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ABSTRACT 

A key attribute of resilience, robustness serves as a predictor of infrastructure system performance under disruptions, 

thus informing proactive infrastructure risk management. A literature review indicated that previous studies did not 

consider some key factors that can influence the robustness of Air Transportation Infrastructure Networks (ATIN) and 

thus their (system-level cascade) systemic risk management processes. In this respect, the current study first assesses 

existing and then develops a new methodology to quantify the robustness of ATIN. Specifically, based on integrating 

travel time and flight frequency, the study develops alternative best route and link weight approaches to assess key 

ATIN robustness measures and relevant operating cost losses (OCL). In order to demonstrate the practical use of the 

developed methodology, the robustness and the associated OCL of the Canadian Domestic Air Traffic Network are 

evaluated under random failures (i.e., disruptive events that occur randomly) and targeted threats (i.e., disruptive 

events that occur deliberately). The analysis results show that the network robustness is influenced by the utilized 

evaluation approach, especially after 20% of the network components become nonoperational. Overall, the 

methodology developed within this study is expected to provide ATIN policymakers with the means to quantify the 

network robustness and OCL, and thus enable ATIN resilience-guided proactive risk management in the face of natural 

or anthropogenic hazard realizations. 
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CHAPTER 1: INTRODUCTION  

Risk Definition 

The term ‘risk’ defines as the possibility of meeting danger or of suffering loss or harm (Hornby 1995). But, in general, 

this definition is not applicable for civil infrastructure systems (Ettouney and Alampalli, 2016; Lee et al., 2013 and 

Chiara, 2009). For civil infrastructures, it is key to define risk in a practical way to address the needs of civil 

infrastructure stakeholders and to also accommodate relevant uncertainties and management priorities. The literature 

shows that risk is often defined as the relationship between the hazards that may possibly debase infrastructure’s 

performance and the associated consequences (Gutteling and Wiegman 1996). This last definition seems to be useful 

for the civil infrastructure field. It can be modified slightly as a description of the outcome of an unfavorable, uncertain 

event, which might degrade the performance of a single civil infrastructure (Ettouney and Alampalli, 2016). 

Risk can be generally divided into three fundamental elements namely: threat, vulnerability, and 

consequences (Renfroe and Smith, 2010; Cox and Anthony, 2008; Pipattanapiwong et al., 2004; OECD, 2003; Al - 

Bahar and Crandall 1990). A threat indicates a situation that can affect a particular system or component and has the 

potential to cause system performance degradation. As a basic element of risk function, it is clear that threat is directly 

proportional to infrastructure risk (Cox and Anthony, 2008) because of the potential damaging consequences such 

threats can leave in such infrastructures. It indicates the susceptibility of the system or one of its components to a 

particular degrading event or group of events (Aven, 2011). Vulnerability is a subjective measure that is useful in the 

case of considering subjective situations that cannot be described in an objective manner. Risk is directly proportional 

to vulnerability, similar to threats. It describes the impact or results of a particular event (Aven, 2011; Cox and 

Anthony, 2008). The consequences are directly related to the asset, such as repair costs or indirectly related to the 

asset such as the social or economic impacts of disrupting a specific infrastructure due to confronting a disruptive 

event (Renfroe and Smith, 2010). 
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Systemic Risk 

Systemic risk refers to a risk on an entire system rather than the failure of an individual component (Lee et al., 2013 

and Chiara, 2009). In an infrastructural context, systemic risk denotes the system cascading failure risk, caused by 

linkages among the system components, resulting in a severe decline in system performance/functionality (Taylor et 

al., 2006). Transportation networks, the internet, and electric power grids are all examples of infrastructure systems 

in which connectivity among system components is essential. Because of such connectivity, catastrophic cascading 

failure of the components can occur when the system faces a catastrophic shock, especially if the affected component 

is critical (e.g., represents a hub station in transportation network) (Huang et al., 2013). Subsequently, in order to 

minimize the systemic risk, infrastructure systems should be designed to be robust to such devastating shocks. In the 

wake of the recent disasters, increased attention has been given to infrastructure systems and to systemic risk in 

particular. The widespread impact of the current disasters (natural such as climate change consequences, or 

anthropogenic such as terrorist attacks) demonstrated that infrastructure systems became increasingly interconnected, 

and such disastrous events can provoke global cascading failure that stalemates the system for a prolonged period of 

time (Zhou et al., 2012; Taylor et al., 2006). Thus, policymakers are supposed to implement safety measures to 

prevent/mitigate systemic impacts and their cascading failures. 

There are five main functions that can be utilized in risk assessment. These are Reliability, Exposure, 

Likelihood, Sustainability, and Resilience (Ettouney and Alampalli, 2016; Ayyub, 2014). First, reliability is a function 

in the capacity of the system and the demands on that system (Rausand, 2004). Second, exposure is defined as the 

function of a combination of hazards and their impact. In other words, exposure is a subjective estimate of the 

combined effects of the hazard and the system vulnerability to that hazard (Cardona, 2012). Third, likelihood depends, 

as a function, mainly on both vulnerability and hazard (Ayyub, 2014). Fourth, sustainability is defined as the system 

ability to operate within acceptable and renewable limits, having respect for available natural resources (Sustainable 

Measures 2014). Fifth, resilience is defined, as will be illustrated in more detail later, the ability of the system to 

withstand major disruptions within acceptable degradation range and recover within an acceptable time. Even with 

the aforementioned five functions to assess risk, the risk assessment process involves some trade-offs due to risk 

complexity (Renfroe and Smith, 2010). For this reason, in the literature, risk models are simplified and do not account 

of “real world” boundaries, especially of the various pathways through which a hazard develops. Risk models cannot 
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consider all aspects of human behaviour. In addition, risk models cannot integrate all the indirect consequences of a 

hazard, which often result from unanticipated linkages between system components (Cox and Anthony, 2008). Risk 

assessment, therefore, needs to understand the determinants of hazards and vulnerability, and better evaluation of 

externalities (Ayyub, 2014). 

Risk Management 

Risk management is concerned with the identification, evaluation, and analysis of risks confronting the underlying 

infrastructure to prioritize these risks followed by properly allocating resources to minimize, monitor, mitigate, and 

control the impact of disruptive events (Choudhry et al., 2012; Hubbard et al., 2009). Risk management process adopts 

two strategies, namely, proactive risk management and reactive risk management. Proactive risk management ranks 

the identified risks according to their expected negative consequences relevant to the importance of the infrastructure 

considered (Taylor et al., 2006). Reactive risk management is focused on disaster realization and problem-solving 

rather than problem-prevention (Attarzadeh et al., 2011; Schatteman et al., 2008). Also, risk management can be 

divided into four different steps namely, in order: identification, assessment/analysis, response/decision-making, and 

monitoring (Choudhry et al., 2012; Hubbard et al., 2009; Schatteman et al., 2008). 

Risk identification step is applied in the overall risk management plan, the infrastructure objective, and the 

chronicled hazard exposed to the infrastructure. Other useful sources of risk identification are regulators, operators, 

design standards, and events related to the infrastructure operation. In general, the main objectives associated with the 

risk identification process are focused on cost, time and quality (Al - Bahar and Crandall 1990).   

In terms of the risk assessment/analysis process, the main variables are the probability of the risks and the 

associated impacts on the infrastructure.  Risk assessments can be generally classified into qualitative and quantitative 

assessments. The qualitative risk assessment includes risk description, risk occurrence stages, the affected elements, 

risk occurrence factors, relation with other risks, risk occurrence likelihood, and how the risk can affect the 

infrastructure. Whereas the quantitative risk assessment can be conducted using one of the techniques that include 

simulation-, scenario-, probability-, correlation-, and sensitivity analysis (Schatteman et al., 2008). 

Whilst the responses/decisions can be classified into four actions: acceptance, reduction, avoidance, and 

transfer. In acceptance/retention decisions, the risk will be accepted with no actions to face or reduce its impact. The 
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adoption of risk acceptance may be conscious or unconscious (Pipattanapiwong et al., 2004). In conscious risk 

retention, the risk is recognized without reduction or transferring. Whilst the unconscious related with unperceived 

risks. Risk reduction can be implemented through loss prevention or recovery after event occurrence (Mansouri et al., 

2009). The target of the loss prevention is to prevent the loss occurred due to the risk, while the recovery aimed to 

suppress the severity of the losses. However, loss prevention is highly effective if the loss can be completely eliminated 

(Mansouri et al., 2009; OECD, 2003), it is impossible to prevent all possible risks which is more costly than the losses 

themselves. Avoidance is employed when individuals or organizations refuse to accept risk where the exposure to risk 

in not permitted. Risk can be passed or transferred from organization to another which is able to deal with it.   

Continuous monitoring is needed as well to keep an eye on the changing risks that should be detected and 

managed and the changes/updates in risk response actions to cope with risk changes (Schatteman et al., 2008). Risk 

monitoring continues for the life of the infrastructure to keep tracking of the identified-, residual-, and new risks, in 

addition to monitoring planned-strategy enforcement for the identified risks and evaluating its effectiveness. The risks 

change as the infrastructure matures because of the new risks’ development or anticipated risks’ disappearance. Also, 

risk ratings/prioritizations can change during the infrastructure lifecycle (Tang et al., 2007). 

Resilience 

Resilience as one of the essential functions used to assess infrastructure risk, contributes to risk analysis and making 

decisions. Infrastructure resilience has gained substantial attention in recent years especially after experiencing 

multiple low-probability and high-consequence disruptions such as extreme weather events and terroristic attacks. 

Because of the essential role that civil infrastructure systems play in social security, safety, and welfare, continuous 

efforts from governments, private sector, and society are needed to operate and develop such valuable infrastructural 

assets (Wang et al., 2018; Bruneau et al., 2003). Also, more understanding of resilience applications of civil 

infrastructure systems can result in more efficient critical infrastructure protection. Generally, infrastructure system 

resilience should consider system performance within the following different three stages: prior, during, and following 

a destructive event occurrence (Bruneau et al., 2003). 

The origin of the word ‘resilience’ is the Latin ‘resilio’, that has two parts; ‘re’ (again) and ‘salire’ (spring or 

jump) and means ‘to bounce back’. The term ‘resilience’ was utilized earlier in elasticity theory to represent the energy 

stored in elastically deformed materials. In 1940, the term ‘resilience’ was also utilized in psychology as the 
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individual’s ability to recover from trauma (Masten et al., 1990). A work that widespread remarkably the concept of 

resilience was the work by Holling (1973) in ecology. After applications on ecology and psychology, resilience was 

integrated in other fields such as industrial processes (Wei and Ji, 2010), economics (Vugrin et al., 2010), engineering 

(Blackmore and Plant, 2008), business management (Hamel and Valikangas, 2003), etc. Despite the common 

agreement among the prementioned fields that resilience is the system's ability to ‘bounce back’ from disruptions, 

different definitions exist depending on the adopted application (Manyena, 2006). 

 Now, the concept of resilience gained great awareness in applications of planning, operation, and 

maintenance of civil infrastructure networks (Santora and Wilson, 2008; O’Rourke, 2007). Resilience of civil 

infrastructure networks is frequently measured using performance metrics (Santora and Wilson, 2008; O’Rourke, 

2007). Fig. 1.1 illustrates a performance-based resilience functionality curve which represents the network 

performance change over time (Kammouh et al., 2017; Bruneau et al., 2003). Therefore, the reduction on infrastructure 

performance due to the disruptive event is assumed to be represented by the line that connects point A with point B. 

While the line B-C represents the recovery, which is assumed linear in that case. Linearity assumptions in lines A-B 

and B-C are not inherently true in every case. For instance, it could have a trend like the ‘dashed’ line or ‘dash dot’ 

line (Cimellaro et al., 2008). The dashed line in Fig. 1.1 refers to an initially slow recovery, while the dashed dot line 

represents rapid recovery processes. In Fig. 1.1, the network performance returns back to the pre-disruption 

performance level and remains stable with time, after recovery. 
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Fig. 1.1: Resilience Function 

 

 Through the literature, the Multidisciplinary Center for Extreme Events Research proposed the most 

commonly used framework for the application of resilience methodologies and methods in civil infrastructure network 

(MCEER, 2005; Bruneau et al., 2003). This framework represents the network resilience by four functions known as 

the four R’s (R4): robustness, redundancy, resourcefulness and rapidity (MCEER, 2005). First, robustness is defined 

as the system ability to withstand stress without suffering degradation or functionality loss. Second, redundancy is 

defined as the extent to which the system is substitutable, i.e., have the capability to satisfy functional requirements in 

the case of disruptive events. Third, resourcefulness is defined as the capacity of defining risks, establishing priorities, 

and mobilizing all/some resources to confront disruptive system events. In other words, resourcefulness includes the 

ability to utilize the available physical, monetary, technological, and informational materials in addition to human 

resources to meet determined priorities and reach the aspired objectives. Fourth, rapidity is defined as the ability to 

meet the determined priorities and achieve the aspired objectives in a timely manner to avoid both future losses and 

disruptions. 
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Importance of Air Transportation Infrastructure Networks 

As a key critical infrastructure system, Air Transportation Infrastructure Networks (ATIN) play a key role in people 

and goods mobility as well as its great role in boosting international trade prosperity. Therefore, this thesis is focused 

on studying the ATIN robustness assessment. Aviation has continued to expand. It has withstood disastrous crises in 

addition to demonstrating long-term resilience, becoming an indispensable means of transport. Historically, and 

according to the International Civil Aviation Organization (ICAO) (2015), worldwide airlines carried 3.8 billion 

passengers achieving annual revenue of 7.1 trillion revenue passenger kilometers. Also, 53 million tons of freight 

were transported by air. On a daily scale, around 100,000 flights transport over 10 million passengers and around $18 

billion worth of goods. Largely, air transport has double-sized every 15 years and has grown faster in comparison with 

most other industries. Also, ATIN contribute to employment sector through providing direct employment 

opportunities. Once ATIN are operational, work opportunities and services vary between airport 

operations/management, maintenance, charter services, storage facilities, and leasing activities. For instance, and to 

show how ATIN have a massive impact on labor power, the Los Angeles Times reported that the Dallas/Fort Worth 

(DFW) International Airport has created significant job opportunities since its establishment in the 1970s. Quoting 

statistics from the US Department of Commerce, the US daily reported that the four countries surrounding the DFW 

airport had witnessed 148% rise in employment by the turn of the century. In addition, ATIN provide accessibilities, 

which has a high positive impact on the tourism sector by growing the number of visitors. Therefore, it can notice that 

the developments of airports have boosted the national economy. 

Giant Component Method and Complex Network Theory 

The study aims at assessing ATIN robustness using the Giant Component method (calculating and comparing the 

number of functional system components in the largest component of the network prior to and after disruptions) 

through adopting Complex Network Theory (CNT) measures (Julliard et al. 2015; Berche et al. 2010). In giant 

component method (Solé et al., 2008; Beygelzimer et al., 2005), only a fraction of system components remains after 

an attack or failure, and only the components in a giant connected component of each network remain functional. The 

goal is to find the fraction of components of each network/infrastructure which remains functional and compare it to 

the original connected components before the disastrous event (Huang et al., 2013; Zhou et al., 2012). 
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In recent years, CNT has been gaining significant attention that resulted in developments and applications in 

various fields. CNT has been implemented in simulating different real networks including road transportation (Tsiotas 

and Polyzos, 2017; Tian et al., 2016), internet (Barabási, 2013), telecommunications (Grubesic and Murray, 2005), 

etc. Several network classification-models have been developed in the literature to study the characteristics of complex 

networks (Barabási, 2013; Lordan et al., 2014). However, three types of complex network models are frequently 

implemented and hence discussed in the current study. These include Small World- (Watts and Strogatz, 1998), 

Random- (Erdos and Rényi, 1959), and Scale-free (Barabási, 2013) networks. A Small World network is defined as a 

highly clustered network with a relatively short average path length (Watts and Strogatz, 1998). In such networks, 

nodes are typically close to one another and connected through only a small number of links. Conversely, the Random 

network has a Poisson distribution of nodal degree (the number of links that connects to the node with neighbouring 

nodes) (Newman, 2010). The third type of networks is the Scale-free, which follows a power-law degree distribution 

and features a small number of hubs (nodes with a large degree). The World Wide Web is a perfect example of a 

Scale-free network (Barabási, 2013). 
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CHAPTER 2: AIR TRANSPORTATION INFRASTRUCTURE ROBUSTNESS ASSESSMENT 

FOR PROACTIVE SYSTEMIC RISK MANAGEMENT 

Abstract: A key attribute of resilience, robustness serves as a predictor of infrastructure system performance under 

disruptions, thus informing proactive infrastructure risk management. A literature review indicated that previous 

studies did not consider some key factors that can influence the robustness of Air Transportation Infrastructure 

Networks (ATIN) and thus their (system-level cascade) systemic risk management processes. In this respect, the 

current study first assesses existing and then develops a new methodology to quantify the robustness of ATIN. 

Specifically, based on integrating travel time and flight frequency, the study develops alternative best route and link 

weight approaches to assess key ATIN robustness measures and relevant operating cost losses (OCL). In order to 

demonstrate the practical use of the developed methodology, the robustness and the associated OCL of the Canadian 

Domestic Air Traffic Network are evaluated under random failures (i.e., disruptive events that occur randomly) and 

targeted threats (i.e., disruptive events that occur deliberately). The analysis results show that the network robustness 

is influenced by the utilized evaluation approach, especially after 20% of the network components become 

nonoperational. Overall, the methodology developed within this study is expected to provide ATIN policymakers with 

the means to quantify the network robustness and OCL, and thus enable ATIN resilience-guided proactive risk 

management in the face of natural or anthropogenic hazard realizations. 
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Background 

Civil infrastructure systems, such as roads, railways, airports, water supply facilities, and wastewater networks, 

usually require large capital investment and operating/maintenance costs (West et al., 2018; Taylor et al., 2006). 

Disruptions to such critical infrastructure systems may result in devastating impacts on the national security, economic 

prosperity and public health and safety. Because the operations of such large infrastructure networks extend spatially 

and evolve temporally, multiple risks generated by natural (e.g., hurricanes and earthquakes) or anthropogenic (e.g., 

terrorism and industrial accidents) hazards can significantly affect the former’s system-level performance (Padgett et 

al., 2013; Taylor et al., 2006). Such (system-level) systemic risks are defined as the consequences of interdependence-

induced failures that would cause cascade-type failures across the entire system (Ezzeldin and El-Dakhakhni, 2019). 

Systemic risks are further amplified as most modern civil infrastructure systems have become more complex (e.g., 

cover large spatial areas with extensive interlinkage), more sophisticated (e.g., in terms of their operations and their 

mutual interdependence), continuously advancing in terms of technology adoption, and the ever-increasing user 

expectations of around-the-clock reliable service. Therefore, enhancing the safety and reliability of such systems in 

the face of unforeseen (hyper) risks (Helbing, 2013) has been a key driver in the area of infrastructure disaster risk 

management (Lee et al., 2013 and Chiara, 2009). 

Within the context of the current study, risk management is concerned with the identification, evaluation, 

and prioritization of risks confronting the underlying infrastructure followed by coordinated and economical 

application of resources to minimize, monitor, mitigate, and control the probability or impact of what otherwise would 

be disruptive events (Choudhry et al., 2012; Hubbard et al., 2009). Over the past decade, the increased number of 

infrastructure disruptive events, and the long-term consequences of such disruptions, have been influencing pertinent 

risk management strategies (Lee et al., 2013; Del Cano et al., 2002). Such strategies include proactive risk 

management which focuses on ranking the identified risks according to their expected negative consequences relevant 

to the importance of the infrastructure considered (Taylor et al., 2006). The strategies also encompass reactive risk 

management which is key in the event of disaster realization (Attarzadeh et al., 2011; Schatteman et al., 2008) as the 

latter then focuses on problem-solving rather than problem-prevention. 

https://en.wikipedia.org/wiki/Risk
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As a process, proactive risk management builds on the decision-maker’s intuition and experience in a 

systematic, effective, rational, logical, prevention-focused and priority-based approach (Taylor et al., 2006). As shown 

in Fig. 2.1, such a process consists of four main steps: identification, analysis, responding/decision-making, and 

monitoring of risk (Schatteman et al., 2008; Tang et al., 2007; Del Cano et al., 2002). First, risk identification is the 

step of systematically and continuously identifying, categorizing, and assessing the initial significance of risks (Tang 

et al., 2007; Zou et al., 2009). Second, the risk analysis step is the vital link between systematic identification of risks 

and rational management of the most critical risks. Specifically, this step aims at evaluating the consequences 

associated with different risks and assessing the impact of such risks through several analyses and measurement 

techniques (Wang et al., 2016; Zou et al., 2009). Third, the risk response step deals with providing the most efficient 

responses to the identified and analyzed risks. In this latter step, decision-makers consider how the risk should be 

managed, for example, by assessing alternative resolutions to either transfer the risk to other parties or to 

tolerate/mitigate it (Pipattanapiwong et al., 2004). Finally, the step of risk monitoring, where risk consequences are 

monitored, tracked and reviewed after a decision is taken (Schatteman et al., 2008; Tang et al., 2007). 

 
Fig. 2.1: Risk Management Process 

 

The second step of the proactive risk management process (i.e., risk analysis) has been carried out in previous 

studies (Sánchez-Silva 2018) through a resilience-guided approach, as shown in Fig. 2.1. Such an approach facilitates 
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guiding infrastructure managers to make a tangible difference in preparedness to deal with risks by focusing on the 

system resilience—defined as the system’s ability to ‘bounce back’ following exposure to a disruptive event (Lounis 

et al., 2016; Carpenter 2014). In other words, resilience assessment is key for infrastructure contingency analysis and 

proactive risk management (Wang et al., 2018; Kammouh et al., 2017; Wang et al., 2016; Schatteman et al., 2008). In 

this respect, resilience has been hypothesized to relate to four different attributes: robustness, redundancy, 

resourcefulness, and rapidity (Bruneau et al., 2003), as shown in Fig. 2.1. Robustness and rapidity are known as the 

resilience ‘‘ends’’, whereas resourcefulness and redundancy are known as the ‘‘means’’.  

Among critical infrastructure systems, Air Transportation Infrastructure Networks (ATIN) play a major role 

in the mobility processes of people and goods as well as the international trade. ATIN also link the global economy 

through supporting and enhancing supply chains and international markets. Subsequently, a disruption to the ATIN 

has the potential of creating significant cascade economic and social impacts beyond predictions. Globally, ATIN 

have experienced different forms of disruptions triggered by either natural or anthropogenic hazards that influenced 

their operations (Lundin, 1995). More recently, in December 2017, a power outage (an anthropogenic hazard) in 

Atlanta's Hartsfield-Jackson International airport in the USA lasted for only 11 hours yet resulted in cancelling more 

than 1,000 flights, affecting 30,000 passengers, and causing more than $50 million of economic losses (Cable News 

Network, 2017). The April 2010 volcanic eruptions of Eyjafjallajökull in Iceland is another disruptive event, albeit 

due to a natural hazard, that resulted in cancelling an unprecedented number of flights within Europe, creating the 

highest level of global air travel disruption since the Second World War (Bye et al., 2011). In total, about 20 countries 

closed their airspace to commercial air traffic, which affected approximately 10 million travelers due to the 

cancellation of around 4,000 flights (British Broadcasting Corporation News 2010). Such clear cases of systemic risk 

realizations evidently demonstrate the importance of robustness assessment of ATIN for proactive systemic risk 

management towards achieving significant economic savings under disruptive events. 

 ATIN robustness was quantified in the literature according to a pre-defined measure that evaluates the change 

in the system prior to- and following the realization of disruptive events. ATIN robustness is often assessed based on 

random failures of network components and/or targeted threat analyses (on specific critical components within the 

network). For example, the ATIN robustness assessment was proposed to comprise of three steps (Zhou et al., 2019): 

1) defining a topological or a performance measure for the ATIN (Fig. 2.1); 2) quantifying such a measure for the 

https://en.wikipedia.org/wiki/Iceland
https://en.wikipedia.org/wiki/Air_travel_disruption_after_the_2010_Eyjafjallaj%C3%B6kull_eruption
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ATIN before and after different disruptive scenarios; and 3) assessing the ATIN robustness based on the changes of 

this measure. An example of performance measures utilization is the work of Cardillo et al. (2013) to assess ATIN 

robustness using passenger flow as the ATIN performance indicator. Topological measures on the other hand typically 

represent the structure of the entire network (Lordan et al., 2016), including Efficiency (Zhou et al., 2019), Relative 

Area Index (Pien et al., 2015), and Giant Component (Lordan et al., 2016). Table 2.1 summarizes details of reported 

studies that focused on the ATIN robustness assessment. 

Table 2.1: Applications of robustness assessment and CNT in air transportation networks 

Author Aim Context Measures 
Case Study (number of 

nodes, number of links) 

(Malik et al., 2019) Analyzing the network 
characteristics 

Pakistan Betweenness, Closeness, 
Degree 

(24, 84) 

(Ren et al., 2019) Analyzing the topology 

of the air sector (region) 
network  

China Degree, Betweenness, 

Closeness  

(108, 241) 

(Wandelt et al., 2019) Reviewing and 

comparing the evolution 

of eight domestic airport 
networks during the 

period 2002–2013 

Australia, Brazil, 

Canada, China, India, 

Russia, the US, and 
Europe 

Assortativity, Clustering 

coefficient, Degree 

Eight different domestic 

airport networks 

(Zhou et al., 2019) Proposing a novel 
efficiency and robustness 

metric for weighted air 

transport networks 

Australia, Brazil, 
Canada, China, Europe, 

India, Russia, USA 

Robustness, Efficiency, 
Betweenness, Degree, 

Strength 

Eight domestic air traffic 
networks 

(Dai et al., 2018) Studying the topological 
and spatial changes in the 

network over the period 

1979-2012 

Southeast Asia Clustering coefficient  
Degree 

(237, 602) 

(Zhang et al., 2018) Analyzing flight conflicts 

in the Chinese air traffic 
network 

China Betweenness 

Degree 

(1499, 2242) 

(Hossain and Alam, 
2017) 

Analyzing the network 
structure and 

characteristics 

Australia Closeness 
Betweenness 

Clustering coefficient 

Degree 

 (131, 596) 

(Sun et al., 2017) Studying the network at 

different levels of 

aggregation 

Global Betweenness 

Clustering coefficient 

Degree 
Modularity 

Density 

 (3097, 50694) 

(Zhu et al., 2018) Comparing the 
connectivity of cities in 

the network 

China Connectivity  23 Chinese cities 

(Lordan et al., 2016) 

 

Analyzing route 

networks for full- and 

low-cost carriers 

Multiple Robustness, Clustering 

coefficient, Degree 

Routes for 13 airlines in 

Europe, North America, 

and China 

(Pien et al., 2015) Conducting topological 

and operational analyses 
of the European air 

traffic network. 

Europe Robustness, Betweenness 784 airports 

(Wandelt et al., 2015) Proposing new 

exploration search 
technique for efficient 

attacking strategy 

Australia, Argentina, 

Germany, Iceland 

Robustness, 

Betweenness, Degree, 
closeness 

Australia (149, 567), 

Argentina (41, 184), 
Germany (28, 170), 

Iceland (5, 7) 

(Wandelt and Sun, 2015) Analyzing the evolution 
of the network. 

Global Degree 
Clustering coefficient 

Betweenness 

Density 
Closeness 

144 countries 
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Author Aim Context Measures 
Case Study (number of 

nodes, number of links) 

(Marzuoli et al., 2014) Examining the robustness 

of the American ATIN 

USA Robustness, 

Betweenness, Degree 

(37, 86) 

(Wang et al., 2014) Comparing between the 
impact of damage-guided 

attack and degree-guided 

attack on ATIN’s 
robustness 

USA Robustness, Degree (332, 2126) 

(Wang et al., 2011) Exploring the network 

structure and nodal 

centralities  

China Betweenness 

Clustering coefficient 

Closeness 
Average path length 

Degree 

 (144, 1018) 

(Paleari et al., 2010) Investigating the network 
characteristics and level 

of service 

Multiple Clustering coefficient 
Degree 

Shortest-path length 

Europe (467, 5544) 
US (657, 5488) 

China (144, 1329) 

(Wuellner et al., 2010) Analyzing the structure 

of the networks for the 
operating carriers in the 

USA 

USA Robustness, 

Betweenness, Degree 

Seven largest passenger 

carriers in the USA 

(Zhang et al., 2010) Studying the network 
topological 

characteristics 

China Degree 
Clustering coefficient 

Betweenness 

 

The evolution of the 
Chinese air traffic 

network from 1950 to 

2010 

(Bagler, 2008) Analyzing the 

characteristics of 

weighted and unweighted 
network 

India Clustering coefficient 

Degree 

Node Strength 
Shortest-path length 

 (79, 442) 

(Guida and Maria, 2007) Analyzing the network 

structure 

Italy Degree 

Betweenness 

Clustering coefficient 

 (42, 310) 

(Guimera et al., 2005) Network characteristics 

evaluation  

Global Degree 

Betweenness 

 (3883, 27051) 

(Chi et al., 2003) Analyzing the network’s 

probability distributions 

to investigate the 

corresponding 

characteristics 

USA Clustering coefficient 

Degree 

Shortest-path length 

 (215, 116725) 

 

 

Scope and Objectives  

The current study assesses ATIN robustness using the Giant Component method (calculating the number of airports 

in the largest component of the network prior to and following disruptions) (Julliard et al., 2015; Berche et al., 2010; 

Berche et al., 2009; Hu et al., 2008) based on specific Complex Network Theoretic (CNT) measures. For example, 

betweenness refers to the position of an airport in a network and its functionality as a bridge in the shortest paths 

between all other airports, whereas closeness describes the proximity of an airport to the rest of the network airports 

and is evaluated by the shortest path (Freeman, 1978). Connectivity refers to the total weight of in- and out-links 

connected to an airport, thus indicating such airport importance (Zhu et al., 2018). Clustering coefficient, on the other 

hand, is an indication of the redundancy in the network (Wasserman et al., 1994), whereas neighboring airports (within 
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the cluster) remain interconnected even after one airport becomes nonoperational. Full details of previous studies that 

applied CNT measures on the ATIN are presented in Table 2.1. As shown in Fig. 2.1, betweenness and closeness are 

shortest path-dependent (i.e., their calculations depend on the shortest paths selected), whereas connectivity and 

clustering coefficient are link weight-dependent (i.e., their calculations depend on the link weight assigned). 

Throughout published literature, the estimation of shortest path was based on of the following factors: 1) the 

number of links needed in order to travel between two airports (e.g., Paleari et al., 2010; Dai et al., 2018; Ren et al., 

2019); 2) the travel distance (e.g., Wandelt and Sun, 2015; Sun et al., 2017; Wandelt et al., 2019); 3) the travel time 

(e.g., Zhu et al., 2018); or 4) the travel velocity (e.g., Zhu et al., 2018). Whereas link weight estimation was based on 

flight frequency (e.g., Hossain and Alam, 2017; Malik et al., 2019) and flight capacity (e.g., Muriel-Villegas et al., 

2016; Zhu et al., 2018; Hossain and Alam, 2017). However, none of the previous studies considered the combinations 

of all such factors in influencing the ATIN robustness. As such, an effective risk management strategy might require 

the inclusion of such factors when the ATIN topological characteristics and robustness are evaluated (Wandelt et al., 

2019). In addition, only a very limited number of research studies has been conducted on small-size national ATIN of 

less than 80 airports (Guida and Maria, 2007; Bagler, 2008), compared to their larger-size regional counterparts (Chi 

et al., 2003; Guimera et al., 2005; Wang et al., 2011). As network size usually influences its characteristics, there 

remains a need to investigate the relevant measures and the corresponding topological properties of small size ATIN 

(e.g., such as the specific network analyzed within the current manuscript later). 

The objective of the current study is thus to address the research gap of not considering all the above key 

factors and their combinations in assessing ATIN robustness. In this respect, a robustness quantification methodology 

based on key CNT measures is developed. To demonstrate the proposed methodology, the robustness of the Canadian 

domestic air traffic network was assessed under random failures and targeted threats. Afterwards, the study focuses 

on evaluating the operating cost losses due to different disruption scenarios of the studied ATIN. Finally, key 

managerial insights are presented, followed by concluding remarks. 

Robustness Quantification Methodology 

This study aims at assessing existing and developing new methodologies for evaluation of ATIN robustness under 

random failures and targeted threats based on CNT measures including clustering coefficient, betweenness, 

connectivity, and closeness. Although other researchers adopted the notion of shortest path to account for the travel 
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distance (Lordan et al., 2015; Wandelt and Sun, 2015; Zhu et al., 2018), the current study uses the term “best route” 

to more accurately represent the aspects that has little to do with the distance (e.g., flight capacity). The best route 

(Dia 2002; Jou et al. 2007; Ben-Elia et al. 2013) is thus the route that maximizes the underlying utility (e.g., least 

travel time, least travel distance, most flight capacity, and most travel velocity) among all available routes within the 

network.  

The link weight has also been quantified using various approaches including flight frequency (Hossain and 

Alam, 2017; Zhu et al., 2018), flight capacity (Zhu et al., 2018; Muriel-Villegas et al., 2016; Wandelt and Sun, 2015), 

and the multiplication of flight capacity and travel velocity (Zhu et al., 2018). However, the current study adopts the 

approach of combining flight capacity and travel time or integrating flight capacity and travel distance to investigate 

the effect of considering these factors and their combinations on the ATIN robustness performance. Therefore, the 

following two subsections focus on the development of approaches to evaluate the shortest path and link weight, as 

the first step to quantify the connectivity, betweenness, closeness, and clustering coefficient. 

 

Shortest Path 

In previous studies, the best route was calculated using three distinct approaches based on the path that exhibits: 1) 

the minimum number of links (𝑑𝑖𝑗
𝑙 ) (Eq.1) (Lordan et al., 2015; Wandelt and Sun, 2015; Barabási, 2013); 2) the 

minimum travel time (𝑑𝑖𝑗
𝑡 ) as shown in Eq.2 (Zhu et al., 2018); and 3) the minimum travel distance (𝑑𝑖𝑗

𝑑 ) as shown in 

Eq.3 (Wandelt and Sun, 2015). However, such three approaches typically result in three different values of the best 

route between the same pair of airports in the network. Thus, none of these three approaches minimizes the number 

of links, travel time, and distance simultaneously. 

𝑑𝑖𝑗
𝑙 = 𝑚𝑖𝑛 ∑ 𝑙

𝑙∊𝐿

                                                                                                Eq. 1 

𝑑𝑖𝑗
𝑡 =  𝑚𝑖𝑛 ∑ 𝑡𝑙

𝑙∊𝐿

                                                                                               Eq. 2 

𝑑𝑖𝑗
𝑑 = 𝑚𝑖𝑛 ∑ 𝑑𝑙

𝑙∊𝐿

                                                                                               Eq. 3   
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Where 𝑙: is the link that belongs to a set of links (L) in the network.  

𝑡𝑙: is the travelling time on a link (𝑙) that belongs to a set of the total links (L) in the network.  

𝑑𝑙: is the travelling distance on a link (𝑙) that belongs to a set of the total links (L) in the network. 

The proposed estimation approaches for the best route, presented in Eqs. 4-6, maximize the utility of the 

route according to the considered parameters. More specifically, the first approach (𝑑𝑖𝑗
𝑓𝑡

) integrates flight capacity and 

travel time (Eq.4) through selecting the route that yields both the minimum travel time and the maximum flight 

capacity. In the second approach, (𝑑𝑖𝑗
𝑓𝑑

) is calculated based on the flight capacity and the travel distance (Eq.5) by 

choosing the route that concurrently combines the minimum travel distance and the maximum flight capacity. Finally, 

in the third approach, 𝑑𝑖𝑗
𝑓𝑣

 presented in Eq. 6, aims at identifying the route with the maximum travel velocity and flight 

capacity among all the possible routes. The proposed three estimation approaches of the shortest path all share one 

common factor, namely the flight capacity. This is mainly to investigate the influence of considering flight capacity 

with travel time, travel distance, and travel velocity when the shortest path is evaluated. It is also worth mentioning 

that as real origin-destination matrix is currently designated as sensitive data, the aircraft capacity was utilized instead 

herein when estimating 𝑑𝑖𝑗
𝑓𝑡

, 𝑑𝑖𝑗
𝑓𝑑

, and 𝑑𝑖𝑗
𝑓𝑣

.  

𝑑𝑖𝑗
𝑓𝑡

=  𝑚𝑖𝑛 ∑
𝑡𝑙

𝑓𝑙  . 𝑁𝑝,𝑓 
𝑙∊𝐿

                                                                                Eq. 4 

𝑑𝑖𝑗
𝑓𝑑

=  𝑚𝑖𝑛 ∑
𝑑𝑙

𝑓𝑙  . 𝑁𝑝,𝑓
𝑙∊𝐿

                                                                                 Eq. 5 

𝑑𝑖𝑗
𝑓𝑣

=  𝑚𝑖𝑛 ∑
1

v𝑙 . 𝑓𝑙  . 𝑁𝑝,𝑓
𝑙∊𝐿

                                                                            Eq. 6 

where, 𝑡𝑙 is the travelling time on a link (𝑙), 𝑙 ∊ 𝐿. 

𝑑𝑙 is the travelling distance on a link (𝑙), 𝑙 ∊ 𝐿. 

𝑓𝑙 is the flight frequency on a link (𝑙), 𝑙 ∊ 𝐿. 

𝑣𝑙  is the travelling velocity on a link (𝑙), 𝑙 ∊ 𝐿. 
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𝑁𝑝,𝑓 is the number of the passengers in a flight that travels on a link (𝑙), 𝑙 ∊ 𝐿. 

 

Link weight 

Link weight was estimated in previous studies using three distinct approaches: 1) flight frequency (𝑤𝑖𝑗
𝑛 ), as shown in 

Eq.7 (Hossain and Alam, 2017; Zhu et al., 2018); 2) flight frequency multiplied by the aircraft capacity (𝑤𝑖𝑗
𝑓

), as shown 

in Eq.8 (Muriel-Villegas et al., 2016; Wandelt and Sun, 2015); and 3) a combination of flight frequency, aircraft 

capacity, and travel velocity (𝑤𝑖𝑗
𝑓𝑣

), as shown in Eq. 9 (Zhu et al., 2018). However, these previous approaches excluded 

the influence of travel time and distance in their estimations. Whenever travel time and/or travel distance to a certain 

airport increase, the airport connectivity is negatively affected and thus the weighted clustering coefficient. As such, 

two new approaches, 𝑤𝑖𝑗
𝑓𝑡

 and 𝑤𝑖𝑗
𝑓𝑑

, are developed in the current study to address this aspect, as shown in Eqs. 10 and 

11, respectively. The two approaches of the link weight include two different combinations, namely travel time with 

flight capacity, and travel distance with flight capacity.  

𝑤𝑖𝑗
𝑛 = 𝑓𝑙                                                                                                            Eq. 7 

𝑤𝑖𝑗
𝑓

= 𝑓𝑙  . 𝑁𝑝,𝑓                                                                                                 Eq. 8 

𝑤𝑖𝑗
𝑓𝑣

= 𝑓𝑙  . 𝑁𝑝,𝑓 . 𝑣𝑙                                                                                            Eq. 9   

𝑤𝑖𝑗
𝑓𝑡

=
𝑓𝑙  . 𝑁𝑝,𝑓 

𝑡𝑙

                                                                                             Eq. 10 

𝑤𝑖𝑗
𝑓𝑑

=
𝑓𝑙  . 𝑁𝑝,𝑓 

𝑑𝑙

                                                                                            Eq. 11 

 

Network Measures  

The airport degree (𝑘𝑖) (Eq.12) reflects the number of links connected to an airport (Erdös and Rényi, 1959; Watts 

and Strogatz, 1998; Barabási, 2013).  
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𝑘𝑖 = ∑ 𝑎𝑖𝑗 

𝑁

𝑗=1

                                                                                                           Eq. 12 

where 𝑎𝑖𝑗  represents the linkage between two neighbour airports. In other words, 𝑎𝑖𝑗=1 if a linkage between airports 

𝑖 and 𝑗 exists, otherwise, 𝑎𝑖𝑗=0. 

The betweenness measure of an airport is the ratio between the number of best routes that pass through this 

airport to the total number of best routes in the network (Freeman, 1978). Thus, the estimation approach of the best 

route directly influences the betweenness measure. The betweenness of airport 𝑖 is 𝐶𝐵(𝑖)𝑠 (Eq. 13), which can be 

calculated based on the different estimation approaches of the best route.  

𝐶𝐵(𝑖)𝑠 =
𝑛(𝑖)𝑠

𝑀
                                                                                                        Eq. 13 

where, 𝑛(𝑖)𝑠 is the number of the best routes that pass through airport 𝑖, and 𝑠 refers to the utilized approach (Eqs. 1-

6) in calculating the best route, as illustrated in the Appendix in Table A-1. While 𝑀 is the total number of best routes 

in the entire network (Eq.13). 

The airport closeness evaluates the extent to which one airport is close to all other airports in the network 

(Freeman, 1978). Similar to the betweenness, the closeness measure 𝐶𝐶(𝑖)𝑠 relies also on the different estimation 

approaches of the best route (Eq. 14).  

𝐶𝐶(𝑖)𝑠 =
𝑁 − 1

∑ 𝑑𝑖𝑗
𝑠

𝑖≠𝑗

                                                                                               Eq. 14 

where, 𝑁 is the total number of airports in the network and 𝑑𝑖𝑗
𝑠  is the best route from airport 𝑖 to airport 𝑗 and 𝑠 refers 

to the utilized approach (Eqs. 1-6) used in calculating the best route, as illustrated in Table A-1 in the Appendix. 

The clustering coefficient of airport 𝑖 is the ratio between the number of existing links between the neighbours 

of this airport to the maximum possible number of these links (Wasserman et al., 1994). It can be divided into: 1) 

unweighted clustering coefficient 𝐶(𝑖) (Eq.15 by Hossain and Alam (2017)); and 2) weighted clustering coefficient 

𝐶(𝑖)𝑤𝑠 (Eq. 16 by Barrat et al. (2004)).   
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𝐶(𝑖) =
1

𝑘𝑖(𝑘𝑖 − 1)
∑ 𝑎𝑖𝑗 𝑎𝑗𝑘 𝑎𝑖𝑘 

𝑖≠𝑗≠𝑘

                                                               Eq. 15 

where, 𝑘𝑖 is the degree measure for airport 𝑖 and 𝑎𝑖𝑗 , 𝑎𝑗𝑘, and 𝑎𝑖𝑘 are binary variables that represent the development 

of linkage in the triangle made up of airport 𝑖, 𝑗, and 𝑘. 

𝐶(𝑖)𝑤𝑠 =
1

𝐶(𝑖)𝑠(𝑘𝑖 − 1)
∑

1

< 𝑤𝑖
𝑠 >

 
𝑤𝑖𝑗

𝑠 + 𝑤𝑖𝑘
𝑠

2
𝑎𝑖𝑗 𝑎𝑗𝑘 𝑎𝑖𝑘 

𝑖≠𝑗≠𝑘

                 Eq. 16 

where, 𝑤𝑖𝑗
𝑠  and 𝑤𝑖𝑘

𝑠  are the weights of links (𝑖-𝑗) and (𝑖-𝑘), respectively, < 𝑤𝑖
𝑠 > is the average link weight of airport 

𝑖, 𝑤 refers to the weighted clustering coefficient, and 𝑠 refers to the utilized approach (Eqs. 7-11) used in calculating 

the link weight, as illustrated in Table A-1 in the Appendix. 

The connectivity measure describes the reachability of an airport from its neighbouring airports (Galil et al., 

1995). This measure (Eq. 17) was identified in previous studies based on the flight frequency (Hossain and Alam, 

2017; Zhu et al., 2018), flight capacity (Muriel-Villegas et al., 2016; Wandelt and Sun, 2015), and travel velocity (Zhu 

et al., 2018).  

𝐶(𝑖)𝑠 = ∑ 𝑤𝑖𝑗
𝑠

𝑘𝑖

𝑛=1

                                                                                                   Eq. 17 

where, 𝐶(𝑖)𝑠 is the connectivity measure for airport 𝑖 which depends on the link weight (𝑤𝑖𝑗
𝑠 ), and 𝑠 refers to the 

approach (Eqs. 7-11) utilized in calculating the link weight (Eq.17), as illustrated in Table A-1 in the Appendix. It is 

worth mentioning that airport connectivity is essentially the same measure utilized by Barrat et al. (2004) designated 

as “airport strength” and by Bagler (2008) referred to as the “weighted degree”.  

To assess the ATIN robustness, the study adopts the Giant Component (i.e., defined as the largest connected 

group of airports) method (Lordan et al., 2014; Huang et al., 2013; Zhou et al., 2012; Tanizawa et al., 2012; Gao et 

al., 2011; Solé et al., 2008; Beygelzimer et al., 2005; Callaway et al., 2000). In this method, the network robustness 

(𝑅) is quantified as the ratio between the giant component size following the failure initiation, Ngc, to the total number 

of airports, N, as presented in Eq. 18. 

𝑅 =
𝑁𝑔𝑐

𝑁
                                                                                                𝐸𝑞. 18 
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Application on the Canadian Domestic Air Traffic Network  

In order to demonstrate the application of the proposed methodology, the current study utilizes a dataset of the 

Canadian Domestic Air Traffic Network (CDATN). The dataset was collected from public sources 

(https://www.wegotravel.ca/schedules/ca/canada-flight-schedules) during the period of September 10th to October 

25th, 2018 reflecting typical airline weekly schedule within this period, as presented in Table 2.2. Within this dataset, 

the inclusion of airports was subject to the following criteria: 1) only airports designated for civilian passenger flights; 

2) airports with regular flight schedules; and 3) airports with publicly accessible data. Therefore, the dataset excluded 

airports that are used solely for military and freight purposes as well as airports without regular trips or inaccessible 

data. In this respect, the analysis dataset is based on a total of 47 airports in Canada, as illustrated in Fig. 2.2. In 

addition, in Fig. 2.2, the route popularity (i.e., number of weekly flights between each two Canadian airports) is 

represented by the thickness of the link connecting such two airports. The total number of undirected routes (links) 

between the airports is 123 routes. The rationale behind adopting undirected links (i.e., the connected airports influence 

each other), rather than directed links (i.e., one airport influences the other connected airport), is attributed to the fact 

that the number of flights for go and return directions on each network link/route is usually similar (Rocha, 2017; Li 

et al., 2004). The capacity of flights between airports is considered in the analysis to represent the flight capacity on a 

specific route, as mentioned earlier. Therefore, the CDATN is analyzed as a weighted yet undirected network. 

Comprised of 47 airports and 123 routes, the CDATN dataset yielded 8,380 weekly domestic flights in Canada. Table 

2.3 provides a sample of the data for John C. Munro Hamilton International Airport. 

Table 2.2: Analytical data for the CDATN 

Variables 
Number of flights 

per route (flight) 

Flight capacity 

(passenger/flight) 

* 

Flight velocity 

(km/hr) 

Travel time 

(minutes) 

Travel distance 

(km) 

Max 188 355 807 310 3690 

Min 6 20 146 15 48 

Mean 35 152 477 120  1062 

Standard deviation 35 110 166 60 1347 

* Flight capacity is calculated based on aircraft type with an assumed occupancy rate of 100%. 
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Table 2.3: Sample data for the YHM airport in Hamilton from September 10th to October 25th, 2018 

From To 
Weekly flights 

(flight) 
Travel time (minutes) Travel distance (km) 

Hamilton - YHM Calgary – YYC 13 220 2625 

Edmonton - YEG 12 215 2690 

Winnipeg - YWG 12 140 1510 

Halifax – YHZ 10 130 1313 

Montreal - YUL 13 80 560 

 

 

Fig. 2.2: Distribution of the Canadian cities included in the CDATN 

 

Network Classification 

The CDATN possesses several topological characteristics that can be used to identify the network type. First, the 

cumulative degree centrality distribution, shown in Fig. 2.3 (on a logarithmic scale), demonstrates that the CDATN 

follows a multi-regime power-law (Double Pareto Law) distribution (Guida and Maria, 2007) with two different 

exponents. One regime has an exponent 𝛾1 of -0.82, while the other regime has an exponent 𝛾2 of -2.27. The turning 

point, as identified by Li et al. (2004), between these two regimes occurs at a critical degree 𝑘𝑐= 12. As such, the 

discrete degree centrality distribution P (𝑘) is derived based on the 𝑘𝑐 value, as illustrated in Eq.19.  
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𝑃(𝑘) =
𝜕𝑃 (𝐾 > 𝑘)

𝜕𝑘
~ {

𝑘−(0.82+1),    𝑓𝑜𝑟  𝑘 ≤  𝑘𝑐; 

𝑘−(2.27+1),    𝑓𝑜𝑟  𝑘 >  𝑘𝑐 ,
                               Eq. 19 

From Eq. 19, the exponents of the probability distributions with the average deviations from the fitting 

regime, γ1
′  and γ2

′  are 1.81 ± 0.12 and 3.27 ± 0.12, respectively. These values are very close to the limits for scale-free 

networks (i.e., 2 < γ < 3) (Barabási, 2013). Through evaluating the network characteristics, it can also be inferred that 

the CDATN has a very large degree variance <k2>=105 compared to the network average degree <k>=5.25. In 

addition, it is clear that the CDATN has only three main hub airports namely: Calgary International Airport, Toronto 

Pearson Airport, and Vancouver International Airport; with degree centrality values equal to 25, 24, and 20, 

respectively. Moreover, more than 77% of the airports have degree centrality values less than 5. The CDATN’s small-

world property, where the average best route of the network = 2.32 < ln N = 3.85 (Watts and Strogatz, 1998), confirms 

also the proximity between any pair of airports in the network. Considering these topological characteristics, the 

CDATN can be designated as a scale-free network. Being a scale-free network indicates that the CDATN is robust 

(i.e., connectedness retention) under random failures but fragile against targeted threats (Barabási, 2013). Such 

behavior is attributed to the fact that random failures would typically remove any of the many airports with a small 

degree centrality value, that contributes little to the CDATN robustness. Conversely, the removal of even a small 

fraction of hub airports is sufficient to break the CDATN into a disconnected airport network. 

 

Fig. 2.3: Cumulative degree centrality distribution for the CDATN  
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The power-law probability distribution indicates also that the low-degree airports belong to interconnected 

communities (Arenas, 2010; Bagler, 2008). Therefore, the hub airports mentioned earlier have a crucial role in 

connecting the communities of low-degree airports. Furthermore, hub airports provide connectivity to multiple low-

degree airports. This can be attributed that cities with low-administrative airports (airports that have few runways and 

handle smaller traffic volumes in comparison to that of the CDATN hub airports) tend to link with network hubs 

(Hossain and Alam, 2017; Wang et al., 2011). 

Assortativity, as well, is an indicator of the network robustness and network model. Assortativity is a key 

measure that demonstrates the relationships among the network nodes in terms of their degree measure values. 

Therefore, the assortativity of the network can be detected through the correlation between the degree measure and 

the average degree for the neighbour nodes (knn-Avg) (Bagler, 2008; Wang et al., 2011; Hossain and Alam, 2017). It 

is evident that there is a negative correlation between the degree and the average degree measures in the CDATN as 

shown in Fig. 2.4. The negative slope of the trend line indicates that the CDATN is a dis-assortative network, where 

relatively high-degree cities tend to be connected to the low-degree cities. This dis-assortativity feature was also 

observed in other air traffic networks such as the Australian air traffic network (Hossain and Alam, 2017), the Indian 

air traffic network (Bagler, 2008), and the Chinese air traffic network (Wang et al., 2011; Chi et al., 2004). In general, 

the dis-assortativity indicates that the network is robust against random failures, but vulnerable to targeted threats 

(Kitsak, 2007). 

Also, the cumulative betweenness probability distribution P (B > b) follows a truncated double-regime 

distribution. Fig. 2.4 shows the average double-regime for the six betweenness measures (𝐶𝐵(𝑖)𝑙 , 𝐶𝐵(𝑖)𝑡, 𝐶𝐵(𝑖)𝑑, 

𝐶𝐵(𝑖)𝑓𝑡, 𝐶𝐵(𝑖)𝑓𝑑, and 𝐶𝐵(𝑖)𝑓𝑣).  The first part of that regime has an exponent of -0.32, whereas the second part of the 

regime has an exponent of -2.47. The exponents for all regimes in the cumulative probability distributions for the six 

betweenness measures are shown in Table 2.4. To compare the CDATN topology to that of a random network of the 

same size (same number of nodes and links), the upper regime in Fig. 2.5 shows the cumulative betweenness 

probability distribution for the corresponding random network with exponents of -0.51 and -2.50. It is clear that the 

CDATN betweenness cumulative distribution function does not follow that of a random network. 
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Table 2.4: Various exponents for betweenness measure according to the different betweenness measures 

Measure 𝑪𝑩(𝒊)𝒍 𝑪𝑩(𝒊)𝒕 𝑪𝑩(𝒊)𝒅 𝑪𝑩(𝒊)𝒇𝒕 𝑪𝑩(𝒊)𝒇𝒅 𝑪𝑩(𝒊)𝒇𝒗 

Exponent of the first regime -0.20 -0.21 -0.11 -0.49 -0.46 -0.47 

Exponent of the second regime -1.40 -2.17 -2.25 -2.41 -3.11 -3.49 

 

 

Fig. 2.4: Relationship between the degree centrality and the average degree for the neighbour airports in the 

CDATN 

 

 

Fig. 2.5: Cumulative distribution function for betweenness measure in the CDATN 
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Robustness Assessment  

The CDATN robustness under targeted threats is evaluated based on targeting airports with the highest attributes of 

clustering coefficient (Fig. 2.6), betweenness (Fig. 2.7), connectivity (Fig. 2.8) and closeness (Fig. 2.9). As can be 

seen in Fig. 2.6, the use of the different approaches to evaluate the clustering coefficient has almost the same influence 

on the corresponding robustness value. For example, in Fig. 2.6, the CDATN robustness is almost 0.6 and 0.1 

corresponding to a fraction of removed airports, 𝑓, of 0.125 and 0.2, respectively, regardless of the approach used to 

evaluate the clustering coefficient. On the other hand, the CDATN robustness under targeted threats is sensitive to the 

approach used to estimate the betweenness (Fig. 2.7) and connectivity (Fig. 2.8) measures especially after eliminating 

20% of the network airports (𝑓=0.2). For instance, in Fig. 2.6, the CDATN robustness has values of 0.025 and 0.125 

at 𝑓 = 0.4 according to measures 𝐶𝐵(𝑖)𝑙  and 𝐶𝐵(𝑖)𝑓𝑡, respectively, whereas in Fig. 2.9, the CDATN robustness has 

values of 0.1 and 0.3 at 𝑓 = 0.4 according to measures 𝐶𝐶(𝑖)𝑓𝑑 and 𝐶𝐶(𝑖)𝑑, respectively. This observation indicates 

that targeting airports with the highest 𝐶𝐶(𝑖)𝑑 does not influence the size of the giant component regardless of the 

high-closeness (i.e., in terms of travel distance only) that these targeted airports have to all other airports. Targeting 

airports with the highest 𝐶𝐶(𝑖)𝑓𝑑 diminishes the CDATN robustness rapidly when the flight capacity and travel 

distance are considered in the closeness estimation. These discrepancies between the robustness values in Fig. 2.9 

(i.e., based on the closeness) indicate how alternative best route estimation approaches significantly affect the 

measures used to assess network robustness.  

The robustness of the CDATN was also assessed under random failures (i.e., based on 20 realizations) as 

shown in Figs. 2.6 to 2.8 and compared to that under targeted threats in the same figures. The figures confirm the 

network class assessment (i.e., the CDATN being a scale-free network) thus the network robustness under random 

failures, vulnerability to targeted threats. For example, as shown in Fig. 2.7, the CDATN robustness is 0.8 and 0.1, on 

average, at 𝑓 = 0.2 (i.e., 20% of the airports are eliminated from the network) under random failures and targeted 

threats, respectively, based on the betweenness measure. As shown also in Figs. 2.6 to 2.8, the CDATN robustness 

under random failures has a density spread that increases gradually with the increase of the fraction of removed airports 

(𝑓). For instance, at 𝑓 = 0.2, 𝑅 ranges between 0.67 to 0.82, While, at 𝑓 = 0.5, 𝑅 ranges between 0.21 to 0.52.  
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Fig. 2.6: Targeted threats according to weighted clustering 

coefficients and random failures 

 

Fig. 2.7: Targeted threats according to betweenness 

measures and random failures 

 

 

Fig. 2.8: Targeted threats according to connectivity 

measures and random failures  

 

Fig. 2.9: Targeted threats according to closeness measures 

and random failures 
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Direct Operating Cost Loss Prediction 

The robustness results are quantified in terms of monetary values in Figures 2.10 to 2.13 assuming a $ 2,481 per block 

hour operating cost of airline according to the International Civil Aviation Organization 

(https://www.icao.int/Pages/default.aspx). Figures 2.10 to 2.13 show the CDATN operating cost losses (OCL) 

corresponding to airport removals according to the clustering coefficient, betweenness, connectivity, and closeness 

measures, respectively. For the first three measures, the losses increase sharply and essentially plateau at the removal 

of 20% of the network airports according to the different existing and developed measures. For example, at f = 0.2, 

the OCL are on average $4.90, $4.85 and $4.85 million based on the measures of clustering coefficient (Fig. 2.10), 

betweenness (Fig. 2.11) and connectivity (Fig. 2.12), respectively.  

However, the OCL follow different trends according to the closeness measures, as shown in Fig. 2.13. 

Varying from measure 𝐶𝐶(𝑖)𝑙, that depends on the number of links, and 𝐶𝐶(𝑖)𝑑, that depends on travel distance, shows 

the highest and lowest losses rate in operating costs, respectively. For example, at f = 0.2, the OCL vary between $4.8 

and $3.0 million based on 𝐶𝐶(𝑖)𝑙 and 𝐶𝐶(𝑖)𝑑, respectively, as shown in Fig. 2.13. It is worth mentioning that although 

both measures depend on the best routes selected in their calculations, the OCL trends based on the closeness (Fig. 

2.13) are different from those based on the betweenness (Fig. 2.11). This is because the estimated values of the best 

route are considered in the calculations of closeness measures (Eq. 14), while only the numbers of best routes are 

adopted in the calculations of betweenness measures (Eq. 13).  

 

 

 

 

 

 

 

 

https://www.icao.int/Pages/default.aspx
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Fig. 2.10: Operating cost losses after targeted threats 

according to weighted clustering coefficient   

 

Fig. 2.11: Operating cost losses after targeted threats 

according to betweenness measures  

 

 

Fig. 2.12: Operating cost losses after targeted threats 

according to connectivity measures   

 

Fig. 2.13: Operating cost losses after targeted threats 

according to closeness measures  
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Managerial Insights 

Investments in infrastructure resilience planning and management coupled with an in-depth understanding of the 

specific infrastructure network behavior under systemic risks are key for effective proactive risk mitigation strategies. 

Principally, the goal of resilience planning is to ensure the infrastructure’s continued performance and protection from 

significant and non-reversible (disastrous) deterioration under disruptive events. This can be performed by defining 

an immediate recovery strategy (Fig. 2.14) that includes, for example, the rapid availability of a sufficient number of 

components within the considered infrastructure network to maintain its functionality under disruptions.  

 

Fig. 2.14: Managerial Decision-Making process 

 

It is also key to acknowledge that the performance of most components depends not only on their own 

functions but also on that of other components within the same network due to their mutual interdependence. Such 

interdependence needs to be also addressed during the process of setting the infrastructure network resilience-guided 

performance goals (e.g., robustness and rapidity) in order to mitigate systemic risks with proper means (e.g., via 

resourcefulness and redundancy). Infrastructure systemic risk mitigation must also consider the nature of 
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interdependence within the same infrastructure system (that might result in an intrasystem cascading failures) or 

between multiple interdependent infrastructure systems (that might result in an intersystem cascading failures). For 

example, within the current study focus, the loss of service within a specific airport can cause delays in the routes 

connected to this dysfunctional airport and subsequently can isolate other airports within the ATIN (i.e., intrasystem 

cascading failures) that are connected to that first-out-of-service airport. On the other hand, power network outage and 

subsequent depletion of auxiliary/emergency power systems can also halt the operation (i.e., intersystem cascading 

failures) of an airport, and may thus affect the whole ATIN.  

Investments in new technologies and more advanced tools (e.g., control towers, command posts, and radars) 

with high-level of reliability can be also considered for resilience-guided proactive risk management strategies (Fig. 

2.14). The implementation of strategies that promote network robustness and redundancy has the potential to 

significantly reduce the systemic risk of OCL for ATIN stakeholders on the long term. For example, within the context 

of the current study, decision-makers can mitigate independence-induced risks through considering additional key 

facilities (Fig. 2.14) by increasing the capacities of specific existing airports/terminal or ensuring the operation of 

alternative (hub) airports in the event of disruption occurrence. 

Based on the conducted analyses on the CDATN in the current study, the adoption of the existing and 

developed clustering coefficients, betweenness, and connectivity measures have almost the same effect on network 

robustness and the OCL. However, when the closeness measures are adopted, it was obvious that the measure 𝐶𝐶(𝑖)𝑙 

is the most critical measure and the measure 𝐶𝐶(𝑖)𝑑 is the least critical one in estimating both, network robustness and 

the OCL. 

 

Conclusions 

Resilience planning and management of air transportation infrastructure networks (ATIN) aim at ensuring that external 

shocks do not exhibit lasting damage to the functionality of the components in this system. Robustness is one of the 

resilience attributes that can be assessed using various methods, including the giant component method utilized in this 

study. Robustness assessment and enhancement provide policymakers and infrastructure managers with upfront 

(proactive) defense (risk management) in the face of different forms of hazards. In this context, the current study 
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contributes to assessing existing and developing new approaches for the evaluation of ATIN robustness and operating 

cost losses (OCL) under random failures and targeted threats based on key complex network theoretic measures (e.g., 

clustering coefficient, betweenness, connectivity, and closeness). The study adopts the notion of the best route to 

estimate the measures of betweenness and closeness. In addition, the study also adopted the flight capacity as an 

alternative link weight to estimate both connectivity and clustering coefficient. Finally, the Canadian Domestic Air 

Traffic Network (CDATN) was used as an application to demonstrate the proposed methodology. 

Based on the robustness analysis, it was concluded that the CDATN is vulnerable to targeted threats and 

robust to random failures regardless of the underlying measure. The discrepancies between the robustness and the 

OCL values indicated that the different estimation approaches significantly affected the network robustness 

assessment, especially the closeness measures. Furthermore, the CDATN class is found to correspond to that of a 

scale-free network with small-world properties. Such a network class pertains to a high level of robustness against 

random failures but is vulnerable to targeted threats. The CDATN was also shown to possess large hubs that serve not 

interconnected small cities. This means that targeted threats on a hub node/city can divide the network into isolated 

clusters (islands) confirming the network vulnerability to targeted threats. 

It is worth noting that the current study focused on only one technique of risk analysis, namely resilience-

guided risk analysis. As such, comparisons with other risk analysis techniques (e.g., probability analysis, sensitivity 

analysis, scenario analysis, simulation analysis, correlation analysis) might result in further managerial insights. In 

addition, the developed methodology adopted a static undirected network, and therefore, future consideration of the 

temporal variation influence within ATIN, as well as its directionality might improve our understanding of the network 

(dynamic) behavior. Finally, as most global ATIN are connected, it is also important to evaluate how the robustness, 

or lack thereof, of one network can cascade (present systemic-risks) to affect other ATIN by conducting networks-of-

networks type of analysis.  

Overall, system-level infrastructure management is centered around optimally allocating the resources 

needed to enhance the system operation continuity and functionality against potential systemic risks. Towards 

achieving this optimal goal, the current study provides a practical tool for airspace managers and planners, supported 

by risk of operating cost losses, to advance the ATIN robustness assessment following effective proactive systemic 

risk management strategies. 
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CHAPTER 3: DISCUSSIONS AND CONCLUSIONS 

The current study considers key factors and their combinations in assessing robustness for a specific type of civil 

infrastructure which is air transportation infrastructure networks (ATIN). The Canadian Domestic Air Traffic Network 

(CDATN) was used as an application to demonstrate the proposed methodology. The CDATN consists of 47 nodes 

(airports) and 123 links (routes), which accounts for 8,380 weekly domestic flights. The criteria for data collection 

included: 1) airports for civilian passenger flights; 2) airports with regular flight schedules; 3) and airports with 

accessible data. 

Resilience is key to face disruptions, i.e. random failure, natural disasters, technical failures and human errors. 

Resilience can be assessed by measuring the “ability to prepare, absorb, recover from, and successfully adapt to 

adverse events” (National Academy of Sciences, 2012). Thus, resilience depends on several functions, such as shock 

absorption, adapting to new conditions and rapid recovery assets (Wang et al., 2018; Bruneau et al., 2003). 

Furthermore, it considers the mounting complexity of the networks resulting from increasing interdependencies as 

well as the changes in unforeseen unexpected events (Santora and Wilson, 2008; O’Rourke, 2007). 

For summarization, the destructive events, along the disruption time, results in a system performance losses 

or “downward-trend” or, that followed by a bounce-back or “upward-trend”, represented the network recovery 

behaviour (Santora and Wilson, 2008; Bruneau et al., 2003).  This resilience curve provides a theoretically appropriate 

description of the several resilience functions which can be analyzed by quantitative performance attribute (O’Rourke, 

2007). Worth mentioning that the less the performance loss (“downward-trend”) and the rapidly the bounce back 

(“upward-trend”) of a network after a disruptive event indicates the higher network resilience (Ganin et al., 2016). 

Therefore, it is not very sound to evaluate the overall network resilience with a single, aggregated network 

performance attribute, as it is obvious that resilience function depends on multiple phases that can be calculated by 

other attributes. So, a group of attributes is utilized to demonstrate the different stages/phases of resilience and different 

network behaviours (Ganin et al., 2016; Haimes et al., 2008; Bruneau et al., 2003). The resilience framework proposed 

by MCEER (2005) considers 4R attributes as resilience attributes including robustness, redundancy, resourcefulness 

and rapidity. 

The robustness attribute clarifies the network’s ability to withstand or resist disruption events within 

acceptable damage levels. The robustness corresponds to the concept of reliability and is similar to the elasticity 
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threshold limit in material science (Masten et al., 1990).  While the distinction between the event occurrence, including 

system degradation, and the lowest point of the “downward-trend” is often expressed using redundancy and 

resourcefulness functions (Bruneau, et al., 2003). Redundancy is the extent system components can be substituted and 

have the capability to satisfy functional requirements in the disruption event. In case simulating the studied system as 

a network including the nodes that represent the various system components and the links that represent the linkage 

between system components, the redundancy attribute can be calculated based on CNT clustering coefficient (in this 

study both, weighted and unweighted clustering coefficient can be utilized) (Jing et al., 2019; Yazdani and Jeffery, 

2011). This can be applied by calculating the average clustering coefficient after the occurrence of the disastrous 

event. However, resourcefulness represents the ability to recognize problems, set priorities, and allocate resources in 

disruption cases. Recovery behaviours, in the “upward-trend” phase, are assessed using rapidity function (Haimes et 

al., 2008) that measures the ability to achieve performance targets in a timely manner to suppress damage impact and 

prevent potential disruption. Largely, and through the literature, system resilience for critical infrastructures can be 

calculated by different methodologies.  The most utilized methodology is to calculate it depending on the 4R attributes 

or any other attributes utilized to determine it (Vurgin et al., 2011; Haimes et al., 2008; Bruneau et al., 2003) through 

calculating the arithmetic mean the attribute values (Rehak et al., 2019; Shin et al., 2018; Vurgin et al., 2011). 

Largely, for an integrated risk management process in a multidisciplinary infrastructure, it is very important 

to diversify the capabilities of system components and enhance the dialogue between multiple disciplines. As the 

dialogue will result in cooperation between these different regimes and could, in turn, boost regulatory effectiveness. 

This should be in parallel with the efforts exerted by the authorities and the private sector to define, apply and enforce 

the appropriate regulations. In other words, exploiting the synergies between the public regulators and the private 

industries will help effectively to overcome the challenges rooted from risks and achieve the aspired goals. Therefore, 

awareness of risk issues among people and organizations is a prerequisite for an efficient risk management process. 

Therefore, educating, training, communicating, adequately articulating self-organization, and centralized risk 

management are all so crucial for achieving the improvement of civil infrastructure performance. 

Finally, it is important to highlight some of the limitations in this study that might need to be addressed in 

future work. For example, the network routes can be modeled as directed links to give more flexibility to the network 

simulation in case outbound and inbound routs are not identical under the disruptive events. Temporal changes in the 
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network topology can also be addressed in the further studies. A temporal network (time-varying network) is 

a network with links that can be active or inactive throughout different points in time. Once a link is active, its 

characteristics (e.g., its weight) is considered in the network simulation and will thus affect the network topology and 

the analysis results. Different attack probability profiles may also be considered for the network components (nodes 

and links) to give different perspectives of the system behaviour under different risk scenarios (e.g., sequential 

cyberattacks). Finally, an integration between the entire decision-making and the risk analysis processes and their 

interaction, although challenging, would show the extent of systemic risk and its best management strategy solutions 

for the infrastructure mangers and regulators (e.g., Transport Canada or the US Federal Aviation Adminstration). 

 In conclusion, Risk is multidimensional because several aspects affect its components: hazards, exposure, 

and vulnerability. Even such aspects are more diverse in a world where economic, physical, informational 

connections/linkages are increasing on a daily base. Therefore, tailoring up a systemic risk policy entails integrating 

the complex interactions of these aspects. In many fields, risk assessment approaches are supposed to go beyond 

traditional occurrence/consequence probabilities and contemplate environmental and social factors that affect hazard 

exposure/transmission. In addition to considering the effects induced by risk management policies on the linkages 

among the different system components to blunt the effectiveness of the adopted policies. So, it is crucial to bring 

together specialized knowledge in every aspect including engineering applications, sociology and economics to 

broaden risk issues’ perspective. 
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APPENDIX 

Table A-1: The formula for the different measures in the CDATN  

Measure Formula Measure Formula 
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𝑎𝑖𝑗 𝑎𝑗𝑘 𝑎𝑖𝑘 

𝑖≠𝑗≠𝑘

                  

𝑪𝑩(𝒊)𝒅 
𝑛(𝑖)𝑑

𝑀
                                                                                                         𝑪(𝒊)𝒘𝒇 

1

𝑘𝑖(𝑘𝑖 − 1)
∑

1

< 𝑤𝑖
𝑓

>
 
𝑤𝑖𝑗

𝑓
+ 𝑤𝑖𝑘

𝑓

2
𝑎𝑖𝑗 𝑎𝑗𝑘 𝑎𝑖𝑘 

𝑖≠𝑗≠𝑘

                  

𝑪𝑩(𝒊)𝒇𝒕 
𝑛(𝑖)𝑓𝑡

𝑀
                                                                                                         𝑪(𝒊)𝒘𝒇𝒕 

1

𝑘𝑖(𝑘𝑖 − 1)
∑

1

< 𝑤𝑖
𝑓𝑡

>
 
𝑤𝑖𝑗

𝑓𝑡
+ 𝑤𝑖𝑘

𝑓𝑡

2
𝑎𝑖𝑗 𝑎𝑗𝑘 𝑎𝑖𝑘 

𝑖≠𝑗≠𝑘

                  

𝑪𝑩(𝒊)𝒇𝒅 
𝑛(𝑖)𝑓𝑑

𝑀
                                                                                                         𝑪(𝒊)𝒘𝒇𝒅 

1

𝑘𝑖(𝑘𝑖 − 1)
∑

1

< 𝑤𝑖
𝑓𝑑

>
 
𝑤𝑖𝑗

𝑓𝑑
+ 𝑤𝑖𝑘

𝑓𝑑

2
𝑎𝑖𝑗 𝑎𝑗𝑘 𝑎𝑖𝑘 

𝑖≠𝑗≠𝑘

                

𝑪𝑩(𝒊)𝒇𝒗 
𝑛(𝑖)𝑓𝑣

𝑀
                                                                                                         𝑪(𝒊)𝒘𝒇𝒗 

1

𝑘𝑖(𝑘𝑖 − 1)
∑

1

< 𝑤𝑖
𝑓𝑣

>
 
𝑤𝑖𝑗

𝑓𝑣
+ 𝑤𝑖𝑘

𝑓𝑣

2
𝑎𝑖𝑗 𝑎𝑗𝑘 𝑎𝑖𝑘 

𝑖≠𝑗≠𝑘

                  

𝑪𝑪(𝒊)𝒍 
𝑁 − 1

∑ 𝑑𝑖𝑗
𝑙

𝑖≠𝑗

                                                                                                𝑪(𝒊)𝒏 ∑ 𝑤𝑖𝑗
𝑛

𝑘𝑖

𝑛=1

                                                                                 

𝑪𝑪(𝒊)𝒕 
𝑁 − 1

∑ 𝑑𝑖𝑗
𝑡

𝑖≠𝑗

                                                                                                𝑪(𝒊)𝒇 ∑ 𝑤𝑖𝑗
𝑓

𝑘𝑖

𝑛=1

                                                                               

𝑪𝑪(𝒊)𝒅 
𝑁 − 1

∑ 𝑑𝑖𝑗
𝑑

𝑖≠𝑗

                                                                                                𝑪(𝒊)𝒇𝒕 ∑ 𝑤𝑖𝑗
𝑓𝑡

𝑘𝑖

𝑛=1

                                                                            

𝑪𝑪(𝒊)𝒇𝒕 
𝑁 − 1

∑ 𝑑𝑖𝑗
𝑓𝑡

𝑖≠𝑗

                                                                                                𝑪(𝒊)𝒇𝒅 ∑ 𝑤𝑖𝑗
𝑓𝑑

𝑘𝑖

𝑛=1

                                                                           

𝑪𝑪(𝒊)𝒇𝒅 
𝑁 − 1

∑ 𝑑𝑖𝑗
𝑓𝑑

𝑖≠𝑗

                                                                                                𝑪(𝒊)𝒇𝒗 ∑ 𝑤𝑖𝑗
𝑓𝑣

𝑘𝑖

𝑛=1

                                                                            

 

 

 

 

 

 

 

 

 


