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Abstract

In this thesis we construct rogue waves occurring in the sine-Gordon
equation. An algebraic method is used to find explicit solutions to a Lax pair
of equations. The Lax pair being studied is compatible with solutions to the
sine-Gordon equation. Rotational and librational traveling wave solutions to
the sine-Gordon equation are considered in the Lax pair. The Darboux trans-
formation is applied with the Lax pair solutions computed at the rotational
and librational waves to generate algebraic solitons and rogue waves, respec-
tively. The rogue waves occur on the end points of the Floquet-Lax spectrum
bands and can achieve a magnification factor of at most 3.
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1 Introduction
A rogue wave is a wave that appears suddenly with a relatively large amplitude and
then disappears without trace. These freak events have been well documented in
the physical world. Rogue waves have been observed on the ocean surface [3,11],
in superfluid helium [9] and in microwave cavities [12]. Physicists are currently
studying rogue waves in optics because waves in optical fibres share similar math-
ematics with water waves [20]. For these reasons it is important to study rogue
waves as solutions to important equations in mathematical physics. In doing so we
may be able to predict, analyze and categorize these seemingly unforeseen events.

A lot of work has already been done in constructing and analyzing rogue wave so-
lutions for the focusing non-linear Schrödinger equation (fNLSE). Rogue waves in
the fNLSE can be found by considering the Lax spectrum for the linear Lax equa-
tions compatible with solutions to the fNLSE. In [8] Deconick and Segal found a
connection between the classical Lax spectrum and stability spectrum for travel-
ing periodic wave solutions of the fNLSE. By using this connection, one can relate
rogue waves to modulation instability and the linear stability problem.

In [4, 5] Chen et al use the Darboux transformation with solutions to the spectral
problem analyzed in [8] to construct rogue wave solutions of the fNLSE. They
were able to find particular analytical solutions appearing on the end points of the
spectral bands. The rogue wave solutions are expressed in terms of Jacobi-elliptic
functions (see appendix). This method of finding exact spectral parameters and
constructing rogue waves on the background of the periodic waves relies on a non-
linearization of the Lax equations.

In this thesis we aim to apply a similar method to the sine-Gordon equation. This
can be done because the Darboux Transformation works for an entire hierarchy of
partial differential equations related to the fNLSE that includes the sine-Gordon
equation. A lot of useful work has already been done by Chen and Pelinovsky
in [15] in the context of rogue waves arising in the modified Korteweg–de Vries
(mKDV) equation. This work is useful to us because the Lax spectral problem for
the mKDV equation is identical to the Lax spectral problem for the sine-Gordon
equation up to a clever change of variables.

This thesis is structured as follows. First, we introduce the sine-Gordon equation
and its traveling waves in both laboratory and characterisitc coordinates. Second,
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we intoduce the Lax pair of equations that define the spectral problem. Third,
we consider the squared eigenfunction relation to find exact spectral parameters
corresponding to rogue wave and algebraic solitons on the background of peri-
odic potentials written in terms of Jacobi-elliptic functions. Fourth, we utilize the
Darboux Transformation to actually create analytical rogue waves and algebraic
solitons of the sine-Gordon equation. The thesis ends with analysis and pictures
of the rogue waves and algebraic solitons.

2 Sine-Gordon Equation

2.1 Laboratory Coordinates
The sine-Gordon equation in laboratory coordinates (x, t) ∈ R2 is:

utt − uxx + sin(u) = 0, (2.1)

where u(x, t) is a real valued function and the subscripts in x and t denote partial
differentiation. Equation (2.1) has many physical applications, it is used in de-
scribing the magnetic flux in long superconducting Josephson junctions [16–18],
modeling fermions [6], explaining stability structure in galaxies [13, 21, 22], ana-
lyzing mechanical vibrations of a ribbon pendulum [23] and much more.

In [14] Lu and Miller introduce the sine-Gordon equation in the form

εutt − εuxx + sin(u) = 0, (2.2)

where ε is an arbitrarily small positive parameter and the initial value problem is
considered. This scaled version of the sine-Gordon equation is useful in the theory
of crystal dislocations [10], superconducting Josephson junctions [19], vibrations
of DNA molecules [25] and quantum field theory [6]. Lu and Miller analyze a
sequence of solutions un associated with a sequence εn converging to zero that
satisfy the initial value problem. The set of solutions {un}, indexed by n, is called
the fluxon condensate. The case when ε = 1, which is (2.1), explains “defects”
in the fluxon condensate. These defects can also be viewed as rogue waves on an
elliptic function background [14].
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2.2 Traveling Wave Reduction
Traveling wave solutions of the sine-Gordon equation are of the form

u(x, t) = f(x− ct), (2.3)

where c is a real valued constant often refered to as the wave speed and f : R →
R. Substituting (2.3) into (2.1) creates an Ordinary Differential Equation (ODE)
reduction of the sine-Gordon equation

utt − uxx + sin(u) = (c2 − 1)f ′′ + sin(f) = 0 (2.4)

where the prime corresponds to differentiation in ρ := x− ct.

Proposition 1. The quantity

E(f(ρ), f ′(ρ)) :=
1

2
(c2 − 1)(f ′(ρ))2 + 1− cos(f(ρ)) (2.5)

is constant in ρ. E is referred to as the “total energy” [7].

Proof.

dE

dρ
= (c2 − 1)f ′f ′′ + sin(f)f ′

= f ′
[

(c2 − 1)f ′′ + sin(f)
]

= 0,

where the last equality is due to (2.4).

The level sets of the energy (2.5) correspond to first order ODEs whose solutions
are traveling waves of the sine-Gordon equation. Figure 1 contains Matlab plots
of these aforementioned level sets.

When c2 > 1 (Superliminal motion) there are three different cases for f ∈ [−π, π].
When E ∈ (0, 2) the level curve is a periodic orbit centered around (0,0). When
E = 2 there are two heteroclinic orbits connecting (−π, 0) to (π, 0). E > 2 yields
rotational orbits. The superliminal patterns are illustrated on the (f, f ′)-plane in
figure 1b.

When c2 < 1 (Subliminal motion), it is evident from figure 1a that the transforma-
tion f 7→ f +π maps the phase portrait for subliminal motion to the phase portrait
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(a) Subliminal: c2 < 1
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(b) Superliminal: c2 > 1

Figure 1: Level sets of the energy function (2.5) for traveling waves (2.3) of the sine-
Gordon equation in laboratory coordinates (2.1).

for superliminal motion. From this point on we will only consider the superliminal
case, c2 > 1.

When c2 > 1 and E ∈ (0, 2) the total energy can be integrated from f = 0 to
f = f0, where f0 is the turning point at which cos(f0)− 1 + E = 0. This region
corresponds to one quadrature of the periodic orbit around (f, f ′) = (0, 0).

Proposition 2. Let Tsup denote the period of the superliminal traveling periodic
wave for E ∈ (0, 2). Then,

Tsup = 4 K

(
E

2

)√
c2 − 1 (2.6)

where K(·) is the complete elliptic integral of the first kind (see Appendix A) .

Proof. Separating (f ′)2 = 2
c2−1

(cos(f)− 1 + E) and integrating this aforemen-
tioned quadrature yields:

⇒
∫ Tsup

4

0

√
2√

c2 − 1
dz =

∫ f0

0

df√
cos(f)− 1 + E

⇒ Tsup
4

√
2√

c2 − 1
=

∫ f0

0

df√
−2 sin2(f

2
) + E

.
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Notice that 0 = E − 2 sin2(f0
2

) by a standard trigonometric identity so that f0 =

2 sin−1(
√

E
2

). Now consider the change of variables: 2θ = f andm = 2
E

. Clearly
m ∈ (1,∞) since E ∈ (0, 2). These change of variables imply:

⇒ Tsup
4

√
2√

c2 − 1
=

2√
E

∫ sin−1(
√
m−1)

0

dθ√
1−m sin2 θ

.

Letting x = sin θ and then y =
√
mx gives a further simplification of the integral:

⇒ Tsup
4

√
2√

c2 − 1
=

2√
E

∫ √m−1

0

dx√
(1− x2)(1−mx2)

⇒ Tsup
4

√
2√

c2 − 1
=

2√
mE

∫ 1

0

dy√
(1− y2

m
)(1− y2)

⇒ Tsup
4

1√
c2 − 1

= K

(
E

2

)

This yields the expression (2.6).

Proposition 3. Solutions to the quadrature (2.5) for c2 > 1 can be written in the
form

cos(f(ρ)) = 1 + βsn2(hρ, k), (2.7)

where α, β, h and k are constants depending on c and E according to table 1 and
sn is a Jacobi elliptic function (see appendix A) [7].

Name E β h k

Rotational E > 2 -2
√

E
2(c2−1)

√
2
E

Librational 0 < E < 2 −E
√

1
(c2−1)

√
E
2

Table 1: Coefficients of the exact solutions (2.7)
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Proof. I will begin by verifying entries in the first row of table 1. Differentiating
(2.7) and then squaring both sides yields

(f ′(ρ))2 =
4(−2)2h2sn2(hρ, k)cn2(hρ, k)dn2(hρ, k)

sin2(f(ρ))
. (2.8)

Substituting equations (2.8) and (2.7) into the RHS of (2.5) and then replacing
some of the constants with their values in the first row of table 1 means that

1

2
(c2 − 1)(f ′(ρ))2 + 1− cos(f(ρ)) =

4Esn2(hρ, k)cn2(hρ, k)dn2(hρ, k)

sin2(f(ρ))
+ 2sn2(hρ, k).

By using (A.1) and (A.2) in the appendix, it is evident from equation (2.7) that

sin2(f) = 1− cos2(f)

= 4sn2(hρ; k)cn2(hρ; k) (2.9)

so that equation (2.8) becomes

(f ′(ρ))2 = 4h2dn2(hρ, k) (2.10)

and then

1

2
(c2 − 1)(f ′(ρ))2 + 1− cos(f(ρ)) = Edn2(hρ, k) + 2sn2(hρ, k)

= E, (2.11)

which is equation (2.5) for rotational waves.

I will now verify entries in the second row of table 1. Again, differentiating (2.7)
and squaring both sides, then replacing sin2(f) with 1 − cos2(f), then replacing
cos(f) with equation (2.7) and then substituting entries in the second row of table
1, I obtain

(f ′(ρ))2 =
4E2h2sn2(hρ, k)cn2(hρ, k)dn2(hρ, k)

1− cos2(f(ρ))

=
4E2h2sn2(hρ, k)cn2(hρ, k)dn2(hρ, k)

−β(βsn4(hρ, k) + 2sn2(hρ, k))

=
−4Eh2cn2(hρ, k)dn2(hρ, k)

−2(1− k2sn2(hρ, k))
,
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that is,

(f ′(ρ))2 = 2Eh2cn2(hρ, k). (2.12)

Substituting equations (2.12) and (2.7) into the RHS of equation (2.5) implies

1

2
(c2 − 1)(f ′(ρ))2 + 1− cos(f(ρ)) = Ecn2(hρ; k) + Esn2(hρ; k)

= E,

that is equation (2.5) for librational waves.

2.3 Lorentz transformation and c-invariant solutions
The Lorentz transformation for c2 > 1,

x̂ =
x− ct√
c2 − 1

, t̂ =
t− cx√
c2 − 1

(2.13)

can be used to show that traveling wave solutions of the sine-Gordon equation are
invariant with respect to the wave speed c. Applying the chain rule to u(x, t) with
(2.13) gives

uxx =
1

c2 − 1

(
ux̂x̂ − 2cux̂t̂ + c2ut̂t̂

)
(2.14)

and

utt =
1

c2 − 1

(
ut̂t̂ − 2cut̂x̂ + c2ux̂x̂

)
, (2.15)

where the subscripts in t̂ and x̂ denote partial derivatives. Letting

u(x, t) = π + û(x̂, t̂) (2.16)

implies that

sin(u) = − sin(û). (2.17)
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Substituting equations (2.14), (2.15) and (2.17) into the sine-Gordon equation
yields

ût̂t̂ − ûx̂x̂ + sin(û) = 0, (2.18)
which has the same form as equation (2.1). Substituting a solution of the form
û = f̂(x̂)− π into (2.18) yields the ordinary differential equation

f̂ ′′ + sin(f̂) = 0, (2.19)
which is equivalent to setting c2−1 = 1 in equation (2.4). This generates traveling
wave solutions of the sine-Gordon equation of the form u(x, t) = f̂( x−ct√

c2−1
) with

c2 > 1.

2.4 Change of Coordinates (x, t)→ (ξ, η)

I will now introduce a convenient change of variables. Consider the characteristic
coordinates (ξ, η) defined by

ξ =
1

2
(x+ t) , η =

1

2
(x− t) (2.20)

with inverse transform

x = ξ + η , t = ξ − η. (2.21)

Applying the chain rule to u(x, t) with (2.20) gives

uxx =
1

4
(uξξ + 2uηξ + uηη) (2.22)

and

utt =
1

4
(uξξ − 2uηξ + uηη) , (2.23)

where the subscripts in η and ξ denote partial derivatives. Substituting (2.23) and
(2.22) into equation (2.1) produces the sine-Gordon equation in characteristic co-
ordinates

uξη = sin(u). (2.24)
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Now consider a traveling wave in (ξ, η) given by u(ξ, η) = f̃(ξ − η) where f̃ :
R→ R. Substitution of f̃(ξ − η) into (2.24) yields

f̃ ′′ + sin(f̃) = 0, (2.25)

where the prime in this case indicates a derivative in ξ − η. Comparing equation
(2.25) with (2.19) means that we can set f̃ = f̂ . From this point onwards we
will refer to solutions of equation (2.19) as “the traveling wave” and denote it by
f . Unless specified otherwise, we will take f to be in the traveling frame z := ξ−η.

Notice also that equation (2.25) is equivalent to setting c2 − 1 = 1 in equation
(2.4). Therefore, equations (2.10) and (2.12) imply that

(f ′(z))2 =
4

k2
dn2(

z

k
; k) (2.26)

for the rotational traveling wave and

(f ′(z))2 = 4k2cn2(z; k) (2.27)

for the librational traveling wave.

At this point it may seem as though the characteristic coordinates are redundant
because we are left analyzing the same ODE to generate traveling waves. The im-
portance of these new variables will become apparent in the following sections. In
particular, characteristic coordinates convert the linear Lax equations in laboratory
coordinates to a more simple set of equations analogous to those in [15].

3 Lax pair

3.1 Lax pair of sine-Gordon in laboratory coordinates
In [7] Deconick et al used a pair of Lax equations that are compatible for solutions
of the sine-Gordon equation in laboratory coordinates. The compatibility condi-
tion, χxy = χyx, of the following Lax pair of linear equations, (3.1) and (3.2), is
equation (2.1):

∂

∂x
χ =

[
−iγ

2
+ i cos(u)

8γ
i sin(u)

8γ
− 1

4
(ux + ut)

i sin(u)
8γ

+ 1
4
(ux + ut)

iγ
2
− i cos(u)

8γ

]
χ (3.1)
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and
∂

∂t
χ =

[
−iγ

2
− i cos(u)

8γ
− i sin(u)

8γ
− 1

4
(ux + ut)

− i sin(u)
8γ

+ 1
4
(ux + ut)

iγ
2

+ i cos(u)
8γ

]
χ. (3.2)

Here γ ∈ C is a spectral parameter of (2.1) and χ = (p, q)T is an eigenfunction
in variables (x, t). The Lax spectrum of (2.1) is defined as the set of admiss-
able values of γ. This compatability structure is essential because it gives us the
tools necessary to apply the Darboux Transformation. The Darboux transforma-
tion, which I will introduce in greater detail later, generates a new solution to the
sine-Gordon equation when given a solution u to the sine-Gordon equation and
its corresponding solution χ to the Lax equations (3.1) and (3.2) with a particular
value of spectral parameter γ.

This Lax pair is also useful for analyzing the stability spectrum of periodic so-
lutions. Deconick et al found a connection between the Lax spectrum, the set of
admissible values of γ, and the stability spectrum in [7]. The inherited integra-
bilty from a compatabile Lax pair is also essential in the development of algebraic
methods for finding exact expressions of rogue waves and solving initial value
problems.

3.2 Lax pair in characteristic coordinates
Proposition 4. The following Lax pair is compatible for solutions of the sine-
Gordon equation in characteristic coordinates (2.24):

∂

∂ξ

[
p
q

]
=

1

2

[
λ −uξ
uξ −λ

] [
p
q

]
(3.3)

∂

∂η

[
p
q

]
=

1

2λ

[
cos(u) sin(u)
sin(u) − cos(u)

] [
p
q

]
(3.4)

where λ ∈ C is the spectral parameter of (2.24) and χ = (p, q)T is an eigen-
function in variables (ξ, η). The Lax spectrum of (2.24) is defined as the set of
admissable values of λ. Equation (3.3) is referred to as the sine-Gordon spectral
problem (SGSP).
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Proof. Differentiating the first entry of (3.3) in η and then substituting (3.4) yields

⇒ pξ =
1

2
(λp− uξq)

⇒ pξη =
λpη
2
− uξηq + uξqη

2

⇒ pξη =
p cos(u)

4
+
q sin(u)

4
− uξηq

2
− uξp sin(u)

4λ
+
uξq cos(u)

4λ
. (3.5)

On the other hand, differentiating the first entry of (3.4) in ξ and then substituting
(3.3) yields

⇒ pη =
1

2λ
(p cos(u) + q sin(u))

⇒ pηξ =
1

2λ
(pξ cos(u)− p sin(u)uξ + qξ sin(u) + q cos(u)uξ)

⇒ pηξ =
p cos(u)

4
+
uξq cos(u)

4λ
− puξ sin(u)

4λ
− q sin(u)

4
. (3.6)

Therefore (3.5) is equal to (3.6) if and only if uηξ = sin(u).

Differentiating the second entry of (3.3) in η and then substituting (3.4) yields

⇒ qξ =
1

2
(uξp− λq)

⇒ qξη =
uξηp

2
+
uξpη

2
− λqη

2

⇒ qξη =
uξηp

2
+
uξp cos(u)

4λ
+
uξq sin(u)

4λ
− p sin(u)

4
+
q cos(u)

4
. (3.7)

On the other hand, differentiating the second entry of (3.4) in ξ and then substitut-
ing (3.3) yields

⇒ qη =
p sin(u)

2λ
− q cos(u)

2λ

⇒ qηξ =
pξ sin(u)

2λ
+
p cos(u)uξ

2λ
− qξ cos(u)

2λ
+
q sin(u)uξ

2λ

⇒ qηξ =
p sin(u)

4
+
uξq sin(u)

4λ
+
puξ cos(u)

4λ
+
q cos(u)

4
. (3.8)

Similarily (3.7) is equal to (3.8) if and only if uξη = sin(u).
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3.3 A transformation between the Lax spectra
Proposition 5. The spectral parameter γ in laboratory coordinates, (3.1)-(3.2), is
related to the spectral parameter λ in characteristic coordinates, (3.3)-(3.4), by

λ = −2iγ. (3.9)

Proof. Consider the Lax system in characteristic coordinates (3.3) - (3.4). Apply-
ing the chain rule and substituting (3.9) in place of λ tells us that

∂

∂x
χ =

1

2

(
∂

∂ξ
+

∂

∂η

)
χ

=

1

4

[
λ −uξ
uxi −λ

]
+

1

4λ

cos(u) sin(u)

sin(u) − cos(u)

χ

=

[
−iγ

2
+ i cos(u)

8γ
−(ux+ut)

4
+ i sin(u)

8γ
(ux+ut)

4
+ i sin(u)

8γ
iγ
2
− i cos(u)

8γ

]
χ (3.10)

and also

∂

∂t
χ =

1

2

(
∂

∂ξ
− ∂

∂η

)
χ

=

(
1

4

[
λ −uξ
uξ −λ

]
− 1

4λ

[
cos(u) sin(u)
sin(u) − cos(u)

])
χ

=

[
−iγ

2
− i cos(u)

8γ
−(ux+ut)

4
− i sin(u)

8γ
(ux+ut)

4
− i sin(u)

8γ
iγ
2

+ i cos(u)
8γ

.

]
χ. (3.11)

Equations (3.10) and (3.11) match (3.1) and (3.2). This means that (3.9) represents
a mapping from the Lax spectrum in variable γ to the Lax spectrum in variable
λ.

4 Algebraic Method

4.1 What is an algebraic method?
The purpose of the algebraic method is to relate the nonlinear PDE and its Lax
pair in order to obtain an explicit expression for particular eigenvalues of the Lax
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equations. The eigenvalues that we will derive explicitly correspond to the end
points of the spectral bands of the Floquet spectrum, which will be elaborated on
in section 4.5.

In [4, 5] Chen et al use an algebraic method to find particular eigenvalues for a
spectral problem related to the fNLSE. Their method involves non-linearizing the
Lax equations that are compatible for solutions of the fNLSE into two Hamiltonian
systems and considering a squared eigenfunction relation between eigenfunctions
of the spectral problem and a solution of the fNLSE. The Hamiltonian systems are
then written as another Lax equation that yields a polynomial function whose roots
are exact eigenvalues of the Lax spectrum. They complete the algebraic method
by relating constants of this polynomial to parameters of Jacobi elliptic functions.
They found that these eigenvalues correspond to endpoints of the spectral bands of
the Lax spectrum. This algebraic method relies heavily on the squared eigenfunc-
tion relation and symplectic structure of the fNLSE. Finally, they use the spectral
parameters and their associated eigenfunctions to construct rogue wave solutions
to the fNLSE.

In [15] Chen and Pelinovsky use an analogous algebraic method by considering the
symplectic structure and squared eigenfunction relation for the mKDV equation.
Once again they were able to write particular eigenvalues in terms of parameters
of Jacobi-elliptic functions that define traveling waves. These eigenvalues for the
mKDV also correspond to end points of the associated Lax spectrum. Finally, they
construct rogue waves and algebraic solitons from the eigenvalues and their asso-
ciated eigenfunctions.

One of the Lax equations in [15] for the mKDV equation is almost identical to
equation (3.3). This resemblance suggests that a similar algebraic method can be
used for the sine-Gordon equation. We will refer to the term −uξ, where u us
a solution to the sine-Gordon equation (2.24) as the potential. For the traveling
waves it follows that the potential is −uξ = −f ′(ξ − η).

4.2 Hamiltonian of Linear Lax Equation
Assume that (p1, q1) is a solution to equation (3.3) for a fixed eigenvalue of λ1. We
proceed as in [15], which contains the analogous spectral problem for the mKDV
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equation, by looking for admissible eigenvalues λ1 of the SGSP for which

−uξ = p2
1 + q2

1. (4.1)

First I will use (4.1) to non-linearize the SGSP into a Hamiltonian system with
Hamiltonian H(p1, q1). The Hamiltonian system is generated by canonical equa-
tions of motion:

dq1

dξ
= −∂H

∂p1

(4.2)

dp1

dξ
=
∂H

∂q1

(4.3)

so that equations (3.3) and (4.1) determine H from

{
2 ∂H
∂q1

= λ1p1 + (p2
1 + q2

1)q1

2 ∂H
∂p1

= (p2
1 + q2

1)p1 + λ1q1.
(4.4)

Integrating the first equation of system (4.4) in q1 gives

2H(p1, q1) = λp1q1 +
1

4
(p2

1 + q2
1)2 + r(p1), (4.5)

where r is some function of p1. This means that 2 ∂H
∂p1

= λq1 + (p2
1 + q2

1)p+ r′(p1)

which implies that r′(p1) = 0 when compared to (4.4). Without loss of generality
I can set r(p1) = 0 and introduce a constant F0 so that

2H(p1, q1) = λ1p1q1 +
1

4
(p2

1 + q2
1)2 :=

1

4
F0. (4.6)

This nonlinearization of the SGSP will be very useful in the development of the
algebraic method. We note that the Hamiltonian introduced here shows a lot of
resemblance to the Hamiltonian in [15] for the mKDV equation.

4.3 Computing λ1
In this subsection we will find an explicit expression for λ1 in terms of the elliptic
modulus k for the travelling waves. In the next subsection I will take this explicit
expression and show that the eigenfunctions exist in the traveling frame z := ξ−η.
This will complete the algebraic method.
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Proposition 6. Suppose that (λ1, p1, q1) is a solution to the SGSP with traveling
periodic potential,−f ′(ξ − η), that satisfies (4.1), then

E = λ2
1 +

F0

2
+ 1. (4.7)

Proof. Differentiating equation (2.25) in z = ξ − η yields

f ′′′ + cos(f)f ′ = 0. (4.8)

Comparing (4.8) with (2.5) eliminates cos(f) and produces the third order equation

f ′′′ = f ′(E − 1)− 1

2
(f ′)3. (4.9)

Next I will differentiate (4.1) up to the third order.

⇒ −f ′′ = 2p1p
′
1 + 2q1q

′
1

⇒ −f ′′ = p1(λ1p1 − q1f
′) + q1(p1f

′ − λ1q1) by (3.3)

⇒ −f ′′ = λ1(p2
1 − q2

1)

⇒ −f ′′′ = λ1(p12p′1 − q12q′1)

⇒ −f ′′′ = λ1(p1(λ1p1 − q1f
′)− q1(p1f

′ − λ1q1)) by (3.3)

⇒ f ′′′ = λ2
1f
′ + 2λ1f

′p1q1 by (4.1) ,

where the prime on the eigenfunction denotes differentiation in ξ. We can elim-
inate the dependence on p1 and q1 by substituting equation (4.6) into the above
expression deriving

f ′′′ = λ2
1f
′ +

F0

2
f ′ − 1

2
(f ′)3. (4.10)

Comparing (4.10) with (4.9) completes the proof.

We have verified the following identities:
1
4
(p2

1 + q2
1)2 + λ1p1q1 = 1

4
F0

p2
1 + q2

1 = −f ′

λ1(p2
1 − q2

1) = −f ′′.
(4.11)
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This list of useful equations will be important in the algebra and analysis that fol-
lows.

We now require another relation between parameters λ1, F0 and E if we wish to
close an expression for λ1. I can achieve this by developing another third order
expression for f . To do so I will consider the following matrices and corresponding
Lax equation for the Hamiltonian:

Q(λ) =

[
λ p2 + q2

−p2 − q2 −λ

]
(4.12)

W (λ) =

[
W11(λ) W12(λ)
W12(−λ) −W11(−λ)

]
(4.13)

where:

W11(λ) = 1− p1q1

λ− λ1

+
p1q1

λ+ λ1

(4.14)

= 1− F0 − (f ′)2

2(λ2 − λ2
1)

(4.15)

W12(λ) =
p2

1

λ− λ1

+
q2

1

λ+ λ1

(4.16)

=
−λf ′ − f ′′

λ2 − λ2
1

. (4.17)

The expressions (4.15) and (4.17) for W11 and W12 were derived from (4.14) and
(4.16) using (4.11). Pelinovsky and Chen consider very similar matrices to Q and
W in [15]. We will proceed from here as in [15] by using Q and W to create new
Lax equations compatible for the SGSP and then compute the determinant of W .

Proposition 7. The SGSP with constraint (4.1) is satisfied if and only if the fol-
lowing Lax equation is satisfied for every λ 6= ±λ1:

2
d

dξ
W (λ) = Q(λ)W (λ)−W (λ)Q(λ), (4.18)

where λ is the spectral parameter of the SGSP.
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Proof. I will only show this for elements (1,1) and (1,2). Symmetry will handle
the other two components.

For (1,1) we have that

2
d

dξ
W11(λ) = −2p′1q1 + 2p1q

′
1

λ− λ1

+
2p′1q1 + 2p1q

′
1

λ+ λ1

= −(λ1p1 + (p2
1 + q2

1)q1)q1 + p1(p1(p2
1 + q2

1) + λ1q1)

λ− λ1

+
(λ1p1 + (p2

1 + q2
1)q1)q1 + p1(p1(p2

1 + q2
1) + λ1q1)

λ+ λ1

=
q4

1

λ+ λ1

− p4
1

λ+ λ1

+
p4

1

λ− λ1

− q4
1

λ− λ1

On the other hand from the (1,1) element of the RHS of (4.18) it follows that

λW11(λ) + (p2
1 + q2

1)W12(−λ)− (λW11(λ)− (p2
1 + q2

1)W12(λ))

= (p2
1 + q2

1) (W12(−λ) +W12(λ))

= (p2
1 + q2

1)(
−p2

1

λ+ λ1

− q2
1

λ− λ1

+
p2

1

λ− λ1

+
q2

1

λ+ λ1

)

=
q4

1

λ+ λ1

− p4
1

λ+ λ1

+
p4

1

λ− λ1

− q4
1

λ− λ1

.

Hence the two expressions are identical to each other. For (1,2) we have that

2
d

dξ
W12(λ) = 2

(
2p1p

′
1

λ− λ1

+
2q1q

′
1

λ+ λ1

)
= 2

(
2p1p

′
1

λ− λ1

+
2q1q

′
1

λ+ λ1

)
= 2

(
p1(λ1p1 + (p2

1 + q2
1)q1)

λ− λ1

− q1(p1(p2
1 + q2

1) + λ1q1)

λ+ λ1

)
=

2λ1 p
2
1

λ− λ1

+
2 p1 q

3
1

λ− λ1

+
2 p3

1 q1

λ− λ1

− 2λ1 q
2
1

λ+ λ1

− 2 p1 q
3
1

λ+ λ1

− 2 p3
1 q1

λ+ λ1

The (1,2) element from the right hand side of (4.18) yields
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2λ

(
q2

1

λ+ λ1

+
p2

1

λ− λ1

)
−
(
2 p2

1 + 2 q2
1

) ( p1 q1

λ+ λ1

− p1 q1

λ− λ1

+ 1

)
=

2λ p2
1

λ− λ1

− 2 q2
1 − 2 p2

1 +
2 p1 q

3
1

λ− λ1

+
2 p3

1 q1

λ− λ1

+
2λ q2

1

λ+ λ1

− 2 p1 q
3
1

λ+ λ1

− 2 p3
1 q1

λ+ λ1

=
2λ p2

1

λ− λ1

− 2
q2

1(λ+ λ1)

λ+ λ1

− 2
p2

1(λ− λ1)

λ− λ1

+
2 p1 q

3
1

λ− λ1

+
2 p3

1 q1

λ− λ1

+
2λ q2

1

λ+ λ1

− 2 p1 q
3
1

λ+ λ1

− 2 p3
1 q1

λ+ λ1

=
2λ1 p

2
1

λ− λ1

+
2 p1 q

3
1

λ− λ1

+
2 p3

1 q1

λ− λ1

− 2λ1 q
2
1

λ+ λ1

− 2 p1 q
3
1

λ+ λ1

− 2 p3
1 q1

λ+ λ1

Again, the two expressions are identical to each other.

Proposition 8. Suppose that (λ1, p1, q1) is a solution to the SGSP with traveling
potential,f(ξ − η), that satisfies (4.1), then

F 2
0 = 4E(E − 2). (4.19)

Proof. The determinant of W (λ) from (4.13) is computed as

det[W (λ)] = −[W (λ)]2 −W12(λ)W12(−λ)

=
−λ2 + λ1

2 + 4λ1 p1 q1 + p4
1 + 2 p2

1 q
2
1 + q4

1

λ2 − λ1
2

= −1 +
4λ1p1q1 + (p2

1 + q2
1)2

λ2 − λ2
1

= −1 +
F0

λ2 − λ2
1

.

This means that the determinant only admits simple poles. Using the f, f ′, f ′′
formulations ofW11(λ) andW12(λ) as (4.15) and (4.17) respectively instead of the
eigenfunction formulations (4.14) and (4.16) we arrive at the following expression
for the determinant:

det[W (λ)] = −
(
F0 − (f ′)2

2λ2 − 2λ1
2 − 1

)2

− ((f ′′) + λ (f ′)) ((f ′′)− λ (f ′))(
λ2 − λ1

2
)2
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= −(F0 − (f ′)2 − 2(λ2 − λ2
1))2

4(λ2 − λ2
1)2

− 4((f ′′) + λ(f ′))((f ′′)− λ(f ′))

4(λ2 − λ2
1)2

=
−F 2

0 + 4F0 λ
2 − 4F0 λ1

2 + 2F0 (f ′)2 − 4λ4 + 8λ2 λ1
2

4(λ2 − λ2
1)2

− −4λ1
4 + 4λ1

2 (f ′)2 − (f ′)4 − 4 (f ′′)2

4(λ2 − λ2
1)2

Therefore, the determinant will have double poles at ±λ1 unless

−F 2
0 + (2F0 + 4λ2

1)(f ′)2 − (f ′)4 = 4(f ′′)2. (4.20)

We can proceed further by subsituting (2.25) and (2.5) into a simple trigonometric
identity

sin2(f) + cos2(f) = (f ′′)2 +

(
1

2
(f ′)2 + 1− E

)(
1

2
(f ′)2 + 1− E

)
= 1

so that

4(f ′′)2 = −(f ′)4 + 4E(f ′)2 − 4(f ′)2 + 8E − 4E2. (4.21)

Comparing (4.20) with (4.21) and using (4.7) completes the proof.

Proposition 9. Suppose that (λ1, p1, q1) is a solution to the SGSP with traveling
potential −f ′(ξ − η) that satisfies (4.1), then

λ2
1 = E ∓

√
E(E − 2)− 1 (4.22)

and

F0 = ±2
√
E(E − 2) (4.23)

whereE can be written in terms of the elliptic modulus k: E = 2
k2

for the rotational
traveling wave and E = 2k2 for the librational traveling wave.

Proof. This follows immediately after taking the square root from equation (4.19)
and substituting it into equation (4.7).
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Substituting k2 = 2
E

into equation (4.22) creates a more compact expression for
the eigenvalues corresponding to rotational waves:

λ1R = ±

√
2− k2 ± 2

√
1− k2

k2

= ±1±
√

1− k2

k
, (4.24)

where the second choice of sign corresponds to the sign choice after taking the
square root of equation (4.19).

Substituting k2 = E
2

for librational waves into (4.22) creates a more compact ex-
pression for λ1 for librational waves:

λ1L = ±
√

2k2 − 1± 2ik
√

1− k2

= ±(k ± i
√

1− k2), (4.25)

where the second choice of sign depends on the sign choice after taking the square
root of equation (4.19).

4.4 Traveling Eigenfunctions
Proposition 10. Let u(ξ, η) = f(ξ− η) be the traveling wave solution to the sine-
Gordon equation (2.24) and (λ1, p1, q1) a solution to the Lax pair (3.3) - (3.4) with
−f ′ = p2

1 + q2
1 . Then ϕ = ϕ(ξ − η) where ϕ = (p1, q1).

Proof. The first equation in (3.4) together with (2.24), (2.5) and then (4.7) implies

⇒ 2λ1p1η = p1

(
1

2
(f ′)2 + 1− E

)
− q1f

′′

⇒ 2λ1p1η = p1

(
1

2
(f ′)2 − λ2

1 −
F0

2

)
− q1f

′′

Now using the identies in (4.11) yields

⇒ 2λ1p1η = −2λ1p
2
1q1 + (p2

1 − q2
1)λ1q1 − λ2

1p1

⇒ 2p1η = −p1λ1 − (p2
1 + q2

1)q1

⇒ 2p1η = −p1λ1 + f ′q1.
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Comparing this with (3.3) means that −p1η = p1ξ with a general solution p1 =
p1(ξ − η). The second equation in (3.4) together with (2.24), (2.5) and then (4.7)
implies

⇒ 2λ1q1η = −q1

(
1

2
(f ′)2 + 1− E

)
− p1f

′′

⇒ 2λ1q1η = −q1

(
1

2
(f ′)2 − λ2

1 −
F0

2

)
− p1f

′′

Now using the identies in (4.11) yields

⇒ 2λ1q1η = λ1(p2
1 − q2

1)p1 + 2λ1p1q
2
1 + q1λ

2
1

⇒ 2q1η = q1λ1 + (p2
1 + q2

1)p1

⇒ 2q1η = q1λ1 − (f ′)p1

Comparing this with (3.3) means that −q1η = q1ξ with a general solution q1 =
q1(ξ − η).

4.5 A numerical construction of the Lax spectrum
If the entries of the SGSP are periodic with the same period L then Floquet’s
Theorem guarantees that bounded solutions of the linear equation (3.3) can be
represented in the form (

p1(ξ)
q1(ξ)

)
=

(
p̆1(ξ)
q̆1(ξ)

)
eiµξ , (4.26)

where p̆1(ξ + L) = p̆1(ξ), q̆1(ξ + L) = q̆1(ξ) and µ ∈ [− π
L
, π
L

]. The spectrum is
invariant with respect to the other coordinate η, so we are allowed to set η = 0.
Substituting (4.26) into the SGSP (3.3) yields the eigenvalue problem(

2 d
dξ

+ 2iµ f ′

f ′ −2 d
dξ
− 2iµ

)(
p̆1

q̆1

)
= λ

(
p̆1

q̆1

)
. (4.27)

The numerical scheme involves discretizing the eigenfunction domain [0, L] and
admissable µ values [− π

L
, π
L

] so that (4.27) becomes an eigenvalue and eigenvector
problem for each µ that can be handled using Matlab’s eig() function. The deriva-
tive operator d

dξ
is replaced with a 12th order finite difference matrix. The union of

each set of eigenvalues associated for each µ defines the periodic Lax spextrum.
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Interestingly, the end points of the spectral bands correspond to (4.22).

Figure 2 has the numerically constructed Lax spectra for the rotational and libra-
tional traveling waves using certain values of k. The code used to generate these
figures can be found in Appendix B. The parameter N defines the resolution of
the eigenfunction domain and the parameter floqnum defines the resolution of the
parameter µ.
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Figure 2: The periodic spectrum of the SGSP (4.27) using the rotational (top) and
librational (bottom) waves as the potentials with k = 0.85 (left) and k = 0.95
(right). Red dots represent eigenvalues (4.22).

25



5 New solutions to the sine-Gordon equation

5.1 Darboux Transformation (DT)
The one-fold Darboux transformation for the sine-Gordon equation is

ŵ = w +
4λpq

p2 + q2
, (5.1)

where (λ, p, q) is a solution to the SGSP with compatible potentialw := −uξ. The
DT generates a new potential ŵ = −ûξ to the linear Lax equations (3.3) and (3.4)
where û is a new solution to the sine-Gordon equation [15]. Applying (5.1) with
(λ1, p1, q1) found in the algebraic method of section 4 yields

ŵ = w +
4λ1p1q1

p2
1 + q2

1

= w +
F0 − w2

w

=
F0

w
, (5.2)

where equations (4.11) were used. Equation (5.2) is valid for the rotational waves
because the Jacobi-elliptic dn function is never zero. Therefore, expression (2.26)
together with the Jacobi elliptic identity (A.3), expression (4.23) and the identities
for k in table 1 allow us to re-write equation (5.2) for the rotational traveling waves
as

ŵR =
F0

w

= ±
√
E(E − 2)k√

1− k2
dn(

z

k
+K(k); k)

= ±

√
4

k2

(
1− k2

k2

)√
k2

1− k2
dn(

z

k
+K(k); k)

= ±2

k
dn(

z

k
+K(k); k), (5.3)

which is simply a translated and reflected version of the rotational potential w =
2
k
dn( z

k
; k) that we started with. The choice of sign in equation (5.3) is the same as
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the choice of sign in (4.23).

The term F0 is purely imaginary for the librational traveling wave. In addition, the
denominator in equation (5.2) may vanish at some points if w is the cn librational
potential. The two-fold Darboux transformation is required to generate new po-
tentials with librational waves.

Let (p1, q1, λ1) and (p2, q2, λ2) be solutions to the system (3.3) and (3.4) with λ1 6=
λ2 and λ1 6= −λ2, then the two-fold Darboux transformation takes the form:

ŵ = w+
4(λ2

1 − λ2
2)[λ1p1q1(p2

2 + q2
2)− λ2p2q2(p2

1 + q2
1)]

(λ2
1 + λ2

2)(p2
1 + q2

1)(p2
2 + q2

2)− 2λ1λ2[4p1q1p2q2 + (p2
1 − q2

1)(p2
2 − q2

2)]
,

(5.4)
where w = −uξ and ŵ = −ûξ with û being a new solution to the sine-Gordon
equation [15]. F0 for librational waves is purely imaginary so that F0 = −F̄0.
Therfore, the two-fold DT for librational traveling waves with (λ1, p1, q1) as in
(4.11) and (λ2, p2, q2) = (λ̄1, p̄1, q̄1) becomes

ŵL = w +
4(λ2

1 − λ2
2)[λ1p1q1(p2

2 + q2
2)− λ2p2q2(p2

1 + q2
1)]

(λ2
1 + λ2

2)(p2
1 + q2

1)(p2
2 + q2

2)− 2λ1λ2[4p1q1p2q2 + (p2
1 − q2

1)(p2
2 − q2

2)]

= w +
(λ2

1 − λ2
2)[(F0 − w2)w̄ − (F̄0 − w̄2)w]

(λ2
1 + λ2

2)ww̄ − 2[1
4
(F0 − w2)(F̄0 − w2) + (w′)(w̄′)]

(5.5)

= w +
F0(F̄0 − F0)w

(2E − 2)w2 − 2[1
4
(−F 2

0 + w4) + (w′)2]

= w +
F0(F̄0 − F0)w

(F0 + 2λ2
1)w2 − 1

2
(−F 2

0 + w4)− 2(w′)2
by (4.7)

= w +
F0(F̄0 − F0)w

F 2
0

by (4.20)

= −w.

We were able to replace w̄ with w because w is purely real. The new solution ŵL
is simply a reflected version of the previous solution w.
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5.2 Second Linearly Independent Eigenfunctions of SGSP
Applying the Darboux Transformations with (λ1, p1, q1) does not generate new
solutions to the sine-Gordon equation since ŵ is either a translated or reflected
version of w. Another solution to the Lax equations with the same λ1 is required
if we want to avoid a trivial transformation. New linearly independent Lax eigen-
functions were constructed in [4, 5, 15] by considering the Wronksian. We will
use second linearly independent eigenfunctions for the rotational waves that are
similar to those found in [4, 5] for the fNLSE:

p̂1 = p1φR −
q1

p2
1 + q2

1

q̂1 = q1φR +
p1

p2
1 + q2

1

,
(5.6)

here the Wronskian between (p1, q1) and (p̂1, q̂1) is normalized to 1. I have intro-
duced the function φR : (ξ, η)→ C for rotational waves.

The representation (5.6) is non-singular for the rotational waves becausew = p2
1 +

q2
1 = −f ′(ξ − η) with sign-definite f . On the other hand, the representation (5.6)

is singular for librational waves because w = −f ′(ξ − η) may vanish in some
points. In order to avoid singularities in eigenfunctions for librational waves we
will consider the second linearly independent eigenfunctions like those in [15] used
for the mKDV equation of the form

p̂1 =
φL − 1

q1

q̂1 =
φL + 1

p1

,

(5.7)

where the Wronskian is normalized to 2. Here the denominators are nonzero ev-
erywhere because if either p1 or q1 vanish in some points, the last two equations of
system (4.11) yield a contradiction with real f and complex λ1. I have introduced
the function φL : (ξ, η)→ C for librational waves.

In Sections 6 and 7, I will find expressions for φR and φL by substituting (5.6) and
(5.7) into the Lax equations with λ = λ1. While the eigenfunctions (p1, q1) are
bounded and periodic, we should expect that φ is non-periodic and unbounded,
so that the solution (p̂1, q̂1) is non-periodic and unbounded hence a trivial trans-
formation is avoided. For this reason the function φ determines the growth of the
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rogue wave constructed after (p̂1, q̂1) is substituted into the DT.

6 The growth of rotational waves

6.1 Computing φR
Proposition 11. The function φR determined by (5.6) is given by:

φR(ξ, η) = −
∫ ξ−η

0

F0

2(f ′)2
dz +

ξ + η

2
, (6.1)

where f is the rotational wave with −f ′ = p2
1 + q2

1 and F0 is given by (4.23).

Proof. Since (λ1, p1, q1) is a solution to the linear Lax equations for potential uξ =
f ′ it follows that

2
∂

∂ξ

[
p1

q1

]
=

[
λ1 −f ′
f ′ −λ1

] [
p1

q1

]
. (6.2)

In order for p̂1 and q̂1 from (5.6) to be eigenfunctions of the Lax equation we want

2
∂

∂ξ

[
p̂1

q̂1

]
=

[
λ1 −f ′
f ′ −λ1

] [
p̂1

q̂1

]
. (6.3)

Differentiating (5.6) in ξ produces the equation

2
∂p̂1

∂ξ
= = 2p1ξφR + 2p1φRξ −

2q1ξ

(p2
1 + q2

1)
+

2q1(2p1p1ξ + 2q1q1ξ)

(p2
1 + q2

1)2
.

Using (6.2) and (4.11) we can continue on and obtain:

2
∂p̂1

∂ξ
= = (λ1p1 − f ′q1)φR + 2p1φRξ −

p1f
′ − λ1q1

(p2
1 + q2

1)
− 2q1(f ′′)

(p2
1 + q2

1)2
. (6.4)

Using (6.3) and then (5.6) we also have that

2
∂p̂1

∂ξ
= λ1p̂1 − f ′q̂1

= λ1

(
p1φR −

q1

p2
1 + q2

1

)
− f ′

(
q1φR +

p1

p2
1 + q2

1

)
. (6.5)
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Setting (6.4) equal to (6.5) it follows that

⇒ 0 = 2p1φRξ +
2λ1q1

p2
1 + q2

1

− 2q1f
′′

(p2
1 + q2

1)2
.

Now using (4.11) implies that

⇒ 0 = φRξ +
2λ1p1q1

(p2
1 + q2

1)2

⇒ 0 = φRξ +
1

(f ′)2

(
F0 − (f ′)2

2

)
.

Therefore, the expression for φξ is equal to

φRξ = −1

2

(
F0 − (f ′)2

(f ′)2

)
. (6.6)

Again since (λ1, p1, q1) is a solution to the linear Lax system for rotational waves
it follows that

2λ1
∂

∂η

[
p1

q1

]
=

[
cos(f) sin(f)
sin(f) − cos(f)

] [
p1

q1

]
. (6.7)

In order for p̂ and q̂ from (5.6) to be eigenfunctions of the Lax equation we want

2λ1
∂

∂η

[
p̂1

q̂1

]
=

[
cos(f) sin(f)
sin(f) − cos(f)

] [
p̂1

q̂1

]
. (6.8)

Differentiating (5.6) in η produces the equation

2λ1
∂p̂1

∂η
= 2λ1p1ηφR + 2λ1p1φRη −

2λ1q1η

(p2
1 + q2

1)
+

2q1(2λ1p1ηp1 + 2λ1q1ηq1)

(p2
1 + q2

1)2
.

Using equation (6.7) I can continue the above calculations by replacing 2λ1q1η and
2λ1p1η ,

2λ1
∂p̂1

∂η
= (p1 cos(f) + q1 sin(f))φR + 2λ1p1φRη −

(p1 sin(f)− q1 cos(f))

(p2
1 + q2

1)

+
2q1((p1 cos(f) + q1 sin(f))p1 + (p1 sin(f)− q1 cos(f))q1)

(p2
1 + q2

1)2
. (6.9)
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On the other hand using equations (5.6) and (6.8) we arrive at

2λ1
∂p̂1

∂η
= p̂1 cos(f) + q̂1 sin(f)

=

(
p1φR −

q1

p2
1 + q2

1

)
cos(f) +

(
q1φR +

p1

p2
1 + q2

1

)
sin(f). (6.10)

Setting (6.9) equal to (6.10) leaves us with

⇒ λ1φRη +
2q1p1 cos(f) + (q2

1 − p2
1) sin(f)

(p2
1 + q2

1)2
= 0.

Therefore, the expression for φRη is equal to

λ1φRη =
(p2

1 − q2
1) sin(f)− 2q1p1 cos(f)

(p2
1 + q2

1)2
. (6.11)

Equation (6.11) can be simplfied using expressions (4.11),

⇒ 2λ2
1φRη =

−2f ′′ sin(f)− F0 cos(f) + (f ′)2 cos(f)

(f ′)2
.

We can proceed further by recalling formulae (2.25) and (2.5) to replace sin(f)
and cos(f)

⇒ 2λ2
1φRη =

2(f ′′)2 − F0(1
2
(f ′)2 + 1− E) + (f ′)2(1

2
(f ′)2 + 1− E)

(f ′)2

⇒ 2λ2
1φRη =

2(f ′′)2

(f ′)2
− F0

2
− F0

(f ′)2
+
F0E

(f ′)2
+

(f ′)2

2
+ 1− E. (6.12)

To deal with f ′′ we consider the following simple trigonometric identity together
with (2.25) and (2.5):

sin2(f) + cos2(f) = (f ′′)2 +

(
1

2
(f ′)2 + 1− E

)(
1

2
(f ′)2 + 1− E

)
= 1.

This implies that
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⇒ 2
(f ′′)2

(f ′)2
= −(f ′)2

2
+ 2E − 2 +

4E

(f ′)2
− 2E2

(f ′)2
. (6.13)

Substituting (6.13) into (6.12) yields

2λ2φRη =

(
E − 1− F0

2

)
+

1

(f ′)2

(
4E − 2E2 − F0 + F0E

)
. (6.14)

Therefore φR is found from the following system of PDEs:

{
2λ2

1φRη =
(
E − 1− F0

2

)
+ 1

(f ′)2
(4E − 2E2 − F0 + F0E)

φRξ = −1
2

(
F0−(f ′)2

(f ′)2

)
.

(6.15)

The connection formulae (4.7) and (4.19) allow us to simplify the first equation in
(6.15) so that

{
φRη = F0

2(f ′)2
+ 1

2

φRξ = − F0

2(f ′)2
+ 1

2

(6.16)

and these two partial derivatives can be combined into

φRη + φRξ = 1. (6.17)

so that

φR(ξ, η) = η + g(ξ − η), (6.18)

for some function g to be determined. Taking a derivative in ξ yields

φRξ = g′(ξ − η). (6.19)

Comparing (6.19) with the second equation in (6.16) and integrating from 0 to
z = ξ − η completes the proof of the explicit expression (6.1).
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6.2 Analytical Properties of φR
The term φR is going to dictate the non-periodic dynamics of newly formed po-
tentials from the one-fold DT because all of the other terms in the second linearly
independent eigenfunction (5.6) are bounded, smooth and periodic. We will see in
later sections that the new potentials constructed with the second eigenfunctions
reach their Jacobi-elliptic backgrounds as |φR| grows to infinity. We will prove in
this subsection that |φR| grows to infinity along trajectories moving away from a
particular line in the (ξ, η) plane.

Substituting (2.26) into (6.1) gives :

φR(ξ, η) =
ξ + η

2
− F0k

2

8

∫ ξ−η

0

dz

dn2( z
k
; k)

(6.20)

In the following lemmas, I will study the behaviour of φR(ξ, η) as a function of
(ξ, η).

Lemma 1. φR(ξ, η) ∈ C∞(R)

Proof. This result is obvious since ξ+η
2
∈ C∞(R2) and 1

dn2( z
k

;k)
∈ C∞(R)

The integrand 1
dn2( z

k
;k)

can be written as a Fourier series because it is smooth and
L-periodic for some constant L:

1

dn2( z
k
, k)

= a0 +
∞∑
n=1

an cos

(
2πnz

L

)
+
∞∑
n=1

bn sin

(
2πnz

L

)
, (6.21)

where L = 2kK(k) is the smallest period and a0 is a constant.

Using this Fourier representation of the integrand it follows that

φR(ξ, η) =
ξ + η

2
− F0a0k

2(ξ − η)

8
+ ΦR(ξ − η) (6.22)

= ξ

(
1

2
− F0a0k

2

8

)
+ η

(
1

2
+
F0a0k

2

8

)
+ ΦR(ξ − η), (6.23)
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where ΦR(z) is the integral of the Fourier series with zero mean value, hence it is
periodic and bounded. This means that φR(ξ, η) = ΦR(ξ − η) when (ξ, η) ∈ Ω
where I have defined Ω to be the line

Ω :=

{
(ξ, η) ∈ R2 : ξ

(
1

2
− F0a0k

2

8

)
+ η

(
1

2
+
F0a0k

2

8

)
= 0

}
. (6.24)

Let d2(u, v) denote the standard euclidean distance between two points in R2 and
define for any u ∈ R2:

d(Ω, u) := inf {d2(v, u) | v ∈ Ω} . (6.25)

Lemma 2. Let ν(s) = (ν1(s), ν2(s)) be some curve in R2 parametrized by s ∈ R
and suppose that d(Ω, ν(s)) ≤ B1 ∀s ∈ R and constant B1 ≥ 0. It follows that
|φR(ν(s))| ≤ B2 for some constant B2 > 0 and ∀s ∈ R.

Proof. Since Ω is closed and d(Ω, ν(s)) ≤ B1 we can write ν(s) = (ξ̆(s), η̆(s)) +
(β1(s), β2(s)), where d2 ((β1(s), β2(s)), 0) = d(Ω, ν(s)) ≤ B1 and (ξ̆(s), η̆(s)) ∈
Ω is the point for which the infimum of the distances in the definition of d(Ω, ν(s))
occurs, this point exists in Ω because Ω is closed. Therefore |β1(s)|, |β2(s)| ≤ B1

for all s and

⇒ |φR(ν(s))| =
∣∣∣∣(ξ̆(s) + β1(s))

(
1

2
− F0a0k

2

8

)
+ (η̆(s) + β2(s))

(
1

2
+
F0a0k

2

8

)
+ ΦR(ν(s))

∣∣∣∣
=

∣∣∣∣β1(s)

(
1

2
− F0a0k

2

8

)
+ β2(s)

(
1

2
+
F0a0k

2

8

)
+ ΦR(ν(s))

∣∣∣∣
≤ |B1|

∣∣∣∣12 − F0a0k
2

8

∣∣∣∣+ |B1|
∣∣∣∣12 +

F0a0k
2

8

∣∣∣∣+ |ΦR(ν(s))|.

Lemma 2 is also true when d(Ω||, ν(s)) ≤ B1, where Ω|| defines any line in (ξ, η)
parallel Ω and B1 ≥ 0.

Lemma 3. |φR(ξ′+δ, η′)| → ∞ as δ → ±∞ uniformly in (ξ′, η′) ∈ Ω in the sense
that : ∀M > 0, ∃ ε > 0 such that |φR(ξ′±κ, η′)| > M for every (ξ′, η′) whenever
κ > ε. Likewise, |φR(ξ′, η′ + δ)| → ∞ as δ → ±∞ uniformly in (ξ′, η′) ∈ Ω.
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Proof. Pick an arbitrary (ξ′, η′) ∈ Ω and subtitute it into the absolute value of
(6.23) :

|φ(ξ′, η′)| =
∣∣∣∣ξ′(1

2
− F0a0

8E

)
+ η′

(
1

2
+
F0a0

8E

)
+ Γ(z)

∣∣∣∣ (6.26)

Perturbing this result in ξ by δ gives :

|φ(ξ′ + δ, η′)| =
∣∣∣∣(ξ′ + δ)

(
1

2
− F0a0k

2

8

)
+ η′

(
1

2
+
F0a0k

2

8

)
+ ΦR(z)

∣∣∣∣
=

∣∣∣∣ξ′(1

2
− F0a0k

2

8

)
+ η′

(
1

2
+
F0a0k

2

8

)
+ δ

(
1

2
− F0a0k

2

8

)
+ ΦR(z)

∣∣∣∣
=

∣∣∣∣0 + δ

(
1

2
− F0a0k

2

8

)
+ ΦR(z)

∣∣∣∣ since (ξ′, η′) ∈ Ω

=

∣∣∣∣δ(1

2
− F0a0k

2

8

)
+ ΦR(z)

∣∣∣∣
= |δ|

∣∣∣∣k1 +
ΦR(z)

δ

∣∣∣∣
where I have convienently defined k1 =

(
1
2
− F0a0k2

8

)
. Since ΦR is bounded this

clearly diverges to plus infinity as δ → ±∞. This divergence is independent on
the choice of (ξ′, η′) because |δ||k1 + Γ(z)

δ
| only depends on constants and bounded

ΦR. Likewise, perturbing |φ(ξ′, η′)| in η by δ gives the other result.

Lemma 4. ∀ M > 0, ∃ ε > 0 such that |φ(ξ∗, η∗)| > M whenever (ξ∗, η∗) ∈
R2\∆ε where :

∆ε =

 ⋃
(ξ′,η′)∈Ω

[(ξ′ − ε, ξ′ + ε)× η′]

 . (6.27)

Also, ∀ M > 0, ∃ ε > 0 such that |φ(ξ∗, η∗)| > M whenever (ξ∗, η∗) ∈ R2\Λε

where :

Λε =

 ⋃
(ξ′,η′)∈Ω

[ξ′ × (η′ − ε, η′ + ε)]

 . (6.28)

Proof. This is just a restatement of Lemma 3.
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Theorem 1. Let σ(s) : [0,∞) → R2 be a curve such that d(Ω, σ(s)) → ∞ as
s→∞, than |φ(σ(s))| → ∞ as s→∞.

Proof. First pickM > 0. Using this sameM construct Λε and ∆ε from Lemma 4.
Since d(Ω, σ(s))→∞ as s→∞ it follows that σ(s) will eventually be contained
in R2\Λε or R2\∆ε.

We will see in later sections that algebraic solitons propogate along Ω.

7 The growth of librational waves

7.1 Computing φL
Proposition 12. The function φL defined in (5.7) is given by:

φL(ξ, η) = (F0 − (f ′)2)

(
η

2λ1

+

∫ ξ−η

0

2λ1(f ′)2dz

(F0 − (f ′)2)2

)
, (7.1)

where f is the librational wave with −f ′ = p2
1 + q2

1 and F0 is given by (4.23).

Proof. Consider again (6.2) and (6.3) but with p̂1 and q̂1 given by (5.7). Applying
product and quotient rule to (5.7) and then substituting (6.2) gives

2
∂p̂1

∂ξ
=

2(φLξq1 − (φL − 1)q1ξ)

q2
1

=
2φLξq1 − (φL − 1)(p1f

′ − λ1q1)

q2
1

=
2φLξp1q1 − φLp2

1f
′ + φLλ1p1q1 + p2

1f
′ − λ1p1q1

p1q2
1

. (7.2)

On the other hand from (5.7) and (6.3) we have that

2
∂p̂1

∂ξ
= λ1p̂1 − f ′q̂1

=
p1q1λ1φL − p1q1λ1 − q2

1f
′φL − q2

1f
′

p1q2
1

(7.3)

Setting (7.2) equal to (7.3) yields
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⇒ 2φLξp1q1 − φLp2
1f
′ + φLλ1p1q1 + p2

1f
′ − λ1p1q1 = p1q1λ1φL − p1q1λ1 − q2

1f
′φL − q2

1f
′

⇒ 2φLξ = f ′φL

(
p1

q1

− q1

p1

)
− f ′

(
p1

q1

+
q1

p1

)
⇒ 2φLξ = −f ′φL

(
q2

1 − p2
1

p1q1

)
− f ′

(
p2

1 + q2
1

p1q1

)
(7.4)

Substitution of the useful identities (4.11) into the above result produces

⇒ 2φLξ = (−f ′)φ

(
f ′′

λ1
F0−(f ′)2

4λ1

)
+

(
(f ′)2

F0−(f ′)2

4λ1

)

⇒ φξ =

(
2(f ′)(f ′′)φ

(f ′)2 − F0

)
−
(

2λ1(f ′)2

(f ′)2 − F0

)
. (7.5)

Differentiating (5.7) and then substituting (6.7) yields

2λ1
∂p̂1

∂η
=

2λ1(φLηq1 − (φL − 1)q1η)

q2
1

=
2λ1φLηq1 − (p1 sin(f)− q1 cos(f))(φL − 1)

q2
1

=
2λ1φLηp1q1 − p2

1φL sin(f) + p2
1 sin(f) + p1q1φL cos(f)− p1q1 cos(f)

p1q2
1

.

(7.6)

On the other hand, from (6.8) and (5.7) we have that

2λ1
∂p̂1

∂η
= p̂1 cos(f) + q̂1 sin(f)

=

(
φL − 1

q1

)
cos(f) +

(
φL + 1

p1

)
sin(f)

= p1q1

(
φL − 1

p1q2
1

)
cos(f) + q2

1

(
φL + 1

p1q2
1

)
sin(f). (7.7)

Setting (7.7) equal to (7.6) generates
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φLη =
(q2

1 − p2
1) sin(f) + (p2

1 + q2
1)φL sin(f)

2λ1p1q1

.

Then using (2.25) and (4.11) simplifies φLη to

λ1φLη =
2(f ′′)2 − 2λ1(f ′)φlf

′′

((f ′)2 − F0)
. (7.8)

Thus, φL is found from the system of PDEs given by (7.5) and (7.8).

System (7.5) and (7.8) can be simplfied further with the transformation

φL = [F0 − (f ′)2]Υ. (7.9)

Differentiating (7.9) in ξ and comparing it to (7.5) yields

Υξ =
2λ1(f ′)2

(F0 − (f ′)2)2
. (7.10)

Differentiating (7.9) in η and comparing it with (7.8) yields

λ1Υη = − 2(f ′′)2

(F0 − (f ′)2)2
. (7.11)

If follows from (4.7), (4.19) and (4.21) that

λ1(Υξ + Υη) =
1

2
, (7.12)

which implies that Υ(ξ, η) = η
2λ1

+g(ξ−η) for some function g to be determined.
Substituting this into (7.5) yields

g′(ξ − η) =
2λ1(f ′)2

(F0 − (f ′)2)2
,

so that

g(ξ − η) =

∫ ξ−η

0

2λ1(f ′)2

(F0 − (f ′)2)2
.
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Therefore, Υ can be written explicitly as

Υ(ξ, η) =
η

2λ1

+

∫ ξ−η

0

2λ1(f ′)2dz

(F0 − (f ′)2)2
. (7.13)

Reverting back to φL via change of coordinate (7.9) completes the proof.

7.2 Analytical Properties of φL
The term φL is going to dictate the non-periodic dynamics of newly formed po-
tentials from the two-fold DT because all of the other terms in the second linearly
independent eigenfunction (5.7) are bounded, smooth and periodic. We will see in
later sections that the new potentials constructed with the second eigenfunctions
reach their Jacobi-elliptic backgrounds as |φL| grows to infinity. We will prove in
this subsection that |φL| has the shape of a wavey cone that grows to infinity along
trajectories moving away from (ξ, η) = (0, 0).

Lemma 5. The function φL(ξ, η) grows linearly in |x| + |t| as |x| + |t| → ∞ for
every k ∈ (0, 1).

Proof. Letw = −f ′ , factoring out 1
2λ1

in the second term of equation (7.1) returns

φL(ξ, η) =

(
iH − w2

2λ1

)(
η + 4

∫ ξ−η

0

λ2
1w

2

(w2 − iH)2

)
, (7.14)

where F0 = iH and H = ±2
√
E(2− E) ∈ R. Since iH−w2

2λ1
is bounded and

periodic we can restrict our analysis to

φ̃(ξ, η) = η + 4

∫ ξ−η

0

λ2
1w

2dz

(w2 − iH)2

= η + 4

∫ ξ−η

0

[
(E − 1)∓ i

√
E(2− E)

] [
w2 ± 2i

√
E(2− E)

]2

w2

(w4 +H2)2
dz

where we have rationalized the denominator using its complex conjugate and sub-
stituted equation (4.22) to achieve the second equality. Substitutingw = −kcn(z; k)
and 2k2 = E for librational traveling waves and taking the imaginary part yields
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Im[φ̃] = ±4
√
E(2− E)

∫ ξ−η

0

4w2(E − 1)− (w4 − 4E(2− E))

(w4 +H2)2
w2dz

= ±4
√
E(2− E)

∫ ξ−η

0

16k2[1− k2 + (2k2 − 1)cn2(z; k)− k2cn4(z; k)]

(w4 +H2)2
w2dz

= ±4
√
E(2− E)

∫ ξ−η

0

16k2sn2(z; k)dn2(z; k)

(w4 +H2)2
w2dz.

The integrand is clearly sign definite for k ∈ (0, 1). This means that |φ̃|2 =
Re[φ̃]2+Im[φ̃]2 will only exhibit bounded growth away from (0, 0) if ξ−η = c1 for
some constant c1 ∈ R. ButRe[φ̃] grows linearly in η along the line ξ−η = c1.

8 Algebraic solitons on rotational waves
In this section we will derive an explicit formula for algebraic solitons arising on
the background of rotational waves. I should note that algebraic solitons on a peri-
odic background are not rogue waves. The solitons of the sine-Gordon equation are
obtained using the one-fold DT with the second eigenfunctions (5.6) for the par-
ticular eigenvalues λ1R (4.24) obtained in the algebraic method. We also compute
the magnification of the algebraic solitons compared with the rotational waves.

8.1 Deriving algebraic solitons using DT
From this point onwards we will denote w = −f ′ to specify the potential. Using
the DT (5.1) with the second eigenfunction (5.6) for rotational waves correspond-
ing to the eigenvalue λ1 = λ1R and using (4.11) yields

ŵ = w +
4λ1p̂1q̂1

p̂2
1 + q̂2

1

= w +
4λ1(p1q1φ

2
Rw

2 + wp2
1φR − wq2

1φR − p1q1)

φ2
Rw

2p2
1 + q2

1 + p2
1 + q2

1φ
2
Rw

2

= w +
w2(F0 − w2)φ2

R + 4w′φRw − (F0 − w2)

w(φ2
Rw

2 + 1)
(8.1)

where ŵ = −ûξ and û is a new solution to the sine-Gordon equation (2.24).
We claim that the new solution (8.1) corresponds to an algebraic soliton on the
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background of the rotational wave. Indeed, we confirmed in section 6.2 that φR is
bounded and periodic along the line Ω so that (8.1) is bounded and periodic along
Ω. We verified numerically in figure 3 that (8.1) achieves its maximum amplitude
periodically along Ω.

Figure 3 is an illustration of the algebraic solitons propagating along Ω for two
particular values of k and two particular sign choices of F0. The pictures were
generated using the Matlab code presented in Appendix C. We see numerically
that the solution surface |ŵ| achieves its maximum at (ξ, η) = (0, 0) and is repeated
along Ω.

Figure 3: Algebraic solitons generated from the one-fold Darboux transformation
using the traveling rotational waves as potentials with k = 0.85 (left) and k = 0.95

(right) for λ1R = 1−
√

1−k2
k

(top) and λ1R = 1+
√

1−k2
k

(bottom).
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8.2 The background of the algebraic solitons
In this subsection I will determine the behaviour of the rotational rogue wave (8.1)
away from Ω. We proved in Theorem 1 that moving away from Ω corresponds to
growing φR. Taking this limit shows that the background of (8.1) is

lim
|φR|→∞

ŵ = lim
|φR|→∞

(
w +

w2(F0 − w2)φ2
R + 4w′φRw − (F0 − w2)

φ2
Rw

3 + w

)

= lim
|φR|→∞

w +
w2(F0 − w2) + 4w′w

φR
− (F0−w2)

φ2R

w3 + w
φ2R


=

(
w +

w2(F0 − w2)

w3

)
=
F0

w
,

and we showed with equation (5.3) that this is a translated version of the rotational
wave w. Hence, (8.1) is built on top of a rotational traveling wave background. It
is also evident in figure 3 that the surfaces decay to traveling waves away from the
propogating solitons.

8.3 The Magnification of the Algebraic Solitons
In this subsection I will compute the magnification of the potential (8.1). It is
clear from figure 3 that the maximum of |ŵ| occurs at (0, 0) and is periodically
repeated along Ω. At (ξ, η) = (0, 0) it follows that w = − 2

k
dn(0; k) = − 2

k
and

φR(0, 0) = 0 so that:

ŵ(0, 0) = w(0, 0) +
w(0, 0)2(F0 − w(0, 0)2)φR(0, 0) + 4w′(0, 0)w(0, 0)φR(0, 0)− (F0 − w(0, 0)2)

φR(0, 0)w(0, 0)3 + w(0, 0)

= w(0, 0)− (F0 − w(0, 0)2)

w(0, 0)

= −4

k
± 2

k

√
1− k2.

The magnification of algebraic solitions relative to the rotational wave is defined
by :
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M :=
sup(ξ,η)∈R2 |ŵ|
sup(ξ,η)∈R2 |w|

. (8.2)

Since dn achieves a maximum value of 1 over R it is clear that sup(ξ,η)∈R2 |w| =
2
k

for the rotational waves. This means that the magnification for the algebraic
solitons is

M(k) =
|ŵ(0, 0)|
|w(0, 0)|

=
| − 4

k
± 2

k

√
1− k2|

2
k

= 2∓
√

1− k2, (8.3)

where the choice in sign corresponds to the sign choice after taking the square root
of equation (4.19). This coincides with the magnification factor of the rogue waves
on the background of the dn-periodic waves of the mKdV and NLS equations [5,
15].

9 Rogue waves on librational waves
In this section we will derive an explicit formula for rogue waves arising on the
background of librational waves. These exact solutions of the sine-Gordon equa-
tion are obtained using the two-fold DT with the second eigenfunctions for the
particular eigenvalues λ1L (4.25) obtained in the algebraic method. We also com-
pute the magnification of the rogues waves compared with the librational waves.

9.1 Deriving rogue waves using DT
Using the DT (5.4) with the second eigenfunctions (5.7) for librational waves core-
sponding to the eigenvalues λ1 = λ1L and λ2 = λ̄1 and using (4.11) along with its
complex conjugate, (p2, q2) = (p̄1, q̄1), yields:

ŵ = w +
4(λ2

1 − λ2
2)[λ1p̂1q̂1(p̂2

2 + q̂2
2)− λ2p̂2q̂2(p̂2

1 + q̂2
1)]

(λ2
1 + λ2

2)(p̂2
1 + q̂2

1)(p̂2
2 + q̂2

2)− 2λ1λ2[4p̂1q̂1p̂2q̂2 + (p̂2
1 − q̂2

1)(p̂2
2 − q̂2

2)]

= w +
F1

F2

(9.1)
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where

F1 = (λ2
1 − λ2

2)

[
(F0 − w2)(φ2

L − 1)(φ̄2
Lw̄ + w̄ + 2φ̄L(q2

2 − p2
2) )

− (F̄0 − w̄2)(φ̄2
L − 1)(φ2

Lw + w + 2φL(q2
1 − p2

1) )

] (9.2)

and

F2 = (λ2
1 + λ2

2)(φ2
Lw + w + 2φL(q2

1 − p2
1))(φ̄2

Lw̄ + w̄ + 2φ̄L(q2
2 − p2

2))

− 2

[
1

4
(φ2

L − 1)(φ̄2
L − 1)(F0 − w2)(F̄0 − w̄2)

+ (φ2
Lw
′ + w′ − 2λ1φLw)(φ̄2

Lw̄
′ + w̄′ − 2λ2φ̄Lw̄)

]
.

(9.3)

The difference in squared eigenfunctions, q2
1 − p2

1 and q2
2 − p2

2 , can be rewritten in
terms of w since w2 = (f ′)2 and −f ′′ = λ1(p2

1 − q2
1).

We claim that the new solution (9.1) corresponds to an isolated rogue wave on the
background of the librational wave. In the remaining parts of this section we will
verify this claim. We verified numerically in figure 4 that the rogue wave achieves
its maximum at the origin and that this maximum is a localized event. In the next
two subsections we will confirm that the rogue wave is built on the librational wave
background and that the magnification factor exceeds 2.

Figure 4 is an illustration of the surfaces (9.1) for two particular values of k and two
sign choices ofF0. The pictures were generated using the Matlab code presented in
the Appendix C. It is evident with a first glance of these figures that (9.1) represents
an isolated rogue wave phenomenon.
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Figure 4: Rogue wave potentials generated using the two fold darboux transforma-
tion and the librational traveling wave with k = 0.5 (left) and k = 0.8 (right) and
λ1L = (k − i

√
1− k2) (top) and λ1L = (k + i

√
1− k2) (bottom).

9.2 The background of the rogue waves
The rogue wave (9.1) reaches its background away from (ξ, η) = (0, 0). Thanks to
lemma 5 we know that |φL| → ∞ along trajectories moving far away from (0, 0).
Consider the two quotients F̃1 = F1

φ2Lφ̄
2
L

and F̃2 = F2

φ2Lφ̄
2
L

. Clearly F1

F2
= F̃1

F̃2
so

that lim|φL|→∞
F1

F2
= lim|φL|→∞

F̃1

F̃2
. I will now inspect the limits of F̃1 and F̃2

separately. Some simple algebraic manipulation gives us

lim
|φL|→∞

F̃1 = (λ2
1 − λ2

2)
[
(F0 − w2)(w̄)− (F̄0 − w̄2)w

]
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and

lim
|φL|→∞

F̃2 = (λ2
1 + λ2

2)ww̄ − 2

[
1

4
(F0 − w2)(F̄0 − w̄2) + (w′)(w̄′)

]
.

From here it is clear that lim|φL|→∞

(
w + F̃1

F̃2

)
= lim|φ|→∞

(
w + F1

F2

)
is equal

to equation (5.5). Performing the same computations that follow equation (5.5)
means that lim|φL|→∞

(
w + F̃1

F̃2

)
= −w. Hence, we conclude that the solution

(9.1) is built on the background of librational waves.

9.3 The rogue wave magnification
For the librational waves it follows that w(0, 0) = −2k and φL(0, 0) = 0. This
implies that F1 and F2 from (9.2) and (9.3) at (0, 0) are given by

F1(0, 0) = −64k3(k2 − 1) (9.4)

and

F2(0, 0) = 16k2(k2 − 1), (9.5)

so that

|ŵ(0, 0)| = 6k. (9.6)

We showed numerically in figure 4 that the solution surface achieves its maximum
at |ŵ(0, 0)|. The maximum of |w| for the librational waves is 2k. This means that
the magnification of the rogue waves with respect to librational travelling waves is
M = 6k

2k
= 3. This coincides with the result derived for the rogue waves on the

background of cn-periodic waves of the mKdV and NLS equations in [15] and [5].
Clearly this magnification exceeds 2 so that (9.1) represents a rogue wave on the
background of librational waves.
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9.4 Defects in the fluxon condensate
In [14] Lu and Miller constructed a similar rogue wave solution which defines
defects in the fluxon condensate. In figure 5 we plot sin(û) for the rogue wave (9.1)
for different values of k. Numerically differentiating the rogue wave potential in η
with a forward difference allowed us to retrieve sin(û), since −ûξη = sin(û). Our
surface plots of sin(û) are very similar to the figures in appendix D of [14].

(a) k = sin(3π
8 ) (b) k = sin(11π

8 )

(c) k = sin(π6 ) (d) k = sin( π24)

Figure 5: sin(û) for librational rogue waves for various k values.

This confirms that rogue waves constructed on a background of librational waves
in the sine-Gordon equation correspond to defects in the fluxon condensate.

9.5 Changing the integration constant in rogue wave growth
Here we modify the growth of the rogue wave by altering the constant of integration
in equation (7.1). This modification is implemented by fixing a C0 ∈ R and then
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redefining φL as

φL(ξ, η) = (F0 − w2)

(
η

2λ1

+

∫ ξ−η

C0

2λ1w
2dz

(F0 − w2)2

)
. (9.7)

The new growth term (9.7) is used to create the second linearly independent eigen-
functions and then the two fold DT is applied to create the rogue potential ŵ with
respect to this new growth term. The background of these new rogue waves is still
−w since the modulus of expression (9.7) grows as |ξ| + |η| → ∞. The proof
is similar to that of Lemma 5 but one must realize that the growth surface |φL|
periodically grows away from the point (ξ, η) = (C0, 0) instead of (ξ, η) = (0, 0).

We are interested to see what happens with the maximum of the rogue wave surface
|ŵ| as we vary C0. We show numerically in figure 6 that the rogue wave reaches
its highest magnification when C0 = 0 or multiples of the period of the librational
wave L = 2K(k), whereK(·) is the complete elliptic integral of the first kind. We
are able to restrict our analysis to 0 ≤ C0 ≤ L by considering the transformation:
C0 = L+ Ĉ0 , η = η̂ − L and ξ = ξ̂ − L.

-2K(k) -K(k) 0 K(k) 2K(k)
2.9

2.91

2.92

2.93

2.94

2.95

2.96

2.97

2.98

2.99

3

-2K(k) -K(k) 0 K(k) 2K(k)
1.8

2

2.2

2.4

2.6

2.8

3

Figure 6: The magnification of the rogue wave vsC0 for k = 0.5 (left) and k = 0.8
(right)

10 Concluding Remarks
We were able to generate rogue waves in the sine-Gordon equation using an alge-
braic method and the Darboux transformation. The algebraic method yields solu-
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tions (λ, p, q) to the Lax system with traveling wave potential satisfying a squared
eigenfunction relation,−uξ = p2+q2. The eigenvalues extracted from this method
are located at the end points of the spectral bands of the Floquet spectrum. This
was shown numerically in figures 2 and 3.

The Darboux transformation was applied to the solutions of the Lax pair occur-
ing at the end points of the aforementioned spectral bands. The one fold Darboux
transformation for the rotational waves produced algebraic solitons propagating
along a straight line. The two fold Darboux transformation with librational wave
solutions produced a proper rogue wave.

The growth term, φ, introduced in the second linearly independent eigenfunctions
characterizes the algebraic solitons and the rogue waves. In particular, the sur-
face of φ ought to grow away from the point of integration in order for a proper
rogue wave to be formed. The growth term was originally taken to be zero at
(ξ, η) = (0, 0). Integrating φ with this initial condition creates a rogue wave with
the highest possible magnification factor. We showed numerically that changing
this integration constant decreases the magnification of the rogue wave relative to
librational waves.

The sine-Gordon equation is rich in many physical applications including describ-
ing the magnetic flux in long superconducting Josephson junctions [16–18], mod-
eling fermions [6], explaining stability structure in galaxies [13, 21, 22] and ana-
lyzing mechanical vibrations of a ribbon pendulum [23]. Our results predict the
occurence of rogue wave behaviour in these physical systems. This is useful in-
formation for physicists studying freak events in the natural world. Our work also
verifies that the algebraic method works for an entire class of partial differential
equations that share a similar spectral problem. This is because the same algebraic
method has been successful with the fNLSE and mKDV equations.

There are a lot of open problems that remain in this thesis. It was not addressed if
the oscillations occuring near the peaks of figure 6 are numerical noise or inher-
ent to the system. We did not analytically study the maxiumum behaviour of the
rogue waves and algebraic solitons. We do not have a complete picture of the Lax
spectrum, the algebraic method was only successful at retrieving the end points of
the spectral bands. The other eigenvalues along the spectral bands corespond to
more rogue waves. Lastly, a more solid definition of what it means to be a rogue
wave should be developed.
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A Formulation of Jacobian Elliptic functions
Useful information regarding Jacobi elliptic functions was taken from [1,2,24,26].
Jacobi elliptic functions are derived from the inversion of the elliptic integral of
the first kind,

F (τ, k) =

∫ τ

0

dt√
1− k2 sin2 t

,

where k ∈ (0, 1) is the elliptic modulus. The complete elliptic integral of the is
defined as K(k) = F (π

2
, k).

From here we can define the three basic Jacobi elliptic functions,

sn(v, k) = sin τ ,

cn(v, k) = cos τ

and

dn(v, k) =
√

1− k2sn2(v, k).

The basic Jacobi elliptic functions are smooth. sn and cn are periodic with period
L = 4K(k) while dn is periodic with period L = 2K(k). They also satisfy

sn2v + cn2v = 1 (A.1)
k2sn2v + dn2v = 1 (A.2)

√
1− k2

dn(y; k)
= dn(y +K(k); k) (A.3)

and have derivatives

d snv
dv

= cnv dnv

d cnv
dv

= −snv dnv

d dnv
dv

= −k2snv cnv.
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B Spectral Code (Matlab)

B.1 Rotational Waves
% SGSP rotational spectrum

tic

close all; clear all ; clc ;

% free parameters in the SGSP for rotational waves

% k is elliptic modulus , N is periodic domain resolution for

% eigenfunctions and floqnum is the resolution of floquet exponents

k=0.95; N = 105; floqnum = 101 ;

E = 2/(k^2) ; % Parameter E from table 1

K = ellipke(k^2); % K is complete elliptic integral of first kind

T = 2*K*k ; % period of the dn wave

% exact eigenvalues from algebraic method

lambda_exact1dn = sqrt( E - sqrt(E*(E-2)) -1 ) ;

lambda_exact2dn = sqrt( E + sqrt(E*(E-2)) -1 ) ;

theta = linspace(-pi/T,pi/T,floqnum); % floquet exponent domain

spectrum = []; % initializing spectrum as empty vector

xend = T/2; % discretizing eigenfunction domain

len = 2*N-1;

Xcomplete = linspace(-xend,xend,len+1);

X = Xcomplete(2:end);

[elipsn,elipcn,elipdn] = ellipj((1/k).*X,k^2); % jacobi elliptic functions

A2dn = (2/k).*diag(elipdn); % dn potential for sine-gordon

% derivative matrix!

h = X(2)-X(1);

LEN = length(X) ;

g = zeros(1,LEN) ;

hh = zeros(1,LEN) ;

g(2) = (-6/7); g(3) = (15/56); g(4) = (-5/63) ; g(5) = (1/56); g(6) = (-1/385);

g(7) = (1/5544) ;
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g(LEN)=(6/7); g(LEN-1)=(-15/56);g(LEN-2)=(5/63); g(LEN-3)=(-1/56);

g(LEN-4)=(1/385); g(LEN-5)=(-1/5544) ;

hh=(-1)*g;

for i=1:length(theta)

% Construction of derivative operator matrix

A1 = (1/h)*toeplitz(g,hh) ;

A1 = 2*A1 + 2*eye(size(A1))*sqrt(-1)*theta(i) ;

% eigenvalue problem matrix defined by numerical construction of Lax

SpecMat = [A1 A2dn; A2dn -A1];

% Calculating the spectrum of each matrix.

lambda=eig(SpecMat);

% Updating spectrum with eigenvalues for current floquet parameter

spectrum=[spectrum ;lambda];

clear A1 SpecMat lambda

end

% plotting the rotational spectrum

figure(11)

plot(real(spectrum) , imag(spectrum),’o’)

hold on

xlabel(’Real Part’)

ylabel(’Imaginary Part’)

plot(real(lambda_exact1dn),imag(lambda_exact1dn),’o’,’MarkerFaceColor’ ,’r’)

plot(real(lambda_exact2dn),imag(lambda_exact2dn),’o’, ’MarkerFaceColor’, ’r’)

plot(real(-conj(lambda_exact1dn)),imag(-conj(lambda_exact1dn)),’o’,

’MarkerFaceColor’, ’r’)

plot(real(-conj(lambda_exact2dn)),imag(-conj(lambda_exact2dn)),’o’,

’MarkerFaceColor’, ’r’)

axis([-(lambda_exact2dn+1) (lambda_exact2dn+1) -1 1])

xlabel(’Real Part’)

ylabel(’Imaginary Part’)

hold off;

toc

B.2 Librational Waves
% SGSP Librational Spectrum
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tic

close all; clear all ; clc ;

% free parameters in the SGSP for the librational wave

% k is elliptic modulus parameter, N is resolution of periodic

% eigenfunction domain and floqnum is the resolution of floquet exponents

k=0.95; N = 105; floqnum = 105 ;

E = 2*(k^2) ; % parameter E in table 1 for librational waves

K = ellipke(k^2); % K is complete elliptic integral of first kind

T = 4*K; % period of the cn wave

lambda_exact1cn = sqrt( E - sqrt(E*(E-2)) -1 ) ; % exact eigenvalues from

%algebraic method

lambda_exact2cn = sqrt( E + sqrt(E*(E-2)) -1 ) ;

theta = linspace(-pi/T, pi/T, floqnum); %<- resolution of floquet exponent !

spectrum = [];

xend = T/2;

% The number of points in the domain

len = 2*N-1;

% The complete domain is made up of ’len+1’ equal spaced points with

% +/- xend as endpoints. The first point of the domain is deleted.

Xcomplete = linspace(-xend,xend,len+1);

X = Xcomplete(2:end);

% Calculating the distance between adjacent points in the domain.

h = X(2)-X(1);

% Finding the elliptic function values at each point in domain.

[elipsn,elipcn,elipdn] = ellipj(X,k^2);

% cn potential of SGSP

A2cn = diag((2*k).*elipcn);

% Creating differentiation matrix.
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LEN = length(X) ;

g = zeros(1,LEN) ;

hh = zeros(1,LEN) ;

g(2) = (-6/7); g(3) = (15/56); g(4) = (-5/63) ; g(5) = (1/56); g(6) = (-1/385);

g(7) = (1/5544) ;

g(LEN)=(6/7); g(LEN-1)=(-15/56);g(LEN-2)=(5/63); g(LEN-3)=(-1/56);

g(LEN-4)=(1/385); g(LEN-5)=(-1/5544) ;

hh=(-1)*g;

filteredeigz = [];

% constructing the numerical eigenvalue matrix for each floquet exponent

for i=1:length(theta)

% Construction operator matrix

A1 = (1/h)*toeplitz(g,hh) ;

A1 = A1 + eye(size(A1))*sqrt(-1)*theta(i) ; A1=2*A1;

% matrix defined by numerical construction of SGSP

SpecMat = [A1 A2cn; A2cn -A1] ;

% Calculating the spectrum of each matrix.

lambda=eig(SpecMat);

% Updating spectrum with eigenvalues for current theta(i)

spectrum=[spectrum ;lambda];

clear A1 SpecMat lambda

end

% plotting the spectrum

figure(11)

plot(real(spectrum) , imag(spectrum),’o’)

hold on

xlabel(’Real Part’)

ylabel(’Imaginary Part’)

plot(real(lambda_exact1cn),imag(lambda_exact1cn),’o’, ’MarkerFaceColor’, ’r’)

plot(real(lambda_exact2cn),imag(lambda_exact2cn),’o’, ’MarkerFaceColor’, ’r’)

plot(real(-conj(lambda_exact1cn)),imag(-conj(lambda_exact1cn)),’o’,

’MarkerFaceColor’, ’r’)

plot(real(-conj(lambda_exact2cn)),imag(-conj(lambda_exact2cn)),’o’,
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’MarkerFaceColor’, ’r’)

axis([-1.5 1.5 -1.5 1.5])

hold off;

C Darboux Transformation Code (Matlab)

C.1 Rotational Background
close all; clear all ; clc ;

% Free parameters

% elliptic modulus parameter and resolution of xi-eta domain

k = 0.45 ; N = 51;

E = (2/k^2) ; % energy of rotational waves in table 1

K = ellipke(k^2); % K is elliptic integral of first kind, E2 of second

T = 2*K*k ; % period of the dn wave

F0 = sqrt( 4*E*(E-2) ) ; % F_0 from hamiltonian

% defining xi-eta domain

xidomain = union(linspace(-2.1*T,0,4*N),linspace(0,2.1*T,4*N) ) ;

etadomain = union(linspace(-4*T,0,4*N),linspace(0,4*T,4*N)) ;

% initializing growth , w and w’ for rotational waves

phiR = zeros(length(xidomain),length(etadomain));

w = zeros(length(xidomain),length(etadomain));

wprime = zeros(length(xidomain),length(etadomain));

% computing growth at each point

for i=1:length(xidomain)

for j=1:length(etadomain)

% computing integral in rotational growth

if ((xidomain(i) - etadomain(j))>0)

zdom = linspace(0 , (xidomain(i) - etadomain(j)) , N ) ;

[elipsn,elipcn,elipdn] = ellipj((1/k).*zdom,k^2);

zrange = (1./(elipdn.^2)) ;

val1 = trapz(zdom,zrange) ;
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phiR(i,j) = (( xidomain(i) + etadomain(j) )/2) - ((F0*k^2)/8)*val1 ;

end

if ((xidomain(i) - etadomain(j))<0)

zdom = linspace((xidomain(i) - etadomain(j)), 0 , N ) ;

[elipsn,elipcn,elipdn] = ellipj((1/k)*zdom,k^2);

zrange = (1./(elipdn.^2)) ;

val1 = -trapz(zdom,zrange) ;

phiR(i,j) = (( xidomain(i) + etadomain(j) )/2) - ((F0*k^2)/(8))*val1 ;

end

if ((xidomain(i) - etadomain(j))==0)

phiR(i,j) = (( xidomain(i) + etadomain(j) )/2) ;

end

end

end

% ploting growth for rotational waves

figure(1)

surf(xidomain,etadomain,abs(phiR))

% computing w and w’ at each point for rotational waves

for i=1:length(xidomain)

for j=1:length(etadomain)

z = xidomain(i) - etadomain(j) ;

[elipsn,elipcn,elipdn] = ellipj((1/k)*z,k^2);

w(i,j) = -(2/k)*elipdn ;

wprime(i,j) = 2*elipsn*elipcn;

end

end

% initializing algebraic soliton surface

what = zeros(length(xidomain),length(etadomain));

% one-fold DT for rotational waves

for i=1:length(xidomain)

for j=1:length(etadomain)
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num = (F0 - w(i,j)^2)*(w(i,j)^2)*(phiR(i,j)^2) +

4*wprime(i,j)*phiR(i,j)*w(i,j)-(F0 - w(i,j)^2);

den = (phiR(i,j)^2)*(w(i,j)^3) + w(i,j) ;

what(i,j) = w(i,j) + (num/den);

end

end

% plotting algebraic solitons

figure(3)

surf(xidomain,etadomain,what)

xlabel(’\xi’)

ylabel(’\eta’)

zlabel(’$\hat{w}$’,’Interpreter’,’latex’)

shading interp

colormap jet

alpha 1;

camlight(’headlight’);

lighting phong;

material shiny;

C.2 Librational Background
% Rogue Wave Potentials from librational waves

tic

close all; clear all; clc

% Free parameters

k = 0.7 ; N = 61; % elliptic modulus and xi/eta resolution

E = 2*(k^2) ; % energy from table 1

K = ellipke(k^2); % K is elliptic integral of first kind, E2 of second

T = 4*K; % period of the cn wave

F0 = sqrt( 4*E*(E-2) ) ; % F_0 from hamiltonian

% creating the xi-eta domain

xidomain = union(linspace(-4*T,0,2*N),linspace(0,4*T,2*N) ) ;

etadomain = union(linspace(-3*T,0,2*N) , linspace(0,3*T,2*N) );
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% eigenvalue and its conjugate from algebraic method

lambda1 = sqrt( E - sqrt(E*(E-2)) - 1 );

lambda2 = conj(lambda1) ;

% initializing useful functions : growth,w,w’ and q1^2-p1^2

phiL = zeros(length(xidomain),length(etadomain));

w = zeros(length(xidomain),length(etadomain));

wprime = zeros(length(xidomain),length(etadomain));

q1mp12 = zeros(length(xidomain),length(etadomain));

% for each point in the xi-eta domain

for i=1:length(xidomain)

for j=1:length(etadomain)

% computing integration term in growth function

if ((xidomain(i) - etadomain(j))>0)

zdom = linspace(0 , (xidomain(i) - etadomain(j)) , N ) ;

[elipsn,elipcn,elipdn] = ellipj(zdom,k^2);

zrange = (4*k*k*elipcn.^2)./((F0 - 4*k*k*elipcn.^2).^2) ;

val1 = trapz(zdom,zrange) ;

end

if ((xidomain(i) - etadomain(j))<0)

zdom = linspace((xidomain(i) - etadomain(j)), 0 , N ) ;

[elipsn,elipcn,elipdn] = ellipj(zdom,k^2);

zrange = (4*k*k*elipcn.^2)./((F0 - 4*k*k*elipcn.^2).^2) ;

val1 = -trapz(zdom,zrange) ;

end

if ((xidomain(i) - etadomain(j))==0)

val1=0;

end

[elipsn2,elipcn2,elipdn2] = ellipj(xidomain(i) - etadomain(j),k^2);

% assigning values to useful functions

w(i,j) = -2*k*elipcn2 ;

wprime(i,j) = 2*k*elipsn2*elipdn2 ;

phiL(i,j) = (F0-w(i,j)^2)*( (etadomain(j)/(2*lambda1)) + 2*lambda1*val1 ) ;

q1mp12(i,j) = -2*k*elipsn2*elipdn2/lambda1 ;
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end

end

% plotting the growth (wavey cone)

figure(1)

surf(xidomain,etadomain,abs(phiL))

shading interp

colormap jet

alpha 1;

camlight(’headlight’);

lighting phong;

material shiny;

% computing the rogue-wave (two fold DT at each point in xi-eta domain)

% \hat{w}

what = zeros(length(xidomain),length(etadomain));

for i=1:length(xidomain)

for j=1:length(etadomain)

F1a = (F0 - w(i,j)^2)*(phiL(i,j)^2 - 1)*( conj( w(i,j)*phiL(i,j)^2 + w(i,j)

+2*q1mp12(i,j)*phiL(i,j) ) ) ;

F1b = conj(F1a);

F2a = w(i,j)*phiL(i,j)^2 + w(i,j) + 2*(phiL(i,j))*q1mp12(i,j);

F2b = (1/4)*(phiL(i,j)^2 - 1)*conj((phiL(i,j)^2 -

1))*(F0-w(i,j)^2)*conj((F0-w(i,j)^2));

F2c = (wprime(i,j)*phiL(i,j)^2 + wprime(i,j) -

2*lambda1*phiL(i,j)*w(i,j))*conj((wprime(i,j)*phiL(i,j)^2 + wprime(i,j) -

2*lambda1*phiL(i,j)*w(i,j)));

F1 = (lambda1^2-lambda2^2)*(F1a-F1b);

F2 = (lambda1^2 + lambda2^2)*F2a*conj(F2a) - 2*(F2b+F2c);

what(i,j) = w(i,j) + (F1/F2) ;

end

end

toc

% plotting the rogue wave

figure(2)
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surf(xidomain,etadomain,abs(what))

xlabel(’\xi’)

ylabel(’\eta’)

zlabel(’$| \hat{w} |$’,’Interpreter’,’latex’)

shading interp

colormap jet

alpha 1;

camlight(’headlight’);

lighting phong;

material shiny;
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