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Lay Abstract 
 

Sleep and biological rhythms are often disrupted in individuals with depression and 

bipolar disorder. In this thesis, we aimed to compare sleep and biological rhythms in 

individuals with depression or bipolar disorder, against individuals without these 

disorders. We investigated whether sleep and biological rhythms contribute to functioning 

and quality of life in these individuals. As sleep and biological rhythms are disrupted in 

pregnancy and following childbirth, we assessed whether sleep and biological rhythms 

during pregnancy can be used to predict postpartum depression and anxiety severity. 

Finally, we investigated changes in sleep, biological rhythms and light exposure from 

pregnancy to postpartum. Results indicate that disruptions in sleep, biological rhythms, 

and changes in light exposure are widespread in mood disorders. These disruptions are 

linked to worse quality of life and functioning. Sleep and biological rhythms change from 

pregnancy to postpartum, and can be used to predict severity of postpartum depression 

and anxiety. 
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Abstract 
Introduction:  

In Major Depressive (MDD) and Bipolar Disorders (BD), there are well-

documented changes in sleep and biological rhythms. However, how sleep and biological 

rhythm disruptions impact functioning and quality of life (QOL) in these populations, and 

how these disruptions affect perinatal mood and anxiety remains little-known. In this 

thesis, we aimed to compare sleep and biological rhythms in individuals with and without 

mood disorders, and to investigate whether these measures can account for worsened 

functional impairment and QOL in these populations. We investigated whether clinical 

variables combined with sleep and biological rhythms during pregnancy can be used to 

predict depressive and anxiety symptom severity postpartum. Finally, we investigated 

longitudinal changes in sleep, and biological rhythms over the perinatal period. 

Results: 

Subjective and objective sleep and biological rhythm disruptions, and light 

exposure differences are wide-spread in MDD and BD. Regression analyses showed that 

subjective and objective sleep and biological rhythm disruptions can explain 43% of 

variance in QOL scores, and 52% of variance in functional impairment in MDD, BD and 

healthy controls. 

Clinical and demographic variables, objective and subjective sleep and biological 

rhythm measures collected during pregnancy accounted for 50% of postpartum 

depression and 49% of postpartum anxiety symptom severity variance, in regression 

analyses. Numerous sleep and biological rhythm changes occurred across multiple 

domains from pregnancy to postpartum. 
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Conclusion: 

Results suggest that sleep and biological rhythm disruptions occur across many 

domains in mood disorders, including sleep, light exposure, daily activity rhythms and 

melatonin. These disruptions are associated with worse QOL and functioning in BD, 

MDD and healthy controls. Biological rhythms and sleep changes across the perinatal 

period can be used to predict severity of postpartum depressive and anxiety symptoms. 

This work highlights the importance of sleep and biological rhythms as intervention 

targets across different outcomes, and across different mood diagnoses. 

 

Key words: biological rhythms, actigraphy, postpartum depression, postpartum anxiety, 

mood disorders 
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Chapter 1: Introduction 
 

1.1 General Introduction   

Disruptions in sleep and biological rhythms are present across many disorders, 

particularly in mental illness and disorders of the brain. In mood and anxiety disorders, 

disruptions in sleep and biological rhythms offer a potential transdiagnostic factor that 

can be addressed through targeted treatment through numerous approaches, like 

pharmacotherapies, psychotherapies, and light-based therapies. In spite of the potential of 

sleep and biological rhythm disruptions as biomarkers of mood and anxiety disorders, the 

pathophysiology of sleep and circadian systems within these disorders remains elusive. 

The aims of the work detailed below were to (1) comprehensively characterize 

sleep and biological rhythm disruptions in adults with mood disorders, compared to their 

counterparts without mood disorders and (2) investigate the impact of these disruptions 

on the broad domains of quality of life and functioning in Chapter 2. Next, we (3) 

describe biological rhythm and sleep disruptions in women during pregnancy, and assess 

how these impact depressive symptoms (Chapter 3) and (4) anxiety symptoms (Chapter 

4) in a longitudinal study during the postpartum period in Canadian women. Finally, in 

Chapter 5, we prospectively describe changes in sleep, biological rhythms and light 

exposure from pregnancy to two timepoints in the postpartum period in Canadian women. 

Findings from this work highlight the potential of using light-based therapies and 

other strategies targeting sleep and biological rhythms to improve multiple domains of 
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well-being and symptom severity in adults with mood disorders, and women during the 

perinatal period at risk for perinatal mood and anxiety disorders. 

 

1.2 Major Depressive and Bipolar Disorders, Functioning and Quality of Life 

 Mood disorders, such as Major Depressive Disorder (MDD) and Bipolar Disorder 

(BD) are characterized by severe episodes of mood disturbance (American Psychiatric 

Association, 2013), and are associated with significant disability and functional 

impairment (Ratnaasingham et al., 2013). MDD is characterized by depressive episodes 

of at least 2 weeks, which are marked by depressed mood or decreased interest in pleasure 

occurring nearly every day. To be classified as depressive episodes, these periods must be 

accompanied by 5 of 9 symptoms, including depressed mood and reduced interest, 

somatic changes (e.g. loss/gain of appetite, sleep changes, changes in psychomotor 

agitation or slowing), cognitive changes (feelings of worthlessness/guilt, loss of energy or 

fatigue, inability to concentrate), and suicidality (American Psychiatric Association, 

2013).  In turn, BD type I disorder is characterized by presence of at least one manic 

episode, which lasts at least 1 week, or is severe enough to require hospitalization. During 

this episode, mood must be abnormally elevated, irritated, or expansive, accompanied by 

activation, that is, increased energy or activity. In addition to mood and activity/energy 

changes, individuals may experience a reduced need for sleep, increased self-

esteem/grandiosity, racing thoughts, distractibility, talkativeness, higher goal-directed 

activity, and excessive risk-taking. Individuals with BD I may also experience depressive 

episodes, or hypomanic episodes. Hypomanic episodes consist of at least 4 days of 
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elevated, irritated or expansive mood, in addition to increased energy/activity, and the 

criteria described above (American Psychiatric Association, 2013). To be diagnosed with 

BD type II disorder, an individual must have experienced at least one hypomanic episode 

and at least one depressive episode, but not a full manic episode (American Psychiatric 

Association, 2013). Mood episodes must be accompanied by clinically significant distress 

or impairment, in social and/or occupational domains (American Psychiatric Association, 

2013). 

 

1.2.1 Epidemiology of Major Depressive and Bipolar Disorders 

 In Canada, MDD has a lifetime prevalence of 11.2%, according to the most recent 

Canadian Community Health Survey – Mental Health. Importantly, females are 1.8x 

more likely to experience MDD than males (Knoll & MacLennan, 2017), consistent with 

estimates of sex differences in MDD around the globe (Levinson, Ono, Posada-Villa, & 

Seedat, 2009). Females with MDD also experience longer episode duration (Eaton et al., 

2008). In Canada, BD type I and II rates are 0.87% and 0.57%, respectively (McDonald et 

al., 2015). Though there are no sex differences in the prevalence of BD type I, there are 

several notable differences in the presentation of the disorder. BD type II has higher 

prevalence among women (Arnold, 2003). Additionally, a  large proportion of women 

with BD report mood worsening during reproductive life events, such as the postpartum 

period, during the premenstrual period, and during perimenopause (Payne et al., 2007; 

Perich et al., 2017). Finally, women with BD more frequently present with mixed mania 
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episodes, rapid cycling, and depressive episodes, compared to men (Arnold, 2003; 

Christensen et al., 2003; Erol et al., 2015; Tondo & Baldessarini, 1998).  

 Age of onset for BD I disorder is approximately 18 years (American Psychiatric 

Association, 2013), while onset of BD II and MDD peaks in the 20s (American 

Psychiatric Association, 2013). Due to the early age of onset for these disorders, people 

with these disorders live with long periods of functional impairment (Ratnaasingham et 

al., 2013). Importantly, these disorders often span the period of reproductive life events 

like pregnancy and postpartum, and child-rearing years. 

 

1.2.2 Functioning and Quality of Life in Major Depressive and Bipolar Disorders 

Functioning is a complex concept that describes an individual’s ability to conduct 

daily tasks, meaningfully engage in leisure and interpersonal relationships on a daily 

basis, cognitive and occupational functioning, capacity for autonomy and managing one’s 

finances (Rosa et al., 2007). In turn, Quality of Life (QOL) accounts for an individual’s 

understanding of their life in context of their environment and expectations, across broad 

domains of physical health, psychological, social well-being, and their environment (The 

WHOQOL Group, 1998). These two constructs are therefore important to understanding 

the disability, dysfunction and overall enjoyment of individuals affected by mood 

disorders. 

Individuals with BD experience worse QOL and higher functional impairment,  

not only throughout the duration of mood episodes, but also during euthymia, compared 

to counterparts without BD (Martín-Subero et al., 2014; Pascual-Sanchez, Jenaro, & 
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Montes-Rodriguez, 2019). Symptom severity, particularly irritability and depressive 

symptoms, is linked to worse QOL and functional impairment in BD (Sylvia et al., 2017). 

Consequently, QOL and functioning tend to be at their lowest during depressive episodes, 

followed by mania, and euthymia (Martín-Subero et al., 2014; Rosa et al., 2010).  

In MDD, functional impairment rates are high, with as many as 97% of individuals 

with MDD reporting some functional impairment, and with 60% reporting severe or very 

severe functional impairment (Kessler et al., 2003). Improvement in symptoms of MDD, 

however, does not necessarily achieve or indicate improvement in functioning, and 

functional impairment is a frequent residual symptom (Sheehan, Nakagome, Asami, 

Pappadopulos, & Boucher, 2017). Moreover, few individuals with current depression 

experience normal-range QOL (IsHak et al., 2015). According to a meta-analysis, QOL 

improves with psychological and pharmacological treatment of MDD (Hofmann, Curtiss, 

Carpenter, & Kind, 2017). However, symptomatic remission may not be indicative of 

return of QOL to its normal range (IsHak et al., 2015).  

 Considering the prevalence of functional impairment, and worsened quality of life 

in mood disorders, particularly as they extend beyond mood episodes, it is important to 

evaluate contributing factors, in order to develop targeted interventions to improve 

within-episode and between-episode functioning and quality of life in individuals with 

mood disorders. 
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1.3 Mood Disorders During the Postpartum Period 

1.3.1 Definitions, Prevalence 

The postpartum period is often defined as the 1st year following childbirth (Goyal, 

Gay, Torres, & Lee, 2018). The perinatal period, including pregnancy and postpartum, is 

a vulnerable period for women to develop mental illnesses: results from epidemiological 

research have indicated that depression and anxiety during the perinatal period are 

common (Dennis, Falah-Hassani, & Shiri, 2017; Gavin et al., 2005). Identifying these 

disorders prior to or early in their onset is important, as they impact mothers and their 

families well beyond the postpartum period. 

 In the Diagnostic and Statistical Manual of Mental Disorders (DSM)- 5, a 

diagnosis of peripartum depression is specified by the occurrence of a major depressive 

episode during pregnancy or within the first 4 weeks postpartum (American Psychiatric 

Association, 2013). However, this timeframe has been challenged, with numerous studies 

showing onset of postpartum depression (PPD) during later months in the postpartum 

period. A previous meta-regression has found that 2-3 months postpartum has the highest 

point prevalence of PPD, as compared to 4-12 months postpartum (Gavin et al., 2005).  

As diagnostic criteria for PPD are equivalent to those for a major depressive 

episode with a different onset time, it may be difficult to discriminate between common 

pregnancy symptoms and depressive symptoms. For instance, changes in appetite, 

sleeping patterns and fatigue are expected during the perinatal period (Lee et al., 2007). 

This has led to development of tools such as the Edinburgh Postnatal Depression Scale 

(EPDS), which does not assess appetite changes, fatigue and other somatic complaints in 
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order to improve specificity of screening for depression during this time (D. Murray & 

Cox, 1990). It should be noted that during the perinatal period, women who report higher 

depressive symptoms according to the EPDS also report more somatic complaints (Apter 

et al., 2013). 

Postpartum depression affects 7-13% of women (Gavin et al., 2005). By another 

estimate, postpartum depression affects 9-10% of women in high-income countries and 

18-20% of women in low and middle-income countries (Woody, Ferrari, Siskind, 

Whiteford, & Harris, 2017). Interestingly, during 1-3 weeks postpartum, 15-84% of 

women report postpartum blues – a transient disorder, marked by emotional lability, 

confusion, irritability, tearfulness, and mild elation. Postpartum blues appear to be a risk 

factor for developing PPD (Henshaw, 2003). 

 

1.3.2 Outcomes Related to Postpartum Depression 

Postpartum depression has been linked to a number of adverse effects on the well-

being of mothers and their families. First, women with PPD consult more with general 

practitioners, and have worse QOL than their counterparts, have more relationship 

difficulties, and have lower social functioning (Weissman, 2018). PPD is linked to risk of 

difficulties in emotion regulation, social behaviour, internalizing disorders in children of 

mothers with PPD (Reviewed in (Stein et al., 2014)). Moreover, PPD is linked to 

depression in adolescence (Stein et al., 2014), as well as severity of attention deficit 

hyperactivity disorder and insecure attachment (Stein et al., 2014). Finally, PPD has been 

linked to deficits in cognitive outcomes in childhood, for instance, language development, 
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cognitive development, and exam achievement (Stein et al., 2014). A recent study found 

that children’s total grey matter volume and fractional anisotropy at 10 years of age 

decreased in proportion to their mothers’ PPD symptoms, though this was not true for 

antenatal depressive symptoms, or mothers’ depressive symptoms during childhood (Zou 

et al., 2019).  

 

1.3.3 Risk Factors for Postpartum Depression 

 A number of risk factors have been previously established for developing PPD. 

Psychosocial risk factors for PPD as assessed during pregnancy include demographics, 

such as lower income (Hutchens & Kearney, 2020) and older age (Silverman et al., 2017). 

Poor quality of social support, including lack of partner support, is linked to risk of PPD, 

as is intimate partner violence or interpersonal violence, and presence of chronic or life 

stress (Beck, 1996; Pilkington, Milne, Cairns, Lewis, & Whelan, 2015; Yim, Tanner 

Stapleton, Guardino, Hahn-Holbrook, & Dunkel Schetter, 2015). Other maternal 

characteristics that constitute risk for PPD include child care stress, less secure maternal 

attachment, infant temperament, whether the pregnancy was unplanned or unwanted, low 

self-esteem, negative attributional style, difficulties during pregnancy or birth, and 

neuroticism (Beck, 1996; Hutchens & Kearney, 2020; Yim et al., 2015). Gestational 

diabetes is also associated with PPD risk (Azami, Badfar, Solemani, & Rahmati, 2019; 

Silverman et al., 2017). 

There are several known clinical risk factors for PPD, including having prenatal 

anxiety and depression, having a history of depression overall, and substance use 
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disorders (Beck, 1996; Hutchens & Kearney, 2020; Yim et al., 2015). Moreover, 

postpartum blues constitute risk for later PPD (Hutchens & Kearney, 2020). Women with 

BD experience a high rate of depressive, manic and mixed episode recurrence during the 

postpartum period. (Di Florio et al., 2013). According to a population-based study, 

psychosocial risk factors for PPD differ according to whether women have a history of 

depression. In women who have been previously depressed, pre-gestational diabetes and 

mild preterm delivery increase the risk of PPD. In women without a lifetime history of 

depression, young age, C-sections, instruments used during delivery and moderate 

preterm delivery was linked to PPD (Silverman et al., 2017).  

 A number of biological risk factors for PPD have been previously investigated, 

including sleep disturbances, changes in hypothalamic-pituitary adrenal axis 

dysregulation, increased inflammation, and genetic risk factors (Hutchens & Kearney, 

2020; Yim et al., 2015). Throughout late pregnancy, corticotropin-releasing hormone 

levels increase. Higher rise of this hormone during the 2nd and 3rd trimester of pregnancy 

has been linked to PPD symptoms (Yim et al., 2015). Levels of C-reactive protein, a 

systemic inflammation marker, during the 2nd postnatal day was not a predictor of 

postpartum PPD risk in a large (n=1,053) study (Albacar et al., 2010). Some findings 

from genetic studies have suggested that polymorphisms in candidate genes, including 

polymorphisms in catechol-O-methyltranferase, and monoamine oxidase-A (MAO-A), as 

well as polymorphisms in the estrogen receptor, corticotropin-releasing hormone receptor 

1, the glucocorticoid receptor, and the oxytocin peptide may be linked to PPD risk. 

Additionally, some studies have reported that PPD may be linked to heightened 



Ph.D. Thesis – A. Slyepchenko; McMaster University – Neuroscience.  

 10 

sensitivity to epigenetic modifications in genes related to estrogen signaling pathways 

(Yim et al., 2015). A recent population-based study found that polygenic risk scores 

associated with MDD, but not BD or schizophrenia was linked to higher risk of 

postpartum psychiatric disorders (Bauer et al., 2019). 

Finally, the changes in reproductive hormones associated with the perinatal period 

have been extensively investigated in PPD. Absolute levels of estradiol or progestins do 

not seem to be the causal factor, and there are few lines of evidence pointing to hormone 

withdrawal as the causal factor for PPD (Yim et al., 2015). Recent findings have linked 

reduced levels of allopregnanolone during the 2nd trimester to higher risk of PPD, with 

every addition of 1 ng/mL a 63% decrease in risk of PPD. Allopregnanolone is a 

progesterone metabolite that is thought to be linked to the psychoactive properties of 

progesterone (Osborne et al., 2017). Some evidence also exists for low oxytocin levels in 

pregnancy as a predictor of PPD symptoms at 2 weeks postpartum (Yim et al., 2015).  

 While promising, findings from biological studies of risk factors of PPD have yet 

to yield a reliable predictor of PPD. Additionally, many studies have only investigated 

one potential biological marker, and have not consistently integrated their findings with 

known psychosocial risk factors. Integrating psychosocial and biological risk factors 

within research studies may lead to clarification of the processes that lead to development 

of this disorder (Yim et al., 2015).  
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1.4 Anxiety During the Postpartum Period 

1.4.1 Anxiety Disorders 

Anxiety disorders encompass a category of mental illness characterized by 

excessive anxiety in response to a future threat and worry in response to real or perceived 

threats (American Psychiatric Association, 2013).  These disorders are characterized by 

excessive and persistent responses and can be differentiated from each other by the 

situations to which these cognitions and behaviours occur in response. Some of the most 

common anxiety disorders are: (1) Panic Disorder, characterized by unexpected and 

intense, recurrent panic attacks, where individuals experience acute physical and 

cognitive symptoms, and persistent worry about experiencing another attack. (2) 

Agoraphobia, a disorder where individuals have anxiety symptoms related to situations 

where escape or getting help might be difficult, such as in an open space, standing in a 

crowd, being away from home alone. (3) Social anxiety disorder, which is characterized 

by worry and anxiety that occur in the context of social and performance situations, with 

possible critical observation from other people. (4) Generalized Anxiety Disorder (GAD), 

which has the highest prevalence of any anxiety disorder, and is characterized by 

excessive worry and anxiety in response to a broad range of events (American Psychiatric 

Association, 2013).  Two other common disorders closely related to anxiety – obsessive-

compulsive disorder (OCD) and post-traumatic stress disorder (PTSD) – were previously 

described as anxiety disorders, but have now been categorized as obsessive-compulsive 

and related disorders and trauma- and stressor-related disorders, respectively. OCD is 

characterized by the presence of repeated and intrusive obsessions and compulsions. 



Ph.D. Thesis – A. Slyepchenko; McMaster University – Neuroscience.  

 12 

Obsessions are cognitions, such as thoughts or images which are intrusive and distressing, 

while compulsions are behaviours or mental behaviours that an individual feels 

compelled to repeat as a reaction to the compulsion, and/or with rigid rules, in order to 

ameliorate the anxiety response. PTSD occurs following exposure to a serious trauma 

(death, serious injury, sexual violence), and is characterized by intrusive symptoms (e.g. 

distressing memories, reactions or dreams), avoidance of related memories or reminders, 

changes in mood and cognition related to the event, and changes in behaviour and arousal 

following the event. Anxiety and related disorders are differentiated from non-

pathological conditions by the degree of mental distress and impairment in psychosocial 

functioning (American Psychiatric Association, 2013).   

 

1.4.2 Postpartum Anxiety 

During the postpartum period, anxiety is common, and is a strong contributor to 

postpartum distress. To date, less attention in clinical and research settings has been 

devoted to postpartum anxiety (PPA), compared to depression during this period (Miller, 

Pallant, & Negri, 2006). Unlike depression during this period, peripartum onset of anxiety 

is not acknowledged in the DSM-5 (American Psychiatric Association, 2013).  It is 

important to understand the etiology of these disorders, their risk factors and prognosis, in 

order to identify and implement preventive and early treatment strategies.  

A previous meta-analysis by Dennis and colleagues identified the prevalence of 

self-reported postpartum anxiety to be 18% at 1-4 weeks postpartum, 15% at 5-12 weeks 

postpartum, 15% at 1-24 weeks postpartum, and 15% at >24 weeks postpartum. In turn, 
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criteria for a clinical diagnosis of an anxiety disorder was met by 9.6% of women at 5-12 

weeks postpartum, 9.9% at 1-24 weeks postpartum, and 9.3% at >24 weeks postpartum 

(Dennis et al., 2017). Postpartum anxiety was more common among low and middle- 

income countries, compared to high-income countries (Dennis et al., 2017).  

In terms of specific anxiety disorders, GAD was found in 6.7% of women at 5-12 

weeks postpartum, 5.7% at 1-24 weeks postpartum, and 4.2% at >24 weeks postpartum 

(Dennis et al., 2017). Interestingly, according to meta-analytic findings, women are at 

higher risk for OCD during the perinatal period than in the general population. 

Postpartum OCD prevalence in this study is 2.4% in postpartum women and 2.03% in 

pregnant women (Russell, Fawcett, & Mazmanian, 2013).  Postpartum  PTSD prevalence 

is approximately 1.8 - 3.1% (Goodman, Watson, & Stubbs, 2016; Grekin & O'Hara, 

2014), prevalence of agoraphobia is 0.68%, social anxiety disorder is 1.28%,  panic 

disorder is 1.7%, and any anxiety disorder is 8.6% (Goodman et al., 2016).  

According to a meta-analysis, PPA linked to self-confidence issues, changes in 

stress response and worsened body acceptance in mothers (Goodman et al., 2016). PPA 

has also been linked to excessive crying in infants (Petzoldt et al., 2014), worse maternal 

self-confidence (Reck, Noe, Gerstenlauer, & Stehle, 2012), worse engagement of mothers 

and infants (Murray, Cooper, Creswell, Schofield, & Sack, 2007). There have been few 

longitudinal investigations of the outcomes of children of mothers with PPA (Goodman et 

al., 2016). 
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1.4.3 Risk Factors for Postpartum Anxiety 

Investigations of risk factors for perinatal anxiety have been relatively few in 

number. According to a meta-analysis by Furtado and colleagues, there are a number of 

risk factors for anxiety worsening and new onset anxiety that have been established by 

multiple studies in the perinatal period. For anxiety worsening, these factors include 

having a comorbid psychiatric disorder, and possibly, maternal age. For new onset 

anxiety during pregnancy and the postpartum period, having lower levels of education, 

cohabitating with members of extended family, hyperemesis gravidarum, having a history 

of sleep disorders or a family history of mental illness were all deemed risks for 

developing perinatal anxiety.  Administration of prenatal oxytocin was linked to both 

perinatal anxiety worsening and onset (Furtado, Chow, Owais, Frey, & Van Lieshout, 

2018). In a population-based study, anxiety symptoms at 8 weeks postpartum were 

predicted by multiparity, history of psychiatric disorders, perceived stress, and stress 

related to care of children (Dennis, Falah-Hassani, Brown, & Vigod, 2016). Overall, few 

risk factors have been investigated for PPA, particularly in the domain of biological 

markers. In a longitudinal investigation, Furtado and colleagues found that intolerance of 

uncertainty, depressive symptoms and OCD symptoms during the 3rd trimester of 

pregnancy were predictors of PPA worsening. However, inflammatory markers measured 

in the 3rd trimester of pregnancy, including C-reactive protein, interleukin-6 and tumor 

necrosis factor-a were not significant predictors of PPA worsening (Furtado, Van 

Lieshout, Van Ameringen, Green, & Frey, 2019). 
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1.4.4 Comorbid Postpartum Mood and Anxiety 

Depression and anxiety are often comorbid during the perinatal period. A prior 

population-based study found that 35% of women with anxiety during postpartum report 

depressive symptoms as well (Farr, Dietz, O'Hara, Burley, & Ko, 2014). Another study 

found that nearly 40% of women with postpartum depression had a comorbid anxiety 

disorder diagnosis (Austin et al., 2010). In a meta-analysis, Falah-Hassani and colleagues 

found that 9.5% of women report both symptoms of depression and anxiety in the 

postpartum period pregnancy, and 8.2% postpartum (Falah-Hassani, Shiri, & Dennis, 

2017). Women with both disorders have a more complex clinical presentation, including 

worsened symptom severity, and worse outcomes than women with only a history of one 

of the disorders (Feldman et al., 2009). Furthermore, in the general population, 

individuals with comorbid depression and anxiety have worse functioning (Adams, 

Balbuena, Meng, & Asmundson, 2016), are at higher risk for suicide attempts (Sareen et 

al., 2005).  

In a Canadian sample, Dennis and colleagues found that risk factors for comorbid 

anxiety and depression during the first 24 weeks postpartum include having a history of 

depression, having a history of postpartum depression, age of <26 years, having worse 

perceived support, as well as fatigue, stress related to acculturation, and impression that 

the infant is experiencing sleep problems (Dennis et al., 2018).   
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1.5 Sleep and Biological Rhythms in Mood and Anxiety 

1.5.1 Sleep and Biological Rhythms: An Introduction 

Two major processes are thought to be involved in the generation and timing of 

the sleep-wake cycle: (1) a homeostatic sleep process, where pressure to sleep builds over 

time, and is released once sleep is obtained; and (2) a circadian oscillator, with a natural 

oscillation period, which is entrained to the environmental light-dark cycle to a period of 

approximately 24 hours (Achermann & Borbély, 2003; Borbély & Achermann, 1999).  

The entrainment of the circadian oscillator by the light-dark cycle and other zeitgebers 

(time-keeping environmental signals) is centrally regulated by the circadian pacemaker in 

the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN in essence ensures the 

timing of wakefulness to occur during the day and sleep during the night, where this 

rhythm interacts with the homeostatic component of sleep (Skeldon, Derks, & Dijk, 

2016). Input to the SCN comes directly from the retina, including a specialized type of 

photosensitive retinal ganglion cell -- the intrinsically photoreceptive retinal ganglion cell 

-- characterized by presence of a photoreceptor pigment called melanopsin, via the 

retinohypothalamic tract (Zaki et al., 2018). The SCN also receives indirect input from 

the retina through the geniculohypothalamic tract and the intergeniculate leaflet, as well 

as serotonergic inputs from the raphe nuclei, among others (Rosenwasser, 2009). 

The SCN projects to a number of brain regions, such as other hypothalamic 

nuclei, the preoptic area, basal forebrain and the thalamus (Rosenwasser, 2009). 

Importantly, the SCN projects to the pineal gland, where it regulates the secretion of 

melatonin. Melatonin secretion begins 2 to 3 hours prior to sleep onset, with maximum 
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secretion occurring at 3:00-4:00 in the morning. During the day, melatonin secretion 

remains low (Claustrat, Brun, & Chazot, 2005; Molina & Burgess, 2011). Melatonin can 

cross the blood-brain barrier and can access all tissues within the body. Urinary 6-

sulfatoxymelatonin is the primary metabolite of melatonin in urine, and parallels 

melatonin patterns within the plasma. Exposure to light suppresses the production of 

melatonin, particularly at high light intensities (Claustrat et al., 2005). It is theorized that 

the main function of melatonin is to communicate the information of illuminance to the 

rest of the body, thereby synchronizing biological rhythms such as cortisol, body 

temperature, sleep-wake and activity rhythms (Claustrat et al., 2005). 

 The SCN drives the synchronicity of circadian rhythms within the body. It is 

thought that most cells in the body have endogenous rhythms, driven by the activity of 

clock genes within each cell. There is a complex network of clock genes which 

coordinates rhythmicity, regulated by several transcription translation feedback loops, 

which communicate environmental time to regulate biological rhythm activity (Geoffroy, 

2018). The major transcription translation feedback loop consists of CLOCK and 

BMAL1, which are transcription factors that regulate the clock genes PERIOD (PER) and 

CRYPTOCHROME (CRY) expression, which feed back on to CLOCK and BMAL1 to 

control their own expression by entering the nucleus as a complex and impeding 

transcription by CLOCK and BMAL1 (Jagannath, Peirson, & Foster, 2013). 

The broad concept of biological rhythms encompasses variations in behavioural 

and physiological processes. Biological rhythms with a period of approximately 24 hours 
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are referred to as circadian rhythms, whereas those that are longer or shorter than 24 

hours are termed infradian and ultradian rhythms, respectively.  

 

1.5.2 Sleep and Biological Rhythms in Mood Disorders  

1.5.2.1 Subjective Sleep and Rhythms in Mood Disorders 

Biological rhythms and sleep disruptions are common in mood disorders. Criteria 

for depressive and [hypo]manic episodes include sleep disruptions (American Psychiatric 

Association, 2013), and sleep disturbances are very common prodromes for manic and 

depressive episodes (Jackson, Cavanagh, & Scott, 2003; Van Meter, Burke, Youngstrom, 

Faedda, & Correll, 2016). Evidence suggests that subjective sleep disturbances in BD 

persist into euthymia, and are associated with worse functioning and QOL (De la Fuente-

Tomas et al., 2018). Sleep disturbances also often persist into remission among 

individuals with MDD, and are linked to worse QOL (Li, Lam, Chan, Yu, & Wing, 

2012). In a small (n=40) sample of individuals receiving treatment for MDD and healthy 

controls, those experiencing worse sleep according to a sleep log were more likely to 

report poor QOL. Individuals with MDD were more likely to report worse sleep quality 

and worse QOL, even though their sleep patterns were similar to healthy individuals, 

indicating possibility of worsened interpretation of sleep quality in individuals with MDD 

(Mayers, van Hooff, & Baldwin, 2003). 

A number of previous studies have shown evidence of subjective biological 

rhythm disruption in BD and MDD. Duarte Faria and colleagues showed that young 

adults with current MDD, and current or euthymic BD had worse biological disruption 
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than the control group (Duarte Faria et al., 2015). Importantly, in BD, depressive 

symptom severity (Pinho et al., 2016), worsened functioning (Giglio, Magalhaes, 

Kapczinski, Walz, & Kapczinski, 2010; Pinho et al., 2016), and worsened QOL (Cudney, 

Frey, Streiner, Minuzzi, & Sassi, 2016) have been linked to subjective disturbances in 

biological rhythms. Another study found evening chronotype to be linked to worse QOL 

in individuals with BD in remission (Ng, Chung, Lee, Yeung, & Ho, 2016). Additionally, 

biological rhythm disturbances have been linked to higher lipid peroxidation in women 

with BD, but not the control group (Cudney et al., 2014). 

  Overall, these studies provide strong evidence that biological rhythms disruptions 

beyond sleep impact the well-being of individuals with mood disorders. 

 

1.5.2.2 Polysomnographic Studies in Mood Disorders 

 Polysomnography (PSG) involves recordings of brain activity via an 

electroencephalogram (EEG), muscle activity via electromyography, and eye movements 

via electrooculography. PSG provides information regarding (1) sleep continuity, which 

refers to variables such as total sleep time (TST), sleep onset latency (SOL), sleep 

efficiency (SE), number of awakenings, and wake after sleep onset (WASO); and (2) 

sleep architecture, which refers to different sleep stages, including wake stages, rapid eye 

movement (REM) sleep and non-REM sleep (including stage 1, stage 2, slow wave sleep 

(SWS)). Non-REM and SWS are assessed as percentages of time spent in these stages 

during the night.  
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A prior meta-analysis of PSG found that compared a control group, individuals 

with MDD have worse sleep efficiency, increased REM sleep and density; shorter sleep 

periods, shorter latency to REM, and shorter SWS periods. In remission, sleep efficiency 

and REM latency were longer than during major depressive episodes, and SWS was 

shorter during remission (Pillai, Kalmbach, & Ciesla, 2011). A more recent meta-analysis 

of PSG studies in MDD found worsened sleep continuity, reduced sleep depth and higher 

REM pressure in this population, though no changes in SWS were found. Sleep 

continuity, depth and REM pressure differed from controls in males with MDD, but only 

sleep continuity was disturbed in females (Baglioni et al., 2016). 

Fewer studies have investigated PSG characteristics of BD. A prior study 

described REM density is higher in euthymic BD compared to controls without bipolar 

disorder (Eidelman, Talbot, Gruber, Hairston, & Harvey, 2010). Individuals with 

hypomania have lower sleep efficiency, longer SOL, higher  % of stage 1 and 2 sleep, 

lower stage 3 and 4 sleep, shorter REM latency and higher apnea index compared to 

healthy controls (Asaad, Sabry, Rabie, & El-Rassas, 2016). Mania is marked by 

decreased need for sleep in most individuals, longer SOL, as well as higher REM 

pressure. Depressive episodes, as in unipolar depression, are marked by insomnia or 

hypersomnia in most individuals, with longer SOL and higher sleep pressure (Harvey, 

Talbot, & Gershon, 2009).  Overall, PSG studies have been limited by a lack of 

ecological validity, burden to participants, and their higher cost (Ancoli-Israel et al., 

2003; Buysse, Ancoli-Israel, Edinger, Lichstein, & Morin, 2006; Miller, Kyle, Melehan, 

& Bartlett, 2015). 
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1.5.2.3 Melatonin in Mood Disorders 

Melatonin provides a reliable marker of the endogenous SCN rhythm (Claustrat et 

al., 2005). Melatonin profiles can be collected using several methods. Salivary sampling 

requires samples to be acquired every 30-60 minutes throughout a period that 

encompasses 1 hour before the rise in melatonin levels, and throughout this process. 

Salivary sampling requires individuals to avoid contamination of the samples by food, 

blood, food dye, and requires participants to be exposed to <30 lux of light throughout 

sample collection. A period of fasting for ~ 5 hours under dim light conditions is 

therefore necessary to avoid sample contamination. Melatonin can be also assessed 

through measurements in plasma, indicating the necessity of blood sampling every 20-30 

minutes via intravenous catheter for optimal results from afternoon to overnight.  The 

melatonin profile can also be assessed by analyzing levels of 6-sulfatoxymelatonin, its 

primary metabolite, excreted in urine. Overnight melatonin secretion can be calculated by 

controlling for creatinine in the first morning urine void, thereby not requiring sleep 

disruption or low light conditions (Molina & Burgess, 2011).  

Prior studies have indicated changes in melatonin secretion in individuals with 

mood disorders since as early as 1979 (Mendlewicz et al., 1979). Findings regarding the 

relationship between melatonin levels and mood disorders have been heterogenous. Prior 

evidence has indicated that daytime melatonin levels during manic episodes are higher 

than in controls and in individuals with bipolar depression (Novakova, Prasko, Latalova, 

Sladek, & Sumova, 2015). Another investigation indicated later circadian phase, and 

lower melatonin secretion in the evening in individuals with BD (Melo, Abreu, Linhares 
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Neto, de Bruin, & de Bruin, 2017). One study found higher area under curve in salivary 

melatonin secretion in MDD compared to BD, and earlier melatonin secretion (Robillard 

et al., 2013).Yet another study found that levels of melatonin in cerebrospinal fluid during 

the morning are lower in individuals with BD, but not in MDD; and levels of serum 

melatonin were lower in MDD but not BD (Bumb et al., 2016).  

In MDD, some investigations have found higher (Rubin, Heist, McGeoy, Hanada, 

& Lesser, 1992) or lower serum melatonin levels overnight, with higher levels of 

melatonin in the morning (Khaleghipour et al., 2012). Another study attributed 

differences in melatonin secretion between individuals with major depressive episodes 

and controls to a phase delay, where the peak melatonin secretion overnight occurred later 

for those with depression (Crasson et al., 2004).  

 

1.5.2.4 Actigraphy in Mood Disorders 

Actigraphy has been increasingly used to assess daily activity rhythms and sleep 

patterns in research settings, as it offers the advantage of ambulatory monitoring for 

extended periods of time. Methods of analysis of actigraphy data continue to be refined, 

with recent investigations using complex modeling of actigraphy data to, for instance, 

evaluate the probabilities of activity and rest state transitions, in addition to analysis of 

sleep, activity and daily activity rhythms (Ortiz, Bradler, Radu, Alda, & Rusak, 2016).   

Prior investigations of actigraphy in BD have reported higher variability in daily 

activity rhythms, lower amplitude and changes in mean activity in this population. 

Biological rhythm disruptions are common to bipolar depression, indicated by lower 
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mean activity, higher variability of daily activity rhythms, and a shift to a later circadian 

phase (Melo et al., 2017). Individuals with BD are more likely to have an evening-type 

chronotype, and higher seasonality. However, results regarding the relationship between 

symptom severity and chronotype have been inconsistent (Melo et al., 2017).   

Recent changes to criterion A necessary to the diagnosis of [hypo]mania include a 

marked rise in activity and energy in addition to mood changes. In bipolar disorder, the 

concept of activation has recently been proposed which includes objective change in 

motor activity and subjective changes in energy related to the objective changes, arising 

from a physiological phenomenon. According to Scott and colleagues’ systematic review, 

compared to a depressive mood state in BD, but not compared to healthy controls, mania 

is characterized by higher mean activity levels. During depressive episodes and euthymia, 

individuals with bipolar disorder have lower mean activity levels compared to controls 

(Scott et al., 2017). Additionally, there appears to be a phase advance in acrophase in 

mixed and manic episodes (Salvatore et al., 2008). A study of euthymic individuals with 

BD has found that actigraphy-measured TST was longer in BD, as was SOL, worse SE, 

lower interdaily stability. Variability in measures such as time in bed, sleep duration, SE 

and fragmentation index were also higher in BD (Geoffroy et al., 2014). 

Depressive episodes in mood disorders have been linked by meta-analysis to 

lower daytime activity, which increases throughout treatment (Burton et al., 2013). A 

prior investigation has found higher fragmentation index and lower motor activity 

throughout the day, in addition to higher activity and immobility during sleep in MDD 

(Volkers, 2003). Another study found lower total activity in depressive episodes, but no 
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significant differences in interdaily stability, intradaily variability or relative amplitude 

(Berle, Hauge, Oedegaard, Holsten, & Fasmer, 2010). 

Findings from actigraphy indicate the presence of some markers of sleep and 

biological rhythm disturbance that are present for multiple psychiatric disorders. In an 

actigraphy study of group of young people aged 12-35, individuals with anxiety disorders, 

MDD and BD had later sleep onset and sleep offset compared to controls according to 

actigraphy. TST was longer in those with anxiety disorders and individuals with BD, 

while SE was lower in MDD. Later acrophase was found in individuals with anxiety 

disorders or BD. Additionally, there were various differences in variability of sleep 

parameters beyond mean values for these disorders (Robillard et al., 2015). 

 Some actigraph models have a built-in light sensor, allowing actigraphy to provide 

ambulatory information about light exposure throughout the day. To date, little is known 

about light exposure in MDD and BD. In a longitudinal study of elderly individuals who 

did not have baseline depressive symptoms, exposure to light at night of greater than 5 

lux increased risk of presenting depressive symptoms after a 2 year follow-up (Obayashi, 

Saeki, & Kurumatani, 2018). Light-based therapies such as bright light therapy and blue-

light blocking glasses have been increasingly used as adjunctive therapies in mood 

disorders. A recent meta-analysis demonstrated a significant effect of bright light therapy 

on reducing depressive symptoms in individuals with non-seasonal depression (Perera et 

al., 2016). In BD, bright light therapy has been shown to be an effective adjunctive 

treatment of depression by a recent randomized controlled trial (Sit et al., 2018). 
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Additionally, blue-light blocking glasses have shown a large effect in reducing manic 

symptoms as an adjunctive treatment for mania (Henriksen et al., 2016).  

 

1.5.3 Sleep, Biological Rhythms and Anxiety  

 Sleep and biological rhythm disruptions are also present in anxiety disorders. 

Sleep problems are part of the diagnostic criteria for GAD and PTSD (American 

Psychiatric Association, 2013). A meta-analysis of polysomnographic studies found 

lower sleep depth and continuity, and higher sleep pressure in anxiety disorders, including 

shortened SWS and reduced REM latency (Baglioni et al., 2016). Disturbances in sleep 

may also predict the onset of anxiety disorders (Batterham, Glozier, & Christensen, 2012; 

Neckelmann, Mykletun, & Dahl, 2007). 

Across different anxiety disorders, Biaggi and colleagues systematically reviewed 

objective and subjective sleep disturbances, finding evidence of changes in sleep profiles 

among different anxiety disorders. GAD is marked by lower TST, higher SOL and 

differences in non-REM sleep, while subjective sleep disturbances are predictive of the 

onset of GAD. OCD severity is associated with shorter TST, and potentially, delayed 

sleep phase. In panic disorder, there are subjective sleep disturbances, lower sleep 

efficiency, shorter TST, and higher SOL. Objective and subjective sleep disturbances are 

present in PTSD, including lower TST, higher SOL, and changes in REM. In social 

anxiety disorder, there are subjective sleep problems, though little research has been done 

on objective sleep disturbances (Biaggi, Conroy, Pawlby, & Pariante, 2016).  
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A number of studies point toward disruptions in biological rhythms in anxiety 

disorders. In an ecological momentary assessment study, Cox and colleagues found that 

in a sample of undergraduates and community members, sleep disturbance was predictive 

of medium increases in anxiety, and eveningness was a predictor of small increases in 

anxiety (Cox & Olatunji, 2019). Luik and colleagues found that clinically significant 

depressive symptoms and anxiety disorders were linked to intradaily variability, and 

subjective sleep quality; while depressive symptoms alone were linked to later dominant 

rest phase onset in middle-aged and older adults (Luik et al., 2015). Finally, Antypa and 

colleagues found that MDD, but not anxiety disorders were linked to eveningness in a 

large cohort in the Netherlands (n=1,944) (Antypa, Vogelzangs, Meesters, Schoevers, & 

Penninx, 2016). 

 

1.5.4 Perinatal Sleep and Biological Rhythms, Mood and Anxiety 

 Sleep and biological rhythm disturbances are common in the perinatal period. 

Evidence suggests that poor sleep quality during pregnancy has negative effects on 

maternal health, including risk of gestational diabetes mellitus, suicidal ideation, and pre-

term birth (Cai et al., 2017; Gelaye et al., 2015; Sedov, Cameron, Madigan, & Tomfohr-

Madsen, 2018; Wang & Jin, 2020). 

  A number of studies have investigated the association of subjective and objective 

sleep quality with PPD.  Wolfson and colleagues (2003) followed mothers from the 3rd 

trimester of pregnancy to several points up to 12-15 months postpartum. They found that 

women who had clinically significant symptoms of PPD 2-4 weeks postpartum had 
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higher TST, later wake up times, and a higher number of naps in the 3rd trimester of 

pregnancy, compared to those who did not have clinically high PPD symptoms (Wolfson, 

Crowley, Anwer, & Bassett, 2003). Park and colleagues (2013) found that subjective 

sleep is associated with PPD symptom severity from late pregnancy to 14 weeks 

postpartum. During the postpartum period, objective SE, sleep percentage, sleep 

fragmentation and WASO were associated with PPD symptom severity as well (Park, 

Meltzer-Brody, & Stickgold, 2013). 

Some longitudinal studies have also investigated sleep during pregnancy as 

predictors of postpartum mood. For instance, McEvoy et al. found that subjective sleep 

quality at 1 month postpartum but not during the 3rd trimester of pregnancy was linked to 

PPD symptom severity at 3 months postpartum (McEvoy et al., 2019). According to a 

prior study by Coo Calcagni and colleagues, neither subjective nor objective 3rd trimester 

sleep were predictors of mood during 2 weeks postpartum (Coo Calcagni, Bei, Milgrom, 

& Trinder, 2012). Interestingly, women who have a history of manic episodes triggered 

by sleep loss have 2x the risk of postpartum psychosis, that is manic or mixed episodes, 

or depression with psychotic symptoms within the first 2 weeks following childbirth 

(Heron, Blackmore, McGuinness, Craddock, & Jones, 2007; Lewis et al., 2018). 

Several studies have investigated the influence of subjective sleep during 

pregnancy on both depressive and anxiety symptoms postpartum, with somewhat 

heterogenous findings. Bei and colleagues found that subjective, but not objective sleep 

during the 3rd trimester was associated with PPD symptom severity at 1 week postpartum. 

Additionally, subjective sleep dysfunction, during the 3rd trimester was linked to 
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postpartum anxiety symptoms (Bei, Milgrom, Ericksen, & Trinder, 2010). Tham and 

colleagues in a prior investigation of 313 women found 3rd trimester subjective sleep 

quality to be associated with severity of PPD symptoms, but not anxiety at 3 months 

postpartum (Tham et al., 2016).  However, Osnes and colleagues, in a large sample 

(n=1,563) found that women who had insomnia symptoms during the 3rd trimester of 

pregnancy had higher depressive and anxiety symptoms at 8 weeks postpartum, and were 

more likely to have anxiety disorders during this time (Osnes, Roaldset, Follestad, & 

Eberhard-Gran, 2019). Menke and colleagues have also reported perinatal depression and 

anxiety symptoms to be linked to subjective sleep quality (Menke et al., 2019).  

 Few investigations have focused on biological rhythms and mood or anxiety 

symptoms during the postpartum period. A previous study from our group has found that 

worsening of subjective biological rhythm disturbances, but not subjective sleep quality, 

from the 3rd trimester of pregnancy to 6-12 weeks postpartum were associated with 

worsening of mood during these timepoints (Krawczak, Minuzzi, Hidalgo, & Frey, 2016). 

Additionally, in a subset of this sample, objective sleep efficiency worsening from 

pregnancy to postpartum and subjective biological rhythm disruption were associated 

with worsening of depressive symptoms (Krawczak, Minuzzi, Simpson, Hidalgo, & Frey, 

2016).  

Few studies have investigated melatonin levels and their association with mood or 

anxiety during the perinatal period. In a small study of 12 women with a history of MDD, 

Sharkey and colleagues found that from the 3rd trimester of pregnancy to 6 weeks 

postpartum, women experienced a phase delay, and the gap between sleep onset and dim 
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light melatonin onset was shorter in most women. PPD symptoms at 2 and 6 weeks 

postpartum in this sample were linked to dim light melatonin onset phase and phase angle 

(Sharkey, Pearlstein, & Carskadon, 2013). A cross-sectional investigation by Parry and 

colleagues found that morning melatonin levels were greater in women with (n=13) than 

without (n=11) PPD in the first year postpartum. In pregnant women, however, morning 

melatonin levels were lower in those with current depression (Parry et al., 2008).  

 Though prior literature indicates the presence of a link between sleep, biological 

rhythms, perinatal mood and anxiety, studies have been limited by small samples, cross-

sectional design, lack of objective measures of sleep and biological rhythms, poor clinical 

characterization of study samples, and few studies overall have looked at the influence of 

biological rhythms during the perinatal period on mood or anxiety (Gallaher, 

Slyepchenko, Frey, Urstad, & Dorheim, 2018). Moreover, few studies have investigated 

sleep or biological rhythms as a predictor of postpartum anxiety.   

  

1.6 Main Aims  

 Given the association of biological rhythms and sleep with depression and bipolar 

disorder, and previous findings of subjective biological rhythms to be associated with 

functional impairment, we first aimed to (1) compare biological rhythms and sleep 

variables across a broad range of measures in individuals with and without bipolar and 

major depressive disorders. (2) We aimed to investigate whether these measures can 

account for impairment in functioning and worsened quality of life in this population. 
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 (3) Next, we aimed to investigate sleep and biological rhythms during pregnancy 

and determine whether sleep and biological rhythm variables collected during pregnancy 

can be used to predict symptom severity of mood and (4) anxiety postpartum. Finally, we 

aimed to investigate (5) the longitudinal trajectory of sleep, biological rhythms and light 

exposure across the perinatal period. 

 

1.7 Specific Objectives 

The specific objectives of this thesis are described below: 

1. Investigate differences between individuals with BD, MDD and healthy controls in a 

broad range of measures of sleep and biological rhythms, including subjective 

questionnaires, various objective measures from actigraphy and 6-sulfatoxymelatonin 

levels; 

2. Investigate whether sleep and biological rhythm variables can be used to model 

functioning and quality of life in individuals with BD, MDD and healthy controls; 

3. Examine sleep and biological rhythms in women during pregnancy, across a broad 

range of measures including subjective questionnaires, measures from actigraphy and 

6-sulfatoxymelatonin levels. We aimed to use sleep and biological rhythm measures 

in conjunction with clinical variables to predict postpartum mood and 

4. Use sleep and biological rhythm measures collected during pregnancy, as described 

in (3), in conjunction with clinical variables to predict postpartum anxiety. 
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5. Describe the longitudinal changes in clinical variables, sleep, biological rhythms, and 

light exposure from the 3rd trimester of pregnancy, to 1-3 weeks, and 6-12 weeks 

postpartum. 

1.8 Hypotheses 

The hypotheses for each of the outlined objectives are as follows: 

1. Given findings of differences in sleep and biological rhythms in mood disorders, we 

hypothesized that sleep and biological rhythms would be more disrupted in the MDD 

and BD groups, compared to HCs across subjective and objective measures. 

2. As previous findings have reported subjective biological rhythm disruption to be 

linked to worsened functional impairment in mood disorders, we hypothesized that 

disrupted objective and subjective sleep and biological rhythms would be linked to 

functional impairment and worse quality of life. 

3. In light of prior investigations of disrupted sleep and biological rhythms being linked 

to worsened mood in the perinatal period, we hypothesized that worsened sleep and 

biological rhythms during pregnancy would be predictive of mood disturbances 

postpartum. 

4. Previous literature described a variety of sleep disturbances and potential biological 

rhythm disturbances in anxiety disorders, and perinatal sleep disturbances may be 

linked to perinatal anxiety. We therefore hypothesized that sleep and biological 

rhythm disturbances measured objectively and subjectively during pregnancy would 

predict postpartum anxiety. 
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5. Based on prior literature reporting sleep disruptions throughout the perinatal period, 

with particularly prominent sleep worsening during the first month postpartum, we 

hypothesized that biological rhythms would be most disturbed at 1-3 weeks 

postpartum, compared to the 3rd trimester of pregnancy and 6-12 weeks postpartum. 
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Abstract 

Objective: Disruptions in biological rhythms and sleep are a core aspect of mood 

disorders, with sleep and rhythm changes frequently occurring prior to and during mood 

episodes. Wrist-worn actigraphs are increasingly utilized to measure ambulatory activity 

rhythm and sleep patterns. 

Methods: A comprehensive study using subjective and objective measures of sleep and 

biological rhythms was conducted in 111 participants (40 healthy volunteers [HC], 38 

with major depressive disorder [MDD], 33 with bipolar disorder [BD]). Participants 

completed 15-day actigraphy and first-morning urine sample to measure 6-

sulfatoxymelatonin levels. Sleep and biological rhythm questionnaires were administered:  

Biological Rhythms Interview of Assessment in Neuropsychiatry (BRIAN), Munich 

Chronotype Questionnaire (MCTQ), Pittsburgh Sleep Quality Index (PSQI) and Epworth 

Sleepiness Scale (ESS). Actigraph data were analyzed for sleep and daily activity 

rhythms, light exposure, likelihood of transitioning between rest and activity states.  

Results: Mood groups had worse subjective sleep quality (PSQI) and biological rhythm 

disruption (BRIAN), and higher objective mean nighttime activity than controls. 

Participants with BD had longer total sleep time, higher circadian quotient, lower 6-

sulfatoxymelatonin levels than HC group. The MDD group had longer sleep onset 

latency, higher daytime probability of transitioning from rest to activity than HCs. Mood 

groups displayed later mean timing of light exposure. Multiple linear regression analysis 

with BRIAN scores, circadian quotient, mean nighttime activity during rest and daytime 
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probability of transitioning from activity to rest explained 43% of variance in quality of 

life scores. BRIAN scores, total sleep time, probability of transitioning from activity to 

rest explained 52% of variance in functioning (all p<0.05). 

Conclusions: Disruption in biological rhythms is associated with poorer functioning and 

quality of life in bipolar and major depressive disorder. Investigating biological rhythms 

and sleep using actigraphy variables, urinary 6-sulfatoxymelatonin and subjective 

measures provides evidence of widespread sleep and circadian system disruptions in 

mood disorders.  

 

Keywords: biological rhythms, quality of life, functioning, actigraphy, mood disorders 
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2.1 Introduction 

Changes in biological rhythms and sleep occur during most major mood episodes, 

and are linked to clinical severity in both Major Depressive Disorder (MDD) and Bipolar 

Disorder (BD) (Malhi and Kuiper, 2013). Notably, sleep disturbances are frequently 

reported by patients prior to the onset of either depressive or (hypo)manic mood episodes 

(Van Meter et al., 2016; Jackson et al., 2003), indicating sleep and biological rhythm 

disturbances persist beyond mood episodes (Geoffroy et al., 2015; Mondin et al., 2017).  

While polysomnography is the gold standard of measuring sleep, use of 

actigraphy to estimate sleep and daily activity rhythms offers the advantage of 

continuous, ambulatory monitoring. Though research using measurement of activity and 

sleep patterns in mood disorders has grown exponentially, methods of collection, 

aggregation and analysis of these data are still under development. Use of objective 

measures of activity and sleep can help in designing the mechanistic rationale for 

chronotherapeutic treatments of these disorders. In this context, a deeper investigation of 

patterns, rhythms, and variability of activity is becoming increasingly relevant in the 

context of mood disorders (Scott et al., 2017). For instance, the DSM-5 has revised the 

core diagnostic criteria for (hypo)mania to include increased energy or activity in addition 

to mood changes. This has led to a multidomain conceptualization of activation, as a 

combination of objectively observable motor activity and subjective experience of 

energy, caused by physiological underpinnings. While previous reports have shown that 

activity in bipolar depression is more variable and lower than that of healthy controls 

(HCs), manic episodes appear to differ in variability in activity patterns, and the 
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robustness of these patterns, rather than activity levels. Additionally, activity levels in 

bipolar euthymia are lower in comparison to HCs and MDD (Scott et al., 2017). 

Furthermore, a recent study found that individuals with BD had desynchronization of 

diurnal heart rate rhythms with sleep and activity rhythms, while ultradian rhythms in 

negative affect and irritable mood were more highly correlated with sleep and heart rate 

rhythms (Carr et al., 2018). 

The circadian system is synchronized to the environment through the process of 

entrainment involving time-keeping factors called zeitgebers, which set the master clock 

located in the suprachiasmatic nucleus (SCN). The most robust of these factors is light, 

though physical activity, eating patterns and social activity also play an important role 

(Mistlberger and Antle, 2011). Social rhythms and light have served as targets for 

chronobiological interventions for mood disorders, such as bright light therapy, 

interpersonal and social rhythm therapy, and blue-blocking glasses (Frank et al., 2005; 

Henriksen et al., 2016; Al-Karawi and Jubair, 2016). However, levels of illuminance 

exposure have been under-investigated in mood disorders. Similarly, melatonin secretion 

may provide additional insight into biological rhythms in mood disorders, given its 

central role on entrainment. It has been shown that manic subjects display higher daytime 

melatonin secretion compared to depressed individuals and controls (Nováková et al., 

2015). 

Subjective disturbance in sleep and biological rhythms in mood disorders has been 

extensively investigated using clinical questionnaires. For instance, evening chronotype is 

more prevalent in BD (Wood et al., 2009), and is associated with worse depressive 
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symptom severity (Au and Reece, 2017). Patients with BD have displayed dysfunctional 

beliefs about sleep, which may lead to maintenance of sleep disturbances in this 

population (Harvey et al., 2005).  Additionally, subjective biological rhythm disturbances 

have been found to predict quality of life (QOL) in BD (Cudney et al., 2016) and 

functional impairment in BD and HCs (Pinho et al., 2016; Giglio et al., 2010). However, 

prior studies investigating sleep and biological rhythm disturbances have been limited by 

sample size, inadequate duration of actigraphy data collection, and use of either 

subjective or objective measurements of sleep and activity. To our knowledge, no prior 

study has reported on differences in light exposure, or subjective and objective measures 

of biological rhythms and sleep, in both BD and MDD; neither are there reports on 

objective measurements of activity and sleep as predictors of functional impairment and 

QOL in mood disorders. 

Here, we present a study where sleep and biological rhythm disruption was assessed 

through a variety of measures, including subjective questionnaires, actigraphy-measured 

activity, sleep patterns and light exposure, as well as nocturnal melatonin secretion in a 

well-characterized sample of individuals with MDD and BD. We hypothesize that sleep 

and biological rhythms will be more disrupted in the mood disorder groups compared to 

HCs, on both subjective and objective measures. We additionally hypothesize that 

impairment on measures of functional outcomes and QOL will be linked to worse 

subjective and objective markers of sleep and biological rhythms. 
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2.2 Methods and Materials 

2.2.1 Participants 

Participants were between the ages of 18 and 65, had a diagnosis of major 

depressive disorder (MDD) or bipolar disorder (BD), or had no history of a psychiatric 

diagnosis (healthy controls, HC). To determine clinical diagnosis, psychiatric history and 

current mood state, the Mini International Neuropsychiatric Interview (MINI) English 

Version 6.0.0. was administered to all participants (Sheehan et al., 1998). 

Participants were excluded from the study if they (1) had a current or lifetime 

history of a sleep disorder, (2) had used melatonin within 2 months prior to commencing 

the study, (3) were employed in shiftwork, (4) were currently using prescribed sleep 

medications (e.g. trazodone, zopiclone, zolpidem) or sedative-hypnotic medications (e.g. 

benzodiazepines, barbiturates), (5) were currently using illicit substances as sleep aids or 

recreationally (e.g. marijuana), (6) currently used prescription analgesics with sedative 

effects, such as opioids or non-steroidal anti-inflammatory drugs, (7) met current criteria 

for current alcohol/substance abuse or dependence according to the MINI or (8) if they 

were currently experiencing jet lag from a recent trip outside of the Eastern Standard 

Time. Participants were recruited from two psychiatric outpatient clinics (the Mood 

Disorders Program and Women’s Health Concerns Clinic) at St Joseph’s Healthcare 

Hamilton, Ontario, and from online and local community advertisements. All study 

participants gave written informed consent to take part in the study, with accordance to 
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the Declaration of Helsinki, as approved by the Hamilton Integrated Research Ethics 

Board (Project #14-251).  

2.2.2 Study Procedures 

Participants made two visits to St Joseph’s Healthcare Hamilton over the span of 

15 days. During the first visit, written informed consent was obtained. Clinical diagnosis, 

psychiatric history and mood state were determined using the MINI. Participants were 

then fitted with a configured actigraph (Actiwatch 2, Philips Respironics Inc., Biolynx, 

Montreal, Canada), which they were instructed to wear throughout the 15-day duration of 

the study. A sleep log was given to participants in order to record periods of actigraph 

removal, morning wake-up times, naps, and bedtimes. Subjects were then given a urine 

sample container and were instructed to collect the first morning urine sample on day 15. 

On day 15, participants returned for a second and final visit, and were asked to return the 

actigraph, urine container and sleep log. 

 

2.2.3 Clinical Assessments 

 Subjective disturbances in biological rhythms were assessed using the self-report 

Biological Rhythms Interview of Assessment in Neuropsychiatry (BRIAN) (Giglio et al., 

2009). The BRIAN is an 18-item self-report questionnaire, developed for use in mood 

disorder populations, which monitors biological rhythm disruption over the preceding 15 

days, evaluating sleep, activity, eating patterns, and social patterns. The BRIAN 

questionnaire additionally included a previously unvalidated 3-item measure of 

chronotype. 
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  Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI), a 

self-report questionnaire developed to assess sleep quality in individuals with affective 

disorders (Buysse et al., 1989). The Munich Chronotype Questionnaire (MCTQ) was used 

to assess chronotype, based on the mean mid-sleep point, calculated from the self-

reported sleep onset and offset on work-free days, corrected for sleep debt accumulated 

throughout the week (Roenneberg et al., 2003). Functioning was assessed using the 

Functioning Assessment Short Test (FAST), a self-report checklist developed for use in 

psychiatric patients, which assesses functioning in six domains: autonomy, occupational 

and cognitive functioning, financial issues, interpersonal relationships and leisure time 

(Rosa et al., 2007). 

 The World Health Organization’s Quality of Life Assessment - BREF  

(WHOQOL-BREF), was administered to evaluate quality of life (World Health 

Organization, 1996). Daytime sleepiness was measured using the Epworth Sleepiness 

Scale  (ESS) (Johns, 1991). The clinician-administered Young Mania Rating Scale 

(YMRS) was used to assess symptoms of mania (Young et al., 1978), and Montgomery-

Åsberg Depression Rating Scale (MADRS) was used to assess depressive symptoms 

(Montgomery and Åsberg, 1979). Finally, a General Circadian Disorder Checklist, 

consisting of 3 clinician-administered items, was used to confirm that participants in the 

study did not have a current circadian disorder.  
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2.2.4 Urinary 6-sulfatoxymelatonin 

 A first morning urine sample was used to measure melatonin’s primary urinary 

metabolite, 6-sulfatoxymelatonin (6-SM). Participants were instructed to refrigerate the 

urine sample prior to arrival to the laboratory on the day that it was collected. 6-

sulfatoxymelatonin levels were normalized to creatinine concentration, expressed as 

ng/mg. Creatinine levels in the urine were analyzed by the Hamilton Regional Laboratory 

Medicine Program at St Joseph’s Healthcare Hamilton (license#4037) using the Jaffe 

method (kinetic alkaline picrate) (Abbott Diagnostics, Santa Clara, California, USA). 

Samples were then analyzed for 6-SM using ELISA for 6-SM (Buhlmann Diagnostics 

Corporation, Amherst, New Hampshire, USA). Assay sensitivity was 0.14 ng/mL. The 

intra- and inter-assay coefficients of variation were 7.1% and 11.9%, respectively.  

 

2.2.5 Actigraphy 

 Objective measures of sleep and daily activity rhythms were obtained using the 

Actiwatch 2 monitor. Actigraphy data were extracted by a specialized software, which 

distinguishes sleep from waking, and information collection regarding sleep and activity 

phases. These data were collected in one-minute epochs continuously for 15 days and 

retrieved for processing using the Philips Actiware software Version 6.0. Default 

sleep/wake thresholds were used to determine sleep and activity periods throughout the 

observation period. Sleep and illuminance measures were extracted and averaged to 

produce a single value for each measure, using Actiware software. Total sleep time (TST) 

- amount of hours spent asleep, excluding time spent awake in bed; sleep onset latency 



Ph.D. Thesis – A. Slyepchenko; McMaster University – Neuroscience.  

 66 

(SOL) - number of minutes encompassing the transition from wakefulness to sleep; sleep 

efficiency (SE) - percentage of TST divided by time in bed, where lower SE is reflective 

of worse sleep quality; and wake after sleep onset (WASO) - number of minutes spent 

active from sleep onset to sleep offset. Mean Mid Sleep Time was calculated manually as 

the midpoint between sleep onset and get up time, adjusting for SOL. Any periods during 

which actigraphs were removed, as recorded using the sleep log, were excluded from the 

analysis. Additionally, visual inspection was used to identify and remove intervals ³ 20 

minutes where no movement was observed. Intervals with ³4 excluded hours were 

identified, and the 24-hour period surrounding these intervals was removed from the 

analysis. Data were split into weekend and weekday data, of which only weekday data 

were used in the final analyses. 

 Illuminance variables extracted from Actiware , included the following variables 

for rest, active, and sleep periods: light exposure, average light, maximum light, time 

above light threshold (1000 lux), percent invalid light. 

 

2.2.6 Statistical Analysis  

Statistical analyses were performed using R (Version 3.2.2) (Team, 2016) and 

Python (Version 2.7.6).  

 

2.2.6.1 Cosinor & non-parametric actigraphy 

 Cosinor analysis was employed to evaluate daily activity rhythms, using the R 

package “cosinor”. This analysis fits time-series data to a single cosine wave, giving 
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characteristics of the wave which include (1) MESOR – midline estimating statistic of the 

rhythm; (2) amplitude of the rhythm; (3) acrophase – a measure of the timing of peak 

activity; (4) circadian quotient – the ratio of amplitude to MESOR, which can be used as 

a measure of the strength of an individual rhythm. Individual circadian activity rhythm 

periods were calculated using non-linear regression, where a period was assigned through 

extracting a peak between T=23h and T=25h from the periodogram. This individual 

analysis allowed for more accurate representation of each participant’s endogenous 

period. 

 Applicability of cosinor analysis can be limited by non-sinusoidality of time series 

data, and inability to detect fragmentation of rhythms, which has led to the introduction of 

non-parametric circadian rhythm analysis. This approach complements cosinor analysis 

by addressing rhythm fragmentation, stability, average levels and timing of activity 

(Thomas et al., 2015). Non-parametric circadian activity rhythm analysis was employed 

using the nparACT (v.0.8) package, which obtained the following measures: (1) 

Interdaily stability (IS) – a measure of the strength of coupling between the endogenous 

circadian activity rhythm and external zeitgebers. IS ranges from 0 to 1, with higher 

values indicating greater synchronization of circadian activity rhythm to the external 

environment. It is the normalized ratio of the variance of the mean rhythm over the total 

variance throughout the study duration. (2) Intradaily variability (IV) is a measure of 

circadian activity rhythm fragmentation, which is the ratio of the mean square difference 

between successive measurements to the overall variance of the data. IV ranges from 0 to 

2, with higher values indicating higher fragmentation of the circadian rhythm. (3) 5 
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consecutive hours of lowest average activity amplitude (L5), (4) start time of L5, (5) 10 

consecutive hours with highest amplitude values (M10), (6) M10 start time. (7) Relative 

amplitude (RA) of the rhythm, consisting of the difference between average M10 and L5, 

divided by sum of activity during these 15 hours. RA ranges from 0 to 1, with higher 

values representing higher amplitude. 

 We calculated nighttime activity mean --  the total of the activity counts measured 

every night during sleep intervals, averaged across the data collection period. Higher 

nighttime activity mean indicates higher sleep disturbance. 

 

2.2.6.2  Light Exposure 

 Minute-by-minute illuminance levels, as obtained from actigraphy, were used to 

calculate whole-day time above light threshold (TAT) and mean timing above light 

threshold (MLiT) – a  measure of the average time during which TAT occurs. Four 

different thresholds of illuminance were used to calculate TAT and MLiT: 10 lux (dim 

light), 100 lux, 500 lux (approximate illuminance of office lighting), 1000 lux 

(approximate illuminance of an overcast day). 

 

2.2.6.3 Transition Probabilities 

 We estimated transition probabilities from actigraphy data based on methods 

described by Ortiz et al. (Ortiz et al., 2016) and a prior publication from our group 

(Allega et al., 2018). A transition series was created between two states (rest and activity), 

estimated from the probability of staying in each state for each of the individual minute-
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by-minute activity records. The probability of transitioning from each state was then 

calculated, as the probability that after a series of minute-by-minute epochs of remaining 

in one state, the individual would switch to the other state or vice versa (Ortiz et al., 

2016).  This analysis was performed using the Hidden Markov Model (HMM) - a 

statistical model based on the theory that a time series of observed data is the outcome of 

a hidden state variable. The hidden state sequence, therefore is dependent on the current 

state. The hmmlearn package (Version 0.2.0) was used in Python to build the model and 

calculate its parameters, using the Baum-Welch algorithm. We separated data into 

nighttime and daytime periods, where the nighttime period was defined as the lowest 8 

mean activity hours, and the other 16 hours were defined as the daytime period (Ortiz et 

al., 2016). The mean activity counts of rest and activity states (µR and µA), and the 

probability of transitioning between states (Prest-active [pRA] and Pactive-rest [pAR]) were 

calculated for day and night. Higher values of pRA are indicative of the individual 

staying in an active state. 

 

2.2.6.4 Group Differences 

Chi square tests were used to evaluate differences in categorical variables across 

groups. One-way ANOVAs and Kruskal-Wallis tests were used to compare continuous 

variables across groups. Next, we performed a multiple linear regression analysis to 

predict FAST and WHOQOL-BREF scores using variables obtained from actigraphy, the 

BRIAN questionnaire, and MCTQ chronotype. We tested whether assumptions were met 

for linear regression analysis, including normality, linearity, independence of variance, 
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multicollinearity and homoscedasticity. Variables were transformed to meet regression 

assumptions if they were not normally distributed. 

 

2.3 Results 

Of the total of 131 participants enrolled in the study, 20 withdrew for a variety of 

reasons (family emergency, work schedule, exams, failure to report current melatonin 

use). The final sample consisted of 111 subjects (MDD = 38; BD = 33; HC = 40) (See 

Table 1 for demographic and clinical characteristics of the sample). A larger proportion of 

the BD group was unemployed compared to the HCs, and participants in the HC group 

had more years of education (p<0.05). In terms of clinical variables, participants with BD 

had an earlier age of onset than those with MDD (p<0.05). Approximately 36% of both 

mood groups were currently in a major depressive episode. Expectedly, the MDD and BD 

groups had higher scores than controls on the MADRS, indicating worse depressive 

symptoms. The BD group had higher manic symptoms (YMRS) compared to HCs (all 

p<0.001), although no participants with bipolar disorder met criteria for a current 

(hypo)manic, or mixed episode. In addition, both the MDD and BD groups had worse 

functioning (FAST) and quality of life (WHOQOL-BREF) (p<0.0001) (Table 2). 

 

2.3.1 Subjective Assessments of Sleep and Biological Rhythms 

 Both the MDD and BD groups had higher scores on the BRIAN questionnaire and 

its subdomains, excluding Chronotype, indicating higher disturbances in all 4 domains of 

biological rhythmicity (all p£0.001) (See Table 2). Sleep quality according to the PSQI 
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was also subjectively worse in both mood groups. No significant differences were found 

between the mood groups in subjective sleep quality (PSQI) or subjective biological 

rhythm disturbance (BRIAN). No differences were detected in daytime sleepiness (ESS), 

or chronotype (MCTQ, BRIAN; p>0.05) between the groups. It should be noted that as 

PSQI and ESS were added later in the study, data for 15 participants were missing for 

ESS, and data for 18 participants were missing for PSQI. 

 

2.3.2 Objective Assessments of Sleep and Biological Rhythms 

 See Tables 3 and 4 for a summary of comparisons between BD, MDD and HC in 

objective measures of sleep, biological rhythms and light exposure. 

 

2.3.2.1 Urinary 6-sulfatoxymelatonin 

Levels of 6-sulfatoxymelatonin, adjusted for creatinine were lower in BD 

compared to the control group, indicating lower levels of overnight melatonin secretion in 

BD (p<0.05). Five subjects (n=2 HC, n=1 MDD, n=2 BD) did not complete urinary 6-SM 

sampling. 

 

2.3.2.2 Actigraphy Variables 

 The BD group had a lower circadian quotient (p=0.01), longer TST (p=0.03), 

higher mean nighttime activity (p=0.005) and trended toward higher WASO (p=0.09) 

than HC. The MDD group had longer SOL (p=0.03), and higher mean nighttime activity 

(p=0.01) than HC. In terms of light exposure, the MDD group had a later peak of light 
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exposure above 500 lux (MLiT500) and 1000 lux (MLiT1000) than HC (p<0.05). The 

BD group had later peak of MLiT1000 than HC (p<0.05). No differences were observed 

between groups for any of the circadian cosinor variables or mean light exposure at rest, 

activity or sleep. Data from 1 HC, 3 MDD participants had to be removed from light 

analyses, due to a constant, high level of light exposure in these participants (>200,000 

lux throughout 24h). Figures 1a and 1b provide a visualization of mean activity and light 

exposure patterns across 15 days for all participants.  

 

2.3.2.3 Transition State Probabilities 

 The MDD group had higher pRA throughout the day compared to the HC group 

(p<0.05). Both the MDD and BD subjects had higher nighttime activity than HC 

(p£0.01). 

 

2.3.2.4 Predicting Functioning and Quality of Life from Actigraphy, BRIAN Scores and 

Chronotype 

 Multiple linear regression analysis revealed that QOL (WHOQOL-BREF) was 

independently predicted by BRIAN scores (Std b=-0.58, t=-7.39, p<0.001), circadian 

quotient (Std b=0.26, t=2.79, p=0.006), nighttime µrest (Std b=-0.19, t=-2.33, p=0.02), and 

daytime pAR (Std b=0.19, t=2.05, p=0.04), explaining 43% of variance in QOL 

(F13,97=7.28, Adj. R2=0.43, p<0.001).  Functioning, in turn, was independently predicted 

by BRIAN scores (Std b=0.71, t=9.91, p<0.001), total sleep time (Std b=-0.28, t=-2.84, 
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p=0.005), and daytime pAR (Std b=-0.19, t=-2.37, p=0.02), explaining 52% of variance 

in functioning (F13,97=10.28, Adj. R2=0.52, p=<0.001) (Table 5). 

 

2.4 Discussion 

 In this comprehensive investigation of objective and subjective biological rhythms 

and sleep in BD and MDD, several key findings emerged: we found evidence of 

disturbances in subjective sleep quality and biological rhythms in both mood groups, 

though no differences were found in daytime sleepiness or chronotype. Both mood groups 

had higher mean nighttime activity than controls. Participants with BD had a sleep profile 

characterized by a longer TST, higher circadian quotient and lower urinary 6-SM levels 

than controls. The MDD group had longer SOL, and higher probability of transitioning 

from rest to activity during the day than controls, suggesting that MDD patients are more 

likely to stay active throughout the day, than healthy volunteers. Disruptions in the sleep 

and biological rhythm profiles of the two disorders were not restricted to any specific 

domain – rather, disruptions were widespread across each category of variables. We 

measured subjective disruptions, sleep variables, transition state probabilities, activity, 

light exposure, daily activity rhythms and urinary 6-sulfatoxymelatonin, finding at least 

one disturbance in each category of measurements.  

 An important, novel finding of our study is that we were able to predict QOL and 

functional impairment using subjective and objective measures of sleep and biological 

rhythms in individuals with mood disorders. Our results are consistent with prior reports 

of disturbances in subjective biological rhythms according to the BRIAN being predictive 
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of poor functioning (Pinho et al., 2016; Giglio et al., 2010) and worse QOL (Cudney et 

al., 2016) in BD. Specifically, we found that QOL scores were predicted by circadian 

quotient, mean activity count during nighttime rest, and probability of transitioning from 

activity to rest during the day. Functional impairment was predicted by shorter TST, and 

lower probability of transitioning from activity to rest during the day. To our knowledge, 

no prior study has investigated the link between QOL, functioning and objectively 

measured biological rhythms or sleep in a mood disorder population. However, several 

prior studies linked subjective reports of sleep disturbance to poorer functioning and 

quality of life in mood disorders and other populations. For instance, in a large study of 

individuals with BD, functioning and QOL were worse in those with longer or shorter 

self-reported sleep duration as compared to normal sleepers (Gruber et al., 2009). 

Elsewhere, BD individuals with delayed sleep phase had worse functioning (Steinan et 

al., 2016). Similarly, in a population-based study, individuals with self-reported non-

restorative sleep and insomnia symptoms reported worse functioning than their 

counterparts (Zhang et al., 2013). Finally, greater disruptions in subjective and objective 

sleep measures were linked to worse functioning and health-related QOL in elderly 

individuals: sleep-related dysfunction was prospectively linked to health-related QOL, 

while daily functioning was prospectively linked to percentage of nighttime sleep after a 

6-month follow-up (Martin et al., 2010). 

In terms of profiles of light exposure, participants with MDD had later mean 

timing of light exposure over 500 and 1000 lux, although average time spent exposed to 

light levels above this threshold did not differ from controls. Similarly, BD subjects had 
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later mean timing of light exposure over 1000 lux. To the best of our knowledge, very 

little is known about light exposure in mood disorders, in spite of reports evaluating light 

exposure therapies in mood disorder patients, such as bright light therapy (Al-Karawi and 

Jubair, 2016), and blue-blocking glasses (Henriksen et al., 2016). A previous study 

suggested that higher early-life light exposure may influence earlier age of onset for 

patients with BD (Bauer et al., 2012). In healthy elderly individuals, levels of light 

exposure have been found to be negatively associated with depression scores (Ichimori et 

al., 2013). Light influences the circadian system directly through the SCN, where 

information about light intensity is transmitted through specialized intrinsically 

photosensitive retinal ganglion cells directly in the retina, which contain a photopigment 

called melanopsin, with peak sensitivity to blue light. These cells additionally signal to 

the ventro-lateral preoptic nucleus, which plays an important role in non-circadian sleep 

promotion. Light is therefore interlinked with the homeostatic and circadian processes of 

sleep, creating complex effects on mood, and alertness (Reviewed by (Stephenson et al., 

2012)). 

The BRIAN questionnaire has been suggested to be able to discriminate biological 

rhythm disturbances specifically between mood disorder groups, and across mood states, 

with the greatest disturbances seen in individuals with bipolar disorder in a current 

depressive episode (Mondin et al., 2017). Euthymic individuals with BD had a similar 

degree of disruption as currently depressed individuals with MDD, corroborating 

evidence that subsyndromal BD symptoms persist into remission (Mondin et al., 2017). 

Due to limited sample size, we were unable to compare depressed with euthymic patients. 
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However, an interesting finding was that worsening of biological rhythm disturbances in 

patients with BD and MDD was not accounted for by chronotype or daytime sleepiness. 

In addition to measuring disruptions in the rhythmicity of sleep and activity, one of the 

defining features of the BRIAN is that it includes measures of social rhythm disruption 

and eating pattern disruption. The two mood groups displayed worse disruption in all 4 

BRIAN subdomains, including the social and eating subdomains. As mentioned 

previously, these factors also appear to play a role in the timekeeping mechanisms of 

mammals (Mistlberger and Antle, 2011). These findings are consistent with previous 

studies showing that disruption in social rhythms was associated with earlier onset of 

depressive and (hypo)manic episodes in BD (Shen et al., 2008), and depressive symptom 

severity in MDD (Szuba et al., 1992). Moreover, interpersonal and social rhythm therapy 

is a well-established treatment for BD (Frank et al., 2005). 

We also found that levels of first morning urinary 6-SM were lower in individuals 

with BD, indicating lower overnight melatonin secretion in BD subjects. A prior study 

found morning melatonin levels to be lower in cerebrospinal fluid, but not in serum of 

patients with BD, and vice-versa for MDD (Bumb et al., 2016). Another study using 

salivary melatonin found that young mood disorder patients had delayed and reduced 

melatonin secretion, indicating a lower amplitude of secretion (Robillard et al., 2013). We 

did not find differences in morning urinary 6-SM levels between MDD and healthy 

volunteers. Investigations of melatonin levels in MDD have provided some 

inconsistencies, where some studies have found increased nocturnal serum melatonin in 

MDD patients (Rubin et al., 1992) others have found decreased nocturnal serum 
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melatonin and increased morning serum melatonin (Khaleghipour et al., 2012; Crasson et 

al., 2004). A study investigating serum and urinary 6-SM secretion found that there 

appears to be a phase shift in melatonin secretion for depressive patients, with higher 

melatonin secretion in the morning, as opposed to nighttime, and a delay of serum 

melatonin secretion (Crasson et al., 2004).  

Activity patterns beyond sleep are an emerging topic in mood disorders. A 

systematic review of activity patterns in depression found heterogeneous results with 

regards to actigraphy-measured nighttime activity in patients with current depressive 

disorders, and hypothesized that nighttime activity is higher in depressive patients, though 

this is not reflected in measurements of sleep efficiency and sleep duration (Burton et al., 

2013). This was in part consistent with our findings, as both MDD and BD groups had 

higher nighttime activity levels than controls, and no differences were found in sleep 

efficiency. Additionally, SOL was higher in the MDD group compared to healthy 

volunteers. In our sample, BD subjects had longer TST than HCs. This was consistent 

with findings from recent systematic reviews and meta-analyses, which found euthymic 

and depressed BD patients to have longer TST (De Crescenzo et al., 2017; Geoffroy et 

al., 2015). Mean nighttime activity, a variable which was highly correlated with WASO, 

was higher in BD than HCs. 

A large-scale actigraphy study of (n=339) euthymic participants with BDI, BDII 

and MDD and HCs investigating timing, levels and variability of activity found 

participants with BDI and BDII to have higher variability in activity from day to day 

during the afternoon and evening respectively, compared to controls (Shou et al., 2017). 
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However, we did not find any differences between groups on measures of interdaily 

stability or intradaily variability. Circadian quotient, a measure of individual rhythm 

strength, was higher in bipolar disorder than the healthy volunteer group. Similarly, we 

did not find differences in chronotype between the groups, which is inconsistent with 

prior findings of BD being associated with eveningness (Melo et al., 2017). 

Several limitations of our study must be noted. The cross-sectional nature of the 

study, does not allow us to explore the causal relationships between sleep and biological 

rhythm disturbances and mood in our samples. Our sample included individuals who 

were receiving treatment with various of psychotropic medications, which may have 

influenced patterns of melatonin secretion through effects on the circadian oscillator 

given prior reports that antipsychotics, lithium and sodium valproate influence sleep and 

circadian rhythms in BD (Geddes and Miklowitz, 2013). In addition, we were unable to 

study differences in biological rhythms and sleep in depressed and euthymic patients, as 

our sample size for each subgroup was insufficient to make meaningful comparisons. 

Future studies should additionally recruit participants in mixed states, as daily activity 

rhythms, transition state probabilities and light exposure profiles have been under-

investigated in this mood state. Future investigations should consider tracking objective 

parameters of social and eating patterns in mood disorders. Finally, actigraphy, while 

having high concordance with polysomnography in healthy adults, has less accuracy in 

populations with worse sleep quality, where quiet wakefulness might be scored as sleep.  

However, longer recording periods (i.e. 7-14) nights improve sleep parameter stability 

(Van De Water et al., 2011). Strengths of our study include the use of 15-day actigraphy, 
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which allows for a representative analysis of sleep and daily activity rhythm patterns. Our 

methods of collecting data regarding both subjective and objective sleep and activity 

variables, along with light exposure and nocturnal 6-SM secretion, provide a 

comprehensive look at biological rhythms variables across BD and MDD. To our 

knowledge, this is the first investigation to examine objective actigraphy and melatonin 

profiles, in addition to subjective measures of sleep and biological rhythms in both BD 

and MDD. 

 

2.5 Conclusions 

 We found that subjective and objective sleep and biological rhythm disturbances 

are strongly associated with quality of life and functioning in BD and MDD. Investigating 

sleep and biological rhythms in mood disorders is a complex, multidimensional process, 

which can involve a variety of subjective and objective measures. Subjective measures of 

sleep and biological rhythm disruptions consistently detect worsening in these variables 

for BD and MDD in a population with mixed current mood state. Measuring sleep, 

transition state probabilities, activity, light exposure, daily activity rhythms and urinary 6-

sulfatoxymelatonin in addition to subjective measures may eventually become a clinically 

viable and useful tool to help provide diagnostic accuracy for clinicians. However, further 

longitudinal investigations must be conducted to analyze temporal relationships between 

sleep, biological rhythms and mood episodes.  
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Figure 1a) Plot of mean hourly activity counts from 1 am to midnight for all participants. Coloured lines denote group means. Activity 
patterns show a circadian pattern. 
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Figure 1b) Plot of log of mean light exposure (in lux) from 1 am to midnight for all participants. Coloured lines denote group means. Data 
from 4 participants were removed, as they displayed a constant, abnormally high level of light exposure (i.e. >200,000 lux) throughout the 
day. Mean light levels were log transformed in order to better visualize the circadian pattern throughout the day. (BD: Bipolar Disorder, 
HC: Healthy Control, MDD: Major Depressive Disorder) 
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Table 1: Demographics and Clinical Variables 
 HC (n=40) 

N(%) 
Mean±SD 

Median[IQR] 

MDD (n=38) 
N(%) 

Mean±SD 
Median[IQR] 

BD (n=33) 
N(%) 

Mean±SD 
Median[IQR] 

Statistic p Mult. Comp. 

Currently Euthymic n/a 24 (63.2%) 21 (63.6%) n/a n/a  
Currently Depressed n/a 14 (36.8%) 12 (36.4%) n/a n/a  
       
Age 30 [20] 39 [22.75] 37 [17] c2=3.19 n.s.  
Sex       
Male 20 (50%) 13 (34.2%) 14 (42.4%) c2=1.99 n.s.  
Female 20 (50%) 25 (65.8%) 19 (57.6%)    
       
Employed       
Unemployed 1 (2.5%) 11 (28.9%) 11 (33.3%) c2=12.85 0.002 BD>HC 
Employed or student 39 (97.5%) 27 (71.1%) 22 (66.7%)    
       
BMI$ 24.7±4.1 26.7±5.4 27.2±5.2 F=2.52 0.08  
       
Years of Education$ 17.5±3.3 16.0±2.6 15.7±3.4 F=3.57 0.03 HC>BD 
       
Age of Onset n/a 20.7±10.6 15.4±6.6 t=5.34 0.02 BD<MDD 
       
Season Tested       
Summer 18 (45.0%) 17 (44.7%) 17 (51.5%) c2=0.41 n.s.  
Winter 22 (55.0%) 21 (55.3%) 16 (48.5%)    
       
Psychiatric 
Medications 

      

Antidepressants  20 (52.6%) 20 (60.6%)    
Antipsychotics  7 (18.4%) 15 (45.5%)    
Mood Stabilizers  7 (18.4%) 15 (45.5%)    
Anxiolytics  3 (7.9%) 8 (24.2%)    
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MADRS 2 [2.25] 8.5 [8.00] 11 [11.00] c2=42.23 <0.0001 BD>HC, 
MDD>HC 

YMRS 1 [2.00] 1 [2.00] 2 [3.00] c2=9.04 0.01 BD>HC 
$log transformed; %square root transformed, x squared transformed (BD: Bipolar Disorder, BMI: Body Mass Index, HC: 
Healthy Control, IQR: Interquartile range, MADRS: Montgomery Asberg Depression Rating Scale, MDD: Major Depressive 
Disorder, SD: Standard Deviation, YMRS: Young Mania Rating Scale) 
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Table 2: Group Differences in Measures of Subjective Biological Rhythms, Sleep, Functioning and Quality of Life 
 HC (n=40) 

Mean ± SD 
Median [IQR] 

MDD (n=38) 
Mean ± SD 

Median [IQR] 

BD (n=33) 
Mean ± SD 

Median [IQR] 

Statistic p Mult. Comp. 

BRIAN 31 [9.00] 45 [19.50] 43 [17.00] c2=31.30 <0.001 BD>HC 
MDD>HC 

BRIAN – Sleep 10 [4.50] 14 [5.75] 14 [5.00] c2=16.33 <0.001 BD>HC, MDD> 
HC 

BRIAN – Activity 7.5 [3.00] 14 [6.00] 12 [7.00] c2=33.54 <0.001 
BD>HC, 
MDD>HC 

BRIAN – Social 6 [2.25] 8 [4.75] 8 [5.00] c2=13.60 0.001 BD>HC, 
MDD>HC 

BRIAN – Eating 
Pattern 7 [3.00] 9 [7.00] 10 [4.00] c2=14.64 <0.001 

BD>HC, 
MDD>HC 

ESS 
(n=32,34,36) 6 [7.00] 8 [5.50] 7.5 [5.25] c2=0.26 n.s.  

MCTQ – Chronotype$  3.9±1.3 4.2±1.3 4.6±1.7 F=1.78 n.s.  
BRIAN – Chronotype 6 [2.00] 7 [2.75] 7 [3.00] c2=5.05 0.08  

PSQI  
(n=32,32,29) 4 [3.00] 9 [5.25] 7 [7.00] c2=14.86 <0.0001 

BD>HC, 
MDD>HC 

FAST% 9.2±8.9 23.1±15.2 26.1±15.0 F=21.03 <0.0001 BD>HC 
MDD>HC 

WHOQOL-BREF§ 308.1±40.5 247.5±71.6 245.0±57.9 F=15.12 <0.0001 BD<HC, 
MDD<HC 

Slog transformed; %square root transformed, §squared transformed 
(BD: Bipolar Disorder, BRIAN: Biological Rhythm Interview of Assessment in Neuropsychiatry, ESS: Epworth Sleepiness 
Scale, FAST: Functioning Assessment Short Test, HC: Healthy Control, IQR: Interquartile range, MCTQ: Munich Chronotype 
Questionnaire, MDD: Major Depressive Disorder, PSQI: Pittsburgh Sleep Quality Index, SD: Standard Deviation, WHOQOL-
BREF: The World Health Organization’s Quality of Life Assessment – BREF) 
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Table 3: Group Differences for Objective Measures of Sleep and Biological Rhythms 

Urinary 6-Sulfatoxymelatonin 

 HC (n=38) 
Mean ± SD 

Median [IQR] 

MDD (n=37) 
Mean ± SD 

Median [IQR] 

BD (n=31) 
Mean ± SD 

Median [IQR] 

Statistic p Mult. Comp. 

Urinary 6-SM, adjusted for 
creatinine (ng/mg) 

34.3 [22.5] 30.7 [30.6] 19.5 [27.8] c2=7.74 0.02 BD<HC (p<0.05) 

Absolute Urinary 6-SM levels 
(ng/L) 

46.3 [34.4] 45.9 [35.4] 28.9 [71.5] c2=3.68 n.s.  

Sleep Variables 

 HC (n=36) 
Mean ± SD 

Median [IQR] 

MDD (n=34) 
Mean ± SD 

Median [IQR] 

BD (n=27) 
Mean ± SD 

Median [IQR] 

   

TST 5.6±0.8 6.1±1.2 6.3±0.9 F=3.40 0.03 BD>HC (p=0.03) 
Sleep Onset Latency% 11.5±10.4 16.0±9.8 12.1±7.7 F=3.21 0.04 MDD>HC (p-

0.03) 
Sleep Efficiency 0.8±0.06 0.8±0.08 0.8±0.07 F=1.02 n.s.  
WASO 41.4±18.9 50.5±20.2 51.9±19.0 F=2.85 0.06 BD>HC (p=0.09) 
Awakenings 21.3±7.8 24.4±8.8 24.2±6.7 F=1.62 n.s.  
Mean Mid Sleep TimeS 3.7±0.9 3.5±1.2 4.0±1.3 F=1.11 n.s.  

Cosinor Analysis 

MesorS 212.7±52.5 198.9±51.1 201.1±71.2 F=0.84 n.s.  
Amplitude  142.8±49.7 147.4±49.9 159.0±58.9 F=0.75 n.s.  
Period 24 [0.67] 24 [0.13] 24 [0.06] c2=3.44 n.s.  
Acrophase  10.8 [10.9] 12.1 [10.3] 11.1 [11.4] c2=0.77 n.s.  
Non-parametric Circadian Rhythm Statistics 
IS 0.50±0.13 0.50±0.13 0.50±0.16 F=0.01 n.s.  
IV 0.86±0.20 0.78±0.21 0.75±0.22 F=2.35 n.s.  



Ph.D. Thesis – A. Slyepchenko; McMaster University – Neuroscience.  

 93 

CQ  0.68±0.19 0.75±0.19 0.81±0.21 F=4.24 0.01 BD>HC 
(p=0.01) 

Relative Amplitude 0.90 [0.08] 0.88 [0.09] 0.91 [0.13] c2=0.27 n.s.  
L5S 25.8±28.7 25.5±23.1 26.6±25.5 F=0.09 n.s.  
L5 Start Time 1.59 [1.41] 2.14 [2.25] 1.98 [1.52] c2=2.06 n.s.  
M10 322.2± 71.0 317.3± 80.8 329.5 ± 105.1 F=0.15 n.s.  
M10 Start Time 10.3±2.9 9.6±2.1 10.3± 2.7 F=0.87 n.s.  

Transition Probabilities 

pAR day 0.05±0.01 0.05±0.01 0.05±0.01 F=1.34 n.s.  
µA dayS 504.79± 

131.26 
455.49± 
112.01 

460.13± 
142.34 

F=1.69 n.s.  

pRA dayS 0.05± 0.01 0.06± 0.01 0.06±0.02 F=4.16 0.01 MDD > HC 
µR day% 98.4± 48.9 76.6± 44.8 74.1 ± 57.1 F=2.96 0.05  
pAR night 0.09± 0.02 0.09 ± 0.03 0.09± 0.02 F=0.50 n.s.  
µA nightS  69.8 ± 40.0 58.6± 37.3 57.4 ± 47.5 F=2.40 0.09  
pRA night 0.10 ± 0.02 0.10± 0.03 0.10 ±0.02 F=0.23 n.s.  
µR night 0.00 [0.00] 0.00 [0.09] 0.00 [0.06] c2=6.72 0.03 n.s. 
Nighttime Activity Mean% 5201.2± 2371.6 6997.6± 2982.0 7472.6± 3072.8 F=6.30 0.002 BD>HC 

(p=0.005) 
MDD>HC 
(p=0.01) 

Slog transformed; %square root transformed, §squared transformed 
6SM: 6-sulfatoxymelatonin, CQ: Circadian Quotient, IS: Interdaily Stability, IV: Intradaily Variability, L5: mean activity during lowest 
5 consecutive hours of activity, M10: mean activity during highest 10 consecutive hours of activity, pAR: Probability of transitioning 
from active to rest state, pRA: Probability of transitioning from rest to active state, TST: Total Sleep Time, WASO: Wake After Sleep 
Onset, µA: mean activity during active period, µR: mean activity during rest period 
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Table 4: Group Differences in Light Exposure Variables (4 abnormally high light exposure outliers  removed (i.e. >200,000 lux 
exposure continuously throughout 24 hours)) 
 HC (n=35) 

Mean ± SD 
Median [IQR] 

MDD (n=31) 
Mean ± SD 

Median [IQR] 

BD (n=27) 
Mean ± SD 

Median [IQR] 
Statistic p Mult. Comp. 

Rest: 
Light Exposure – 
RestS 

2608.6± 
12300.5 

658.1±1147.6 1263.3± 
3860.1 

F=0.69 n.s.  

Light Average – 
RestS 

7.6±24.7 3.4±6.7 4.0±8.3 F=0.55 n.s.  

Light Max – Rest 13.0[26.4] 13.0[25.8] 13.1[24.1] c2=0.46 n.s.  
TAT 1000 lux – 
Rest 

0 [0] 0 [0] 0 [0] c2=1.72 n.s.  

Light Percent 
Invalid – Rest 

8.0[15.5] 6.1[8.7] 10.3[9.7] c2=1.00 n.s.  

Active: 
Light Exposure – 
Active 

158699.2 
[399448.1] 

115889.1 
[263881.8] 

161905.6 
[244900.7] 

c2=1.95 n.s.  

Light Average – 
Active 

190.7[340.1] 162.0[403.6] 234.4[343.9] c2=1.51 n.s.  

Light Max – Active 8765.8[19269.4] 8864.2[14215.4] 13383.2 
[14685.1] 

c2=2.35 n.s.  

TAT 1000 lux – 
Active 

22.0 [70.5] 19.6 [43.0] 24.8 [40.1] c2=1.90 n.s.  

Light Percent 
Invalid – Active 

7.9 [10.4] 6.0 [8.8] 5.4 [10.8] c2=1.03 n.s.  

Sleep: 
Light Exposure – 
SleepS 

395.0± 
854.8 

522.7± 
1081.9 

1172.7± 
3846.8 

F=1.54 n.s.  
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Light Average – 
SleepS 

5.4±22.9 2.2±3.5 3.8±8.4 F=0.97 n.s.  

Light Max – Sleep 9.1 [17.7] 9.0 [18.8] 12.4 [21.8] c2=2.94 n.s.  
TAT 1000 lux – 
Sleep 

0 [0] 0[0] 0[0] c2=1.07 n.s.  

Light Percent 
Invalid – Sleep 

7.4 [15.4] 6.6 [10.0] 11.2 [10.0] c2=0.81 n.s.  

Time Above Light Threshold 
TAT: 10 lux 487.6± 172.4 436.2± 

153.8 
457.0± 
166.3 

F=0.81 n.s.  

TAT: 100 lux % 185.4± 129.2 146.5±109.3 155.0± 102.7 F=0.96 n.s.  
TAT: 500 lux 49.8 [111.4] 46.9 [90.2] 57.4 [79.7] c2= 0.42 n.s.  
TAT: 1000 luxS 71.4± 83.4 55.3± 59.3 64.0 ± 55.1 F=0.21 n.s.  
Mean Light Timing Above Threshold 
MLiT: 10 lux§ 14.1±1.0 14.2±0.8 14.1±0.7 F-0.14 n.s.  
MLiT: 100 lux 13.8±1.0 13.9±1.1 13.8±0.9 F=1.25 n.s.  
MLiT: 500 lux 13.1±1.2 13.9±1.4 13.7±1.1 F=3.75 0.02 MDD > HC 
MLiT: 1000 lux 13.4 [1.7] 14.0 [2.0] 13.8 [0.8] c2=8.60 0.01 BD > HC, 

MDD > HC 
Slog transformed; %square root transformed, §squared transformed 
BD: Bipolar Disorder, HC: Healthy Control, IQR: Interquartile Range, MDD: Major Depressive Disorder, MLiT: 
Mean timing of above-threshold light exposure, TAT: Time above threshold 
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Table 5: Linear Regression Predicting Functioning and Quality of Life from BRIAN, MCTQ and Actigraphy Variables  
 WHOQOL-BREF Std. b P value FAST 

Std. b 
P value 

Intercept  <0.001  0.02 
BRIAN -0.58 <0.001 0.71 <0.001 
MCTQ Chronotype -0.01 n.s. 0.16 0.06 
MLiT10 0.14 n.s. -0.14 0.09 
CQ 0.26 0.006 -0.13 n.s. 
IV 0.12 n.s. 0.06 n.s. 
IS 0.00 n.s. 0.07 n.s. 
Number of Awakenings -0.03 n.s. 0.10 n.s. 
TST 0.04 n.s. -0.28 0.005 
SOL -0.14 n.s. 0.06 n.s. 
µR night -0.19 0.02 -0.08 n.s. 
pAR day 0.19 0.04 -0.19 0.02 
pAR night 0.03 n.s. 0.17 0.07 
Nighttime Activity Mean -0.07 n.s. 0.03 n.s. 
Adj .R2 0.43  Adj. R2 0.52 
F13, 97 7.28  F13, 97 10.28 
P <0.001  P <0.001 
BD: Bipolar Disorder, BRIAN: Biological Rhythms Interview of Assessment in Neuropsychiatry, CQ: Circadian quotient, FAST: 
Functioning Assessment Short Test, L5: mean activity during lowest 5 consecutive hours of activity, MCTQ: Munich Chronotype 
Questionnaire, MLiT: Mean timing of above-threshold light exposure, pAR – probability of transitioning from activity to rest, SOL: 
sleep onset latency TST: Total sleep time, µR: mean activity during rest period, WHOQOL-BREF: World Health Organization’s Quality 
of Life Assessment – BREF   

  



Ph.D. Thesis – A. Slyepchenko; McMaster University – Neuroscience.  

 97 

Chapter 3: Longitudinal Prediction of Severity of Postpartum 
Depression using Objective and Subjective Sleep and Biological 
Rhythms 
 

Anastasiya Slyepchenko1,2, Elizabeth M. Krawczak1, Luciano Minuzzi1,2,3, James P. 

Reilly4, Benicio N. Frey1,2,3,* 

1. Women’s Health Concerns Clinic, St Joseph’s Healthcare Hamilton, Hamilton, 

Ontario, Canada 

2. Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada 

3. Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, 

McMaster University, Hamilton, Ontario, Canada 

4. Department of Electrical and Computer Engineering, McMaster University, Hamilton, 

Ontario, Canada. 

 
This chapter in its entirety has been submitted to the Australian & New Zealand 
Journal of Psychiatry.   



Ph.D. Thesis – A. Slyepchenko; McMaster University – Neuroscience.  

 98 

Abstract  

Objective:  

The perinatal period is marked by numerous disturbances in sleep and biological rhythms. 

These disturbances may serve as good targets for prevention and intervention strategies 

aiming to reduce postpartum depression (PPD). This study aimed to use sleep and 

biological rhythms in conjunction with demographic and clinical factors to predict 

symptoms of PPD in a longitudinal cohort of women as they transition from pregnancy to 

the postpartum period. 

 

Methods:  

One hundred women in the 3rd trimester of pregnancy were enrolled and 79 completed the 

study. At baseline, demographic and clinical variables were collected through validated 

clinical questionnaires. Objective measures of sleep and biological rhythms were 

collected using clinical actigraphy and urinary 6-sulfatoxymelatonin. These variables 

were used to predict depressive symptom severity at 6-12 weeks postpartum through 

linear regressions and machine learning (ML) analyses. Then, we performed a second set 

of ML analyses on an externally collected data set (n=33) to further confirm/validate the 

accuracy of the predictive algorithm. 

 

Results:  

Light exposure, nighttime activity, and number of awakenings, in conjunction with 

clinical and demographic variables, accounted for 50% of variance in the severity of 
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postpartum depressive symptoms (F10,68 =8.70, p<0.001). ML analyses confirmed that 

subjective biological rhythms, objective sleep light exposure, 6-sulfatoxymelatonin and 

clinical variables in pregnancy add to the prediction of postpartum depression severity. 

  

Conclusions:  

Subjective and objective sleep, light and rhythm markers collected during pregnancy can 

be used in conjunction with demographic and clinical variables to predict postpartum 

depressive symptom severity. 

 

Keywords: postpartum depression, actigraphy, sleep, biological rhythms, mood 

disorders. 
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3.1 Introduction 

Disruptions in sleep and biological rhythms are hallmarks of major depressive and 

bipolar disorders, which occur both before the onset of mood episodes (Jackson et al., 

2003; Van Meter et al., 2016), and as part of their clinical presentation (Harvey, 2008; 

Germain and Kupfer, 2008). The perinatal period is marked by frequent disturbances in 

sleep and biological rhythms (Gallaher et al., 2018). Though the importance of these 

disturbances is often overlooked (Romero and Badr, 2014), there may be consequences to 

the mother including negative impact on health and quality of life (Cai et al., 2017; Da 

Costa et al., 2010), and disrupted sleep in infants (Field et al., 2007). Importantly, 

worsening of sleep and biological rhythms from pregnancy to postpartum have been 

linked with worsening in depressive symptoms during this period (Krawczak et al., 2016). 

Postpartum depression (PPD) is a debilitating disorder, which occurs in between 7-13% 

of women (Gavin et al., 2005). A better understanding of the specific risk factors for 

postpartum depressive worsening is crucial to inform effective preventive strategies for 

PPD. Although sleep and biological rhythm disturbances may serve as good targets for 

prevention and intervention strategies aiming to reduce PPD, previous investigations in 

this area have been limited by small sample size, poor clinical characterization, cross-

sectional design, or use of only subjective or objective assessments of sleep and 

biological rhythms (Gallaher et al., 2018). 

This study aims to characterize subjective and objective sleep and biological 

rhythms during pregnancy, and to use these variables along with well-established 

demographic and clinical factors to predict severity of postpartum depressive symptoms 
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in a cohort of women at high and low risk of PPD. We took advantage of objective 

ambulatory measures such as actigraphy, which permits the monitoring of sleep and 

biological rhythms in a naturalistic setting. We used both linear regression and machine 

learning models to predict depressive symptoms during the postpartum period and to test 

these models on an independently collected data set containing actigraphy and clinical 

variables. Unlike traditional statistical approaches, machine learning provides the ability 

to detect multivariate, complex patterns represented by multiple variables collected 

through high-throughput technologies such as actigraphy. 

 

3.2 Method 

3.2.1 Participants 

From November 2015 to May 2018, 100 women with and without a history of 

mood disorders were enrolled in the study. Study participants were recruited from the 

Women’s Health Concerns Clinic at St Joseph’s Healthcare Hamilton, and from the 

community. Written informed consent to participate in the study was obtained from all 

subjects. All procedures contributing to this work comply with the ethical standards of the 

relevant national and institutional committees on human experimentation and with the 

Helsinki Declaration of 1975, as revised in 2008. All procedures involving human 

subjects were approved by the Hamilton Integrated Research Ethics Board (Project 

#0602). Participants were enrolled in the study if they: (1) were ³ 16 years of age; (2) had 

no history of head trauma with loss of consciousness ³5 minutes; (3) did not meet criteria 

for a current major depressive or hypo/manic episode; (4) were ³ 27 weeks pregnant at 
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enrollment. Upon enrollment, mood state and diagnosis were established in all 

participants using the Mini International Neuropsychiatric Interview English Version 

6.0.0  (Sheehan et al., 1998) according to Diagnostic and Statistical Manual-IV-TR 

criteria.  

 

3.2.2 Clinical Assessments 

Depressive symptom severity was assessed using the Edinburgh Postnatal 

Depression Scale (EPDS), a 10-item self-report instrument validated for use in pregnancy 

and the postpartum period (Cox et al., 1987; Murray and Cox, 1990), and the 10-item 

Montgomery-Asberg Depression Rating Scale (MADRS) (Montgomery and Asberg, 

1979). A cut-off score of >12 on the EPDS is accepted as a significant risk of perinatal 

depression (Cox et al., 1987). Severity of manic symptoms were assessed using the 11-

item Young Mania Rating Scale (YMRS) (Young et al., 1978). Anxiety symptoms were 

measured using the 7-item self-reported Generalized Anxiety Disorder – 7 (GAD-7) scale 

(Spitzer et al., 2006). Subjective disturbance in biological rhythms was measured using 

the 21-item Biological Rhythms Interview for Assessment in Neuropsychiatry (BRIAN), 

a self-report questionnaire which can be subdivided into 5 domains: sleep, general 

activity, social, eating pattern and chronotype (Giglio et al., 2009). Seasonality was 

established using the self-administered Seasonal Pattern Assessment Questionnaire 

(SPAQ) (Raheja et al., 1996). The SPAQ provides a continuous global seasonality score. 

Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) (Buysse et 

al., 1989). Daytime sleepiness was assessed using the 8-item Epworth Sleepiness Scale 
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(ESS) (Johns, 1991). A prenatal version of the Postpartum Depression Predictors 

Inventory-Revised (PDPI-R) was administered to screen for psychosocial risk factors of 

PPD (Beck, 2003; Beck, 2002). The big five personality traits (Neuroticism, Openness to 

Experience, Agreeableness, Conscientiousness, and Extraversion) were assessed using the 

44-item Big Five Inventory (BFI) (John and Srivastava, 1999). Finally, emotion 

regulation was assessed using the 36-item Difficulties in Emotion Regulation Scale 

(DERS) (Gratz and Roemer, 2004). 

 

3.2.3 Study Design 

Participation in the study included visits to St Joseph’s Healthcare Hamilton 

during the 3rd trimester of pregnancy, and 6-12 weeks postpartum. During the pregnancy 

visit, participants were interviewed using the MINI, MADRS, and YMRS and completed 

a series of questionnaires (PDPI-R, EPDS, PSQI, GAD-7, ESS, BRIAN, BFI, DERS, 

SPAQ). Participants were fitted with a configured actigraph (Actiwatch 2; Philips 

Respironics Inc, Biolynx, Montreal, QC, Canada), to be worn for 2 weeks. A sleep log 

was given to participants to record actigraph removal periods, morning wake-up times, 

naps, and bed times. Participants were given a package containing a urine sample 

container, and were instructed to collect the first morning urine sample on the last day of 

actigraphy data collection. Samples were returned to the lab for processing on the 

morning of urine sample collection. At 6-12 weeks postpartum, participants came in for a 

brief follow-up visit, where the EPDS was completed. The period of 6-12 weeks was 

selected based on meta-regression results from a previous systematic review showing 
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higher incidence of postpartum depression at 2 and 3 months compared to 4-12 months 

(Gavin et al., 2005). 

 

3.2.4 Urinary 6-Sulfatoxymelatonin 

First morning urine samples were used to measure levels of the major urinary 

metabolite of melatonin, 6-sulfatoxymelatonin (6-SM). On the morning of collection, 

participants were instructed to collect and refrigerate the sample until the sample was 

picked up or dropped off later that morning. Analysis of 6-SM levels was performed 

using enzyme-linked immunosorbent assay for 6-SM (Buhlmann Diagnostics 

Corporation, Amherst, NH, USA), with 0.14ng/mL assay sensitivity, intra-assay 

coefficient of variation of 7.1% and inter-assay coefficient of variation of 11.9%. 

Urine creatinine levels were measured by the Hamilton Regional Laboratory 

Medicine Program at St Joseph’s Healthcare Hamilton (license no. 4037) using the Jaffe 

method (kinetic alkaline picrate; Abbott Diagnostics, Santa Clara, CA, USA). The final 6-

SM concentration was calculated as a ratio of 6-SM (ng) to creatinine (mg), to account for 

urine volume (Chang et al., 2016; Nowak et al., 1987; Sturgeon et al., 2014).  

 

3.2.5 Actigraphy 

Actigraphy data were extracted from Actiwatch 2 monitors using Philips Actiware 

software (v 6.0). Details regarding actigraphy data pre-processing and variable extraction 

are available in supplementary material and elsewhere  (Slyepchenko et al., 2019). In 

brief, data were obtained in one-minute epochs continuously for 15 days. Variables 
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concerning sleep and illuminance were extracted from Actiware: total sleep time (TST, 

hours); sleep onset latency; sleep efficiency (SE); wake after sleep onset (WASO); 

number of awakenings; mean mid sleep time was calculated as the midpoint between 

sleep onset and offset. Rest, active, sleep and daily illuminance variables were extracted: 

light exposure, average light, maximum light, time above light threshold (TAT; 1000 

lux), percent invalid light. Cosinor analysis was performed using the cosinor R package 

(Sachs, 2015) yielding: (1) MESOR; (2) amplitude; (3) acrophase; (4) circadian quotient. 

Non-parametric circadian activity rhythm analysis, conducted using the nparACT (v 0.8) 

package, obtained: (1) intradaily variability; (2) Interdaily stability; (3) L5 - 5 consecutive 

lowest-activity hours; (4) start of L5; (5) ten consecutive hours with highest activity 

(M10), and (6) start of M10; (7) relative amplitude of the rhythm. Nighttime activity 

mean and standard deviation (SD) were calculated. Raw data were used to evaluate TAT 

and mean timing above light threshold (MLiT) across the whole day, using different light 

thresholds: 10, 100, 500, 1000 lux. Transition probabilities were calculated using 

methods described by Ortiz et al (Ortiz et al., 2016), and in previous publications from 

our group (Allega et al., 2018; Slyepchenko et al., 2019), using the Python hmmlearn 

package (v 0.2.0). This yielded daytime and nighttime mean activity counts in each state, 

and probability of transitioning from rest to active (pRA) and active to rest (pAR) states.  
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3.2.6 Statistical Analysis 

 Statistical analyses were performed using R (Version 3.6.1) and Python (Version 

2.7.6). Actigraphy data for 7 participants were not available, and 6-SM for 5 participants 

was not available. 

 

3.2.6.1 Linear Regression 

 Multiple linear regression analysis was performed to model postpartum EPDS 

scores using variables from the pregnancy visit. Variables were selected using sequential 

replacement using the leaps package in R (v. 3.0). We tested whether assumptions were 

met for linear regression analysis, including independence of variance, normality, 

linearity, multicollinearity and homosceidasticity. Variables were transformed if they did 

not meet regression assumptions. 

 

3.2.6.2 Machine Learning 

Six machine learning (ML) methods were used to build predictive models using 

pregnancy variables to predict postpartum EPDS scores with the caret R package: 

principal component regression (PCR), partial least squares regression (PLS), elastic net 

regression, random forest (RF), bagged classification and regression trees (Bagged 

CART), and extreme gradient boosting (XGBoost) (Chen and Guestrin, 2016). PCR uses 

principal components of explanatory variables as variables in a linear regression model. 

PLS is a method of linear regression which extracts components that account for the 

largest possible correlation between predictive variables in the model and the outcome 
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variable. Elastic net regularization uses L1 and L2 regularization penalties to produce a 

regression model. Bagged CART is a tree-based ensemble method, which creates 

numerous regression trees, each with their own bootstrap sample of the training set, 

combining them to prevent overfitting of the ensemble in a process called bootstrap 

aggregation. Similarly, RF is another tree-based ensemble method which is used to reduce 

the variance of individual regression trees, by inducing numerous regression trees. RF 

uses a bootstrap sample of instances and a subset of variables to generate each tree. The 

final output is the mean regression of the trees. XGBoost is a highly optimized tree-based 

boosting ensemble method which uses a gradient descent algorithm to minimize error in 

models, regularization, and the weighted Quantile Sketch algorithm, among other 

methods to optimize model building (Chen and Guestrin, 2016). 

The minimum Redundancy Maximum Relevance (mRMR) method was used to 

select model features. The mRMR feature selection method selects features with 

maximum relevance with respect to the outcome variable, while minimizing redundancy 

within the selected feature set of the model (Peng et al., 2005). Data were scaled and 

centered, and 5-nearest-neighbor imputation (Fix and Hodges Jr, 1951) was performed on 

missing data within completed pregnancy visits.  

First, we split the data from the present project into a 75% training and 25% test 

set. Our second approach used the entire present data set as the training set, and an 

external, independently collected data set (Krawczak et al., 2016) as the test set. To select 

the optimal models, 10-fold cross-validation was performed, where hyperparameters were 

chosen in the context of mRMR-selected features. 



Ph.D. Thesis – A. Slyepchenko; McMaster University – Neuroscience.  

 108 

The following metrics were used to evaluate the performance of the ML models: 

R2, Spearman’s Rho, Root Mean Squared Error (RMSE), normalized RMSE (NRMSE), 

Mean Absolute Error (MAE).  

 

3.2.6.3 External Test Set 

To test the performance of our machine learning approaches, we used a data set 

(thoroughly described in (Krawczak et al., 2016)) which was previously independently 

collected in the Frey lab using a majority of the measures that were used to collect the 

current data set. In brief, 33 study participants meeting the same criteria as outlined above 

participated in 2 study visits during the 3rd trimester of pregnancy and at 6-12 weeks 

postpartum. Actigraphy (21 days), clinical interviews (MINI, MADRS, YMRS) and 

questionnaires (PDPI-R, EPDS, PSQI, ESS, BRIAN) were collected in the same time 

points. Notably, participants did not complete urine sample collection.  

 

3.3 Results 

3.3.1 Demographics and Clinical Characteristics 

Of 100 women who completed the pregnancy visit, 79 women returned for a 

follow-up at 6-12 weeks postpartum (see Table 1 for demographic and clinical 

characteristics of the sample). Of these women, 54.4% had a history of MDD or BD, and 

48.1% met criteria for a current or lifetime anxiety disorder. Of the women enrolled in the 

study, 48.1% had a family member with a diagnosed psychiatric disorder. Women in the 

sample were on average 31.19 years old, with a Body Mass Index of 25.01. Participants 
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were enrolled at 31.85 weeks gestation, and had an average 17.11 years of education. A 

majority of the women were not taking psychotropic medication (84.8%), were taking 

prenatal vitamins (88.6%), and were not taking iron supplements (60.8%). Most women 

were partnered or married (94.9%), had a household income >$50,000 (81.0%), and had 

earned a University degree (60.8%). 

 

3.3.2 Modeling Postpartum EPDS from Pregnancy Sleep, Biological Rhythms and 

Clinical Data 

In a multiple linear regression analysis which used data from the pregnancy visit 

(See Table 2), PPD symptoms according to the EPDS were independently predicted by 

participants’ age (Std. b=0.23, t=2.56,p=0.013); neuroticism (Std. b=0.44, 

t=4.19,p<0.001); number of awakenings (Std. b=-0.40, t=-2.75,p=0.008); timing of 

exposure to light levels over 100 lux (Std. b=0.49, t=3.52,p<0.001) and 500 lux (Std. b=-

0.29, t=2.07, p=0.043); standard deviation of nighttime activity (Std. b=-0.24, t=-

2.61,p=0.011); but not taking iron supplements (Std. b=0.31, t=1.83); PDPI-R total score 

(Std. b=0.12, t=1.16); BRIAN (Std. b=0.05, t=0.46); or pRA night (Std. b=0.25, t=1.82). 

This model explained 50% of the variance in EPDS scores (F10,68 =8.70, Adj. R2=0.50, 

p<0.001).  

 

3.3.3 Machine Learning Analyses  

Two sets of machine learning (ML) analyses were performed: the first based only 

on the newly collected sample (n=79), which had lengthier clinical characterization, and 
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offered additional variables such as anxiety symptom severity, personality trait and 

emotion regulation assessments, and melatonin metabolite sampling. The second analysis 

was performed using fewer predictor variables, using an external data set that was 

independently collected by our lab (n=33). 

Prior to variable selection, 72 possible predictor variables were extracted from the 

available data set. We used mRMR to identify 13 most predictive features, according to 

training model performance. Results from the 6 machine learning models (Table 3) 

showed that the model with the lowest test NRMSE was bagged CART (0.61), followed 

by PLS (0.64), RF (0.67), XGBoost (0.78), elastic net (0.81), and PCR (0.87). For the 

best-performing algorithm (bagged CART), the variables were ranked according to their 

feature importance (Figure 1c): BRIAN, TST, Neuroticism, MLiT100, M10 start time, 

Percent Invalid Light Daily, GAD7, TAT1000, taking Iron supplements, 6SM levels, age, 

ESS, BRIAN Chronotype. 

For analyses using the independent test set, a total of 51 predictor variables were 

available across both studies prior to variable selection. MRMR was used to identify the 9 

most predictive features, according to training model performance. Results from the ML 

models show that the RF model had the lowest test NRMSE (0.84), followed by bagged 

CART (0.89), PLS (0.91), elastic net (096), PCR (0.98), and XGBoost (1.08). For the 

best-performing algorithm (bagged CART), the variables were ranked according to their 

feature importance (Figure 1f): BRIAN, comorbid anxiety, PDPI-R total score, MLiT100, 

TST, TAT1000, age, parity, nighttime activity SD.  
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3.4 Discussion  

The present study found that objective sleep and biological rhythm markers 

collected during the 3rd trimester of pregnancy can be used in conjunction with 

demographic and clinical variables to predict 50% of the variance of depressive symptom 

severity at 6-12 weeks postpartum. Additionally, this study demonstrated the feasibility of 

using pregnancy assessments to identify the most useful predictors of postpartum 

depressive symptoms, using traditional linear regression and ML techniques. Using ML 

techniques, we were able to identify a set of variables which are together predictive of 

PPD symptoms, finding some novel predictors of PPD, and some which confirmed 

previous findings.  

  

3.4.1 Subjective Biological Rhythms, Sleep and Sleepiness 

Subjective biological rhythm disruption during pregnancy according to the 

BRIAN had the highest variable importance in predicting postpartum EPDS across both 

sets of ML models. However, BRIAN was not a significant independent predictor of 

EPDS according to the linear regression model. In prior analyses of the external test set in 

this study, changes in BRIAN from pregnancy to postpartum were predictive of changes 

in EPDS from pregnancy to postpartum (Krawczak et al., 2016). 

Daytime sleepiness appeared in one of the ML models. A prior study found that 

high daytime sleepiness during the 3rd trimester of pregnancy was linked to symptoms of 

PPD, though this study did not investigate other sleep or circadian parameters (Sarberg et 

al., 2016).  
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Chronotype appeared with low variable importance in one of the ML models. 

Sharkey and colleagues have previously found that 3rd trimester eveningness preference 

was linked to higher depressive symptoms during the 2nd and 6th weeks postpartum 

(Sharkey et al., 2013). 

Neither method of mRMR feature selection or sequential replacement model 

selection found subjective sleep quality according to the PSQI to be a significant 

predictor of postpartum EPDS. This is consistent with prior findings, which have shown 

that PSQI during the 3rd trimester of pregnancy was not a predictor of symptoms of 

depression at 3 months postpartum (McEvoy et al., 2019).  

 

3.4.2 Light exposure 

An interesting finding of our study is that several variables related to light 

exposure during pregnancy were linked to postpartum depressive severity. A measure 

which describes the timing of light exposure over 100 lux throughout the day (MLiT100) 

was a significant independent predictor of depressive severity in the linear regression 

model and had high variable importance in the ML models. In the linear regression 

model, earlier timing of light exposure over 500 lux (MLiT500) was also a significant 

predictor of higher EPDS, while in the ML models, time spent above the 1000 lux 

threshold (TAT1000) appeared in both ML models. Finally, daily percentage of invalid 

white light appeared in one of the ML models. To our knowledge, this is the first 

investigation to look at the effect of light exposure during pregnancy on severity of 

postpartum depressive symptoms. This finding may indicate not only a predictor for 
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future depressive severity, but may also indicate the opportunity for a preventive lifestyle 

modifications. Our study provides a rationale for future investigation on the use of light-

based therapies, like bright light therapy, in pregnancy in order to prevent postpartum 

depressive worsening. Previous small studies that investigated bright light therapy 

(Swanson et al., 2018) and blue-light blocking glasses (Bennett et al., 2009) as treatment 

for PPD have found preliminary evidence for post-treatment improvements in depressive 

symptoms in response to both treatments. 

 

3.4.3 Objective Sleep Variables 

Several objective sleep parameters measured by actigraphy in pregnancy were 

predictive of severity of postpartum EPDS scores. Lower number of awakenings during 

pregnancy was a significant independent predictor of higher postpartum EPDS in the 

linear regression model. TST appeared in both ML models, being the second-to-highest 

variable importance in one of the models. These findings are, however, in contrast with a 

smaller longitudinal study (n=34), which found that neither objective sleep variables 

(TST, SE, WASO, sleep fragmentation, sleep disturbance or number of daytime naps) nor 

subjective sleep (according to the PSQI) obtained during the 3rd trimester were predictive 

of mood in the first 2 weeks postpartum (Coo Calcagni et al., 2012). It is possible that 

sleep variables are only effective predictors of postpartum EPDS in conjunction with 

other variables in our models. 
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3.4.4 Objective Biological Rhythms   

Overnight melatonin secretion, obtained via morning 6-SM levels, was a predictor 

of EPDS symptoms in an ML model. A previous investigation by Sharkey and colleagues 

has found that later dim light melatonin onset phase and longer phase angle during the 3rd 

trimester of pregnancy were associated with higher depressive symptoms during the 2nd 

and 6th week postpartum in a small sample (n=12) (Sharkey et al., 2013). Start time of 

M10 was also a predictor of EPDS in one of the ML models, while lower variability of 

nighttime activity was a significant predictor of higher EPDS symptoms, according to the 

linear regression model. Variability of nighttime activity also appeared in one of the ML 

models but had relatively lower importance in the model. This emphasizes the importance 

of including variability measures while modeling circadian activity rhythms (Krane‐

Gartiser et al., 2019).  

 

3.4.5 Clinical and Demographic Variables  

Previously established clinical and demographic risk factors for PPD include 

having a psychiatric disorder diagnosis, particularly a previous depressive episode, and 

psychosocial risk factors such as marital discord, poor social support, presence of life 

stressors, gestational diabetes, depression during pregnancy, and higher neuroticism (Lee 

et al., 2000; O'hara and Swain, 1996; Silverman et al., 2017). Unsurprisingly, severity of 

anxiety and having comorbid diagnosis of anxiety were predictors of EPDS severity in 

the ML models. Anxiety during pregnancy is a well-known strong risk factor for PPD 

(Robertson et al., 2004). Neuroticism was a predictor of depressive symptom severity in 
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both the linear regression model and ML models. This is consistent with prior studies 

reporting that neuroticism is associated with higher risk for PPD and severity of 

postpartum depressive symptoms (Martin-Santos et al., 2012; Lee et al., 2000). Total 

score on the PDPI-R had high importance in one of the ML approaches. The PDPI-R 

assesses well-established risk factors for PPD, including social support, marital 

satisfaction, having a history of depression, self-esteem, socioeconomic status, marital 

status, and whether the pregnancy was unplanned or unwanted (Beck, 2002). However, in 

our study, linear regression analyses did not find PDPI-R to be a significant predictor of 

EPDS scores. In a prior analysis of the external test set used in this study, PDPI-R was 

also not found to be an independent predictor of EPDS scores in a linear regression model 

(Krawczak et al., 2016). We believe that this indicates that the risk factors assessed by 

PDPI-R may have been accounted for by the other variables.  

Older age was a significant predictor of higher EPDS scores in the linear 

regression model and in both ML models. This is consistent with a prior population-based 

study showing that older age is a risk factor for PPD for women with a history of 

depression, while younger age is a risk factor for PPD in those without a history of 

depression (Silverman et al., 2017). Taking iron supplements appeared as a predictor in 

one of the ML analyses but was not an independent predictor of EPDS scores in the linear 

model. Prior investigations have had largely negative findings regarding the impact of 

iron supplementation during pregnancy on postpartum mood, though postpartum iron 

supplementation has been found effective in several studies (Reviewed in: (Wassef et al., 

2019)). Parity was a variable included in one of the ML models. Prior studies have 
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indicated that there may be an influence of parity on sleep parameters during the perinatal 

period (Christian et al., 2019), though in a past meta-analysis, parity was not a significant 

risk for PPD development (O'hara and Swain, 1996). 

 

3.4.6 Data Analytic Approach 

Differences between results from the ML and regression approaches in this study 

highlight several limitations of using traditional statistical methods and ML in complex 

clinical samples. In this study, we used two sets of ML analyses, one of which used a 75-

25% split for training and validation vs testing. The second used an external data set for 

testing the algorithm. In spite of the larger sample size in the analysis that used the 

external data set for testing (n=112, compared to n=79), model accuracy decreased in this 

set of analyses. This can be attributed to several factors: first, the external data set had a 

less thorough clinical characterization of the study participants and did not evaluate 

melatonin metabolite levels. Actigraphy assessments in this study lasted for 3 weeks, 

compared to 2 weeks in the original study dataset. This is reflective of real-world study 

and clinical conditions, where separate investigations or individual clinicians may use 

different clinical assessments and biological sampling methods, leading to discrepancies 

in variables that can be entered into the model. In the case of differences in available 

variables, it is not possible to adjust the original ML models. On the other hand, a benefit 

of ML models in this context is that they can be used to detect more subtle, complex, non-

linear relationships between variables, represented across multiple variables obtained 

from actigraphy and clinical questionnaires. Linear regression models cannot account for 
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these, even if linear interactions are specified between variables. While applying results 

from a linear regression model, on the other hand, variables can be removed from the 

model if they are unavailable for the other data set. We argue, therefore, that using both 

of these types of analyses can be used as a practice to provide complementary information 

when modeling complex phenomena. Results from the traditional statistical modelling 

produced by this study can be used for the purpose of inference, while the ML methods 

may be used to attempt to improve prediction.  

 

3.4.7 Strengths & Limitations 

One limitation of this study is its modest sample size, particularly for ML 

analyses. However, our sample is the largest prospective study looking at objective sleep 

and biological rhythms in the perinatal period to date. Few of our study participants 

developed full-blown PPD, as they were being followed by clinicians throughout their 

pregnancy and postpartum period. However, the proportion of participants who did 

develop PPD is consistent with population-wide studies which have found 7-13% of 

women to have PPD (Gavin et al., 2005). In a prospective design, such as this, where 

women were clinically well upon enrolment, several hundreds of participants would need 

to be followed to collect a sample large enough to test prediction of actual diagnosis of 

PPD. Finally, we did not assess whether participants were currently following sleep 

hygiene guidelines or if they received psychotherapy during the study. These 

interventions may have influenced sleep, rhythms and mood within our sample.  
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Strengths of this study include a thorough clinical characterization of the study 

sample. We used well-validated clinical diagnostic interviews and self-reported 

questionnaires to assess mood and clinical history. In addition, multiple objective 

(actigraphy, melatonin collection) and subjective measures (BRIAN, PSQI, SPAQ, ESS) 

of sleep and rhythms were used within our sample. Another strength of our study is its 

prospective design, which allowed us to track the mood of women from the 3rd trimester 

of pregnancy to 6-12 weeks postpartum. Finally, we used a separately collected data set in 

order to evaluate the performance of our ML models.  
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Table 1: Demographics and Clinical Characteristics 
Newly Collected Dataset External Data Set 
Variable Mean SD Median P25 P75 Mean SD Median P25 P75 
Age 31.19 3.71 31 28 33.5 31.15 3.85 32 29 33 
Body Mass Index 25.01 5.76 23.56 21.37 26.26 25.98 8.33 20.86 23.7 25.8 
Years of Education 17.11 2.61 17 16 18      
Weeks Gestation 31.85 3.24 32 29 35 30.97 2.71 31 28 33 
PDPI-R Total Score  4.76 4.75 3 2 6 3.39 4.49 2 1 5 
DERS 90.86 23.48 78 60 97      
GSS 8.42 4.45 9 5 11.5      
Neuroticism 2.81 0.86 2.75 2.25 3.44      
Openness 3.221 0.5 3.2 2.9 3.6      
Conscientiousness 4 0.61 4.11 3.56 4.44      
Agreeableness 4.01 0.52 4 3.67 4.44      
Extraversion  3.38 0.82 3.38 2.62 3.88      
MADRS$  7.99 6.64 7 3 11 3.76 4.05 3 1 5 
YMRS$ 2 1 3 2.18 2.22 0.82 1.63 0 0 1 
GAD7 4.38 4.86 3 1 6      
ESS 8.24 3.88 8 6 11      
PSQI 9.82 3.9 9 8 11 5.64 3.60 4 3 7 
BRIAN 39.15 9.98 39 31.5 46.5 26.45 6.84 25 21 31 
BRIAN Chronotype 6.11 1.83 6 5 7 5.21 1.08 5 4 6 
EPDS – Pregnancy$ 6.2 4.89 5 2 9.5 2.88 3.39 2 0 3 
EPDS – 6-12 Weeks 
Postpartum 

5.86 4.62 5 2.5 8.5 3.94 4.03 3 1 5 

 N (%)     N (%)     
Marital Status           

Single 4 (5.1%)     1 (3.0%)     
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Partnered 75 
(94.9%) 

    32 
(97.0%) 

    

Household Income           
> 50,000 64 

(81.0%) 
    25 

(75.8%) 
    

< 50,000 15 
(19.0%) 

    8 (24.2%)      

Highest Level of Education           
Less than High School 1 (1.3%)     0 (0.0%)     
High School Diploma or 
Trade Certificate 

2 (2.5%)     6 (18.2%)     

College certificate/ 
diploma 

28 
(35.4%) 

    7 (21.2%)     

University – bachelor’s 
degree and higher 

48 
(60.8%) 

    20 
(60.6%) 

    

Mood Disorder History           
No History of Mood 
Disorders 

36 
(45.6%) 

    18 
(54.5%) 

    

History of Major 
Depressive or Bipolar 
Disorder 

43 
(54.4%) 

    15 
(45.5%) 

    

Current or Past Anxiety 
Disorder 

          

Yes 38 
(48.1%) 

    7 (21.2%)     

No 41 
(51.9%) 

    26 
(78.8%) 

    

Shift Worker           
Yes 7 (8.9%)          
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No 72 
(91.1%) 

         

Prenatal Vitamins           
No 9 (11.4%)          
Yes 70 

(88.6%) 
         

Iron           
Yes 31 

(39.2%) 
         

No 48 
(60.8%) 

         

Psychotropic Medication           
No 67 

(84.8%) 
    31 

(93.9%) 
    

Yes 12 
(15.2%) 

    2 (6.1%)     

Current Smoker$           
Yes 2 (2.5%)          
No 77 

(97.5%) 
         

Family Mood History           
Yes 38 

(48.1%) 
    14 

(53.8%) 
    

No 41 
(51.9%) 

    12 
(46.2%) 

    

Sleep Apnea           
Yes 1 (1.3%)          
No (98.7%)          

Parity           
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Nulliparous 32 
(40.5%) 

    10 
(38.5%) 

    

Multiparous 47 
(59.5%) 

    16 
(61.5%) 

    

Abbreviations: BRIAN  - Biological Rhythms Interview of Assessment in Neuropsychiatry; DERS – Difficulties in Emotion 
Regulation; ESS – Epworth Sleepiness Scale; GAD7 - Generalized Anxiety Disorder -7;GSS – Global Seasonality Scale; 
MADRS – Montgomery Asberg Depression Rating Scale;  PDPI-R -  Postpartum Depression Predictors Inventory – 
Revised; PSQI – Pittsburgh Sleep Quality Index; YMRS – Young Mania Rating Scale 
$not included in model selection 
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Table 2: Regression Model of Postpartum 3 log EPDS Using Data Collected During Pregnancy  
 Beta 95%CI Std. Beta T p 
Intercept -5.51 (-8.49, -2.53) -0.12 -3.69 <0.001 
Age 0.066 (0.01, 0.12) 0.23 2.56 0.013 
PDPI-R Total 
Score 

0.027 (-0.019, 0.073) 0.12 1.16 n.s. 

Neuroticism 0.54 (0.28, 0.79) 0.44 4.19 <0.001 
Iron 0.33 (-0.03, 0.69) 0.31 1.83 0.07 
BRIAN 0.0058 (-0.020, 0.031) 0.05 0.46 n.s. 
Awakenings -0.048 (-0.082, -

0.013) 
-0.40 -2.75 0.008 

MLiT100 0.51 (0.22, 0.80) 0.49 3.52 <0.001 
MLiT500 -0.25 (-0.49, -

0.0086) 
-0.29 -2.07 0.043 

pRA night 10.3 (-1.02, 21.56) 0.25 1.82 0.074 
Nighttime 
Activity SD 

-6.16e-05 (-0.00011, -
1.45e-05) 

-0.24 -2.61 0.011 

R2 0.56  Adj. R2 0.50  
F(10,68) 8.70  P <0.001  
Abbreviations: BRIAN  - Biological Rhythms Interview of Assessment in Neuropsychiatry; Edinburgh Postnatal 
Depression Scale; MLiT - Mean timing above light threshold (100 or 500 lux); PDPI-R -  Postpartum Depression 
Predictors Inventory – Revised; pRA - Probability of transitioning from rest to active state. 
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c)  f)  
Figure 1: Using Pregnancy Variables to Predict 6-12 Week Postpartum log EPDS Scores 
 
a) Training Normalized Mean Squared Error  for all models: 75% – 25% training vs test split; 
b) Test predicted vs observed log EPDS for Bagged CART: 75% – 25% training vs test split; 
c) Variable importance plot for bagged CART: 75% – 25% training vs test split; 
d) Training Normalized Mean Squared Error  for all models: tested on external data set; 
e) Test predicted vs observed log EPDS for RF: tested on external data set; 
f) Variable importance plot for RF: tested on external data set. 
 
Abbreviations: BRIAN – Biological Rhythms Interview of Assessment in Neuropsychiatry; CART – Classification and 
Regression Trees; EPDS – Edinburgh Postnatal Depression Scale; ESS – Epworth Sleepiness Scale; GAD7 – Generalized 
Anxiety Disorder -7; MLiT100 – Mean timing of light exposure greater than 100 lux; M10 - ten consecutive hours with 
highest activity; NRMSE – Normalized Mean Square Root Error; PDPI-R – Postpartum Depression Predictors Inventory – 
Revised; RF – Random Forest; SD – Standard Deviation; SIXSM – 6-sulfatoxy melatonin; TAT1000 – Time Above 
Threshold (1000 lux); TST – Total Sleep Time. 
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Table 3: Test Results of Six Machine Learning Models used to Model Postpartum log EPDS from Pregnancy Variables 

a) Using Pregnancy Variables to Predict 6-12 Week Postpartum 
log EPDS Scores: 75% – 25% training vs test split 

b) Using Pregnancy Variables to Predict 6-12 Week 
Postpartum log EPDS Scores: tested on external 
data set 

Algorit
hm 

Test 
RMS
E 

Test 
MA
E 

Te
st 
R2

 

Test 
Spearma
n’s Rho 

Test 
NRM
SE 

Final Parameters 
Algorit
hm 

Test 
RMS
E 

Test 
MA
E 

Te
st 
R2

 

Test 
Spearma
n’s Rho 

Test 
NRM
SE 

Final Parameters 

PCR 1.26 0.97 0.0

0 

0.11 0.87 Ncomp 11 PCR 1.02 0.85 0.0

5 

0.24 0.98 Ncomp 5 

PLS 0.93 0.73 0.3

0 

0.63 0.64 Ncomp 1 PLS 0.95 0.82 0.1

6 

0.31 0.91 Ncomp 1 

RF 0.96 0.75 0.3

5 

0.43 0.67 Mtry 1 RF 0.87 0.74 0.3

8 

0.57 0.84 Mtry 1 

Bagged 
CART 

0.88 0.67 0.4

8 

0.53 0.61   Bagged 
CART 

0.93 0.80 0.2

3 

0.45 0.89   

Elastic 
Net 

1.17 0.91 0.0

1 

0.25 0.81 Fraction 0.90172

41 
Elastic 
Net 

1.00 0.82 0.0

7 

0.26 0.96 Fraction 0.90172

41 

Lambda 0.1 Lambda 0.1 

Extrem
e 
Gradien
t 
Boostin
g 

1.12 0.93 0.1

0 

0.08 0.78 Nrounds 150 

Extrem
e 
Gradien
t 
Boostin
g 

1.12 0.90 0.2

4 

0.45 1.08 Nrounds 50 

Max depth 1 Max depth 1 

Eta 0.4 Eta 0.3 

Gamma 0 Gamma 0 

Colsample_by

tree 

0.8 Colsample_by

tree 

0.6 

Min_child_we

ight 

1 Min_child_we

ight 

1 

Subsample 1 Subsample 1 

Abbreviations: CART – Classification and Regression Trees; EPDS – Edinburgh Postnatal Depression Scale; MAE – Mean Absolute 

Error;  NRMSE  - Normalized Root Mean Squared Error; PCR – principal components regression; PLS – partial least squares regression; 

RF – Random Forest; RMSE – Root Mean Squared Error 
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3.6 Supplementary Material 

3.6.1 Actigraphy: 

Actigraphy data were extracted from the Actiwatch 2 monitors using the Philips 

Actiware Software (v. 6.0). Data were obtained in one-minute epochs continuously for 15 

days. Default activity thresholds were used to distinguish between active and sleep 

periods. Variables concerning sleep and illuminance were extracted from Actiware, and 

were averaged to produce a single value for each variable: total sleep time (TST, hours); 

sleep onset latency (minutes) – number of minutes spent transitioning from an active 

period to a sleep period; sleep efficiency (SE, %) – TST divided by time in bed; wake 

after sleep onset (WASO, minutes) – time spent in active state from sleep onset to get up 

time; number of awakenings. Mean mid sleep time was calculated as the midpoint 

between sleep onset time and sleep offset time. Rest, active, sleep and daily illuminance 

variables were extracted: light exposure, average light, maximum light, time above light 

threshold (TAT; 1000 lux), percent invalid light. 

During pre-processing, periods during which actigraphs were reported to be 

removed according to the sleep log were removed. Visual inspection was used to remove 

intervals of more than 20 consecutive minutes where no movement was captured. 

Twenty-four hour periods where 4 hours or more of recording were excluded were 

removed from the analysis. 
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3.6.2 Cosinor Analysis 
Cosinor analysis consists of a regressive model which fits time-series data to a 

single cosine wave. For each individual, daily activity rhythm period was assessed by 

extracting a peak between T=23 hours and T=25 hours from the periodogram, to provide 

a more accurate fit for each individual’s endogenous period. The following daily activity 

rhythm parameters were obtained from cosinor analysis using the cosinor R package 

(Sachs, 2015): (1) MESOR – midline of the rhythm; (2) amplitude of the rhythm; (3) 

acrophase – the time of the peak activity; (4) circadian quotient – ratio of amplitude to 

mesor, a normalized measure of activity rhythm strength. 

 

3.6.3 Non-Parametric Circadian Activity Rhythm Analysis 
Non-parametric circadian activity rhythm analysis was conducted using the 

nparACT (v 0.8) package, obtaining the following measures: (1) intradaily variability – 

amount of circadian rhythm fragmentation, calculated as the ratio of the mean square 

difference between successive measurements to the overall data variance, ranging from 0-

2. Higher intradaily variability scores represent a greater extent of rhythm fragmentation. 

(2) Interdaily stability – represents strength of coupling between endogenous daily 

activity rhythms and external zeitgebers, calculated as a normalized ratio of variance of 

the mean rhythm over the variance in study duration, ranging from 0-1. Higher interdaily 

stability indicates higher synchronicity of daily activity rhythms to external cues. (3) L5 

consists of 5 consecutive lowest-activity hours, (4) start of L5, (5) ten consecutive hours 

with highest activity (M10), and (6) start of M10. (7) Relative amplitude of the rhythm is 
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then calculated as the difference between M10 and L5 divided by the total activity during 

M10 combined with L5.  

 Nighttime activity mean and standard deviation (SD) were calculated from 

nighttime activity measured during sleep periods.  

Raw, minute-by-minute illuminance data were used to evaluate TAT across the 

whole day, and mean timing above light threshold (MLiT) – the mean time during which 

TAT occurs. These parameters were calculated using 4 different light thresholds: 10, 100, 

500, 1000 lux. 

 

3.6.4 Transition Probabilities 
 Transition probabilities were calculated using methods described by 

Ortiz(Ortiz, Bradler, Radu, Alda, & Rusak, 2016) and colleagues, and in previous 

publications from our group(Allega et al., 2018; Slyepchenko et al., 2019). In brief, a 

transition series was created between rest and activity states, for nighttime (8 hours with 

lowest mean activity) and daytime periods. The transition series was generated using the 

probability of remaining in either the rest or the active state for each minute-by-minute 

record. Probability of transitioning from the rest state to the active state or vice versa was 

estimated using this transition series (Ortiz et al., 2016).The Hidden Markov Model was 

used to create this model, based on the concept that the observed time series of data is an 

outcome of a hidden state variable, and the hidden state series is dependent on the current 

state. The Python hmmlearn package (v 0.2.0) was used to calculate model parameters, 

with use of the Baum-Welch algorithm. During daytime and nighttime, mean activity 
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counts in each state, and probability of transitioning from rest to active (pRA) and active 

to rest (pAR) states.  
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Supplementary Table S1: Objective Measures of Sleep and Biological Rhythms (3rd Trimester) 
 Newly Collected Data Set External Data Set 
Variable Mean SD Media

n 
P25 P75 Mean SD Median P25 P75 

6-
sulfatoxymelat
onin 

34.92 21.61 31.17 19.92 44.48      

           
 
SLEEP VARIABLES 
 
Variable Mean SD Media

n 
P25 P75 Mean SD Median P25 P75 

TST 7.26 0.94 7.36 7.80 6.88 7.21 1.03 7.24 6.64 7.94 
SE 0.82 0.06 0.83 0.80 0.86 0.84 0.05 0.86 0.81 0.87 
Sleep Onset 
Latency 

13.77 7.79 12.33 8.80 16.83 11.49 6.44 10.38 6.14 14.38 

WASO 63.55 20.91 61.91 47.23 77.36 54.55 20.82 53.37 39.24 70.86 
Awakenings 28.5 9.17 26.22 22.06 33.59 23.37 7.85 22.95 17.67 29.35 
Mean Mid 
Sleep Time 

3.44 1.11 3.37 2.61 3.98 3.34 1.08 3.16 2.75 3.68 

           
 
COSINOR 
 
Variable Mean SD Media

n 
P25 P75 Mean SD Median P25 P75 

Mesor 196.51 48.09 194.98 163.71 228.01 181.21 91.66 183.23 139.81 242.43 
Amplitude 156.78 45.06 150.34 125.73 193.51 177.47 74.64 260.57 127.90 237.79 
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CQ$ 0.80 0.13 0.80 0.73 1.09 -0.85 10.42 0.85 0.74 0.94 
Acrophase 0.74 0.36 0.76 0.56 0.91 0.068 0.84 0.34 -0.66 0.61 
Period 23.51 2.55 23.92 23.68 24 28.16 9.29 24.34 23.82 28.24 
 
NON-PARAMETRIC CIRCADIAN ACTIVITY RHYTHM ANALYSIS 
 
Variable Mean SD Media

n 
P25 P75 Mean SD Median P25 P75 

Interdaily 
Stability 

0.57 0.09 0.59 0.52 0.63 0.53 0.12 0.52 0.44 0.63 

Intradaily 
Variability 

0.76 0.14 0.75 0.67 0.82 0.78 0.19 0.75 0.63 0.89 

Relative 
Amplitude 

0.87 0.07 0.89 0.85 0.91 0.84 0.15 0.89 0.83 0.92 

L5 21.08 12.58 17.95 13.17 25.38 24.91 19.15 19.66 12.62 29.94 
L5 Start Time 5.45 8.82 1.28 0.77 2.18 6.23 9.08 1.48 0.62 4.33 
M10 308.59 77.71 308.18 252.38 356.09 320.47 117.30 305.36 247.36 372.00 
M10 Start 
Time 

9.43 2.07 9.5 8.39 10.82 8.53 2.69 8.12 7.58 10.05 

Nighttime 
Activity Mean 

7784.25 3610.16 8358.3
8 

5881.1
4 

11187.0
6 

8058.26 3754.65 8201.10 5063.3
2 

9642.84 

Nighttime 
Activity SD 

4895.01 4208.77 3370.4
4 

2402.7 5483.34 5236.78 5190.80 3715.60 2612.0
6 

6540.94 

 
LIGHT 
 
Variable Mean SD Media

n 
P25 P75 Mean SD Median P25 P75 

MLiT10 13.98 0.82 14.03 13.52 14.53 14.04 0.62 13.83 13.71 14.30 
MLiT100 13.57 1.04 13.52 12.83 14.35 13.55 0.86 13.77 12.83 14.02 
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MLiT500 13.57 1.28 13.70 12.61 14.52 13.61 0.96 13.75 13.21 14.25 
MLiT1000 13.40 1.47 13.55 12.57 14.39 13.62 1.01 13.92 12.94 14.28 
TAT10 515.86 243.49 499.81 360.90 591.88 475.35 340.49 434.65 295.20 534.05 
TAT100$ 213.13 268.84 162.45 68.89 237.67 155.92 151.72 131.00 66.10 184.85 
TAT500$ 120.43 252.01 66.15 15.22 117.34 70.52 97.10 32.35 11.12 98.05 
TAT1000 102.89 240.64 46.11 7.27 86.70 50.46 76.66 23.50 3.95 64.30 
Average Light 
Exposure - 
Active$ 

1261.19 4937.1 254.78 48.36 651.97 268.19 308.97 172.65 47.75 371.39 

Max Light 
Exposure – 
Active$ 

14368.06 12647.37 9115.5
3 

3289.2
2 

22573.6
6 

12311.5
1 

14278.5
1 

9640.84 2317.8
3 

19719.5
0 

Percent Invalid 
Light - Active$ 

3.36 3 3.30 0.66 4.92 1.37 1.78 0.26 0.02 2.61 

TAT White 
Light – Active$ 

59.93 121.96 22.42 4.75 61.55 302.4 33.59 16.17 3.41 48.89 

Exposure Light  
-Active$ 

791956.6
3 

2886983.
5 

178929
.6 

35864.
52 

475513.
37 

2e05 242354.
1 

107067.
70 

29644.
30 

267749.
90 

Average Light 
Exposure - 
Daily 

1140.12 4782.22 189.61 36.44 479.57 219.46 238.76 133.35 37.93 312.98 

Max Light 
Exposure – 
Daily 

19006.45 14976.51 15707.
42 

4846.9
1 

31376.5
2 

15234.6
3 

14767.6
1 

13631.1
6 

3119.1
6 

26229.2
2 

Percent Invalid 
Light - Daily 

5.18 4.32 4.01 1.74 7.12 3.75 4.23 1.71 0.15 6.65 

TAT White 
Light – Daily 

93.05 222.99 39.40 6.71 79.91 38.96 41.69 21.36 3.57 59.95 

Exposure Light  
-Daily$ 

1431580.
87 

6e+06 262653
.5 

49997.
31 

643972.
77 

247115.
54 

274839.
59 

167170 43480.
88 

326135.
1- 
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Average Light 
Exposure - 
Rest$ 

944.15 5057.5 2.02 0.53 6.98 11.99 52.04 1.39 0.35 2.85 

Max Light 
Exposure – 
Rest$ 

1044.68 5286.69 18.44 7.69 40.41 25.93 54.08 11.13 5.73 28.71 

Percent Invalid 
Light - Rest$ 

2.19 3.87 0 0 3.97 2.30 3.05 0 0 4.07 

TAT White 
Light – Rest$ 

16.15 72.71 0 0 0 0.0012 0.007 0 0 0 

Exposure Light  
-Rest$ 

334472.5
8 

1766258.
83 

288.25 79.83 1081.64 324.03 441.45 158.24 51.31 418.62 

Average Light 
Exposure - 
Sleep$ 

942.60 5055.51 1.57 0.49 6.23 11.69 52.09 0.84 0.26 2.42 

Max Light 
Exposure – 
Sleep$ 

1036.77 5261.65 15.72 6.24 34.4 23.25 53.36 8.54 4.53 26.45 

Percent Invalid 
Light - Sleep 

2.12 4.05 0 0 3.29 2.25 3.14 0 0 4.12 

TAT White 
Light – Sleep$ 

15.49 70 0 0 0 0.0012 0.007 0 0 0 

Exposure Light  
-Sleep$ 

324653.5
3 

1721915.
42 

197.78 197.78 936.64 288.15 443.66 120.11 32.73 411.85 

 
TRANSITION PROBABILITIES 
 
Variable Mean SD Media

n 
P25 P75 Mean SD Median P25 P75 

pRA day 0.065 0.01 0.066 0.058 0.071 0.067 0.012 0.065 0.058 0.076 



Ph.D. Thesis – A. Slyepchenko; McMaster University – Neuroscience.  

 142 

pRA night 0.11 0.027 0.10 0.086 0.12 0.094 0.027 0.095 0.079 0.110 
pAR day 0.045 0.012 0.046 0.039 0.053 0.044 0.014 0.045 0.034 0.052 
pAR night 0.10 0.02 0.099 0.089 0.11 0.099 0.022 0.110 0.086 0.120 
Rest day mean 65.82 37.44 65.32 40.34 86.72 77.33 57.37 76.10 34.80 100.95 
Rest night 
mean 

0.077 0.38 0.0 0 0.04 0.48 2.67 0.00 0.00 0.00 

Activity day 
mean 

425.48 91.93 417.10 368.06 493.42 453.62 170.64 418.93 338.72 589.26 

Activity night 
mean 

53.09 24.18 45.43 37.84 62.73 72.95 72.01 51.89 43.76 70.97 

CQ - Circadian Quotient; L5 -5 consecutive lowest-activity hours; M10 - 10 consecutive hours with highest activity; MLiT - 
Mean timing of light exposure; pAR - probability of transitioning from active to rest state; pRA - probability of transitioning 
from rest to active state;  SD - Standard Deviation; SE - Sleep Efficiency; TAT - Time Above Threshold; TST - Total Sleep 
Time; WASO - Wake After Sleep Onset 
$not included in final model selection 
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Abstract 

Study Objectives:  

There has been an increasing interest in predictors of postpartum anxiety. While 

disturbances in sleep and biological rhythms are common during the perinatal period, 

their relationship with postpartum anxiety are unknown. We used comprehensive 

assessments during pregnancy, including objective and subjective measures of sleep and 

biological rhythms, to predict severity of postpartum anxiety. 

 

Methods:  

During their 3rd trimester of pregnancy, 100 women were enrolled into the study 

and 79 completed the 6-12 weeks postpartum follow-up assessments. In the baseline 

assessment, subjective and objective measures of sleep and biological rhythms were 

assessed using validated questionnaires, ambulatory monitoring through actigraphy, and 

urinary 6-sulphaxoxymelatonin levels. Objective and subjective measures were used to 

predict severity of anxiety symptoms at 6-12 weeks postpartum, by using linear 

regressions and machine learning models. 

 

Results:  

Mean mid sleep time, timing of light exposure, circadian activity rhythm 

fragmentation, and clinical variables explained 49% of variance in postpartum anxiety 

severity F(13,65 =6.67, Adj. R2=0.49, p<0.001). Findings from machine learning models 
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indicated that subjective biological rhythm disruption, total sleep time, light exposure and 

clinical variables, including having a history of panic disorder/ limited symptom attacks 

and taking iron supplements were significant predictors of postpartum anxiety severity. 

 

Conclusions:  

Markers of objective and subjective sleep and rhythms, in conjunction with light 

exposure and clinical variables during pregnancy can be used to predict severity of 

anxiety postpartum. These may serve as useful future targets for prevention and 

management of women at risk of postpartum anxiety. 

 

Keywords: postpartum anxiety, sleep, biological rhythms, perinatal anxiety, actigraphy 

 
Statement of Significance:  
 
Postpartum anxiety is a highly prevalent disorder, which affects mothers and their 

families. We followed women from pregnancy to the postpartum periods and assessed 

which sleep and biological rhythms measures were associated with postpartum anxiety 

worsening. Results from our study show that sleep, timing of light exposure, and 

biological rhythm markers during pregnancy combined with demographic and clinical 

variables enhance the prediction of postpartum anxiety worsening. This suggests that 

strategies aimed to address sleep and biological rhythm disruptions during pregnancy may 

prevent postpartum anxiety. 
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4.1 Introduction 

Anxiety disorders are highly prevalent during the perinatal period, occurring in as 

many as 5-13% of women during the postpartum period, and in as many as 15% of 

women during pregnancy1,2. Postpartum anxiety (PPA) has been linked to poor outcomes 

for mothers and their children, including worsened motor development and excessive 

crying in infants. Mothers with PPA may also have impairment in bonding with their 

infants, worsened self-confidence, and stress response, though few studies have 

investigated longitudinal outcomes linked to parent-child interactions linked to maternal 

anxiety. Nevertheless, these impairments may pose risk for the child’s development1. In 

addition, a population-based investigation in the United States showed that over one third 

of women with PPA reported symptoms of postpartum depression3. Comorbid depression 

and anxiety are often associated with poor outcomes such as higher risk of suicide4, 

higher functional impairment5, and is linked to more challenging treatment of both 

disorders6,7. 

In non-perinatal populations, anxiety is often associated with subjective and 

objective sleep disturbances (reviewed in8). Interestingly, a recent meta-analysis 

identified insomnia as a predictor of the onset of anxiety9, indicating sleep disruption to 

be a potential prodrome for anxiety. Disruptions in biological rhythms have also been 

associated with anxiety: for instance, evening chronotype10 has been linked to anxiety 

disorders, and findings from ambulatory monitoring  using actigraphy indicate disruptions 

in sleep and biological rhythms in young adults with anxiety disorders11. Sleep and 

biological rhythms may thus serve as targets for novel therapeutic approaches, including 
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preventive strategies for PPA, though prior investigations of perinatal sleep and anxiety 

have largely focused on subjective measures, and have not assess the role of biological 

rhythms in anxiety12-14.  

Despite the high prevalence of PPA, risk factors for onset and/or worsening of 

anxiety during the perinatal period have been little-investigated. According to a meta-

analysis from our group, previously identified risk factors for development of anxiety 

symptoms during the perinatal period involve psychosocial risk factors, such as living 

with extended family, and lower levels of education; factors related to pregnancy such as 

current hyperemesis gravidarum and multiple pregnancies; and psychiatric risk factors, 

including having a history of mental health problems and sleep disorders. Risk factors for 

anxiety worsening during the perinatal period include having comorbid psychiatric 

disorders and, potentially, age. Finally, oxytocin exposure during pregnancy is linked to 

both anxiety worsening and onset during the perinatal period15.  Nevertheless, there have 

been few studies which investigated predictors of PPA during pregnancy, and few 

biological markers have been investigated for this disorder. Determining predictors of 

PPA can improve screening and interventions for women at-risk for this disorder. 

In this study, we followed women from pregnancy to postpartum with 

comprehensive assessments of subjective and objective sleep and biological rhythms, 

using validated questionnaires, ambulatory monitoring through actigraphy and melatonin 

metabolite, in addition to clinical variables. Next, we used the measures of sleep, 

biological rhythms and clinical variables collected during pregnancy, and used these to 

predict severity of anxiety symptoms during the postpartum period, using linear 
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regression analysis in addition to several machine learning (ML) techniques. ML 

approaches to investigating complex data obtained from technologies such as actigraphy 

may allow detection of complex, non-linear, multivariate relationships that complement 

traditional statistical approaches. 

 

4.2 Methods 

4.2.1 Participants 

 During their 3rd trimester of pregnancy, women with and without a history of 

mood disorders were recruited from the community and an outpatient women’s mental 

health clinic (Women’s Health Concerns Clinic at St Joseph’s Healthcare). A total of 100 

participants were enrolled from November 2015 to May 2018. All participants provided 

written informed consent to participate in the study. All procedures contributing to this 

work comply with the ethical standards of the relevant national and institutional 

committees on human experimentation and with the Helsinki Declaration of 1975, as 

revised in 2008. All procedures involving human participants were approved by the 

Hamilton Integrated Research Ethics Board (Project #0602). Study inclusion and 

exclusion criteria were as follows: (1) age ³16; (2) no history of head trauma with loss of 

consciousness > 5 minutes; (3) no current major depressive or [hypo]manic episode; (4) ³ 

27 weeks of pregnancy at enrollment. All participants were interviewed using the Mini 

Neuropsychiatric Interview (MINI) Version 6.0016, to establish current mood state and 

psychiatric diagnosis.  
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4.2.2 Clinical Assessments 

Anxiety symptom severity was evaluated using the Generalized Anxiety Disorder-

7 (GAD-7) scale17. This 7-item scale has been used to screen for generalized anxiety 

disorder and its symptom severity with a cut-off score of 13 or greater during the 

perinatal period18,19. Depressive symptom severity was assessed using the Edinburgh 

Postnatal Depression Scale (EPDS, 10 items)20,21, and the Montgomery-Åsberg 

Depression Rating Scale (MADRS, 10 items)22. Manic symptom severity was evaluated 

using the Young Mania Rating Scale (YMRS, 11 items)23. Diagnosis and mood state were 

established using the MINI, according to Diagnostic and Statistical Manual-IV-TR 

criteria. The following current anxiety diagnoses were assessed using the MINI: 

generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-

traumatic stress disorder (PTSD), panic disorder, agoraphobia, and social anxiety 

disorder16. Additionally, the MINI was used to assess whether participants had a lifetime 

history of panic disorder or limited symptom attacks, which were coded as a separate 

variable. Psychosocial risk factors were assessed using the Postpartum Depression 

Predictors Inventory – Revised (PDPI-R)24,25. 

Subjective biological rhythm disturbance was measured using the Biological 

Rhythms Interview for Assessment in Neuropsychiatry (BRIAN, 21 items), a 

questionnaire developed to assess sleep, social, general activity, eating pattern and 

chronotype domains26.  The total domain score of the Pittsburgh Sleep Quality Index 

(PSQI, 19 items)27 was used to assess sleep quality; and daytime sleepiness was assessed 

using the Epworth Sleepiness Scale (ESS, 8 items)28. Seasonality was evaluated using a 
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continuous Global Seasonality Score, as well as categorical winter seasonality variable 

obtained from the Seasonal Pattern Assessment Questionnaire (SPAQ). Winter pattern 

seasonality was obtained from an item that asks which month respondents feel the worst 

during. If only winter months are selected, winter pattern seasonality is established29. 

Neuroticism, Conscientiousness, Agreeableness,, Openness to Experience and 

Extraversion were evaluated using the Big Five Inventory (BFI, 44 items), while the 

Difficulties in Emotion Regulation Scale (DERS, 36 items) was administered to assess 

emotional regulation difficulties30. 

 

4.2.3 Study Design 

 Participants attended visits to St Joseph’s Healthcare Hamilton during the 3rd 

trimester of pregnancy (³ 27 weeks gestation), and at 6-12 weeks postpartum. Upon 

enrollment, participants were interviewed with use of the MINI, MADRS and YMRS, 

following which they completed the GAD-7, EPDS, PDPI-R, BRIAN, PSQI, ESS, SPAQ, 

BFI and DERS questionnaires. At the end of the visit, participants were instructed to wear 

a configured actigraph (Actiwatch 2; Philips Respironics Inc., Biolynx, Montreal, QC, 

Canada) for 2 weeks, and to record actigraph removal periods, wake-up times, naps, and 

bed times in a sleep log. Participants were instructed to complete first-morning urine 

sampling on the final day of actigraph wear, upon which urine samples were returned to 

the lab and processed by investigators. Participants returned at 6-12 weeks postpartum, 

and completed the GAD-7.  
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4.2.4 Objective Assessments 

To measure levels of 6-sulfatoxymelatonin (6-SM), first morning urine sampling 

was completed by participants on the last day of actigraphy data collection. After 

collection, participants were instructed to refrigerate the sample prior to returning it to the 

lab. Enzyme-linked immunosorbent assay for 6-SM was used to analyze 6-SM levels 

(Buhlmann Diagnostics Corporation, Amherst, NH, USA). Assay sensitivity was 

0.14ng/mL, intra-assay coefficient of variation was 7.1% and inter-assay coefficient of 

variation was 11.9%. Final 6-SM concentration was reported as a ratio of 6-SM (ng) to 

creatinine (mg) to account for volume of urine31-33.  The Jaffe method (kinetic alkaline 

picrate; Abbott Diagnostics, Santa Clara, CA, USA) was used to measure urine creatinine 

levels by the Hamilton Regional Laboratory Medicine Program at St Joseph’s Healthcare 

Hamilton (license no. 4037). 

 

4.2.5 Actigraphy 

Actigraphy data were collected continuously in 1-minute epochs throughout 15 

days. Data were extracted from actigraph monitors using Philips Actiware (v 6.0), 

including summary sleep and illuminance variables. We conducted pre-processing of the 

actigraph data, where sleep log-reported actigraph removal periods were removed from 

the analysis. Next, visual inspection was conducted to remove intervals where actigraphs 

consecutively captured no activity for at least 20 minutes. Days where 4 or more hours of 

recording were excluded were ultimately removed from the analysis. Further details 

regarding these analyses can be obtained from 34.  
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The following sleep variables were extracted from Actiware: total sleep time 

(TST, hours); sleep onset latency (minutes) – number of minutes constituting transition 

from wakefulness to sleep; sleep efficiency (SE, %) – percentage of time in bed spent in 

sleep; wake after sleep onset (WASO, minutes) – number of wakeful minutes after sleep 

onset. Next, we calculated the mean midpoint between sleep onset and offset – mean mid 

sleep time. Finally, illuminance variables were extracted from Actiware, including overall 

light exposure, average light exposure, maximum light exposure, percent invalid light 

exposure, and time above light threshold (TAT, 1000 lux). 

 

4.2.5.1 Cosinor, Non-Parametric Circadian Activity Rhythm Analysis, Illuminance 

Using cosinor analysis, time-series data were fitted to a cosine wave using a 

regressive model, where each participant’s circadian activity rhythm was processed to 

extract a single peak from a periodogram. This single peak was used to approximate the 

individual’s endogenous period. Cosinor analysis using the cosinor R package was used 

to calculate the following values: MESOR – mean activity adjusted to the rhythm; 

amplitude of the rhythm; acrophase – peak activity timing; circadian quotient – amplitude 

divided by MESOR, indicating rhythm strength. 

The nparACT (v 0.8) package was used to conduct non-parametric circadian 

activity rhythm analysis. This analysis yielded the following parameters: intradaily 

variability (IV) – a measure of circadian rhythm fragmentation; interdaily stability (IS) – 

a measure of the coupling strength of internal rhythms to external environmental stimuli; 

L5 – the lowest 5 consecutive hours of activity; L5 start time; M10 – highest 10 
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consecutive hours of activity; M10 start time; and relative amplitude (RA) – L5 

subtracted from M10, and divided by total M10 and L5 activity. 

Activity detected during sleep periods at night was used to calculate nighttime 

activity mean and standard deviation (SD).  

 Illuminance data were used to calculate TAT and mean timing of TAT (MLiT) 

across 24-hour periods, using the following light thresholds: 10, 100, 500 and 1000 lux. 

 

4.2.5.2 Transition Probability Estimation 

 The Python hmmlearn package (v. 0.2.0) was used to estimate transition 

probabilities, as detailed by Ortiz et al. 35, used in prior publications from our group34,36. 

Probabilities of transitioning from rest to active states, and active to rest states were 

calculated, in addition to mean activity counts in each state for daytime and nighttime. 

 

4.2.6 Data Analysis Approach 

 Data analyses were performed using R (v. 3.6.1) and Python (v. 2.7.6). 

 

4.2.6.1 Linear Regression 

 Postpartum GAD-7 scores were modeled using variables collected during the 

pregnancy visit in multiple linear regression analysis. Variable selection was performed 

using the sequential replacement method in the leaps package in R (v. 3.0). Model 

assumptions for linear regression analysis were tested, including linearity, normality, 
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multicollinearity, homosceidasticity, and independence of variance. Variables were 

transformed to meet regression model assumptions, when applicable. 

 

4.2.6.2 Machine Learning 

Machine learning (ML) models to predict postpartum GAD-7 scores were built 

with variables collected during pregnancy. In brief, 6 ML approaches were used in the 

caret R package: (1) principal component regression (PCR), which consists of a linear 

regression model, where predictors are principal components of variables in the model; 

(2) partial least squares regression (PLS), which uses components that account for 

maximum correlation between predictors and the outcome variable in a regression model. 

(3) Elastic net regularization creates a regression model by using both L1 and L2 

regularization penalties. Next, we used several tree-based methods: (4) Random Forest 

(RF) is an ensemble method, which induces a number of regression trees, and produces a 

mean regression of the trees as the output. Each tree is created by use of a bootstrap 

sample of instances, where only a subset of the available variables is used to create each 

tree. (5) Bagged Classification and Regression Trees (Bagged CART) is also an ensemble 

method, where a number of regression trees are created. Each regression tree is created 

with a bootstrap sample of the training set, and bootstrap aggregation is used to prevent 

overfitting. Finally, (6) extreme gradient boosting (XGBoost)37 is an ensemble method, 

which is highly optimized, and uses a gradient descent algorithm to reduce model error, in 

addition to regularization, the weighted Quantile Sketch algorithm and other methods to 

optimize model building37. 
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To build these models, first, the data were split into a 75% training and 25% test 

set. Next, data were centered and scaled, and 5-nearest-neighbor imputation was 

performed on the missing data in completed pregnancy visits38. The minimum 

Redundancy Maximum Relevance (mRMR) method, which selects potential predictor 

variables with maximum relevance to the outcome variable, and simultaneously 

minimizes redundancy within the selected set of predictors, was used to select model 

features39. To select optimal models, and choose hyperparameters, 10-fold cross-

validation was performed. Model performance was evaluated using R2, Spearman’s Rho, 

Root Mean Squared Error (RMSE), normalized RMSE (NRMSE) and Mean Absolute 

Error (MAE). 

 

4.3 Results: 

4.3.1 Demographics and Clinical Characteristics 

In total, 100 women completed the pregnancy visit, 79 of whom returned for a 

follow-up at 6-12 weeks postpartum (Table 1 shows demographic and clinical 

characteristics of the sample). Of women who completed both visits, 39.2% met criteria 

for a current anxiety disorder during the pregnancy visit. Additionally, 54.4% had a 

history of major depressive or bipolar disorder, and 29.1% had a lifetime history of panic 

disorder or limited symptom attacks. On average, women in this sample were 31.19 years 

of age, had a pre-pregnancy Body Mass Index of 25.01, and had 17.11 years of education, 

and 60.8% had earned a University degree. Upon enrolment, participants were on average 

at 31.85 weeks gestation. A majority of women in the sample were partnered or married 
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(94.9%), and had a household income of >$50,000 (81.0%). Most of the women in the 

sample were taking prenatal vitamins (88.6%), but not iron supplements (60.8%) or 

psychotropic medication (84.8%). Table 2 shows objective measures of sleep and 

biological rhythms obtained during pregnancy. 

 

4.3.2 Linear Regression: Modeling Postpartum GAD-7 from Pregnancy Data 

In a multiple linear regression analysis which used clinical, data from the 

pregnancy visit (See Table 3), postpartum anxiety symptoms according to the GAD-7 

were independently predicted by neuroticism (Std. b=0.44, t=3.71, p<0.001), openness 

(Std. b=0.22, t=2.13, p=0.037), winter seasonality (Std. b=-0.66, t=-3.38, p=0.001), Mean 

Mid Sleep Time (Std. b=-0.54, t=-4.62, p<0.001), MLiT10 (Std. b=0.43, t=3.91, p<0.001) 

and IV (Std. b=-0.20, t=-2.08, p=0.042). However, total score on the PDPI-R (Std. 

b=0.18, t=1.48), lifetime history of mood disorders (Std. b=0.41, t=1.90), household 

income <$50,000 (Std. b=-0.45, t=1.80), BRIAN scores (Std. b=0.14, t=1.18), chronotype 

according to the BRIAN (Std. b=0.16, t=1.53), TAT 10 (Std. b=0.19, t=1.87) and 

amplitude (Std. b=-0.21, t=-1.99) did not predict postpartum GAD-7 scores. Notably, 

49% of variance in GAD-7 scores were explained by this model (F13,65 =6.67, Adj. 

R2=0.49, p<0.001).  
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4.3.3 Machine Learning Analyses: Modeling Postpartum GAD-7 from Pregnancy Data  

The available dataset was used to extract 72 possible predictor variables. Of these 

variables, mRMR was used to identify 8 most predictive features, according to 

performance of the training model (See: Figure 1). Results from the ML models (See: 

Table 4) showed that the model with the lowest test error (NRMSE) were PCR (0.50) and 

PLS (0.50), followed by Elastic Net (0.51), RF (0.55) and Bagged CART (0.55), and 

XGBoost (0.59). For the best-performing algorithm (PCR) (See: Figure 2), variables were 

ranked by their feature importance (Figure 3): PDPI-R Total Score, BRIAN scores, 

Neuroticism, History of Panic Disorder or Limited Attacks, TST, MLiT 10, daily 

percentage of invalid light, and taking iron supplements. 

 

4.4 Discussion 

In this study, objective and subjective measures of sleep and biological rhythms 

collected during the 3rd trimester of pregnancy, combined with demographic and clinical 

variables, predicted 49% of variance in anxiety symptoms at 6-12 weeks postpartum. In 

order to identify predictors of PPA symptoms, we used an approach with use of ML 

techniques and multiple linear regression, finding a set of measures collected during 

pregnancy which may be used together to predict PPA symptoms. Using ML modeling 

techniques may allow predictive models to be more sensitive to non-linear relationships 

between variables, which are more than simply building linear models, even if linear 

variable interactions are accounted for. Building both traditional statistical models and 

ML models may deliver different types of information when modeling multifaceted 
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phenomena such as sleep and mood. Traditional statistical modeling can be used to 

understand inferential relationships between variables, whereas ML modeling can be used 

for its predictive properties. 

 

4.4.1 Sleep and Biological Rhythms: Subjective and Objective Measures 

Subjective biological rhythm disruption in pregnancy according to the BRIAN had 

second to highest variable importance in predicting PPA symptom severity. However, 

BRIAN scores were not an independent predictor of PPA symptoms according to the 

linear regression model. This may indicate that pregnancy BRIAN scores are predictive 

of PPA scores in combination with other variables in the model. To our knowledge, 

subjective rhythm disruption has not been previously investigated in relation to symptoms 

of PPA, however previous studies from our group have reported subjective rhythm 

disruptions to be linked to depressive symptoms in the perinatal period40,41.  

A number of previous studies have investigated the role of subjective sleep and 

insomnia in PPA symptoms, with mixed findings. For instance, Tham and colleagues did 

not find subjective sleep quality during the 3rd trimester of pregnancy to be linked to PPA 

symptoms at 3 months postpartum14.  Bei and colleagues found that subjective sleep 

dysfunction, but not overall subjective sleep quality in pregnancy was linked to PPA 

symptoms at 1 week postpartum12. However, in a large Norwegian cohort of women 

during the perinatal period (n=1,563), Osnes and colleagues found that insomnia during 

the 3rd trimester of pregnancy was a risk factor for developing an anxiety disorder at 8 

weeks postpartum13. In an American sample (n=578), Menke and colleagues found that 
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subjective sleep quality during the perinatal period was linked to severity of anxiety 

symptoms42. 

According to our investigation, having winter seasonality was a predictor of lower 

PPA symptoms, according to the linear regression model. A previous study found no 

association between season and trait anxiety symptoms, according to the State-Trait 

Anxiety Inventory during pregnancy43. As well, chronotype during pregnancy according 

to the BRIAN was not a predictor of PPA scores in a multiple linear regression model. To 

our knowledge, chronotype has not been previously investigated as a risk factor for PPA.  

Objectively assessed TST during pregnancy was one of the predictors of 

postpartum anxiety in the ML model. In contrast, a previous smaller study by Bei and 

colleagues (n=44) found that objective sleep during pregnancy, including TST, SE, and 

sleep fragmentation, did not predict postpartum anxiety scores. However, the number of 

naps taken per day was linked to anxiety12.  Another study found that neither total sleep 

time, nor number of awakenings during the night >5 minutes, nor SE were correlated with 

anxiety scores during pregnancy44. 

Several biological rhythm variables assessed through actigraphy in pregnancy 

were independent predictors of PPA severity according to multiple linear regression. In 

particular, later mean mid sleep time and higher rhythm fragmentation (IV) in pregnancy 

were associated with lower PPA symptom severity. Rhythm amplitude during pregnancy, 

however, was not a significant independent predictor of PPA severity. To our knowledge, 

circadian activity rhythm variables and melatonin have not been previously studied in 

relation to postpartum anxiety. Nonetheless, one prior study found that during the 3rd 
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trimester of pregnancy, increased trait anxiety was linked to a flatter decline in the 

afternoon of cortisol rhythms45. 

 

4.4.2 Light Exposure 

 Using variables extracted from actigraphy during pregnancy, later timing of light 

exposure during pregnancy (MLiT10), but not total time of light exposure (TAT 10), was 

a significant independent predictor of increased postpartum anxiety symptom severity in a 

multiple linear regression. MLiT10 during pregnancy was also one of the predictors of 

PPA in the ML models. The ML model also showed that daily percentage of invalid white 

light was a predictor of PPA. To our knowledge, this is the first study to link light 

exposure during pregnancy to severity of postpartum anxiety symptoms, finding light 

exposure to be a novel predictor for PPA severity. This study provides the rationale for 

investigating light-based therapies for PPA, both as potential preventive measures and 

possible treatment interventions, such as bright light therapy. Light-based therapies have 

not been investigated as treatment for PPA. However small studies have found evidence 

for improvements in postpartum depressive symptoms for bright light therapy46 and blue 

light-blocking glasses47.  

 

4.4.3 Clinical Variables: Psychiatric History, Personality, Demographics 

Risk factors associated with postpartum depression, according to the PDPI-R, had 

the highest variable importance in our ML approach as a predictor of postpartum anxiety. 

However, risk factors for depression according to the PDPI-R were not an independent 
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predictor of anxiety severity according to multiple linear regression analysis. This may 

indicate that the PDPI-R is an important predictor of PPA, when combined with other 

variables assessed in the study. Though the PDPI-R is a tool which was developed to 

estimate risk for developing postpartum depression. some of the risk factors for 

postpartum depression and anxiety may overlap, particularly considering the high degree 

of comorbidity of these disorders48.  The PDPI-R questionnaire assesses a number of 

factors which have been previously linked to risk of developing PPA: whether individuals 

experienced anxiety or depression during pregnancy, presence of social support, maternal 

education, marital dissatisfaction, and self-esteem15,49. However, other risk factors 

assessed by the PDPI-R such as household income15, marital status, history of depression, 

and intention of motherhood have not been shown to be risk factors for PPA49. 

In terms of psychiatric history, having a lifetime history of panic disorder or 

limited symptom attacks was one of the ML predictors of anxiety symptoms. Having a 

history of mood disorders, however, was not an independent predictor of GAD-7 scores 

according to multiple linear regression analysis. This is consistent with a prior study 

which assessed risk factors for PPA, finding anxiety and depressive disorders during 

pregnancy, and anxiety disorders but not depressive disorders prior to pregnancy to be 

risk factors for PPA49.   

Taking iron supplements during pregnancy was one of the predictors of anxiety 

symptoms according to the ML model.  Though to our knowledge, taking iron 

supplements or iron-deficient anemia have not been systematically investigated in PPA, a 
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prior study found that mean corpuscular volume and hemoglobin levels were positively 

correlated with severity of anxiety in women at nine months postpartum50. 

Two personality factors were linked to severity of postpartum anxiety symptoms 

in this investigation. Neuroticism was a predictor of GAD-7 in the ML models, and 

higher neuroticism was a predictor of higher anxiety symptoms according to the linear 

regression model. Higher openness was also a significant predictor of higher PPA 

symptoms according to the linear regression model.  These results replicate in part a 

previous study showing that high neuroticism was linked to high levels of PPA, and 

antenatal anxiety, though there was no link of openness to PPA51.  

 

4.4.4 Strengths and Limitations 

One of the strengths of this investigation is that this investigation prospectively 

followed women from the 3rd trimester of pregnancy to 6-12 weeks postpartum. 

Assessments of sleep and biological rhythms were conducted through both subjective and 

objective measures, whereas clinical variables, including diagnosis, were assessed 

through validated interviews, and questionnaires. In addition, we used both linear 

regression and ML models which provide complementary insights into the link between 

sleep and biological rhythms and PPA. 

Some limitations of this study include its modest sample size. However, this is 

one of the first (and largest) studies looking at biological rhythms in perinatal anxiety, 

and objective measures of sleep. Additionally, this study was designed to look primarily 

at postpartum depression and, as a result, we did not use a structured interview to assess 
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whether participants developed anxiety disorders during the postpartum timepoint. 

Another limitation comes from the heterogeneity of anxiety diagnoses within this study. 

We were not able to look at impact of individual diagnoses. Several factors may have 

impacted the anxiety, sleep and rhythm measurements obtained from our study. 

Participants who had a history of psychiatric disorders were being followed by clinicians 

throughout their pregnancy and postpartum period, and may have had uncommonly good 

sleep hygiene, due to access to information about the link between poor sleep and mood. 

We did not assess whether participants were adhering to sleep hygiene recommendations, 

or whether they were undergoing psychotherapy during the study. 

In summary, this prospective study showed that subjective and objective sleep and 

biological rhythm markers, as well as light exposure collected during the 3rd trimester of 

pregnancy with clinical variables can be used predict anxiety symptom severity during 6-

12 weeks postpartum. This study used complimentary methods of linear regression and 

ML techniques, in order to investigate inferential relationships and improve the prediction 

ability of our models. These findings emphasize the importance of screening for sleep and 

biological rhythm disturbances during the perinatal period, as they are associated with 

severity of anxiety throughout this period. Given our findings regarding the predictive 

value of light exposure during pregnancy to postpartum anxiety symptoms, future studies 

should also investigate light-based therapies as a potential intervention for postpartum 

anxiety. 
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Table 1: Demographics and Clinical Characteristics 
Variable Mean SD Median P25 P75 
Age 31.19 3.71 31 28 33.5 
Pre-Pregnancy 
Body Mass Index 

25.01 5.76 23.56 21.37 26.26 

Years of 
Education 

17.11 2.61 17 16 18 

Weeks Gestation 31.85 3.24 32 29 35 
PDPI-R Total 
Score  

4.76 4.75 3 2 6 

DERS 90.86 23.48 78 60 97 
GSS 8.42 4.45 9 5 11.5 
Neuroticism 2.81 0.86 2.75 2.25 3.44 
Openness 3.221 0.5 3.2 2.9 3.6 
Conscientiousness 4 0.61 4.11 3.56 4.44 
Agreeableness 4.01 0.52 4 3.67 4.44 
Extraversion  3.38 0.82 3.38 2.62 3.88 
MADRS*  7.99 6.64 7 3 11 
YMRS* 2 1 3 2.18 2.22 
GAD-7 – 
Pregnancy (n=78) 
* 

4.38 4.86 3 1 6 

GAD-7 - 
Postpartum 

4.67 4.16 3.5 1 7 

ESS 8.24 3.88 8 6 11 
PSQI 9.82 3.9 9 8 11 
BRIAN 39.15 9.98 39 31.5 46.5 
BRIAN 
Chronotype 

6.11 1.83 6 5 7 

EPDS – 
Pregnancy* 

6.2 4.89 5 2 9.5 

Variable N (%) Variable N (%) 
Marital Status  Shift Worker  

Single 4 (5.1%) Yes 7 (8.9%) 
Partnered 75 (94.9%) No 72 (91.1%) 

Household Income  Prenatal Vitamins  
> 50,000 64 (81.0%) No 9 (11.4%) 
< 50,000 15 (19.0%) Yes 70 (88.6%) 

Highest Level of 
Education 

 Iron  

Less than High School 1 (1.3%) Yes 31 (39.2%) 
High School Diploma 
or Trade Certificate 

2 (2.5%) No 48 (60.8%) 
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College certificate/ 
diploma 

28 (35.4%) Current Smoker*  

University – bachelor’s 
degree and higher 

48 (60.8%) Yes 2 (2.5%) 
No 77 (97.5%) 

Lifetime History of Panic 
Disorder or Limited 
Symptom Attacks 

 Sleep Apnea*  

Yes 23 (29.1%) Yes 1 (1.3%) 
No 56 (70.9%) No 78 (98.7%) 

Mood Disorder History  Parity  
No History of Mood 
Disorders 

36 (45.6%) Nulliparous 32 (40.5%) 

History of Major 
Depressive or Bipolar 
Disorder 

43 (54.4%) Multiparous 47 (59.5%) 

Current or Past Anxiety 
Disorder 

 Psychotropic 
Medication 

 

Yes 38 (48.1%) No 67 (84.8%) 
No 41 (51.9%) Yes 12 (15.2%) 

Current Anxiety Disorder 
(Agoraphobia; Past month 
Panic Disorder, Social 
Anxiety Disorder, 
Obsessive Compulsive 
Disorder; Past 6 months 
Generalized Anxiety 
Disorder) 

 Family Mood History  

Yes 31 (39.2%) Yes 38 (48.1%) 
No 48 (60.8%) No 41 (51.9%) 

Abbreviations: BRIAN  - Biological Rhythms Interview of Assessment in 
Neuropsychiatry; DERS – Difficulties in Emotion Regulation; ESS – Epworth 
Sleepiness Scale; GAD-7 - Generalized Anxiety Disorder -7; GSS – Global Seasonality 
Scale; MADRS – Montgomery Åsberg Depression Rating Scale;  PDPI-R -  
Postpartum Depression Predictors Inventory – Revised; PSQI – Pittsburgh Sleep 
Quality Index; YMRS – Young Mania Rating Scale 
* not included in model selection due to multicollinearity or lack of cases 
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Table 2: Objective Measures of Sleep and Biological Rhythms (3rd Trimester of 
Pregnancy) 
Variable Mean SD Median P25 P75 
6-
sulfatoxymelatonin 
(ng/mg) 

34.92 21.61 31.17 19.92 44.48 

 
SLEEP VARIABLES 
 
Variable Mean SD Median P25 P75 
TST 7.26 0.94 7.36 7.80 6.88 
SE 0.82 0.06 0.83 0.80 0.86 
Sleep Onset 
Latency 

13.77 7.79 12.33 8.80 16.83 

WASO 63.55 20.91 61.91 47.23 77.36 
Awakenings 28.5 9.17 26.22 22.06 33.59 
Mean Mid Sleep 
Time 

3.44 1.11 3.37 2.61 3.98 

 
COSINOR 
 
Variable Mean SD Median P25 P75 
Mesor 196.51 48.09 194.98 163.71 228.01 
Amplitude 156.78 45.06 150.34 125.73 193.51 
CQ* 0.80 0.13 0.80 0.73 1.09 
Acrophase 0.74 0.36 0.76 0.56 0.91 
Period 23.51 2.55 23.92 23.68 24 
 
NON-PARAMETRIC CIRCADIAN ACTIVITY RHYTHM ANALYSIS 
 
Variable Mean SD Median P25 P75 
Interdaily Stability 0.57 0.09 0.59 0.52 0.63 
Intradaily 
Variability 

0.76 0.14 0.75 0.67 0.82 

Relative 
Amplitude 

0.87 0.07 0.89 0.85 0.91 

L5 21.08 12.58 17.95 13.17 25.38 
L5 Start Time 5.45 8.82 1.28 0.77 2.18 
M10 308.59 77.71 308.18 252.38 356.09 
M10 Start Time 9.43 2.07 9.5 8.39 10.82 
Nighttime Activity 
Mean 

7784.25 3610.16 8358.38 5881.14 11187.06 
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Nighttime Activity 
SD 

4895.01 4208.77 3370.44 2402.7 5483.34 

 
LIGHT 
 
Variable Mean SD Median P25 P75 
MLiT10 13.98 0.82 14.03 13.52 14.53 
MLiT100 13.57 1.04 13.52 12.83 14.35 
MLiT500 13.57 1.28 13.70 12.61 14.52 
MLiT1000 13.40 1.47 13.55 12.57 14.39 
TAT10 515.86 243.49 499.81 360.90 591.88 
TAT100* 213.13 268.84 162.45 68.89 237.67 
TAT500* 120.43 252.01 66.15 15.22 117.34 
TAT1000 102.89 240.64 46.11 7.27 86.70 
Average Light 
Exposure – 
Active* 

1261.19 4937.1 254.78 48.36 651.97 

Max Light 
Exposure – 
Active* 

14368.06 12647.37 9115.53 3289.22 22573.66 

Percent Invalid 
Light – Active* 

3.36 3 3.30 0.66 4.92 

TAT White Light 
– Active* 

59.93 121.96 22.42 4.75 61.55 

Exposure Light  -
Active* 

791956.63 2886983.5 178929.6 35864.52 475513.37 

Average Light 
Exposure – Daily 

1140.12 4782.22 189.61 36.44 479.57 

Max Light 
Exposure – Daily 

19006.45 14976.51 15707.42 4846.91 31376.52 

Percent Invalid 
Light - Daily 

5.18 4.32 4.01 1.74 7.12 

TAT White Light 
– Daily 

93.05 222.99 39.40 6.71 79.91 

Exposure Light  -
Daily* 

1431580.87 6e+06 262653.5 49997.31 643972.77 

Average Light 
Exposure – Rest* 

944.15 5057.5 2.02 0.53 6.98 

Max Light 
Exposure – Rest* 

1044.68 5286.69 18.44 7.69 40.41 

Percent Invalid 
Light – Rest* 

2.19 3.87 0 0 3.97 
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TAT White Light 
– Rest* 

16.15 72.71 0 0 0 

Exposure Light  -
Rest* 

334472.58 1766258.83 288.25 79.83 1081.64 

Average Light 
Exposure – Sleep* 

942.60 5055.51 1.57 0.49 6.23 

Max Light 
Exposure – Sleep* 

1036.77 5261.65 15.72 6.24 34.4 

Percent Invalid 
Light – Sleep 

2.12 4.05 0 0 3.29 

TAT White Light 
– Sleep* 

15.49 70 0 0 0 

Exposure Light  -
Sleep* 

324653.53 1721915.42 197.78 197.78 936.64 

 
TRANSITION PROBABILITIES 
 
Variable Mean SD Median P25 P75 
pRA day 0.065 0.01 0.066 0.058 0.071 
pRA night 0.11 0.027 0.10 0.086 0.12 
pAR day 0.045 0.012 0.046 0.039 0.053 
pAR night 0.10 0.02 0.099 0.089 0.11 
Rest day mean 65.82 37.44 65.32 40.34 86.72 
Rest night mean 0.077 0.38 0.0 0 0.04 
Activity day mean 425.48 91.93 417.10 368.06 493.42 
Activity night 
mean 

53.09 24.18 45.43 37.84 62.73 

CQ - Circadian Quotient; L5 -5 consecutive lowest-activity hours; M10 - 10 
consecutive hours with highest activity; MLiT - Mean timing of light exposure; pAR - 
probability of transitioning from active to rest state; pRA - probability of transitioning 
from rest to active state;  SD - Standard Deviation; SE - Sleep Efficiency; TAT - Time 
Above Threshold; TST - Total Sleep Time; WASO - Wake After Sleep Onset 
*not included in model selection due to multicollinearity 
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Table 3: Regression Model of Postpartum log Generalized Anxiety Disorder-7 
Using Data Collected During Pregnancy   
 Beta 95%CI Std. 

Beta 
T p 

Intercept -7.06 -11.36, -2.76 0.26 -3.28 0.002 
Mood Disorder History 
- Yes 

0.41 -0.002, -0.84 0.41 1.90 0.062 

PDPI-R Total Score 0.04 -0.001, 0.009 0.18 1.48 0.14 
Household Income < 
$50,000 

-0.46 -0.96, 0.05 -0.45 1.80 0.077 

Neuroticism 0.51 0.24, 0.79 0.44 3.71 <0.001 
Openness 0.43 0.03, 0.84 0.22 2.13 0.037 
Winter Seasonality - 
Yes 

-0.66 -1.05, -0.27 -0.66 -3.38 0.001 

BRIAN 0.01 -0.001, 0.004 0.14 1.18 0.244 
BRIAN Chronotype 0.09 -0.003, 0.21 0.16 1.53 0.130 
Mean Mid Sleep Time -0.50 -0.72, -0.29 -0.54 -4.62 <0.001 
MLiT10 0.54 0.27, 0.82 0.43 3.91 <0.001 
TAT 10 0.00 -5.55e-5, 

1.73e-3 
0.19 1.87 0.066 

Amplitude 0.00 -9.63e-3, 
1.89e-5 

-0.21 -1.99 0.051 

IV -1.53 -3.01, -0.06 -0.20 -2.08 0.042 
R2 0.57  Adj. R2 0.49  
F(13,65) 6.67  P <0.001  
Abbreviations: BRIAN  - Biological Rhythms Interview of Assessment in 
Neuropsychiatry; Edinburgh Postnatal Depression Scale; MLiT - Mean timing above 
light threshold (100 or 500 lux); PDPI-R -  Postpartum Depression Predictors Inventory 
– Revised; pRA - Probability of transitioning from rest to active state. 
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Table 4: Test Results of Six Machine Learning Models used to Model Postpartum log 
Generalized Anxiety Disorder-7 from Pregnancy Variables 

Algorithm 
Test 
RMSE 

Test 
MAE 

Test 
R2

 

Test 
Spearman’s 
Rho 

Test 
NRMSE Final Parameters 

PCR 0.65 0.55 0.41 0.70 0.50 Ncomp 5 

PLS 0.66 0.56 0.39 0.62 0.50 Ncomp 1 

RF 0.72 0.61 0.28 0.56 0.55 Mtry  

Bagged 
CART 

0.73 0.58 0.29 0.56 0.55   

Elastic Net 0.66 0.55 0.39 0.67 0.51 Fraction 0.9344828 

Lambda 0.1 

Extreme 
Gradient 
Boosting 

0.77 0.63 0.24 0.61 0.59 Nrounds 50 

Max depth 1 

Eta 0.3 

Gamma 0 

Colsample_bytree 0.6 

Min_child_weight 1 

Subsample 0.75 

Abbreviations: CART – Classification and Regression Trees; GAD-7 – Generalized Anxiety 

Disorder – 7; MAE – Mean Absolute Error;  NRMSE  - Normalized Root Mean Squared Error; 

PCR – principal components regression; PLS – partial least squares regression; RF – Random 

Forest; RMSE – Root Mean Squared Error 
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Figure 1: Training Normalized Mean Squared Error for All Models - Pregnancy 
Variables used to Predict 6-12 Week Postpartum log Generalized Anxiety Disorder-
7 Scores 
 

 
Abbreviations: NRMSE – Normalized Mean Square Root Error; PCR – Principal 
Component Regression; PLS – Partial Least Squares; RF – Random Forest; XGBoost – 
Extreme Gradient Boosting. 
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Figure 2: Test Predicted vs Observed Plot of log Generalized Anxiety Disorder-7 
Scores at 6-12 Weeks Postpartum for Principal Component Regression Model  
 

 
Abbreviations: GAD-7 – Generalized Anxiety Disorder -7.  
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Figure 3: Variable Importance Plot for Principal Component Regression Model 
Predicting log Generalized Anxiety Disorder -7 Scores at 6-12 Weeks Postpartum 
 

 
Abbreviations: BRIAN – Biological Rhythms Interview of Assessment in 
Neuropsychiatry; GAD-7 – Generalized Anxiety Disorder -7; MLiT10 – Mean timing of 
light exposure greater than 100 lux; PDPI-R – Postpartum Depression Predictors 
Inventory – Revised; TST – Total Sleep Time. 
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Chapter 5: Longitudinal Changes in Sleep, Biological Rhythms and 
Light Exposure from Pregnancy to Postpartum 
 
This chapter describes work that is currently in progress, which will be included in future 
manuscripts. 
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5.1 Introduction 

Subjective sleep quality decreases among a large proportion of women throughout 

pregnancy (Sedov, Cameron, Madigan, & Tomfohr-Madsen, 2018), and throughout 

postpartum, where new mothers often report sleep disturbances, particularly in the 3rd 

trimester of pregnancy and the first month postpartum (Lee, Zaffke, & McEnany, 2000; 

Matsumoto, Shinkoda, Kang, & Seo, 2003; Signal et al., 2007). As detailed in the general 

introduction, subjective sleep disturbances in pregnancy and postpartum have been 

extensively linked to depressive and anxiety symptoms during the perinatal period 

(e.g.(Gallaher, Slyepchenko, Frey, Urstad, & Dorheim, 2018; Okun, Hanusa, Hall, & 

Wisner, 2009; Okun, Mancuso, Hobel, Schetter, & Coussons-Read, 2018)). 

In spite of this link, there have been few studies that have investigated changes ins 

biological rhythms from pregnancy to postpartum. Matsumoto and colleagues followed 

10 women continuously from the 3rd trimester of pregnancy to 16 weeks postpartum, 

continuously measuring sleep and activity using actigraphy. They found that mean 

amplitude, TST and SE decreased from pregnancy to early postpartum. WASO increased 

from pregnancy to early postpartum. These changes improved from early to late 

postpartum, and amplitude increased during this period (Matsumoto et al., 2003). Another 

study of 10 primiparous women from the 3rd trimester of pregnancy to 12 weeks 

postpartum found that peaks of rhythm autocorrelograms decreased from pregnancy to 

early postpartum, and improved by the 12th week postpartum (Nishihara, Horiuchi, Eto, 

Kikuchi, & Hoshi, 2012).  
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Two prior studies have investigated the longitudinal relationship between 

biological rhythms and mood. Sharkey and colleagues showed that a large proportion of 

euthymic women (n=12) with a history of MDD had phase shifts in dim light melatonin 

onset from 33 weeks of pregnancy to 6 weeks postpartum. On average, their phases were 

delayed 42 minutes. This study found that average light exposure over the 24-hour period 

decreased from pregnancy to postpartum. In this study, dim light melatonin onset phase 

and phase angle were linked to depressive symptom severity from pregnancy to 

postpartum (Sharkey, Pearlstein, & Carskadon, 2013).  

A prior investigation from our lab (n=83) found that changes in subjective 

biological rhythms from pregnancy to postpartum, but not subjective sleep quality, were 

associated with changes in depressive symptoms from the 3rd trimester of pregnancy to 6-

12 weeks postpartum (Krawczak, Minuzzi, Hidalgo, & Frey, 2016). In a subsample of 

these women (n=33), who had worn actigraphs , changes in subjective biological rhythms 

and objective sleep efficiency were associated with changes in EPDS scores (Krawczak, 

Minuzzi, Simpson, Hidalgo, & Frey, 2016).  

As few longitudinal studies have investigated the relationships between biological 

rhythms and sleep from pregnancy to postpartum, it is unknown how these change 

together from pregnancy to early postpartum (1-3 weeks postpartum, the onset period for 

postpartum blues) (Henshaw, 2003), to 6-12 weeks postpartum (the onset period for 

postpartum depressive episodes) (Gavin et al., 2005).  
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5.2 Aim 

 In this investigation, we aimed to characterize the longitudinal trajectory of 

subjective and objective sleep quality and biological rhythms, levels of melatonin, and 

light exposure in women from the 3rd trimester of pregnancy, to 1-3 weeks and 6-12 

weeks postpartum.  

 

5.3 Methods 

5.3.1 Participants 

 During the 3rd trimester of pregnancy, 100 women were recruited from the 

community, and an outpatient clinic (Women’s Health Concerns Clinic at St Joseph’s 

Healthcare Hamilton). Participants were recruited from November 2015 – May 2018, and 

provided written informed consent to participate in this study. Study procedures were 

approved by the Hamilton Integrated Research Ethics Board (Project #0602). To enroll in 

the study, the following inclusion and exclusion criteria were applied: age ³16; no history 

of head trauma with loss of consciousness > 5 minutes; current euthymia: no current 

major depressive or [hypo]manic episode; ³ 27 weeks of pregnancy at enrollment. 

Current mood state and diagnosis were established using the Mini Neuropsychiatric 

Interview (MINI) Version 6.00 (Sheehan et al., 1998). 
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5.3.2 Study Procedure 

 Clinical assessments used in this study are detailed in Chapters 3 and 4.  During 

the 3rd trimester of pregnancy, at 1-3 weeks postpartum and at 6-12 weeks postpartum, 

participants attended study visits at St Joseph’s Healthcare Hamilton.  

During the pregnancy visit, participants were interviewed using the MINI, 

Montgomery Åsberg Depression Rating Scale (MADRS, depressive symptoms) 

(Montgomery & Asberg, 1979), and Young Mania Rating Scale (YMRS, manic 

symptoms) (Young, Biggs, Ziegler, & Meyer, 1978). Participants completed the 

following questionnaires: Biological Rhythms Interview for Assessment in 

Neuropsychiatry (BRIAN, subjective biological rhythm disturbance) (Giglio et al., 2009); 

Pittsburgh Sleep Quality Index (PSQI, sleep quality) (Buysse, Reynolds, Monk, Berman, 

& Kupfer, 1989); Epworth Sleepiness Scale (ESS, daytime sleepiness) (Johns, 1991); 

Seasonal Pattern Assessment Questionnaire (SPAQ, seasonality) (Raheja, King, & 

Thompson, 1996). The Big Five Inventory (BFI) was used to assess Neuroticism, 

Conscientiousness, Agreeableness, Openness to Experience and Extraversion (John & 

Srivastava, 1999). The Difficulties in Emotion Regulation Scale (DERS) was used to 

assess emotion regulation difficulties (Gratz & Roemer, 2004). 

At 1-3 weeks postpartum and 6-12 weeks postpartum, participants were 

interviewed using the MADRS, and YMRS, and completed the EPDS, GAD-7, BRIAN, 

PSQI and ESS questionnaires.  

At all 3 visits, participants were fitted with a configured actigraph (Actiwatch 2, 

Philips Respironics Inc., Biolynx, Montreal, QC, Canada) to be worn for 2 weeks. 
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Participants used a sleep log to record actigraph removal, wake-up time, time in bed, and 

nap periods. Participants completed a first morning urine sample on the final day of 

actigraph wear, which was then analyzed for levels of 6-sulfatoxymelatonin, adjusted for 

creatinine. Details regarding actigraphy and urine collection, processing and analysis are 

provided in detail in Chapters 3 and 4.  

 

5.3.3 Statistical Analysis 

 Statistical analyses were performed using R (v. 3.6.1) and Python (v. 2.7.6). 

Normality of variable distributions was tested using the Shapiro-Wilk test. 

Changes in clinical variables, sleep and biological rhythm variables in normally 

distributed variables were examined using repeated-measures analyses of variance 

(ANOVAs), and the Friedman test in non-normally distributed variables. The 

Greenhouse-Geisser sphericity correction was automatically applied to factors violating 

sphericity assumption in the repeated-measures ANOVAs. The Bonferroni correction was 

applied to control for multiple comparisons. Post-hoc tests were applied to variables 

which were significantly different according to the repeated-measures analyses. 

 

5.4 Preliminary Results 

In total, 73 women returned for all 3 visits, completing the clinical questionnaires. 

Of these women, 57 completed actigraphy and 6-SM sampling across all 3 visits. 
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5.4.1 Demographics 

 In our sample, women were on average 31.27 years old, had a pre-pregnancy BMI 

of 23.56. Most were married or partnered (95.9%), and had a household income of at least 

$50,000 (80.8%). Demographics and clinical variables are presented in Table 1.  

 

5.4.2 Longitudinal Changes in Clinical Variables 

 Longitudinal changes in clinical variables are presented in Table 2 and Figures 1-

6. There were significant changes in depressive symptoms (MADRS) over time (χ2=4.10, 

p=0.0001), between the 3rd trimester of pregnancy and 1-3 weeks postpartum (p=0.0001). 

Trends were seen in longitudinal changes in manic symptoms (YMRS), subjective sleep 

quality (PSQI), self-perceived biological rhythms (BRIAN), and daytime sleepiness 

(ESS), but these did not survive Bonferroni correction. 

 

5.4.3 Melatonin 

 No significant longitudinal changes were seen in melatonin levels (Table 3). 

 

5.4.4 Longitudinal Changes in Sleep Variables  

 In sleep variables, significant changes were seen over time in sleep efficiency (SE, 

χ2=5.43, p=1.31e-7), and WASO (F=28.73, p=8.51e-11). There was a significant decrease 

in SE and increase in WASO from the 3rd trimester of pregnancy to 1-3 weeks postpartum 

and SE increased and WASO decreased from 1-3 weeks to 6-12 weeks postpartum, 
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where. Number of awakenings (F=23.46, p=3.10e-9) was lower in the two postpartum 

timepoints, as compared to pregnancy. 

 

5.4.5 Longitudinal Changes in Biological Rhythms 

 Variables obtained from cosinor analysis showed that mesor (F=15.13, p=8.47e-6) 

was higher at 6-12 weeks postpartum compared to 1-3 weeks postpartum and pregnancy. 

Amplitude was higher at 6-12 weeks postpartum compared to pregnancy (χ2=4.59, 

p=1.32e-5). Circadian quotient (CQ), which is the ratio of amplitude to mesor, was higher 

at 6-12 weeks postpartum compared to pregnancy (χ2=4.30, p=5.99e-5).  

 Non-parametric circadian activity rhythm analysis showed that intradaily 

variability (IV) was significantly higher at 1-3 weeks postpartum than during pregnancy 

and at 6-12 weeks postpartum (F=19.00, p=7.84e-8). Relative amplitude (RA) was lower 

at 1-3 weeks postpartum compared to pregnancy and 6-12 weeks postpartum (χ2=7.23, 

p=5.61e-12). 

Nighttime activity mean (F=55.41, p=1.87e-17) and standard deviation (F=40.33, 

p=6.45e-14), as well as activity during the 5 lowest activity hours (L5) (F=34.48, 

p=5.32e-11) were higher at 1-3 weeks postpartum than during pregnancy and 6-12 weeks 

postpartum. Activity during the 10 most active hours (M10) was higher at 6-12 weeks 

postpartum than 1-3 weeks postpartum and in pregnancy (F=17.94, p=1.75e-7). 

Activity during rest during the day was higher during the 3rd trimester of 

pregnancy than 1-3 weeks postpartum (χ2=5.58, p=6.53e-8). Probability of transitioning 

from rest to activity during the day was lower during pregnancy than 1-3 weeks and 6-12 
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weeks postpartum (χ2=7.12, p=1.49e-12). At night, probability of transitioning from rest 

to activity was higher during pregnancy than 1-3 weeks and 6-12 weeks postpartum 

(χ2=4.87, p=2.96e-6). Probability of transitioning from activity to rest at night was lower 

at 1-3 weeks postpartum than during pregnancy and at 6-12 weeks postpartum (F=18.62, 

p=4.65e-7). 

Mean activity during active phases at night was higher at 1-3 weeks postpartum 

than during pregnancy and 6-12 weeks postpartum (F=37.76, p=6.35e-11). 

  

5.4.6 Longitudinal Changes in Light Exposure 

No significant differences were seen in light exposure variables throughout the 

perinatal period. However, trends were seen in mean timing of light exposure above 100, 

500, and 1000 lux; in addition to total light exposure during the whole day; and total light 

exposure above 100 lux; average or maximum levels of light exposure during active 

periods. These differences did not survive Bonferroni correction. 

 

5.5 Discussion  

 In this study, we investigated the longitudinal trajectory of sleep, biological 

rhythms and light exposure over several timepoints in the perinatal period, using 

actigraphy and melatonin profiling. While previous studies have described changes in 

objective and subjective sleep parameters over the perinatal period, few longitudinal 

studies have described biological rhythms at different points in the perinatal period 
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We found that in our sample of women, objective sleep worsened significantly at 

1-3 weeks postpartum (marked by lower SE and longer WASO) compared to the 3rd 

trimester of pregnancy, and improved by 6-12 weeks postpartum. However, women had a 

lower number of awakenings during the postpartum period. Findings of decreased SE and 

higher WASO in the early postpartum are consistent with a previous study of 10 women 

by Matsumoto and colleagues, who found that compared to the 3rd trimester of 

pregnancy, SE decreases and WASO increases, in the early postpartum. These early sleep 

disruptions improved over time in the postpartum period (Matsumoto et al., 2003). Unlike 

Matsumoto and colleagues, who found decreased TST in the early postpartum, which 

increased until 15 weeks postpartum (Matsumoto et al., 2003), we did not find changes in 

TST in the perinatal period. Consistent with our findings, in a sample of 50 women, 

Montgomery-Downs and colleagues also did not find changes in TST from 2-16 weeks 

postpartum, and found increases in SE from week 2 to 16 postpartum (Montgomery-

Downs, Insana, Clegg-Kraynok, & Mancini, 2010).   

 Interestingly, we found a number of changes in daily activity rhythm variables and 

transition probabilities from pregnancy to 1-3 weeks and 6-12 weeks postpartum. To our 

knowledge, changes in transition probabilities have not been previously described in the 

perinatal population.  

Some of the changes in sleep and biological rhythms observed in this study 

occurred only during the early postpartum period, and returned to their late pregnancy 

values by 6-12 weeks postpartum. These included decreased SE, relative amplitude and 

probability of transitioning from activity to rest at night; as well as increased WASO, IV, 
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L5 activity, mean and standard deviation of nighttime activity. Additionally, there were 

several differences in sleep and daily activity rhythms at 6-12 weeks postpartum 

compared to pregnancy. These included lower number of awakenings, increased mesor, 

higher M10, and higher probability of transitioning from rest to activity during the day 

and night.  

Longitudinal changes in daily activity rhythms have been little-investigated over 

the perinatal period. Previously, Nishihara and colleagues found autocorrelogram peaks to 

be lower in the early postpartum compared to the 3rd trimester of pregnancy, which 

improved  by 12 weeks postpartum (Nishihara et al., 2012). Additionally, Matsumoto and 

colleagues found that daily activity rhythm period was longest during the 3rd trimester of 

pregnancy, and during the first 3 postpartum days. Amplitude from power spectra 

decreased in the first 3 weeks postpartum, and increased later into the postpartum period, 

up to 15 weeks (Matsumoto et al., 2003). Finally, Thomas and colleagues followed 43 

mothers and their infants during 4, 8, and 12 weeks postpartum, finding that maternal 

mesor, acrophase, M10 midpoint and L5 midpoint stayed constant throughout this period. 

However, throughout this period, there was an increase in amplitude, increase in IS and 

decrease in IV during these timepoints (Thomas, Burr, Spieker, Lee, & Chen, 2014). This 

was mostly consistent with our results, as we also found decreased IV and increased 

relative amplitude, and stable acrophase and L5 and M10 start periods from early (1-3 

weeks) to late (6-12 weeks) postpartum.  However, in our study, mesor increased from 1-

3 weeks to 6-12 weeks postpartum.  
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 Though we found some differences in light exposure across the perinatal period, 

these did not survive Bonferroni correction. Previously, Sharkey and colleagues found 

that a smaller sample (n=12) of women had lower light exposure during 6-12 weeks 

postpartum compared to the 3rd trimester (Sharkey et al., 2013). 

 Another interesting finding of this investigation is that though there were a 

number of changes in daily activity rhythms, there were no significant indicators of 

change in circadian phase over the perinatal period, including chronotype, mean mid 

sleep time, acrophase, L5 or M10 start time. This finding emphasizes the importance of 

investigating biological rhythm disturbances beyond sleep and chronotype, as they may 

not be reflective of a broad range of disruptions in activity patterns.  

Additionally, there were no changes in 6-SM over the perinatal period in our 

sample. Thomas and Burr previously found in a cross-sectional study that women during 

the postpartum period had lower mean and maximum 6-SM levels across a 24 hour 

period, in addition to a lower percent rise compared to non-pregnant, nulliparous women 

(Thomas & Burr, 2006). Sharkey and colleagues have previously reported that in a 

similar population of women (n=12), phase shifts occurred in dim light melatonin onset 

from the 3rd trimester of pregnancy to 6 weeks postpartum (Sharkey et al., 2013). We 

were not able to confirm these findings, as a single 6-SM measurement cannot provide 

information about melatonin phase. 

 
5.6 Future Directions 

Recently, studies have emerged which have modeled trajectories of depressive 

and anxiety symptoms as a function of subjective sleep disturbances through pregnancy to 
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postpartum (e.g. (Tomfohr, Buliga, Letourneau, Campbell, & Giesbrecht, 2015; Wang et 

al., 2018)). These studies have reported that clusters of women who had worsened sleep 

quality from pregnancy to postpartum have worsened symptoms of depression and 

anxiety during this period (Tomfohr et al., 2015; Wang et al., 2018). 

To our knowledge, prior studies have not investigated trajectories of depressive 

symptoms or anxiety symptoms from pregnancy to postpartum using measures of 

objective sleep or biological rhythms.  

In future analyses, we aim to model changes in clinical variables (e.g. depressive, 

anxiety symptoms; subjective sleep and biological rhythms) using objective measures of 

sleep, biological rhythms and light exposure. One approach to investigating this could 

involve using objective measures of sleep, biological rhythms and light exposure in a 

generalized linear mixed model with clinical variables as possible outcome variables.  

Understanding sleep patterns from pregnancy to postpartum may help health care 

professionals understand expected sleep and biological rhythm patterns from pregnancy 

to postpartum, and ensure that appropriate interventions are applied when necessary.   
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Table 1: Demographics and Clinical Variables 

Variable Mean±SD 

Median [IQR] 

Variable Mean±SD 

Median [IQR] 

Age 31.27±3.82 Extraversion 3.29±0.80 

Years of Education 17 [2] Agreeableness 4.02±0.53 
Pre-Pregnancy BMI 23.56 [6.61] Conscientiousness 4.11 [0.77] 

GSS 9.00 [7.00] Neuroticism 2.80±0.88 
DERS 78.00 [37.00] Openness 3.24±0.48 

 Yes No  

Shift Worker 7 (9.6%) 66 (90.4%)  
Prenatal Vitamins 65 (89.0%) 8 (11.0%)  

Iron 30 (41.1%) 43 (58.9%)  

Psychotropic 
Medication 

10 (13.7%) 63 (86.3%)  

Current Smoker 0 (0%) 73 (100%)  
Family Mood History 33 (45.2%) 40 (54.8%)  

Sleep Apnea 1 (1.4%) 72 (98.6%)  
Summer Seasonality 0 (0%) 73 (100%)  

Winter Seasonality 43 (58.9%) 30 (41.1%)  

 Single/ Divorced Married/ Partnered  
Marital Status 3 (4.1%) 70 (95.9%)  

 <$50,000 >$50,000  
Household Income 14 (19.2%) 59 (80.8%)  

 High School Diploma or Trade 

Certificate 

College Certificate or 

Diploma 

University – Bachelor’s 

Degree and Higher 

Highest Level of 
Education 

2 (2.7%) 25 (34.2%) 46 (63.0%) 

 Yes – History of Major Depressive 

or Bipolar Disorder 

No History of Mood 

Disorders 
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History of Mood 
Disorders 

38 (52.1%) 35 (47.9%)  

 Yes No  
Current or Past Anxiety 
Disorder 

35 (47.9%) 38 (52.1%)  

 Yes No  Mixed 

Breastfeeding 1-3 
weeks 

47 (64.4%) 7 (9.6%) 15 (20.5%) 

Breastfeeding 6-12 
weeks 

42 (57.5%) 12 (16.4%) 10 (13.7%) 

 Vaginal C-Section  

Delivery Method 53 (76.8%) 16 (23.2%)  
 No Vacuum/Forceps  

Vacuum Forceps 61 (91.0%) 6 (9.0%)  
 Multiparas Nulliparas  

Parity 43 (58.9%) 30 (41.1%)  
Abbreviations: BMI – Body Mass Index; DERS – Difficulties in Emotion Regulation; GSS – Global Seasonality Scale. 
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Table 2: Longitudinal Changes in Clinical Variables (n=73) 

Variable 3rd 
Trimester 

Mean±SD 

Median 

[IQR] 

1-3 Weeks 

Postpartum 

Mean±SD 

Median 

[IQR] 

6-12 Weeks 

Postpartum 

Mean±SD 

Median 

[IQR] 

Test  P value P value: Multiple Comparisons: 

3rd 

Trimester 

vs 1-3 

Weeks 

Postpartum  

3rd 

Trimester 

vs 6-12 

Weeks 

Postpartum 

1-3 Weeks 

Postpartum 

vs 6-12 

weeks 

Postpartum 

EPDS 5 [6] 7 [8] 5 [7] χ2=2.21 0.070    

EPDS3A 3 [3] 3 [3] 3 [3] χ2=2.32 0.053    

EPDS7D  2 [3] 3 [5] 2 [3] χ2=1.98 n.s.    

GAD7 3 [5] 4 [6] 3.75 [6] χ2=2.02 n.s.    

MADRS  6 [7] 10 [8.5] 6 [9.5] χ2=4.10 0.0001 0.0001 n.s. 0.0003 

YMRS 2 [2.5] 3 [2.0] 2 [2.5] χ2=3.32 0.0027 0.003 0.08 n.s. 

ESS 8 [4.25] 9.5 [5.25] 8 [6.25] χ2=3.64 0.00076 0.0008 0.003 n.s. 

PSQI 9 [3] 8 [2.5] 8 [3] χ2=2.60 0.025 n.s. 0.025 n.s. 

BRIAN 
(n=60) 

38.00 
[15.25] 

39.50 
[16.4375] 

36.50 
[15.00] 

χ2=2.44 0.039 n.s. n.s. 0.038 

BRIAN 
Chronotype 
(n=60) 

6 [2] 5 [3] 5 [2] χ2=1.32 n.s.    

Bolded text: survived Bonferroni Correction 
Abbreviations: 
BRIAN  - Biological Rhythms Interview of Assessment in Neuropsychiatry; ESS – Epworth Sleepiness Scale; GAD-7 – 
Generalized Anxiety Disorder -7; MADRS – Montgomery Åsberg Depression Rating Scale;  PDPI-R -  Postpartum 
Depression Predictors Inventory – Revised; PSQI – Pittsburgh Sleep Quality Index; YMRS – Young Mania Rating Scale 
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Table 3: Longitudinal Changes in Sleep and Biological Rhythm Variables (n=57) 

Variable 3rd 
Trimester 

Mean±SD 

Median 

[IQR] 

1-3 Weeks 

Postpartum 

Mean±SD 

Median 

[IQR] 

6-12 Weeks 

Postpartum 

Mean±SD 

Median 

[IQR] 

Test  P 

value 

P value: Multiple Comparisons: 

3rd 

Trimester 

vs 1-3 

Weeks 

Postpartu

m  

3rd 

Trimester 

vs 6-12 

Weeks 

Postpartu

m 

1-3 Weeks 

vs 6-12 

weeks 

Postpartu

m 

MELATONIN 

6-SM 35.56±23.68 36.42±25.34 35.88±23.06 F=0.05 n.s.    

ACTIGRAPHY (n=57) 

SLEEP VARIABLES 

TST 7.37 [1.00] 6.90 [1.34] 7.17 [1.02] χ2=2.15 0.079    

SE 84.05 [5.02] 80.05 [4.20] 83.53 [3.38] χ2=5.43 

 

1.31 e-

7 

3.08e-5  n.s. 1.17e-7 

WASO* 62.75±20.37 85.40±22.25 64.91±18.99 F=28.7

3 

 

8.51 e-

11 

2.49e-8 n.s. 1.69e-9 

Mean mid 
sleep time 

3.37[1.39] 3.33[1.54] 3.42[0.89] χ2=0.47 n.s.    

Awakenings

* 

28.12±8.55 23.02±5.34 23.44±6.31 F=23.4

6 

3.1e-9 5.30e-7 8.73e-7 n.s. 

COSINOR VARIABLES 
Mesor* 194.63±49.2

4 
200.93±50.0

8 

223.17±62.87 F=15.1

3 

8.47e-

6 

n.s. 4.77e-5 1.27e-5 
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Amplitude 146.55 

[62.18] 

147.37 

[59.56] 

178.22 

[65.95] 

χ2=4.59 1.32e-

5 

n.s. 1.04e-3 1.89e-5 

Acrophase 0.74 [0.36] 0.71 [0.35] 0.71 [0.34] χ2=1.40 n.s.    

CQ 0.78 [0.16] 0.77 [0.12] 0.84 [0.13] χ2=4.30 5.99e-

5 

1.80e-2 n.s. 4.29e-5 

Period 23.94 [0.28] 23.99 [0.20] 23.94 [0.32] χ2=1.73 n.s.    

NON-PARAMETRIC CIRCADIAN ACTIVITY RHYTHM ANALYSIS 
IS 0.58 [0.13] 0.52 [0.13] 0.58 [0.16] χ2=3.00 0.008 0.008 n.s. 0.024 

IV* 0.78±0.13 0.89±0.15 0.76±0.13 F=19.0

0 

7.84e-

8 

2.20e-6 n.s. 1.80e-7 

RA 0.88 [0.08] 0.75 [0.10] 0.87 [0.13] χ2=7.23 5.61e-

12 

1.05e-12 n.s. 2.46e-10 

L5 

 

21.45±13.63 45.51±18.70 31.10±23.25 F=34.4

8 

5.32e-

11 

5.96e-15 0.003 
 

5.27e-5 

L5 Start time 0.77 [1.21] 0.52 [2.16] 0.60 [1.61] χ2=0.52 Ns.    

M10* 303.64±78.0

8 

313.76±78.2

7 

354.79±102.5

4 

F=17.9

4 

1.75e-

7 

n.s. 5.64e-6 1.77e-5 

M10 Start 
time 

33.88[2.33] 33.73[1.82] 33.33[2.00] χ2=1.48 n.s.    

Nighttime 

Activity 

Mean* 

8800.68 ± 

3835.39 

17395.83 ± 

6646.48 

12080.49 ± 

5158.74 

F=55.4

1 

 

1.87e-

17 

7.95e-15 2.00e-3 7.36e-10 

Nighttime 

Activity SD* 

5134.26 ± 

4634.81 

11939.40 ± 

9199.01 

6561.43 ± 

5255.53 

F=40.3

3 

6.45e-

14 

2.25e-12 1.20e-2 1.55e-8 

TRANSITION PROBABILITIES 

pAR day 0.05 [0.01] 0.04 [0.02] 0.04 [0.01] χ2=2.53 0.031 n.s. 0.031 n.s. 

pAR night 0.10 ± 0.02 0.08±0.02 0.09±0.02 F=18.6

2 

4.65e-

7 

8.05e-8 0.066 2.69e-5 
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Activity day 
mean 

410.43 
[124.75] 

394.55 
[162.91] 

443.78 
[164.61] 

χ2=3.28 0.0031 0.098 n.s. 0.003 

Activity 

night mean* 

54.41±25.98 89.71±29.79 73.26±39.75 F=37.7

6 

6.35e-

11 

3.28e-16 8.96e-4 2.79e-5 

pRA day 0.06 [0.01] 0.08 [0.03] 0.08 [0.01] χ2=7.12 1.49e-

12 

2.30e-11 3.28e-5 1.82e-2 

pRA night 0.10 [0.03] 0.08 [0.03] 0.09 [0.03] χ2= 

4.87 

2.96e-

6 

2.66e-6 9.55e-6 n.s. 

Rest day 

mean 

69.76 

[52.60] 

34.81 

[32.85[ 

45.35 [51.77] χ2=5.58 6.529e

-8 

5.39e-8 3.89e-2 4.61e-3 

Rest night 
mean 
 

 

0.00 [0.04] 0.00 [0.00] 0.00 [0.00] χ2=2.99 0.008 0.008 0.010 n.s. 

LIGHT EXPOSURE 

MLiT10 14.00 [1.07] 14.18 [0.99] 14.09 [1.09] χ2=0.84 n.s.    

MLiT100 13.53±1.01 14.03±0.87 13.58±1.14 F=4.87 0.013 0.022 n.s. 0.008 

MLiT500 13.58±1.28 14.09±1.14 13.43±1.62 F=4.26 0.023 0.035 n.s. 0.0008 

MLiT1000 13.50 [1.79] 14.06 [1.65] 13.30 [1.86] χ2=2.65 0.022 n.s. n.s. 0.022 

TAT10 505.00 
[223.95] 

443.27 
[244.79] 

424.92 
[325.15] 

χ2=1.40 n.s.    

TAT100 164.21 
[162.38] 

103.57 
[104.69] 

139.07 
[191.51] 

χ2=2.53 0.031 0.031 n.s. n.s. 

TAT500 64.31 
[97.89] 

42.82 
[70.63] 

57.85 
[115.63] 

χ2=2.15 0.079    

TAT1000 45.57 
[77.93[ 

28.92 
[57.14] 

44.38 [92.45] χ2=2.25 0.063    
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White 
Exposure -  
Rest 

240.41 
[1517.66] 

375.34 
[783.36] 

260.62 
[2675.55] 

χ2=0.47 n.s.    

Average 
Light 
Exposure – 
Rest 

2.19 [6.85] 2.12 [5.82] 2.35 [8.59] χ2=1.12 n.s.    

Maximum 
Light 
Exposure – 
Rest 

18.35 
[33.31] 

22.07 
[32.38] 

19.61 [50.29] χ2=1.31 n.s.    

TAT Light – 
Rest 

0 [0] 0 [0] 0 [0] χ2=1.19 n.s.    

% Invalid 
Light – Rest 

0 [4.42] 0 [2.72] 0 [3.97] χ2=0.40 n.s.    

White 
Exposure -  
Active 

173352.80 
[377212.2] 

105955 
[188162.1] 

242582.2 
[414466.3] 

χ2=2.25 0.063    

Average 
Light 
Exposure – 
Active 

230.02 
[518.78] 

170.25 
[268.76] 

311.30 
[563.60] 

χ2=2.43 0.040 n.s. n.s. 0.039 

Maximum 
Light 
Exposure – 
Active 

9047.23 
[18121.69] 

10805.89 
[12631.73] 

12913.48 
[20250.70] 

χ2=2.44 0.040 n.s. n.s. 0.040 

TAT Light – 
Active 

22.00 
[44.13] 

16.74 
[28.05] 

24.19 [55.64] χ2=2.25 0.063    
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% Invalid 
Light – 
Active 

3.25 [4.10] 2.35 [3.35] 2.11 [4.07] χ2=0.75 n.s.    

White 
Exposure -  
Sleep 

191.69 
[1387.26] 

343.19 
[735.13] 

265.88 
[2116.02] 

χ2=1.50 n.s.    

Average 
Light 
Exposure – 
Sleep 

1.49 [5.88] 2.13 [5.08] 2.51 [9.89] χ2=1.03 n.s.    

Maximum 
Light 
Exposure – 
Sleep 

15.19 
[31.25] 

19.72 
[28.22] 

17.72 [54.03] χ2=1.50 n.s.    

TAT Light – 
Sleep 

0 [0] 0 [0] 0 [0] χ2=1.13 n.s.    

% Invalid 
Light – Sleep 

0 [2.04] 0 [2.73] 0 [4.05] χ2=0.92 n.s.    

White 
Exposure -  
Daily 

219746.8 
[491295.9] 

193809.9 
[329590.8] 

374895.6 
[659211.7] 

χ2=1.92 n.s.    

Average 
Light 
Exposure – 
Daily 

163.52 
[365.01] 

161.91 
[262.10] 

337.68 
[522.37] 

χ2=1.74 n.s.    

Maximum 
Light 
Exposure – 
Daily 

13293.15 
[24961.76] 

 

18310.66 
[23305.52] 

23436.92 
[29491.73] 

χ2=1.67 n.s.    

TAT Light – 
Daily 

36.67 
[67.21] 

25.46 
[46.95] 

43.53 [83.20] χ2=2.54 0.030 n.s. n.s. 0.030 
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% Invalid 
Light – Daily 

3.51 [5.43] 3.45 [5.98] 5.48 [7.75] χ2=1.55 n.s.    

* log transformed; Bolded text: survived Bonferroni Correction 
Abbreviations: 6-SM – 6-sulfatoxymelatonin; CQ – Circadian Quotient; L5 -5 consecutive lowest-activity hours; M10 – 10 
consecutive hours with highest activity; MLiT – Mean timing of light exposure; pAR – probability of transitioning from 
active to rest state; pRA – probability of transitioning from rest to active state;  SD – Standard Deviation; SE – Sleep 
Efficiency; TAT – Time Above Threshold; TST – Total Sleep Time; WASO – Wake After Sleep Onset. 
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Figure 1: Longitudinal Changes in Clinical Variables from the 3rd Trimester of Pregnancy to  1-3 Weeks and 6-12 

Weeks Postpartum 

   
a) Montgomery Åsberg Depression 
Rating Scale (MADRS) 

b) Young Mania Rating Scale (YMRS) c) Epworth Sleepiness Scale (ESS) 

  
d) Pittsburgh Sleep Quality Index (PSQI) e) Biological Rhythms Interview of 

Assessment in Neuropsychiatry (BRIAN) 
*significant (p<0.05). 
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Figure 2: Longitudinal Changes in Sleep Variables from the 3rd Trimester of Pregnancy to  1-3 Weeks and 6-12 

Weeks Postpartum 

   

a) Sleep Efficiency (SE) b) Wake After Sleep Onset (WASO) c) Number of Awakenings  

*significant (p<0.05) 
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Figure 3: Longitudinal Changes in Cosinor Variables from the 3rd Trimester of Pregnancy to  1-3 Weeks and 6-12 Weeks 
Postpartum 

   
a) Mesor b) Amplitude c) Circadian  Quotient (CQ) 

*significant (p<0.05) 
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Figure 4: Longitudinal Changes in Non-Parametric Circadian Activity Rhythm Variables from the 3rd Trimester of 

Pregnancy to  1-3 Weeks and 6-12 Weeks Postpartum 

   

a) Interdaily Stability (IS) b) Intradaily Variability (IV) c) Relative Amplitude (RA) 

   
d) Lowest 5 Hours of Activity (L5) e) Highest 10 Hours of Activity 

(M10) 
f) Nighttime Activity Mean 
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g) Nighttime Activity Standard 
Deviation 

*significant (p<0.05) 
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Figure 5: Longitudinal Changes in Transition Probabilities Variables from the 3rd Trimester of Pregnancy to  1-3 

Weeks and 6-12 Weeks Postpartum 

   

a) Probability of Transitioning from 
Active to Rest States During the Day  

b) Probability of Transitioning from 
Active to Rest States During the Night 

c) Mean Activity during Active 
States During the Day 
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d) Mean Activity during Active States 
During the Night 

e) Probability of Transitioning from Rest 
to Active States During the Night 

f) Probability of Transitioning from 
Rest to Active States During the Day 

  

g) Mean Activity during Rest States 
During the Day 

h) Mean Activity during Rest States 
During the Night 

*significant (p<0.05); pAR - Probability of Transitioning from Active to Rest State; 
pRA - Probability of Transitioning from Rest to Active State. 
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Figure 6: Longitudinal Changes in Light Exposure Variables from the 3rd Trimester of Pregnancy to  1-3 Weeks 

and 6-12 Weeks Postpartum 

   

a) Mean Light Timing Above 
Threshold – 100 lux (MLiT100) 

b) Mean Light Timing Above 
Threshold – 500 lux (MLiT500) 

c) Mean Light Timing Above 
Threshold – 1000 lux 
(MLiT1000) 
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 d) Time Above Threshold – 100 lux 
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Chapter 6: Discussion 

6.1 Summary of Findings 
 

Biological rhythms and sleep change prior to the onset of mood episodes and as 

part of the pathophysiology of mood disorders (American Psychiatric Association, 2013; 

Jackson, Cavanagh, & Scott, 2003; Van Meter, Burke, Youngstrom, Faedda, & Correll, 

2016). Methods of investigating biological rhythms and sleep continue to be refined, with 

novel methods of analyzing ambulatory actigraphy data emerging in recent years 

(Fasmer, Fasmer, Berle, Oedegaard, & Hauge, 2018; Ortiz, Bradler, Radu, Alda, & 

Rusak, 2016; Parro & Valdo, 2018). Prior studies of biological rhythms and sleep in 

mood disorders have been limited by studies investigating only objective or subjective 

changes in sleep and biological rhythm variables, a lack of investigations of light 

exposure, or monitoring activity only for short periods, which reduces the reliability of 

actigraphy. Moreover, prior studies have not investigated the impact of objective and 

subjective measures of sleep and biological rhythms on functioning and quality of life.  

In the first study, described in Chapter 2, we thoroughly characterized sleep and 

biological rhythms in individuals with major depressive and bipolar disorders, using well-

established (sleep variables, cosinor analysis, melatonin secretion) and novel non-linear 

(transition probabilities) techniques of assessing mood and biological rhythms 

(Slyepchenko et al., 2019). We found evidence of wide-spread disturbance in sleep and 

rhythms in MDD and BD, particular to each disorder, across multiple domains, including 
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subjective sleep and biological rhythms, including circadian activity rhythms, transition 

probabilities, activity, light exposure, and overnight melatonin secretion.  

One of the novel findings of our study was that we explained a high proportion 

of the variance in quality of life and functional impairment using subjective and objective 

measures of sleep and rhythms in a mixed-diagnosis population. To our knowledge, this 

study was also one of the first to quantify light exposure in mood disorders. The findings 

of this study emphasize the importance of sleep, biological rhythms and light exposure as 

a component of the pathophysiology of mood disorders, extending to impairment of 

psychosocial functioning and quality of life.  

In pregnancy and postpartum, investigations of the impact of sleep and 

biological rhythms on mood and anxiety have been largely limited by small sample size, 

lack of thorough clinical characterization, cross-sectional design, use of only objective or 

subjective methods of characterizing biological rhythms and sleep. Additionally, there 

have been very few investigations of the impact of sleep and biological rhythms on 

anxiety during the perinatal period, in spite of the high prevalence of perinatal anxiety. 

Therefore, we investigated the role of biological rhythms and sleep assessed during 

pregnancy as predictors of mood and anxiety in the postpartum period, by following 

women who were not experiencing a mood episode during pregnancy to postpartum. 

In Chapter 3, we show that objective and subjective measures of biological 

rhythms and sleep, in combination with clinical variables and demographics collected 

during pregnancy were able to account for 50% of variance in severity in symptoms of 

postpartum depression. Interestingly, levels of overnight melatonin, and objective 
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measures of sleep and light exposure were found to be some of the most important 

predictors of PPD in our model. This highlights the importance of assessing the melatonin 

system and light exposure in future studies of biological rhythms in mood, and provides 

rationale for future investigations of light-based therapies as preventive and/or adjunctive 

treatments of PPD. 

Due to the high prevalence of anxiety disorders in the perinatal period, and the 

paucity of literature of predictors of perinatal anxiety, in Chapter 4, we investigated the 

role of sleep and biological rhythms assessed in pregnancy as potential predictors of 

postpartum anxiety. These variables, in conjunction with clinical variables were able to 

explain 49% of variance in postpartum anxiety symptoms. Daily activity rhythms, light 

exposure, and other objective and subjective variables were important in modeling this 

relationship, indicating that sleep, biological rhythms, and light may serve as important 

targets in preventing and managing anxiety in women during the perinatal period. 

In Chapter 5, we present a number of analyses describing the longitudinal 

trajectories of sleep, biological rhythms and light exposure over the perinatal period. We 

found a number of significant changes in objective sleep parameters from the 3rd trimester 

of pregnancy to 1-3 weeks and 6-12 weeks postpartum, most notably in SE, WASO, and 

number of awakenings. A number of significant changes were also seen in biological 

rhythms through the perinatal period, including variables obtained from cosinor analysis, 

biological rhythm variability, activity parameters, and probabilities of transitioning 

between rest and activity. These findings emphasize that the perinatal period is associated 
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with robust changes in biological rhythms that may or may not affect mental health 

outcomes. 

 

6.2 Significance and General Discussion 
 

The significance of the major findings of the studies described in this thesis is 

discussed at length within each chapter.  Overall, this work characterized sleep and 

biological rhythm disruption as an important transdiagnostic factor in mood disorders and 

anxiety within and outside of the perinatal period. While sleep disruptions are a well-

established characteristic of many psychiatric disorders (Baglioni et al., 2016), 

investigations of biological rhythms beyond sleep provide unique information regarding 

individuals’ 24-hour patterns of rest and activity. Understanding biological rhythms 

disruptions associated with mood and anxiety may therefore provide important targets for 

therapeutic interventions to prevent mood and anxiety worsening, and associated 

impairment in functioning and quality of life. 

Prior studies have revealed subjective disruptions in sleep and biological 

rhythms to be linked to symptom severity, QOL, and functioning in MDD and BD 

(Cudney, Frey, Streiner, Minuzzi, & Sassi, 2016; De la Fuente-Tomas et al., 2018; Giglio, 

Magalhaes, Kapczinski, Walz, & Kapczinski, 2010; Li, Lam, Chan, Yu, & Wing, 2012; 

Pinho et al., 2016). In Chapter 2, we present novel findings, where we modeled QOL and 

functional impairment as a function of sleep and biological rhythm disruption across 

individuals with BD, MDD and a group of non-psychiatric controls. Considering that 

individuals with MDD and BD continue to experience impaired functioning and QOL in 
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remission/euthymia (IsHak et al., 2015; Kessler et al., 2003; Martín-Subero et al., 2014; 

Pascual-Sanchez, Jenaro, & Montes-Rodriguez, 2019), our findings indicate that sleep 

and biological rhythms could be targeted for development of interventions to improve 

functioning and QOL in mood disorders across and beyond mood episodes.  

In Chapters 3 and 4, we presented findings of clinical variables, light exposure, 

subjective and objective measures of sleep and biological rhythms as predictors of PPD 

and postpartum anxiety symptoms. Some previous studies did not find subjective or 

objective sleep measures during pregnancy to be predictive of PPD (Bei, Milgrom, 

Ericksen, & Trinder, 2010; Coo Calcagni, Bei, Milgrom, & Trinder, 2012; McEvoy et al., 

2019), while others indicated that 3rd trimester sleep quality was linked to PPD symptom 

severity at 8 weeks and 3 months postpartum (Osnes, Roaldset, Follestad, & Eberhard-

Gran, 2019; Tham et al., 2016). Our studies add to this body of literature, suggesting that 

it is important to collect subjective and objective information on both sleep and biological 

rhythms, in addition to light, in order to predict PPD and postpartum anxiety symptoms. 

These findings indicate that biological rhythm disruptions beyond sleep may pose risk for 

PPD and postpartum anxiety.  For instance, we confirmed previously established clinical 

and demographic factors being predictive of PPD symptoms, including neuroticism and 

antenatal anxiety (Lee, Yip, Leung, & Chung, 2000; Martin-Santos et al., 2012; 

Robertson, Grace, Wallington, & Stewart, 2004). Some of the most robust predictors of 

PPD and PPA severity in our models were variables describing light exposure, 

particularly, measures which describes timing of light exposure throughout the day. To 

our knowledge, this is a novel finding within the perinatal population, suggesting that 
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light exposure may serve as an important therapeutic target for the prevention and 

treatment of perinatal mental disorders.  

In Chapter 4, we present a number of clinical variables, sleep variables and 

biological rhythm variables which predicted postpartum anxiety. There are few well-

established risk factors for anxiety during the perinatal period (Furtado, Chow, Owais, 

Frey, & Van Lieshout, 2018). For new onset anxiety, these include psychosocial factors 

(lower levels of education, family history of mental illness, cohabitating with extended 

family), hyperemesis gravidarum, and a history of sleep disorders. Meanwhile, anxiety 

worsening may be linked to maternal age and having a psychiatric comorbidity (Furtado 

et al., 2018). The study described in Chapter 4 provides new potential biological and 

psychosocial markers for development of postpartum anxiety, that can be assessed in 

pregnancy, including personality factors (neuroticism, openness), having winter 

seasonality, iron use and having a history of panic disorder/ limited symptom attacks,   

light exposure (mean timing of light exposure over 10 lux, daily percentage of invalid 

light), intradaily variability, subjective biological rhythm disruption, objective TST, and 

mean mid sleep time.  

Chapter 5 describes preliminary results of longitudinal changes in sleep and 

biological rhythms across several domains, including subjective changes, sleep variable 

changes, and changes in several different measures of biological rhythms. To our 

knowledge, changes in objective biological rhythm measures, including daily activity 

rhythm parameters from cosinor and non-parametric circadian activity rhythm analysis, 

and transition probabilities from pregnancy to postpartum have not been previously 
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described. Our findings are partially consistent with Matsumoto and colleagues, who 

found that SE decreased from pregnancy to early postpartum, while WASO increased. 

However, while their findings showed significantly decreased TST and decreased 

amplitude in early postpartum, we did not see this pattern (Matsumoto, Shinkoda, Kang, 

& Seo, 2003). Some changes in sleep and daily activity rhythms that occur early in the 

postpartum period are transient, appearing only during the first 1-3 weeks postpartum 

(e.g. decreased SE, increased WASO, increased IV and L5 activity, increased mean and 

standard deviation of night time activity, and decreased relative amplitude and probability 

of transitioning from activity to rest at night). Other changes from pregnancy remained 

significant at 6-12 weeks postpartum, such as lower number of awakenings, increased 

mesor, higher M10, and higher probability of transitioning from rest to activity during the 

day and night, which suggest progressive normalization of sleep and biological rhythms 

later in the postpartum period. However, as we did not include a pre-pregnancy timepoint 

or a non-pregnant comparison group, we are unable to conclude whether these changes 

indicate return to pre-pregnancy values, or whether they indicate a persistent disruption in 

biological rhythms. However, given reports indicating that parental subjective sleep 

duration does not return to pre-pregnancy norms until up to 6 years postpartum (Richter, 

Kramer, Tang, Montgomery-Downs, & Lemola, 2019), the former option seems less 

likely.  

In the studies described in this thesis, we investigated several domains of sleep, 

biological rhythms and light exposure in adults outside of the perinatal period, and within 

the perinatal period using similar methods. In the perinatal and non-perinatal 
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investigations, light exposure was associated with several outcomes. Interestingly, mean 

timing of light exposure occurred later in the day for individuals with MDD and BD in 

Chapter 2. In addition, mean timing of light exposure during pregnancy was a predictor of 

both PPA severity (Chapter 4) and PPD severity (Chapter 3). In a longitudinal analysis, 

from pregnancy to 1-3 weeks and 6-12 weeks postpartum, we saw changes in light 

exposure across this period, including changes in mean timing of light exposure at 1-3 

weeks postpartum, compared to the 3rd trimester of pregnancy and 6-12 weeks 

postpartum. Additionally, we saw a decrease in time spent in lighting conditions below 

100 lux from pregnancy to 1-3 weeks postpartum, and lower average light exposure at 6-

12 weeks postpartum compared to 1-3 weeks postpartum. However, these changes did not 

survive a strict Bonferroni correction (Chapter 5). To our knowledge, this is the first 

investigation to look at the effect of timing and quantity of light exposure during 

pregnancy on postpartum mood. Previously, Crowley & Youngstedt speculated that 

women may spend more time in dim light conditions during the perinatal period, to 

potentially make up for lost nighttime sleep (Crowley & Youngstedt, 2012). Overall, little 

is known about light exposure in mood and anxiety disorders, in spite of prior 

investigations of bright light therapy and blue light blocking glasses found to be effective 

in mood disorders (Henriksen et al., 2016; Perera et al., 2016; Sit et al., 2018), and 

preliminary investigations showing improved mood in the perinatal population from light-

based therapies (Bennett, Alpert, Kubulins, & Hansler, 2009; Corral, Wardrop, Zhang, 

Grewal, & Patton, 2007; Swanson, Burgess, Zollars, & Todd Arnedt, 2018). In our 

studies, we did not investigate the mechanism behind changes in light exposure and 
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timing in BD and MDD, or the effect of light exposure on PPD and PPA. Changes in the 

timing of light exposure could be reflective of a later phase of activity throughout in BD 

and MDD, indicating that those with BD and MDD are outdoors or exposed to higher 

amounts of light indoors later in the day, when they’re more active, compared to their 

counterparts. Considering that light exposure can also suppress melatonin secretion 

(Claustrat, Brun, & Chazot, 2005), it is possible that later timing of exposure to light 

leads to a later phase of melatonin secretion, and consequent phase delay. However, in 

Chapter 2, we did not see other markers of phase delay (e.g. mean mid sleep time, M10 

and L5 start time, or either chronotype measure) in MDD or BD. Interestingly, changes in 

light exposure can also interact with the hypothalamic-pituitary-adrenal axis, as light 

exposure affects the phase and amplitude of cortisol secretion (Dijk et al., 2012). 

Use of actigraphy methods that do not rely on fitting to 24 hours may be more 

adept at describing biological rhythm disturbances, particularly in populations where 

there are significant disturbances in sleep (Gonzalez, Tamminga, Tohen, & Suppes, 

2014). Populations studied in this thesis – individuals with mood disorders, and women 

during the perinatal period -- are well known to have disruptions in sleep. Additionally, 

variability measures in actigraphy are increasingly becoming acknowledged as important 

beyond solely relying on means.  Krane-Gartiser and colleagues recently published a 

study where they used actigraphy to differentiate between healthy controls and currently 

euthymic individuals with BD, finding that to optimally discriminate between these 

groups, it was necessary to combine the means of sleep variables, their variability and 

non-parametric circadian activity rhythm measures (Krane-Gartiser et al., 2019).   
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Advances in technology and increased collection of large datasets have now 

provided the opportunity for researchers to monitor and model complex phenomena, such 

as sleep, biological rhythms, neural function and other related physiological and 

behavioural domains. An important methodological consideration of Chapters 3 and 4 

was using machine learning methods in combination with traditional statistical methods. 

This approach aimed to utilize the inferential nature of traditional statistical methods, 

where the model was created to determine whether there is a relationship between the 

predictor and outcome variables, and to estimate the confidence of the existence of this 

relationship through hypothesis testing. Inferential approaches using traditional statistics 

become less feasible, as predictors become more numerous, and the relationships between 

predictors and outcomes therefore become more numerous and complex, particularly 

when it comes to non-linear relationships. Traditional statistical modeling often relies 

upon creating linear models, with linear interactions added to the model to account for 

relationships between the variables (Bzdok, 2017; Bzdok, Altman, & Krzywinski, 2018).  

Machine learning models, however, may improve the predictive power of a 

model, without considering potential inferential relationships a priori, and are data-

driven. ML approaches are able to account for complex, non-linear relationships between 

variables. Importantly, they are well-matched to high-dimensional data, and are able to 

approach large datasets with many predictor variables (Jordan & Mitchell, 2015). In 

neuroscience, these types of datasets are becoming increasingly available, with the 

advance of technologies including high-throughput methods like actigraphy, 

neuroimaging, and whole genome sequencing, in addition to large, multisite studies, 



Ph.D. Thesis – A. Slyepchenko; McMaster University – Neuroscience.  

 229 

investigating numerous predictors of, for instance, treatment response (e.g.(Lam et al., 

2016)). 

Machine learning models and classical statistical inference models can therefore 

serve different, complimentary modeling purposes. In our investigation, we used both of 

these approaches to address inference and prediction, finding similarities and differences 

in findings. For instance, in Chapter 3, we used an externally collected data set to test our 

ML models, mimicking the use of these models in settings outside of our lab. We 

encountered that model accuracy was decreased in this set of analyses, compared to those 

where we split the newly collected data set into a 75% training – 25% test set, despite the 

larger sample size. The externally collected dataset differed from ours in several ways: 

actigraphy assessments in the external dataset were collected over a longer period (3 

weeks, compared to this dataset’s 2 weeks), and levels of 6-SM were not collected. 

Moreover, in Chapter 4, we were not able to test our model on an externally collected 

dataset, as this external data set did not assess perinatal anxiety. This example highlights 

important real-world clinical and research conditions. By using machine learning models, 

we were able to account for more complex, non-linear relationships between the variables 

in the model, which is not possible to do using linear regression.  Given the complexity of 

the human experience, it is likely that mood and anxiety do not strictly follow linear 

patterns.  However, other investigations or clinicians may not have access to clinical 

instruments or biological sampling methods, or may not assess certain variables in their 

practice. In this situation, it is not possible for other clinicians or researchers to adjust the 



Ph.D. Thesis – A. Slyepchenko; McMaster University – Neuroscience.  

 230 

final machine learning models from these investigations to fit their sampling methods. 

Linear regressions, however, allow for external adjustment.  

A prior study used electronic health record data to create machine learning 

algorithms from pregnancy data to predict PPD, achieving high sensitivity (0.87-0.99), 

but very low specificity (0.39-0.62) (Wang, Pathak, & Zhang, 2019).Variables in this 

model included race, obesity, anxiety and depressive symptoms during pregnancy, pain 

and current medications (Wang et al., 2019)). Due to the methodological differences, in 

that our investigation used continuous, rather than categorical outcomes, we are unable to 

compare the performance of our algorithm to the one presented in Wang, Pathak and 

Zhang’s study. 

 

6.3 Limitations 

The limitations of each individual study are described in detail within each 

chapter of this thesis. The overall limitations of the studies are highlighted below.   

One important limitation to our investigations is that prior studies suggest that 

actigraphy is less reliable than polysomnography in detecting quiet wakefulness 

compared to sleep, particularly in individuals with worse sleep quality. Longer periods of 

recording activity (7-14 nights) improve the assessment capability of actigraphy to record 

sleep parameters (Van de Water, Holmes, & Hurley, 2011). To partially address this, our 

studies included longer periods of actigraphy collection (15 days), allowing for more 

accurate characterization of sleep and daily activity rhythm patterns. 
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Additionally, in both studies presented in this thesis (Chapters 2-5), some of the 

participants enrolled were taking psychotropic medications.  Overall, many psychotropic 

medications can affect sleep and biological rhythms, including melatonin secretion 

(Harding, Alford, & Powell, 1985; Mayers & Baldwin, 2005; Moreira & Geoffroy, 2016; 

Waters, Faulkner, Naik, & Rock, 2012). Therefore, we could not ascertain the impact of 

medication on sleep and biological rhythms within our studies. Similarly, we did not 

assess whether participants were undergoing psychotherapy, which may also impact sleep 

and biological rhythms. The psychoeducation component of psychotherapy often teaches 

clients regarding importance of sleep hygiene. It is important to note that many women in 

our perinatal sample were being followed by clinicians throughout the perinatal period, if 

they had a history of psychiatric disorders. Psychoeducation about sleep hygiene and 

mood may have influenced the sleep hygiene in these women, and we did not investigate 

participants’ adherence to sleep hygiene.  

In Chapter 2, we were unable to compare currently depressed and euthymic 

patients, due to our sample size limitations. We also did not recruit individuals in 

[hypo]manic and mixed states, and therefore were unable to investigate associated 

differences in light exposure, transition probabilities, and daily activity rhythm patterns 

across all mood states. Moreover, Chapter 2 was a cross-sectional study, indicating that  

we could not evaluate the causal relationships between mood, sleep and biological 

rhythms within this investigation.  

In Chapter 3, we were not able to look at predicting postpartum depression 

categorically. Our sample of women was euthymic at enrolment, and the rates of PPD 
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development in our sample are consistent with population-based studies that have found 

7-13% of women to develop PPD (Gavin et al., 2005). As this study was primarily 

designed to investigate postpartum depression, in Chapter 4, we did not assess anxiety 

disorder diagnoses in the postpartum period with a structured interview. Moreover, we 

were not able to look at the influence of individual anxiety disorder diagnoses on sleep 

and biological rhythm variables, due to the heterogeneity of anxiety disorders within our 

sample. Since the study’s primary aim was to investigate mood worsening, we did not 

include measures such as intolerance of uncertainty, different types of anxiety-related 

disorder symptoms (e.g. OCD), which are known to also influence anxiety. We did not 

look at all extant anxiety disorders, such as specific phobias, though prevalence of 

specific phobias during pregnancy is as low as 0.03% (Goodman, Watson, & Stubbs, 

2016). Additionally, prior evidence suggests that different anxiety and related disorders 

may have different associated sleep disturbances (Cox & Olatunji, 2016). This may add 

heterogeneity to the sleep disturbances seen in this investigation. 

 

6.4 Future Directions 

 The work described in this thesis provides a basis for several future lines of 

investigation. The first of these is to more thoroughly investigate the role of light in mood 

disorders and in perinatal mood and anxiety. There have only been small, preliminary 

trials investigating light-based therapies in PPD, showing promising improvements in 

depressive symptoms following bright light therapy and blue light blocking glasses 

(Bennett et al., 2009; Corral et al., 2007; Swanson et al., 2018). Larger randomized 
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controlled trials should be conducted investigating these effects. To our knowledge, no 

study has previously investigated the effects of bright light therapy on postpartum 

anxiety. Additionally, with the advent and popularity of consumer “smart” technologies 

which allow users to control the timing, colour and brightness of the lighting in their 

homes, future studies could attempt to optimize the timing and brightness of this ambient 

light exposure to better suit individuals who are more prone to disruptions in biological 

rhythms (Bedrosian & Nelson, 2017).  

As outlined in Chapter 5 of this thesis, prior studies have yet to address 

trajectories of depressive or anxiety symptoms as a function of objective sleep and 

biological rhythms. Based on the findings outlined in Chapter 2, future investigations 

could look at therapies targeting sleep and biological rhythms as adjunct therapies to help 

improve functioning and quality of life in individuals with mood disorders. Prior 

investigations have found that treating insomnia with cognitive behavioural therapy for 

insomnia improves mood and functioning in BD (Harvey et al., 2015) and QOL in MDD 

(Shimodera et al., 2014), however randomized controlled trials to target functioning and 

QOL in individuals with remitted mood disorders have not been conducted to our 

knowledge. Therapeutic interventions targeting biological rhythms, such as interpersonal 

and social rhythm therapy, bright light therapy, or blue-light blocking glasses could also 

be investigated as an intervention to improve functioning and quality of life. 

Future investigations could also look at the influence of sleep and biological 

rhythms on different types of anxiety symptoms during the perinatal period. Our Chapter 

4 focused only on GAD symptoms, and did not, for instance, investigate symptoms of 
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PTSD, OCD, or panic disorder. A recent systematic review suggested that there are 

differences in subjective and objective sleep across different anxiety disorders (Cox & 

Olatunji, 2016).  Studies should therefore investigate whether different markers of sleep 

and biological rhythms during pregnancy are predictive of different types of postpartum 

anxiety. Another line of investigation could look at the influence of sleep and biological 

rhythms on development of new onset anxiety during postpartum as compared to 

postpartum anxiety worsening. According to a recent meta-analysis, having a history of 

sleep disorders is a risk factor for developing new onset perinatal anxiety (Furtado et al., 

2018).  

It would be interesting to assess whether these predictors of postpartum anxiety 

and depression are valid cross-culturally. As prevalence of perinatal anxiety is higher in 

low- to middle-income countries (Dennis, Falah-Hassani, & Shiri, 2017), future studies 

could assess the validity of the novel markers presented in Chapter 4 across different 

countries and cultures. 

While these studies described differences in light exposure timing in MDD and 

BD, and the predictive effect of light exposure timing on PPD and PPA, the mechanism 

behind these differences is unknown. Future studies should prospectively monitor light 

exposure changes in conjunction with measures of biological rhythm, sleep, and mood, in 

order to disentangle the temporal relationship between light exposure, biological rhythms, 

sleep and mood. 

A final note for future investigators is that the machine algorithms used in 

Chapters 3 and 4 are relatively standard machine methods. Future studies could use more 
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advanced ML methods, and could try to predict categorical diagnosis of postpartum 

depression or postpartum anxiety within larger samples. 

 

6.5 Conclusion 

The work described within this thesis shows that sleep and biological rhythm 

disruptions occur across many domains in mood disorders, including sleep, light 

exposure, rhythms of activity beyond sleep and, melatonin. We found that these 

disruptions are associated with quality of life and functioning in an adult sample of 

individuals with BD, MDD and healthy controls. Additionally, we found that biological 

rhythms and sleep in combination with clinical variables predict severity of postpartum 

depressive and anxiety symptoms. This work highlights the importance of sleep and 

biological rhythms as targets for interventions across different outcomes, and across 

different mood diagnoses. 
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