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Abstract 

Modern bike share systems (BSSs) allow users to rent from a fleet of bicycles at 

hubs across the designated service area. With clear evidence of cycling being a health-

positive form of active transport, furthering our understanding of the underlying processes 

that affect BSS ridership is essential to continue further adoption. Using 286,587 global 

positioning system (GPS) trajectories over a 12-month period between January 1st, 2018 

and December 31st, 2018 from a BSS called SoBi (Social Bicycles) Hamilton, the number 

of trips on every traveled link in the service area are predicted. A GIS-based map-matching 

toolkit is used to generate cyclists’ routes along the cycling network of Hamilton, Ontario 

to determine the number of observed unique trips on every road segment (link) in the study 

area. To predict trips, several variables were created at the individual link level including 

accessibility measures, distances to important locations in the city, proximity to active 

travel infrastructure (SoBi hubs, bus stops), and bike infrastructure. Linear regression 

models were used to estimate trips. Eigenvector spatial filtering (ESF) was used to 

explicitly model spatial autocorrelation. The results suggest the largest positive predictors 

of cycling traffic in terms of cycling infrastructure are those that are physically separated 

from the automobile network (e.g., designated bike lanes). Additionally, hub-trip distance 

accessibility, a novel measure, was found to be the most significant variable in predicting 

trips. A demonstration of how the model can be used for strategic planning of road network 

upgrades is also presented. 

Keywords: Bike share, Cycling, Active Travel, Eigenvector Spatial Filtering, Network 

Analysis 
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1. Introduction 

1.1.  Research Problem 

Many parts of the world have seen a renaissance in not only cycling as a travel 

mode, but also in the emergence of bike sharing systems (BSSs) (Pucher, Buehler, et al., 

2011; Pucher, Garrard, et al., 2011; Pucher & Buehler, 2008). Before 2008, public bike 

docking hubs were almost non-existent, which starkly contrasts to the present situation 

where, as of October 2019, there were over 2100 BSSs operating worldwide (Meddin & 

DeMaio, 2019; Midgley, 2011). Post-World War II, many countries across the world 

became reliant on the private automobile as a travel mode. With modern developments in 

understanding air pollutant health risk factors and advances in environmental monitoring, 

the negative impacts of motor vehicles and the oil industry have become increasingly well-

known. In comparison to cycling, automobiles create air and noise pollution, cause 

approximately 23-24 million annual injuries worldwide (Feleke et al., 2018), and limit the 

amount of physical activity needed to maintain a healthy lifestyle. In fact, fear of injury 

from automobiles has been found to be the most significant barrier to bicycling (Manton et 

al., 2016). Cycling, on the other hand, has grown to become considered an environmentally 

friendly, energy efficient, healthy and economical alternative to automobiles (Ryu et al., 

2018).  Hence, much of the existing bike share literature is focused on the goal of better 

understanding the role of BSSs to induce a modal shift. However, switching travel modes 

from automobile to bicycle confers a greater risk of traffic accident and increases exposure 

to air pollution at the individual level, but the beneficial effects (reduced emissions, 

increased physical activity, etc.) are generally considered to be more impactful at a societal 
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level (de Hartog et al., 2010). In terms of influencing modal shifts, past literature generally 

shows that most of the trips that BSSs replace are those that were previously completed by 

either walking or via public transportation (Fishman et al., 2015). Therefore, more work 

needs to be done to assess methods of increasing the attractiveness of BSSs for longer trips 

and changing the perception that bike share travel is merely a solution to the first and last 

mile issue of transit connectivity.  To successfully establish more BSSs and confer a modal 

shift, it is imperative that governments, researchers, and BSS operators work together to 

ease the ability for bikes to replace the automobile. Predictive models, such as those 

presented in this thesis, help to achieve the goal of furthering the understanding of impacts 

that different factors have on bike share ridership. 

Modern BSSs, such as SoBi (Social Bicycles) Hamilton – the trip data provider for 

this thesis – are an extremely promising data source in the current climate of bike share 

research. Given that they are capable of recording information about trip start and end 

locations (often at bike share hubs) and route GPS tracks, modern BSSs act as a big data 

solution that can illuminate route details for user trips between the origin and destination. 

Because of high spatial precision, cycling GPS route data can be used to create models for 

predicting bicycle traffic, which can answer important questions in several policy contexts. 

Such models can be important predictors of the efficacy of new cycling infrastructure, 

especially in a link-based analysis (where a link/edge is defined as an individual road or 

trail segment that is connected to at least one other segment by a shared junction/node), 

meaning the effects can be predicted with high precision. Such analysis is of great 

importance to policymakers when trying to make strategic decisions about developing the 
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transportation network, or to determine which built and social environment variables play 

the biggest role in determining cycling traffic. Answers to such questions could ultimately 

increase BSS ridership and empower users to change their travel mode. As stated on the 

FAQ page of the SoBi Hamilton website, “Using the anonymous data we collect from the 

bikes, SoBi Hamilton looks forward to sharing information with the City so they can be 

better informed as to where cyclists are travelling, how infrastructure can be improved, and 

where to prioritize bike lanes.” (SoBi Hamilton FAQ, 2019). This thesis seeks to not only 

demonstrate the usefulness of collecting bike share GPS information and its applications, 

but also to provide valuable insights about cycling usage to help achieve the goal of 

improving sustainable transportation.   

1.2.  Research Objectives 

This thesis presents a GIS-based approach for creating a valid predictive model for 

assessing cycling traffic at the individual link level using GPS trajectories collected by the 

SoBi Hamilton bike fleet between January 1st and December 31st, 2018. This thesis seeks 

to demonstrate a use case for the presented model by predicting the effects of planned 

infrastructure projects in the City of Hamilton. To satisfy this goal, the following objectives 

are met: 

• Create a comprehensive cycling network for the study area by combining 

multiple datasets and manually adding new trails revealed by GPS 

trajectories 

• Generate cyclist’s actual routes between hubs along the road network by 

processing GPS trajectories 
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• Identify the total number of trips occurring on each link in the network using 

the processed 2018 GPS data 

• Conduct regression analysis that controls for spatial effects to predict the 

number of trips on a link for the study period, including identification and 

creation of relevant variables such as network features and accessibility to 

hubs 

• Use the model to predict effects on cycling traffic of high priority planned 

cycling infrastructure projects in the city at the individual link level 

 By meeting these objectives, this thesis contributes to the existing body of literature 

on the following topics: bike share, predicting cycling trips, eigenvector spatial filtering, 

and network analysis. This thesis seeks to fill research gaps in demonstrating both the 

visualization and predictive power of GPS data for road network analysis. To properly 

understand the spatial variation of bicycle ridership, it is necessary to make use of data 

with acceptable spatial detail and temporal coverage (Jestico et al., 2016). Crowd-sourced 

GPS data from mobile applications (e.g. Strava, Endomondo, MapMyRide, etc.) have been 

an emerging data source for many recent studies on BSSs. While smartphone popularity 

has seen a dramatic increase in the past decade, the sample of contributors from crowd-

sourced apps tends to be small compared to the actual cycling population in the studied 

area, meaning it is prone to user selection bias or geographic bias (Romanillos et al., 2016). 

Crowd-sourced data also lacks the same quality assurance procedures that exist for data 

sourced from more well-established collectors, such as government agencies (Goodchild 

& Li, 2012). Many travel survey-based studies have also been done to assess cycling 
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behavior that collect GPS data as a compliment to detailed trip reporting; however, often 

as a subset that is more biased towards younger, tech savvy participants (Bricka et al., 

2012). Furthermore, survey studies are inefficient and the areas able to be studied by them 

are limited (Winters et al., 2016). Since findings in this thesis are based on GPS route data 

for the SoBi user base for an entire year, problems associated with under sampling and user 

selection bias are alleviated. Furthermore, a hub-trip distance accessibility measure was 

constructed as an explanatory variable in the modeling process and found to be the most 

significant explanatory variable. This calculation of accessibility, to the author’s 

knowledge, is a novel way to measure accessibility in the context of the BSS prediction 

literature. Additionally, this work expands on previous analysis techniques by integrating 

eigenvector spatial filtering (ESF) as a method of handling spatial autocorrelation in the 

model residuals. 

1.3.  Thesis Outline 

 Including the introduction, this thesis consists of 6 chapters. Chapter 2 contains a 

literature review on the history of bike share programs and their impacts, GPS big data 

analysis, the determinants of bike share demand, and how spatial autocorrelation can be 

accounted for in predictive models. Chapter 3 describes the study area for context and 

describes the utilized data sources. Chapter 4 explains all the different research 

methodologies applied to the data including GPS processing, creation of model variables, 

and specification of the model. Chapter 5 presents the results obtained after research 

methods were applied, namely the distribution of SoBi trips across Hamilton for 2018 and 

model results, including a use-case scenario for planned road infrastructure projects. This 
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section also includes a discussion and interpretation of the results. Chapter 6 summarizes 

major findings and contributions of this thesis, as well as limitations, assumptions, and 

recommendations for future areas of research. 

2. Background 

2.1. History of Bike Share Systems 

The history of BSSs, much like many forms of consumer technology, can be broken 

into distinct generations of growth. As several authors have pointed out, there are four 

different generations of BSSs that can be identified (Fishman, 2016; Parkes et al., 2013). 

In 1965, Witte Fietsen (Dutch for “White Bicycles”) was introduced in Amsterdam as the 

first BSS (Davis, 2014). Representing the first generation of BSSs, the premise was simple 

– white painted bikes that were free for anyone to use. Unfortunately, without any security 

measures in place, the bikes were stolen and damaged, leading to the program’s failure 

(DeMaio, 2009). Security measures had to be developed for BSSs to become more popular. 

The second generation of BSSs included a coin-operated payment system, which meant 

that the bikes had a maintenance budget. However, since cash payment allows for near 

complete anonymity, theft was a common occurrence (DeMaio, 2009). The third 

generation of BSSs introduced mandatory credit card or electronic payment to track 

customers, location tracking devices (e.g., GPS), and stationary docking ports (where users 

pick-up and drop-off their bikes). These improvements led to reduced theft and made BSSs 

more resilient for global adoption (Shaheen et al., 2013). The fourth/current generation of 

BSSs has not been fully realized yet. According to Parkes et al. (2013) the fourth generation 

could include features such as dock-less systems (for improved user convenience), more 
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payment options (e.g., public transit smartcard integration), and improved dock designs. 

Today, most bikes in the BSS fleet are located within China, a trend that is driven by 

population size and the relatively slow adoption and participation of BSSs in North 

America (Fishman, 2016). Figure 1 shows the number of bicycles that exist in the bike 

share fleet across many cities around the world. From this figure, North America is clearly 

lagging in terms of adoption. This gap between continents is slowly being bridged though, 

as increased awareness and continued research on the benefits of BSSs and other forms of 

active travel is done, specifically in North America. These advancements can potentially 

influence decision makers to upgrade active transport infrastructure, leading to increased 

attractiveness of these travel modes and increasing adoption. 

2.2. Impacts of Bike Share Programs 

2.2.1. Improving Health 

Many studies attempt to quantify the health impacts of bike share. Several studies 

have made strides towards quantifying how BSSs improve levels of physical activity and 

other health-related outcomes (Babagoli et al., 2019; Bauman et al., 2017; Otero et al., 

2018). Promoting cycling use is often a controversial task, as automobile users are 

concerned about competing road space and safety. In fact, the decision to install new bike 

lanes has been a major issue in municipal elections for many Canadian cities, such as 

Toronto, Vancouver, and even the study area of this thesis – Hamilton. As such, many 

studies have sought to establish an understanding of the risks and benefits of promoting 

cycling. Teschke et al. (2012) explored this issue directly and found that cycling confers 

significant health benefits compared to automobiles, such that the net risk of mortality is 
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Figure 1: Bike share in cities across the world. Not all cities with bike share are shown.  

Note. Reprinted from “Bikeshare: A Review of Recent Literature” by Fishman, E., 2016, 

Transport Reviews, 36(1), 92–113, p. 95. 

outweighed. They also suggested that if enough trips were converted from automobile to 

active forms of travel, there would be reductions in overall traffic fatalities. To accomplish 

this, they suggest that North American cities follow models set by some European cities, 

where bicycle-specific facilities have been created (i.e., separated or protected bike lanes) 

with promising results in terms of injury reduction. Furthermore, ecological studies have 

shown that areas with higher levels of active travel correspond to greater amounts of 

physical activity and lower rates of obesity/diabetes (Pucher et al., 2010).  An oft-touted 

benefit of bikes over cars is the lack of pollution emissions. However, there is evidence 

that cyclists may experience increased automobile-related air pollutant inhalation (de 

Hartog et al., 2010). Road transportation comprises a significant portion of the air 
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pollutants that humans are exposed to in most urban areas across the world (Réquia et al., 

2015; Slezakova et al., 2013; Tessum et al., 2014). A comprehensive review of bike share 

health impacts that focused on physical activity, crashes, and air pollution exposure was 

conducted by Woodcock et al. (2014). This review modeled health impacts using trip data 

in London, England and created scenarios where the BSS both did and did not exist to 

allow for comparison. Models with the BSS were shown to most significantly reduce 

ischemic heart disease in men and depression in women. London’s BSS was shown to have 

positive health benefits overall, but the benefits were more significant for men than women 

and for older users than for younger users. The modelled benefits of cycling were found to 

be much higher for older users as they are more vulnerable to incidence of disease – an 

effect mitigated by physical activity via bike share. Although older users are more 

susceptible to injury/fatalities when cycling and have fewer years to live compared to 

younger users, the beneficial effect bike share had on combating higher disease incidence 

was found to have a greater effect in the model. Therefore, older users have a better benefit-

cost trade-off ratio and were shown to have the largest increase in health benefits for 

models that altered the age structure of the biking population. For air pollution, the study 

found that cycling and walking routes have lower average PM2.5 (particles with a diameter 

of ≤ 2.5μm) concentrations than for road-based automobile trips, however, this was 

counterbalanced by higher ventilation rates. Compared to other modes of travel, the impact 

of using BSSs was found to be small in terms of pollution exposure.  



M.Sc. Thesis – Matthew Brown      McMaster – School of Geography and Earth Sciences 

 

10 

 

2.2.2. Traffic Injuries 

Safety perception is perhaps the leading issue that deters the use of bicycles. 

Emerging cycling cities still face a significant hamper in their development because 

cyclists are forced to share the road with automobiles. This has created the association of 

the cycling experience with a sense of danger and stress, which puts off many potential 

users (O’Connor & Brown, 2010). Therefore, assessing the safety of bikeshare has received 

a lot of interest, even from mainstream media, which has sparked a semi-volatile debate 

between pro-cycle and anti-cycle groups with conflicting research. Graves et al. (2014) 

found, using hospital injury data from five American cities, that there was a reduction in 

bicycle injuries after the implementation of BSSs. Their study also recommended that 

bikeshare operators include helmets for users, although this was criticized by other 

researchers who showed that studied cities with BSSs had declines in non-head and head 

injury risk (Teschke & Winters, 2014). 

A study by Fuller et al. (2013) examined the likelihood of collisions before and 

after the implementation of a BSS in Montreal, Canada. The study found that bikeshare 

users had the same risk level of collision as private cyclists. The study also found that the 

BSS did not reduce the risk of collision over a two-year sample period, but also stated that 

the results should be taken with caution as the sample size lacked power. Despite this, the 

study found overall that the implementation of the BSS conferred an overall modal shift 

towards active transport.  

Fishman & Schepers (2016) conducted a study comparing both cycling injury data 

between cities with BSSs and those without, and crash data between bike share users and 
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other cyclists. This research found that when introduced, bike share programs reduce 

overall cycling injury risk and that bike share users are less likely than other cyclists to 

sustain fatal or severe injuries. Reasons suggested for this finding were that bike share 

cycling speeds are slower than other cyclists, providing increased reaction time for both 

cyclists and motorists to avoid collision. Furthermore, with the introduction of a BSS, 

driver awareness and cautiousness towards cyclists tends to increase as cycling becomes 

more common. Also, motorists tend to perceive bike share users as being less experienced 

and/or tourists, and therefore behave more cautiously in their encounters. Although 

evidence that bike share may be safer than private cycling exists, it needs to be studied 

further to understand the underlying mechanics. 

2.3. Big Data 

 The term ‘Big Data’ has become a buzzword in modern scientific rhetoric for its 

ability to solve the problem of under sampling. Big Data refers to the processing and 

analysis of extremely large datasets to reveal trends, associations, and ultimately human 

behavior. Such datasets are curated by several data vendors and can commonly be millions 

of records. Historically, big data has been formally defined in the framework of the ‘3Vs’: 

volume (size of the dataset), velocity (how quickly data are generated or collected), and 

variety (composed from several different sources) (De Mauro et al., 2016). Over time this 

framework has expanded to include other terms, with veracity (quality of the data) being 

most important in a research context.  While an ideal dataset would exemplify all the Vs, 

the reality is that most providers only meet the volume criteria. For example, the SoBi 

Hamilton bikeshare dataset does not meet the “variety” criteria since it gathers data from a 
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single platform – only SoBi bikeshare users. Furthermore, depending on accuracy of the 

GPS receiver being used to collect data, additional processing work may need to be done 

to ensure the veracity criterion is met. In this thesis, the GPS data was processed to filter 

out invalid trajectories, thus mitigating the issue of veracity (described in section 4.1). 

2.3.1. GPS Data 

Cycling demand has been an area of intense study over the past decade. As such, 

researchers have attempted to obtain information about cycling volume and trip counts 

from multiple different data sources including interviews, household travel surveys, 

observations in the field, census data, and with recent advances in technology, GPS 

receivers. With the emergence of smartphones and development of GPS technology, wide 

scale geographic analysis through big data is becoming a reality. GPS data can be collected 

using smartphones, or embedded GPS units within the bicycle itself. The data are typically 

collected by participants contributing to the study or in the context of a specific lifestyle 

(e.g., using bikeshare as a travel mode to and from work, exercise apps, etc.). Real-time 

GPS data are possible to collect, but most analysis is done on uploaded user data. GPS 

trackers typically record location points every 3-5 seconds, creating hundreds or thousands 

of points for a single trip. GPS data do have accuracy problems though, as locational 

accuracy can be several meters off, especially with more affordable devices. GPS data 

analysis for cycling has become mainstream within the past decade, with the first study 

analyzing cycle mobility being released in 2007 (Harvey & Krizek, 2007). This study 

explores route choice behavior and found that positional inaccuracies with GPS data 

require map-matching, a process where GPS points are matched with street infrastructure 
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to become accurate. Other studies from the early stages of GPS data started trying to use 

larger and larger samples to try and capture as much variation as possible. One such study 

was conducted by Menghini et al. (2010), where over 2500 journeys were analyzed. This 

study estimated a route choice model, but also recognized that by failing to collect any 

variables pertaining to the actual cyclist or the trips they made meant several simplifying 

assumptions had to be put in place. Major app companies also collect user GPS data and 

license this data to researchers. Cintia, Pappalardo, & Pedreschi (2013) conducted a study 

using GPS tracks from over 30,000 cyclists extracted from the Strava API. Strava is a 

popular athletic activity tracker which allows users to upload and share their trips. This 

study examined user speeds, ride durations, and average heart rates to quantify user training 

activity. The validity of such apps as a proxy for actual cycling rates has been an area of 

concern. Studies have examined the correlations between the GPS-tracked commuters in 

these apps versus actual ridership, and generally found that there is a moderate correlation 

and amount of explained variation between the two, suggesting they could be an effective 

proxy (Hochmair et al., 2019; Whitfield et al., 2016). 

Data sourced directly from a BSS provider is generally considered to have the 

highest level of detail and scale for analysis (Romanillos et al., 2016). The detail of such 

data allows it to be an effective proxy for cycling commuter behavior and allows for 

thorough examination of different topics. Commonly, studies explore ways to improve 

efficiency in the placement of bike hubs (e.g. Carlos Garcia-Palomares, Gutierrez, & 

Latorre, 2012; Park & Sohn, 2017; Soriguera & Jiménez-Meroño, 2020), the factors 

influencing ridership (e.g., Kutela & Teng, 2019; Mattson & Godavarthy, 2017; Scott & 



M.Sc. Thesis – Matthew Brown      McMaster – School of Geography and Earth Sciences 

 

14 

 

Ciuro, 2019), and understanding route choice behavior (e.g. Chen et al., 2019; Kou et al., 

2020; Wei et al., 2019). Lu et al. (2018) explore cyclist route choice behavior using 161,426 

GPS trajectories collected from SoBi Hamilton bikes. This paper found that bike share 

users are willing to make significant detours in their route compared to the shortest path 

route in order to have greater access to bicycle facilities and lower traffic. Using data from 

New York City’s BSS, a study found that when trying to predict bike usage during the 

morning rush, aggregating trips at the neighborhood level gives substantially worse 

predictions than when looking at individual bike hubs, providing an argument for keeping 

analysis at the high spatial detail bike share data affords (Ghanem et al., 2017). 

User privacy is also a significant concern in GPS data. In many cases, individual 

user trips are not able to be extracted. Data providers usually aggregate results to preserve 

anonymity, which means it becomes impossible to know the trip purpose or route choice 

at an individual level for those datasets. As privacy laws are becoming ever more relevant 

in mainstream attention (e.g., 2018 Facebook-Cambridge Analytica data scandal), the 

future of GPS data collection and the level of individual detail that can be extracted is 

uncertain. 

2.4. Determinants of Bike Share Demand 

2.4.1. Built Environment 

 Built environment characteristics such as presence of cycling infrastructure, land-

use, street network connectivity, aesthetics, and destination accessibility have consistently 

been identified as primary indicators of cycling trips (Eren & Uz, 2019; Saberi et al., 2018; 
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Ton et al., 2019; Zhao & Li, 2017). The type of cycling infrastructure available affects 

travel behavior in different ways (Buehler & Pucher, 2012). For example, on-street bike 

lanes are generally more attractive to cyclists than off-road facilities, even if that means a 

higher travel time (Lu et al., 2018; Tilahun et al., 2007). Using census commuter data from 

2000 to 2010, one study found that block groups which had on-road bicycle lanes installed 

during the study period saw significant increases in cycling commuter traffic compared to 

block groups which had no infrastructure or just shared lane markings (Ferenchak & 

Marshall, 2016). Proximity to bike-friendly pathways have also been linked to increased 

housing prices, suggesting there is an inherent monetary value to having increased cycling 

infrastructure accessibility (Welch et al., 2016). Guidon et al. (2018) examined the efficacy 

of electric bicycles and the factors that dictate demand using eight months of transaction 

data from a BSS based in Zurich, Switzerland. They found that most of the trips were for 

commuting purposes and had distances that were directly comparable to traditional public 

transportation modes and taxis. Using spatial regression models, they found that economic 

activity, social activity, public transportation service quality, and cycling infrastructure 

availability had the largest impact on demand. Larsen et al. (2013) used a GIS-based 

approach to create a tool that can be used to determine optimal locations for new cycling 

infrastructure using cycling data in Montréal. They used grid cells to aggregate several 

different measures that were found to be related to areas of higher cycling infrastructure 

need. Namely, they used trip volumes, survey reported “priority” road candidates for 

infrastructure upgrades, and collision frequency. They also looked at the presence of 

“dangling nodes”, or places where biking infrastructure ends to identify improvement 
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candidates. Their results found that Montréal’s road network would be significantly 

improved if roads that increase the connectivity of high traffic areas were updated with 

biking infrastructure. 

In terms of the local context of this research, the decision-making process for SoBi 

hub placement in Hamilton involved examining housing density, commuter trends, and 

consultations with both city planners and the public alike (SoBi Hamilton FAQ, 2019). 

Using multilevel statistical models, Scott & Ciuro (2019) explored the factors that 

influence daily ridership at SoBi hubs in Hamilton. They found that proximity to key areas 

of the city (i.e., McMaster University and the downtown core) had significant impacts on 

ridership. Interestingly, the population count between ages 15 - 64 within 200m of the hubs 

was found to be insignificant, whereas employee counts within the same buffer distance 

was significant. This implies increased access to activities is a strong motivator for 

ridership at a hub, but the actual number of people living in the immediate vicinity is not.  

2.4.2. Accessibility 

 Transportation infrastructure systems can be considered as a type of network. An 

important consideration during network analysis is the underlying spatial characteristics of 

the network and how they become affected by planning decisions. A key component that 

dictates active travel usage is the relative accessibility of links in the network for that mode 

of travel.  For example, cycling accessibility is believed to be a major determining factor 

for transit use (Handy, 2005). Gravity-based measures of accessibility (also called Hansen-

type or potential measures) were first defined as “the potential of opportunities for 

interaction” (Hansen, 1959). Gravity-based measures assume that opportunities are 
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complementary to each other, and that travel time/distance is a cost that should be 

minimized or kept within a threshold (Saghapour et al., 2017; Vale et al., 2015). Thus, this 

type of measure can be applied to forms of active travel, such as cycling and walking (Vale 

et al., 2015). An example of this would be accessibility to jobs, where being closer to areas 

with higher employment opportunities corresponds to higher accessibility. Gravity-based 

accessibility measures typically take the form of the following expression, introduced by 

Hansen (1959): 

 𝐴𝑖 =  ∑ 𝑂𝑗𝑓(𝐶𝑖𝑗)

𝑗

 (1) 

where Ai is the accessibility of place i, Oj are opportunities found at place j, Cij is the cost 

of traveling between i and j, and f(Cij) is an impedance function (also called distance decay 

function). The impedance function that is used to weight opportunities can vary, however 

much of the cycling literature uses travel distance as the impedance function. As a major 

driving factor behind travel behavior of individuals, many papers have proposed different 

methods of quantifying gravity-based accessibility and subsequently how to use these 

methods to understand trends in travel behavior and urban form. As Tobler’s first law of 

geography states, “everything is related to everything else, but closer things are more 

related than distant things” (Tobler, 1970). Therefore, finding a way to control for spatial 

effects when measuring accessibility is a key consideration.  Scott & Horner (2008) used 

accessibility indices to investigate if the locations of goods, services, and other 

opportunities are distributed across American cities in an equitable way for different socio-

economic groups. They made use of gravity-based measures in conjunction with a distance 
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decay model. Interestingly, they found that groups conventionally thought to suffer from 

worsened accessibility (i.e., low-income households) experienced higher accessibility 

compared to counterparts in the city tested at the time of the study.  Novak & Sullivan 

(2014) demonstrated a measure for evaluating accessibility to emergency services at the 

individual link level, as much of the existing literature had previously evaluated 

accessibility at the scale of nodes or zones in the network, which is inadequate for 

describing inherently link-based roadway infrastructure (e.g., Xie & Levinson, 2007). 

Their measure evaluated the system-wide contribution of every link in the network in terms 

of closeness to critical facilities, topology of the road network, and physical/spatial 

characteristics of the link, as well as its neighbors. 

 Due to a surge of popularity over the past two decades, researchers have started 

making measures specific to cycling. Lowry et al. (2012) introduced the first methodology 

specifically for measuring bicycle accessibility, termed “bikeability”. This measure 

assesses the entire bikeway network for comfort and convenience by first calculating the 

bicycle level of service for the entire network, and then using the result in a Hansen-type 

accessibility model. In a similar vein, Winters et al. (2016) created the “Bike Score®” 

metric to try and predict the amount of within-city variability of cycling commuters. Bike 

Score is calculated from a weighted average of 3 different metrics: amount of biking 

facilities, topography, and connectivity. As this measure was based on existing 

methodology for a popular walking metric called “Walk Score®”, the study found synergy 

between promoting both walking and cycling as active travel methods, as both shared 

similar results in terms of which variables had the most predictive power for cycling mode 
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share. Although walking and cycling have similarities, speed and distance of trips vary 

significantly between these modes and can be in direct competition with each other when 

the trip distance is short (Muhs & Clifton, 2015; Wu et al., 2019). 

Another way to define the importance of a link in a transportation network is by 

quantifying how centrally located it is. This idea can take the form of a centrality index by 

considering the number of shortest paths that connect the nodes within the network that 

pass-through a given link. This concept of a stress centrality index was first introduced by 

Shimbel (1953). However, this measure has issues when applied in the context of a 

transportation network. Namely, not all nodes generate the same number of trips, and, in 

line with Tobler’s first law of geography, as distance increases, the amount of interaction 

between nodes decreases significantly. Sarlas & Axhausen (2016) addressed both concerns 

by creating a measure called “Accessibility-weighted centrality”. Distance interactions 

were handled by using a distance decay function that was derived from Halás et al. (2014). 

In their application of this measure, they used 2010 census work commute trip data for 

Switzerland and found it to perform significantly better than the unaltered stress centrality 

measure, providing the best fit of all model comparisons.  

Although distance-decay is the most prominent impedance function used in cycling 

accessibility studies, many studies exist that use different decay formulations. Wu et al. 

(2019) tested different forms of impedance functions and their ability to predict the number 

of cycling trips using BSS GPS data from Shenzhen, China. They compared 3 different 

regression models: one that used accessibility without a distance-decay function, one that 

used exponential distance decay, and one with a logarithmic normal distribution function 
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proposed by the authors. They found that their formulation of distance decay performed 

slightly better than the exponential decay model and suggest that researchers should think 

closely about the underlying behavior of cyclists when deciding which impedance function 

to use. 

2.5. The “Spatial” Problem 

 It has been long understood that when dealing with geographic/spatial data, the 

analyst must account for spatial effects during modeling in order to make valid predictions. 

In regression analysis, independence of the residuals is a fundamental model assumption 

that must be met. In geographic data (observations collected from points or regions located 

in space), it is often the case that measured phenomena experience correlation to nearby 

observations. This becomes an issue when spatial data is incorporated into a nonspatial 

statistical model, as it usually results in spatial autocorrelation of the residuals. When 

spatial dependence is ignored, it can lead to models with coefficient estimation bias, as 

well as bias in the standard errors (Anselin, 1988b). The problem of spatial autocorrelation 

has been understood for decades, as Geary (1954) pioneered this work through his study 

of mapped residuals. The usage of autocorrelation diagnostic tools, such as Moran’s I 

(Moran, 1948), have been implemented in thousands of papers, and the bike share literature 

is no exception (e.g., McKenzie, 2019). 

Over the years, different strategies have emerged on how to handle spatial 

autocorrelation. Early work on spatial econometric models was pioneered by Anselin 

(1988), which gave rise to the spatial auto-regression (SAR) model. In the field of 

econometrics, there are generally two different approaches: “bottom-up” or “top-down”, 
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with the “bottom-up” or “specific to general” approach being predominant in the literature 

(Larch & Walde, 2008). In the “bottom-up” approach, a model without any spatially lagged 

variables is created (commonly ordinary least squares linear regression). Next, Lagrange 

Multiplier tests (Anselin, 1988a) are used to see if a spatial error or lag model fits the data 

more appropriately. If a statistical test on the residuals to test for spatial autocorrelation has 

a rejected null hypothesis, then either a spatial lag or error model is specified.  For most 

spatial techniques, a weighting scheme that defines neighbors must be specified, such as 

taking the inverse distance between observations or through identification of nearest 

neighbors. 

The concept of eigenvector spatial filtering (ESF) was first introduced by Griffith 

(1978) as a doctoral thesis. Over time, the concept has evolved and been demonstrated to 

work well in regression analysis for the purpose of removing (i.e., “filtering”) spatial 

effects from the variables in a model (Getis & Griffith, 2002). Using a spatial weights 

matrix and its associated Moran’s I coefficients (MCs), a series of latent map patterns and 

their corresponding eigenvectors can be derived and used as a proxy independent variable 

in the model (Cupido et al., 2019). Each eigenvector has a different corresponding 

uncorrelated map pattern that displays systematic variation, with high and low extreme 

values corresponding to high and low values of MC for the corresponding spatial weights 

matrix. Typically, candidate eigenvectors are selected to create a spatial filter that absorbs 

autocorrelation of the residuals. The resulting spatial filter becomes an independent 

variable in the model that absorbs autocorrelation of the residuals. ESF has benefits over 

standard spatial econometric approaches, with the most significant one being that it allows 
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analysts to use standard linear regression models with OLS, while also controlling for the 

assumption that residuals are uncorrelated. This benefit is considerable over other 

approaches because the OLS model is simple (i.e., avoiding the usage of non-standard 

probability functions), has a well-established theoretical backing, and a litany of 

diagnostics to aid in interpretation (Griffith, 2017).  Chun & Griffith (2014) formally 

addressed the quality of parameter estimates from regression models using ESF. They 

found that ESF demonstrated the statistical properties of unbiasedness, efficiency, and 

consistency. Chun, Griffith, Lee, & Sinha (2016) explored the processes of eigenvector 

selection. Their paper found that when the candidate eigenvector set was well specified, it 

can effectively account for spatial autocorrelation. As demonstrated by Paez (2019), ESF 

can be used as an exploratory tool to identify potentially omitted significant model 

variables and was argued to be more effective at doing this than examination of model 

residuals. 

3. Data 

3.1.  Study Area 

Hamilton is a densely populated city located in the southern region of the province 

of Ontario, Canada. Hamilton is located at the westernmost end of Lake Ontario with most 

of the city, including the downtown core, being near the southern shore. Hamilton Harbour 

exists at the northern extent, and the Niagara Escarpment bisects the city along the East-

West direction, creating upper and lower regions from the sharp elevation change. The 

downtown core of the city is located entirely below the Niagara Escarpment. As of 2016, 

the population of Hamilton was 536,917, making it the ninth most populous city in Canada 
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(Statistics Canada, 2017). Before 2015, the only major form of public transportation 

existing within the city was busses operated by the Hamilton Street Railway Company. In 

an effort to complement existing public transit with an affordable and sustainable option, 

as well as providing greater first and “last mile” connectivity by filling in transit gaps, 

counsellors at the City of Hamilton voted to spend $1.6 million using a grant from 

Metrolinx to cover the start-up costs for the SoBi (Social Bicycles) Hamilton Bike Share 

program (Craggs, 2013). By March of 2015, the program officially launched after passing 

a trial period starting in January 2015. Since the program’s inception, it has continued to 

grow. The most recent expansion of the service was completed in late 2017 through the 

“Everyone Rides Initiative”, resulting in the creation of new hubs and expansion of the 

bike fleet (Vize, 2017). SoBi Hamilton bike share works by allowing users to unlock bikes 

from a network of hubs located across the city at strategic locations. Users choose a 

payment plan, unlock their bike from the hub, and may ride it anywhere within the official 

service area. Users end their trips by returning the bike to any of the hubs located in the 

city and locking it back up. Users can optionally decide to leave their rented bike anywhere 

in the service area and incur a service fee.  In order to use one of the bikes, users create an 

account using the website or mobile app, and then pay electronically. Each bike is equipped 

with a GPS receiver to track its location. Real-time public web maps are also available that 

update how many bikes each hub has at a given moment. Using this hub volume 

information, SoBi employees gather and redistribute the bikes across the network to 

accommodate supply and demand. Due to these properties, SoBi Hamilton would be 

classified as a Generation III bike share program in a transitionary state towards becoming 
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Generation IV. As of September 2019, there are 132 hubs and approximately 825 bikes in 

operation.  

The official SoBi service area is located primarily in downtown Hamilton, below 

the Niagara Escarpment, but also extends across to Dundas in the west, covering the entire 

area of Westdale surrounding McMaster University. There is also a small strip of service 

area that exists along Van Wagner’s Beach.  The SoBi Service area and hub network is 

shown in Figure 2. 

3.2. Cycling Network 

A cycling network was created for this thesis using both road and trail data to 

capture accurate cycling routes using the map-matching tool provided as part of 

Dalumpines and Scott’s (2011, 2018) GIS-based Episode Reconstruction Toolkit (GERT). 

Open data from Hamilton’s Open Data Portal was used for the road network and was 

subsequently enriched with another open dataset containing bikeway information, such as 

the specific bike lane classification. (Open Hamilton, 2018). Private data sets were acquired 

from the McMaster Library’s Maps, Data, & GIS Centre and from the City of Hamilton to 

further enrich the network with accurate trail features. The CanMap® Content Suite was 

additionally used to enrich the network with detail at various locations around Hamilton, 

including more accurate line topology in some areas (DMTI Spatial, 2016). Further, 

manual digitization of the network was done in high traffic areas (e.g., McMaster 

University) to create “unofficial” trail features that were commonly used by cyclists, as 

informed by satellite imagery and raw GPS tracks. The network was then thoroughly 

inspected to ensure accurate topology and then manually edited accordingly. The 2016
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Figure 2: Study Area 
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Canadian Census and the City of Hamilton’s parcel data was used to further enrich the 

network with population and employment information that was used to test different types 

of accessibility variables. This process is described in section 4.5.2. Upon completion, the 

network was converted into a network dataset in order to support network analysis within 

the ArcGIS® environment. ArcGIS® is a desktop geographic information system (GIS) 

software developed by Esri. A network dataset is a GIS dataset created within the ArcGIS® 

Network Analyst framework. Such datasets typically consist of lines representing traffic 

routes (e.g., roads and trails), junction points (e.g., road intersections), and attributes that 

are relevant to network analysis such as impedance and flow capacity, as well as topology. 

For this thesis, the network dataset constructed allowed for bi-directional travel along the 

network in order to capture trips more accurately, as cyclists are not as strictly constrained 

to the rules of traffic as automobiles are. The final network dataset consisted of 22,172 

links and 16,834 junctions. 

3.3. GPS Dataset 

 As SoBi Hamilton is a third generation BSS that is currently in a transitionary state 

towards becoming fourth generation, its bike fleet is GPS receiver equipped. This means 

that each bike can have its XY coordinates tracked in real time. This data is then stored for 

every trip that occurs from its origin to destination. Despite many past studies using stated 

and revealed preference surveys, which are cost effective but limited in what information 

can be collected about trips, this thesis takes advantage of SoBi user GPS data, which 

reveals the actual routes that users take. To ensure activity from all seasons were captured 
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and a large sample size was used, GPS data from all trips in the year 2018 were analyzed 

(January 1st to December 31st, 2018). 

 GPS trajectories were obtained from SoBi Hamilton. The original 2018 dataset 

contained 347,079 unique GPS trajectories. Upon processing the data, which is described 

in detail in the “Methods” section of this thesis, the total number of trips considered in the 

analysis was 286,587. This study used the map-matching tool provided in GERT to 

generate individual routes travelled by SoBi riders that exactly follow the underlying 

cycling network described in section 3.2. 

4. Methods 

4.1. Extracting Trip Segments from Raw GPS Data 

 Initially stored as .GPX files, the data required significant processing before it could 

be analyzed in a meaningful way. To accomplish this, the GIS-based Episode 

Reconstruction Toolkit (GERT) developed by Dalumpines & Scott (2018) was used. The 

data were first converted to a useable format (.CSV) using Python. Then, they were updated 

to have accurate trip time information using accompanying trip episodes with RStudio®. 

Next, the data were run through a series of GERT modules in ArcMap. First, the GPS 

Preprocessing Module was used. This module removes invalid points from GPS data using 

data cleaning algorithms to filter out valid trajectories. From the documentation, invalid 

points include redundant points (points with the same coordinates), and outliers (points 

with speed greater than or equal to 50 m/s).  Next, the data were run through the TUD-GPS 

Trip Segments Extraction Module. This module extracts trip segments (sequences of GPS 
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points in a travel episode) from valid GPS trajectories using start and end times of trip 

episodes. The output at this stage is a point shapefile for each unique GPS trip segment. 

This data can be used to visualize travel routes and serves as the input to the map-matching 

tool discussed later. 

4.2.  Extracting Network-Matched Route Using GPS Trip Segments 

The GIS-based map-matching tool, developed originally by Dalumpines & Scott 

(2011) and incorporated later into GERT (Dalumpines and Scott, 2018), was used to 

generate cycling routes from the GPS trip segments along the road network. This tool, 

developed using the Python scripting language, also generates various route attributes for 

each input trip segment, including route distance, route directness, number of turns, mean 

distance between intersections, and the longest road travelled for each specific route. The 

tool produces route shapefiles by executing a series of steps based on the shortest path 

algorithm in the ArcGIS® Network Analyst extension. The only inputs required for the 

map-matching toolkit are GPS trajectories with a start and end point, and an input that can 

successfully have the shortest path algorithm run on it, such as a network dataset. The 

general process for map-matching is demonstrated in Figure 3. First, origin and destination 

points of the trip are identified as stops, and then a polyline feature is generated between 

the stops and all the GPS points comprising the trip. This polyline represents a hub-to-hub 

trip (Figure 3a). Next, a buffer is created around the polyline using a default distance 

specified by the user. The buffer’s purpose is to create a series of “barrier” points around 

the route by performing an intersection with the road network (Figure 3b). The observed 

route is then created along the road network using the ArcGIS® Network Analyst  
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Figure 3: The conversion process from GPS trajectories to an observed route using the map-

matching tool 

Note. Adapted from “Understanding bike share cyclist route choice using GPS data: Comparing 

dominant routes and shortest paths”, by Lu, W., Scott, D. M., & Dalumpines, R., 2018, Journal of 

Transport Geography, 71, 176. 
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extension’s shortest path algorithm to generate a route between the two stops constrained 

by the links in the barriered area (Figure 3c). Dalumpines & Scott (2011) found that a 50m 

buffer distance produces accurate results for GPS data with a horizontal accuracy of 10m, 

which is comparable to the quality of the SoBi GPS data. For this reason, 50m was chosen 

as the default buffer distance for this study. 

4.3. Generating Trip Counts 

 The output generated from the map-matching process was a folder containing Esri 

shapefiles for each individual route. With such a large volume of data, it is prudent to 

convert it into a more efficient file format. The data was converted into the Esri 

Geodatabase format, allowing for improved organization, and decreased storage space 

requirements. Subsequent processing was also shifted to ArcGIS® Pro which uses Python 

3.6 to drastically improve processing speeds. Once converted, each route polyline feature 

class was individually intersected with the road network. This process “breaks” each route 

into the network road segments (i.e., links) that comprise it using the network junctions of 

the underlying road network as breakpoints. Before intersecting, each route has solely a 

start and end point at the respective beginning and end locations of the trip. After 

intersecting, there are start and end points at every location where the route polyline 

overlaps with a junction in the road network. This process is shown in Figure 4. Once this 

process is complete, each polyline feature is then merged. Since every segment of the 

intersected route is assigned an ID based on the road network, merging the intersected 

result together creates a record for every time a route crossed a link in the network. To find  
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Figure 4: Demonstrating route breakpoints before and after the intersect process
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the total number of observed trips on each link, each unique occurrence of a route 

segment that travelled on each link was summed. 

4.4. Creating the Dependent Variable 

 Regression analysis was used to predict the response variable: 2018 SoBi bicycle 

traffic (each unique trip) on every link in the cycling network. The original response 

variable was very positively skewed with a mean of 873 and a median of 33. The minimum 

value was 1 and the maximum was 29,677. When trips outside of the SoBi service area 

were removed, the data remained positively skewed, but the average shifted to 1,378, and 

the median became 320. Thus, the response variable did not follow a normal distribution. 

As a result, a count-data model (e.g., Poisson, negative binomial, etc.) could be used, or 

the response variable could be transformed to allow a linear regression model to be valid. 

The latter option was chosen in this analysis because of the underlying spatial structure of 

the data and since spatial models for count data are rare in the literature (Guidon et al., 

2018). Given that the number of trips on a link is a non-negative variable, the dependent 

variable was transformed to ln(𝑅𝑖 + 1), where 𝑅𝑖 is the number of unique SoBi trips in 

2018 on link 𝑖. One was added to this value to ensure that no zeroes are included in the 

analysis. 

4.5.  Creating the Independent Variables 

4.5.1. Built-Environment 

 Two categories of built-environment explanatory variables were derived from the 

road network data. The first was the classification of links as being either major, minor, or 
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a trail. The second was the bike infrastructure classification. Because these two variables 

are closely interrelated (e.g., major links often have some type of infrastructure on them), 

these two variables were combined as a sequence of dummy variables. The reference level 

for the dummy variables was set to be major roads with no biking infrastructure, as these 

links would experience high levels of automobile traffic without any safety measures, 

making them much less attractive to cyclists, as they generally prioritize safer routes when 

making travel decisions. Table 1 shows the different types of bikeway infrastructure 

classifications and the number of trips taken by cyclists on each unique link segment for 

each classification. It also shows the average number of trips, the total number of trips per 

kilometer travelled, the number of total link segments, and the percentage of links that are 

located on either a major or minor link segment for each bikeway classification. The trail 

links are located on neither of these road designations, as they do not experience 

automobile traffic. 

 Initially, a sequence of 17 different levels of bikeway classification dummy 

variables were built. Stepwise regression was implemented to determine which 

combination of dummy variables resulted in the lowest prediction error. All levels of the 

dummy variable that were left out of the analysis were insignificant in the model and 

therefore assumed to be the same statistically as the dummy reference level. 

4.5.2. Accessibility 

 Three different accessibility measures were created and tested in the model based 

on different criteria: population, employment, and hub-trip distance accessibility.  

Population and employment accessibility were created using 2016 Canadian census data  
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Table 1: Bikeway classification statistics 

Bikeway type 
Total 

Trips 

Mean # 

Trips 

Trips 

per Km 
#Links %Major %Minor 

Designated BL 2,198,516 4,388.26 41,024 501 75.05 24.95 

Cautionary Un-Signed 

BR-HT 
74,171 1,765.98 21,608 42 100 0 

Signed On-Street BR-

MHT 
13,432 447.73 5,789 30 100 0 

Unmarked Paved 

Shoulder BL 
342 19 123 18 100 0 

Cautionary Un-Signed 

BR-MT 
161,509 2,990.91 25,265 54 12.96 87.04 

Signed On-Street BR-

LT 
806,677 2,216.15 21,947 364 16.48 83.52 

Cautionary Un-Signed 

BR-LT 
33,874 294.56 2,952 115 10.43 89.57 

Trails on McMaster 

Campus 
228,167 1,741.73 27,271 131 0 0 

Paved Multi-Use 

Pathways 
305,352 1,411.76 6,911 216 0 0 

Unpaved Multi-Use 

Pathways 
23,194 644.28 2,585 36 0 0 

Trails in Public Parks 153,355 215.70 4,219 709 0 0 

No Infrastructure 2,295,316 460.08 3,935 4989 29.99 70.01 

Note. BL = Designated bike lane, BR = Bike route, HT = High traffic, MT = Medium traffic, MHT 

= Medium/high traffic, LT = Low traffic 

for the number of people between ages 15 and 64 living in residential areas and the number 

of people working in employment areas respectively. The population measure was chosen 

because it represents the amount of people near the hub that might use a BSS. The 

employment measure was chosen because it acts as a proxy for the attractiveness of an area 
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near a hub. This data was created using the methodology described in Scott & Ciuro (2019), 

which is summarized as follows. First, 200m buffers were created around each of the SoBi 

hubs in the network using ArcGIS® Pro. Then, the data was filtered such that only people 

between the ages of 15 and 64 were included, as these ages are assumed to correspond to 

those who most actively use bikeshare. For the population statistic, instead of assuming 

that people are evenly distributed throughout a dissemination area (DA), the lowest level 

of geography that data is released from the Canadian Census, the population data was 

allocated to residential area polygons. The buffers were then intersected with the residential 

area polygons to create a cross-tabulation of population from DAs based on the proportion 

of residential area inside the buffer. The cross-tabulation was subsequently aggregated to 

the hub level. This process was also used for obtaining the working population inside the 

buffer, but employment areas were used instead of residential. Furthermore, census records 

were individually aggregated by their ‘place of work’ at the DA level. The employment 

and residential area polygons were created using City of Hamilton parcel data. The third 

accessibility measure, called hub-trip distance accessibility, was derived from SoBi hub 

trip count data. SoBi keeps track of the number of starting and ending trips at each hub 

across the city. In this thesis, every unique trip to a hub (either start or end) was considered 

in the creation of this variable to ascertain the overall usage trend. 

 Population, employment, and hub-trip distance accessibility were all calculated 

using the same general process. A methodology by Scott & Horner (2008) was used to 

create gravity-based accessibility measures using a negative exponential distance decay 
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impedance function. As described in section 2.4.2, Accessibility is calculated according to 

the following model: 

 𝐴𝑖 =  ∑ 𝑂𝑗𝑓(𝐶𝑖𝑗)

𝑗

 (1) 

where 𝐴𝑖 is the accessibility of place 𝑖, 𝑂𝑗 are opportunities found at place 𝑗, 𝐶𝑖𝑗 is the cost 

of traveling between 𝑖 and 𝑗, and 𝑓(𝐶𝑖𝑗) is an impedance function. In this study, 𝑓(𝐶𝑖𝑗) is 

given as exp (−β𝐶𝑖𝑗), which is an exponential decrease function controlled by the decay 

parameter β. Instead of choosing an arbitrary value for β, a value was computed using the 

unique hub-to-hub trip distances according to the following model: 

 𝐼𝑘 = 𝛼 exp (−β𝑡𝑘) (2) 

where 𝑘 is the distance category, 𝐼𝑘 is the number of trips for category 𝑘, and 𝑡𝑘 is the trip 

distance in 100-metre increments for category 𝑘. The β value determined using this model 

was 0.000628, as trip counts sharply decrease as the distance of the trip increases. 

After determining the decay function for the accessibility model, centroids were 

created for every link that had at least one trip in the network. Next, an origin-destination 

(OD) cost matrix was constructed using ArcGIS® Network Analyst between each link and 

SoBi hub. This data was then exported into RStudio®, where accessibilities relative to 

population, employment, and the total number of unique hub trips were calculated using 

Equation (1). In addition to the accessibility measures, the OD cost matrix was used to 

create variables for network distance to the closest bus stop and closest hub, as these two 

factors were assumed to be large motivators of BSS usage for a specific link. Additionally, 
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the network distance to McMaster University and Hamilton’s Central Business District 

(CBD) were calculated, as these variables were found to be significant in prior research on 

SoBi Hamilton (Scott & Ciuro, 2019). After examining multiple model diagnostics, 

including variable correlations and overall significance, the hub-trip distance accessibility 

variable was determined to be the best predictor of trips out of all tested accessibility 

measures, as it captured the overall usage trend the best and contributed by far the highest 

increase in R². Looking at the VIF measure, both the population and employment 

accessibility measures were found to be multicollinear with hub-trip distance accessibility, 

and as such were dropped from the model. Both the distance to nearest hub and bus stop 

variables were found to be significant explanatory variables and were kept in the model. 

Interestingly, although identified as significant variables in a past study of SoBi Hamilton 

cycling determinants (Scott & Ciuro, 2019), both network distance to McMaster and to the 

CBD were not as effective predictors of traffic as the hub-trip distance accessibility 

measure, and thus dropped from the model. This is likely due to the hub-trip distance 

accessibility variable capturing the spatial trend of increased usage around McMaster 

University and the downtown core more precisely than simply measuring a base distance 

to a single point. 

4.6. Spatial Predictive Modeling 

 Two statistical models were created to predict total trips on links in the network. 

Model 1 includes all links with at least 1 trip and Model 2 includes only links intersecting 

or inside the official SoBi service area. This choice is discussed more thoroughly in section 

5.2. In this thesis, a “bottom-up” approach was used for statistical analysis. First, an OLS 
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regression model was created and specified for all significant variables. Next, a Moran’s I 

test for residual autocorrelation was conducted. The p-value returned was statistically 

significant, thus rejecting the null hypothesis that the spatial processes promoting the 

observed values is due to random chance. The returned MC was 0.6, indicating a clustering 

of similar values. Therefore, the assumptions of an OLS model were violated and spatial 

effects needed to be controlled for. A spatial weights matrix was used to define spatial 

relationships between links across the study area. Since the data used is in the form of a 

road network, commonly used contiguity-based weighting schemes (e.g., Queen’s case, 

Rook’s case, etc.) and distance-based schemes (e.g., Inverse distance, k-nearest neighbors, 

etc.) do not sufficiently capture true spatial neighbors for roads. This is because two roads 

may be very close in proximity, but not actually connect at a shared vertex. Take for 

example, a bridge running over a highway – even though the two road segments intercept 

geometrically, there is not connection point for an actual user of the road network to move 

between them. The choice of weight matrix is a modelling decision, and in this study a 

first-order neighbor spatial weights matrix is used where links that share a start or end node 

with a given link are considered neighbors. 

 Eigenvector spatial filtering was used to mitigate autocorrelation of the residuals to 

produce a final model. A spatial filter was constructed using a linear combination of 

candidate eigenvectors through an iterative stepwise regression procedure that is formally 

described by Le Gallo & Páez (2013). The procedure occurs as follows: 

1. Compute eigenvectors using spatial weights matrix and Moran’s I 
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2. Create a series of counter variables to keep track of eigenvector candidates and the 

spatial filter 

3. Select a candidate eigenvector for inclusion in the spatial filter and estimate an OLS 

model using it 

4. If the eigenvector coefficient meets a pre-determined significance level (e.g., p-

value ≤ 0.10 was used in this study), then combine the existing spatial filter with 

the selected eigenvector and proceed to the next step, otherwise return to step 3 and 

update the eigenvector counter 

5. Regress the model again using the existing iteration of the spatial filter. Check the 

MC value, and if it is less than the specified tolerance level (0.5 was used in this 

study, indicating no spatial autocorrelation) then stop checking candidate 

eigenvectors, otherwise, update the spatial filter counter and return to step 3 

6. The final spatial filter is used as a single explanatory value in the model that 

removes autocorrelation from the residuals and always has a model coefficient of 

1.0. 

5. Results 

5.1. Data Processing 

 In terms of total data processed, 286,587 individual trips were successfully map-

matched, meaning 60,492 (~17%) of the original GPS trajectories were removed during 

processing. As described in section 4.1, GIS-based Episode Reconstruction Toolkit 

(GERT) modules filter out invalid GPS trajectories. In this analysis, GPS extraction 

through GERT removed 48,693 (~14%) of the GPS trajectories from the analysis. The 
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remaining 11,799 (~3%) trips were lost during the map-matching process. This loss could 

have been due to issues with network topology (including specified buffer size during map-

matching), or GPS errors that were unsuccessfully filtered out during the extraction process. 

Figure 5 shows the distribution of trips by month. Most trips occur between the months of 

May and October, which corresponds to the warmest months in the study area. This is 

consistent with research showing a positive relationship between warmer weather and BSS 

usage (Miranda-Moreno & Nosal, 2011; Tin Tin et al., 2012). Although most students at 

McMaster University are not present in the study area from the end of April to the 

beginning of September, this is the period with the highest ridership. This suggests that 

although student populations are significant users of the BSS, they are not necessarily the 

core users. 

 

Figure 5: Frequency of processed SoBi trips by month, 2018 
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5.2. Trip Counts Across Hamilton for 2018 

7205 links in the network were observed to have at least 1 SoBi bicycle trip in 

Hamilton during 2018. Official SoBi service areas have been defined and made publicly 

available by the City of Hamilton. For clarity, trip count results are discussed with respect 

to these boundaries, with links divided into categories of either being inside or outside of 

the service areas. Table 2 highlights how the number of unique trip counts by link differs 

depending on its location. 

Table 2: Breakdown of the unique number of trips across the network, 2018 

Division of Links # of Links Mean # Trips Median # Trips 

Entire Dataset 7,205 873 33 

Inside SA 4,553 (63%) 1,338 319 

Outside SA 2,652 (37%) 7 2 

  

From the table, there is a discrepancy in how much SoBi riders used the road network 

outside of the city-defined service areas, as the average and median number of trips 

declines significantly. This demonstrates that riders who tend to go outside of the service 

areas are much fewer in number. Because almost 37% of trips occurred on links outside of 

the service areas, riders that choose to do so appear to be making extensive use of the 

network, meaning these trips could be longer in general and not necessarily utilitarian in 

purpose. From this finding, the modeling process was divided into two separate streams – 
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one that considers all trips successfully map-matched in 2018, and another that removes all 

links outside of the service areas. A map showing the location of all links with at least one 

recorded trip relative to the service areas is shown in Figure 6. In terms of trips occurring 

outside of the service areas, they occur mostly in areas above and below the Niagara 

Escarpment in the East Hamilton area. 

Figure 7 depicts unique SoBi trip counts for individual links across the city in 2018. 

In this visualization, the general trends of cycling usage for 2018 are revealed.  SoBi riders 

tend to make higher use of links that connect them to areas near McMaster University and 

the downtown core.  There is a distinct spatial pattern of usage in latitudinal directions 

(east/west), which is heavily affected by the presence of the Niagara Escarpment, which 

acts as a significant physical barrier to cycling travel because of the sharp elevation increase. 

This map reveals that users typically do not make use of these bikes for large numbers of 

recreational trips, as popular attractions such as Bayfront and Pier 4 Park all contain mostly 

links with fewer than 966 trips.  

. Table 3 shows the top 5 roads in the city based on the total number of unique trips 

across all segments of the road. All roads in this table are considered major roads by the 

City of Hamilton and contain several segments with cycling infrastructure, the main 

category being designated bike lanes. All the roads in this table are in central locations of 

Hamilton’s downtown core, corresponding to areas of high employment opportunities and 

population, except for one. The exception, Sterling Street, is in a residential student area 

and serves to connect the center of McMaster University’s campus to King St. Student use 

in this area has significantly increased usage rates, making it the most popular link. 
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Figure 6: Locations of SoBi trips relative to official service are
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Figure 7: Cycling trip counts across the city. The darker the red and thicker the line is, the more unique trips occurred on it



M.Sc. Thesis – Matthew Brown      McMaster – School of Geography and Earth Sciences 

 

 

 

45 

 

Table 3: Top 5 highest SoBi traffic roads in Hamilton, 2018 

Rank Name # Segments Unique Trips Mean Trips Infrastructure 

1 King Street 210 581,416 2,769 BL, SBR, HCOS 

2 Cannon Street 80 543,386 6,792 BL 

3 Bay Street 39 273,660 7,017 BL, SBR 

4 Sterling Street 11 255,476 23,225 BL, SBR 

5 Main Street 192 243,069 1,266 BL, HCOS 

Note. The bolded value in the “Mean Trips” column highlights how Sterling Street has a 

significantly higher average trip value than other high traffic roads. BL = Designated bike lane, 

SBR = Signed bike route, HCOS = High traffic cautionary un-signed bike route   

5.3. Model Specification and Results 

 Two OLS regression models were estimated with the use of eigenvector spatial 

filtering (ESF) to predict the log-transformed number of bicycle trips on each link in the 

network for 2018 – one for all links with at least one trip (Model 1), and one for only links 

inside the officially designated SoBi Hamilton service areas (Model 2). 

Explanatory/independent variables that were removed from the model were found to either 

be multicollinear with other variables (through examination of VIF), or have general model 

insignificance (i.e., p-value > 0.05). Furthermore, after filtering spatial autocorrelation, 

some levels of the bike infrastructure dummy variable became insignificant, implying that 

they may have only been significant in the original model due to autocorrelation. Model 1 
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and 2 coefficient estimates/summary statistics are presented both before and after the 

implementation of a spatial filter for comparative purposes. These results are shown in 

Tables 4 and 5 respectively. 

 Minor roads with a signed on-street bike route were found to be significant in 

Model 2, but not in Model 1. This is likely explained by the removal of several links from 

this classification that had a low number of trips in peripheral areas. The average number 

of trips on this classification inside the service areas was 3,320. When links outside of the 

service areas were included, the average decreased to 2,501, demonstrating a substantial 

usage decrease for this road classification outside of the service areas. This may explain 

why minor roads with signed on-street bike routes was a significant predictor in Model 2, 

but not in Model 1. In both model scenarios the Moran’s I coefficient (MC) indicated that 

spatial autocorrelation of residuals was present in the model before implementation of the 

spatial filter. In both cases, once the spatial filter was included, the new MC indicated that 

the null hypothesis (i.e., the spatial processes promoting the observed pattern of values due 

to random chance) could not be rejected. Thus, eigenvector spatial filtering alleviated 

issues of autocorrelation in both models. 

 For conciseness, only the Model 1 (filter applied) output will be interpreted since it 

is the more inclusive form of the model in terms of network coverage. However, it should 

be noted that Model 2 (filter applied) performed well, with a high adjusted R squared value 

(0.78), full explanatory variable significance at the p < 0.001 level, and reasonable standard 

error. The adjusted R squared value of Model 1 was 0.89, indicating approximately 89% 

of the variance in the response variable can be explained by the explanatory variables. 
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Table 4: Regression output for bike trip prediction by link (Model 1) 

Dep. variable: log (bike trips + 1) 

No Filter Filter Applied 

Coef. t statistic Coef. t statistic 

(Intercept) 3.642 59.957*** 3.789 105.572*** 

Spatial Filter - - 1.000 115.942*** 

Hub-Trip Accessibility (×10-3) 0.026 57.631*** 0.026 94.417*** 

Net. Dist. to Closest Hub (×10-3) -0.724 -37.689*** -0.780 -68.505*** 

Net. Dist. to Closest Bus Stop (×10-3) -0.234 -3.502*** -0.329 -8.342*** 

Cycling Infrastructure on Roads (Reference: 

Major Roads with No Infrastructure) 

 

    

     Major Road with BL 0.680 7.890*** 0.928 18.202*** 

     Minor Road with BL 1.077 7.529*** 1.126 13.295*** 

     Trails on McMaster Campus -0.981 -6.960*** -1.438 -17.226*** 

     Paved Multi-Use Pathways 0.599 5.377*** 0.306 4.645*** 

     Trails in Public Parks -1.897 -27.741*** -1.917 -47.494*** 

     Minor Road with No Infrastructure -1.072 -25.004*** -1.089 -43.205*** 

     Major Signed On-Street BR-MHT -1.553 -5.495*** - - 

     Major Unmarked Paved Shoulder -1.103 -3.027** - - 

Observations 7205 7205 

Adjusted R2 0.68 0.89 

Residual Std. Error 1.535 (df=7193) 0.909 (df = 7194) 

F-Statistic 1388***(df = 11; 7193) 5188*** (df = 10; 7194) 

Moran’s I Coefficient 0.612 0.004 

Note. Hub-Trip Accessibility and Network Distance to Closest Hub/Bus Stop were scaled by a 

factor of 10-3 to improve coefficient interpretation.  

*** p < 0.001, ** p < 0.01 
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Table 5: Regression output for bike trip prediction by link (Model 2) 

Dep. variable: log (bike trips + 1) 

No Filter Filter Applied 

Coef. t statistic Coef. t statistic 

(Intercept) 5.382 61.052*** 5.538 91.306*** 

Spatial Filter - - 1.000 71.081*** 

Hub-Trip Accessibility (×10-3) 0.017 28.852*** 0.016 39.436*** 

Net. Dist. to Closest Hub (×10-3) -2.129 -29.733*** -2.238 -43.863*** 

Net. Dist. to Closest Bus Stop (×10-3) -0.594 -4.388*** -0.701 -7.510*** 

Cycling Infrastructure on Roads (Reference: 

Major Roads with No Infrastructure) 

 

    

     Major Road with BL 1.062 9.035*** 1.133 14.005*** 

     Minor Road with BL 1.123 7.110*** 1.178 10.821*** 

     Trails on McMaster Campus -1.110 -7.325*** -1.325 -12.685*** 

     Paved Multi-Use Pathways 1.003 7.053*** 0.477 4.851*** 

     Trails in Public Parks -2.243 -26.103*** -2.251 -38.113*** 

     Minor Road with No Infrastructure -1.215 -19.027*** -1.201 -27.503*** 

     Minor Road with Signed BR 0.255 2.152* 0.280 3.433*** 

     Major Signed On-Street BR-MHT -1.631 -5.332*** - - 

Observations 4551 4551 

Adjusted R2 0.54 0.78 

Residual Std. Error 1.588 (df = 4539) 1.096 (df = 4539) 

F-Statistic 481*** (df = 11, 4539) 1464*** (df = 11; 4539) 

Moran’s I Coefficient 0.477 0.004 

Note. Hub-Trip Accessibility and Network Distance to Closest Hub/Bus Stop were scaled by a 

factor of 10-3 to improve coefficient interpretation.  

*** p < 0.001, * p < 0.05 



M.Sc. Thesis – Matthew Brown      McMaster – School of Geography and Earth Sciences 

 

 

 

49 

 

Furthermore, all explanatory variables in the model achieved significance at the 0.001 level. 

Before applying the spatial filter, Model 1’s R² value was 0.68, demonstrating a modest, 

but not substantially large increase in model fit solely due to the filter. Since only the 

dependent/response variable in this model was log-transformed, interpretation of model 

coefficients is done by exponentiating the coefficient, subtracting one from the result, and 

then multiplying by 100. This yields a percent increase/decrease in the dependent variable 

for every one-unit increase in the independent variable. 

Hub trip distance accessibility and the two network distance variables were scaled 

by 1000 in order to improve coefficient interpretation and standardize observation values. 

In terms of hub-trip distance accessibility, for every one-unit increase in hub-trip distance 

accessibility, the response variable is observed to increase by approximately 3%. Since 

accessibility is a unitless measure, it is difficult to quantify exactly what a one-unit value 

increase is in concrete terms. However, this result shows that as accessibility of a link 

increases with respect to hub trips, so does the number of trips on the link itself. It is 

important to note that the hub-trip distance accessibility variable was by far the most 

substantial predictor in the model. Before applying the spatial filter, this variable alone was 

able to achieve an R² value greater than 0.5. Since the network distance measures were 

originally calculated in units of meters, the scaling effect converts them into kilometers.   

Understandably, as the network distance to both the closest hub and closest bus stop 

increases, the number of trips decreases (-54% and -28% per unit increase (one kilometer) 

respectively). 
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For the categorical/dummy road infrastructure variables, interpretation is taken 

relative to the reference level - major roads with no biking infrastructure. Thus, there is 

approximately a 153% increase in link trips when the link changes from the reference level 

to a major road with a bike lane. Minor roads with a bike lane demonstrate a 208% increase 

in link trips compared to the reference level. The larger increase observed on minor roads 

compared to major roads can be explained by cyclists wanting to avoid high traffic areas 

in the network for safety reasons, while still benefiting from the bike lane infrastructure. 

Minor roads with no infrastructure have a -66% decrease in link trips compared to the 

reference level. This is likely explained by such roads having poor access to key trip 

attractors (e.g., high population/employment areas) that major roads generally do have. 

Trails on the McMaster University campus and in public parks across the study area also 

have negative coefficients, corresponding to a -76% and -85% decrease in link trips 

compared to the reference level. The trails around McMaster University’s campus are 

narrow and highly used by pedestrians (i.e., students going to and from classes), making 

them less desirable for cyclists, who would more likely follow the road infrastructure, 

which has restricted access to all but university vehicles and public transportation, making 

them very low traffic routes. SoBi users also typically use the bikes for utilitarian trips such 

as commuting, so unless a city park link conferred a useful shortcut, it is not unreasonable 

to expect these to also attract fewer trips than a major road with no infrastructure.  Finally, 

paved multi-use pathways were observed to have a 36% increase in trips compared to the 

reference. Links belonging to this classification are trails that are physically separated from 

vehicular traffic by an open space or barrier, and usually shared with pedestrians or other 
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non-motorized users. Due to the attractiveness and safety such links confer to cyclists, the 

positive coefficient is expected. The following bikeway classifications were not found to 

be significant in either model:  

• Major and minor links with cautionary un-signed bike routes for all traffic 

levels (low – high) 

• Major roads with signed on-street bike routes 

• All links with paved shoulders 

This observation is interesting because it suggests that these types of bikeway 

classifications do not necessarily translate to a significant effect on increasing trips. A 

commonality between all the bikeway infrastructure variables with positive coefficients is 

the presence of a physical barrier or space between them and the actual roadway. 

Conversely, all the insignificant bikeway infrastructure types are ones that exist directly on 

the roadway where vehicular traffic travels. This result supports the idea that having 

increased safety via physical separation or barriers increases cycling traffic. As this thesis 

is concerned with modeling flows on the road network, unpaved multi-use trails were 

removed from the analysis. Furthermore, unpaved multi-use trails are mainly in peripheral 

areas of the network, few in quantity, and used mostly by recreational cyclists. These 

properties make them an impractical addition to the model. 

 Model predictions were checked for validity using a test-train framework. 

Specifically, a repeated k-fold cross-validation technique was used. This means the data 

was randomly split into k-subsets (10 were used in this thesis), and then using one subset 
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at a time, the model was trained and tested to record prediction errors. This process was 

repeated 3 times. The average value of the prediction errors for each subset was then taken 

to get the Root Mean Squared Error (RMSE). The RMSE for the testing set, when rounded, 

was identical to the training model, indicating that the model has predictive value when 

tested out of the sample. An RMSE of 0.909 was observed, meaning that predictions were 

larger or smaller than the observed value by a factor of e0.909 ≈ 2.48 (since the 

transformation was done using the natural logarithm). Although this level of error is 

perhaps too large for specific operational uses, the observed trip counts span a large range 

of values (up to ~ e10 ≈ 22,000, shown in Figure 8), making it useful for planning decisions 

concerning the effects of infrastructure upgrades, and new hubs or bus stops. Figure 8 

shows the observed vs. predicted values of bike traffic for Model 1. The approximate 

clustering of points around the trendline suggests that the model predictions are accurate. 

Additionally, this figure shows that roads with lower values of trips demonstrate a higher 

amount of variation in predicted values.  

5.4. Predictions 

 In order to demonstrate a real-world application of the presented modeling efforts, 

several locations where infrastructure improvement projects are being planned by the City 

of Hamilton had their cycling traffic values predicted before and after a simulated inclusion 

of new cycling infrastructure. Candidate locations were identified using Appendix B of 

Hamilton’s Cycling Master Plan, which outlined proposed cycling network projects and 

ranked them based on priority (City of Hamilton, 2018). The cycling projects used for 

predictions in this thesis are presented in Table 6. These projects were chosen because they  
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existed within the SoBi service area and were indicated as being high priority by the City 

of Hamilton. 

 

Figure 8: Observed vs. predicted bike trips across the entire network. The red line shows the 

regression trendline for the data. 

For clarity, the predictions were split into different scenarios, all using data from 

Model 1. The first scenario is simply the base case, where the regression model presented 

in section 5.3 was used to generate predictions of link trip counts as the links exist presently 

in the network (i.e., existing road infrastructure). The second scenario is focused on 

showing the predicted changes in SoBi ridership for links in each project (numbered 1, 2,  
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Table 6: High priority bike infrastructure projects selected for examination 

 

Project # 

 

 

Project Name 

 

Description 

 

Length 

(m) 

 

2017 Cost 

estimate 

 

1 
Hunter St. from 

MacNab to Catharine 

Add two-way bike lane with 

road diet 
470 $57,678 

2 

Hunter St. from 

Liberty to Claremont 

Access 

Add two-way bike lane with 

road diet (west of Wellington), 

widen street (east of 

Wellington) 

230 $23,071 

3 
Locke St. from King 

to Hunter 

Add bike lane with road diet, 

contraflow lane north of Main 
1275 $5,912 

  

and 3, as per Table 7). The regression equation from Model 1 was used to calculate the 

predicted traffic on each link after changing them from their existing bike infrastructure 

classification (minor road with no infrastructure) to the infrastructure type deemed 

appropriate by the City of Hamilton (minor road with designated bike lane, in all cases). 

An overview of the predictions generated for the links involved in each scenario is 

presented in Table 7, where the “Absolute change” column is calculated between the base 

case predictions and the predictions when the project links are toggled to a minor road with 

a bike lane. This table shows that when link infrastructure in the project areas are changed 

from their original status (minor roads with no infrastructure) into bike lanes, there is a 

substantial predicted increase in the amount of cycling trips - approximately 815%. The 

centralized locations of the project links are a reason why predictions are so high. In fact, 

the predicted links are on average only 64 meters away from the nearest bus stop, and 158 
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meters away from the nearest SoBi hub. Furthermore, the range of hub trip distance 

accessibility values covered by the predicted links is quite high, as only the most centrally 

located links downtown and on McMaster’s campus have higher values. As a form of 

validation for the project predictions, several other links with comparable attributes were 

manually identified that demonstrated base case predictions with similar values. 

Table 7: High priority bike infrastructure projects selected for examination 

 

Project 

 

Link ID 

 

Observed # of 

Trips 

 

 

Base Case 

Predictions 

 

 

Bike Lane 

Predictions 

 

 

Absolute 

Change 

 

1 

1 3,604 1,098 10,052 8,954 

2 8,734 2,363 21,633 19,270 

3 5,101 2,076 19,007 16,931 

4 5,232 1,703 15,584 13,881 

2 

5 1,936 615 5,629 5,014 

6 2,022 811 7,427 6,616 

3 

7 3,299 3,238 11,643 8,405 

8 2,534 642 5,877 5,235 

9  1,992 884 8,092 7,208 

10 1,610 709 6,488 5,779 

11 1,606 521 4,770 4,249 

12 1,855 688 6,294 5,606 

Note. The “Absolute Change” column was computed relative to the base case. 

 

These predictions show how substantial the predicted increase in trips would be on 

project links, thus providing support for undergoing the project in real life. Figure 9 gives 

the spatial context of each of the road projects predicted. In this map, each link is labelled 

with the corresponding Link ID (shown in Table 7). Although the trip predictions tested  
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Figure 9: The spatial context of three proposed cycling infrastructure projects 
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are much different than the observed counterpart, likely as a limitation of the log-

transformation used, the overall trend is captured. As stated before, the purpose of this 

model is not to provide operational predictions, but rather to give insight into the efficacy 

of proposed projects to make strategic decisions.  

6. Conclusion 

6.1. Introduction 

 This thesis used a combination of eigenvector spatial filtering and multiple linear 

regression modeling to generate predictions of unique cycling trip counts across every link 

in a network. In the preceding sections, the following 5 objectives were met: 

• Create a comprehensive cycling network for the study area by combining 

multiple datasets and manually adding new trails revealed by GPS 

trajectories 

• Generate cyclist’s actual routes between hubs along the road network by 

processing GPS trajectories 

• Identify the total number of trips occurring on each link in the network using 

the processed 2018 GPS data 

• Conduct regression analysis that controls for spatial effects to predict the 

number of trips on a link for the study period, including identification and 

creation of relevant variables such as network features and hub trip distance 

accessibility 
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• Use the model to predict effects on cycling traffic of high priority planned 

cycling infrastructure projects in the city at the individual link level 

In this section the findings of this thesis are summarized, key assumptions and 

limitations of the work are discussed, and a conclusion with recommendations for future 

areas of study are presented. 

6.2. Summary of Findings 

Past studies exploring cyclist behavior and traffic patterns commonly used 

household travel surveys or field observations, which are inefficient to conduct and are 

often limited in spatial scope (Winters et al., 2016). Furthermore, studies using GPS 

datasets are often based on crowd-sourced data from app providers, which tends to be 

biased towards younger users who are more likely to be using the technology (Bricka et al., 

2012). In this thesis, problems associated with under sampling are alleviated through 

examination of an entire year’s worth of SoBi user GPS trajectories. Predictions are based 

on the actual routes followed by cyclists as they moved through the network, which was 

generated by the GIS-based map-matching tool, and not simply start and end locations. 

This allows for predictions to be made at the precision of individual links, with no 

aggregation necessary. Several explanatory variables were created and tested to understand 

the underlying nature of what drives bike share cycling traffic in Hamilton. An ordinary 

least squares linear regression model was specified, using eigenvector spatial filtering to 

remove autocorrelation from the residuals. The resulting model had an adjusted R squared 

value of 0.89 and all explanatory variables were significant at the p < 0.001 level. In terms 

of distance metrics relative to each link, two significant built environment components 
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were found to be significant in the model – distance to the nearest biking hub and distance 

to nearest bus stop. This suggests bike share users will more likely choose routes that have 

greater access to active travel infrastructure that serves to optimize their trips. A novel hub-

trip distance accessibility measure was created for this thesis, which was found to 

outperform both population and employment accessibility measures in terms of predictive 

power, as well as distance to key trip attractors in the city (i.e., McMaster University and 

the central business district). Therefore, this variable captured the overall trends of cycling 

across the service area more effectively than any other variable examined, even those found 

to be significant in previous literature (see Scott & Ciuro, 2019). In terms of biking 

infrastructure, all positive trip predictors were infrastructure types that are physically 

separated from the automobile network (bike lanes being the largest predictor). Several 

infrastructure types were found to be insignificant trip predictors, such as paved shoulders 

and signed on-street bike routes. Finally, the model was used to predict trip count changes 

for proposed bike lane projects. The predictions indicated that cycling traffic would 

increase substantially on all links tested, demonstrating how the model could be used from 

a strategic perspective when trying to plan network upgrades. 

6.3. Assumptions and Limitations 

 This thesis is built upon the foundations of previous work for the processing of all 

GPS data used. Namely, the modules included in GERT (GIS-based Episode 

Reconstruction toolkit), in particular the map-matching tool (Dalumpines & Scott, 2011, 

2018). As such, limitations of these tools apply to the work presented. Specifically, the 

buffer distance chosen for the map-matching tool affects route generation accuracy 
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depending on the complexity of the network and the horizontal accuracy of the GPS device 

used. The default value of 50 meters was used, as this gives reasonable results when used 

with GPS data that has a horizontal accuracy of 10 meters according to a sensitivity analysis 

done in the original work. This is reasonably consistent with the accuracy of SoBi 

equipment, and further manual inspection of processing outputs was done to confirm 

accuracy. However, this threshold could also explain data loss during the map-matching 

process. GPS devices inherently contain a margin of error when reporting locations. Routes 

with unrealistic distances or travel times were removed from this analysis to compensate 

for this. As mentioned in section 5.1, approximately 17% of the original GPS dataset was 

filtered out during processing. Although the lion’s share of this (~14%) was removed due 

to GPS errors, the remaining data that was lost during map-matching could have been valid 

trips that were unable to be captured (e.g., unorthodox GPS trajectories that do not follow 

the defined cycling network). This has an implication that model predictions presented in 

this thesis are slightly underestimating the true dataset and could be improved by continued 

updates to the cycling network. Furthermore, the analysis presented in this work also 

assumes that cyclists travel along the network created only and that they can travel in any 

direction they please. Although efforts were made to incorporate links that were popular 

among cyclists that did not previously exist in the network according to GPS data, it is 

possible that some shortcuts were not incorporated into the network due to the level of 

complexity this adds during network creation.  The assumption of multi-directional travel 

was made because it is accurate to cyclist behavior, which is not constrained by the same 

level of regulation as automobile travel (i.e., even though it is illegal to ride a bike on a 
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sidewalk in the study area, it is still often done). This assumption prevented many valid 

trips from being removed during the analysis. During statistical modeling, the use of a 

natural log transformation on the dependent variable was chosen due to its ease of 

calculation and interpretation, as well as prevalence in the literature. Although count data 

models (e.g., Poisson or negative binomial) are rare when it comes to spatial models, 

avoiding the use of a variable transformation could have led to more accurate predictions, 

as model predictions demonstrated high variability for low and high traffic count links. The 

log transformation is also quite sensitive to small amounts of change, especially at high 

values (e.g., the natural log of 15,000 and 20,000 only differ by ~0.288). When creating 

and testing accessibility variables for socioeconomic variables (population and 

employment), the underlying calculation of these variables assumed that accurate 

measurements could be derived using the proportionality of residential areas relative to the 

DA level of geography. These measures were also based on the most recent census data – 

2016, which is not up to date with the data under examination. With these issues mitigated, 

the socioeconomic accessibility measures may have had higher predictive power in the 

model. Moreover, the underlying impedance function used in the accessibility measures 

was the exponential decay function, which assumes that the changes in a person’s 

willingness to cycle as the trip distance increases follows an exponential decay curve, 

which is not necessarily the case for all cyclists. For ESF, a first-order edge connectivity 

spatial weights matrix was used. This assumes that only immediately touching links are 

considered neighbors. This assumption is a valid way to classify neighbors in a network 

and easy to calculate, but as pointed out by Ermagun & Levinson (2019), is not necessarily 
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the most optimal weight format when trying to capture network dependence between links. 

They introduce the network weight matrix as an alternative, which was demonstrated to 

outperform network-based models without spatial components and models that used a 

spatial weights matrix. Finally, in determining model variables, this analysis was 

conducted while keeping closely in mind that the variable being modelled was SoBi trip 

counts. This means that when deciding infrastructure levels of importance in the model, 

the reference level (major roads with no infrastructure) was based on the assumption that 

cyclists would be least likely to use such links because they are the most unattractive from 

a safety perspective. Infrastructure classifications that were insignificant in the model 

therefore took on the same statistical significance as these links. Finally, unpaved multi-

use trails were removed from the analysis because it was assumed that since there are very 

few of them, and that the focus of the thesis was to model utilitarian trips, that this 

classification was inappropriate to include. 

6.4. Concluding Remarks and Future Research 

According to the model outputs of this thesis, it was found that physically separated 

bike infrastructure (designated bike lanes, paved multi-use pathways) were the only 

positive predictors of cycling traffic for SoBi riders of all tested infrastructure 

classifications in Model 1. Such upgrades are therefore most highly recommended to 

encourage the usage of BSSs in the study area. Hub trip distance accessibility was also 

found to be the single largest predictor of traffic for all variables examined, even more so 

than population and employment accessibility and simple distance metrics (i.e., distance to 

McMaster or downtown), which have been found to be significant in previous work. The 
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model presented in this thesis demonstrated a high adjusted R squared value with full 

variable significance at the p < 0.001 level. Therefore, predictive models such as the one 

presented in this thesis can be of great strategic importance for city planners and decision 

makers when trying to decide optimal locations for future improvements to the road 

network, as it can be used to accurately predict cycling traffic flows.  

As mentioned above, a natural log transformed dependent variable was used in the 

analysis. However, this is not the only type of transformation that could be used in such an 

analysis. Future work could be done to examine different transformations and their effects 

on model accuracy and precision. In a similar vein, the impedance function used could be 

more closely examined. As pointed out by Wu et al. (2019), exponential distance decay 

functions may be better suited to modeling shorter distance trips (i.e., walking), and that a 

logarithmic normal distribution function could be more appropriate for modeling cycling 

trips. Such functions could be implemented during the modeling process and examined for 

improvements in model fit. Although an entire year’s worth of GPS data was used for this 

thesis, the reality is that trips have been tracked since the program’s inception in 2015. 

Thus, future work could utilize even larger datasets to formulate predictions or be used to 

compare trends on a year-by-year basis, even seasonal. In fact, the hub-trip distance 

accessibility measure created for this thesis itself could be predicted and then become an 

input for the trip prediction model presented in this thesis. With the emergence of bike 

share providers that are tracking user trips with GPS every day, models no longer must rely 

on infrequently updated datasets (e.g., official census data or trip diary surveys), and 

instead can be based on data that is constantly being updated. It is also important to note 
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that the results of this thesis are presented in the context of just one BSS – SoBi Hamilton. 

Future work can focus on comparing predictions in different cities and exploring the 

underlying causes for differences in variable impact. 
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