 

several times to remove possible impurities. Although it is possible to further 

detect the impurities by, e.g., EDS, XPS, etc., this becomes unnecessary in our 

case, as the possible impurities will not be involved in the voltage range, causing 

any errors here. The precipitate was dried in air. Subsequently, Homogeneous 

suspension of Ni (OH)2 samples was gained by sonicating the powder in several 
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drops of ethanol. Then the suspension was dropped on the Ni foil electrode, after 

which 0.5% Nafion binder solution was placed on the sample layer to fix the 

material on Ni foil. Finally, the electrode was air-dried before the measurements.  

2.3 Materials characterization 

The sample (Ni (OH)2 powders) was characterized by powder XRD (Bruker D8 

DISCOVER diffractometer) with CuKα1 radiation (λ = 1.54 Å)  

2.4 Electrochemical properties measurements 

The three-electrode electrochemical cell was used to monitor glucose levels. 

Ag/AgCl (saturated KCl solution) was used as a reference electrode, although 

some reference electrodes would be affected by alkaline electrolyte such as 

Saturated calomel electrode (SCE); Ag/AgCl reference electrode is stable in the 

alkaline electrolyte(Elgrishi et al., 2018). Ni (OH)2 / Ni sheet was used as 

working electrode, and Au wire was the counter electrode. All the measurements 

were carried out on a CMS100 electrochemical workstation (purchased from The 

Illinois Department of Central Management Services) at room temperature. 

Before the amperometry test, 150-cycle Cyclic Voltammetry (CV) analyses were 

conducted with cyclic voltage between 0.00 and +0.7V and a scan rate of 50 

mV/s, where 100mM, 500mM and 1000mM NaOH solution used as background 

electrolyte, respectively. Then Amperometry I-t responses at an applied potential 

of +0.55 V (for 0.1mM NaOH solution) and +0.5 V (for 0.5M and 1M NaOH 

solution) were recorded under stirring at 350 rpm. The area of Ni (OH)2 on Ni 
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sheet was 1.2 × 0.15 cm2. The surface area of electrode is 

0.18cm2(1.2 × 0.15 cm2) 

 

Figure. 13 Schematic diagram of working electrode non-enzymatic glucose 

sensors 

2.5 FTIR spectra measurements 

Glucose solution, glucose/sodium hydroxide mixed solution, glucose electro-

oxidized solution, and glucose/sodium hydroxide electro-oxidized solution were 

dried by VirTis Bench Top Pro freeze-dryer (purchased from SP Scientific) to 

obtain powders. Then these powders were dispersed over dry KBr powder to 

prepare sample pellets for FTIR. Finally, the four samples were measured by a 

Nicolet 6700 FT-IR spectrometer to acquire the FTIR spectra in the wavenumber 

range of 400–4000 cm−1 with a resolution of 1 cm−1 in DRIFT mode. 
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2.6 UV–vis spectra measurements 

UV-vis measurements to glucose solution and mixed glucose solution were 

conducted on a DU800 Spectrophotometer. First, preheat the spectrophotometer for 

approximately 15 minutes. Second, fill the quartz cuvette with DI water as 

background to obtain the blank data. Third, remove the blank sample and rinse the 

cuvette with a small amount of fully mixed glucose solution (a drop of sample to 

per 100 ml DI water) until the cuvette was ¾ full. Finally, place the cuvette into the 

spectrophotometer, close the sample door and record the absorbance on the 

datasheet. The treatment to the mixed glucose solution is the same as above. 

2.7 NMR spectra measurements 

Glucose/NaOH mixture was dissolved in 0.6 ml D2O. 13C NMR was recorded on 

Bruker DRX-500 MHz spectrometer with the frequency of 125.78MHz at room 

temperature and analyzed by Bruker Topspin 3.1 software. 
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3 Results and Discussion   

3.1 X-ray diffraction (XRD) Measurement of 

Ni(OH)2/Ni Sheet 

The working electrode was characterized first by XRD, which confirmed the 

formation of Ni(OH)2 on the Ni sheet, as demonstrated in Figure.14. 

 

Figure. 14. X-ray diffraction (XRD) results (WL = 1.54 Ǻ) for Ni (OH)2 on the 

Ni sheet; :Ni(OH)2; : Ni sheet. 
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3.2 Electrochemical Characterizations  

3.2.1 Electrochemical reaction 

In the triple-electrode cell, complex electrochemical reactions took place, ad 

outlined below. 

For the working electrode: 

Ni(OH)2 + OH- ⇄ NiOOH + H2O + e                               (1) 

C6H12O6 (Enediol) + 5OH- → C6H9O7- (glucuronate) + 4e + 4 H2O        (2)                         

C6H12O6 (glucose) + 3OH- → C6H11O7- (gluconolactone) + 2e +2 H2O     (3) 

For the counter electrode: 

2H2O + 2e → H2 + 2OH-                                          (4) 
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Figure. 15 The schematic diagram shows how both oxidative and reductive 

reactions are catalyzed at the working electrode surface 

3.2.2 Cyclic voltammetry (CV) analysis of Ni(OH)2 

 The electrode should be stabilized before making preliminary measurements. 

This can be achieved by continuously performing CV measurements in a 

100/500/1000 mM NaOH solution at a scan rate of 50 mV / s(Wu et al., 2010). 

As shown in Figure. 16 (a) (b) and (c), the CMS electrochemical workstation 

triggered a redox conversion between Ni(OH)2 and NiOOH. When the current 

response reaches a maximum, the redox conversion stabilizes, indicating that 

equilibrium is being achieved. The current generated in a 100 mM NaOH 

solution varied between -1.8 to 2.4 mA and expanded to -2.9 to 3.5 mA in a 500 

mM NaOH solution. This range was further extended to -3.5 to 5 mA in a 1000 

mM NaOH solution. At higher base concentrations, a significant increase in the 

current response can be expected, which indicates that the base enhances the 

catalytic effect of the NiOOH / Ni(OH)2 electrode, which is beneficial for 

glucose sensing. 
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Figure. 16 (a) The CV curve in 100mM NaOH solution; (b) the CV curve in 

500mM NaOH solution; (c) the CV curve in 1000mM NaOH solution; (d) 

schematic illustration of the Cyclic Voltammetry measurement apparatus 

3.2.3 Effect of scan rate 

The reaction type of glucose in the electrolyte should be investigated first before 

any measurement, cyclic voltametry (CV) measurements were thus executed 

under various scan rates in the presence of 1mM glucose in 500mM NaOH 

solution, ranging from 25 to 200mV/s. As shown in Figure 17. (a), both anodic 

and cathodic peak currents increase in parallel with the potential scan rate, and a 

linear relationship between peak current and the square root of the scan rate was 
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found in Figure. 17 (b), which indicated a diffusion-controlled process(Yoon et 

al., 2011; Zhang et al., 2016). 

 

Figure. 17 (a) CV responses of Ni(OH)2/NiOOH electrode in the presence of 

1mM glucose in 500mM NaOH solution under various scan rates; (b) the 

relationship between the current and scan rate. 

3.2.4 Amperometric investigations 

 Systematic investigations have been followed by amperometric measurements 

in electrolytes of various OH- concentrations, leading to the finding that the 

maximum value of glucose concentration in the linear range was 1/25 of the OH 

concentration, which has never been reported. In Figure 18 a–c, a typical 

amperometric response of the Ni (OH)2/Ni sheet upon the successive addition of 

a certain concentration of glucose into 0.1 mM, 500 mM and 1000 mM NaOH 

solution stirred at 350 rpm is shown. These three amperometric I-t step curves 

were used to calculate the linear range of glucose sensing in 500mM, 100mM 

and 1000mM NaOH solutions, respectively. 

17

Data source: Yang, Lory Wenjuan, et al. "Improving Linear Range Limitation of Non-Enzymatic Glucose Sensor by OH− Concentration." Crystals 2020, 10(3), 186.
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Figure. 18d–f shows the calibration curve of the Ni(OH)2/Ni sheet electrode, 

revealing a good linear detection ranging from 21.67 μM to 4 mM (R2 = 0.9905) 

in 100 mM NaOH solution, from 7.40 μM to 20 mM (R2 = 0.9955) in 500 mM 

NaOH solution, and from 39.98 μM to 40 mM (R2 = 0.9949) in 1000 mM NaOH 

solution. By a signal-to-noise ratio of 3, the detection limits (LOD) were 

estimated to be 7.15 μM, 2.44 μM, and 13.19 μM, respectively. Besides, it was 

found that the linear range was successfully increased to 40 mM in 1000 mM 

NaOH solution. More importantly, Figure. 18 d–f shows the ratio of the highest 

point of the linear range and OH− concentration was fixed at around 25, which 

meant the linear range could be enhanced by raising the OH− concentration. 

 

 

 

 

Figure. 18 (a) The amperometric I-t curve at [OH−]=100 mM; (b) the 

amperometric I-t curve at [OH−] = 1000 mM; (c) the amperometric I-t curve at 
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[OH−] = 500 mM; the linear range concentration of glucose at various OH− 

concentrations, (d) [OH−] = 100 mM, (e) [OH−] = 500 mM and (f) [OH−] = 1000 

mM. 

 

 

Figure. 19 The relationship between electrolyte solution concentration and upper 

linear range of detection glucose 

In fact, our findings can be further confirmed by the literature results, which also 

show a definite ratio between the hydroxide ion concentration and the linear range, 

but so far surprisingly ignored(Cooray et al., 2017; Kang et al., 2007; Ma et al., 

2017; Niu et al., 2013; Wu et al., 2016; Zhang et al., 2015). As presented in Table 

1, measurements of the glucose level were conducted at 100mM NaOH or KOH 
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solution in many other non-enzymatic glucose sensors, whose linear ranges were 

mostly hovered at 4mM. Based on our findings on linear scales, these efforts have 

been confirmed. This means that in other types of sensors, the relationship between 

glucose concentration and alkaline concentration is also maintained. 

Table 1. The relationship between the linear range and the alkaline level of various 

non-enzymatic glucose sensors. 

Other non-

enzymatic glucose 

sensors 

[OH]- 

(mM) 

Linear 

range 

(mM) 

Ratio 

of[OH]-

/ 

Linear 

range 

Sensitivity 

(mA/mM 

cm2) 

LOD 

(μM) 

Cu-CNTs-

GCE(Kang et al., 

2009) 

100 Up to 

3.5 

28.5 0.01776 0.2 

3D porous 

Ni/SPCE (Niu et 

al., 2013) 

100 Up to 

4 

25 2.9 0.07 
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Ni6S7/GCE(Wu et 

al., 2016) 

100 Up to 

3.75 

26.7 0.2718 0.15   

CuO/GCE(Ma et 

al., 2017) 

100 Up to 

4 

25 1.322 0.5 

Fe3O4/Fe 

foil(Zhang et al., 

2015) 

100 Up to 

3.67 

27.2 0.407 0.1 

CoSe-

rGO/GCE(Cooray 

et al., 2017) 

300 Up to 

10 

30 0.48 2.5 

Ni(OH)2/NiOOH 

foil (our results) 

1000 Up to 

40 

25 2.645 13.19 

CNTs (carbon nanotubes); GCE (glassy carbon electrode); SPCE (screen-printed 

carbon electrode); rGO (reduced graphene oxide). 
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3.2.5 Anti-interference ability 

The anti-interference test of the Ni(OH)2/Ni sheet electrode was further 

evaluated. Since in biological samples such as blood, in addition to glucose, 

there are other substances that are easily oxidized, such as lactic acid (LA), 

ascorbic acid (AA), urea, sodium citrate, galactose, fructose, sodium benzoate 

and L-cysteine. The designed platform should have acceptable selectivity for 

glucose compared to the coexistence of interfering species(Promsuwan et al., 

2019). The physiological level of normal glucose concentration is in the range of 

3-8mM, which is much higher than the concentration level of interfering 

substances like AA (0.1 mM), L-cysteine (15μM), etc.(Park et al., 2003). Figure. 

20 (a) depicts an amperometry graph of 1 mM glucose after adding 1 mM LA, 

AA, urea, sodium citrate, galactose, fructose, sodium benzoate and L-cysteine to 

a 0.1 M NaOH stirring solution at +0.5 V (vs. Ag / AgCl) potentials, 

respectively. The histogram of Figure. 20(b) compares the current response of 

glucose detection with other interfering substances. As can be seen from the 

figure, the responses caused by interfering species are very low, for example, for 

1 mM LA (~ 5.04%), 1 mM AA (~ 12.3%), 1 mM urea (~ 6.9%), 1 mM sodium 

citrate (~ 0.18%), 1 mM galactose (~ 6.8%), 1 mM fructose (~ 4.4%), 1 mM 

sodium benzoate (~ 0.35%)and 1 mM L-cysteine (~ 0.3%).These results indicate 

that interfering substances slightly interfere with the oxidation of glucose, but 

these small current changes are negligible compared to the current generated by 

the addition of 1 mM glucose. The results show that our modified electrode can 

be used as a selective non-enzymatic sensing platform for glucose detection. 
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Figure. 20 (a) Current responses of the Ni(OH)2/Ni sheet electrode after adding 

1 mM glucose following by the injection of 1 mM LA, AA, urea, sodium citrate, 

galactose, fructose, sodium benzoate and L-cysteine with 35 s intervals into 

stirring 1 M NaOH solution at the constant potential of +0.5 V (vs. Ag/AgCl), 

respectively, (b) Column chart for the comparison between the response of the 

electrode toward 1 mM glucose against 0.1 mM LA, AA, urea, sodium citrate, 

galactose, fructose, sodium benzoate and L-cysteine. 

3.3 FTIR test 

Clearly, OH- affected the glucose electro-oxidation reaction, which needed 

further investigation by FTIR measurements. The pure glucose electro-oxidized 

product, glucose/NaOH mixture, and glucose/NaOH electro-oxidized mixture 

were measured by FTIR. As shown in Figure 21 a, the peak of the C=C double 

bond was detected in the glucose/NaOH mixture at 1670 cm−1(Lin et al., 2007), 



M.A.Sc Thesis – W. YANG .               McMaster university -Materials Science and Engineering  

 

47 

which indicated the formation of enediol(Larew and Johnson, 1989). This means 

glucose reacted with NaOH before the electro-oxidation. In addition, the 

disappearance of the peak at 1080 cm−1 and 1350cm−1 in glucose/NaOH electro-

oxidized mixture in Figure 21 b proved that the electro-oxidation product was 

not gluconate, which indicated that more than four electrons were transferred to 

the cathode(Bae et al., 1991; Chang et al., 1991; Holade et al., 2018; Sugars and 

Alkaline, 1969). This was beneficial for glucose sensing. 

 

Figure. 21 (a) Fourier-transform infrared spectroscopy (FTIR) results of 

glucose/NaOH mixture; (b) FTIR results of a pure glucose electro-oxidized 

product and glucose/NaOH electro-oxidized mixture were measured by FTIR. 
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3.4 UV and NMR test 

Further evidence was obtained by the UV and NMR measurements. As shown in 

Figure. 22, a new absorption peak was observed in glucose/NaOH mixture 

solution at 278 nm, which was attributed to enediol(Chen et al., 2012; Zhao et 

al., 2011). Similar results could also be found in NMR data, as shown in Figure. 

23, where two –CH2 groups were detected, indicating the transformation of 

glucose to enediol. 

 

Figure. 22 UV–vis spectra of the glucose/NaOH mixture solution (solid line) and 

glucose solution (dash line). 
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Figure. 23 13C DEPTQ-135 NMR spectrum of glucose/NaOH mixture dissolved 

in D2O with a frequency of 125.78 MHz. 

It is clear now that we discovered the reason behind the limited linear range and 

enhanced successfully such a range to 40 mM, which was in sharp contrast to the 

literature, where the linear range was limited, and the reason was 

neglected(Annalakshmi et al., 2019; Park et al., 2003; Pradhan et al., 2010; Rong 

et al., 2007). Although a similar relationship between the linear range and OH− 

concentration can also be extracted in other literature, this relationship was 

overlooked before. The actual influence of hydroxide ions was found to be on 

the reaction with glucose. When the OH− concentration is low, the glucose 

electro-oxidation reaction only transfers two electrons to the cathode, as opposed 

to the four or more electrons transferred in the electrolyte with high OH− 

concentration. Subsequently, the current response was reduced, which 

corresponded to the non-linear range in the I-t curve. Therefore, insufficient 
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OH− concentration in the electrolyte was the real cause that limited the linear 

range, instead of the electrode passivation or limited electrode 

potential(Annalakshmi et al., 2019). 

To summarize, high OH− concentration is beneficial for glucose sensing, 

glucose could react with hydroxide ions, generating enediol, which lowered the 

energy barrier of the electro-oxidation reaction and more than four electrons are 

transferred to the cathode(Larew and Johnson, 1989). The final product was 

glucuronate (Equation (2)), instead of gluconolactone (Equation (3)). More than 

four electrons were transferred in this case, indicating a higher measured current 

in the I-t curve, which could not only increase the linear range but also the 

measurement accuracy. 

Enediol→glucuronate + 4e                                     (2)  

Glucose→gluconolactone + 2e                                 (3)                                    
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4 Conclusion 

In conclusion, the root cause of the limited linear range of glucose sensor has 

been successfully revealed, which is attributed to the alkaline concentration 

(hydroxide ion concentration), affecting the degree and final product of glucose 

oxidation. By increasing the concentration of hydroxide ions, not only the linear 

range is increased up to 40 mM, but also the conversion rate of NiOOH / Ni 

(OH) 2 is increased, which can also improve the sensitivity of the glucose sensor, 

indicating better measurement accuracy. These findings are expected to have 

some impact on the non-enzymatic glucose monitoring community, as they may 

open new avenues for biomedical sensing. 
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