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Lay Abstract

Applications employing very large datasets are increasingly common in this
age of Big Data. While these applications provide great benefits in various do-
mains, their usage can be hampered by real-world privacy and security risks.
In this work we propose algorithms which aim to provide privacy and security
protection in different aspects of these applications. We address the problem of
data privacy; when the datasets used contain personal information, they must
be properly anonymized in order to protect the privacy of the subjects to which
the records pertain. We propose two practical algorithms for anonymization
which are also utility-centric. We address the problem of application security,
specifically for Deep Learning applications where adversaries can use minimally
perturbed inputs to cause a neural network to produce incorrect outputs. We
propose an approach which protects against these attacks. We provide ex-
perimental results to demonstrate the effectiveness of our algorithms for both
problems.
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Abstract

Applications employing very large datasets are increasingly common in this
age of Big Data. While these applications provide great benefits in various do-
mains, their usage can be hampered by real-world privacy and security risks.
In this work we propose algorithms which aim to provide privacy and secu-
rity protection in different aspects of these applications. First, we address
the problem of data privacy. When the datasets used contain personal infor-
mation, they must be properly anonymized in order to protect the privacy
of the subjects to which the records pertain. A popular privacy preserva-
tion technique is the k-anonymity model which guarantees that any record
in the dataset must be indistinguishable from at least k − 1 other records in
terms of quasi-identifiers (i.e. the subset of attributes that can be used to de-
duce the identity of an individual). Achieving k-anonymity while considering
the competing goal of data utility can be a challenge, especially for datasets
containing large numbers of records. We formulate k-anonymization as an op-
timization problem with the objective to maximize data utility, and propose
two practical algorithms for solving this problem. Secondly, we address the
problem of application security; specifically, for predictive models using Deep
Learning, where adversaries can use minimally perturbed inputs (a.k.a. ad-
versarial examples) to cause a neural network to produce incorrect outputs.
We propose an approach which protects against adversarial examples in im-
age classification-type networks. The approach relies on two mechanisms: 1)
a mechanism that increases robustness at the expense of accuracy; and, 2)
a mechanism that improves accuracy. We show that an approach combin-
ing the two mechanisms can provide protection against adversarial examples
while retaining accuracy. We provide experimental results to demonstrate the
effectiveness of our algorithms for both problems.
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Chapter 1

Introduction

Increasing amounts of information are being collected, digitized and made
available for various uses in this age of Big Data. Most applications employing
immense datasets can be broadly categorized as belonging either to Data Min-
ing or Machine Learning. While both types of applications involve detecting
and identifying patterns and links within very large datasets, in Data Mining
one is more focused on the extraction of knowledge, which could be further an-
alyzed and used for different purposes (Han et al., 2011); whereas in Machine
Learning, the goal is to enable future predictions and decisions via building
a mathematical model, which could implicitly capture patterns that are too
large and too complex for humans to understand (Shalev-Shwartz and Ben-
David, 2014), whereby tasks are performed often without explicitly revealing
the patterns. While these applications provide great benefits in various do-
mains, their usage can be hampered by real-world privacy & security risks. In
this work, we address two problems concerning such risks: 1) preserving data
privacy for Data Analytics; and, 2) improving application security for Machine
Learning algorithms. In Sections 1.1 and 1.2 of this chapter, we introduce and
describe the two problems in detail. We then give an overview for the contri-
butions of this work and outline the structure for the remaining of this thesis
in Section 1.3.

1.1 Preserving Data Privacy with k-Anonymity

Data mining tasks often involve privacy sensitive information, such as medi-
cal records, financial transactions and location footprints. These tasks require
special treatment of the data in order to minimize privacy risks ideally with-
out sacrificing utility of the underlying tasks. A common practice to address
privacy concerns is the k-anonymity model which guarantees that each in-
dividual record in the dataset is indistinguishable from at least k − 1 other
records, so the probability of re-identification is always less than or equal to
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1/k (Samarati and Sweeney, 1998; Sweeney, 2002). While other disclosure
limitation techniques such as adding noise (Chawla et al., 2005), statistical
obfuscation (Burridge, 2003; Ardagna et al., 2011), data perturbation (Liu
et al., 2006) and more recently differential privacy (Dwork, 2011) have been
developed to decrease privacy risks, the k-anonymity model is relevant and
desirable when individual records must remain truthful to their origins after
the privacy preservation technique is applied. The truthfulness characteristic
and the fact that the model was recommended in different privacy legislation
and guidelines (such as HIPAA (U.S. Department of Health & Human Ser-
vices, 2015) and FIPPA (Information and Privacy Commissioner of Ontario,
2016)) contributed to the wide adoption of k-anonymity and multiple algo-
rithms (e.g., (Bayardo and Agrawal, 2005; Byun et al., 2007; El Emam and
Dankar, 2008; Zhang et al., 2017; Doka et al., 2015; Lee et al., 2017)) have
been devised for application of the technique to privacy-sensitive dataset prior
to release.

In this research we adopt the k-anonymity model for privacy preservation.
We aim to provide practical algorithms for k-anonymization while striving to
maximize data utility.

1.2 Improving Application Security in Machine

Learning Algorithms

Machine Learning algorithms are useful in many applications where there is
not enough expert knowledge, or there is simply too much data for manual
construction of a model. Deep neural networks (DNN) are being increasingly
adopted to perform a wide range of tasks from navigation and personal recom-
mendation systems for consumer use to larger scale decision making systems
such as speech recognition and computer vision. However, application of DNN
in safety critical systems is hampered by its vulnerability to adversarial exam-
ples, where an adversary uses carefully crafted small amounts of perturbations
to force the DNN to make erroneous classifications. Image classification-type
networks are especially susceptible to adversarial examples, where multiple
algorithms have succeeded in crafting these by adding only small amounts of
perturbations to the input image (Szegedy et al., 2014; Goodfellow et al., 2015;
Kurakin et al., 2017; Papernot et al., 2016b; Carlini and Wagner, 2017). We
give examples of such attacks in Fig. 1.1a and Fig. 1.1b, where original images
are displayed on the left column, the adversarial examples crafted for these im-
ages are on the right column and the pixels of perturbations are in the middle
column, for the MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky, 2009)
datasets. Note that for CIFAR10, the perturbations have been scaled up 15×
for better visualization, the actual perturbations are not noticeable at all.
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In this research, we aim to provide an approach for image classification-type
networks that protects against adversarial examples.

(a) MNIST: target = 0 (b) CIFAR10: target = airplane

Figure 1.1: Adversarial Examples using Carlini-Wagner attack

1.3 Thesis Outline and Major Contributions

The main content of this thesis is structured as follows: in Chapter 2 we
provide a literature review on the two problems we are setting out to address,
and identify the specific gaps with brief high-level descriptions of our work.
In Chapter 3 we present our algorithms for utility-centric privacy preservation
using the k-anonymity model. The key contributions of Chapter 3 are:

1. We formulate utility-centric k-anonymization as an MILP (Mixed Integer
Linear Program) with a weighted objective function to minimize infor-
mation loss, subject to the constraint of satisfying k-anonymity. The
weights can be customized to suit different research uses.

2. We devise two practical algorithms for solving the MILP, with experi-
mental results to demonstrate their scalability to large datasets.

3. We present benchmarking results with other algorithms and provide a
discussion on the results, with highlights on the differentiating aspects
of our algorithms that contributed to better performance or utility.

In Chapter 4 we present our approach for improving robustness in neural
networks. The key contributions of Chapter 4 are:

3
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1. We develop an approach for protecting against adversarial examples, by
combining two mechanisms, where one mechanism increases robustness
at the expense of accuracy while the other mechanism improves accuracy.

2. We formulate potential attacks on our combined approach and provide
experimental results to demonstrate the effectiveness of our approach.

3. We show that one of the formulated attacks increases transferability rate
across MNIST networks (without protection mechanism) and can serve
as an attack for ensemble networks with a reasonable success rate.

The work of Chapter 3 was published in Computers & Security1, and the
work of Chapter 4 was submitted to ICML 20202. The author of this thesis
is the first author for both works, which were co-authored by her supervisor.
The content of Chapter 3 appears mostly unchanged from that in (Liang and
Samavi, 2020), except for minor edits and restructuring. We improved the
presentation of the experimental evaluations for Chapter 4 from that in the
submission, including adding another section to further demonstrate the work-
ings for one of the mechanisms. We also rewrote literature review and future
work for this research.

We conclude this thesis and provide directions for future research and stud-
ies in Chapter 5.

1https://www.journals.elsevier.com/computers-and-security
2https://icml.cc/
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Chapter 2

Literature Review

In this chapter, we discuss the related work of the two problems to identify
gaps and motivate our research.

2.1 On k-Anonymization

The model of k-anonymity for privacy protection from its introduction by
Samarati and Sweeny (Samarati and Sweeney, 1998; Sweeney, 2002) has re-
ceived considerable attention from the research community and over years
different algorithms have been proposed for applying generalization and sup-
pression techniques in order to achieve k-anonymity. The algorithms differ
depending on the domain of application (e.g., data publishing, data mining
and statistical disclosure control) (Ayala-Rivera et al., 2014) or the techniques
used to provide k-anonymity guarantee while preserving data utility.

Among these algorithms many seek to achieve k-anonymity using search
strategies or optimization objectives (Bayardo and Agrawal, 2005; Xiao and
Tao, 2006b,a; Li et al., 2007). Multiple research studies (e.g., (Aggarwal et al.,
2005; Meyerson and Williams, 2004; Xu et al., 2006)) have shown that opti-
mally solving a k-anonymization problem is an NP-hard problem. Thus, a
number of efficient algorithms have been developed to enable the practicabil-
ity of anonymization on large datasets. For the purpose of studying our related
work, we group the algorithms by the primary techniques or problem represen-
tations they use, as partitioning-based, clustering-based and heuristic-based.

The algorithms that employ a partitioning-based technique take a geomet-
ric view (exhibiting notions of hyper-cubes) on the problem. They can be seen
as taking a top-down approach, where the dataset is repeatedly partitioned
into smaller subsets according to some criteria, usually defined by thresh-
olds, where eventually partitions of size at least k are formed (LeFevre et al.,
2006). Partitioning-based algorithms usually have the advantage of efficient
performance, as equivalence classes are created in a one-pass manner without
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repeated visits to the constructed equivalence classes.
The clustering-based algorithms can be seen as taking a spatial view (but

not necessarily geometric due to the non-definitive shapes of the clusters) on
the problem, where clusters are formed based on the similarities of the records
represented as points in the space. These algorithms usually take a bottom-
up approach, in that clusters are formed in a successive manner until the
entire dataset is exhausted (Byun et al., 2007; Goldberger and Tassa, 2009;
Gionis et al., 2008; Aghdam and Sonehara, 2016). Clustering-based algorithms
appear naturally suited for k-anonymization, where information loss can be
appropriately encoded as a distance metric, and equivalence classes are clusters
of records of size at least k.

We consider as heuristic-based algorithms those that employ a specific
problem representation; in particular those algorithms which represent the
dataset as a graph, where the records are viewed as vertices, and equivalence
is defined via matchings (Tassa et al., 2012; Doka et al., 2015). The benefit
of sound problem representation is evident in the case of the Doka Hungarian
algorithm (Doka et al., 2015), where an existing algorithm (Hungarian for
finding perfect matchings) can be readily used for solving the problem.

In this work, we aim to provide a perspective from an optimization stand
point. The problem of maximizing utility while satisfying k-anonymity con-
straint is clearly an optimization problem. A mathematical formulation of
k-anonymity as an optimization problem allows us to gauge how much utility
is lost in any practical algorithms we devise compared to a theoretical opti-
mum. A similar approach has been taken by Zhang et al. (Zhang et al., 2017)
where a formal optimization problem is defined and k-anonymity by contain-
ment is considered the constraint. They defined containment as a subset S
of the feature space that satisfies k-anonymity. The focus of this proposal
is on categorical data (specifically binary data) only, with the objective to
maximize the size of subset S. In our work, we formulate the general optimal
k-anonymization problem as an MILP. While the general model has exponen-
tial complexity, we use two properties to devise a practical optimization-based
algorithm (Split & Carry): 1) records that are far apart are unlikely to end
up in the same equivalence class in an optimal solution; 2) equivalence in
k-anonymity is transitive. We remark that a global optimal solution is some-
times achieved with our algorithm, as will be demonstrated in Section 3.4.2
of our experimental evaluation. However, we recognize the cases where there
are many attributes or a larger k is desired, Split & Carry will have inefficient
performance and thus provide an alternative (Greedy Search) that provides
less utility but efficient performance. Our Greedy Search, inspired by the
Doka SortGreedy algorithm (Doka et al., 2015), employs a search strategy
and shares similar aspects with the K-Member Clustering algorithm proposed
by (Byun et al., 2007), these will be discussed in Section 3.4.3.

6
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2.2 On Robustness of Neural Networks

The task of finding an adversarial example involves adding perturbations to
an image to cause a network to misclassify, usually to some targeted label.
Ideally the amount of perturbations added should be small for the resulting
image to appear genuine. Since we can represent images as vectors of pixel
intensity values, the problem of finding adversarial examples can be naturally
represented as an optimization problem, where the objective is to minimize the
size of the perturbation vector, which can be captured by some norm function,
and the constraint is that the network should classify the perturbed image
(original input vector plus perturbation vector) as the target label. After for-
mulating this task as an optimization problem, Szegedy et al. (Szegedy et al.,
2014) transformed the constrained problem into a non-constrained problem
(up to box constraints) using a penalty method, with the loss function applied
to the perturbed image and target label as the penalty function. They then
solved the transformed problem using the L-BFGS1 algorithm. Surprisingly,
it turned out the amount of perturbations needed is usually very small.

Following the invention of the first adversarial example, Goodfellow et al.
provided a fast way for generating adversarial examples which uses only the
sign of the gradient of the loss function with respect to the input pixels, which
is inexpensive to compute (Goodfellow et al., 2015). Their method involves
perturbing all pixels of the input simultaneously by a small amount in the
direction of the sign of the gradient, hence the name fast gradient sign method.
When each pixel is perturbed by a very small amount (especially if it’s less than
the amount of precision in the features), the effect on the resulting image will
be imperceptible. However, they argued that the change in activation due to
the small perturbation will grow linearly in the size of the weight vector (since
weights are applied at each layer to the previous output layer), eventually
adding up to a large change in the final output.

The fast gradient sign method uses a pre-selected magnitude of perturba-
tion. It was later extended by Kurakin et al. into an iterative version that
applies the base method multiple times, with a smaller step size, as to reduce
the magnitude of the perturbation applied(Kurakin et al., 2017).

Papernot et al provided a method that takes on a different approach than
searching along the direction of the gradient of the loss function (Papernot
et al., 2016b). Their method is an iterative scheme that loops over each pixel
to determine whether it should be increased, until the network classifies the
perturbed image as the target or if the magnitude of the perturbation has
reached a pre-defined threshold. The main idea is to increase a pixel if doing
so increases the probability of the resulting image being classified as the target.
First, the total forward derivative ∇F of the network F with respect to each

1Optimization algorithm, to be discussed in 4.1.1.
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pixel is computed. Then for a specific target t, the component derivative ∇Ft
corresponding to t is examined. The adversary increases the value of a pixel xi
if ∂Ft/∂xi is positive. i.e., increasing the value of xi increases the probability
corresponding to t in the output vector.

Shortly after the inventions of the above methods for crafting adversar-
ial examples, a relatively recent defence system known as Defensive Distilla-
tion (Papernot et al., 2016a) was devised, which at the time was shown a great
success as it resisted all adversarial examples described above. Unfortunately,
Defensive Distillation was soon defeated by the Carlini-Wagner attack (Carlini
and Wagner, 2017). We further discuss these two works in Chapter 4 where
we develop the ideas for our approach. In this research, we first dissect the
underlying vulnerabilities of prior attacks that led to the temporary success
of Defensive Distillation, and discuss how the Carlini-Wagner attack was able
to escape those vulnerabilities. Then, we build our defence system using some
aspects of Defensive Distillation, plus an obscuring mechanism for the iterative
scheme used by Carlini & Wagner. Although the mechanism was developed
with Carlini-Wagner in mind, theoretically it should work in general on any
iterative scheme that relies on outputs from some layers of the network.

Our intuition for creating such a defence also relies on the idea of train-
ing an ensemble of networks and using the aggregate outputs of the networks
to decide on a final output. A similar voting mechanism proved successful
for protecting data privacy via differential privacy in PATE (Papernot et al.,
2017), where the training set containing sensitive data is partitioned into dis-
joint sets, each is used for training a teacher network. The mechanism of
PATE relies on partitioning and keeping the sensitive data secret to provide
data privacy. Then PATE uses a voting mechanism which serves two purposes:
1) compiling the outputs from the partitioned sensitive data to ensure correct
final output; and 2) carefully adding random noise to the aggregate votes to
ensure differential privacy. In our case, the intent of using an ensemble is to
minimize the probability of a successful attack by increasing the amount of
effort, and potentially increasing the amount of perturbation to an image so
the attack becomes noticeable (i.e. fails).

8



Chapter 3

Optimization-Based
k-Anonymity Algorithms

In this chapter, we present our practical algorithms for achieving utility-centric
k-anonymity. The structure of this chapter is as follows. In Section 3.2 we in-
troduce a mathematical formulation for the k-anonymization process, followed
by discussions on several aspects of the model including complexity, weight-
ing attributes, treatment of categorical data and the utility metric. We then
present two practical algorithms for k-anonymity in Section 3.3, with test-
ing results in Section 3.4 to demonstrate their optimality and performance.
In Section 3.4 we also present some benchmarking results with similar algo-
rithms and scalability measure for our algorithms to show they can be used for
anonymizing large datasets. We briefly discuss alternate forms of k-anonymity
in Section 3.5 and conclude the chapter in Section 3.6.

3.1 Preliminary

The process of k-anonymization involves applying two major operations: gen-
eralization and suppression. In generalization the value of an individual at-
tribute is replaced with a broader category (e.g., Age: 54 will be replaced
by Age: 50-60). When generalization is not applicable or will not achieve
k-anonymity, record-level or attribute-level suppression will be applied, where
the entire record or the cell value will be deleted, respectively. The operation
of generalization will impact the utility of the anonymized dataset variably
depending on the degree of generalization (and in a worst case suppression).
For example, Age: 54 can be generalized to Age: 50-60 or Age: 50-55, where
more information loss is incurred in the former than in the latter. Thus, it is
desirable that while k-anonymity is guaranteed, the objective of maximal util-
ity be built into the anonymization process. The objective of this work is to
formulate the anonymization process as a mathematical optimization problem,

9
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where we seek to maximize data utility subject to k-anonymity constraints.
Although in general the k-anonymization process is NP-hard (Meyerson and
Williams, 2004), an optimal formulation is valuable as it can provide insights
into the complexity of the problem, serve as a basis for developing heuristics
and as a benchmark tool for future algorithms.

In this work, we focus on the generalization operation of k-anonymity and
define information loss for each attribute as the ratio between the range of
anonymized values and the range of the possible values of the attribute. For
example, if the permissible upper and lower bounds for Age is [0, 100], then
generalization of the attribute value to 50-55 leads to an information loss value
of 0.05 (= (55−50)/(100−0)) compared to information loss value of 0.1 when
the attribute value is generalized to 50-60. Thus, the former generalization is
favoured by the objective function. We also introduce a weight vector W for
the attributes involved in the generalization operation such that the relative
importance of each attribute in information loss can be customized by the user.
We formulate the model as a Mixed Integer Linear Program (MILP). Given
the complexity of MILP, we then propose two practical algorithms based on
the intuition that rows of data that are closer to each other are likely to end
up as equivalent rows. For example, if the dataset has just a single attribute
with numerical values (e.g., Age), then neighbouring rows of the sorted column
are relatively closer to each other and the operation of generalization will only
involve grouping consecutive records. We capture the concept of closeness
with a preprocessing step of sorting the dataset for numerical values. When
we are facing multiple attributes, we use variance for determining the relative
order of the sorting among attributes. Although we are not able to provide
a rigorous proof in this work, we observe empirically that an attribute with
less variance incurs more information loss when generalized compared to an
attribute with larger variance. Therefore, the attribute with less variance will
be sorted first.

Our first heuristic model is based on splitting and carrying over records
between the split subsets (Split & Carry algorithm). The splitting allows us
to solve a sequence of smaller sub-problems with MILP. By carrying over a
portion of records from each sub-problem we provide a linkage between the
otherwise disjoint sub-problems. Although the complexity of this algorithm
is linear in the number of the records, it is very sensitive to the number of
attributes or what is called the curse of dimensionality (Aggarwal, 2005). To
address the dimensionality problem, we develop a Greedy Search algorithm
inspired by the algorithm presented in (Doka et al., 2015), however, with the
difference that our algorithm generates anonymized datasets consistent with
the general definition of k-anonymity (not based on the customized definition
in (Doka et al., 2015)).
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3.2 General Optimal Model

In this section we first provide a preamble to the optimal model including
the mathematical definitions of k-anonymity and the necessary mechanics for
model formulation (Section 3.2.1). We then formulate k-anonymity as a gen-
eral Mixed Integer Linear Program (MILP) and discuss its complexity in Sec-
tion 3.2.2. In Section 3.2.3 we discuss an initial feasible solution which is the
basis of our heuristic algorithms. Two additional aspects in our optimal model
formulation, weighting the attributes and treating categorical attributes are
discussed in Section 3.2.4 and Section 3.2.5, respectively.

3.2.1 Definitions

The following definitions can be found throughout various k-anonymity liter-
ature; here we state them in the context of our general optimal model.

DEFINITION 1: Quasi-identifiers are subsets of attributes of a dataset which
can be used to deduce the identity of an individual.
Note: In this paper all attributes are considered as quasi-identifiers.

DEFINITION 2: k-anonymity is achieved in a dataset if each record of the
dataset cannot be distinguished from at least k − 1 other records by quasi-
identifiers.

DEFINITION 3: k-anonymization is the procedure of applying generaliza-
tion and suppression to the quasi-identifiers of the dataset in order to achieve
k-anonymity.

DEFINITION 4: Let x be an n×m matrix of records with each column corre-
sponding to a quasi-identifier and each row corresponding to a record of some
subject. Let x′ be the matrix obtained from x by generalization, and x′ij denote
the generalized value of an entry xij of x for attribute j ∈ J := {1, 2, ...,m}
on record i ∈ I := {1, 2, ..., n}. We can write x′ij as:

x′ij = [yij, zij], (3.2.1)

where yij and zij are the lower and upper bounds for the generalized values of
xij and yij ≤ xij ≤ zij. Then the degree of information loss, Dij, for the entry
xij, is defined to be:

Dij =
zij − yij
Uj − Lj

, (3.2.2)

11
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where Uj , Lj are the minimum and maximum permissible values of attribute
j. Note that:

0 ≤ zij − yij
Uj − Lj

≤ 1. (3.2.3)

When yij = xij = zij, information is not generalized and the entry has 0 infor-
mation loss. When yij = Lj, zij = Uj, all information about this entry is lost,
i.e., the attribute is suppressed.

LEMMA 1: Let vil be a binary variable, let yij, zij be the lower and up-
per bounds that represent the generalized entry x′ij, for 1 ≤ i, l ≤ n, i 6= l,
and 1 ≤ j ≤ m. The following set of constraints guarantees k-anonymity in
the matrix x′: [

1 −1
] [yij
ylj

]
≤My(i, l, j)(1− vil) (3.2.4)

[
1 −1

] [yij
ylj

]
≥ my(i, l, j)(1− vil) (3.2.5)

[
1 −1

] [zij
zlj

]
≤M z(i, l, j)(1− vil) (3.2.6)

[
1 −1

] [zij
zlj

]
≥ mz(i, l, j)(1− vil) (3.2.7)∑

l 6=i

vil = k − 1, vil ∈ {0, 1} ∀i 6= l (3.2.8)

where My(i, l, j), M z(i, l, j) are upper bounds and my(i, l, j), mz(i, l, j) are
lower bounds on the pair (yij − ylj, zij − zlj).

Proof. We provide a construction of the constraints. Recognizing that the pro-
cess of k-anonymization involves selecting k rows and generalizing the entries
in such a way that the k rows are indistinguishable from each other, we need
to be able to represent equivalence between two rows. We want to show that
vil is the binary variable that represents whether rows i and l are equivalent.
Let yij, zij be the lower and upper bounds that represent the generalized entry
x′ij, and ylj, zlj represent those of x′lj. We want to impose the relation that:

(vil = 1)→ (yij = ylj & zij = zlj). (3.2.9)

Or equivalently for all j ∈ J :

(yij 6= ylj ∨ zij 6= zlj)→ (vil = 0). (3.2.10)

In other words, rows i, l are considered equivalent if each attribute of row i
has the same generalized lower and upper bounds as those of row l. We can

12
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formulate equation (3.2.9) as:

(vil = 1)→
([

1 −1
] [yij
ylj

]
= 0 &

[
1 −1

] [zij
zlj

]
= 0

)
. (3.2.11)

Using the ideas from (Mosek, 2018), which is in turn based on the books (Williams,
1993; Nemhauser and Wolsey, 1988), the above relation can be further decom-
posed as equations (3.2.4) - (3.2.7). It is also easy to see that relation (3.2.9)
is equivalent to equations (3.2.4) - (3.2.7); when vil = 0, we have:

my ≤ yij − ylj ≤My, (3.2.12)

mz ≤ zij − zlj ≤M z, (3.2.13)

which are true by definitions of my, mz, My and M z. When vil = 1:

0 ≤ yij − ylj ≤ 0, (3.2.14)

0 ≤ zij − zlj ≤ 0, (3.2.15)

i.e. when vil = 1, we have yij = ylj and zij = zlj.
Note that the constraint for the other direction

{(yij = ylj & zij = zlj) | ∀j ∈ J} → (vil = 1) (3.2.16)

is not necessary. To see this, suppose we have two sets of equivalent rows S1,
S2 such that:

vi1l1 = 1∀i1, l1 ∈ S1, vi2l2 = 1∀i2, l2 ∈ S2, (3.2.17)

|S1| = k − 1 = |S2|. (3.2.18)

Possibly there exists l ∈ S1∩S2, but vi1i2 6= 1 for i1 ∈ S1\{l} and i2 ∈ S2\{l},
i.e., in x′ we actually observe a larger set of equivalent rows:

S1 ∪ S2, |S1 ∪ S2| > k − 1, (3.2.19)

but in this case, the model interprets the situation as two non-disjoint equiv-
alent sets.

We have shown that the binary variables vil as constructed represent equiv-
alence between two rows. Then we can see immediately that for any row i to
be equivalent to k − 1 other rows, all such binary variables associated with
row i must sum to at least k − 1. Equation (3.2.8) provides the equality con-
straint, and the preceding discussion in equations (3.2.16) - (3.2.19) implies
the inequality.

DEFINITION 6: Let S1, S2 be two equivalence classes in x′ such that S12 :=
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S1∩S2 6= ∅. We say the records in S1\S12 and S2\S12 are indirectly equivalent.

DEFINITION 7: Finally, a general optimization problem can be mathemati-
cally defined as of the form:

min
x∈X

f(x)

Subject to g(x) ≤ 0.
(3.2.20)

In our context, f(x) is the objective function (information loss) and g(x)
is the set of k-anonymity and generalization range validity constraints.

3.2.2 Model Formulation

Using Definition 7 and Lemma 1, we formally state the optimization problem
for k-anonymization as follows:

min
(y,z,v)

∑
i∈I,j∈J

zij − yij
Uj − Lj

(3.2.21)

Subject to [
1 −1

] [yij
ylj

]
≤My(i, l, j)(1− vil) (3.2.22)

[
1 −1

] [yij
ylj

]
≥ my(i, l, j)(1− vil) (3.2.23)

[
1 −1

] [zij
zlj

]
≤M z(i, l, j)(1− vil) (3.2.24)

[
1 −1

] [zij
zlj

]
≥ mz(i, l, j)(1− vil) (3.2.25)∑

l 6=i

vil ≥ k − 1, vil ∈ {0, 1} ∀i 6= l& i, l ∈ I (3.2.26)

and
yij, zij ∈ Z, ∀j ∈ SD ⊆ J (3.2.27)

yij, zij ∈ R, ∀j ∈ SC ⊆ J. (3.2.28)

Where:
yij, zij: upper and lower bounds in generalizing entry xij.
vil: binary variable for whether row i is equivalent to row l.
Uj, Lj: min and max permissible values of attribute j.
SC ⊆ J : the set of indices for continuous attributes.

14
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SD ⊆ J : the set of indices for discrete value attributes.

We choose the bound constants for the ith and lth record of attribute j as
follows:

My(i, l, j) = max(xij, xlj)− Lj ≥ yij − ylj, (3.2.29)

my(i, l, j) = Lj −max(xij, xlj) = −My(i, l, j) ≤ yij − ylj, (3.2.30)

M z(i, l, j) = Uj −min(xij, xlj) ≥ zij − zlj, (3.2.31)

mz(i, l, j) = min(xij, xlj)− Uj = −M z(i, l, j) ≤ zij − zlj. (3.2.32)

Remark: Note that by our choice of lower bound constants, it might seem that
inequalities (3.2.5) and (3.2.7) are redundant as my = −My and mz = −M z;
in fact both constraints are needed in order to ensure relation (3.2.9) is satis-
fied. Suppose we remove inequality (3.2.5). When vil = 1, to satisfy inequality
(3.2.4) we can actually have yij < yij, which would not satisfy relation (3.2.9).

We formulated the model described above as a Mixed Integer Linear Pro-
gram (MILP) which is NP-hard in general (Papadimitriou, 1981; von zur Ga-
then and Sieveking, 1978). There exist subclasses of MILPs which have better
complexity, but measuring the complexity of any MILP itself is a difficult
task and relies on heuristics and conditions on the constraint matrix (Genova
and Guliashki, 2011). Meyerson and Williams showed that the general k-
anonymization problem (using suppression) is hard using Graph Theory tech-
niques (Meyerson and Williams, 2004).

MILPs are best solved using Branch-and-Cut (Branch-and-Bound with
Cutting Planes) methods (Genova and Guliashki, 2011). Therefore, it is not
surprising that many existing algorithms aim to solve a relaxed version of
the problem using some variant of Branch-and-Bound (Bayardo and Agrawal,
2005; Lee et al., 2017). Although MILPs are hard in general, there are commer-
cial implementations of Branch-and-Cut which are quite efficient (e.g., Gurobi
1 or CPLEX 2); there are also heuristics for selecting better nodes at which to
branch out (e.g., (Bayardo and Agrawal, 2005)).

To confirm whether commercial solvers can provide any breakthrough to
the complexity of our optimal formulation, we implemented our MILP model
in Python with state-of-the-art optimization solver Gurobi, which implements
the Branch-and-Cut method in parallel (Gurobi Optimization, LLC., 2018).
Gurobi and CPLEX are arguably the best available MILP solvers (Mittelmann,
2018). We have also implemented the general model with CPLEX and open
source solver CBC 3; we ran a few simple tests. We take a small example

1http://www.gurobi.com/
2https://www.ibm.com/products/ilog-cplex-optimization-studio
3https://projects.coin-or.org/Cbc
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Name Age Sex Zipcode Disease
Mary 37 F 22071 Pneumonia
Alice 35 F 22098 Diabetes
Betsy 36 F 23061 Anemia
David 61 M 55107 Pneumonia
Tom 63 M 55099 Diabetes
James 66 M 55324 Diabetes
Eric 63 M 55229 Diabetes

(a) Original dataset ((Lee et al., 2017))

Age Sex Zipcode
[35-37] [0-0] [22071-23061]
[35-37] [0-0] [22071-23061]
[35-37] [0-0] [22071-23061]
[61-66] [1-1] [55099-55324]
[61-66] [1-1] [55099-55324]
[61-66] [1-1] [55099-55324]
[61-66] [1-1] [55099-55324]

(b) 3-anonymized outcome

Table 3.1: Example of anonymized Electronic Health Record

from (Lee et al., 2017) in Table 3.1a to demonstrate the outcome of our model
in Table 3.1b, where we anonymized three quasi-identifiers (Age, Sex, and
Zipcode) using our optimal MILP model.

Although we found comparable performance between Gurobi and CPLEX
which both are 30x faster than CBC, even the fastest solver struggles to
solve the k-anonymity MILP on a dataset with the size of 100 records and
8 attributes in a reasonable amount of time. Therefore, devising practical
algorithms is necessary for solving k-anonymity problems.

3.2.3 Initial Feasible Solution

In light of the complexity of the optimal model, we provide an initial feasible
solution to the solver to prune some of the sub-optimal nodes early on in the
search. The idea behind our initial feasible solution is that rows of records that
are closer to each other are likely to end up as equivalent rows. For example, if
we have just a single column of numbers, then neighbouring rows of the sorted
column are close together. However, when we have multiple columns, we need
to determine the order of the attributes with which we compare the tuples.

The individual information loss component of attribute j

Dj =
n∑
i=1

Dij =
n∑
i=1

zij − yij
Uj − Lj

(3.2.33)

depends largely on the upper-lower bound gap Uj −Lj where the information
loss is inversely proportional to the gap. Thus, for columns with smaller upper-
lower bound gaps, we would like their entries to appear as sorted as possible
in the matrix; however, it is likely that we have multiple columns with the
same gaps (e.g., when we have multiple binary attributes). For this reason, we
opted to use ascending variance for determining the order. In general a larger
upper-lower bound difference contributes to a larger variance in the column.
Moreover, for attributes with the same upper-lower bound gaps, because the
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(a) Original dataset (b) Sorted by variance

Table 3.2: FARS dataset on 4 attributes

values of their entries lie within intervals of the same length, a larger variance
implies the values are more dispersed on the interval; whereas a smaller vari-
ance implies there are more points centred around the mean, which leads to
larger information loss when we try to bring such points to equivalent sets with
those points near the boundaries. Therefore, attributes with smaller variances
will be sorted first and attributes with larger variances last. We demonstrate
the impact of sorting based on variance with the following example.

Consider an example of a dataset from the FARS (US Department of Trans-
portation, 2016) database containing traffic accidents data. This dataset con-
tains 20 records with 4 attributes (AGE, SEX, INJ SEV (injury severity) and
DRINKING). In Table 3.2a we have the original dataset, and in Table 3.2b
we show the dataset sorted with comparison order determined by increasing
variance. The actual equivalence classes determined by our optimal MILP are
{0,2,15,17}, {1,11,12}, {3,4,18}, {5,6,8,9}, {7,10,16}, and {13,14,19}. Notice
most of the equivalence classes appear as consecutive rows in the sorted matrix.
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3.2.4 Weighting Attributes

Another observation made is that in our current optimal modelling of k-
anonymity, all attributes are treated equally in their impact on information
loss encoded as the objective function. However, generally speaking utility is
a subjective measure and depending on the use, some researchers might prefer
to have less information loss in certain attributes even if it is at the expense of
other attributes. By placing weights on the attributes, the requester of data
has some control over which attributes he/she would want to have tighter gen-
eralized bounds. We use W to assign weight wj for all j ∈ J (the set of indices
of all attributes). W is used to adjust the likelihood of an attribute being
generalized/suppressed in the anonymization process, where a larger weight
means the attribute is less likely to be generalized/suppressed. We provide
an example in Appendix A.1 to demonstrate the effect of applying unequal
weights to the attributes. Then the objective function in equation (3.2.21) is
adjusted as follows to include the attribute weights:

min
(y,z,v)

∑
i∈I,j∈J

[
wj
zij − yij
Uj − Lj

]
. (3.2.34)

We have to also add the following additional constraint to the model:∑
j∈J

wj = 1. (3.2.35)

Applying weights to the initial feasible solution (Section 3.2.3) requires an
additional step. When we have a vector of unequal weights, we need to scale
the variances of the columns to reflect the weights in the objective function.
Variances for attributes with smaller weights need to be scaled by a larger
amount than those with larger weights. Therefore, we can adjust the variance
function with

wV ar(cj) :=
V ar(cj)

w2
j

, (3.2.36)

for column cj with weight wj, j ∈ J := {1, ...,m}.

3.2.5 Categorical Data

The objective function in our formulation suffers from one drawback. The
information loss calculated as in Definition 4 would only make sense if the
subtraction between two permissible values is defined, i.e., a clear distance
metric is defined for the attribute. This is also a problem for the initial feasible
solution in Section 3.2.3 where sorting is undoubtedly based on a distance
metric. For binary data, there is a natural distance metric; however, for some
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categorical data with more than two permissible values, the distance metric
is not clear. One way to mitigate the problem is to number the permissible
values of a categorical attribute in a way that implies a sense of distance. For
example, if we have Countries as an attribute, we can number the countries
based on their geographical distances to some reference country (e.g. Canada)
or language similarity. If the attribute is important to the researcher, and a
weak sense of distance is not adequate, then we can split the categorical data
into binary data where each new attribute corresponds to one permissible value
of the original categorical attribute. When we are converting categorical data
to binary data, we recommend adjusting the weight by multiplicative factor
of 1/|H|, where H is the set of permissible values of the categorical attribute.
This puts the sum of utility loss of the constituent binary attributes to be
within the range [0,1] and thus the original categorical attribute still satisfies
equation (3.2.3) of Definition 4. This treatment of categorical data is similar
to the Global Certainty Penalty (GCP) utility function in (Wong et al., 2010;
Doka et al., 2015) and in fact there is a natural one-to-one correspondence from
one to the other. Please see Appendix A.2 for detailed definition of GCP.

3.2.6 On Utility Metric

For anonymization on relational datasets (or any dataset where each record
can be represented as a tuple of attributes), there are utility metrics which
are more general and applicable to different data types, such as the Discerni-
bility Metric (DM) (Bayardo and Agrawal, 2005) and Classification Metric
(CM) (Iyengar, 2002); however, these metrics do not measure the amount of
information loss contributed by the individual records which might be impor-
tant to the user of the anonymized data. Information loss metrics are used in
various literature (Ghinita et al., 2009; Wong et al., 2010; Doka et al., 2015),
especially when generalization is an operation used to anonymize the data.
In the formulation of our model in Section 3.2.2, we have defined our utility
metric to be the sum of the degree of information loss over each anonymized
entry x′ij as we aim to minimize the total amount of information loss in our
anonymization process, i.e., maximize the utility of the anonymized data. The
linearity of this metric is also desirable as linear optimization problems are
among the easiest subclass of optimization problems in terms of complexity
and availability of tools. We understand that the usefulness of this utility
function might be limited in some application domains. As described in Sec-
tion 3.2.4, we introduced W to help customize the utility function but this can
still be an issue when a more complicated utility function beyond an optimized
generalization is being sought. In theory our general optimal formulation can
be adapted to different utility metrics; however, since sorting is an important
part of our practical algorithms, ideally the utility metric should respect the
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ordering in the permissible values of each attribute, i.e., for permissible values
a1 < a2 < a3 the metric should favour anonymized outcome [a1, a2] to [a1, a3].

3.3 Practical Algorithms

We have implemented the general model with the best available MILP solver;
however, as we have discussed in the previous section, the complexity of the
model quickly leads to undesirable performance as we increase the number of
records, making the model unsuitable for practical use despite offering optimal
utility. We also provide an initial feasible solution which can help in pruning
some of the sub-optimal nodes early on in the search. In general it is not
easy to see how much performance improvement such initial solutions can
provide; moreover as the size of the problem increases, the majority of the
time for the solver is spent trying to improve the bounds between the so-far
best feasible node and the relaxed optimum. Even if we feed in an initial
solution that is optimal, the solver might still need to traverse many nodes
and solve many relaxed problems before determining that the solution was
already optimal. Therefore, in practice we cannot rely on solving the general
model to anonymize any reasonably sized dataset. In this section, we use
the initial feasible solution to devise two different practical algorithms with
improved utility over the initial feasible solution.

3.3.1 Split & Carry Algorithm

The first practical algorithm based on the initial feasible solution is the Split &
Carry algorithm. We use the initial solution to split the original problem into
smaller sub-problems with manageable sizes, i.e. sub-problems that are solv-
able using the general MILP. As discussed in Section 3.2.3, consecutive rows in
a sorted matrix are likely to be equivalent rows in an optimally k-anonymized
dataset. Thus, we expect the rows that are far apart in a sorted matrix are
unlikely to be equivalent, and can be placed into different sub-problems to
be solved by the general model. This idea is the basis of our Split & Carry
algorithm as described in Algorithm 1.

The input values to the algorithm are:

1. arrType an array describing the data type of each column (from {Integer,
Continuous}, used in Gurobi solver)

2. x = [xij]i∈I,j∈J , the dataset in a matrix form

3. U = [Uj]j∈J , L = [Lj]j∈J , upper and lower bounds of each column
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4. W = [wj]j∈J , weights for each column

5. k, minimum number of equivalent rows desired

6. S, minimum number of k-sets4 in each sub-problem (S ≥ 2).

Data: x, U , L, W , k, S, arrType
Result: A, f

1 V AR = [V AR]j∈J ← compute variances of all attributes;
2 x̃ ← sort(x, V AR);
3 C0 ← ∅;
4 f ← 0;
5 for m := 1 to d n

k×S e do

6 Subm ← Cm−1 + Read the next k × S rows from x̃;
7 (Am, fm)← Solve(Subm, arrType) optimally (Section 2.2);
8 f ← update(f , fm);
9 A← update(A,Am);

10 Cm ← rows in equivalence classes of last k rows in Am;
11 m = m+ 1;

12 end
13 return (A, f)

Algorithm 1: Split & Carry Algorithm

Besides the first five input values which are common to the optimal model,
we use the parameter S to adjust the start size of the sub-problems; S captures
the minimum number of k-sets to be included in each sub-problem. S is a user
parameter with value greater than 2 because there is only one trivial k-set when
S = 1. The value selected for S depends on the desired efficiency and utility
of the k-anonymization process. When S is small we are limiting the potential
space from which we make k-sets; but since S determines the minimum size
of the sub-problem a large value will increase the complexity of each sub-
problem. We will demonstrate in our experiments that a small S suffices when
k is small and the number of records is large. In general the running times of
the sub-problems depend largely on the statistical properties of the dataset,
when we have a large dataset we are likely to find many records that are
similar which means each sub-problem to be solved has a small solution space;
they also depend on the availability of computational resources because MILP
solvers are often multi-threaded (e.g. Gurobi). In Fig. 3.5a and Fig. 3.5b we
demonstrate the effect of S on a reasonably-sized dataset in terms of utility
and running time.

4k-set: shorthand for a set of equivalent records of size k.
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Figure 3.1: Chain of sub-problems

Sub1
Sub2

Sub3
Sub4

C1 C2 C3

In Fig. 3.1 we present an illustration of the Split & Carry algorithm. The
sub-problems are indexed as (Sub1, Sub2, ..., Subt), t = d n

k×S e. We have also the
concept of carry-over records in this algorithm, represented as (C1, C2, ...Ct−1).
We can visualize the algorithm as being a chain of sub-problems, where the
locks that chain together sub-problems are the boundary carry-over records.
Records in the sorted matrix that are near the boundary of two consecutive
sub-problems can be similar to records in both sub-problems; therefore, after
we have determined the equivalence class for such a boundary record in a sub-
problem, we carry the entire equivalence class to the next sub-problem. A
careful consideration is needed to ensure that the records indirectly equivalent
to the boundary record can satisfy k-anonymity on their own, i.e. the total
number of all indirectly equivalent records to this boundary record must be at
least k; otherwise we have to also carry these records to the next sub-problem.
Because the number of carry-over records from the previous sub-problem can
be different, each individual sub-problem may end up with a different run-time
size. In the worst case scenario, it is possible that an entire sub-problem gets
carried over to the next. For example, suppose we have k = 3 with S = 2.
We index the records in this sub-problem as {x1, x2, x3, x4, x5, x6}, one of two
scenarios can happen: 1) The last k records form an equivalence set within
themselves. 2) Each of the first k records is equivalent to at least one of the last
k records. In the first scenario the equivalence classes are exactly {x1, x2, x3}
and {x4, x5, x6}. In the second scenario we must have an equivalence class
of the form {x1, xi, xl}, {x2, xi, xl} or {x3, xi, xl} with {xi, xl} ⊂ {x4, x5, x6};
in this case all of the records will be carried over to the next sub-problem.
Intuitively as the size of the next sub-problem increases, it becomes unlikely
that all of its records will be carried over further. Thus, we expect the sizes
of the sub-problems to be bounded. We provide an upper-bound on the sizes
in Lemma 2. Note that a more general implementation would be to carry
over equivalent rows to the last l records, where l 6= k is also a customizable
parameter. In the current implementation, k affects the sub-problem sizes
which becomes a problem as k gets larger.

In Line 1 of Algorithm 1, we compute the variances of each column, where
we then sort the matrix across entries with comparison order equal to the
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order of increasing variance in Line 2. We initialize the first set of carry-over
records C0 to be empty in Line 3 and initialize the objective value (i.e. total
information loss) f to be 0 in Line 4. We then loop over the chain of sub-
problems in Line 6 - Line 11; for each sub-problem Subm we get the set of next
k × S records and add to it the carry-over records Cm−1 from the previous
sub-problem in Line 6, where we then solve the resulting sub-problem by the
general MILP to obtain anonymized outcome Am and objective value fm in
Line 7; we then update the total information loss f by adding to it the part
of the objective value fm corresponding to non-carry over records (Line 8)
and also store the subset of corresponding anonymized records in Am (Line 9)
to A. In Line 10 we get the set of carry-over records Cm, which are records
equivalent to the boundary records (i.e. the last k records). We repeat Line
6 to Line 11 until we solve all sub-problems. We include a worked example in
Section 3.3.3 to demonstrate the steps of this algorithm.

Remarks: The reason for carrying over records equivalent to the boundary
records is two-fold: we have described that boundary records can be close
to both sub-problems, and as equivalence is transitive this is true for their
equivalent records as well. The equivalent rows also serve as initial equivalent
rows to the next sub-problem, i.e. the optimal solution for the next sub-
problem can in fact determine that the records carried over from a previous
sub-problem are not closer to the new subset of records, and output the carry-
over records as sets of equivalent rows the way they were fed in. The lower and
upper bounds used in the sub-problems must be the same as those computed
in the original problem, as the sub-problems should be optimized with respect
to the original objective function.

LEMMA 2: The size of each sub-problem is bounded by k × (2k − 1 + S).

Proof. In each sub-problem, at the step where we carry over records the worst
scenario happens when the last k records are in distinct equivalence classes.
For each boundary record, we carry over only records that are necessary, i.e.,
we carry over exactly k records if the remaining indirectly equivalent records
satisfy k-anonymity on their own (with size≥ k). Thus, the worst case happens
when we have (k − 1) indirectly equivalent records to each boundary record,
then we must also carry over the entire set of such indirectly equivalent records.
That is, we carry over k× (k+(k−1)) records to the next sub-problem, which
contains k × S records before the carry-over. Thus, we have k × (2k − 1 + S)
records in the resulting sub-problem in the worst possible case.

In practice we expect that we should rarely encounter a sub-problem with
size equal to its possible upper-bound; we provide the actual distributions of
the sizes of the sub-problems for the tests of Fig. 3.5 in Appendix A.3, Ta-
ble A.2.
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THEOREM 1: An upper-bound for the complexity of the Split & Carry algo-
rithm is:

O(d n

k × S
e × 2p(k×(2k−1+S)×(

k×(2k−1+S)−1
2

+2m))). (3.3.1)

Proof. Consider the complexity of the general MILP. Since non-integer linear
programs (LP) have polynomial complexity (Dobkin and Reiss, 1980), in the
worst case scenario the general MILP has to search all of the nodes and solve an
LP at each node. Thus, an upper bound for the complexity of the general MILP
is O(2p(N)) where p(·) is a polynomial function, N is the number of variables

in the problem. In our formulation N =

(
n
2

)
+2×m×n = n(n−1)

2
+2×m×n

for an input matrix of size n×m. The Split & Carry algorithm solves a series
of sub-problems each with at most k×(2k−1+S) records as shown in Lemma
2, where the complexity of each sub-problem is bounded by:

O(2p(k×(2k−1+S)×(
k×(2k−1+S)−1

2
+2m))). (3.3.2)

Since we have to solve d n
k×S e such sub-problems, this gives expression (3.3.1).

Early Termination: From expression (3.3.2) we see that the running time
for solving a sub-problem can increase quickly as we increase k,m or S. A fea-
ture of the Gurobi Solver is that it supports Early Termination, i.e., it can halt
the search for feasible nodes after a pre-defined condition is reached. Thus,
it is possible to set a strict time limit on the Split & Carry algorithm. For
example, if one would like the algorithm to run for no more than T seconds
(ignoring overhead costs other than the solving of the sub-problems), one can
set the ”TimeLimit” parameter of the Gurobi solver to be T

/
d n
k×S e seconds.

Inevitably, setting a time limit would reduce optimality of the solution.

Categorical attributes encoding: We have talked about the treatment of
categorical data in our model in Section 3.2.5. If we decide to split up the
categorical attribute into binary attributes we may encounter a limitation of
the Split & Carry algorithm, as this will increase the number of attributes and
the sizes of the sub-problems for this algorithm.

3.3.2 Greedy Search Algorithm

In this subsection we describe another algorithm which improves upon the ini-
tial feasible solution. As we observe in expression (3.3.1), while the complexity
of Split & Carry algorithm scales linearly in the number of records as opposed
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to exponentially in the case of the general optimal problem, the complexity
still scales exponentially in terms of the number of attributes and k. In this
section we provide a greedy search algorithm which is not plagued with the
curse of dimensionality (Aggarwal, 2005). This algorithm uses similar ideas
as the algorithms presented by Doka et al. (Doka et al., 2015), but it produces
anonymized outcomes consistent with our formulation in Section 3.2.2 (i.e.
containing sets of at least k equivalent records) instead of outcomes appearing
as in the freeform formulation of Doka et al. (Doka et al., 2015).

In the Doka et al. algorithms, k outer iterations are performed where at
each iteration the original dataset structure is transformed into a complete
bipartite graph5. In our algorithm, we perform a series of k inner iterations.
We again start from the initial feasible solution containing records sorted ac-
cording to the order of increasing variance. Then for each indexed record xi
in the sorted list, we construct the k-set (Eqi) by iteratively choosing from
the remaining records and adding to it, and subsequently removing the cho-
sen record from the remaining set. In each iteration, we aim to generate the
smallest objective value, fi := f(Eqi), until Eqi contains k records. Two ad-
vantages of our algorithm are: 1) it does not work with complete bipartite
graphs and as such does not need to store weights for n× n edges; 2) it does
not require a backtracking6 process and thus does not need to store informa-
tion from the previous states. Given these advantages the algorithm is more
memory efficient and can be applied over datasets containing large numbers
of records. However, we remark that both our Greedy Search and the Doka
et al. algorithms (Doka et al., 2015) have the limitation that they aim to find
equivalence classes of size k. This is a major limitation of the greedy algo-
rithm approach as in order to find a globally optimal solution the set should
be allowed to contain many equivalence classes of different sizes greater than
k. Our Greedy Search algorithm is described in Algorithm 2. Since this algo-
rithm is not constrained by the number of attributes in terms of performance,
we have the option of decomposing categorical attributes into vectors of binary
attributes which is desirable to maintain better utility for categorical data.

The inputs to our greedy search algorithm are:

1. arrType an array describing the data type of each column (from {Integer,
Continuous} or {Categorical, Numerical})

2. x = [xij]i∈I,j∈J , the dataset in a matrix form

3. U = [Uj]j∈J , L = [Lj]j∈J , upper and lower bounds of each column

5A graph is complete bipartite if the set vertices can be partitioned into two disjoint sets
where there is an edge from each vertex in one set to each vertex in the other.

6Backtracking describes a step that involves revisiting records that have been put into
an equivalence class in a backward fashion as in (Doka et al., 2015).
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4. W = [wj]j∈J , weights for each column

5. k, minimum number of equivalent rows desired

Data: x, U , L, W , k, arrType
Result: A, f

1 V AR = [V AR]j∈J ← compute variances of all attributes;
2 x̃ ← sort(x, V AR);
3 (Optional per arrType)Transform the columns containing categorical

data into vectors of columns containing binary data;
4 A← ∅; f ← 0;
5 for xi ∈ x̃ do
6 Eqi ← {xi}, initialize equivalent set Eqi for xi;
7 fi ← 0;
8 remove xi from x̃;
9 for l = 1 to k − 1 do

10 for xj ∈ x̃ do

11 compute and store objective value f ji := f(xj ∪ Eqi) using
arrType;

12 end

13 find xj′ that would give lowest f ji ;
14 add xj′ to Eqi;

15 fi ← update(fi, f
j′

i );
16 remove xj′ from x̃;

17 end
18 f ← update(f , fi);
19 A← update(A, Eqi)

20 end
21 return (A, f)

Algorithm 2: Greedy Search Algorithm

In Line 1 and Line 2 of Algorithm 2, we again compute the variances of each
column, and sort the records as in the initial feasible solution and Algorithm 1.
In line 3 we have an optional step to transform the columns with categorical
attributes into vectors of columns of binary attributes. A discussion on how
this is represented can be found in Appendix A.2. In Line 4 we initialize the
total objective value f to be 0, and the collection of equivalent sets A to be
empty. In Line 5 - Line 18 we loop over each remaining record of the sorted
list; we initialize the equivalence class of record xi to be the set containing
itself in Line 6, and the objective value fi for the equivalence class Eqi to be
0 in Line 7. In Line 8 we remove the record xi from the remaining records.
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Then we perform k−1 iterations in in Line 9 - Line 17. In Line 10 - Line 17 we
compute the objective value f ji for each remaining record xj, so that in Line
13 we can find the record that corresponds to incurring min loss if it is added
to Eqi, and it is then added to Eqi in Line 14. We then update the objective
value fi to be the information loss corresponding to the new Eqi in Line 15,
and remove the new member of Eqi from the remaining records in Line 16. At
the end of k − 1 iterations we obtain Eqi of size k, and we update the total
information loss f by adding fi to it in Line 18. We update the collection of
equivalence classes A with the new found Eqi in Line 19.

Convergence: Since we are always removing k indices from I := {1, 2, ..., n},
when the size n is a multiple of k, convergence is clear; if n is not divisible by
k, for each remaining index j after the bn/kc iterations, we distribute xj to
the existing k-set that would incur the least utility loss if we were to add xj
to it. Thus, the set of indices I will be exhausted.

THEOREM 2: The complexity of the Greedy Search algorithm is:

O(

bn/kc∑
p=0

{(k − 1)× (n− (p− 1)× k) + n)}. (3.3.3)

Proof. Each time we loop over an index we remove k entries (including itself)
from the dataset x. Thus, the outermost for-loop is repeated at most n/k
times. At the pth iteration of the outermost for-loop, we need to compute the
min of n − (p − 1) × k objective values, thus, the complexity of the middle
for-loop is O((k − 1) × (n − (p − 1) × k)). If n is not divisible by k, for each
remaining record we distribute it to the equivalence class that would incur the
least utility loss by adding this record; since there are n/k equivalence classes
and at most k−1 remaining records this last step has complexity O(k× n

k
).

Given the above theorem, although greedy algorithm may provide relatively
less favourable solutions, its complexity is much less dependent on the number
of attributes and is bounded by O(n2) regardless of the choice of k.

3.3.3 Worked Examples

In this subsection we work through two examples to demonstrate the steps of
the Split & Carry and Greedy Search algorithms. Our input dataset is as in
Table 3.2a. We let k = 3 and S = 3.

Example 1: Split & Carry
The first step is to sort by variance as described in Section 3.2.3. The initial fea-
sible solution creates 6 k-sets, namely {[12, 1, 11], [14, 7, 10], [16, 19, 13], [6, 9, 5],
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[8, 2, 5], [17, 0, 8, 18, 3]}. The first sub-problem contains the first 3(S = 3) k-
sets, and an initial solution with each k-set as equivalent rows is passed into
to the Gurobi solver. The optimal solution for the first sub-problem is give in
Table 3.3b. The k boundary records are {16, 19, 13}, and they are equivalent
to records {14, 7, 10}, thus the carry-over records from Sub-problem 1 to Sub-
problem 2 are {14, 7, 10, 16, 19, 13}. The equivalence classes of the non-carried
records become part of the final solution. The carry-over records are added
to the remaining 3 k-sets to form Sub-problem 2 as in Table 3.4a. We then
solve Sub-problem 2 and obtain the optimal solution in Table 3.4b. Putting
the solutions together we obtain the outcome in Table A.1b. In this example,
the optimal solution to Sub-problem 2 does not change the equivalence classes
of the carry-over records, in general this need not be the case. We also note
that the final solution provided by Split & Carry in this example is the same
as the optimal solution by the general MILP.

(a) Sub-problem 1 Dataset (b) Solution to Table 3.3a

Table 3.3: Sub-problem 1 of Worked Example 1

Example 2: Greedy Search
The first step is again to sort by variance as described in Section 3.2.3. Then
we move down the sorted list of records. For each record we find k− 1 records
such that the least information loss is incurred when they are assigned to the
k-set of this record. In this example, we first look at the record with index 12,
and determine {1, 11} to be in its equivalence class. We remove the records
{12, 1, 11} from the list. The next record in the remaining sorted list is 14,
and we determine to k-set for 14 to be [14, 7, 10] and remove these from the
list. We continue in this manner until we are left with 2 records {4, 18} in the
list. For each remaining record, we find in our existing collection of k-sets the
set that would incur the least information loss if the said record was added to
it, and add the said record to this k-set. The complete set of iterations for
this example is given in Table 3.5.
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(a) Sub-problem 2 Dataset (b) Solution to Table 3.4a

Table 3.4: Sub-problem 2 of Worked Example 1

Index Remaining Records k-Sets
12 {14,7,10,16,19,13,6,9,5,8,2,15,17,0,4,18,3} [12,1,11]
14 {16,19,13,6,9,5,8,2,15,17,0,4,18,3} [12,1,11],[14,7,10]
16 {19,13,6,8,2,15,17,0,4,18,3} [12,1,11],[14,7,10],[16,5,9]
19 {8,2,15,17,0,4,18,3} [12,1,11],[14,7,10],[16,5,9],[19,13,6]
8 {2,15,4,18,3} [12,1,11],[14,7,10],[16,5,9],[19,13,6],[8,0,17]
2 {4,18} [12,1,11],[14,7,10],[16,5,9],[19,13,6],[8,0,17],[2,15,3]
4 {18} [12,1,11],[14,7,10,4],[16,5,9],[19,13,6],[8,0,17],[2,15,3]
18 {} [12,1,11],[14,7,10,4],[16,5,9],[19,13,6,18],[8,0,17],[2,15,3]

Table 3.5: Steps of Greedy Search for Example 2

3.4 Experimental Evaluation

In this section, we present the experimental evaluation of our practical algo-
rithms in terms of optimality, performance and scalability. In Section 3.4.1
we describe the dataset we have used for running the experiments and the
experimental environment setup. In Section 3.4.2 we present the first set of
experiments and provide the results from our algorithms along with results
from the optimal solution (i.e. solution of the general MILP). In Section 3.4.3
we provide benchmark results of our algorithms against the other algorithms
in terms of utility and running time. In Section 3.4.4, we report the results of
the last set of experiments focusing on the scalability aspect of the algorithms.
We selected three classes of k-anonymity algorithms for this study; namely
heuristic-based algorithms by (Doka et al., 2015), a partitioning-based algo-
rithm by (LeFevre et al., 2006) and a clustering-based algorithm by (Byun
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Attribute Cardinality [Min,Max] DataType
\Gender 2 [1,2] Categorical/Integer
\Age 75 [16,90] Numerical/Integer

\Marital Status 6 [1,6] Categorical/Integer
\Race 7 [1,7] Categorical/Integer

\Birthplace 83 [1,426] Categorical/Integer
\Education Level 17 [4,20] Numerical/Integer

\Work Class 7 [13,29] Categorical/Integer
\Occupation 47 [4,79] Categorical/Integer

Table 3.6: CENSUS dataset on 8 attributes

et al., 2007). We provide a discussion and interpretation of the results in
Section 3.4.5.

3.4.1 Experimental Setup

The main database for our tests is from IPUMS USA, consisting of 500,000
records of U.S. census data (University of Minnesota, 2018) (hereafter referred
to as the CENSUS dataset). For each experiment we extracted datasets of
various sizes from the main dataset as described in each experiment. Table 3.6
describes the characteristics of the main datasets with 8 attributes in terms
of the attribute name, type (numerical or categorical), min/max values and
number of distinct values available for each attribute. The characteristics of
the extended datasets with up to 35 attributes are described in Table A.4 in
Appendix A.4. The tests were performed on machines with 8 CPUs and 7.2 - 8
GB of RAM. The results were validated to be consistent across the machines.
Moreover, tests appearing in the same figure were strictly run on the same
machine.

To avoid database bias, we have reported the results of our experiments
using an alternative database in Appendix A.5.

3.4.2 Optimality

To gauge the loss in optimality, we compare our practical algorithms (Split
& Carry and Greedy Search) against the optimal formulation (general MILP
with Gurobi solver) in terms of information loss, and from different dimensions.
In Fig. 3.2a and Fig. 3.2c we show the averages of ratios of objective values
from our algorithms over those from the MILP when the number of records
grows and when the number of attributes grows, respectively. To reduce the
impact of variability in the datasets the averages are computed over 20 datasets
randomly drawn from the CENSUS database. The number of attributes is set
to 4 for the results illustrated in Fig. 3.2a and Fig. 3.2b, and the number of
records is set to 20 for the results shown in Fig. 3.2c and Fig. 3.2d. We observe
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that consistently our Split & Carry achieves better utility than Greedy Search.
An interesting finding from this experiment is that increasing the number of
attributes does not increase loss in optimality for both algorithms.

Figure 3.2: Optimality and performance of Split & Carry and Greedy Search
(k = 3)
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b) Ratios of running time (m = 4)
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c) Loss in optimality (n = 20)
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d) Ratios of running time (n = 20)

We also show the averages of ratios for the running times on the same
datasets when the size of dataset increases and when the number of attributes
grows in Fig. 3.2b and Fig. 3.2d, respectively. We see that there are significant
performance benefits in our algorithms especially as we increase the size of the
dataset. In particular we observe that the running time for Greedy Search
compared to the optimal solution is negligible. Although we see in Fig. 3.2
that Greedy Search has significantly better performance than Split & Carry, it
is not generally the case and we show this as we further compare the running
times of these two algorithms for large datasets in the scalability section. The
difficulty in measuring the complexity of the Split & Carry algorithm comes
from the difficulty in providing an exact or even tighter upper bound in the
complexity of any specific instance of the MILP. The complexity for Split &
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Carry we’ve provided in Theorem 1 is merely an upper bound, and in practice
as the size of our dataset increases we expect a much better performance than
what we presented in Theorem 1. Nonetheless, expression (3.3.1) in Theorem
1 provides the relationship between the number of records n and complexity
of the Split & Carry; that is, the complexity scales linearly in the number of
records, which we also demonstrate in the scalability section.

3.4.3 Benchmarking

We first benchmarked our algorithms with the three algorithms presented by
Doka et al. (Doka et al., 2015), hereafter we refer to these as: Doka Greedy,
Doka SortGreedy and Doka Hungarian. We implemented all three algorithms
in Python. While we have confirmations from the first author regarding specific
details in the implementations, we acknowledge that there could be implemen-
tations that can give slightly better running times than what we will display
here; for example we had used the Munkres module7 for the Hungarian algo-
rithm combined with the iteration scheme described in (Doka et al., 2015) for
the implementation of Doka Hungarian. Despite potential differences in the
implementation details, however, two important facts provide a sound basis
for any conclusions we draw from our experiments:

1. As consistent with the results in (Doka et al., 2015), in general the Doka
Hungarian algorithm provides the best utility among all three Doka al-
gorithms.

2. By theoretical construction, our Greedy Search algorithm has better
complexity than all three Doka algorithms.

We also benchmarked our algorithms against the Mondrian Multidimen-
sional k-Anonymity algorithm (LeFevre et al., 2006) (hereafter referred to as
Mondrian), and we were able to download the program directly from (UT
Dallas Data Security and Privacy Lab, 2012). The Mondrian algorithm is a
partitioning-based algorithm in which the dataset is repeatedly partitioned
into disjoint subsets according to some statistic in a tree-like manner. The
Mondrian algorithm can produce anonymized outcome as generalized ranges,
it can also produce outcome providing complete distribution information for
categorical data; however the Mondrian does not output a utility measure. We
could compute our utility measure directly on the Mondrian, but the algorithm
provides open bounds for some records and in fact it does not always provide
the tightest possible bounds; e.g., in the anonymized outcome by Mondrian in
Fig. 3.5, for one equivalence class on the Age attribute it produced generalized
range (60, 90] while the tightest bounds for this equivalence class were [61,

7munkres 1.0.12: https://pypi.org/project/munkres/
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80]. We make the following notes for the benchmarking results we present on
Mondrian:

1. Since it takes a simple post-processing step to find the tightest bounds
for any equivalence class, utility values were computed on the equivalence
classes using the tightest bounds.

2. The running times presented for Mondrian do not include the time it took
to compute utility; however the Mondrian has theoretical complexity
equal to O(n log(n)) where n is the size of the matrix.

Figure 3.3: Benchmarking Greedy Search against other algorithms (m = 8)
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c) Running time (n = 1000)
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d) Running time (n = 2000)

Greedy Search Doka Greedy Doka SortGreedy Doka Hungarian

Mondrian Initial Feasible K-Member

Finally we benchmarked our algorithms against the K-Member Clustering
algorithm by (Byun et al., 2007) (hereafter referred to as K-Member). K-
Member is a clustering algorithm where the algorithm forms clusters of size
k as equivalence classes. There are similarities between K-Member and our
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Figure 3.4: Ratios of objective values of Greedy Search over other algorithms
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Greedy Search algorithm, in that for the record currently under consideration,
both algorithms greedily finds the next record to be in its equivalence class by
minimizing the additional information loss incurred. Apart from incorporating
weights, the most differentiating step in Greedy Search is the order with which
we move to the next record. The basis of Greedy Search is to improve upon
the initial feasible solution.

We present our benchmark results against Mondrian, K-Member and Doka
algorithms in Fig. 3.3 and Fig. 3.4 with various values of k, where we use
the GCP to measure utility as the GCP had been used in other literature
previously and so does not put our algorithm at an advantage (please see
Appendix A.2 for GCP). This also shows that our Greedy Search algorithm can
be adapted to other utility measure since its optimality and performance do not
depend on the choice of utility measure. In the tests reported in Fig. 3.3a and
Fig. 3.3c we used 1000 records on all 8 attributes, and in Fig. 3.3b and Fig. 3.3d
we used 2000 records on the 8 attributes. We can see that Greedy Search can
achieve utility that is not too far from those achieved by Doka algorithms but
it has a much better running time; while the Mondrian has a very efficient
running time and always finishes in a few seconds, the utility it provides is far
less favourable. Our Greedy Search performs similarly to K-Member, but as
the value of k increases we begin to notice a slight advantage. We can also
observe that as we increase the dataset size from 1000 records to 2000 records,
the gap in the utility between our Greedy Search and the Doka algorithms
narrowed, and in particular the utility of our Greedy Search converged to that
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Figure 3.5: Benchmarking Split & Carry and Greedy Search against other
algorithms (n = 5000,m = 4)
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of Doka SortGreedy. We also display the ratios of objective values of our
Greedy Search over Mondrian, K-Member and the Doka algorithms. We see
that for small k, Greedy Search is performing better than Doka Greedy, but
as k increases Doka Greedy starts to have advantage over our Greedy Search.
The general trend for the tests on 1000 and 2000 records is, when we fix the size
of the dataset, as k increases the utility of the Doka algorithms increases. We
also see in general that for a fixed k the utility gap between our Greedy search
and Doka Hungarian decreases, when we increase the dataset size. That is, as
we increase the size of the dataset, the probability of having records that are
equivalent or very similar increases. Therefore, even though Doka algorithms
produce outcomes that assume a freeform, which has a larger solution space
than our anonymized outcomes (containing equivalence classes of size at least
k), the utility gain from using freeform is small as the anonymized outcomes
of these algorithms contain many records that differ in a small number of
attributes by small amounts. Fig. 3.4a and Fig. 3.4b also show that as we
increase from 1000 to 2000 records, the utility of Greedy Search increases
relative to all algorithms (as the ratios of objective values over Doka, Mondrian
and K-Member decrease).

In Fig. 3.5 we compare the objective values and running times of our algo-
rithms (Split & Carry with S = 3, 4, 5 and Greedy Search) against the Doka,
Mondrian and K-Member algorithms, on a dataset of 5000 records with 4 at-
tributes, where the attributes are treated as numerical. We see that for a
dataset with a reasonable size and small number of attributes, and for small
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k (= 4), our algorithms have utility close to Doka Hungarian but with bet-
ter performance, and our algorithms perform better against Doka Greedy and
Doka SortGreedy in both utility and performance; whereas the Mondrian has
much better performance but also far less utility than our algorithms. How-
ever, if the user is only interested in performance, then we recommend the
initial feasible solution which provides decent utility and efficient performance
and in this test it performs better than Mondrian in both aspects.

Figure 3.6: Scalability of Split & Carry and Greedy Search in n for smaller
k = 3, 5 (m = 4)

20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Number of records [thousands]

R
u
n
n
in
g
ti
m
e
[t
h
o
u
sa

n
d

se
c
.]

a) Running time (k = 3)

Split & Carry

Initial Feasible

Greedy Search

K-Member

20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Number of records [thousands]

R
u
n
n
in
g
ti
m
e
[t
h
o
u
sa

n
d

se
c
.]

b) Running time (k = 5)

Split & Carry ET

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

Number of records [thousands]

In
fo
rm

a
ti
o
n

lo
ss

c) Information loss (k = 3)

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

Number of records [thousands]

In
fo
rm

a
ti
o
n

lo
ss

d) Information loss (k = 5)

Split & Carry ET

3.4.4 Scalability

In this section we examine the scalability of the algorithms. The tests in this
section are based on datasets containing at least 20,000 records. We do not
include the Doka algorithms in our scalability evaluation due to two reasons:
1) we observed in Section 3.4.3 that the Doka algorithms took 3 - 24 hours to
anonymize 5000 records (Fig. 3.5b); 2) we tried to run the Doka algorithms
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Figure 3.7: Scalability of Greedy Search in k (n = 20, 000, m = 8)
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on a dataset with 10,000 records but we received an ”OutOfMemoryError”.
Indeed, the Doka algorithms require storage of previous states for backtracking
as well as representation of n × n edges for complete bipartite graphs, where
the latter requires storing 100,000,000 numbers when n = 10, 000. We consider
scalability of the remaining algorithms in terms of the number of records as
well as the number of attributes in Fig. 3.6 - Fig. 3.8, where the attributes are
treated as numerical.

In Fig. 3.6 we show the running time and information loss values of the
algorithms for small values of k (= 3, 5) on several CENSUS datasets with 4
attributes. The sizes of the datasets range from 20,000 to 100,000. Note for
the case of k = 5 in Fig. 3.6b and 3.6d we used the Early Termination (ET)
feature for Split & Carry, and set ”TimeLimit” to be 1000 seconds for each
sub-problem, though only very few sub-problems actually triggered ET. We
see that for a small number of attributes and small values of k, K-Member
has slightly better utility than Greedy Search, but Greedy Search has better
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Figure 3.8: Scalability of Greedy Search in m (n = 20, 000 and k = 10 or 100)
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running time. We also see that Split & Carry significantly outperforms K-
Member and Greedy Search in both running time and utility. The efficiency
of Split & Carry is due mainly to two aspects: 1) it solves small sub-problems
and efficiency is reaped from state-of-the-art MILP solver; 2) the small sub-
problems have small solution spaces since it’s likely that there are identical or
very similar records in a sub-problem as the dataset contains a large number
of records. The results for Mondrian were omitted from these figures for better
visual presentation of the other algorithms. Although Mondrian always fin-
ishes in a few minutes in all of the tests in this experiment, it has information
loss ranging 9 - 56 times that of the initial feasible solution.

In Fig. 3.7 we look at how the algorithms react to increasing values of k.
We acknowledge that Split & Carry is not suited for large values of k and thus
it has been excluded from all the experiments with large k. We use a CENSUS
dataset with 20,000 records and 8 attributes. We see that while Mondrian has
negligible running time compared to other algorithms, its utility is much less.
Moreover, the utility gap between Mondrian and the other algorithms increases
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as k increases. On the other hand, we see that although Greedy Search has
slightly less utility than K-Member for small k (= 5), but as k increases it
starts to gain utility over K-Member and this utility gap further widens for
large k (= 200).

In Fig. 3.8 we look at how the algorithms perform when we increase the
number of attributes. We use CENSUS datasets containing 20,000 records on
15, 25 and 35 attributes. We observe that Mondrian is still taking minimal time
to compute, however the utility gap between Mondrian and other algorithms
increases as the number of attributes increases. At small k (= 10) we see
that Greedy Search and K-Member have almost the same utility. At k = 100
we observe again that Greedy Search has slightly better utility. Interestingly,
we observe consistent results across different numbers of attributes, it appears
only the value of k affects how these two algorithms perform compared to each
other.

3.4.5 Discussion on Evaluation Results

In the Optimality experiments in Section 3.4.2 we see that our practical algo-
rithms provide near-optimal utility for a small k with significant performance
improvement over the general MILP. In some cases, Split & Carry actually pro-
vides the same optimal objective value as the MILP. We see in the Scalability
experiments that for a small number of attributes and small k, Split & Carry
delivers excellent performance and utility. Split & Carry is distinguished from
the other algorithms in that it always produces optimal solutions for small
subsets of the original dataset, and the chaining of the sub-problems enables
(in some cases) the possibility of a global optimal solution. In Split & Carry,
many equivalence classes might have size greater than k as long as doing so
minimizes the information loss. On the other hand, the Greedy Search, K-
Member and Doka algorithms are greedy algorithms but their common focus
is on finding equivalence classes of size k. Other than indirectly equivalent
records, only in cases where the number of records is not divisible by k one
would see a small number of equivalence classes with size greater than k in
these algorithms. In the case of the Mondrian partitioning algorithm, while it
is true that records in the same partition are close to each other, the bound-
ary records of two adjacent partitions are also close. Since the partitions are
determined by median values, utility might not be preserved as such boundary
records might be closer to each other than to the records in their own parti-
tions. Thus Split & Carry features two important aspects which are crucial
to solving the k-anonymity problem optimally in an efficient way: 1) that the
construction of the equivalence classes is not constrained to finding sets of size
k, but also any size greater than k; 2) when we work with smaller subsets
for efficiency reasons, there is possibility to move records from one subset to
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another, i.e. we do not lose the link to the original dataset.
The biggest challenge for our Split & Carry algorithm is still in the size of

the sub-problems. For efficiency we are limited to only small sub-problems on
small numbers of attributes with small values of k (≤ 6). In practice we often
see k = 3 or 5 being cited as the minimum requirement (Statistics Canada,
2014; National Center for Health Statistics, 2019; Cancer Care Ontario, 2018;
Canada Institute for Health Information, 2014). Therefore our Split & Carry
algorithm can still be a useful tool for k-anonymization.

We see that in the Benchmarking experiments in Section 3.4.3, the Doka
algorithms in general have better utility than our practical algorithms. We
discussed in Section 3.4.3 that this utility gain in Doka algorithms, comes
mainly from the fact that their k-anonymized outcomes take a freeform, which
does not make k equivalent records in the anonymized outcome but rather that
for each anonymized record one can identify k records from the original dataset
that fall into the ranges of the anonymized record. Moreover, we see in our
experiments that for a fixed value of k, as the number of records increases,
the utility gap between the Doka algorithms and Greedy Search decreases;
in particular Greedy Search performs similarly to Doka Greedy and Doka
SortGreedy in Fig. 3.3b where n = 2000,m = 8, and Split & Carry is close to
Doka Hungarian in Fig. 3.5a where n = 5000,m = 4. However, our algorithms
have much better running time. In general, we expect that for datasets where
the value of k and m are large relative to n (e.g. n < 5000,m = 8, k > 15) the
Doka algorithms will have the best utility due to the freeform formulation; but
scalability becomes an issue for Doka algorithms for large-sized datasets due
to their theoretical complexities and their need to store previous states and
n× n edges. In the cases where k is small relative to n, then the advantage of
freeform diminishes due to high probability of having many similar records in
the dataset.

Throughout the Benchmarking and Scalability experiments, we observe
that Mondrian has efficient running time but much larger information loss
compared to other algorithms. Thus, it is only scalable in terms of running
time; but we note that still the initial feasible solution provides better running
time and even better utility than Mondrian. Moreover, the utility gap between
Mondrian and Greedy Search increases with the value of k and the number of
attributes, as can been seen in Fig. 3.7b, Fig. 3.8c, and Fig. 3.8d.

The initial feasible solution captures an ordering that gives Greedy Search
an advantage over K-Member for large values of k. Consider a sorted list of
records, such as the one in Table 3.2b. Notice that the top record appearing
in the sorted list is only close to the rest of the list in one direction, i.e., it is
only close to records that are immediately below it in this list. Suppose we
begin constructing the equivalence class for record i, where i is not the top
record (e.g. in this example i 6= 12). If we remove records that are close to 12,
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then 12 becomes farther away from the rest of the list, and more information
loss would be incurred to bring 12 to another equivalence class. The larger
the value of k, the more records we are likely to remove that are close to
12 before we get to it. Now if we first start with 12, then after removing
the equivalent records for 12, we will have a new top record in the remaining
list and the process repeats. This is the logic behind the choice of ordering
to construct equivalence classes for Greedy Search. We see the effectiveness
of this ordering in the Benchmarking and Scalability experiments, where in
Fig. 3.3, Fig. 3.4, Fig. 3.7 and Fig. 3.8, Greedy Search has consistent better
utility (though sometimes only slightly) than K-Member for larger values of k
(e.g. k ≥ 15).

3.5 On Alternate Solution Forms

In the work by Doka et al. (Doka et al., 2015), they offer a MIP (Mixed Integer
Program) formulation for the freeform k-anonymity problem. The formulation
by Doka et al. is freeform in the sense that a record can be assigned to
many different equivalent classes and such equivalence is not transitive. This
gives rise to a larger solution space and thus better utility in the optimization
problem. In freeform formulation, each anonymized record matches k − 1
other records of the original dataset, but the number of matches is unknown
when we link it to an externally available dataset. Because the data custodian
cannot check every external table, Samarati (Samarati, 2001) argued that k-
anonymity requirement should be satisfied in the anonymized data themselves.

On the same note as freeform k-anonymity, we also remark that there are
related algorithms which seek to provide weaker forms of k-anonymity (Gio-
nis et al., 2008; Tassa et al., 2012) that do not make k identical records, but
either that an original record is consistent with k records in the anonymized
dataset ((1,k)-anonymity); or that an anonymized record is consistent with k
records in the original dataset ((k,1)-anonymity), or both ((k,k)-anonymity).
Tassa et al. (Tassa et al., 2012) further introduced k-concealment that is a
stronger variant of (1,k)-anonymity which they argued to offer the same se-
curity guarantee as k-anonymity computationally. This gives an interesting
research direction for future work, as our Split & Carry can theoretically be
adapted to these forms of k-anonymity by relaxing some constraints.

3.6 Concluding Remarks

In this chapter we introduced a mathematical formulation for k-anonymity as
a Mixed Integer Linear Program with a weighted objective function, where the
weights can be customized to adjust the likelihoods of generalization on the
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attributes to suit different research uses. Recognizing that MILPs are hard
in general (Papadimitriou, 1981; von zur Gathen and Sieveking, 1978), we
also introduced two practical algorithms, both of which are memory efficient
and can be applied to very datasets containing large numbers of records. We
evaluated our algorithms based on their optimality, performance and scala-
bility; we also provided benchmark tests against other classes of algorithms
(heuristic-based, partitioning-based and clustering-based). We demonstrated
that our Greedy Search algorithm can either achieve similar utility with more
efficient running time, or better utility with a less efficient yet still very good
running time. We also provided tests to show a remarkable improvement in
performance and utility in our Split & Carry over other algorithms when the
number of records is large and the number of attributes is small, for small k.
From our experiments and theoretical justifications, we conclude that both our
algorithms are suitable tools for anonymization on large datasets. We recom-
mend that the Split & Carry algorithm be used when the number of attributes
is small and the dataset is very large, for common values of k which are small.
When we have many attributes or if we are interested in a larger k value, the
recommended choice is Greedy Search whose complexity is always bounded by
O(n2) regardless of the number of attributes and choice of k.

The k-anonymity model as a privacy preservation technique has a number
of limitations that impact our formulation. When an adversary is in pos-
session of external knowledge that can be linked to the anonymized dataset,
the adversary might be able to deduce additional information about an indi-
vidual; some of such adversarial scenarios are described by De Capitani Di
Vimercati et al.(De Capitani Di Vimercati et al., 2012). In these scenarios
there are attributes that contribute more to potential re-identification of an
individual than others (e.g., a person with a particular birth date who lives
in an area of a particular zip code). In our formulation, we can assign smaller
weights to these attributes to over generalize them, thus decrease the risk of
re-identification. There is, however, one concern with using weights; in a sce-
nario that an adversary has access to multiple datasets originated from the
same dataset but anonymized by different weight vectors, the adversary might
be able to infer additional information on the original dataset. In particular,
in each anonymized set, the attribute with the largest weight has the smallest
gap in its generalized bounds. Thus by combining different datasets the ad-
versary can arrive at a much finer dataset. This problem can be mitigated by
randomizing the anonymized datasets before their release, however the adver-
sary might still be able to detect additional patterns. A more in-depth study
to address the security properties of applying weights presents an interesting
future research direction.
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Chapter 4

Towards Robustness in Neural
Networks

In this chapter, we present our approach for improving robustness in neural
networks. In Section 4.1 we provide some background information on adver-
sarial examples, including a brief account from the first published attack to a
recent development that aimed to defend against these attacks, and a generic
formulation for adversarial examples. In Section 4.2.1 we briefly describe our
intuition behind the mechanisms used in our approach, with technical de-
scriptions of the mechanisms ensuing in Section 4.2.2 and Section 4.2.3. We
present the setup and testing results of our experiments in Section 4.3, with a
discussion on the results in Section 4.5. We conclude the chapter in Section 4.6

4.1 Preliminary

4.1.1 L-BFGS

The problem of creating an adversarial example is to perturb some pixels on an
image such that the classifier will label the perturbed image differently from
the original image’s correct label. These adversarial examples are generally
categorized as being targeted, where the adversary carefully adds perturbations
to cause the classifier to output a specific incorrect label; or untargeted, in
which the adversary’s goal is to cause the classifier to output any incorrect
label. Naturally, one can think of both types of adversary examples as targeted
with a set of target labels. In the former case there is only one label in the
target set, whereas in the latter case the target set consists of all incorrect
labels. Intuitively if one keeps adding random perturbations to an image,
eventually even the most sophisticated classifier (including humans) will start
to produce incorrect labels. Moreover, such perturbed images likely do not
appear genuine. Thus, for an adversarial example to be considered successful,
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the amount of perturbations to be made to the original image must be minimal.
Formally, we can define the problem of finding adversarial examples as

min
x′∈D
||x′ − x||

s.t. F (x′) = t
(4.1.1)

for some classifier F (·), where t is the target label, x is the original input image.
D is the domain of all images which are usually represented as a set of multi-
dimensional vectors, where the permissible values fall within a bounded range,
with some distance metric || · ||. This definition is used in various literature
up to notational differences.

The first published attack (Szegedy et al., 2014) on neural networks arose
by solving the above problem using a box-constrained L-BFGS (limited-memory
BFGS, (Liu and Nocedal, 1989)) method, where D = [0, 1]m ⊆ R. In the L-
BFGS example, the above problem is first transformed from a constrained
optimization problem to an unconstrained optimization problem (up to the
box constraints) using a penalty method, where the penalty function LF (·) is
the loss function applied to x′ and the target t. In other words, for constant
c > 0, the above problem becomes:

min
x′∈D

c · ||x′ − x||+ LF (x′, t). (4.1.2)

The loss function is appealing as the penalty function because it’s non-negative
and captures the distance between F (x′) and t with the same metric used in
the training of the network. Moreover, the loss function is zero exactly when
the original constraint F (x′) = t is satisfied. Thus an optimal solution to the
original problem will also be an optimal solution to the transformed problem.

L-BFGS belongs to the class of line search methods which are commonly
used for solving optimization problems over a compact domain. A line search
method is an iterative scheme, and typically involves repeatedly identifying a
search direction and moving the feasible point along the search direction. The
scheme will converge to a global optimum if the formulation satisfies certain
conditions. In the problem above, if the loss function is sufficiently differen-
tiable, then a global optimum always exists. In other words, an adversarial
example is guaranteed to exist; however the perturbation ||x′ − x|| is not nec-
essarily small.

4.1.2 Defensive Distillation

Following the invention of the L-BFGS adversarial examples, other methods
such as (Goodfellow et al., 2015; Kurakin et al., 2017; Papernot et al., 2016b)
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soon emerged which further accentuated the presence of significant vulnerabil-
ities in classification-type networks. Shortly after these inventions, a technique
for training classification-type networks, known as Defensive Distillation (Pa-
pernot et al., 2016a), was devised. Defensive Distillation employs the idea of
using a teacher network to train a second network (student), in which the soft
labels (each containing a vector of probabilities rather that a single final label)
of the teacher network are used for training the student network. Moreover, a
different temperature constant at the last layer is used in training the student
than it was used in training the teacher. The authors in (Papernot et al.,
2016a) suspected the success of Defensive Distillation could have been due to
additional hidden knowledge learned by the student from the soft labels, as
well as the higher temperature constant used in the student training, as it
softens the probabilities in the output layer and thus decreases over-fitting.

4.1.3 Carlini-Wagner Attack

Defensive Distillation was soon defeated by the Carlini-Wagner attack (Car-
lini and Wagner, 2017). The success of Carlini & Wagner demonstrated the
important fact that the prior success of Defensive Distillation was indeed due
to the different temperature constants used between the teacher and student
network, as well as the assumption that attacks would be crafted based on the
original temperature (same as used for the teacher). In particular, Carlini &
Wagner highlighted a common characteristic in the prior attacks that Defen-
sive Distillation successfully defended against: that the attacks depend on the
the gradient of the network, either used as a multiplicative term in the search
direction or to determine the amount of perturbations to add to specific pixels.

The softmax function is usually used for classification-type networks at
the second last layer to normalize outputs into discrete probabilities, i.e., for
network F , we can write F := σ ◦ G for softmax function σ, where G is
the composition of all previous layers. As such, the gradient of the network
contains the derivative of the softmax function as a multiplicative term:

∂F

∂xk
=
∂F

∂zj
(
∂zj

∂x
) =

∂σ(zj)

∂zj
(
∂zj

∂x
) =

1

T
zj(

∂zj

∂xk
), (4.1.3)

for input pixel xk, where the softmax function σ(·) at the second last layer for
the jth classification is

σ(zj) =
ez

j/T∑
i e
zi/T

, (4.1.4)

and zj := [G(xk)]j is the jth component of the output from the previous layers.
In Defensive Distillation, a large temperature T is used for the student network,
but the attacks are assumed to be crafted with T = 1 in the softmax function.
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The larger T reduces the gradient by T , essentially disabling the search to
advance toward an optimal solution. Thus, it becomes clear that a tampered
gradient can impair the advance of any adversarial attacks crafted using the
gradient of the original network function. Noting this observation, in order
to remove the dependency on the gradient of the network, Carlini & Wagner
re-formulated the problem in (4.1.2). In particular, they introduced different
penalty functions which do not depend on the original network output; instead
they advertised the use of penalty functions that depend on the output at the
second last layer (i.e. the logits). Thus, a more general formulation for finding
adversarial examples is, for penalty function L(·) not necessarily equal to the
original loss function:

min
x′∈D

c · ||x′ − x||+ L(x′, t). (4.1.5)

Since the softmax function applied at the last layer is monotonic, the final
output is already decided at the second last layer, thus equivalent penalty
functions to that in (4.1.2) can be created which do not depend directly on
the original output. Moreover, the logits do not depend on the temperature
constant and thus are not impacted by larger temperature constant used in
Defensive Distillation.

4.2 The Model

4.2.1 Motivation

In the previous section, we discussed that the success of attacks prior to De-
fensive Distillation relied on the accessibility and integrity of the gradient of
the network. From Carlini & Wagner we learned that if we remove the de-
pendency of the attack formulation on the gradient, such attack will defeat
Defensive Distillation. Carlini & Wagner advertised the use of logits to design
a penalty function that achieves an equivalent effect. However, such formula-
tion then relies on the accessibility and integrity of the logits, thus a defensive
mechanism that impairs integrity of the logits can potentially resist a Carlini-
Wagner attack. In the next section, we propose a simple mechanism due to
this motivation, where random noise is added at query time to obscure the
solution of the optimization problem for creating adversarial examples.

We are also motivated by the success of PATE (Papernot et al., 2017)
to devise another mechanism, where although our specific concern is not in
data privacy, the idea of having an ensemble of networks and voting allows the
correct decision on output to be made in situations when some of the networks
are under attack.

In a way, voting can be seen as adding back information that could have
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been lost in partitioning the dataset. Each network trained on a sub-dataset
might contain information not present in another network trained on a different
sub-dataset. When a large subset of networks agree on the output of a single
query, intuitively one can think that a property of the original parent dataset
has been captured by these sub-datasets. Thus, an output is more likely to be
correct if it was obtained by voting among an ensemble of networks, than if it
were the output of a single network. In other words, voting improves accuracy.

4.2.2 Noisy Logit

Since Carlini-Wagner attacks require access to the logits in the solution to
(4.1.5), we can obscure the search for solution by adding random noise to the
logits. Note that if we add random noise directly to the original logits, an
adversary might recover the original logits by making multiple queries and
averaging the resulting noisy logits. Instead, we apply random noise at query
time to the input, then respond to the query with the logit of the perturbed
input. Also, since the softmax function is monotonic, we must ensure the
final output is a result of the noisy logit, otherwise the genuine logit can be
recovered by applying the inverse of the softmax function to the result at the
output layer. Let z0 be an input with F (z0) its output from the network F .
Moreover, suppose F has n layers besides the input layer and for 1 ≤ i ≤ n

zi := Fi ◦ Fi−1 ◦ · · · ◦ F1(z0), (4.2.1)

where ◦ denotes composition and

F (z0) := zn = Fn ◦ Fn−1 ◦ · · · ◦ F1(z0). (4.2.2)

Then at the output layer i, the Noisy Logit mechanism will produce output

Fi(z
′
i−1) = Fi ◦ Fi−1 ◦ · · · ◦ F1(z

′
0), (4.2.3)

where
z′0 = z0 + g(~a) (4.2.4)

and g(~a) is a random noise function with parameter(s) ~a. Note that by this
procedure, naturally we can respond to queries at any layer with a noisy out-
put, thus preventing an adversary from trying to reconstruct a genuine output
at any layer (including the logits) by making queries to the network.
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4.2.3 Ensemble Voting

The purpose of having an ensemble of networks is two-fold: 1) to provide
resilience in the combined network when some of the networks are under at-
tack; 2) to improve accuracy in the combined network over the individual
networks. If we require that each individual network must successfully classify
the input image, then assuming independence of success probabilities across
the networks, the probability of simultaneous success across the networks is
the product of the success probability of each network, which might be less
than a desirable level of accuracy if the total number of networks is large since
we are multiplying a series of numbers less than 1. However, if we only re-
quire success in the largest subset of the networks, then since there are many
possible permutation of subsets when the number of networks is large, the
success probability of the combined network as an aggregate might be much
better than that of each individual network. Let S := {F 1, F 2, ..., Fm} be a
collection of m networks, let δ(S) be the set of all partitions of S. For each
partition h ∈ δ(S), let Lh denote the largest subset in h. Then, the probability
of success by voting is: ∑

h∈δ(S)

P (Lh), (4.2.5)

where P (Lh) is the probability of simultaneous success in Lh. Note that when
m is large, the number of possible partitions is large which means the success
probability by voting can be high.

We note that although Carlini-Wager attacks are able to defeat a network
trained with any temperature constant, an attack crafted for a network trained
with one temperature constant might not work on another trained with a
different temperature, due to differences in the trained parameters. Thus we
propose a mechanism where we train an ensemble of networks, each trained
with a different temperature constant, where we respond to queries using the
aggregate outputs of the ensemble of networks.

4.2.4 Threat Model

Noisy Logit
We discussed that Carlini-Wagner attacks rely on accessibility and integrity
of the logits, and we proposed a mechanism that adds perturbations to the
original logits (or any other layer). Thus, this defensive mechanism works
under the assumptions that: 1) an adversary can query the outputs at any
layer of the network; 2) but the adversary does not have complete knowledge
and resources to construct the original network offline. If the adversary has
an exact copy of the original network, then he/she could craft attacks based
on the original network with genuine logits, and would defeat this mechanism.
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Ensemble Voting
The Ensemble Voting mechanism works by providing resilience in situations
where some networks might be under attack, thus it assumes the adversary
can defeat a subset of the networks (which implies the adversary could have
full knowledge of these networks). Therefore, complete white-box attacks are
assumed in this model.

Bounded Perturbations
We discussed in the Introduction that for sufficiently differentiable loss func-
tions, a solution to (4.1.5) is guaranteed to exist. However, if the perturbations
are so large that even humans will mis-classify, then any mis-classification can-
not be considered fault of the network. Thus, we assume the goal of adversary
is craft adversarial examples with perturbations that are (reasonably) unno-
ticeable.

4.3 Experimental Evaluation

In this section we assess the effectiveness of our approach by formulating two
types of potential attacks on our model. In the first type we consider an attack
crafted for a randomly chosen network in the ensemble. Since the model ar-
chitectures are so similar across the networks, transferability is possible where
networks other than the chosen one might still incorrectly classify. In the
second type of attacks we consider superimpositions of adversarial examples
to examine whether this could further increase transferability. For a chosen
subset of the networks, each with a corresponding adversarial example, one
could reasonably suspect that other networks beyond the chosen subset could
incorrect classify as the superimposition could have captured perturbations
that are commonly effective on many other networks.

4.3.1 Test Setup

We conducted experiments on two datasets, MNIST (LeCun et al., 1998) and
CIFAR10 (Krizhevsky, 2009). For the following tests, the architecture of each
network is the same as the one in Carlini & Wagner (Carlini and Wagner,
2017), which we provide in Table 4.1. We first trained an ensemble of networks
F l, each with temperature Tl, l = 1, 2, ...,m. We used {Tl|l = 1, 2, ..., 50} =
{10, 20, ..., 500}. In all the experiments, the L2 norm is used in all places where
a norm is needed, including the L2 version of the Carlini-Wagner attack. For
the models with Noisy Logit, we employ a Laplace noise function g(µ, b) with
location µ = 0, scale b = 0.5 for MNIST and b = 0.03 for CIFAR10. We
experimented with different values for the scale parameter, and found these
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values provide sufficient noise without losing too much accuracy.

Layer MNIST CIFAR10
Convolution + ReLU 3× 3× 32 3× 3× 64
Convolution + ReLU 3× 3× 32 3× 3× 64
Max Pooling 2× 2 2× 2
Convolution + ReLU 3× 3× 32 3× 3× 64
Convolution + ReLU 3× 3× 32 3× 3× 64
Max Pooling 2× 2 2× 2
Fully Connected + ReLU 200 256
Fully Connected + ReLU 200 256
Softmax 10 10

Table 4.1: Model architectures used in the ensemble of networks

Parameter MNIST CIFAR10
Learning Rate 0.01 0.01
Decay 1.00e− 06 1.00e− 06
Momentum 0.9 0.9
Dropout 0.5 0.5
Batch Size 128 128
Partitioned Training Set Yes No
Training Set Size (Per Network) 1100 45000
Validation Set Size 5000 5000
Epochs 3000 150
Laplace Noise Scale 0.5 0.03

Table 4.2: Parameters used in the ensemble of networks

MNIST
We first partitioned the original dataset into 50 training subsets (1100 samples
each) and one validation set (5000 samples). We trained 50 teachers individu-
ally on the partitioned subsets, each was trained with a different temperature
constant for 3000 epochs. The average validation accuracy among the ensem-
ble of networks was 96.80%.

CIFAR10
In the setup for CIFAR10 we used a single training set (45000 samples) and
one validation set (5000 samples). We do not use the networks trained on par-
titioned datasets for testing on CIFAR10, because we observed that a small
training dataset resulted in low accuracy for CIFAR10. We trained 50 teach-
ers individually on the same training set, each was trained with a different
temperature constant for 150 epochs. The average validation accuracy among
the ensemble of networks was 79.53%.
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Figure 4.1: MNIST: Counts of Networks Changed

4.3.2 Random Single Network Attack

In this section, we look at the possible outcomes of an adversarial example
crafted to defeat a single network, to see how it can potentially transfer across
the ensemble. Since an adversarial example crafted for one network can poten-
tially fool a different network (Papernot et al., 2016c), we expect transferability
in our ensemble of networks especially given that they have very similar model
architectures. Given some sample input s and target label t, for each F l we
craft an adversarial example A(F l, s, t) using the Carlini-Wagner attack, and
look at: 1) how each F l′ classifies A(F l, s, t); and 2) how the ensemble classifies
the example through voting with and without Noisy Logit.

We generate a set of 9 input samples, sk, k = 1, ..., 9. For each sk we craft
an adversarial example A(F l, sk, tj) on network F l, l = 1, ..., 50, for targets
tj, j = 1, ..., 9, for a total of 9× 50× 9 = 4050 adversarial examples. We define
the perturbation of an adversarial example as its normed difference with the
original input over the norm of the original input, as follows:

p(a; s) =
||a− s||
||s||

, (4.3.1)

where a is an adversarial example on the input s. We bucket the range of
perturbations into 40 equally spaced bins, xb, b = 1, ..., 40. In the plots in this
section, we aggregate by the perturbation bins and represent the bins by their
mid-points on the x-axis.

In Fig. 4.1a we have for the MNIST dataset, the average counts of networks
whose classifications change to the target of the adversarial example, from
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Figure 4.2: MNIST Ensemble: Aggregate Outputs Changed

some other original classification, i.e., for bucket xb, the values yb on the y-
axis are:

yb =
1

|xb|
∑
x∈xb

|{F l : F l(a) 6= F l(s), F l(a) = t, p(s, a) = x, l = 1, ..., 50}|.

(4.3.2)
In Fig. 4.1b the counts are on the classifications that change to something

other than the target, or:

yb =
1

|xb|
∑
x∈xb

|{F l : F l(a) 6= F l(s), F l(a) 6= t, p(s, a) = x, l = 1, ..., 50}|.

(4.3.3)
These counts are averaged by perturbation bin. The green and blue curves rep-
resent the results corresponding to adversarial examples crafted on networks
without and with Noisy Logit applied, respectively.

In Fig. 4.2a we show the frequencies of aggregate outputs of the ensemble
which changed to the target of the adversarial example, i.e.:

yb =
1

4050

∑
x∈xb

|{F ∗(a) : F ∗(a) 6= F ∗(s), F ∗(a) = t, p(s, a) = x}|, (4.3.4)

where F ∗(·) represents the aggregate output by voting among the ensemble.
Similarly, we have in Fig. 4.2b the frequencies corresponding to some label
other than the target:

yb =
1

4050

∑
x∈xb

|{F ∗(a) : F ∗(a) 6= F ∗(s), F ∗(a) 6= t, p(s, a) = x}|. (4.3.5)

The frequencies are obtained by normalizing the total changed outputs by the
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Figure 4.3: MNIST Ensemble: Perturbation & Accuracy
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Figure 4.4: CIFAR10: Counts of Networks Changed

total number of adversarial examples, which is 4050 in this case.
In Fig. 4.3a we show the average accuracy of the ensemble by perturbation

bin. We see that when the amount of perturbation is between 10% - 30%, ap-
plying Noisy Logit causes the ensemble to lose accuracy since additional noise
is added to the adversarial examples. This, together with Fig. 4.1a - 4.2b seem
to suggest that applying Noisy Logit tends to decrease accuracy in the ensem-
ble for perturbation bins in this range. However, note that by applying Noisy
Logit the distribution of the perturbations is significantly changed, where we
see increased frequency in smaller perturbations, and also occurrences of large
perturbations in the range of 40%-50% which do not occur without applying
Noisy Logit. In particular, MNIST Ensemble with Noisy Logit is able to cor-
rectly classify more adversarial examples with small perturbations, as well as
adversarial examples with larger perturbations, as shown in Fig. 4.3b.
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In Fig. 4.4a and 4.4b we have the average counts of networks whose classifi-
cations change due to the adversarial examples, as in equations 4.3.2 and 4.3.3,
for the CIFAR10 dataset. In Fig. 4.4a we notice a decrease in the number of
networks in the ensemble whose classifications change to target when Noisy
Logit is applied, and consistently so across different perturbation bins. This
suggests that applying Noisy Logit reduces transferability rate for CIFAR10
networks. In Fig. 4.4b we see an increase in the counts of networks that change
classifications to others for the smallest perturbation bins, which could be due
to the general (slightly) lowered average accuracy when Noisy Logit is applied.
Beyond the smallest perturbation bins, there are no noticeable differences in
the counts whether Noisy Logit is applied or not.
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Figure 4.5: CIFAR10 Ensemble: Aggregate Outputs Changed

In Fig. 4.5a and 4.5b we show the frequencies of aggregate outputs of the
ensemble with changed classifications for the CIFAR10 dataset, as in equations
4.3.4 and 4.3.5. In Fig. 4.5a there appears to be no meaningful difference in
the transferability rate with respect to the aggregate output of the ensemble.
Note this is not a contradiction to Fig. 4.4a above, because the counts in
Fig. 4.4a are very small (contrary to the case of MNIST). Since the ensemble
consists of 50 networks, an extra count or two that classify the adversarial
example as the target label will not change the aggregate output (by voting)
from the ensemble. In Fig. 4.5b there appears to be a shift in the perturba-
tion distribution for adversarial examples that cause the ensemble to change
aggregate output to other labels, where there are more adversarial examples
with smaller perturbations when Noisy Logit is applied.

We show the average accuracy of the ensemble of networks for CIFAR10
in Fig. 4.6a. There appears to be no significant difference in the average
accuracy of the ensemble whether or not Noisy Logit is applied. We show
the distribution of the perturbations for the correctly classified adversarial
examples in Fig. 4.6b. Observe the range and frequencies of the perturbation
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Figure 4.6: CIFAR10 Ensemble: Perturbation & Accuracy

distributions are very similar whether or not Noisy Logit is applied.
We summarize the results in Table 4.3 and Table 4.4. Observe that for

CIFAR10 Ensemble with Noisy Logit, nearly identical accuracy to the origi-
nal clean accuracy is achieved for adversarial examples that target any single
network in the ensemble. We calculate accuracy as the ratio of the number of
correct aggregate outputs over the total number (4050) of test attacks. Note
that since for each sample we generate 50× 9 adversarial examples, the clean
accuracy is effectively over 9 samples only.

Model Clean Accuracy SN Attack Accuracy

MNIST Ensemble 100.000% 88.370%
MNIST Ensemble with Noisy Logit 98.667% 79.975%
CIFAR10 Ensemble 88.889% 85.185%
CIFAR10 Ensemble with Noisy Logit 84.321% 84.691%

Table 4.3: Accuracy on clean inputs vs. on Single Network (SN) adversarial
inputs

4.3.3 Superimposition Attacks

In this section we consider superimposition attacks consisting of adversarial
examples targeting two or three of the networks in the ensemble. Due to the
large number of possible subsets of length two or three, we do not consider
every such combination; instead, since the objective of crafting an adversarial
example is to minize the perturbations while causing a network to incorrectly
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Model Correct Target Other

MNIST Ensemble 88.37% 3.85% 7.78%
MNIST Ensemble with Noisy Logit 79.98% 8.35% 11.68%
CIFAR10 Ensemble 85.19% 1.80% 13.01%
CIFAR10 Ensemble with Noisy Logit 84.69% 2.15% 13.06%

(a) Classifications

Model Correct Target Other

MNIST Ensemble 15.34% 15.52% 22.16%
MNIST Ensemble with Noisy Logit 13.58% 19.06% 22.42%
CIFAR10 Ensemble 3.59% 0.51% 4.77%
CIFAR10 Ensemble with Noisy Logit 3.67% 0.42% 4.13%

(b) Average perturbations

Table 4.4: Distributions for Single Network adversarial inputs

classify, we consider a greedy type superimposition where adversarial exam-
ples of minimal perturbations are used. We do not look at superimpositions
of more than three adversarial examples, as we will see that with three ad-
versarial examples, total perturbation can already be as high as > 50% in an
attack, as shown in Table 4.8b.

Superimposition of Two Adversarial Examples
We generate a set of 30 input samples, for each sample and each target we
need to first craft an adversarial example for each network F l. Then we pick
the two adversarial examples with the smallest perturbations and superimpose
them to arrive at an attack for one test. This gives a total of 30 × 9 = 270
tests; however, the total number of individual adversarial examples crafted is
270× 50 = 13500.

Single Network Clean Accuracy SI2 Attack Accuracy

MNIST Network 96.8000% 55.2963%
MNIST Network with Noisy Logit 79.6296% 69.1333%
CIFAR10 Network 79.5333% 71.4000%
CIFAR10 Network with Noisy Logit 74.8889% 71.3556%

Table 4.5: Average single network accuracy on clean inputs vs. on
Superimposition (2×) of adversarial inputs

In Table 4.5 we have the average accuracy over all networks in the en-
semble, where in the left column the accuracy is on the original images, in
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the right column the accuracy is on the adversarial examples. We see that
with a superimposition of only two images, the average accuracy of an MNIST
network reduced to 55.30% from 96.80%; whereas for a CIFAR10 network the
average accuracy is reduced from 79.53% to 71.40%, a much smaller reduction.
This again suggests that CIFAR10 networks are more robust to transferability.
Observe that with Noisy Logit, the accuracy reduction is less prominent.

Model Correct Target Other

MNIST Ensemble 66.2963% 13.3333% 20.3704%
MNIST Ensemble with Noisy Logit 96.6667% 0.0000% 3.3333%
CIFAR10 Ensemble 87.7778% 1.1111% 11.1111%
CIFAR10 Ensemble with Noisy Logit 84.0741% 1.4815% 14.4444%

(a) Classifications

Model Correct Target Other

MNIST Ensemble 14.6285% 25.7126% 24.3226%
MNIST Ensemble with Noisy Logit 6.4906% 0.0000% 24.3824%
CIFAR10 Ensemble 2.7488% 0.0002% 3.9650%
CIFAR10 Ensemble with Noisy Logit 2.6369% 0.0002% 2.7721%

(b) Average perturbations

Table 4.6: Distributions for Superimposition (2×) of adversarial inputs

In Table 4.6a, we have the accuracies of applying Ensemble Voting with and
without Noisy Logit. In MNIST Ensemble without Noisy Logit, we obtained a
66.3% accuracy for correctly classifying the adversarial images, 13.3% success
rate in the targeted attacks, and in the remaining 20.37% of the tests the com-
bined network classified the adversarial images as something other than the
correct or targeted labels. In MNIST Ensemble with Noisy Logit, accuracy is
vastly improved to 96.67%, nearly identical to the average single network ac-
curacy on clean inputs. Moreover, observe that the average accuracy for single
MNIST networks with Noisy Logit is only 69.13% when applied on superim-
position adversarial inputs, but as an ensemble of networks we achieve a much
better accuracy rate. We make similar observations for CIFAR10, except that
it’s less prone to transferability, and suffers smaller accuracy reduction with
or without Noisy Logit when applied on superimposition adversarial inputs.
Also, the CIFAR10 ensemble achieves better accuracy on adversarial inputs
than the average single CIFAR10 network accuracy on clean inputs.

We provide the distribution of perturbations corresponding to Table 4.6a in
Table 4.6b. The average perturbation for MNIST Ensemble with Noisy Logit
for correctly classified adversarial examples is smaller than that without Noisy
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Logit, observe this is consistent with what we saw in Fig. 4.3b, where applying
noise shifts the distribution of perturbations in the adversarial examples.

Superimposition of Three Adversarial Examples
We generate a set of 10 input samples, then we craft an adversarial example
similar to what was done for superimposition of two adversarial examples, ex-
cept we use three in this case. We have a total of 10× 9 = 90 tests, where the
total number of individual adversarial examples crafted is 90× 50 = 4500.

Single Network Clean Accuracy SI3 Attack Accuracy

MNIST Network 95.6000% 24.6889%
MNIST Network with Noisy Logit 74.6222% 55.9333%
CIFAR10 Network 83.0000% 68.6222%
CIFAR10 Network with Noisy Logit 78.6222% 73.0667%

Table 4.7: Average single network accuracy on clean inputs vs. on
Superimposition (3×) of adversarial inputs

In Table 4.7 we have the average accuracy over all networks in the en-
semble. Observe with superimposition of 3 adversarial examples, the average
single MNIST network accuracy is reduced drastically from 95.6% to 24.69%.
When the individual networks have such low accuracy, the benefit of having
an ensemble is minimal as we see in the first row in Table 4.8a. However, with
Noisy Logit, MNIST Ensemble is able to achieve a very large improvement in
accuracy, from the 26.67% without Noisy Logit to 90.00% with Noisy Logit.
Moreover, in the 2.22% of successful attacks on MNIST Ensemble with Noisy
Logit, the average perturbation was > 50%. We remark that the models on
CIFAR10 are again impacted to a much smaller degree in terms of accuracy
loss.

4.4 A Second Look at Noisy Logit

The results for the Random Single Network Attack in Section 4.3.2 provided
some insights into how Noisy Logit works to reduce transferability across differ-
ent neural networks. However, in the case of the MNIST dataset, we observed
that although Noisy Logit changes the distribution of perturbations in the
adversarial examples, it appears there is no benefit to using Noisy Logit as
Ensemble Voting alone provides better accuracy rates. In this section, we look
at the output of each individual network in isolation when it’s being targeted,
to see whether applying Noisy Logit improves robustness in a single network.
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Model Correct Target Other

MNIST Ensemble 26.6667% 57.7778% 15.5556%
MNIST Ensemble with Noisy Logit 90.0000% 2.2222% 7.7778%
CIFAR10 Ensemble 86.6667% 1.1111% 12.2222%
CIFAR10 Ensemble with Noisy Logit 87.7778% 2.2222% 10.0000%

(a) Classifications

Model Correct Target Other

MNIST Ensemble 13.0187% 29.0136% 34.7022%
MNIST Ensemble with Noisy Logit 8.3600% 50.5385% 26.6385%
CIFAR10 Ensemble 3.5315% 0.0003% 5.1646%
CIFAR10 Ensemble with Noisy Logit 3.4029% 0.0003% 3.9467%

(b) Average perturbations

Table 4.8: Distributions for Superimposition (3×) of adversarial inputs

In Fig. 4.7 we craft adversarial examples corresponding to a single sample and
single target, on each of the 50 networks in the ensemble.

In Fig. 4.7a and Fig. 4.7b, the sample input is the digit 7 and target is the
digit 0. Observe that the distribution of perturbations is changed if we apply
Noisy Logit, where in Fig. 4.7b we see more occurrences in the tails (i.e. very
small or very large perturbations). In Fig. 4.7a each targeted network mis-
classifies its corresponding adversarial example as 0 (corresponding to 100%
success rate of Carlini-Wagner on a single network); whereas in Fig. 4.7b,
only 8 of the networks misclassify as 0, and 29 of the networks still correctly
classify as 7. Therefore, for an individual MNIST network with Noisy Logit
applied, the success rate of a targeted Carlni-Wagner attack is low. Thus, a
single MNIST network is more robust to adversarial examples if Noisy Logit
is applied, however the accuracy rate suffers since extra noise is added.

In Fig. 4.7c and Fig. 4.7d, the sample input is the object ship and the target
is the object airplane. There is no noticeable difference in the distribution of
perturbations whether or not Noisy Logit is applied. In Fig. 4.7c, again each
targeted network misclassifies its corresponding adversarial example as the
target (airplane); whereas in Fig. 4.7d, only 1 of the networks misclassifies as
airplane, and 38 of the networks still correctly classify as ship. Therefore, the
success rate of a targeted Carlni-Wagner attack on a single CIFAR10 network
is very low, i.e., robustness of a single CIFAR10 network is increased in the
presence of Noisy Logit. Note also the accuracy rate only slightly suffers from
extra noise added.
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(a) MNIST No Noisy Logit (b) MNIST With Noisy Logit

(c) CIFAR10 No Noisy Logit (d) CIFAR10 With Noisy Logit

Figure 4.7: Adversarial examples without and with Noisy Logit applied
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4.5 Discussion

The goals of this chapter might appear somewhat contradictory. On one-hand,
we are providing a mechanism that protects against adversarial examples, and
it relies on the ground that transferability properties of adversarial examples
between networks are not completely known. On the other hand, we’ve shown
how easy it is to craft an adversarial example using superimposition, that
would result in an example that can fool not only the original networks from
which the example was crafted, but can potentially fool other networks as
well (that is, in the absence of a protection mechanism). We believe the key
to finding an adversarial example that will truly resist all protection mecha-
nisms, including our work here, is to understand the transferability properties
of such examples across different networks. Based on our testing results, it
appears transferability likely depends on the complexity of the classification
task. The images in the CIFAR10 dataset have many more features than those
in the MNIST dataset. While the CIFAR10 and MNIST networks were trained
with similar model architectures, the MNIST networks are much more prone
to transferability than the CIFAR10 networks. Also, we note that it takes
a much smaller amount of perturbations to craft an adversarial example on
a single CIFAR10 network than it does for an MNIST network, which could
mean that on a CIFAR10 image there is a small subset of pixels which are
most important to the model. When this small subset of pixels varies across
different models, then it becomes very unlikely that an adversarial example
crafted with one model would succeed on a different model; unless there is
some model-independent small subset of pixels which are universally impor-
tant to every model.

Threat Analysis
We note that most adversarial examples failed because they relied on integrity
of the outputs at a layer (in this paper we focused on the logits due to nature
of the Carlini-Wagner attacks). Therefore, in the presence of the noisy logit
mechanism, an adversary might try to circumvent this obstacle by trying to
infer the genuine outputs from the noisy outputs. Note that since the neu-
ral network is not necessarily a continuous function, an average of the noisy
outputs, which are function values of a random distribution, is not necessarily
equal to the genuine output of the average of perturbed inputs. However, we
remark that it is valuable to perform detailed testing on how well an average
of the outputs can function as approximation to the genuine output, though
we also remark that attacks of this sort would require much more effort as the
adversary might need to collect a large number of outputs based on the same
input for each iteration required in crafting an attack.

We note that transferability of neural networks was studied by Papernot
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et al. (Papernot et al., 2016c), where it was shown in the experiments that
transferability from one neural network to another was as high as 38% using
the Fast Gradient Sign method (Goodfellow et al., 2015). In (Papernot et al.,
2016c), they did not consider an explicit algorithm for attacking an ensemble
model. In our testing results in Tables 4.5 and 4.6a, we showed that using
a simple superimposition of two adversarial examples, the average accuracy
on the MNIST networks was reduced from 96.80% to 55.30%, with ensemble
accuracy of 66.30%. When three adversarial examples were used, the aver-
age accuracy was reduced from 95.60% to 24.69%, with ensemble accuracy of
26.67%, as shown in Tables 4.7 and 4.8a. Note that transferability rate is also
dependent on the classification task, where we saw in the same tables that the
same experiments performed on the CIFAR10 dataset showed a much lower
transferability rate on similar superimposition attacks.

4.6 Concluding Remarks

In this chapter we introduced an approach for protecting image classification
networks from adversarial examples. The approach is composed of two mecha-
nisms - Noisy Logit and Ensemble Voting, which were evaluated in Section 4.3.
We saw that Ensemble Voting improves accuracy over the base model, while
Noisy Logit reduces transferability across different networks in classifying ad-
versarial examples. Moreover, the approach combining the two mechanisms
was shown to have comparable accuracy in classifying adversarial examples
as in classifying genuine inputs, for both MNIST and CIFAR10 if superim-
position attacks were considered, and for CIFAR10 if random single network
attacks were considered. Using Noisy Logit impedes the adversary’s ability to
accurately solve the optimization problem for crafting adversarial examples, as
solving the problem requires access to outputs at some layers which have been
tampered by the Noisy Logit mechanism. Ensemble Voting works on white-
box attacks and is a mechanism that provides resilience as well as improves
accuracy. Since using Noisy Logit reduces accuracy in general, the addition of
Ensemble Voting complements the approach by improving the reduced accu-
racy.
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Chapter 5

Conclusion

In this chapter, we conclude this thesis with a summary of our contributions
to the two problems we set out to address, as well as research directions and
ideas for future work.

5.1 Thesis Summary & Contributions

In this work we aimed to address two problems concerning privacy & security
risks in Data Analytics and Machine Learning algorithms. We described the
specific problems in the introduction, and motivated our research with some
discussions of related work in Chapter 2.

In Chapter 3 we provided a thorough exposition into our algorithms for
anonymization. The main contributions in Chapter 3 were: 1) introduced a
formulation of k-anonymity as an MILP with the objective to maximize data
utility; 2) devised two practical algorithms with experimental results to demon-
strate their scalability to large datasets; 3) presented benchmark results of our
algorithms against existing algorithms from different classes; and 4) provided
a discussion on the similarities and differences between existing algorithms
and the algorithms we introduced, highlighting aspects of our algorithms that
contributed to better performance and utility.

In Chapter 4 we gave a brief account of works that motivated the cre-
ation of the state-of-the-art algorithm for crafting adversarial examples - the
Carlini-Wagner attack. We discussed the vulnerabilities of prior attacks that
were defeated by Defensive Distillation, and how the Carlini-Wagner attack
escaped those vulnerabilities. The main contributions in Chapter 4 were: 1)
developed an approach combining two mechanisms, Noisy Logit and Ensemble
Voting. Noisy Logit works to increase robustness at the expense of accuracy,
and the lost accuracy is recouped by the Ensemble Voting mechanism; 2) for-
mulated potential attacks on our combined approach with experimental results
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to demonstrate its effectiveness; 3) showed that without any protection mech-
anisms, a superimposition attack consisting of three adversarial examples with
minimal perturbations could cause > 75% of the individual MNIST networks
to misclassify, and could cause the MNIST ensemble to misclassify > 73% of
the time.

5.2 Future Work

There are several directions for future work. We describe some ideas that
might potentially improve the efficiency of our k-anonymization algorithms
below. We also list some interesting research studies to extend the work on
our approach for improving robustness of neural networks.

Improving Optimization-Based k-Anonymization
We have implemented the Split & Carry algorithm with the number of carry-
over records equal to k plus the number of distinct equivalent rows to the last k
records. As discussed this can lead to performance issues as k becomes larger.
As a future research direction, we can instead use a customizable parameter l
in place of k to mitigate the problem. It would be interesting to experiment
with this parameter to see whether there would be recommendable choices for
l.

We can also modify the existing algorithm in the set of records we carry.
The current algorithm carries over the k-set of each boundary record if there
are either zero or at least k remaining indirectly equivalent records, otherwise
we carry over the k-set plus all indirectly equivalent records. We could instead
carry over a subset of the k-set, in particular for the mth sub-problem, we
can determine the subset as follows: Let xi be the boundary record under
consideration, denote its equivalence class by Eqi := {xi, xi2 , ..., xik}. For
l = i2, .., ik, compute the objective value fl := f(Eqi \ xl). Then we define the
set of carry-over records for xi to be the k−(k−r) records with the largest fl’s,
where r is the size of the set of indirectly equivalent records, r < k. In other
words, we carry those records that contribute the smallest information loss in
Eqi, which means these records can be potentially grouped into an equivalence
class with less information loss than Eqi in the next sub-problem.

Another way to remedy the situation is, instead of specifying S - the mini-
mum number of the k-sets to include in a sub-problem, we can use a parameter
P to specify the exact size of each sub-problem, and a parameter A which de-
scribes how many k-sets we accept into our final solution. For example, for
k = 3 we can have P = 12, and A = 2, i.e. we accept the two k-sets with min-
imum utility loss into our final solution, and carry the remaining records into
the next sub-problem of exact size P = 12, creating a chain of sub-problems
by bubble carry. Inevitably in this modified algorithm we will have to solve
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more sub-problems than our current Split & Carry (leading to a linear in-
crease in complexity), however, in this way we are controlling the size of each
sub-problem which we know to have good complexity when the number of
attributes is small. This simple modification might have better running time
than our current algorithm where in the latter there is some variation in the
sizes of the sub-problems.

Both our algorithms use the initial feasible solution as the starting point,
and we have seen in the experiments that the initial feasible solution is very ef-
ficient and already has utility advantage over the Mondrian algorithm. There-
fore, determining an optimal sorting order is also valuable as future work; it
can potentially improve utility to an extent that the initial feasible solution
by itself, can also be merited as an efficient solution for anonymization.

Further Studies on Robustness Approach
There are a number of future directions to extend the current work. In the
Noisy Logit mechanism we determined the amount of noise to be added by ex-
perimenting with different values. One can also study the relationship between
the number of networks to be used with the amount of noise to be added to
the inputs, or consider potentially different distributions used for generating
the noise. The amount of noise is an important parameter, as we saw that
adding noise indeed obscured the search for successful Carlini-Wagner adver-
sarial examples, however it also lowered the accuracy rate in the standalone
networks.

We can consider Ensemble Voting using a collection of networks with very
different architectures (rather than the ones considered here which are the same
up to the temperature constant). We saw in Chapter 4 that transferability
between MNIST networks (without protection mechanism) was high, it’d be
an interesting study to investigate whether using different architectures would
reduce transferability in MNIST networks, although transferability was low in
CIFAR10 networks while they also used the same architectures.

Given that in our experiments, MNIST and CIFAR10 networks exhibited
different transferability behaviour, it’d be an interesting research study to
perform similar experiments on other datasets as well, to better understand
which aspects of the datasets led to the different properties. We suspect that
the complexity of the underlying task (i.e. the number of features in the
inputs) could be a key factor, where more complex tasks should exhibit lower
transferability rates.
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Appendix A

A.1 Weighting Attributes

We present an example of applying weights to the attributes using a dataset
from the database of FARS (US Department of Transportation, 2016). In
Table A.1, we have the original dataset in (a) on 4 attributes: AGE, SEX,
INJ SEV (injury severity) and DRINKING; we also have the outcome of the
dataset anonymized with equal weights in (b), and the outcome anonymized
with weight vector (0.8, 0.05, 0.1, 0.05) in (c). We see that the upper-lower
bound gaps in the anonymized outcome for the AGE attribute narrowed when
we applied a large weight to this attribute, i.e., we achieve better utility for
AGE; however this is achieved at the expense of the SEX and DRINKING
attributes.

(a) Original dataset (b) Equal weights (c) Weights = (.8,.05,.1,.05)

Table A.1: Sample dataset from FARS anonymized by equal and unequal
weights
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A.2 Categorical Data

When we convert a categorical attribute into a vector of binary attributes,
we use 1 to indicate presence of the property. For example, in the dataset
used for the results shown in Figs. 3.3a - 3.3d, ”Marital Status” attribute is
represented as (u1, u2, u3, u4, u5, u6) with each binary attribute ui represent-
ing a permissible value in Marital Status. In record 628 the entry for this
attribute is 1 (representing status ”Married; spouse present”), and thus rep-
resented as (1, 0, 0, 0, 0, 0). Its equivalence class by Greedy Search are the
records {628, 648, 819}, and the entries for records 648, 819 under Marital
Status are 1 and 6 (representing status ”Never married/single”), respectively.
The anonymized outcome is represented as ”1 | 1 | 6”, which means the en-
tries in this class can be translated back into high-level attributes as {”Married;
spouse present”, ”Never married/single”}.

We give a definition of the GCP here that is similar to the definitions in
(Wong et al., 2010; Doka et al., 2015).

DEFINITION 8: The Normalized Certainty Penalty (NCP) information loss
metric for the anonymized outcome x′ij of an attribute aj is defined by:

NCP (x′ij) =

{
count(x′ij)−1

|aj | : aj is categorical

Dij : aj is numerical

where Dij is as defined in Definition 4.

DEFINITION 9: We also define the Global Certainty Penalty (GCP) infor-
mation loss metric for anonymized record x′i := [x′ij]j∈J to be:

GCP (x′i) =
∑

j∈J
NCP (x′ij) (A.2.1)

A.3 On the parameter S

The upper bounds on the sizes of the sub-problems in Fig. 3.5a - 3.5b are
provided by LEMMA 2, and they are: 24, 27 and 30, for S = 3, S = 4 and
S = 5, respectively. We give the actual distributions on the sizes of the sub-
problems in Table A.2a - A.2c and see that the sizes rarely reach their upper
bounds.
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Size Count
9 1
11 1
12 432
13 33
14 30
15 21
16 22
17 16

(a) S = 3, k = 3

Size Count
12 1
14 1
15 292
16 27
17 29
18 16
19 16
20 11
21 8
22 5
23 5
24 3
26 1
27 2

(b) S = 4, k = 3

Size Count
15 1
18 200
25 15
22 16
23 12
26 19
20 17
28 9
19 23
21 12
27 3
24 4
29 1
30 1
13 1

(c) S = 5, k = 3

Table A.2: Distributions of sub-problem sizes for Fig. 3.5a - Fig. 3.5b

A.4 Statistics of the Datasets

In this subsection we provide the statistics on the datasets used in our tests.
In Table A.3 we display the variances of the CENSUS dataset (on 8 attributes)
for different numbers of records, the min/max values were given in Table 3.6.
We also display the statistics for the extended datasets of 15-35 attributes in
Table A.4.

Note that the variances for each attribute in Table A.3 are similar across
different sizes, thus we expect the information loss incurred to be similar across
these datasets when the same k is used. Indeed this is what we observed in
Section 3.4.4 Fig. 3.6c and Fig. 3.6d.

Number of
Records

Gender Age
Marital
Status

Race Birthplace
Education

Level
Work Class Occupation

20,000 0.25 224.47 4.83 0.57 3340.06 7.33 11.27 78.00
30,000 0.25 225.03 4.82 0.56 3402.68 7.30 11.22 78.53
40,000 0.25 225.31 4.82 0.57 3414.58 7.33 11.20 78.72
50,000 0.25 225.64 4.81 0.58 3417.06 7.38 11.31 78.70
60,000 0.25 226.29 4.81 0.57 3372.39 7.36 11.34 78.66
70,000 0.25 226.37 4.83 0.56 3410.34 7.36 11.28 78.51
80,000 0.25 226.32 4.83 0.56 3412.74 7.38 11.28 78.53
90,000 0.25 226.96 4.83 0.56 3424.04 7.38 11.28 78.69
100,000 0.25 227.14 4.83 0.57 3412.27 7.39 11.31 78.50

Table A.3: Variances (rounded to 2 decimals) by attribute for the CENSUS
datasets with 8 attributes
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Attribute Variance [min, max]
Family Unit 0.004533004 [1,3]
Family Size 1.442669131 [2,16]
Age of Oldest Child 58.72416437 [0,90]
Age of Youngest Child 56.41184578 [0,90]
Relationship to Household Head 0.824784829 [1,12]
Gender 0.241520454 [1,2]
Age 100.447806 [16,90]
Birth Quarter 1.252327406 [1,4]
Marital Status 1.167666581 [1,6]
Birth Year 100.3407262 [1889,1963]
Times Married 0.148862341 [0,2]
Age at First Marriage 20.55224999 [0,90]
Children Ever Born 4.679614458 [0,13]
Race 0.393475514 [1,7]
Birthplace 4471.679274 [1,465]
Years in the United States 0.63840967 [0,5]
Language Spoken 30.45895319 [1,96]
Highest Grade of Schooling 8.217952835 [1,23]
Class of Worker 0.068740375 [1,2]
Class of Worker - Detailed 11.5164085 [13,29]
Weeks Worked Last Year 168.0059844 [0,52]
Hours Worked Last Week 140.8818287 [1,99]
Usual Hours of Work 156.7482934 [0,99]
Weeks Unemployed Last Year 26.31284308 [0,52]
Income From Wages 98538554.92 [0,75000]
Other Income 2669021.007 [0,75000]
Occupation 81.01775489 [4,79]
Migration Status, 5 Years 0.459946975 [1,4]
Place of Work, State 94.98776039 [1,80]
Means of Transportation to Work 39.7001238 [11,70]
Vehicle Occupancy 0.708769336 [0,7]
Time in Transit 239.9953666 [0,99]
Citizenship 0.13065803 [0,3]
Year of Immigration 0.68959079 [0,6]
Work Disability Status 0.033916173 [1,2]

Table A.4: Variances, min/max values of the CENSUS datasets with 15-35
attributes

A.5 Alternate Database

In this subsection we present some test results using alternative datasets from
the FARS (US Department of Transportation, 2016) database containing traf-
fic accidents data. We have datasets on 4 attributes: MONTH (of occurrence),
AGE, SEX, INJ SEV. All 4 attributes can be viewed as numeric (with SEX
being binary).

In Fig. A.1a - A.1b, we see that our algorithms still achieve similar utility to
the Doka Hungarian algorithm while having better performance. Our Greedy
Search appears to have better performance than our Split & Carry in Fig.
A.1b when we have only 1000 records; however, we see in Fig. A.1b that
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when we increase the number of records to 40000, Split & Carry has both
better performance and utility. These results are consistent with our earlier
observations.

Figure A.1: Comparison using FARS database, m = 4, k = 3
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A.6 Hardware Information

In this subsection we list the typical hardware specifications for running the
experiments, in Table A.5a and Table A.5b. We used Google Cloud Comput-
ing Services (https://cloud.google.com/) with machine type n1-highcpu-8. In
Table A.5b we list the specifications for one of the processors, the remaining
seven are identical except for the processor id, core id, apicid and initial apicid.
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MemTotal 7352436 kB
MemFree 6587692 kB
MemAvailable 6966836 kB
Buffers 50336 kB
Cached 542508 kB
SwapCached 0 kB
Active 409856 kB
Inactive 233532 kB
Active(anon) 50700 kB
Inactive(anon) 10120 kB
Active(file) 359156 kB
Inactive(file) 223412 kB
Unevictable 0 kB
Mlocked 0 kB
SwapTotal 0 kB
SwapFree 0 kB
Dirty 0 kB
Writeback 0 kB
AnonPages 50540 kB
Mapped 23064 kB
Shmem 10280 kB
Slab 43912 kB
SReclaimable 29668 kB
SUnreclaim 14244 kB
KernelStack 2160 kB
PageTables 2780 kB
NFS Unstable 0 kB
Bounce 0 kB
WritebackTmp 0 kB
CommitLimit 3676216 kB
Committed AS 95452 kB
VmallocTotal 34359738367 kB
VmallocUsed 0 kB
VmallocChunk 0 kB
HardwareCorrupted 0 kB
AnonHugePages 0 kB
ShmemHugePages 0 kB
ShmemPmdMapped 0 kB
HugePages Total 0
HugePages Free 0
HugePages Rsvd 0
HugePages Surp 0
Hugepagesize 2048 kB
DirectMap4k 99316 kB
DirectMap2M 3256320 kB
DirectMap1G 5242880 kB

(a) Memory Specifications

processor 0
vendor id GenuineIntel
cpu family 6
model 79
model name Intel(R) Xeon(R) CPU @ 2.20GHz
stepping 0
microcode 0x1
cpu MHz 2200
cache size 56320 KB
physical id 0
siblings 8
core id 0
cpu cores 4
apicid 0
initial apicid 0
fpu yes
fpu exception yes
cpuid level 13
wp yes

bugs
cpu meltdown spectre v1 spectre v2
spec store bypass l1tf mds swapgs

bogomips 4400
clflush size 64
cache alignment 64
address sizes 46 bits physical, 48 bits virtual
power management

(b) CPU Specifications

Table A.5: Hardware Specifications
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Appendix B

B.1 Sample Results for Superimposition At-

tacks

In Fig. B.1 - Fig. B.4 samples of resulting images with adversarial perturba-
tions are shown. The leftmost column displays the original images, the middle
columns display the adversarial examples with the two or three smallest per-
turbations, the last column shows the superimposition of the two or three
adversarial examples. The rows correspond to different targets being applied
in the adversarial examples. Classifications of these images are provided in
Tables B.1 - B.2.

(a) Sample 1, corresponds to Fig. B.1a - Fig. B.1d.

Target SI (2×) SI-NL (2×) SI (3×) SI-NL (3×)

0 7 7 0 7
1 2 7 2 7
2 7 7 2 7
3 7 7 3 7
4 4 7 4 7
5 7 7 5 7
6 6 7 6 7
8 7 7 8 7
9 9 7 9 7

(b) Sample 2, corresponds to Fig. B.2a - Fig. B.2d.

Target SI (2×) SI-NL (2×) SI (3×) SI-NL (3×)

0 2 2 2 2
1 2 2 2 2
3 2 2 3 2
4 8 2 4 4
5 2 2 5 2
6 2 2 6 2
7 7 8 7 3
8 2 2 8 2
9 8 2 9 9

Table B.1: Classifications of MNIST Samples

(a) Sample 1, corresponds to Fig. B.3a - Fig. B.3d.

Target SI (2×) SI-NL (2×) SI (3×) SI-NL (3×)

0 3 3 3 3
1 3 3 3 3
2 3 3 3 3
4 3 3 3 3
5 3 3 3 3
6 3 3 3 3
7 3 3 3 3
8 3 3 3 3
9 3 3 3 3

(b) Sample 2, corresponds to Fig. B.4a - Fig. B.4d.

Target SI (2×) SI-NL (2×) SI (3×) SI-NL (3×)

0 8 8 8 8
1 8 8 8 8
2 8 8 8 8
3 8 8 8 8
4 8 8 8 8
5 8 8 8 1
6 8 8 8 8
7 8 8 0 8
9 1 8 1 8

Table B.2: Classifications of CIFAR10 Samples
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(a) SI (2×) (b) SI-NL (2×)

(c) SI (3×) (d) SI-NL (3×)

Figure B.1: Adversarial images using Superimposition, MNIST Sample 1
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(a) SI (2×) (b) SI-NL (2×)

(c) SI (3×) (d) SI-NL (3×)

Figure B.2: Adversarial images using Superimposition, MNIST Sample 2
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(a) SI (2×) (b) SI-NL (2×)

(c) SI (3×) (d) SI-NL (3×)

Figure B.3: Adversarial images using Superimposition, CIFAR10 Sample 1
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(a) SI (2×) (b) SI-NL (2×)

(c) SI (3×) (d) SI-NL (3×)

Figure B.4: Adversarial images using Superimposition, CIFAR10 Sample 2
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