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Abstract 

The loss of mobility among the elderly has become a significant health and socio-economic 

concern worldwide. Poor mobility due to gradual deterioration of the musculoskeletal 

system causes older adults to be more vulnerable to serious health risks such as joint 

injuries, bone fractures and traumatic brain injury. The costs associated with the treatment 

and management of these injuries are a huge financial/social burden on the government, 

society and family. Knee is one of the key joints that bear most of the body weight, so its 

proper function is essential for good mobility. Further, Continuous monitoring of the knee 

joint can potentially provide important quantitative information related to knee health and 

mobility that can be utilized for health assessment and early diagnoses of mobility-related 

problems. 

In this research work, we developed an easy-to-use, low-cost, multi-sensor-based wearable 

device to monitor and assess the knee joint and proposed an analysis system to characterize 

and classify an individual’s knee joint features with respect to the baseline characteristics 

of his/her peer group. The system is composed of a set of different miniaturized sensors 

(inertial motion, temperature, pressure and galvanic skin response) to obtain linear 

acceleration, angular velocity, skin temperature, muscle pressure and sweat rate of a knee 

joint during different daily activities. A database is constructed from 70 healthy adults in 

the age range from 18 to 86 years using the combination of all signals from our knee joint 

monitoring system.  

In order to extract relevant features from the datasets, we employed computationally 

efficient methods such as complementary filter and wavelet packet decomposition. 

Minimum redundancy maximum relevance algorithm and principal component analysis 

were used to select key features and reduce the dimension of the feature vectors. The 

obtained features were classified using the support vector machine, forming two distinct 

clusters in the baseline knee joint characteristics corresponding to gender, age, body mass 
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index and knee/leg health condition. Thus, this simple, easy‐to‐use, cost-effective, non-

invasive and unobtrusive knee monitoring system can be used for real-time evaluation and 

early diagnoses of joint disorders, fall detection, mobility monitoring and rehabilitation. 
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Chapter 1 

Introduction* 

1.1. Overview of Human Body Joint monitoring 

The human body is a well-developed mechanical structure. The skeleton of the human body 

is made up of 206 different shaped bones, which serves as a framework of the body, and 

the joints are the locations where bones meet each other. Joints hold the bones together and 

give the skeleton stability and mobility [1]. As we grow older, joints begin to deteriorate 

due to wear and tear as well as disease states. As a consequence, joint motion becomes 

more restricted, flexibility decreases as well as joints become painful, inflamed and 

arthritic. These kinds of joint problems, also known as musculoskeletal disorders, have 

become a serious threat to healthy aging. Musculoskeletal disorders are one of the major 

causes of mobility loss [2] as well as reduced productivity [3] among older adults, and the 

highest contributor to global disability [4]. Persons with these disorders have significant 

morbidity and higher mortality rates than their age- and gender-matched peers [5]. The cost 

for direct treatment and healthcare services for the musculoskeletal disorders and mobility-

related problems is becoming a major social and financial burden on government, society 

and family. Also, costs due to lost productivity (the indirect economic loss to society) 

outweigh the direct costs by a factor of five [6]. Responding to this increasing socio-

economic burden demands a multilevel, integrated response, including primary prevention, 

early detection and effective intervention for persons at risk with common musculoskeletal 

health issues. Therefore, unobtrusive and continuous joint monitoring during the normal 

daily activities of an individual is becoming essential to assess a person’s mobility and 

 
* Part of this work will be submitted for consideration for publication as: A. I. Faisal, S. Majumder, R. Scott, 

T. Mondal, D. Cowan, and M. J. Deen, A Simple, Low-Cost Multi-Sensor-based Smart Wearable Knee Joint 

Monitoring System, March 2020. (in preparation) 
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musculoskeletal health status as well as for accurate diagnosis of different musculoskeletal 

and mobility-related disorders. 

 

1.1.1. Key Joints for Mobility 

Three types of joints are present in the human body: Fibrous (immovable), Cartilaginous 

(semi-movable) and Synovial (freely movable) joints [7]. Among them, synovial joints 

(Figure 1-1(a)) are the key joints of our body to provide mobility by allowing load-bearing, 

low-friction, wear-resistant smooth movement between articulating bone surfaces [8]. We 

have six groups of synovial joints in our body. These are categorized by the apposing bone 

surface at joints and the types of movement they permit: pivot, hinge, saddle, plane, 

condyloid and ball-and-socket joints [8]. These are presented in Table 1-1 and illustrated 

in Figure 1-1(b). All synovial joints of the human body are bound by a complicated system 

of ligaments, muscles, tendons and cartilage [9]. There are protective membranes and 

synovial fluid which lubricate those joints to facilitate smooth movements and load-bearing 

[10]. Throughout our life and for every functional activity, these joints are critical and 

several bear our weight and are key to our movements. With aging, synovial fluid 

production is reduced, the cartilage wears, and the articulating bones come into direct 

contact, causing musculoskeletal damage such as irregular articular surface and loss in bone 

density [10]. Pain, stiffness, deformation, inflammation and swelling in the joints are the 

signs of this musculoskeletal damage [11]. 

Table 1-1: Types of Synovial Joints. 

Joint Type Joint Movement Examples 

Pivot Rotation of one bone around another Top of the neck 

Hinge Flexion/Extension Elbow/Knee/Ankle 

Saddle Flexion/Extension/Adduction/Abduction/Circumduction Thumb 

Plane Gliding movements 
Inter-carpal/Tarsal 

bones 

Condyloid Flexion/Extension/Adduction/Abduction/Circumduction Wrist 

Ball-and-socket Flexion/Extension/Adduction/Abduction/Rotation Shoulder/Hip 
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Figure 1-1. (a) A Synovial Joint; (b) Types of Synovial Joints.  

Image source: https://opentextbc.ca/anatomyandphysiology/chapter/9-4-synovial-joints/ under a Creative 

Commons Attribution 4.0 International License.                                                                                                          

 

(a) 

(b) 
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1.1.2. Key Parameters for Joint Monitoring 

The physiologic joint movement occurs through the isotonic contraction of the muscles and 

the contractile force is closely related to the change in muscle length at the joint location 

[12]. During the contraction, the change in muscle length varies with different joint angles, 

motions and postures. By measuring the range of motion of a joint, it is possible to 

determine the maximum force generated by the muscle as one measure of the health 

condition of a joint. Similarly, the joint angles and postures at different activity levels also 

depict muscle strength and endurance [13]. Therefore, one of the main goals of developing 

a joint monitoring system is to track and record the joint activities in the form of meaningful 

data such as angle, range of motion (ROM), motion, orientation, and other important 

physiological parameters such as local skin temperature, sweat rate or muscle pressure 

around the joint. This could potentially be used to estimate the joint health status and 

provide feedback to the person whose joint is being monitored.  

 

Joint Angle and ROM 

Each movable body joint has an optimal range of joint angle for a specific activity or 

motion. To reach that optimal angle, the muscle should have the correct length to bear the 

maximum strength [14]. There are several published reference values of the active range of 

joint angles or range of motions [15]–[17] for a healthy adult. However, the ROMs may 

vary depending on sex, age, physical structure and daily activities [18]. A pictorial view of 

the 5 joints’ movements and the normative values of normal joint range of motion (ROM) 

in 674 normal subjects by gender (54% females and 46% males) and four different age 

groups (2-8, 9-19, 20-44 and 45-69 years) measured in degrees [19] are presented in 

Appendix A (Figure A-1 and Table A-1). The reference values were calculated along with 

95% confidence intervals for normal range of motion for 11 different movements measured 

on 5 joints. From Table A-1, for all joints, a downtrend of ROM values is visible with 

aging, for both male and female subjects. The greatest change was seen in knee flexion, 

with a 15° difference in mean ROM between the age groups of 2–8 years and 45–69 years. 

Although ROMs are generally affected by aging, there can be other reasons such as injuries 



M.A.Sc. Thesis – Abu Ilus Faisal          McMaster University - Electrical and Computer Engineering 

5 

or other health-related problems which can cause a reduction in the ROM of a joint. 

Therefore, it is very important and useful for therapists and physicians to study joint angles 

for the early detection of joint issues or determine the progress in joint rehabilitation. 

 

Joint Motion  

The motion of a joint describes its movement from the center of the joint location [19], 

[20]. Joint motion includes flexion (bending), extension (straightening), adduction 

(movement towards the center of the body), abduction (movement away from the center of 

the body) and rotations (inward and outward movements) [21]. The measurement of a 

joint’s motion in different activities includes both its angle and orientation in a 3D space 

which can provide useful clinical information related to joint health. Therefore, for joint 

health assessment and rehabilitation, continuous motion monitoring is very important. 

 

Other Physiological Parameters  

Along with angle and motion, there are some other physiological parameters related to 

joints that can provide important information about joint health status. For example, 

changes in local skin temperature around the joint can be an indication of pathology. Local 

temperature change occurs due to the changes in blood flow in that region. Generally, the 

skin temperature of an inflamed joint is higher (1.1°C – 2.8°C) than a normal joint [22]. 

Therefore, monitoring joint skin temperature can be a useful clinical indicator in evaluating 

the health status of a joint. 

Muscle pressures/forces around a joint during several activities and movements are also 

closely correlated to the corresponding musculoskeletal health. Muscle pressure changes 

around a joint with every movement (flexion, extension, etc.) and the values are different 

for different activities. Muscle pressure plays a crucial role in determining the force 

balance, contact force and pressure distribution of the joint [23]. Any imbalance in muscle 

forces can result in joint pain and stress. Muscle forces around the joints can be easily 

estimated by utilizing flexible pressure sensors or electromyography (EMG) sensors [24], 

[25]. 
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For joint monitoring, another important parameter is the sweat rate of the joint skin. It can 

provide the necessary estimation about the thermal status and other physiological condition 

such as blood circulation of joints. Stress and perspiration in the joint are related to the local 

blood flow and the activities of the sweat gland which can be interpreted by measuring the 

sweat rate. The galvanic skin response (GSR) sensor is one of the common types of sweat 

rate sensors. This sensor is used to measure skin conductance which varies with the change 

of skin moisture caused by sweating [26]. 

 

1.2. Importance of Knee Joints 

Among all the body joints, the knee is the largest and the most complex joint in human 

body [27]. Knee joints provide stable support to our whole body and flexibility in our legs 

to ease our lower limb activities. It is a type of synovial joint (hinge type) [28], which joins 

the upper leg bone (femur) to the lower leg bones (tibia and fibula). There are two C-shaped 

cartilages (medial and lateral menisci) between the femur and tibia which act as shock 

absorbers and another bone called the patella (kneecap) that make the knee joint. Ligaments 

join the knee bones to provide joint stability, and tendons connect the knee bones to the leg 

muscles to support joint movements (Figure 1-2) [29], [30]. 

 

Figure 1-2. The knee joint in the human body.  

Image source: https://en.wikipedia.org/wiki/Knee under a Creative Commons Attribution 4.0 International 

License. 
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Knees experience a large range of motion (up to ~140°), bear most of the body weight and 

absorb a huge amount of pressure during several daily activities. While walking across level 

ground, the average force on each knee is the equivalent to 1.5 times our body weight. The 

pressure is even greater when we climb up or down (can be of two to three times our body 

weight) the stairs, and squat (up to four to five times our body weight) to tie a shoelace or 

pick up an item from the ground [31]. Due to that enormous pressure, plus regular wear 

and tear, there is always a high chance of having knee problems during many labor-

intensive jobs, sports or recreational activities. Knee joints also deteriorate due to 

overweight, aging or diseases such as osteoporosis or arthritis [29]. Moreover, being the 

largest weight-bearing and somewhat unstable joints of the human body, knees have high 

exposure to injuries. Knee injuries may be caused from abnormal twisting or bending the 

knee, falling on the knee, or by a direct blow from accidents [29].  

Limited range of motion, pain, stiffness, swelling and inflammation are the most common 

signs of knee problems and injuries [32]. In addition, they may catch or lock up. Many 

knee-related issues also cause deformity, weakness and instability in knee joints. The 

common knee disorders and injuries include osteoarthritis, rheumatoid arthritis, gout, knee 

bursitis, Baker’s cyst, osteochondritis dissecans, sprains and strains, dislocation, fractures, 

torn ligament, meniscus injury, and patellofemoral syndrome [32]. Although older adults 

are more prone to have knee disorders, they can occur in people of all ages. Mobility is 

highly affected by having knee problems which gradually leads to a lack of independence, 

depression, reduced productivity, weakened ability in handling daily activities, and 

worsening quality-of-life [33]. Therefore, proper functioning of the knee joints is essential 

for good mobility and is considered one of the most important and critical health assessment 

parameters. 

 

1.3. Research motivation 

Worldwide, musculoskeletal disorders are one of the major causes of loss of work, early 

retirement, reduced retirement wealth [2] and diminished productivity [3]. According to the 
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Global Burden of Disease Study 2010 (GBD 2010), the impact on the global disability 

burden due to musculoskeletal conditions is enormous, and it is the top-ranked common 

cause of disability among older adults [34]. Among musculoskeletal disorders, arthritis is 

one of the most common, and it is a major contributor to the world’s disability burden. 

From 1990 to 2013, it increased by 75% across the world’s population [34], [35]. There are 

more than 100 different types of arthritis [35] which can affect virtually any joint [36], and 

people of all ages, genders and races can have arthritis-related problems. Knee 

osteoarthritis (KOA) is the most common form of arthritis and is a substantial cause of 

disability affecting millions of people around the world [37]. In osteoarthritis, the natural 

cushioning between joints and cartilage wears away, and the bones of the joints begin to 

rub more closely against each other with less of the shock-absorbing benefits from 

cartilage. As a result, people experience pain, swelling, stiffness, decreased ability to move, 

and sometimes, the formation of bone spurs. Although the prevalence of knee osteoarthritis 

increases with age, it can occur even in young people. According to the Arthritis 

Foundation [35], about 14 million individuals in the U.S. have knee osteoarthritis. There 

are several factors such as aging, obesity, inherited abnormalities in the shape of the leg 

bones, repetitive stress on knee joints, athletics and other illness can increase the risk of 

developing osteoarthritis of the knee. Eventually, this leads to physical impairment and loss 

of mobility which have severe physical, mental and social consequences among the people 

with KOA.  

Monitoring and assessing the mechanical and physiological characteristics of the knee 

joints during daily living activities in the natural environment may provide valuable insight 

into understanding the initiation and development of KOA in an individual. Therefore, 

development of a smart wearable knee monitoring and assistive device can help a person 

by regularly monitoring the joint health and mobility status as well as assisting to maintain 

regular physical activities/exercises and proper diet [38] to prevent KOA. This device can 

also extract important parameters for early diagnosis leading to early treatment of KOA 

and other knee-related issues. For knee injuries, during the recovery period following 

treatment, patients need to go through several rehabilitation programs depending on the 
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improvement in their knee health status. Current methods to assess the healing process 

during rehabilitation comprise a series of qualitative physical examinations, which are 

infrequent and subjective. An accurate, easy‐to‐use, cost-effective, non-invasive wearable 

knee joint monitoring system that can be operated outside the clinical environment would 

be able to improve the rehabilitation outcomes by ensuring the correct execution of the 

exercise and quantifying the progress towards the recovery of knee health. Moreover, such 

a monitoring system is desirable for other human activity-related programs such as sports 

medicine, human performance assessment and virtual guided training [39]. 

There are several sensing technologies capable of detecting joint parameters and 

movements. Among them the most common clinically used joint monitoring systems are 

based on goniometers (mechanical or electromechanical) [40]–[45] or video/imaging 

systems [46]–[49]. However, inflexibility and low accuracy are the major drawbacks of 

such goniometer-based systems. On the other hand, video/imaging systems [46], [48]–[50] 

use complicated image processing algorithms and machine learning techniques to track 

joints and analyze mobility characteristics. Typically, a complex and expensive 

infrastructure with sophisticated image acquisition and analyses tools is required for such 

kinds of systems. Moreover, such a system is only effective with a pre-equipped lab 

environment, which restricts the users’ normal movements and makes it unsuitable for 

continuous or long-term knee joint monitoring during daily activities. 

Fortunately, with the advances in sensor technology, the monitoring process has become 

easier, more convenient and less costly to implement. Also, wearable sensors are now very 

reliable, and are extensively used for healthcare, entertainment, security and consumer 

applications [51]–[53]. Thus, advanced sensors have opened the door of opportunity to 

develop a miniaturized wearable knee joint monitoring device that is accurate, durable and 

able to connect wirelessly with smart devices for easy, fast and seamless operation [54]. 

However, the selection of the sensors is critical, and depends upon several associated 

factors related to performance, cost, calibration and service of the entire system. Finally, to 

implement a comprehensive knee joint monitoring system, we need to integrate the selected 

sensors with a data transmission device and a feedback system. 
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To accomplish the abovementioned objectives, this research focuses on the development 

of a non-invasive and wearable smart knee monitoring device that can provide a complete 

set of data related to knee health and mobility including joint range of motion, walking 

parameters and the state of adjacent joint muscles. We investigated different sensing 

technologies and designed our wearable monitoring system by fusing multiple types of 

sensors (IMU – inertial measurement unit, temperature, pressure, and GSR - galvanic skin 

response). Inertial motion sensors (gyroscopes and accelerometers) are capable of 

measuring the mechanical parameters such as knee angle, rotation and speed of movement 

by measuring rotation and acceleration. Other sensors are used to record and monitor other 

important parameters such as knee skin temperature, skin conductance and the pressure by 

the muscles around the knee joint. All sensors used to build the system are low-cost, low-

power, miniature and light-weight with wireless connectivity. We used an Android 

smartphone to gather and store the sensors’ data wirelessly and later applied efficient signal 

analysis and features extraction techniques for reducing the computational complexities for 

continual knee monitoring. Thus, our system is suitable for real-time monitoring using 

minimum processing resources and the processed data can provide useful information about 

the overall knee health status of an individual. 

 

1.4. Research contributions 

The research work conducted in this thesis focuses on developing a comfortable, easy-to-

use, low-cost, wearable smart knee joint monitoring system to facilitate continuous 

monitoring in real living conditions and to provide important health analysis related to knee 

joints and mobility. The major contributions of this work are summarized as follows. 

 

 The development of a multi-sensor-based smart wearable knee joint monitoring 

system. The system was designed by fusing multiple low-cost, miniaturized sensors: 

inertial measurement unit (IMU), temperature, pressure, and galvanic skin response 

(GSR) sensors. The combined system is capable of measuring important mechanical 
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and physiological parameters related to knee joints and has wireless connectivity to 

transfer the recorded data to a smart device simultaneously.  

 The implementation of different signal processing and analysis techniques to 

extract the necessary joint and gait parameters. Knee angle, stride length, minimum 

foot clearance (MFC), gait speed and cadence (steps per minute) were estimated from 

the IMU data, and knee skin temperature, skin conductance and the pressure by the 

muscles around the knee joint were calculated from the other three sensors. Besides 

these mechanical and physiological parameters, a set of statistical, temporal and energy 

features of knee joint movement were also extracted from the preprocessed IMU 

signals. 

 Creating a database using the developed monitoring system, and validating the 

measurements and proposed methods. A total of 70 healthy subjects in the age range 

from 18 to 86 years participated in this study. Different validation techniques were 

used to determine the concurrent validity of the estimated joint and gait parameters 

from the proposed monitoring system.  

 Characterization of the knee joint and gait parameters with respect to different 

age groups and gender. Characteristics of several key extracted features were found 

to be varied for different subject groups participated in this study. Comparisons of these 

joint and gait-related features between different age groups and genders are reported 

in this work to show the changing trends in joint and gait behaviors with age and 

gender. 

 Classification of knee data into different classes according to their common 

characteristics. The support vector machine (SVM) was used in this study to train and 

classify the data corresponding to different subject groups. The groups of the subjects 

were defined according to their age, gender, BMI, as well as their knee and leg health 

conditions. The performance of the classifier was evaluated using a 10-fold stratified 

cross-validation. 
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Publications: 

▪ A. I. Faisal, S. Majumder, T. Mondal, D. Cowan, S. Naseh, and M. J. Deen, 

“Monitoring Methods of Human Body Joints: State-of-the-Art and Research 

Challenges,” Sensors, vol. 19, no. 11, p. 2629, Jun. 2019. 

 

1.5. Thesis organization 

In Chapter 1, an overview of human body joint monitoring including important body joints 

for mobility and key joint parameters is presented. Then, the importance of knee joints and 

the motivation of developing a simple, easy-to-use, cost-effective, non-invasive and 

unobtrusive knee monitoring system are presented. Finally, a brief summary of the main 

contributions of this research and the structure of this thesis are described. 

 

In Chapter 2, an extensive literature review was conducted including traditional methods 

for human joint monitoring, state-of-the-art sensors and technologies for joint monitoring, 

and several sensor fusion methods. The research challenges of the currently available 

systems for joint monitoring are also addressed in this Chapter. 

 

In Chapter 3, the details of design and development of the multi-sensor-based smart 

wearable knee joint monitoring system are presented. A brief overview of all the sensors 

(IMU, temperature, pressure and GSR) used to build the system is also described. Later, 

we have discussed the experimental protocol as well as data acquisition methods from the 

sensing system. 

 

In Chapter 4, signal processing and data analysis techniques are demonstrated. We used 

different preprocessing techniques for the raw signals and then applied feature extraction 

methods to extract usable joint and gait-related features from the preprocessed data. We 

also calculated important joint parameters such as knee angle, stride length, MFC, gait 

speed, cadence, knee skin temperature, skin conductance and the pressure by the muscles 
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around the knee joint. Finally, different validation techniques are described which verified 

the correctness of the measurements by the proposed system. 

 

In Chapter 5, the characteristics of extracted features and parameters from the knee data are 

analyzed and compared with respect to different subject groups. Later, we applied a feature 

selection algorithm (mRMR – minimum redundancy maximum relevance) and principal 

component analysis (PCA) to select the key features and reduce the dimensionality of the 

feature vector. We then exploited and trained the support vector machine (SVM) with the 

reduced feature vector, classifying the data corresponding to different subject groups. The 

classification accuracy was evaluated using a 10-fold stratified cross-validation. 

 

In Chapter 6, this thesis is concluded with a summary of the research work and several 

research and technology development recommendations for future improvements to make 

the knee joint monitoring system more precise, efficient and user-friendly. 
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Chapter 2 

Literature Review* 

Advances in sensor technology have opened the door of opportunity to develop a 

miniaturized wearable joint monitoring device that is accurate, durable and able to connect 

wirelessly with smart devices for easy, fast and continuous operation [54]. For wearable 

applications, the selection of the sensor is critical. It depends upon several associated 

factors related to performance, size, cost, calibration and service of the entire system. To 

implement a complete joint monitoring system, we need to combine relevant sensors with 

a data transmission device as well as a data analysis and feedback system. Various types of 

joint monitoring devices based on different sensing techniques and algorithms are 

suggested in the literature [17], [28], [39]-[42], [48]-[70]. The main focus of many 

researchers is to make the system simple, easy‐to‐use, cost-effective, non-invasive, 

unobtrusive and wearable with wireless communications [92]. With these features, the 

system can be used in real-time for monitoring and analyzing the continuously collected 

data based on detailed input, requirements and specifications of the person being monitored 

[38], [93]–[96].  

In this Chapter, we present a detailed survey of different proposed and developed 

technologies and methods of joint monitoring. Following the review on traditional methods 

used for joint monitoring, various types of modern sensors and technologies commonly 

used to develop joint monitoring systems are explained and compared highlighting their 

working principles, measurement parameters, data gathering and processing, and validation 

techniques. In addition, we also review several proposed sensor fusion methods for 

 
* Adapted from A. I. Faisal, S. Majumder, T. Mondal, D. Cowan, S. Naseh, and M. J. Deen, “Monitoring 

Methods of Human Body Joints: State-of-the-Art and Research Challenges,” Sensors, vol. 19, no. 11, p. 2629, 

Jun. 2019. Under a Creative Commons Attribution 4.0 International License. 
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developing joint monitoring systems. Finally, research challenges including shortcomings 

and limitations of these monitoring systems and algorithms are discussed. 

 

2.1. Traditional Methods of Joint Monitoring 

Most of the traditional joint monitoring and angle measurement systems were based on 

goniometer which is simple to use, noninvasive and inexpensive [42]–[45]. This device can 

be used to determine the range of angular motion of different human body joints such as 

the knee, elbow or waist [45] in a two-dimensional space. A photograph of the universal 

goniometer is shown in Figure 2-1. 

 

Figure 2-1. Universal goniometer.  

Image source: https://commons.wikimedia.org/wiki under a Creative Commons Attribution 4.0 

International License. 

Recent goniometer-based joint monitoring systems use mechanical or electromechanical 

goniometers, which are based on resistive potentiometers or strain gauges [44]. This type 

of goniometer consists of a flexible measuring element (resistive potentiometers or strain 

gauges) attached between two end blocks, one fixed and the other moving on a light spring. 

However, The main disadvantages of these kinds of goniometers are lower accuracy, large 

size, imprecision, flimsiness and fixed center configuration which does not provide 

flexibility with the natural joint movement [43]. To overcome these difficulties in joint 

related research and clinical monitoring, researchers are now using different types of 
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sensors to build joint monitoring systems that are flexible, unobtrusive and of higher 

precision [44], [45]. 

 

2.2. State-of-the-Art Sensors and Technologies 

Sensors are the fundamental elements of a joint monitoring system to measure the 

physiological parameters - angle, range of motion and posture - of joints. Various research 

groups [16], [17], [28], [39]-[42], [48]-[70] have used different sensor types to build joint 

monitoring systems. Some systems were developed using a single sensor [44], [55]–[57], 

[71], [90], [97]; others were assembled with a combination of multiple sensor technologies 

using data fusion methods [39], [75], [98], [99]. The selection of sensors is crucial when 

developing an accurate and reliable monitoring system. The key features to be considered 

while developing such a system are high efficiency and accuracy, good reliability, high 

sensitivity, small size, light-weight, lower energy consumption, and low processing 

resources [54]. In this Section, we will discuss various state-of-the-art sensor technologies 

used to develop joint monitoring systems. 

 

2.2.1. Optical Sensors 

Most of the common implementations of optical sensor-based joint monitoring system used 

either intensity modulation or optical navigation methods [44], [45], [89], [100]. Optical 

fiber sensors (OFSs) were used for intensity modulation [88], [90], [101]. The basic 

working principle of OFS-based systems is to detect the attenuation of the transmitted 

optical signal power due to bending of the optical fiber [90]. On the other hand, the systems 

using optical navigation sensors detect planar motion with joint movement. The optical 

navigation-based monitoring device is also known as optical-based goniometer [44], [45], 

[102]. 

Optical fiber sensors are now often used for designing various health monitoring systems 

[88], [101], [103]–[105], and several categories of OFSs were developed for both health-

related academic research and commercial products. Depending upon the measuring 
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techniques of the physical parameters and their conversion methods from optical data, OFS 

can be categorized into four different types: single-point, long-gauge, quasi-distributed and 

distributed sensors [88]. Optical fiber sensors are made of flexible plastic optical fibers 

through which optical signals are transmitted. The basic components of an OFS-based 

system are a light source, flexible optical fiber and a photodetector. The light source 

generates the optical signal that travels through the flexible optical fiber and is received by 

the photodetector at the end of the fiber. By measuring the attenuation of the optical signal, 

it is possible to determine the bending angle of the fiber [89]. Due to this simple sensing 

principle and structure, optical fiber sensors can be easily integrated into a monitoring 

system for measuring human joint angles [101]. Basic configurations and working 

principles of an optical fiber and OFS-based joint monitoring system are shown in Figure 

2-2(a) and (b). 

The main benefits of OFS are high resolution, flexibility, light-weight and immunity to 

electromagnetic interference. Different techniques were developed to improve the 

sensitivity and accuracy of OFS-based joint angle measurements [89]. For example, 

roughening or polishing the surface on one side [72] of an OFS is a common method to 

improve the sensitivity by enhancing the optical signal attenuation with bending [106]. In 

the work described in [89], a wearable knee motion monitoring system using a flexible 

plastic OFS placed in a commercial knee brace was developed. The change of transmittance 

(the ratio of the light energy incident on an object to that transmitted through it) was 

measured while bending the plastic optical fiber. One side of the fiber was polished to 

improve the performance as macro-bending creates more attenuation [100], [107]. This 

device was made wearable and wireless by integrating a wireless communication board 

based on Bluetooth technology with the main controller board. A comparative analysis with 

a reference video-based monitoring system was made and the average deviation of angle 

measurement between the two systems was 2.1°. 

Another optical fiber sensor-based human joint monitoring system is presented in [90]. In 

this system, the authors used a fiber-optic curvature sensor with a different sensitive zone 

configuration and the diameter of the configured optical fiber was 1.5 mm. A “teeth-like” 
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configuration was created by drilling precisely on one side of the fiber [108] to make the 

sensitive zone (Figure 2-2(c)). Due to this sensitive zone, when the optical fiber bends while 

keeping the teeth on the convex side, the light intensity on the outer side decreases. 

Conversely, the light intensity increases when the teeth are on the concave side. LabVIEW 

software and ZigBee-based wireless communication were used to complete the system. The 

optical intensity was exponentially dependent on the curvature angle and the angle range 

of the system was -120° to 120° with a 1 Hz sampling rate. However, a linear characteristic 

was found between -45° and 25°, with an average sensitivity of 20 mV/° (voltage change 

per angle) and a resolution of 1° [90]. The sensor had a high operating temperature limit 

(up to 70 °C) without any deformation or characteristics change. Therefore, within certain 

ROM limitations, the proposed sensor was suitable for developing a low-cost and simple 

wearable joint monitoring system with wireless communication capabilities. 

 

 

 

Figure 2-2. (a) Optical fiber configuration and working principle; (b) Construction and operation method of 

the fiber-optic curvature sensor with a “teeth-like” sensitive zone; (c) Flexible OFS-based joint monitoring 

system configuration. 

(a) 

(b) 

(c) 
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An optical fiber-based goniometer presented in [44] was made of a single-mode optical 

fiber. Intensity modulation of a propagating laser beam was used to detect the changes in 

polarization due to the rotation of adjacent portions of fiber. Controlled birefringence was 

induced by a fiber loop with a fixed radius. The components of the reported goniometer 

and its working principle are shown in Figure 2-3. A trans-impedance amplifier with a high 

gain-bandwidth product gave a high-precision output signal with high sensitivity. A 

sample-and-hold circuit, an acquisition board and a computer-based software program were 

designed to gather and process the data. The goniometer was combined with a fabric to 

build a flexible, compact and accurate wearable joint monitoring system with several 

applications such as testing an athlete’s performance and training status. 

 

Figure 2-3. Components and working principle of optical-based goniometer system. The system was 

composed of five components: (1) a semiconductor laser as light source, (2) a Si p-i-n photodiode as photo 

detector, (3,4) two linear polarizers as polarizing and analyzing filters, and (5) a single-mode optical fiber as 

stress-induced birefringence polarization controller (SIBPC).  

In [45], another wearable system using optical-based goniometer for joint monitoring was 

proposed. These authors used a technique similar to the optical mouse which has a small 

camera to identify two-dimensional planar motion by detecting the displacement. They 

chose the elbow joint for their experiments and their system consisted of two units: 

hardware and firmware. The hardware unit had three components: the sensor, 

microcontroller and the joint module (a flexible strip). The firmware unit was for 

communication and data gathering. The proposed sensing system setup for elbow joint 

measurement is shown in Figure 2-4. The flexible strip was placed around the joint with 

one end fixed, and the sensing unit was placed on the other end. The sensing unit was able 

to move freely along with the strip and measured the uniaxial displacement during bending 
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of the elbow joint. The angle ( ) was calculated from this linear displacement (x ) that 

is directly correlated with the bending (equation (2-1)). 

 360

2

 
= 



x

R
. (2-1) 

The joint radius ( R ) was assumed to be constant for this calculation. The proposed sensing 

module is light-weight and easy to assemble as a joint monitoring system. However, the 

system can only monitor one-dimensional movement which can affect the angle 

measurement’s accuracy for human body joints. 

 

Figure 2-4. (a) Sensing setup of optical-based goniometer system for human elbow joint measurement; (b) 

Operation method of the system. 

 

2.2.2. Imaging and Video-based Tracking System 

Imaging and video-based human skeletal tracking is a well-accepted method for human 

joint monitoring because of its broad applicability and reliability [47]–[49], [55], [91], 

[109]–[115]. One or more cameras are the core components of this system. The process 

flow of this method is to capture the visual data of several human actions by using a single 

[47] or multiple camera network [91], and then track the joints using anthropometric 

constraints (size, shape and composition of the human body) and known joint locations in 

reference images/videos with the same action. These applications comprise various fields 

of research such as biomechanics, image processing, machine learning and pattern 

(a) (b) 
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recognition [46]. The main challenge of this system is to construct a three-dimensional 

human model using a single static camera. A new image processing method was proposed 

in [116] where they used 2D images to create a 3D model. They introduced a new image 

descriptor based on discrete cosine transform (DCT), which was used in the pose-matching 

procedure for finding appropriate action in the reference database using an interpolation 

and tracking process. The descriptor matrix was divided into three frequency regions for 

different levels of tracking: (1) Low-frequency region containing the general shape and 

intensity information of the joint; (2) Middle-frequency region with general edge 

information; and (3) High-frequency region consisting details of the tracked joints. Both 

discriminative and tracking algorithms were used in this method to increase joint tracking 

accuracy. A block diagram of an imaging-based human skeletal tracking is presented in 

Figure 2-5. 

 

Figure 2-5. Block diagram of imaging-based human skeletal tracking. 

A single camera-based system can only detect the joint location within its field of view, 

thus limiting the range of observations. To solve this problem and track human joint motion 

in a large area with multiple fields of view, a distributed camera network system was used 

in [91]. They set up multiple cameras to make the network and used an information-

weighted consensus filter (ICF) as a distributed estimation algorithm to track human motion 

in a camera network inside the sensing range. The distributed camera network setup is 

shown below in Figure 2-6(a). They used the Microsoft Kinect image sensor instead of a 

usual camera to build the camera network [91] because Kinect can measure the joint 

locations without any markers [47]. Kinect is a high-end imaging device with an RGB 
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camera, a multi-array microphone and a built-in laser projector combined with a 

monochrome CMOS sensor that makes it capable of capturing color images and depth 

images (Figure 2-6(b)). In addition, it has a skeletal tracking tool which is able to recognize 

20 different joints’ locations of a human body. Therefore, instead of a usual camera, Kinect 

has been chosen by many researchers who are working on vision-based human joint 

monitoring and analysis problems [47]–[49], [55], [91]. 

 

Figure 2-6. (a) Sensing setup of optical-based goniometer system for human elbow joint measurement; (b) 

Operation method of the system. 

Although imaging and video-based joint tracking system is a popular and reliable 

monitoring technique [47]–[49], [55], [91], [109]–[115], it requires complex, expensive 

infrastructure and sophisticated analyses of data-intensive video streams. Also, this system 

is only effective with a pre-equipped environment and setup, restricting users’ usual 

movements, which makes it unsuitable for continuous and long-term joint monitoring in 

daily activities. 

 

2.2.3. Textile-based Sensors 

Textile-based sensors (e.g., flexible conductive wire sensors, flex sensors, strain sensors, 

etc.) are very suitable for developing a wearable joint monitoring system. The working 

(a) (b) 
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principles of all these sensors are similar. In all cases, changes of resistance are measured, 

and these changes are directly related to the corresponding joint angles [57]. To develop a 

long-term and regular wearable monitoring device, textile-based sensors can be a good 

choice because of their flexibility and simple sensing principle. Furthermore, they can be 

easily integrated into stretchable skin-tight fabrics around the joints [57], [56]. 

 

Figure 2-7. Schematic design of conductive wire sensor-based wearable joint monitoring device. 

 

A flexible conductive wire sensor-based method was proposed in [56] where the authors 

incorporated flexible conductive wires in flexible and comfortable fabrics for joint 

monitoring. They implemented a single-axis arrangement with a single conductive wire 

designed for the knee joint (Figure 2-7). The parameter measured was the resistance 

changes of the conductive wire with the movements of the joints. Figure 2-7 shows the 

implementation of the system where one end of the flexible conductive wire was fixed to 

the fabric above the knee at point 1 and the other end was connected with an elastic cord at 

point 3. The elastic cord was attached to the fabric below the knee at point 4 and helps the 

conductive wire slide freely with bending and stretching. There was a wire contact point 

between point 2 and 3 along the fiber and it was permanently stitched into the fabric at 

point 2 to keep it fixed. The fiber slides with the movement of the knee, causing the change 

of conductive thread length between 2 and 3 as well as the resistance in that portion [56]. 

The resistance value at a specific point is directly proportional to the knee angle. They also 

proposed a multiple conductive wires-based system to monitor multi-axis joint (e.g., hip 
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and shoulder) angles. Their future focus in this research is to improve the accuracy of the 

system by applying a more precise technique of incorporating conductive wires into 

flexible, skin-tight fabrics and adding a wireless module for data transmission. 

Flex sensor is another type of textile-based sensor which is usually made of a conductive 

material with flexible and stretchable properties [57]. The shape of the sensor will change 

with the applied force, causing the resistance change between two measuring points. 

Therefore, the flex sensor is convenient for wearable joint monitoring systems by 

integrating it with comfortable garments [57]–[60]. The flex sensor is usually stitched to 

the flexible and skin-tight garment across the joint to be monitored. Whenever the joint 

bends or stretches, the pressure changes on the sensor which causes the variation of its 

electrical properties (resistance). This resistance variation due to the joint movement can 

be measured using an electronic system to quantify the joint angle [59]. Textile-based 

highly stretchable strain sensors are also used by some researchers for human joint 

monitoring [62]–[64], [117]–[119]. Conductive yarns were employed as the conductive 

part of the strain sensor. Different textile materials with preferable elasticity and 

conformability were used to fabricate the system comfortable for human joints [63], [117]. 

Another type of textile-based sensor was developed in [64] by using flexible and stretchable 

CCF (chopped carbon fiber)/PDMS (polydimethylsiloxane) conductive yarns. The 

CCF/PDMS composite sensors were integrated into the textile structures and used the 

piezoresistive (resistance-strain) behavior of the sensors for detecting human joint motion. 

 

2.2.4. Inertial Measurement Unit Sensors 

An inertial measurement unit (IMU) is a combination of three sensors (accelerometer, 

gyroscope and magnetometer) and is used to measure the three-dimensional acceleration, 

angular velocity and the magnetic field vector in their own coordinate systems. As a unit, 

the three sensors are calibrated in such a way that each of their individual coordinate system 

acts as an orthogonal base which typically remains well aligned with the outer casing of 

the unit [73]. Moreover, there are some commercially available IMU sensors with built-in 

algorithms to fix the sensors’ orientation with respect to a global fixed coordinate system 
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(e.g., [120]) which can be represented by a rotation matrix, a quaternion, or Euler angles. 

For developing a wearable measurement system for human joint motion, IMUs are the most 

promising and compact devices for both clinical assessment and research studies, because 

of their small size and capability to measure joint motion with precision and accuracy [73]–

[78], [87]. To detect position and orientation, three-dimensional angular velocities and 

linear accelerations are measured using the IMU sensors. Most of the IMU-based joint 

monitoring systems use two calibrated IMUs placed below and above a joint [73]–[78]. 

Relative data from those two IMUs are compared for tracking the joint angle and motion. 

 

Figure 2-8. IMU sensors’ orientation and position for knee angle measurement. 

 

For accurately computing a joint angle, we need to compensate for joint alignment using 

the two IMUs method described in [75]. These authors proposed a manual method using a 

set of predefined postures of different leg movements to align two IMUs attached on the 

thigh and shank. A fusion algorithm was then applied to measure the 3D knee joint angle. 

The measurement was then validated against the Liberty magnetic motion capture and 

tracking device (Polhemus, USA). Later they added a functional calibration procedure 

which only relied on the IMUs data and made an error assessment by comparing the results 

obtained from the combined method to the reference system [79]. This method can be 

applied to monitor complex joints e.g., knee, ankle or elbow. A similar system was 

developed in [74] where Bluetooth technology was added for wireless communication. The 

system was evaluated by comparing it with an infrared motion capture system having an 
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average deviation range of 0.08° to 3.06° from each other. Figure 2-8 illustrates two IMU 

sensors-based configuration for measuring the knee angle ( ). 

In [80] two IMUs-based joint angle measurement methods were presented. There, they 

transformed the measured data from both sensors into a joint coordinate system by aligning 

the IMUs’ local coordinate axes with the joint axis. Their first approach included the 

magnetometer readings (magnetic field vectors) to get a precise alignment. In the second 

technique, they relied only on the accelerometer and gyroscope data. Indoor measurements 

can suffer from magnetic disturbances due to other magnetic devices that may be present. 

Therefore, the authors excluded the magnetometer data for indoor monitoring and achieved 

equally accurate results. Thus, they were able to increase the accuracy of joint angle 

measurements by two IMUs having a precise calibration and alignment technique. 

An IMU-based auto-calibration method was proposed in [82]. First, the limitations of an 

existing position calibration method were identified by performing a theoretical analysis 

(evaluation of observability by computing the Fisher Information Matrix). Based on that 

analysis, a new method to continuously determine the IMUs’ relative position with the 

joints was introduced. Then, based on the simulated and captured data, an experimental 

evaluation was performed to present the enhancement of the calibration method. In [78], 

another IMU calibration and alignment protocol based on simulation and experimental 

analyses was proposed. These authors simulated a computer-based lower body anatomical 

frame with four IMU sensors to estimate the angles of hip and knee. In the simulation, the 

sensors were placed on the pelvis, right thigh, right shank and right foot, and aligned with 

the associated limbs’ coordinate system. They also made a joint model using two semi-

spheres interconnected by a universal goniometer and placed IMU sensors on each sphere. 

They used this model to evaluate the accuracy and repeatability of the system while 

measuring angular movements. Finally, they performed a real gait test involving five 

healthy volunteers and validated the method by comparing the results from experiment with 

simulations. 

The drift effect is another concern when using IMU sensors to calculate joint angles and 

estimate orientations. A random bias drift which builds up over time and affects the sensors’ 
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tracking accuracy [81]. A new kinematic model was proposed in [81] to minimize this drift 

error. There [81], they considered natural physical constraints (age, gender and bone 

structure) while measuring the range of motion for each joint with their system. They 

modeled the sensor’s random drift and used zero-velocity updates. To avoid the complex 

linearization process, they implemented an improved version of the Extended Kalman 

Filter (EKF) which is called Unscented Kalman Filter (UKF). Instead of estimating 

nonlinearity, it approximates the distribution of the measured data. They validated the 

algorithm by comparing their inertial tracker’s result with a reference optical tracking 

system and a high-precision industrial robot arm. 

Instead of conventional two IMUs-based joint monitoring system, a single IMU-based 

system was developed in [83] to monitor hip and knee joint angles. The single IMU was 

placed on the shank and the collected data was utilized to estimate the 3D lower-limb 

(pelvis, thigh and shank) joint kinematic quantities during five different lower limb motions 

with the help of the least-squares identification algorithm. It achieved an average accuracy 

of 3.2° and a correlation coefficient above 0.85 by comparing with reference data from a 

stereophotogrammetric system. One limitation of this method was the degradation of joint 

angle estimation due to the IMU’s motion artifact. Moreover, no pelvic motion was 

assumed in this approach. Thus, the quality of the result might be reduced with large pelvis 

movements. 

By using an IMU-based system, we can measure not only joint angles, but also other 

important gait parameters such as cadence, step length, step variability, and lateral and 

vertical excursion of the center of mass [77] for gait analysis. IMU sensors are very 

convenient to develop such a system because of their miniature size, low-cost and 

flexibility to use without space restrictions compared to traditional gait analysis methods 

such as semi-subjective techniques, imaging or floor sensors [121]. Moreover, most 

modern commercial IMUs have an integrated wireless module which makes it more 

appropriate to develop a wearable system for continuous joint monitoring and gait analysis 

[76], [77], [84], [92], [122]–[126]. A fundamental process flow of measuring joint angles 

using IMU devices (adapted from [76]) is described below in Figure 2-9. 
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Figure 2-9. Process flow of joint angle measurement with IMU devices. 

In [70], the authors used only gyroscope sensors to measure human joint angles. 

Gyroscopes in modern IMUs can measure 3-axes angular rate with movements. For 

measuring the joint angle, two gyroscopes were placed above and below the joint location 

and calibrated before joint motion. Movement angles of each gyroscope were calculated by 

integrating the angular rate. Then, the joint angles were extracted by comparing the changes 

in angle between two gyroscopes using trigonometric functions. Two optimization filters 

were used. One was a Median filter [70] which is a non-linear digital filtering technique to 

remove noise from the sensor signal. The other was a Kalman filter [70], an algorithm that 

uses a series of measurements gathered over time, having statistical noise and other 

inaccuracies, and produces estimates of unknown variables that tend to be more accurate 

than those based on a single measurement alone, by estimating a combined probability 

distribution over the variables for each timeframe. Both filters were used to mitigate the 

noise and drift in the sensors to yield optimized output signals [70], [127]. 

Some other research groups have proposed using only a magnetometer-based sensing 

system to measure magnetic fields to determine movement. A wearable field generator 

design was introduced in [128] to build a fingertip glove equipped with magnetic tracking 

sensors. Another magnetic sensor-based hand glove in [129] was designed with 20 Hall-

effect sensors embedded. This glove was used to assess hand orthopedic disorders by 
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detecting the relative and absolute orientation of the fingers. In [71], a magnetometer-based 

nonobtrusive system for monitoring the wrist and hand movement was proposed. A 

magnetic (neodymium) ring worn on the index finger and two triaxial magnetometers 

mounted in a watch-like unit were used to measure the magnetic field produced by the 

magnetic ring and send the data to a wireless device. The movement of the finger was then 

calculated from the reading of the magnetic field which was correlated to the finger motion. 

The accuracy of the proposed system was analyzed by comparing it with a traditional 

goniometer-based system. An average accuracy of 92%–98% with a 19%–28% standard 

deviation was obtained. 

 

2.2.5. Other Sensors and Techniques 

Some studies have proposed acoustic emission (AE) sensor-based joint monitoring systems 

where they used piezoelectric-films or MEMS (micro-electro-mechanical systems) based 

microphones to record the sound produced by a moving joint [97], [130]–[133]. This 

acoustic emission from joints also known as vibroarthrographic signals (VAG) are 

considered as clinically relevant biomarkers for joint health [132]. The researchers utilized 

the recorded signal to quantify the consistency of acoustic emissions from joints with 

respect to joint angle and position [131]. The emitted acoustic signal from an over-

exercised joint during motion produces higher amplitude and shows a different pattern in 

the frequency domain compared to the healthy joints [97]. However, one of the major 

challenges is the background and interface noise that need to be mitigated to improve the 

signal-to-noise ratio (SNR) of the emitted signal [132]. 

A few research groups [65]–[69] have used different inbuilt smartphone sensors and 

cameras to measure joint angle and motion. Several applications (apps) were used to access 

and analyze the sensor data. These apps are mostly based on inbuilt smartphone sensors 

such as the accelerometer [65], [67], gyroscope [67], [68], magnetometer [69] or camera 

[66]. In all cases, the results from the apps have shown adequate validity when compared 

against universal goniometer or inclinometer. In addition, a comparison study between two 

smartphone-based apps (inclinometer and camera) was published in [66]. In this study, the 
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camera-based app provided higher precision and accuracy (a mean difference of <1° and 

1/50 difference >3°) compared to the inclinometer-based app (a mean difference of <7° and 

16/50 difference >10°). These researches suggest that the newly developed smartphone-

based apps show potential as a useful tool for joint health monitoring [134]. 

 

2.3. Sensor Fusion 

Recently, some researchers have used sensor fusion methods (combination of multiple 

types of sensors) to develop more precise and reliable joint monitoring systems. Sensor 

fusion is the process of combining multiple sensor data in such a way that the combined 

output shows better performance than individual sensor results [135]. Thus, sensor fusion 

allows multiple viewpoints with improved resolution, greater spatial and temporal 

coverage, reduction in ambiguity, and greater precision in measurements. A simplified 

block diagram of sensor fusion (adapted from [135]) is shown in Figure 2-10. 

In [86], a sensor fusion method combining both flex and gyroscopic sensors was proposed. 

Multiple flex sensors and a MEMS gyroscope were mounted on a supportive fabric worn 

by the subjects. To fuse the measurement by multiple sensors and estimate accurate joint 

angles, Kalman filtering was used. The authors built a behavioral model of joint movement 

over time and updated the system data using the model in Kalman filtering. The main 

purpose of using multiple sensors was to minimize sensor errors and reduce measurement 

noise. 

Another method proposed in [39] was a fusion of textile electro-goniometer and 

accelerometer based on the Kalman filter. The purpose of this approach was to avoid pre-

estimation of the accelerometer position and alignment. The focus was to measure knee 

angle during various motion activities and the system was standardized by comparing it 

with a commercial IMU-based system. Their technique used the data from the 

accelerometer to continuously adjust the goniometer reading and did periodic calibration. 

Thus, the fusion system showed more accurate angular measurement (RMSE: mean, μ = 

1.96° and standard deviation, σ = 0.96°) compared to the individual derived estimation by 
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the accelerometer (RMSE: μ = 6.55° and σ = 2.87°) or textile electro-goniometer (RMSE: 

μ = 5.15° and σ = 0.47°). 

 

Figure 2-10. A simplified block diagram of sensor fusion methods. 

A study on data fusion from wearable IMUs and surface EMG sensors to monitor and assess 

human motor function was presented in [136]. To estimate a motor function abnormality, 

a group of machine learning algorithms was used on the fusion data. To validate the 

algorithms’ effectiveness, two parameters: normal data variation rate (NDVR) and the 

determination coefficient (DC) were derived. A lower NDVR value represents better 

validity and a larger DC value represents a higher consistency and reliability of the system. 

Through experiments, these authors proved that the fusion result was superior to the 

sensors’ separate data: a reduced NDVR and a better DC from a regression analysis 

performed between the derived indicator and the routine clinical assessment score were 

obtained. 
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A fusion of data from optical sensors and inertial measurement units (IMU) to analyze 

human movement and design human kinetic energy harvesting systems was presented in 

[98]. High-speed cameras were used as optical sensors to determine the positions and 

angles of the joints. IMUs were used for acceleration, angular rate and magnetic field vector 

measurements. The fusion data was used to compute actual orientation and linear 

acceleration. The authors used this result to estimate the kinetic energy generated in 

different joints during several body motions. The purpose of this analysis was to design an 

energy harvesting system by converting human kinetic energy to electrical energy and then 

find the recommended joints (knees and ankles while walking) to place the energy 

harvesting module. 

From the discussions above, the main purpose of fusing data from multiple sensors in a 

joint monitoring system is to overcome physical limitations of the sensing system and 

improve measurement accuracy as well as reliability. This is done by minimizing the error 

rate and enhancing the signal-to-noise ratio (SNR) while maintaining practical usability. In 

addition, sensor fusion offers several other advantages such as improved resolution, 

increased confidence in results, robustness against interference, and reduced ambiguity and 

uncertainty. Although it is in the early stages of development, current research results 

suggest that fusion systems are superior to other means of measuring and monitoring joint 

movement using one or a few sensors. 

 

2.4. Research Challenges 

After evaluating all these technologies and methods, it seems that the development of a 

viable joint monitoring system can turn joint-related study (clinical and non-clinical) in a 

new direction. Wearable light-weight devices with miniature sensors and wireless 

connectivity appear to have the greatest potential in terms of ease of use, cost and the 

measurement of accurate and clinically relevant information. Despite the enormous 

technological advances in the past few decades, their application for joint activity 
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monitoring in the real world is hindered by several research challenges including the 

following: 

▪ Most of the joint monitoring researches are focused on developing the sensing system 

using different technologies and sensing combinations. There is much less research 

emphasizing the data post-processing techniques and building predictive models. More 

work is needed to define an efficient prediction and feedback model depending on the 

properties of the data set and the experimental settings. 

▪ One of the main challenges is to extract and select features in real-time systems since 

the modeling techniques can handle the raw extracted features. This causes unnecessary 

redundancies which reduce the accuracy and efficiency of the system. This can be 

resolved by integrating cloud server communication with the system for real-time data 

mining. Therefore, the cloud server can handle all sets of data by using proper 

algorithms. 

▪ The majority of the studies reported in the literature employed different methods to 

assess validity and reliability which makes it difficult to compare these devices. In 

addition, clinical acceptance is questioned due to the lack of enough involvement of 

medical professionals during the design and evaluation process. Therefore, a standard 

validation criterion and protocol should be developed by the major regulatory bodies to 

evaluate the accuracy and reliability of a device. These standards would provide 

guidelines for researchers to develop high-quality devices for both research and 

commercial use. 

▪ The accuracy of joint health assessment using a monitoring device is heavily affected 

by the variety of training data and it is highly recommended that the training data set 

must contain as many varieties as possible. However, it is challenging to coordinate 

human subjects of different ages and musculoskeletal conditions in real-time to collect 

a diversified joint dataset. This is a major barrier to evaluating the efficacy of the 

devices and rigorous clinical trials are required to address this issue. 
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▪ Although sensor fusion technique is an advanced approach, very few research studies 

are conducted in the field of joint monitoring. The major challenges of using multiple 

sensors in one system are data acquisition and processing, simultaneous wireless 

communication and synchronization. To solve the communication problem, we need to 

install a wireless communication module that supports multiple connections for 

different sensors. We also need to calibrate all the sensors efficiently and use data 

standardization methods to overcome the difficulties related to data processing and 

management. Moreover, the selection of a proper sensor combination in a multi-sensor 

system is crucial to enhance the performance of a joint monitoring system. 

▪ The hardware and computational resources for a monitoring system can be a crucial 

factor for long term communication and data acquisition. Therefore, high configuration 

hardware support is needed with an efficient algorithm which can deal with large data 

set resourcefully. However, more resources will consume more power which is one of 

the most critical factors to be considered while building a system. To develop a 

balanced system, the power requirement of the system should be minimized by 

selecting power-efficient components and a more efficient power supply. Energy 

harvesting can also be an option to solve this problem. 

▪ As the system requires processing and transmitting health information of users, 

information security is a key aspect to consider. It includes data privacy, security as 

well as ethical requirements recommended by responsible regulation bodies. The scope 

of security and ethical requirements need to be clearly defined and specified. Besides, 

more efficient and secure algorithms are needed in order to ensure highly secured 

communication channels in existing low power, short range wireless platforms. 

▪ Finally, for getting widespread acceptance among users, the systems need to be simple, 

wearable, easy‐to‐use, cost-effective, non-invasive, unobtrusive and inter-operable 

among various operating platforms. Therefore, more research and development efforts 

are needed to enhance the systems’ acceptance from both medical, user and business 

perspectives. 

  



M.A.Sc. Thesis – Abu Ilus Faisal          McMaster University - Electrical and Computer Engineering 

35 

Chapter 3 

Knee Monitoring System Design and 

Methodologies† 

In order to design and develop a simple, efficient and low-cost wearable smart knee 

monitoring device, we investigated several sensing technologies and then selected a set of 

different miniaturized sensors (IMU, temperature, pressure and GSR) which, when 

combined, can provide the information related to joint angle and motion, as well as measure 

some other important physiological parameters such as local skin temperature, muscle 

pressure and sweat-rate of the joint skin that are related to joint health. The developed multi-

sensor-based system can be wirelessly connected to a smart computing device with a 

continuously running software program to record and process all the knee joint and 

mobility-related parameters for further assessment related to knee joint health. In this 

Chapter, a brief overview with technical specifications of the selected sensors are 

presented, followed by the details of the proposed system design, experimental protocol 

and data acquisition methods from the sensing system. Moreover, based on the literature 

review, a comparison among our developed system and several published knee monitoring 

systems is presented at the end of this Chapter. 

 

3.1. Sensors 

Our developed knee monitoring system consists of four types of miniaturized sensors 

wirelessly connected to a smart computing device with a real-time software program to 

 
† Part of this work will be submitted for consideration for publication as: A. I. Faisal, S. Majumder, R. Scott, 

T. Mondal, D. Cowan, and M. J. Deen, A Simple, Low-Cost Multi-Sensor-based Smart Wearable Knee Joint 

Monitoring System, March 2020. (in preparation). 
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record and process knee joint and mobility-related parameters. For measuring the 

mechanical parameters such as knee angle, rotation and speed of knee joint movement we 

used the IMU sensors due to their compact size and capability to measure joint motion and 

orientation with precision and accuracy. In order to measure other important physiological 

knee joint parameters such as local skin temperature, muscle pressure and sweat rate of the 

joint skin, we included three other sensors: temperature, pressure and GSR. Thus, our knee 

monitoring system with these four sensors would represent the first of its kind which can 

non-invasively and simultaneously monitor both the mechanical and physiological 

parameters related to knee joint health.  

 

3.1.1. Inertial Measurement Unit Sensors 

Inertial measurement units (IMU), also known as inertial sensors, comprise multiple 3-axes 

sensors (usually accelerometers, gyroscopes and magnetometers) to measure linear 

acceleration, angular velocity and the magnetic field vector in their own three-dimensional 

local coordinate system. In our system, we only used the accelerometer and gyroscope data 

collected from two IMUs to monitor the movements of a knee joint. We selected the 

MetaWear CPro IMU from MbientLab Inc. for our system because of its small size, low-

cost, good energy efficiency and low-power wireless connectivity. The IMU has 

dimensions of 24 mm diameter x 6 mm thick and it is powered by a small coin-cell battery. 

The accelerometer and the gyroscope have full-scale ranges of ±16g and ±2000 degrees per 

second (dps), respectively, and can acquire the signal at the highest sample rate of 100 Hz. 

A photograph of the CPro IMU board with its dimensions is shown in Figure 3-1 and the 

technical specifications of the sensor are presented in Table 3-1. In addition to the on-board 

sensors (accelerometer, gyroscope and magnetometer), the MetaWear CPro is also 

equipped with general-purpose input/output (GPIO) pins which can be used to connect 

additional sensors to the board (Appendix B). The GPIO pins are represented by the pin 

interface and accessed through the GPIO interface. Therefore, we used another CPro to 

connect another three sensors described below using the GPIO pins and to collect their data. 
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Figure 3-1. MetaWear CPro IMU board. 

 

Table 3-1: Technical specifications of MetaWear CPro IMU board. 

Sensor Parameters Value 

Weight Ultra-lightweight at just 0.2 oz 

Size 24 mm diameter x 6 mm thick 

Power consumption  Sleep mode supports 6 months idle time 

Power Source 200mAH coin-cell (CR2032) replaceable 

Synchronized timestamp Supports multiple devices simultaneously 

Data Transfer Bluetooth Low Energy Smart® 

Range 
± 2, ± 4, ± 8, ± 16 g → Accelerometer 

± 125, ± 250, ± 500, ± 1000, ± 2000°/s → Gyroscope 

Resolution 16bit 

Sample Rate 0.001Hz – 100Hz 

 

3.1.2. Temperature Sensor  

For the measurement of the knee skin temperature, a thermistor was used. Thermistors are 

linear resistors whose resistance varies with temperature. The thermistor used in this project 

is a 135-104LAG-J01 discrete thermistor (NTC) manufactured by Honeywell Sensing and 

Productivity Solutions. This is a high-quality glass-encapsulated unit of 100,000 Ohm 

resistance with ±10.0% tolerance and 25/85 BETA = 3974 (a constant of the thermistor). 

A photo of the sensor is shown in Figure 3-2 and its technical specifications are presented 

in Table 3-2. 
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Figure 3-2. Temperature sensor (135-104LAG-J01 Discrete Thermistor). 

 

Table 3-2: Technical specifications of temperature sensor (135-104LAG-J01 Discrete Thermistor). 

Sensor Parameters Value 

Resistance at 25°C 100,000 Ohm 

Resistance tolerance ±10.0% 

Operating Temperature -60 °C to 300 °C [-76 °F to 572 °F] 

Size 2.0 mm diameter, 28.6 mm lead length  

Beta 3974 

 

3.1.3. Pressure Sensor 

In order to measure the muscle pressure around the knee, a force sensitive resistor (FSR) 

whose resistance varies with the force applied to it, is used. Therefore, by measuring the 

resistance value, the pressure on the sensor can be estimated. We used FSR® 402 Short 

(Figure 3-3) manufactured by Interlink Electronics which is a sensitive single-zone force 

sensing resistor that is circular in shape with a diameter of 18.28 mm. The diameter of its 

active area is 12.7mm. The response time of the sensor is 3µs and the resistance decreases 

with the increasing force applied to the surface of the sensor. The technical specifications 

and device characteristics of the sensor are presented in Table 3-3. 

 

Figure 3-3. Pressure sensor (FSR® 402 Short). 

 

  



M.A.Sc. Thesis – Abu Ilus Faisal          McMaster University - Electrical and Computer Engineering 

39 

Table 3-3: Technical specifications of Pressure sensor (FSR® 402 Short). 

Sensor Parameters Value 

Actuation Force 0.1 Newtons 

Force Sensitivity Range 0.1 - 10.02 Newtons 

Force Repeatability ± 2% (single part) and ±6% (part to part) 

Non-Actuated Resistance 10 MW 

Response Time 3µs 

Size 18.28mm diameter (active area 12.7mm diameter) 

Thickness Range 0.2 - 1.25 mm 

Operating Temp. Range  -30 - +70 °C 

 

3.1.4. Galvanic Skin Response Sensor 

 

 

Figure 3-4. (a) GSR Sensors Schematics; (b) GSR Electrodes. 

 

We used a two-electrodes-based Galvanic skin response (GSR) sensor for the measurement 

of local skin sweat gland activity, which is related to skin stress and perspiration. It 

measures the skin conductance around the knee which represents the sweat gland activity. 

The greater the sweat gland activity, the higher the skin conductance. The most common 

method to measure a GSR signal is based on a constant voltage system. A constant low 

(a) (b) 
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voltage is applied to the two electrodes that are in contact with the skin. The circuit also 

contains a very small resistance compared to the skin resistance that is in series with the 

voltage source and the electrodes (Figure 3-4(a)). In our system, we used the MetaWear 

CPro IMU board as the voltage source and connected two commercial electrodes (Figure 

3-4(b)) with the power supply and GPIO pin of the board. With this setup, any fluctuation 

in the current flow due to a change in the electrical properties of the skin can be detected. 

 

3.2. Knee Monitoring System 

3.2.1. Integration of External Sensors with IMU Board 

First, we built a combined sensing module with temperature, pressure and GSR sensors by 

connecting those sensors externally to a MetaWear CPro IMU board using its GPIO pins. 

Here, the MetaWear CPro IMU board performs as the central processing unit and power 

supply and collects the readings from all three sensors and transfers the data wirelessly into 

a smart device for further analysis. We connected the temperature sensor to the GPIO0 (pin 

 

Figure 3-5. Integration of external sensors with MetaWear CPro IMU board. 
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2) and the 3V pin (pin 6) on the CPro board. A 100 kΩ bias resistor was also connected in 

series between GPIO1 (pin 3) and GPIO0 (pin 2). To measure the temperature, we 

measured the resistance of the temperature sensor (the variable resistor) by using the simple 

voltage divider rule. In this case, GPIO1 is on low (connected to ground – 0V) and then the 

analog value of GPIO0 is recorded. We attached two GSR electrodes to the CPro board, 

one to GPIO2 (pin 4) and another to the 3V pin (pin 6). The circuit of the sensor becomes 

complete to flow the current when both the electrodes come in direct knee skin contact. 

Then, the analog value of GPIO2 is recorded to calculate the skin conductance. As both the 

GSR and pressure sensors work with the same mechanism (resistance variation with the 

sensed signal), the circuit configuration for the pressure sensor setup is the same as GSR 

sensor. We used the GPIO3 (pin 7) and the 3V pin (pin 6) to connect our FSR to the CPro 

board. Then, the analog value of GPIO3 is recorded to calculate the pressure on the sensor. 

The integration of all these external sensors with MetaWear CPro IMU Board is presented 

in Figure 3-5. 

 

3.2.2. Implementation of Multi-Sensors-based System 

We used the aforementioned sensing module and two additional IMU boards to implement 

the prototype of our simple, easy‐to‐use, cost-effective, non-invasive and unobtrusive 

wearable wireless knee monitoring system with signal acquisition and processing software. 

A breathable, non-sweating, adjustable and comfortable knee brace (SLS 306 Patella Knee 

Support Brace from Soles) and two Velcro straps were used to attach all the sensors. Each 

Velcro strap has one IMU board. One strap needs to be placed above the knee (thigh) and 

another is below the knee (calf) to measure the mechanical parameters such as knee angle, 

rotation and speed of knee movement. Another CPro board along with the other three 

external sensors (temperature, pressure and GSR) are attached on the inner side of the knee 

brace (placed on knee patella) to collect the data related to the skin temperature, skin 

conductance and pressure by the muscles around the knee joint. The brace and the straps 

with the sensors can be put comfortably on around the knee without hindering a user’s 

normal movements. With this system, we can easily and wirelessly collect and store 
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simultaneous knee joint data from all the sensors in a smartphone or a portable computer. 

A combined photograph of all the sensors and the prototype of our smart wearable wireless 

knee joint monitoring system is presented in Figure 3-6. 

 

Figure 3-6. Multi-sensor-based smart wearable wireless knee joint monitoring system. 

  

3.3. Data Acquisition System and Protocol 

The smart knee monitoring system needs to be worn around the knee joint with the sensors 

positioned at the frontal section for monitoring the joint parameters. Prior to acquiring the 

joint data using the system, a letter of consent and the study protocol including some key 

information such as the motivation for the study, data acquisition procedure, data security 

and privacy protocols were prepared and reviewed by the University’s Research Ethics 
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Board (Appendix B). A total of 70 healthy adult subjects with their ages ranging from 18 

to 86 years participated in this study. Each participant was requested to answer a 

questionnaire form prepared by a physician to collect some key physical information which 

includes sex, age, weight, height, leg length, knee perimeter and some general clinical 

histories. Although, all subjects in our study were healthy and did not have any diagnosed 

health issues, 15 persons among them had reported prior histories or undiagnosed issues in 

their knees or legs. A summary of the subjects’ characteristics are presented in Table 3-4. 

Table 3-4: Summary of the subjects’ characteristics. 

Categories Subject groups Number of subjects 

Gender 
Male 56 

Female 14 

Age (years) 
18-40 (avg. 27) 52 

41-86 (avg. 59) 18 

BMI (kg/m2) 
19-29 56 

<19 and >29 – Having health risk 14 

Knee and leg health conditions 

No issues 55 

Having histories or undiagnosed 

issues (knee or leg) 
15 

 

The types of tests involved the subjects strapping the knee brace on, and performing normal 

walking exercises for approximately 200 meters on a well-illuminated, obstacle-free wide 

ceramic tiled walkway (Figure 3-7) at their preferred walking speed. These walking 

experiments allowed for the acquisition of stable data related to joint movement while 

walking. The two IMUs were positioned in such an orientation that the x, y and z-axis 

respectively point towards the upright direction (longitudinal), the outward direction 

(mediolateral) and the forward direction (anteroposterior). To maintain the consistency of 

measurements among all subjects, the brace was always strapped with the same orientation 

keeping the knee in the middle and the IMUs were attached just below and above the brace 

maintaining same distance (14 cm) from the knee joint (Figure 3-6). 



M.A.Sc. Thesis – Abu Ilus Faisal          McMaster University - Electrical and Computer Engineering 

44 

 

Figure 3-7. Walkway for the walking exercise. 

 

We used an Android smartphone for real-time wireless data collection and storage from 

our system through Bluetooth communication. We installed “MetaBase” Android app 

developed and provided by MbientLab Inc. to configure our IMU boards and access the 

accelerometer and gyroscope sensors data. “MetaBase” is also available in Windows and 

iOS app stores for free. This app allows for connecting multiple IMU sensors at the same 

time which gave us the advantage of gathering synchronous data from both IMU sensors 

(Appendix B). For acquiring data from the other three sensors (temperature, pressure and 

GSR), we used another Android app called “MetaWear” (Appendix B). This is a 

development app with a free codebase [137] providing examples of different MetaWear 

APIs and their functionalities [138]. With the help of these examples, we customized the 

Android app according to our requirements to access and collect data form our other three 

sensors attached with the GPIO pins of the 3rd CPro board. Both the “MetaBase” and 

“MetaWear” Android apps can be run in parallel using the same Android smartphone. This 
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made our system suitable for simultaneously collecting data from all the five sensors from 

a subject performing the walking experiment. 

All the sensors’ data are stored in an easily readable file format (*.csv) which can be readily 

used for post-processing and further analysis. We developed several MATLAB programs 

to process these data and extract useful features related to gait and knee joint activities. 

Then, statistically significant features selection and dimensionality reduction of the features 

were performed for reducing the computational complexities and efficient analysis. Finally, 

the reduced features were classified using the support vector machine (SVM). A short list 

comparing our developed knee monitoring system with different published joint monitoring 

systems including their advantages and limitations is presented below in Table 3-5 and a 

block diagram showing the complete process flow of the proposed knee joint health 

analyzer is presented in Figure 3-8. 
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Table 3-5: List of different joint monitoring systems, and their advantages and limitations. 

Ref. Types of Sensor 
Human 

Joint 
Parameter Advantages Limitations 

[40]–[43] Electrogoniometer Knee, ankle Resistance / Strain 

1. Based on resistive 

potentiometers or strain 

gauges application 

2. Straightforward 

measurement 

1. Large size, imprecision and 

fixed center configuration 

2. High cost (hardware and 

software sold separately) 

[44], [45] 
Optical-based 

goniometer 
Knee, elbow Optical navigation 

1. Compact and light-weight 

2. High reaction speed 

1. Sensitive to the placement 

location 

2. 3D motion tracking may not 

be possible 

[89], [90] 
Optical fiber 

sensors 
Knee Signal attenuation 

1. High resolution, flexibility 

and light-weight 

2. Immunity to electromagnetic 

interference 

1. Limited measurement range 

2. Sensitive to temperature and 

humidity 

[47], [48], 

[55], [91] 

Video imaging-

based systems 

Knee, hip, 

elbow, 

shoulder 

Visual data 

1. Able to detect movements of 

multiple joints 

simultaneously 

2. No body-worn sensors are 

needed 

1. Limited coverage area 

2. Complex method with 

expensive setup and 

sophisticated analyses 

[56]–[61], 

[63], 

[117]–

[119] 

Textile-based 

sensors 

Knee, hip, 

elbow, 

fingers 

Resistance / Strain 

1. Low-cost, flexible and 

suitable for long-term 

monitoring 

2. Simple mechanism and easy 

integration with comfortable 

garments 

1. Nonlinearity, low accuracy 

and ineligible to detect 3D 

movement 

2. Performance degradation 

due to large mechanical 

strains and rigorous 

deformations 

[132] Acoustic sensors Knee 
High-frequency 

soundwave 

1. Light-weight and easily 

attachable around joints 

2. Wireless monitoring is 

possible 

1. Significant background and 

interface noise 

2. Nonlinearity and low 

accuracy 

[73], [74], 

[76], [77], 

[83], [87], 

[126] 

IMU sensors 

(accelerometer, 

gyroscope and 

magnetometer) 

Knee, hip, 

elbow, 

shoulder 

Linear 

acceleration, 

angular velocity 

and magnetic field 

vector 

1. Low-cost, light-weight, 

compact, high accuracy and 

easy to install 

2. Reliable for 3D joint 

movement and orientation 

detection 

1. Signal drift 

2. Sensors alignment is 

required in a multiple IMUs-

based system 

Our 

System 

IMU sensors 

(accelerometer, 

gyroscope and 

magnetometer), 

temperature, 

pressure and GSR 

sensors 

Knee 

Linear 

acceleration, 

angular velocity, 

local skin 

temperature, 

muscle pressure 

and sweat-rate of 

knee joint skin  

1. Low-cost, light-weight, 

compact, high accuracy and 

easy to install 

2. Reliable for 3D joint 

movement and orientation 

detection 

3. Capable of measuring other 

important physiological 

parameters (local skin 

temperature, muscle pressure 

and sweat-rate of the joint 

skin) related to joint health 

4. Sensor fusion methods are 

applied to overcome signal 

drifts and alignment issues 

1. Data analysis accuracy can 

be enhanced with a larger 

balanced dataset. 

2. A stand-alone smart program 

is required for data 

acquisition, analysis and 

real-time feedback 

applications. 
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Figure 3-8. Block diagram (process flow) of the knee joint health analyzer. 
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3.4. Conclusions 

As a summary, in this research work, we have adopted the IMU-based method and included 

some additional relevant sensors (temperature, pressure and GSR) to develop a simple, 

easy-to-use, efficient and low-cost wearable knee monitoring device. By using this device 

it is possible to extract valuable features related to joint angle and motion, as well as to 

measure other important physiological parameters such as local skin temperature, muscle 

pressure around the knee joint and sweat rate of the joint skin that are related to joint health. 

All the sensors used to develop the device are low-cost, low-power, miniature and light-

weight with wireless connectivity and we followed a simple integration and data extraction 

process to make our system suitable for continuous or long-term knee joint monitoring 

during daily activities as well as joint activity analysis. Therefore, all the measured data 

using our multi-sensor-based knee monitoring system can be compiled to deliver valuable 

information and assessment related to knee joint health. 
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Chapter 4 

Signal Processing and Data Analysis* 

The collected data from the developed knee monitoring system undergoes several signal 

preprocessing and signal analysis steps to extract usable joint parameters and assess the 

mobility status of an individual. In this Chapter, we will discuss these signal processing 

and analysis techniques implemented for the collected data and determine important joint 

parameters such as knee angle, stride length, minimum foot clearance (MFC), gait speed, 

cadence (steps per minute), knee skin temperature, skin conductance and the pressure by 

the muscles around the knee joint. Besides these parameters, a set of statistical, temporal 

and energy features of knee joint movement were also extracted from the acquired IMU 

signals (linear acceleration and angular velocity). Different validation techniques that were 

used to validate the measurements of joint and gait parameters from our proposed 

monitoring system are also described. 

 

4.1. Preprocessing 

The raw data from the IMUs include random high-frequency noise from the vibration of 

the device and ambient environment which degrades the sensor readings and in turn, affects 

its accuracy [73], [139], [140]. To get a cleaner signal by removing this high-frequency 

noise, the sensor data is filtered using a fifth-order digital low-pass Butterworth filter. Since 

most of the significant features of the knee joint motion signals remain in the low-frequency 

region, we set the cut-off frequency of the filter at 12 Hz. Although both IMU sensors are 

calibrated to gather simultaneous data with a fixed sample rate (50 Hz for our work), the 

 
* Part of this work will be submitted for consideration for publication as: A. I. Faisal, S. Majumder, R. Scott, 

T. Mondal, D. Cowan, and M. J. Deen, A Simple, Low-Cost Multi-Sensor-based Smart Wearable Knee Joint 

Monitoring System, March 2020. (in preparation). 
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total sample counts are not always the same for a longer set of data. Therefore, the filtered 

data from two IMU sensors are resampled with respect to a single time-array having a 

predefined sample rate (50 Hz) in order to time-align the data with each other. This 

alignment procedure is necessary for precise knee angle and motion calculation. A 

flowchart depicting the IMU signal preprocessing is shown in Figure 4-1. 

 

Figure 4-1. IMU signal preprocessing flowchart. 

 

4.2. Estimation of Knee Joint and Gait Parameters 

4.2.1. Knee Angle 

We used the calibrated time-aligned data from two IMU sensors (IMU1 and IMU2) to 

measure the angle of knee flexion or extension (Figure 4-2). This angle calculation is useful 

for estimating the range of motion (ROM) of the knee joint which can vary depending on 

sex, age, physical structure and daily activities [19]. First, we used the accelerometer and 

gyroscope data individually to calculate the knee angle. The calculation from the 

accelerometer’s data provides more absolute angle information due to sensors’ orientation 

independence from each other. However, the measurement accuracy can be affected by the 

high-frequency noise in the sensors’ data. On the other hand, it is simpler to calculate knee 

angles using the gyroscope data because its data is less impacted by high-frequency noise. 

However, the gyroscope data suffers from low-frequency drift over time. Therefore, we 

applied a fusion method (complementary filter) that combines both accelerometer and 
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gyroscope data to remove accelerometer noise and overcome gyroscopic drift while 

computing the knee angle during walking (Figure 4-3). 

 

Figure 4-2. Knee angle from IMU sensors. 

 

Figure 4-3. Sensor fusion to calculate knee angle. 

For extracting knee angles from the accelerometer readings while walking or during other 

activities, first, it is necessary to estimate the IMUs’ orientation vectors on the shank and 

thigh with respect to ground in a stationary position (straight standing with maximum knee 

extension). Second, we used the accelerometer readings while walking to compute the 

angle change between two vectors (stationary and walking) for both shank and thigh. The 

angle change from the accelerometer data was calculated using equation (4-1) 

 1cos st
acc

st

a a

a a
 −

 
 =

 
 

, (4-1) 

where acc  is the angle between the two acceleration vectors, sta  and a . The vector in 

stationary position (different for thigh and shank) is sta , and the vector during walking is 
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a , whose value and direction changes with the sagittal movement of the thigh and shank. 

Thus, we can calculate the angle change for both thigh (
accT ) and shank (

accS ) while 

walking. We also determined the knee angle 
accst , in a stationary position from 

stTa  

(thigh) and 
stSa  (shank) using the same equation. The walking knee angle 

accK , was then 

calculated using equation (4-2) 

 ( )
acc acc acc accK st T S   = − + . (4-2) 

Calculation of the knee angle is straightforward using the angular velocities derived from 

two gyroscope data. The difference between the angular velocities around the joint axis 

was integrated with respect to time to calculate the angle. The knee angle 
gyrK , from the 

gyroscope data [73] is defined as: 

 ( ) ( )( )1 1 2 2
0

( )
gyr

t

K t g j g j d   =  −  . (4-3) 

In equation (4-3), 1j  and 2j  denote the joint axes for IMU1 and IMU2 devices, and 1g  

2g  represent their respective gyroscope values. 

The calculated angles from both accelerometer and gyroscope data are then combined, 

using sensor fusion, in a way such that the limitations of each sensor are mitigated. We 

used a complementary filter which is a simple method of implementing sensor fusion for 

knee angle estimation with a very low computational complexity (Figure 4-4) [141].  

 

Figure 4-4. Complementary filter. 

Complementary filters have the effect of low pass filtering the accelerometer data and high 

pass filtering the gyroscope data, then combining them to give the result. Complementary 

filters can be implemented by using equation (4-4) 
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 ( ) ( ) (1 )( ( ))
gyr accK K Kt t t    =  + − , (4-4) 

where K  is the knee joint angle and   is the filter constant. It is a tunable parameter 

between 0 and 1 which determines the cut-off time for trusting the gyroscope and filtering 

in the accelerometer data. By selecting an appropriate time constant,   for the filters, the 

value of   can be obtained by using equation (4-5) 

 
( )ST





=

+
. (4-5) 

In our work, we tried different cut-off time for the complementary filter to select the 

appropriate time constant,   for achieving the highest accuracy. We obtained the optimal 

value of   is 0.93 for a time constant ( ) of 0.25 s (4 Hz cut-off frequency) and sampling 

time ( ST ) of 20 ms. This indicates that for time periods shorter than 0.25 s, the gyroscope 

data takes precedence and the accelerometer data is filtered out while for time periods 

longer than 0.25s, the accelerometer data takes precedence. 

 

4.2.2. Stride Length and Minimum Foot Clearance  

Stride length and minimum foot clearance (MFC) are two very important parameters for 

knee joint functionality assessment as well as gait analysis [142], [143]. A short stride 

length and a low MFC usually indicate reduced knee joint movement and angle during 

walking. Stride length is calculated by measuring the distance covered in one stride cycle 

(Figure 4-5). On the other hand, MFC denotes the vertical distance of foot bottom/shoe sole 

above the ground during the mid-swing phase (shank is perpendicular and foot is parallel 

to the ground) of a gait cycle (Figure 4-5). The movement of the foot during the mid-swing 

phase is considered as the most critical event while walking due to having the maximum 

horizontal velocity and minimum vertical distance above the ground [144]. Therefore, 

having a low MFC can trigger the possibility of trips and falls [145]. We utilized the 

gyroscope data from the shank’s IMU to calculate the horizontal and vertical movement of 

the sensor during walking for stride length and MFC estimation. For these, we segmented 

the continuous motion signal into a series of stride cycles where each cycle consists of one 
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swing and one stance phase by applying a simple signal peak detection method (Figure 

4-6). 

 

Figure 4-5. Stride length and minimum foot clearance in one gait cycle. 

 

Figure 4-6. Minimum foot clearance (MFC) detection from vertical displacement. 

To compute the displacement along the horizontal and vertical ground axes for each cycle, 

we first computed the shank angles both in the sagittal and transverse planes by integrating 

the gyroscope-measured angular velocities (equation (4-6)) 

 
0

( ) ( ) (0)
t

S St d    = + . (4-6) 

We also calculated the linear velocity v , by multiplying the angular velocity  , with the 

radius r , of the angular rotation (equation (4-7)) 
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 ( ) ( )v t t r=  . (4-7) 

In this case, the radius of the angular rotation r , is equal to the length from the knee to 

the bottom of the heel. We then resolved the calculated linear velocity v , into horizontal 

( horv ) and vertical ( verv ) components with respect to the earth, according to equation (4-8) 

and (4-9) 

 ( ) ( ) cos ( )hor Sv t v t t=  , (4-8) 

 ( ) ( ) sin ( )ver Sv t v t t=  . (4-9) 

While considering the horizontal velocity, the sensor has the movements both in sagittal 

and transverse planes. Therefore, for precise estimation, we calculated linear velocity 

components ,hor sv  and ,hor tv , in both of these two planes by using equation (4-8) and then 

used these two components to obtain the magnitude of horizontal gait velocity 
gaitv , 

(equation (4-10)) 

 ( ) ( )
2 2

, ,( ) ( ) ( )gait hor s hor tv t v t v t= + . (4-10) 

A simple trapezoidal integration of the horizontal gait velocity 
gaitv , during one stride 

cycle from 0t =  to one cyclet , provides the horizontal displacement also known as stride 

length (equation (4-11)) 

 
0

( )
one cyclet

gaitStride Length v d =  . (4-11) 

Similarly, by integrating the vertical velocity verv , we obtained the vertical displacement 

vers  (equation (4-12)) 

 
0

( )
one cyclet

ver vers v d =  . (4-12) 

The MFC occurs when the foot is parallel, and the shank is perpendicular to the ground. 

This means that the shank angle at the MFC is zero. Therefore, we used the calculated 

shank angle plot to identify the MFC location and then we determined the MFC in each 

stride cycle from the vertical displacement vers  (Figure 4-6). 
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4.2.3. Gait Speed and Cadence  

We are also able to measure gait speed and cadence (steps per minute) using our system. 

These two gait parameters are commonly used to evaluate the overall performance of 

walking [146]. To calculate the gait speed, the total distance of walking was divided by the 

travel time (equation (4-13)), 

 total

stop start

D
Gait Speed

t t
=

−
, (4-13) 

where the total walking distance totalD , was calculated from the summation of stride 

lengths during each stride cycle from starting time startt , to stopping time 
stopt , (equation 

(4-14)). 

 
1

N

total

n

D Stride Length
=

= . (4-14) 

In equation (4-14), N is the total number of gait cycles of an individual. We also used this 

number to calculate cadence using equation (4-15) 

 
2 60

stop start

N
Cadence

t t

 
=

−
. (4-15) 

As each gait cycle consists of two steps, and cadence is expressed in steps per minute, 

therefore in equation (4-15), N is first multiplied by 2 and 60, and then divided by travel 

duration to determine the cadence of an individual. 

 

4.2.4. Temperature, Pressure and Skin Conductance  

We measured the knee skin temperature, skin conductance and the pressure by the muscles 

around the knee joint by using three different sensors attached on the inner side of the knee 

brace (see Figure 3-6). For measuring the knee skin temperature, we used an NTC 

Thermistor whose resistance value changes with temperature. We applied a simple voltage 

divider rule to resolve thermistor’s resistance value R , from the ADC  value (10-bit) 

obtained from MetaWear CPro board acting as the data acquisition unit of the sensor 

(equation (4-16)). 
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1023

B Reading

Reading

R ADC
R

ADC


=

−
. (4-16) 

The measured resistance R  depends on the ADC  reading, the bias resistor BR  in the 

voltage divider, and the ADC  resolution which is 1023 in our system. To convert the 

resistance to a temperature measurement, we used “Steinhart–Hart Equation” also known 

as B  (or  ) parameter equation (equation (4-17)) which has been determined to be the 

best mathematical expression for the resistance-temperature relationship of NTC 

thermistors [147]. 

 
0 0

1 1 1
ln

R

T T R
= + . (4-17) 

In equation (4-17), R  is the thermistor resistance at the skin temperature T  in °C, 0R  

is the resistance at 0T  = 25 °C and   is a constant of the thermistor, and it is 3974 for 

our sensor. 

 

Figure 4-7. Force vs. resistance (FSR® 402 Short). 

The working principle of the other two sensors, pressure and GSR, is the same as the 

temperature sensor – resistance variation with input stimulus. Therefore, we used the same 

method to determine the sensor resistance for further calculation. For the pressure sensor, 

we used the datasheet of FSR® 402 Short to determine the corresponding pressure from 

the resistance value. Figure 4-7 shows the resistance vs. force plot obtained from the 

datasheet. 
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Finally, we computed skin conductance skinG  (Siemens, S), around the knee by inverting 

the resistance value GSRR  measured by the GSR sensor (equation (4-18)). 

 
1

skin

GSR

G
R

= . (4-18) 

 

4.3. Measurement Validation 

4.3.1. Knee Angle 

 

Figure 4-8. Reflective Markers attached on the subject’s right lower limb (thigh, knee and shank) for knee 

angle measurement validation. 

For knee angle measurement validation, the results from our IMU-based system were 

compared to a video-based motion analysis system. Video-based systems are widely used 

to quantify joint kinematic data for human gait in a controlled environment [49], [148]. We 

used a high-speed camera to capture two-dimensional (2D) videos of knee joint movements 

during walking on a treadmill and a freeware motion-analysis software Kinovea (version 
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0.8.26) [148] to analyze the video and quantify the knee joint angles during walking. Along 

with the knee monitoring system, three reflective markers were attached on specific lateral 

anatomical positions (thigh, knee and shank) of the subject’s right lower limb as shown in 

Figure 4-8. These markers are detected by the motion-analysis tool to quantify the joint 

angles during walking. We initialized both the systems simultaneously to obtain 

synchronized data. 

We used the concordance correlation coefficient C  [77], [149] to compare the angle 

measurements from both systems. This coefficient measures the agreement between two 

readings from the same sample by determining the variation from the concordance line (45° 

line through the origin). With this method, we can assess the reliability of a new algorithm 

or a device by comparing to another known technique. The calculation of C , comprises a 

measurement of precision  , and accuracy bC , and is 

 
C bC =  . (4-19) 

Here,   is the Pearson correlation coefficient that measures how far each observation 

deviates from the best-fit line and it represents a measure of precision. bC  is a bias 

correction factor which measures how far the best-fit line deviates from the 45° line through 

the origin and denotes a measure of accuracy. The value of C  ranges from 0 to 1, where 

1 represents perfect concordance and a value of zero denotes complete disagreement. A 

descriptive scale for values of the concordance correlation coefficient is proposed in [150] 

and is reproduced in Table 4-1. 

Table 4-1: Descriptive scale for values of the concordance correlation coefficient. 

Value of 
C

  Strength of agreement 

< 0.90 Poor 

0.90 - 0.95 Moderate 

0.95 - 0.99 Substantial 

>0.99 Almost perfect 
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The results obtained from the developed knee monitoring system showed substantial 

consistency with the readings from the video-based motion analysis system (Figure 4-9 and 

Table 4-2). 

 

Figure 4-9. Knee joint angle of a walking test on treadmill. 

 
Table 4-2: Concordance correlation coefficient 

C  for walking test. 

C
 : Concordance 

correlation coefficient 

b
C : Bias 

correction factor 

 : Pearson 

correlation coefficient 

0.9577 0.9820 0.9753 

 

4.3.2. Stride Length, Gait Speed and Cadence 

The proposed stride length, gait speed and cadence calculation algorithms were validated 

using the traditional manual method. In this method, the steps of the subjects were manually 

counted while performing the walking exercise and the total distance was measured using 

a measuring tape. Therefore, the average stride length was calculated using, 

 . 
  

2

avg

D
Stride Length

number of steps
=
 
 
 

, (4-20) 
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where D  is the measured distance for walking exercise. As one stride consists of two 

consecutive steps, the total number of steps was divided by two to get the total number of 

strides. Time information (total duration T ) of the walking exercise was retrieved from 

the IMU readings. Gait speed and cadence were then calculated using equations (4-21) and 

(4-22). 

  
D

Gait Speed
T

= , (4-21) 

   60number of steps
Cadence

T


= . (4-22) 

This validation process included 10 subjects walking data to compare the results obtained 

from our developed system with manually calculated values for stride length, gait speed 

and cadence. The walking distance for each subject was 65 meters straight. Figure 4-10 

shows the comparison and estimation errors (in cm) of the stride length calculation between 

two techniques.  

 

Figure 4-10. Comparison and estimation errors (in cm) of the stride length calculation. 

As shown in Figure 4-10, in the worst case (subject 4) the estimation error for stride length 

was 4.81 cm (3.3%) and the mean error for 10 subjects was 1.7%. Similarly, for gait speed, 

the highest estimation error was 3.8% (5.1 cm/s) and the mean error was 2.1%. The cadence 

calculation using the knee monitoring system was also quite accurate with a mean error of 

1.2%. Thus, these results proved the reliability of our system and the algorithm for 

determining stride length, gait speed and cadence. 
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4.3.3. Minimum Foot Clearance 

 

Figure 4-11. MFC measurement validation using video-based motion analysis system. 

We used the same video-based motion analysis system to validate the MFC measurement 

(Figure 4-11). In this case, one reflective marker was attached on the lateral side of the shoe 

to track the motion of the foot in the walking video. Then, we extracted the MFC (vertical 

distance between shoe sole and ground while the foot was parallel to the ground) from the 

tracked video to validate our measurement system. We measured MFC using both the 

systems simultaneously for normal and fast walking speed on the treadmill. In Table 4-3, a 

comparison between MFC calculations from the two systems is presented. 

Table 4-3: MFC comparison. 

 
Avg. MFC from Video 

(mm) 

Avg. MFC from IMU 

(mm) 

Mean Error 

(mm) (%) 

Normal walk 19.86 20.07 0.21 1.1 

Fast walk 26.21 27.40 1.19 4.5 

All the comparison results showed that the estimation of knee joint angle and gait 

parameters using our developed system were accurate and robust enough to be considered 

as a reliable device for knee joint and gait monitoring as well as assessment. We also 
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collected multiple knee data from the same subjects walking under similar conditions but 

at different times and compared those data in order to ensure the reproducibility of the 

measurement using our system. For each case, the acquired data from all the sensors 

showed high consistency and small variations with the highest standard deviation of ±7.5% 

from the mean values. 

 

4.4. Feature Extraction 

 

Figure 4-12. Wavelet packet decomposition tree up to 3rd level. 

The feature extraction stage involves deriving relevant, informative and non-redundant data 

structures known as feature vectors from the sensors’ signals for further analysis and better 

interpretation. We extracted a large set of time and frequency domain features from the 

preprocessed signals which included the energy features of each signal, timing and 

statistical parameters of the knee motion signals. Joint motion signals, being complex, non-

linear and non-stationary, and having variable spectral characteristics, can be effectively 

analyzed by decomposing them into their spectral components. 
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To get the spectral components, we used wavelet packet decomposition (WPD) because of 

its fast and hierarchical tree-like decomposition algorithm, which makes it suitable for real-

time applications. WPD is a wavelet transform where the signal is passed through more 

filters than the discrete wavelet transform (DWT). In the DWT, approximation coefficients 

and detail coefficients are decomposed by passing the discrete time-domain signal through 

a discrete-time low- and high-pass quadrature mirror filters in the first level. Then, the 

following levels are calculated by passing only the previous wavelet approximation 

coefficients i.e. the lower frequency components through the similar low- and high-pass 

filters [151]. The detail coefficients or the higher frequency components from each level 

remain unaltered. However, in the WPD, both the detail and approximation coefficients are 

further decomposed to create the full binary tree (Figure 4-12) and allow the signal to 

decompose evenly throughout its whole spectrum [152]. All components of a gyroscope 

signal around the mediolateral axis decomposed at level 2 are presented in Figure 4-13. 

In our study, we used WPD at level 8 to decompose the preprocessed signals of the sensors 

and calculated the energy information E of each decomposed signal using equation (4-23). 

Those energy features derived from the signal components are closely related to the 

mechanical work done during knee joint movements [153], [154]. 

 2

1

1
[ ( )]

N

n

E S n
M =

=   (4-23) 

In equation Error! Reference source not found., M represents the total number of gait 

cycles in the signal, N is the total number of samples and S denotes a decomposed signal 

component from the sensors. 

We also extracted the timing parameters of knee motion which are important because of 

their variation with age, gender, BMI as well as knee health condition [122]–[124]. Other 

relevant statistical features such as mean, maxima/minima, correlation coefficient, standard 

deviation and signal ratio are also calculated to realize discriminating information between 

various states or classes of the sensors data. In total, a 159-length feature vector was 

extracted from the sensors signals and Table 4-4 presents a list of the key features extracted 

for further joint analysis. 
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Figure 4-13. Original and four components of the mediolateral signal decomposed at 2nd level with wavelet 

packet decomposition. 

 

Table 4-4: Extracted features. 

Physiological Temporal Energy Statistical 

• Angle (knee, thigh and 

shank) 

• Stride length 

• MFC 

• Gait speed 

• Cadence 

• Knee skin temperature 

• Knee skin conductance 

• Muscle pressure around 

knee joint 

• Stride time 

• Swing time 

• Stance time 

• Acceleration 

• Angular velocity 

• Wavelet packet 

decomposed signal 

components 

• Mean 

• Maxima/Minima 

• Correlation (thigh and 

shank IMU signals) 

• Linear correlation 

coefficient 

• Standard deviation 

• Ratio between two IMU 

signals 
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4.5. Conclusions 

In summary, the signal processing and analysis of the acquired data is a vital phase of this 

research to retrieve necessary information related to knee joint health monitoring. There 

were four major steps involved: (1) Preprocessing of the raw sensor data; (2) Important 

knee joint and gait parameters estimation; (3) Validation of these measurements; and (4) 

Other relevant features extraction such as statistical, temporal and energy features of knee 

joint movement. In the preprocessing step, noise in the raw signals from the knee 

monitoring system were filtered out and then the “cleaned” signal were resampled to make 

them aligned with each other. Next, the clean signals were used to calculate different knee 

parameters such as knee, thigh and shank angle change, knee skin temperature, muscle 

pressure, and skin conductance during walking. We also estimated several gait parameters 

such as stride length, MFC, gait speed and cadence which are also important for gait 

analysis. In addition, we used different feature extraction techniques to obtain statistical, 

temporal and energy features from the preprocessed signals. These features are important 

to formulate the relationship between the key characteristics of the knee joint and prepare 

the model for prediction and diagnostic decision making. 
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Chapter 5 

Characterization and Classification of Knee 

Data* 

The extracted features from the knee monitoring systems are used for characterization of 

the knee joint behavior and classification according to their common characteristics for 

different subject groups. In order to select more discriminative and statistically significant 

features, and reduce the dimensions of input data, we applied different feature selection and 

dimensionality reduction algorithms. After completing the feature selection step, we used 

the key parameters and statistically significant features to characterize the data and retrieve 

meaningful information such as anomaly, outliers and alarms detection which can be used 

for further prediction, diagnostic decision making and feedback applications. The support 

vector machine was then exploited and trained with the reduced feature vector and their 

corresponding classes. The classes of the subjects’ data were specified with respect to their 

age, gender, BMI, as well as their knee and leg health conditions. It was observed that the 

hyperplane determined by the SVM can successfully cluster the data into two separate 

classes with a high degree of accuracy which correspond to their class identities. The 

classification accuracy of the applied technique was evaluated by a 10-fold stratified cross-

validation. 

 

 
* Part of this work will be submitted for consideration for publication as: A. I. Faisal, S. Majumder, R. Scott, 

T. Mondal, D. Cowan, and M. J. Deen, A Simple, Low-Cost Multi-Sensor-based Smart Wearable Knee Joint 

Monitoring System, March 2020. (in preparation). 
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5.1. Feature Selection and Dimensionality Reduction 

In order to reduce the redundancy and high dimensionality of the feature vectors, and for 

efficient analysis, dimensionality reduction was performed in two steps. First, we applied 

a feature selection algorithm (mRMR – minimum redundancy maximum relevance) [155], 

[156] to rank all the extracted features with respect to their importance score and then a 36-

length feature vector was derived based on their statistical significance (p < 0.05). The 

feature importance of a given feature  (  {1,  2,  ...,  })iX i m , among total m  (=159 in 

our work) features based on mRMR can be expressed as: 

 
1

( ) ( , ) ( , )


= − 
S

mRMR

i i S i

X S

f X I Y X I X X
S

, (5-1) 

where Y  is the response variable, S  is the set of selected features, S  is the number 

of features and SX S  is the features out of the feature set S . The function (.,.)I is the 

mutual information (equation (5-2)). 

 
( , )

( , ) ( , ) log( )
( ) ( ) 

=  
Y X

p x y
I Y X p x y dxdy

p x p y
, (5-2) 

where Y  and X  are the sample spaces corresponding to Y  and X , ( , )p x y  is the 

combined probability density, and (.)p  is the marginal density function. For discrete 

variables Y  and X , the mutual information function is expressed as: 

 
( , )

( , ) ( , ) log( )
( ) ( ) 

=  
Y Xy x

p x y
I Y X p x y

p x p y
. (5-3) 

In this mRMR feature selection process, at each level, the feature with the highest feature 

importance score max ( )i

mRMR

X S if X  is added to the selected feature set S . Thus, all the 

extracted features are ranked based on their importance score. 

The second step is dimensionality reduction was accomplished utilizing principal 

component analysis (PCA) [157]. PCA is a mathematical technique that reduces the size of 

the data set and extracts the most important information from the data table. It compresses 
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the high dimensionality of the feature vector onto a lower-dimensional feature subspace by 

analyzing the covariance matrix of the data [158]. The definition of the covariance matrix 

for a data set with n  dimensions can be expressed as: 

 ( , cov( , )) = =n n

ij ij i jC c c Dim Dim , (5-4) 

where n nC is a n n  covariance matrix and xDim  is the x -th dimension. The 

covariance between two feature vectors X  and Y  presents the correlation between 

them. If the covariance value is positive, it indicates both vectors have the same directions 

and if negative, then they move to the opposite directions. If it is zero, then the two vectors 

are independent of each other. The formula to calculate covariance is 

 1
( )( )

cov( , )
( 1)

=
− −

=
−


n

i ii
X X Y Y

X Y
n

, (5-5) 

where X  and Y are the mean values. After computing the covariance matrix of a data 

set, eigenvalues and eigenvectors for the covariance matrix are calculated to determine the 

variances for each component. In general, only first few components contain most of the 

variance of the original data. Thus, the new lower dimensional vector ensures minimal loss 

of relevant information. In our study, the 36-length feature vector was projected to the 2-

length principal component space for each classification using the first two principal 

components that contain 81% - 87% of the total variance. 

 

5.2. Characteristics of Key Extracted Features and Parameters 

Although all subjects were healthy and performed their walking experiments for joint 

monitoring at their preferred pace and comfort, we found variations in the characteristics 

for several extracted features among different subject groups. Typically the bone density 

of a human body reaches its peak value around age 30, tends to remain stable with equal 

amounts of bone formation and bone breakdown from about age 30 to 50, and after age 50, 

bone breakdown starts to exceed bone formation, resulting in bone loss and joint health 

degradation [159], [160]. Therefore, we divided the subjects in our study into three age 

groups (18-30, 31-50 and 51-86 years) to compare their knee joint and gait-related features 
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(p < 0.05). Each of these groups was also divided according to their gender to show the 

comparison between male and female subjects of the same age groups. 

 

5.2.1. Angles and Gait Parameters 

On average, the female subjects in our study walked with higher knee angle change (50.2°) 

compared to the male subjects (48.2°) while walking (Table 5-1). A higher knee angle 

change involves higher angular movements (flexion, extension) of knee joints within its 

range, thus causing increased generation or absorption of joint power during walking [161], 

[162]. Also, when we compared thigh and shank angle changes during walking (Table 5-1 

and Figure 5-1), the female subjects exhibited higher thigh angle change (33.9°) than the 

male subjects (31.5°) due to their greater pelvic tilt and larger hip swing while walking 

[163], [164]. The structure of the female pelvis, commonly referred to as gynecoid pelvis, 

is distinctly different compared to male pelvis with a wider sacrum and pubic arch. This 

anatomical difference coupled with a relatively lax ligament of the female pelvis and hip 

joints results in a larger hip swing and thigh movement among the females. In contrast, the 

male subjects showed a slightly larger shank angle change (23.6°) than females (22.5°) 

(Table 5-1). 

It was also observed that the average magnitude of overall knee angle changes as well as 

thigh and shank angle changes declined for the subjects in the older age range (Figure 5-1). 

This is because, with aging, joint movement becomes stiffer and less flexible due to a 

gradual reduction of the lubricating fluid inside the knee joints and the cartilage becoming 

thinner. Also, the ligaments tend to shorten and lose some flexibility, restricting joint 

movements [165]. 

We also compared different gait characteristics (average values) measured with our knee 

monitoring system and found them to be distinctly different among the three groups (Table 

5-2 and Figure 5-2). It was observed that the female subjects had shorter stride length (1.27 

m) and a higher cadence (116 steps/min) during walking, while the male subjects walked 

with longer stride length (1.33 m) and a lower cadence (110 steps/min) (Table 5-2). A 
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higher cadence and shorter stride length usually require increased joint torque and power 

during walking [166], thus showing a tendency among the females to expend more energy 

while walking. 

Table 5-1: Knee, thigh and shank angles during walking. 

 Knee Angle Change (°) 

(p = 0.034) 

Thigh Angle Change (°) 

(p = 0.01) 

Shank Angle Change (°) 

(p = 0.03) 

Age 
Male 

(SD)  

Female 

(SD) 
Avg. 

Male 

(SD) 

Female 

(SD) 
Avg. 

Male 

(SD) 

Female 

(SD) 
Avg. 

18-30 
51.8 

(10.6) 

54.6 

(8.8) 
53.2 

34.7 

(6.5) 

37.1 

(6.7) 
35.9 

27.1 

(4.3) 

25.4 

(1.9) 
26.2 

31-50 
47.5 

(9.3) 

49.7 

(2.8) 
48.6 

32.5 

(3.3) 

35.2 

(4.4) 
33.9 

23.6 

(5.2) 

22.2 

(4.2) 
22.9 

51-86 
45.2 

(6.2) 

46.2 

(2.3) 
45.7 

27.2 

(2.6) 

29.5 

(2.4) 
28.3 

20.0 

(3.1) 

19.8 

(1.9) 
19.9 

Avg. 48.2 50.2  31.5 33.9  23.6 22.5  

 

Knee Angle Change 

 

Thigh Angle Change 

 

Shank Angle Change 

 

 

Figure 5-1. Comparison of magnitude of knee, thigh and shank angle changes for the three age groups. 

Similarly, subjects from the older age group (51-86) walked with shorter stride length (1.26 

m) and a higher cadence (116 steps/min) compared to the younger adults (Table 5-2). The 

gradual deterioration of joint health with aging affects balance and stability among the older 

adults and they tend to compensate for these issues by decreasing their stride length and 

increasing their cadence. This reduced stride length and knee joint movement among older 

adults also affect their MFC while walking. As a result, adults in the “51-86” age range in 
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our study showed the lowest MFC average (17.4 mm) among the three age groups (Table 

5-2). MFC is a key gait cycle parameter for predicting the likelihood of tripping and falling. 

It occurs during the mid-swing phase in a walking cycle where the forward velocity of the 

foot is maximum. Thus, a high forward velocity coupled with a low MFC increases the 

possibility of unanticipated foot-ground contacts, resulting in trips and falls during walking 

[145]. Therefore, our knee monitoring system can potentially be used for continuous 

monitoring and analyzing of an individual’s gait characteristics to identify the unsteady gait 

as well as to predict the possibility of trips and falls. 

Table 5-2: Stride length, cadence and MFC of walking. 

 Stride Length (m) 

(p = 0.037) 

Cadence 

(p = 0.01) 

MFC (mm) 

(p = 0.01) 

Age 
Male 

(SD) 

Female 

(SD) 
Avg. 

Male 

(SD) 

Female 

(SD) 
Avg. 

Male 

(SD) 

Female 

(SD) 
Avg. 

18-30 
1.39 

(0.08) 

1.29 

(0.13) 
1.34 

107 

(6) 

114  

(4) 
111 

19.19 

(3) 

19.18 

(4) 
19.19 

31-50 
1.33 

(0.12) 

1.27 

(0.12) 
1.30 

110 

(5) 

115  

(2) 
113 

18.71 

(3) 

18.83 

(2) 
18.77 

51-86 
1.27 

(0.05) 

1.25 

(0.04) 
1.26 

112 

(4) 

119  

(2) 
116 

17.66 

(2) 

17.17 

(1) 
17.41 

Avg. 1.33 1.27  110 116  18.52 18.39  

 

Stride Length 

 

Cadence 

 

MFC 

 

 

Figure 5-2. Comparison of magnitude of different gait-related features among the three age groups. 
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5.2.2. Energy Features 

We also calculated and compared the energies of the significant components (p < 0.009) of 

the decomposed signals from the gyroscope (Figure 5-3 and Table 5-3) and accelerometer 

(Figure 5-4 and Table 5-4) data for all three axes. It was observed that the average energies 

of the mediolateral (y-axis) and anteroposterior (z-axis) acceleration were significantly 

higher for female subjects than the male subjects (Figure 5-4). As discussed earlier, females 

tend to have larger hip and knee flexion as well as higher mediolateral movement which 

causes higher power absorption during the gait cycle. Moreover, as females walk with a 

higher cadence and shorter stride length compared to males, their knee joints and adjacent 

muscles need to perform higher amounts of mechanical work than males during walking 

for a fixed distance in the same time. The female subjects also exhibited higher rotational 

energy around the mediolateral (y-axis), longitudinal (x-axis) and anteroposterior (z-axis) 

directions compared to their male counterparts (Figure 5-3). The distinct higher magnitudes 

of mediolateral (y-axis) acceleration energy (Figure 5-4), and rotational energy around 

mediolateral (y-axis) and longitudinal (x-axis) axes (Figure 5-3) of females represent their 

larger hip and knee joint movements while walking. 

Table 5-3: Rotational energy. 

 Gyroscope (p < 0.009) 

 Around x-axis* Around y-axis* Around z-axis* 

Age 
Male 

(SD) 

Female 

(SD) 
Avg. 

Male 

(SD) 

Female 

(SD) 
Avg. 

Male 

(SD) 

Female 

(SD) 
Avg. 

18-30 
50.37 

(13.97) 

50.97 

(12.41) 
50.67 

170.96 

(23.38) 

212.79 

(33.78) 
191.88 

18.88 

(6.94) 

10.47 

(3.07) 
14.67 

31-50 
52.46 

(16.35) 

62.58 

(13.55) 
57.52 

178.03 

(31.11) 

222.74 

(25.91) 
200.39 

16.18 

(4.38) 

26.31 

(10.37) 
21.25 

51-86 
69.95 

(12.54) 

83.86 

(6.15) 
76.90 

224.22 

(35.13) 

286.17 

(39.99) 
255.20 

29.96 

(12.49) 

30.05 

(14.69) 
30.01 

Avg. 57.59 65.80  191.07 240.57  21.67 22.28  

∗ Energy values of the gyroscope correspond to the value multiplied by 104. 
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Rotational Energy 

  

  
Figure 5-3. Comparison of rotational energy among different age groups. 

 
Table 5-4: Acceleration energy. 

 Accelerometer (p < 0.009) 

 Along x-axis Along y-axis Along z-axis 

Age 
Male 

(SD) 

Female 

(SD) 
Avg. 

Male 

(SD) 

Female 

(SD) 
Avg. 

Male 

(SD) 

Female 

(SD) 
Avg. 

18-30 
123.45 

(18.77) 

106.98 

(14.32) 
115.21 

29.13 

(4.72) 

42.05 

(5.65) 
35.59 

38.17 

(9.73) 

44.31 

(7.79) 
41.24 

31-50 
139.71 

(22.66) 

143.32 

(9.16) 
141.51 

20.46 

(2.35) 

38.76 

(1.37) 
29.61 

41.41 

(9.13) 

48.81 

(6.36) 
45.11 

51-86 
63.39 

(5.97) 

61.59 

(5.71) 
62.49 

85.17 

(6.01) 

105.16 

(5.84) 
95.17 

40.44 

(9.26) 

48.50 

(3.61) 
44.47 

Avg. 108.85 103.96  44.92 61.99  40.00 47.21  

 

Acceleration Energy 

  

  
Figure 5-4. Comparison of acceleration energy among different age groups. 
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A significantly higher average (270%-320%) mediolateral (y-axis) acceleration energy and 

a lower average (45%-55%) of longitudinal (x-axis) acceleration energy among the older 

(51-86) age group can be attributed to their reduced balance and stability while walking 

[122] (Table 5-4). Their postural balance and alignment are affected due to larger 

mediolateral sway and lower longitudinal movements (low ground clearance). In addition, 

higher rotational energy around all three axes in older adults could be attributed to their 

increased asymmetry and variability in gait [122]. Generally, the younger adults possess 

better musculoskeletal health and an unimpaired somatosensory system. Therefore, their 

basal energy expenditure remains well controlled with better postural balance and 

alignment, as well as superior motor-cognitive coordination [167]. As a summary, a 

significant decline in knee joint angle, stride length as well as gait symmetry among older 

age groups demonstrates an overall deterioration of knee joint health along with weaker 

gait compared to the younger age groups. 

 

5.2.3. Other Physiological Parameters 

As we mentioned earlier that knees absorb a large amount of pressure during daily activities 

and the average force on each knee while walking is the equivalent to 1.5 times our body 

weight [31]. Therefore, in our study, we also analyzed the pressure change of the anterior 

compartment muscles of the thigh (directly connected with knee patella) while walking and 

made a comparison between different gender and age groups (Table 5-5 and Figure 5-5). It 

was observed that the male subjects exhibited stronger muscle pressure in comparison with 

the female subjects. Usually, males tend to have larger thigh muscle mass than females. 

Besides, men’s muscles are more solid, due to having a higher proportion of Type 2 fast-

twitch fibers [168], [169]. This kind of muscle fiber contains a lot of protein but less amount 

of blood. It has the ability to expand and contract rapidly with great force and generate its 

own energy. As men have about 50% more Type 2 muscle fibers than women’s, they 

produce more pressure while walking [168]. It is also known that muscle mass and volume 

among older adults decrease gradually with age [170]. As a result, the force generated due 

to muscle expansion and contraction begins to decline which signifies the deterioration of 
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musculoskeletal health among older adults. In our experiments, we also found that the older 

adults with an age group from 51-86 years had the lowest thigh muscle pressure in 

comparison with the younger age groups during walking. 

Table 5-5: Thigh anterior compartment muscle pressure while walking. 

 
Muscle Pressure (N/m2) 

(p < 0.05) 

Age Male (SD) Female (SD) Avg. 

18-30 1802 (175) 1460 (163) 1631 

31-50 1637 (91) 1359 (131) 1498 

51-86 1439 (109) 1136 (52) 1287 

Avg. 1626 1318  

 

 

Figure 5-5. Comparison of thigh anterior compartment muscle pressure between different subject groups. 

Using our system, we also measured local knee skin temperature and skin conductance 

during walking experiments. Usually, changes in knee skin temperature occur due to the 

changes in blood flow in that region and this change can be an indication of abnormality. 

For example, the skin temperature of an inflamed knee is usually higher (1.09 °C – 2.77 

°C) [171], [172] than a normal or healthy knee (~30.6 °C on average) [22]. Similarly, stress 

and perspiration in the knee joints are related to the local blood flow and the sweat gland 

activities which vary due to external and internal stimuli. These variations can be assessed 

by measuring the changes in the skin conductance. However, for both these cases, long-

time monitoring is needed to detect any noticeable changes. Therefore, in our current study, 
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we could not distinguish these kinds of variation as all participants were clinically healthy 

and we only collected each knee data for a short period of time. Instead, we have calculated 

the average value from our collected data for normal knee skin temperature which was 

30.26 °C with a standard deviation of 0.93 °C. We also performed dry (normal) and wet 

knee (after workout) skin conductance measurement tests for two participants where the 

average conductance for dry skin was 38 μS and 46 μS for wet skin. In every measurement, 

the two GSR electrodes and the temperature sensor were placed on the knee patella (Figure 

3-6) for better skin contact. The gap between two GSR electrodes was 6 cm (side by side). 

 

5.3. Classification and Cross-Validation of Knee Data 

The linear support vector machine (SVM) was used in our study to train and classify the 

data corresponding to different groups. SVM is a very well-known machine learning 

algorithm and it is very effective in classifying a two-class dataset with few samples [166], 

[173]. It is a supervised learning model that constructs a discriminative hyperplane or set 

of hyperplanes in a multi-dimensional space by maximizing the geometric margin between 

different classes. Hyperplanes are decision boundaries that help to classify the data points. 

Feature vectors determining the hyperplane with maximum margin are called support 

vectors. Other feature vectors do not alter the position and orientation of the hyperplane. 

We exploited and trained the linear SVM with our reduced 2-length vector, generating two 

distinct classes of baseline data with respect to two specific genders, age and BMI groups 

as well as knee and leg health conditions. The performance of the proposed technique for 

classification was evaluated using a k (=10)-fold stratified cross-validation. Each time, 

seven (10% of the total data) random subjects out of 70 were selected, without overlap. In 

our study, we chose k=10 which allows to evenly split our data sample and large enough 

to have low bias with a modest variance. On the other hand, the stratified cross-validation 

allows for increasing the accuracy for an imbalanced dataset by ensuring that each fold has 

the same proportion of observations from each class of the dataset. Thus, ten such non-

overlapping balanced subsets were created to use as test data in each fold. Then, we used 

the remaining 63 subjects’ data of each set to train the SVM. Finally, in each fold, the 
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excluded seven subjects were classified using the developed model. The results from each 

of the 10-fold validation were then combined to compute the overall accuracy of the 

classification model. 

5.3.1. Gender 

According to gender-based classification with 70 subjects (56 males and 14 females), most 

of the subjects’ joint behaviors and gait patterns were found to be truly clustered to their 

corresponding groups (Figure 5-6(a)) and the classification results show a very high 

accuracy of ~97% from the 10-fold stratified cross-validation. Only 2 subjects (1 male, 1 

female) were misclassified. This observation may suggest a potential difference (inherent 

or developing) in the joint and gait characteristics that prevented these two subjects from 

being truly classified according to his/her gender identity.  

Figure 5-6(b) presents one-fold of classifying 7 subjects based on the SVM trained with the 

remaining 63 subjects, where one male subject was found to be wrongly classified. This 

misclassified male was found to exhibit some similar characteristics observed in healthy 

female subjects such as higher acceleration energy along the mediolateral axis (y-axis), 

larger rotational energy around the longitudinal (x-axis) axis, as well as lower pressure 

change around the muscles in the anterior compartment of the thigh. The confusion matrix 

for the gender-based classifier is presented in  

Table 5-6 showing the high true positive rate (TPR: ~96% on average) and low false 

positive rate (FPR: ~4% on average) for two classes as well the high combined accuracy of 

the classifier. 

Table 5-6: Confusion matrix for gender-specific classifier. 

Gender 
True positive rate 

(TPR) 

False positive rate 

(FPR) 
Accuracy 

Male 98% 2% 
97% 

Female 93% 7% 
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Figure 5-6. Classification results: (a) two distinct gender groups (excluding outliers – data fallen on the 

wrong side of the boundary); (b) One instance of cross-validation showing one subject is falsely classified. 

 

5.3.2. Age 

As we mentioned earlier that the linear support vector machine (SVM) is effective for 

classifying a two-class dataset. Therefore, in order to perform the age-based classification,   

(a) 

(b) 
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Table 5-7: Confusion matrix for age-specific classifier. 

Age range 
True positive rate 

(TPR) 

False positive rate 

(FPR) 
Accuracy 

18-40 years 98% 2% 
96% 

41-86 years 89% 11% 

 

 

 

Figure 5-7. Classification results: (a) two distinct age groups (excluding outliers – data fallen on the wrong 

side of the boundary); (b) One instance of cross-validation showing one subject is falsely classified. 

 

(a) 

(b) 
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the subjects’ data were divided into two new specific age groups. One group comprised 

persons with an age range from 18-40 years (52 adults) and the other group includes adults 

from 41-86 years (18 adults). We divided the subjects into these two groups because, knee 

joint disorders especially osteoarthritis (OA) is most common in adults over 40 [174]. Both 

of these groups were found to be distinctly arranged and separated by the boundary line 

created by the SVM (Figure 5-7(a)). However, 1 subject from the first group and 2 from 

the second were wrongly classified in this case. This anomaly among those subjects may 

be attributed to an altered knee joint movement and walking patterns in comparison with 

their own groups. For example, the misclassified younger adult showed lower knee angle 

change, stride length and MFC, whereas the two misclassified older adults had higher knee 

angle change as well as better stride length and MFC compared to other older adults. This 

classifier was also evaluated by a 10-fold stratified cross-validation. Figure 5-7(b) shows 

one instance of cross-validation where the subject aged below 40 years was falsely 

classified due to having joint characteristics similar to the older age group. The confusion 

matrix for the age classifier is presented in Table 5-7 showing an overall classification 

accuracy ~96%. The high TPR (~93% on average) as well as corresponding low FPR (~7% 

on average) of the classification outcomes prove the analyzer’s capability in distinguishing 

the inconsistent knee joint behaviors with high confidence. 

 

5.3.3. BMI 

In addition to gender and age, we also performed a classification operation between two 

subject groups divided with respect to their BMI (body mass index). BMI is a weight 

screening tool (equation (5-6)) against height that can indicate whether a person has the 

correct weight for their height. 

 
2 2

( )

( )

Weight kg
BMI

height m
= . (5-6) 

If a person's BMI is outside of the healthy range (underweight, excess weight or obese), 

their health risks may increase significantly and their joint health may be impacted. For 

instance, excess weight puts additional stress on the knee joint as the knee bears one of the   



M.A.Sc. Thesis – Abu Ilus Faisal          McMaster University - Electrical and Computer Engineering 

82 

Table 5-8: Confusion matrix for BMI-specific classifier. 

BMI 
True positive rate 

(TPR) 

False positive rate 

(FPR) 
Accuracy 

19-29 kg/m2 95% 5% 
93% 

<19 kg/m2 and >29 kg/m2 86% 14% 

 

 

 

Figure 5-8. Classification results: (a) two distinct BMI groups (excluding outliers – data fallen on the wrong 

side of the boundary); (b) One instance of cross-validation showing one subject is falsely classified. 

 

(a) 

(b) 
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highest amounts of body weight during different daily activities [31]. Similarly, a weight 

that is too low can increase the risk of malnutrition, osteoporosis and anemia which can 

also cause the degradation of knee joint health. Therefore, we separated a subject group of 

14 people with a BMI value less than 19 kg/m2 (Underweight) and more than 29 kg/m2 

(obese) and performed classification operation utilizing their joint features. Hence, the 

other subject group of the classification comprised adults with a BMI range between 19 

and 29 kg/m2. The classification results showing two distinct BMI groups are presented in 

Figure 5-8(a). An overall classification accuracy of ~93% (Table 5-8) was achieved from 

the 10-fold stratified cross-validation (one-fold is presented in Figure 5-8(b)) which 

indicates a close relationship between the joint features and BMI. Also, the high TPR 

(~90% on average) and corresponding low FPR (~10% on average) indicate the classifier’s 

reliability with high confidence. 

 

5.3.4. Knee and Leg Health 

Although all participants in our study had no clinically diagnosed knee joint issue or 

walking discomfort, 15 subjects among 70 had reported some histories related to knee 

health or injuries as well as problems such as occasional knee or lower back pain, bowed 

legs or flat feet. Any of these reported issues can be a future cause of knee related diseases 

and mobility degradation. Therefore, we applied our classification model (SVM) to 

distinguish those 15 subjects with undiagnosed issues using their data related to knee joint 

behavior and gait pattern. A clear clustering for each group (with and without issues) was 

found being separated by the boundary line created by the SVM (Figure 5-9(a)). The 

accuracy of the classifier was evaluated by a 10-fold stratified cross-validation. Figure 

5-9(b) shows one instance of cross-validation where one healthy subject was classified as 

having issues related to knee joints and leg movement. Although there is no known problem 

reported by these subjects, this result can be an indication of potential developing issues 

related to knee joint and mobility. Thus, it is possible to use our monitoring system and 

classifier for prediction and early diagnosis of knee joint and mobility-related problems. 

The high TPR (~95% on average) and overall accuracy (~96%) as well as corresponding   
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Table 5-9: Confusion matrix for knee and leg health-based classifier. 

Knee and leg health 

condition 

True positive rate  

(TPR) 

False positive rate  

(FPR) 
Accuracy 

No joint issue 96% 4% 
96% 

Undiagnosed joint/leg issue 93% 7% 

 

 

 

Figure 5-9. Classification results: (a) two distinct groups with (undiagnosed) and without joint issue 

(excluding outliers); (b) One instance of cross-validation showing one subject is falsely classified. 
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low FPR (~5% on average) of the classification results (Table 5-9) validates the capabilities 

of the analyzer in distinguishing anomalous joint behavior from healthy knee joints with 

high confidence. 

 

5.4. Conclusions 

In this Chapter, we applied several data processing and machine learning algorithms to 

utilize the extracted features from the knee monitoring systems and find useful information 

and correlation between different knee joint behaviors. In order to rank and select 

statistically significant features, the mRMR feature selection method was used. Then by 

applying PCA, the selected 36-length feature vector was projected on the 2-dimensional 

spaces using the first two principal components without much loss of information. Several 

key extracted knee joint and gait parameters such as angles, stride length, cadence, MFC, 

rotational and acceleration energy features, and other physiological knee features such as 

muscle pressure around the knee joint, local skin temperature and skin conductance are 

analyzed to show the comparisons between different subject groups. The reduced 2-length 

vectors extracted from PCA were utilized to train the linear SVM and classify the data 

corresponding to two specific subject groups. Different subject groups were defined based 

on genders, age, BMI as well as their knee and leg health conditions. The classification 

accuracy for each case was evaluated by a 10-fold stratified cross-validation. For each 

classification, distinct clusters with respect to their corresponding groups were observed 

which allows the analyzer to distinguish any potential anomaly in the data and identify any 

individual with the inconsistent knee joint characteristics for further analysis. 
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Chapter 6 

Conclusions and Future Work 

6.1. Conclusions* 

The physical and health issues associated with the rapidly aging population are a rising 

socio-economic burden for many countries including Canada. Among these issues, the loss 

of mobility among older adults is especially serious as it has severe social, mental and 

physical consequences. Poor mobility, in turn, results in a lack of independence, depression, 

and a decrease in the ability to handle daily activities, which together lowers the quality-

of-life. Factors that influence the loss of mobility include being elderly, poor or infrequent 

physical activity and/or poor diet that leads to obesity and some chronic diseases such as 

arthritis or diabetes. Aging, coupled with poor mobility, also leads to faster musculoskeletal 

weakening in the older adults. In addition, musculoskeletal weakness is a serious health 

risk as it can cause falls resulting in broken or fractured bones such as hips or thighs, which 

then leads to more serious health issues. With the aging population, the cost of services 

provided by social and healthcare workers for elderly daily welfare, and the cost of their 

direct treatment and hospitalization for different musculoskeletal disorders are posing a 

huge financial/social burden on government, society and family members. A major 

component of this high cost goes for controlling and treatment of these musculoskeletal-

related elderly’s health issues and injuries, which is also very demanding in terms of social 

and medical personnel and infrastructure. 

The load-bearing joints in our human body bear a huge amount of loading pressure during 

normal everyday movements. Therefore, these joints are highly affected due to aging, 

 
* Part of this work will be submitted for consideration for publication as: A. I. Faisal, S. Majumder, R. Scott, 

T. Mondal, D. Cowan, and M. J. Deen, A Simple, Low-Cost Multi-Sensor-based Smart Wearable Knee Joint 

Monitoring System, March 2020. (in preparation). 
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obesity and other musculoskeletal disorders and injuries. Among all the load-bearing joints, 

the knee joint is considered as the most important and critical for health assessment due to 

the massive amount of pressure it absorbs with every lower limb activity and high exposure 

to injuries. Therefore, continuous and long-term monitoring of knee joints during daily 

activities can provide a complete set of data related to mobility including knee joint range 

of motion, walking parameters and the state of muscles around the joint. These data, when 

analyzed, can then be utilized to detect the risk of certain musculoskeletal disorders that 

may not be noticeable at early stages through regular monitoring. For such knee monitoring, 

a simple, easy-to-use, reliable and cost-effective system would be of immense benefit for 

keeping track of the knee joint health status of elderly people as well as the persons 

undergoing rehabilitation towards healthier joints. 

In this research, we developed a multi-sensor-based low-cost, wearable and easy-to-use 

knee joint monitoring device which can record and wirelessly transmit continuous knee 

data in real living conditions. The system is composed of MEMS-based inertial motion 

sensors, and temperature, pressure and skin conductance sensors which allow it to 

simultaneously measure knee movements as well as other important physiological 

parameters such as skin temperature, conductance and muscle pressure change around the 

joint during movements. These parameters can potentially be used by the medical personnel 

to determine the overall knee joint health and mobility status of an individual. The smart 

wearable knee monitoring system can also be used for early diagnoses and proper treatment 

of knee joint disorders such as osteoarthritis and osteoporosis, fall detection, and post-

surgery monitoring of a patient’s mobility and rehabilitation. 

For signal processing and data analysis, different computationally efficient techniques were 

adopted which renders the analyzer suitable for systems with limited processing 

capabilities. The initial processing steps include filtering and resampling of the raw data to 

make the sensors’ signal clean and aligned for further analysis. We applied a simple sensor 

fusion method – the complementary filter, to calculate the knee angle during walking. This 

fusion method is used to remove the high-frequency noise from the accelerometer data and 

reduce the drift from the gyroscope data. We also computed thigh and shank angles as well 
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as several gait parameters such as gait speed, stride length, minimum foot clearance (MFC) 

and cadence from the inertial motion sensors data. Besides joint movement and 

physiological parameters, a large set of statistical, temporal and energy features were also 

extracted from the system data. We used wavelet packet decomposition (WPD) which is a 

fast and hierarchical tree-like decomposition algorithm to get the spectral components from 

the joint motion signals. 

The proposed analysis system is capable of identifying abnormalities in the knee joint 

behavior by assessing its features with respect to the baseline clusters corresponding to an 

individual’s peer group. To highlight the important features and make the analysis efficient 

we used the minimum redundancy maximum relevance (mRMR) feature selection method 

and principal component analysis (PCA) for dimensionality reduction. Then, the linear 

support vector machine (SVM) was trained with these reduced feature components 

(principal component 1 and 2) followed by a 10-fold stratified cross-validation. The 

classification results showed high accuracy forming distinct clusters or patterns for 

different subject groups based on their age, gender, BMI and knee/leg health conditions 

and distinguishing abnormalities in joint behavior.  

 

6.2. Future Work 

This research work focused on developing a low-cost, easy-to-use multi-sensor-based 

wearable knee joint monitoring system to evaluate overall knee joint health and mobility 

status of an individual. However, to make the monitoring system more precise and efficient, 

we plan to address several important research challenges in our future work. 

 This work only included healthy subjects who were supposed to possess comparably 

better joint functionalities than the people with known joint disorders or diseases. The 

knee joint functionalities and movement pattern change gradually through aging, 

different disease processes and at different severities; thus its characteristics are likely 

to deviate from those of healthy joints corresponding to an individual’s peer group. 

Even though discrete clusters or distinct patterns of different subject groups are 
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reported in this work, further in-depth study on a larger balanced dataset including 

subjects having different knee joint-related issues or diagnosed diseases with a wider 

range of age and BMI would be beneficial to reinforce and expand our preliminary 

findings. 

 This research involves human subjects and their health information, so it is mandatory 

to fulfill all the requirements set by the responsible regulatory bodies such as data 

privacy, information security and other ethical requirements. Therefore, before the 

monitoring system can be used on patients, additional approval from McMaster 

University’s Research Ethics Board (REB) is required demonstrating the feasibility 

and reliability of the system. 

 In this study, we mainly focused on the straight and flat surface walking of an 

individual under ideal condition to keep the analysis model simple and evaluate its 

feasibility. In the next step, we will include a diverse database based on walking signals 

from different surfaces, different conditions, different footwear, and more varied daily 

lower limb activities at home and in a community environment to extend our analysis 

and findings.  

 In this research, we measured a single knee joint at a time which limits the asymmetry 

and variability analysis between two knee joints’ characteristics while walking. These 

kinds of analyses are required in order to determine the degree of coordination between 

two knees as well as lower limb dominance. Therefore, we are going to duplicate 

another prototype which will allow us to collect simultaneous data from both the knee 

joints during walking and other lower limb activities.  

 We also hope to introduce a health index for knee joints based on the extracted key 

features that can act as a base-line to distinguish between atypical and normal knee 

joint characteristics for different groups of subjects and activities. This index can be 

used as reference by medical practitioners and regular users to quickly determine their 

knee health condition. Also, we plan to establish a nomogram for different genders and 

people with different physical structures because of their distinct joint characteristics 
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during activities. Further, persons from different ethnicities may have different 

normative values which needs further study and quantification. 

 Another major challenge is to make the system real-time to simultaneously acquire, 

process and analyze the data which can reduce unnecessary redundancies and increase 

the accuracy and efficiency for continuous monitoring. Therefore, we will work 

towards developing a stand-alone smart program integrated with a combined data 

acquisition process as well as analysis and modeling techniques for further feedback 

and prediction applications. A cloud server communication can also be set up for real-

time data mining and handling large amounts of data using proper algorithms. Thus, 

we will be able to use the knee monitoring system for early diagnoses of joint disorders, 

real-time detection and prevention of falls, evaluation of athletes’ performance and 

progress in rehabilitation. 

 The developed knee monitoring system can be used to evaluate knee joint health and 

to extract several gait features that proves its feasibility as a gait analyzer. Since gait is 

correlated with human cognitive and cardiovascular activities, it is possible to use these 

extracted gait features to find a quantitative correlation with cognitive and 

cardiovascular functions. This correlation can potentially be exploited in predicting the 

development of neurodegenerative disorders such as dementia, Alzheimer’s or 

Parkinson’s, and diseases associated with the cardiovascular system. 

Finally, an important long-term goal of this research is to develop an accurate, easy-to-use, 

low-cost, wearable smart knee joint monitoring and assistive system which can help 

persons at high levels of musculoskeletal health risk by tracking and assessing the knee 

joint function in a comfortable and non-intrusive manner. Therefore, instead of a knee 

brace, we are planning to integrate the sensing module inside regular garments such as 

pants or socks to reduce the cost and make the system smaller and user-friendly. By 

integrating efficient prediction and feedback models, the system can be further exploited 

for biofeedback applications such as fall detection and prevention, correcting errors or 

mistakes in joint exercises during rehabilitation, and real-time evaluation of athletes’ 

performance. Moreover, the Internet of Things (IoT) is already unlocking the benefits of 
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advanced computing and communication technologies in the healthcare industry. 

Therefore, this smart system, taking advantage of the IoT, would also be able to provide 

important joint-related information to medical professionals for early and accurate 

diagnosis of joint-related problems and diseases as well as more efficient and effective 

medical intervention when needed. 
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Appendix A 

Supporting Information for Chapter 1 

 

 

Movements of key human body joints 

 

Figure A-1: Different types of human body joints’ movements. 
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Normative values of different body joint range of motion (ROM) 

Table A-1: Active range of motion (ROM) (°) for human joints by gender and age [19]. 

Age 2-8 years 9-19 years 20-44 years 45-69 years 

  
Females 

(39) 

Males 

(55) 

Females 

(56) 

Males 

(48) 

Females 

(143) 

Males 

(114) 

Females 

(123) 

Males 

(96) 

Joint 

Motion 

1. Hip 

extension 

26.2 

(23.9–

28.5) 

28.3 

(27.2 – 

29.4) 

20.5 

(18.6 – 

22.4) 

18.2 

(16.6 – 

19.8) 

18.1 

(17.0 – 

19.2) 

17.4 

(16.3 – 

18.5) 

16.7 

(15.5 – 

17.9) 

13.5 

(12.5 – 

14.5) 

2. Hip flexion 

140.8 

(139.2 – 

142.4) 

131.1 

(129.4 – 

132.8) 

134.9 

(133.0 – 

136.8) 

135.2 

(133.0 – 

137.4) 

133.8 

(132.5 – 

135.1) 

130.4 

(129.0 – 

131.8) 

130.8 

(129.2 – 

132.4) 

127.2 

(125.7 – 

128.7) 

3. Knee flexion 

152.6 

(151.2 – 

154.0) 

147.8 

(146.6 – 

149.0) 

142.3 

(140.8 – 

143.8) 

142.2 

(140.4 – 

144.0) 

141.9 

(140.9 – 

142.9) 

137.7 

(136.5 – 

138.9) 

137.8 

(136.5 – 

139.1) 

132.9 

(131.6 – 

134.2) 

4. Knee 

extension 

5.4 

(3.9 – 

6.9) 

1.6 

(0.9 – 

2.3) 

2.4 

(1.5 – 

3.3) 

1.8 

(0.9 – 

2.7) 

1.6 

(1.1 – 

2.1) 

1.0 

(0.6 – 

1.4) 

1.2 

(0.7 – 

1.7) 

0.5 

(0.1 – 

0.9) 

5. Ankle 

dorsiflexion 

24.8 

(22.5 – 

27.1) 

22.8 

(21.3 – 

24.3) 

17.3 

(15.6 – 

19.0) 

16.3 

(14.9 – 

17.7) 

13.8 

(12.9 – 

14.7) 

12.7 

(11.6 – 

13.8) 

11.6 

(10.6 – 

12.6) 

11.9 

(10.9 – 

12.9) 

6. Ankle 

plantar 

flexion 

67.1 

(64.8 – 

69.4) 

55.8 

(54.4 – 

57.2) 

57.3 

(54.8 – 

59.8) 

52.8 

(50.8 – 

54.8) 

62.1 

(60.6 – 

63.6) 

54.6 

(53.2 – 

56.0) 

56.5 

(55.0 – 

58.0) 

49.4 

(47.7 – 

51.1) 

7. Shoulder 

flexion 

178.6 

(176.9 – 

180.3) 

177.8 

(176.7 – 

178.9) 

171.8 

(169.8 – 

173.8) 

170.9 

(169.1 – 

172.7) 

172.0 

(170.9 – 

173.1) 

168.8 

(167.3 – 

170.3) 

168.1 

(166.7 – 

169.5) 

164.0 

(162.3 – 

165.7) 

8. Elbow 

flexion 

152.9 

(151.5 – 

154.3) 

151.4 

(150.8 – 

152.0) 

149.7 

(148.5 – 

150.9) 

148.3 

(146.8 – 

149.8) 

150.0 

(149.1 – 

150.9) 

144.6 

(143.6 – 

145.6) 

148.3 

(147.3 – 

149.3) 

143.5 

(142.3 – 

144.7) 

9. Elbow 

extension 

6.8 

(5.2 – 

8.4) 

2.2 

(0.9 – 

3.5) 

6.4 

(4.7 – 

8.1) 

5.3 

(3.6 – 

7.0) 

4.7 

(3.9 – 

5.5) 

0.8 

(0.1 – 

1.5) 

3.6 

(2.6 – 

4.6) 

-0.7 

(-1.5 – 

0.1) 

10. Elbow 

pronation 

84.6  

(82.8 – 

86.4) 

79.6  

(78.8 – 

80.4) 

81.2  

(79.6 – 

82.8) 

79.8  

(77.8 – 

81.8) 

82.0  

(81.0 – 

83.0) 

76.9  

(75.6 – 

78.2) 

80.8  

(79.7 – 

81.9) 

77.7  

(76.5 – 

78.9) 

11. Elbow 

supination 

93.7  

(91.4 – 

96.0) 

86.4  

(85.3 – 

87.5) 

90.0  

(88.0 – 

92.0) 

87.8  

(85.7 – 

89.9) 

90.6  

(89.2 – 

92.0) 

85.0  

(83.8 – 

86.2) 

87.2  

(86.0 – 

88.4) 

82.4  

(80.9 – 

83.9) 
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Appendix B 

Supporting Information for Chapter 3 

 

MetaWear CPro IMU board pin assignments and their functions 

 

Figure B-2: MetaWear CPro IMU Board Pin Assignments. 
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Table B-2: MetaWear CPro Board Pin Functions.  

 Pin Pin Name Function Description 

Power Supply 
5 VGND Power Ground connection 

6 V3V Power +3V battery connection 

Peripherals 

1 HCD High Current Driver 
Switch for sinking high current 

peripherals 

2 
DIO0 

AIN0 

Digital I/O 

Analog I/O 
General purpose I/O and analog input 

3 
DIO1 

AIN1 

Digital I/O 

Analog I/O 
General purpose I/O and analog input 

4 
DIO2 

AIN2 

Digital I/O 

Analog I/O 
General purpose I/O and analog input 

7 
DIO3 

AIN3 

Digital I/O 

Analog I/O 
General purpose I/O and analog input 

8 DIO4 Digital I/O General purpose I/O 

9 SDA I2C Data I2C data line 

10 SCL I2C Clock I2C clock line 

SWD Debug 

Header 

11 V3V Power System supply for debugger 

12 VGND Power System ground for debugger 

13 SWDIO/nRESET Debug SWD debugger I/O line and system reset 

14 SWDCLK Debug SWD debugger clock line 
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Letter of Information/Consent 

Smart Knee Brace 

 

Local Principal Investigator: 

Dr. Tapas Mondal 

Associate Professor, 

Department of Pediatrics,  

Division of Cardiology 

McMaster University 

Hamilton, Ontario, Canada 

(905) 525-9140 ext. 75259 

E-mail: mondalt@mcmaster.ca 

 

Co-investigator(s):  

1. Dr. Jamal Deen. Distinguished University Professor, Department of Electrical and 

Computer Engineering, McMaster University. 

2. Dr. David Cowan. Associate Professor, Division of Geriatric Medicine, 

Department of Medicine, St. Joseph’s Healthcare Hamilton  

 

Research Sponsor: This research is supported by a Grant from the AGE-WELL Catalyst 

Funding Program of the McMaster Institute for Research on Aging (MIRA). 

What are we trying to discover? 

The project's objective is to analyze and identify mobility related problems among older 

adults and other joint related problems of different individuals (age: 18 and above) by 

monitoring knee joint. From this study, we aim to extract a complete set of data related to 

mobility including walking parameters, knee joint range of motion and the state of walking 

muscles in order to detect risk of certain musculoskeletal disorders that may not be 

noticeable at early stages. 
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What will happen during the study? 

You will be recruited by the Local Principal Investigators or an undergraduate health 

sciences student. This project requires testing of individuals (both male and female) of all 

age groups (children, adults and elders). As a volunteer, you will be required to strap on 

the sensor tag (which will be attached on a knee brace and a Velcro strap) on their knee and 

then walk approximately 200 meter forward (including at least two turns - 90° and 180°), 

with one step consisting of the movement of right foot and the second step consisting of 

the movement of left foot forward and so on. You will also be required to climb and descend 

stairs for about 10 steps each. The entire procedure can be completed in 30 minutes 

including the gathering of informed consent and explaining the procedure to study subjects. 

Potential Harms, Risks or Discomforts: 

There is no anticipated risk, harm or injury during this session. We do not believe there will 

be any discomfort either as you will simply be walking. Regardless, if there is any 

discomfort or any concern please let me know immediately and we will stop the activity. 

If you have any symptoms (which is very unlikely) we will address these and take 

appropriate care. 

Benefits: 

The proposed research will have a direct benefit to the quality of healthcare provided in 

Canada. The proposed research will advance screening tests for individuals who may have 

diseases and illnesses that they are unaware of. The availability of wireless communication, 

coupled with minimally invasive systems that are customized to the specific personalized 

requirements for patients would encourage healthier individuals. Furthermore, the 

application of technological knowhow via knowledge transfer in providing better treatment 

would help address the rising costs for health-care. 

The research will not benefit you directly. We hope that what is learned as a result of this 

study will help individuals across Canada be aware of their physical conditions and be able 

to approach any complications at early stages. 
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Who will know what I said or did in the study? 

The data will be anonymized and will be maintained for further studies and for publication. 

As you are participating in this study confidentially I will not use your name or any 

information that would allow you to be identified. No one but me (or other members of the 

research team such as the research assistant) will know whether you participated unless you 

choose to tell them. 

We will collect the general health information about you that would not identify yourself 

at any time in the future (please refer to data collection sheet). 

There is no Legally Required Disclosure in this study. 

What if I change my mind about being in the study? 

Your participation in this study is voluntary. It is your choice to be part of the study or not. 

If you decide not to be part of the study, you can stop (withdraw), from the knee monitoring 

study for whatever reason, even after signing the consent form or part-way through the 

study. If you decide to withdraw, there will be no consequences to you. In cases of 

withdrawal, please indicate whether you want us to use the data collected previously or to 

destroy it. 

Your decision whether or not to be part of the study will not affect your continuing to be a 

part of the research team. 

How do I find out what was learned in this study? 

We will discuss the results of the study together. 

Questions about the Study 

If you have questions or need more information about the study itself, please contact Dr. 

Tapas Mondal at mondalt@mcmaster.ca or x 75259 and Dr. David Cowan at 

cowand@mcmaster.ca . 

mailto:mondalt@mcmaster.ca
mailto:cowand@mcmaster.ca
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This study has been reviewed by the Hamilton Integrated Research Ethics Board and 

received ethics clearance. If you have concerns or questions about your rights as a 

participant or about the way the study is conducted, please contact: 

 

Hamilton Integrated Research Ethics Board 

Telephone: (905) 521-2100, Ext. 42013 

 

CONSENT 

1. [Note to Researcher: Keep the Letter of Information and this consent portion together 

as one document. When obtaining written consent, make certain that you bring two 

copies: one for your records and one for the participant to keep.] 

• I have read the information presented in the information letter about a study being 

conducted by Dr. Tapas Mondal/ Dr. David Cowan of McMaster University. 

• I have had the opportunity to ask questions about my involvement in this study and 

to receive additional details I requested. 

• I understand that if I agree to participate in this study, I may withdraw from the 

study at any time. 

• I will be given a signed copy of this form. 

• I agree to participate in the study. 

Name of Participant (Printed) _______________________________________________ 

Signature: ____________________________ Date: _____________________________ 

Person Obtaining Consent: 

Name (Printed) ___________________________________________________________ 

Signature: _____________________________ Date: _____________________________ 
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2. I will receive a summary of the study's results. 

Please send them to this email address ______________________________________ 

Or to this mailing address: _______________________________________________ 

   _______________________________________________ 

_______________________________________________ 

 

3. I agree to be contacted about a follow-up interview, and understand that I can always 

decline the request. 

… Yes. Please contact me at: _____________________________________________ 

… No. 
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Data Collection/Case Report 

Date: 

Time: 

Personal 

information 

Sex  

Age  

Weight  

Height  

BMI  

Leg length  

Measurement of the knee  

Clinical 

history 

Surgery (Hip, Knee, Ankle)  

Neurological problem  

Diabetes  

Stroke  

COPD (Chronic obstructive pulmonary 

disease) 
 

Poorly controlled CHF (Congestive heart 

failure) 
 

High blood pressure  

Sensors will be used: 

1. Accelerometer & Gyroscope: To measure the joint 

movement 

2. Temperature: To measure knee skin temperature 

3. GSR (Galvanic Skin Response): To measure skin 

stress and perspiration 

4. Pressure sensor: To measure external muscle 

pressure around the knee 

5. Portable ECG: To take the ECG data before and 

after the activity for 30 sec with the heart rate to 

check the variability of cardiac function. 

* I would recommend to wear shoes which are comfortable for walking. 

** As we need the knee braces to be put on bare skin, so it is advisable to wear shorts 

under your pants or wear loose pants. 
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Screenshots of Data Collection from Two IMU Boards Using 

MetaBase Android application  
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Screenshots of Data Collection from Temperature, Pressure and 

GSR Sensors Using MetaWear Android application  
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Copyright permissions* 

MDPI Open Access Information and Policy 

All articles published by MDPI are made immediately available worldwide under an open 

access license. This means: 
• everyone has free and unlimited access to the full-text of all articles published in 

MDPI journals; 

• everyone is free to re-use the published material if proper accreditation/citation of 

the original publication is given; 

• open access publication is supported by the authors' institutes or research funding 

agencies by payment of a comparatively low Article Processing Charge 

(APC) for accepted articles. 

 

Permissions 

No special permission is required to reuse all or part of article published by MDPI, 

including figures and tables. For articles published under an open access Creative Common 

CC BY license, any part of the article may be reused without permission provided that the 

original article is clearly cited. Reuse of an article does not imply endorsement by the 

authors or MDPI. 
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