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ABSTRACT

Let F be a free group of finite rank. Given words u, v ∈ F , J.H.C. Whitehead
[Whitehead, 1936b] solved the decision problem of finding an automorphism
φ ∈ Aut(F ), carrying u to v . He used topological methods to produce an algorithm.
Higgins and Lyndon [Higgins and Lyndon, 1974] gave a very concise proof of the
problem based on the works of Rapaport [Rapaport, 1958].

We provide a detailed account of Higgins and Lyndon’s proof of the peak
reduction lemma and the restricted version of Whitehead’s theorem, for cyclic
words as well as for sets of cyclic words, with full explanation of each step. Then,
we give an inductive proof of Whitehead’s minimization theorem and describe
Whitehead’s decision algorithm.

Noticing that Higgins and Lyndon’s work is limited to the cyclic words, we
extend their proofs to ordinary words and sets of ordinary words.

In the last chapter, we mention an example given by Whitehead to show
that the decision problem for finitely generated subgroups is more difficult, and
outline an approach due to Gersten to overcome this difficulty.

We also give an extensive literature survey of Whitehead’s algorithm.
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CHAPTER 1

OVERVIEW

• In this chapter, we give an overview of this thesis. Whitehead, in two famous
papers [Whitehead, 1936a][Whitehead, 1936b], proved a decision problem
for automorphism groups of free groups. We call this Whitehead’s first
decision problem.

Given U = {u1, . . . ,um} and V = {v1, . . . , vm}, two finitely ordered subsets of
a free group of finite rank, Fn , to decide if there is an automorphism of Fn

carrying U to V .

Whitehead proved the problem by using topological methods. This pro-
vided an algorithm to find such an automorphism, called Whitehead algo-
rithm. Later, Rapaport [Rapaport, 1958] proved the problem using purely
algebraic methods and Higgins and Lyndon [Higgins and Lyndon, 1974]
gave a simplified version of her proof.

• The goal of this thesis is to give a detailed account of Whitehead’s first
decision problem, following Higgins and Lyndon’s proof. Their version of
Whitehead’s theorem [Lyndon and Schupp, 2001, Proposition 4.17, p. 32] is
rather weak. We call this restricted form or restricted version of Whitehead’s
theorem. Though, Whitehead’s proof works for both the cyclic words and
ordinary words (true words, as per Whitehead), Higgins and Lyndon’s proof
is limited to cyclic words. We extend these proofs to ordinary words.

• In the second chapter, we provide a historical significance of this problem.
We provide a brief survey from Nielsen’s work on automorphism group
of free groups in early 1900s to recent developments on computational
complexity of the algorithm.

• In the third chapter, we introduce Whitehead automorphisms, product
counts and some necessary preliminaries, and give a detailed proof of some
properties of Whitehead automorphisms and product counts. Basically,
this chapter consists of necessary materials for the build up of the theorem.

• The following chapter contains three sections.

– In §4.1, we prove the restricted version of Whitehead’s theorem for
cyclic words. First, we prove the peak reduction lemma. We will see
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that the proof of this lemma is quite long and consists of five cases.
Then, using this lemma, we give a proof of the restricted version of
the theorem.

– §4.2 consists of the proof of Whitehead’s main theorems: which are,
finding a minimal word in the automorphic orbit and finding a se-
quence of Whitehead automorphisms between two equivalent min-
imal words. Then we show how this theorem provides Whitehead’s
decision algorithm. We don’t emphasize the efficiency of the algo-
rithms. For that, we refer to the appropriate papers.

– In §4.3, we turn our attention to the finite sets of cyclic words. We
give a detailed proof of the peak reduction lemma and the restricted
version of Whitehead’s theorem. Then, we notice that, given the
lemma and the theorem, the main theorem follows when replacing
cyclic words by sets of cyclic words.

• In chapter 5, we extend these proofs to ordinary words and the finite sets
of ordinary words.

• In the following chapter, we briefly discuss Whitehead’s counter example
to the problem of finding a sequence of automorphisms for two equivalent
finitely generated subgroups of free groups, and Gersten’s idea to solve it.
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CHAPTER 2

A BRIEF HISTORICAL SURVEY

The central goal of this section is to provide a historical survey on Whitehead’s
decision problem in the automorphisms of free groups. Before describing the
problem itself, we shall go further back to discuss a few relevant works of Nielsen
which are crucial for proving Whitehead’s problem.

Nielsen, in [Nielsen, 1917], proved that mapping class group of a torus minus
a point is isomorphic to the automorphism classes of free group of rank 2, F2.
While proving this, Nielsen showed that Aut(F2) is generated by some special
automorphisms, called Nielsen transformations or elementary Nielsen automor-
phisms, which he generalized in his next papers [Nielsen, 1918][Nielsen, 1924].
Readers may go to [Magnus et al., 2004, Theorem 3.2, pp. 131] for the proof of
the theorem:

The elementary Nielsen automorphisms of Fn on the generators x1, x2, . . . , xn ,
n finite, are a finite set of generators for Aut(Fn).

In 1935, Whitehead proved that if a set of words, W forms a part of a ba-
sis of Fn , then the Whitehead graph of W is either not connected or has a cut
vertex [Whitehead, 1936a, lemma]. This is known as Whitehead’s cut vertex
lemma, which provides an algorithm to find a basis of the free group. He proved
this by representing words on three dimensional manifolds and introducing a
new set of special automorphisms, called Whitehead automorphisms. Stong
[Stong, 1997] and Stallings [Stallings, 1999] extended this to the separability
of free groups. Stallings’ proof uses Whitehead’s techniques of representing
words on manifolds. Hoare [Hoare, 1988] gave a combinatorial proof of the
cut vertex lemma using Gersten’s graph which was developed to study auto-
morphism group of free groups in a series of papers [Gersten, 1987][Gersten,
1983][Gersten, 1984a]. A careful treatment of the lemma and an extension to
generalized cut-vertex lemma was given recently by Warren Dicks [Dicks, 2017b,
§4,§5]. Goldstein [Goldstein, 1999] used Whitehead’s 3-manifold techniques
to introduce a bound for length of a word. Later, using same techniques, Clif-
ford and Goldstein [Clifford and Goldstein, 2010] provided an algorithm which
determines whether a subgroup of a free group contains a primitive element,
which was an open problem. Wade [Wade, 2014] produced an algorithm, based
on Stallings foldings [Stallings, 1983], to decompose an automorphism as a
product of Whitehead automorphisms. Dicks [Dicks, 2014] gave an algorithm
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that sandwich a subgroup of a free group between free product factors and ob-
tained a simplified Clifford-Goldstein algorithm using Whitehead’s cut-vertex
lemma. Wilton [Wilton, 2018] used Whitehead’s graph and cut vertex lemma
to prove Gromov’s question: Does every one-ended hyperbolic group contain a
surface subgroup? Kim and Oum [Kim and Oum, 2014] formulated a stronger
Whitehead graph to answer: Does every one-ended double of a non-abelian free
group have a hyperbolic surface subgroup? Heusener and Weidmann [Heusener
and Weidmann, 2019] showed that Whitehead’s cut vertex lemma is a mere
consequence of Stallings folds [Stallings, 1983]. Clay, Conant and Ramasub-
ramanian [Clay et al., 2014] proved that for F2, the probability of Whitehead
graph with l edges is 1/l 2.

In a subsequent paper [Whitehead, 1936b], Whitehead gave an answer to
the decision problem of finding an automorphism between two given words
in a finely ranked free group. Whitehead’s proof was based on the topological
methods that he developed in the previous paper. Basically, in §3 of the paper,
he showed that if a set of words (cyclic or ordinary) can be reduced by an au-
tomorphism then it can also be reduced by a random sequence of Whitehead
automorphisms, and two equivalent minimal sets of words can be interchanged
by Whitehead automorphisms, keeping the lengths fixed (level transformations).
This provides an algorithm for the problem above, called Whitehead’s algorithm.

Rapaport [Rapaport, 1958] reproved Whitehead’s first problem using a purely
algebraic method. Her effort was simplified further by Higgins and Lyndon [Hig-
gins and Lyndon, 1974]. McCool [McCool, 1974] gave a refinement of the argu-
ment given by Higgins and Lyndon, and obtained a presentation for the automor-
phism group of a finitely generated free group and for certain stabilizers in a free
group. Hoare [Hoare, 1979] described Whitehead automorphisms by cutting
and pasting of coinitial graphs, and using this unified Higgins and McCool’s work.
Stallings [Stallings, 1987] first noticed a connection between Gersten’s graphical
representation of automorphisms and Whitehead’s three dimensional model.
This connection is explained in details with some added results by Goldstein and
Turner [Goldstein and Turner, 1984]. Collins and Zieschang in a series of pa-
pers [Collins and Zieschang, 1984a][Collins and Zieschang, 1984b][Collins
and Zieschang, 1984c] generalized Whitehead’s algorithm to a free product of
finitely many indecomposable factors. Culler and Vogtman [Culler and Vogt-
mann, 1986] gave a refinement of Higgins and Lyndon’s peak-reduction lemma
using graphical nature of Whitehead moves developed by Hoare, while studying
outer automorphisms of free groups. Later, Clay and Forester generalized the
notion of Whitehead moves from Culler and Vogtman’s Outer space to G-trees
[Clay and Forester, 2009]. Extensions of Whitehead’s algorithm have been made
to the surface groups by Levitt and Vogtmann [Levitt and Vogtmann, 2000], the
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torsion free hyperbolic groups by Bogopolski and Ventura [Bogopolski and Ven-
tura, 2011], the hyperbolic groups by Dahmani and Guirardel [Dahmani and
Guirardel, 2011], the toral relatively hyperbolic groups by Kharlampovich and
Ventura [Kharlampovich and Ventura, 2012] and the right angled Artin groups
by Day [Day, 2009][Day, 2014]. In fact, Bogopolski and Ventura provided the
algorithm for the mixed tuple of words (cyclic and ordinary), Dahmani and
Guirardel’s proof uses relative Grushko and JSJ decompositions which is a com-
pletely different approach to other proofs, and Day found a finite presentation
for the automorphism group of Artin group that generalized the McCool’s re-
sult on finite presentation. Kristić, Lustig and Vogtmann [Krstić et al., 2001,
Theroem 1.1] produced an equivariant Whitehead algorithm, using which they
solved the conjugacy problem for roots of Dehn twist automorphisms. Clarke
and Goldstein proved certain stability of numerical invariants in a free group
which they introduced in [Clark and Goldstein, 2005], using Whitehead’s 3D
model. Lee [Lee, 2002] used Whitehead automorphisms and Whitehead graph to
prove that an endomorphism of a free group that preserves automorphic orbits is
necessarily an automorphism. In a later paper, using Whitehead’s algorithm, the
author [Lee, 2007] produced an algorithm to decide whether or not two cyclic
words u and v have the property that the length of φ(u) and φ(v) is equal for
every automorphism φ in F2. Dicks [Dicks, 2017a] provided a graph theoretical
argument and proved Whitehead’s algorithm. Gutiérrez, Núñez and Ramírez
[Manjarrez-Gutiérrez et al., 2015] used Whitehead’s topological methods to
construct circular handle decompositions of knot complements with free Seifert
surfaces in the three-dimensional sphere. Chrona, Geller and Shpilrain [Chorna
et al., 2017] gave an algorithm using peak-reduction lemma which says that if a
sequence of A(k) and B(k) reduces complexity of a matrix M ∈ SL2(Z), then there
is single such multiplication that reduces the complexity, where A(k) = (1,k,0,1)
and B(k) = (1,0,k,1) are 2×2 matrices viewed as elements in R4.

There have also been efforts to improve the computational complexity of
Whitehead’s algorithm. It is well known that the reduction to minimal part of
Whitehead algorithm is fast whereas, the second part (finding a path between
two minimal words of same length) is very slow. Myasnikov and Shpilrain [Myas-
nikov and Shpilrain, 2003] improved the second part of the algorithm with
polynomial time complexity and proved it for F2. Lee [Lee, 2006] showed that
the algorithm is bounded by polynomial time for free group of rank ≥ 2. Khan
[Khan, 2004] further improved the algorithm to quadratic time complexity us-
ing Whitehead graphs. Haralick, Miasnikov and Myasnikov [Haralick et al.,
2005][Miasnikov and Myasnikov, 2004] showed by experimental methods that,
for rank ≥ 2, Whitehead algorithm is very fast. Myasnikov and Haralick [Myas-
nikov and Haralick, 2006] produced a new algorithm for Whitehead minimiza-
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tion problem, called a hybrid search algorithm in the sense that it employs several
stochastic, as well as deterministic procedures based on the heuristic methods
of [Haralick et al., 2005]. Kapovich, Schupp and Shpilrain [Kapovich et al.,
2006] showed that for an exponentially generic input, first part of Whitehead’s
algorithm terminates immediately and the second part has linear time complex-
ity. Roig, Ventura and Weil [Roig et al., 2007] produced first fully polynomial
algorithm for Whitehead minimization problem. The authors showed that their
algorithm is polynomial both in length of input words and in the rank of free
group as opposed to the earlier algorithms by Whitehead and Gersten, which
had an exponential dependency in the rank of free group. To prove this, the au-
thors reduced the length reduction problem to classical MaxFlow-MinCUt prob-
lem in graph theory, which has polynomial time complexity, using Whitehead
graph. Kapovich [Kapovich, 2007], using geodesic current, gave a theoretical
justification of some experimental results provided by Haralick, Miasnikov and
Myasnikov via pattern recognition methods regarding Whitehead algorithm. It
is still unknown if Whitehead’s algorithm (second part) has polynomial time
complexity for rank > 2.

Whitehead mentioned the generalization of his first problem to the finitely
generated subgroups of free groups in [Whitehead, 1936b, p. 800] but did not
find a solution. This problem remained unsolved for some time until Gersten
[Gersten, 1984b] realized that it can be solved by using a different "complexity"
to the length of the words. His main idea was to represent a free group as a
fundamental group of wedge of circles, and any subgroup of the free group as a
covering space. Kalajdžievski [Kalajdžievski, 1992] extended Gersten’s idea to
topography and proved that the centralizer of any finite subgroup of automor-
phism group of a finite rank free group is finitely presented. Using Gersten’s idea,
Diao and Feighn [Diao and Feighn, 2005] provided an algorithm which, given
a finite graph of finite rank free groups, produces the Grushko decomposition
of its fundamental group. Bogopolski [Bogopolski, 2001] extended this result
for the finitely generated subgroups of fundamental groups of compact surfaces.
Bassino, Nicaud and Weil [Bassino et al., 2016] showed that a finitely generated
subgroup of a free group, chosen uniformly at random, is strictly Whitehead
minimal with overwhelming probability.
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CHAPTER 3

WHITEHEAD AUTOMORPHISMS

In §3.1 of the chapter, we review some preliminaries regarding free groups and
fix some notations. In §3.2, we give equivalent definitions of Whitehead auto-
morphisms and prove some properties. Then, in §3.3, we introduce the product
count of two subsets of a basis for a cyclic word and a set of cyclic words. At last,
in §3.4, we prove the necessary results for proving Whitehead’s theorem.

3.1. Free groups

In this section, we discuss free groups, cyclic words and elementary reduction to
avoid any confusion regarding the notions later on.
Definition 3.1.1. (Free Group) Let X be a subset of a group F and G be another
group. We say F is a free group with basis X , if for any function φ : X →G there
exists a unique homomorphism φ∗ : F →G such that φ∗|X =φ i.e., the following

diagram commutes.

X G

F

ι

φ

∃!φ∗
.

Proposition 3.1.2. F = 〈X 〉.
Proof. Notice that, we have 〈X 〉 ≤ F . Let j : 〈X 〉→ F be the inclusion. Consider
the following inclusion: X

i
,−→〈X 〉. Since F is free, we have a unique homomor-

phism i∗ : F →〈X 〉. Now, for the composition: X
i
,−→ 〈X 〉 j

,−→ F , we have idF . The
following diagram makes the above argument clear.

X 〈X 〉 F

F

ι

i j

i∗
i dF

From the diagram, we see that both j◦i∗ and idF are extensions of i . Therefore,
j ◦ i∗ = idF . Since idF is surjective, j is surjective. Therefore, F = 〈X 〉. �

A free group F , with basis X is denoted by F (X ). If X is finite with cardinality
n > 0, we say F (X ) has rank n, and denote it by Fn or F (n).
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For example, (Z,+) is a free group of rank 1, with the generator 1.
In this project, we will only deal with free groups of finite rank.

Definition 3.1.3. (Words, length of a word, length of a set of words, elemen-
tary reduction and reduced words)

• Since Fn is generated by X = {x1, . . . , xn}, any element w ∈ Fn is given by
w = xε1

i1
· · ·xεn

in
, for 1 ≤ i1, . . . , in ≤ n and εi ∈ {−1,1}. Therefore, w is a finite

sequence of basis elements. This w is said to be a word in Fn .
From now on, we write the basis of Fn to be X ±1 = X ∪X −1, where X −1 =
{x−1

1 , . . . , x−1
n }. Therefore, a word, w is a finite sequence of the basis elements

(called letters, by Whitehead), w = a1 · · ·am , for m ≥ 0 and ai ∈ X ±1.
For m = 0, we write w = 1, the empty word or the identity element of Fn .

• A word w , may consists of forms aa−1 or a−1a, for a ∈ X ±1. An elementary
reduction is deletion of these forms.

• We say a word w is reduced if it does not contain any of the forms aa−1 or
a−1a, for a ∈ X ±1.

• The length of a word |w |, is defined to be the number of letters in it. For
example, if w = x1x3x−1

1 and u = x1x2x−1
2 , then |w | = 3 and |u| = 3. Notice,

here u is an unreduced word.

• Given a set of words W , the length of W is given by |W | =∑
w∈W |w |.

From now on, a word is always considered to be reduced, unless mentioned
otherwise.

Words are divided into two types: cyclic words and ordinary words (true words
as per Whitehead [Whitehead, 1936a]).
Definition 3.1.4. (Cyclic Words) A cyclic word of length k is an equivalence
class of a cyclically ordered set of k letters ai , for i ∈Zk , where Zk is the additive
group of integer modulo k.

A cyclic word can also be thought of as an equivalence class of a set of k letters
of above form, where equivalence relation is cyclic permutation. For example,
we say x1x2x3x−1

2 is a same cyclic words as that of x2x3x−1
2 x1.

For us, a cyclic word is always reduced i.e., ai ai+1 6= 1, for i ∈ Zk , unless
mentioned otherwise.
Definition 3.1.5. An ordinary word, w is defined to be a sequence of letters
x y z . . . , for x, y, z ∈ X ±1 such that no consecutive pair of letters are inverses of
each other.

For a detailed account of ordinary words see Chapter 5.
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3.2. Whitehead Automorphisms

This section deals with some special kind of automorphisms, introduced by
J.H.C. Whitehead [Whitehead, 1936b][Lyndon and Schupp, 2001, p. 31], called
Whitehead automorphisms. We prove some properties of these automorphisms
which will be useful to prove Whitehead’s theorem.

Definition 3.2.1. Let Fn be a free group with basis X ±1. A Whitehead automor-
phism, τ of Fn is defined to be one of the following two kinds:

(I) τ permutes the elements of X ±1, type (I) Whitehead automorphism.

(II) For some fixed a ∈ X ±1, τ maps each element x ∈ X ±1 into one of x, xa,
a−1x, or a−1xa, type (II) Whitehead automorphism. For a type (II) White-
head automorphism, we write τ = (A, a), where the set A consists of all
x ∈ X ±1 such that xτ= xa or xτ= a−1xa, including a but excluding a−1.

Let Ω denote the set of all Whitehead Automorphisms in Fn .

Here we give another definition of type (II) Whitehead automorphisms.

Definition 3.2.2. Given a ∈ X ±1 and A ⊂ X ±1 such that a ∈ A, a−1 ∉ A, we define
(A, a) as follows:

x(A, a) =


xa, if x ∈ A, x−1 ∉ A

a−1xa, if x, x−1 ∈ A

a−1x, if x ∉ A, x−1 ∈ A

x, if x, x−1 ∉ A

(3.1)

for any x ∈ X ±1, x 6= a, a−1, and a, a−1 are fixed by (A, a).

Remark 1. Note that, it is necessary for (A, a) to fix a and a−1. If possible, suppose
that a(A, a) = a2. Now any automorphism F → F induces an automorphism
F̄ → F̄ , where F̄ = F /[F,F ] 'Zn . Also, note that Aut(F̄ ) 'GL(n,Z). Now, a 7→ a2

induces [a] 7→ 2[a]. So, the matrix of the induced automorphism will have a
column (2,0, . . . ,0)T . Therefore, the determinant of the matrix will never be ±1.
This is a contradiction. Hence, the only possibility is that a(A, a) = a and similarly,
a−1(A, a) = a−1.
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Proposition 3.2.3. Definition 3.2.1 and Definition 3.2.2 are equivalent, for type
(II) Whitehead automorphisms.

Proof. ( =⇒ ) Let A ⊂ X ±1 be the subset such that A consists of all x ∈ X ±1 such
that x(A, a) = xa or x(A, a) = a−1xa, including a but excluding a−1.

• Let x 7→ xa, for x ∈ A, x 6= a. So, x−1 7→ a−1x−1. Now, according to Definition
3.2.1, this suggests x−1 ∉ A. Hence, we get, x 7→ xa, for x ∈ A, x−1 ∉ A,
x 6= a, a−1.

• Let x 7→ a−1xa. In that case, x−1 7→ a−1x−1a. Hence, from Definition 3.2.1,
x−1 ∈ A.

• Let x ∉ A. According to the definition of type (II) Whitehead automorphism,
x is mapped into either a−1x or x by (A, a).
Take x 7→ a−1x. Therefore, x−1 7→ x−1a. Hence, according to Definition
3.2.1, x−1 ∈ A. So, x 7→ a−1x, for x ∉ A and x−1 ∈ A.
Now, x 7→ x =⇒ x−1 7→ x−1. This means x−1 ∉ A, according to Definition
3.2.1.

All these cases prove this direction.

( ⇐= ) Given (A, a) in Definition 3.2.2, it is clear that A is indeed the set defined
in Definition 3.2.1. �

Remark 2. For computation purposes, we will always use Definition 3.2.2 as the
definition for type (II) Whitehead automorphisms.
Remark 3. The action of an automorphism on a word is defined as follows. Let
w = x y z · · · be a word. Then wτ := (xτ)(yτ)(zτ) · · · .

3.2.1 Some properties of Whitehead Automorphism

(p-i) Given (A, a), we have (A, a)−1 = (A−a +a−1, a−1).

PROOF. Let S = (A−a +a−1, a−1). Using Definition 3.2.2, for x 6= a, a−1, we
have,

x(A, a)S =


(xa)S = xa−1a = x, if x ∈ A, x−1 ∉ A

(a−1xa)S = a−1axa−1a = x, if x, x−1 ∈ A

(a−1x)S = a−1ax = x, if x ∉ A, x−1 ∈ A

xS = x, if x, x−1 ∉ A

(3.2)
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Since a, a−1 are fixed by both (A, a) and S, they are fixed by (A, a)S. There-
fore, (A, a)(A − a + a−1, a−1) = id, where id is the identity automorphism.
Similarly, it can be shown that (A−a+a−1, a−1)(A, a) = i d . Hence, (A, a)−1 =
(A−a +a−1, a−1). �

(p-ii) Let A,B ⊂ X ±1 and a ∈ X ±1. Suppose that, A ∩B = {a}. Then, (A, a)(B , a) =
(A∪B , a).

PROOF. We see that, a and a−1 are fixed by (A, a), (B , a) and (A∪B , a). There-
fore, we only need to look at all x ∈ X ±1, for x ∉ {a, a−1}.

(a) For x ∈ A∪B and x−1 ∉ A∪B ,

x(A, a)(B , a) =
{

(xa)(B , a) = xa, if x ∈ A, x−1 ∉ A∪B

x(B , a) = xa, if x ∈ B , x−1 ∉ A∪B.
(3.3)

So, x(A, a)(B , a) = xa, for x ∈ A∪B and x−1 ∉ A∪B .
(b) For x, x−1 ∈ A∪B ,

x(A, a)(B , a) =


(a−1xa)(B , a), if x, x−1 ∈ A

(xa)(B , a) = a−1xa, if x ∈ A, x−1 ∈ B

(a−1x)(B , a) = a−1xa, if x ∈ B , x−1 ∈ A

x(B , a) = a−1xa, if x, x−1 ∈ B.

(3.4)

So, we have x(A, a)(B , a) = a−1xa, for x, x−1 ∈ A∪B .
(c) For x ∉ A∪B and x−1 ∈ A∪B ,

x(A, a)(B , a) =
{

(a−1x)(B , a) = a−1x, if x ∉ A∪B , x−1 ∈ A

x(B , a) = a−1x, if x ∉ A∪B , x−1 ∈ B.
(3.5)

So, x(A, a)(B , a) = a−1x, for x ∉ A∪B and x ∈ A∪B .
(d) For x, x−1 ∉ A∪B ,

x(A, a)(B , a) = x(B , a) = x (3.6)

So, from the four cases above, we see that (A, a)(B , a) = (A∪B , a). �

(p-iii) Let A′ be the complement of A. Then (A′, a−1)(A, a)−1 = (X ±1 −a, a−1) = κ,
where κ is the conjugation by a, i.e., xκ= axa−1, for any x ∈ X ±1.
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PROOF. By using (p-i) and (p-ii), we have,

(A′, a−1)(A, a)−1 = (A′, a−1)(A−a +a−1, a−1), (using (p-i)) (3.7)
= (X ±1 −a, a−1). (using (p-ii)) (3.8)

Now, for any x ∈ X ±1−a, we have x−1 ∈ X ±1−a. Therefore, x(X ±1−a, a−1) =
axa−1. Since a, a−1 are fixed by (X ±1−a, a−1), we get (X ±1−a, a−1) = κ. �

ALTERNATE PROOF. Using (p-i), basically, we want to show that (A′, a−1)(A−
a +a−1, a−1) = κ. For x 6= a, a−1, we have,

x(A′, a−1)(A−a +a−1, a−1) =


(xa−1)(A−a +a−1), if x ∈ A′, x−1 ∉ A′

(axa−1)(A−a +a−1, a−1), if x, x−1 ∈ A′

(ax)(A−a +a−1, a−1), if x ∉ A′, x−1 ∈ A′

x(A−a +a−1, a−1), if x, x−1 ∉ A′

(3.9)

=


axa−1, for x ∉ A, x−1 ∈ A

axa−1, for x, x−1 ∉ A

axa−1, for x ∈ A, x−1 ∉ A

axa−1, for x, x−1 ∈ A.

(3.10)

We know that a and a−1 are fixed by (A′, a−1)(A−a +a−1, a−1). Now, aκ=
aaa−1 = a and a−1κ= aa−1a−1 = a−1. Hence, (A′, a)(A, a)−1 = κ.
Now, A′ ∩ (A − a + a−1) = {a−1}. So, from (p-ii), we have (A′, a)(A − a +
a−1, a−1) = (A′∪ A−a +a−1, a−1) = (X ±1 −a, a−1). �

(p-iv) Let A,B ⊂ X ±1. Suppose that a ∈ A and b ∈ B , with a 6= b, for some a,b ∈ X ±1.
Moreover, let a ∉ B , a−1 ∈ B ,b ∈ A and b−1 ∉ A. If A − {a,b} = B − {a−1,b},
then (A, a)(B ,b) =π(A−b +b−1, a), where π is a permutation that maps a
to b−1 and b to a with everything else fixed.

PROOF. For x = a, we have,

a(A, a)(B ,b) = a(B ,b) = b−1a, (3.11)

and

aπ(A−b +b−1, a) = b−1(A = b +b−1, a) = b−1a. (3.12)
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For x = b, we have,

b(A, a)(B ,b) = (ba)(B ,b) = bb−1a = a, (3.13)

and

bπ(A−b +b−1, a) = a(A−b +b−1) = a. (3.14)

Now,for x 6= a, a−1,b,b−1,

(a) Let x ∈ A−b +b−1 and x ∉ (A−b +b−1). Since A− {a,b} = B − {a−1,b},
x ∈ A−b +b−1 =⇒ x ∈ B , and x−1 ∉ A−b +b−1 =⇒ x−1 ∉ B .
So, we have,

x(A, a)(B ,b) = (xa)(B ,b) = xbb−1a = xa. (3.15)

and

xπ(A−b +b−1, a) = x(A−b +b−1, a) = xa. (3.16)

(b) Let x, x−1 ∈ A−b +b−1. Therefore, x, x−1 ∈ B .
So, we have,

x(A, a)(B ,b) = (a−1xa)(B ,b) = a−1bb−1xbb−1a = a−1xa. (3.17)

and

xπ(A−b +b−1, a) = x(A−b +b−1, a) = a−1xa. (3.18)

(c) Let x ∉ A−b+b−1 and x−1 ∈ A−b+b−1. Therefore, x ∉ B and x−1 ∈ B .
So,

x(A, a)(B ,b) = (a−1x)(B ,b) = a−1bb−1x = a−1x, (3.19)

and

xπ(A−b +b−1) = x(A−b +b−1) = a−1x. (3.20)

(d) Let x, x−1 ∉ A−b +b−1. Therefore, x, x−1 ∉ A−b +b−1.
So,

x(A, a)(B ,b) = x(B ,b) = x, (3.21)

and

xπ(A−b +b−1, a) = x(A−b +b−1, a) = x. (3.22)
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Hence, (A, a)(B ,b) =π(A−b +b−1, a). �

(p-v) Let σ= (A, a) and τ be a permutation. Then, τ−1στ= (Aτ, aτ).

PROOF. (a) Suppose, x ∈ Aτ, x−1 ∉ Aτ. Then, x = yτ, some y ∈ A. There-
fore,

xτ−1στ= yστ=
{

(y a)τ= x(aτ), if y−1 ∉ A

(a−1 y a)τ= (aτ)−1x(aτ). if y−1 ∈ A
(3.23)

Now, since x = yτ, x−1 = y−1τ. If y−1 ∈ A, then x−1 ∈ Aτ, a contradic-
tion. Therefore, y−1 ∉ A. Hence, from (3.23), we have,

xτ−1στ= x(aτ) (3.24)

.
(b) Suppose, x, x−1 ∈ Aτ. Then, x = yτ, for some y ∈ A, and x−1 = y−1τ.

So, y−1 ∈ A. Therefore,

xτ−1στ= yσ−1τ= (a−1 y a)τ= (aτ)−1x(aτ). (3.25)

(c) Suppose, x ∉ Aτ and x−1 ∈ Aτ. Let x−1 = yτ, for some y ∈ A. So,
x = y−1τ. Since x ∉ Aτ, y−1 ∉ A. So, we have,

xτ−1στ= y−1(A, a)τ= (a−1 y−1)τ= (aτ)−1x. (3.26)

(d) Suppose, x, x−1 ∉ Aτ. Therefore, xτ−1, x−1τ−1 ∉ A. So, xτ−1σ= xτ−1.
Therefore, we have

xτ−1στ= xτ−1τ= x. (3.27)

Thus, we have τ−1(A, a)τ= (Aτ, aτ), for any permutation τ. �

(p-vi) Let σ= (A, a) and τ= (B ,b), with A∩B =∅. Suppose that σ fixes b and b−1,
and τ fixes a as well as a−1. Then τ−1στ=σ i.e.,σ and τ commutes.

PROOF. We observe that σ can fix b and b−1 if and only if b−1 ∉ A. Similarly,
a and a−1 are fixed by τ if and only if a−1 ∉ B .
Now, we see that a, a−1,b and b−1 are fixed by σ and τ. Therefore, the
assertion holds for these letters. So, we are interested in the letters x 6=
a, a−1,b,b−1.
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(a) For x ∈ A, x−1 ∉ A,

xτ−1στ=
{

(bx)στ= (bxa)τ, if x−1 ∈ B

xστ= (xa)τ, if x−1 ∉ B ∪ A
(3.28)

=
{

bb−1xa = xa, if x−1 ∈ B

xa, if x−1 ∉ A∪B
(3.29)

So, we have, xτ−1στ= xa.
(b) For x, x−1 ∈ A,

xτ−1στ= xστ= (a−1xa)τ= a−1xa (3.30)

(c) For x ∉ A, x−1 ∈ A,

xτ−1στ=
{

(xb)στ= (a−1xb)τ, if x ∈ B

xστ= (a−1xτ), if x ∉ B ∪ A
(3.31)

=
{

a−1xb−1b = a−1x, if x ∈ B

a−1x, if x ∉ B ∪ A
(3.32)

So, xτ−1στ= a−1x.
(d) For x, x−1 ∉ A,

xτ−1στ=


(bxb−1)στ= (bxb−1)τ= bb−1xbb−1 = x, if x, x−1 ∈ B

(xb−1)στ= (xb−1)τ= xbb−1 = x, if x ∈ B , x−1 ∉ B

(bx)στ= (bx)τ= bb−1x = x, if x ∉ B , x−1 ∈ B

xστ= xτ= x, if x, x−1 ∉ B

(3.33)

So, τ−1στ= x.

Hence, we have τ−1στ=σ. �

(p-vii) Letσ= (A, a) and τ= (B ,b), with A∩B =∅. Suppose that,τ fixes both a and
a−1. Let b−1 ∈ A. Then, τ−1στ= (A+B −b, a).

PROOF. First, we see that, a, a−1 are fixed by σ,τ and (A + B − b, a). So,
{a, a−1}τ−1στ= {a, a−1} = {a, a−1}(A+B −b, a).

For x = b, we see that b
τ−1

7−−→ b
σ7−→ a−1b

τ7−→ a−1b ≡ b(A+B−b, a). So, b−1 τ−1στ7−−−−→
b−1a ≡ b−1(A+B −b, a).
Therefore, we look into the cases for x 6= a, a−1,b,b−1.
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(i) For x ∈ A+B −b and x−1 ∉ A+B −b,

xτ−1στ=
{

xστ= (xa)τ, if x ∈ A, x−1 ∉ A+B −b

(xb−1)στ= (xb−1a)τ, if x ∈ B −b, x−1 ∉ A+b −b

(3.34)

=
{

xa, if x ∈ A, x−1 ∉ A+B −b

xbb−1a = xa, if x ∈ B −b, x−1 ∈ A+B −b
(3.35)

So, xρ−1
2 = xa, for x ∈ A+B −b and x−1 ∉ A+B −b.

(ii) For x, x−1 ∈ A+B −b,

xτ−1στ=


xστ= (a−1xa)τ, if x ∈ A, x−1 ∈ A

(bx)στ= (a−1bxa)τ, if x ∈ A, x−1 ∈ B −b

(xb−1)στ= (a−1xb−1a)τ, if x ∈ B −b, x−1 ∈ A

(bxb−1)στ= (a−1bxb−1a)τ, if x ∈ B −b, x−1 ∈ B −b

(3.36)

=


a−1xa, if x ∈ A, x−1 ∈ A

a−1bb−1xa = a−1xa, if x ∈ A, x−1 ∈ B −b

a−1xbb−1a = a−1xa, if x ∈ B −b, x−1 ∈ A

a−1bb−1xbb−1a = a−1xa, if x ∈ B −b, x−1 ∈ B −b

(3.37)

So, xρ−1
2 = a−1xa, for x, x−1 ∈ A+B −b.

(iii) For x ∉ A+B −b and x−1 ∈ A+B −b,

xτ−1στ=
{

xστ= (a−1x)τ, if x ∉ A+B −b, x−1 ∈ A

(bx)στ= (a−1bx)τ, if x ∉ A+B −b, x−1 ∈ B −b
(3.38)

=
{

a−1x, if x ∉ A+B −b, x−1 ∈ A

a−1bb−1x = a−1x, if x ∉ A+B −b, x−1 ∈ B −b
(3.39)

So, xρ−1
2 = a−1x, for x ∉ A+B −b and x−1 ∈ A+B −b.

(iv) For x, x−1 ∉ A+B −b, both x and x−1 are fixed by τ andσ. So, we have,

xτ−1στ= xστ= xτ= x. (3.40)

Therefore, we see that, τ−1στ= (A+B −b, a), as desired. �
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(p-viii) For a cyclic word w , we have w(A′, a−1) = w(A, a).

PROOF. If w is a cyclic word, then the inner automorphism does not change
w . Therefore, from (p-iii), we have w(A′, a−1)(A, a)−1 = w . This proves the
result. �

3.3. Product Counting

In this section, we define a function corresponding to a cyclic word and a set of
cyclic words. The function counts the number of certain forms in the word or
the set of words. We call this function the product counting function.

Definition 3.3.1. (Product count corresponding to a cyclic word)

• Let A,B ⊂ X ±1. For a cyclic word w , we define a function fw : X ±1×X ±1 →Z,
such that, fw (x, y) = number of both the forms x y−1 and y x−1 in w . We
denote fw (x, y) as (x · y)w , and call this the product count of x and y in w .

• For the sets A,B ⊂ X ±1, we define the product count, (A ·B)w , to be the
number of forms x y−1 and y x−1 in w , for x ∈ A and y ∈ B i.e., (A ·B)w =∑

x∈A,y∈B (x · y)w .

Example 3.3.1. Let w = x y z−1 be a cyclic word such that x ∈ A, x−1 ∈ A′; y, y−1 ∈
A′ and z, z−1 ∈ A. Then (A · A′)w = 3. The counting goes as follows: 1 (for x y ≡
x(y−1)−1) + 1 (for y z−1) + 1 (for z−1x ≡ z−1(x−1)−1).

Remark 4. In the calculation of (A · A′)w , cyclic permutation has been taken to
make the product count well-defined. To see this, we consider the following
example.

Let w = x y z−1 be a cyclic word such that x ∈ A, x−1 ∈ A′, y ∈ A′, y−1 ∈ A, z ∈ A
and z−1 ∈ A. Now, we calculate A · A′ by not taking the cyclic permutation. So,
A · A′ = 1. The counting goes as follows: 0 [for x(y−1)−1]+1 [for y z−1].

Now, x y z−1 is the same word as y z−1x. For y z−1x, the counting goes as: 1
[for y z−1] + 1 [for z−1(x−1)−1]. So, A · A′ = 2.

We often suppress the subscript w and write x · y or A ·B for the product
count, when it is clear that we are dealing with the word w .
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3.3.1 Properties
Now we look into some properties of the product count.

(i) It is clear that for a cyclic word w , A ·B ≥ 0.

(ii) The product count is symmetric i.e., A ·B = B · A. This is true because x · y
is symmetric, since we are counting either of the forms x y−1 or y x−1.

(iii) Let A,B ,C ⊆ X ±1 and A ∩B = ∅, then product count is distributive i.e.,
(A+B) ·C = A ·C +B ·C , where A+B is the disjoint union of A and B . The
proof goes as follows,

(A+B) ·C = ∑
x∈A+B ,y∈C

x · y,

= ∑
x∈A∨x∈B ,y∈C

x · y,

= ∑
x∈A,y∈C

x · y + ∑
x∈B ,y∈C

x · y, (since A∩B =∅)

= A ·C +B ·C .

(iv) Since there can be no xx−1 or x−1x in a cyclic word for x ∈ X ±1, we have
x ·x = 0.

(v) We see that, for a fixed a ∈ X ±1, a · X ±1 = # of ax−1 and xa−1, for x ∈ X ±1.
Therefore, it is clear that, a ·X ±1 = total number of a and a−1 in the given
word = a−1 ·X ±1.

(vi) Let B ⊂ A ⊂ X ±1. Then (A −B) ·C = A ·C −B ·C , where A −B ≡ A ∩B ′, B ′

is the complement of B . We have, A = (A −B)+B . Therefore, using the
distributive property, we get A ·C = (A−B)·C+B ·C , which gives the desired
result.

Definition 3.3.2. (Product count for a set of cyclic words) Let W be a finite set
of cyclic words. For x, y ∈ X ±1, we define, (x · y)W =∑

w∈W (x · y)w . For A,B ⊂ X ±1,
we define, (A ·B)W =∑

w∈W (A ·B)w .
Since (A ·B)W is the sum of (A ·B)w , the above properties also hold for (A ·B)W .

Lemma 3.3.3. Let A,B ⊂ X ±1 with A∩B 6=∅. Denote, A1 = A, A2 = A′,B1 = B and
B2 = B ′, where A′ and B ′ are complements of A and B , respectively. Then,

A · A′+B ·B ′ = P11 ·P ′
11 +P22 ·P ′

22 +2P12 ·P ′
21, (3.41)

where Pi j = Ai ∩B j .
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Proof. From the definition, we know that A · A′= number of x y−1 and y x−1 in a
cyclic word, for x ∈ A and y ∈ A′. Now, A = (A∩B ′)+ (A∩B). Suppose, (x ∈ A, y ∈
A′) denote the number of x y−1 or y x−1 for x ∈ A and y ∈ A′. Therefore, we can
write,

A · A′ = (x ∈ A∩B ′, y ∈ A′)+ (x ∈ A∩B , y ∈ A′). (3.42)
We also have A′ = A′∩B + A′∩B ′. So,

A · A′ = (x ∈ A∩B ′, y ∈ A′∩B)

+ (x ∈ A∩B ′, y ∈ A′∩B ′)+ (x ∈ A∩B , y ∈ A′).
(3.43)

Similarly, we have,

B ·B ′ = (x ∈ A′∩B , y ∈ A∩B ′)
+ (x ∈ A′∩B , y ∈ A′∩B ′)+ (x ∈ A∩B , y ∈ B ′).

(3.44)

Now,
(x ∈ A∩B ′, y ∈ A′∩B) = (A∩B ′) · (A′∩B) ≡ P12 ·P21, (3.45)

and

(x ∈ A′∩B , y ∈ A∩B ′) = (A′∩B) · (A∩B ′) ≡ P21 ·P12 = P12 ·P21. (3.46)

For any sets X and Y , we have,

#(X ∪Y ) = #X +#Y −#(X ∩Y ). (3.47)

Therefore,

(x ∈ A∩B , y ∈ A′∪B ′) = (x ∈ A∩B , y ∈ A′)
+ (x ∈ A∩B , y ∈ B ′)− (x ∈ A∩B , y ∈ A′∩B ′)

(3.48)

So,

(x ∈ A∩B ,y ∈ A′)+ (x ∈ A∩B , y ∈ B ′) = (x ∈ A∩B , y ∈ A′∪B ′)
+ (x ∈ A∩B , y ∈ A′∩B ′)

= (x ∈ A∩B , y ∈ (A∩B)′)+ (x ∈ A∩B , y ∈ A′∩B ′)
≡ P11 ·P ′

11 + (x ∈ A∩B , y ∈ A′∩B ′).

(3.49)

From A = (A∩B ′)+ (A∩B)+ (A′∩B), we have,

(x ∈ A∩B ′, y ∈ A′∩B ′)+ (x ∈ A∩B , y ∈ A′∩B ′)
+ (x ∈ A′∩B , y ∈ A′∩B ′)

= (x ∈ A∪B , y ∈ A′∩B ′)
≡ P ′

22 ·P22 (as (A′∩B ′)′ = A∪B).

(3.50)
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Adding (3.43) and (3.44), and using (3.45),(3.46),(3.48),(3.49) & (3.50), we get,

A · A′+B ·B ′ = P11 ·P ′
11 +P22 ·P ′

22 +2P12 ·P21, (3.51)

which proves the lemma. �

Remark 5. The proof of the lemma above can be simplified significantly by using
A = P11 +P12, B = P21 +P11, A′ = P21 +P22, B ′ = P12 +P22 and the distributive
property of the product count.

3.4. Building up to the theorem

In this section, we give the proofs of some important results, which will be crucial
for proving Whitehead’s theorem in the following chapter.

Given a cyclic word w and τ= (A, a), we define D(τ, w) = |wτ|− |w |. In this
section, our goal is to show,

D(τ, w) = (A · A′)wτ− (a ·X ±1)wτ. (3.52)

Let w ′ be the unreduced cyclic word obtained from w by replacing each
letter x in w with xτ without any cancellation. For example, if w = x y−1x, then
w ′ = xaa−1 y−1xa, for xτ= xa and y−1τ= a−1 y−1.

Let w ′′ be the word resulting from deleting all the parts aa−1 and a−1a in w ′.
In the above example w ′′ = x y−1xa.

Lemma 3.4.1. w ′′ is a reduced word.

Proof. Since w is reduced and w ′ is obtained from w by inserting a and a−1,
w ′ can contain parts xx−1 or x−1x only when x = a i.e., in the form of aa−1 or
a−1a, where at least one of them is newly generated. Given τ= (A, a), a new a
can arise only following a x, and a new a−1 can arise only preceding a x in w , for
any x ∈ X ±1, x 6= a, a−1. So, a−1a does not occur in w ′.
Now, we consider the following cases regarding the occurrence of aa−1.

(i) Suppose that aa−1 arises from a part x y of w , y 6= x−1, yielding xaa−1 y in
w ′. Then x y in w ′′ is a reduced word.

(ii) Suppose that one of the letter in aa−1, say a, was already present in w ,
while a−1 arises from the transformation. So, y ax in w becomes either
y aa−1x; y 6= x−1, a−1 or y aaa−1x; y 6= a, a−1 in w ′, yielding y x or y ax in
w ′′, respectively. If a−1 was already present in w , y a−1x would become
either y aa−1x; y 6= x−1, a, a−1 or y aa−1a−1x; y 6= a, yielding y x or y a−1x in
w ′′ respectively.
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Therefore, we don’t have any xx−1 or x−1x in w ′′. Hence, w ′′ is reduced. �

Let D1 = number of a or a−1 introduced while passing from w to w ′ that
remain in w ′′, and D2 = number of old a or a−1 in w that cancel with new a−1 or
a while passing from w ′ to w ′′.

Lemma 3.4.2. D(τ, w) = D1 −D2

Proof. By definition, we have D(τ, w) = |w ′′|−|w |. Notice that, the extra length of
|w ′′| comes from the new letters a or a−1. Suppose, some of old a or a−1 in w do
not occur in w ′′. Therefore, |w ′′|= (number of new a or a−1 in w ′′)+|w |−(number
of old a or a−1 which have canceled with a new a−1 or a in w ′). So, |w ′′| =
D1 +|w |−D2. Hence, the claim follows. �

Lemma 3.4.3. D1 = (A−a) · A′

Proof. Our aim is to count the number of new a or a−1 that remain in w ′′ while
passing from w to w ′. We see that, new a or a−1 occur in w ′ from a letter x ∈ A−a
in w , x 6= a, a−1, in the form of xτ= xa or a−1xa.
Claim 3.4.4. The newly introduced letter a, following x ∈ A−a in the part x y−1in
w , fails to cancel if and only if y ∈ A′.

Proof. ( ⇐= ) Suppose, y ∈ A′ in x y−1 for x ∈ A − a. Then yτ is either a−1 y or
y . So, y−1τ= y−1a or y−1. Therefore, (x y−1)τ is equal to either xay−1a, xay−1,
a−1xay−1 or a−1xay−1a. We see that, in all the cases, the cancellation of a fol-
lowing x fails.
( =⇒ ) We will prove this in contra-positive way. Suppose, y ∈ A in x y−1 of w , with
x ∈ A−a. Then yτ= y a or a−1 y a. So, y−1τ= a−1 y−1 or a−1 y−1a. Therefore, the
a following x gets canceled in this case. q.e.d

Similarly, a new a−1 preceding x−1, for x ∈ A−a, gets canceled in y x−1 of w
if and only if y ∈ A. Indeed, if y ∈ A, then yτ= y a or a−1 y a. We have, xτ= xa or
a−1xa, for x ∈ A−a. Therefore, x−1τ= a−1x−1 or a−1x−1a. We see that in all the
cases the said a−1 gets cancelled. So, we see that, it will not cancel if y ∈ A′.
Therefore, from Claim 3.4.4 and the above paragraph, we see that, D1 = (A−a) ·
A. �

Lemma 3.4.5. D2 = (A−a) ·a

Proof. We want to count the number of old a or a−1 those cancel with new a−1

or a in w ′.
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Claim 3.4.6. An old a in w cancels with a new a−1 in w ′ if and only if it occurs as
a part of ax−1 for x ∈ A−a in w .

Proof. If a occurs as a part of ax−1 for x ∈ A−a. Then under (A, a), x maps into xa

or a−1xa i.e., ax−1 7→ aa−1x−1 or aa−1x−1a, respectively. Hence, the cancellation
happens. On the other hand, if a occurs in ax−1 but x ∉ A−a. Then under (A, a),
ax−1 maps to ax−1 or ax−1a, failing to cancel the old a. �

Similarly, a−1 in w cancels with a new a in w ′ if and only if it occurs as a part
of xa−1 for x ∈ A−a.
Therefore, from Claim 3.4.6 and the above sentence, we see that, D2 = a · (A −
a). �

Now, we prove (3.52) as the following proposition.

Proposition 3.4.7. Let w be a cyclic word and τ = (A, a). Then, D(τ, w) = (A ·
A′)wτ− (a ·X ±1)wτ.

Proof. We have,

D(τ, w) = D1 −D2, (from Lemma 3.4.2)

= (A−a) · A′−a · (A−a), (using Lemma 3.4.3 and 3.4.5)
= A · A′−a · (A+ A′)+a ·a, (using the properties of the product count)
= A · A′−a ·X ±1, as (a ·a = 0). �
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CHAPTER 4

WHITEHEAD’S THEOREM FOR CYCLIC WORDS

In this chapter, we prove Whitehead’s theorem, which solved the minimization
and decision problem. In the first section, we prove a rather restricted version
of the theorem following Higgins and Lyndon [Higgins and Lyndon, 1974]. The
second section contains the proof of Whitehead’s theorem and the decision
algorithm. In the last section, we prove Whitehead’s theorem for a finite set of
cyclic words.

4.1. Whitehead’s theorem (restricted version)

First, we prove the following lemma, which is crucial for proving the main the-
orem. This lemma is also known as the peak reduction lemma. The following
picture is the schematic of the lemma. We see that the name peak reduction is
justified.

Figure 4.1: Schematic diagram for the peak reduction lemma

Lemma 4.1.1. (Peak reduction lemma) Let w be a fixed cyclic word and u =
wσ, v = wτ where σ,τ ∈ Ω. Assume that |u| ≤ |w | and |v | ≤ |w | with at least
one of inequality strict. Then v = uρ1 · · ·ρn , n ≥ 0, where ρ1, . . . ,ρn ∈Ω, and for
0 < i < n, |uρ1 · · ·ρi | < |w |.
Proof. We write ui = uρ1 · · ·ρi , for 0 ≤ i ≤ n. From the assumptions of the state-
ment of the lemma, we have, either |u| < |w | or |v | < |w |. So,

|w | > 1

2
(|u|+ |v |) (4.1)

We will prove the lemma by going through several cases.
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Case 1. (τ is a permutation) Since a permutation automorphism does not
change the length of a word, we get |uτ| = |u| and |v | = |w |. We know that,
v = wτ. We rewrite v as follows,

v = wτ= uσ−1τ= uτ(τ−1σ−1τ). (4.2)

Letting ρ1 = τ and ρ2 = τ−1σ−1τ, we have v = uρ1ρ2, with ρ1 = τ ∈Ω, ρ2 = ((A−
a +a−1)τ, a−1τ) ∈Ω (from (p-v)), and |uρ1| = |uτ| = |u| < |w |.

In view of the previous case, we can assume that, neither σ nor τ are permu-
tations. Let σ= (A, a),τ= (B ,b).
Case 2. (A∩B =∅, and b = a−1A∩B =∅, and b = a−1A∩B =∅, and b = a−1) We have, v = wτ = uσ−1τ. Letting σ−1τ = ρ1,
we have v = uρ1. Now, σ−1τ= (A−a+a−1, a−1)(B , a−1). We observe that (A−a+
a−1)∩B = {a−1}. Therefore, using (p-ii), we get, ρ1 =σ−1τ= (A+b −a, a−1) ∈Ω.
So, with n = 1, |ui | < |w | is vacuously true for 0 < i < 1.
Case 3. (A∩B =∅ and a−1 ∈ B ′A∩B =∅ and a−1 ∈ B ′A∩B =∅ and a−1 ∈ B ′) First, we will show the following.
Claim 4.1.2. |uτ| < |w |.
proof. Let w ′ and u′ be the unreduced cyclic words obtained from action of τ
on w and u, respectively. First, we show that,

|u′|− |u| = |w ′|− |w |. (4.3)

proof of (4.3)proof of (4.3)proof of (4.3). Under σ, any x in w with x ∈ B −b, maps to a−1x or x in u. There-
fore, there are one to one correspondences between the occurrences of all the
letters x ∈ B−b in w and the letters x ∈ u. Now, underτ, the letters x ∈ B−b in both
the words w and u will map into either xb or b−1xb in w ′ and u′, while a, a−1 and
b will remain fixed, since a, a−1 ∉ B . So, |u′|− |u| = # of new b or b−1 introduced
= |w ′|− |w |. �

Let wτ and uτ be the words obtained from deleting bb−1 from w ′ and u′,
respectively. We will show from (4.3) that |uτ|−|u| = |wτ|−|w |. We only consider
bb−1 because, as seen earlier, there are no b−1b in u′ or w ′. Now, bb−1 can only
occur in w ′ as xbb−1,bb−1 y−1 or xbb−1 y−1 from xb−1, by−1 or x y−1, respectively,
for x, y ∈ B −b. Since x, y,b are not in A, under σ, any z ∈ {x, y,b} is mapped into
a−1z or z. Therefore, the parts xb−1,by−1 and x y−1 from w are preserved in u.
Hence, this gives rise to bb−1 in u′. So, there are as many cancellations of bb−1 in
u′ as in w ′. Now, since u = wσ was already reduced in terms of deletion of aa−1,
we see that only possible cancellations from u′ to uτ are bb−1. Thus, from (4.3),
we have, |uτ|− |u| = |wτ|− |w |. Now, using wτ= v and |u|+ |v | < 2|w | from (4.1),
we get |uτ| < |w |. �
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Now, rewriting v = wτ, we get v = uττ−1σ−1τ. Letting ρ1 = τ and ρ2 =
τ−1σ−1τ, we have v = uρ1ρ2. From Claim 4.1.2, we get, |uρ1| = |uτ| < |w |. It
only remains to show that ρ2 ∈Ω.
Claim 4.1.3. ρ2 = τ−1σ−1τ ∈Ω.

proof. We consider two cases depending on where b−1 is located.
(c-i) b−1 ∈ A′b−1 ∈ A′b−1 ∈ A′ : We see that a, a−1 are fixed by τ and b,b−1 are fixed by σ. There-

fore, using (p-vi), we have τ−1σ−1τ=σ−1, whence, ρ2 ∈Ω.

(c-ii) b−1 ∈ Ab−1 ∈ Ab−1 ∈ A : To prove ρ2 ∈Ω, we will show that, ρ−1
2 = τ−1στ = (A +B −b, a).

Therefore, we will have ρ2 = (A+B −b −a +a−1, a−1), proving ρ2 ∈Ω.
Since a, a−1 are fixed by τ and b−1 ∈ A, from (p-vii), we see that ρ−1

2 =
τ−1στ= (A+B −b, a).

Thus, in view of the cases above, we get ρ2 ∈Ω. �

Case 4. (A∩B =∅A∩B =∅A∩B =∅) This is the general case for A ∩B =∅. In the view of Case
2, we can assume that a 6= b−1, and by Case 3, we assume that a−1 ∈ B , b−1 ∈ A.
Since A and B are disjoint, we have a 6= b.

Let σ′ = (A,b−1) and τ′ = (B , a−1). We will show that, for the word w , D(σ′)+
D(τ′) = D(σ)+D(τ). Indeed, using a−1 ·X ±1 = a ·X ±1 and b ·X ±1 = b−1 ·X ±1, we
have,

D(σ′)+D(τ′) = A · A′−b−1 ·X ±1 +B ·B ′−a−1 ·X ±1 (4.4)
= A · A′−b ·X ±1 +B ·B ′−a ·X ±1 (4.5)
= A · A′−a ·X ±1 +B ·B ′−b.X ±1 (4.6)
= D(σ)+D(τ). (4.7)

Now, we see that,
D(σ′)+D(τ′) = D(σ)+D(τ) = |wσ|− |w |+ |wτ|− |w | (4.8)

= |u|+ |v |−2|w | < 0, from (4.1). (4.9)
Therefore, at least one of D(σ′) and D(τ′) has to be negative. Without loss of
generality, suppose, D(τ′) < 0. This implies, |wτ′| < |w |. Now, rewriting v , we
have, v = wτ = uσ−1τ′τ′−1τ. Letting ρ1 = σ−1τ′ and ρ∗ = τ′−1τ, we have, v =
uρ1ρ

∗. Now, from (p-ii), we see that, ρ1 =σ−1τ′ = (A+B −a, a−1). Hence, ρ1 ∈Ω,
and from (p-iv), we see that, ρ∗ =π(A−b +b−1, a), where π is the permutation
that maps a to b−1 and b to a, with everything else fixed.

Letting ρ2 =π and ρ3 = (A−b+b−1, a), we get v = uρ1ρ2ρ3 with ρ1,ρ2,ρ3 ∈Ω.
We have, |uρ1ρ2| = |uρ1|, since ρ2 is a permutation. Now, |uρ1| = |wσσ−1τ′| =
|wτ′| < |w |.
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Case 5. (A∩B 6=∅A∩B 6=∅A∩B 6=∅) This is the general case. We will reduce this to Case 4. From
(4.9), we have D(σ)+D(τ) < 0, which gives,

A · A′+B ·B ′−a ·X ±1 −b ·X ±1 < 0. (4.10)

We write A1 = A, A2 = A′,B1 = B ,B2 = B ′ and Pi j = Ai ∩B j , for i , j ∈ {1,2}. Now,
from (3.41) of Lemma 3.3.3, we have,

A · A′+B ·B ′ = P11 ·P ′
11 +P22 ·P ′

22 +2P12 ·P ′
21 (4.11)

Since P12 ·P21 ≥ 0, we have,

A · A′+B ·B ′ ≥ P11 ·P ′
11 +P22 ·P ′

22. (4.12)

From (4.12), interchanging B and B ′, we have,

A · A′+B ′ ·B ≥ P12 ·P ′
12 +P21 ·P ′

21. (4.13)

Now, subtracting a · X ±1 +b · X ±1 from the inequalities (4.12) and (4.13), and
using (4.10), we get the following inequalities, respectively,

P11 ·P ′
11 +P22 ·P ′

22 −a ·X ±1 −b ·X ±1 < 0, (4.14)
P12 ·P ′

12 +P21 ·P ′
21 −a ·X ±1 −b ·X ±1 < 0. (4.15)

Let x stand for one of the a, a−1,b and b−1, which need not all be distinct. Let
P (x) denote the set Pi j to which x belongs i.e., P (x) = Pi j , if and only if x ∈ Pi j . It
is clear that x−1 ∉ P (x). To see this, lets look at an example. Suppose x = a and
a ∈ P11, then a−1 can not be in P11 because of the construction of the set A for
Whitehead automorphism (A, a).

We denote Whitehead automorphism (P (x), x) as ϕx .
We shall deduce that ϕx decreases the length of w . First, we show the following
claim.
Claim 4.1.4. D(ϕx) < 0, for some x, where ϕx = (P (x), x).

proof. We consider the following two cases.
(cs-i) (Each Pi j contains one of a, a−1, b, b−1) Using a · X ±1 = a−1 · X ±1 and b ·

X ±1 = b−1 ·X ±1, we have,∑
x

D(ϕx) =∑
i , j

Pi j ·P ′
i j −

∑
x

x ·X ±1 (4.16)

=∑
i , j

Pi j ·P ′
i j −2(a ·X ±1 +b ·X ±1) (4.17)

< 0, (adding (4.14) and (4.15)). (4.18)

Therefore, at least one of D(ϕx) < 0, for some x.
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(cs-ii) (One of the Pi j does not contain any a, a−1, b, b−1) Suppose, Pi j does not
contain any a, a−1,b,b−1. Denote a1 = a, a2 = a−1,b1 = b, and b2 = b−1.
Now, we have, ai ∈ Ai = (Ai ∩B)+ (A∩B ′) = Pi 1+Pi 2. So, ai ∈ Pi k , for k 6= j .
Similarly, b j ∈ B j = P1 j +P2 j . Therefore, b j ∈ Pl j , for l 6= i . We have,

D(ϕai )+D(ϕb j ) = Pi k ·P ′
i k +Pl j ·P ′

l j −ai ·X ±1 −b j ·X ±1. (4.19)

Since i , j ,k, l ∈ {1,2}, we have k = i ⇐⇒ l = j , using k 6= j and l 6= i . So,
from (4.19), we get,

D(ϕai )+D(ϕb j ) = Pi i ·P ′
i i +P j j ·P ′

j j −ai ·X ±1 −b j ·X ±1 (4.20)
< 0, (by (4.14)), (4.21)

for i 6= j .
For i = j , we have k = l , since i , j ,k, l ∈ {1,2}. So, from (4.19), we get,

D(ϕai )+D(ϕbi ) = Pi k ·P ′
i k +Pki ·P ′

ki −ai ·X ±1 −bi ·X ±1 (4.22)
< 0, (by (4.15)), (4.23)

Thus, D(ϕx) < 0, for some x.
�

Now, we prove the following proposition.

Proposition 4.1.5. At least one of the Whitehead automorphisms ϕx ≡ (P (x), x)
decreases the length of w .

proof. We assume that x is either a or a−1. Notice that,

a ∈ P11 +P12 = A, (4.24)

and
a−1 ∈ P21 +P22 = A′. (4.25)

We deduce that, we can assume x = a. This is possible because w(A, a) = w(A′, a−1)
(from (p-viii)). Therefore, replacing (A, a) with (A′, a−1) does not change the ac-
tion on w .

Assuming x = a, we get P (x) to be P11 or P12, from (4.24). Similarly, from
(p-viii), we can replace (B ,b) with (B ′,b−1). Now, with this replacement, we get,
P (x) = P12 = A∩B ′. So, we have, a ∈ B ′, and by Claim 4.1.4, D(ϕa) ≡ D(A∩B ′, a) <
0. Therefore, |wϕa | < |w |. �
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Denote, w1 = wϕa . Using w(A, a) = w(A′, a−1) (from (p-viii)) and u = w(A, a),
we have w = u(A′, a−1)−1 = u(A′− a−1 + a, a). Hence, w1 = wϕa = u(A′− a−1 +
a, a)ϕa = uρ1, with ρ1 = (A′− a−1 + a, a)(A ∩B ′, a). Now, using (p-ii), we have,
(A′ − a−1 + a, a)(A ∩ B ′, a) = ((A′ − a−1) ∪ (A ∩ B ′), a) = ((X ±1 − a−1) ∩ (A′ ∪ B ′ −
a−1), a) = (A′∪B ′−a−1, a), whence, ρ1 ∈Ω.

Now, with w1 = w(A ∩B ′, a), v = wτ, |w1| < |w | and (A ∩B ′)∩B =∅, we are
reduced to Case 4. Therefore, we get, at most three Whitehead automorphisms
ρ2,ρ3,ρ4 such that v = w1ρ2ρ3ρ4, where, |w1ρ2|, |w1ρ2ρ3| < |w |. Substituting,
w1 = uρ1, we get, v = uρ1ρ2ρ3ρ4, with length of all the intermediate words less
than w , proving the lemma for this case.

This finishes proof of the peak reduction lemma. �

Remark 6. Notice that, our choice of x = a and Whitehead automorphisms (A, a)
and (B ′,b−1) gave us (A∩B ′, a) as a length decreasing automorphism for w .

So, depending on the choices of x, we have automorphisms (A∩B , a), (A′∩
B , a−1) and (A′∩B ′, a−1) which decrease length of w . We observe that, since
(A′∩B ′)∩B =∅, (A′∩B ′, a−1) is the only automorphism that will work in the
proof of the above proposition, other than (A∩B ′, a). Note that, using (A′∩B ′, a−1)
corresponds to replacing a with a−1.

Since both A∩B and A′∩B are not disjoint with B , using these we can not
reduce the above case to Case 4. Hence, they can not be used in the proof.
Note. If x is either b or b−1, we interchange a ↔ b and A ↔ B , which amounts to
switching σ= (A, a) and τ(B ,b). Then proceed similarly.

Now, using the above lemma, we prove a rather restricted version of White-
head’s theorem.

Theorem 4.1.6. Let w and w̄ be cyclic words, let w̄ = wα for some α ∈ Aut(F ),
and suppose that |w̄ | is an automorphic minimal word of w . Then, there exist
τ1, . . . ,τn ∈Ω, n ≥ 0, finite, such that, for 0 ≤ i ≤ n, writing wi = wτ1 · · ·τi , one has
wn = w̄ , and

|wi | ≤ |w |, for 1 ≤ i < n, (4.26)

with strict inequality unless w also has the minimum length i.e., |w | = |w̄ |.

Proof. Let w and w̄ = wα be given and satisfy the hypothesis of the theorem.
Since the Nielsen transformation is subset of Whitehead automorphisms, and
generates Aut(F ) [Nielsen, 1918][Nielsen, 1924][Wade, 2014], for α ∈ Aut(F ), we
can write α = τ1 · · ·τn , for some τ1, . . . ,τn ∈Ω. If this α satisfies (4.26), then we
are done.
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If not, then we proceed as follows. Let m = max{|wi | : 0 < i < n}, where
wi = wτ1 · · ·τi . Since α does not satisfy (4.26), we have1 n ≥ 2 and m ≥ |w | > |w̄ |
or m > |w | = |w̄ |. The idea is to use the peak reduction lemma and get a new
path which completely avoids the words of length m.

Let i be the largest index such that |wi | = m. Then, we get2 |wi−1| ≤ |wi | and
|wi+1| < |wi |. We have wi−1 = wiτ

−1
i (from wi = wi−1τi ) and wi+1 = wiτi+1. Now,

applying Lemma 4.1.1 we get,

wi+1 = wi−1ρ1 · · ·ρk , k > 0,ρ j ∈Ω for all j , (4.27)

with
|wi−1ρ1 · · ·ρ j | < |wi | = m, for 0 < j < k. (4.28)

Therefore, we get a new path,

τ1 · · ·τi−1ρ1 · · ·ρkτi+2 · · ·τn , (4.29)

between w and w̄ , avoiding wi . So, we see that by introducing a new path, the
number of words of length m go down exactly by one.

Now, suppose that there exists l < i maximal such that, |wl | = m. Then, simi-
larly, the peak reduction lemma gives us a new path, which avoids wl altogether.
We repeat this process to eliminate all the words of length m. This gives us
m′ ≤ m, where m′, similar to m, is the maximum of all the intermediate words
corresponding to path (4.29).

We repeat this whole procedure first on the number of words of lengths m
and then on m, until we reach m̃ ≤ |w |. This proves the theorem. �

We get the following corollaries from the equality part of the theorem.
Corollary 4.1.7. Let w be a cyclic word. Suppose that w1 and w2 be automorphic
minimal words i.e., |w1|, |w2| ≤ |w | and |w1| = |w2|. Then, there exist finitely many
Whitehead automorphisms t1, . . . , tn , such that, |w1| = |w1t1| = · · · = |w1t1 · · · tn |
and w2 = w1t1 · · · tn .

Corollary 4.1.8. Let u and v be cyclic words. Suppose, umin and vmin be automor-
phic minimal words of u and v , respectively. Suppose there exists α ∈ Aut(F ), such
that uminα= vmin, then α can be written as a product of finitely many Whitehead
automorphisms t1, . . . , tn such that |umin | = |umin t1| = · · · = |umin t1 · · · tn |, with
umin t1 · · · tn = vmin.

1Since n = 1 implies α= τ1, we get wτ1 = wα= w̄ . Therefore, |w̄ | = |wτ1| ≤ |w | is always true,
for n = 1. The conditions for m follows by noticing, as per (4.26), that |wi | < |w |, when |w̄ | < |w |
and |wi | = |w |, when |w̄ | = |w |.

2It is possible that |wi−1| is also equal to m. Hence, the inequality |wi−1 ≤ |wi |. Now, it follows
from the maximality of i and m that, |wi+1| < |wi |.
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Note. Corollary 4.1.8 will help us to produce the finite sequence algorithm in the
following section.

4.2. Whitehead’s Minimization Theorem and Algo-
rithm

In this section, we will discuss the decidability problem which says that given
two cyclic words in a free group of finite rank to decide whether there exists an
automorphism carrying the word to the other. First, we prove the theorem, then
we discuss the algorithm.

Theorem 4.2.1. (Whitehead’s minimization theorem for cyclic words) Let w be
a cyclic word in F . Suppose that w̄ is an automorphic minimal word i.e., length of
w̄ is minimum among the orbit of w . Then, there exist Whitehead automorphisms
τ0,τ1, . . . ,τn , for some integer n, such that w̄ = wτ0 · · ·τn and

|wτ0 · · ·τn | ≤ |wτ0 · · ·τn−1| ≤ · · · ≤ |wτ0| ≤ |w |. (4.30)

Proof. Define, dist(w,w̄) := |w | − |w̄ |. Note that, dist(w,w̄) is a non negative
integer. We prove the theorem by induction.
Let Sm be the following statement :

If 0 ≤ dist(w,w̄) ≤ m, for some m ∈ N, then there exist τ1, . . . ,τn , such that
w̄ = wτ1 · · ·τn ∈Ω and |wτ1 · · ·τn | ≤ |wτ1 · · ·τn−1| ≤ · · · ≤ |wτ1| ≤ |w |.

Suppose, 0 ≤ dist(w,w̄) ≤ 1. Corollary 4.1.7 takes care of the case dist(w,w̄) =
0. For 0 < dist(w,w̄) ≤ 1, by Theorem 4.1.6, there exists at least one Whitehead
automorphism, ρ0 ∈Ω such that |wρ0| < |w |. Therefore, we must have |wρ0| =
|w̄ |, since dist(-, -) ≥ 0. Now, from Corollary 4.1.7, there exist ρ1, . . . ,ρk such that
w̄ = (wρ0)ρ1 · · ·ρk and |(wρ0)ρ1 · · ·ρi | = |wρ0|, for 1 ≤ i ≤ k.

Assume, Sm to be true.
Now, proving Sm+1 will prove the theorem. Let 0 ≤ dist(w,w̄) ≤ m + 1. By

Theorem 4.1.6, there exists at least one Whitehead automorphism, say τ0, such
that, |wτ0| ≤ |w |. This implies 0 ≤ dist(wτ0,w̄) ≤ m. Therefore, from Sm , we get
τ1, . . . ,τn ∈Ω, such that, w̄ = wτ0τ1 · · ·τn and |wτ0| ≥ |wτ0τ1| ≥ · · · | ≥ |wτ0τ1 · · ·τn |.
Since |w | ≥ |wτ0|, we get (4.30). �

4.2.1 Algorithms
The algorithm consists of two parts. We call the first part, as Whitehead Mini-
mization algorithm and the second part, as the Finite Sequence algorithm, and
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together it is called Whitehead algorithm.
We have seen in the first chapter that there have been a lot of efforts to

improve the algorithm. We provide the algorithm without keeping the computa-
tional complexity in mind.

Whitehead Minimization algorithm

Given a cyclic word w , the problem is to produce an algorithm to find an auto-
morphic minimal word by applying a sequence of Whitehead automorphisms.
The following algorithm follows from Haralick, Miasnikov and Myasnikov [Haral-
ick et al., 2005]. We refer to §2 of the paper and [Miasnikov and Myasnikov, 2004]
and [Myasnikov and Haralick, 2006] for the improved version of the algorithm.

• Let w ∈ Fn be the given cyclic word, and Ω be the set of all Whitehead
automorphisms, which is a finite set.

• Whitehead Length Reduction Routine (WLR): For each t ∈Ω, if |w t | < |w |,
then set t1 = t and w1 = w t1. Otherwise, stop and set wmin = w .

• Now, we repeat WLR on w , w1 and so on, until for some m +1 steps, we
get wmin = w t1t2 · · · tm with |w | > |w1| > · · · > |wm |. Therefore, t1 · · · tm is the
required automorphism

Remark 7. One uses classical greedy descent method to determine the successful
directions t1 from w , t2 from w1 and so on.
Remark 8. Notice that, Whitehead’s Minimization theorem (4.2.1) and the finite-
ness of Ω guarantee that the algorithm will terminate. Also, note that, m ≤ |w |.

Finite Sequence algorithm

First, we prove a lemma, which gives the necessary condition for existence of an
automorphism between two automorphic minimal words.

Lemma 4.2.2. Let umin and vmin be the automorphic minimal words of u and v ,
respectively. Then there can not exist an automorphism between umin and vmin
unless |umin | = |vmin |.
Proof. Let umin = uα and vmin = vβ with α,β ∈ Aut(F ). Suppose, there exists an
automorphism γ taking umin to vmin.

Therefore, we have, umin = vβγ−1 i.e., umin is in the automorphism orbit of
v . So, |vmin | ≤ |umin |. Similarly, we also have |umin | ≤ |vmin |. Hence, |umin | =
|vmin |. �
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Now, we provide an algorithm to decide if there exists a finite sequence of White-
head automorphisms between two automorphically minimal words of same
length such that in each step the length of the intermediate words do not change.

• Let umin and vmin be cyclic words with |umin | = |vmin | = n. LetΩ= {t1, . . . , tn}
be the set of Whitehead automorphisms.

• Consider {umin} as a graph with a single vertex and no edges.

• Now, check the length of umin ti , for each ti ∈Ω. If |umin ti | = n and umin ti 6=
umin, then we join an edge between umin and umin ti . Denote this graph as
Γ1.

• Apply Ω to each vertex of the form umin ti in Γ1, and check if the length of
resulting words are n. Now, by discarding the new words, if they belong to
the vertex set Γ1, form a new graph Γ2 using same procedure as above i.e.,
adding an edge between umin ti and umin ti t j .

• Repeat this process until one hits vmin. A path between umin and vmin gives
a sequence of Whitehead automorphisms with required properties.

• If no sequence is found which connect umin to vmin, one concludes there
is no automorphism. Notice that, the set of words of length n in the free
group of finite rank is finite. Also, the set of Whitehead automorphisms Ω
is a finite set. Therefore, the process terminates after some finite iteration.
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Algorithm 1 Finite sequence algorithm
1: Let F be the free group of finite rank and Ω= {t1, . . . , tm} be the set of White-

head automorphisms.
2: Let u and v be cyclic words such that |u| = |v | = n.
3: Let V0 = {u}. Let Γ0 be the graph of V0, which is just a vertex. Let V =V0

4: while ti ∈Ω do
5: if |uti | = |u| and uti ∉V then
6: create a new list V1 consisting uti ’s, and a graph Γ1 with vertices V0 ∪V1

and edges ti from u to uti , and set V = Vert(Γ1)
7: end if
8: end while
9: repeat

10: the above process for each uti ∈V1 and so on
11: until we find a sequence of path that hits v .
12: if we don’t find such a sequence to v then
13: then we conclude there is no path, hence no automorphisms from u to v .
14: end if

Whitehead algorithm

Finally, we are in the position to describe the algorithm for the decision problem
of the existence of an automorphism between two given words.

Proposition 4.2.3. (Decision Problem) Let u and v be cyclic words in a finitely
generated free group F . Then it is decidable whether there is an automorphism,ϕ,
carrying u to v .

Proof. The algorithm goes as follows: given two words u and v , we find umin and
vmin, respectively, using Whitehead’s Minimization algorithm. Then, we check
the lengths of the minimal words. If |umin | 6= |vmin |, then by Lemma 4.2.2 we
conclude that there does not exist an automorphism. If |umin | = |vmin |, we use
the finite sequence algorithm to decide the existence of a sequence of Whitehead
automorphisms. �

Whitehead algorithm can be described in a single theorem along with a
pictorial description, as follows [Collins and Zieschang, 1984a]:

Theorem 4.2.4. Let u and v be cyclic words. Let α be an automorphism such that
uα = v . Then one can write α = t1 · · · tn , for t1, . . . , tn ∈Ω such that for some p, q
and 1 ≤ p ≤ q ≤ n,

(i) |ut1 · · · ti−1| > |ut1 · · · ti |, for 1 ≤ i ≤ p, with ut1 · · · tp = umin,
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(ii) |ut1 · · · t j−1| = |ut1 · · · t j |, for p +1 ≤ j ≤ q , with ut1 · · · tq = vmin, and

(iii) |ut1 · · · tk−1| < |ut1 · · · tk |, for q +1 ≤ k ≤ n with ut1 · · · tn = v .

Figure 4.2: The pictorial description of Whitehead algorithm

4.3. Whitehead’s theorem for a finite set of cyclic
words

In this section, we provide a proof of the peak reduction lemma for a set of cyclic
words (analogue of Lemma 4.1.1), and using that we prove the weak version of
Whitehead’s theorem (analogue of theorem 4.1.6). After establishing these two
results, the analogue of section 4.2 follows exactly by replacing each cyclic word
with a set of cyclic words. First, we define some basic notions.

Remark 9. Let W be a set of words. The action of an automorphism τ, on the set
is defined as: W τ= {wτ|w ∈W }.

We define the analogue D(τ,W ), of D(τ, w) in a similar fashion as follows.

Definition 4.3.1. Let W be a set of words, and τ ∈ Aut(Fn). We define, D(τ,W ) =
|W τ|− |W |.

Lemma 4.3.2. D(τ,W ) =∑
w∈W D(τ, w).
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Proof. We have,

D(τ,W ) = |W τ|− |W |
= ∑

w∈W
(|wτ|− |w |)

= ∑
w∈W

D(τ, w)
�

The analogue of the Proposition 3.4.7 is as follows.

Proposition 4.3.3. Let W be a set of cyclic words, and τ= (A, a). Then D(τ,W ) =
(A · A′)W τ− (a ·X ±1)W τ.

Proof. We have,

D(τ,W ) = ∑
w∈W

D(τ, w) (4.31)

= ∑
w∈W

[(A · A′)wτ− (a ·X ±1)wτ] (4.32)

= (A · A′)W τ− (a ·X ±1)W τ. (4.33)

This proves the proposition. �

Now, we prove the peak reduction lemma.

Lemma 4.3.4. (Peak Reduction) Let W be a finite set of cyclic words, and U =Wσ,
V =W τ, for σ,τ ∈Ω. Assume that |U | ≤ |W | and |V | ≤ |W | with at least one of the
inequality strict. Then V =Uρ1 · · ·ρn , n ≥ 0, where ρ1, . . . ,ρn ∈Ω, and for 0 < i < n,
|Uρ1 · · ·ρi | < |W |.

Proof. The proof the lemma follows similar pattern of that of Lemma 4.1.1. We
discuss the modifications in each of the cases.

Case 1. (τττ is a permutation) τ being a permutation, we have |V | = ∑
v∈V |v | =∑

w∈W |wτ| =∑
w∈W |w | = |W |. Similarly, |Uτ| = |U |. From the case 1 of proof of

Lemma 4.1.1, we have V =Uρ1ρ2 with ρ1,ρ2 ∈Ω, and |Uρ1| = |Uτ| = |U | < |W |.
Therefore, as in the previous proof, we may assume that σ and τ are type (II)

Whitehead automorphisms. Let σ= (A, a) and τ= (B ,b).

Case 2. (A∩B =∅A∩B =∅A∩B =∅, and b = a−1b = a−1b = a−1) Replacing w,u, v with W,U ,V respectively, the
proof follows exactly that of the case 2 of Lemma 4.1.1.
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Case 3. (A∩B =∅ and a−1 ∈ B ′A∩B =∅ and a−1 ∈ B ′A∩B =∅ and a−1 ∈ B ′) First we see that, |Uτ| < |W |. From the proof of
Lemma 4.1.1, we have, |uτ|− |u| = |wτ|− |w |. So, |Uτ|− |U | =∑

u∈U (|uτ|− |u|) =∑
w∈W |wτ|− |w | = |W τ|− |W | = |V |− |W |, since by definition W τ=V . Therefore,

|Uτ| = |U |+ |V |− |W | < |W |, since |U |+ |V | < 2|W | (as |U | < |W | or |V | < |W |).
Now, taking ρ1,ρ2 as in Case 3 of the proof of Lemma 4.1.1 and following the

proof, we get V =Uρ1ρ2, and |Uρ1| = |Uτ| < |W |.
Case 4. (A∩B =∅A∩B =∅A∩B =∅) As in the case 4 of the proof of Lemma 4.1.1, we assume
that a−1 ∈ B and b−1 ∈ A. Let σ′ = (A,b−1) and τ′ = (B , a−1). It is easy to see that
D(σ′,W )+D(τ′,W ) = D(σ,W )+D(τ,W ), using Proposition 4.3.3, as follows:

D(σ′,W )+D(τ′,W ) = A · A′−b−1 ·X ±1 +B ·B ′−a−1 ·X ±1 (4.34)
= A · A′−b ·X ±1 +B ·B ′−a ·X ±1

(a ·X±1 = a−1 ·X±1) (4.35)
= (A · A′−a ·X ±1)+ (B ·B ′−b ·X ±1) (4.36)
= D(σ,W )+D(τ,W ). (4.37)

Now, we have

D(σ′,W )+D(τ′,W ) = D(σ,W )+D(τ,W ) = |U |+ |V |−2|W | < 0 (4.38)

Assuming D(τ′,W ) < 0, we get |W τ′| < |W |. Taking ρ1,ρ2,ρ3 as in case 4 of
the proof of Lemma 4.1.1 and following the proof, we get V = Uρ1ρ2ρ3, and
|Uρ1ρ2| = |Uρ1| = |W τ′| < |W |.

Case 5. (A∩B 6=∅A∩B 6=∅A∩B 6=∅) We will use exactly the same notation as that of the proof of
the case 5 of Lemma 4.1.1. Similar to that proof, we will show that at least one
of the automorphisms ϕx = (P (x), x) decreases length of W , for some x, where x
stands for one of a, a−1,b,b−1.

Like earlier, we can assume that x = a. Then, for each w ∈ W , |wϕa | < |w |,
using Proposition 4.1.5, whereϕa = (A∩B ′, a). Therefore, |Wϕa | =∑

w∈W |wϕa | <∑
w∈W |w | = |W |. Now, from U = W (A, a) = W (A′, a−1) ((p-viii)), we have, W =

U (A′, a−1)−1 = (A′− a−1 + a, a). So, W1 = Wϕa = U (A′− a−1 + a, a)(A ∩B ′, a) =
U (A′∪B ′−a−1, a).

Now, we have, W1 = W (A ∩ B ′, a), V = W (B ,b), |W1| < |W | and (A ∩ B ′) ∩
B =∅. Therefore, applying case 4 from above, we get at most three automor-
phisms, ρ2,ρ3,ρ4 ∈ Ω such that V = W1ρ2ρ3ρ4, with |W1ρ2|, |W1ρ2ρ3| strictly
lesser than |W |. Replacing W1, with U (A∪B ′−a−1, a), we have, V =Uρ1ρ2ρ3ρ4

with |Uρ1|, |Uρ1ρ2|, |Uρ1ρ2ρ3| < |W |, where ρ1 = (A∪B ′−a−1, a).

Hence, the lemma is proved. �
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Now, we state the restricted version of the theorem (analogue of Theorem 4.1.6)
for a set of cyclic words.
Theorem 4.3.5. Let W = {w1, · · · , wr } and W̄ = {w̄1, · · · , w̄r } be two finite sets of
cyclic words. Let W̄ =Wα, for someα ∈ Aut(F ), and suppose that |W̄ | ≤ |W | (i.e., W̄
is automorphic minimal). Then there exist τ1, · · · ,τn ∈Ω (n ≥ 0), such that, writing
Wi =W τ1 · · ·τi , for 0 ≤ i ≤ n, one has Wn = W̄ , and |Wi | ≤ |W |, for 1 ≤ i ≤ n, with
strict inequality unless |W | = |W̄ |.
Proof. The proof will exactly be same as that of the Theorem 4.1.6. We briefly
discuss it here.

For α ∈ Aut(F ), we get α = τ1 · · ·τn , for some τ1, · · · ,τn ∈ Ω (since Nielsen
transformations generate the automorphism group, and are subset of Whitehead
automorphisms).

Let m = max{|Wi | : 0 < i < n}. If α does not satisfy the conclusion, then n ≥ 2
and m ≥ |W | > |W̄ | or m > |W | = |W̄ |. Choosing i maximal for |Wi | = m, we get
|Wi−1| ≤ |W | and |Wi+1| < |W |. Now, applying Lemma 4.3.4 to Wi−1 =Wiτ

−1
i and

Wi+1 =Wiτi , we get a new path ρ1 · · ·ρk from Wi−1 to Wi+1, such that,
Wi+1 =Wi−1ρ1 · · ·ρk , k > 0,ρ j ∈Ω for all 1 ≤ j ≤ k, (4.39)

with
|Wi−1ρ1 · · ·ρ j | < |Wi | = m, for 0 < j < k. (4.40)

Now, we did in the proof of theorem 4.1.6, we apply induction first on number
of |Wi | of value m, and then on m, until we reach |W | ≤ m. This proves the
theorem. �

This gives the corollaries analogous to Corollary 4.1.7 and 4.1.8. We state the
following corollary which is analogous to Corollary 4.1.8.
Corollary 4.3.6. Let U = {u1, . . . ,ur } and V = {v1, . . . , vr } be two finite sets of cyclic
words. Suppose, Umin and Vmin be automorphic minimal sets of U and V , respec-
tively. Suppose there exists α ∈ Aut(F ), such that Uminα = Vmin, then, α can be
written as a product of finitely many Whitehead automorphisms t1, . . . , tn such
that |Umin | = |Umin t1| = · · · = |Umin t1 · · · tn |, with Umin t1 · · · tn = Vmin.

Now, we state Whitehead’s minimization theorem for the finite set of cyclic
words.
Theorem 4.3.7. (Whitehead’s theorem for finite sets of cyclic words) Let W be
a finite set of cyclic words in F . Suppose that W̄ is an automorphic minimal
set i.e., length of W̄ is minimum among the orbit of w . Then, there exist finitely
many Whitehead automorphisms τ0,τ1, . . . ,τn ,, for some integer n, such that W̄ =
W τ0 · · ·τn and |W τ0 · · ·τn | ≤ |W τ0 · · ·τn−1| ≤ · · · ≤ |W τ0| ≤ |W |.
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As mentioned earlier, by replacing cyclic words with the set of cyclic words,
in the proof Theorem 4.2.1, we get the theorem above.

Now, following similar procedure as section 4.2.1, we get the decision algo-
rithm for Whitehead’s problem.

Proposition 4.3.8. (Decision problem) Let U = {u1, . . . ,ur } and V = {v1, . . . , vr }
be finite sets of cyclic words in a finitely generated free group F . Then it is decidable
whether there is an automorphism,ϕ, carrying U to V i.e., uiϕ= vi , for 1 ≤ i ≤ r.
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CHAPTER 5

WHITEHEAD’S THEOREM FOR ORDINARY
WORDS

We define ordinary words or true words (in terms of Whitehead), as follows.
Definition 5.1. (Ordinary Words) Let Fn be a free group of rank n with basis
X ±1 = {x1, . . . , xn , x−1

1 , . . . , x−1
n }. An ordinary word, w is defined to be a sequence of

letters x y z . . . , for x, y, z ∈ X ±1 such that no consecutive pair of letters are inverses
of each other. For example, x1x5x−1

1 , x4x−1
2 x4 are ordinary words.

Any ordinary word is thought to be reduced unless mentioned.. Length of an
ordinary word w , denoted by |w |, is the number of letters in the word.
Remark 10. Notice that, an ordinary word is quiet different than a cyclic word.
For example, ab and ba are both same as cyclic word, whereas they are not as
ordinary word. Another example, cabc−1 and ab are different ordinary words,
whereas they are same cyclic word.
Note. It only suffices to prove the peak reduction lemma (analogue to Lemma
4.1.1), since the restricted form of Whitehead’s theorem follows from the peak
reduction lemma exactly same way as before. Also, it is clear that the proof of
Theorem 4.1.6 does not depend on the cyclic nature of words. Therefore, Corol-
laries 4.1.7, 4.1.8, Whitehead minimization theorem and Whitehead algorithm
do not depend on the nature of words.
Remark 11. One can not prove the peak reduction lemma for ordinary words in
the same way as cyclic words, because of the following reason:

Ordinary words are not conjugation invariant unlike cyclic words (see the
above remark).

This means, ordinary words do not satisfy the conjugation relation in (p-viii).
But this is crucial for proving the peak reduction lemma.

We introduce the following trick to solve this issue. Basically, for an ordinary
word w in Fn , we define a corresponding cyclic word in Fn+1. Then, using those
cyclic words we prove the lemma. Note that, McCool also uses a similar trick in
[McCool, 1974].

Trick:

We represent an ordinary word w of Fn as a cyclic word in Fn+1, where Fn+1 is
generated by Xn+1 = X ±1 ∪ {xn+1, x−1

n+1}, as follows: define w1 = w xn+1. We see
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that w1 can be thought of as a cyclic word in Fn+1, because the end letters are
not inverses of each other.

As for the automorphisms, we embed Aut(Fn) ,→ Aut(Fn+1), and for any ψ ∈
Aut(Fn), extend ψ on Fn+1 by defining xn+1ψ= xn+1. We denote Ωn+1 as the set
of Whitehead automorphisms in Fn+1.

Lemma 5.2. (Peak Reduction) Let w be an ordinary word. Let σ,τ ∈Ω. Suppose,
u = wσ and v = wτwith |u| ≤ |w | and |v | ≤ |w |with at least one of the inequalities
strict. Then there exist ρ1, . . . ,ρn ∈Ω such that v = uρ1 · · ·ρn , and |uρ1 · · ·ρi | < |w |.

Proof. Let Fn+1 be the free group generated by Xn+1 = X ±1∪{xn+1, x−1
n+1}. We em-

bed Aut(Fn) ,→ Aut(Fn+1), and for any ψ ∈ Aut(Fn), extend ψ on Fn+1 by defining
xn+1ψ= xn+1, as mentioned above.

Let w1 = w xn+1,u1 = uxn+1 and v1 = v xn+1 be cyclic words in Fn+1 corre-
sponding to w,u and v , respectively. Since σ,τ ∈Ω fixes xn+1, we get

w1σ= (w xn+1)σ= wσxn+1 = uxn+1 = u1, (5.1)

and similarly w1τ= v1.
Notice that, |w1| = |w | + 1, |u1| = |u| + 1 and |v1| = |v | + 1. Therefore, from

|u| ≤ |w | and |v | ≤ |w |, we get |u1| ≤ |w1| and |v1| ≤ |w1|, respectively. So, from
the hypothesis of the lemma, we have at least one of the inequalities is strict.
Therefore, we get,

|u1|+ |v1| < 2|w1| (5.2)
We will go through several cases analogous to the proof of Lemma 4.1.1 to

prove this lemma. At each step we will verify that the necessary automorphisms
fix xn+1 and therefore lie in Ω.
Case 1 (τττ is a permutation). For τ a permutation, we get |v | = |wτ| = |w |. There-
fore, |v1| = |v |+1 = |w |+1 = |w1|. Now,

v1 = w1τ= u1σ
−1τ= u1ττ

−1σ−1τ= (uxn+1)ττ−1σ−1τ (5.3)
=⇒ v xn+1 = uττ−1σ−1τxn+1, (since σ,τ fix xn+1) (5.4)
=⇒ v = uττ−1σ−1τ (multiplying x−1

n+1). (5.5)

Taking ρ1 = τ and ρ2 = τ−1σ−1τ, we get v = uρ1ρ2. We have seen in Lemma 4.1.1
that for this ρ1 and ρ2 we get ρ1,ρ2 ∈Ω, and |uρ1| = |u| < |w |.

So, we assume that none of σ and τ are permutations. Let σ = (A, a) and
τ= (B ,b).
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Case 2 (A∩B =∅,b = a−1A∩B =∅,b = a−1A∩B =∅,b = a−1). We have v1 = w1τ = u1σ
−1τ. It follows that v =

uσ−1τ. Taking ρ1 = σ−1τ, the conclusion is vacuously true, as seen earlier in
Lemma 4.1.1.
Case 3 (A∩B =∅, a−1 ∈ B ′A∩B =∅, a−1 ∈ B ′A∩B =∅, a−1 ∈ B ′). We have w1,u1 = w1σ and v1 = w1τ as cyclic words
and the inequality |u1|+ |v1| < 2|w1|. So, from Claim 4.1.2, we get |u1τ| < |w1|.
Hence, |uτ| < |w |.

Now, we have, v1 = w1τ= u1ττ
−1σ−1τ. Letting ρ1 = τ and ρ2 = τ−1σ−1τ, we

have v1 = u1ρ1ρ2 with ρ1,ρ2 ∈ Ω. Since ρ1,ρ2 fix xn+1, we get v = uρ1ρ2 with
|uρ1| = |uτ| < |w |.
For the cyclic words w1,u1 and v1, the proof of the following two cases are similar
to that of Lemma 4.1.1. We briefly discuss the proofs here.
Case 4 (A∩B =∅A∩B =∅A∩B =∅). As before, we assume that a−1 ∈ B and b−1 ∈ A. Let σ′ =
(A,b−1) and τ′ = (B , a−1). Now, for the cyclic word w1, we have, D(σ′, w1) =
(A · A′)w1 − (b−1 ·Xn+1)w1 . Using a ·Xn+1 = a−1 ·Xn+1 and b ·Xn+1 = b−1 ·Xn+1, we
get, D(σ′, w1)+D(τ′, w1) = D(σ, w1)+D(τ, w1) < 0. So, at least one of D(σ′, w1) or
D(τ′, w1) is negative. As before, let’s assume D(τ′, w1) < 0. So, we get, |w1τ

′| < |w1|.
Since τ′ ∈Ω⊂ Aut(Fn), we have xn+1τ

′ = xn+1. Therefore, from |w1τ
′| < |w1|, we

get |wτ′| < |w |. We follow exactly the same procedure as of Lemma 4.1.1 for
the cyclic words w1,u1 and v1 to get v1 = u1ρ1ρ2ρ3 with ρ1 =σ−1τ′,ρ2 =π,ρ3 =
(A−b +b−1, a) ∈Ω. Therefore, we get v = uρ1ρ2ρ3. Now, |uρ1ρ2| = |uρ1|, as ρ2 is
a permutation, and |uρ1| = |wτ| < |w |.
Case 5 (A∩B 6=∅A∩B 6=∅A∩B 6=∅). We have, D(σ, w1) = (A · A′)w1 − (a ·Xn+1)w1 . So, by replacing
X ±1 by Xn+1 in the case 5 of the proof of Lemma 4.1.1 and proceeding exactly
the same way, we get the analogues of 4.14 and 4.15. Now, taking x as one of
a, a−1,b,b−1, we get ϕx = (P (x), x) as a Whitehead automorphism. Therefore, for
the cyclic word w1, we get the analogue of Claim 4.1.4 i.e., D(ϕx , w1) < 0, for
some x. Now, proceeding exactly as that of the proof of Lemma 4.1.1, we get
D(ϕa , w1) = D((A ∩B ′, a), w1) < 0. This implies, |w1(A ∩B ′, a)| < |w1|, which is
the analogue of Proposition 4.1.5.

Since w1 is a cyclic word and a conjugation does not change cyclic words, we
have w1(A, a) = w1(A′, a−1). Therefore, u1 = w1(A′, a−1), hence, w1 = u1(A′, a−1)−1.
Now, w ′

1 = w1(A∩B ′, a) = u1(A′, a−1)(A∩B , a) = u1(A′∪B ′−a−1, a), as seen in the
proof of Lemma 4.1.1. So, we have, w ′

1 = w1(A∩B ′, a), v1 = w1τ, |w1(A∩B ′, a)| <
|w1| and (A∩B ′)∩B =∅. Since (A∩B ′, a),τ ∈Ω, they fix xn+1. So, w1(A∩B ′, a) =
w(A∩B ′, a)xn+1.

Let w ′ = w(A ∩B ′, a). From |w(A ∩B ′, a−1)xn+1| < |w xn+1|, we get |w(A ∩
B ′, a)| < |w |. Also, from v1 = w1τ, we get v = wτ. Therefore, we have, w ′ =
w(A ∩B ′, a), v = w(B ,b), |w ′| < |w | and (A ∩B ′)∩B =∅. Hence, it is reduced to
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case 4 above. So, we get at most three automorphisms such that v = w ′ρ2ρ3ρ4 =
uρ1ρ2ρ3ρ4, with all the intermediate words having length less than |w |, where
ρ1 = (A′∪B ′−a−1, a).

Hence, we have proved the lemma. �

Now, following a similar procedure to the proof of Theorem 4.1.6, we can
prove the restricted version of Whitehead’s theorem.

Theorem 5.3. Let w be an ordinary word. Suppose that w ′ is an automorphic
minimal word in the orbit of w . Let w ′ = wα, for some α ∈ Aut(Fn). Then there
exist τ1, . . . ,τn ∈Ω such that w ′ = wτ1 · · ·τn , and writing wi = wτ1 · · ·τi , we get,
|wi | ≤ |w |, 0 < i < n with strict inequality unless w is also minimal.

5.1. Whitehead’s theorem for a finite set of ordinary
words

In the following section, we prove the theorem for a finite set of ordinary words.
First, we prove the lemma analogue to 5.2. Then using this, we prove the theorem.

Lemma 5.1.1. Let W be a finite set of ordinary words, and U = Wσ, V = W τ,
for σ,τ ∈ Ω. Suppose that, |U | ≤ |W | and |V | ≤ |W |, with at least one of the in-
equality strict. Then V =Uρ1 · · ·ρn . n ≥ 0, where ρ1, . . . ,ρn ∈Ω, and for 0 < i < n,
|Uρ1 · · ·ρn | < |W |.

Proof. We start with defining set of cyclic words corresponding to the set of
ordinary words as follows,

W ′ = {w1xn+1, . . . , wk xn+1}, (5.6)
U ′ = {u1xn+1, . . . ,uk xn+1}, (5.7)
V ′ = {v1xn+1, . . . , vk xn+1}. (5.8)

Since σ and τ fix xn+1, we see that U ′ =W ′σ and V ′ =W ′τ, with |U ′| ≤ |W ′| and
|V ′| ≤ |W ′|.

Proofs of the first three cases are exactly same as that of the proof of Lemma
4.3.4. We only write case 4 and case 5.
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Case 4. (A∩B =∅A∩B =∅A∩B =∅) Like before, we assume that a−1 ∈ B and b−1 ∈ A. Let σ′ =
(A,b−1) and τ′ = (B , a−1). Now,

D(σ′,W ′)+D(τ′,W ′) = ∑
w ′∈W ′

(D(σ′, w ′)+D(τ′, w ′) (5.9)

= ∑
w ′∈W ′

(D(σ, w ′)+D(τ, w ′)) (using (4.7)) (5.10)

= D(σ,W ′)+D(τ,W ′) = |W ′σ|− |W ′|+ |W ′τ|− |W ′| (5.11)
= |U ′|+ |V ′|−2|W ′| < 0. (5.12)

Therefore, at least one of D(σ′,W ′) or D(τ′,W ′) is less than zero. Without loss
of generality, let’s assume D(τ′,W ′) < 0. This implies, |W ′τ′| < |W ′|. Since τ′ ∈Ω
fixes xn+1, we have |W τ′| < |W |. Now, as previously, with ρ1 = σ−1τ′, ρ2 = π

and ρ3 = (A − b−1 + b, a), we see that V = Uρ1ρ2ρ3, where |Uρ1ρ2| = |Uρ1| =
|Wσσ−1τ| = |W τ| < |W |.
Case 5. (A∩B 6=∅A∩B 6=∅A∩B 6=∅) Similar to the case 4 above, we consider the sets of cyclic
words W ′,U ′ and V ′ corresponding to the sets of ordinary words W,U and V ,
respectively. We also have U ′ =W ′σ, V ′ =W ′τ, |U ′| ≤ |W ′| and |V ′| ≤ |W ′|.

Now, following exactly same as that of the proof of the case 5 of the Lemma
4.3.4, we get |W ′(A∩B ′, a)| < |W ′|,W ′ =U ′(A′−a−1+a, a) and W̃ =W ′(A∩B ′, a) =
U ′(A∪B ′−a−1, a). Now, W ′(A∩B ′, a) =W (A∩B ′, a)xn+1. Let W1 =W (A∩B ′, a).
So, from, |W̃ = W ′(A ∩B ′, a)| < |W ′|, we get |W1| < |W |, and from V ′ = W ′(B ,b),
we get V =W (B ,b).

Therefore, we have, W1 =W (A∩B ′, a), V =W (B ,b), |W1| < |W | and (A∪B ′)∩
B =∅. Hence, we are reduced to the case 4 above. So, there exist at most three
automorphisms that connect V to W1, with all the intermediate words having
length less than |W |. Replacing W1, with U (A∪B ′−a−1, a), we get a path from V
to U with at most four steps, where all the intermediate words have length less
than the length of W . Hence, the lemma is proved. �

We write a detailed proof of the restricted form of Whitehead’s theorem,
which will be similar to the previous proofs.

Theorem 5.1.2. Let W = {w1, · · · , wr } and W̄ = {w̄1, · · · , w̄r } be two finite sets of
ordinary words. Let W̄ = Wα, for some α ∈ Aut(Fn), and suppose that |W̄ | ≤
|W |. Then there exist τ1, . . . ,τn ∈ Ω (n ≥ 0), such that, writing Wi = W τ1 · · ·τi ≡
{w1τ1 · · ·τi , · · · , wrτ1 · · ·τi }, for 0 ≤ i ≤ n, one has Wn = W̄ , and |Wi | ≤ |W |, for 1 ≤ i ≤ n,
with strict inequality unless |W | = |W̄ |.
Proof. Since Nielsen transformations generate the automorphism group, and
are contained in the set of Whitehead automorphisms, we see that for any α ∈
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Aut(Fn), there exist τ1, . . . ,τn ∈Ω such thatα= τ1 · · ·τn , for n ≥ 0. Now, if τ1, . . . ,τn

satisfy |Wi | ≤ |W |, for 1 ≤ i ≤ n, then we are done.
Let m = max{|Wi | : 0 < i < n}, where Wi =W τ1 · · ·τi . Since α does not satisfy

the conclusion, we must have n ≥ 2 and either m > |W | = |W ′| or m ≥ |W | > |W ′|.
Let i be the maximal integer such that |Wi | = m. Therefore,

|Wi−1| ≤ |Wi | and |Wi+1| < |Wi |. (5.13)

We also have
Wi−1 =Wiτ

−1
i and Wi+1 =Wiτi+1. (5.14)

From the justification in Theorem 5.3, we see that, given W a set of ordinary
words, Wi is a set of ordinary words, for all i . So, from (5.13) and (5.14), we see
that, they satisfy Lemma 5.1.1. Therefore, there exist ρ1, . . . ,ρk ∈ Ω, for some
k ≥ 0, such that

Wi+1 =Wi−1ρ1 · · ·ρk , (5.15)

and for 1 ≤ j < k,
|Wi−1ρ1 · · ·ρ j | < |Wi | = m. (5.16)

We know that,

W ′ =W τ1 · · ·τn (5.17)
=Wi+1τi+2 · · ·τn (5.18)
=Wi−1ρ1 · · ·ρkτi+1 · · ·τn (using (5.16)) (5.19)
=W τ1 · · ·τi−1ρ1 · · ·ρkτi+1 · · ·τn . (5.20)

So, from (5.20), we see that τ1 · · ·τi−1ρ1 · · ·ρkτi+1 · · ·τn is the new path that con-
nects W to W ′, and also notice that, by doing so, we have removed Wi . Therefore,
we conclude that by introducing the new path, the number of words of length m
go down exactly by one.

Now, suppose that, there exists l < i , maximal, such that, |Wl | = m. Then we
repeat the same process to get a new path where we don’t have the word Wl . So,
by repeating this process, we eventually eliminate all the words of length m and
get a new path from W ′ to W corresponding to m′ ≤ m.

We keep repeating this process until we reach m̃ ≤ |W |. Therefore, we get a
path from W ′ to W with all the intermediate words having length less than |W |,
proving the theorem. �

Therefore, we get the corollaries analogous to 4.1.7 and 4.1.8.
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Corollary 5.1.3. Let U = {u1, . . . ,ur } and V = {v1, . . . , vr } be two finite sets of ordi-
nary words. Suppose, Umin and Vmin be automorphic minimal sets of U and V ,
respectively. Suppose there exists α ∈ Aut(F ), such that Uminα= Vmin, then,α can
be written as a product of finitely many Whitehead automorphisms t1, . . . , tn such
that |Umin | = |Umin t1| = · · · = |Umin t1 · · · tn |, with Umin t1 · · · tn = Vmin.

The proof of Whitehead’s minimization theorem follows using the same
procedure as that of Theorem 4.2.1.

Theorem 5.1.4. (Whitehead’s theorem for the finite sets of ordinary words) Let
W be a finite set of ordinary words in F . Suppose that W̄ is an automorphic
minimal set i.e., length of W̄ is minimum among the orbit of w . Then, there exist
finitely many Whitehead automorphisms τ0,τ1, . . . ,τn ,, for some integer n, such
that W̄ =W τ0 · · ·τn and |W τ0 · · ·τn | ≤ |W τ0 · · ·τn−1| ≤ · · · ≤ |W τ0| ≤ |W |.

Corollary 5.1.3 and Theorem 5.1.4 allow us to produce an algorithm for the
decision problem in a similar fashion. Hence, we have the following solution to
the decision problem for finite sets of ordinary words.

Proposition 5.1.5. (Decision problem) Let U ,V be the finite sets of ordinary
words. Then it is decidable if there exists an automorphism carrying U to V .
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CHAPTER 6

WHITEHEAD’S SECOND PROBLEM

Whitehead [Whitehead, 1936b, p. 800] stated the extension of decision algorithm
to the finitely generated free groups as an open problem. Explicitly, the problem is
to decide whether there exists an automorphism between two finitely generated
subgroups of free groups. Gersten [Gersten, 1984b] solved this problem using a
different kind of complexity other than the length of the words.

In this chapter, we discuss Whitehead’s counter example, and comment on
Gersten’s correction.

Take F (a,b), the free group with two generators. Let G be a subgroup gener-
ated by

p = (ab−1)2b−2(ab−1)2a3, q = a−3b−5

and H be a subgroup generated by

r = a2b−2a2b−5, s = (ab)−3b−5.

We will see that these two subgroups are equivalent by Whitehead automor-
phism t = ({a,b},b). Notice that, under t , a 7→ ab and b 7→ b. So,

pt = a bb−1 a bb−1 b−1b−1a bb−1 a bb−1 ababab (6.1)
= a2b−2a2(ab)3 ≡α (6.2)

and

qt = (ab)−3b−5 ≡β. (6.3)

Therefore, 〈p, q〉t = 〈α,β〉. Now, we see that, r =αβ. So, 〈r, s〉 = 〈αβ,β〉. But
the group generated by αβ and β is same as the group generated by α and β.
Hence, we see that 〈p, q〉 and 〈r, s〉 are equivalent under the automorphism
t = ({a,b},b).

Now, there are no possible reductions of these two sets of words {p, q} and
{r, s}, by means of Whitehead. Define the length of a subgroup to be the sum of the
length of generators. So, we get that |G| = 21 and |H | = 22. Therefore, there does
not exist any Whitehead automorphism which fix length in each intermediate
steps (in Whitehead’s terminology these are called level transformations).
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So, with this example, we see that, even though two subgroups are equivalent
by an automorphism, it is not always possible to use Whitehead’s minimizing al-
gorithm and the finite sequence algorithm, contrary to Whitehead’s first decision
problem.

Gersten [Gersten, 1984b] came up with a new notion length, called complexity,
of subgroups. We briefly discuss Gersten’s notion of complexity.

• Realize a free group of finite rank, F , as the fundamental group of wedge of
circles, which can be thought of as a one vertex graph. Denote this graph
as Y .

• Let S be a conjugacy class of finitely generated subgroups of F ' π1(Y ).
Corresponding to S, find a covering space X1

p1−→ Y such that p1∗(π1(X1, x))
is in S. This is possible because of the existence theorem of covering spaces
[Massey, 1977, Theorem 10.2, p. 175]. Since covering space of a graph is a
graph, X1 is a graph [Massey, 1977, Thereom 7.1, p.201].

• Take the core graph, X of X1. A core graph can be thought of a graph
where the fundamental group is concentrated. The core graph, X , can be
found, using the generators of the fundamental groups of X1 [Massey, 1977,
Theorem 7.2, pp. 197-198]. Restriction of p1 to X defines an immersion
X

j−→ Y such that j∗(π1(X , x)) belongs to S.

• Define the complexity of S, denoted by c(S) to be the number of vertices
of the core graph i.e., c(S) = #V (X ). Note that c(S) is well-defined due to
the following reason. Let X2

p1−→ Y be another covering space such that
p2∗(π1(X2, x2)) belongs to S. Therefore, both the covering spaces are iso-
morphic [Massey, 1977, Theorem 6.6, p. 159]. Hence, the core graph X is
unique up to isomorphism.

Using this notion of the complexity, Gersten [Gersten, 1984b, p. 284] an-
nounced the solution of Whitehead’s second decision problem one solves the
problem [Gersten, 1984b, p. 284]. However, complete details of this approach do
not seem to be in the literature (see [Kalajdžievski, 1992, section 10] and [Balle
Pigem, 2009, Chapter 3] for alternative arguments).
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