INVENTORY PINCH DECOMPQOSITION
AND GLOBAL OPTIMIZATION METHODS

PLANNING AND SCHEDULING OF CONTINUOUS
PROCESSES VIA INVENTORY PINCH DECOMPQOSITION
AND GLOBAL OPTIMIZATION ALGORITHMS

By PEDRO A. CASTILLO CASTILLO,
M.A.Sc. Chemical Engineering

A Thesis Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy

McMaster University
© Copyright by Pedro A. Castillo Castillo, March 2020

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

DOCTOR OF PHILOSOPHY (2020) McMaster University
(Chemical Engineering) Hamilton, Ontario
TITLE: Planning and Scheduling of Continuous Processes

Via Inventory Pinch Decomposition and Global

Optimization Algorithms

AUTHOR: Pedro A. Castillo Castillo
M.A.Sc. Chemical Engineering (McMaster
University)

SUPERVISOR: Professor Vladimir Mahalec

NUMBER OF PAGES: x, 216

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Lay Abstract

Optimal planning and scheduling of production systems are two very important tasks in
industrial practice. Their objective is to ensure optimal utilization of raw materials and
equipment to reduce production costs. In order to compute realistic production plans and
schedules, it is often necessary to replace simplified linear models with nonlinear ones
including discrete decisions (e.g., “yes/no”, “on/off’). To compute a global optimal
solution for this type of problems in reasonable time is a challenge due to their intrinsic
nonlinear and combinatorial nature.

The main goal of this thesis is the development of efficient algorithms to solve large-scale
planning and scheduling problems. The key contributions of this work are the
development of: i) a heuristic technique to compute near-optimal solutions rapidly, and ii)
a deterministic global optimization algorithm. Both approaches showed results and
performances better or equal to those obtained by commercial software and previously
published methods.

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Abstract

In order to compute more realistic production plans and schedules, techniques using
nonlinear programming (NLP) and mixed-integer nonlinear programming (MINLP) have
gathered a lot of attention from the industry and academy. Efficient solution of these
problems to a proven e-global optimality remains a challenge due to their combinatorial,
nonconvex, and large dimensionality attributes.

The key contributions of this work are: 1) the generalization of the inventory pinch
decomposition method to scheduling problems, and 2) the development of a deterministic
global optimization method.

An inventory pinch is a point at which the cumulative total demand touches its
corresponding concave envelope. The inventory pinch points delineate time intervals
where a single fixed set of operating conditions is most likely to be feasible and close to
the optimum. The inventory pinch method decomposes the original problem in three
different levels. The first one deals with the nonlinearities, while subsequent levels
involve only linear terms by fixing part of the solution from previous levels. In this
heuristic method, infeasibilities (detected via positive value of slack variables) are
eliminated by adding at the first level new period boundaries at the point in time where
infeasibilities are detected.

The global optimization algorithm presented in this work utilizes both piecewise
McCormick (PMCR) and Normalized Multiparametric Disaggregation (NMDT), and
employs a dynamic partitioning strategy to refine the estimates of the global optimum.
Another key element is the parallelized bound tightening procedure.

Case studies include gasoline blend planning and scheduling, and refinery planning. Both
inventory pinch method and the global optimization algorithm show promising results
and their performance is either better or on par with other published techniques and
commercial solvers, as exhibited in a number of test cases solved during the course of this
work.

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Preface

Chapters 2-8 contain multi-authored work previously published in peer-reviewed
scientific journals. My individual contributions to each of those chapters consisted of the
following:

e Implementing the corresponding mathematical models in GAMS.

e Developing the steps of the solution algorithms.

e Implementing the algorithms (MPIP, MPIP-C, and deterministic global
optimization method) using GAMS, Python, and MATLAB.

e Running the examples and gathering numerical results.

e Analyzing the numerical results.

e Writing the initial draft and final version of each manuscript.

Contributions from Dr. Vladimir Mahalec in Chapters 2-8 included:

e Providing insightful discussions about planning and scheduling problems,
potential solution strategies, and during the analysis of the numerical results.

e Approving numerical data used in the examples.

e Proofreading and editing each manuscript.

Contributions from Dr. Pedro M. Castro in Chapters 6 and 7 included:

e Providing insightful discussions about piecewise linear relaxations, bound
tightening techniques, and during the analysis of the numerical results.
e Proofreading and editing each manuscript.

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Acknowledgments

| would like to thank my supervisor Dr. Vladimir Mahalec for all his support, guidance,
and patience during the last five years. Dr. Mahalec is a great professor and a person that
really cares about his students beyond their academic performance. Since the beginning,
he always encouraged me to be the best version of myself. | would like to thank him for
the time and expertise he provided me, which were key elements to make each step of my
journey a success. My sincere gratitude and utmost respect to him.

| would also like to thank my thesis committee: Dr. Christopher L. E. Swartz, from the
Chemical Engineering department, and Dr. Antoine Deza, from the Computing and
Software department. | really appreciated their advice, questions, and suggestions during
our committee meetings. In addition, | would like to thank Dr. Pedro M. Castro for
collaborating with me and Dr. Vladimir Mahalec during the development of our global
optimization algorithm.

My sincere thanks to the always supportive and amazing administrative staff in the
Chemical Engineering department: Ms. Michelle Whalen, Ms. Kristina Trollip, Ms. Lynn
Falkiner, and Ms. Cathie Roberts.

For their financial support, 1 would like to show my gratitude to the Chemical
Engineering department, the McMaster Advanced Control Consortium, the International
Ontario Graduate Scholarship (OGS) Program, and the Engineering Research Council of
Canada (NSERC).

Thank you to all the people that were part of my life during this time, especially to my
friends from my research group, the Chemical Engineering department, the Organization
of Latin American Students (OLAS), McMaster University, Hamilton and Toronto. I will
never forget the time we spent together discussing optimization techniques, going to
scientific conferences, playing sports all year round, going to Toronto FC matches,
enjoying the good times, and supporting each other in difficult moments.

Finally, I would like to say thank you to my family, especially to my parents. They were
my main motivation and their love and support were invaluable to me. Thank you to my
grandparents for all their blessings. Thank you to my brothers, aunts, my uncle, and all
my cousins, always putting a smile on my face when | went back to visit them and during
our telephone calls.

“It is more important to ask the right questions than it is to have the right answers”

Vi

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Table of Contents
I Y AN 0 15] 4 - Uod OSSR ii
N 0] 1 (o RPN \Y;
o 7 1= T PSP RRR v
ACKNOWIBAGMENTS ...ttt e b ste e aneenee e Vi
TaDIE OF CONTENTS ... et sbeetesneesneenee s vii
LiSt Of ADDIEVIAtIONSeoiiieice et ne e IX
Declaration of Academic AChIEVEMENTcoiviiiiiiiie e X
Chapter 1: INTrOQUCTIONc.oouiiiiiieeer bbb 1
1.1.Supply chain OPtIMIZALIONccoiviiiiiiieee e 2
1.2.Planning and scheduling of oil refinery 0perationsc.ccooceviveniiinenicieeen, 4
1.3.The inventory pinch approach for production planning and scheduling 8
1.4.Deterministic global optimization teChNIQUESc.cccvevvevieiiieiece e, 10
1.5.0Dbjectives of the theSISccviiiiiiiiic e 13
1.6.THESIS OULIING ..o et 13
1.7 RETEBIBNCES ...ttt ettt bbb ae e 15
Chapter 2: Inventory Pinch Based, Multiscale Models for Integrated Planning and
Scheduling-Part I: Gasoline Blend Planningcccccoooiiieiieie i 23
Chapter 3: Inventory Pinch Based, Multiscale Models for Integrated Planning and
Scheduling-Part 11: Gasoline Blend Schedulingcccccovviieiiiiii e 46
Chapter 4: Inventory Pinch-Based Multi-Scale Model for Refinery Production
PLANNING ettt b bbbttt bbbt 71
Chapter 5: Improved Continuous-Time Model for Gasoline Blend Scheduling............. 79
Chapter 6: Inventory Pinch Gasoline Blend Scheduling Algorithm Combining
Discrete- and Continuous-Time MOEIS ..o, 101
Chapter 7: Global Optimization Algorithm for Large-Scale Refinery Planning Models
WITN BIINEAE TEIIMNS ...ttt e e e te e esneenraenneenes 119
Chapter 8: Global Optimization of Nonlinear Blend-Scheduling Problems................. 140

Chapter 9: Global Optimization of MIQCPs with Dynamic Piecewise Relaxations....156
Chapter 10: Concluding RemMArKSccoiiiiiiii e 184

vii

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

10.1. Key Findings and Contributionsccccooveveiienie s, 185
10.2. Future WOrk OULIOOKcvviiiiiiicccecee s 186
Appendix A: Supporting Information for Chapters2and 3............ccccccevveieiieie e, 188
Appendix B: Supporting Information for Chapters 5,6, and 8...........c.cccccccevvevvinnnen, 192
Appendix C: Supporting Information for Chapter 7and 9c.cccccoevviivviccn e, 199

viii

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

List of Abbreviations

CATP Cumulative average total production
CCR Continuous catalytic reforming unit
Cbu Crude distillation unit

CTD Cumulative total demand

DHT Diesel hydrotreating unit

FBBT Feasibility-based bound tightening
FCC Fluid catalytic cracking unit

GAMS General algebraic modeling system
GOHT Gasoil hydrotreating unit

HC Hydrocracking unit

LP Linear programming

MILP Mixed-integer linear programming
MINLP Mixed-integer nonlinear programming
MPIP Multiperiod inventory pinch

MPIP-C Multiperiod inventory pinch with continuous-time scheduling model
NHT Naphtha hydrotreating unit

NLP Nonlinear programming

NMDT Normalized multiparametric disaggregation technique
OBBT Optimality-based bound tightening
PMCR Piecewise McCormick relaxation
RHT Residue hydrotreating unit

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Declaration of Academic Achievement

I, Pedro Alejandro Castillo Castillo, declare that my contributions to this research work
are the following:

1) | provided the main ideas to develop the algorithms introduced in this work,

i) | implemented the required mathematical models in GAMS,

i) | implemented the proposed algorithms (MPIP, MPIP-C, and deterministic
global optimization method) using Python, GAMS, and MATLAB,

iv) | developed a Python script to use Dia Diagram Editor as a graphical user
interface to model production processes as nodes in a network,

V) | solved the case studies presented in this work and gathered the numerical
results, and

Vi) | wrote the initial draft and final version of each manuscript presented here.

In addition, I declare that Dr. Vladimir Mahalec and Dr. Pedro M. Castro provided ideas
and guidance to enhance such algorithms, proofread and edited the manuscripts in which
each one of them collaborated.

Sincerely,

Pedro Alejandro Castillo Castillo

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Chapter 1: Introduction

Planning and scheduling of production systems are two activities in supply chain
optimization that increase profit margins of the plant sites by utilizing raw materials,
intermediate components, storage capacity, and production equipment in the best way
possible along a given time horizon, considering current market conditions and forecasts.
Planning and scheduling software-based tools have become necessary for most
companies, especially those that operate on economic markets with fast dynamics, face
strict environmental regulations, and/or have low profit margins (e.g., commodity
producers) [1].

Current trend in planning and scheduling techniques is to increase the accuracy of the
mathematical models employed to represent processing units and operational policies
(taking into account their scalability), as well as the development of advanced algorithms
to efficiently solve these models to optimality.

It is often the case that the nature of the production process is inherently nonlinear, and
operational policies usually rely on discrete decisions (e.g., “yes/no”, “on/off”).
Therefore, to compute more realistic production plans and schedules, techniques using
nonlinear programming (NLP) and mixed-integer nonlinear programming (MINLP) are
required. The challenges associated with nonlinear planning and scheduling problems are
the following:

1. Possible nonconvexities, which can introduce multiple local and global optima
= Traditional gradient-based optimization methods can stop at a local
optimum. Global optimization techniques are thus needed to understand
the quality of the solution and make better decisions.
2. Potential need of a large number of partitions to represent the time domain, which
can result in a model containing thousands or more variables
= The larger the number of time periods or time slots, the larger the number
of nonconvex terms and discrete variables, thus the higher computational
cost involved to solve the problem to optimality.

This thesis summarizes a project focused on the development of two algorithms to solve
planning and scheduling problems: a heuristic decomposition approach based on the
inventory pinch concept, and a deterministic global optimization method based on
dynamic partitioning of piecewise linear relaxations and optimality-based bound
tightening.

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

In this Chapter, different concepts used throughout this report are briefly described. In
addition, the objectives and outline of this thesis are presented.

1.1. Supply chain optimization

A supply chain consists of all different entities and activities necessary to produce and
distribute a product to the final customer. These activities include procurement of raw
materials, transformation and/or purification of the raw materials into intermediate and
final products, storage and distribution of intermediate and final products, and demand
forecasting and satisfaction. The physical elements of a supply chain include warehouses,
distribution centers, production sites, retailers, etc. Supply chain optimization consists of
determining the best possible flow of materials and information among these elements
that maximize the performance of the supply chain. The performance of the supply chain
is defined according to the company’s goals; e.g., increase profit, market share, customer
satisfaction, and/or decrease costs, lead time, etc.

Different type of decisions in the supply chain optimization problem can be identified
based on business functionalities, timeframe, geographical scope, and hierarchical levels.
The most common classification is shown in Figure 1. There are three basic decision
levels: strategic, tactical and operational [2-6]. Long-term strategic level defines the
structure and capacity of the supply chain considering a time horizon of several months or
years. Medium-term tactical level assigns production and distribution targets to the
different facilities usually on a weekly or monthly basis. Short-term operational level
determines the assignment and sequencing of tasks to equipment units for the next few
hours or days. These three levels are interconnected because the decisions made at one of
them directly affect others [2, 5, 6].

In the automation pyramid (Figure 2) there are two more layers below the short-term
operational level (i.e., scheduling level): real-time optimization and control. The control
layer involves all the sensors, actuators, and equipment required to meet and follow
process setpoints, as well as safety and alarm systems. The frequency of the calculations
required by the control layer is on the order of seconds or even less. The real-time
optimization (RTO) level provides setpoints to the control layer every few hours. The
RTO setpoints correspond to a steady-state of the process that is optimal for the current
production targets and/or market conditions.

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

A
Long Term: Months — Years Strategic Level
Strategic Planning
Medium Term: Weeks — Months Tactical Level
@ Requirements Production Distribution | ,) Demand
e planning planning planning planning
=
Short Term: Hours — Days Operational Level
Ordering Production Transport Demand
materials scheduling planning fulfillment
Procurement Production Distribution Sales

v

Flow of goods

Figure 1. Supply chain planning tasks classified based on business functionalities and
time scope

Long-Term
(Strategic)
Planning N

AN

.5‘?’ KR é}' Mid-Term v

A b)(..l oy

@9 (Tactical) Planning

o 4

© v

Scheduling +\
v

Real-Time Optimization

/ Control \

Figure 2. Automation pyramid

e

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Computational tools based on mathematical programming and simulation techniques have
become very common in modern industry for supply chain optimization. Mathematical
models derived from engineering first principles (i.e., material and energy balances,
thermodynamic relationships, reaction kinetics, etc.) or from historical plant data (i.e.,
data-driven models) are used to represent supply chain elements. These models also
include operational constraints such as maximum and minimum production, storage, and
transportation capacities, product demand, product specifications, availability of raw
materials, inventory policies, etc. A model must be robust, reliable, and relatively easy to
maintain. Model formulation is key to be able to compute realistic and optimal solutions
(i.e., plans and schedules) in a reasonable amount of time (depending on the application).

Given the complexity of modeling an entire supply chain, as well as the high
computational cost required to solve such model to optimality, supply chain optimization
is usually carried out by solving smaller optimization problems. It is very common to use
the scheme shown in Figure 1 (plus geographical scope) to define these smaller problems.

For production planning and scheduling problems, formulations can be classified based
on the process type (continuous, batch) and the time representation employed (discrete,
continuous, and their variants). Models can be classified as well according to their
mathematical structure (linear, nonlinear, mixed-integer, etc.). Extensive reviews can be
found in the literature [7-9]. Another key aspect is the algorithm used to solve the
optimization problem. The solution algorithms can be classified as deterministic,
stochastic, and heuristic methods. Based on their optimality guarantees, they are classified
into local and global optimization methods.

Research efforts have been directed to integrate several decision levels. By taking into
account the interactions between them, the efficiency of the supply chain can be
increased. Model formulations and solution algorithms that exploit the structure of the
integrated problems have been developed in the last decades [10-13], but there is still an
ongoing research work in this area.

In section 1.2, an overview of advances and challenges in planning and scheduling of oil
refinery operations is presented.

1.2. Planning and scheduling of oil refinery operations

Crude oil is a mixture of different hydrocarbons and, to a lesser extent, other organic and
inorganic compounds. Most common types of hydrocarbons found in crude oil are
alkanes, naphthenes, and aromatics. Crude oils from different reservoirs have different

4

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

attributes (i.e., quality properties or qualities), e.g., density, aromatics, sulfur, and metals
content, etc. Oil refineries transform crude oil into more valuable products such as
liquefied petroleum gas, gasoline, diesel, jet fuel, and other hydrocarbon products which
can be used as either fuels or feedstocks for other chemical processes. The petroleum
refining industry is still the largest source of energy products in the world [14].

A petroleum refinery plant is commonly divided into three main sections: crude oil
unloading and blending, production units, and blending and shipping of final products
[15, 16]. The crude oil is transported to the plant by tankers or through pipelines, where it
is unloaded into storage tanks. From these storage tanks, crude oils are then transferred
into charging tanks where they are mixed. The crude oil mix is fed to the crude
distillation units (CDUs) where the crude mix is separated into different fractions based
on their boiling temperature range. The crude oil fractions go through a
hydrodesulfurization process to remove most of their sulfur content (because sulfur can
poison the catalysts of downstream units). Subsequently, the crude oil fractions go
through corresponding chemical processes: i) Catalytic reforming converts low-octane
naphthas into high-octane reformate, ii) hydrocracking employs hydrogen to break long-
chain hydrocarbons into simpler compounds (mostly diesel and jet fuel), and iii) fluid
catalytic cracking transforms heavy crude oil fractions into higher value products (mostly
gasoline and light olefins). Finally, the intermediate products are blended into final
products, which are shipped through pipelines or distributed by tanker trucks. The final
products must meet associated minimum and maximum quality specifications. Figure 3
shows a simplified scheme of an oil refinery plant with one CDU, one continuous
catalytic reformer (CCR), one hydrocracker (HC), one fluid catalytic cracker (FCC), four
different hydrotreaters (NHT, DHT, GOHT, RHT), and the gasoline and diesel blending
sections. Given the complexity of the processes involved and their interconnections, a lot
of work in the literature has been dedicated to oil refinery planning and scheduling
problems.

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Ipg

’—> To gas plant

sr-hn - nht-n
H’ CCR

Crude
feed

—*CDU| diesel

Diesel Blending

DHT dht-ds

vgo || goht-ds
GOHT HC-ds
- | —

" HC |— ’7 FCC-lco 1

Y

FCC FCC-hco

rsd coke

Fuel O1l

Figure 3. Simplified scheme of an oil refinery plant

Production planning in petroleum industries started to use linear programming in the
1950s [17]. Nonlinear models have gathered more attention since the late 1990s because
of the technological advances in nonlinear optimization solvers. The general modelling
framework for a processing unit in a refinery [18] considers i) the flowrate of each
product stream as a function of the feed flowrate, the feed properties, and unit operating
conditions, and ii) the properties of each product stream as a function of the feed
properties, and unit operating conditions. Particular frameworks for storage tanks,
blenders, and pipelines in a refinery system have been developed too [19, 20]. Discrete-
time formulations are usually employed for planning models [20-24]. The time periods in
which the planning horizon is discretized are denoted as big-bucket periods [2, 14]
because the goal of planning models is to provide production and inventory targets for
each time period, not to exactly define the start and end times of all the tasks involved to
meet those targets. Mathematical models based on engineering first principles and/or
empirical correlations, as well as artificial neural networks, have been developed for
crude distillation units [25-28], hydrocracking units [29], and fluid catalytic cracking

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

units [30-32]. Currently, there exist a renewed interest in data-driven models due to the
improvements in big-data applications [21, 33, 34].

Current research trend is to formulate planning models that consider more upstream and
downstream operations in the supply chain (i.e., enterprise-wide optimization) [14, 35,
36], integrate more scheduling decisions [2, 10, 12, 13, 37, 38], and that take into account
the uncertainty in demand, supply, and price forecasts [39-42], while keeping the model
computationally tractable or developing efficient solution algorithms tailored to model
formulations. More recently, pinch analysis for production planning has been developed
[43-45]. This topic is described in section 1.3.

Production scheduling in oil refineries is usually carried out by scheduling the three
refinery sections separately [15, 46-49], but solution strategies that account for their
interdependence have recently been published [37, 50-52]. Compared to planning
models, scheduling models include more constraints associated with operational policies
and logistics. These constraints often involve discrete decisions (e.g., yes-no, on-off);
therefore, most refinery scheduling formulations are mixed-integer linear models.
Solution strategies for this type of models rely on the branch-and-bound methodology.
Scheduling decisions are the following: i) To specify the number of tasks required to meet
production and inventory targets, ii) to associate those tasks to specific units, iii) to select
the appropriate operating modes of the units, and iv) to determine the sequence of these
tasks that incurs in the less number of product changeovers in the tanks with low or null
demurrages (see Figure 4). Discrete-time and continuous-time models have been
developed for refinery scheduling problems [18, 53-55].

Current research trend is to develop scheduling formulations with reduced number of
discrete variables [56, 57], that provide a tight relaxation [58], and that take into
consideration mode transitions in the processing units [53]. By formulating scheduling
models of tractable size with strong relaxations, the solution of the refinery-wide
scheduling problem can be simplified and longer scheduling horizons can be considered.
Also, integration of planning and scheduling decisions is an ongoing research topic.

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Task assignment Unit assighment Op. Mode Sequencing
Demand orders Production task . U1
Processing .
units m’ MA MB
S A
« (o] el v e
H . v g
cHE EE 02] mﬁ,

Figure 4. Scheduling decisions: task assignment, unit assignment, selection of operating
mode, and task sequencing

1.3. The inventory pinch approach for production planning and
scheduling

Pinch analysis was first introduced by Bodo Linhoff during the late 1970’s to calculate
the minimum amount of heat and cold utilities required in a heat exchanger network [59,
60]. The concept was quickly adapted to the general case of energy consumption
minimization and it constitutes one of the first process integration techniques [61, 62].
The general idea is to determine the hot and cold composite curves based on the energy
available at the different temperatures present in the process network, and then identify
the point at which the two curves are separated by the minimum temperature difference
allowed (AT™™). The reason why the two curves should not touch is because as AT™™"
tends to zero, the heat exchanger area required increases to infinity. Once the two curves
are separated by AT™" the minimum external hot and cold utility requirements (or
energy targets) can be easily determined (see Figure 5). To achieve these targets, three
rules must be followed: i) heat must not be transferred across the pinch, ii) there must be
no external cooling above the pinch, and iii) there must be no external heating below the
pinch.

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

curve i

Hot ' Hot utility
composite | target |
-

Cold
composite
curve

Temperature

Pinch point

Cold utility !
target ,

L J

Enthalpy

Figure 5. Pinch point in energy consumption minimization

Pinch analysis techniques have been developed for a wide range of applications: water
network synthesis [63-65], carbon-constrained energy sector planning [66], and financial
management [67]. Pinch analysis has been used in production planning too. Singhvi and
Shenoy [44, 43] used the demand and production composite curves to define how much
product is necessary to be produced between pinch points. In this case, pinch points are
defined as the points where the two composite curves touch (i.e., there is no minimum
separation equivalent to AT™"),

Castillo et al. [45] developed a different approach to use pinch analysis in production
planning. Castillo et al. [45] defined an inventory pinch point as the point where the
cumulative total demand (CDT) curve and the cumulative average total production
(CATP) curve touch (see Figure 6). The CTD curve is constructed based on the demand
data. The CATP curve is defined by the minimum number of straight-line segments
whose initial and last points touch the CTD curve; except for the first segment, which
starts at the initial total inventory available at the beginning of the planning horizon. The
inventory pinch points delineate time periods where constant operating conditions are
likely to be feasible [45].

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Pinch point

-
-
-
-
-

Pinch point

Cumulative total demand

Initial total
inventory

Time
Figure 6. CTD and CATP curves, and inventory pinch points
Castillo et al. [45] developed an iterative approach:

1. To optimize operating conditions for pinch-delineated periods, and
2. To eliminate infeasibilities if they are encountered.

The inventory pinch approach is very useful when the number of pinch-delineated periods
is smaller than the original time discretization of the planning problem. This
dimensionality reduction makes the problem formulation smaller, thus requiring less
computational effort to solve it to optimality. It also produces optimal or near-optimal
solutions with operating conditions that remain constant as much as possible, which is
something desirable from an operational point of view. Chapters 2, 3, and 5 contain more
details on this methodology.

The inventory pinch approach is a heuristic technique which does not guarantees globally
optimal solutions. In section 1.4, a brief review of rigorous global optimization methods
IS presented.

1.4. Deterministic global optimization techniques

Deterministic global optimization focuses on developing and improving mathematical
theories, algorithms, and computational tools in order to find a global minimum of the

10

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

objective function f subject to the set of constraints S by computing lower and upper
bounds of the objective function f that are valid for the whole feasible region S. The goal
of deterministic global optimization is to compute an e-global optimal solution with
theoretical guarantees, where € > 0 refers to the desired relative difference between the
upper and lower bounds.

Consider a minimization problem. To compute lower bounds, deterministic global
optimization algorithms relax the original nonconvex nonlinear problem into either a
linear (LP), a mixed-integer linear (MILP), or a convex nonlinear program (NLP). The
relaxation can be derived using one or a combination of the following methodologies:
convex envelopes [68-70], piecewise linear relaxations [71-73], aBB underestimators
[74, 75], the reformulation-linearization technique [76], outer-approximation [77, 78], by
removing integrality constraints, and other techniques. To iteratively improve the
relaxation (i.e., make it tighter or closer to the original model), one can rely on spatial
branch-and-bound [71] (see Figure 7), cutting planes [79], bound tightening [80, 81],
interval elimination strategies [82], and further partitioning in piecewise relaxations [83].
To compute upper bounds (i.e., feasible solutions), information from the relaxation is
often used by single/multistart NLP strategies and other heuristic techniques.

Figure 7. Sketch of a nonconvex function f(x) (blue curve) and some possible
relaxations f®(x) (red curves). By partitioning the domain of variable x, the relaxations
become closer to the original function, and the best possible solution (red dot) increases.

Bound tightening (or range reduction) techniques reduce the domain of the variables
involved in nonlinear terms. There are two main categories: Feasibility-based bound
tightening (FBBT), and optimality-based bound tightening (OBBT). FBBT is an iterative
procedure that employs the model constraints and interval arithmetic to imply bounds on

11

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

the variables [84]. Although FBBT is not the most effective method to reduce the bounds
of the variables, it does not require too much computational effort and it is very common
in most global optimization algorithms. On the other hand, OBBT involves solving one
minimization and one maximization problem for each variable [80]. The minimization
problem yields a lower bound of the variable, and the maximization problem gives an
upper bound. These optimization problems can be solved sequentially [85] or in parallel
[86].

In a branch-and-bound algorithm, it has been shown that is useful to apply OBBT at each
node instead of only at the root node, in order to reduce the number of nodes to explore
and the final optimality gap [87]. Since OBBT is very effective but requires significant
computational effort, accelerating and approximation techniques have been proposed for
OBBT in a branch-and-bound framework [88].

A different strategy is to not use a branch-and-bound framework at all. In this case,
piecewise linear relaxations are employed and the number of partitions is increased in
each iteration [83, 86]. By increasing the number of partitions, the relaxation becomes
tighter. However, increasing the number of partitions results in larger MILP models and
the difficulty to solve them to optimality (due to the addition of extra binary variables). In
order to tighten the relaxation and avoid a rapid increase in model size, OBBT can be
applied before increasing the number of partitions. By reducing the domain of the
variables, the same number of partitions will yield a tighter relaxation. Given the large
number of variables involved in bilinear terms (and that each variable requires two
optimization problems), parallel implementation of OBBT is necessary to develop
efficient algorithms.

Global commercial solvers employ a variety of all the previous discussed techniques and
methodologies. BARON [89] relies heavily on spatial branch-and-bound and linear
relaxations, but newer versions are moving towards a more significant use of piecewise
linear relaxations. ANTIGONE [90] relies more on OBBT, cutting planes, and piecewise
linear relaxations. Currently, there is no commercial solver that will outperform the others
if using a wide variety of test examples for comparison. In general, for bilinear programs,
most of the research on global optimization has been done on formulating tighter MINLP
model formulations, improving piecewise relaxation techniques, and novel algorithmic
developments. Applications of global optimization methods to refinery planning are
described in Chapters 6 and 7.

12

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

1.5. Objectives of the thesis

The focus of this thesis is the development of efficient algorithms to solve planning and
scheduling problems that can be formulated as mixed-integer nonlinear programs, with
nonlinearities strictly due to bilinear and/or quadratic terms. More specifically:

1. The generalization of the inventory pinch decomposition method to scheduling
problems, and

2. The development of a deterministic global optimization method based on dynamic
partitioning of piecewise linear relaxations and optimality-based bound tightening.

Thus, this thesis work explores both heuristic and rigorous optimization approaches, their
particular advantages and disadvantages, and how can they complement each other.

1.6. Thesis Outline

Chapter 1: Introduction. This chapter summarizes the literature review and the
fundamental principles related to this project. It also includes the research objectives and
the thesis outline.

Chapter 2: “Inventory Pinch Based, Multiscale Models for Integrated Planning
and Scheduling-Part I: Gasoline Blend Planning”. This chapter presents more details
about the inventory pinch concept for production planning, and it describes the
multiperiod inventory pinch (MPIP) algorithm for blend planning problems. MPIP is a
heuristic technique that decomposes the planning problem into two levels. The 1% level
optimizes blend recipes, and the 2" level computes blend plan. Both levels are
formulated using discrete-time representation. This work has been published in the AIChE
Journal.

Chapter 3: “Inventory Pinch Based, Multiscale Models for Integrated Planning
and Scheduling-Part Il: Gasoline Blend Scheduling”. This chapter describes the MPIP
algorithm for blend scheduling problems. For this type of problems, MPIP employs a
three level decomposition. The 1%t and 2" levels are constructed as in Chapter 2, while the
3 level is a multiperiod MILP model with fixed blend recipes. All three levels are
formulated using discrete-time representation. This work has been published in the AIChE
Journal.

Chapter 4: “Inventory Pinch-Based Multi-Scale Model for Refinery Production
Planning”. In this chapter, the MPIP algorithm from Chapter 2 is applied to a refinery

13

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

planning problem. In this example, the inventory pinch points are defined for each
blending pool, e.g., gasoline and diesel.

Chapter 5: “Improved Continuous-Time Model for Gasoline Blend Scheduling .
This chapter presents a continuous-time blend scheduling model that includes more
operational constraints than previously published model, but it requires smaller number of
binary variables. This work has been published in the Computers & Chemical Journal.

Chapter 6: “Inventory Pinch Gasoline Blend Scheduling Algorithm Combining
Discrete- and Continuous-Time Models ”. This chapter introduces the MPIP-C algorithm
which is an improved version of the MPIP method. By employing the continuous-time
blend scheduling model from Chapter 5, MPIP-C requires smaller execution times than
MPIP and computes better solutions (less switching operations). This work has been
published in the Computers & Chemical Journal.

Chapter 7: “Global Optimization Algorithm for Large-Scale Refinery Planning
Models with Bilinear Terms”. This chapter describes the deterministic global
optimization algorithm designed for mixed-integer bilinear programs. This algorithm
computes estimates of the global solution by solving MILP relaxations of the original
model derived using either Piecewise McCormick or Normalized Multiparametric
Disaggregation. The estimates of the global solution are refined by increasing the number
of partitions and reducing the domain of the variables involved in bilinear terms. This
work has been published in the Industrial & Engineering Chemistry Research Journal.

Chapter 8: “Global Optimization of Nonlinear Blend-Scheduling Problems”. This
chapter presents the results obtained for nonlinear blend-scheduling problems using both
MPIP-C and the global optimization algorithm from Chapter 7. This work has been
published in the Engineering Journal.

Chapter 9: “Global Optimization of MIQCPs with Dynamic Piecewise
Relaxations ”. This chapter describes an enhanced version of the algorithm presented in
Chapter 7. This global optimization algorithm aims to reduce as much as possible the
domain of the variables involved in bilinear terms by using optimality-based bound
tightening more extensively. The algorithm also increases or decreases the number of
partitions depending on the last iteration execution time, optimality gap improvement,
and average domain reduction. The algorithm switches from piecewise McCormick to
Normalized Multiparametric Disaggregation when the number of partitions is greater or
equal to 10. This work has been published in the Journal of Global Optimization.

Chapter 10: Concluding Remarks. The final chapter explores main conclusions,
major contributions and future work for this research project.

14

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering

Castillo

Appendix A, B, and C: Supporting information for Chapters 2 to 9.

1.7. References

1. Papageorgiou, L.G.: Supply chain optimisation for the process industries:
Advances and opportunities. Comput. Chem. Eng. (2009).
doi:10.1016/j.compchemeng.2009.06.014

2. Maravelias, C.T., Sung, C.: Integration of production planning and scheduling:
Overview, challenges and opportunities. Comput. Chem. Eng. 33, 1919-1930
(2009). doi:10.1016/j.compchemeng.2009.06.007

3. Fleischmann, B., Meyr, H.: Supply Chain Operations Planning Hierarchy,
Modeling and Advanced Planning Systems.

4. Fleischmann, B., Meyr, H., Wagner, M.: Advanced Planning. In: Stadtler, H.,
Kilger, C., and Meyr, H. (eds.) Supply Chain Management and Advanced
Planning: Concepts, Models, Software, and Case Studies. pp. 71-95. Springer
Berlin Heidelberg, Berlin, Heidelberg (2015)

5. Shobrys, D.E., White, D.C.: Planning, scheduling and control systems: why can
they not work together. Comput. Chem. Eng. 24, 163-173 (2000)

6. Noz, E.M., Capdn-Garcia, E., Lainez-Aguirre, J.M., Esp Na, A., Puigjaner, L.:

Supply chain planning and scheduling integration using Lagrangian decomposition
in a knowledge management environment. Comput. Chem. Eng. 72, 52-67 (2015).

doi:10.1016/j.compchemeng.2014.06.002

7. Floudas, C.A., Lin, X.: Continuous-time versus discrete-time approaches for

scheduling of chemical processes: a review. Comput. Chem. Eng. 28, 2109-2129

(2004)

8. Sundaramoorthy, A., Maravelias, C.T.: Computational study of network-based

mixed-integer programming approaches for chemical production scheduling. Ind.

Eng. Chem. Res. 50, 5023-5040 (2011)

9. Harjunkoski, 1., Maravelias, C.T., Bongers, P., Castro, P.M., Engell, S.,
Grossmann, I.E., Hooker, J., Méndez, C., Sand, G., Wassick, J.: Scope for
industrial applications of production scheduling models and solution methods.
Comput. Chem. Eng. 62, 161-193 (2014)

10. Li, Z., lerapetritou, M.G.: Production planning and scheduling integration through

augmented Lagrangian optimization. Comput. Chem. Eng. (2010).
doi:10.1016/j.compchemeng.2009.11.016

15

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

11. Li, Z., lerapetritou, M.G.: Integrated production planning and scheduling using a
decomposition framework. Chem. Eng. Sci. (2009). doi:10.1016/j.ces.2009.04.047

12. Terrazas-Moreno, S., Trotter, P.A., Grossmann, |.E.: Temporal and spatial
Lagrangean decompositions in multi-site, multi-period production planning
problems with sequence-dependent changeovers. Comput. Chem. Eng. (2011).
doi:10.1016/j.compchemeng.2011.01.004

13. Terrazas-Moreno, S., Grossmann, I.E.: A multiscale decomposition method for the
optimal planning and scheduling of multi-site continuous multiproduct plants.
Chem. Eng. Sci. (2011). doi:10.1016/j.ces.2011.03.017

14. Shah, N.K,, Li, Z., lerapetritou, M.G.: Petroleum refining operations: Key issues,
advances, and opportunities. Ind. Eng. Chem. Res. (2011). doi:10.1021/ie1010004

15. Jia, Z., lerapetritou, M.: Efficient short-term scheduling of refinery operations
based on a continuous time formulation. In: Computers and Chemical Engineering
(2004)

16. Meéndez, C.A., Grossmann, I.E., Harjunkoski, I., Kaboré, P.: A simultaneous
optimization approach for off-line blending and scheduling of oil-refinery
operations. Comput. Chem. Eng. 30, 614-634 (2006)

17. Bodington, C.E., Baker, T.E.: A History of Mathematical Programming in the
Petroleum Industry. Interfaces (Providence). 20, 117-127 (1990).
d0i:10.1287/inte.20.4.117

18. Pinto, J.M., Joly, M., Moro, L.F.L.: Planning and scheduling models for refinery
operations. Comput. Chem. Eng. (2000). doi:10.1016/S0098-1354(00)00571-8

19. Neiro, S.M.S., Pinto, J.M.: A general modeling framework for the operational
planning of petroleum supply chains. In: Computers and Chemical Engineering
(2004)

20. Neiro, S.M.S., Pinto, J.M.: Multiperiod optimization for production planning of
petroleum refineries. Chem. Eng. Commun. (2005).
doi:10.1080/00986440590473155

21. Alhajri, 1., Elkamel, A., Albahri, T., Douglas, P.L.: A nonlinear programming
model for refinery planning and optimisation with rigorous process models and
product quality specifications. Int. J. Qil, Gas Coal Technol. J. Oil, Gas Coal
Technol. 1, 283-307 (2008)

22. Pongsakdi, A., Rangsunvigit, P., Siemanond, K., Bagajewicz, M.J.: Financial risk
management in the planning of refinery operations. Int. J. Prod. Econ. (2006).
doi:10.1016/j.ijpe.2005.04.007

16

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Leiras, A., Hamacher, S., Elkamel, A.: Petroleum refinery operational planning
using robust optimization. Eng. Optim. (2010). doi:10.1080/03052151003686724

Zhen, G., Lixin, T., Hui, J., Nannan, X.: An Optimization Model for the Production
Planning of Overall Refinery*. Chinese J. Chem. Eng. 16, 67—70 (2008)

Menezes, B.C., Kelly, J.D., Grossmann, I.E.: Improved swing-cut modeling for
planning and scheduling of oil-refinery distillation units. Ind. Eng. Chem. Res.
(2013). doi:10.1021/ie4025775

Kumar, V., Sharma, A., Chowdhury, I.R., Ganguly, S., Saraf, D.N.: A crude
distillation unit model suitable for online applications. Fuel Process. Technol.
(2001). d0i:10.1016/S0378-3820(01)00195-3

Dave, D.J., Dabhiya, M.Z., Satyadev, S.V.K., Ganguly, S., Saraf, D.N.: Online
tuning of a steady state crude distillation unit model for real time applications. In:
Journal of Process Control (2003)

Alattas, A.M., Grossmann, I.E., Palou-Rivera, I.: Integration of nonlinear crude
distillation unit models in refinery planning optimization. Ind. Eng. Chem. Res.
(2011). doi:10.1021/ie200151e

Alhajree, 1., Zahedi, G., Manan, Z.A., Zadeh, S.M.: Modeling and optimization of
an industrial hydrocracker plant. J. Pet. Sci. Eng. (2011).
doi:10.1016/j.petrol.2011.07.019

Li, W., Hui, C.W., Li, A.: Integrating CDU, FCC and product blending models into
refinery planning. Comput. Chem. Eng. (2005).
doi:10.1016/j.compchemeng.2005.05.010

Kangas, I., Nikolopoulou, C., Attiya, M.: Modeling & Optimization of the FCC
Unit to Maximize Gasoline Production and Reduce Carbon Dioxide Emissions in
the Presence of CO 2 Emissions Trading Scheme. (2013)

Long, J., Mao, M.S., Zhao, G.Y.: Refinery Planning Optimization Integrating
Rigorous Fluidized Catalytic Cracking Unit Models. Pet. Sci. Technol. (2015).
doi:10.1080/10916466.2015.1076846

Li, J., Boukouvala, F., Xiao, X., Floudas, C.A., Zhao, B., Du, G., Su, X., Liu, H.:
Data-Driven Mathematical Modeling and Global Optimization Framework for
Entire Petrochemical Planning Operations. AIChE J. (2016)

Cuiwen, C., Xingsheng, G., Zhong, X.: A data-driven rolling-horizon online
scheduling model for diesel production of a real-world refinery. AIChE J. (2013).
doi:10.1002/aic.13895

Grossmann, |.E.: Advances in mathematical programming models for enterprise-

17

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

wide optimization. Comput. Chem. Eng. (2012).
doi:10.1016/j.compchemeng.2012.06.038

36. Grossmann, |.E.: Challenges in the application of mathematical programming in
the enterprise-wide optimization of process industries. Theor. Found. Chem. Eng.
(2014). doi:10.1134/S0040579514050182

37. Mouret, S., Grossmann, |.E., Pestiaux, P.: A new Lagrangian decomposition
approach applied to the integration of refinery planning and crude-oil scheduling.
Comput. Chem. Eng. (2011). doi:10.1016/j.compchemeng.2011.03.026

38. Shah, N.K., lerapetritou, M.G.: Integrated production planning and scheduling
optimization of multisite, multiproduct process industry. Comput. Chem. Eng.
(2012). doi:10.1016/j.compchemeng.2011.08.007

39. Li, W,, Hui, C.-W., Li, P., Li, A.-X.: Refinery Planning under Uncertainty.
doi:10.1021/ie049737d

40. Yang, Y., Barton, P.1.: Integrated crude selection and refinery optimization under
uncertainty. AIChE J. (2016). doi:10.1002/aic.15075

41. Al-Othman, W.B.E., Lababidi, H.M.S., Alatiqi, .M., Al-Shayji, K.: Supply chain
optimization of petroleum organization under uncertainty in market demands and
prices. Eur. J. Oper. Res. (2008). doi:10.1016/j.ejor.2006.06.081

42. LUO, C., RONG, G.: A Strategy for the Integration of Production Planning and
Scheduling in Refineries under Uncertainty. Chinese J. Chem. Eng. (2009).
d0i:10.1016/S1004-9541(09)60042-2

43. Singhvi, A., Madhavan, K.P., Shenoy, U. V: Pinch analysis for aggregate
production planning in supply chains. Comput. Chem. Eng. 28, 993-999 (2004).
doi:10.1016/j.compchemeng.2003.09.006

44. Singhvi, A., Shenoy, U.V.: Aggregate Planning in Supply Chains by Pinch
Analysis. Chem. Eng. Res. Des. (2002). doi:10.1205/026387602760312791

45. Castillo, P.A.C., Mahalec, V., Kelly, J.D.: Inventory pinch algorithm for gasoline
blend planning. AIChE J. 59, 3748-3766 (2013)

46. Wu, N.Q., Bai, L.P., Zhou, M.C.: An Efficient Scheduling Method for Crude Oil
Operations in Refinery with Crude Oil Type Mixing Requirements. IEEE Trans.
Syst. Man, Cybern. Syst. (2016). doi:10.1109/TSMC.2014.2332138

47. Reddy, P.C.P., Karimi, .A., Srinivasan, R.: A new continuous-time formulation
for scheduling crude oil operations. Chem. Eng. Sci. (2004).
doi:10.1016/j.ces.2004.01.009

48. Li, J., Xiao, X., Floudas, C.A.: Integrated gasoline blending and order delivery
18

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

49,

50.

51.

52.

53.

54,

55.

56.

S7.

58.

59.

60.

operations: Part I. Short-term scheduling and global optimization for single and
multi-period operations. AIChE J. (2016)

Li, J., Karimi, I.A., Srinivasan, R.: Recipe determination and scheduling of
gasoline blending operations. AIChE J. (2010). doi:10.1002/aic.11970

Luo, C., Rong, G.: Hierarchical approach for short-term scheduling in refineries.
Ind. Eng. Chem. Res. (2007). doi:10.1021/ie061354n

Shah, N.K., Sahay, N., lerapetritou, M.G.: Efficient Decomposition Approach for
Large-Scale Refinery Scheduling. Ind. Eng. Chem. Res. (2015).
d0i:10.1021/ie504835b

Shah, N.K., lerapetritou, M.G.: Lagrangian decomposition approach to scheduling
large-scale refinery operations. Comput. Chem. Eng. (2015).
doi:10.1016/j.compchemeng.2015.04.021

Shi, L., Jiang, Y., Wang, L., Huang, D.: Refinery production scheduling involving
operational transitions of mode switching under predictive control system. Ind.
Eng. Chem. Res. (2014). doi:10.1021/ie500233k

Karuppiah, R., Furman, K.C., Grossmann, I.E.: Global optimization for scheduling
refinery crude oil operations. Comput. Chem. Eng. (2008).
doi:10.1016/j.compchemeng.2007.11.008

Gao, X., Jiang, Y., Chen, T., Huang, D.: Optimizing scheduling of refinery
operations based on piecewise linear models. Comput. Chem. Eng. (2015).
doi:10.1016/j.compchemeng.2015.01.022

Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-
based approach for the optimization of the multiperiod blend scheduling problem.
Comput. Chem. Eng. (2013). doi:10.1016/j.compchemeng.2013.01.016

Mouret, S., Grossmann, L.E., Pestiaux, P.: A novel priority-slot based continuous-
time formulation for crude-oil scheduling problems. Ind. Eng. Chem. Res. (2009).
d0i:10.1021/ie8019592

Castro, P.M.: New MINLP formulation for the multiperiod pooling problem.
AIChE J. (2015). doi:10.1002/aic.15018

Linnhoff, B., Flower, J.R.: Synthesis of heat exchanger networks: 1. Systematic
generation of energy optimal networks. AIChE J. 24, 633-642 (1978).
doi:10.1002/aic.690240411

Linnhoff, B., Hindmarsh, E.: The pinch design method for heat exchanger
networks. Chem. Eng. Sci. 38, 745-763 (1983). doi:https://doi.org/10.1016/0009-
2509(83)80185-7

19

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering

Castillo

61. Smith, R.: State of the art in process integration. Appl. Therm. Eng. 20, 1337-1345
(2000). doi:https://doi.org/10.1016/S1359-4311(00)00010-7

62. Klemes, J.J., Kravanja, Z.: Forty years of Heat Integration: Pinch Analysis (PA)
and Mathematical Programming (MP). Curr. Opin. Chem. Eng. 2, 461-474 (2013).
doi:https://doi.org/10.1016/j.coche.2013.10.003

63. Foo, D.C.Y.: State-of-the-Art Review of Pinch Analysis Techniques for Water
Network Synthesis. Ind. Eng. Chem. Res. 48, 5125-5159 (2009).
doi:10.1021/ie801264c

64. Tan, Y.L, Manan, Z.A., Foo, D.C.Y.: Retrofit of Water Network with
Regeneration Using Water Pinch Analysis. Process Saf. Environ. Prot. 85, 305—
317 (2007). doi:https://doi.org/10.1205/psep06040

65. Jacob, J., Kaipe, H., Couderc, F., Paris, J.: Water network analysis in pulp and
paper processes by pinch and linear programming techniques. Chem. Eng.
Commun. 189, 184-206 (2002). doi:10.1080/00986440211836

66. Tan, R.R., Foo, D.C.Y.: Pinch analysis approach to carbon-constrained energy
sector planning. Energy. 32, 1422-1429 (2007).
doi:https://doi.org/10.1016/j.energy.2006.09.018

67. Zhelev, T.K.: On the integrated management of industrial resources incorporating
finances. J. Clean. Prod. 13, 469-474 (2005).
doi:https://doi.org/10.1016/j.jclepro.2003.09.004

68. McCormick, G.P.: Computability of global solutions to factorable nonconvex
programs: Part —Convex underestimating problems. Math. Program. 10, 147-175
(1976)

69. Liberti, L., Pantelides, C.C.: Convex Envelopes of Monomials of Odd Degree. J.
Glob. Optim. 25, 157-168 (2003). doi:10.1023/A:1021924706467

70. Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math.
Program. 103, 207224 (2005). doi:10.1007/s10107-005-0580-9

71. Quesada, I., Grossmann, I.E.: Global optimization of bilinear process networks
with multicomponent flows. Comput. Chem. Eng. (1995). doi:10.1016/0098-
1354(94)00123-5

72. Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: Global optimization of
standard, generalized, and extended pooling problems via linear and logarithmic
partitioning schemes. Comput. Chem. Eng. 35, 876-892 (2011)

73. Teles, J.P., Castro, P.M., Matos, H.A.: Multi-parametric disaggregation technique

for global optimization of polynomial programming problems. J. Glob. Optim.

20

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

(2013). d0i:10.1007/s10898-011-9809-8

Androulakis, 1.P., Maranas, C.D., Floudas, C.A.: ¢ BB: A Global Optimization
Method for General Constrained Nonconvex Problems. J. Glob. Optim. 7, 337-363
(1995)

Adjiman, C.S., Androulakis, I.P., Maranas, C.D., Floudas, C.A.: A GLOBAL
OPTIMIZATION METHODs aBB, FOR PROCESS DESIGN. Comput. chem.
Engng. 20, 419-424 (1996)

Sherali, H.D., Alameddine, A.: A new reformulation-linearization technique for
bilinear programming problems. J. Glob. Optim. 2, 379-410 (1992)

Duran, M.A., Grossmann, |.E.: An outer-approximation algorithm for a class of
mixed-integer nonlinear programs. Math. Program. 36, 307—-339 (1986)

Bergamini, M.L., Grossmann, I., Scenna, N., Aguirre, P.: An improved piecewise
outer-approximation algorithm for the global optimization of MINLP models
involving concave and bilinear terms. Comput. Chem. Eng. (2008).
doi:10.1016/j.compchemeng.2007.03.011

Karuppiah, R., Furman, K.C., Grossmann, I.E.: Global Optimization for
Scheduling Refinery Crude Oil Operations. (2007)

Castro, P.M., Grossmann, |.E.: Optimality-based bound contraction with
multiparametric disaggregation for the global optimization of mixed-integer
bilinear problems. J. Glob. Optim. (2014). doi:10.1007/s10898-014-0162-6

Yang, Y., Barton, P.l.: Refinery optimization integrated with a nonlinear crude
distillation unit model. In: IFAC-PapersOnLine (2015)

Faria, D.C., Bagajewicz, M.J.: A new approach for global optimization of a class
of MINLP problems with applications to water management and pooling problems.
AIChE J. 58, 2320-2335 (2012)

Castro, P.M.: Normalized multiparametric disaggregation: an efficient relaxation
for mixed-integer bilinear problems. J. Glob. Optim. (2016). doi:10.1007/s10898-
015-0342-z

Belotti, P., Cafieri, S., Lee, J., Liberti, L.: Feasibility-Based Bounds Tightening via
Fixed Points. In: Wu, W. and Daescu, O. (eds.) Combinatorial Optimization and
Applications: 4th International Conference, COCOA 2010, Kailua-Kona, HI, USA,
December 18-20, 2010, Proceedings, Part I. pp. 65-76. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

Nagarajan, H., Lu, M., Yamangil, E., Bent, R.: Tightening McCormick Relaxations
for Nonlinear Programs via Dynamic Multivariate Partitioning. In: Rueher, M.

21

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

86.

87.

88.

89.

90.

(ed.) Principles and Practice of Constraint Programming: 22nd International
Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings. pp.
369-387. Springer International Publishing, Cham (2016)

Castillo Castillo, P., Castro, P.M., Mahalec, V.: Global Optimization Algorithm for
Large-Scale Refinery Planning Models with Bilinear Terms. Ind. Eng. Chem. Res.
56, 530-548 (2017). doi:10.1021/acs.iecr.6b01350

Castro, P.M.: Spatial Branch-and-Bound Algorithm for MIQCPs featuring
Multiparametric Disaggregation.

Gleixner, A.M., Berthold, T., Mdller, B., Weltge, S.: Three enhancements for
optimization-based bound tightening. J. Glob. Optim. (2017). doi:10.1007/s10898-
016-0450-4

Tawarmalani, M., Sahinidis, N. V.: A polyhedral branch-and-cut approach to
global optimization. In: Mathematical Programming (2005)

Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global
optimization of nonlinear equations. J. Glob. Optim. 59, 503-526 (2014)

22

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Chapter 2: Inventory Pinch Based, Multiscale Models for Integrated
Planning and Scheduling-Part I: Gasoline Blend Planning

This chapter has been published in the AIChE Journal. Complete citation:

Castillo Castillo, P. A., & Mahalec, V. (2014). Inventory pinch based, multiscale models
for integrated planning and scheduling-part I: Gasoline blend planning.” AIChE Journal,
60(6), 2158-2178. Wiley Online Library, doi: 10.1002/aic.14423

Permission from © American Institute of Chemical Engineers.

23

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

In Chapter 2, the inventory pinch concept for production planning is revisited and the
multiperiod inventory pinch (MPIP) algorithm is introduced for blend planning problems.
MPIP relies on a two level decomposition of the original problem. At the 1% level, the
blend recipes are determined by solving a multiperiod NLP model with periods delineated
by inventory pinch points. The 2" level is a multiperiod MILP model (with original
number of periods defined by the planner) with fixed blend recipes. Both levels are
formulated using discrete-time representation. One of the key features of the MPIP
approach is that produces solutions with less variations in blend recipes.

The MPIP for blend planning is the base for the MPIP algorithm for blend scheduling
presented in Chapter 3.

24

AIChE

Inventory Pinch Based, Multiscale Models for Integrated
Planning and Scheduling-Part I: Gasoline Blend Planning

Pedro A. Castillo Castillo and Vladimir Mahalec
Dept. of Chemical Engineering, McMaster University, Hamilton, ON, Canada L.8S 418

DOI 10.1002/aic. 14423
Published online March 7, 2014 in Wiley Online Library (wileyonlinelibrary.com)

A rtwo-level algorithm to compute blend plans that have much smaller number of different recipes, much shorter execution
times, and the same cost as the corresponding multiperiod mixed-integer nonlinear programming is infroduced. These
plans become a starting point for computation of approximate schedules, which minimize fotal number of switches in blen-
ders and swing tanks. The algorithm uses inventory pinch points to delineate fime periods where optimal blend recipes
are likely constant. At the first level, nonlinear blend models are optimized via nonlinear programming. The second level
uses fixed recipes (from the first level) in a mudtiperiod mixed-integer linear programming to determine optimal production
plan followed by an approximate schedule. Approximate schedules computed by the multiperiod inventory pinch algorithm
in most of the case studies are slightly better than those computed by global optimizers (ANTIGONE, GloMIQQ) while
requiring significantly shorter execution times. Such schedules provide constraints for subsequent detailed scheduling in
Part II. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2158-2178, 2014

Keywords: gasoline blend planning, inventory pinch, recipe optimization, minimum number of recipes, multiscale plan-
ning model

Introduction has a major impact on profitability of crude-oil refineries.> A
sample gasoline blending system is shown in Figure 2. Accu-
rate optimization of gasoline blends requires nonlinear mod-
els. Nonlinearities may appear in the blending model due to
(1) nonlinear blending properties, (2) inclusion of the qualities
of future product inventory in the multiperiod medel, and (3)
other attributes of the pooling problem. Kelly4 pointed out
that formulation of planning models with nonlinearities is
becoming more spread in practice due to: (1) recent complex
government regulations, {2) raw materials being more expen-
sive and of poorer quality, (3) new and more sophisticated
production processes, and {(4) higher energy, chemical, and
utility costs.

One approach to gasoline blending is to compute blend
recipes and detailed blend schedules simultaneously via con-
tinuous time model.”® Due to complexity of the mixed inte-
ger formulation, such approaches have been limited to using
linear blending models. Even with linear medels, this
approach often leads to very large computational times.
Another approach is to decompose the problem into planning
and scheduling. Gasoline blend planning determines the
ratios of blend components to be used to produce specific
products (i.e., the blend recipes) and the volume to blend of
each product along the planning horizon in order to meet
product quality specifications, product demand requirements,
and minimum blend cost. This has the advantage that nonlin-
ear models can be used at the planning, as integer variables
appear only with the minimum blend threshold censtraint.
Additional Supporting Information may be found in the online version of this As blend plans are feasible at the time period boundaries,

article. p . . p
Correspondence concerning this article should be addressed to V. Mahalec at the consiraints they pr0v1de for detailed blend schedulmg

A supply chain is a system of all the activities required to
produce and distribute a product starting from raw materials
to the final product delivery to the end customer. Supply
chain optimization involves making decisions at different
temporal, spatial, and process scales (see Figure 1). Strategic
planning determines decisions such as supplier selection,
plant location, production system selection, distribution
structure, and sales programs. Medium-term planning
defines, in a weekly or monthly basis, the production targets
of each plant site, the necessary stock levels of the invento-
ries at various locations, and how much of each product is
going to be transported from each plant to each warehouse
or storage depot. Short-term planning is similar to medium-
term planning but it is carried out for a shorter time horizon
with smaller time scale (e.g., daily basis). Short-term produc-
tion planning is usually called production scheduling and it
deals with the assignment and sequencing of tasks for spe-
cific production units. Integration of these different decision
levels is one of the main issues in the petroleum supply
chain management due to the large physical supply network
and the complex operations in an eil refinery.

The refinery is the main element of the petroleum supply
chain. The final section of a crude-oil refinery consists of the
blending units to produce the final liquid products and ship-
ping operations. Minimization of the gasoline blending costs

mahalec@memaster.ca. may be intraperiod infeasible. Hence, integration of planning
© 2014 American Institute of Chemical Engineers and scheduling is required to ensure feasibility.
June 2014 Vol. 60, No. 6 AIChE Journal

25

Global supply chain

 §

Production facility

3

Plant section or
subsystem

|

Production line or unit

Length of planning horizon increases
Degree of model accuracy increases

a)

Long-term planning

]

Mid-term planning

]

Short-term
scheduling

Length of planning horizon increases
Degree of model accuracy increases

b)

Figure 1. General scheme of hierarchical production planning with respect to (a) spatial scale and (b} time scale.

One problem that practitioners face when using nonlinear,
multiperiod blend planning models is the blend recipe varia-
tions from one time period to another along the planning
horizon, at the solution of the optimization model. In gen-
eral, blend recipes vary for every blend instance and every
time period, and they differ as well from one solver to
another (even though the value of the economic objective
function of the solutions is the same). Current practice is to
avoid such variations by penalizing deviations of blend rec-
ipes in every period from some preferred blend recipe (e.g.,
Mendez et al.”). The disadvantage of this technique is that
the final blend recipe and the cost will depend on the value
given to the penalty coefficients. Another option is to use a
set of preferred blend recipes (e.g.. Jia and Ierapetritou?);
however, such blends may not be the lowest cost blends.

This work presents an inventory pinch based, two-level
algorithm to solve two problems:

1. Compute a blend plan based on a nonlinear blend
model, such that the plan has a minimum number of optimal
blend recipes along the planning horizon, and

2. Integrate nonlinear blending with approximate scheduling.

At the first level, we use the inventory pinch cencept to
determine minimal number of perieds, each one of them
having a single blend recipe for each grade of gasoline. The
inventory pinch peints delineate the initial time periods in a
nonlinear programming (NLP) model used to compute these
optimal blend recipes. At the second level, we use these
optimal blend recipes from the first level to formulate a
fixed-recipe multiperiod mixed-integer linear programming
(MILP) to compute:

1. Blend plan: how much of each grade to produce and
when to produce it, and when to change swing tanks from
service to another. This model provides feasible inventory
prefiles at the second level period boundaries.

2. Approximate schedule: determine the production
sequence that minimizes blender switches and switches of
the swing tanks from one service to another along the plan-
ning horizon. Period boundaries at the second level are typi-
cally 1/2 day or 1 day leng; that duration is set based on the
minimum time a swing tank is expected to be in a given
service. We call this an approximate schedule because it is

AIChE Journal June 2014 Vol. 60, No. 6

Published on behalf of the AIChE

26

computed by an aggregated model, which does not consider
minimum changeover times and other logistic rules that may
be in place. This is similar to the definition of approximate
scheduling model used by Maravelias and Sung.8

The second level MILP model contains slack variables to
obtain a numerical solution even if it is not physically feasi-
ble. If the second level MILP slack variables have non-zero
values, we subdivide the corresponding period at the first
level NLP model, recompute the blend recipes and then
recompute the second level. Hence, we increase number of
recipes only when such a change is required to ensure opti-
mality and feasibility of the solution.

For blend planning problems, we compare our solutions to
the corresponding full-space mixed-integer nonlinear pro-
gramming (MINLP) model. The results show that the blend
costs computed by the full-space MINLP and our algorithm
are the same. Our solutions have substantially smaller num-
ber of distinct blend recipes and also require much shorter

Blenders Product Tanks

Component Tanks

From upstream Separation and Process Units
To Shipping/Lifting Ports

Figure 2. Sample gasoline blending system.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

DOT 10.1002/aic

execution times. Approximate schedules computed by our
algorithm define constraints for detailed scheduling. Part 11
of this article integrates planning and detailed scheduling by
introducing a third decompesition level, which computes
detailed schedule.

Problem Statement
Blend planning

In this work, we address the gasoline blend planning prob-
lem stated as follows:
Given.

1. A planning horizen [0, H].
2. A set of components, their properties, initial inventories,
costs, and flow rates along the planning horizon {i.e., supply
prefile).
3. A set of products (i.e., gasoline grades) with prescribed
minimum and maximum quality specifications, their initial
inventories, and corresponding initial quality.
4. A set of delivery orders for each product along the plan-
ning horizon (i.e., demand profile).
5. The maximum blending capacity of each blender.
6. A set of storage tanks and their minimum and maximum
held ups.
7. Nounlinear blending model.

The Objective is to Determine.

1. The products that the blenders should produce in each
time period and how much.
2. The best blend recipes for each product.
3. The inventory profiles of all the compenent and product
tanks.
4. Swing tanks allocation in each time period.

Minimizing.
1. The blend cost associated with the amount of blend com-
ponents used.

Subject to.

1. Extending the use of the same blend recipe as long as
possible.
2. If a blender is to produce a product, it must blend at least
a minimum amount.

Assuming.

1. Flow rate profile of each compenent from the upstream
process is piecewise constant.

2. Component quality profile is piecewise constant.

3. Perfect mixing occurs in the blender.

4. Changeover times between product runs on the blender
are product dependent but sequence independent.

5. Each order involves only one product and is completed
during the respective time delivery window (otherwise, the
preblem is considered infeasible).

6. Swing tanks are allocated to a particular service through-
out duration on a given period at the second level of the
algorithm.

Approximate blend scheduling

Blend planning problem is extended to approximate blend
scheduling by:

Minimizing.
1. The blend cost associated with the amount of blend com-
penents used plus the cost of switching blender operations
plus the cost of switching swing tanks to different service.

DOT 10.1002/aic

Published on behalf of the AIChE

27

Global petroleum supply
chain

1% level:
Blend recipe optimization

2" level:
Blend plan optimization and
approximate scheduling

| Refinery planning |
| Gasoline blend planning]

Scheduling of gasoline
blending operations

Scope of this
work

Figure 3. Proposed decomposition of the gascline
blend planning problem.

[Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

Solution Approach

Although production planning optimization of the global
supply chain of an enterprise can be carried out by a single
MILP and MINLP model, a hierarchical framework is pre-
ferred because: (1) it solves more tractable and smaller-size
models and (2) it does not require large amount of forecast
data, thus reducing the magnitude of the forecast errors in
the planning process.” In a hierarchical planning system,
decisions at the upper levels are made first and they impose
constraints on the decisions at the lower levels. Lower lev-
els’ solutions provide feedback to evaluate the upper levels’
decisions. Fach hierarchical level has its own characteristics,
including length of the planning horizon, level of detail of
the required information and forecasts (see Figure 1), and
scope of the planning alctivi‘fy9

In this work, we solve the gasoline blend planning prob-
lem using the hierarchical framework shown in Figure 3.
The first level computes the optimal blend recipes and the
second level computes how much of a given product and
when it should be blended using the recipes from the first
level. We assume that the flow rates of the refinery interme-
diate products arriving to the blending system (i.e., blend
compoenents) are given by the solution of the refinery plan-
ning level; therefore, the inventory cost need not to be
included in the gasoline blend planning model as the refinery
will carry the inventories as either blend components or as
finished gasoline grades.

Aggregale planning

To reduce the disadvantages of a detailed formulation
(e.g., large execution times, intractable models, large effect
of the forecast errors and so forth), models at the upper lev-
els are usually aggregated formulations of the lower levels.”
The adjective “aggregated” indicates that (1) some resources
or tasks have been grouped into corresponding families and/
or {2) the availability of the resources in one time interval is
the cumulative amount available during that interval. Several
aggregation/disaggregation techniques for production plan-
ning have been discussed in the literature. Nam and Logen-
dran'® presented a survey of methodalogies to formulate and
solve aggregate production planning problems.

Bitran and Hax” proposed a hierarchical planning model
of a multiproduct batch plant. Feedback and interactions
among the hierarchical levels are carried out by incorporat-
ing conditions not included initially in the models.

Axsater and Jonsson'? presented a planning model for a
manufacturing company where items and machines are

June 2014 Vol. 60, No. 6 AIChE Journal

grouped according to the ratio between capacity require-
ments and available capacity, or according to the flows of
items. Disaggregation is carried out by simulation using two
different heuristic procedures.

Verderame and Floudas'® proposed a multiperiod MILP
planning model of a multisite production and distribution
network. The model computes the daily production profile
for each facility and the shipment profiles from the facilities
to the distribution centers. Key assumptions in their model
are: (1) sequencing constraints are not included (ie., the
solution of the planning model will be used as a basis to
compute the detailed schedule), (2) more than one task can
be executed by the same unit in the same facility and the
same time period, and (3) unused time of the production
units is transferred to future time periods. Therefore, the
time periods, even as small as cne day, can be considered as
aggregated periods. Assumption (1) reduces the number of
discrete variables, and Assumptions {(2) and (3) eliminate
unnecessary downtime of the processing units due to finite
discretization of the time horizon. Comparison with the Kall-
rath planning model for multisite production (Timpe and
Kallrath'®) shows that Verderame and Floudas' model
yields a tighter upper bound on the true production capacity.

Thakral and Mahalec' developed an algorithm that opti-
mizes blend recipes using a multiperiod MINLP planning
model, minimizes blender switches through the use of a
genetic algorithm, and detects infeasibilities via agent-based
simulation. The time periods of the MINLP model are con-
sidered as aggregated as the same resources {e.g., blenders)
are shared for different tasks (e.g., blends of different prod-
ucts) in the same time period; therefore, intraperiod infeasi-
bilities may appear. If an infeasibility is encountered, the
corresponding period is subdivided and the blend recipes are
recomputed. The iterative algorithm stops when no infeasi-
bilities appear.

Pinch analysis was used in aggregate production planning
by Singhvi and Shenoy15 They presented the demand and
production composite {cumulative) curves, as well as a grand
composite curve that showed the inventory levels as a func-
tion of time. They define the pinch as the point where the
production composite touches the demand composite. They
considered only one product and their main objective was to
determine the production targets along the planning horizon
from the pinch analysis, and then use these targets to solve a
MILP model that minimizes the material, inventory, and
labor costs, subject to material balance equations and pro-
duction capacity constraints. The inventory levels are penal-
ized in the objective function but no inventory capacity
constraints are included. This methodology aims to provide
at least a near-optimal solution. Singhvi et al.'® extended the
pinch analysis to the scenario with multiple products and
presented an algorithm to determine the production sequence
based on some heuristic rules and assuming that the demand
must be met only at the end of the herizen. Ludwig et al.l”
applied the pinch analysis of Singhvi and Shenoy'’ to a pro-
cess with seasonal supply. The composite supply curve is
constructed similarly to the compeosite demand curve and the
composite production curve must not cross either curve to
avoid supply shortages or preduct stock-outs, respectively.

Foo et al.'® implemented the graphical pinch methedology
from Singhvi and Shenoy' into an algebraic technique
which can be easily programmed into a spreadsheet. They
include minimum and maximum product inventory con-
straints and the capability of scheduling a plant shut down.

AIChE Journal June 2014 Vol. 60, No. 6

Published on behalf of the AIChE

28

However, their algorithm considers only one product. They
peointed out that further improvements of this technique were
required to handle more complex supply chain planning
problems; they expressed a belief that pinch analysis may
provide a deeper analysis of the physical problem. They
viewed the pinch point as an indicator of the time within a
planning horizen when more accurate forecast data were
needed because the pinch point represented the scheduling
bottleneck.

Castillo et al.'? defined the inventory pinch point for the
gasoline blend planning problem in a similar manner to
Singhvi and Shenoy,”” but they utilized it to define the
aggregated time intervals where one single blend recipe per
product was likely to be used without incurring an infeasible
operation. In addition, Castillo et al'® included in their
model: nonlinear product quality constraints, blending equa-
tions, availability of raw materials, time delivery windows,
and capacity loss due to product switching in the blenders.

Inventory pinch concept

In this work, we use an aggregation/disaggregation
approach based on mventory pinch points in order to (1)
reduce execution times when compared with full-space
MINLP model and (2) reduce the number of different blend
recipes. A brief review of the inventory pinch concept is pre-
sented next; a more detailed explanation is found in Castillo
et al.'”®. To explain the inventory pinch concept, we define
the cumulative total demand {CTD) curve and the cumula-
tive average total production (CATP) curve. The CTD curve
is constructed by adding the cumulative demands of all prod-
ucts over time. The CATP curve consists of straight line seg-
ments, its starting point at time zero is the initial total
product inventory available to deliver (i.e., the sum of all
initial product inventories minus the minimum hold ups of
the tanks), denoted as V(0), and its final point at the end of
the planning horizon corresponds to that of the CTD curve
plus the final aggregated target inventories. The slope of
each segment of the CATP curve must be equal or greater
than zero and less than the maximum aggregated blending
capacity {le., all blenders are aggregated as one single
blending umit). The slope of the CATP curve can only
change if the CATP is touching the CTD curve. CATP curve
has the minimum number of segments required to remain
above the CTD curve within the planning horizon. The
inventory pinch points are defined as the peints in time
where the CATP curve changes its slope. Figure 4 shows
examples of this concept and the grand composite curve
which is computed as the difference between the cumulative
total production (CTP) curve and the CTD curve. The inven-
tory pinch points delimit the smallest number of time inter-
vals were a constant blend recipe is likely to lead to a
feasible blend plan; that is, no inventory infeasibilities
appear when disaggregating the first level decisions at the
second level. An inventory infeasibility is defined as the
missing volume to fulfill certain demand order or the over-
flow (or runout) that occurs in a storage tank.

Outline of the algoerithm

At the first level, the boundaries of the time periods are
delimited by the inventory pinch points, or by the times
when the quality values of the blend components change,
and the times when the unit cost of blend components or
products vary. At the second level, the boundaries of the

DOT 10.1002/aic

3000

— C’p:‘?
2 =2
= o ,.—/—7
& 2000

e

]

>

2

&

2 1000

=

pe |

e Pinch at Pinch at

—v e t=5 t=10

V(0™ g il

01234567 891011121314

Time (days)

a)

750
Pinch pointsatt=5
andt =10

S 500
Q
=
()
£
=
S 250

=
o
OX

0123456 7891011121314

Time (days)
b)

Figure 4. Inventory pinch point examples {a) on the cumulative curves and {b) on the composite curve.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

time periods are defined by the planner based on operational
conditions, for example, the minimum time a storage tank
will be holding a specific product or the minimum time that
a blending unit will require to produce the minimum thresh-
old amount. In addition, boundaries of the first level also
become period boundaries at the second level. Notice that
the length of the time periods at either level dees not need
to be uniform. For sake of expesition, the time periods of
the first level are denoted as L1-periods and those of the sec-
ond level as L2-periods. One Ll-period contains one or
more L2-periods; therefore, the product demand, blend com-
penent supply, and blend capacity in a Ll-period are the
aggregated values of the corresponding L2-periods (see
Figure 3).

The inventory pinch points delineate the time periods of
constant blend recipes that do not produce inventory infeasi-
bilities due to peaks in demand because these peaks are
already considered in the computation of blend recipes.
However, other inventory infeasibilities can appear due to

the logistic constraints such as minimum blend runs, specific
preduction sequences, or due to highly variable supply pro-
files of blend components. As these infeasibilities cannot be
detected in advance, they will be accounted for in an itera-
tive manner that refines the blend recipes if inventory infea-
sibilities are encountered. FHence, the inventory pinch
concept allows us to start with the smallest number of time
periods at the first level and increase that number only if
required to eliminate inventory infeasibilities. It also pro-
vides the minimum production quantities to meet the demand
of each product by solving a simple material balance for
each time period delimited by pinch points: (aggregated pro-
duction) = (aggregated demand) + (final inventory) — (initial
inventory).

Although we consider only one storage tank per blend
component, we assume that there are tanks that may store
different gasoline grades at different times in the planning
horizon, that is, swing tanks. At the first level, individual
product tanks are aggregated into a single inventory capacity,

1% level
Blend Recipe Optimization

nonlinear quality constraints.

unit.

(1) Optimal blend recipes are computed using

(2) Individual tank capacities are aggregated as pools.
(3) Blenders are aggregated as one single blending

Time grids

Inventory pinch points, quality
changes of blend components,
and unit cost variations

L1-periods

(1) Blend recipes.
(2) Inventory levels at the L1-periods’
boundaries.

(1) Where to subdivide L1-periods.
(2) How much to blend in each L1-period.

2" |evel

tanks to specific products).

Blend Planning and Approximate Scheduling
(1) Production plan for each blender is computed. !
(2) Storage tank management (i.e. allocation of swing TN O T Y S |

L2-periods

Figure 5. Inventory pinch based algorithm for gasoline blend planning and approximate scheduling.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

DOT 10.1002/aic

Published on behalf of the AIChE

29

June 2014 Vol. 60, No. 6 AIChE Journal

that is, a product peol; then at the second level, these pools
are disaggregated into individual storage tanks.

Mathematical Models

The models presented here are developed based on the
gasoline blend planning problem; however, they can be used
for similar processes with few modifications. The following
sets are used:

A = {(o) | set of different supply flow rafes of blend components)

Bl = {(bl) | sat of blenders}

E = {(e) | set of quality properties}

I= {(f)l set of blend components}
J = {{) | set of product storage tanks}
= {(k) | set of time periods at the first level or L1-periods}
M = {(m) | set of time periods at the second level or L2-periods)
O = {(9) | set of orders}
{(p) | set of products}
{(®L, /) | blender bl can feed tank j}
{(bl, p) | blender bl can process product p}
JP = {(j, p) | tank j can hold product p)
KA = {(k,) | blend component supply profile « occurs within L1-
period k)
MA = {(m, o) | blend component supply profile @ occurs within 1.2-
period m)
MK = {(m, k) | L2-periods contained in each L1-period}
MKEF = {(m, k) | last L2-period of each L1-period}

P
BI
BP

First level—Blend recipe optimization

The cbjective of the first level is to determine the volume
fractions (i.e., blend recipes) to mix different blend compo-
nents available at the refinery in such a way that the final
preducts meet the demand and quality specifications and the
blend cost is the minimum possible. The values of the prod-
uct demand, blend cemponent supply, and blend capacity are
aggregated values for each of the L1-periods. At this level,
product storage tanks are aggregated into product pools. The
objective function defined by Eq. 1 minimizes the blend cost
and the inventory infeasibilities. The penalty coefficients for
the product slacks variables are much greater than the pen-
alty ccefficients for the component slacks variables (ie.,
Penaltypociry > Penaltyyc1y). The blend cost is given by
Eq. 2. Slack variables will be zero at the optimal solution
(i.e., penalty coefficients will not affect the final blend cost);
if slack variables have non-zero values, then the problem is
infeasible as there are not enough blend components to blend
products as required by the quality specifications or demand
requirements.

Since the inventories will be at the minimum level
allowed at the end of each Ll-period (because the CATP
curve touches the CTD curve), the inventory cest need not
to be included in the objective function of the first level

minZy ; =Blend Costy
k | 2 Penalty e 1, - (S;QLl(iﬂ k) +Sl;c,Ll(i7 k))
> .]
e EPEP Penalty pooy 11 - (Spm,m {p.k) +8p0o1 11 2 k))
1)

K

Z (Z COStbC (l) . Vcomp,Ll (i,p, k)) (2)
icl peP

k=1

Blend Cost 1=

The volume balance equations and inventory constraints
for component and product tanks for every period k are
given by Egs. 3-6

AIChE Journal June 2014 Vol. 60, No. 6

Published on hehalf of the AIChE

> [Feelia) - toera(a, k)]

acKA
Voo 1 (k=1 =Voea (i, k)‘Z
o)
Veompr1(i, p, k)80, 11 (1 k) =Sy 11 (1, £)=0

Vi, k> 1
Vitend 11 (2, K} Voo 11 (0, k= 1) = Voo 1(p, k)
—Demand pot 1 (p,) S i (o k) —

pool,Ll (p k)=0 @
vp, k> 1
Ve () < Veerali k) < VPR (i) Vi k (5
s (P} < Vopooira(po k) < Vit (p) - W,k (6)

In Eq. 3, o stands for a specific supply profile of blend
components. Parameter #,.r1(c.k) defines the aggregate dura-
tion of the time intervals when supply profile o occurs dur-
ing period k. Notice that the sum of the durations of these
time intervals must be equal to the length of period &

Z tbc,Ll (Cl,]C)=!‘L1 (k)

acKA

Therefore, the first term in Eq. 3 represents the aggregated
availability of blend component i in period k. Equations 7
and 8 specify the initial inventories of the component tanks
and product peols, respectively

VoeL1 (1, k=03 =Ve™ (i} Vi (7)
Veou1 (0 A =0)=Voeii (1) ¥p (8)
Equations 9 and 10 are used to determine the blend rec-

ipes. Equation 11 sets the minimum and maximum compeosi-
tions of each product

Vcomp,Ll (iapa k):r(i,p,k) ’ Vblend,Ll(Pak) W“Ua k 2 1 (9)
D rlip =1 ¥pk 21 (10)

ief
B hp) <rlip k) <M Lp) Vipk>1 (11
Equations 12a and 12b are the linear quality constraints,

that is, the quality property e is assumed to blend linearly in
a volumetric basis

> Veampra(iop, k) - Ove (i, 0, 1)

i

<O (pie) Vienana (p k) Ve, pk > 1 (12a)
Zvcomp,l,l (tapyk) ’ ch (l: euk)
iel

> 00" (el Vienara(p, k) Vepk > 1 (12b)

Equations 13 and 14 are the nonlinear quality constraints;
they are expressed as a function of the blend recipe and the
qualities of blend components

0, (b, e, Ky=f(r(i.p, k), Ore (i, 6. k)) Vepk>1 (13)
onn (p,e) < O, (presk) < 00 (pe) Yepk>1 (14)

The only nonlinear quality constraint in our case studies is
Eq. 15, which computes the Reid vapor pressure {RVP)
(Sing et al.%)

DOIT 10.1002/aic

0.8
Qpr(Psg7k)= Zr(i’P’k) : QhC(iie’k)LzS ve:RVPsP: k=1
icl

(15)

Equations 1-15 complete the NLP model for the first
level. In the first iteration of the algorithm, the volumes to
be blended in each Ll-period are the minimum amount
required to fulfill the demand. This provides a lower bound
of the global blend cost.

It is important to note that discrete variables are not
required at the first level to cbserve minimum blend size
thresholds and maximum blenders’ capacities. The volumes
to be blended are adjusted if needed before solving the first
level model (see Algorithm Steps).

Second level—Blend plan optimization and
approximate blend schedule optimization

The blend plan defines {1) how much to blend of each
product and in which blender in each L2-period; (2) alloca-
tion of swing tanks to specific products in each L.2-period;
and (3) the inventory profiles of all storage tanks along the
planning horizen.

The second level uses the optimal blend recipes from the
first level: the blend recipes of each L1-period are fixed in
the corresponding L2-periods. The aggregated decisions of
the first level are now disaggregated at the second level.
This disaggregation step uses a MILP model to set con-
straints such as the minimum blend size threshold, and
others that require discrete variables. The second level is
solved first as a blend planning problem. This enables rapid
computation of an optimal blend plan which is feasible with
respect to the component and product availabilities and
inventories. Once an optimal blend plan is known, schedul-
ing of blenders and swing tankage is carried out {(approxi-
mate scheduling).

Blend Planning—Objective Function at the Second Level.
The objective function of the second level, Eq. 16, mini-
mizes the blend cost and the inventory slack variables.
Inventory slack variables will be zero at the solution of the
second level if a feasible operation can be obtained using the
blend recipes computed at the first level. If this is not the
case, the inventery slacks will show which specific products
and in which L.2-periods cannot be produced in the amounts
required to meet the demand. To ensure this, two things are
required:

1. Penalty coefficients for the products’ inventory slack
variables are smaller in comparison with the penalty for the
components’ inventory slacks (i.e., Penalty,.1; >> Penal-
tyPr,LZ(m) v m)

2. The penalty coefficients for the product inventory
slacks decrease with time (ie., Penaltyp,1a(m)>
Penaltypr120m + 1) ¥V m) to move the inventory infeasibil-
ities as late as possible in the planning horizon, thus max-
imizing the use of a given blend recipe. The penalty
coefficients must decrease as fast as possible and after
each Ll-period boundary a significant change must take
place.

If the solution of the MILP has inventory infeasibil-
ities, it signifies that compomnent supply or blender con-
straints are such that the recipes computed at the first
level are not feasible within a L1l-period. The algorithm
will subdivide such L1-periods and reoptimize the blend
recipes

DOT 10.1002/aic

Published on behalf of the AIChE

M
min 75 =Blend Cost 5+ Z
1

S Penalty vor () - (51,6} #8515 m))
+ EpeP Penalty pool,L2 (m)) (S;ool,LZ (pv m) +Sp_001,L2 (pv m))

+ Ejg Penalty 2 (m} - (S;;J_Z(j,m)JrSl;:Lz(j,m))
(16)

Equation 17 computes the blend cost

M
BlendCostuE(Z ZCosthc(i)»me(i,p,bl,m))
(

m—1 bl,p)EBP iEF

17

Approximate Scheduling—OQbjective Function at the Sec-
ond Level. After the blend recipes of the first level have
been proven to generate a feasible blend plan, then, the
approximate scheduling is solved. The scheduling objective
function at the second level (Eq. 18) minimizes the number
of possible preduct transitions in the blenders (xer,(blg))
and in the product storage tanks (uers(jm)), as well as the
number of blend instances {xy,(pblm)). Binary variable
xp2{p,blym) defines a blend instance; that is, it determines if
product p is going to be produced in blender bl during
period s if its value is 1. Blend instances are penalized
because a solution at the second level can suggest to blend
the same product in the same blender for several adjacent
L2-periods, thus not incurring in a penalty for product
changeover in the blender; however, long blend runs are
inefficient if the blender is net working close to full
capacity. Therefore, it is better to have the minimum blend
instances, and then reduce the expected number of product
changeovers {i.e., PenaltyBR;,(bl) >> PenaltyBS;,, for all
bl). Because the inventory slacks are zero at the blend plan-
ning solution, we know that the blend recipes and inventory
targets from the first level selution can yield a feasible blend
plan; then, if those are fixed at the second level, the blend
cost need not to be included in Eq. 18

R M Z(m epp PenaltyBR L2(bl} - x2(p, bl,)
minZ3 = N
m=1 | + ZjEJ PenaltyTS L2 (f) - ver2(f, m)

G
+ Z (Z PenaltyBS 12 - xep2(bl, 8)) (18)
#=1 \bleBl

Thus, the total cost at the second level is given by
Zia=Z5 + ZF | Given the assumption that the flow rates
of blend compenents are given by the solution of the refinery
planning level, the inventory cost need not to be included in
the gasoline blend planning level as the refinery will carry
the total inventories as either blend components or as fin-
ished gasoline grades.

Constraints at the Second lLevel The volume balance

equations for blend component tanks for every L2-period are
given by Eq. 19

June 2014 Vol. 60, No. 6 AIChE Journal

Z Fbc (i,a} . [bc,Lz(ﬂjm)‘FVbcyLz(l‘]n’I* 1)
acMA

Vo2 (i, m)— Z VeompL2(i, p, bl , 1)
(bl 7] 2BP

(19)

8125 m) =Sy m}=0
Vim>1

Once again, o stands for a specific supply profile of blend
components. Parameter fy.po{or,m) defines the aggregate
duration of the time intervals when supply profile o occurs
during period m. Notice that the sum of the durations of
these time intervals within a L2-period, must be equal to the
length of such L2-period

Z [bc,LZ (a, m) =f12 (m)

aEMA

Similarly to Eq. 3, the first term in Eq. 18 represents the
aggregated availability of blend component i in period m. In
our case studies, there is only one interval o in each L2-
period m.

Equation 20 fixes the blend recipe in its corresponding
L2-periods. Note that r(i,p,k) is a parameter and not a vari-
able at the second level

Vcomp,LZ(i7Pa bl,m):r(i,p,k)
VienaL2(p,bl,m} Vi, {p, bl}

€BP, (m, k) €MK)

Equation 21 establishes that a blender may only blend a
certain number of products during a L2-period. x1,(p,bl,m) is
a binary variable with value of 1 if product p is blended in
bl during period m, and 0 otherwise

> x1a(p, bl m} < np (bl jvbl,m > 1
pEBP

(1)

Maximum blender capacity is enforced by Eq. 22.
Because every product transition in the blender involves an
idle time (due to sensor recalibration, equipment start-up, or
other reasons), part of the blend capacity is lost. We assume
that the blend capacity loss is equal to the product of the
maximum blending capacity and the minimum idle time
required by a blender to process product p

3 pcnp Viend:.2(p, bl m) +FH (b1)
’ EPEBP (it ﬁj;.d (p,bl) - xL2(p, b, m))
< Fijenq (b1} - 112 (m}

¥bl,m > 1

(22

A blend run of a particular product must be less than or
equal to the volume that the blender can process at maxi-
mum blending capacity in period m (Eq. 23), and greater
than a threshold amount prespecified by the plamner (Eq.
24). A blend run of any product must be greater than the
volume that a blender can process at minimum blending rate
in period m (Eq. 25)

Vble“d=LZ(p1 bl ’ m) < Fﬁ:ﬁd (bl) b (m)
~xpaip,blm) ¥(p,bl} € BP, m>1

Vitend2(p, bl, 51) > VMIN 14 (p, bl
“xa(p,bl,m) V(p,bl} € BP, m>1

(23)

(24

AIChE Journal June 2014 Vol. 60, No. 6

Published on behalf of the AIChE

32

Viend,L2{p, b1, m} > Pl (bl) - g (b1)

25
xa(p,bl,m) Vip,bl) EBP, m>1 @3)

Equations 22-25 are not enough to guarantee feasibility.
The running times of each blend must be estimated and their
sum plus the idle time must be equal to or less than the
duration of the corresponding L2-period m. Equation 26 con-
straints the rumning time of a blend to be equal or greater
than the minimum running time. Equations 27 and 28 set the
lower and upper limits of a running time of a blend, respec-
tively. Equation 29 enferces that the sum of the running
times, plus product changeover times, is equal to or less than
the L2-period duration

Iblend,Lz(pibLm) = f;ﬁl:md (bl) - xpafp, bl i) ¥(p,bl)
EBP, m>1

Vitend L2 (p, bl ,m)
Flaza (b1)

(26)

fitend 1z (P, B,) > Y(p,bl} € BP, m

>1
27)

VisendpL2{p, bl m)

fiend 1z (P, B) < Y(p,bl} € BP, m

Fiima (b1}
>1
28)
Z l\blend,Lz((j!bl!m)Jr Z itlr:'?];xd (p,bl) 4xL2(p,bl,m)
pEBP pEBP
<na(m) ¥bl,m>1 29)

Equations 30 and 31 are the velumetric balance equations
on the product pools and the individual storage tanks,
respectively

> biepp Veiend Lz (p, bl m}+ Vi 12 (p, m—1)

- VpooI,LZ (p) m) — Deliver pool,L2 (Pu m)

(30
S r2 (P S poar 12 (P, 1) =0
Ypom =1
2 obieper Vaans 2 (s py oL m) + Vo2 (, p, m—1)
— VL2, p, my—Deliver pryo{f, p, m) 1)

+S;,L2(j’ m)ispr,LZU!m>:0
¥ (p) €IP, m>1

The volume blended of product p in blender bl can only
be sent to one product tank j during L2-peried s, and that
tank j must contain already product p or be empty (i.e., mix-
ing of different products is not allowed in storage tanks).
These constraints are represented by Egqs. 32-35. Binary
variable vi(jp,blm) specifies if product p is transferred
from blender bl to product tank j during period m. Binary
variable uy,(j,p,m) specifies if product p is being stored in
product tank j during period m

Vians 12 (f, p, bl) < Figng (bl - () - via(j, p, bl)
¥ (bl,p) € BP, (jbl)e BY, (ipte JP,m>1
(32)
> ere Virans12 (1,8, b1,)= Videna L2 (p, b1, 1)

33)
¥ (bl,p) € BP, (j,bl)e BI,m>1

DOT 10.1002/aic

3 s vialj i blym) <1
V(bl,p)e BP, (j,bl)e Bl ym=>1
via(j, p, bl) < wpalf, p, m)
¥ (bl,p) € BP, (jbl}€ BI, (jp)e P m>1

(34)

(35)

Equation 36 states that only one product can be stored in
a product tank j during a period m. Equation 37 constraints
the volume stored of product p in tank j to be less than the
maximum capacity of such tank. Equation 38 relates the
product pool inventory with the individual tank inventories

D ualp,my=1Vj, m (36)
FeIP
Vpr,LZ(j!pﬂm) < Vlrgrrlax (]) : uLZU!PHm) k4 U!p) € Ip,m
(37)
VPOOI,LZ(P: m): E}E]’P VPT,Ll(JV:pim) v op,m (38)

Binary variable uep,{jm) is introduced to determine if a
product transition in tank j has taken place at the beginning
of period m (Egs. 39 and 40). Equation 42 forces a product
transition to occur on tank j if it is empty at the end of the
previous period m

uez(f,m) = una(f,pymy —wma{j,pm=—1) ¥ (ip)c IP,m>1

(39
U-SLEU’m) > ML?.(]‘:P7m71)7ML’Zpr’m) v U:P) S Jsz >1
40)
Vprra (o m—1) < VRS () - (1—vern{f,m)) ¥V (ip) € TP, m =1
(41)

Equation 42 defines the products stored in the product
tanks at the beginning of the scheduling herizen

wa(j,pym=0)=""(j,p}) ¥ (jp)c IP

Inventory constraints on storage tanks are given by Egs.
43-45. Maximum pool capacity is no longer enforced at this
level as there are constraints on the individual product tanks
(see Eq. 37)

42)

VER () < Vigpa(f,m) < VEX(i) ¥V im 43)
Veostiz(py i} = Vst (p) ¥ pym (44)

VPF,LZU:pﬁm) > Vl;?m (1) . MLzU,p,m) v (jﬁp) c IP,m
“5s)
Inventory levels at the boundaries of the L1-periods must

be equal at the corresponding point in time at the second
level. This is enforced by Eq. 46

VpooI,LZ(p; m)=Vp0()I,L1 (IZ’, k) v P2, (m: k) € MKF

Equations 47 and 48 set the initial state of the component
tanks and product tanks, respectively

(46)

Ve L2l m=0)=Vi2 (i) Vi @7

Vpr,LZ(japum:O):VS:-m (I;P) Y (}Jp) < JP

Equation 49 constraints the shipped/lifted amount of prod-
uct p from tank j in period m to be equal or less than the
volume that such tank can deliver at maximum delivery rate
during period . The amount of product p delivered by all
preduct tanks is equal to that amount delivered from the cor-

(48)

DOT 10.1002/aic

Published on behalf of the AIChE

33

responding product pool (Eq. 50). Equation 51 establishes
that the demand must be met in each L2-period

DehverPnLZ (}',P,m> =< Dg:-ax (J) g% (m)) MLZU,P, m)

49)
v (pye TP,m>1

Deliver poo La(p, m)= 3 crp Deliver iz (j pym) ¥V p,m =1
(50)

Deliver o112 (p, ity =Demand p12(p,m) ¥V p,m>1 (351)

Equation 50 is used when the demand requirement for
each [.2-peried is known exactly, that is, the delivery win-
dows of the orders do not span more than one L2-period.
Equation 50 can be substituted by Egs. 52-55, which are
included in order to handle delivery windows spanning sev-
eral L2-periods. Equation 52 establishes that the amount
delivered in period m is equal to a fraction of the total
demand of order o, denoted as ofps(om). vofis(o,m) is a
parameter that represents if order o can be delivered in
period m if its value is 1 (i.e., delivery time window of order
o0 is contained totally or partially by L2-period m), or not if
its value is zero. Equation 53 ensures that only the con-
tracted demand for order o is shipped/lifted. Equation 54
forces completion of order o within the scheduling horizon.
Equation 55 constraints the fraction delivered of order o dur-
ing period m to be less than the maximum possible delivery
of such order

Deliver poqi2 (P, 1)=3_,.p Demand (o) - of 15{0,m) ¥ p,m > 1

(52)
of 12(0, m} < uof (0, m) ¥ o,m>1 (33)
M
Eosz(o,m):l Vo (54)
m=1

Dmax

Demand (o) - of 12(0, m) < D% (o) - digs(o,m) ¥ o,m> 1

(55)

Constraints Specific to the Approximate Scheduling at the
Second Level. BEquations 56-61 are included in order to
compute the product transitions in the blenders. The proeduc-
tion sequence of each blender is determined by binary vari-
able yro(p,bl,g), which is computed based on the values from
variable x,{p,blm). The g index refers to position in the
sequence where product p is processed by blender bl; that is,
g can be interpreted as well as a time slot to allocate the
blend instances of period m to estimate the production
sequence of blender bl. The number of these slots for one 1.2-
period is equal to the number of different products. Equation
56 defines the products being processed in the blenders at the
beginning of the scheduling herizon. Equation 57 ensures that
only a product that is being blended in period m is allocated
in a slot g corresponding to . Equation 58 constraints that
only one product can be allocated in slot g. Equation 59
allows a product being blended in period m to use more than
one slot g comresponding to m. Equations 60 and 61 determine
if a product transition has taken place. xer,(bl,g) is a continu-
ous variable that can enly take 0-1 values due to Egs. 60 and
61, and for being penalized in Eq. 18

yr2(p, bl,g=0}=x""(p,bl} ¥ (bl,p} € BP (56)
yiz(p, bl, g} < xpa(p,bl,m) ¥V p,bl,(g,m)e GM (37)
June 2014 Vol. 60, No. 6 AIChE Journal

ZpEPyLZ(pablvg) =1 Vblg=>1 (58)
ZgEm)’Lz(%bl,g) EXLZCPablam) vp1b11m21 (59)

xera(bl, g} > yial(p, bl g)—ya2(p, bl,g—1) ¥ p,bl,g> 1
(60)

xera(bl, g} > ya(p, bl g— 1 —yiafp, bl g) ¥ p,bl g > 1
(61)

It is important to note that the production sequence given by
y1o(p,bl,g) provides a lower bound of the number of product
transitions in the blenders, but the actual production sequence
must still be computed. This is done in Part 11 of this article
where detailed scheduling is integrated to the model.

Note that the second level MILP model does not deal with
the blend recipe optimization and do not include the nonlinear
terms corresponding to the quality constraints. Thus, all the
nenlinearities intrinsic to the blending problem are solved at
the first level. Appendix shows that the first and second level
models are equivalent to full-space MINLP medel.

Corresponding full-space MINLP model

Corresponding full-space MINLP model can be obtained
from the second level model by dropping Eq. 20 and adding
the following equations from the first level (such equations
and its variables are written for all s> 1):

¢ The blend recipe computation: Eqgs. 9-11; and

e The quality constraints: Egs. 12a-15.

Although it is possible, we do not include constraints to
minimize blend recipe variation to find the optimal solution
of the original full-space MINLP model and compare it with
the solution of our algorithm.

Special case: full-space MILP model

The second level model can be transformed into a full-
space MILP planning model if:

a. Blend recipes are not required to be computed directly
in the model. In this case, Eq. 20 is dropped from the second
level model, and Egs. 62 and 63 are added

Z VCOmP=L2 (ii 2, bl, m) :Vblend,LZ (P, bl, m)

el (62)
Vi (p.bl) e BP,m>1
PG oY - Vetend 2 (p, b1, m} < Veempra (i, p, bl a1}
< (] p) - Viend 2 (p, bl m) (63)

Vi (p,bl)e BP,m>1

a. All the quality properties are assumed to blend linearly
(Egs. 12a and 12b are added to the second level model but
rewritten for all L2-pericds) or if the nonlinear equations
can be rewritten as linear constraints {e.g., the RVP nonlin-
ear constraint given by Eq. 15 can be substituted by Eq. 64,
which is linear)

E}i" (P, 6)1'25 Votend 200, #) < X sey VeompLz (£, p, 1)

Qe (i,e,m)" 7 < x> (p, &' Vigenara (p,m)
¥ e= RVP pym>1

(64)

This linear transformation allows us to compare perform-
ance of our algorithm with a full-space MILP model. Not all
nonlinear quality constraints can be rewritten exactly as lin-

AIChE Journal June 2014 Vol. 60, No. 6

Published on behalf of the AIChE

34

ear constraints, and the aim of our algorithm is to handle
problems with those nenlinearities.

As blend recipes are not computed directly by the model, it is
only possible to minimize variations with respect to a given set
of preferred blend recipes. These constraints are not included to
find the optimal solution of the original full-space model.

Multiperiod Inventory Pinch Algorithm for
Gasoline Blend Planning

The flowchart of the multiperiod inventory pinch (MPIP)
algorithm is presented in Figure 6. Although this algorithm
is based on the gasoline blend planning problem, it can be
applicable to any system or process with similar features.
The steps of the algorithm are the following:

Step 1: Construct the cumulative curves (CTD and CATP)
and determine the pinch peint(s) location.

Step 2: Set iteration counter iter = 1. Divide the planning
horizon (at the first level) in the number of L1-periods indi-
cated by the pinch peints and the times when the quality val-
ues of the blend components change (i.e., K).

Step 3: Solve the first level Blend Recipe Optimization model.

¢ In the first iteration (iter = 1), the volumes to produce of
each product in each Ll-period £ are the minimum amounts
required to meet the aggregated demand in each L1-period

Vilend, 112, k) =Demand poo 11 (p, k) + (P, k) = Vioar1{p,k—1)
(65)

target
Vpoo] L1

where V;ﬁﬁ] (pk) is the ttaggttat inventory. Notice that if no
target inventories are set, Vpoffu (pk)= PoolLl (»).

* If Vigenar1(p k) violates the maximum blend capacity or
the minimum blend size threshold constraints, volumes are
adjusted by moving the least amount possible of volume to
previous L1-periods (i.e., preblending).

+ In subsequent iterations (iter > 1), the volumes to pro-
duce are defined according to the solution of the second
level {see Step 6).

+ If any mventory slack variable has a non-zerc value at
the solution, the problem is infeasible as the availability or
quality of blend components is not sufficient to meet the
product quality specifications {or to deliver the product
within the delivery window). Stop.

Step 4: Solve the second level Blend Planning model.

Step 5: If the inventory slack variables from Step 4 are
zero, an optimal blend plan has been found; go to Step 8.
Otherwise, continue to Step 6.

Step 6: Subdivide the L1-period with the first infeasibility
(see Figure 7).

e The volumes to be blended in each new L1-period are
given by the solution of Step 5 plus the positive slacks
minus the negative slacks

Vitend L1 (P, £)= Z

meMK

Z Vitena 2(p, b1, m) +S;ooI,L2(p1 m) _SpooI,LZ (p, m)
bl BP

(66)

¢ If Viena1(p.k) viclates the maximum capacity or mini-
mum blend threshold constraints, volumes are adjusted by
moving the least amount possible of volume to the previous
L1-period or from the next L1-period, respectively.

DOT 10.1002/aic

START

Construct the CTD and CATP
curves. Identify the inventory
pinch points

i

Divide the horizon in L1-periods
delimited by pinch points and
components’ quality changes

—»

Determine the minimum volume to
blend in each L1-period in order to
fulfill the demand (Pinch Analysis)

Solve 1* Level
Recipe Optimization Model
(NLP with L1-periods)

Problem is

infeasible
Inventory

Yes |
210 | infeasibilities appear? |

Fix blend recipes
Fix inventories of product
pools at the pinch points

Solve 2™ Level
Blend Planning Model
(MILP with L2-periods)

v

If necessary, adjust volumes to
meet blender capacity and
threshold constraints

T

Subdivide L1-period with first
inventory infeasibility. Volume to
blend in each L1-period is given by

the solution of the 2™ level +

inventory infeasibilities

Inventory |
| infeasibilities appear? J|

Solution
found

Solve 2" Level
Approximate Scheduling Model
(MILP with L2-periods)

Figure 6. Flowchart for the MPIP planning algorithm.

Step 7: ROTHD=g®D 41 jter=1iter + 1. Go back to
Step 3.

Step 8: Solve the second level Approximate Scheduling
model, to reduce the number of blend instances and product
transitions in the blenders and storage tanks. Stop.

Case Studies

The gaseoline blending system shown in Figure 2, in con-
figurations with one, two, and three blenders, has been stud-
ied. In all cases, the system uses seven blend components
(ALK, BUT, HCL, HCN, LCN, LNP, and RFT) and pro-
duces three products (grades of gasoline U7, U91, and
U83). Each component has their particular storage tank.
There are three dedicated product tanks, one per each gaso-
line grade, and there are three swing tanks which can store
any product, but only one at a given time. A planning heri-
zon of 14 1-day L2-periods is used in all case studies
(= 14 days, n2(m) =1 day for all m). The minimum vol-
ume to blend in each blender in each L2-period is
VMINyena(p,bl) =30 X 10° bbl, for all p and bl. The
demand orders involve a single product and their delivery
time windows are assumed to be 1 day. Eight blend proper-
ties are considered: aromatic content (% by volume, ARO),
benzene content (% by volume, BEN), olefin content (% by
volume, OLF), motor octane number (MON), research
octane number {RON), RVP (psi), specific gravity (SPG),
and sulfur content (% by volume, SUL). All blend properties
are assumed to blend linearly except RVP. Supporting

DOT 10.1002/aic

Published on behalf of the AIChE

35

Information of this article contains data describing product
specifications, properties, and availabilities of blend compo-
nents, tankage capacities, and information required for full
specification of the test cases. The cumulative curves and
pinch points for each profile demand are shown in Figure 8.
There is no maximum delivery rate for each order, that is,
the maximum delivery rate of the tanks is the maximum
limit. For the MILP volume allocation problem, the cost
coefficients for component inventory slack variables are set
to 1 X 10°, and the cost coefficients for product inventory
slack variables appear in Supporting Information of this arti-
cle. Table 1 shows data describing the blenders. At the sec-
ond level, for all blenders, the penalty for a blend instance is

st
1 level iter) (iter)

period k k+1
Positive inventory infeasibilities
~a
2" level
Ve m-1 ‘periodm m+1 m+2
Next l New boundary
iteration £38088888%
st
1 level i o .
period kmm E period kfl“w B kfz‘“” 1l

Figure 7. Subdivision of L1-periods according to the
solution of the second level model.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

June 2014 Vol. 60, No. 6 AIChE Journal

Profile 1
1800

1500
1200
900
600
300

Profile 3
1800

1500
1200
900
600
300

Cumulative Volume (kbbl)

Profile 5
1800

1500
1200
900
600
300

012345678 91011121314

Profile 2

Profile 4

Profile 6

01234567 891011121314

Time (days)
Figure 8. Cumulative curves and pinch points for the six demand profiles.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

20 X 10* $, and for a product transition in a blender is 7 X
10% $. Notice that a blend instance is more penalized than a
product transition in a blender to use more efficiently the
blenders {i.e., at higher production rates). All data are pre-
sented in English system of units as it prevails in the refining
industry.

All case studies have been computed on a DELL Power-
Edge T310 (Intel® Xeon® CPU, 240 GHz, and 12 Gb
RAM) running Windows Server 2008 R2 OS. GAMS IDE
24.2.1 was used to solve each one of the case studies. The

first level NLP model was solved using IPOPT, and the sec-
ond level model was solved using CPLEX 12.6. To compare
the results obtained with the inventory pinch algerithm, the
corresponding full-space MINLP and MILP models were
solved for both the blend planning and approximate schedul-
ing problems. DICOPT (using IPOPT version 3.8), BARON
9.3.1, ANTIGONE® 1.1, and GloMIQO** 23 were the
solvers used to solve the full-space MINLP models, and
CPLEX 12.6 to solve the full-space MILP meodel. The
mixed-integer quadratically constrained program (MIQCP)

Table 1. Blenders Data

Blender A B C
Allowable products U87, Us1, U93 Uo1, Us3 Us7, Us1

Minimum volume to blend in each 30 30 30

L2-period (X10° bbl)

Maximum blending rate (><103 bbl/h) Case study 1,2,3, 8,9 10 7.5 - -

4,5,6,11, 12,13 4.5 3 -

7,14 3 25 2

Minimum blending rate (><103 bbl/h) 1,2,3, 8,9 10 5 - -

4,5,6,11, 12,13 3 2 -

7,14 2 1.8 1.5

Minimum running time (h) Product Us7 6 - i)

U9l 6 6 6

Ues 6 6 -

Minimum idle time (h) uUs7 1 - 2

U9l 1 1 1

Ues 2 1 -

AIChE Journal June 2014 Vol. 60, No. 6

Published on hehalf of the AIChE

36

DOIT 10.1002/aic

2100
1800

3
£ k=1
L]
g 1500
3
< 1200
>
£ 900
& s Inventory pinch
g 600 points
3 300
0
01 2 3 456 7 8 91011121314
Time (days)
——CTD =----CATP
Figure 9. Case study 13—Cumulative curves, inventory

pinch points, and L1-periods. Blend planning
first iteration.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

required by GIloMIQO is the full-space MINLP model
described in the Mathematical Models section, but Eq. 64
replaces Eq. 15.

‘When solving the full-space MINLP model with DICOPT,
starting points are important to find an optimal solutien, er
even a feasible one. In our case studies, the starting point of
variable Vylenaro(p,blm), for all p, bl, and m, was set above
the minimum blend size threshold {(i.e., VMINpeq{p,bl)).

As blend recipes computed by MINLP model are not
exactly the same, in order to compute the number of dif-
ferent recipes in the MINLP solution, two recipes are con-
sidered to be different if the absolute change of
composition percentage of any component is greater than

1%. As three grades of gasoline are being blended, the
total number of different blend recipes for all products is
divided by three.

Hlustrative example with two blenders and irregular
corponent supply

Case study 13 will be used to illustrate the steps of the
MPIP planning algorithm. This case study has demand pro-
file #5, two blenders (A and B), and the supply flow rate of
compenents is irregular along the planning horizen.

Blend Planning: Ieration 1. The corresponding cumula-
tive curves are shown in Figure 9, where it can be seen that
there are two inventory pinch points, one at the end of Day
7, and the other at the end of Day 8. Hence, three L1-
periods are required initially, ¥4 = 1, starts at the beginning
of Day 1 until the first pinch point, £ =2 corresponds to
Day 8, and £ =3 goes from the beginning of Day 9 to the
end of the planning horizon. In the first iteration of the algo-
rithm, the minimum production to meet the aggregated
demand in each L1-period is given by Eq. 65. The blend rec-
ipes computed by the first level model are given in Table 2,
and the blend cost is Blend Costy ; = 37,784.52 X 1(7 §.

Using the blend recipes from the first level, the second
level planning model is solved. Figure 10 shows the blend
plan for each blender, but it contains inventory infeasibil-
ities. The positive slack variables appear in L2-perieds
m=4 (12777 X 10° bbl) and m =5 (14 X 10* bbl), both for
product U91. The negative slack variables appears in period
m = 14 for product U87 (10.42 X 10° bbl). From Figure 10
can be seen that blender A and B are working at full
capacity during period m = 3; thus, the slack in peried m =35
must be preblended {see rule 6.a of the algorithm). L2-
Periods before m=25 have enough blending capacity

Table 2. Case Study 13—Optimal Blend Recipes (First Level)

First Iteration

Second Iteration

Blend Comp. L1-Period 87 91 U93 L1-Period Ug7 U9l 193
ALK =1 0.1747 0.245 0.1414 =1 0.1636 0.2422 0.1874
BUT 0.0261 0.0368 0.0436 0.0262 0.0355 0.0435
HCL 0.0241 0.0374 0.0327 0.027 0.0309 0.029
HCN 0.0456 0.0615 0.0523 0.0366 0.04 0.0394
LCN 0.2765 0.169% 0.1168 0.2458 0.1978 0.1293
LNP 0.1708 0.0784 0.0368 0.1842 0.0854 0.031
RFT 0.2823 0.3711 0.5765 0.3165 0.3682 0.5404
ALK P=2 0.1543 0.2486 0.1824
BUT 0.0263 0.0373 0.0442
HCL 0.0239 0.0465 0.0314
HCN 0.058 0.0793 0.0529
LCN 0.2791 0.1648 0.1174
LNP 0.169 0.0653 0.0276
RET 0.2895 0.3583 0.5442
ALK =2 0.1537 0.2449 0.1788 =3 0.1535 0.2434 0.1803
BUT 0.0252 0.036 0.0434 0.0252 0.036 0.0434
HCL 0.0286 0.038 0.0278 0.0289 0.0382 0.0277
HCN 0.0522 0.0606 0.0443 0.0533 0.0616 0.0443
LCN 0.3058 0.2003 0.1369 0.3056 0.1996 0.1372
LNP 0.1619 0.0702 0.0293 0.1613 0.0702 0.0289
RFT 02726 0.35 0.5395 0.2722 0.351 05381
ALK =3 0.0152 0.1363 0.09 =4 0.0146 0.1347 0.0924
BUT 0.0197 0.0349 0.0416 0.0197 0.0351 0.0414
HCL 0 0 0 0 0 0
HCN 0.0011 0.0021 0.0017 0.0011 0.0021 0.0017
LCN 0427 0.1617 0.1496 0.4255 0.1566 0.1564
LNP 02016 0.1554 0.0825 0.2022 0.1571 0.0801
RFT 0.3355 0.5096 0.6346 0.3371 0.5144 0.628

The significance of the bold characters is that they represent the L1-periods, where k represents the elements of the set X = (L1-periods). The superscript inside

the parenthesis represent the iteration number.

DOT 10.1002/aic

Published on behalf of the AIChE

37

June 2014 Vol. 60, No. 6 AIChE Journal

Max capacity 120
9

Blender A

60
Volume (x103 bbl)
30

Max capacity

Blender B
Volume (x103 bbl)

1 2 3 4 6 7 & 9 10 11 12 13 14
vent 20
nventory
infeasibilities 0 |_| ﬂ
(x10° bbl) |
-20
12 3 4 6 7 8 9 10 11 12 13 14
L2-periods
B vs7 [] usr [EH uves M cCapacity loss

Figure 10. Case study 13—Blend plan with inventory infeasibilities. Blend planning first iteration.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

available to blend both infeasibilities. Therefore, the
new boundary in the first level must be placed at the end of
day 4.

The new period boundaries at the first level are shown in
Figure 11; however, this time the CATP curve is replaced with
the actual CTP curve that is constructed by aggregating the
total production [ie., 2p,umVbiena12(p,blm)] over time. When
the CTP curve is below the CTD, there are inventory infeasi-
bilities. This is easier to see on the grand composite curve.

Blend Planning: Iteration 2. In this iteration, the produc-
tion targets for each Ll-period are computed using Eq. 66
and rule 6.a of the algorithm. The blend recipes computed
by the first level model are given in Table 2, and the blend
cost is Blend Costy; =37,784.52 X 107 §, the same cost as
in the first iteration.

Using the blend recipes from the second iteration, the sec-
ond level planning model is solved. An optimal blend plan is
found with a cost equal to Blend Cost;, = 37,784.52 X 10°
$, the same as that of the first level. Because there are no
inventory infeasibilities this time, we proceed to solve the
second level approximate scheduling model.

Approximate Scheduling. The approximate schedule with
reduced number of blend instances and product transitions in
the blenders is shown in Figure 12 and its total cost is

— 2100 |

= |

g 1800 ooy s

o 1500

£

3 1200

s

> 900

E

£ 600

g2 300

=

01234567 891011121314

Time (days)
CTD ====CTP

Aggregated Inventory (kbbl)

Z1,=138,522.52 X 10° $. Idle times between blend runs are
not shown since the actual production schedule is not deter-
mined at this level. It is also determined that in this case no
preduct changeovers are required in the swing tanks.

The component and product inventory profiles correspond-
ing to the second level approximate scheduling (Figure 13)
are at the allowed minimums at the inventory pinch points
(i.e., at the end of the seventh and eighth day). Additionally,
it is observed that the inventory levels of some blend compo-
nents are at the minimum allowed at some points in the
planning horizon. In this particular case study, this is
observed at the inventory pinch points. In general, these
“pinch points on the components’ inventory profiles” will
appear at least for one blend compeonent at the end of the
planning horizon and at least at one inventory pinch point.
There are two reasons for the appearance of these pinch
peints on the compenents’ inventory profiles: {(a) cheaper
components are used as much as possible, and (b) compo-
nents with the necessary qualities to produce products under
specification are scarce. If the “components’ pinch” occurs
because of reason “(a),” trying to blend more volume (i.e.,
increased production) before a components’ pinch might
result in a blend cost increase {i.e., more expensive materials
are used since cheaper components are not available). If this

250
200

Largest inventory

FiEEinventory infeasibilities at the

infeasibility

150

100 pinch points
50
, A Wi
Sr—
-50
01234567 891011121314
Time (days)

——— Grand composite curve

Figure 11. Case study 13—Cumulative curves and L1-periods.

Blend planning second iteration. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

AIChE Journal June 2014 Vol. 60, No. 6

Published on hehalf of the AIChE

38

DOIT 10.1002/aic

Max capacity

Blender A
Volume (x103 bbl)

120
S0

Max capacity = = = =
6

Blender B
Volume (x10° bbl)

30

Blender A

Blender B

B us7

] u:

Time (days)

B ues

- Capacity loss

Figure 12. Case study 13—{a) Blend plan and (b) production sequence.

Approximate scheduling. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

type of pinch appears because of reason “(b),” then trying to
increase production before the components’ pinch is not pos-
sible (first level will present non-zero slack variables) since
the blend cannot reach the quality specifications. In this
illustrative example, the components’ pinch occurs because
of reason “(b)” there is not enough ALK and RFT available
to blend more before Day 8. ALK and RFT have the highest
RON and MON values from ameng the blend components;
other components have RON and MON values smaller than
the minimum spec, or if they have a greater RON and MON
value, they have RVP and SPG value above the maximum
spec. Therefore, no more than the production targets given
in can be blended before Day 7 or Day 8 in Case study 13.

Results and Discussion

To evaluate the performance of the MPIP algorithm, we
compared the solutions from our algorithm with those pro-
vided by the full-space models and the execution times
required to obtain them.

Blend planning

All problems were solved to an optimality gap less than
or equal to 0.001%. The MPIP algorithm and the full-space
models found the same optimal objective function value (see
Table 3). The solution times of the MPIP planning algorithm
(using IPOPT for the NLP model and CPLEX for the MILP
model) are much smaller than those required by DICOPT to
solve the corresponding MINLP model (almost two orders of
magnitude lower). We chose to compare with DICOPT
solver because it provided the smallest execution times when
compared with the other selected MINLP solvers. We know
that the solutions found by DICOPT and by MPIP algorithm
are globally optimal, as they are equal to the solution of
full-space MILP (which in this special case, via transforma-

DOT 10.1002/aic

Published on behalf of the AIChE

39

tions, is able to solve our test problems as linear MILP mod-
els). It is interesting to note that our algorithm leads to
execution times which are about the same as the times
required to solve the equivalent MILP model. In addition,
our algorithm requires a small number of iterations {in most
of our case studies only one iteration is required). Moreover,
our approach leads to a smaller number of different blend

a;
150)

120

Volume (kbbl)

0123456 7 8 91011121314
Time (days)
Figure 13. Case study 13—(a) Product and (b} compo-
nent inventory profiles.

Approximate scheduling.

June 2014 Vol. 60, No. 6 AIChE Journal

- (988 el 981 ($ (DTx) PIMOq Fam0] I52q 03 Joadsar M SOURLSIIID afeay

LIO'6 9658 OLL'SE 8EL'SE 008°0T LY 8E £ro LEI'SE I € € 9 1
ST 9678 £E53E 795'3¢ 008°0T ope'8E 90°0 0L£'8¢€ I 4 T s €1
679 860°8¢ SPL'3¢E 88L'SE 008°0T LLE'8E 10 179'8¢ It T T i z1
gle £T0°6E TH0'6E Pr16E 008°0T 788'8E LTD 156°8¢ I T I 5 1T
Iz #00°6¢ T66'8E 866'8¢ 008°0T 788'8¢ 60°0 L16'8¢E I 1 I 3 o1
LT 0TF'6E SHT6E 10E'6€ $66°T 07T'6E 000 07T'6¢ I 1 I z 6
Lr9 £T78E TIS'SE 861'SE 008°0T THE'SE 10 L8E'SE I 1 0 I 8

£81'E LE1°8€ 6778 £TE'SE 008°0T #T0°'8E ¥T0 9/0°8¢ o) € € 9 L
99 I86°LE 1S6°LE 090°8€ 008°0T £88°LE 600 916°LE D T z < 9
L18 90€°8E 85¢8€ 108 008°0T £6L'SE 910 £57°8¢ o) z T t <

008°01 £95°8E 865°8E £0L'SE 008°0T 981'8¢E 110 675'8¢E o) z I € 4
9L £re8e 8553¢ 665'8€ 008°0T LGV 8E 00 £08'8¢ D 1 13 € €
€8 9688 LT88E I68'8E ¥9T'E TSL'SE 000 TSL'SE o) 1 I T T

008°01 £00°8¢ 960°8¢ 601°8¢€ 008°0T GE6°LE LTD 700'8€ o) 1 0 T T

(8) eurLr, NdD (§ 01X ($ 01 ($ 01 (s)emmy, (§ 0TX) pumog (%) ($ 01 oMo SIepueld # SJT0 g ALelord A Apus
1507 Te10], 150D TEl0L, 150D 0L ndo 120 159f dep 1sop el Addeg UL # puER(aSED
s 00g'01 10 ded %70 we sejear deny s s 00801 10 dep g1 1e doig
.01 1 doyg 5 008°01 3 peddoyg sty v
(XATdD + 1d0dD OOINOB dDOIN ANODLINY JINIA (Xa1dD) TN =oedg-Tmg
ungesy didin soedg-mmg soedg-mmg wnumdQ [eqorD

wyILIod[y sumue[d JIJIN Y] PUe S[3poIy adedg-[n] Jo suonmnjos uasm]aq uostredwo)—3urmpaydg sjewnxosddy aqe]

“aures Sy Apoexs 2 sadpa1 puerq peveada,

2w Nda,

"951 Wetp 191gars spiveuedwon Aur Jo sfeusozed nopsodinos jo SuenD SM[ESAE S JE WRIRTIIP PAISPISUCD S| adpal pusld,
15090 pus[q aums a1 peynduion serprordde [y,

I 906°0 i 80T'T o1 8Tr8 1 Y'O6L'LE Te3ar 3 € 9 1
T 9¢81 tr €60 3 L1182 a SHRLLE Teudari T T S €1
3 0540 3 89.°0] €108 & ¥ EL0°BE requary T T ¥ 7l
I 0€L0 T 1001 H] €17 g 75078 Te3ar T L € It
I 89.°0 T LPS0 L 7591 9 T501°8E Teudari I L € at
3 99470 T 8580 9 89LL L THSL'BE requary 3 L T f
I £05°0 I 6780 9 L611 9 VER6'LE Te3ar I 0 I H]
I LITT tr ¥Zs'T o1 99 oL SLLELE JIRISTO) 3 € 9 L
v rE9 0L 9 6960] $'85T 6 FIELE RIS 4 T [« 9
I 0960 € €540 H] 971E g ['189°LE Jtresto)y T T ¥ <
I 8£6°0 T ¥SLT L 6761 g T'166°LE JIRISTO) T 1 € t
3 69670 T 890°L L 84T L L'166°LE RIS 1 I € €
T 8LLO T T5L0 g S0rT 9 8°60£°8¢ ISty 1 I T T
I 5790 I T80 9 781 9 STVE'LE JIRISTO) 1 0 I T
STORErRY i (s} jemL psedoey # (s} oL Sedey # (s) L sedoey # ($ 01D 50D Addng SrepUaTe # SII0g emyord ar Apus
puarg Juetoduroy TOUL] # jileiulg) asED
(XF'1dD ‘d TN "LdOdL (Xd1dD) 1IN (LdO2ID
‘JTIND UApuosTy JIdN 2oed G-y JININ @edg-Tmg

unpriod[y Suuuel JIJIN) PUB SPPROJN 2dedg-[Iny Jo suonn[og usaniaq uosuiedwion—3uruuel pud[q g dqel

DOT 10.1002/aic

Published on behalf of the AIChE

June 2014 Vol. 60, No. 6

ATChE Journal

40

Table 5. Approximate Scheduling—Results for MPIP Planning Algorithm

MPIP Algorithm (JPOPT + CPLEX)

Case Study ID Total Cost (X103 §) Blend Cost (X103 $) Switching Cost (X103 $) CPU Time (s)
1 38,0145 37,5425 472.00 28093
2 38,9018 38,3008 592.00 18.5
3 38,5501 379911 559.00 225
4 38,5691 37,9911 578.00 18718
5 38,3126 37,6806 632.00 724
6 37,0883 373243 664.00 26.2
7 38,1565 37,3775 779.00 118.7
8 38,4220 37,0434 479.50 140.2
9 304272 38,7542 673.00 87
10 39,0042 38,4052 599.00 14.3
11 39,0302 384052 625.00 119.6
12 38,7054 38,0734 632.00 83.4
13 38,5225 37,7845 738.00 75
14 38,6034 37,7964 807.00 11041
Average difference of the total cost with respect to best lower bound (X10° §) 122

Stopping criteria: 0.1% optimality gap or 10,800 s.

recipes per product compared to the solution of the corre-
sponding full-space models (see Table 3). Significant
reduction is seen in the cases with few number of pinch
points and blenders; this is because the full-space models
can have different recipes for the same product for differ-
ent blenders in the same time peried. In addition, repeated
recipes from the solution of the full-space models may or
may not be used in adjacent periods; thus, the number of
recipe switching is equal or greater than the number of
different recipes.

Approximate scheduling

The approximate schedules computed by the MPIP planning
algorithm were compared with the full-space models. The ter-
mination criteria was 10,800 s (CPU time) or an optimality gap
less than or equal to 0.001%. DICOPT was not used in this
evaluation since it requires to solve the MILP subproblems to
optimality to guarantee a local optimum; however, it was not
possible to achieve that within the maximum allocated time of
3 h. Results from BARON are not shown because it was able
to find feasible integer solutions only for some of our case
studies and with optimality gaps greater than 3%.

Table 4 shows the results obtained by CPLEX, ANTIGONE,
GloMIQO, and the MPIP planning algorithm. The results from
full-space MILP were used to determine the global optimum
and the best lower bound. In the majority of our case studies,
MPIP algorithm computed better solutions than ANTIGONE
and GloMIQO solvers and in much shorter execution times.
All ANTIGONE and GloMIQO runs stopped at 10,800 s with

optimality gaps larger than 0.2%. Only in two test cases (no. 1
and no. 4) MPIP algorithm stopped at 10,800 s time limit. In
both of these cases, the results from MPIP are slightly better
than the results computed by GloMIQO and ANTIGONE. In
test case no. 9, MPIP algorithm converged after 17 s, but the
solution is 0.4% higher than GloMIQOQ.

Although the MILP model at the second level achieves
optimality gaps smaller than or equal to 0.001%, it is noted
that the solutions of the MPIP planning algorithm are higher
than the best integer solution given by the full-space MILP.
The reason for this difference is that the blend recipes define
the feasible region at the second level and they are only
being redefined to account for inventory feasibility, but there
is no feedback that would cause the computation of new rec-
ipes that will minimize the number of product transitions in
the blenders and swing tanks. Nevertheless, the difference
between the MPIP algorithm solution and the true optimum
will only be significant when the penalty for such transitions
is much greater than the unit costs of the blend components.
For our case studies, the average relative difference between
the MPIP solution and the best lower bound is less than
(.33%. As another test of MPIP algorithm performance, we
solved all test cases with 0.1% optimality gap at the second
level. The execution times are even shorter and the function
values are on average still closer to the best lower bound
than those computed by ANTIGONE and GloMIQO (com-
pare data in Tables 4 and 3).

Table 6 shows the number of equations, continuous varia-
bles, discrete variables, and non-zero elements in the full-

Table 6. Model Size Comparison

Continuous # Discrete # Nonlinear

Model # Equations Variables Variables # Non-Zeros Terms
Full-space MINLP model (one blender) 5928 2753 609 16,646 1176
Full-space MINLP model (two blenders) 7906 3655 837 23455 1960
Full-space MILP model (one blender) 5550 2375 609 15,554 1]
Full-space MILP model (fwo blenders) 7600 3306 837 23,052 0
Firstlevel NLP model (MPIP algorithm, 326 162 o 955 42

two L1-periods)
First level NLP model (MPIP algorithm, 473 237 v 1416 63

three L1-periods)
Second level MILP model (MPIP algorithm, 4541 2375 609 11,017 0

one blender, two fixed recipes)
Second level MILP model (MPIP algorithm, 6003 3306 837 15,575 1]

two blenders, two fixed recipes)

DOT 10.1002/aic Published on behalf of the AIChE June 2014 Vol. 60, No. 6 AIChE Journal

41

space models and our decompesition approach for blend
planning case studies. Nonlinear aspects of the blending
model are solved at the first level, where number of equa-
tions and variables are significantly smaller than in the full-
space MINLP model. The second level model MILP is
approximately the same size as the full-space models. Sepa-
ration of the nonlinear blend optimization from linear
model-based production planning enables MPIP algorithm to
optimize blend plans er approximate blend schedules much
faster than the corresponding full-space MINLP meodels.

Conclusions

‘We have presented a new inventory pinch based, two-level
decomposition approach which (1) incorporates nonlinear
blending models into integrated planning and approximate
scheduling of gasoline blends, (2) includes blender switching
and swing tankage management, (3) computes optimal blend
plans with significantly smaller number of distinct blend rec-
ipes than the fine grid multiperiod MINLP models, (4) com-
putes approximate schedules with similar or lower cost than
those computed by global MINLP solvers used in this study,
and {5) achieves much shorter execution times.

Rapid computation of optimal blend plans is accomplished
by decomposing the blend planning optimization model into
two levels: the first level handles the constraints related to
operating conditions (e.g., quality constraints and blend recipe
computation) by solving a NLP model, and the second level
determines the actual production plan and allocation of swing
tankage using optimal blend recipes from the first level in a
MILP model, subject to availability of blend components,
inventory storage limits, and minimum blend threshold con-
straints. These blend plans are then used to compute approxi-
mate blend schedules, which minimize total number of blend
switches and product changeovers in the swing tanks.

Case studies with one, two, and three blenders have been
presented. Our case studies have been constructed in such a
way that after some transformations they can also be solved
as an MILP model. That has enabled us to compute rapidly
the global optimum and confirm that the blend plans com-
puted by MPIP are also globally optimal. In 10 out of 14
case studies, MPIP algorithm finds a better solution for the
approximate scheduling problem than ANTIGONE or Glo-
MIQO and typically in much shorter execution times.

Our results show that the solutions computed by the MPIP
planning algorithm are exactly the same as the optimum solutions
computed by the corresponding full-space MINLP and MILP
models when the objective function of the second level contains
only variables that are aggregated at the first level (e.g., volumes
to blend); and close-to-optimum solutions when the objective
function of the second level contains variables that are not aggre-
gated at the first level (e.g., switching variables) with penalty
coefficients similar to the unit costs of blend components.

Part Il of this article deals with detailed scheduling based
on the approximate blend schedule computed at the second
level of the MPIP algorithm.

Acknowledgments

Support by Ontario Research Foundation and McMaster
Advanced Control Consortium is gratefully acknowledged.
The authors thank Dr. Xiang Li (Queens University) for sug-
gesting that they transform the example problems into MILP
models in order to verify global optimality. Moreover, the

AIChE Journal June 2014 Vol. 60, No. 6

Published on hehalf of the AIChE

42

authors thank GAMS Corporation for granting them a
license to use ANTIGONE and GloMIQQO in their tests.

Notation
Subscripts
be = refers to a variable or parameter related to the blend component tanks
blend = refers to a variable or parameter related to the blenders
comp = refers fo a variable or parameter related to the transfer of vol-
ume between component tanks and blenders
L1 = refers to a variable or parameter of the first level
L2 = refers to a variable or parameter of the second level
order = refers to a variable or parameter related to the product orders
pool = refers to a variable or parameter related to the product pools
pr = refers to a variable or parameter related to the individual product
tanks
trans = refers fo a variable or parameter related to the transfer of vol-
ume between blenders and product tanks or pools
Superscripts
max = refers to a maximum value that a variable may have
min = refers to a minimwm value that a variable may have if different
from zero
start = refers to the initial value at the beginning of the planning hori-
zon that a variable may have
farget = refers to a target value for a variable
Parameters
Costy(f) = cost of blend component i
Dg:‘”‘ (j) = maximum delivery rate of tank ;j
Demand(s) = demand of order o for the complete scheduling

horizon

Demand, oo 1.1(2,4) = aggregated demand of product p in L1-period &

Demand,, 15(p,m) = demand of product p in L2-period m
diro(0,m) = time available fo deliver order & during L2-period
m
Fooli, o) = supply flow rate of blend component / during time
interval o
Py (1) = maximum blending rate of blender bl
Fiiong (®l) = minimum blending rate of blender bl
H = length of the planning horizon
it Ef;d (p,bl) = minimum idle time required by blender bl before
processing product p
np(bl) = number of products that can be produced in a L2-
period in blender bl
Penaltyy ;.1 = penalty for the inventory slack variables of blend

component tanks

penalty for the inventory slack variables of product
pools

penalty for the inventory slack variables of compo-
nent § in L2-period m

penalty for the inventory slack variables of product
pool p in L2-period m

Pcnaltypmllu =
Penaltyy. 1 2(m) =

Penaltypmllm(m) =

Penaltyp, 12(m) = penalty for the inventory slack variables of product
tank j in L2-period #
PenaltyBR; 5(bl) = penalty for a blend instance processed in blender
bl during a L2-period m
PenaltyBS; ; = penalty for a product transition in a blender at the
second level
PenaltyTS(j) = penalty for a product transition in a swing fank at
the second level
Opliek) = quality e of blend component { during L1-period &
Q7 (p,e) = maximum requirement of quality e in grade p
QE';“‘ (p,e) = minimum requirement of quality e in grade p
75'““(1',]9): maximum composition specification of product p
regarding blend component i
P20 p) = minimum composifion specification of product p
regarding blend component £
Iy 11(e,k) = duration of time interval where blend component
supply flow rate o occurs in L1-period &
fpe12(0,m) = duration of time interval where blend component
supply flow rate o occurs in L2-period m
tblmmd (p,bl) = minimum rmming time required by blender bl

when processing product p

DOIT 10.1002/aic

k) =
() =

) =

nofpa(o,m) =

Ve ()

Vi () =

ViR (i) =

Velend L1(P k)
u1 (P)
)
)

et

pccl L1(P)

&)
vgfmn)
9]

S

VMINpiena(p,bl) =

Binary variables

duration of L1-period k&

duration of L2-period m

product p stored in tank j at the beginning of the
plamming horizon

parameter which value is 1 if order o may be deliv-
ered during [2-period m (ie., delivery window of
order ¢ spans L2-period m) and 0 otherwise
maximum holdup of tank with blend component {
minimum holdup of tank with blend component ¢
volume of blend component i stored at the begin-
ning of the planming horizon

volume of product p to blend in L1-period &
maximum holdup of product pool p

mininwm holdup of product pool p

total volume of product p stored at the beginning
of the planning horizon

target inventory for product pool p in L1-period
maximum holdup of tank j

minimum holdup of tank j

volume stored in tank j at the begiming of the
plamming horizon

minimum volume allowed to blend of product p in
blender bl during each L2-period

uro(f,p,p) = binary variable that indicates if tank j is storing produet
pin L2-period m
uero(j;m) = binary variable that indicates if there is a product transi-
tion in tank j at the beginning of L2-period
vro{f,p,bLp) = binary variable that indicates if tank j is receiving prod-
uct p from blender bl in L2-period m
yro(p.blg) = binary variable that indicates if product p occupies slot g
in order to estimate the production sequence of blender
bl at the second level
X1o(p,blym) = binary variable that indicates if product p is processed in
blender bl in L2-period =

Continuous variables

Blend = Cosfy; = total blend cost at the first level
Blend = Costr» = total blend cost at the second level
Deliverp, 12(j.m) =

Deliverpon 12(p.m) =

of o(o,m) =

Oprr1(p.ek)

FEpK) =

Stk =

S (k) =

St 12m) =

Soern(iam) =
Shan @k =
SmeLl(p’k) =

Sgeet o) =

S o2 B =
Spni(ik) =

82 (i) =

Salim) =

Sy paliom) =

DOT 10.1002/aic

volume of tank j shipped/lified at the end of L2-
period m

volume of product p shipped/lifted at the end of
L2-period m

fraction of order ¢ to be delivered during L2-
period m

= qualify level of properfy e of product p in L1-

period £

volume of blend component / into product p in L1-
period % (it becomes a parameter in the second
level model)

positive inventory slack variable of blend compo-
nent i at L1-period &

negative inventory slack variable of blend compo-
nent { at L1-period &

positive inventory slack variable of blend compo-
nent { at L2-period m

negative inventory slack variable of blend compo-
nent i at L2-period m

positive inventory slack variable of product pool p
at L1-period £

negative inventory slack variable of product pool p
at L1-period k&

positive inventory slack variable of product pool p
at L2-period m

negative inventory slack variable of product pool p
at L2-period m

positive invenfory slack variable of product tank j
at L1-period k&

negative inventory slack variable of product tank j
at L1-period &

positive inventory slack variable of product tank j
at L2-period m

negative inventory slack variable of product tank j
at L2-period m

Veompr2(ipbLan) =

tolend,L2(P,blm) = estimated time fo process product p in blender bl
in L2-period m
Veer1(i,k) = volume stored in component tank / at the end of
L1-period k&
Veer2(im) = volume stored in component tank { at the end of
L2-period m
Veolena,L2(2.bl,) = volume of product p to process in blender bl in L2-
period m
VeompL1(ip,k) = volume of blend component { into product p in L1-
period &

volume of blend component { into product p in
blender bl in L2-period m

VioorL1(p k) = volume stored in product pool p at the end of L1-
period &
Vool 12(p) = volume stored in product pool p at the end of L2-
period
Vprp1(f.k) = volume stored in product tank j at the end of L1-
period &
VprLa(fm) = volume stored in product tank j at the end of L2-
period m
Virans 12(/,p.bLim) = volume transferred of product p from blender bl to
tank j in L2-period m
xera(pblim) = 0-1 continuous variable that indicates if a state
fransition has occurred in blender bl at the begin-
ning of L2-period m
Z11 = objective function value at the first level
712 = fotal cost at the second level
712" = objective function value at the second level, blend
planning
712" = objective function value at the second level,

Li

1.

2

[85]

I

=3

=

=51

o

10.

1

—

12.

13.

14.

1

Ln

1

=3

17.

Published on behalf of the AIChE

approximate scheduling

terature Cited

Shah NK, Li Z, Terapetritou MG. Petroleum refining operations: key issues,

advances, and opportunities. fnd Eng Chem Res. 2011;50:1161-1170.

Jia Z, Terapetriton M. Mixed-integer linear programming model for

gasoline blending and distribution scheduling. Ind Eng Chem Res.

2003;42:825-835.

. Sing A, Forbes JF, Vermeer PJ, Woo 5S. Model-based real-time
optimization of automotive gasoline blending operations. J Process
Comrol. 2000;10:43-58.

. Kelly ID. Formulating production planning models. Chem Eng Prog.
2004;100:43-50.

. Li J, Karimi IA, Srinivasan R. Recipe determination and scheduling
of gasoline blending operations. AICRE J. 2010;56:441-465.

. Li J, Karimi JA. Scheduling gasoline blending operations from rec-

ipe determination to shipping using unit slots. fnd Eng Chem Res.

2011;50:9156-9174.

Mendez CA, Grossman IE, Harjunkoski I, Kabore P. A simultaneous

optimization approach for off-line blending and scheduling of oil

refinery operations. Comput Chemn Eng. 2006;30:614-634.

. Maravelias C, Sung C. Integration of production planning and sched-

uling: overview, challenges and opportunities. Compuz Chem Eng.

2009;33:19159-1930.

Bitran GR, Hax AC. On the design of hierarchical production plan-

ning systems. Decis Sci. 1977;8(1):28-55.

Nam S, Logendran R. Aggrepate production planning—a survey of

models and methodologies. Fur J Oper Res. 1992;61:255-272.

. Axsater S, Jonsson H. Aggregation and disaggregation in production

plamming. Eur J Oper Res. 1984;17:338-350.

Verderame PM, Floudas CA. Operational plamming framework for

multisite production and distribution networks. Comput Chem Eng.

2009;33:1036-1050.

Timpe CH, Kallrath J. Optimal operational plamming in large multi-

sife production networks. Eur J Oper Res. 2000;126:422-435,

Thakral A, Mahalec V. Composite plamming and scheduling algo-

rithm addressing infra-period infeasibilities of gasoline blend plan-

ning models. Can J Chem Eng. 2013;91:1244-1255.

. Singhvi A, Shenoy UV. Aggrepate plamming in supply chains by
pinch analysis. Chem Eng Res Des. 2002;80:397-603.

. Singhvi A, Madhavan KP, Shenoy UV. Pinch analysis for aggregate

production planming in supply chains. Compit Chem Eng. 2004;28:

093999,

Ludwig I, Treitz M, Rentz O, Geldermann J. Production planning by

pinch analysis for biomass use in dynamic and ssasonal markets. Ini

J Prod Res. 2009;47(8):2079-2090.

June 2014 Vol. 60, No. 6 AIChE Journal

18. Foo DCY, Ooi MBL, Tan RR, Tan JS. A heuristic-based algebraic
targeting technique for aggrepate planning in supply chains. Compuz
Chem Eng. 2008;32:2217-2232.

Castillo PAC, Kelly ID, Mahalec V. Inventory pinch algorithm for
gasoline blend planning. AICHE J. 2013;59(10):3748-3766.

Misener R, Floudas CA. ANTIGGONE: algorithms for contimious/inte-
ger global optimization of nonlinear equations. J (lob Opiim. In press.
Misener R, Floudas CA. Global optimization of mixed-integer quadrati-
cally-constrained guadratic programs (MIQCP) through piecewise-linear
and edge-concave relaxations. Math Program. 2012;136:155-182.
Misener R, Floudas CA. GloMIQO: global mixed-integer quadratic
optimizer. J Glob Optim. 2013;57(1):3-50.

Li Z, Jerapetritou MG. Integrated production planning and scheduling
using a decomposition framework. Chem Eng Sci. 2009;64:3585-3597.

19,
20.

21.

22.

23.

Appendix A: Equivalence of the Full-Space
MINLP/MILP and the MPIP Planning Models

In this appendix, we will show how the first and second level
models described in the article are can be obtained from the full-
space model. The derivation presented here uses reasoning similar
to Li and Terapetritoun.”® Let us consider the following full-space
optimization model (Al), also known as a single level model

min , cx
st. xe€X (Al)
x>0

x represents all the variables (continuous and integer), and X
represents the feasible space given by all the sets of constraints
on x (linear and nonlinear). Therefore, (Al) may represent a
full-space MINLP or MILP model. Let us consider that we have
a planning horizon originally discretized in M time periods
(M = {m}, i.e., the L2-periods). Suppose we can aggregate over
timie some of the variables in the model. This aggregation is car-
ried out over K nonoverlapping time intervals that span the
entire planning horizon (K = {k}, i.e., the Ll-periods). Let us
define x in terms of variables that can be aggregated (x2(m)),
variables that may have a fixed value during an aggregated time
interval (yy(m)), variables that cannot be aggregated (z,(m)), the
aggregated variables (x;(k)), and variables representing the fixed
property/condition during an aggregated interval (y,(k))

x = {x1(k), w1 (k) xa(m), yalm), 2 (m}} (A2)
By definition
(k)= xmim) Vk (A3)
mek
¥1 (k) =¥z (m) V(ma k) € MK (m: k) (A4)

where MK({»1,k) is the set that indicates which adjacent time
periods m are aggregated as the interval k. It is noted that x;(k)
can only represent continuous variables, whereas y1(k) can rep-
resent continuous and discrete variables. In terms of the gasoline
blend planning problem, x,(k) represents the aggregated produc-
tion volumes at the first level, and y,(k) represents the blend rec-
ipes and the quality values of the blends. Let us rewrite model
(Al) as (A5), which is still the original full-space model
min, v, 2, 3, [c1x(m) +ezya(m) +esza(m)]

sit. xg(m),yo(m), m(m) € X ¥m (AS)

xz(m)uyz(m)uzz(m) >0 Vm

Model (A6) is obtained by substituting the aggregated variables
into Model (AS5). The constraints can now be divided into two
sets. One set will contain all the equations regarding the x;(k) and

AIChE Journal June 2014 Vol. 60, No. 6

Published on behalf of the AIChE

44

yi(k) variables, and the associated feasible space is denoted as X;.
The second set of constraints will consist of all the equations con-
taining the xo(m), vo(m), and zx(m) variables, with X5 as the associ-
ated feasible space

Min gy 2 2o (e (B)Feai (k) (K)]+ 57, eszp(m)
xi(k) k) € X1 vk
P omer Xa(m)=xi(k} Yk
yao(m)=y1(k} V(m, k} € MK (m, k)
xo(m),ya(m), za(m) € X Ym
x (k) (k) xa(m), ya(m), z2(m) > 0 Vk,m

s.t.

(A6)

Model (A6) can be written as a two-level problem given by (A7),
which is analogous to our first level model plus the second level
approximate scheduling model of the MPIP planning algorithm

min g 5 3 [era (k) Feailk)y (kH +f2

st. x(k),mkyeX, vk
x (k) k) =0 vk
where
Jo=min > esza(m)
st. Y xa(my=x(k) vk

ya(m)=y:1 (k) V(m, k) € MK {(m, k}
xo(m),y2(m), z2(m) € X ¥m

xz(m), yo(m), zo{m) > 0 ¥m
(A7)

It can be noted that X, is a relaxation of X because not all the
original equations are considered in it. X; is a confraction of X
because all the original equations are considered (except those
corresponding to yx(m), but because yi(k)eX, then y,(m) is feasi-
ble) plus some new restrictions [i.c., (A3) and (A4)]. Therefore,
the feasible space X; depends on the values of x;(k) and y,(k). It
is possible that X, will include the optimum x* from the original
X when the number of aggregated intervals K is greater than
some minimum number £*; in other words, when K = £* the val-
ues of x,(%) and v,(k) are such that the feasible space X, will con-
tain the optimum x* from X. Finding this minimum number £* is
the objective of the MPIP planning algorithm.

If we assume that the objective function only contains aggre-
gated variables, that is, cz; = 0, Model (A7) can be expressed as
Model (A8)

min s, 5, 3o [erxa (k) Heailin (k)] 72

st. mk,wmk)eXy Wk
xk) k) =0 vk
where
=0
st. 3 x(my=xi(k) Vk

ya{m)=y1(k)
xz{m),ya(m), zz(m} € X3
xp(m), ya(m), za{m) > 0 ¥

Vim, k) € MK (1, k}
Ve

(A8)

DOT 10.1002/aic

Therefore, it can be seen that the second level model is just a
feasibility problem. Model (A8) is analogous to the first level
plus the second level blend planning model of our MPIP plan-
ning algorithm. We can include slack variables (s;{k) and s2(n))
at each level of the model to obtain a numerical feasible solu-
tion even when some constraints are violated. P represents the
penalty coefficients. A physically feasible solution will have all
the slack variables equal to zero. From Model (A8), it can be
seen that the blend cost value is fixed according to x{k) and
y1{k); however, we observed that the inclusion of the blend cost
term in our MPIP second level model formulation speeded up
the solution of the feasibility problem.

We can define the lower and upper bounds (LB and UB,
respectively) as follows

min

LB =arg {x n z [e1x1 (k) +ean (k) +Ps (]c)]} (A9)
171 1 k

min
EERELS €.

UB =arg { [crxz () tezyn(m)+Psy (m)]} (A10)

The MPIP algorithm finds the minimum number of aggre-
gated time intervals, £%*, by subdividing the intervals at the first
level at each iteration (iter) if UB®™ = LB“". For blend plan-
ning (Model AS), the MPIP algorithm computes optimal solu-
tions since the pinch points define the minimum production
target and the rules to eliminate infeasibilities preblend as low
as possible. For approximate scheduling (Model A7), cwrent
solutions may only be considered near-optimal as long as the
coefficients denoted by ¢ are similar or smaller in magnitude to
coefficients ¢y and co. This is due to term f; not being estimated
at the first level by our algorithm.

Manuscript received Qct. 24, 2013, and revision received Feb. 4, 2014,

DOT 10.1002/aic

Published on behalf of the AIChE

45

June 2014 Vol. 60, No. 6 AIChE Journal

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Chapter 3: Inventory Pinch Based, Multiscale Models for Integrated
Planning and Scheduling-Part I1: Gasoline Blend Scheduling

This chapter has been published in the AIChE Journal. Complete citation:

Castillo Castillo, P. A., & Mahalec, V. (2014). Inventory pinch based, multiscale models
for integrated planning and scheduling-part II: Gasoline blend scheduling. AIChE
Journal, 60(7), 2475-2497. Wiley Online Library, doi: 10.1002/aic.14444

Permission from © American Institute of Chemical Engineers.

46

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

In Chapter 3, the multiperiod inventory pinch (MPIP) algorithm is introduced for blend
scheduling problems. In this case, MPIP decomposes the original problem into three
levels. The 1%t and 2" levels are constructed based on the methodology presented in
Chapter 2, with some modifications to the 2" level MILP model to include a few
scheduling decisions. The 3" level is a multiperiod MILP model (with original number of
periods defined by the scheduler) with fixed blend recipes. All three levels are formulated
using discrete-time representation. Due to their large size, the 3™ level model is solved
using a rolling horizon strategy.

47

AIChE

Inventory Pinch Based, Multiscale Models for Integrated
Planning and Scheduling-Part Il: Gasoline Blend Scheduling

Pedro A. Castillo Castillo and Vladimir Mahalec
Dept. of Chemical Engineering, McMaster University, Hamilton, ON, Canada L.8S 418

DOI 10.1002/aic. 14444
Published online April 1, 2014 in Wiley QOnline Library (wileyonlinelibrary.com)

Integration of planning and scheduling optimizes simultaneous decisions at both levels, thereby leading to more efficient
operation. A three-level discrete-time algorithm which wuses nonlinear models and integrates planning and detailed
scheduling is introduced: first level optimizes nonlinear blend models via multiperiod nonlinear programming (NLP),
where period boundaries are initially determined by the inventory pinch points; second level uses fixed recipes (from
the first level) in a multiperiod mixed-integer linear program to determine first an optimal production plan and then ro
optimize an approximate schedule which minimizes the total number of switches in blenders and swing tanks; third level
computes detailed schedules that adhere fo inventory constraints computed in the approximate schedule. If inventory
infeasibilities appear at the second or the third level, the first-level periods are subdivided and blend recipes are reopti-
mized. Algorithm finds the same or better solutions and is substantially faster than previousty published full-space con-
tinuous-time model. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2475-2497, 2014

Keywords: gasoline blend planning, scheduling, inventory pinch, recipe optimization, minimum number of recipes, multi-
scale models

Introduction can only store a new material when its holdup is less than or
equal to the quantity specified (this type of tanks are called
swing tanks as they can switch to a different material serv-
ice), (5) minimum and maximum bounds on the running
time (up-time) and idle time {(down-time) of a unit, task, or
operation mode, may be specified, (6) the use of sequence-
dependent and -independent changeover down-times may be
considered, and (7) an order (internal or external) cannot be
fulfilled outside its specified time window, but material flow
may be specified to be constant or allowed to be intermittent
within the window.

Many authors have worked on the integration of produc-
tion planning and scheduling optimization problems, either
developing easier-to-converge models or designing more effi-
cient algorithms to solve them. Maravelias and Sung®
reviewed the opportunities and challenges of integrating the
planning and scheduling levels, pointing at the importance of
developing mere computationally effective models for com-
plex process systems, improving decomposition and iterative
algorithms, and the possibility to solve the scheduling prob-
lem mere efficiently by developing hybrid methods using
different solution techniques. A broad classification of sched-
uling formulation approaches is also found in Maravelias,”
Maravelias and Sung,® and Mendez et al.'? Gasoline blend-
ing falls into the category of network-based formulations due
to the continuous nature of the process. With respect to the
time representation used, the formulated problems can be
classified as discrete-, continuous-, or mixed-time models. In
the discrete-time models, the scheduling horizon is divided
in a given number of time periods whose duration is known

Corresponding cancerning this article should be addressed to V. Mehalee ot o ppinri whereas in the continuous-time models the length

In an oil refinery, gasoline can account for 60-70% of the
total profit’ *; therefore, minimization of blending operation
costs represents a huge opportunity to increase profit mar-
gins. Oil refineries have to deal with unsteady product
demands and crude prices, as well as continuously stricter
environmental regulation&4 In such a context, computational
supply chain optimization tools based on mathematical med-
els have become very important for companies to plan and
schedule their operations in the best way possible with the
objective to reduce costs and maximize revenues.” Market
opportunities in the short term should be exploited without
compromising the objectives in the long term.® Optimization
of blending operations (as the production of gasoline in an
oil refinery) invelves the fulfillment of preduct quality speci-
fications and demand requirements at the minimum cost,
subject to raw materials availability and productien and stor-
age capacity limits. Kelly7 pointed out that quality and quan-
tity details are not the only elements comprising the
optimization problem of blending systems, and he described
several logistical details that, if incorporated into the blend
scheduling problem, will provide a more accurate production
schedule. Some of the logic constraints listed by Kelly7 are
the following: (1) a flow (i.e., the total volume pumped/proc-
essed or a flow/production rate) must be between its lower
and upper bounds, (2) a flow must be equal across contigu-
ous time periods if a specific task has not finished, (3) proc-
essing units can only execute one task at a time, (4) a tank

mahalec@memaster.ca.)) | |

of these periods is not known in advance (for this reason,
© 2014 American Institute of Chemical Engineers the word “time slot” is preferred when referring to this type
AIChE Journal July 2014 Vol. 60, No. 7

48

of time intervals). An in-depth review of advantages and dis-
advantages of discrete- and continuous-time formulations can
be found in Floudas and Lin'' and Sundaramecrthy and
Maravelias. !> Joly and Pinto™? developed a discrete-time
mixed-integer linear programming (MILP) model for the
scheduling of fuel oil and asphalt production, and they
peinted out that, although continuous-time formulations may
decrease significantly the combinatorial feature of a model,
discrete-time models may still be a good option because (1)
the resource censtraints are easier to handle (e.g., products
between flow rates and time intervals are linear) and (2)
discrete-time models provide tight formulations in general.
In mixed-time formulations, the time grid is fixed but the
durations of the tasks are variable.

In principle, to solve an integrated planning and schedul-
ing problem it is enough to write a discrete- or continuous-
time model, that is, the full-space model, and solve it; how-
ever, for real-life, large-scale problems, this will lead to
intractable mixed-integer nonlinear programming (MINLP)
or MILP models. Given their large-scale combinatorial
nature, scheduling problems are at least nendeterministic
polynomial time (NP) complete.6 In the last decade,
researchers have been working on improving full-space
model formulations in order to avoid prohibited execution
times.

Jia and lerapetritou’ solved simultaneously the gasoline
blend scheduling and distribution problem. They presented a
continuous-time event-based MILP meodel for the scheduling
problem. The model includes multipurpese product tanks
(tank switching), delivery of the same order from multiple
preduct tanks, and one product tank delivering multiple
orders. A set of preferred blend recipes is given {ie., blend
recipes are not optimized). Their largest problem (one
blender, four products, 11 product tanks, nine blend compo-
nents, 45 orders, and a scheduling horizon of 8 days) was
solved to proven optimality in 5 CPU hours.

Mendez et al.® introduced an iterative algorithm to opti-
mize blend recipes and schedule blending operations. Nen-
linear quality constraints are modeled as linear constraints by
using correction factors. At the end of each iteration, these
correction factors for the product properties are calculated
according to the blend recipes computed. The algorithm
stops when the correction factors converge and the products
properties fulfill the specifications. Minimum blend run con-
straints and multipurpose tanks are features not included in
the model. Due to the assumption made in their case studies
that each blender produces only one particular gasoline grade
(i.e., the sequencing problem is avoided), their computational
times are very small (less than 2 s).

Li et al”® presented a continuous-time slot-based MILP
model that uses process slots. This model includes the blend
recipe optimization, inventory constraints, blender capacity
constraints, and delivery scheduling for the demand orders.
Blend indices are used instead of the actual quality proper-
ties in order to avoid nonlinear constraints. Their model also
includes parallel nonidentical blenders, multipurpose tanks,
and other attributes and constraints found in industrial prac-
tice. After the model is solved, a schedule adjustment step is
required to ensure that each blend run has a constant blend-
ing rate. Although their formulation incorporates many
details of the industrial systems, computational times of
more than 20 h were required to solve examples for a blend-
ing system of significant size (e.g., 3 blenders, 9 and 11
component and product storage tanks, respectively) and a

DOT 10.1002/aic

Published on behalf of the ATChE

49

scheduling horizon of 8 days; nevertheless, their solutions
were better than those provided by DICOPT and BARON
solving the cerresponding MINLP model in the same time.

Li and Karimi' replaced process slots with unit slots and
expanded the model by Li et al.” to include blender setup
times, limited inventory of components, and simultanecus
receipt/delivery by the product tanks. Due to the reduction in
the number of discrete variables when using unit slots
instead of process slots, computational times improved sig-
nificantly for small- and medium-size problems; however,
large-scale problems (e.g., 2-3 blenders, 5 products, 9 com-
penents, 9 properties, 11 product tanks, 35-45 orders, and a
planning horizen of 8 days) used all the allocated CPU time
(46,800-118,800 s, depending on the problem) as the solu-
tion did not meet the stopping criteria.

Decomposition techniques have been used to solve more
efficiently the integrated planning and scheduling problem,
as well as the scheduling problem itself. There is usually a
trade off between shorter execution times and the quality of
the solution obtained depending of the decomposition
method used.

Bassett et al.'* reviewed several time-based decomposition
approaches to solve the scheduling problem; these decompo-
sitions are based on subdividing the scheduling herizon in
smaller intervals, solving the corresponding subproblems in a
specific sequence, and applying heuristics methods te com-
bine the solutions.

Elkamel et al.’® presented a spatial and a temporal decom-
position to schedule batch processes in a general chemical
plant. The spatial decomposition is based on grouping units
which perform similar tasks and their corresponding orders.
In the temporal decomposition, the product orders are
grouped according to their due dates, and the last due date
of each group delineates the time where the scheduling hori-
zon is subdivided. Global optimality is only guaranteed if all
the subproblems are independent.

Munawar and Gudi'® proposed a three-level hierarchical
approach to integrate the planning and scheduling decisions
in the multistage hybrid flowshop problem for a single facil-
ity. The first level consists of the midterm planning model
and its solution provides the production targets for each time
period. Slopping loses are assumed at this level and the
objective function maximizes production in the initial peri-
ods in order to have production capacity available in later
periods to handle unexpected events (e.g., demand variations,
machine breakdowns etc). At the second level, the schedule
is computed using a continuous-time model (which is solved
sequentially for each of the planning periods) that maximizes
profit and penalizes product changeover and inventory costs.
Actual slopping loses are calculated at this level, and inven-
tory upper bounds are overestimated based on heuristics or
previous process knowledge. The third level determines the
detailed product-to-tank assignments using a heuristic algo-
rithm to find the minimum number of tanks required to man-
age the inventory levels provided by the second level. This
algorithm is based on slicing the inventory profiles along the
scheduling horizon at the given capacity of the individual
tanks, and generating subprofiles to determine the points in
time that a tank is free to be reused.

Li and Terapetritou!” developed a bilevel decomposition
algorithm to solve separately the production plamning and
scheduling levels. The planning level is modeled using
discrete-time representation while the scheduling subproblems
(one per planning period) are formulated as continuous-time

July 2014 Vol. 60, No. 7 AIChE Journal

models. The algerithm aims to close the difference between
the objective function of both levels. At the planning level, an
underestimation term of the production costs associated with
the scheduling level is included and computed through
Lagrangian relaxation. At the end of each iteration, the algo-
rithm contracts the bounds of the planning decision variables.

Mouret et al.1® introduced a new algorithm to solve a MINLP
model for refinery planning and scheduling of crude-oil opera-
tions using Lagrangian decomposition, as well as a new hybrid
algorithm to solve the associated dual problem which combines
subgradient and cutting plane methods at different steps. The
authors pointed out that, in this case, the planning and schedul-
ing problems are only linked by the crude distillation unit
(CDU) feedstock quantities; that is, the planning model is not
an aggregated formulation of the scheduling problem. For that
reason, a spatial Lagrangian decomposition is a better option to
solve the problem than a hierarchical approach.

For gasoline blend planning and scheduling, Glismann and
Grutm™ used a two-level approach: at the top level, a discrete-
time NLP model computes blend recipes and, at the lower
level, a discrete-time MILP model solves the short-term sched-
uling problem. In this approach, the time periods of the NLP
model are defined by product liftings and other specific plan-
ning priorities while the scheduling MILP model time periods
are defined to be 2-hours long. If a feasible solution cannot be
found at the lower level, or if deviations from the goals deter-
mined at the top level cannot be accepted, blend recipes are
recomputed by NLP model but this time including the infor-
mation from MILP solution through the addition of constraints
regarding the blend components consumption (this step is not
clearly described in their article). The new blend recipes can
be chosen as alternatives to the previous ones at the MILP
scheduling model which contains constraints to enforce a mini-
mum running time for a single recipe on a blender.

The work presented in this article introduces a new
method to solve the gasoline blend planning and scheduling
problem, using the inventory pinch concept to reduce the
number of different blend recipes. It is based on the gasoline
blend planning decomposition shown in Part I of this article.
We use a three-level decomposition:

1. At the first level, blend recipes are optimized by solv-
ing a discrete-time multiperiod NLP model. The boundaries
of the time periods in this NLP model are initially given by
the inventory pinch points and break points (if applicable) in
the components’ qualities or unit costs.

2. At the second level, a blend plan using the recipes
from the first level is computed. The blend plan defines the
swing tanks allocation to each product and the velumes to
produce in each blender in each second-level time period
along the horizon. A discrete-time multiperiod MILP model
is solved for the entire horizon in two phases:

a. Blend planning. The objective function minimizes the
blend cost and inventory infeasibilities. Hence, this phase
uses the blend recipes from the first level to compute an
optimal blend plan.

b. Approximate scheduling. The objective function mini-
mizes the number of blend runs and the number of product
transitions in the blenders and swing tanks. It is assumed
that the length of the time periods at the second level is
such that a swing tank can only be used for one product dur-
ing any second-level time period. As the blend recipes and
inventory levels from the first level have been proven feasi-
ble in the previous phase, they are fixed and the blend cost
is not included in the objective function.

AIChE Journal July 2014 Vol. 60, No. 7

Published on behalf of the AIChE

50

3. At the third level, scheduling of the blending operations is
carried out based on the decisions from the second level. Pro-
duction and delivery rates, as well as start and end times of the
tasks are computed. Product-tank allocation is fixed as computed
at the second level. At the third level, the scheduling horizon is
divided in several time intervals, and each one is solved using a
discrete-time multiperiod MILP. These small subintervals are
solved in two sequences: a forward sequence that computes an
initial solution censidering the initial conditions of the system,
and a reverse sequence that merges blend runs, if possible, to
obtain a final production schedule with smaller number of
switches. Each sequence is solved in two phases:

a. Feasibility phase. The objective function minimizes the
blend cost and inventory infeasibilities. During the forward
sequence, this phase determines if the blend recipes from the
first level and the blend plan from the second level can pro-
vide a feasible schedule; while during the reverse sequence,
this phase determines the minimum number of blend runs
that can be achieved.

b. Optimizatien phase. The objective function minimizes
the number of blend runs, penalizes long blend runs, varia-
tions in the delivery rates, late deliveries, and variations in
the destination tank for the product of a blend run.

f the solutions at the second level or at the third level for-
ward sequence contain slack variables with nonzero values, the
current set of blend recipes from the first level leads to infeasi-
ble solutions. In such a case, we subdivide the corresponding
period at the first-level NLP model and resolve all levels.
Hence, we increase the number of time periods (and the num-
ber of corresponding recipes) only when such a change is
required to ensure the optimality and feasibility of the solution.

The contents of this article are organized as follows. We
start with the problem description, and then, the proposed
solution approach is explained. The mathematical models
and solution algorithm are presented next, followed by the
numerical case studies and by the comparisen of our solu-
tions with those from the literature. Finally, we conclude
with the discussion of the results, summary of the algorithm
perfermance, and outline of the future work.

Problem Statement

The integrated gasoline blend planning and scheduling
problem addressed in this work is stated as follows:

Given

1. A scheduling horizon [0, H];

2. A set of blend components and profiles of their quality
levels along the horizon;

3. A set of tanks to store the blend components, their initial
inventories, limits on their holdups, and the flow profiles of
feeds into the tanks;

4. A set of products and their quality and composition speci-
fication limits;

5. A set of blenders, the products that each blender can pro-
cess, minimum running times of these blenders for a specific
product, and limits on their blending rates;

6. A set of tanks to store the products, the products that
each tank can store, limits on their heldups, the products and
inventories at time zero, and their maximum delivery rates;
7. A set of orders, their constituent products, amounts, and
delivery time windows; and

8. Unit cost of the blend components.

DOT 10.1002/aic

Determine

1. The blend recipes (i.e., the volume fractions of the blend
components that compound one unit of each product);

2. The blenders that each component tank should feed over
time, and their feed rates;

3. The products that each blender should produce over time,
and their production rates;

4. The products that each product tank should receive over
time, from which blender, and at what flow rates;

5. The orders that each product tank should deliver over
time, their amounts, and delivery rates; and

6. The inventory profiles of component and product tanks.

Minimizing
The operating cost that includes the blended materials cost

and the cost associated with the number of blend runs and
product transitions in the blenders and storage tanks.

Subject to the following constraints

1. A blender can process, at most, one product at any time.
Once it begins processing a product, it must operate for
some minimum time before it can switch to another product.
2. A blender can feed, at most, one product tank at any time
(industrial practice).

Assuming

1. Flow rate profile of each component from the upstream
process is piecewise constant;

2. Component quality profile is also piecewise constant;

3. There is only one tank for a given blend component;

4. Mixing in each blender is perfect;

5. Changeover times between products are negligible for
preduct tanks;

6. Changeover times between product runs on blenders are
preduct-dependent but sequence-independent;

7. Each order involves only one product {ene original order
involving different products can be broken into orders of
each specific product); and

8. Each order is completed during the scheduling horizon.

Allowing

1. A component tank may receive and feed components at
the same time;

2. A component tank may feed some or all blenders
simultaneocusly;

3. Multiple component tanks may feed a blender at the same
time;

4. A product tank may receive and feed preducts at the
same time;

5. A product tank may deliver multiple orders at the same
time; and

6. Multiple product tanks may deliver an order at the same time.

Solution Approach

A discrete-time formulation is adopted in our models as it
leads to simple time-related structure of the equations when
compared to the continuous-time representation. As previ-
ously stated, one of the main advantages of the discrete-time
formulation is the linearity of the terms invelving flow rates
and time intervals. Although a discrete-time model repre-
sents an approximaticn of the real-life problem,'' our goal is
to obtain close-to-optimal solutions for large-scale problems

DOT 10.1002/aic

Published on behalf of the ATChE

51

Global petroleum supply
chain

| 1" level:
Blend recipe optimization

|

nd
2 level:
Blend plan optimization and
approximate scheduling

.

3“1 level
Detailed scheduling

| Refinery planning

I Gasoline blend planning ’

3

Scheduling of gasoline
blending operations

Scope of this
work

Figure 1. Proposed decomposition of the gascline
blend planning and scheduling problem.

[Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

with short execution times. For comparison purposes, some
continuous-time model examples from the literature were
solved using our discrete-time approach.

We use the hierarchical framework shown in Figure 1 and
our decomposition approach is described in Figure 2. The
first level optimizes the blend recipes; the second level uses
the blend recipes from the first level to determine how
much, when and in which blender a product should be proc-
essed, and the allocation of swing tanks to specific products
along the horizon; finally, the third level computes the deliv-
ery and production rates, and the start and end times of all
tasks that minimize the number of blend runs, using the
decisions from the second level. We assume that the produc-
tion rates of the blend compenents are given by the solution
of the refinery planning level; therefore, the inventory cost
does not need to be included at any of these three levels as
the refinery will carry the inventories as either blend compo-
nents or as finished gasoline grades. The first and second
levels are a decomposition of the gascline blend planning
problem. By solving the recipe optimization separately, non-
linear models can be solved more efficiently since the prob-
lem is modeled as a NLP instead of a MINLP, as illustrated
in Part I of this work.

To arrive at short execution times, a temporal decomposi-
tion technique can be applied to solve the third level (ie.,
the detailed scheduling model). As the second level is solved
for the entire scheduling horizon, we know that the con-
straints imposed by the second-level solution constrain the
third-level scheduling problem close to the optimal solution
(if the constraints of the second level contain a feasible
schedule). Hence, we have decided to use a forward and
reverse rolling window techniques to compute the schedules
at different steps of the algorithm. The scheduling horizon is
divided in small subintervals, denoted as L-intervals, which
represent the width of the reolling window. The forward roll-
ing window sequence is used to generate an initial solution
that takes into consideration the conditions at the beginning
of the horizon. Once the initial solution is computed, the
reverse rolling window sequence is used to determine if the
number of blend runs can be reduced.

Inventory pinch concept

The inventory pinch concept used in this work is defined
in detail in Castillo et al.,”” and a brief review can be found

July 2014 Vol. 60, No. 7 AIChE Journal

1% level
Blend Recipe Optimization

nonlinear quality constraints.

(1) Optimal blend recipes are computed using

(2) Individual tank capacities are aggregated as pools.
(3) Blenders are aggregated as one single blending unit.

Time grids

Inventory pinch points,
changes on the quality or unit
cost of blend components

L1-periods

(1) Blend recipes.
(2) Inventory levels at the L1-periods’
boundaries.

(1) Where to subdivide L1-periods.
(2) How much to blend in each L1-period.

2" level
Approximate Scheduling

tanks to specific products).

(1) Production plan for each blender is computed.
(2) Storage tank management (i.e. allocation of swing

(3) Production sequence of each blender is estimated.

(1) Blend recipes.

(2) Inventory levels at the L-
intervals’ boundaries.

(3) Blenders’ production plan.
(4) Allocation of swing tanks.

2

L1-periods.

1

(2) How much to blend in
each L1-period.

3 |evel
Detailed Scheduling

(1) Where to subdivide :
il

(1) Production and delivery rates are computed.
(2) Start and end times of tasks are determined.
(3) Production sequence of each blender is computed.

L2-periods
I | | | | Il } | | | | |
I I I B I B B
Z i i
: L-intervals; :
P E—— i
A
L3-periods

Figure 2. Inventory pinch-based algorithm for gasoline blend scheduling.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

in Part I of this article. The inventory pinch points are the
times where the cumulative average total production
(CATP) curve changes its slope, in corder to remain above
the cumulative total demand (CTD) curve, the minimum
possible number of times, and at the closest distance to the
CTD. These cumulative curves are alse known as compos-
ite curves.”’ V(0) represents the initial inventery available.
The concept can be applied directly to multiple products
(i.e., the demand of all products is aggregated in such
case), and minimum inventory limits and target inventories
can be incorporated easily. The inventory pinch points can
be seen as well in the grand composite curve {(i.e., CATP-
CTD values) as those points in time where the inventory
goes to zero. The cumulative curves provide the minimum
production quantities required to meet the demand in each
interval where the CATP has a constant slope; however, the
grand composite curve given by CATP-CTD does not rep-
resent the actual total inventory profile nor the slopes of the
CATP curve are the actual production rates; those values
will be calculated through our Multiperiod Inventory Pinch
(MPIP) algorithm.

The inventory pinch points define the times within the
planning/scheduling horizon where the product inventories

AIChE Journal July 2014 Vol. 60, No. 7

Published on behalf of the AIChE

52

are at the minimum allowed limits, and they are used to
define the time grids of each level.

Time grids construction of each level

At the first level, the boundaries of the time periods are
initially delimited by the inventory pinch peints, the times
when the quality of blend components changes, and the
times when the unit cest of blend components or products
vary.

At the second level, the boundaries of the time periods are
defined by the planner taking into consideration the
following:

+ The boundaries of the first level. All boundaries of the
first level must exist as well at the second level.

+ The minimum time a storage tank will be holding a
specific product. The smaller the time periods at the second
level, the better the time resolution of assigning the swing
tanks to specific products. In our case studies, we use one-
day periods at the second level, but it is possible to use 1/2
or 1/4 of the day as the duration of these time periods as
dictated by operational considerations.

¢ The minimum time that a blending unit will require to
produce the minimum threshold amount. In this case, larger

DOT 10.1002/aic

L2-periods H—t——ft—f——+—F—+—— Target inventory
i i i i i i/ levels are set at
: : ; i : i the L-intervals’
: i i : ; ; i

L3-periods Sttt boundaries

.
MILP for /=1 i i

.
MILP for /=2 i i
]

MILP for/=3 ——
MILP for /=4
Figure 3. L-intervals at the third level.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

periods are preferred to aveid inventory infeasibilities (i.e.,
slack variables with nonzero values) due to the blending
units not being able to fulfill the minimum production
threshold constraint.

e The delivery windows. The higher the number of the
period boundaries that correspond to the start and end times
of the delivery windows, the fewer iterations the algorithm
will require. The second-level periods are still aggregated
periods; all tasks are assumed to be completed at the end
boundary. Therefore, inventory infeasibilities may appear if
a delivery window ends before the conclusion of the second-
level period. As a heuristic rule, an original delivery window
is narrowed when it spans less than the half of a second-
level period, if and only if the order is possible to be met at
maximum order delivery rate within the reduced window;
otherwise, another second-level peried should be considered.

At the third level, the time periods are small enough that
only one task in a given unit can take place (e.g., a blender
can only blend one specific gasoline grade). They are usually
1- or 2-hours long.

The length of the time periods at any level does not need
to be uniform, and their boundaries are not required to coin-
cide with the start of a calendar day, month and so forth.
For example, it is possible to use a few smaller periods at
the second level if it is known that no blender will operate
at some intervals of the horizon {(e.g., after the last delivery
window if it ends before the conclusion of the horizon). For
sake of exposition, the time periods of the first, second, and
third level, are denoted as L1-periods, L2-periods, and L3-
periods, respectively. One Ll-period contains one or more
L2-periods, and one L2-period contains several L3-periods;
therefore, the product demand, blend compenent supply, and
blend capacity at any level are the aggregated values of the
corresponding periods of the next lower level.

Mathematical Models

The mathematical models are presented next. The follow-
ing sets are used:
A = {(o) | set of different supply flow rates of blend components)
Bl= {(bl) | set of blenders}
E = {(e) | set of quality properties}
G = {(g) | set of time slots for blend run allocation)
I= {(i) | set of blend components}
T = {(j) | set of product storage tanks}
K = {(k) | set of time periods at the first level or L1-periods)

DOIT 10.1002/aic

Published on behalf of the AIChE

53

L= {(}) | set of time intervals in which the scheduling horizon is
solved}
M= {(m) | set of fime periods at the second level or L2-periods)
N = {(n) | set of time periods at the third level or L3-periods}
O = {(o) | set of orders}
P = {(p) | set of products}
BJ = {(bl, j) | blender bl can feed tank j}
BP = {(bl, p) | blender bl can process product p}
JP = {(j, p) | tank j can hold product p}
MK = {(m, k) | L2-periods contained in each L1-period}
NA = {(n, %) | blend component supply profile & occurs within L3-
period 7}
OP = {(o, p) | order o consists of product p}
JO = {(j, o) | tank j can deliver order o}
GM = {(g. m) | slots g for blend allocation is contained in period #1)
ML = {(m, [) | L2-periods contained in interval I}
MLE = {(n,) | last L2-period contained in inferval {}
NM = {(n, m) | L3-periods contained in each L2-period})
NMEF = {(n, m) | all L3-periods, except the first one, contained in each
L2-period}
NL = {(n, I) | L3-periods confained in interval {}
NLE = {(n, {) | last L3-period contained in interval [}
NLF = {(n, I) | all L3-periods, except the first one, contained in inter-
val 1}
NLO = {(n, !, o) | L3-periods contained in imterval { when order o can
be delivered}
JON = {(j, 0, n) | tank j may deliver order o during L3-period 7}
IPN = {(j, p, ») | L3-periods when tank j can store product p}
NLOA = {(n, [, o) | L3-period confained in interval ! when order o can
start to be delivered}

In principle, the models presented here can be adapted to
any scheduling problem with similar characteristics. Num-
bering of the equations continues from that of Part I of this
article.

First level—Blend recipe optimization

The first-level objective is to minimize the blend cost by
determining the optimum volume fractions (i.e., blend recipes)
to mix the blend components available into final products that
meet quality specifications and demand requirements. At this
level, the values of the product demand, blend component
supply, and blend capacity are aggregated values for each of
the L1-periods, and product storage tanks are aggregated into
proeduct pools. The mathematical model of the first level pre-
sented in Part I of this article is used without modifications.
The objective function defined by Eq. 1 minimizes the blend
cost (Eq. 2) and the inventory infeasibilities. The penalty
coefficients for the product slacks variables are much greater
than the unit cost coefficients of the blend components. Slack
variables will be zero at the optimal solution (i.e., penalty
coefficients will not affect the final blend cost); if they have
nonzero values, it means that the problem is infeasible
because there is not enough blend components to blend prod-
ucts as required by the quality specifications or demand
requirements. Inventory cost is not included in the objective
function as inventory levels will be at the minimum allowed
at the end of each Ll-period {because the CATP curve
touches the CTD curve).

In the first iteration of the algorithm, the volumes to be
blended in each L1-period are the minimum amount required
to fulfill the demand; thus, the solution of the first level model
is a lower bound of the global blend cost. Discrete variables
are not required at the first level because compliance of mini-
mum blend size thresholds and maximum blenders’ capacity
constraints are handled by adjusting the volumes to be
blended in each L1-period by moving the minimum possible
amount of volume to the previous L 1-periods.

July 2014 Vol. 60, No. 7 AIChE Journal

Equations 3-15 only appear in Part I of this article

min Zy y =BlendCosty; + Z

BlendCosty = Z
kekK

Second level—Blend plan optimization and approximate
scheduling

The blend plan censists on determining (1) how much to
blend of each product and in which blender in each L2-
period; (2) allocation of swing tanks to specific products in
each L2-period; and (3) the inventory profiles of all storage
tanks along the planning horizon.

The second level computes the optimal blend plan using the
blend recipes from the first level. The blend recipes of each
L1-period are fixed in the corresponding L.2-periods. The sec-
ond level is basically a disaggregation step of the first- level
decisions. A MILP model is used to deal with constraints as
the minimum blend size threshold, and others that require dis-
crete variables. The second level is solved in two phases: blend
planning optimization followed by approximate scheduling. In
this way, inventory infeasibilities are detected in less time.

Blend planning optimization at the second level minimizes
the blend cost and the inventory slack variables (see Eq. 16).
If a feasible operation can be obtained using the blend rec-
ipes from the first level, inventory slack variables will be
zero at the solution of the second level; otherwise, the inven-
tory slacks will show which specific products, by how much,
and in which L2-periods they cannot be produced in the
amounts required. To ensure that the nonzero slacks will
appear on the product tanks, the product inventories at the
L1-period boundaries are fixed instead of setting the produc-
tion targets from the first level, and:

1. Penalty coefficients for the products’ inventory slack
variables are smaller in comparison with the penalty for the
components’ inventory slacks (ie., Penaltyper, >>
PenaltYpr,LZ(m) v m, PenaltYpool,LZ(m) - PenaltYpr,LZ(m) v m)

2. The penalty coefficients for the product inventory
slacks decrease with time (ie., Penalty-
priolm) > Penaltypo(m +1) Vo) in order to move the
inventory infeasibilities as late as possible in the planning
herizon In this way, the use of a given blend recipe is maxi-
mized. The penalty coefficients must decrease as fast as pos-
sible and after each L1-period boundary a significant change
must take place.

‘When the solution of this phase has inventory infeasibil-
ities {i.e., component supply or blender constraints are such
that the recipes computed at the first level are not feasible
within a L1-period), the algorithm will subdivide such L1-
perieds and reoptimize the blend recipes.

Given the assumption that the flow rates of blend compo-
nents are given by the solution of the refinery planning level,
inventory cost is not included at this level as the refinery
will carry the total inventories as either blend components or
finished gasoline grades

AIChE Journal July 2014 Vol. 60, No. 7

Published on behalf of the AIChE

54

e Penalty eps - (SIJ;C,LI (1, &)+ 8411 U, k”))

(z costbC@‘vmmp,u(,-,,,,kg @ [SierPenaltyera(m) - (S 1ol m)+Spaom))
icl peP

1)
S ZPEP Penalty pool,L1 (Sgool,Ll (P, k)JrSpooI,L] (p1 k))
min Z%% =BlendCosty,+ Z
meM
+ EPEP Penalty poi12{m) - (S;ml,Lz(P’ m) +S};_OQLL2{P: m))
+ 3 oy Penalty praa(m) - (g;nm Gom)+ 801U m))
(16)

Equation 17 computes the blend cost

BlendCost1,= Z

meM

Z Z Costy, (I) - mepﬁm(i,p,bl,m)
(blp)eBp i€l

a7

Approximate scheduling at the second level minimizes the
number of product transitions in the blenders and in the
product storage tanks, as well as the number of blend runs
(see Eq. 18). Binary variable xy,(p,bl,m) defines a blend run;
that is, it determines if product p is going to be produced in
blender bl during period m if its value is 1. Blend runs are
penalized because a solution at the second level can suggest
to blend the same product in the same blender for several
adjacent L2-periods, thus, not incurring in a penalty for
preduct changecver in the blender; however, they are not
likely to have the same blending rate, which is a constraint
at the third level to define a blend run. Therefore, it is better
to have the minimum number of blend runs, and then reduce
the expected number of product changeovers (i.e., Penal-
tyBRy,(bl) >> PenaltyBS;;). If the inventoery slacks are
zero at the blend planning solution, we know that the blend
recipes and inventory targets from the first-level solution can
yield a feasible blend plan; then, if those are fixed at the sec-
ond level, the blend cost does not need to be included in Eq.
18.

Equations 19-66 only appear in Part 1 of this article

—— 2 pjenp PenaltyBR 15 (bl) - x12(p, bl m)
minZph =

meM |+ ZJEJ PenaltyTS 12/} - uer2(j, m}

3 (3" PenaltyBS 5 - xera (b, g)) (18)
blcBl

FEe

Third level—Detailed scheduling

The decisions of the second level are now disaggregated
at the third level. The goals of the third level are to
determine:

1. The blending rates for each blend run;

2. The delivery rates from all tanks to each order along
the scheduling horizen;

3. The production sequence in each blender; and

4. Start and end times of all tasks.

DOIT 10.1002/aic

We use the blend recipes from the first level, and the
inventory levels, the swing tanks allocation, the production
of each blender, and the delivery plan from the second level
to reduce the search space and model size at the third level.

The scheduling horizon is divided in various subintervals,
denoted as L-intervals (see Figure 3), and a MILP model is
solved for each one of them. The boundaries of the L-inter-
vals must be synchronized with the boundaries of some
L2-periods to enable the inventory levels computed at the
second level to be fixed at the start and end boundaries of
the L-intervals. The L-intervals are solved first in a forward
sequence, then the length of these L-intervals is increased
and they are sclved in a reverse sequence. During the for-
ward pass, L-intervals do not need to overlap as the only
goal is to check if the second- level solution is feasible or
not. During the reverse pass, L-intervals may overlap to
reduce the number of blend runs while solving relatively
small size models.

The reverse pass decreases the number of blend runs by
merging the same-product blends that are adjacent to the
boundaries of the f-intervals used during the forward pass.
Due to our model formulation that uses the start of the blend
runs to count them, as well as the fulfillment of some con-
straints {(e.g., minimum running time and minimum produc-
tion volume of a blend run), the feasibility of the L-interval
being solved with respect to the rest of the scheduling hori-
Zon is easier to attain using a reverse pass than a second for-
ward pass.

The third level {(at each forward and reverse pass) is
solved in two phases: a feasibility phase followed by an opti-
mization phase.

Objective Function of the Third-Level Feasibility Phase.
The objective function is given by Eq. 67; it minimizes the
blend cost, the inventory infeasibilities, and the delivery
infeasibilities. As the third level uses the inventory levels
computed by the second level, the mventory cost does not
need to be included at this level. The blend cost is computed
by Eq. 68. Inventory slack variables will be zero at the solu-
tion of the third level if a feasible operation can be obtained
using the blend recipes computed at the first level and the
blend plan from the second level. If this is not the case, the
inventory slacks will show which specific products, by how
much, and in which L3-periods they cannet be produced in
the amounts required to meet the demand. Once again, to
have the nonzero slacks on the product tanks, inventory lev-
els from the second level are fixed instead of the production
targets, and:

1. Penalty coefficients for the products’ inventory slack
variables are smaller in comparison with the penalty for the
components’ inventory slacks (i.e., Penaltyy.y3(n) >> Pen-
altyp,ra(n) ¥V n), and they decrease with time (i.e., Penal-
t¥pers() >> Penalty,.ra(n+ 1) ¥ n). Component slacks
appear when component tanks overflow.

2. The penalty coefficients for the product inventory
slacks ~ decrease with time (ie., Penaltyp1s(n) >
Penaltyg,pa(n + 1) ¥ n) to move the inventory infeasibilities
as late as possible in the planning horizon.

3. Penalty cecefficients for the delivery slacks are
higher than those of the compenent and product inventory
slacks (i.e., PenaltyD,;;3 >> Penaltyycpra(n) >> Penal-
tyPr,LS(”) ¥ n).

If the solution of the MILP has inventory infeasibilities, it
indicates that compenent supply or blender constraints are

DOT 10.1002/aic

Published on behalf of the ATChE

55

such that the recipes computed at the first level and/or the
blend plan from the second level are not feasible within a
L2-period. The algorithm will subdivide the corresponding
L1-period and reoptimize the blend recipes

: feas _
minz;3° =

: (S;—rder,LE (@) Sorder L3 (0))

> iy Penalty peys(n) - (Sl:rc,LS (i,m) +Sbc,L3(ii ”))

BlendCosty3+ ", ., PenaltyD 1.5

+
neN . .
T S Penalty pous () - (S5050) Spenaliont)
©7)
BlendCosty 3= Z Z Z E Costy, (£}
weN blcBl peP i€l
’ Vcomp,L 3 (i:Pu bl, J’I) (68)

Trying to solve the entire scheduling horizon at once will
result in a third-level model with a large number of equa-
tions and discrete variables which may be computationally
inefficient to solve. However, the scheduling horizen can be
divided in smaller time intervals denoted as L-intervals and
Egs. 67 and 68 are replaced by Eqgs. 69 and 70, respectively

min Z{e;s (I}=BlendCost 5 {I}+ >~ _, PenaltyD 13

o0

(Staeesa (02 + Saerps (01}

ey Penalty s () - (Sic (01456)

+
P S Pemalty pras () - (Spe15 0 Spns i))
(69)
BlendCost 5(/)= Z z Z Z Cost . (i)
neNL bleBl peP el
’ VCOT"P»LS (ia P bl, n') (70)

Noftice that, if no inventory infeasibilities appear, we have

= Z minZ]f_e;S)]
7

: feas
minZ;3

And BlendCost13 =", BlendCost 3 (1}.

Objective Function of the Third-Level Optimization Phase.
After a feasible schedule is generated (i.e., all slack variables
have a value of zero at the solution of the feasibility phase
of the third level), the third level minimizes the number of
blend runs, penalizes variations in the delivery rates, punish
late deliveries, and reduces the number of tanks receiving
proeduct from the same blend run (reduction along the dura-
tion of the blend run as a blender only feeds one tank at a
time). Equation 71 is the objective function for the optimiza-
tion phase where the first term penalizes the number of blend
runs, the second term penalizes irregular delivery rates, the
third term penalizes late deliveries (i.e., Penalty-
Dpmy a(r) > PenaltyDpmy 3{nz — 1) ¥ #), the fourth term rep-
resents the penalty associated with long blend runs, and the
last term is the penalty for sending product from one blender
to different storage tanks during the same blend run but at
different times (the blenders can only send product to only
one tank at a time). In this work, the higher penalty corre-
sponds to the number of blend runs. Equation 71 does not
minimizes the blend cost because the blend recipes and the

July 2014 Vol. 60, No. 7 AIChE Journal

inventory levels at the boundaries of the L-interval are fixed
(i.e., blend cost will be the same as that computed during
the feasibility phase)

min 775 (1)

> bt epr PenaltyBsw s - swys(bl,)

+ EW)EJON PenaltyDsw 13 - Dsws(j, 0,2}

+ 22 meron PenaltyDpm y5(n) - Del 13 (f, 0, 1)

+ > viep PenaltyBLiys - foiend 13 (B, 1)

+ 3 o PenaltyTswys - vers(f, #)
71

Material Balance on Blend Component Tanks. The volu-
metric balance on the blend components ensures that the ini-
tial mventory plus the supply are equal to the final inventory
plus the amount transferred to the blenders, during a L3-
peried. At this level, the L3-periods are small enough that
the supply rate of blend components is constant within such
periods. Equation 72a is used during the feasibility phase to
include the slack variables. If the blend recipes lead to a fea-
sible solution, then the slack variables have a value of zero
at the feasibility phase solution and they can be omitted dur-
ing the optimization phase (Eq. 72b)

Fre (.f, OC) . tLg(n)Jercng (i, n— 1) 7Vbc,L3 (.f, n)

- Z(bl,p)EBP Vcomp,L3 (i:p: bl, n)

{72a)
+S§c,L3 (4, m) ’Sbc,Ls (i,n)=0
V¥ i,ne NLaeNA
Fie (i, O!) < fs (n)+Vbc=L3 (f, n— 1)
—Vpera(i,m)— Z(blp) epp Veemps (i, p, bl,n}=0 (72b)

Vi,pn e NLia € NA

Fixed Blend Recipe. Equation 73 fixes the blend recipe
r{i,p,k) from the first level in its corresponding L3-periods.
Note that r(i,p,k) is a parameter and not a variable at the
third level. Filena13(p,bl,n) is the production rate of product
p in blender bl during period #

Veomp.La{6, 2, bl my=r(i,p, k) - t3(n) - Fuena12(p, bl,)

3
Vi, (p, bl} €BP, {n,m) € NM,n NL 73
Blender Constraints. Equation 74 establishes that a
blender may only blend a product according to the second
level blend plan. Equation 75 constrains the blender to pro-
cess only one product during a L3-period. xpa(p,bla) is a 0-
1 contimious variable which value is 1 if product p is
blended in bl during period s, and 0 otherwise. Note that
xpo{p,blp) is a parameter and not a variable at the third
level. Wyienara(bl,n) is a 0-1 continuous variable which can
only take the value equal to 1 if the blender is idle, or equal
to 0 if it is running. All 0-1 continuous variables are set to
be less than or equal to 1 {(equations omitted here)

xs(p,bl,a) <3 xia{p,blm) Y (bl p) € BP, (n,m)

mel

e NM, » € NL. (74)

AIChE Journal July 2014 Vol. 60, No. 7

Published on behalf of the AIChE

Whiena 13 (b, 1)+ > xps(p,blmy=1 Vblm eNL (75)
pEBP

Equations 76 and 77 observe that the production rate must
be equal to or less than the maximum blending rate, and
equal to or greater than the minimum blending rate,
respectively

Fblend,LB (p: bla I’I) § g{:};d (bl) s X3 (p7 b17 n) Y (bl,p)
€ BP,n e NL 76)

Friengrs(p, bl) > FER (1) - xps(p,bln) ¥ (bl,p)
€ BP,n € NL an

Volume Transferred from Blenders to Product Tanks.
The set JPN is constructed according to the solution of the
second-level model; this enables the product allocation of
swing tanks determined at the second level to be fixed at the
third level. Equations 78-81 force a blender to feed at most
only one product tank during a L3-peried. Binary variable
vr2(f,bl,n) specifies that blender bl is feeding product tank j
during period # if its value is equal to 1

Virans L3 DL} = Fpongy (0,01, n) - iz (b Fes, (b1)
dps(a} - (1—vs(j, bl)y} (78)
¥(bl,p) € BP, (blj) < BJ, (j,p) € JPN,n & NL
Virans 13 (1L, 1} > Fronaps (p.bLn) - 1y () —Fies, (b1)
dps(a} - (1—vs(j, bl)y} (79)
Y(bl,p) € BP, (bl,j) € BJ, (j,p) € JPN,n € NL

V‘TBBS,U (]': bl, ”) < Flr)l}:d (bl) Sh3 (n) © VL3 U! bl ”) ¥ (bl,j)
€ BJ, ne NL

(80

Whiender,L3 (D1, 72} + Z vis(,blmy=1 ¥bl,me NL (81)

7EBY

Equation 81 forces continuous variable wyyepae,13(bl%)
to be only 0 or 1. Equation 82 observes that the blender
bl is feeding product p into a tank j that contains such
product. Let us note that the allocation of swing tanks
computed at the second level is fixed at the third level
This equation forces continuous variable xpa(bln) to be
only 0 or 1

D vis(,blm)=ns(p,bla) ¥V blLneNL (82
JEIP

Equations 83a and 83b define if a change in the destina-
tion tank for the product in the blender has occurred at
period # {(when the blender is already running). However, let
us note that this change is constrained by Eqs. 81 and 82 to
be made only to another tank assigned to hold the same
product at period n. 0-1 continuous variable xej 3(bl,n) repre-
sents the start or end of a blend run if its value is 1; there-
fore, vera(blr) is a 0-1 continuous variable due to being
penalized in Eq. 71

vers(bl,n) > vis(j, bl n)—vis(j,bl,n—1)

—xers(bl,n} ¥(blj) € BY,n e NL (83a)
vers(bl,n) > vis(f, bl n—1)—vLs(j, bl, 1)
—xeps(bl,n) V(bl,j} € BI,n e NL (83b)

DOIT 10.1002/aic

It is important to notice that the only binary variable at the
third level is vy s(j,bl,n), which indicates that the number of dis-
crete variables only increases with the system structure {ie.,
number of blenders and product tanks) and the discretization of
the scheduling horizon {i.e., the number of L3-periods).

Material Balance on Product Tanks. The volumetric bal-
ance on the product tanks specifies that the initial inventory
plus the volume supplied by the blenders are equal to the
final inventory plus the amount delivered, during a L3-
period. Equation 84a is used during the feasibility phase to
include the slack variables, and Eq. 84b is ufilized during
the optimization phase

> v ert Virans L3 Uy b,) +Vpr 15 (y i1} = Vs (j, n}—tus(n)
P oeton PerLslf 0,)48y (7 m) =S5 (G, np=0
¥j,n € NL
{8da)
> ept Virans 13U, bL #) +Vprrs (f, 2= 1) =Viens(j, 1)
—ts(n) - 3 oeron Dprps (i 0, n)=09j,n € NL

Inventory Limits. Inventory constraints are only forced
on individual storage tanks by Egs. 85 and 86

VIR (i) < Vieps(f,m) < VES(i) Vi,n € NL
VIR < Verus (o) < VIR () ¥in e NL

(84b)

(83)
(86)

Initial Inventory. Equations 87 and 88 set the initial state
of the blend component and product tanks, respectively.
Note that these equations are required only for the first I-
interval

Vierali,n=0)=Vie" (i} Vi (87)
Vs (f, n=0}=VE () Vi (88)

Blend Runs. At this level, 0-1 continuous variable
xep3(bl,) represents a state transition in blender bl at the
beginning of period n; in other words, a transition from
being running to being idle, or vice versa. 0-1 continuous
variable swpa(bl,r) represents the start of a blend run in
blender bl at the beginning of period #. Equation 89 defines
which product the blender is processing if it is running at
the beginning of the horizon, and Eq. 90 determines if the
blender is idle at time zero. Equations 91 and 92 identify a
state transition in the blender; they force continuous variable
xera(bln) to be 1 when a product starts or finishes a blend
run. Equations 93a and 93b force xers(bl,n) to be 0 when
blender is running or idle during two consecutive L3-
periods, respectively. Equations 94 and 95 define if a blend
run has started in the blenders

x3(p, bl n=0)=x""(p,bl} V(bl,p) €BP (89)
Wotend L3 (b, n=0) =ity (bl) Vbl (0)

xeps(bl, 1) > xp3(p, bl ny—xps(p, bl n—1} ¥(bl,p} € BP, n

e NL
(E3]
xeps(bl, m} > xpa(p,bln—1}—x3(p,bln) ¥(blp} € BP, n
= NL
(92)
xe1a{bl, 1) < Wiena13{bl, #) FWhigna1a{bl,n—1) W¥bl, n € NL
{93a)

DOT 10.1002/aic

Published on behalf of the ATChE

57

xers (bl i) < 2—wylena 13 (bl, 1) —Wienar3(bl, s—1) ¥bl, n € NL

(93b)
swrs(bl, i) = xer3{bl, #) + Whienar 3(bl,2—1)—1 ¥bl, n e NL
©4)
+ —
s (bl 1} < xer3(bl, n) ngd’u (bl,n—1} Whl, nc NL
95)

Constant Blending Rate. Equation 96 ensures that the
blending rate is constant during a blend run. Equation 97
specifies the blending rate of the blenders at the beginning
of the scheduling herizon
(bl} - xers(bl, 1} < Fyenars(p, bl n}

_ pmax
blend

—FrienaLs(p, bl,n—1) < Fy (bl) - xers (bl 1) ©6)
¥(bl,p) € BP, ne NL
Friendy3(p, bl,a=0)=Fgim (p, b1} ¥(bl,p) €BP (97

Constraints on the Minimum Running Times of the Blen-
ders. To know when a blender has surpassed its minimum
allowed running time when processing product p, the cumu-
lative running time of a blender at the end of period » is
computed [i.e., fpenara(bln)]. Equation 98 sets the running
time at the beginning of the scheduling horizon. Equations
99 and 100 compute the cumulative running time at period n
as the cumulative running time in period # — 1 plus the
duration of period #, if the blender is not idle. Equation 101
restarts to zero the cumulative running time when the
blender goes idle. Parameter H is the length of the schedul-
ing herizon

fhiend 13 (bl, n=0)=£%" (bl} Vbl (98)
fotend L3 (bl, 7] < tyienar 3(bl, n—1) +113 () ©9)
+H WyenaL3(bl,n) ¥bl,n e NL

ftlend L3 (bl, n) > Iblend L3 (bl, n—1) +i3 (n) —H (100)

WetendL3(bl, 7} ¥bl, n € NL
tizena 3(bl, 2} < H - (1=wygenq3(bl,n}) Wbl n € NL

(101)

Equation 102 observes that state transitions in the blender

can only occur after the minimum running time has been
achieved or surpassed

ibtend 3 (bl, n—1} 4
"gfjé?md (P! bl)
- (1=x5(p,bl,n—1)} ¥(bl,p) € BP, n € NL

xe3(bl,n} < H

(102)

Equation 102 does net avoid solutions with blend runs
completed at the end of the horizon {or L-interval) with less
than the minimum running time; therefore, Eq. 103 is neces-
sary to ensure that any blend run within the scheduling hori-
zon has a run time at least equal to the minimum

frenar3(bl, 1) = £30 (p,B1) - xps(p,bln) W(bl, p) € BP, n
£ NLE

(103)

Constraints on the Minimum ldle Times of the Blenders.
We consider product-dependent changeover times in the
blenders. The cumulative idle time of blender bl at the end
of period n is denoted as ifyeng1a(bl.z). Equation 104 sets

July 2014 Vol. 60, No. 7 AIChE Journal

the idle time at the beginning of the scheduling horizon. Equa-
tions 105 and 106 compute the cumulative idle time at period
#n as the cumulative idle time at period # — 1 plus the duration
of period #, if the blender is not running. Equation 107 restarts
to zero the idle time when the blender starts a blend run

ifplend L3 (bl, n= O) =it ‘s)tlzrrtd (bl) Vbl (104)
it pena13(bl, 71) < itwenars(bl,n—1)+r3{n)+H-
(1~ Wigenar3(bl, #)) ¥bL, # & NL (105)
it piend 13 (bl 7} 2 itpena 3 (bl n— 1} +a5(n)—H
(1 Whiena3(bL) VbL, 5 € NL (106)
it biend 3 (bl 7} < H - Whienq13(bl,n) Vbl, # € NL (107)

Equation 108 ensures that a blender cannot start to process
product p in period »# unless the cumulative idle time at
period n — 1 is greater than the minimum required
itblend,LS (bl, n— 1) >t g{:;d X bl) - X13 (p, bl, n)—H

{1 =Weiend3(bl, 2—1)) ¥(bl, p) €BP, n € NL (108)

Constraints on the Minimum Production Volume of the
Blend Runs. We consider that a blend run should produce
at least a minimum amount of product. The cumulative vol-
ume produced by blender bl as the start of the blend run up
to the end of period » (if the blend run has not been com-
pleted) is denoted as vcpenars(blin). Equation 109 sets the
cumulative volume at the beginning of the scheduling hori-
zon. Equations 110 and 111 compute the cumulative volume
produced up to period z as the cumulative volume at period
n — 1 plus the volume blended in period s, if the blender is
not idle. Equation 112 restarts to zero the cumulative volume
when the blender ends a blend run and while it remains idle

start

Vehlend L3 (bl n=0)=veif 4 (bl) Wbl (109)
Vertend 13 (bL,) < Vepenays (bl n—1}+ Z Vilend13{p, bl, 11}

PEBP
g (b1} - H - wiienara(bl, #) Wbl ne NL (110)

Veplend L3{bL,)} > Veptena s (bl n—1)+ E VitendL3(p, bL, 12}
pEBP

— P (b1} - H - whiena1a(bl,) ¥bl, ne NL (111)
Veplend L3 (b1, 1) < ey (bl} - H - (1—Witena 13 (bL, 1))
¥bl, ne NL (112)

Equations 113 and 114 constraint a blender to end a blend
run until the minimum volume has been produced

VeCulend 13 (bL, n—1}
VMIN 2 (p, bl)
’ (1 —XL3 (pﬂ bla n— 1)) V(bla P}

xeps (bl n} < +HFpe (bl - H

£BP, ne NL (113)
Vepienars (b1, 1) = VMINTR (5 b1) - xps(p, bl,n) V(bL, p)
€ BP, n& NLE

(114)

Equations 109-114 are not used if these minimum blend
thresholds are not considered; in that case, the minimum vol-
ume that may be produced by a blend run is given as the
minimum blending rate multiplied by the minimum running
time. From Eqs. 99 to 113, parameter H can be substituted
by the smallest possible number to tighten the model.

AIChE Journal July 2014 Vol. 60, No. 7

Published on hehalf of the AIChE

58

QOrder Delivery. Equation 115 computes the volume to
deliver of order o during L-interval I, denoted as Demand,,.
aerpsto,l), according to the second-level solution. As stated
before, in this work only one L2-period is contained by one
L-interval during the feasibility phase. Note that off (o) is
a parameter and not a variable at the third level

Demand ordger13{2, f)=Demand (o) - Z oftalo,m) Vo
meML

(115)

Equations 116a, 116b, 117a, and 117b represent the mate-
rial balance around the lifting/shipping ports. Together, Eqgs.
116a and 117a force the delivery to occur within the corre-
sponding window during the feasibility phase (and Eqgs. 116b
and 117b during the optimization phase). Equations 116a
and 116b constraint the amount shipped within the delivery
window [the delivery window is given by set NLO (n./,0)] to
be equal to the demand, while Egs. 117a and 117b observe
that the amount shipped within the whole f-interval is equal
to the demand. Therefore, no delivery occurs ocutside the
delivery window

Z Z Dye1slj, 0,0}

RENLO (j0)€ION

+S;—fdef>L3 <0’ l) 7S0rder,L3 (0, Z) Vo

k) (n) .

=Demand order L3 (01 l)

{116a)

I3 (ﬂ) ’ Z Dpr,LS (ju 0, f’l) =Demand order L3 (01 l)

| #ENLO (/,0)€JON]
Vo (116h)
fa(n) - 3" Dyps(j,0,n) | =Demand oger3(0, 1)+

7neNL (j,0)€ION
S:rder,]_j(o‘ll)_Sorder,LS(D‘J l) Vo (1 173)

ta{n) - Z Z Dprpsli, 0,n) | =Demand orer13{0,1) Vo
#ENL. (,0)2TON

(117b)

Delivery rate of order o must be equal to or less than its
specified maximum (Eq. 118), and the total delivery rate of
tank j must be equal to or less than its maximum delivery
capacity (Eq. 119)

> Dyusli 0,n) < DRSS, (0) Yo,n € NLO (118)
JETON

> Dusiiom) <D™ () Wj,neNLO (119)
2eTON

To keep the delivery rate as constant as possible, Eqs. 120
and 121 compute the difference between delivery rates,
which is penalized in Eq. 71

Dswy3(j,0,1) = Dyasl(f,o,n)—Dyis(j, 0, n—1) ¥(j, 0)
£ JON,n € NLO
(120)
Dsw 3 (.}'1 o, n) = DPT:L3 U: o, = 1) _DPT:L3 Uu 0, n) V(ju 0)
£ JON, n < NLO
(121)

Target Inventories. During the forward rolling window
pass, Eqs. 122 and 123 set the inventory targets for the blend

DOT 10.1002/aic

component and the product tanks at the end boundary of the
L-interval ! according to the second-level solution. Starting
inventories are set according to the sclution from the previ-
ous L-interval {I —1).

During the reverse rolling window pass, the inventory tar-
gets for the blend component and the product tanks at the
start boundary of the L-interval / are set by the values com-
puted during the forward pass. Inventeries at the end bound-
ary of the L-interval are set according to the solution from
the L-interval (I + 1)

VbC,L3 (i, n):VbC,Lz(f, m) ¥i,n e NLE, m € MLE
Vorrs(j, m)=Vpr2(i,m} Vi,n € NLE, m € MLE

(122)
(123)

MPIP Scheduling Algorithm

The algorithm presented here is based on the gascline
blend planning and scheduling problem; however, it can be
applied to any system with similar characteristics.

Step 1: Medify the original order delivery windows if nec-
essary. This is required to transform the problem from a
continuous-time to a discrete-time domain.

Step 2: Construct the CTD and the CATP curves. Deter-
mine the pinch peint(s) location.

Step 3: Set iteration counters iterg =1 and iterp = 1.
Divide the scheduling horizon {at the first level) in the num-
ber of L1-periods indicated by the pinch points, unit cost,
and quality breakpoints of blend components.

Step 4: Solve the first-level model to compute the optimal
blend recipes (Eq. 1-15).

e In the first “planning” iteration (iterp = 1), the vol-
umes to produce of each product in each L1-period are the
minimum amounts required to meet the aggregated demand
in each L.1-period.

e In following “planning” iterations (iterp > 1), the vol-
umes to produce are defined according to the solution of the
second level {see Step 7) or the third level (see Step 12).

e If the quantity to be produced [i.e., Vienari{p.5)]
violates the maximum blend capacity or the minimum blend
size threshold censtraints, volumes are adjusted by moving
the least amount possible of volume to previous Ll-periods
(i.e., preblending).

e If any mventory slack variable has a nonzero value
at the solution, the problem is infeasible as the availability
or quality of blend components is not enough to meet the
product quality specifications or to deliver the products
within the delivery windows. Stop.

Step 5: Solve the second level blend planning model (Egs.
16, 17, and 19-55).

Step 6: If all the inventory slack variables from Step 5 are
zero, a feasible blend plan, based on optimal recipes com-
puted at the first level, has been found; go to Step 9. Other-
wise, continue to Step 7: Subdivide the L1-period at the end
boundary of the L2-period with the first infeasibility.

* The volumes to be blended in each new L1-period
are given by the solution of Step 5 plus the positive slacks
minus the negative slacks. If Vyenar1(p,k), for any p or &,
violates the maximum blend capacity or the minimum blend
size threshold censtraints, volumes are adjusted by moving
the least amount possible of volume to previous L1-periods.

Step 8: Set iterp = iterp + 1. Go back to Step 4.

Step 9: Solve the second level approximate scheduling
model (Eqgs. 17-61).

DOT 10.1002/aic

Published on hehalf of the AIChE

59

e The solution provides an initial guess (upper bound)
for the number of blend runs and a lower bound for the
number of product transitions in the blenders.

e The solution provides the product-tank allocation that
yields the minimum product transitions in the storage tanks.

Step 10: Define the L-intervals for the third level forward
rolling window pass.

¢ The length of these L-intervals can be different but
their boundaries must match L2-period boundaries.

* [-intervals are not required to overlap.

Step 11: Solve the third-level feasibility phase meodel
(Egs. 69, 70, and 72-123) for each L-interval from Step 10.

s Use the forward rolling window approach, that is,
start with /=1 and move on to the end of the scheduling
horizon. In this way, the initial conditions of each L-interval
are computed considering the conditions at the beginning of
the herizen.

Step 12: If the solution from Step 11 has all slack varia-
bles, for all L-intervals, with values equal to zero, continue
to Step 14. Otherwise:

e Subdivide the scheduling horizon at the first level at
the start boundary of the L.2-period containing the largest
infeasibility. Small infeasibilities may disappear with new
recipes.

e In the next iteration, if nonzero slacks continue to
appear in the same [.2-period, subdivide the scheduling hori-
zon at the first level at the end boundary of that L2-period.
If such period is the last L2-period, or if nonzero slacks con-
tinue appearing in the same period in following iterations;
subdivide the horizon at the first level in such a way that the
blend run with nonzero slacks is delimited (i.e., a blend rec-
ipe is computed for that particular blend run). A good guess
to delimit the blend tun is given by fyenazalp.blin) +
it (p,bl).

e Necessity of moving volumes to previous time peri-
ods as in Step 7 is less common at this level.

s Inventory targets computed at the first level are not
fixed at the corresponding boundaries at the second level if
the inventory targets at other second level boundaries already
define how much product is required to be blended with the
same blend recipe; for example, when a single blend run is
delimited at the first level.

Step 13: Set iters = iters + 1, and go back to Step 4.
Step 14: Solve the third level optimization phase model
(Eqs. 70-123) for each L-interval from Step 10.

¢ Use the forward rolling window approach.

s If inventory infeasibilities appear or the model for an
L-interval is infeasible, this is due to a different boundary
condition (i.e., the initial blender conditions are different
from those used at Step 11). Resolve previous L-interval and
fix the initial conditions computed in Step 11.

Step 15: Determine new [-intervals for the reverse rolling
window pass:

e If the same product is being blended in adjacent L2-
periods, in the same blender and using the same blend rec-
ipe, those L2-periods can be grouped into one [-interval.

* [-intervals can be overlapped if necessary.

e Increasing the length of the L-intervals increases
the model size as well as the execution times required to
solve it.

Step 16: Solve the third level feasibility phase meodel
{Eqgs. 69, 70, and 72-121) for each L-interval from Step 15,
including the following constraint

July 2014 Vol. 60, No. 7 AIChE Journal

START

Adjust delivery windows if
necessary

¥

MPIP planning algorithm

A

Volume to blend in each Li-period is given by
the solution of the 3" level + inventory
infeasibilities. Resolve 1% level model.

2" | evel solution

?

Fix blend recipes

Fix product allocation
of swing tanks

Set blend plan

1% time: the start boundary of the L2-period
containing the largest infeasibility,
2™ time: the end boundary of such L2-period,
3" time: the start and end of the blend run

Subdivide the horizon at:

with the largest infeasibility

constraints

Define L-intervals

Solve 3" Level Feasibility
Phase model

Fix inventories of product pools at
I the boundaries of the L-intervals
A

Yes

(MILP for each L-interval,
forward pass)

Redefine
L-intervals

Solve 3 Level Feasibility
Phase model plus Eq. (124)

infeasibilities
appear?

—lNo

| I
| Inventory |
> I
| I

Solve 3" Level Optimization
Phase model

(MILP for each L-interval, Determine (MILP for each L-interval,
reverse pass) swisi(l) forward pass)
[_In;ent;r_ T Solve 3" Level Optimization
Yes | e | No Phase reduced model
] infeasibilities | > : —»/ STOP
Modify | siten | Fixxua(p,bl,n), (MILP for each L-interval, '
swiftfl) s b——m———— — —] xews(bl,n), reverse pass) Solution
swis(l) + 1 Whtend3(b,) Jaums;

Figure 4. Flowchart for the MPIP scheduling algorithm.

Z sws (b, n)=swEs
WLEBL

(I} VacNL (124)

o suld is the estimated lower bound for the total num-
ber of blend runs according to solution from Step 14 (i.e.,
one blend run per product being blended in the [-interval /,
minus the blend runs that have started in L-interval / — 1)

+ Use a reverse rolling window approach, that is, start
with L-interval /=1 and continue until the beginning of the
horizon. In this way, changes at the boundary conditions will
not affect the feasibility of previous L-intervals.

e If the solution for an L-interval contains inventory
slacks greater than zero, set swi'()=swE () +1 and
resolve the [-interval. Repeat until the solution does not
contain inventory infeasibilities {feasibility is guaranteed by
Step 14).

AIChE Journal July 2014 Vol. 60, No. 7

60

Published on behalf of the AIChE

e This step aims to join the most possible blend runs
computed at Step 14.

e Inventory levels are only fixed at the boundaries of
the I-interval being solved. In other words, if the L-intervals
overlap (i.e., end boundary of L-interval /— 1 is within I-
interval /), then the new inventory levels computed at /
should be used for / — 1.

* Variables xps(p,bln) and wyypa7a(blr) are fixed in
the last L3-period n of L-interval] if in L3-period n + 1 the
blender is starting or continuing a blend run. In addition,
parameters 02, (p,bl} and VMINy.q4(p,bl) are adjusted for
Eqs. 103 and 114, respectively, to account for blend runs
that are completed in L-interval [+ 1.

Step 17: Fix variables Fiena1s(p.bln), xpa(p,bln),
xepa(blin), and wyypq13(blr), and solve the third-level

DOT 10.1002/aic

Table 1. Test Set #1, Case Study 13—Demand Profile #5

Delivery Window Product U87 Product U91 Product U93
Start Time (h) End Time (h) Order Amount (X 10° bbl) Order Amount (><103 bbl) Order Amount (><103 bbl)
1] 24 01 60 014 50 026 30
24 48 02 50 015 30 017 30
48 72 03 50 0l6 70 028 45
72 96 o4 70 017 50 - a
96 120 o5 o0 018 50 029 30
120 144 06 80 019 30 030 40
144 168 o7 130 020 30 031 30
168 192 o8 50 021 30 032 30
192 216 - 1] 022 30 033 30
216 240 09 30 023 30 034 30
240 264 010 50 - 1] 035 30
264 288 011 50 024 40 - 1]
288 312 012 50 025 30 036 30
312 336 013 80 - 1] 037 40

optimization phase reduced model (Egs. 70, 71, 80-86, 8§,
and 115-121) for each L-interval from Step 15. Stop.

e This step reduces the variations in the final delivery
rates and the variations in the transfer sequence from the
blenders to the storage tanks.

Steps 2-9 are the same steps of the MPIP planning algo-
rithm for gasoline blend planning (see Part 1 of this article);
therefore, the flowchart of the MPIP scheduling algorithm
can be visualized as Figure 4. Hence, we refer to the itera-
tions at Step 8 as planning iterations (iterp), and those at
Step 13 as scheduling iterations (iterg).

Numerical Results and Discussion

We present two sets of case studies: Test Set #1 contains
the examples discussed in Part I of this article (i.e., case
studies with our own data), whereas Test Set #2 are exam-
ples taken from the literature® which incorporate all of the
characteristics given in the Problem Statement section of this
article. Test Set #1 is used to produce detailed schedules
from the blend plans computed at the second level of cur
case studies presented in Part 1 of this article, and Test Set
#2 is used to compare our MPIP scheduling algorithm with a
full-space continuous-time meodel. Test Set #1 contains prob-
lems where the operation range of the blenders is small, the
demand requirements are high, and there is cne nenlinear
blending property; whereas in Test Set #2 there is a large
difference between the maximum and minimum blending
rates, demand requirements are low, and all blending proper-
ties are assumed linear. For all examples in each Test Set,
the length of the L3-periods is 1 h.

Test Set #1: Integration of planning and detailed
scheduling

The gasoline blending system and all data required for
these case studies appear in Part I of this article.

The penalty coefficients at the third level are:

e For all blenders, the penalty for starting a blend run is
PenaltyBswy 5 = 1 X 107 §.

e The penalty for variations in the delivery rate is
PenaltyDswy 5 = 1008.

e The penalty profile for late delivery of orders [i.e., Pen-
altyDpmy 3(n)] increases from 0$ at the beginning of an L-
interval up to 120% at the end of the L-interval.

e The penalty for changing the destination tank for the
product from the blender is PenaltyTswy 3 = 500§.

DOT 10.1002/aic

Published on behalf of the ATChE

61

s The penalty for a blender being running for one L3-
period is PenaltyBL; 5 = 1$.

We consider the highest penalty for a blend run to obtain
the production sequence with the minimum pessible number
of blend runs; then, the next higher penalties are for varia-
tions in the delivery rates and late deliveries, and the small-
est penalty corresponds to long blend runs. The demand
orders in our case studies involve a single product and their
delivery time windows are assumed to be cne day. As we
are using the L2-periods as 1 day, there is no need to adjust
the time delivery windows.

All case studies have been computed on a DELL Power-
Edge T310 (Intel® Xeon® CPU, 2.40 GHz, and 12 GB
RAM) running Windows Server 2008 R2 OS. GAMS IDE
23.7.3 was used to solve each one of the case studies. The
first-level NLP model was solved using IPOPT, and the sec-
ond- and third-level models were solved using CPLEX 12.3.

Hlustrative Example #1: Test Set #1, Case Study 13—Two
Nonidentical Blenders, Irregular Supply Profile of Blend
Components. Case study 13 was used to illustrate the steps
of the MPIP planning algorithm in Part I of this article; now,
we will continue with the steps of the MPIP scheduling algo-
rithm. This case study has demand profile #5 {shown in
Table 1), 2 blenders (A and B), and the supply flow rate of
components is irregular aleng the planning horizon. We con-
tinue the calculations from the solution of the second level
approximate scheduling solution presented in Part 1 of this
article. The next step is to solve the third-level feasibility
model. Each L3-period is 1-hour long.

First Scheduling Iteration. Let us define 14 L-intervals
(Step 10), each one for each L2-period (i.e., each L-interval
has 24 L3-periods). The inventory levels corresponding to
the L2-period boundaries are fixed at the respective bounda-
ries of the L-intervals. In this example, solution of the third-
level feasibility phase (Step 11) presents two inventory
slacks with nonzero values in the last L-interval on the light
naphtha (LNP) component tank, SbC$L3+(LNP,336) = (1.0999
X 107 bbl, and Spers (LNP,330) = 0.0999 X 10° bbl This
means that LNP tank overflows at period n = 330. The posi-
tive slack at period » =336 only appears because the target
inventory at the end of L-interval /=14 is not met as the
overflow volume is not considered available anymore for
future periods. Therefore, Step 12 of the MPIP scheduling
algorithm indicates that we need to subdivide the last L.1-
period k=4 at the point in time corresponding to the start
boundary of L2-period m = 14. This example illustrates that

July 2014 Vol. 60, No. 7 AIChE Journal

Table 2.Test Set. 1, Case Study 13—Blend Plan

L.2-Periods Production Volumes (X107 bbl)
Blender A Blender B
Period ID Start Time (h) End Time (h) Us7 U9l 93 us1 Uo3
m=1 1] 24 - - - - 59
m=2 24 48 100 - - - 30
m=3 48 72 - 70 - - -
m=4 72 96 70 - - 64 -
m=35 96 120 103.5 - - 36 30
m=6 120 144 103.5 - - 30 36
m=7 144 168 93 - - 30 30
m=28 168 192 50 30 - - 30
m=9 192 216 - 31.5 - - 30
m=10 216 240 315 333 - - 30
m=11 240 264 48.5 - - - 30
m=12 264 288 543 - - 65.2 -
m=13 288 312 457 - - - 30
m=14 312 336 80 - - - 40

typically at the third level the inventory infeasibilities are
relatively small.

Second Scheduling Ieration. The new blend recipes
computed at Step 4 have a cost equal to BlendCosty, =
37,784.52 X 10* $, and the approximate schedule computed
by the second level {Step 9) is presented in Table 2.Test Set.
This approximate schedule has a total cost equal to
Z1,=138,502.52 X 10° $. No product switchover is required
in the storage tanks. The third-level feasibility phase {Step
11) did not find any inventory infeasibilities. The third-level
optimization phase (Step 14) was solved initially with 14 L-
intervals {one for each L2-period), and its solution is shown
in Figure 5a. Then, two contiguous L2-perieds where the
same product is being blended in the same blender were
merged into a new L-interval (Step 135). L2-periods with dif-
ferent blend recipes were not merged because it was consid-
ered that a single blend run should have only one blend
recipe. The [-intervals from Step 15 were solved (Step 16)
using the previous solution as starting point. Figure 5b shows
the production schedule computed at Step 16. The final
delivery schedule and the inventory profiles of blend compo-

nents and product pools {which are computed at Step 17 and
that correspond to the production schedule shown in Figure
5b) are presented in Figures 6 and 7, respectively.

Test Set #I Results. Table 3 shows the difference
between the second- and third-level solutions (Step 9 and
Step 17 of the MPIP scheduling algorithm, respectively).
The blend cost is the same at both levels due to fixed blend
recipes and inventory levels. The number of blend runs is
smaller at the third level as some of the blend runs at the
second level can be combined into single blend runs. The
minimum number of product transitions in the blenders is
achieved in some cases, and if it is not, the difference is
very small. No product transitions are required in the storage
tanks. Table 3 also presents the total number of scheduling
iterations required and the cumulative execution times
required at each level (i.e., the total time at each level con-
sidering all scheduling iterations). For our case studies, only
three scheduling iterations were required at most.

The forward pass at the third level is carried out using 14
L-intervals (one for each L.2-period), each one of them with
24 L3-periods. The sum of the cumulative execution times at

a) Blend recipe changes

B T EOE e

5 A
o
= : !
B & :I:]EDEES BE B
1 1
b)
100 70 70 11035 1965
- N
-
& 89
“

M usy

[var

168
Time (h)

B uss

Figure 5. Test Set #1, Case study 13—Production schedule computed using (a) L-intervals with 24 L3-periods and

(b) using L-intervals with 48 L3-periods.

Units in kbbl. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

AIChE Journal July 2014 Vol. 60, No. 7

Published on behalf of the AIChE

DOT 10.1002/aic

62

Blender to tank delivery schedule

100 103.5 196.5 30 50 32.4 30.7 493 586 _
g O I] o
2 324 41.4
= 89 64 30 37.3 66 30 30 30 60 . 8 30 40
8 \ = B B =5 VB =
28.7 435 13
Order delivery schedule
70 130 30 50 50 8.6 80
neior at] [or] [0 e -- (o] ool o101 [ostfon] [0]
60 287 30 30 24 8.6
30 30 45 40 30 30 30 40
‘g 30 50 41.4
B Tk-104 01
a.
24 16 70 36 1.3 27.6 5
26 4 30 40 16.4
0 24 48 72 96 120 144 168 192 216 240 264 288 312 336
Time (h)

B k101 Tk-102

=[RS

Figure 6. Test Set #1, Case study 13—Delivery schedule.

Tk-104 [Tk-105 Tk-106

Units in kbbl. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

the first level, the second level, and the third level forward
pass is the time required to construct an initial solution for
the detailed schedule.

The reverse pass at the third level is carried out using L-
intervals with 48 L3-periods. The number of these L-intervals
varies in each case study as it depends on the number of L.2-
periods that are adequate to merge (see Step 15). The execu-
tion times required to solve all of these 48-hour L-intervals
are shown in the last column from Table 3.

Regarding the model size, the number of discrete variables
is greater at the second level {which is solved for the entire
horizon) than at the third level with L-intervals of 14 or 48
h; however, the third-level model with 48-hour L-intervals
requires more computational effort to be solved. The number
of discrete variables at the third level increases only with the
addition of blenders or product storage tanks to the system.

Test Set #2: Comparison of the MPIP scheduling
algorithm with full-space continuous-time model using
unit slots

Examples 3, 4, 7, 8 9, 12, and 14 from Li and Karimi*
were solved using the MPIP scheduling algorithm for com-

DOT 10.1002/aic

Published on behalf of the ATChE

63

parison purposes. All examples were computed on a DELL
PowerEdge T310 (Intel® Xeon® CPU, 2.40 GHz, and 12
GB RAM) running Windows Server 2008 R2 OS. GAMS
IDE 23.7.3 was used to solve each one of the case studies.
This computer is approximately 25% slower and has 4GB
RAM less than the machine used by Li and Karimi®.

Time delivery windows for orders O8, 010, O13, 019,
and O33 were reduced from [118, 190], [150.5, 185.5], [0,
56], [0, 50], and [0, 76], to [120, 190], [150, 185], [0, 48],
[0, 48], and [0, 72], respectively. Scheduling horizon at the
second level is divided in nine L2-periods {period m =1 to
m =7 are 24-hours long, period m =8 has 22 h, while m =9
is a 2-hour period) in example 3, 4, 7, 8, 9, and 12; and the
horizon in example 14 is divided in eight L2-periods, one
per day. The cost coefficients of the blend compenents and
the penalties associated with the number of blend runs and
product transitions in the tanks are the same as those pre-
sented by Li and Karimi® The penalty coefficients for the
third level are the same as those used in Test Set #1.

Li and Karimi* use blend indices which blend linearly on
a volumetric basis instead of the actual quality properties;
therefore, the first level model is a linear program and all
the three levels were solved using CPLEX 12.3.

July 2014 Vol. 60, No. 7 AIChE Journal

a)
< 4 160
g & v
Egmﬁﬁﬂm\oﬂo\ﬁﬁmml—'ﬁ' \
LM
_|F e
<
] 2]
Bl o oaaontw ey
2l E|rvice e S n g g s ol oo
Llo B eSS naduwdten oo
) EE o) o
2 = LE =
B=] o
E 2
g I == 2
o toaman s ggun o £
Ol s|gorSurgunianvivg 3
@ o [o i = === o ool [0 e B =) &
A — e — ol e e — (28] =
3 o
5 gfle—avaaaaaan oo
— iT 3 (=N] (=N hanl i == o]
z
=
= g’ “
= &
g Eﬁ R R o S I]
]
= R
= I+
o
& . 0 24 48 72 96 120 144 168 192 216 240 264 288 312 336
s
£ |2 Time (h)
Y - 00 o L Rl =R ol i R = -
= |2 Flrmr eSS s A AE RS S Figure 7. Test Set #1, Case study 13—Inventory pro-
= w -
T |< oy files of (a) product pools and (b) blend
~— %)
2 | components.
£ B
2 |4 .
Q| = Y Hlustrative Example #2: Example 12—Two Blenders,
. oo [Mg B o el oo N o .
é é % SEANAASSHEAENAS Constant Supply Profile of Blend Components. In this
= A example, the gasoline blending system has 2 blenders, 9
B . .
> blend components with dedicated tanks, 5 products, and 11
5] . . L
O IR swing tanks; there are 35 orders to deliver within a schedul-
S |3 & ing horizen of 8 days (192 h). Nine product qualities are
= = 1o O O = v o [R e [.
é 3 AR R === required to be within specification and blend indices are ufi-
2|zl 2 lized to compute these (i.e., linear quality constraints are
2 E used). The supply flow rate of components is constant along
s 2|= the scheduling horizon. The first step is to adjust the start
o “
E § ;—; g JHagsseelnsgsee and end times of the delivery windows. The cumulative
= . - .
E- e curves for this example (after the adjustment of the delivery
S windows) are shown in Figure 8, where it can be seen that
%
[Em|nos == ool ol el s s there is only one inventory pinch peint at time f= 190 h.
- Yo Y20 mnsRsEng S As th d deli fter the pinch point, th
= E’E HERAREARILEFEER s there are no orders to deliver after the pinch pomt, there
7 EAIEREEREEREREENS is no production in the last 2 h of the horizon.
- =
W
& . 1000
. =
o = 900
o 25 = =1
= VA | ULULDUUVUU —~ - 800
= >
= " - w o0 -
g = £ 600 ot
= & = -
Gl e oirien = ool oo f £ 500 = e
= a v Pinch Point
& g 2 400
g S 300
= £ 200
g a Pk o
EEDﬁHHNNmOHHﬁNNm 5§ 100
e P § =) 0
B 0 16 32 48 64 80 96 112 128 144 160 176 192
=
%] f 9 Time (h)
EE — e en N SE W D — o en en S D 'éé CTD = = =CATP
§ E Figure 8. Test Set #2, Example 12—Cumulative curves,
g = g g inventory pinch points, and L1-periods.
5 g U — R o s '§'g§ [Color figure can be viewed in the online issue, which is
= available at wileyonlinelibrary.com.]
AIChE Journal July 2014 Vol. 60, No. 7 Published on behalf of the AIChE DOT 10.1002/aic

64

Table 4. Test Set #2, Example 12—Blend Recipes for Period & =1 (i.e., time interval [0, 190 h])

Produet

Component P1 P2 P3 P4 P5

C1 0.0127 - 0.1000 0.2400 -

c2 0.3873 0.3198 0.2500 0.1000 0.3076
C4 0.4000 0.4500 0.4300 0.3260 0.4000
Cs - - - 0.1899 -

C6 0.2000 0.2200 0.1800 0.1441 0.2000
C8 - 0.0102 - - 0.0924

First Scheduling Iferation. The aggregate demand for
Ll-period k=1 is 185 kbbl of P1, 190 kbbl of P2, 195 kbbl
of P3, 178 kbbl of P4, and 116 kbbl of P5. Production tar-
gets for L1-period & =1 are 86.49 kbbl of P1, 89.84 kbbl of
P2, 165 kbbl of P3, 129.04 kbbl of P4, and 116 kbbl of P5.
As aggregated demand for Ll-period X =2 is zero, produc-
tion targets for that L.1-period are zero as well. Production
targets are computed as the minimum amount to fulfill
aggregated demand and target inventories (see Eq. 65 from
Part I of this article). Selving the first-level model {Step 4),
which is a LP in this example, provides the blend recipes
shown in Table 4. Only one set of blend recipes is required
for the entire horizon as there is no production in period
k= 2. The blend cost is BlendCostr; = 14,692.13 X 10° §.

The second-level model has nine L2-periods (ie., m=1 to
m="7 are the first 7 days, m =8 contains the first 22 h of
day 8, and m =9 contains the last 2 h of day 8) and is
solved using the blend recipes from Table 4. The blend plan-
ning solution does not contain inventory infeasibilities (i.e.,
all slack variables have a value equal to zero), and the solu-
tion from the approximate scheduling (Step 9) is shown in
Table 5. Blend cost at the second level is
BlendCosty, = 14,692.13 X 10° $, the same as the one from
the first level. The second level determines that tank PT-102
must hold product P5 for the entire horizon and is the only
preduct transition required in the storage tanks {tank PT-102
is mitially empty but assigned to hold product P3).

Note that product P3 is being processed in different blen-
ders (see Table 5), but it may be blended in the same unit;
there is no penalty for this situation as both blenders are
allowed to produce such product and in both blenders it rep-
resents a new blend run and a product transition (i.e., it
incurs in the same penalty). Because there is only one prod-
uct being blended in each L2-period (ie., only one task
being executed within the L2-periods), feasibility of the
blend recipes and the blend plan is guaranteed at the third
level; however, we still require to determine if the orders
can be delivered on time.

The duration of the L3-periods is 1 h; thus, the complete
scheduling horizon has 192 L3-periods. The [-intervals at
Step 10 are defined as each single day; that is, there are
eight L-intervals, each one with 24 L3-periods. The third-

level solution at Step 11 shows that all slack variables have
a value equal to zero. The production and delivery schedules
computed at Step 14 are shown in Figure 9. The blend cost
at the third level is BlendCost; 5 = 14,692.13 X 10° $, which
is identical to the second-level blend cost. Step 15-17 of the
MPIP algorithm can be omitted because there is no product
being produced in the same blender in adjacent L2-periods.

It could be argued that, if both blend runs of product P3
are being processed in blender A, a single L-interval span-
ning [48 h, 168 h] should be able to merge those blend runs
into a single one. However, the second level already has
determined that this is not possible (at least with the blend
recipes being used) as the second level could not find a solu-
tion where P3 can be blended in adjacent L2-periods, even
when there is blend capacity available.

Test Set #2 Results. Table 6 summarizes the results for
the Test Set #2. Although we implemented the full-space
continuous-time model® in GAMS and solved all the exam-
ples shown in Table 6 in our machine, we chose to present
the reported final solution from Li and Karimi® because their
execution times are shorter than those required by our
machine; however, we show the results that we obtained in
our machine for the first integer solution. For examples 3, 4,
7, and 8§ from Li and Karimi,® the MPIP scheduling algo-
rithm computed solutions with the same blend cost and the
same total number of product transitions {(i.e., the same total
cost). For Test Set #2, we use the definition for product tran-
sitions by Li and Karimi* as the number of blend runs plus
the product transitions in the swing tanks. The same or a
smaller number of product transitions was found for exam-
ples 9, 12, and 14. Please note that in examples 9, 12, and
14 from Li and Karimi," there seems to be an incensistency
between the data describing the examples and their reported
solution because their reported value of the objective func-
tion is smaller than the lower bound which is computed as
the optimal solution of the aggregate blend problem. As the
solution of the aggregate problem is based on the relaxed
problem that only minimizes the cost of materials subject to
their availability, and inventory and production capacity con-
straints (i.e., the aggregate problem does not consider the
cost of switchovers and their associated constraints), this
solution is a lower bound on the optimum. Any results with

Table 5. Test Set #2, Example 12—Blend Plan at the Second Level

L2-period Blender
D Start Time (k) End Time () Product A B
m=1 1] 24 P2 - 89.84
m=12 24 48 P4 - 129.04
m=3 48 72 P3 - 78.94
m=35 96 120 P5 116.00 -
m=7 144 168 P3 86.06 -
m=28 168 190 P1 86.49 -
DOT 10.1002/aic Published on behalf of the AIChE July 2014 Vol. 60, No. 7 AIChE Journal

86,06 86.49
¢ a \\
PT-102 PT-101 PT-11
b= 129.04 7894 0
= 8 B XYY
PT-103 PT-104 PT-101
15 20 20 60
PT-101
30 20
035 023
30
PT-102 2
6 40
024 022
20 20
032 025
PT-103 032
3
03
015
60 17.9
019 016
25 11 3 15 100
£ pr104 [013
5 285
= PT-105
Q
3
3
PT-106 (55]
-5 035 2.1 15 3
= o016]
20 11.5
020
7.6 6.1
PT-107 01]
10
PT-108
2.4
24
PT-109 [013]
115 10
PT-110 033
10 15 100
018
2.4
PT-111 01
10
o4]
0 24 48 72 9% 120 144 168 192
Time (h)
BErr B Nrp Her PS5

Figure 9. Test Set #2, Example 12— Preduction and delivery schedule at the third level.

Units in kbbl. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

even lower value of the objective function correspond to
infeasible solutions. Following this reasoning, it appears that
Li and Karimi* solutions for example 9, 12, and 14 are
infeasible; therefore, it is not meaningful to compare the
quality of the reported solutions for these examples with
those obtained by the MPIP algorithm.

For large problems, the execution times required by the
MPIP scheduling algorithm are considerably smaller than the
times required by the continuous-time model. As expected,
full-space continuous-time model is faster for small size
preblems when compared to MPIP algorithm; however, for
large size problems the continuous-time model requires a

AIChE Journal July 2014 Vol. 60, No. 7

Published on behalf of the AIChE

66

significant amount of CPU time to find an initial integer
solution.

It is important to note that only ene scheduling iteration
of the MPIP algorithm is required to solve all examples
from Test Set #2; moreover, it is not necessary to overlap f.-
intervals and solve Steps 15-17 to obtain the optimal solu-
tion due to few blend runs required to meet the demand.
Table 7 shows the model size at each level. It can be seen
that the number of discrete variables per L-interval with 24
L3-periods is greater than the number required by the
continuous-time full-space model in Example 3, but it is
smaller for all the remaining examples.

DOT 10.1002/aic

686¢ 6L L9ZVE TETLL PELT 8T8E 8L08 87T 91¢ ¥
080¢ 8T8 9ZE9T LER'TT 91&1 sazs 800L 08¢ 888 Tl
10T 8¢ 86¢61 KAz R 091 Sr0S 0LE9 08¢ 885 6
676 8T¢ 8LP1 079°01 FLIT 2’104 8FES LET L8 8
986 9T £85°CT TL89 5L L91g 008% LET L8 L
€8T 79T el 9054 TEL LIT1E $69¢ LET L8 ¥
v 9T 11201 819 TEL L80E Te9¢ LET iy €
799¢ oL L9 Ve TET'LL oLl 8T8S 8L08 871 91t s
LETT 8¢ 86£'9T 6ILTL 91&T [Sivd 800L 08¢ 885 71
££9 8T¢ 06561 1ZH' 1T 09r1 S£r0S 0LED 08¢ 88¢ 6
cas 8T8 86T'L1 ZIT'01 PLIT P81y 8FES LET L8 8
L9 79T £85°¢1 TL89 TEL L91E 008g LET L8 L
£8C 9T 66€T1 6£9¢ TEL LIT1E £69¢ LET L8 ¥
o9%T 9T 11£°01 819 5L L80g TE0E LET £TF €
SOTqELIEA SA[qETIEA SATQETIEA suonenby # SOTgBLIBA SO[qBLIBA suonenby # SATQELIEA suonenby # ar epdurexy
QIS # QOIS # STLOTIITINO.) # QIBTISI(T # SNONUNTO. # STMOTUMIO.Y #
w_ww_mhmm SPOLISd-£T FT WA [eARIIL-TT HoBY 10,1 aseyd nonezmmdQ (249 T-PHOSSS 12427 18IL]

asvr wonezmmdQ [aaaT-prm,

[PAYT YU T SZI§ PPOIN—T# 198 1SAL "L d1qvL

“TB[USAL = [UEISI0D = O | TWIEEY] PUB F] WO SJILSJF200 PAJRISOSSE PUE NN 24N0afqo a1 Supiapisuos painduos san[ea,

S AFRI0NS pUR SIApUSld A} UT SUOTISIET) 10npoId Jo Iequmu o],

DULIPL N0 UF [SPOUT MUEES] PUE [T SURULUHWI Aq poynduion ssn[ea,

VY 4091 PUB “ZHDE 1dD 103X [IU] ‘=ndwon §e9SAd UOSIaL] [[2 B U0 [T XH 1D Fuisn paafos aax sweqqord s19ys [WIey] pue I Aq sanfes padoday,

TELE ¥ 6970°1T FITIIT FEE9IL TYE8'ET 008°8LT 6 FLEL'LL I S € 0 #1
L8371 < TLPT'ST LIFTET [L9TT $E9EST 008°0t L 60871 I =3 4 I 71
e 4 CH0L0T 88LLOT 8e1'1 CE8r L L1801 4 LELS0L I €T T I 6
LT T 7Or0'8 #0808 Y19 9°LS9R 0LLFT T 67808 I 0z 4 L g

Ll < 70r0'g 0018 L9 LT1L9'6 #1801 < #0018 I 0z I I L
79T 1 LOgS'y L9855 760 7'886°C 0T 1 L'95S'F I St 1 I 4
Tl 1 TRET'E TASTE 8.0 9°99¢°¢ 71 1 L'6S1'E I 7L L L €
TTLE < $'987'0T 018€°07 8TE'LIT §697°¢T 008°811T 6 FLEL'LT o) S € 0 1
[[126071 9981 619TF 16191 008°0 [619LFL o) Sg T I [

s¢ ¥ LT0L0T TLLLOL TOozTL OrELpL #1801 ¥ LELS0L o) ford 4 L 6
161 z 70r0'g 0808 L1 CIR'R A18°01 z 7080°8 o) 0z 4 I g
79T € 70708 #0018 2801 T'LSSTL 70801 € 70018 o) (14 1 I L
€< 1 L9ESY L9858 F £¢0 T0I8°F F 1 4958 o) ST L L t
L+l 1 6T T66T'E L0 £I6E'C 97 1 '651°¢ o) 7 I I €

(8) suy, o SUeLT, # (§ £01Xx) ($ 01X pommg (5) suwn], (§ 01D (s) swr, S'SURLL, # ($ 01x) £qddng SISPIO # SIRpUeld # Syod a
ndo 1503 Pl Qo ndo o o ndo omg fqo “duoy O] # apduwrexyg
uonnyog Teuky Juonnfog edar 1SILy LIOTIN[OG Tenr] paprodey
(XITdD d TN D XETID (TN ,19POI
TRPLIOSTY STP2T0S JTJA UM -Snonumuoy eded§-Trg

[PPOIA 2wl] -snonunuo)) edg-[ng € pue wiyLod[y 3urmpayds JIJA 24} usamnlaq uostredwo)—rgy 198 1891, "9 d[qe],

July 2014 Vol. 60, No. 7 AIChE Journal

67

Published on behalf of the ATChE

DOT 10.1002/aic

Conclusions

This works introduces an inventory pinch-based, multi-
scale algorithm (MPIP scheduling algorithm) to solve inte-
grated gasoline blend planning and scheduling problems.
Integrated planning and scheduling is decomposed via three
levels, each of them representing a different view of the
problem: the first level determines the best blend recipes by
considering only the aggregated availability of resources
and demand requirements across the planning and schedul-
ing horizon. The second level first computes an optimal
blend plan (how much to produce and when) using finer
grid time periods; if there is no feasible blend plan based
on the blend recipes computed at the first level, an interval
at the first level is subdivided at the point of earliest infea-
sibility and the blend recipes are reoptimized. Once the
existence of an optimal blend plan is confirmed, an approxi-
mate schedule is optimized. Volumetric constraints and
resource allocation from the approximate schedule are con-
straints on the detailed schedule which is computed at the
third level.

The MPIP scheduling algerithm has been tested on two
sets of case studies. Test Set #1 includes problems with lim-
ited storage and blending capacity, and high product
demands. These case studies are tightly constrained and
hence are expected to be computationally demanding. Test
Set #2 includes examples taken from the literature®* which
are not so tightly constrained (e.g., the blending rates have a
wider range between minimum and maximum, there is a
large initial inventory of preducts) and a simple demand pro-
file. For Test Set #2, the MPIP scheduling algorithm com-
puted schedules which have the same or better blend cost
and same or better number of product transitions as those
provided by a full-space continuous-time model, and in sig-
nificantly shorter execution times when solving large exam-
ples. In several large examples from Test Set #2, the results
reported in the literature are lower than the aggregate lower
bound, indicating an inconsistency between the problem
descriptions and the results reported in the literature.

The scheduling model (i.e., third-level model) presented
here only requires one binary variable: the decision to feed
preduct storage tank j from blender bl in peried #. Therefore,
the model size only increases with the system structure (i.e.,
with the number of product tanks or blenders) and the num-
ber of time periods in which the herizon is discretized.Using
only one binary variable at the third level, delivery rates are
not forced to be greater than some minimum value. How-
ever, low delivery rates are easy to convert into higher rates
as the feasibility of the solution is net affected, although
nenintermittent deliveries are not guaranteed.

If the scheduling horizon is 24 weeks long, the model at
the third level becomes a very large MILP model. As second
level imposes constraints via approximate schedule, we have
chosen to implement forward and reverse rolling window
method as a quick heuristic strategy to obtain a good solu-
tion. Results presented in this work demonstrate that MPIP
scheduling algorithm solves large scale gasoline blending
problems to the same or better solution points and much
faster than previously published methods.

Future work will be to solve the refinery planning and
scheduling problem using our decomposition framework.
Decomposition approaches (e.g., Lagrangian decomposition)
will also be examined and integrated into our algeorithm,
especially at the third level.

AIChE Journal July 2014 Vol. 60, No. 7

Published on behalf of the AIChE

68

Acknowledgment

Support by Ontario Research Foundation and McMaster
Advanced Control Consortium is gratefully acknowledged.

Notation
Subscripts

be = refers to a variable or parameter related to the blend component

tanks

blend = refers to a variable or parameter related to the blenders
comp = refers to a variable or parameter related to the transfer of vol-
ume betwesn component tanks and blenders
L1 = refers to a variable or parameter of the first level
L2 = refers to a variable or parameter of the second level
L3 = refers to a variable or parameter of the third level
order = refers to a variable or parameter related to the orders
pool = refers to a variable or parameter related to the product pools
pr = refers to a variable or parameter related to the individual prod-
uct tanks
trans = refers fo a variable or parameter related to the transfer of vol-
ume between blenders and product tanks or pools
Superscripts
max = refers to a maximum value that a variable may have
min = refers to a minimuwm value that a variable may have if different
from zero
start = refers to the initial value at the begiming of the planning hori-
zon that a variable may have
target = refers to a target value for a variable
Parameters
Costy,(f) = cost of blend component ;
Dmex (9) = maximum delivery rate of order o
D (j) = maximum delivery rate of tank f
Demand(s) = demand of order ¢ for the complete scheduling

horizon

Demand, ey 73(0.) = demand of order o in L-interval /
Foiz) = supply flow rate of blend component i for supply
profile o
Fir(bl) = maximum blending rate of blender bl
FEn o (bl) = minimum blending rate of blender bl
H = length of the planning horizon
it® (p, bl) = minimum idle time required by blender bl before
processing product p
Penaltyy,. 11 = penalfy for the inventory slack variables of blend
component tanks at the first level
Penaltyy 1 () = penalty for the inventory slack variables of com-
ponent i in L2-period m
Penaltyy, 1 3(#) = penalty for the inventory slack variables of blend
component tanks in L3-period #
Penaltyp,oir.1 = penalty for the inventory slack variables of prod-
uct pools at the first level
Penaltypoq 1o(n) = penalty for the inventory slack variables of prod-
uct pool p in L2-period m
Penalty,, 15(m) = penalty for the inventory slack variables of prod-
uct tank j in L2-period m
Penaltyp,1a(n) = penalty for the inventory slack variables of prod-
uct tanks in L3-period »
PenaltyBL; ;5 = penalty for processing a product in a blender dur-
ing a L3-period »
PenaltyBR; 5(bl) = penalty for a blend run processed in blender bl
during a L2-period m
PenaltyBS;, = penalty for a product {ransition in a blender at the

second level
PenaltyBswy; = penalty for starting a blend run at the third level
PenaltyDy,13 = penalty for the delivery slack variables at the

third level
PenaltyDpmy 5(0,#) = penalty for late delivery of order 6 at the third
level
PenaltyDsw; 3 = penalty for imregular delivery rates at the third
level

PenaltyTS(j) = penalty for a product transition in a swing tank at
the second level

DOT 10.1002/aic

PenaltyTswis = penalty for changing the destination tank for the
product in the blender
swES (I} = parameter that indicates the minimum possible
number of blend runs during L-interval
M (p,bl) = minimum nmning time required by blender bl
ir3(n) = duration of L3-period »

when processing product p
(j,p) = product p stored in tank ;j at the beginning of the
plamming horizon
) = maximum holdup of tank with blend component i
T (i) = minimum holdup of tank with blend component
) = volume of blend component i stored at the begin-
ning of the planning horizon
)
)
)

) = maximum holdup of tank j

f} = minimum holdup of tank ;

/) = volume stored in tank j at the beginning of the
planming horizon

VMINyiena(p,bl) = mininmum volume allowed to blend of product p

in blender bl during each L2-period

Integer variables

iplena 12(p,blm) = estimated time to process product p in blender bl in
L2-period m
ur2(j,pt) = binary variable that indicates if tank f is storing prod-
uct p in L2-period m
uero(f,m) = binary variable that indicates if there is a product
transition in tank j at the beginning of L2-period
vr3(f,p,bln) = binary variable that indicates if fank j is receiving
product p from blender bl in L3-period #
xro(p.blm) = binary variable that indicates if product p is processed
in blender bl in L2-period m

Continuous variables

BlendCost;; = total blend cost at the first level

BlendCost;; = total blend cost at the second level

BlendCost; s = fotal blend cost atf the third level

Dy ra(jo,n) = delivery rate of tank j for order o within L3-period
n

Fulena13(p.blr) = blending rate of blender bl to produce product p
during L3-period 7
itplena1.3(bLi2) = cumulative idle time of blender bl in L3-period &
ofto(om) = fraction of order o o be delivered during L2-period
m (it becomes a parameter at the third level model)
Dswis(fo,n) = difference between delivery rates to be penalized in
objective function of the third level optimization
phase
#i,p.k) = volume of blend component { into product p in L1-
period % (it becomes a parameter at the second and
third level model)
Sb:]m*(i,k) = positive inventory slack variable of blend compo-
nent { at L1-period &
Swer1 (i) = negative inventory slack variable of blend compo-
nent i at L1-period &
Sbc’u*'(i,m) = positive inventory slack variable of blend compo-
nent { at L2-period
Sverz (Lm) = nepative inventory slack variable of blend compo-
nent { at L2-period m
Sbc‘u*(i,n) = positive inventory slack variable of blend compo-
nent i at L3-period &
Seers (i) = negative inventory slack variable of blend compo-
nent { at L3-period #
.S'Mde,’m*(a,l) = positive delivery slack variable of order o at L-
interval !
Soraerr3 (6,]) = negative delivery slack variable of order o at L-
interval !
Spoa],Ll+(pak) = positive inventory slack variable of product pool p
at L1-period &
SPMJ,Lf(p,k) = negative inventory slack variable of product pool p
at L1-period %
SPOD]‘LZJr(p,m) = positive inventory slack variable of product pool p
at L2-period m
Spoal12 (pam) = negative inventory slack variable of product pool p
at L2-period m
Spr]m*(i,k) = positive inventory slack variable of product tank j
at L1-period %

DOT 10.1002/aic Published on behalf of the AIChE

69

Spri1 (G4
Sprza (Em)
Sprrz ({m)
Spr,L3+(is)
Spera” (1)

swrs(bl,)

Iolena L3(bLa)
Vbc,Lz(i)
Voo 1301

Vcamp,Ll(ivP &)

Veomp 12(ip,bLm)

Vieomp.13(ip,bL 1)

Vpr,LZ(j)

Vpr,L 3 (i,)]

Virans 13(/,p.bL1)

Vepiena L3(bL)

vers(bl,n)

Welena L3(bL#)
Kl 1(}9 ,bl,i)

xera(p,blpt)
xep3(p,blr)
Zra

Ziy

Bt
2

2
ZL]

7

negative inventory slack variable of product tank j
at L1-period &

positive inventory slack wvariable of product tank j
at L2-period m

negative inventory slack variable of product tank j
at L2-period m

positive inventory slack variable of product tank j
at L3-period »

negative inventory slack variable of product tank j
at L3-period 2

0-1 continuous variable that indicates if a blend
run has started in blender bl at the beginning of
L3-period »

cumulative running time of blender bl in L3-period
s

volume sfored in component tank i at the end of
L2-period m

volume stored in component tank { at the end of
L3-period »

volume of blend component { into product p in L1-
period &

volume of blend component i into product p in
blender bl in L2-period m

volume of blend component /i into product p in
blender bl in L3-period »

volume stored in product tank j at the end of L2-
period m

volume stored in product tank j at the end of L3-
period #

volume transferred of product p from blender bl to
tank j in L3-period »

cumulative volume produced by blender bl during a
blend 1nun up to period &

0-1 continuous variable which indicates if the
product from blender bl is going to be sent to a
different storage tank than that of the previous 13-
period

0-1 continuous variable which indicates that
blender bl is idle in L3-period » if it is equal to 1
0-1 continuous variable that indicates if product p
is processed in blender bl in L3-period #

0-1 continuous vatiable that indicates if a state
transition has occurred in blender bl at the begin-
ning of L2-period m

0-1 continuous vatiable that indicates if a state
transition has occurred in blender bl at the begin-
ning of L3-period #

objective function value at the first level

objective function value at the second level, total
cost

objective function value at the second level,
approximate scheduling

objective function value at the second level, blend
planning

objective function value at the third level, total cost
objective function value at the third level, optimiza-
tion phase

objective function value at the third level, feasibil-
ity phase

Literature Cited

1.

Ly

th

Jia Z, Ierapetritou M. Mixed-integer linear programming model for
gasoline blending and distribution scheduling. /nd Eng Chem Res.
2003;42:825-835.

. Li J, Karimi 1A, Srinivasan R. Recipe determination and scheduling

of gasoline blending operations. AICRE J. 2010;56:441-465.

. Mendez CA, Grossman IE, Harjunkoski I, Kabore P. A simultaneous

optimization approach for off-line blending and scheduling of oil
refinery operations. Compui Chem Eng. 2006;30:614-634.

.Li J, Karimi TA. Scheduling gasoline blending operations from rec-

ipe defermination to shipping using unit slots. Ind Eng Chem Res.
2011;50:9156-9174.

. Sousa RT, Liu S, Papageorgiou LG, Shah N. Global supply chain

planning for pharmaceuticals. Chem Eng Res Des. 2011;89:2396—

2409,

July 2014 Vol. 60, No. 7 AIChE Journal

=)

-

=]

=

10.

1

—

12,

13.

AIChE Journal

. Pinto M, Joly M, Moro LFL. Planning and scheduling models for

refinery operations. Compui Chem Eng. 2000;24:2259-2276.

. Kelly JD. Logistics: the missing link in blend scheduling optimiza-

tion. Hydrocarbon Process. 2006;85:45-51.

. Maravelias CT, Sung C. Integration of production planning and

scheduling: overview, challenges and opportunities. Compui Chem
Eng. 2009;33:1919-1930.

. Maravelias CT. General framework and modeling approach classifi-

cation for chemical production scheduling. AICHE J. 2012;58(6):
1812-1828.

Mendez CA, Cerda J, Grossmann IE, Harjunkoski I, Fahl M. State-
of-the-art review of optimization methods for short term scheduling
of batch processes. Comput Chem Eng. 2006;30:913-946.

. Floudas CA, Lin X. Continuous-time vs discrete-time approaches for

scheduling of chemical processes: a review. Comput Chem FEng.
2004;28:2109-2129.

Sundaramoorthy A, Maravelias CT. Computational study of
network-based mixed-integer programming approaches for chemical
production scheduling. fad Eng Chem Res. 2011;50:5023-5040.

Joly M, Pinto JM. Mixed-integer programming techmniques for the
scheduling of fuel oil and asphalt production. Inst Chem Fng. 2003;
81:427-447.

14.

15.

16.

17.

18.

19.

20.

2

—_

Bassett MH, Pekny JF, Reklaitis GV. Decomposition techniques for
the solution of large-scale scheduling problems. AIChE J. 1996;
42(12):3373-3387.

Elkamel A, Zenimer M, Pekny F, Reklaitis GV. A decomposifion
heuristic for scheduling the general batch chemical plant. Eng Opiim.
1997:28(4):299-330.

Munawar SA, Gudi RD. A multi-level, confrol-theoretic framework
for integration of plamming, scheduling and rescheduling. fnd Eng
Chemt Res. 2005;44:4001-4021.

Li Z, Jerapetritou MG. Integrated production planning and scheduling
using a decomposition framework. Chem Eng Sci. 2009;64:3585-3597.
Mouret S, Grossmann IE, Pestiaux P. A new Lagrangian decomposi-
tion approach applied fo the integration of refinery planning and
crude-oil scheduling. Comput Chem Eng. 2011;35:2750-2766.
Glismann K, Grulmn G. Short-term scheduling and recipe optimiza-
tion of blending processes. Compui Chem Eng. 2001;25:627-634.
Castillo PAC, Kelly ID, Mahalec V. Inventory pinch algorithm for
gasoline blend planning. AIChE J. 2013;59:3748-3766.

. Singhvi A, Shenoy UV. Aggregate planning in supply chains by

pinch analysis. Trans IChemE A. 2002;80:597-605.

Manuscript recetved QOct. 24, 2013, and revision received Feb. 17, 2014.

July 2014 Vol. 60, No. 7

70

Published on behalf of the AIChE

DOT 10.1002/aic

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Chapter 4: Inventory Pinch-Based Multi-Scale Model for Refinery
Production Planning

This chapter has been published in the proceedings of the 24" European Symposium on
Computer Aided Process Engineering (ESCAPE):

Castillo Castillo, P. A., & Mahalec, V. (2014). Inventory pinch based multi-scale model
for refinery production planning. In J. J. Klemes, P. S. Varbanov, & P. Y. Liew (Eds.),
Computer Aided Chemical Engineering (Vol. 33, pp. 283-288). Budapest, Hungary:
Elsevier. doi: 10.1016/B978-0-444-63456-6.50048-X

Permission from © Elsevier Ltd. All rights reserved.

71

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

The first three sections of Chapter 4 are an overview of Chapter 2. Section 4 presents an
example of the MPIP algorithm from Chapter 2 applied to a refinery planning problem.
Compared to the gasoline blending problem, the refinery planning problem considers
different product pools (e.g., gasoline, diesel, kerosene). Therefore, the inventory pinch
points are determined based on the cumulative product demand curves of each pool.

72

Jifi Jaromir Klemes, Petar Sabev Varbanov and Peng Yen Liew (Editors)
Proceedings of the 24'™ European Symposium on Computer Aided Process Engineering - ESCAPE 24
June 15-18, 2014, Budapest, Hungary.© 2014 Elsevier B.V. All rights reserved.

Inventory Pinch Based Multi-Scale Model for
Refinery Production Planning

Pedro A. Castillo Castillo, Vladimir Mahalec*,

Dept. of Chemical Engineering, McMaster University, 1280 Main Street West,
Hamilton, ON, LSS 4L8, Canada
mahalec@memaster.ca

Abstract

In this work, we introduce a new two-level decomposition algorithm for production
planning. The top level optimizes operating conditions via a nonlinear (NLP) model,
while the lower level computes an optimal production plan by solving a mixed-integer
linear (MILP) model which uses operating states computed at the top level. Time periods
at the top level are delineated by inventory pinch points. The algorithm solves mixed-
integer nonlinear (MINLP) models much faster than current MINLP solvers for our case
studies associated with gasoline blend planning and refinery production planning.

Keywords: inventory pinch, production planning, two-level decomposition

1. Introduction

In order to increase profit margins, supply chain optimization is becoming a common tool
in modern industry. Mathematical programming is one of the main techniques to carry
out such optimization. The supply chain of an o1l refinery 1s a complex network that has
to face a dynamic market and strict regulations. In the last decades, several researchers
have worked developing and/or improving models and algorithms to optimize such
network. Menezes et al. (2013) developed a single-period MINLP planning model for
crude-oil distillation units which computes solutions closer to those observed i practice
since they consider swing-cuts to have different properties than the final-cuts. Alhajri et
al. (2013) proposed a single-period MINLP model to optimize the production planning in
arefinery while reducing the CO2 emissions. Oddsdottir et al. (2013) presented an MINLP
model for procurement planning for oil refineries that considers the blending operations
occurring in the refinery unloading section. Assuming fixed blend recipes, Guajardo et
al. (2013) developed an MILP model to integrate production and sales tactical planning
in oil refineries. Simplified empirical nonlinear equations have been used in refinery
planning models as well as hybrid models, i.e. models that use first-principle rigorous
relations and empirical linear correlations together (e.g. Mahalec and Sanchez, 2012).

Multi-level decomposition techniques have been implemented to solve the integrated
planning and scheduling problem. Ti and Terapetritou (2009) developed a bilevel
decomposition algorithm to solve separately the production planning and scheduling
levels and proposed an iterative procedure to solve it. Terrazas-Moreno and Grossmann
(2011) presented a bilevel decomposition for integrated production planning and
scheduling where the upper level is decomposed using a spatial T.agrangean relaxation in
order to solve a planning subproblem for each plant site. Leiras et al. (2013) developed
an iterative algorithm to integrate the mid-term and short-term planning of multirefinery

73

P.A. Castillo Castillo et al.

networks using a bilevel decomposition and the two-stage stochastic programming
framework to handle uncertainty.

2. Inventory Pinch Based Planning Algorithm

This work introduces inventory pinch concept as a basis for refinery production planning

using a two-level decomposition. An inventory pinch point on the cumulative total

demand (CTD) curve is a point where cumulative average total production (CATP) curve
mtersects the CTD curve, so the CATP curve is above the CTD curve and if we
extrapolate the CATP curve from this point onwards it will not cross the CTD curve

(Castillo et al., 2013). The inventory pinch points delineate the periods where optimal

operating states are likely to remain constant. This observation leads to the following

approach to solving the planning problems:

(i) Awverage production rates in intervals delimited by the pinch points are different from
each other. In refinery planning the pinch points may be separated by 5 or 6 months
or more.

(i) Since plant efficiency and raw material utilization depends on the throughput and the
properties of the feeds, let’s compute optimal operating conditions corresponding to
cach of these periods (for a given average throughput in each of the intervals).

(111) Compute more detailed production plan by using optimal operating conditions
computed in (i1).

Above reasoning leads to our two-level decomposition algorithm, denoted as multi-period
mventory pinch algorithm (MPIP), shown in Fig. 1. The full-space model (i.e. the original
single model) 1s decomposed into two levels. The top level is modelled as a discrete-time,
multi-period NLP model. It optimizes the operating conditions of the different type of
processing units in the refinery and sets the production targets for the lower level. The
periods of the top level are initially defined by the inventory pinch points. At the top level,
storage tanks are aggregated into inventory pools of each product, and parallel units are
aggregated into a single processing unit. The lower level 1s formulated as a discrete-time,
multi-period MILP model. This level computes the detailed production plan (i.e. how
much to produce in each unit and in each time period of the lower level). The lower level
periods are defined by the planner. TPOPT solver is used at the top level, and CPLEX is
used at the lower level

Decomposition levels Time periods
Top level NLP model Inventory pinch points
Optimize operating ‘/x Davs
conditions over aggregated 1 . M ' WGG)LS:
inventory pinch intervals ! | | H e
; ; ; months
Operating conditions, Infeasibility ; ; ;
Inventory targets diagnosis i i i
1 1 1
Lower Level MILP model ! ! !
S . ! ! 1% day
Determine if operating H+——————— da >
conditions are feasible along Wegk’s
the planning horizon.

Figure 1. Multi-period Inventory Pinch (MPIP) decomposition.

74

Inventory Pinch Based Multi-Scale Model for Refinery Production
Planning

3. Gasoline Blend Planning

Sample gasoline blending system is shown in Fig. 2. The storage tanks are defined as
dedicated tanks (DT) if they can only hold one type of product during the entire planning
horizon, or as swing tanks (ST) if they are allowed to hold different type of products along
the horizon (but not at the same time). We have studied systems with 1 to 3 blenders
operating in parallel. There are 9 quality properties; one of them, the Reid vapour pressure
(RVP) blends nonlinearly according to Eq. (1) (used by Singh et al., 2000) where [is the
set of blend components, J the set of products, and x;; is the volume fraction of component
i in product j. In addition, there is a minimum threshold constraint on each gasoline blend
(this introduces integer variables). Length of time periods at the lower level is set to 1 day
each and the planning horizon is 14 days. It 1s assumed that the length of the time periods
at the lower level is equal to the minimum length of time that a swing tank would stay in
any given service (if the minimum service time is shorter, then the periods at the lower
level need also to be shorter, correspondingly). This enables us to compute (if required)
allocation of swing tanks as a part of the production plan.

0.8
RVP, = (ZXI,JRVRMSJ vjeJ)

el

Performance of inventory pinch based algorithm 1s compared to DICOPT, a current
commercial MINLP solver. DICOPT is selected because, for our case studies, it requires
shorter execution times than global MINLP solvers. Inventory pinch algorithm at the
lower level has the same number of periods as the full-space MINLP model that is solved
by DICOPT.

Blend Component Tanks Blenders Product Tanks

From upstream process units
To shipping/lifting ports

Figure 2. Sample gasoline blending system.

75

P.A. Castillo Castillo et al.

Table 1. Comparison of MPIP algorithm (TPOPT + CPLEX) and full-space MINLP (DICOPT).

> w .

] < g g Blend Full-space MINLP MPIP Algorithm

“ 8B EE£ £ Cost

2 =2 = # CPU # CPU #

= # &= 3 (x103%)

& I Recipes Time (s) Recipes Time (s) Its.
1 0 1 37,5425 6 152.2 1 0.625 1
2 1 1 383098 6 240.5 2 0.778 1
3 1 1 379911 7 2279 2 0.969 1
4 1 2 379911 3 192.9 2 0.938 1
5 2 2 37.681.1 8 3126 3 0.960 1
6 2 2 37,3243 9 2585 6 10.634 4
7 3 3 373775 10 366.4 4 1.277 1

Results in Table 1 show that, for gasoline blend planning, MPIP algorithm is two orders
of magnitude faster than DICOPT. Moreover, the number of different blend recipes is
reduced significantly (a blend recipe is considered different if the absolute change of
composition percentage of any component is greater than 1%0). In addition, in most of our
case studies the number of iterations (shown as “# lts.” in Table 1) required by the MPIP
algorithm is one. Due to the form of the RVP nonlinear constraints used, it was possible
to also create a linear version of these constraints, construct an MILP model and check if
DICOPT and the MPIP algorithm reach the global optimum. Both DICOPT and MPIP
algorithm compute the global optimum in these cases studies.

4. Refinery production planning

In many countries across the world, consumption of refining products varies as the
seasons change. In the summer, there 1s a high demand for gasoline. In the winter, the
demand for diesel fuel increases significantly, while the demand for gasoline decreases.
A refinery meets such varying demands by shifting the operation of various process umits
from eg. maximum gasoline to maximum diesel mode. Current practice in refinery
production planning is to define several modes of operation for a process unit and define
each mode of operation by a fixed set of yields and fixed product qualities. Since refinery
units are nonlinear and since several units produce similar products, it 1s possible that the
optimal operating states are different than those predetermined in advance and entered as
parameters in the linear planning model. Hence, it 1s desirable to use nonlinear models
for refinery planning.

Figure 3 shows configuration of the refinery used in our case studies. It is comprised of
crude distillation unit (CDU), fluid catalytic cracking (FCC) unit, catalytic reformer (CR),
and hydrotreaters (HT). The nomenclature of the streams is the following: sr = straight
run, he = hydrocracker, fce = fluid catalytic cracker, In = light naphtha, hn = heavy
naphtha, ds = diesel, kero = kerosene, lgo = light o1l, hgo = heavy oil, lco = light catalytic
oil, heo = heavy catalytic oil, f = feed, If = light feed, and hf = heavy feed. Only the
blending operations in the gasoline and diesel pools are considered. Figure 4 shows
cumulative curves for a sample refinery case study. There is a pinch point at period 8 for
gasoline pool and a pinch point at period 4 for diesel pool. In one case study, MPIP

76

Inventory Pinch Based Multi-Scale Model for Refinery Production
Planning

algorithm solves the planning problem in 3.03 sec, while corresponding MINLP problem
1s solved by DICOPT 1n 12.59 sec. Complete mathematical models and results will be
presented in a full length paper.

light ends
I—’ To gas plant
sr-ln N
sr-hn [~ lreformate : £
CR » S
| J » 2
‘ E
he-hn "
sr-kero ¢ o 2
. 1 w
crude oil | | M
cpuU | lgo st-ds N
L HT] L
he-1E M _
L——» HC he-kero %
 — he-ds o =~
hgo he-hf > A
| HT2 a
fce-ln »
| fee-f fce-hn
FCC fee-lco =
. fec-heo N e
residue - =
To coker unit

Figure 3. Sample refinery system.

10,000
8,000
6,000

4,000

2,000

Cumulative demand for pools (kbbl)

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (months)

CTD GP ——— CTD DP CATP GP CATP DP

Figure 4. Cumulative curves and pinch points for gasoline pool (GP) and diesel pool (DP).

77

P.A. Castillo Castillo et al.

5. Conclusions

Inventory pinch provides a basis for two-level decomposition of the planning problems;
this decomposition enables us to use nonlinear refinery models to solve nonlinear or
mixed-integer nonlinear problems in a very efficient manner. Compared to the traditional,
fixed-period planning models (e.g. 12 monthly periods for refinery planning, or 14 daily
periods for gasoline blending), inventory pinch algorithm optimizes nonlinear models
using significantly smaller number of periods. Moreover, decomposition introduced in
the nventory pinch algorithm enables us to solve MINLP problems by first solving
aggregate NLP problem and then solve an MILP problem. Application of the algorithm
to the refinery operations planning case studies (gasoline blending, process units
operations) shows that it leads to the same solutions as the multi-period MINLP models.
Moreover, the solution times are one order of magnitude (or even more) faster than
DICOPT MINLP solver.

References

1. Alhajri, Y. Saif, A. Elkamel, A. Almansoori, 2013, Overall integration of the management oh Hz
and CO: within refinery planning using rigorous process models, Chemical Engineering
Communications, 200, 139-161.

P.A.C. Castillo, I.D. Kelly, V. Mahalec, 2013, Inventory pinch algorithm for gasoline blend
planning, AIChE Journal, 59, 3748-3766.

K. Glismann, G. Gruhn, 2001, Short-term scheduling and recipe optimization of blending
processes, Computers and Chemical Engineering, 25, 627-634.

M. Guajardo, M. Kylinger, M. Ronnqvist, 2013, Specialty oils supply chain optimization: From a
decoupled to an integrated planning approach, 229, 540-551.

A. Leiras, G. Ribas, S. Hamacher, A. Elkamel, 2013, Tactical and operational planning of
multirefinery networks under uncertainty: An iterative approach, Industrial & Engineering
Chemistry Research, 52, 8507-8517.

Z. Li, M.G. Ierapetriton, 2009, Integrated production planning and scheduling using a
decomposition framework, Chemical Engineering Science, 64, 3585-3597.

V. Mahalec, Y. Sanchez, 2012, Inferential monitoring and optimization of crude separation units
via hybrid models, Computers and Chemical Engineering, 45, 15-26.

B.C. Menezes, I.D. Kelly, L.E. Grossmann, 2013, Improved swing-cut modelling for planning and
scheduling of oil-refinery distillation units, Industrial & Engineering Chemistry Research, 52,
18324-18333.

T.A. Oddsdottir, M. Grunow, R. Akkerman, 2013, Procurement planning in oil refining industries
considering blending operations, Computers and Chemical Engineering, 58, 1-13.

A. Singh, IF. Forbes, P.J. Vermeer, S.5. Woo, 2000, Model-based real-time optimization of
automotive gasoline blending operations, Jourbal of Process Control, 10, 43-58.

S. Terrazas-Moreno, LE. Grossmann, 2011, A multiscale decomposition method for the optimal
planning and scheduling of multi-site continuous multiproduct plants, Chemical Engineering
Science, 66, 4307-4318.

78

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Chapter 5: Improved Continuous-Time Model for Gasoline Blend
Scheduling

This chapter has been published in the Computers and Chemical Engineering Journal.
Complete citation:

Castillo Castillo, P. A., & Mahalec, V. (2016). Improved continuous-time model for
gasoline blend scheduling. Computers & Chemical Engineering, 84, 627—646. Elsevier
Ltd., doi: 10.1016/j.compchemeng.2015.08.003

Permission from © Elsevier Ltd. All rights reserved.

79

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

In Chapter 5, the development of a continuous-time blend scheduling model is presented.
As the problem size grows (e.g., more blenders, products, orders, and/or longer
scheduling horizon), this model requires smaller number of binary variables than previous
published model, while including more logistic constraints found in real practice.
Although not all the examples were solved to proven optimality, the feasible solutions
found were better than those previously reported in the literature.

This continuous-time blend scheduling model is used in Chapter 6 to improve the
performance of the MPIP algorithm presented in Chapter 3.

80

Computers and Chemical Engineering 84 (2016) 627-646

Contents lists available at ScienceDirect

Computers
& Chemical
Engineering

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

Improved continuous-time model for gasoline blend scheduling @ Crossbari
Pedro A. Castillo-Castillo, Vladimir Mahalec *

Department of Chemical Engineering, McMaster University, 1280 Main St. West, Hamilton, ON L85 4L8, Canada

ARTICLE INFO ABSTRACT

Article history: This work introduces a reduced-size continuous-time model for scheduling of gasoline blends. Previously
Received 25 August 2014 published madel has been madified by (i) introducing new model features (penalty for deliveries in
Received in revised form 30 July 2015 order to reduce sending material from different product tanks to the same order, product and blender-
Accepted 4 August 2015

dependent minimum setup times, maximum delivery rate from component tanks, threshold volume for
each blend), (ii) by reducing the number of integer variables, and (iii) by adding lower bounds on the
blend and switching costs, which significantly improve convergence. Nonlinearities are intraduced by
ethyl RT-70 equations for octane blending. Medium-size linear problems (two blenders, more than 20
Continuous-time model orders, 5 products) are solved to optimality within one or two minutes. Previously unsolved large scale
Reduced number of discrete variables blending problems (more than 35 orders, 5 product, 2 or 3 blenders) have also been solved to less than

Nonlinear blending models 0.5% optimality gap.

Available online 13 August 2015

Keywords:
Gasoline blend scheduling

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Scheduling of a production plant involves making decisions to determine what and when the tasks must be executed, and in which
processing units, in order to fulfill product demands along a given time horizon while meeting product specifications, storage and capac-
ity constraints, and raw materials availability. Complex plants, such as oil-refineries, can have multiple processes, large number of raw
materials with different quality properties, several intermediate and final products, and intricate pipeline and storage systems that make
scheduling a difficult decision process. Determining the optimal production schedule can reduce operational costs, increase profit margins,
and avoid deviations from environmental constraints (Harjunkoski et al., 2014). Mathematical programming is the most common approach
to handle scheduling problems and several mixed-integer programming models and techniques have been developed and applied to solve
scheduling problems in chemical production plants during the past three decades (Velez and Maravelias, 2015). However, due to the
combinatorial nature of the problem, scheduling remains a research intensive and challenging area.

Scheduling models can be divided into those employed for batch processes and those utilized for continuous processes. Batch plant
models do notrequire explicit material balances since material batches neither merge nor split and they can be tracked along the processing
stages. On the other hand, material balances are required to be included in continuous plant models since material batches are allowed to
merge and/or split. Another type of classification of scheduling models is based on the representation of time:

a) Discrete-time models — The scheduling horizon is divided into time periods of known duration. Recently, Velez and Maravelias (2015)
described a methodology to incorporate non-uniform time grids into a discrete-time model (i.e. the number of time periods is different
for each process or unit).

b) Continuous-time models — The scheduling horizon is partitioned into several time slots whose duration is not known in advance and
it is calculated during the optimization procedure. One global time grid can be used (i.e. the variables representing the time slots are
the same for all units), as well as unit-specific time grids (i.e. the variables representing the time slots are different for each unit). Fixed
time periods can be incorporated as well, and time slots are assigned to them, i.e. time slots start and end within such periods (e.g.
Mendez et al., 2006; Neiro et al., 2014). The boundaries of these fixed time periods can be delineated by intermediate product due dates
or calendar days.

* Corresponding author. Tel.: +1 905 525 9140x26386.
E-mail address: mahalec@mcmaster.ca (V. Mahalec).

http://dx.doi.org/10.1016/j.compchemeng.2015.08.003
0098-1354/© 2015 Elsevier Ltd. All rights reserved.

81

PA. Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

Nomenclature

Sets and indices

A={a} different supply profiles of blend components

BL={bl} blenders

E={e} quality properties (e.g. research and motor octane number)

EV quality properties that blend linearly on a volumetric basis (subset of E)
EW quality properties that blend linearly on a weight basis (subset of E)
ENL quality properties that blend nonlinearly (subset of E)

I={i} blend components

J={i} product tanks

M={m|0,1,...,M} fixed time periods

MN={(m, n)} time slot nis assigned to time period m

NO={n|0,1,...,N} time slots assigned for the entire horizon
N1={n|1,...,N} subsetof NO, does not include first time slot
N2={n|0,1,...,N-1} subset of NO, does not include last time slot
N3={n|1,..,N—1} subsetof NO, does not include first and last time slots
0={o} all demand orders

P={p} different products

Q={¢} different quality profiles of blend components

AN={{o,n)} time slotn has supply profile o

ANend={(«, n)} time slot n is the last one under supply profile o

BP ={(p, bi)} blender bl can produce product p

BJ ={(j, bi)} blender bf can send material to product tank f

JO={(j, 0)} product tankj can deliver order o

PO={(p, 0)} order o consists of product p

QN=1{8,n} time slot n has quality profile &

QNend={2, n} time slot nis the last one under quality profile 8

JON={(j, 0,n)} product tank j can deliver order o during time slot 2

Parameters

¢ (i) unit cost of blend component

cp(bl) cost associated with one blend run in blender bi

() cost associated with a product transition in swing tank j
4 cost associated with a delivery run

cs(0) demurrage cost for order ¢
cg(n), c;(n), cg penalties for slack variables

cg penalty to reduce blending rate variations in a blend run across multiple time slots
Citﬂ?é&d(p, bl) minimum setup time in blender bi for product p

ctgen (p, 1) minimum blend run length in blender bi for product p

CVlfl‘eir‘;‘d(p, bl) minimum blend size in blender bl for product p

Dhax (o) maximum delivery rate of order o from any product tank

DR(3) maximum delivery rate of product tank j

Demand(o) demand quantity of order o

Fp i, @) flowrate of blend component i for supply profile o

F,;‘E‘eigd(bl), Fox (b1} minimum and maximum blending rates of blender bl
Figs (i, bl) maximum pumping rate of blend component tank to blender b
FT;g’d(oe) time when supply profile & ends

H length of the entire scheduling horizon

Qp:(1, e, 8) quality e of blend component i during quality profile &

ming, &), QM p) minimum and maximum specifications for quality property e and product p

QT;;‘“[(Q) time when quality profile 8 ends

FMIR(§ pY, #M3E(i p) minimum and maximum composition of component i in product p

Swexp minimum number of blend runs expected in the blenders along the scheduling horizon

T (), T¥(m) start and end time of period m

TO;%};(O), Tog;bgw(o) start and end time of delivery window for order o

Ueexp minimum number of product changeovers expected in the swing tanks along the scheduling horizon
Vg‘gi“(i), Viea%(i) minimum and maximum inventory limits of blend component i

Vg‘}i“(j), VIr¥(j) minimum and maximum inventory limits of product tank j

i) density of blend component

82

P.A, Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

Binary variables

u(f, p, n) if equal to 1, product tank j is storing product p during slot n

u(j, bl, n) ifequal to 1, blender blis sending material to product tank j during slot n
z{j, 0, n) ifequal to 1, product tank j delivers material to order ¢ during slot n

0-1 Continuous variables

sw(bl, n) if equal to 1, a blend run is starting in blender b! at the end of slot

w(bl, n) if equal to 1, blender bl is idle during slot

x(p, bl, n) ifequal to 1, blender bl is processing product p during slot i

xe(bl, n) if equal to 1, blender bf is changing its state at the end of slot

(i, b, n) if equal to 1, component i is being fed to blender bi during slot n

ze(j, 0, n) ifequal to 1, product tank j change its state at the end of slot n (i.e. it starts or stops to deliver material)

Continuous variables

Ctppna(bl, n) underestimator of the cumulative running time of blender bl at the end of slot n
Citpena(bl, 1) underestimator of the cumulative idle time of blender bl at the beginning of slot iz
CVpena(bl, n) underestimator of the cumulative volume blended up to slot i by blender bl
DVpe(f, 0, n) volume delivered from product tank j to order o during slot n

itpeng(bl, n) idle time of blender b! at time slot n

Qur(bl, e, n) quality e of the product from blender bi during slot n

SJC([’, n),5,.(i,n) positive and negative slack variables for the blend component inventories
ST (o), S aerl0) Dositive and negative slack variables for each order fulfillment

S50, n), S5y, n) positive and negative slack variables for the product inventories

Ty(bl, 1) end time of a blender slot n

Tyo(i, n) end time of a component tank slot n

Tpr(f, 1) end time of a product tank slot n

theng(Bl, n) running time of blender b at time slot n

td orger(j, 0, n) time dedicated to deliver material from product tank j to order o during slot n
tdem(o) time required to complete order e after the end of the corresponding delivery window
Soraerlf, 0, 1) time when product tank j starts to deliver material to order o during slot 2
ttp:(1, n) time when component tank i stops sending material to any blender during slot n
ue(j, n) if equal to 1, product tank j changes its service at the end of slot n

Vie(1, n) inventory level of component tank i at the end of slot n

Vitena(Bl, n) volume blended during slot n by blender bl

Veomp,agz({) volume required of component i according to the aggregated model solution
Veomp(i, bl, n) volume of component i used in blender bi during slot n

Vpr(f,) inventory level of product tank j at the end of slot nn

Virans(f, bl, n) volume transferred from blender bl to product tank j during slot n

In general, only one task can occur in a given processing unit during one time period or time slot. Each time representation has its
advantages and disadvantages. Discrete-time models are much simpler to write than corresponding continuous-time models, but they
usually require large number of time periods which increases their size (i.e. number of equations, continuous and discrete variables, etc.).
Continuous-time models mayrequire less number of discrete variables, but sometimes they could be less tight than corresponding discrete-
time models (Joly and Pinto, 2003). Floudas and Lin (2004), Sundaramoorthy and Maravelias (2011), Maravelias (2012), and Harjunkoski
et al. (2014) present more thorough reviews of discrete- and continuous-time scheduling models.

In this work, we present a continuous-time model for gasoline blend scheduling (a continuous process), which is an extensive modifi-
cation of the previously published scheduling model by Li and Karimi (2011). This new version of the model adds additional operational
constraints (minimization of deliveries of the same product from different tanks, limit on the maximum rate of delivery from component
tanks, minimum volumetric size of a blend run, and product-dependent setup times), includes lower bounds on the objective function,
contains equations to transform some binary variables into 0-1 continuous variables, and reduces the total number of binary variables in
the model by making use of the demand information.

The paper is structured as follows: Section 2 is a brief overview of the prior work in this area, while Section 3 presents the problem
staterment. Section 4 describes the new version of the full-space blend scheduling model. Section 5 describes the examples used in this
work. Section € presents computational results and it shows that the proposed lower bounds added to the full-space model significantly
reduce solution times. As summarized in Section 7, the proposed new version of the full-space model can be solved much faster than the
previously published model (Li and Karimi, 2011); however, large-scale problems still cannot be solved to proven optimality in reasonable
time (e.g. <3h).

2. Scheduling of gasoline blending operations

The gasoline blending process is a common example found in the literature on planning and scheduling optimization problems since
gasoline is one of the main products of an oil refinery, both in quantity and profit margins (Mendez et al., 2006; Li and Karimi, 2011).

83

PA. Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

Moreover, the problem is easy to understand and its corresponding mathematical model can be formulated as an LP, NLP, MILP, or MINLP,
depending of the assumptions, scope, and the required accuracy.

Jia and lerapetritou (2003) constructed a continuous-time MILP model to schedule gasoline blending operations and its distribution.
The model includes multipurpose product tanks (swing tanks), minimum run length requirements, and employs fixed recipes in order to
maintain the linearity of the model.

Mendez et al. (2006) developed both a discrete- and continuous-time MILP model to schedule blending operations. They incorporate
the off-line blending problem (i.e. recipe optimization) into the scheduling model, and they handle nonlinear blending rules through an
iterative method. However, the distribution problem is not considered and not many logistic constraints are included (e.g. multipurpose
tanks, non-identical blenders, minimum blend size, etc.).

Li et al. (2010) presented a continuous-time slot-based MILP model that uses process slots; i.e. a common global time grid for all units.
This model includes blend recipe optimization, parallel non-identical blenders, multipurpose tanks, inventory constraints, blender capacity
constraints, delivery scheduling for the demand orders, and other constraints found in industrial practice. Li and Karimi (2011) replaced
process slots with unit slots (i.e. each unit has its specific time grid) and expanded the model by Li et al. (2010) to include blender setup
times and simultaneous receipt/delivery by product tanks. Their execution times and final solutions were better than those from Li et al.
(2010), but the large-scale case studies (e.g. 2-3 blenders, 5 products, 9 components, 9 quality properties, 11 product tanks, 35-45 orders,
and a planning horizon of 8 days) still used all the allocated CPU time (46,800-118,800s, depending on the problem) and the optimality
gaps were not reported.

Kolodziej et al. (2013) formulated a discrete-time MINLP model for the pooling problem including inventory, flow, and quality con-
straints. The nonlinearities arise from the initial inventory of the blending tanks at each time period as a blend component. Since the quality
properties of these initial inventories are not known after the first time period, the quality constraints involve bilinear nonconvex terms.
In addition to one heuristic solution procedure, they proposed two different algorithms to solve this MINLP model to global optimality
using a radix-based discretization technique which discretizes one variable in the bilinear terms found in the model in order to obtain
MILP relaxations. Their largest case study has 8 tanks, 4 time periods {each 1 day long), and 2 quality properties. Their execution times
range from a few seconds to 2840, depending on the problem instance.

3. Problem Statement

In this work, we address the gasoline blend scheduling problem stated as follows:
Given:

1. A short term scheduling horizon [0, H].

2. A set of components, their properties, initial inventories, costs, and flow rates along the horizon (i.e. supply profile).

. A set of products (i.e. gasoline grades) with prescribed minimum and maximum quality specifications, their initial inventories and
corresponding initial quality.

. A set of delivery orders for each product along the horizon (i.e. demand profile).

. The maximum blending capacity of each blender.

. A set of storage tanks and their minimum and maximum capacities.

. Nonlinear or linear blending model.

)

=~ gy

The objective is to determine:

. The blend recipes (i.e. the volume fractions of the blend components in each product) for each blend that will be made along the horizon.
. The blenders that each component tank should feed over time, and the corresponding feed rates.

. The products that each blender should produce over time, and their production rates.

. The products that each product tank should receive over time, from which blender, and at what flow rates.

The orders that each product tank should deliver over time, their amounts and delivery rates.

. The inventory profiles of component and product tanks.

. Swing tanks product allocation along the horizon.

NO U A W N =

Minimizing:

1. Total cost which consists of the total cost of the blended materials plus the switching costs (i.e. number of blend runs, number of tanks
delivering the same order, and product transitions in the swing tanks) and the demurrage costs.

Subject to:

1. If a blender is to produce a product, it must blend at least a minimum amount.

2. A blender can produce at most one product at any time. Once it begins blending, it must operate for some minimum time before it can
switch to another product.

. A blender requires a minimum setup time during a product changeover.

. A blender can feed at most one product tank at any time (industrial practice).

. Product tanks can only store one product at any time.

(S ST

Assuming:

84

P.A. Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627-646

Component tanks Product tanks Orders
All dedicated tanks

Blenders

Product P1

Dedicated tank

Product P2

Material from upstream processes

Product P3

Fig. 1. Sample gasoline blending system.

. Flow rate profile of each component from the upstream process is piecewise constant.

. Component quality profile is piecewise constant.

. Perfect mixing occurs in each blender.

. There is only one tank for a given blend component.

. There is no minimurmn flow restriction from component tanks to blenders.

. Only product tanks defined as swing tanks can change its product service (i.e. change from storing one product to store another).

. Changeover times between products are negligible for swing tanks.

. For each blender, changeover times between product blending are product-dependent but sequence-independent.

. Each order involves only one product (one original order involving different products can be broken into orders of each specific product).
. Each order is completed during the scheduling horizon.

QW oo~ Oy U AL N =

ju—y

For illustration, Fig. 1 shows a sample blending system with five dedicated component tanks, two blenders, four product tanks (three
dedicated tanks and one swing tank), and three different finished products.

4. Continuous-time full-space blend scheduling model

In this section, we present the continuous-time full-space blend scheduling model used in this work. This model is based on the one
developed by Li and Karimi (2011), which was selected because it considers most of the key operational features of a blending system.
We describe the differences between the two versions of this blend scheduling model. The notation used in this paper is not identical
to the one presented by Li and Karimi (2011) since this model will be used in future work in combination with our previously published
discrete-time models (Castillo and Mahalec, 20144, 2014b). We denote as (LK-#) the equation number # presented by Li and Karimi (2011).
We only present the equations for the case when there are different supply flow rates and quality profiles of blend components along the
horizon (the multi-period model or MPM as denoted by Li and Karimi, 2011) since the case when they are constant can be handled by
these equations as well.

One third of the equations are new, while two thirds are parts that are contained in the Li and Karimi model. The equations that are
identical or equivalent to those presented by Li and Karimi (2011} are Egs. (6)-(9), (11)-(18), (22)-(27), (29)-(35), (44)-(49), (54)-(60),
(62)-(72),(77)-(82),(87)~(101),(103)-(108). The equations added or modified and presented in this work are Egs. (1)-(5), (10),(19)-(21),
(28), (36)-(43), (50)-(53), (61}, (73)-(76), (83)-(86), (102), (109)-(113).

Three sets of modifications have been made to Li and Karimi (2011) model. Modification set #1 adds the following operational and
model features:

a) Minimization of deliveries of the same order from different product tanks (Eg. (3)).

b) Minimization of number of blend runs by penalizing only the start of a blend run (Egs. (3), (20), (21)).

c) Addition of slack variables which ensure that a numerical solution is obtained, even if the problem is infeasible (Eqs. (1), (5), (61), (73),
(74)).

d) Minimum volume to be blended during a blend run (Egs. (50)-(53)).

e) Product- and blender-dependent minimum setup times (Eqgs. (36)-(43)).

f) Limit on the maximum delivery rate from the blend component tanks (Eqgs. (75), (76), (83)-(86)).

Modification set #2 reduces the number of binary variables (Egs. (19), (28), (102), and construction of refined sets for the delivery
constraints).

Modification set #3 incorporates lower bounds on the blend cost and switching costs (Egs. (109) and (110)).

Although these modifications significantly improve the solution times required by the full-space model, it can still take more than 3 h
to solve to proven optimality medium and large-size problems.

85

PA. Castillo-Castiilo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

Time periods:

I m=1 1 m=2 . m | M |

i i i i i

Unitslots; | i i | i

Component tanks |1 | 2 | 3 | 4 |H|N—1| N |

] 1 1]]

Blenders [1] | [T T ~ |

1 1 1 | |

Producttarks | 1 | [[[#] [~]
t 0 0 T — Time

T=0 T ™i(m)y T=H
MN ={(1,1),(1,2),(2,3), (m, 4), (m, 1), ...}
Fig. 2. Time slots and fixed time periods.
4.1, Time siots sets
From the original set of all time slots NO={n |n=0,1,...,N—1, N}, three different subsets are constructed: set N1 does not include the

first slot (in this case, n=0), set N2 does not include the last slot (in this case, n=N), and set N3 does not include neither the first or last
slot. Note that the time slots are “unit slots”, which means that each unit has its specific time grid. From here on, the terms time slot and
unit slot will be used interchangeably.

42 Time periods and delivery slots sets

Binary variable z(j,0,n) is equal to 1 if product tank j is sending material to order o during slot n, and O otherwise. Set JO={(j.0) |
tank j may deliver order o} is composed of the pairs (j,0) found in the intersection of set JP={(j,p) | tank j can store product p} and set
PO ={(p,0) | product p constitutes order o}. Writing the corresponding order delivery equations for all (j.0) € JO and all n< N1 generates
unnecessary instantiations of binary variable z(j,o,n), which does not need to be introduced before the start time of the delivery window
of the corresponding order, i.e. TOS9! (0); and in most cases, the orders are likely to be completed before or just a few hours after the end
of the delivery window, i.e. TOg?ger(o). Based on the demand information, and the allocation of time slots to fixed time periods along the
scheduling horizon, it is possible to define set ON= {(0,) | order ¢ may be delivered during time slot n} and set JON= {(j,o,n) | tank j may
deliver order o during time slot n}. Set JON is constituted by the triplets (j,o,n) from the intersection of sets JO and ON. If set ON contains
less number of elements than {(e,n) | 0 € 0, n N1}, then the number of instantiations of variable z(j,o,n) is reduced when using set JONin
the model instead of {(f,o.n) | (f,0) €]O, n<N1}.

In the MPM approach of Li and Karimi (2011), fixed time periods are defined by different supply flowrates or quality profiles of blend
components; however, more time periods can be added, even when the supply flowrates and qualities of blend components are constant
along the scheduling horizon. In this work, set M= {1, ..., m, ..., M —1, M} denotes the fixed time periods and set MN= {(m, n) | time slot
n is assigned to time period m} represents the allocation of time slots to fixed time periods. If (m,n) < MN, then slot 17 must end within
period m (see Fig. 2). Boundaries of the time periods of set M must include the times where changes are expected in the supply flowrates
or qualities of the blend components. As mentioned before, more time periods can be added. However, this may increase the number of
time slots required to solve the problem to optimality and therefore is only recommended if their addition decreases the total number of
discrete variables in the model. For simplicity, in this work we only use the fixed time periods delineated by different supply flowrates of
blend components.

Set ON is constructed in the following way: If a portion of the time delivery window of order o lies within time period m, then order o
may be delivered during the slots assigned to such time period. For the examples presented in this work, set JON reduces 30-58% of the
total number of discrete variables in the model.

4.3, Objective function

Objective function (LK-40) was replaced by Egs. (1)-(5). The objective function (1) minimizes the blend cost (i.e. materials cost), the
switching cost associated with each blend run, product changeovers in the swing tanks, and “delivery runs” (i.e. the number of time slots
used to deliver an specific order from a given tank), the demurrage cost, and the penalty cost associated with the slack variables. Slack
variables are included in the model in order to ensure there is always a numerical solution. Penalty coefficients cg(1), ¢7(1), and cg are much
greater than the other cost coefficients to ensure that the slack variables have a 0 value in the final solution (if a physical feasible solution
exists). Penalty coefficients cg(n) and c7(1) decrease with time in order to force the non-zero slack variables to appear as late as possible
in the scheduling horizon. Delivery runs (i.e. slots with z{j,e,n)=1) are penalized using the summation of the terms ¢4-z(j,0,n) in Eq. (3)in
order to minimize deliveries to the same order from several tanks at the same time, and to minimize intermittent deliveries of the same
order from the same tank. Number of blend runs are penalized with the summation of the terms cy(bi)-sw(bln)in Eq. (3). Note that in Eq.
(3), switching operations in the blenders and product tanks are penalized if they occur in time slot 0, in contrast with Eq. (LK-40) which
does not penalizes switching operations at time slot 0 (i.e. at the beginning of the horizon).

min(Blend cost + Switching cost + Demurrage cost + Slacks cost) 1)
Blendcost= > > "> "ci(§) Veomp(i, bL, 1))
neNl bl i

86

P.A, Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

Switching cost = Z Zcz(bl) -swibl, n)+ Zc;(j) -ue(§, n)

neN2 bl I

(3)
+3 M o)
neN1 \ (j,o)(,0.n)cfON
Demurrage cost = ZZQ,(O)- tdem(o) (4)
neN1 ol
Zfﬁ(n)‘ (Sh(h m) +Sp.(L m)
Slacks cost = !
%Zm +> er(n)- (S50, m)+ Syl m) (5)
J

3 e (S50 (0) 4 55,0,(0)

00
4.4, Time slots definition

Variable Typi{unit_index,) represents the end time of the unit slot 1. These times are bounded by the beginning and end of the associated
time period, i.e. TP (m) < Tp(i,n), Tp(jn), Tp(bln) < Temd(m), for all m, i, j, bi, and n:(m,n) < MN. Egs. (6)-(8) state that the end time of a unit
slot must be equal to or greater than the end time of the previous unit slot. The initial unit slots are constrained to be equal to O by Eg. (9),
and the last unit slots are forced to be equal to the length of the scheduling horizon by Eq. (10).

Tpelt,) = Theli,n —1) YineN1 (6)
I, n) =Tl n—1) ¥i,neNl)
Tp(bl, n) = Ty(bl,n—1) ¥hl, ne N1 (8)
Tpeli, n) = Tp(f, n) = Tp(bl, n) =0 Vi, j,bl,n=0 (9
Tp(i, n) =Tpe(f, m) = To(bl,n) =H ¥i,jbl,n=N (10)

4.5. Binary and 0-1 continttous variables

Binary variable 1{j,bl,n) is 1 if product tank j is receiving material from blender bl in slot n, and 0 otherwise. 0-1 continuous variable
x(p,bln) is 1 if product p is being produced by blender bl in slot 1, and 0 otherwise. 01 continuous variable w(bl,n) represents the status
of blender b during slot n and it is equal to O (if the blender is running) or 1 (if the blender is idle). A blender can only process one product
and can only feed one product tank in each slot, see Eqs. (11)and (12).

wibl, n) + Z xp,bl,n)=1 ¥bl,neNl (11)
pi(p,bl)cBP

wibl,) + Z Wi, bl,n)=1 Vb, neNl (12)
J(,BDeR]

Binary variable u(f,p,n) is 1 if product tank j is holding product p during slot n, and 0 otherwise. Eq. (13) constrains a product tank to
hold not more than one specific product type in each slot. If a blender produces product p in slot 1, there must at least one product tank j
holding that particular product type in that slot, and there must exist a physical connection between the blender and such product tank,
as stated by Eqgs. (14) and (15). Li et al. (2010) showed that Eqs. (14) and (15) make x(p,bln) a 0-1 continuous variable.

Z u(G,p,n)=1 W,neNl (13)
pis.pleP
x(p, bl,n) = u(j, p,)+, b, n) -1 (14)
Yip, b1) < BP, (7, p) = JP, (j, 1) B], n = N1
x(p, bl n) < u(f, p,n) —o(j, B, n)+ 1 (15)

¥(p, bl) < BP, (j. p) « JP. (j, b) = BJ, n = N1

0-1 continuous variable xe{bln) represents a state transition in blender bl at the end of slot n, i.e. a transition from being running to
being idle, or vice versa, see Egs. (16)-(19).

xe(bl, n) = x(p, b, n) —x(p,bl, n+1) ¥(p, bl) c BP,nc N2 (186)
xe(bl,n) = x(p, b, n 4+ 1) —x(p, bl, n) ¥(p, bl) c BP,nc N2 a7
xe(bl,n)<=2 —x(p,bl,n)—x(p,bl,n+1) ¥(p, bl)cBP,n<N2 (18)

87

PA. Castillo-Castiilo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

xelbl,n) <2 —w(bl, n)—w(bl,n+1) Vb, ne N2 (19)

Continuous variable sw(blit) represents the start of a blend run in blender bl at the beginning of slot n+ 1. sw{(bl,n) is constrained to
have values between 0 and 1 by Egs. (20) and (2 1), but since it is penalized in the objective function (1), it behaves like a 0-1 continuous
variable. Li and Karimi (2011) did not use a variable similar to sw(bl) because they penalize corresponding variable xe(bln). However,
when including non-zero setup times, it is possible that a blender requires an idle slot between blend runs; we do not want to penalize
the transition from running to idle, and then from idle to running (a double penalty). By using variable sw(bi,n), we avoid a double penalty
for a single blend run.

sw(bl, n) = xe(bl, n)—w(bl,n+1) Vb, ne N2 (20)
sw(bl, n) < w ¥hl, n € N2 (21)

Continuous variable ue(j,n) represents a product transition in swing tank j at the end of slot n if it is equal to 1. This variable is defined
by Eqgs. (22) and (23). ue(j,n) is bounded to be equal to or less than 1 (i.e. ue(j,n) < 1, ¥i,n).

ueUan)zuUap:n)_uUsp’nJ"]) VU,'P)EJP,TIENZ (22)
ue(f, n) = ulf, p, n+ 1) —u(j, p,n) ¥(, p) € JP, 1 e N2 (23)

Eq. (24) states that a product tank § cannot deliver order ¢ if it does not hold the corresponding product p. Using Eq. (25), a product tank
cannot receive and deliver product at the same time.

z(j, o, my=u({f,p,n) ¥YneN1, ({,o0):(F,0,n)e]JON,p:(p,0)ecPO (24)
v, bl my+z(f,o,n)<1 YneNL, (f,0):(j,0,n) e JON,bl:(j,bl) e B] (25)

0-1 continuous variable y(i,bl1) is equal to 1 if blend component i is being used in blender bf during slot 1, and 0 otherwise. Eq. (26)
ensures that if a blender is idle, it cannot receive material. If a blender is running, it must receive at least one blend component, as stated by
Eq.(27). Including Eq. (28) in the model makes y(i,bl,n) a 0-1 continuous variable. However, Eq. (28) synchronizes most of the component
tank slots with the blender slots, and hence, the number of time slots required to solve the problem to optimality may increase. This has
been observed particularly in small-scale problems (see Section 6). Nevertheless, computed solutions are still of the same quality and,
for medium- and large-scale problems, number of binary variables does not increase and the execution times are shorter than when not
including Eq. (28) and using y({,bl,n) as a binary variable. If a minimum pumping rate from the tanks to the blenders is imposed (constraint
that it is not considered in this work), Eq. (28) should not be included in the model and y(i,bl,in) must be defined as a binary variable.

w(bl, n)+ (i, bl,n) =1 Vi, bl, ne N1 (26)

wihbl, n)+ E y(i,bl,n)=1 Yhl,neN1 (27)
i

Wi, B, 1) = Z x(p, bl,n) Vi bl,neN1 (28)
pi(p. bl)eBP

Therefore, only three binary variables are required by this model: u(j,p,i), v(j,bln) and z(jon).
46, Blending-time constraints

Ablender must process a product at least for a minimum amount of time given by parameter ctﬁfﬂd(p, bl}), see Egs. (29)-(35). Continuous
variables tpjeq(bLit) and ctypena(Phit) represent the blending time during slot 2 and the cumulative blending time (since the start of the current
blend run) at the beginning of slot n, for blender b, respectively. Eq. (29) constrains tpp,q«(bhin) to be equal to or less than the blender slot
duration, while Eq. (30) forces the equality unless the blender is idle or is at the last slot of a blend run. Eq. (31) forces tyeng(bLin) to be
equal to 0 if the blender is idle.

tblend(bL T’I) = Tb(bl, Tl) — Tb(b[, n—]) Vbl, ne N1 (29)
thenalbl, 1) = Tp(bl, n) = Tp(bl,n — 1) — H - (w(bl, n) +xe(bl, n)) ¥bhl,ne N1 (30)
thena(bl, m) = H -(1 —w(bl, n)) ¥bl,neNI (31)

Eq. (32) restricts ctyens(Pn) to be equal to or less than the cumulative time at the end of slot n — 1 plus the blending time during slot n.
If a blender changes its state, the cumulative time is reset to 0 by Eq. (33). A blender that is running during slot 2 can only change its state
in n+1if the cumulative blending time up to n is greater than the minimum specified, see Eq. (34). Eq. (35)is a version of Eq. (34) specified
for the last slot of the horizon.

Cfb[erw!(b[, n) = thlerw!(b[, n—])+ rblend(bla n) be, ne N1 (32)

Clyrena(bl, n) = H-(1 —xe(bl,n)) Yk, neN1 (33)

Clpjena(BLy 1= 1)+ tyieng(bl, n) = >t (p, bl) - x(p, bl,)~ REpgong(bt) - (1 — xe(bl, m)) bl ne N3 (34)
pilp, bl)eBP

Clotena(PL 1= 1)+ gna(Bl, 7) =Y ctfiih (p, b)Y (p, bl n) ¥hi,n=N (35)
pi(p. bl)eBP

88

P.A. Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627-646

here RL bl)= cHim (p, bI) WhL
where bler‘ui() p:(glbel‘iEP Mmd(p,)

Before a new blend run, a blender requires an idle time at least equal to the setup time given by parameter cttﬂ}lgd(bl), see Egs.
(36)-(43). Variable ityuqa(PLn) represents the idle time of blender bl during slot n, and variable citp.,¢(bLn) is the cumulatlve idle time
(since the end of the last blend run) of blender b{ at the beginning of slot n. Eq. (36) constrains itpe,q¢(bn) to be less than the blender slot
duration minus the blending time, and Eq. (37) forces ity eng(bLn) to be equal to O unless the blender is idle or is at the last slot of a blend

run. Eq. (38) constraints itpenq(L) to be equal to 0 during the last time slot unless the blender is idle.

l‘tb[end(bh n) + tblend(bL n) = Tb(bf, n) — Tb(bl, n— l) Vb[, ne N1 (36)
prena(bl, 1) = H- (xe(bl, n)+w(bl, n)) ¥bhl,neNI1 37
ieng(bl, n) < H-wi(bl,n) Ybl,n=N (38)

The cumulative idle time at slot n is equal to or less than the idle time from slot n — 1 plus the idle time during slot n, see Eq. (39). When
a blender is running, the cumulative idle time citpng(bLn) is reset to 0 by Eq. (40). The cumnulative idle time must be at least the current
idle time at slot n, this is imposed by Egs. (41) and (42). An idle blender can only change its state after the minimum idle time has been
completed, see Eq. (43).

Citpgena(bl, 1) < Citprang(bl, n — 1) + ifgeng(bl, n) ¥hl, n e N1 (39)
Citpena(bl, n) < H - (xe(bl, n)+w(bl, n)) Yhl,ne N1 40)
Citpena(bl, n) = ifypena(bl, n) Ybl, ne N1 41)
Citpena(bl, n) < ifyma (bl n) 4+ H -w(bl, n) ¥hi, n< N1 42)
Citpena(bl, n) = cifé‘l‘gfbd(p, b} (xe(bl, n) —w(bl, n+ 1)) — Lppna(bl)- (1 —x(p, bl n+ 1)) ¥(p, bl) e BP, n ¢ N2 43)

where [Lyna(bl) = (}r}r}?&ll)x citiin (p, bi) Whi.

4.7. Blending-material balance equations
Volume processed by a blender is the same as the volume coming from the component tanks and the volume transferred to the product

tanks, see Egs. (44) and (45). Only one product tank can receive product within a time slot, as Eqs. (12), (46) enforce. The volume from each
component to the blender is limited by the pumping rate of each component tank or the blender capacity, see Eq. (47).

Vyana(bl,) vap i,bl,n) ¥hi,neNl (44)

Viena(bL, n) Z Virans(, BL 1) WhI, ne N1 (45)
Jili,bl<B]

Vipans(f, I, n) < FE(b1)- H - o(j, bl, n) (i, bl) < B, n e N1 (46)

Veomp(h, I, n) < B(i, bIY- H -w(i, b, n) Vi bl, ne N1 47

where 8(i, bl) = min {Fg‘,}g{; i, b, Fe(E)} i, bl
4.8 Blending-volume threshold constraints

The volume produced by a blender must be between its minimum and maximum production rates, according to Egs. (48) and (49).
Vigena(bl, n) = Fﬁ};‘d(1) thenalbl, n) ¥hl, ne N1 (48)
Vblemi(bl’ T’l) F;l_leanxd(l) tblend(bh n) Vb[, ne Nl (49)

A blend run must end after a minimum volume given by parameter CV™2 (p, bi) has been produced, see Egs. (50)-(53). Variable
CVpiena(blin) is the cumulative blended volume (since the start of the current blend run) at the beginning of slot i in blender bl. CVong(bhit)
isconstrained by Eq. (50) tobe equal to or less than the cumulative volume from slot 1 — 1 plus the volume blended during slot 1. CVpeng(bhiz)
is reset to O by Eq. (51) if a blender changes its state. Egs. (52) and (53) permit a blender to finish a blend run only after the minimum
volume has been produced.

CViteng(Bl, 1) < CViiona(Bl, 11 — 1)+ Vpgena(bl, 1) Wb, n e N1 (50

CVhiena(bl, n) < Fp(bl)- H - (1 —xe(bl, n)) ¥hl,n e N1 (51)

CVateng(BL, 1 — 1)+ Vigena(bl, n) = Z (CVEI {p, L) - X(p, bi, 1)) — Vipgeng(L)- (1 —xe(bl, 1)) VbL, e N3 (52)
pilp, blieBP

CVaienalbl, n— 1)+ Vyna(bl, n) = Z (vaﬂ;;gd(p, bl). x(p, bl, n)) Yhi,n=N (53)
pi(p,bl)eBP

where Vigq(bl) = p(;nbaf(CVE‘T’;;r‘j‘d(p, bl) Wbl

89

PA. Castillo-Castiilo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

49, Blending-composition constraints

Eqgs. (54)and (55) ensure that the amount of blend components per unit of product are within the minimum and maximum composition
limits, respectively.

Veomp(ls bl 1) = 7™0(E, p) - Viygong(bL, ny — U LY - H - (r™0(3, p) — &™) - (1 — x{p, bl, n)) Vi, (p, bl) e BP, ne N1 (54)

Veomp(h bl n) < ¥4, p) - Vigena(bl, n)+ B4, b1) - H - (/(r"a"(i) S ¢ 'p)) (1 —x(p,bl,n)) ¥i(p,bl)cBP,nc N1 (55)

where ™) = minr™™(i, p) Vi and £™&(i) = maxr™*(i, p) Vi,
P 2

4.10. Blending-guality balance equations

One of the assumptions in the Problem Statement (Section 3) is a piecewise constant component quality profile. Parameter Qp.(i,e,8)
represents the value of quality property e for blend component i during quality profile 8. Set QN={(#,n)} indicates which time slots
correspond to each quality profile. The quality properties that blend linearly on a volumetric basis are constrained by Egs. (56) and (57) to
ensure that the final product quality is within the minimum and maximum specifications, respectively. Egs. (58) and (59) are analogous
for the quality properties that blend linearly on a weight basis.

D (Veompli, bl 1) Qaelis €,8)) = QE(p, €) - Vional(Bl, 1)

i

— F(bl) - H - (QI(p, e) — EMn(e)) - (1 — x(p, bL, n) (56)
Ve c EV,(p,bl) c BP,ne N1,8 : (8, n) c QN
7 (Veomplis bL 5) - Quel s €, 8)) < Q™ (p,) Viggra (bl 1)
M (bl) - H - (EM(e) - QE(p, ¢)) - (1~ x{p, b, 1)) (57)
Ye c EV,(p,b) cBP,ncN1,6:(8, n) c QN
where £MI0(e) = minQMN(p, ¢) Ve, and EMF(¢) = maxQEE(p,e) Ve.
b b
> (Veompli, bL 1) Quelis €,6) - 0(8,8)) = Q(p, e} > (Veomp(E, bL, 1) - (i, 8))
— EM(B). H - (QEIn(p,) - EMin(e)) . g™ (1~ x(p, bl, 1)) (58)
Ve c EW, (p, b)c BP,nc N1,0: (8, n) c QN
> (Veomplis bL 1) Quels 2,8) - 06, 8)) < Q™ (p, €)Y (Veomplhs BL, 1) (i, 8)
S () - (EMe) — Qe (p, €)) - o™ (1 —x(p, L, 7)) (59)

Ve c EW, (p,) BP,ne N1,0 : (8, n) e QN
where pM¥ — magxp(i, 8).
I,

Eq. (60) constrains the last component tank slots with a given quality profile to coincide with the time when such quality profile ends.
This equation assumes that the first quality profile starts at time equal to 0. Eq. (60) is required to avoid using material of a given quality
that is not available anymore, or not available yet. See Fig. 3 for an example of Eq. (60).

Ty, n) = QT;E’”’(Q) Yi, 8, n: (8, n) e QNend (60)
4.11. Order delivery constraints

Li and Karimi (2011) used fixed delivery rates for each order (i.e. if a tank is sending product to meet order o, it must do it at the rate
specified a priori for order o). In our model, if the delivery rate for each order is not known, we let the delivery rate vary between maximum
and minimum rates, denoted as DT (o) and Dg’r‘;‘;r(o), respectively. A fixed delivery rate is obtained by making both of these parameters
equal.

Eq.(61) constrains the amount of volume delivered from the product tanks to the shipping/lifting ports, plus positive and negative slack
variables, is equal to the demand. By Eq. (62), the total delivery rate of tank j must be smaller than its maximum possible. The delivery rate
of product tank j to satisfy order e must be smaller than the maximum deliveryrate of such tank, and the maximum and minimum delivery
rates specified for order o, according to Egs. (63)-(65), respectively. If tank j is delivering order o during slot n, then binary variable z(j 0,1)
is equal to 1 by Eq. (66).

Z Z DVpe(3, 0, 1) +5;rmer(o) — 5. .3,{0)=Demand(0) YoecO (61)
neNT \ j:(j, o,n)eJON

90

P.A. Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627-646

Quality profiles =1 8=2 #=3 (QNemd-{(1,2),(2,5),---}
A A il
f il 4 1
Supply profiles a=1 @=2 ANemd={(15),(2),...}
I} I}
' ' ' ,
1 1 1 1
i=3[1] 21 3 1T 4 [5]6[7~ [n]at1]..
| | | 1
Component , _
ol T S N R A
1
=t AT 11 I I R A
1 " 0 1 > Time
1 1 1 1
T=0 QT=dH=1) FTend(q =2)
Time when quality Times when supply
profile changes profile changes
Fig. 3. Graphical example of Egs. {60) and (81).
> DVl) = DEPG) - (Tl m) = Tw(Gon—1)) Wi, ne NI (62)
o:(J,0,n)JON
DVpr(i, 0, 1) = DR() - tdgnger(f, 0,1) ¥ne N1, (j, 0) 1 (j, 0, n) € JON (63)
Dpr(j, 0, T’I) = Dg;ﬁr(o) . fdo]’der(j’ 0, n) ¥n e N1, U’ O) : Us 0y n) EJON (64)
DVPT(ji 0, T’I) = Dggzy(o) ° fdorcler(j’ 0,y n) Wi e Nl: U’ O) : Us 0, n) EJON (65)
DVpr(f, 0, n) = Demand(0) - z(j, 0, n) ¥neN1,(j,0):(j,0, n) < JON (66)

4.12. Order delivery-time constraints

Continuous variable td . (jon) represents the time used during slot n to deliver order o from tank j, and it must be equal to or less
than the length of such time slot, see Eq. (67). Note that Li and Karimi (2011) did not require this variable since they use a term of the form
(delivered volume)/(fixed delivery rate) to calculate it.

The start time to deliver order o from product tank j during slot 1, i.e. 5 ,4.r(f,0,11), Must be equal to or greater than the start time of
such product tank slot (i.e. the end time of the previous slot), see Eq. (68). The end time to deliver order o within slot n must be equal to
or less than the end time of that slot, as stated by Eq. (69). Eq. (70) constrains tSy.4.-(j.0,11) to be equal to or greater than the beginning of
the corresponding time delivery window.

tdorgery, 0o 1) = Tpy(j, 1) — Ty (jun — 1) YneN1,(j,0):(j,0,n) € JON (e7)
Soger(, 0,0) = Tpe(f,n=1) ¥neNL,(j,0):(j,0,n)cJON (68)
S orgerds 0, 1)+ (opaer(f, 0, 1) = Tpe(f, 1) ¥ne N1,(j, 0): (j, 0, n) < JON (69)
Bongerf, 0, 1) = TOSE (0) - 2(j, 0, 1) ¥neN1,(j,0):(j,0,n) = JON (70)

Eq.(71)computes the time outside the delivery window required to complete order o (whichisused in Eq.(4) to calculate the demurrage
cost). All orders must be completed within the scheduling horizon, as stated by Eq. (72).

tdem(0) = tSqger(J, 0, 1) + tdgrer (§, 0, N) — :rogggﬂ(o) —H-(1-2z(,o,n)) ¥neNL(,o0):(,0,n)e]JON 71
tdem(o) = H — TOg;Lger(o) Yoe O (72)

4.13. Inventory balance

The volume in product tank j at the end of slot n, i.e. Vi (j), is equal to the volume at the end of slot n— 1 plus the volume transferred
from the blenders minus the volume sent to the shipping/lifting ports, plus the corresponding positive and negative slack variables, see
Eq.(73).

One of the assumptions in Section 3 is a piecewise constant component supply profile. Variable Fp.(f,«¢) represents the flow rate of
blend component i during supply profile o. Set AN={(«,n)} indicates which time slots correspond to each supply profile. The volume in

91

PA. Castillo-Castiilo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

component tank i at the end of slot n, i.e. Vi (i,it), is equal to the volume at the end of slot — 1 plus the volume received during that interval
minus the volume send to the blenders, plus the corresponding positive and negative slack variables, see Eq. (74).

Vorlls) =Vl =D+ > Vouns(f, bl)
Bl:(j, B1)eB] (73)
_ Z DVyr(j, 0,n) + S, n) — Sy, n) Vi, ne N1
0:(j,0,n)cJON

Vaeliy) = Vool n =D+ > Faell, @) (Taeld, m) = T, = 1))
a(ee,m)eAN (74)
= Veomplhs Bl n) + SE(m) = S, (4, n) Yine N1
bl

The total volume sent from tank i to all blenders is limited by the maximum pumping rate of such tank or the maximum total production
rate (Eg. (75)). Continuous variable £, {i,n) indicates the time when a component tank stops sending materials to the blenders. Eq. (76)
ensures that such variable is within the corresponding time slot.

vamp(i, B, 1) = (D) - (et (f, m) — Ty li,n— 1)) Vi ne N1 (75)
Bl

Tp(i, n—1) < ., n) < Tpe(d, n) Vi,ne N1 (786)

where p(i) = min o > "FEZO(E bi), N FR (b ¢ Vi

B Bl
Eqgs. (77) and (78) force the inventory levels to be within the minimum and maximum limits at the end of the unit slot, and Egs. (79)
and (80) at the moment when the tank stops sending material to the blenders.

VIIR(j) < Vi (f, n) = VES() ¥, ne NI -
V(i) <V (i, n) < VES(E) Vi,ne Nl -

VIR(§) < Violf, 1 — 1)

+ 3 R @) (i M= Tolin = 1) = Voomp(i Bl n) Vi ne N1 (79)
oo, n)eAN bl

V() = Vi, n—1)

+ N Faelhy o) (ttyeliy W) = Telis n = 10) = > Veomp(i, bly) Vi, ne N1 (80)
(o, n)cAN bl

Eq. (81) constrains the last component tank slots with a given supply profile to coincide with the time when such supply profile ends.
This equation assumes that the first supply profile starts at time equal to 0. Eq. (81) is required to avoid using material not available yet,
as well as to prevent disregarding material. See Fig. 3 for an example of Eq. (81).

Tyeli, n) = FTF™ (et} Wi, o, n: (o, n) < ANend (81)
A swing tank can only change its service if it is empty, as required by Eq. (82).

Vi, 1) < VE() . (1 —we(f, n)) Vi, ne N2 (82)

414, Slot timings on units

Since the different units (component tanks, product tanks, and blenders) are sharing material, the synchronization of some particular
time slots is required in order to guarantee the validity of the material balance equations and a physical feasible solution.

If a component tank is feeding a blender, the start time of the component tank and blender slots must be equal, see Egs. (83)and (84).If a
component tank is feeding a blender (i.e. y(i,bln)=1), the times when the blender finishes the blend run and the time when the component
tank stops sending material need to be the same, see Egs. (85)and (86). Note that Eqs. (85) and (86) force the component tanks and blender
slots to be equal across all slots composing a blend run, thus synchronizing all the component tank slots so the material arrives to the
blender within the same time interval.

Tpbln—=1)=Tp (i, n—=1)—H - (1 —y(i, bl, n)) Vi, bl,n < N1 (83)
Tp(bl,n —1) < Tp (6, n — 1)+ H - (1 —3(i, bl, n)) Vi, bl,n < N1 (84)
(bl n— 1) + tpgena(Bl, n) = ttp (i, n — 1) —H-(1 —y(i, bl, n)) Vi, bl,n< N1 (85)
(bl n— 1) + tygeng(bl, n) < ttp (i, n — 1)+ H-(1 —y(i, bl, n)) Vi bl, ne N1 (86)

92

P.A. Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627-646

When considering that product tanks cannot receive and deliver material at the same time, it is enough to ensure that the start of the
product tank slot precedes the start of the blender slot, and that the end of the product tank slot succeeds the end of the blend run, see
Eqs. (87)and (88).

Torliy n+ 1) 2 Ty(bL, 1)+ togena(bl, 1) — H-(1 — 3, Bl n + 1)) ¥(j, B1) € BJ, n e N2 (87)
Tor(iyn) < Ty(bl, m) + H (1 — (i, b, n+ 1)) ¥, bi) < BJ, n < N2 (88)

4.15. Initial conditions

For the first time slot, variables x(p,bi,n), v(j.bln), u(jp.n), wibin), Vp{in), Vor(jin), ctoeng(BLn), citpeng(bln), itpieng(bhn), and (Vppeng(blin),
are set equal to their initial values {Egs. (89)-(98)).

x(p, bl, n) = x"(p Bl) ¥(p,bl)cBP,n=0 (89)
u(j, B, n) = o™i, bY) W(j,bl) e Bf,n=0 (90)
w, pon) =i, p) V(,pyeJP,n=0 o1
w(bl, n) =wmi(bl) ¥hl,n=0 (92)
Vili, 1) = VEHi) ¥iin=0 (93
Vrli,) = VIH() Wi.n=0 (©1)
Clagerg(PL n)=ctT (B) Wbl n=0 (95)
Citpena(bl, n) = citf (B1) ¥b,n=0 (96)
{tp1ena(bl, m) = (EF% (b)) Whbl,n =0 (97)
Vitena(bl, n) = CVIE (b1} ¥hl,n=0 (98)

4.16. Simuitaneous receipt/delivery by product tanks

If the product tanks are allowed to receive and deliver material at the same time, Eq. (25) is omitted from the model and Egs. (99)-(107)
are added. 0-1 continuous variable ze(j,o,n) is equal to 1 if tank j starts or stops delivering material to order e at the end of product tank
slot 1, see Eqs. (99)-(101).

ze(j,o,n)=z(j,o,n)—z(j,o,n+1) ¥YneN2,(,0):(j,o0 n)c]JON (99)
ze(j,o,n)=z(j,o,n+1)—z(j,0,n) ¥YneN2,(,0):({, 0 n)c]JON {100)
ze(j,o0,n) <2 —z(j,0,n)—z{f,o,n+ 1) ¥neN2, (j,0):(,0,n)c]JON (101)
ze(j,o,n)<z(j,o,n)+z(j,o,n+1) ¥YneN2,(,0):(j,o0 n)c]JON (102)
Eqs. (67), (68), (103) and (104) force the start and end times of a product tank slot to be equal to the delivery times used in each slot.
Sepderlds 0, 1)+ Wopger(f, 0, 1) = TG, m) —H - (01 —z(f, 0, n)+ ze(j, 0, n) ¥neN1,(j, 0):(j, 0, n) < JON (103)
Bopgerf, 0+ 1) = Tpe(f,)+ H-(1 = 2(, 0, n+ 1)+ ze(f, 0,17)) ¥YneN2,(j,0):(j, 0, n) € JON (104)

Egs. (105)-(108) match the start and end times of a blender slot with those of a delivery run from the product tank receiving material
from such blender.

Bopgerlfs 0,n) 2 Tp(bl, n = 1) - H- (2 —u(j, bl,n) —z(j, 0, n)} ¥neNL,(j,0):(j,0,n) cJON, bl :(j, bl) < B] (105)
Baderlfs 0, 0) = Tl n = 1)+ H- (2 —u(j, bl,n)—z(j,0,n)) YneNL,(j,0):(,0,n)c]JON,bl:(j, bl) < BJ (106)
Sorger(s 0, D)+ fdgpger(J, 0, 1) = (107)
Tp(bl, n = 1) + tppena(bl, n) —H - (2 —¢(j, bl, n) —2(j, 0, n)) ¥YneN1,(j,0):(j,0,n)eJON,bl:(j, bl) = B]
ts i, o, n)+td o, m) <
or‘der(_] on:lerU (]08)

Tp(bl, n — 1)+ tppena(bl,)+ H-(2 —v(j, bl, n) —2(j,0,n)) YneN1,(j,0):(j,0,n)cJON,bl:(j, bl) < B)
4.17. Lower bounds for the materials and switching costs

An estimation of lower bounds can be determined for the materials and switching costs. A lower bound for the materials cost can
be computed by formulating and solving an aggregate optimization model minimizing the materials cost subject to the components
availability, the maximum blending capacity and inventory constraints, using a single period for the entire horizon or a multi-period
model using the inventory pinch concept to delineate the time period boundaries (e.g. Castillo et al., 2013; Castillo and Mahalec, 2014a,
2014b). The volumes of components from the aggregate solution are used in Eq. (109).

Blend cost> > ci(i) Veorp,agel () (109)

1

93

PA. Castillo-Castiilo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

A lower bound for the switching cost can be estimated by Eq. (110). sweyp is the expected minimum number of blend runs, which is
determined as follows: (i) for a given product, if the result of (initial inventory) — (total demand during the horizon) — (minimum inventory
limit) is negative, that product must be blended during the scheduling horizon at least once, (ii) after determining which different products
are required, subtract those that are being blended at the beginning of the horizon. ueexp is the expected minimum number of product
changeovers in the swing tanks, which can be estimated as the number of different products required to be blended that are not initially
stored by any product tank. Finally, at least one delivery runis expected for each order. The notation ||set|| indicates the number of elements
in the set.

Switching cost = (n"éilncz(bl)) SWexp + (mjnq U)) - Ueexp + C4 - 0] (110)
i

4.18. Noniinear blending models

Egs. (111)-(113) correspond to nonlinear blending models and quality specifications. Inclusion of Eq. (111) will result in a MINLP
scheduling model. The nonlinear equations used in this work are presented in Section 4.2.

Qur(bl, e, 1) = f (Voomp(L, bl 1), Vigena(BL, 1), Qpeli, €,8)) Whl,e < ENL, ne N1,8:(6, n) e QN (111)
Qpr(ble,n) = “}i“(p, e)-x(p,bl,n) Yec<ENL,(p, bl) = NP, ne N1 (112)
Qpr(bl, e, n) = Q™ (p,) + EM™*(e] - (1 —x(p, bl, n]) Ve € ENL,(p, bl) e BP, ne N1 (113)

419, Scheduling adjustment (reducing blending rate variations)

The presented continuous-time scheduling model does not assume fixed blending rates (although this can be easily incorporated into
the model if desired by setting Fﬂ}‘:‘i(bl) = F;‘l;‘d(bf)) and it does not compute them directly (in order to avoid nonconvex nonlinear terms).
Therefore, if a blend run spans several time slots, it is possible that the blending rates vary across the slots. In order to reduce such variations,
average blending rates are computed based on the solution from the full-space model and, with the production and delivery sequence

fixed, the full-space model is resolved minimizing the difference between the average and actual blending rates.
4.20. Versions of the full-space model

The following notation is used. “L” stands for linear blending rules, “N” for nonlinear blending equations, “SimRD” means that simulta-
neous receipt{delivery by product tanks is permitted, and “NoSimRD” indicates that simultaneous receipt{delivery by product tanks is not
allowed. Different operational scenarios can be constructed as follows:

(i) No simultaneous receiptf{delivery by product tanks, based on linear models, model L-NoSimRD is defined by Eqs. (1)-(98), (109) and
(110).
(ii) Simultaneous receipt{delivery by product tanks, based on linear models, model L-SimRD is described by Egs. (1)-(24), (26)-(110).
(iii) No simultaneous receipt{delivery by product tanks, based on non-linear models, model N-NoSimRD is defined by Egs. (1)-(98),
(109)-(113).
(iv) Simultaneous receipt{delivery by product tanks, based on non-linear models, model N-SimRD is defined by Eq. (1)-(24), (26)-(113).

421. Noniinear blending equations

In this work, we only consider the research octane number {(RON) and the motor octane number (MON) as the properties to blend
nonlinearly following the ethyl RT-70 models (Singh et al., 2000; Healey et al., 1959). Therefore, set ENL={'RON’, ‘MON’}. In the ethyl
RT-70 models, RON and MON are functions of the blend components sensitivity (i.e. sens(f)= Qp(f,'RON)-Qp i, MON’})), and olefins (‘OLF)
and aromatics (‘ARO’) content. Eq. (111) is substituted by Eqs. (111-a)-(111-1). The model parameter values used by Singh et al. (2000) are:
a1 =0.03224, a; =0.00101, a3 =0, a4 =0.04450, a5 =0.00081, and ag = —0.0645.

Veomp(l, Bl ny=r(i, bl,) Vypena(bl, n) Vi, bl, n e N1 (111-a)

rﬁ%”(bl, n) = Zr(i, bl n) Quli, e, 8) ¥Ye=‘RON, bl,neN1,6:(0,n)<QN (111-b)
i

rhoN bl) = Zr(i, bl, n)- Qp.li, €,8) Ye =‘MON,bl, neN1,8:(8, n)e QN (111-¢)
i

SenSag (bl n) = > “r(i b, n) - sens(f) Vi, bl n e N1 (111-d)

i
sensaRQg(bl, n)= Zr(i, bl,n) Qui, e, 8) sens(i) Ye=‘RON’, b, necNI1,8:(8, n)<QN (111-e)
senshiaV (bl n) = Zr(i, bl, n)- Qucli, e,8) - sens(i) Ve ="MON, Bl neN1,&:(8,n)eQN (111-f)

i

94

P.A, Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

Table 1
Summary of the examples from Test sets #1 and #2 (Li and Karimi, 2011).
Example ID # Blenders # Orders 4 Products 4 Product tanks 4 Quality properties (weight basis)
3 1 12 4 11 5
4 1 15 4 11 9(2)
7 1 20 4 11 9(2)
8 2 20 4 11 9(2)
9 2 23 5 11 9(2)
12 2 35 5 11 9(2)
14 3 45 5 11 9(2)
Olayg(bl, n) = Zr(L bl,n) Qpli,e, 8y Ye="OLF,bl,neN1,8:(6, n)cQN (111-g)
i
Arayg(bi, n) = Zr(i, bl n). Quli,e, 8 ¥e='ARO",bl,neN1,8:(8, 1) cQN (111-h}
i
O, (bl n) = Zr(LBl n) - [Quelh, e, 8] Ye—='OLF, bl ne N1,&: (8 n) c QN (111-1)
i
Arl (bl n) = Zr(i, B, 1) - [Queli, &, @F] We=‘ARD’, bl,neN,8:(6,n) QN (111-j)

i

(Pl &,) = r50N(bl, n)+ qp (sensﬁ\?gN(bI,) —rBN(BL, n) - sensg,g (b, n))

L (oligg(bt, m)— [Olag (B, n)f)

(111-k)
g { [Ari (el] =2 [Ar3Ly (0t m)] [Aress (o1 m)] + [Areg(bt, m)] ")
Ye = ‘RON', bl, 1« N1
Qb e, n) = rMON(bL n)+ aq (sens%g“'(b[, n) — rMEN(DBL, nY - sensay(Bl, n))
2
+as (Olé?,g(bl, n)— [Olag (b,)])
(111-1)

a 3 2 3 2 4
+ (ﬁ) ([Arazg(bz, m)” = 2 [Arshy(L, 1)) [Arang(bL, 1) + [Arayg(bl,)])

Ve = ‘MON’, bl, n < N1

5. Test problems

Two sets of test problems have been used in this study:
Test set #1 consists of a subset of problems from Li and Karimi (2011): Example number 3, 4, 7, 8,9, 12, and 14. Scheduling horizon is 8
days, linear blending constraints are employed, and component tanks have different supply flowrates along the horizon. Quality properties

Table 2
Periods, time slots, and orders that can be delivered in each period (Test sets #1 and #2).

Ex Period Duration (h) Slots Orders that can be delivered

3,4 1 100 1,2 01-07,012-015
2 92 3,4 08-011

7e 1 50 1-3 01-07,012-019
2 70 4-6 08
3 42 7 08-011,020

8 1 80 1,2 01-07,012-019
2 70 3,4 08
3 42 5.6 08-011,020

9 1 50 1,2 01-07,012-019
2 70 3,4 08,021
3 42 5,6 08-011,020,022,023

12 1 50 1-3 01-07,012,013,015,019,033
2 50 4-6 014-018,027,028,033
3 50 7-9 08,021,024,029-032, 034,035
4 42 10-12 08-011,020,022,023, 025,026

14 1 50 1-3 01-07,012,013,015,019,026
2 50 4-7 014-018,026
3 50 8-10 08,021,024,027-031,045
4 42 11-13 08-011, 020, 022, 023, 025, 032-044

2 For the NoSimRD scenario, example 7 requires 9 slots as follows: (period: slots)={{1: 1-4},(2: 5-7),(3: 8-9)}.

95

PA. Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

Table 3
RON and MON values for examples from Test set #2.
Property Blend Components
C1 Cc2 C3 C4 5 6 7 8 co
RON 75 90.3 95.6 97.3 83 100 115 118 81
MON 66 80.8 80.5 91.7 74 100 109 100 2

Product specifications [min, max|

P P2 P3 P4 s
RON 195,200 [96.200] [94,200] [90,200] [98200]
MON [0.200] [0.200] [0,200] [0200] [0,200]

Table 4

Continuous-time full-space model size comparison for Test set #1.
Ex Li and Karimi {2011) NoSimRD Model L-NoSimRD-opt Model L-SimRD-opt

Slots #Eqgs # Conts # Bins # Slots #Eqs # Conts # Bins # Slots #Eqs # Conts # Bins

3 3 2987 799 246 4 3910 1251 306 4 5134 1432 306
4 3 3479 925 285 4 4512 1404 142 4 6060 1639 42
7 7 10,337 2381 986 9 10515 3208 753 7 10,660 2940 571
8 6 11,491 2244 949 6 8881 2446 553 6 11,737 2769 553
9 6 12,635 2391 1015 6 9780 2569 594 3 12,876 2915 594
12 12 34,151 6572 3050 12 22,203 6205 1317 12 30,051 7008 1317
14 13 49,097 8508 3989 13 31,135 8012 1628 13 43,165 8945 1628

#Slots = number of unit slots, #Eqs = equations, #Conts = continuous variables, and #Bins = binary variables.

under specification are RON, Reid vapor pressure, sulfur content, specific gravity, aromatics content, olefin content, benzene content,
oxygenates, and flammability limit. According to Li and Karimi (2011), they use the same addition bases and index correlations as Li et al.
(2010); therefore, only sulfur content and oxygenates blend on a weight basis. However, Li and Karimi (2011) do not consider specific
gravity in example 3, hence in this work sulfur content is assumed to blend linearly on a volumetric basis in example 3. Table 1 shows
a description of the blending system for each example. Table 2 shows the allocation of time slots to each time period (in this work, time
periods correspond to intervals with different supply flowrates of blend components) and the orders that can be delivered during such
periods.

Test set #2 consists of example number 4, 8, 12, and 14 from Li and Karimi (2011); however, RON and MON properties are considered
to blend nonlinearly following the ethyl RT-70 models. RON index correlation from Li et al. (2010) was used to compute the actual RON
values and product specifications. Li and Karimi (2011) do not specify MON values, and these were assumed in this work. For simplicity,
MON minimum product specifications were set equal to 0 in order to observe only the effect of the RON constraint in the optimurn. RON
and MON values and specifications are shown in Table 3.

6. Computational performance

The continuous-time blend scheduling models L-SimRD, L-NoSimRD, N-SimRD, and N-NoSimRD were implemented in GAMS IDE 24.3.2.
CPLEX 12.6 was used for MILP models, and BARON 14.0.3 and ANTIGONE 1.1 were employed for MINLP models. CPLEX 12.6 and ANTIGONE
1.1 were selected for LP and NLP models, respectively, required to compute the lower bounds on the blend cost (Castillo and Mahalec,
2014a). All problems have been solved on DELL PowerEdge T310 {Intel® Xeon® CPU, 2.40GHz, and 12 GB RAM) running Windows Server
2008 R2 OS.

Table 5
Results for full-space model L-SimRD, not using Eqs. (109) and (110) lower bounds, not penalizing deliveries (¢, =0). Test set #1.
Ex Obj. func. as defined by: Gap(%) RMIP(x10°$) CPU time (s)to reach: Blend cost{x10°$) #TLK #BR #TST #DR
Eq. (LK-40) Eq.(1)(x10%§) Stopping criteria Final upperbound Opt. gap <5%
(x10°§)
3 3159.1 3179.1 0 3085.1 538 1.0 05 3139.1 1 2 0 19
4 4556.7 4576.7 0 4481.8 1065 13.1 11.0 4536.7 1 2 U] 20
7 8100.3 81203 3.87 77370 10,800¢ 364.0 362 5040.3 3 4 (] 29
3 5080.3 §120.3 423 7737.0 10,500¢ 202.0 128 5040.3 2 4 0 27
9 10,7788 10,818.8 7.62 9962.2 10,800¢ 442.0 NA 10,704.3 4 5 1 31
12 152417 152817 9.79 13,7735 43,200¢ 42,743 NA 15,1472 5 6 1 46
14 21,1259 21,1859 9.86 19,0885 43,200 41,720 NA 21,0469 4 6 1 52

¢ Reached maximum allocated time.
#TLK =number of transitions counted the same way as Li and Karimi (2011) model, #BR = number of blend runs, #TST = number of transitions by swing tanks, #DR = number
of delivery runs, NA = Not available.

96

P.A. Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627-646

Table 6
Results for full-space model L-SimRD, using Eqs. (109) and (110) lower bounds, not penalizing deliveries (c;=0). Test set #1.
Ex Obj. func. as defined by: Gap (%) RMIP(x10%$) CPU time (s) to reach: Blend Cost (x10%$) #TLK #BR #TST #DR
Eq. (LK-40) (x 10°$) Eq.(1)(x10%§) Stopping criteria Final upper bound Opt. gap <5%
3 31591 3179.1 0 31791 2.56 081 0.81 3139.1 1 2 a 17
4 45567 4576.7 0 4576.7 2.27 0.30 0.50 4536.7 1 2 Q 20
7 81003 8120.3 0 81203 63.1 61.1 60.1 8040.3 3 4 a 31
8 B8080.3 8120.3 0 81203 378 355 9.72 8040.3 2 4 a 28
9 10,778.8 10,818.8 0 10,8188 834 80.7 40.1 10,704.3 4 5 1 32
12 15,241.7 15.281.7 013 15.261.7 43,200¢ 189 189 15,147.2 5 6 1 49
14 21,101.4 21,161.4 0 21,161.4 12,106 12,106 497 21,0469 3 5 1 62

2 Reached maximum allocated time.
#TLK = number of transitions counted the same way as Li and Karimi {2011) model, #BR = number of blend runs, #TST = number of transitions by swing tanks, #DR = number
of delivery runs.

Table 7
Results for full-space model L-SimRD, using Eqgs. (109) and (110) lower bounds, penalizing deliveries (¢4 =5). Test set #1.
Ex Obj. func. as defined by: Gap (%) RMIP(x10?$) CPU time (s) to reach: Blend Cost (x10°§) #TLK +#BR #TST #DR
Eq.(LK-40) Eq.(1)(x10?§) Stopping criteria Final upperbound Opt. gap <5%
(x10% §)
3 3159.1 3254.1 (] 3239.1 44.4 8.8 08 3139.1 1 2 0 15
4 4556.7 4666.7 0 4651.7 530 38 17 4536.7 1 2 0 18
7 8102.4 8247.4 0.25 8220.3 10,800° 63.3 27 5042.4 3 4 0 25
8 8080.6 82406 0.25 8220.3 10,800¢ 660 99 5040.6 2 4 0 24
9 10,781.1 10,951.1 0.16 10,9338 10,8002 896 46.7 10,706.6 4 5 1 26
12 152217 15451.7 0.10 15.436.7 43,2000 3320 589 15,147.2 4 5 1 e
14 21,101.4 21,3864 0 21,3864 40,192 40,192 187 21,0469 3 5 1 45

* Reached maximum allocated time.
#TLK = number of transitions counted the same way as Li and Karimi (2011) model, #BR = number of blend runs, #T5T = number of transitions by swing tanks, #DR = number
of delivery runs.

6.1, Testset #1

Table 4 shows the full-space model size for these examples, while Tables 5 and 6 show the results for scenarios when multiple delivery
runs from the tanks are not minimized (penalized). Hence, these results are for the same kind of problems as those solved by Li and Karimi
(2011). In order to facilitate comparison with Li and Karimi (2011), the results in Table 5 and Table 6 show the objective function computed
by Eqg. (1) and its equivalent value in terms of Eq. (LK-40) from Li and Karimi (2011). Note that Eq. (LK-40) does not take into account the
transitions that occur during the first time slot (i.e. slot n=0).

For smaller examples, the computed results are the same as those by Li and Karimi (2011). There is a discrepancy between the problem
data as published and the solutions reported by Li and Karimi (2011) for larger examples. Qur recent communication with Dr. Li (Li, 2014)
indicates that the published problem description data for examples 9 and 14 have typographical errors. Hence, the solutions presented here
for examples 9 and 14 are for data as published and the comparison with the published solution by Li and Karimi (2011) is not meaningful.
The example 12 description data as published are correct (Li, 2014). Since the solution of Example 12 as published by Li and Karimi (2011)
is lower than the lower bound for the blend cost (i.e. it is infeasible), it is not meaningful to compare our solution of example 12 with the
originally published solution.

In order to evaluate the impact of additional lower bounds, i.e. Eqs. (109) and (110), the full-space continuous-time model, without
penalizing multiple deliveries from tanks, has been solved without these bounds (see Table 5) and with these bounds (see Table 6). Without
additional lower bounds, the optimality gap cannot be closed for larger problems even after 12 h. With additional lower bounds, examples
3-9 are solved very rapidly, example 14 is solved to optimality within approximately 3.5 h, while example 12 is solved to 0.13% gap within
12 h. The solution of the relaxed problem (i.e. RMIP) is reported as well. Eqgs. (109) and (110) increase the RMIP solutions from 2 to almost
10%, depending on the example.

Quantity (kbbly
NI — Rl
To product tank Tk#
i
5 34 50 13 e
L 0 . i]
§B — = ‘
0 1 2 1 1
93 36 20 70 116 86
A —— = 1
4 9) 7
1 1 1 1 1 1 1)
0 24 48 72 96 120 144 168 192
Time (h)

Fig. 4. Production schedule for example 12, Test set #1, SimRD scenario, penalizing delivery runs.

97

PA. Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

Te11 b 030(3) 98 (10)
Tx10 04 (10) 817 (10
G101 0018 (10)
=033 (20
Tio | 013 (50) (200
TKs b g2
g 7 b 06 (10) 08 (50)
; TG, 02 (3) 05 (3) 021 30y ll3:22|(40)
= 012 (52) 0 024 (%) 03 525 (20)
£ . 015 (3) 01220 015 (20) =1 032 (20)
=%
Ta L 028 (3) 028 (15) 010 (100)
Tics b3 3 973 096 (20) 031015 0o 3
—— 020 40)
| 034 (20}
Ti2. 035 (30)
—
Tkl k 014015y 027 (20) ORED 11 sy
Order (Quantity in kbbl) =026 (30)
L L L 1 L L L)
o 24 48 72 96 120 144 168 192
Time (h)
Fig. 5. Delivery schedule for example 12, Test set #1, SimRD scenario, penalizing delivery runs.
Table 8
Results for full-space model L-NoSimRD, using Egs. (109) and (110) lower bounds, not penalizing deliveries (¢, = 0). Test set #1.
Ex Obj. func. as defined by: Gap (%) RMIP(x10®$) CPU time (s) to reach: Blend Cost (x10°§) #TLK #BR #TST #DR
Eq.(LK-40) Eq.(1)(x10°§) Stopping criteria Final upperbound Opt. gap<5%
(x10° $)
3 3159.1 3179.1 0 3179.1 1.90 0.36 0.36 3139.1 1 2 U] 17
4 4556.7 4576.7 (] 4576.7 2.02 033 0.33 4536.7 1 2 (] 20
74 81003 51203 0 8120.3 369 328 328 5040.3 3 4 0 29
8 8080.3 81203 0 8120.3 458 439 13.7 8040.3 2 4 0 28
9 10,7788 10818.8 0 10818.8 210 210 141 10,704.3 4 5 1 30
12 152217 15.261.7 0 15,261.7 1342 1342 47.7 15,147.2 4 5 1 45
14 21,101.4 21,161.4 0 21,161.4 2877 2877 202 21,046.9 3 5 1 57

¢ Reached maximum allocated time.

#TLK =number of transitions counted the same way as Li and Karimi (2011) model, #BR = number of blend runs, #TST = number of transitons by swing tanks, #DR = number

of delivery runs.

Solutions in Tables 5 and 6 have large numbers of delivery runs associated with the product tanks. Since it is desirable to have a delivery
schedule as simple as possible, the number of delivery runs should be minimized. The results for such scenario are included in Table 7. The
new version of the continuous-time full-space model finds solutions which are very close to the optimum or are optimal, but the execution
times are too large for practical applications. Figs. 4 and 5 show the production and delivery schedule, respectively, computed for example
12 (penalizing delivery runs, simultaneous delivery and receipt by product tanks).

Blender

Quantity (kbbly
Pi[] BT b o] s
To product tank Thk#
5 15 104 112 28 86
Bf = — [
12 2 11 1 7
129 S0 116
AT =] = =
9 3 6
1 'l 1 1 1 1 1 J
0 24 48 72 86 120 144 168 192
Time ¢h)

Fig. 6. Production schedule for example 12, Test set #1, NoSimRD scenario, not penalizing delivery runs.

98

P.A. Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627-646

017 (10 08 (2)
Tk11 | o !
01 (10 018 (10 o5 o8
TKIO |2 033 (5 018 (10) 030 (15) 08 (9
04 (10)
013 (60) 028 (3) 029 (15) G0 (75)
Tk9. — o = —_—
06 (10 08 (2)
ks F S6.(10) oe@
033 (14 08 (8
o T (14) #6)
g O) 025 (20
; Tk6. o2 (0 l:ZII(a) Z.(—_z.) —= 022 (40)
é ——— 019 (57) o 024 (6}
o] 02 (2) 012 (20} = 032 20)
A Txs. | =
010 (%) oo7¢3)
10 (2.
Tk4. | 2 e
033 05(3 031 (15 0 (3
TK3. | @ s ():-015(12) g as &
0 OL5(8) =016 (20) — (20 (40)
34 (20)
Tk2. | = 1 11 (50}
?5 0) " 0%
35 (3
Tk1. F 2-14 = %27 @0 = 023 (20)
Order (Quantity in Kbbl) =3 026 (21)
L L L L L L L J
0 24 48 72 96 120 144 168 192

Time (h)

Fig. 7. Delivery schedule for example 12, Test set #1, NoSimRD scenario, not penalizing delivery runs.

Table 8
Model N-NoSimRD-opt size for Test set #2.
Ex Maodel N-NoSimRD-opt
Slots #Eqs # Conts # Bins 4 Nonlinear terms
4 4 4624 1484 342 104
5 6 9217 2686 553 312
12 12 22923 6685 1317 624
14 13 32,305 8792 1628 1014

#Slots =number of unit slots, #Eqs = equations, #Conts = continuous variables, and #Bins =binary variables.

Operational scenario when simultaneous receipt and deliveryis not permitted from any tank (model L-NoSimRD) limits the times when
ablender can run. Table 8 shows the results for this operational scenario. Solutions are very similar to the SimRD scenario. Solution times
required by model L-NoSimRD are similar to those from model L-SimRD for example 3, 4, 7 and 8, larger for example 9, and shorter for
example 12 and 14. Model L-NoSimRD solves example 12 and 14 to optimality more easily than model L-SimRD. The reason for this can be
attributed to the reduced number of feasible schedules compared with the SimRD scenario. Figs. 6 and 7 show the production and delivery
schedule, respectively, computed for example 12 (not penalizing delivery runs, no simultaneous delivery and receipt by product tanks).

Table 10
Results for full-space model N-NoSimRD, using Eqs. {109) and (110] lower bounds, not penalizing deliveries {(cq =0). Test set 2.
Ex MINLP solver Obj. func. RMIP (x10°$) CPU time (s) to reach: Blend Cost (x10°$) #BR #TST #DR
Value (< 10°$) Gap (%) Stopping criteria ~ Final upper bound ~ Opt. gap <5%
4 ANTIGONE 4633.0 0.01 4632.7 856 856 141 4593.0 2 0 21
BARON 4633.0 0.01 46327 15 15 11 4593.0 2 0 21
§ ANTIGONE 8205.4 0.03 8202.1 10,8002 9246 380 5125.4 4 0 28
BARON 8207.4 0.05 8203.1 10,800° 1388 79 8127.4 4 0 26
12 ANTIGONE 15,406.8 0.16 15,3826 43,200 43,054 907 15.272.3 6 1 42
BARON 15,4531 0.45 15,3826 43,200¢ 7933 7933 15,3186 6 1 45
14 ANTIGONE 21,2831 0.19 21,243.1 43,200¢ 12,839 1205 21,1286 7 1 56
BARON 21,4977 1.20 21,2431 43,200: 7204 3634 21,3832 5 1 56

¢ Reached maximum allocated time.
#BR = number of blend runs, #TST = number of transitions by swing tanks, #DR = number of delivery runs.

99

PA. Castillo-Castillo, V. Mahalec / Computers and Chemical Engineering 84 (2016) 627 -646

6.2. Test set #2

Nonlinear problems have been solved for the scenario when no simultaneous receipt and delivery by product tanks is allowed, and
when delivery runs are not penalized. Egs. (109) and (110) were included in the model. The size of model N-NoSimRD-opt for Test set #2
examples is shown in Table 9. As expected, the number of binary variables remains the same, and the number of equations and continuous
variables increased slightly due to the addition of Egs. (111-a)-(111-1), (112), (113). The number of nonlinear terms is presented as well.
Table 10 shows the results obtained by global MINLP solvers BARON and ANTIGONE. Only small-scale example 4 is solved to optimality.
Example 8 is solved very close to optimality within the allocated time of 3 h. Large-scale examples 12 and 14 cannot be solved to proven
optimality in 12 h. However, final optimality gaps are relatively small, and ANTIGONE computes solutions with gap values below 5% in less
than 30 min. ANTIGONE seems to find better solutions than BARON for the same execution time.

7. Conclusions

In this paper we have presented a new version of the continuous-time blend scheduling model, which is a significantly modified version
of the previously published model by Li and Karimi (2011). This new version improves convergence by addition of novel lower bounds and
by reducing the number of binary variables via (a) equations which convert some binary variables into 0-1 continuous, and by (b) using
demand information in order to avoid generating binary variables where orders cannot be delivered. The model also includes additional
operational features such as penalty for deliveries of the same order from different product tanks, product and blender-dependent minimum
setup times, maximum delivery rate from component tanks, and a threshold volume for each blend.

These modifications significantly improve convergence of the model, to the extent that previously published unsolved large linear blend
scheduling examples have been solved to optimality or very close to it. The execution times are two to three orders of magnitude shorter
than originally published times. Satisfactory convergence for medium size nonlinear blend scheduling problems {ethyl RT-70 equations for
octane blending) has been obtained applying global MINLP solvers and the results are very close to optimality. Solutions with optimality
gap smaller than 5% were found in less than 30 min for the two large-scale problems considered in this work. This has motivated our work
on a new type of scheduling algorithm which is described in the companion paper (Castillo-Castillo and Mahalec, 2015).

Acknowledgments
Support by Ontario Research Foundation and McMaster Advanced Control Consortium is gratefully acknowledged.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http:/{dx.doi.org/10.1016/j.compchemeng.2015.
08.003.

References

Castillo PA, Kelly JD, Mahalec V. Inventory pinch algorithm for gasoline blend planning. AIChE | 2013;59(10):3748-66.

Castillo PA, Mahalec V. Inventory pinch based, multiscale models for integrated planning and scheduling-part I: gasoline blend planning. AIChE] 2014a;60(6):2158-78.

Castdllo PA, Mahalec V. Inventory pinch based, multiscale models for integrated planning and scheduling-part II: gasoline blend scheduling. AIChE | 2014b;60(7).2475-97.

Castillo-Castillo PA, Mahalec V. Inventory pinch gasoline blend scheduling algorithm combining discrete- and continuous-time models. Comput Chem Eng 2016;84:611-26.

Floudas CA, Lin X. Continuous-time vs discrete-time approaches for scheduling of chemical processes: a review. Comput Chem Eng 2004;28:2108-29.

Harjunkoski I, Maravelias CT, Bongers P, Castro PM, Engell 5, Grossmann IE, et al. Scope for industrial applications of production scheduling models and solution methods.
Comput Chem Eng 2014;62:161-93.

Healey WC, Maasen CW, Peterson RT. A new appreach to blending octanes. In: Proc. 24th Meeting of American Petroleum Institute’s Division of Refining. New York; 1959.

Jia Z.lerapetritou M. Mixed-integer linear programming model for gasoline blending and distribution scheduling. Ind Eng Chem Res 2003;42:825-35.

Joly M, Pinto JM. Mixed-integer programming techniques for the scheduling problem of fuel oil and asphalt production. Inst Chem Eng 2003;81:427-47.

Kolodziej SP, Grossmann IE, Furman KC, Sawayac NW. A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comput Chem Eng
2013;53:122-42.

Li]. Personal communication. 2014.

LiJ, Karimi IA. Scheduling gasoline blending operations from recipe determination to shipping using unit slots. Ind Eng Chem Res 2011;50:9156-74.

LiJ, Karimi IA, Srinivasan R. Recipe determination and scheduling of gasoline blending operations. AIChE | 2010;56:441-65.

Maravelias CT. General framework and modeling approach classification for chemical production scheduling. AIChE] 2012;58:1812-28.

Mendez CA, Grossmann IE, Harjunkoski [, Kabore P. A simultaneous optimization approach for off-line blending. Comput Chem Eng 2006;30:614-34.

Neiro SMS, Murata VV, Pinto JM. Hybrid time formulation for diesel blending and distribution scheduling. Ind Eng Chem Res 2014;53:17124-34.

Singh A, Fotbes JF, Vermeer PJ, Woo SS. Model-based real-time optimization of automotive gasoline blending operations.] Process Control 2000;10: 43-58.

Sundaramoorthy A, Maravelias CT. Computational study of network-based mixed-integer programming approaches for chemical production scheduling. Ind Eng Chem Res
2011:50:5023-40.

Velez §,Maravelias CT. Theoretical framework for formulating MIP scheduling models with multiple and non-uniform discrete-time grids. Comput Chem Eng 2015;72:233-54.

100

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Chapter 6: Inventory Pinch Gasoline Blend Scheduling Algorithm
Combining Discrete- and Continuous-Time Models

This chapter has been published in the Computers and Chemical Engineering Journal.
Complete citation:

Castillo Castillo, P. A., & Mahalec, V. (2016). Inventory pinch gasoline blend scheduling
algorithm combining discrete- and continuous-time models. Computers & Chemical
Engineering, 84, 611-626. Elsevier Ltd., doi: 10.1016/j.compchemeng.2015.08.005

Permission from © Elsevier Ltd. All rights reserved.

101

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

In Chapter 6, the MPIP-C algorithm is introduced. It combines the solution strategy
described in Chapter 3 with the continuous-time blend scheduling model from Chapter 5.
The continuous-time blend scheduling model enables MPIP-C algorithm to solve the 3™
level for the entire time horizon (instead of subintervals as in Chapter 3). The execution
times required by MPIP-C are almost one order of magnitude shorter than those required
by MPIP algorithm. It is demonstrated as well that MPIP-C can handle nonlinear blending
rules.

Chapter 6 marks a milestone within my Ph.D. project. The MPIP-C method is a heuristic
approach that provides optimal or near-optimal solutions in a few seconds for linear and
nonlinear blend scheduling problems, and with a reduced number of blend recipes. This
fulfills one of the general objectives of this work.

102

Computers and Chemical Engineering 84 (2016) 611-626

journal homepage: www . elsevier.com/locate/compchemeng

Contents lists available at ScienceDirect

Computers and Chemical Engineering

Computers
& Chemical
Engineering

Inventory pinch gasoline blend scheduling algorithm combining

discrete- and continuous-time models

Pedro A. Castillo-Castillo, Vladimir Mahalec*

@ CrossMarl

Department of Chermical Engineering, McMaster University, 1 280 Main St. West, Hamilton, ON L85 4L8, Canada

ARTICLE INFO ABSTRACT

Article history:

Received 25 August 2014

Received in revised form 30 July 2015
Accepted 4 August 2015

Available online 18 August 2015

Keywords:

Inventory pinch

Nonlinear gasoline blending
Discrete-time models
Continuous-time models

This work introduces multi-period inventory pinch-based algorithm to solve continuous-time sched uling
models (MPIP-C algorithm), a threelevel method which combines discrete-time approximate scheduling
with continuous-time detailed scheduling and with inventory pinch-based optimization of operating
states. When applied to gasoline blending, the top level computes optimal recipes for aggregated blends
over periods initially delineated by inventory pinch points. Discrete-time middle level uses fixed blend
recipes to compute an approximate schedule, i.e. what, when, and how much to produce; it also allocates
swing storage and associated product shipments with specific storage. Continuous-time model at the
third level computes when exactly to start/stop an operation (blend, tank transfer, shipment). MPIP-C
algorithm solves linear or nonlinear problems 2-3 orders of magnitude faster than full-space models.

@© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Process industries’ supply chains are comprised of facilities and
activities which procure raw materials to the plants, and store and
distribute finished products to the customers. Structure of the sup-
ply chains (location, capacity, and type of each plant and storage)
is decided upon by optimizing returns over long time horizons, e.g.
five or ten years. Once the structure of the supply chain is fixed, one
needs to decide the best way to operate it. Since supply chains are
large systems, and there are many decisions to be made, it is cus-
tomary to optimize supply chain operations over different lengths
of the time horizon and at different levels of model accuracy. When
optimizing operation over long time horizons, e.g. over one year,
it is important to determine how much of each product will be
produced from one season to another, while it is not important to
decide at what specific time some equipment will change from one
operation mode to another. The latter is a detailed decision which
can be made e.g. one or two weeks prior to that day.

Scheduling is an activity that determines the operating states
and their sequence for each equipment, amount of feed to be
processed by each instance of an operating state, amount and time
of shipment of each product, allocation of multipurpose storage
to a given service, and others. Scheduling models for oil refin-
ery operations are usually mixed-integer linear programs (e.g.

* Corresponding author. Tel.: +1 905 525 9140x26386.
E-mail address: mahalec@mcmaster.ca (V. Mahalec).

http://dx.doi.org/10.1016/j.compchemeng.2015.08.005
0098-1354/© 2015 Elsevier Ltd. All rights reserved.

103

Gothe-Lundgren et al., 2002; Jia and lerapetritou, 2003, 2004; i
and Karimi, 2011) even if the underlying processes are nonlinear
by nature, in order to decrease the computational burden. Some
MINLP models have been published recently for the detailed sched -
uling of crude oil operations(Li et al., 201 2) and the pooling problem
(Kolodziej et al., 2013); they have been solved via the latest gen-
eration of specialized MINLP solvers. Currently, most scheduling
models are usually formulated using a continuous-time represen-
tation (i.e. the horizon is divided into several time slots which
duration is a variable to determine) since it requires a smaller
number of discrete variables compared with the corresponding
discrete-time model. One example of commercial scheduling soft-
ware is Aspen Petroleum Scheduler (Aspen Technology).

Inclusion of sequencing terms in the model formulation makes
scheduling a very challenging computational problem. Due to the
inherent discrete decisions involved in the scheduling problem, it
is at least NP-complete (Birewar and Grossmann, 1990; Pinto et al.,
2000) and frequently NP-hard (Terrazas-Moreno and Grossmanri,
2011); this means that there are no polynomial time bounded algo-
rithms to solve this type of problems. Within this current paradigm,
it is not possible to guarantee computation of optimal solutions in
a reasonable amount of time by a general algorithm when sched-
uling problems grow beyond a certain model size (which depends
on the problem type and instance). Most successful solution strate-
gies are those that employ algorithms tailored to a specific class of
scheduling problems and scale up to solve large problems within
acceptable computational times. Necessity for such approaches has
been presented as “no free lunch theorems for optimization” by
Wolpert and Macready {1997).

PA. Castillo-Castillo, V. Mahalec / Computers end Chernical Engineering 84 (2016) 611-626

Nomenclature

Sets and indices

BL={bi} blenders

E={e} quality properties (e.g. research and motor octane
number)

I1={i} blend components

J=14j} product tanks

K={k} [L1-periods (time periods defined for the 1st level
discrete-time model)

L={l} [L-intervals (non-overlapping subintervals of the
scheduling horizon for the 3rd level continuous-
time model)

M={m} L2-periods (time periods defined for the 2nd level
discrete-time model)

NO={n|0,1,...,N} timeslotsassigned for the entire horizon
(3rd level continuous-time model)

N1={n|1,..., N} subset of NO, does not include first time

slot
N2={n|0,1,...,N=1} subset of NO, does not include last
time slot

N3={n|1,....,N—1} subsetof NO,does not include first and
last time slots

NO;, N1y, N2;, N3; analogous sets to NO, N1, N2, and N3,
respectively, defined for each L-interval

0={o} all demand orders

0 demand orders that can be delivered during I-
interval i

P={p} different products

BP = {(p, b)} blender bi can produce product p

JO={(j, 0)} product tankj can deliver order ¢

KM= {(k, m)} L2-period m iswithinL1-period k

KN={(k,n)} time slot nis within L1-period k

KNend= {(k, 7)} time slot nis the last one of L1-period k

LM={(l, m)} [2-period m is within L-interval {

LN={(} n)} time slot nis within L-interval

LNend={(/,)} last time slot of L-interval {

MN={(m, n)} time slot niswithin L2-period m

PO={(p, o)} order o consists of product p

JON={{j,0,1m)} producttankjcandeliver order o during time

slotn
Parameters
cy(bl) cost associated with one blend run in blender b!
ca(f) cost associated with a product transition in swing
tank j
Cq cost associated with a delivery run

Demand{e) demand quantity of order o
Fmin By Fmax (hy minimum and maximum blending rates

blend Blend
of blender bi
H length of the entire scheduling horizon

ofiz(e, m) if equal to 1, delivery window of order ¢ spans,
partially or completely, L2-period m

Qpepali, e k) quality e of blend componenti during L1-period
k

Qmin(p, ¢), QMa(p, ¢) minimum and maximum specifica-
tions for quality property e and product p

TE(k) end time of L1-period k

TZ4(m) end time of L2-period m

TZ4(I) end time of [-interval I

V;Cr‘rgt(j, n) inventory target for product tank j at time slot n

Binary variables

uz2(j, p, i) binary variable at the 2nd level, but a parameter
at the 3rd level. If equal to 1, product tank jis storing
product p during [2-period m

up3(j, p, n) if equal to 1, product tank j is storing product p
during slot n

xp2(p, bl, m) binary variable at the 2nd level, but a parameter
at the 3rd level. If equal to 1, blender blis processing
product p during slot n during L2-period m

7i2(j,0,m) binary variable at the 2nd level, but a parameter
at the 3rd level. If equal to 1, product tank j delivers
material to order ¢ during L2-period m

z13(f, 0,) if equal to 1, product tank j delivers material to
order o during slot n

0-1 continuous variables

xp3(p, bl, 1) if equal to 1, blender bi is processing product p
during slot n

Continuous variabies

Deliverarger 12(f, 0, m) volume delivered from product tank f
to order o during L2-period m

Delivery, r2(f, p, m) volume delivered of product p from prod-
uct tank j during L2-period m

DV (j, 0, n) volume delivered from product tank j to order o
during slot n

Qpr11(p. €, k) quality e of product p during L1-period k

ri1(4, p, k) continuous variable at the 1st level, but a param-
eter at the 2nd and 3rd levels. Blend recipe for
product p in L1-period k

Tp3(bl, n) end time of a blender slot n

Tpei3(i,) end time of a component tank slot n

Tpra3(fi 1) end time of a product tank slot n

uepz(j, m) if equal to 1, product tank j changes its service at
the end of L2-period m

ueps(f, n) if equal to 1, product tank j changes its service at
the end of slotn

Vbtena,i3(bL, n) volume blended during slot 2 by blender b

Veomp.£1(1, p, k) volume required of component i according to
the aggregated model solution

Veomp.£3(f, B,) volume of component i used in blender bl
during slot n

Vpr13ti, 1) inventory level of product tank j at the end of slot
el

zej;(0, m) number of different product tanks delivering
material to order ¢ during L2-period m

Decomposition strategies are usually employed to handlelarge-
scale scheduling problems. Bassett et al. (1996) presented various
heuristic methods for discrete-time formulations of scheduling
problems, most of them using time-based decompositions. Wu
and lerapetritou (2003) reviewed several heuristic approaches
for scheduling problems with continuous-time models, including
methods using time- and resource-based decompositions. They
also included a review of rigorous mathematical approaches such
as Lagrangean relaxation and Lagrangean decomposition.

A major part of an oil refinery’s profit comes from gasoline
(Mendez et al., 2006; Li and Karimi, 2011). Therefore, determining
the best possible way to mix the refinery’s intermediate products
{blend components) to produce the different gasoline grades is an
important task. For that reason, inclusion of recipe optimization in
gasoline blend scheduling models has become the norm in the last
ten years. Both discrete- and continuous-time formulations have
been developed to solve the gasoline blend scheduling problem. In

104

P.A. Castillo-Castille, V. Mahalec / Computers and Chemical Engineering 84 (2016) 611-626

order to develop a mixed-integer linear model, quality properties
are transformed into blend indices that blend linearly on a volu-
metric or weight basis (e.g. Li et al., 2010; Li and Karimi, 2011). A
different approach is to solve a sequence of MILP models in order
to converge to the proper quality values (e.g. Mendez et al., 2006).
As well, stochastic methods have been proposed to solve nonlin-
ear recipe optimization problems (e.g. Chen and Wang, 2010; Zhao
and Wang, 2011); however, no operational features nor logistic
constraints are considered in such cases.

Commercial MILP solvers may require several hours to obtain
the optimal solution of detailed scheduling models for medium-
and large-scale problems (e.g. Li and Karimi, 2011; Shah and
lerapetritou, 2011). Castillo-Castillo and Mahalec (2015) presented
a detailed continuous-time scheduling model with reduced num-
ber of discrete variables, and although such model was able to solve
some large-scale examples to optimality in less time than previ-
ously published models, execution times still can reach more than
12h.

Glismann and Gruhn (2001) proposed a two-level approach to
solve the blend scheduling problem: at the top level, a discrete-
time NLP model computes blend recipes and production targets,
and at the lower level, a discrete-time MILP model solves the short
term scheduling problem using the recipes and targets from the top
level. An iterative procedure is required to handle possible infeasi-
bilities. The scheduling model is based on a resource-task-network
representation. The scheduling model does not consider multipur-
pose tanks (i.e. swing tanks) nor the delivery scheduling problem
(i.e. distribution or shipping problem).

Castillo and Mahalec (2014b) presented a three-level decom-
position approach to solve the gasoline blending problem using
discrete-time models at each level. They included recipe opti-
mization using linear or nonlinear models, blend size threshold
constraints, and most of the operational features described by Li
and Karimi (2011). The discrete-time formulation for scheduling
horizons of 1 or 2 weeks with 1-h time periods resulted in a large
size scheduling model at the 3rd level that required to be solved in
subintervals. These subintervals were solved sequentially, first in a
forward direction and then in a reverse direction. Solutions com-
puted by this approach were better and the execution times for
large problems were two orders of magnitude shorter than those
from previous works (Li et al., 2010; Li and Karimi, 2011). For most
of their nonlinear examples, their algorithm computed better solu-
tions than MINLP solvers BARON, ANTIGONE, and GloMIQO, with
execution times an order of magnitude shorter. Analogously to Li
and Karimi (2011), Castillo and Mahalec (2014b) did not penalize
the delivery of the same product order from different tanks.

This work introduces Multi-Period Inventory Pinch-Continuous
time algorithm (MPIP-C) for scheduling of processes described by
linear and nonlinear models. MPIP-C algorithm decomposes the
original scheduling problem into (i) blend recipe optimization, (ii)
approximate scheduling, and (iii) detailed scheduling. The 1st level
determines the blend recipes (by solving a discrete-time LP or
NLP model), and the 2nd level computes an approximate sched-
ule via discrete-time MILP. The time periods at the 1st level are
initially delineated by inventory pinch points {Castillo et al., 2013;
Castillo and Mahalec, 2014a). Discrete-time model for approximate
scheduling is a modification of a model used in our previous work
(Castillo and Mahalec, 2014a). The 3rd level model (i.e. the detailed
scheduling problem) is a continuous-time MILP which includes
additional constraints arising from the approximate scheduling
solution. If there are infeasibilities encountered at the 2nd or the 3rd
level, they are resolved by subdividing the corresponding periods
at the 1st level. The problem does not have a feasible solution if the
1st level is infeasible.

Therestof this articleis structured as follows. Section 2 presents
the problem statement. Section 3 presents an overview of the

105

algorithm and of the models used at each level. Section 4 describes
the examples used in this work. Section 5 discusses the results
obtained using the MPIP-C algorithm. As summarized in Section
6, the computational results show that the proposed MPIP-C algo-
rithm computes optimal or near-optimal solutions with execution
times which are much smaller (for both linear and nonlinear mod-
els)than those required by the full-space model.

2. Problem statement

The gasoline blend scheduling problem is summarized as fol-
lows:

Given a short-term scheduling horizon, a set of blend compo-
nents and their properties, a supply profile of blend components,
a set of products and their property specifications, a set of deliv-
ery orders for each product, a blending system (i.e. storage tanks,
blenders, and their interconnections) and its initial conditions,
determine (a) the blend recipes, (b) production and delivery
sequences, (¢) inventory profiles, and (d) swing tanks product allo-
cation, while minimizing the cost of the blended materials plus the
switching costs (i.e. number of blend runs, number of tanks deliv-
ering the same order, and product transitions in the swing tanks)
and the demurrage costs.

The blending system is subject to the following constraints:

1. If a blender is to produce a product, it must blend at least a
minimum amount.

2. A blender can produce at most one product at any time. Once it
begins blending, it must operate for some minimum time before
it can switch to another product.

3. A blender requires a minimum setup time during a product
changeover

4. A blender can feed at most one product tank at any time (indus-
trial practice).

5. Product tanks can only store one product at any time.

The assumptions made are:

1. Flow rate profile of each component from the upstream process

is piecewise constant.

. Component quality profile is piecewise constant.

. Perfect mixing occurs in each blender.

. There is only one tank for a given blend component.

. Only product tanks defined as swing tanks can change its product

service (i.e. change from storing one product to store another).

. Changeover times between products are negligible for swing

tanks.

7. For each blender, changeover times between product blending
are product-dependent but sequence-independent.

8. Each order involves only one product (one original order involv-
ing different products can be broken into orders of each specific
product).

9. Each order is completed during the scheduling horizon.

(S IS UL (8]

[=}]

For illustration, Fig. 1 shows a sample blending system with five
dedicated component tanks, two blenders, four product tanks (two
dedicated tanks and two swing tanks), and three different finished
products.

3. Inventory-pinch based scheduling algorithm combining
discrete-time and continuous-time models

This work employs a three-level decomposition of the prob-
lem as shown in Fig. 2, which is similar to the one presented by
Castillo and Mahalec (2014b) but it includes several important

PA. Castillo-Castille, V. Mahalec / Computers and Chemical Engineering 84 (2016) 611-626

Component tanks Product tanks Orders

All dedicated tanks .

Blenders -

2

m £

4 =

2 &
&
o
2
&

g N/ N T Pz

z e

[=3

£ :

P O N\m A :
=
g

= Il

= ~

2

£

2

~

Dedicated tank

Fig. 1. Sample gasoline blending system.

differences. In order to speed-up computations, there is no prod-
uct sequencing at the 2nd level, and the model at the 3rd level
employs a continuous-time formulation instead of a discrete rep-
resentation of the time domain. Since the proposed algorithm is a
continuous-time version of the multiperiod inventory pinch algo-
rithm, it is denoted as MPIP-C algorithm. In this section we describe
our decomposition approach and the equations required at each
level. Subscripts L1, L2, and L3 identify to which level a variable or
parameter corresponds.

3.1. Time grids, time slots, and the inventory pinch concept

The inventory pinch points (see Fig. 3) correspond to the
times where the cumulative average total production (CATP) curve

15t level
Blend Recipe Optimization
(1) Optimal blend recipes are computed using (non)linear
quality constraints.
(2) Individual tank capacities are aggregated as pools.
(3) Blenders are aggregated as one single blending unit.

t*

Infeasibility information

Blend recipes
¢ evel

Approximate Scheduling

(1y Approximate schedule for each blender is computed.
(2) Storage tank managernent (i.e. allocation of swing tanks
to specific products).

(3) Relation between product pools and individual tanks.

Blend recipes,

swing tank allocation, and

approximate schedule constraints
3% level

Detailed Scheduling

(1) Production and delivery rates are computed.
(2) Start and end times of tasks are determined.
(3) Individual blenders and tanks.

Infeasibility information

Fig. 2. Decomposition framework for blend scheduling.

changes its slope in order to remain above the cumulative total
demand (CTD) curve (Castillo et al., 2013; Castillo and Mahalec,
2014a). Product inventories are at the minimum allowed limits at
the inventory pinch points. The concept can be applied directly to
multiple products (i.e. the demand of all products is aggregated in
such case), and minimum inventory limits and target inventories
can be incorporated easily.

The algorithm starts at the 1st level with determination of the
inventory pinch points, which delineate the periods at thislevel (L1-
periods). Additional L1-periods are delineated by the times when
changes in the quality or price of the blend components take place.
Ifthere are no inventory constraints, optimal blend recipes between
the pinch points remain constant. Once blend recipes are computed
at the 1st level, they are used as fixed blend recipes at the 2nd level
to compute an approximate schedule viadiscrete-time MILP model.
The set of L1-periods is K={1, ..., k. ..., K—1, K}, and the set of
I2-periodsisM={1,...,m,....M—1, M}. Aninteger number of L2-
periods compose an L1-period and this is encoded in set KM= {(k,
m)}.

[2-periods are chosen based on operational decisions. [2-
periods must be long enough to complete the smallest allowed
blend run and they must be longer than the minimum time that a
swing tank may hold a specific product. [2-periods are not required
to have the same length. Time period boundaries of L2-periods are
delineated by the period boundaries from the 1st level, points in
time when the supply profile of blend components changes, and
by clock-time chosen by the scheduler. Additionally, it is impor-
tant to reduce as much as possible the number of order delivery
windows spanning more than one L2-period. This reduction of the
time delivery windows will decrease the number of binary variables
associated with the delivery of orders (i.e. zj3(j,0,m) and z13(j,0,1)).
The following guidelines help to determine if a time delivery win-
dow can be reduced:

1. The order can be fulfilled within the adjusted delivery window
by a single tank.

2. Adjustments to the time delivery windows should not move
existent inventory pinch points nor generate new inventory
pinch points (otherwise the minimum blend cost will increase).

3. Based on the previous guideline, delaying the start of a delivery
window is preferred instead of shortening the end time of the
window.

These guidelines are easy to check without solving an optimiza-
tion problem. Fig. 4 shows a graphical example where some of the
original delivery windows are contracted.

The 3rd level model uses a continuous-time formulation with
time slots and specific time grids for each unit. The continuous-time
model used in this work is the one presented in Castillo-Castillo
and Mahalec (2015) since it considers several key operational con-
straints without many discrete variables. The model as presented
in Castillo-Castillo and Mahalec (2015) is referred in this work as
the full-space model. Following the same principle as with the 1st
and 2nd levels, an integer number of time slots is associated with
an L2-period. Set MN={(m, 12)} is used to represent this informa-
tion. Egs. (1)-(3) indicate that the slots associated with [2-period
m should end within the interval of such L2-period. Note that the
first slot associated with L2-period i may start during m —1. Fig. 5
shows an example of the time grids at each level.

Tf;‘i(m— 1) = Tpealln) = Tf;d(m) Yiine N1, m:(m,n)e MN

(1)

Tfﬁ“i(mf 1) < Ty p3(,) = ngd(m) ¥i,ne N1, m:(m,n)c MN
(2)

106

PA. Castitlo-Castillo, V. Mahalec f Computers and Chemical Engineering 84 (2016)611-626

Delivery window

Demand [o2] [o410)] A
orders —
(quantity) ! 01 (mlm] . | 03l (30) |I |I 0510y |
L] L] T L] L] T |L
0 24 48 72 96 120 144 Time (hours)
80
60
Inventory pinch
Cumulative point
quantity
Initial product
inventory 0 Time (hours)
1% level N E=1 i k=12 " .
Recipe T v T 45h ™ Li-periods
determination
2md |evel y m=1 4 m=2 , m=3 ;, m=4 ; m=5 , m=6 g L2-periods
. T T T
Approximate 24h 24h 24 h 24 h 24h 24h
scheduling

Fig. 3. Example of an inventory pinch peint and time grids.

1) Original time delivery windows

06 N
05
Orders 04 AR
03 s
02 SRR
0]
_t
Scheduling horizon (days)
2) Selection of the L2-periods .
1 | ! i
06 _i ey ¢
05 ' |
04 i N
03 EEEEEE ! to
— 1
02 s L
o] 1 ! v
—
Scheduling horizon (days)
3) Adjusted time delivery windows
06 SRR
0s AR
04 PRI R
0 S
02 ERERR RN
Ol EEEEEE

Scheduling horizon (L2-periods)

Fig. 4. Time delivery windows can be adjusted according to the I2-period bound-
aries.

107

Tf;‘i(m — 1) = Ty 5(bl,n) = Tfé‘d(m) Vbhl,neN1, m:(m,n)eMN

3)

In this decomposition framework, the boundaries of the L2-
periods delineate the boundaries of the fixed time periods of the
continuous-time model from Castillo-Castillo and Mahalec (2015)
and they are used to define set ON={(o,n) | order o may be deliv-
ered during time slot 11} and set JON={(j,0,n) | tank j may deliver
order ¢ during time slot i}.

3.2. Optimizing operating conditions (LT level)

The 1st level determines which operating conditions are going
to be used at the following levels. For the gasoline blending prob-
lem, these operating conditions are the blend recipes. The 1st level
model uses a discrete-time formulation with no integer variables.
Depending on the blending rules being used, this model will be
either linear or nonlinear. We use the model presented by Castillo
and Mahalec (2014a) which uses the inventory pinch concept to
delineate the boundaries of the L1-periods, blenders are lumped
into a single one, and individual product tanks are modeled as
product pools. Only demand, product quality, inventory capacity,
and maximum blending capacity constraints are considered. The
solution of the 1st level model represents a lower bound for the
blend cost of the original problem (Castillo et al,, 2013, Castillo and
Mahalec, 2014a, 2014b) and it is imposed as such in the 3rd level
model.

In this work, some of the examples assume the research octane
number (RON) and the motor octane number (MON) as prop-
erties that blend nonlinearly following the ethyl RT-70 models
(Singh et al,, 2000; Healey et al., 1959). Such models define RON
and MON as functions of the blend components sensitivity (i.e.
sens(i) = Qpc(i,'RON") - Q. (i, MON")), and olefins and aromatics con-
tent. The model parameter values used by Singh et al. (2000) are:
a1=0.03224, a,=0.00101, a5 =0, a,=0.04450, a5 =0.00081, and

PA. Castillo-Castille, V. Mahalec / Computers and Chemical Engineering 84 (2016) 611-626

l“le,_ve] k=1 ‘ k ‘ _ Li-periods =
q Recipe ; N R}j Q;? 1, 2, or more
etermination F(,p, r{i, p, k) days long
1 1
| |
I |
| |
200 Jevel m=1_, m=2 | _m mtl | _ L2-periods=
Approximate 1 Q}ﬂ Q}j 12, 24, or more
scheduling hours long
*p(p.oL1) Xpo(D,BLim)
239,1) Zpa(f0.m)
o, 1) wraipm) Inventory tatgets
“ “ w for product tanks
! Time slots
1| 2 [3] 4 [5]s6]7 [# [l]
24}
3dlevel 5
|
Scheduling 5 1 [2[3] 4 [sls[7]~] »]w1 .|
1] 2 [3 TJTal 5ol ~ Talsr .|
1 ¥ Time horizon
$ 4 4
T(1) T2y Ty Tydmed)
L-interval 1 L-interval 2 L-interval L L-intervals =
1 or more days long
r=0 7541 Ti5™4(2)

Fig. 5. Graphical example of the proposed decomposition approach.

ag =—0.0645.Eqgs. (4)-(14)are appended to the 1st level model from
Castillo and Mahalec (2014a) for those specific examples.

(e k)= (i p k) Quli e k) Ye='RON.p k=1 (4)

i

(e k) =) (i p k) Quli e k) Ye='MON,p k=1 (5)

i

Olagu1(p K) = i1t . K) Queliye, k) Ve = OLF, p k21

i

(9

Arag (P)= (i p. k) Quellie k) Ye= AR, pok =1

i

(10)

sensaygr1(p, k) = Zm(i,p, k). sens() Vi,p, k=1 (8)
1' OBl (0, =" rnliop,) (ki e, K] Ve = OLF, p,k =1
sens®, (p, k) - Zm(t’, 2,k Oyl e, k) sens(f) Ve =/ RON, p. & = 1 (7 ! (11)
sensio (o, k) — Zm(t’, 2R Gl e k) sensti) Ve— MON, pk=1 (8) Argr, 4(p k)= Zm(i, Pk [Queli e, k)] We= ARO', p k> 1
i i
(12)
Qrri(poe k) =rEN (p, k) +ar (sensior (p, k) — 122N (p, k) senseyg 11(p, K))
2
taz (ozjfvg,u (2, k)~ [Olavg,a(p, 4]) -
2 2 4
s ([, 0,0 =2 [(0 0] [Wrpnn(e,)+ (Ao, 0]
Ye="RON',p, k=1
Qurrn(pyec k) = rMON, (p,)+ ag (senshO (p, k) — 10N (p, k) - sensag, 1 (p, K)
2
+as (0L, (28— [Ohagin(p. 0])
(14)

dg

+ (o000) (ritan(e 0] =2 (A2, 000 [Arsga (0, 1]+ [Arg (o, 1)

Ye = MON',p, k > 1

108

P.A. Castillo-Castillo, V. Mahalec / Computers end Chemnical Engineering 84 (2016) 611-626

3.3, Approximate scheduliing model (12 level)

The 2nd level determines an approximate schedule via a
discrete-time MILP model with fixed operating conditions as
defined by the 1st level solution. As mentioned in Section 3.1, the
L2-periods are selected depending on operational decisions. The
2nd level model links the product pools with individual tanks,
involves decisions such as product allocation of swing tanks, which
product and how much to blend in each blender, and which order
to deliver from each tank and how much, in each L2-period. More
than one product can be blended in each blending unit in a given
L2-period. Constraints such as minimum blend size, minimum run-
ning times and setup times for the blenders, inventory limits, and
minimum and maximum blendingrates are included in this model.
Egs. (16)-(22) are appended to the 2nd level model presented by
Castillo and Mahalec (2014a) in order to determine which tanks
will deliver specific demand orders and try to minimize the num-
ber of different tanks sending product to the same order. Eq. (15)
is the objective function when minimizing switching costs, which
includes a penalty for delivering an order from different tanks.

Eq. (15) minimizes the number of blend runs, product
changeovers in the swing tanks, and deliveries to the same order
from different tanks (during the same [2-period). Eq. (16) forces
all blenders to work at some point during the scheduling horizon
(this equation assumes that the number of blend runs required is
greater than the number of blenders). Eq. (17) establishes that the
delivered amount of a certain product from one tank is equal to the
delivered amount from that tank to the specific orders constituted
by that product, during a L2-period. Eq. (18) constraints the deliv-
ery of order o to be during a L2-period which contains completely
or partially the corresponding delivery window (i.e. the parame-
ter ofi2{o,m)=1 in such a case). Eq. (19) observes that a tank can
only deliver order ¢ if it is holding the type of product associated
with that order. Eq. (20) constraints binary variable z;5(f,o,n) to be
equal to 1 if the tank j is delivering order o during [2-period m. Eq.
(21) establishes that the delivered amount must be equal to the
demand. Continuous variable zej;(e,m) represents the number of
delivery runs from all tanks to order o during I2-period n, minus
one. Eq. (22) constrains the minimum value for zej»(o,m), which
is penalized in Eq. (15). The term -1 in Eq. (22) appears because at
least one delivery run is always needed from onetankif the decision
is to send product.

> calbl)-xialp, bl m)
(B, p)<BP

minz; =
; +> es(i) - wers(, m)
7

M

M
+cq- ZZZ&'LZ(O, m) (15)

m=1 o
M
xp2(p, B, m) =1 ¥h! (16)
m=1p:(p, bl)<BP
Delivery, 13(7, p, m) = Z Detiveryge2(, 0. m) Y@, ple]P,m=1 (17)
2:(p,0}PO

Veomp,13(8, bl n) > (r1(E p, k) = 81 - Vippong ;3 (bl n) — FRZ(D) - H - (1 — xg3(p, bi, n))

Deliver e 1201, 0, m) = Demand(0) - ofiz(0, m) ¥(j,0)eJO, m =1

(18)

Deliverggey 2(f, 0, m) < Demand(o] - ura(f, p, m)

V(. plelP,(j,0)£]0,(p,0) e PO, m = 1

(19]

Deliver e 12(f, 0, m) = Demand(o)

ziplf,oom) V(,0)eJo,m=1 (20)
M
Z Deltveronger, 120, 0, m) = Demand(c) Vo (21)
m=1j:(j, 0)JO
zer(o, m) = Z zia(j, 0,m) | —1 Yo, m=1 22)

J:U,0)€)0

3.4, Continuous-time scheduiing model (L3 level)

The 3rd level scheduling model is based on the full-space model
presented in Castillo-Castillo and Mahalec (2015). After solving the
1st and 2nd levels, there is some information that can be integrated
into the 3rd level model. The operating conditions from the 1stlevel
(i.e. the blend recipes), the swing tank allocation, and the approx-
imate production and delivery schedule from the 2nd level can be
fixed. This will reduce the model size and lead to shorter execu-
tion times. For large problems it may be more desirable to use a
time-based decomposition of the scheduling horizon, i.e. the hori-
zonis subdivided in smaller intervals which are solved in sequence.
Note that since the blend recipes, the swing tank allocation, and
the approximate production and delivery schedule are fixed, the
solution from the 3rd level scheduling model will be always equal
to or higher than the optimal solution from the original full-space
model.

3.4.1. Fixing the blend recipes

Different scheduling problems in the literature consider the use
of preferred blend recipes and, from an operational point of view,
keeping the blend recipes as constant as possible may be desired.
At the 3rd level, we fixed the blend recipes to be equal to those
computed at the 1st level. Egs. (23) and (24) are added in order to
fix the blend recipes according to the 1st level solution, i.e. riq (1,p,k).
Equations corresponding to product composition and quality con-
straints are dropped from the continuous-time scheduling model
at the 3rd level since the blend recipes are fixed. Therefore, the
3rd level scheduling model is always a MILP, even if the full-space
is a MINLP model (i.e. it uses nonlinear blending equations). The
set KN={(k, n)} indicates which time slots are within each L1-
period (it can be constructed from the intersection of sets KM and
MN). A small tolerance factor 87 is included in order to account for
numerical differences between the levels, e.g. in our case studies
d1=1x105,

(23]

Wip,bl)e BP, ne N1,k :(k n)e KN

V.

comp, 136, b 1) < (71 (6 py kY4 81) - Vigens 3 (b,)+ FR(BE) - H - (1 = xg3(p, b, 1)

(24)

¥(p,bl)eBP,ne N1,k :(k,n)c KN

109

PA. Castillo-Castille, V. Mahalec / Computers and Chemical Engineering 84 (2016) 611-626

Eq. (25) constrains the last blend slots of an L1-period to be
equal to the time when such L1-period ends (i.e. when the blend
recipe changes). Eq. (6) is required to compute a feasible solution
more easily when using the time-based decomposition described
in Section 3.4.5.

Ty r3(bl, n) = Tf{‘d(k) Vbl k n:(k n)e KNend (25)
3.4.2. Fixing the swing tank atlocation

By exploiting the fact that the tank allocation is known from
the 2nd level solution, before solving the 3rd level model, binary
variable up3(f,p,it) becomes a parameter by fixing its values using
the following relationship: ups(j,p.i2)=up(j,p,m), ¥(j,p)JP, ne N1,
m:(m, n)e MN.

3.4.3. Reducing the number of possible production sequences

It may be possible to infer that, during a subinterval of the hori-
zon, only some specific products are (or are not) required to be
produced. The solution from the 2nd level is used to implement
this idea. Eq. (26) is added in order to constrain the scheduling
model to the 2nd level solution. This reduces the number of possible
production sequences.

xp3(p, B, n) < xg2(p, B, m) Y(p,bl)cBP,n< N1, m:(m,n)c MN
(28)

3.44. Reducing the number of possible delivery sequences

The approximate delivery schedule can be used to construct set
JON. Variable z;5(j,0,m) from the 2nd level is equal to 1 if prod-
uct tank j delivers material to order o during L2-period m, and 0
otherwise. Therefore, set JON={(j.on) | z;5(j.o,m)=1 for (j0)<JO,
(m,n)= MN} in the MPIP-C algorithm.

3.45. Time-based decomposition

Although the reduction of binary variables, use of fixed recipes,
and constraints from the approximate scheduling decisions allow
to solve larger problems (meaning e.g. larger horizons, more differ-
ent products, swing tanks, blenders), at some point the model size
will become large enough that the execution times will become
prohibitive once again. In such a case, we use a time-based decom-
position of the scheduling horizon, i.e. the horizon is partitioned
in subintervals denoted as [-intervals, and these subintervals are
solved sequentially starting from the first one. This approach does
not guarantee global optimal solutions but will lead to good quality
solutions very rapidly.

An integer number of L2-periods constitute one L-interval and
set LM = {(!, m)} indicates such relation. The time slots associated
with those [.2-periods become associated with the corresponding
L-interval. Analogously to the full-space continuous-time model,
the following sets are defined for each L-interval model:

NO; = {n | all the time slots belonging to L-interval i}

N1;={n| all the time slots belonging to L-interval /, minus the first slot of the
L-interval}

N2,;={n| all the time slots belonging to L-interval /, minus the last slot of the
L-interval}

N3;={n| all the time slots belonging to L-interval i, minus the first and last slots
of the L-interval}

0y ={0 | order o can be delivered within L-interval I according to the 2nd level
solution}

Sets NOy, N1;, N2y, N3;, and Oy replace the previous sets N0,
N1, N2, N3, and O, respectively, in the continuous-time scheduling
model from Castillo-Castillo and Mahalec (2015) in order to solve
the model only for L-interval i. Eq. (27) fixes the end time for the
last unit slots in an L-interval. Fig. 5 shows an example of the time

horizon at the 3rd level decomposed into L-intervals. Note that, in
order to link the L-intervals, the last slot of an L-interval is the first
slot of the next L-interval.

The rald, n) = Tpr 3l n) = Ty ga(bl, n)
= TZ4(1) ¥ij,bL1 n:(,n)<LNend (27)

3.4.6. Product inventory targets

When solving the scheduling problem with more than one L-
interval and using only the sequential approach, extra constraints
are required in order to reduce backtracking due to infeasible solu-
tions. Since both the 1st and the 2nd level are solved for the entire
horizon, their solutions provide global information. We have cho-
sen the product inventory levels at the end of each L-interval and
at the end of each recipe regimen to match those from the cor-
responding 2nd level solution, since the component tanks will be
then associated by the fixed blend recipe. Therefore the set of time
slots that require these constraints is Ntarget={n | nnis the last slot
of an [-interval or the last slot before the blend recipe changes}.

Egs.(28)and (29)are added in order to fix the product inventory
levels from the 2nd level solution. A small factor 5 is included in
order to account for numerical differences between the levels, e.g.
in our case studies §3=1 = 1076,

Vi3, m) 2 Vo85G, m) — 62

Vi3, m) = Vo85G, m) + 62

Wi, n e N1j, n < Ntarget (28)
Wi, n e N1j, n < Ntarget (29)

Where V;frfgto, n) is equal to the inventory level of tank j of
the L2-period associated with the end of an L-interval, or a recipe

change, computed at the 2nd level.
As an example, the following sets are found in Fig. 5:

INend ={(1,2},(2,n)}

Ntarget={2, 4,7}

KM={(1,1),(1,2), (k,m), (k,m+1)}

MN={(1,1).(1,2).(2,3),(2,4), (m,5), (m,6), (m, 7)., tm+1,.. ., (m+1,n)}

KN = pairs of elements (k, 1) from the intersection of sets KM and MN.

IM={(1,1),(2,2),(2,m), (2, m+1}}

NO._; ={0,1,2}, N1y, ={1,2}, N2, = {0, 1},and N3y, ={1}.

N0, ={2,3,4,5,6,7,...,n},N1;,={3,4,5,6,7,.. ., n}, N2, ={2,3,4,5,6,7,
....n—1},andN3%-={3,4,5,6,7,...,n—1}.

Regarding the set Ntarget, slot 2 appears in this set because it
is the last slot of an L-interval, while slot 4 appears because recipe
changes afterwards, and slot 1 for both previous reasons.

3.4.7. Versions of tie 3rd level scheduling model

The 3rd level continuous-time scheduling model is denoted
as F-NoSimRD or F-SimRD, depending on the operational sce-
nario regarding simultaneous receipt and delivery by product
tanks. “SimRD” means that simultaneous receipt{delivery by
product tanks is permitted, and “NoSimRD” indicates that simul-
taneous receipt/delivery by product tanks is not allowed. The
“F? stands for fixed recipes. Model F-NoSimRD is constituted by
model L-NoSimRD (Castillo-Castillo and Mahalec, 2015), minus
the composition and quality constraints, plus Egs. (1)-(3), and
(23)-(29). Similarly, model F-SimRD is constituted by model
L-SimRD (Castillo-Castillo and Mahalec, 2015), minus the compo-
sition and quality constraints, plus Egs. (1)-(3) and (23)-(29).

The 3rd level model is solved in three phases: a feasibility check,
an optimization phase, and the schedule adjustment step.

For the feasibility check, the scheduling model is denoted as
F-SimRD-feas (or F-NoSimRD-feas). The cost coefficients ¢z, ¢z, c3,
and ¢y are equal to zero, i.e. the objective is to find only a feasible
solution.

110

P.A. Castillo-Castille, V. Mahalec / Computers and Chemical Engineering 84 (2016) 611-626

Construct cumulative demand curve,
determine location of inventory pinch points

¥

Define initial LI-periods

¥

Define L2-periods

)

Add new time period
boundary at the 1¢t

Solve 1* level model ‘

F 3

T

Stop. Problem is
infeasible

Yes

Ne

Fix blend recipes.
Set product inventory targets for last
L2-period within each L/-period

!

Slacks < E?

Solve 21 level model
- Feasibility check -

Yes

Solve 27 level model
- Minimizing switching costs -

End

Fig. 6. MPIP approximate scheduling flowchart.

For the optimization phase, all the cost coefficients are used, i.e.
the objective is to minimize materials, switching, demurrage, and
slack costs. The model is denoted as F-SimRD-opt (or F-NoSimRD-
opt).

Model F-SimRD-adj (or F-NoSimRD-adj) is employed for the
scheduling adjustment procedure to reduce blending rates vari-
ations. In this model, production and delivery sequences are fixed
and the objective function minimizes the differences between the
average and actual blending rates.

3.5. MPIP-C scheduling aigorithm steps

The main steps of the MPIP-C algorithm can be divided into two
loops. The inner loop computes the blend recipes and approximate
schedule by iterating between the 1st and 2nd level models until
the sum of slack variables are equal to or less than the tolerance
#. This inner loop is denoted as the MPIP approximate scheduling
algorithm and it is shown in Fig. 6 (Castillo and Mahalec, 2014a).
Summarizing Section 3.1, the initial boundaries of the L1-periods
are based on:

* Inventory pinch points.
* Changes in the quality of blend components.
+ Changes in the cost{price of components/products.

And the boundaries of the [2-periods are selected based on:

* Time period boundaries from the 1st level.
* Changes in the supply profile of blend components.
* Order delivery windows.

111

+ Minimum time expected for a swing tank to be in one specific
service (i.e. holding one specific product).

« Minimum time expected to complete the smallest blend run
allowed.

The outer loop, shown in Fig. 7, deals with the solution of the
3rd level model, determines the number of time slots to obtain
a feasible solution or if the blend recipes need to be updated by
adding one more L1-period and resolve the 1st level model, thus
returning to the inner loop.

If desired, solution from the MPIP-C algorithm canbe used as the
starting point for the full-space model, which can then be solved via
MILP of global MINLP solver. At the beginning of their calculations,
these solvers compute rapidly the optimality gap corresponding to
the MPIP-C solution; if the optimality gap is sufficiently small, the
calculation can stop at that point.

4. Test problems and computing machine used in this study

All the required models were implemented in GAMS IDE 24.3.2.
CPLEX 12.6 was used for MILP models, and BARON 14.0.3 and
ANTIGONE 1.1 were employed for MINLP models. CPLEX 12.6 and
ANTIGONE 1.1 were selected for LP and NLP models at the 1st level,
respectively. All problems have been solved on DELL PowerEdge
T310 (Intel® Xeon® CPU, 2.40GHz, and 12 GB RAM) running Win-
dows Server 2008 R2 OS.

Two sets of test problems have been used in this study:

Test set #1 is composed by a subset of problems from Li and
Karimi (2011): Example number 3, 4, 7, 8, 9, 12, and 14. Sched-
uling horizon is 8 days, linear blending constraints are employed,
and component tanks have different supply flowrates along the

PA. Castillo-Castille, V. Mahalec / Computers and Chemical Engineering 84 (2016) 611-626

Start

Add new time period
boundary at the 1% level

MPIP Approximate Scheduling

[

i

Set initial # of time slots, i.e. N, and # of
L-intervals to solve the 3% level,
Construct set Ntarget

¥

Fix tank allocation and constrain
according to delivery plan by constructing
set JON

Solve model F-SimRD-feas

for L-interval !

Seti=I+1

Heuristic rule to increase
time slots

No
Stacks = &}
Solve model F-SimRD-opt Yes

for each L-interval,
sequentially and starting with /=1

Blend and delivery sequences are fixed.

¥

Adjust blending rates using
model F-SimRD-adj, for entire horizon.

End

Fig. 7. MPIP-C scheduling algorithm flowchart.

horizon. Quality properties under specification are RON, Reid vapor
pressure, sulfur content, specific gravity, aromatics content, olefin
content, benzene content, oxygenates, and flammability limit.
According to Li and Karimi (2011), they use the same addition
bases and index correlations as Li et al. (2010); therefore, only sul-
fur content and oxygenates blend on a weight basis. However, Li
and Karimi (2011) do not consider specific gravity in example 3,
hence in this work sulfur content is assumed to blend linearly on a
volumetric basis in example 3. Table 1 shows a description of the
blending system for each example.

Test set #2 is composed by example number 4, 8, 12, and 14
from Li and Karimi (2011); however, RON and MON properties are
considered to blend nonlinearly following the ethyl RT-70 models.
RON index correlation from Li et al. (2010) was used to compute
the actual RON values and product specifications. Li and Karimi
(2011) do not specify MON values, and these were assumed in this

Table 1
Summary of the examples from Test Set #1 and #2 (Li and Karimi, 2011).
Example #Blenders # Orders # Products # Product # Quality
1D tanks properties
(weight basis)
3 1 12 4 11 5
4 1 15 4 11 9(2)
7 1 20 4 11 9(2)
8 2 20 4 11 9(2)
9 2 23 5 11 9(2)
12 2 35 5 11 9(2)
14 3 45 5 11 9(2)

work. For simplicity, MON minimum product specifications were
set equal to zero in order to observe only the effect of the RON
constraintin the optimum. RON and MON values and specifications
are shownin Table 2.

Fig. 8 shows the cumulative curves for example 12 and exam-
ple 14. Examples 3, 4, 7, 8, 9, and 12 have a single inventory pinch
point at time T=190h, while example 14 does not have an inven-
tory pinch point. Therefore, examples 3-12 require two L1-periods
(boundary between them at 190 h mark), and example 14 only one
L1-period (entire scheduling horizon).

Table 3 shows the L2-periods, their corresponding time slots,
and the orders that can be delivered during each L2-period. Note
that for examples 3-12, the start of the last [.2-period matches the
inventory pinch point location.

Table 2
RON and MON values for examples from Test Set #2.

Property Blend components
C1 Cc2 C3 C4 [T] Cc7 Cc8 co
RON 75 90.3 956 973 83 100 115 118 81
MON 66 808 805 917 74 100 109 100 72
Product specifications [min, max|
P1 P2 P3 P4 P5
RON [95,200] 196,200] [94,200] 190,200] [98,200]
MON [0,200] [0,200] [0,200] [0,200] [0,200]

112

P.A. Castillo-Castillo, V. Mahalec / Computers end Chernical Engineering 84 (2016) 611-626

a) b)
~ woof 1 g -
= = 1200 1
o =4
4 ——CTD n e
g 80f catp 1 g
E: =
G S 800
> 600} 1 &
3 =
=1 600
&= &=
v 400f 1 %
2 240
= =
5§ 200f Il}ventory , E - |
o] pinch point =
0 L L L L L L 1 Q 0 1 1 L L 1 L il
0 24 48 72 96 120 144 168 192 0 24 48 72 96 120 144 168 192
Time (h) Time (h)
Fig. 8. Cumulative curves and inventory pinch points for (a) Ex. 12 and (b) Ex. 14.
5. Computational performance of MPIP-C algorithm 5.1. Testset #1
Castillo-Castillo and Mahalec (2015) showed that their Simultaneous receipt and delivery by product tanks are consid-
continuous-time full-space blend scheduling model enables exact ered in this case. Table 4 shows the model size of the full-space
solutions of medium-size models when there are no penalties model, and the models at each level of the MPIP-C algorithm,
for multiple deliveries from the tanks. Global optimal solutions for examples from Test Set #1 when employing the data from
become much more difficult to compute when minimum num- Table 2. Since the examples have very similar cumulative curves,
ber of multiple deliveries from the tanks is desired, and when 1st level model size does not change significantly. 1st level model
using nonlinear blending equations. MPIP-C algorithm represents size increases with the number of products required to be blended
an alternative to compute good quality solutions for those cases and and with the number of L1-periods. It can be seen that the 3rd
with short execution times. This section summarizes the results of level model has approximately half of the total number of binary
MPIP-C algorithm. variables required by the full-space model.
Table 3
12-Periods, time slots, and orders that can be delivered in each period (Test Set #1 and #2).
Ex L2-Period Duration (h) Slots Orders that can be delivered
1 100 1,2 01-07,012-015
3.4 2 90 3-5 08-011
3 2 6 -
1 80 1-5 01-07,012-019
7 2 70 6,7 08
3 40 8 08-011,020
4 2 9 -
1 80 1-3 01-07,012-019
5 2 70 4,5 08
3 40 6,7 08-011,020
4 2 8 -
1 50 1,2 01-07,012-019
9 2 70 3.4 08,021
3 40 5.6 08-011, 020,022,023
4 2 7 -
1 24 1,2 01-04,013,015,019,033
2 26 2.4 05-07,012,013, 015,019,033
3 26 5.6 014-018,023
12 4 24 7.8 027,028
5 20 9,10 021,024,029-032
6 30 11,12 08,034,035
7 40 13 08-011,020,022, 023,025,026
8 2 14 -
1 24 1,2 01-04,013,015,019,026
2 26 3.4 05-07,012,013,015,019,026
3 26 5.6 014-018,026
14 4 24 7.8 -
5 20 9,10 021,024,045
6 30 11,12 08,027-031
7 42 13 08-011, 020,022,023, 025,032-044

113

PA. Castillo-Castille, V. Mahalec / Computers and Chemical Engineering 84 (2016) 611-626

Table 4

Model size of the full-space model, and the models at each level of the MPIP-C algorithm, for Test Set #1 (linear examples).
Example ID 3 4 7 3 9 12 14
Full-space linear model L-SimRD-opt
Slots 6 6 9 5 7 14 13
Eqgs 6730 7756 15,252 15,725 13,958 27,007 33,309
Cont 1946 2188 3873 3653 3263 7166 7889
Bins 397 433 304 728 642 1194 1276
MPIP-C 1st level model (recipe optimization)
L1-periods 2 2 2 2 2 2 1
Eqgs 423 487 487 487 588 588 316
Cont 185 185 185 185 224 224 120
MPIP-C 2nd level model {approximate schedule)
12-periods 3 3 4 4 4 8 7
Eqs 2305 2560 3870 4343 4880 12,648 13,151
Cont 1155 1248 1800 2052 2366 5539 5790
Bins 393 447 699 827 924 2511 2666
MPIP-C 3rd level model F-SimRD-opt (detailed schedule)
Slots 6 6 9 3 7 14 12
Eqs 5361 5785 11,042 11,622 10,209 19,788 24,643
Cont 1361 2027 3550 3379 3059 6794 7551
Bins 164 178 372 378 316 528 698

#Eqs = number of equations, #Cont = continuous variables, #Bins = number of binary variables.

Table 5 presents the results for test set #1. For small prob-
lerns (examples 3-9) MPIP-C computes optimal results, while for
examples 12 and 14, the results have 0.13% and 0.09% optimality
gaps, respectively. The optimality gap was computed by provid-
ing MPIP-C solution as a starting point to the full-space model; the

first reported lower bound by CPLEX corresponds to the MPIP-C
solution. Execution times for small problems are of the same order
of magnitude as those for the new version of the full-space MILP
model (Castillo-Castillo and Mahalec, 2015). For large problems,
the execution times for MPIP-C algorithm are significantly smaller.

Table 5
Full-space and MPIP-C results, SimRD scenario, not penalizing deliveries (¢, = 0). Test Set #1 (linear examples).

Ex. Algorithm Obj. func. value (x10%$) Gap (%) Blend cost #BR #TST # DR Total CPU time (s)

3 MPIP* 31791 0 31391 2 0 19 14.2
Full-Space” 31791 0 31391 2 0 17 26
MPIP-C 31791 0 31391 2 0 18 16
FS-WS 31791 0 31391 2 0 18 2.4

4 MPIP* 4576.7 0 4536.7 2 0 23 16.2
Full-Space” 4576.7 0 4536.7 2 0 20 23
MPIP-C 4576.7 0 4536.7 2 0 21 1.7
FS-WS 4576.7 0 4536.7 2 0 21 26

7 MPIP* §120.3 0 5040.3 4 0 29 17.0
Full-Space” §120.3 0 5040.3 4 0 31 63.1
MPIP-C 51203 0 5040.3 4 0 29 49
FS-W5 51203 0 5040.3 4 0 29 28

3 MPIP* 51203 0 5040.3 4 0 28 17.3
Full-Space” 51203 0 5040.3 4 0 28 378
MPIP-C 81203 0 8040.3 4 0 26 59
FS-WS 81203 0 8040.3 4 0 26 42

9 MPIP* 10,818.8 0 10,7043 5 1 30 332
Full-Space” 10,818.8 0 10,7043 5 1 32 834
MPIP-C 10,518.8 0 10,704.3 5 1 29 5.1
FS-WS 10,518.8 0 10,704.3 5 1 29 42

12 MPIP* 15,281.7 0.13 15,147.2 6 1 42 129
Full-Space” 15,281.7 0.13 15,147.2 6 1 49 43,200°
MPIP-C 15,2817 0.12 15,1472 6 1 46 11.9
FS-W5 15,261.7 0 15,1472 5 1 45 418

14 MPIP* 21,181.4 0.08 21,046.9 6 1 53 323
Full-Space” 21,161.4 0 21,046.9 5 1 62 12,106
MPIP-C 21,181.4 0.09 21,046.9 6 1 53 19.7
FS-WS 21,161.4 0 21,046.9 5 1 53 1611

F5-WS=full-space model with warm start (MPIP-C solution as starting point).

#BR =number of blend runs, #TST = number of transitions by swing tanks, #DR = number of delivery runs.

2 MPIP scheduling algorithm solution from Castillo and Mahalec (2014b).
? Full-space model solution from Castillo-Castillo and Mahalec (2015).
¢ Reached maximum allocated time.

114

Blender

Product Tank

P.A. Castillo-Castillo, V. Mahalec / Computers end Chernical Engineering 84 (2016) 611-626

Quantity (kbbl)
PI[| P2ES P P P
To product tank Tl#
15 75 116 55 86 110
B —— 0l =
6 5 3 1 10 2
129
AT —
4
L L L L ! ! L)
0 24 48 72 96 120 144 168 192
Time (h)
Fig. 9. Blend schedule for Ex. 12, Test Set #1, SimRD, MPIP-C solution.
033112
L o
08 (5
o1 1o o Qoun oRdwm
04(10)
013 122) 010
033 (%) 06 (5)
| o17(10)
o18(4)
023 05(3) 012020) 024 (8) 021 (20) 022 (40)
- P O3 3) P=—015 20 o = —
oe 019 (21) = 032 (20) = 025 (20)
o7 016 (20) 031(15)
F] = = o093
019 (39) = 020 (26)
0133 0283 29(15
| 013 39) 03 22513 010 08)
20 (14
- [==]
011 (60)
L —
= 023 20)
014(15) 027 (20) 035 (30) == (26 (30)
- = = e § =
o 034 20)
Order (Quantity in kbbl)
1 1 1 1 1 1 1]
0 24 48 72 96 120 144 168 192
Time (h)

Shown in Table 5 are also the solutions which are obtained
by providing MPIP-C result as a starting point to the full-space
continuous-time model (row “FS-WS”). Using this procedure,
example 12 was solved to optimality in 11.9s+418s=430s,
while example 14 was solved to 0% optimality gap

Blender

Fig. 10. Delivery schedule for Ex. 12, Test Set #1, SimRD, MPIP-C salution.

in ple 12, while Figs. 11

19.7s+1,611s=1631s. Thisis significantly faster than the full-space
model without starting point.

Figs. 9 and 10 show the production and delivery sched-
ule, respectively, computed by MPIP-C algorithm for exam-

and 12 show the corresponding

Quantity (kbbly
Pi[] P P P
To product tank Tk#
90 116 Bé
B — Ll
3 3 10
129 6 45 21 10 83
Ar = = — J
4 1 2 1 2 1
1 1 1 1 1 1 1 1
0 24 48 72 96 120 144 168
Time (h)

Fig. 11. Blend schedule for Ex. 12, Test Set 41, SimRD, FS-WS solution.

115

PA. Castillo-Castille, V. Mahalec / Computers and Chemical Engineering 84 (2016) 611-626

Tk11 | O4(10)
033 (2)
Tk10 porgy §°00 SIEE peas O8Es
=033 (17)
o | 028 (3) 029(15))
L O17(10)
TkS. D,018(2J
_g w7 b 033 (0 08 (1)
; Thé. 015 20) 02130) o1 0y
] [019 (28) 2024 (6) =025 (20)
I3 015 (20) =032 20)
& TkS. fO23) =
019 (5)
Tha, | 26D otIch S
Tz, b 033 05 03113 [e6)
107 (3) ——=020(40)
= 012 20) 034200
Tk2. | = 01817 = 0011 (5)
=035 (30)
T b Q1415 027 (20) OL1 (55)
Order (Quantity inkbbl) = 023120
= 026 (30)
1 1 1 1 1 1 1
[24 48 72 96 120 144 168 192
Time (h)

Fig. 12, Delivery schedule for Ex. 12, Test Set #1, SimRD, FS-WS solution.

schedules obtained by the FS-WS approach for the same
example.

5.2, Test set #2

For these examples, it is assumed that simultaneous receipt and
delivery by product tanks is not allowed. Table 6 shows the model
size of the full-space model, and the models at each level of the
MPIP-C algorithm, for examples from Test Set #2 when employing

Table 6
Maodel size of the full-space model, and the models at each level of the MPIP-C
algorithm, for Test Set #2 (nonlinear examples).

Example ID 4 8 12 14
Full-space nonlinear model N-NoSimRD-opt

Slots 6 8 14 13
#Egs 6169 12,297 22,699 27,729
Cont 2028 3536 7005 8088
Bins 433 728 1194 1276
Nonlinear terms 156 416 728 1014
MPIP-C 1st level model (recipe optimization)

L1-periods 2 2 2 1
Eqs 591 591 718 381
Cont 273 273 334 175
Nonlinear terms 64 64 80 40
MPIP-C 2nd level model {approximate schedule)

12-periods 3 4 8 7
Eqs 2560 4343 12,648 13,151
Cont 1248 2052 5539 5790
Bins 447 827 2511 2666
MPIP-C 3rd level model F-NoSimRD-opt {detailed schedule)

Slots 6 8 14 13
Eqs 4376 9462 17,436 21,064
Cont 1881 3137 6516 7238
Bins 178 378 532 695

#Egs = number of equations, #Cont = continuous variables, #Bins = number of binary
variables.

the data from Table 2. It can be seen that the number of binary
variables of the full-space model is the samefor linear and nonlinear
models (see Table 4) since the difference is only the addition of
equations and continuous variables for the octane blending model.
Compared with the linear cases, the nonlinear 1st level model has
more equations and continuous variables; however, the 2nd level
model has the same size in both cases (this is expected since the
2nd level model only depends on the number of L2-periods). The
size of the 3rd level model depends on the solution from the 2nd
level; therefore, it is not significantly affected by using a linear or
nonlinear blending model. Once again, the 3rd level model needs
around 50% of the total number of binary variables required by the
full-space model.

The stopping criteria for Test Set #2 examples is 0.01% opti-
mality gap or the maximum allocated time. Table 7 shows the
results from the full-space MINLP model, MPIP-C algorithm, and
the full-space MINLP model with MPIP-C solution as starting point.
ANTIGONE is used to solve the 1st level model of the MPIP-C
algorithm. Although the full-space model computes solutions with
small optimality gaps, it may require more than 900s to find
solutions with gaps smaller than 5%. For the large-scale problem
(example 14), MPIP-C algorithm computes a solution within 1% of
the optimum in 24 s, while ANTIGONE and BARON require 12055
and 3634 s, respectively, to compute a solution within 5% of the
optimum. When using the MPIP-C solution as starting point for the
full-space model, only examples 4 and 8 (small problems) can be
solved to proven optimality within the allocated time.

Table 8 shows the execution times at each level of the MPIP-C
algorithm for examples 4, 8, 12, and 14, for both linear and nonlin-
ear cases. It can be seen that the 2nd and 3rd level execution times
are very similar in magnitude (2nd and 3rd levels are always linear),
while the 1st level execution times increased at least 6 times when
the nonlinear blending equations are employed. This suggests that
using more complex nonlinear blending models will only affect the
1st level execution times, since the 2nd and 3rd level use fixed
recipes.

116

P.A. Castillo-Castille, V. Mahalec / Computers and Chemical Engineering 84 (2016) 611-626

Table 7

Full-space and MPIP-C results, NoSimRD scenario, not penalizing deliveries (¢4 = 0). Test Set #2 (nonlinear examples).

Ex Algorithm MINLP solver ~ Obj. func. value Gap (%) CPU time (s) to reach: Blend cost #BR #TST #DR
(x10°8) Stop criteria Final upper bound Opt. gap<5% (x10°8)
Full-Space* ANTIGONE 4633.0 0.01 856 856 141 4593.0 2 0 21
Full-Space* BARON 4633.0 0.01 15 15 11 4593.0 2 0 21
4 MPIP-C - 4632.7 - 3 3 - 45927 2 0 22
FS-WS ANTIGONE 4632.7 0.01 121 0 0 45927 2 0 22
FS-WS BARON 4632.7 0.01 7 0 0 45927 2 0 22
Full-Space* ANTIGONE 8205.4 0.03 10,800% 9246 380 81254 4 Q 28
Full-Space* BARON 8207.4 0.05 10,800% 1388 79 81274 4 Q 26
[MPIP-C - 8203.1 - 6 6 - 81231 4 Q 28
FS-WS ANTIGONE 8203.1 0.01 1209 Q Q 81231 4 Q 28
FS-WS BARON 8203.1 0.01 16 0 0 81231 4 0 28
Full-Space* ANTIGONE 15,406.8 0.16 43,200° 43,054 907 15,2723 6 1 42
Full-Space* BARON 15,453.1 0.45 43,200° 7933 7933 15,3186 6 1 45
12 MPIP-C B 15,402.6 B 17 17 B 15,268.1 6 1 44
FS-WS ANTIGONE 15,402.6 0.13 43,200° Q Q 15,268.1 6 1 44
FS-WS BARON 15,402.6 0.13 43,200° Q Q 15,268.1 6 1 44
Full-Space* ANTIGONE 21,283.1 0.19 43,2000 12,838 1205 21,1286 7 1 56
Full-Space* BARON 21,497.7 1.20 43,2000 7204 3634 21,383.2 5 1 56
14 MPIP-C - 21,263.1 - 24 24 - 21,1286 6 1 55
FS-WS ANTIGONE 21,263.1 0.09 43,200° 0 0 21,128.6 6 1 55
FS-WS BARON 21,263.1 0.09 43,200° 0 0 21,128.6 6 1 55

F5-WS=full-space model with warm start (MPIP-C solution as starting point).

#BR =number of blend runs, #TST = number of transitions by swing tanks, #DR = number of delivery runs.

2 Full-space model solution from Castillo-Castillo and Mahalec (2015).
* Reached maximum allocated time.

Table 8
Comparison of the execution times at each level of the MPIP-C algorithm.
MPIP-C level CPU time (s)
1st level 2nd level 3rd level
Solver CPLEX CPLEX CPLEX
Test Set #1 (linear)
Ex. 4 0.123 0.354 1.192
Ex. 8 0.185 0592 5.169
Ex. 12 0.200 3612 5.088
Ex. 14 0.145 4912 14.658
MPIP-C level CPU time (s)
Ist level 2nd level 3rd level
Solver ANTIGONE CPLEX CPLEX
Test Set #2 (nonlinear)
Ex. 4 0.766 0.268 1.222
Ex. 8 0.890 0.387 4.475
Ex. 12 2.652 3.460 10.125
Ex. 14 1.605 5.423 16513

6. Conclusions

In this paper we have presented Multi-Period Inventory
Pinch scheduling algorithm with Continuous-time model used for
detailed scheduling (MPIP-C scheduling algorithm). The algorithm
uses inventory-pinch concept to decouple optimization of the blend
recipes from the combinatorial aspects of scheduling. It also com-
bines the strengths of discrete-time models (what to produce, in
which time period, and how much to produce, where to store,
where from to deliver) with continuous-time model capabilities
to compute accurately when to start or to stop an operation.

Multi-period inventory pinch, an essential feature of MPIP-C
algorithm, enables computation of approximate schedule by itera-
tions between the top two levels. The 1st level optimizes a linear
or nonlinear blending model (LP or NLP, respectively) and the 2nd
level optimizes approximate scheduling model (MILP) with fixed
recipes from the 1st level.

117

For small size scheduling problems and linear blending rules,
MPIP-C algorithm requires execution times of the same magnitude
as the reduced-size full-space continuous-time model (Castillo-
Castillo and Mahalec, 2015). However, as the problem size grows,
decomposition employed by MPIP-C enables computation of opti-
mal or near optimal solutions within very short amounts of time.
In addition, the execution times for the full-space model grow very
rapidly. Rapid convergence of MPIP-C algorithm makes possible
to use its solution as a starting point for a full-space model. For
medium size problems such approach leads to an optimal solution
within 1 h or less. However, for large problems the global optimum
still cannot be computed within 12 h. Execution times for MPIP-C
are determined by the speed of solving the nonlinear problem at
the top level. If more elaborate nonlinear models are used at the
1stlevel, they will only increase the computational times at the 1st
level but not at the 2nd and 3rd levels.

Due to the structure of MPIP-C algorithm, we expect that even
larger problems can be solved efficiently. This is possible as long
as the approximate schedule (2nd level) is computed very rapidly,
since the approximate scheduling solution can be used to parti-
tion the time horizon at the 3rd level into smaller intervals. If
these intervals are small, their continuous-time models can be
solved very rapidly. Even though MPIP-C algorithm is heuristic in
nature, most of the solutions obtained are at least as good as the
results obtained by full-space models over much longer execution
times.

Acknowledgments

Support by Ontario Research Foundation and McMaster
Advanced Control Consortium is gratefully acknowledged.

Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http:/{dx.doi.org/10.1016/j.compchemeng.
2015.08.005.

PA. Castillo-Castille, V. Mahalec / Computers and Chemical Engineering 84 (2016) 611-626

References

Bassett MH, Pekny JF, Reklaitis GV. Decomposition techniques for the solution of
large-scale scheduling problems. AIChE] 1996;42(12):3373-87.

Birewar DB, Grossmann IE. Simultaneous production planning and scheduling in
multiproduct batch plants. Ind Eng Chem Res 1990;29:570-80.

Casdllo PA, Kelly D, Mahalec V. Inventory pinch algorithm for gasoline blend plan-
ning. AIChE | 2012;59(10):3745-66.

Castillo PA, Mahalec V. Inventory pinch based, multiscale models for inte-
grated planning and scheduling — part I: gasoline blend planning. AIChE]
2014a;60(6):2158-75.

Casdllo PA, Mahalec V. Inventory pinch based, multiscale models for inte-
grated planning and scheduling — part II: gasoline blend scheduling. AIChE]
2014b;60(7):2475-97.

Casdllo-Castillo PA, Mahalec V. Improved continuous-time model for gasoline blend
scheduling. Comput Chem Eng 2016;84:627-46.

Chen X, Wang N. Optimization of short-time gasoline blending scheduling
problem with a DNA based hybrid genetic algorithm. Chem Eng Process
2010;49:1076-83.

Glismann K, Gruhn G. Short-term scheduling and recipe optimization of blending
processes. Comput Chem Eng 2001;25:627-34.

Gothe-Lundgren M, Lundgren JT, Persson JA. An optimization model for refinery
production scheduling. Int] Prod Econ 2002 ;78:255-70.

Healey WC, Maasen CW, Peterson RT. A new approach to blending octanes. In: Proc.
24th meeting of American Petroleum Institute’s Division of Refining; 1959.

Jia Z, lerapetritou M. Mixed-integer linear programming model for gasoline blend-
ing. Ind Eng Chem Res 2003;42:825-35.

JiaZ, lerapetritou M. Efficient short-termscheduling of refinery operations based on
a continuous time formuladon. Comput Chem Eng 2004;25:1001-19.

Kolodziej 5P, Grossmann IE, Furman KC, Sawayac NW. A discretization-based
approach for the optimization of the multiperiod blend scheduling problem.
Comput Chem Eng 2013;53:122-42.

Li], Karimi IA. Scheduling gasoline blending operations from recipe determination
to shipping using unit slots. Ind Eng Chem Res 2011;50:9156-74.

Li],Karimi IA, Srinivasan R. Recipe determination and scheduling of gasoline blend-
ing operations. AIChE] 2010;56:441-65.

Li], Misener R, Floudas CA. Continuous-time meodeling and global optimiza-
tion approach for scheduling of crude oil operations. AIChE | 2012;58:
205-26.

Mendez CA, Grossmann IE, Harjunkoski [, Kabore P. A simultaneous optimization
approach for off-line blending. Comput Chem Eng 2006;30:614-34.

Pinto JM, Joly M, Moro LFL. Planning and scheduling models for refinery operations.
Comput Chem Eng 2000;24:2259-76.

Shah NK, lerapetritou MG. Short-term scheduling of a large-scale oil-refinery oper-
ations: incorporating logistic details. AIChE | 2011;57:1570-84.

Singh A, Forbes JF, Vermeer P], Woo SS. Model-based real-time optimiza-
tion of automotive gasoline blending operations.] Process Control 2000;10:
43-58.

Terrazas-Moreno S, Grossmann IE. A multiscale decomposition method for the
optimal planning and scheduling of multi-site continuous multiproduct plants.
Chem Eng Sci 2011;66:4307-18.

Wolpert DH, Macready WG. No free lunch theorems for optimization. [EEE Trans
Evol Comput 1997;1(1:67-52.

WuD,lerapetritou MG. Decomposition approaches for the efficient solution of short-
term scheduling problems. Comput Chem Eng 2003;27:1261-76.

Zhao], Wang N. A bio-inspired algorithm based on membrane computing
and its application to gasoline blending scheduling. Comput Chem Eng
2011;35:272-83.

118

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Chapter 7: Global Optimization Algorithm for Large-Scale Refinery
Planning Models with Bilinear Terms

This chapter has been published in the Industrial & Engineering Chemistry Research
Journal. Complete citation:

Castillo Castillo, P. A., Castro, P. M., & Mahalec, V. (2017). Global optimization
algorithm for large-scale refinery planning models with bilinear terms. Industrial &
Engineering Chemistry Research, 56(2), 530-548. American Chemical Society, doi:
10.1021/acs.iecr.6b01350

Permission from © American Chemical Society.

119

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Chapters 2-6 show the development steps of a heuristic algorithm (i.e., MPIP-C). In
Chapter 7, a deterministic global optimization algorithm for mixed-integer bilinear
programs is presented. This method computes estimates of the global solution by solving
an MILP relaxation of the original model. The relaxation is derived using either
Piecewise McCormick or Normalized Multiparametric Disaggregation. By increasing the
number of partitions, and reducing the domain of the variables, the estimates of the global
solution are improved. The case study used in Chapter 6 is an oil refinery planning
problem.

120

ISEC

pubs.acs.org/IECR
re S ear C

Global Optimization Algorithm for Large-Scale Refinery Planning
Models with Bilinear Terms
Pedro Castillo Castillo,” Pedro M. Castro,*® and Vladimir Mahalec’

+Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4A7, Canada

*Centro de Matematica Aplicagdes Fundamentais e Investigacio Operacional, Faculdade de Ciéncias, Universidade de Lisboa,
1749-016 Lisboa, Portugal

© Supporting Information

ABSTRACT: We propose a global optimization algorithm for mixed- dornteyeherettn R
integer nonlinear programming (MINLP) problems arising from oil o

refinery planning. It relies on tight mixed-integer linear programming
(MILP) relaxations that discretize the bilinear terms dynamically using
either piecewise McCormick (PMCR) or normalized multiparametric
disaggregation (NMDT). Tight relaxations help finding a feasible
solution of the original problem via a local nonlinear solver, with the
novelty being the generation of multiple starting points from CPLEX’s
solution pool and the parallel execution. We show that optimality-
based bound tightening (OBBT) is essential for large-scale problems,
even though it is computationally expensive. To reduce execution
times, OBBT is implemented in parallel. The results for a refinery case
study, featuring units with alternative operating modes, intermediate
storage tanks, and single- and multiple-period supply and demand
scenarios, show that the algorithm’s performance is comparable to commercial solvers BARON and ANTIGONE.

. INTRODUCTION can be avoided by assuming the processes to be linear,
inaccuracy of the resulting model can make the solution unsuit-
able for real life applications (i.e., infeasible) or suboptimal.
Commercial software based on linear programming (LP) or
successive linear programming (SLP) techniques have allowed
computation of production plans for large-scale refinery plants;
however, global optimal solutions cannot be guaranteed with
such strategies. Several production planning models and
optimization algorithms have been developed by researchers
in this area, focusing on increasing the accuracy of the planning
models and/or the performance of the solution algorithms.
Bengtsson and Nonas® and Shah et al." present an overview
of the improvements and challenges found on the different
planning levels (i.e., strategic, tactical, and operational) of oil

Oil refineries are composed of several intertwined complex refinery operations. . . L :
physical and chemical processes. For sunpllc1t¥ they are The current trend in production planning is to use nonlinear

commonly divided into three main sections: '~ crude oil programming model§ to capture the nature of the processes
unloading and mixing section, processing units, and the involved. Moro. etal’ represet.]ted a processi.ng unit. employing
blending and shipping of final products. Refineries operate in a general nonlinear m<.>del w1.th the ff)llowmg ‘v.arlables: feed
a highly competitive and dynamic market where significant flow rate, feed properties, umt. operating condltlo.ns, pro.duct
variations can occur in product demand and crude oil prices, flow rates, and product properties. They tested their nonlinear
and their profit margins are relatively small compared to other approach using a diesel plant from Petrobre‘ns RPBC as
industries (e.g,, pharmaceutical). In addition, they must operate an example, and they computed a better solution than the

under strict safety, environmental, and governmental regu-

A petroleum refinery plant transforms the raw crude oils into
valuable products that are found almost anywhere in our
everyday life such as liquid fuels, plastics, oils, solvents, asphalt,
and many chemicals used in production processes across
different type of industries. As a brief description, a petroleum
refinery separates the crude oil into several fractions with
different quality properties (e.g., density, sulfur content, octane
number, etc.). These fractions are subsequently converted into
intermediate products through various reaction and/or separa-
tion processes, and finally, intermediates are sold, sent to another
chemical plant (e.g, production of polyethylene, polystyrene),
or used as blend components for liquid fuels (e.g, gasoline,
kerosene, diesel).

lations. For these reasons, production planning is an important Received: April 8, 2016
and widespread tool in oil refineries. One of the main issues Revised: December 6, 2016
regarding production planning of an oil refinery is the nonlinear Accepted: December 16, 2016
nature of the processes involved. Although these nonlinearities Published: December 16, 2016
ACS Publications @ 2016 American Chemical Society DOI: 10.1021/acs.iecr.6b01350
W Ind. Eng. Chem. Res. 2017, 56, 530—548

121

Industrial & Engineering Chemistry Research

then-current situation {plan made on the basis of prior experi-
ence and manual calculations). Neiro and Pinto® presented a
general modeling framework for a refinery system by using the
general unit model from Moro et al.® and adding mathematical
models for storage tanks and pipelines. This framework was
based on a discrete-time, mixed-integer nonlinear programming
{MINLP) formulation. Li et al.” developed and integrated
nonlinear models for the crude distillation unit (CDU) and the
fluidize-bed catalytic cracker {FCC) into the refinery planning
problem. For the CDU, they employed a swing cut method
where the size of the swing cuts were determined using true
boiling point (TBP) data of the feed and the cut-points of the
different CDU operating modes. For the FCC, the product
fractions were correlated to the conversion of the FCC. In both
units, the quality properties are calculated using nonlinear
correlations. Alhajri et al.® proposed a swing cut method for
the CDU based on a polynomial formulation, and fractional
polynomials for the processing unit models. Elkamel et al’
extended their work to optimize the production plan of a
refinery while reducing the carbon dioxide emissions. Alattas
et al" presented a multiple-period MINLP model for the
refinery planning problem using a nonlinear model for the
CDU based on the fractionation index of a distillation column.
In contrast to the swing cut methods, the fractionation index
model incorporates thermodynamic principles such as relative
volatility and phase equilibrium. Zhang et al."' developed a
multiple-period MINLP model that aims to optimize the
production plan of a refinery site accounting for the material
and energy requirements. Nonlinearities appear in the pour point
blending equations.

Some linear programs have been published as well, especially
for problems incorporating uncertainty or integrating schedul-
ing decisions. Pongsakdi et al."” described a linear program
for the refinery planning problem by employing a fixed-yield
approach for all units, and by fixing the quality properties to
average values obtained from plant data or constraining them
with linear inequalities. This LP model was used as the basis
to develop a stochastic model that considers uncertainty in
the demand forecasts. Kuo and Chang'® presented a multiple-
period mixed-integer linear programming (MILP) model for
the short-term planning of the petroleum supply chain. The
model considered crude-oil procurement activities, refinery
sites, and distribution centers. However, quality properties were
assumned to be fixed because no quality blending equations were
included.

Given that linear models are not accurate encugh to
represent the processing units in the oil refineries, the current
trend to increase the use and complexity of the nonlinear
models is expected to continue. However, one of the main
issues is that these nonlinear models are nonconvex; therefore,
traditional convex optimization techniques are not suitable if
the global optimum is required.

1.1. Global Optimization of Mixed-Integer Nonlinear
Problems. Nonlinear programming {NLP) models are usually
handled with commercial local nonlinear solvers such as
CONOPT, MINOS, and KNITRO. These type of solvers are
gradient-based, which means that they can stop at a local
optimum depending on the starting point. Convex MINLP
models can be solved to global optimality with algorithms
based on branch-and-bound strategies, outer-approximation,
generalized benders decomposition, and extended cutting

plane methods; and with commercial solvers like DICOPT,

122

ALPHA-ECP, and SBB. A review on MINLP solution strategies
can be found in D’Ambrosio and Lodi'*

The need for global optimal solutions has increased the use
of stochastic and deterministic global optimization strategies.

Stochastic global optimization methods usually explore the
feasible region of the problem using a population of solutions.
On the basis of the global and/or local information retrieved
by the current and previous populations, and according to the
rules of the specific algorithm, new elements of the popula-
tion are created to replace some of the existing solutions.
The idea is that after several major iterations, the population
will move toward the global optimal solution. Some examples
of these methods are genetic algorithms, particle swarm
optimization, differential evolution, memetic algorithms, ant
colony optimization, and scatter search. The main disadvantage
of stochastic global algorithms is that the quality of the final
solution after a finite number of iterations, or finite amount
of time, is not known; ie, there is no guarantee that a global
optimum has been found. Several reviews and surveys on
stochastic global optimization methods can be found in the
literature.

Deterministic global optimization algorithms require to
compute not only good feasible solutions but also estimates
of the best possible solution of the problem. The latter is
obtained by following the construction of a convex relaxation of
the original nonconvex problem. The solution of such convex
model represents an estimate of the best possible solution of
the original nonconvex problem {i.e., the global optimum). The
main idea in global optimization algorithms is to reduce the
difference between the best feasible solution and the estimate of
the best possible solution to a nonzero tolerance e. To compute
better estimates of the global optimum, the quality (tightness)
of the relaxed model is usually increased by employing a spatial
branch-and-bound framework, by adding cuts, by reducing the
domain of the variables, and/or by increasing the number of
partitions in the case of piecewise relaxation techniques. Feasible
solutions are commonly computed using information from the
convex model solution. Floudas and Gounaris'® present an
overview of the recent developments in deterministic global
optimization techniques.

Convex relaxations are obtained by replacing the nonlinear
terms and/or equations in the original model with correspond-
ing convex underestimators {and overestimators). Convex
relaxations can be obtained using the re-formulation-ineariza-
tion technique (RLT)IE’17 or BB convex underestimators.®"’
The tightest convex under and overestimators are called convex
envelopes, and they have been formulated for some specific
nonlinear terms. For instance, in the case of bilinear terms, i.e.,
x,%,, the set of linear constraints known as the McCormick
envelopes,” provide the tightest relaxation.”">

Because the maximum difference between the original
bilinear term x,x, and its corresponding McCormick envelopes
is proportional to the area of the domain,"* ie, (= Bl — D),
bound tightening techniques {also known as domain reduction
techniques) applied to the variables involved in the bilinear
terms can improve the tightness of the McCormick envelopes.
Another option to improve the relaxation is to discretize one of
the variables from the bilinear term into NP partitions and, for
each partition, generate the associated McCormick envelopes.
This approach is known as piecewise McCormick relaxation
{(PMCR). Because this method requires the introduction of
binary variables, there is a trade-off between the quality of the

DOI: 10.1021 facs.iecr.6b01350
ind. Eng. Chem. Res, 2017, 56, 530-548

Industrial & Engineering Chemistry Research

relaxation (better quality = more partitions = more binary
variables) and the computation effort required to compute it.
Given the maturity of MILP solvers, the current trend for
solving nonconvex NLP and MINLP problems with only
bilinear and quadratic terms is to employ piecewise linear
relaxations. Figure 1 shows the shape of the bilinear term

r

Figure 1. (a) Nonconvex function xx, (b) corresponding Mc-
Cormick envelopes, and {c) piecewise McCormick relaxation with
three partitions.

%%, in the [0, 1]* domain, the corresponding McCormick
envelopes, and a uniform, univariate, piecewise McCormick
relaxation.

Andrade et al.”’ presented a multiple-period NLP model that
computes the flows and quality properties of all streams in a
refinery network, the tank inventories, and the operating mode
of the units, to maximize the profit. Bilinear terms appear in
the property balance equations to explicitly determine the value
of the quality properties of the streams. To solve this problem,
they relaxed the bilinear terms using standard McCormick
envelopes, thus deriving a LP model whose solution is an
upper bound of the problem. Several initial points for a local
nonlinear solver were generated by perturbing the LP solution.
After a predefined number of iterations, or if the optimality gap
was less than the tolerance, the algorithm stopped. However,
because the relaxed model is solved only once at the beginning
of their algorithm, the optimality gap tolerance might not be
met. In spite of this, the authors pointed out the importance
of computing good feasible solutions relatively fast, and having
at least one estimate of the global optimum.

Faria and Bagajewicz” developed a global optimization
algorithm based on a piecewise linear relaxation of the
nonlinear model that can contract the bounds of variables
involved in bilinear terms and concave functions, individually
and/or simultaneously, with several variants. The general idea
to tighten the bounds of different variables at the same time is
to forbid the specific partitions where the current MILP
solution is located (adjacent partitions could be forbidden too),
and then resolve the MILP model. If the new solution is
worse than the previous one (ie., the global optimum is in
the forbidden region), then the bounds of the variables are
contracted to those defined by the forbidden intervals, the
new domain is repartitioned and the procedure is repeated.
‘When the bounds can no longer be contracted, the number
of partitions can be increased or the algorithm can switch

123

to a branch-and-bound strategy. One of the novelties of their
method is that their bound contraction technique can be
applied to variables not being partitioned by the piecewise
relaxation scheme. They compare different partitioning
strategies for the relaxation of bilinear and concave functions
and apply their algorithm to water management and pooling
problems.

Castro™ proposed a bound tightening method for the non-
partitioned variables in a piecewise McCormick relaxation.
The idea is to determine the upper and lower bounds of the
nonpartitioned variables for each partition by solving several
instances of an LP model derived from the convex relaxation of
the original NLP problem (one for each bound of a variable).
In general, results show that this method computes smaller
optimality gaps than conventional piecewise McCormick relaxa-
tion and without too much extra computational effort with a
small number of partitions.

Misener et al.”® developed a piecewise linear relaxation of
the bilinear terms where the number of binary variables
increases logarithmically with the number of partitions. In this
formulation, if the number of partitions is NP, then the number
of binary variables required by the relaxation method is
log,(NP). They integrated this relaxation scheme into a global
optimization algorithm and compared its performance with a
MILP formulation derived from the disjunctive program
representing the piecewise McCormick relaxation. They applied
their algorithm to several types and instances of the pooling
problem. They concluded that the linear relaxation scheme is
better for less than eight partitions, and that the logarithmic
scheme is more advantageous for a larger number of partitions.

Kolodziej et al”” presented the derivation and formulation
of the multiparametric disaggregation technique (MDT) for
bilinear terms, a piecewise linear relaxation where the number
of binary variables increases logarithmically with the number of
partitions by log;o(NP). Kolodziej et al.”* applied MDT to the
gasoline blend scheduling problem and showed that this
discretization technique can use different numerical bases (not
only 10). Castro and Grossmann®” presented an optimization-
based bound tightening (OBBT) method for the variables
involved in bilinear terms that relied on the MDT rather than
the standard McCormick relaxation.

With MDT, the number of partitions depends not only
on the discretization resolution but also on the domain of
the variables (i.e, x and a"). This is not desirable in global
optimization algorithms because the domain of the variables is
usually reduced with optimization-based tightening methods,
feasibility-based tightening methods, and/or spatial branch-
and-bound (B&B) strategies. To always discretize the interval
[0, 1], Castro™ developed the normalized multiparametric
disaggregation technique (NMDT). For the same discretization
level, the number of partitions is the same for every discretized
variable even if their domain is different. NMDT thus becomes
conceptually similar to the univariate and uniform piecewise
McCormick relaxation, while having the advantage of being
more efficiently computationally for 10 or more partitions.

1.2. Main Features of New Global Optimization
Algorithm. We now propose a global optimization algorithm
for MINLP problems with bilinear terms restricted to the
product of continuous variables. The main element is to rely on
a MILP relaxation from either PMCR or NMDT. Starting with
a small number of partitions for each discretized variable,
typically 4 for PMCR and 10 for NMDT, the MILP relaxation
is solved by commercial solver CPLEX to compute the lower

DOI: 10.1021/acs.iecr.6b01350
Ind. Eng. Chem. Res. 2017, 56, 530548

Industrial & Engineering Chemistry Research

bound, taking advantage of its solution pool feature to generate
a few good initialization points. Multiple instances of a NLP
version of the original MINLP {derived after fixing the binary
variables to the values from the MILP solutions) are solved in
parallel by a fast local solver, to maximize the likelihood of
finding the global optimal solution. Every time a new upper
bound is found, optimality-based bound tightening featuring
the standard McCormick relaxation is performed to further
reduce the variables’ domain. This stage also takes advantage of
the GAMS parallel and distributed grid computing option to
minimize the clock wall time, at the expense of weaker bounds
compared to those that would be obtained after going through
the variables sequentially. GAMS is a modeling system for
developing and solving optimization problems using mathe-
matical programming techniques.

The iterations of the algorithm involve small increments in
the number of partitions per variable. The goal is to be able
to improve the quality of the relaxation without using too
much time, so that low optimality gaps can be computed. The
algorithm terminates when time runs out or the gap becomes
lower than the given tolerance. Compared to commercial §Ioba1
optimization solvers BARON®' and ANTIGONES’® the
new algorithm explores piecewise relaxation and optimality-
based bound tightening methods to a greater extent {more
partitions per variable with all bilinearly appearing variables
subject to OBBT), which can be viewed as an alternative to
spatial B&B.

The rest of the paper is organized as follows: the refinery
planning problem is defined in the next section and the
associated MINLP planning model is presented in section 3.
Subsequently, the mathematical models for the subproblems of
the global optimization algorithm are described in section 4.
The proposed algorithm is delineated in section 5, with the
remaining sections containing the data used in our example
problems, the numerical results, and the conclusions.

2. PROBLEM DEFINITION
2.1. Refinery Planning Problem. The refinery planning

problem that we address in this paper is stated as follows:

Given

A planning horizon [0, H]| discretized in time periods n of
known length L,.

A set of crude oils, their quality properties {e.g, crude assay),
and supply profiles.

A set of finished products {e.g, gasoline, diesel, kerosene},
their quality specifications, and demand along the planning
horizon.

A set of storage tanks and their maximum, minimum, and
initial inventories.

A set of blenders and their minimum and maximum blending
rates.

Processing units {i.e, crude distillation unit, hydrotreaters,
catalytic reformer, etc.) with minimum and maximum
production rates and their operating modes.

The interconnections between all the processing units and
storage tanks {i.e, the refinery network is fixed).

Determine

The production volumes in each unit, each mode, and each
time period.

The storage tank inventories at the boundaries of the time
periods.

The volume blended of finished products in each blender
and time period.

124

While

Minimizing the total cost (cost of raw materials plus
operating cost), if all the product demand is fixed, or

Maximizing the profit {sales revenue minus total cost), if at
least one product demand is not fixed.

General assumptions

Quality properties of crude oils, alkylate, and s-butane
streams arriving to the refinery, are known and fixed.

Each crude oil has a dedicated storage tank.

Each product grade has a dedicated storage tank.

Initial product inventories are within quality specifications.

Tanks can receive and deliver material during the same time
period.

Perfect mixing occurs in the blenders.

In the blenders, quality properties of the products are
computed using weighted-averages, on either a volumetric or
weight basis.

Time periods can represent days, weeks, or months.

2.2. Specific Assumptions. We present a general formula-
tion for the output flows and output qualities of the units. Each
unit can have its specific model. The ones that we employ in
this work have the following assumptions:

The crude distillation unit employs a fixed yield method and
the qualities of the distillation cuts are computed using linear
blending equations.

For the other processing units, the yield and output qualities
{except specific gravity and sulfur content) are fixed.

Minimum and/or maximum constraints for the quality
properties of the inlet streams to the units are not enforced.

Because time periods can represent days, weeks, or months,
we do not force a single product in each blender per time
period, nor a single operating mode in a unit with multiple
modes. A scheduling model will thus be required to address the
feasibility of the production plan but it is beyond the scope of
this paper.

3. REFINERY PLANNING MCDEL

The model is based on a discrete-time formulation and can
be classified as a nonconvex, mixed-integer nonlinear model,
due to the presence of bilinear terms and binary variables.
The notation used in this section is presented at the end of the
paper; however, we describe next some of the most important
sets, indices, parameters, and variables in the model. Note that
an index takes all its possible values unless otherwise indicated.
The quality balance equations have been written in a way that
avoids trilinear terms.

Time periods are represented by set N = {n}, streams are
represented by set § = {s}, blenders by B = {b}, storage tanks
by T = {¢}, all other units by U = {u}, and the quality properties
by Q = {g}. Set § (streams) not only includes the physical
streams present in the actual refinery network but also can
represent individual blend components and products. Set U
includes splitters, mixers, distillation columns, separators, and
reactors. Set U does not include blenders or storage tanks.
Source and demand nodes are considered as subsets of S. Inlet
streams of units, tanks, and blenders are represented by sets UI
= {{u, 5)}, TI = {{t, 5)}, and BI = {(b, 5)}, respectively. In the
same way, outlet streams are represented by sets UQ, TO, and
BO. Because distinct materials flow through specific streams,
it is not necessary to track all quality properties in all streams.
For example, if a stream goes to the gasoline pool, then it
is not necessary to compute cetane index for that stream.

DOI: 101021 /acs.iecr.6b071350
ind. Eng. Chem. Res. 2017, 56, 530-548

Industrial & Engineering Chemistry Research

Set SQ = {(s, q)} indicates which quality properties are tracked
in each stream.

The length of a time period # is defined by parameter L,
Variable VS, is the volumetric flow through stream s during
time period n. Variable VU, ,, is the velumetric flow fed to unit
u during n. The value of quality property g in stream s during
period n is represented by variable QS,, . The inventory level
of tank £ at the end of period # is denoted by variable VT, ,.
Figure 2 shows the unit representation employed in this work.

VSSI.U VSS4 A

QSsl Guh QS.H.(].H
Unit & .

VSan VU, VSSS'“

o — Specific OS54
model

Vs - » VS.;G.::

S OSi6gn
O34

{{n:sl),(n, 52) (u, 53)} cUI {(z.r, s4), (u,55), (H,A‘G)} U0

Figure 2. Unit representation used in this work.

The specific models employed in each unit can be found in the
Supporting Information.

3.1, Objective Function, When product demand is fixed,
the objective is to minimize the total cost {eq 1), which is
defined in eq 2. When product demand is not fixed, eq 1 should
be min Z = —profit. Equation 3 is used to compute the profit,
whereas eq 4 calculates the sales revenue. Equations 5—9
calculate the other cost terms.

min Z = Total cost 89)]

total cost = materials cost + HT cost + PU cost

+ CDU cost + inventory cost (2)
profit = revenue — total cost (3)
revenue = Z Z PS VS,

n SEDST (4)

materials cost = Z E CSVs, ,
i sESRC (5)

PUcost = 3. 3 CUVL,,
n weEPU (6)

CDUcost= ., 3 CUNVU,,
weCDU (7)

HTcost = 3. ¥ CURSUL,,
W wEHTU (8)

inventory cost = Z Z IC(VT, , — VT;™)
W &)
3.2. Source Nodes. Volumetric flow from the source
nodes must be between the minimum and maximum available
amounts, as stated by eq 10. The qualities of the source streams
are fixed to prespecified values (Le., they are assumed to be
known); see eq 11.

AR VS < APT Vs €SRC (10)

Qs,,, = QS5 VmsESRC g (sq) € 5Q (11)

3.3. Destination Nodes (Demand Nodes). Volumetric
flow into the destination nodes must be between the minimum
and maximum demand requirements, as per eq 12. We do not
enforce quality constraints on demand nodes because by
imposing the minimum and maximum quality specifications on
the blenders’ output and assuming an initial on-spec material
in the tanks, the streams into the demand nodes will be within
specifications.

D" < VS, < DN

51 s = Yen

V n, s € DST (12)

3.4. Blenders. Before describing the equations related to
the blenders, note that index s’ is an alias of index s (i.e.,, both
represent streams from set §). Material balance around a
blender is given by eqs 13—15. Equation 16 states that if
product s is to be blended, then the blender must produce an
amount greater than the minimum specified, VBg,". Maximum
blending capacity is enforced by eqs 17 and 18. Binary variable
bvb,, is equal to 1 if product stream s is blended during period
n, and © otherwise. Note that eqs 16 and 17 force VB, to be
equal to zero if bvb,, is 0.

VBs’,n = Z VBCS,\'",}! Von, b, §'s (bl 5,} € BO

s:(b,s)EBI
(13)
Y VBC,,=VS, Vnbs(bs)€BI
s':(b,s')EBO
(14)
VB, = VS, Vb, s (bs)€BO (15)
VB,, > VBS'bvh,, Vo, b, s: (b, 5) € BO (16)
VB, , < VBRy™L,bvb,_, ¥ n, b,s: (b, s) € BO
(17)
> VB, <VBRJ™L, Vb
s:(b,s)EBO (18)

An estimated blending time is calculated using eqs 19 and 20.
In case the minimum blending rate VBR;" is equal to 0, then
eq 19 is not included in the model {in this work we consider
nonzero values). Equation 21 ensures that the total blending
time of blender b during period # is not greater than the length
of such time period.

VB
TB,, < é:ﬁm Y u b s (bs) €BO
" VBR, (19)
VB
TB,, > ——— ¥n, b5 (bs) €BO
S, VBR?M il (ji) (20)

Z TB, <L Vo, b

n— n

s:(b,s)EBO (21)

Equation 22 constrains the product composition between the
minimum and maximum specified limits.

BRVVB, , < VBC,, , < BRUZVB, |

Yn, b, s: (b s)eBLs:(bs)eBO (22)

We assume that the quality properties blend linearly, on
either a volumetric basis or a weight basis, eqs 2326,

DOI: 10.1021/acs.iecr.6b01350
Ind. Eng. Chem. Res. 2017, 56, 530548

Industrial & Engineering Chemistry Research

QVBCS,S’,qm = VBCS,s’mQSs,qm

Vo, b, s: (b s) €BLs": (b s') €BO,q: (s, q) €SQB

(23)

QMBCS sty = QVBCS ' nQSS Ysg¥yn

¥ n, b,s: (b, s) €BLs: (b ') €BO,

q € {qlqg € QLW A g: (s, q) € SQB} (24)
QSIVE,, < D, QVBC < QSTIVE,,

’ 5:(b,5)EBL . ’

Vo, b s (b ¢) € BO,

q€{qlg € QLV A ¢: (¢, q) € SQB} (25)
(lgs’,g Z QVBCS,S’,”Sg”,H S Z QIVIBCS,s/,g,n

s:(b,s)EBL 5:(b,s)EBL
Qi X QVBC ..
s:(b,s)EBT

¥ n, b, s': (b, s') € BO,

q € {qlqg € QLW A q: (s, q) € SQB} (26)
Note that although variables VBC,,,, VB, QVBC .,

QMBC,g .., TB,,, and bvb,, are related to the blenders, the
subscript b is not employed in our notation. The reason is that
such variables are related to the corresponding blenders by sets
BI, BO, and SQB.

3.5, Storage Tanks. The material balance around a tank is
given by eqs 27 and 28. The minimum and maximum inventory
levels are respected by including eq 29. Equation 30 ensures
that the total withdrawal rate must be between the minimum
and maximum limits. Equations 27—-30 are used for all storage

tanks.

DOVS, +VIF =V + Y VS,
s:(f,8)ETL s (t,s") ETO

Vin=1 (27)

> VS, 4+ VT, =VL, + VS,
s:(f,s)ETL s (6,5) ETO

Vin>1 (28)
VIP" < VT, < VIT* Vi n (29)
VIR™L, < VS, S VIR™L, Vi n

s5:(t,5) ETO
(30)

Equation 31 defines the quality of the outlet streams of a
tank as a function (which may be represented by a set of
equality and/ or inequality constraints) of the quality of the inlet
streams, the quality of the initial inventory, the volumetric Jows
of the inlet streams, and the initial and final inventory levels.
Note that the quality of the initial inventory is represented
by the quality of the outlet stream of the previous period
(i.e,, perfect mixing in the tank is assumed).

126

stﬁm = gl(Q-Ss‘,qm’QSs,q,n—l’

Vo t,s:(t,s) € TO,s": (t,5') € TL q: (5, q) € 8Q
(31)

The actual form of eq 31 depends on the specific model
employed in each tank (Supporting Information).

3.6. Processing Units with a Single Operating Mode.
As mentioned at the beginning of section 3, set U does not
include blenders nor storage tanks. The remaining processing
units in the refinery network can be classified depending on
their function {e.g, crude distillation columns, mixers, splitters,

VT, VT i)

hydrotreating units, etc.} and based on their different number
of operating modes {e.g, single or multiple). The equations
presented in this subsection are defined for all units with a
single operating mode (ie, u € SMU).

The volumetric flow fed to a unit during a given time period
is defined by eq 32. The feed must be between the minimum
and maximum processing capacities of the unit, as stated by
eq 33. Equations 32 and 33 are written for all units with a single
operating mode.

VU= D VS, Vnu€SMU
2:(u,3) UL (32)
VURP™L, < VU, < VURJ™L, Vo, u € SMU
(33)

The volumetric flow of an outlet stream from unit u is
defined as a function of the individual inlet flows, the total feed
flow to unit #, the quality of the individual inlet streams, and/or
other operating variables.

VS, = gZ(VSS/m,VUM,Q_SS,,W,..,)
Vo, u € SMU, s: (u,s) € UOQ, s": (u,s") € UI,
q: (s, q) € SQ

The value of quality property g in outlet stream s of unit w is
defined as a function of the quality of the individual inlet
streams, the individual inlet flows, the total feed flow to unit u,
and/or other operating variables.

Qs =g(Qs,, VS, VU, ,.)

Vo, u € SMU, s: (u,s) € UQ, s": (u,s") € UI,
q: (s,) € SQ (38)

The actual form of eqs 34 and 35 will depend on the specific
unit under consideration {Supporting Information). As an
example, in the following subsections we show the models
employed in this work for the splitters and the crude distillation
unit {i.e, we assume these units have a single operating mode).

3.6.1. Splitters. The splitter model is very simple. Equation 36
constrains the total outlet flow of the splitter to be equal to its
total feed. Equation 37 establishes that the quality of the outlets
is identical to the quality of the inlet. The entire model for
a splitter is constituted by eqs 32 and 33 and egs 36 and 37.
Note that eqs 36 and 37 are the actual form of egs 34 and 35,
respectively, when applied to a splitter.

>ovs,, =

5:(u,3) EUO

(34)

VU,

U,

Y n, uesSP
(36)

DOI: 10.1021/acs.iecr 6601350
Ind. Eng. Chem. Res. 2017, 56, 530-548

Industrial & Engineering Chemistry Research

Sygart

Qs e Vn,u€ SP,s: (u,s) € UQ,

s (u,s") € UL q: (s, q) €8Q (37)
3.6.2. Crude Distillation Units. The CDU is described here

using a simple fixed yield model with a single operating mode.
Therefore, the output flows and the output qualities depend
only on the feed composition. The amount of material
processed by the CDU is determined by eq 32. Equation 33
constrains the CDU to operate between its minimum and
maximum capacity. Equation 38 computes the size of the final
cuts using a simple fixed yield approach. The crude mix
recipe of a CDU during period n (i.e, set of variables CMR_)
is defined by eqs 39 and 40. It is assumed that the quality
properties blend linearly, on either a volumetric or weight
basis. The quality of the outlet streams is determined by
egs 41 and 42. Note that to use eqs 41 and 42, the specific
gravity must be assumed to blend linearly on a volumetric basis.
Equation 38 is the actual form of eq 34 for a CDU, whereas
eqs 39—42 correspond to eq 35. The entire CDU model
consists of eqs 32, 33, and 38—42.

VS, =) YCDUZVS
s:(u,s) EUL

¥V, u€ CDU, s (u,s) € UO (38)
Vs, = VU, CMR,

¥V, ue€ CDU, s: (u,s) € UIR (39)

Y CMR,=1 Vnu€CDU
o0 EUT (40)

fix
Q.= > QCOY; CMR,,
s:{u,s)EUL
¥V, u € CDU, s": (u,s") € UO,
g€ {qlg € QLY A q: (5, q) € SQ} (41)
_ fixx fix
QSS’:H;Y!QSS’,"sg”,ﬂ - Z Q-COq,s,s/Q-COrfsg”,s,s’CMRS,ﬂ
s:(u,5) UL
¥V, u € CDU s (u,s") € UOQ,
q € {qlg € QLW A q: (s, q) € SQ} (42)

3.7. Processing Units with Multiple Operating Modes.
If a unit has more than one distinct operating mode, each mode
is represented as a different unit w. Then, by using the set of real
units with multiple operating modes (RU), the set of units
representing an operating mode {(MMU), and the set that
associates the different operating modes to each real unit
(RUU), the minimum and maximum physical capacity con-
straints of a real unit are enforced.

If unit « is from set MMU and it is going to operate during
period n, then binary variable bvu,, is equal to 1, and it must
process more than the minimum rate and at least a minimum
amount VU2, as established by egs 44 and 45, respectively.
If bvw,,, = 0, then unit « does not operate in time period n and
VU, = 0 by eq 44. The units representing different operating
modes of a real unit must not exceed the maximum capacity of
the real unit; see eq 46. An estimate of the time spent in each
mode is calculated by using eqs 47 and 48. If the minimum
processing rate is zero, ie, VUR}™ = 0, then eq 47 is not

127

included in the model. In this work, VUR™ > 0 for all u. The
time spent in all operating modes must not exceed the length of
the corresponding time period {eq 49).

WH:” = Z Vss,rz v n, u € MMU
3:(u,3)EUL (43)
VU, , < VURT™L, bvu, ¥ n, 1 € MMU (44)
V-Uu‘ﬂ > VUI‘;nbvuu‘ﬂ v n, w € MMU (45)
VUTR}'L, < 3 VU, <VUTRI"L, Vo mw
: () ERUU
(46)
VU, ,
TU,, < ——— ¥V n, u € MMU
! VUR ™ 47)
VU, ,
TU, 2 ———— ¥V n, u € MMU
! VURH (48)
Z U, . <L, Y on, ru
u: (ru,u) € RUU (49)

Similarly to units with single operating modes, the volumetric
flow of an outlet stream, and the value of quality property g of
an outlet stream, are functions of the individual inlet flows,
the total feed flow to unit u, the quality of the individual
inlet streams, and/or other operating variables {eqs 50 and 51).
Their actual form will depend on the specific unit under
consideration (Supporting Information).

VS, = g,(VS,,,VU,,QS, |)

¥V n, u € MMU, s: (u, s) € UOQ, s': (u, ') € U,

q: (s, ‘1) €5Q (50)
Qs, . = &(QS, VS VU,)

Vo, u € MMU, s: (u, 5) € UOQ, s": (u,5") € UI,

¢ (s 9) €8Q 1)

3.8. Maximum Number of Operating Modes and
Blended Products per Period. We allow different operating
modes to be run during the same time period. In addition,
we allow the blenders to produce more than one specific
product in each period. Equations 52 and 53 can be included in
the model if these two assumptions are not valid. UMM, is the
maximum number of modes in which a real unit it can operate
duting a given period, whereas BMP,, is the maximum number
of distinct products that can be produced by blender b within a
time period.

Z bwu, , < UMM, ¥ on, ru
u:(ruu) ERUT (52)
> bvb, <BMB Vnb
s:(b,s) ERO (53)

The reason to not include eqs 52 and 53 in our model is that
if the time periods are too long (e.g, weeks or months) then,
most likely, multiple operating modes will be run and more
than a single product will be blended in each period. Even if the
time periods are only a few days long, a subsequent scheduling
step can be included to determine exactly at what point in

DOI: 10.1021/acs.iecr 6601350
Ind. Eng. Chem. Res. 2017, 56, 530-548

Industrial & Engineering Chemistry Research

time a unit will change operating mode. This is one of our future
work directions.

3.9. Constraints for Quality Properties of Inlet
Streams. If the quality properties of inlet streams to the
units must be between minimum and maximum limits, then
eqs 54 and 55 can be added to the planning model. Note
that these constraints are not used in the examples shown in
sections 6 and 7 of this paper. The reason to present these
equations is their usefulhess when correlations for the pro-
cessing units {which are commonly developed for a given range
of the input quality properties) are employed.

Qs > QSUImm

54,1

Von,ou s (u,s) € UL q € {qlg: (s, q) € SQA

q: (u, q) € UQI} (54)
Qs,,, < QSUI™

Vo, s (u,s) €EULq € {qlg: (5, q) € SQA

g: (#,) € UQI} (s5)

3.10. Model Overview. Summarizing, the MINLP model
to be solved in this work is composed of eqs 1-51. The bi-
linear terms appear in eqs 23, 24, 39, and 42, and they
can appear in eqs 31, 34, 35, 50, and 51, depending on the
specific functions being employed. The reader is encouraged
to read the Supporting Information for a detailed description
of the equations employed and the bilinear terms found in the
model.

4. ELEMENTS OF THE GLOBAL OPTIMIZATICN
ALGORITHM

The refinery planning MINLP problem from section 3 can be
represented by P. The continuous variables are denoted by x
and the binary variables by y. M is the set of constraints plus the
objective function, which are represented by general bilinear
functions f,{xy}. Set BL represents the pairs of variables {j, j)
involved in bilinear terms xg,. Lx is the length of vector x, and Jy
is the length of vector y.

min f, ()

st

fm (.x,y) <0 v m € M/{0}
i (x9) = Z @iy + Box + Cy + d, YmeM

(i,j)eBL
0<x’ <x<a’
xeR" ye{o, 1
(P)
4.1. Lower Bounding. Problem PR is the relaxation of P.
Bilinear terms xw; are substituted by variables wy, thus
linearizing f, {x;) into f,X{xy). The values of the wy variables

are determined by a set of linear constraints. The feasible region

of such constraints is represented by W.

minOR (xly)

s.t

ey <0

fj ("C)J") =
(i,j)€BL

0<at<a<aY

¥ m € M/{0}

Z W, 1J+B x+Cy+d, YmeM

reR"ye{o, 1P, wewcr™

(PR)

If the piecewise McCormick relaxation {PMCR} is used, then
the feasible region W will be given by eqs 56—64, where NP

represents the number of partitions being used. All the variables

are continuous except for binary variable z

Zinp
wy 2 Z (g gl + Bl — %) ¥ () € BL
wp=1
(s6)
wy 2 Z (Ar;mp e+ B T T) ¥ (i, j) € BL
(s7)
NP
wy < Z i + Bt~ By) v j) €BL
np=1
(s8)
NP
wy < Z (ﬁwpx;“]np + x) npx, -z npxt x np) ¥ (i, 7) € BL
wp=1
(59)
NP
X = Z ét}:ﬂP ¥ (i,j) € BL
np=1 (60)
NP
%= Y &, V() eBL
np=1 (61)
NP
Y z,=1 Vji(j)eBL
np=1 (62)
L
% %y S Ry S z;mp
V (i,j) €BL, np € {1, .., NP} (63)
mpzmp SEp < ”;mp iy
Vj: (4,j) € BL, np € {1, .., NP} (64)

Note that the Iower and upper bounds for discretized

variables x, ijﬂP

eqs 65 and 66.

xL = DCL
B T NP

Vi (4, i) €BL npe{l,..,

(= = %) (np)

xU = DCL
B T NP

Vi (4, i) €BL npe{l,..,

128

and a_ ¢ are computed before solving PR with

(x}U - x}‘)(ﬂp -1

NP} (68)

NP} (66)

DOI: 101021 /acs.iecr.6b071350
ind. Eng. Chem. Res. 2017, 56, 530-548

Industrial & Engineering Chemistry Research

UBp = +=
LBy=—=

Local search method :

UBy=2Z i

r=rpi=1j=1,I=1

Sol d rPR (MILP) TS e
olve model
‘ g I=1+1 |e i=i+1 —
CPLEX solution pool is active L
l z
IfZ> LBy, then LB;=Z
Otherwise. L.B;= LB
Solve model PF (NLP) Bound tightening method
GAMS parallel grid is used GAMS parallel grid 1s used
K C
If Z< UBy then UB;=Z Ne
+ Then LBy Is [=1 or did the UB improved? — °
Otherwise. UB;= UB;;

v

T No

abs[(UB; - LB;)/ UB]] x 100 <& ?

L>| ¥ =p o7 }Lbl

Max. time exceeded?

Yes

Yes

Yes

Figure 3. Global algorithm flowchart (minimization problem).

If normalized multiparametric disaggregation technique
(NMDT) is employed, then eqs 67 to 77 will delineate
feasible region W. The binary variables are zy, and the rest are
continuous, In this case, the number of partitions is defined by
NP = 107%, where p is a negative integer specified by the user.
L

L U PR
we = xx + vl —) V(i) €BL (67)
& = x; + /lf(xJU - x:) Y (i,)') € BL (68)
-1 9
=3 2100k, + AL VY (i,j) €BL
i=p k=0 (69)
0< A/{j < 107 v j: (i,j) €BL (70)
-1 9
=3 2 104kgy + Ay, V(i) €BL
I=p k=0 (71)
x'Ad, < Av, <alAd Y {i,j) €BL 72)
Al’U < 101’(36! - x:‘) + xJT'A)hj v (i,]) € BL (73)
Ay > 108(x, —)+ x,-UAﬂ] Y (i,j) € BL (74)
9
X = Z ?’Eﬁk‘ v (iJ]) € BL} le {PJ By} 71}
= (75)
9
Meu=1 Vj(,)eBLie{p., -1}
k=0 (76)

129

L 2 u
X Zi < ikt = X Zig

¥ (i,j) EBL € {p, .., -1}, k€10, .., 9} (77)

There is no specific rule to select which variables should be
discretized in PMCR or NMDT, In this work, the second
variable in the bilinear term, as written in eqs 23, 24, 31, 34, 35,
39, 42, 50, and 51, is the one discretized. When PR is solved,
it is the best possible solution at termination that is employed
as the lower bound for the objective function, which is not
necessarily the best feasible solution found.

4.2, Upper Bounding. Constrained problem PF is derived
from P after fixing the binary variables to the values from the
solution of PR, ie, y = .

min f, {x}

s.t.

[<0 ¥ m e M/{0}

£, (%) = Z Ay + Byx+ CF +d, YVmeM
(1,j}EBL

0<at<a <"

xeR”
(PF)
4.3, Bound Tightening. The bounds of all variables x;,
involved in bilinear terms {both discretized and nondiscretized,
ie, h € {h| (hj) € BL, (ih) € BL}) are updated by solving
one minimization (leads to lower bound x}) and one maximiza-
tion problem (x}') per variable. The MILP problems in this
step are denoted as PRBmin and PRBmax. Note that the
bound of a variable is updated with the best possible solution at

DOI: 10.1021 /acs.decr.6b01350
fnd. Eng. Chem. Res. 2017, 56, 530-548

Industrial & Engineering Chemistry Research

cdu_pf_lights LPG Plart

cdu_pf_In

cdu_atm_hn
O

source_CO1 unload_CO1 tank_CO1
o,

e

unload_co2 tank CO2

cdu_atm_cs
O

unload_C0D3 tank_CO3

source_CO3

unload_CO4 tank CO4

unload_CO5 tank_COS

cdu_atm_kero

p_ds

cdu_atm_ago FE-230
O

cdu_vem_igo P20
O—

Figure 4. Crude oil unloading section, including CDU and hydrotreaters.

ds_to_tank
O
dht_nbut
3]1
,tn,dht mixer_ds_ago aht t =]
— _n
H o TE—0 2
dht_feed
ago_ds caht_ds
O 5
go-he goht_hc_nbut
O !
goh
mixer_tgo_hc goht_he O tLhen 2
he .I goht_he_ds s
- >
he_feed
O
goht_fcc_nbut
O 1
goht_foc_n
mixer_tgo_fec goht_fec 2
D fec .l goht_fcc_ds
| O s
Joc_feed

termination and not with the best solution found. Also, we add
the constraint that the objective function of original problem P
must be lower than or equal to the current upper bound UB
(the best feasible solution found).

L,_ . (U, _)
2, += min x(x, 1 = max x

s.t.
f,: (JC,)/ Yy <0
M= 3 a

{i,)EBL

Y me M/{0}

m wr)

+Bax+Cy+d, YmeM

R
fy (xp) < UB
0<at<x<aY

e R ye{o, 1), we wc R
(PRBmin/max)

For our examples, the feasible region W for models
PRBmin/max is derived using NP = 1 in eqgs 55—65 of the
piecewise McCormick relaxation, which is equivalent to the
standard McCormick relaxation.*”

5. GLOBAL OPTIMIZATION ALGORITHM

The proposed global optimization algorithm can be applied to
any mixed-integer nonlinear program where the nonlinearities
are due to strictly bilinear and quadratic terms involving
continuous vatiables, The flowchart for a minimization problem
is shown in Figure 3, and a detailed description follows. Note
that we use the term “resolution” and “resolution factor” to
describe a general parameter r that controls the number of
partitions. The resolution is given by parameters p and NP
when NMDT and PMCR are used, respectively,

Step 1: Set the initial lower bound (LB) equal to —oo, and
the initial upper bound (UB) to +oo.

Step 2: This step is optional but it is recommended
for medium- and large-size models to find an initial feasible
solution fairly quickly. Our local search method employs a
general branch-and-bound algorithm where at each nede in the

130

tree, a local NLP solver is employed. If no feasible solution is
found, repeat the procedure with a different starting point;
otherwise, go to step 3.

Step 3: Set the following parameters to their initial values:
resolution of the discretization method {r = ry), total number
of iterations (! = 1), number of iterations where resolution is
increased (i = 1), and number of iterations without changing
the current resolution (j = 1).

Step 4: Solve relaxed problem PR using the CPLEX MILP
solver activating the solution poel and parallel options. Set the
pool capacity to k (usually, k > 5) and the number of threads.
The solution pool consists of integer feasible solutions found by
CPLEX while solving model PR before reducing the optimality
gap below the specified tolerance (or before reaching the
maximum time limit). Not all the solutions in the pool have the
same objective function value.

Step 5: Update the lower bound LB in the case of improve-
ment. The best possible solution of model PR at termina-
tion is used to determine if LB needs to be updated (recall
section 4.1).

Step 6: Update and fix the values of the binary variables
according to the pool solutions of PR and solve in parallel the k
instances of PF using a local NLP solver.

Step 7: Update the upper bound UB if necessary.

Step 8: Compute the optimality gap and if it is equal to or
smaller than the tolerance g, then stop. Otherwise, continue to
step 9.

Step 9: If the resolution of the discretization method is equal
to the maximum allowed (ie., r, = ¥™), or if the total time
exceeds the specified limit, stop. Otherwise continue to step 10.

Step 10: If this is the first iteration of the algorithm (ie.,
I = 1), or if the upper bound has improved more than a
prespecified percentage, then apply the optimality-based bound
tightening method.

Step 11: If the number of iterations without changing the
resolution of the discretization method is equal to the maximum
(i.e, j = ™), then go to step 12. Otherwise, set [=1+ 1 and go
back to step 4.

DOI: 10.1021/acs.iecr.6b01350
Ind. Eng. Chem. Res. 2017, 56, 530548

Industrial & Engineering Chemistry Research

HYDROCRACKER hcgm_nbut

shn O 1

............ refA_nbut
O

sp_naphtha refA_feed

hc_feed
refB_nbut O

refB_feed reformateB
@,

fccA_nbut

FLUID_CATALYTIC_CRACKER

3
4
fecA_hco
O
6
foc_feed
fccB_nbut
1
sp_fecfeed O
6
Figure 5. Processing units section. (Units inside the red-dashed boxes represent the different operating modes of a real unit.)
NButane_Buy nbut_buy Source_Alkylate
Q A\kvlate
mixerl_nbut
mix_nbut 2Nk nbut nbut
B D—0— A
. mixer2_naphtha mix_naphtha tank_srhn sthn
22 > O]
mixerd_hcln he_ln tank_hdn hein
= o
mixer5_hchn he_hn tank_hchn hehn Demand_RG
4[] O - O ReqularGasoline tank_rgas
SO S
ot k
Inaph tank_srin srin N
' O B~ casoline_blender
Del d_PG
tank_pgas manc.|
foch n tank_fcenA focnA 0) i O .
- PremiumGasoline PG
feeB _n tank fcenB focnB
o 0
reformateA tank_refA refA
.
reformateB tank_refd refB

Figure 6. Gasoline blending section.

Step 12: Increase the resolution factor r. Afterward, set
i=i+ 1,j=11=1+1, and go back to step 4.

We have chosen to increase the resolution factor # as follows:
rip = ali + 1) + br,, where r; is the initial resolution, i is
the iteration number associated with the current resolution,
and a and b are prespecified parameters. For the alternative

discretization techniques, we have for PMCR, r is equal to the
total number of partitions NP, and we use ry =4, a = 4, b= 0,
and r™* = 24; it means that the algorithm starts with 4
partitions (per discretized variable) and adds another 4 in each
iteration i (NP = 4, 8, ..., 24); for NMDT, r is equivalent to

parameter p, and we use r; = —1,a = —1, b = 0, and /™ = =3;

DOI: 10.1021/acs.iecr.6b01350
Ind. Eng. Chem. Res. 2017, 56, 530548

131

Industrial & Engineering Chemistry Research

cdu_atm_kero tank_srk stk

hckm_kero tank_hck

kero_blender

Demand_K1
tank_kero .

Kerosene

B mixer3_diesel mix_diesel tank_ds
= -
I tank_hcds ds1
hedm_diesel heds ®
G
tank_IcoA b1
fccA lco IcoA Diesell tank_D1 bi) Demand_|
fccA_hco tank_hcoA hcoA o -
O - O l:u diesel_blender
focB_lco tank_lcoB |coB tank D2 - Demand_D2
= O——{——+0—)
Diesel2
fceB_heo tank hcoB heop
—C
ds to tank tank_srds srd#
—C
mixer6_coke Coke_Output
° >—0)

Figure 7. Diesel and kerosene blending pools and coke output.

therefore, the algorithm with NMDT starts with 10 partitions

and increases by 10 in each iteration i (NP = 10, 100, 1000).

Note that usual values for parameter b are 0 and 1. With b = 0,

then r; must be less than 12al, for the resolution to increase in

the second iteration. Setting b = 1 is recommended for a high

initial resolution and small increments per iteration.
Parameter /™ is set equal to 10.

J

6. INDUSTRIAL CASE STUDY

6.1. Refinery System. We used the free and open source
diagram editor software called DIA to create the flowsheet of
the refinery plant shown in Figures 4—7 and to input the name
of the streams, the name of the units, and the mathematical
model to be used for each unit. Then we coded a Python script
that retrieves such data from the DIA file and creates a single
GAMS file with the corresponding models required. We
entered the numerical data into an Excel file that is read by the
GAMS file when this is run.

In the system, there is one crude distillation unit (cdu), five
hydrotreaters (nht, dht, goth_fcc, goth hc, and tht), one
catalytic reforming unit (with two operating modes: reformerA
and reformerB), one hydrocracking unit (with three operating
modes: hc_gm, hc km, and hc_dm), one fluid catalytic
cracking unit (with two operating modes: fccA and focB),
three blenders (one for each distinct product pool), and several
storage tanks. The maximum processing rate of the CDU is
120 kbbl/day. We consider five different type of crude oils
(CO1 to COS), two gasoline grades (PG and RG), one
kerosene grade (K1), and two diesel grades (D1 and D2).
There are eight quality properties under consideration: specific
gravity “sg”, research octane number “ron”, motor octane
number “mon”, Reid vapor pressure “rvp” (psig), aromatics

132

content “arom” (% vol), sulfur content “sul” (% wt), cetane
index “cin”, and pour point “pour” (°R). We assume that these
quality properties blend linearly on a volumetric basis, except
for the sulfur content, which we consider to blend linearly on a
weight basis.

6.2. Data for Example Problems. Due to space
limitations, we only present part of the data in the main text
(enough to give the reader a sense of how big and complex the
problem is). The rest of the data required by the model are
included in the Supporting Information.

The volumetric yield data of the crude oils are shown
in Table 1. Quality specifications of finished products are
described in Table 2. We assume that we can purchase alkylate
and n-butane to use as blend components for gasoline products,
if necessary. Their minimum and maximum available amounts
of alkylate and n-butane are 0 and 120 kbbl/day. Economic
data are shown in Table 3. Note that we do not consider

Table 1. Crude Qil Yield Data (% vol) {Parameter
YCDU® x 100)

crude oil

cut COl1 cO2 CO3 CO4 COs
LS 0.65 2.30 220 0.78 120
LN 11.19 12.05 7.80 11.76 9.05
HN 691 15.65 13.80 10.78 12.25
KR 592 9.50 13.30 3.93 8.30
DS 551 7.30 13.135 4.85 625
AGO 5.51 7.30 13.80 4.85 625
LGO 14.33 19.10 625 15.54 15.30
HGO 1433 12,60 1320 15.54 14.00
RSD 35.65 14.20 16.50 31.99 2740

DOI: 10.1021/acs.iecr.6b01350
Ind. Eng. Chem. Res. 2017, 56, 530548

Industrial & Engineering Chemistry Research

Table 2. Product Quality Specifications (Parameters QS:‘;“ and QS”

quality property
product Sg ron mon wp arom Sul cin pour
Minimum
RG 0.73 88.5 78.5 0 0 0 NA* NA
PG 0.73 925 8235 0 0 0 NA NA
K1 075 NA NA NA NA 0 NA 0
D1 081 NA NA NA NA 0 40 0
D2 0.81 NA NA NA NA 0 40 0
Maximuam
RG 0.81 150 150 15 60 0.001 NA NA
PG 0.81 150 150 15 60 0.001 NA NA
K1 0.85 NA NA NA NA 0.3 NA 407
D1 0.87 NA NA NA NA 0.0015 100 470
D2 0.87 NA NA NA NA 0.0015 100 456
“NA = I not applicable.
Table 3. Economic Data Scenarios SC3 and SC4 have the same total supply and
] demand. Therefore, we have seven different examples denoted
faw materil €8, (8/bb) product PS; ($/bM) as SCL-TPL, SCL1TP3, SC2-TP1, SC2-TP3, SC3-TP1, SC3-
col 40 RG 89 TP3, and SC4-TP3; where SC# refers to the scenario, and TP#
o2 4 PG 112 to the number of time periods.
€03 4 K1 96 Note that although the model constraints in eqs 10 and 12
o4 38 D1 98 allow for supply and demand to vary within a given interval, the
€os 36 D1 Lo9 example problems feature fixed values {ie, Al = ALY for
alkylate 129 le coke 0 s € {CO1, CO2, CO3, CO4, COSY, and DI = DI for
#-butane 32 LPG 0

revenue from the coke output and the lights from the
CDU. We also do not price inventory (ie, IC, is equal to 0)
because the demand and supply flow rates are fixed (the
refinery can store the remaining material as either blend
components or finished products}. Quality data for crude oils,
alkylate, and n-butane streams can be found in the Supporting
Information.

We consider four different scenarios regarding product
demand and crude oil supply, denoted as SC1, SC2, SC3, and
§C4. Daily data for these scenarios can be found in the
Supporting Information and are used to generate the data for
the one- and three-time-period problems. The single time
period considers aggregate data for the planning horizon of
1 week {Table 4), whereas each period in the three-time-period
problem corresponds to one or more days; check Table 5.

Table 4. Demand and Supply Data for 1-Period Models in

kbbl (Parameters Dt = Difex and ADi® = A
demand/supply scenario: 8C1 8C2 SC3
time period: 1 1 1
days: 1-7 1-7 1-7
period duration L, (days): 7 7 7
RG 370 330 330
PG 180 160 220
K1 73 63 60
D1 70 60 70
D2 150 130 130
COl 60 80 80
CO2 270 250 260
CO3 280 250 240
CO4 60 80 60
COs 60 40 30

133

s € {RG, PG, K1, D1, D2}, for all n).

7. NUMERICAL RESULTS

All the examples were solved on a Windows Server 2008 R2
Enterprise, AMD Opteron Processor 6386 SE, 2.79 GHsz,
64 GB RAM, and 32 cores available. GAMS IDE 24.54 was
used to implement the mathematical models and algorithms.
BARON 15.9, ANTIGONE 1.1, and SBB were employed to
solve the MINLPs, whereas CPLEX 12.6 and CONOPT 3.17A
were respectively used for the MILP and NLP problems. The
termination criteria for the MILP problems were: optimality
gap of 0.01% or 1000 s. The CPLEX solution pool option was
active for problems PR with a maximum pool capacity of 29
and the replacement option that generates diverse solutions.
Because the best solution was also saved, a maximum of
30 instances of model PF were solved per iteration using the
GAMS parallel computing grid facility. The instances of
problems PRBmin and PRBmax were solved in parallel as
well. For MILP models, CPLEX parallel option was active
(in deterministic mode) with a maximum number of threads
equal to 8. The termination criteria for the algorithm and
commercial global solvers were an optimality gap of 0.01% or a
maximum wall time equal to 10800 s.

The number of equations, total variables, binary variables,
and bilinear terms of each problem are presented in Table 6.
The optimality-based bound tightening problems have the
same number of binaries. They feature 3487 equations and
1815 variables, and 11263 equations, and 5693 variables for
one and three time periods, respectively. Table 7 shows the
final results computed by ANTIGONE, BARON, and our
global algorithm with the alternative PMCR and NMDT
relaxations.

7.1. One-Time-Period Problems. Figure 8 shows the
optimality gap vs time computed by ANTIGONE, BARON,
and our proposed global algorithm for example SC2-
TP1, which is representative of the results obtained for the

DOI: 101021 /acs.iecr.6b071350
ind. Eng. Chem. Res. 2017, 56, 530-548

Industrial & Engineering Chemistry Research

Table 5. Demand and Supply Data for 3-Period Models in kbbl {(Parameters Diu" = DIw* and ATp" = Al
demand/supply scenario: SC1 SC2 SC3 SC4
time period: 1 2 3 1 2 3 1 2 3 1) 3
days: 1-5 6 7 1 2-3 6—7 1 2—4 57 1 2—4 57
duration L, (days): S 1 1 1 4 2 1 3 3 1 3 3
RG 210 80 30 40 130 160 40 170 120 50 230 50
PG 140 20 20 30 110 20 0 140 80 30 160 30
K1 S0 15 10 10 30 25 0 30 30 10 40 10
DI S0 10 10 10 30 20 10 20 40 20 40 10
D2 120 10 20 0 110 20 20 60 S0 20 110 0
CO1 60 0 0 0 80 o] 30 30 20 30 30 20
CO2 200 0 70 40 170 40 50 130 80 50 130 80
CO3 130 80 70 40 Q0 120 60 140 40 60 140 40
CO4 60 0 0 0 60 20 30 30 0 30 30 0
COs 30 30 0 0 40 o] 30 o] 0 30 0 0
Table 6. Computational Statistics Related to Problem Size”
model P (MINLP) model PR with PMCR_ (MILP) model PR with NMDT (MILP)
no. of no. of no. of BL no. of no. of no. of no. of no. of no. of
example 1D no. of eqs vars bins terms NP eqs vars bins NP egs vars bins
SC1-TP1, SC2-TP1, SC3-TP1 1508 1237 12 370 4 5804 3483 596 10 7806 5797 1472
20 17388 11613 2932 100 12488 9417 2932
24 20284 13643 3516 1000 17170 13037 4392
SCI1-TP3, SC2-TP3, SC3-TP3, 4531 3727 36 1294 4 19104 11318 1980 10 26062 19179 4896
SC4-TP3 20 §8336 38707 9756 100 42088 31439 9756
24 68144 43555 11700 1000 58114 43699 14616
“Bquations = equations, vars = total number of variables, bins = binary variables, BL terms = bilinear terms.
Table 7. Statistics Related to Computational Performance
example 1D}
algorithm SCI-TP1 SC2-TP1 SC3-TP1 SCI-TP3 SC2-TP3 SC3-TP3 SC4-TP3
ANTIGONE L1 solution 55574 49885 53806 55572 49860 $3796 55322
best LB $5569 49880 $3801 $5045 49717 53200 54931
opt gap (%) 0.01 0.01 0.01 0.95 029 111 0.71
total time (s) 333 240 83 10800 10800 10800 10800
BARON 159 solution 558574 43883 53806 55568 49861 53797 85330
best LB 535304 48532 53477 54246 49202 52369 $4031
opt gap (36) 049 0.59 0.61 238 132 2.65 2.35
total time (s) 10800 10800 10800 10800 10800 10800 10800
new with PMCR solution 55574 45885 53806 55567 45860 53789 55322
best LB 55434 49822 53667 §5126 49725 §3269 54958
opt gap (%) 023 0.13 026 0.79 027 097 0.66
total time (s) 2993 1311 2896 8727 10800 8780 8547
iterations ! 7 7 7 7 8 7 7
NLP salves 153 107 158 134 172 153 110
OBBT calls 1 1 1 1 2 1 1
OBBT time (s) 33% 328 326 1571 3240 1656 1483
new with NMDT solution 558574 48883 53806 58572 48860 53796 55322
best LB 55508 40856 53711 55102 46727 $3206 54912
opt gap (%) 012 006 018 0.85 027 L10 0.74
total time (s) 2717 1738 2750 8752 10800 5682 5394
iterations ! 4 4 4 S 6 4 4
NLP solves 38 58 926 79 118 8S 28
OBBT calls 1 1 1 2 3 1 1
OBBT time (5) 311 313 312 3133 4789 1629 1575
one-time-period problems. In these examples, the first upper Our algorithm starts with 4 partitions per discretized variable
bound computed by all these methods is actually the global with PMCR and 10 for NMDT. It is thus no surprise that the

optimal solution.

134

initial lower bounds from NMDT are better, corresponding to

DOI: 101021 /acs.iecr.6b071350
ind. Eng. Chem. Res. 2017, 56, 530-548

Industrial & Engineering Chemistry Research

2 T T
—— ANTIGONE
———BARON
— — "PMCR
151 ——-NMDT |
g
& ql-—-a
g 1y | J
a0 i
o i
B o T
0.5 1
——x| OBBI
i
e
OBBT —========—1
0 . ‘ ‘ . .
o 600 1200 1800 2400 3000 3600
Time (s)

Figure 8. Optimality gap vs time for example SC2-TPI (scenario SC2
with one time period).

Table 8. Algorithm Attributes for Example SC2-TP1
(Scenario SC2 with One Time Period)

algorithm
ANTIGONE PMCR NMDT
nodes explored” 0 0 0
nodes remaining” 0 Q V]
maximum tree depth® 0 0 0
cutting planes” 420 Q 0
total time (CPU s} 240 1311 1735
preprocessing” 1 0 0
solving MILP relaxations 84 709 1246
searching for feasible solutions 15 249 161
variable bounds tightening 139 325 313
OBBT 130 325 313
FBBT*" 78 0 0
branching” 0 0 0

“Not applicable for our proposed global algorithm. “FBBT =

feasibility-based bound tightening,

optimality gaps that are on average 2.22 times lower than those
tor PMCR. Most MILP relaxation problems PR could be solved
to optimality in less than 1000 s, the exceptions occurring in
the last iterations (NP = 24 for PMCR and NP = 1000 for
NMDT). Optimality-based bound tightening (OBBT) was
applied in the first iteration (I = 1) and typically resulted in
a larger reduction in optimality gap than the one obtained
from the initial PMCR relaxation problem. This is why the
discretization is not increased in the second iteration of the
algorithm. Because the first upper bound was the optimal
solution, OBBT was applied only once. The execution times for
PMCR and NMDT were similar (average difference is 282 s)
with the final optimality gap for NMDT being roughly half the
one for PMCR; see Table 7.

Concerning the comparison to the commercial global solvers,
ANTIGONE solves the problems to global optimality (opt gap
<0.01%), being thus faster than the other algorithms. As for
BARON, the lower bound improves very slowly after the
initial 100 s, leading to larger gaps at termination. We can thus
conclude that our new algorithm performs better than BARON
for the single-period problems but worse than ANTIGONE.
Based on the log file generated by ANTIGONE for example
SC2-TP1, shown in Table 8, one possible explanation might
be that the inclusion of cutting planes works better than the
further discretization of bilinear terms.

7.2. Three-Time-Period Problems. Figure 9 shows the
optimality gap vs time computed for example SC1-TP3, which
is representative of the three-time-period problems. In these
examples, the first upper bound computed by the algorithms is
in general different and may not be the global optimal solu-
tion because none can solve them to the specified tolerance
£ = 0.01%.

Omne important result from Table 7 is that our new algorithm
using PMCR could find better solutions for problems
SC1-TP3, SC3-TP3, and SC4-TP3 than at least one of the
commercial solvers up to the maximum wall time limit of 3 h.
Furthermore, the quality of the lower bound is better for
all problems leading to slightly lower optimality gaps than
ANTIGONE and at least 2 times smaller than BARON.

The reason the PCMR relaxation works better than NMDT
is because (i) problem PR can only be solved to optimality
in less than 1000 s for 4 partitions, leading to better lower
bounds than those found with more partitions up to the same

135

4 T T -
l —— ANTIGONE
351 ——-BARON |
I — = “PMCR
3 -—-NMDT]
|

" L L L . . " "
1200 2400 3600 4800 6000 7200 8400 9600 10800
Time (s)

0
0

Figure 9. Optimality gap vs time for example SC1-TP3 (scenario SC1

with three time periods).

computational time, and (ii) it involves more iterations, [eading
to the solution of a larger number of NLP instances PF and
ultimately to a better upper bound. A better upper bound
reduces the feasible space of problems PRBmin and PRBmax,
leading to a tighter domain of the model variables. Notice in
Table 7 that in contrast to the single-period problems, OBBT is
sometimes applied more than once.

Returning to the comparison with ANTIGONE, it is
interesting to observe that this commercial solver significantly
improves the lower bound in the first 1200 s, but after that, the
gap is slowly reduced. On the basis of the log file generated by
ANTIGONE for example SC1-TP3 and shown in Table 9, it
seems that adding cutting planes does not represent a major
benefit and that starting with a low number of partitions in
PMCR, so as to have a tight lower bound and generate a better
upper bound that further reduces the domain of the variables
involved in bilinear terms through OBBT, is more important
than exploring further increments in the number of parti-
tions with NMDT (because increasing the number of partitions
originated very large MILP problems that were difficult to
solve).

Using GAMS parallel grid computing option decreased the
time required to solve the NLP instances PF resulting from one

DOI: 10.1021/acs.iecr.6b01350
Ind. Eng. Chem. Res. 2017, 56, 530548

Industrial & Engineering Chemistry Research

Table 9. Algorithm Attributes for Example SC1-TP3
(Scenario SC1 with Three Time Periods)

algorithm
ANTIGONE PMCR NMDT
nodes explored” 0 0 0
nodes remaining” 1 0 0
maximum tree depth” 0 0 0
cutting planes” 4000 0 0
total time (CPU s) 10800 8727 8752
preprocessing” 1 0 0
solving MILP relaxations 926 6371 5032
searching for feasible solutions 350 707 507
variable bounds tightening 9519 1571 3133
OBBT 9471 1571 3133
FBBT“* 1256 0 0
branching” Q0 0 0
“Not applicable for our proposed global algorithm. "FBBT =

feasibility-based bound tightening.

iteration of the 1-time-period problems from 16 to 1.6 s, and
from 54 to 4 s for the three-time-period problems. Regarding
execution times for each call of OBBT, parallelization reduced
times from 10 to 0.8 s and from 32 to 1.3 s for single- and three-
time-period problems, respectively. Note that all execution times
reported here are wall times, including those required by GAMS
to generate the model and transfer information to/from the
solvers.

7.3. Refinery Plan: Single-Period vs Multiple-Period
Solution. The results in Table 7 show that the cost of the
refinery plan computed by our proposed model for a given
scenario can be lower with three time periods. The exception
occurs for SC4-TP3, for which the best found solution of 55322
{can only improve to 54958) is worse than 53806, the optimal
value for SC3-TP1 (recall that SC3-TP1 is the correspond-
ing single-period problem of SC4-TP3). It tells us that, for
our specific formulation of the planning problem, neither
the single- nor the multiple-period problem is a relaxation of its
counterpart, which deserves further explanation. The explan-
ation will be based on two problem features: supply/demand
constraints and intermediate storage tanks.

‘When dividing the weekly supply/demand between multiple
time periods, we add more constraints to the multiple-period
problem, causing the objective function value to degrade. It is
the predominant effect if demand requirements are not evenly
distributed along the planning horizon, especially if the majority
of the demand occurs in the initial periods. Comparing the
data between SC3-TP3 and SC4-TP3 in Table 5, one can see
that part of the demand from days 5—7 has been anticipated,
which caused the cost to increase above SC3-TP1. However,
this trend of the objective function value worsening with the
introduction of more demand constraints is not always
observed in our proposed refinery planning model due to the
consideration of intermediate storage tanks as blending tanks
and upstream units being able to change their operating modes
{and thus the quality of their outlet streams). Under certain
demand patterns, usually those evenly distributed along the
horizon, the effect of blending tanks will be observed as dis-
cussed in the next paragraph.

Blending tanks allow for a more flexible operation of the
network because their quality properties can be changed from
one period to the next. Recall that in our proposed model
{eq 31}, the quality of a tank at the end of a time period

136

depends on the quality of the inlet stream and that of the tank
heel (ie, the inventory level at the beginning of the time
period). Quality of the blending tanks’ inlet streams is affected
by the operation of upstream units. For a single-period model,
there will only be a set of operating modes for the entire
horizon. Moreover, for a single period, the tank heel qualities are
fixed to their initial known values, leading to fewer degrees of
freedom. This is the predominant effect in the cost trend SC2-
TP3 < SC2-TP1 and SC3-TP3 < SC3-TP1. The same trend has
been observed when the classical crude oil blending problems™
are solved to global optimality,**** in which crude supply and
CDU demand constraints are for the given time hotizon (single
period) but multiple periods of operation are allowed.

Although planning models with multiple time periods may
lead to more accurate solutions, they generate mathematical
problems with more equations, variables, and nonlinear terms;
therefore, higher computational effort is required to compute
a global optimal solution. This is one of the motivations to
develop more eflicient global optimization algorithms, as well as
better planning models.

7.4, Comparison of Production Plans. We present the
single-period and multiple-period solutions for scenaric SC2
computed by our algorithm using NMDT. In this scenario,
the duration of time period 1 is 1 day, duration of period 2 is
4 days, and duration of period 3 is 2 days. The volumes
processed by the major units are shown in Figure 10, the crude

540
480
420
360
300
240
180
120
60
0

MAge DMultiperiod total Btpl S(p2 Eip3

Figure 10. Feed to the major units (in kbbl, examples SC2-TP1 and
SC2-TP3).

1.0
0.8
0.6
0.4

0.2

0.0

tpl tp2 tp3

OCOl mCO2 mCO3 BC04 mCOs

Agg

Figure 11. Crude mix recipe of the feed to the CDU (examples SC2-
TP1 and SC2-TP3).

mix recipe of the feed to the CDU in Figure 11, and the
blend recipes for the finished products in Figure 12. The
total amount of each crude oil fed to the CDU, and the total
amount blended of each product, along the planning horizon, is
the same in the single-period and the multiple-period solutions.
However, in the multiple-period solution, product diesel D1 is

DOI: 10.1021/acs.iecr.6b01350
Ind. Eng. Chem. Res. 2017, 56, 530-548

Industrial & Engineering Chemistry Research

srds
lcoB
lcoA
dsl
srds
lcoB
hcoA
dsl
srin
refA 2
nbut
heln
feenB
feenA
Alkylate B
srin |2
refB
refA g
nbut =
heln
hchn
feenB
feenA
Alkylate B

D2

DI

PG

RG

02 0.4 0.6 0.8 1.0

Bitp3 Btp2 Otpl WAge

Figure 12. Blend recipes (examples SC2-TPI and SC2-TP3).

only blended during period 1, and diesel D2 only during
periods 1 and 2.

Regarding volumes processed by major units, the significant
difference between the single-period and the multiple-
period solution is found in the diesel hydrotreating unit “dht”
(Figure 10). Because in the multiple-period solution diesel
products are not blended during period 3, “dht” does not
process as much material as in the single-period solution, nor
does it operate with the same sulfur removal severity. Because
“dht” is processing less material during period 3, the crude mix
fed to the CDU changes significantly in this period to account
for the sulfur content downstream: it uses more crude oil
CO3 (Figure 11), which is the most valuable and has lower
sulfur content. One of the reasons only the high quality and
most expensive crude oils (CO2 and CO3) are used is the
formulation of the objective function. We penalize the supply
streams of crude oils, but these are fived in our examples, We
do not penalize the streams going into the crude distillation
unit. Therefore, the model does not see the difference between
using expensive and cheap materials. Other reasons are that
we do not specify a fixed crude oil mix recipe, we do not force
consumption of the arriving lots of crude oil, and there is
enough storage to keep material in the crude oil tanks,

Differences in blend recipes are difficult to analyze in these
examples because the initial inventories of blend components
and finished products are above the minimum limits and there
exist the possibility of multiple optimal blend recipes.

8. CONCLUSIONS

In this work, we introduced a new global optimization algorithm
for nonconvex bilinear problems and applied it successfully to
refinery planning problems with one and three time periods.
The algorithm exploits the strengths of different relaxation
approaches, ranging from those adding further binary variables
to the problem, like piecewise McCormick and multiparametric

137

disaggregation, to the simplest standard McCormick relaxation
involved in optimality-based bound tightening of all the
variables participating in bilinear terms. Another novel aspect
has been to rely on the solution pool option of CPLEX to work
as a multiple starting point heuristic and increase the likelihood
of finding the global optimal solution. The different instances
of the original problem were solved in parallel and so was the
bound tightening stage. Parallelization was found to substantially
reduce the execution time, Tn addition to bound tightening, the
lower bound moves toward the optimum by increasing the
number of partiions in the piecewise relaxation.

Through the solution of a case study for seven different
demand/supply scenarios, we have shown that our algorithm
performs better than state-of-the-art commercial solver
BARON, and slightly better than ANTIGONE when dealing
with multiple time periods. For large-size problems, we
observed that increasing the number of partitions beyond just
a few leads to the generation of large MILPs that may prevent
computing good estimates of the lower bound. As a con-
sequence, the major improvements in optimality gap came after
applying optimality-based bound tightening and resolving the
MILP with the same number of partitions,

Using piecewise relaxation methods in optimality-based
bound tightening will further reduce the variables domain but
will also increase execution times; therefore, if the allocated
time to solve the problem is large enough, such alternative
could be fruitful. In this respect, developing and improving
variable bound tightening methods (either optimality- or
feasibility-based) will lead to more efficient deterministic global
optimization algorithms. Future work will also involve a more
thorough comparative study with commercial solvers, including
different formulations of the refinery planning problem and
other classes of MINLPs of the bilinear type,

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.iecr.6b(1350.

Complete mathematical models and tables with all the
necessary data (supply and demand; quality; fixed values
for quality properties; fixed yields; sulfur removal factor;
storage tank quality; feed flow rates; inventory levels; and
tank, mixer, and unit subsets) for examples presented in
this work; complete list of nomenclature used (PDF)

H AUTHOR INFORMATION

Correspending Author

*P, M, Castro, E-mail: pmcastro@fec.ul.pt.

ORCID

Pedro M. Castro: 0000-0002-4895-8922

Notes

The authors declare no competing financial interest,

B ACKNOWLEDGMENTS

Support by Ontario Research Foundation, McMaster Advanced
Control Consortium, and Fundagio para a Ciéncia e
Tecnologia, through the Investigador FCT 2013 program and
project UID/MAT/04561/2013, is gratefully acknowledged.
We thank Jeff Kelly for proposing the use of DIA software to
create graphical representation of the plant and generate model
equations. Jeff Kelly provided us with a prototype Python code

DOI: 10.1021/acs.iecr.6b01350
Ind. Eng. Chem. Res. 2017, 56, 530548

Industrial & Engineering Chemistry Research

and DIA objects that generate a text file with the information
entered in the DIA canvas (as is done in the software developed
by Industrial Algorithms). We modified that Python script and
created new DIA objects to create a GAMS file with the
corresponding mathematical models.

B NOMENCLATURE

Sets and Indices

B ={b} blenders

N ={n} time pericds

Q ={q} quality properties {e.g, motor octane number)
RU = {ru} real units that have different operating modes

S ={s}
T = {t}

streams (note that s’ is an alias of index s}
tanks

U={u} units, not including blenders nor tanks

Subsets

BI = {{b, 5)} inlet streams of blender b

BO = {(b, s)} outlet streams of blender b

CDU = {u} crude distillation units

DST = {5} destination/demand streams

HTU = {u} hydrotreating units

MMU = [y} units that represent one operating mode of a
real unit with multiple operating modes

PU = {u} processing units that are not mixers,
splitters, hydrotreaters, or crude distillation
units

QLV = {g} quality properties that blend linearly on a
volumetric basis

QLW = {4} quality properties that blend linearly on a
weight basis

RUU = {{ru, 1)} real unit ru has operating modes repre-
sented by units u

SP = {u} splitters

$Q={{5 ¢}
SQB = {(5, 9)}

SRC = {5}
SMU = {u}

TI = {{, 5)}
TO = {{t 5))
Ul = {(H, S)}

quality properties that are important to track
in stream s

quality properties of stream s that are
included in blending calculations

source streams

units representing the single operating
mode of a real unit

inlet streams of tank ¢

outlet streams of tank ¢

inlet streams of unit u

UIR = {{u, 5)}} inlet streams of unit ¥ minus one of them

U0 = {(u, s)} outlet streams of unit u

UQI = {{y, 9} quality property q in the inlet stream of unit
u is constrained to be within a minimum
and/or maximum value

Parameters

AT maximum availability of stream s during period n

AT minimum availability of stream s during period n

BMP, maximum number of distinct products that blender
b can produce in a given time period

BRE™ maximum volume fraction allowed of component s
in blended product s

BRy" minimum volumne fraction allowed of component s
in blended product s’

CS, cost of stream s

CU, cost of operating unit u

I3 e maximum demand of stream s during period n

Dol minimum demand of stream s during pericd n

138

IC, cost of one volumetric unit of stored material in tank
t

L, length (duration) of time period n

PS, selling price of stream s

QSf:’;m known quality value of property g in stream s during
period n

Qf quin minimum quality spedification for property g in
stream s

Qsey” maximum quality specification for property g in
stream s

QSUI:;“ minimum value for quality property g in stream s,
which is an inlet stream to a unit

QSULZ* maximum value for quality property g in stream s,
which is an inlet stream to a unit

QCO?; quality value of property g in distillation cut s* when
feeding CDU with crude oil s

UMM, maximumn number of modes in which real unit ru
can operate during a time period

VR minimum amount to blend of product s if the
decision to blend it is made

VBRP™ maximum blending rate of blender b

VBR;™ minimum blending rate of blender b

¢ initial inventory level of tank ¢

VTP maximum capacity of tank t

VTR minimum inventory level of tank ¢

VTR™ maximum withdrawal rate from tank ¢

VTR minimum withdrawal rate from tank ¢

vum minimum volume to be processed by unit u in
period n

VURG™ maximurn processing rate of unit u

VURZ*™ minimum processing rate of unit 1

VUTR,™ maximum processing rate of real unit ru

VUTRZ® minimum processing rate of real unit ru
YCDU::’:/ yield of cut 5 from crude oil s {volume fraction}

Binary Variables

bvb,, if equal to 1, then product s is blended during time
period n

bvu,, if equal to 1, then unit « (which is the representation of
an operating mode of a real unit ru) operates during
time period n

Continuous Variables

CDU cost cost associated with operation of crude
distillation units

CMR,, crude mix recipe (volume fraction of stream s
that constitutes feed of CDU during period n)

HT cost cost associated with operation of hydrotreaters

inventory cost
materials cost

cost associated with inventory levels
cost of raw materials

profit profit

PU cost cost associated with operation of processing
units

QS g value of quality property g in stream s during
petiod n

QVBC,¢ g0 product of VBC,;, and QS,,,

QMBC,,, product of VBC,, and QS,,, and specific
gravity

QVS, .. quality property g in stream s times volume of
such stream during period n

QVT 1y quality g times inventory of tank ¢ at the end of
period n

revenue revenue

DOI: 101021 /acs.iecr.6b071350
ind. Eng. Chem. Res. 2017, 56, 530-548

Industrial & Engineering Chemistry Research

RSUL,, amount of sulfur removed by unit u during
petiod n

TB,, estimated time spent to blend product s during
period n

total cost total cost

TU,, estimated processing time required by unit «
during period n

VB,,, volume blended of stream s {finished product)
during period n

VBC, ., volume from stream s (blend component) to
stream s’ {finished product) during period n

VS, volume through stream s during period n

VT, inventory level in tank t at the end of period n

VU, volume processed by unit « during period n

z variable to be minimized or maximized

B REFERENCES

(1) Jia, Z.; lerapetritou, M. G. Efficient Short-Term Scheduling of
Refinery Operations Based on a Continuous Time Formulation.
Comput. Chem. Eng 2004, 28, 1001.

(2) Mendez, C. A; Grossmann, L E.; Harjunkoski, L; Kabore, P. A
Simultaneous Optimization Approach for Off-Line Blending and
Scheduling of Qil-Refinery Operations. Comput. Chem. Eng. 2006, 30,
614.

(3) Bengtsson, J.; Nonas, 8. L. Refinery Planning and Scheduling: An
Overview. In Energy, Natural Resources and Environmental Economics;
Bjerndal, E., et al, Eds.; Springer-Verlag Berlin: Heidelberg, Germany,
2010; pp 115—130.

(4) Shah, N. K; Li, Z.; lerapetriton, M. G. Petroleum Refining
Operations: Key Issues, Advances, and Opportunities. Ind. Eng. Chem.
Res. 2011, 50, 1161.

(8) Moro, L. F. L.; Zanin, A. C.; Pinto,]. M. A Planning Model for
Refinery Diesel Production. Comput. Chem. Eng. 1998, 22, S1039.

(6) Neiro, S. M. S,; Pinto, J. M. A General Modelling Framework for
the Operational Planning of Petroleum Supply Chains. Compui. Chem.
Eng. 2004, 28, 871.

(7) Li, W,; Hui, C. W; Li, A. Integrating CDU, FCC and Product
Blending Models into Refinery Planning, Comput. Chem. Eng. 2005, 29
(9), 2010.

(8) Alhajri, 1; Elkamel, A,; Albahri, T'; Douglas, P. L. A Nonlinear
Programming Model for Refinery Planning and Optimisation with
Rigorous Process Models and Product Quality Specifications. Int. J.
0il, Gas Coal Technol 2008, 1 (3), 283.

(9) Elkamel, A; Ba-Shammakh, M.; Douglas, P.; Croiset, E. An
Optimization Approach for Integrating Planning and CO2 Emission
Reduction in the Petroleum Refining Industry. Ind. Eng. Chem. Res.
2008, 47, 760—-776.

(10) Alattas, A. M.; Grossmann, I. E; Palou-Rivera, I. Refinery
Production Planning: Multiperiod MINLP with Nonlinear CDU
Model. Ind. Eng Chem. Res. 2012, 51 {39), 12852.

(11) Zhang, B. J; Lin, K;; Luo, X. L; Chen, Q. L; Li, W. K. A Multi-
Period Mathematical Model for Simultaneous Optimization of
Materials and Energy on the Refining Site Scale. Appl. Energy 2015,
143, 238—250.

(12) Pongsakdi, A.; Rangsunvigit, P.; Siemanond, K.; Bagajewicz, M.
J. Financial Risk Management in the Planning of Refinery Operations.
Int. J. Prod. Econ. 2006, 103, 64—86.

(13) Kuo, T. H; Chang, C. T. Application of a Mathematic
Programming Model for Integrated Planning and Scheduling of
Petroleum Supply Networks. Ind. Eng. Chem. Res. 2008, 47, 1935—
1954.

(14) D’Ambrosio, C.; Lodi, A. Mixed Integer Nonlinear Program-
ming T'ools: A Practical Overview. J. Oper. Res. 2011, 9, 329—-349.

(15) Floudas, C. A; Gounaris, C. E. A Review of Recent Advances in
Global Optimization. J. Glob. Optim. 2009, 45, 3—38.

139

(16) Sherali H. D.; Alameddine, A. A New Reformulation-
Linearization Technique for Bilinear Programming Problems. J. Glob.
Optim. 1992, 2 (4), 379—410.

(17) Quesada, L; Grossmann, L E. Global Optimization of Bilinear
Process Networks with Multicomponent Flows. Comput. Chem. Eng
1995, 19 {12), 1219.

(18) Androulakis, I P.; Maranas, C. D; Floudas, C. A. BB: A Global
Optimization Method for General Constrained Nonconvex Problems.
J. Glob. Optim. 1998, 7 (4), 337—363.

(19) Adjiman, C. S.; Dallwig, S.; Floudas, C. A,; Neumaier, A. A
Global Optimization Method, aBB, for General Twice-Differentiable
Constrained NLPs-L Theoretical Advances. Comput. Chem. Eng. 1998,
22 (9), 1137—1158.

(20) McCormick, G. P. Computability of Global Solutions to
Factorable Nonconvex Programs: Part [—Convex Underestimating
Problems. Mathematical programming 1976, 10 (1), 147.

(21) Misener, R.; Floudas, C. A. Advances for the Pooling Problem:
Modeling, Global Optimization, and Computational Studies. Appl.
Comput. Math. 2009, 8 (1), 3—22.

{(22) Misener, R; Floudas, C. A. Global Optimization of Large-Scale
Generalized Pooling Problems: Quadratically Constrained MINLP
Models. Ind. Eng Chem. Res. 2010, 49, 5424—5438.

(23) Andrade, T.; Ribas, G;; Oliveira, F. A Strategy Based on Convex
Relaxation for Solving the Qil Refinery Operations Planning Problem.
Ind. Eng. Chem. Res. 2016, 55, 144—155.

(24) Faria, D. C; Bagajewicz, M.]. A New Approach for Global
Optimization of a Class of MINLP Problems with Applications to
‘Water Management and Pooling Problems. AIChE J. 2012, 58, 2320—
2335,

(25) Castro, P. M. Tightening Piecewise McCormick Relaxations for
Bilinear Problems. Comput. Chem. Eng. 2618, 72, 300.

(26) Misener, R; Thompson, J. P.; Floudas, C. A. APOGEE: Global
Optimization of Standard, Generalized, and Extended Pooling
Problems Via Linear and Logarithmic Partitioning Schemes. Comput.
Chem. Eng 2011, 35, 876—892,

(27) Rolodziej, S.; Castro, P. M. Grossmann, [. E. Global
Optimization of Bilinear Programs with a Multiparametric Disag-
gregation Technique.] Glob. Optim. 2013, 57 (4), 1039.

(28) Kolodziej, S. P.; Grossmann, L E.; Furman, K. C.; Sawaya, N. W.
A Discretization-Based Approach for the Optimization of the
Multiperiod Blend Scheduling Problem. Comput. Chem. Eng 2013,
53, 122—142.

(29) Castro, P. M,; Grossmann, L E. Optimality-Based Bound
Contraction with Multiparametric Disaggregation for the Global
Optimization of Mixed-Integer Bilinear Problems. j Glob. Optim.
2014, §9 (2-3), 277.

(30) Castro, P. M. Normalized Multiparametric Disaggregation: An
Efficient Relaxation for Mixed-Integer Bilinear Problems.] Glob.
Optim. 2016, 64, 765—784.

(31) Tawarmalani, M.; Sahinidis, N. V. A Polyhedral Branch-And-Cut
Approach to Global Optimization. Math. Program. 2008, 103 (2), 225.

(32) Misener, R; Floudas, C. A ANTIGONE: Algorithms for
Continuous/Integer Global Optimization of Nonlinear Equations. J.
Glob. Optim. 2014, 59 (2—3), 503.

(33) Lee, H.; Pinto, |. M.; Grossmann, L E.; Park, S. Mixed-integer
linear programming model for refinery short-term scheduling of crude
oil unloading with inventory management. Ind Eng. Chem. Res. 1996,
35, 1630—1641.

(34) Castro, P. M,; Grossmann, 1. E. Global Optimal Scheduling of
Crude Qil Blending Operations with RTN Continuous-time and
Multiparametric Disaggregation. Ind. Eng. Chem. Res. 2014, 53,
1512715145,

(35) Castro, P. Source-based discrete and continuous-time
formulations for the crude oil pooling problem. Comput. Chem. Eng.
2016, 93, 382—401.

DOI: 10.1021/acs.iecr 6601350
Ind. Eng. Chem. Res. 2017, 56, 530-548

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Chapter 8: Global Optimization of Nonlinear Blend-Scheduling
Problems

This chapter has been published in the Engineering Journal (open access). Complete
citation:

Castillo Castillo, P. A., Castro, P. M., & Mahalec, V. (2017). Global optimization of
nonlinear blend-scheduling problems. Engineering, 3(2), 188-201. Elsevier Ltd., doi:
10.1016/J.ENG.2017.02.005

140

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

In Chapter 8, the heuristic and rigorous optimization techniques from the previous two
Chapters are used to solve nonlinear blend-scheduling problems. MPIP-C is faster
computing feasible near-optimal solutions than the global optimization method. The
lower bound on the blend cost computed by MPIP-C is larger than the initial one
computed by the global optimization algorithm. These results show the importance of the
MPIP-C technique and how it can improve a deterministic global optimization algorithm.

141

Engineering 3 (2017} 188-201

ELSEVIER

journal homepage: www.elsevier.com/locate/eng

Contents lists available at ScienceDirect

Engineering

Research

Smart Process Manufacturing—Article

Global Optimization of Nonlinear Blend-Scheduling Problems
Pedro A. Castillo Castillo®, Pedro M. Castro”, Vladimir Mahalec **

* Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
Y Center for Mathemarics, Fundamental Applicarions and Operations Research, Facuity of Sciences, University of Lishon, Lishon 1749-016, Portugal

ARTICLE INFO

ABSTRACT

Article history:

Received 7 December 2016
Revised 16 February 2017
Accepted 20 February 2017
Available online 28 March 2017

Keywords:

Global optimization

Nonlinear gasoline blending
Continuous-time scheduling model
Piecewise linear relaxations

The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This
problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also
non-convex nonlinear behavior, due to the blending of various materials with different quality properties.
In this work, a global optimization algorithm is proposed to solve a previously published continuous-time
mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimi-
zation, the distribution problem, and several important operational features and constraints. The algorithm
employs piecewise McCormick relaxation (PMCR) and normalized multiparametric disaggregation tech-
nique (NMDT) to compute estimates of the global optimum. These techniques partition the domain of one
of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the num-
ber of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of
the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods
by solving four examples from the literature. Results show that the proposed global optimization algorithm
performs on par with commercial solvers but is not as fast as heuristic approaches.

© 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and

Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Computing and implementing an optimal production schedule
can reduce operational costs, increase profit margins, and avoid
deviations from environmental constraints [1]. However, complex
industrial plants can have multiple production, storage, and distri-
bution subsystems, several distinct raw materials and intermediate
and final products, and intricate connections between all these ele-
ments that make scheduling a difficult decision-making process.

Scheduling problems typically deal with four main decisions [1]:
(1) determining the required tasks to fulfill the corresponding ob-
jectives, requirements, andfor demand targets; (2> assigning each
task to a processing unit or resource that is available in the network;
@ defining the sequence in which the tasks will be executed; and
@ timing the tasks—that is, determining when to start and stop
each one (Fig. 1). Optimal scheduling decisions are those that max-

* Corresponding author.
E-mail address: mahalec@mcmaster.ca

http:f/dx.doi.org/10.1016/].ENG.2017.02.005

imize or minimize a desired objective such as profit, total cost, lead
time, and so forth. Scheduling software and tools based on mathe-
matical programming is becoming more usual in practice.

The scheduling of gasoline-blending operations is an important
and relevant industrial problem because gasoline accounts for 60%-
70% of the total profit of an oil refinery [2-4]. In a gasoline-blending
system, components from dedicated supply tanks are mixed in
blending tanks or in-line blenders and sent to product tanks. Blend-
ing tanks can either have flow in or out (Fig. 2), resembling batch
operation. In contrast, in-line blenders operate in a continuous
manner (Fig. 3). In addition to the four decisions mentioned earlier,
scheduling blend operations should also involve determining the
blend recipes—that is, the amounts of components to mix such that
products’ quality properties meet given specifications.

The gasoline-blending system studied in this work is described
in Fig. 3. Gasoline blending is carried out by one or more continuous

2095-8099(@ 2017 THE AUTHORS. Published by Elsevier LTD on behall of the Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0f).

142

P.A. Castillo Castillo et al. / Engineering 3 (2017) 188-201

Required tasks Assignment

Demand orders

Production runs

A

B

|
]
c I

Processing units

Sequencing Timing

= [[

2 [o1]

Time

Fig. 1. Main scheduling decisions.

Supply tanks Blending tanks Product tanks

Material from upstream processes
Tank contents used to fulfill product orders

Example of multi-period operation

S

Fig. 2. Batch-blending system. The variable £ means time period.

Product tanks

Component tanks Orders

All dedicated tanks

Blenders

Product 1

Dedicated tank

Product 2

Material from upstream processes

Product 3

Fig. 3. General scheme of the continuous gasoline blending system studied in this
work.

blenders. Each blender is connected to the sources of blend compo-
nents, Blended material in some refinery configurations goes to a
storage tank, while in other configurations, it can go directly to the
pipeline. Since there are several grades of gasoline produced (e.g.,
regular, medium, premium), the blender switches from blending
one grade to another. Each switch requires (partial) realignment of
blend feeding lines, which leads to a loss of blending capacity. In
addition, switching to a different range of quality properties often
requires resetting or recalibration of the analyzers used to measure
them.

Some of the most important quality properties of gasoline are
research octane number (RON), motor octane number (MON), Reid
vapor pressure (RVP), density, sulfur, aromatics (Ar), and olefins (OI)
content. RON, MON, and RVP do not blend linearly; thus, considering
nonlinear blending rules for such quality properties in the sched-
uling model can increase the accuracy of the solution and reduce

143

quality giveaways [4,5].

Since the 1960s, there has been a significant effort to derive so-
called “blend indices.” These are nonlinear transformations of the
actual quality properties of the blend components, which then, as a
linear combination, can predict the quality of the blend. Even with
this approach, two issues remain:

(1) If a product is blended into a tank, there is always some ma-
terial in the tank (the so-called “tank heel”) left over from
previous blends. Any new blend must include the properties
of the material in the tank in the calculation of the new blend
recipe, which leads to a nonlinear blending model for multi-
period scheduling, even when using blend indices.

(2) Blend properties calculated from these indices are not 100%
accurate, and a cumulative annual quality giveaway of, for ex-
ample, octane can amount to very large cost increments. This
forces the use of nonlinear blending models for the calcula-
tion of, for example, octane numbers.

Mathematical models for scheduling problems are usually for-
mulated as mixed-integer linear programming (MILP). However, for
gasoline blending, nonlinear behavior is intrinsic to the correspond-
ing process and mixed-integer nonlinear programming (MINLP)
needs to be employed for the sake of accuracy. Most nonlinear terms
are non-convex, making convex optimization techniques ineffective.
A global optimization approach is thus required. Before describing
the proposed global optimization method, a brief review of previous
work is presented in the following paragraphs.

1.1. Literature review on refinery scheduling

Scheduling models can be divided into two main categories based
on the treatment of the time domain: discrete- and continuous-
time formulations. In discrete-time models, the time horizon is di-
vided into several time periods of known duration with fixed start
and end time, In continuous-time models, the time horizon is par-
titioned into time slots whose duration will be determined by the

PA. Castille Castifio et al. / Engineering 3 (2017) 188-201

optimization. While continuous-time models generate problems
with fewer discrete variables than their discrete counterparts, they
are more complex to formulate and often feature many “big-M”
constraints that, due to their weak relaxations [6], compromise
computational performance. More in-depth reviews of scheduling
formulations can be found in Refs. [1,7-9].

Gasoline blending has been studied by many researchers due to
its commercial importance and non-convex features, which makes
it a suitable subject for testing different formulations and algorith-
mic approaches. Operational constraints found in gasoline blending
are related to the presence of multipurpose tanks and non-identical
blenders, to different storage-tank policies (e.g., whether the simul-
taneous receipt and delivery of material is allowed or not), and to
practical aspects such as minimum blend sizes and minimurm blend-
er running and setup times. Not all of these constraints are consid-
ered in published scheduling models. In some cases, blend recipes
are assumed to be fixed (i.e., they cannot be optimized). The down-
stream distribution or shipping problem (i.e., timing delivery tasks
to fulfill the demand) is sometimes also part of the blend-scheduling
problem.

Méndez et al. [2] presented both a discrete- and continuous-time
MILP model to schedule gasoline-blending operations. An iterative
method was employed to handle nonlinear blending rules while
preserving the linearity of the models. Several key operational con-
straints were omitted and the distribution problem was not consid-
ered.

Jia and Ierapetritou [10] developed a continuous-time MILP mod-
el to simultaneously schedule gasoline-blending tasks and distribu-
tion operations. The linearity of the model was maintained by using
given preferred recipes. Their model was later extended to schedule
operations of the main processing units in an oil refinery [11].

Glismann and Gruhn [12] used a two-level approach based on
discrete-time models. Blend recipes and production targets were
computed first using a nonlinear programming (NLP) model. Then a
MILP model was employed to solve the short-term scheduling prob-
lem using such recipes and targets. The scheduling model was based
on the resource-task-network (RTN) representation and did not con-
sider multipurpose tanks or the delivery-scheduling problem.

Li et al. [13] formulated a continuous-time MILP model featuring
a common time grid for all units (i.e., blenders and tanks). Li and
Karimi [3] extended and improved this MILP model by using unit-
specific time grids and including most of the operational constraints
found in practice. Both models optimized blend recipes using blend
indices. Based on these two previous works, Li et al. [4] presented a
unit-specific continuous-time MINLP formulation where nonlinear
terms arise from enforcing constant blending rates.

Castillo and Mahalec [14] developed a three-level decompo-
sition algorithm through which recipe optimization can be done
using linear and/or nonlinear blending rules. They considered the
distribution problem, blend-size threshold constraints, parallel
non-identical blenders, swing tanks, and product-dependent setup
times. A discrete-time model was formulated for each level. The first
level optimized the blend recipes, the second level approximated
the production schedule, and the third level computed a detailed
blend-and-delivery schedule. Due to the large size of the schedul-
ing model at the third level for the entire horizon, it was solved in
subintervals. Solutions computed by this approach were better and
the execution times for large problems were two orders of mag-
nitude shorter than those from previous methods [3,13]. In their
stbsequent work, Castillo and Mahalec [15] introduced a signifi-
cantly modified version of the continuous-time scheduling model
from Li and Karimi [3] (with a smaller number of binary variables
[16]) for dealing with the third level. Case studies with nonlinear
blend-scheduling problems were solved very close to global opti-
mality with short execution times.

Lotero et al. [1/] proposed another formulation of the multi-period
pooling problem. They denominated this discrete-time MINLP for-
mulation as a hybrid of a source-based model (similar to Castro’s
split-fraction model [18]) and a concentration-based model [19].
Redundant constraints were added to improve the linear relaxation,
and the model was solved using a two-stage MILP-NLP approach.
The MILP was a relaxation of the original MINLP model. The NLP
model was obtained by fixing the integer variables of the original
model to the values computed by the MILP. The algorithm adds
integer, optimality, or feasibility cuts to the MILP model at each it-
eration, and stops when the difference between the MILP and NLP
solutions is smaller than a pre-specified tolerance.

Cerdd et al. [20] presented a continuous-time MILP formulation
that uses floating slots dynamically allocated to time periods while
solving the problem. The model included most of the operation-
al constraints found in practice. Cerdd et al. [21] then extended
the model to handle nonlinear blending rules, thus formulating a
continuous-time MINLP model. An approximate MILP formulation
was derived by replacing the nonlinear blending rules with linear
blend indices. The values of the binary variables computed by this
MILP were fixed in the original MINLP, thus becoming an NLP that
was solved to find a near-optimal solution of the original problem.

1.2. Literature review on global optimization

Global optimization of nonlinear non-convex problems has been
a subject of extensive research over the last three decades. Even
though powerful commercial solvers have been developed [22,23],
there has been a continuous stream of advances in the field.

Global optimization algorithms have in common the genera-
tion of a convex relaxation of the problem, which provides a lower
bound to the value of the objective function, and a way to generate
feasible solutions {the upper bound). In addition, they have a meth-
od of bringing the lower and upper bounds together, so that the op-
timality gap can be reduced to e-tolerance.

Computing a tight lower bound is absolutely critical. This may
involve replacing the original formulation with an equivalent that
preserves the feasible space but has a stronger relaxation (the differ-
ent formulations for the pooling problem are a well-known example
|24]). Another option is to reorganize the model constraints and add
others that, although redundant in the original space, strengthen the
relaxation. This procedure is known as the reformulation lineariza-
tion technique [25]. The disadvantage is that there is no systematic
way of knowing where to act in order to move toward a stronger
relaxation.

Awidely used method that guarantees convergence to the global
optimal solution is known as spatial branch-and-bound [26,27]. It
is an essential element of commercial solvers such as BARON [22],
ANTIGONE [23], Couenne [28], and SCIP [29]. Spatial branch-and-
bound works by iteratively reducing the domain of the variables,
one by one, which in turn improves the quality of the convex relaxa-
tion. Note that if the initial relaxation is weak, due to the presence of
many non-convex terms, convergence can be rather slow. It is thus
important to have good branching strategies and bound-tightening
techniques. Optimality-based bound tightening {(OBBT) is an exam-
ple of the latter. Although typically applied only at the root node or
up to a limited depth [28], recent results have shown that applying
OBBT in every node may lead to considerably lower optimality gaps
[20]. OBBT involves solving one minimization and cne maximiza-
tion problem for each variable (appearing in non-convex terms) in
order to generate tighter lower and upper bounds. It can be solved
sequentially—which has the advantage of generating tighter variable
bounds and the disadvantage of being computationally expensive
when dealing with a large number of variables—or in parallel [31].

Bilinear terms are a common source of non-convexities in process

144

PA. Castillo Costillo et al. / Engineering 3 (2017) 188-201

systems engineering. They can be relaxed using the McCormick
envelopes, considering either the full domain of the variables [32]
or a reduced domain following partitioning [33,34]. Simultaneous
domain partitioning involves adding a new set of binary variables
to the problern and guarantees global optimality in the limit of an
infinite number of partitions. Spatial branch-and-bound can thus
be avoided. One critical aspect concerns the scaling of problem size
with the number of partitions. Earlier piecewise relaxation tech-
niques [33] scale linearly, while recent formulations scale logarith-
mically. Examples of the latter are described next.

Misener et al. [35] developed a global optimization algorithm
for the standard pooling problem and concluded that the logarith-
mic scheme is more advantageous for more than eight partitions.
Kolodziej et al. [19] proposed a MINLP formulation for the multi-
period pooling problem, in which nonlinearities arise from using the
dynamic inventories of tanks as blend components. They employed
a radix-based discretization technique that partitions one variable
in every bilinear term to obtain a MILP relaxation. This discretiza-
tion technique is known as multiparametric disaggregation [26].
Castro [37] developed the normalized multiparametric disaggrega-
tion technique (NMDT) [26], which works by discretizing the range
between a variable’s lower and upper bounds (belonging to [0, 1]).
The advantage is that the number of partitions becomes the same
for every discretized variable, even if their domain is different (when
using a global discretization level parameter). NMDT has been suc-
cessfully used to solve multi-period blending problems to global
optimality, both as a stand-alone approach [18,38,39] or integrated
in a spatial branch-and-bound algorithm [30].

Overall, contributions from cited works have enabled optimal
solutions of gascline blend-scheduling problems up to a certain
model size. However, when dealing with large-scale problems, the
computation and validation of global optimal solutions remain a
difficult challenge.

1.3. Contributions of this work

This work presents a novel deterministic global optimization
algorithm to solve non-convex MINLP or NLP models with nonlin-
earities that are strictly due to bilinear andfor quadratic terms. The
main features of this algorithm are:

* The use of different linear and piecewise linear relaxation tech-
niques to derive conveX relaxations of the original non-convex
model:

* The collection of different feasible solutions from the convex
relaxation, which provide starting points for a local nonlinear
solver to find feasible solutions of the original model;

* A dynamic increase in the number of partitions for piecewise
linear relaxations:

* The reduction of the domain of the variables involved in non-
linear terms by means of an OBBT method; and

* The parallelization of the steps regarding computation of feasi-
ble solutions and the OBBT method.

The algorithm is tested on different gasoline blend-scheduling
examples. For this class of problems, the results show that the pro-
posed algorithm is on par with or better than two leading commer-
cial global solvers.

The rest of this paper is organized as follows: Section 2 describes
the problem statement and the assumptions made. Section 3 re-
views the scheduling model employed in this work and presents the
nonlinear equations used for octane blending. Section 4 briefly ex-
plains the piecewise linear relaxations employed to compute the es-
timates of the global solution. Section 5 describes the OBBT method
to reduce the domain of the variables involved in nonlinear terms.
Section 6 presents the steps of the global optimization algorithm.
Section 7 contains the data describing the test examples. Section 8

145

shows the results obtained with the proposed algorithm and pro-
vides a comparison with other methods. The paper ends with con-
clusions in Section 9.

2. Problem statement

Given a blending system (i.e., storage tanks, blenders, and their
interconnections; see Fig. 3), a scheduling horizon, a set of blend
components and their corresponding supply and quality profiles
along the horizon, a set of products and their minimum and max-
imum quality property specifications, a set of delivery orders for
each product, and the initial inventory levels, it is required to deter-
mine the blend recipes, the production and delivery sequences, and
the inventory profiles of all tanks, while minimizing the cost of the
blended materials plus the switching costs (i.e., number of blend
runs, number of tanks delivering the same order, and product tran-
sitions in the swing tanks) and the demurrage costs (i.e., late deliv-
eries).

The following constraints are considered:

(1) If a blender is to produce a product, it must blend at least a

minimum amount.

(2) A blender can prodtce at most one product at any time. Once
it begins blending, it must operate for some minimum time
before it can switch to another product.

(3) A blender requires a minimum setup time during a product
changeover.

{4) A blender can feed at most one product tank at any time (in-
dustrial practice).

(5) Product tanks can only store one product at any time.

(86) Product tanks cannot receive and deliver material at the same
time.

The assumptions made in this work are:

(1) The flowrate profile of each component from the upstream
process is piecewise constant.

(2) The component quality profile is piecewise constant.

(3) Perfect mixing occurs in each blender.

(4) There is only one tank for a given blend component.

(5) Only swing tanks can change their product service (i.e., change
from storing one product to storing another).

(6) Changeover times between products are negligible for swing
tanks.

(7) For each blender, changeover times between product blend-
ing are product dependent but sequence independent.

{8) Each order involves only one product (any original order in-
volving different products can be disaggregated into orders of
a single product).

(9) All orders are fulfilled during the scheduling horizon.

In summary, this problem considers the scheduling of blending

and delivery operations, recipe determination, and product alloca-
tion of swing tanks along the scheduling horizon.

3. Gasoline blend-scheduling model

The scheduling model employed in this work is the one pre-
sented by Castillo and Mahalec [16]. [t employs a continuous-time
formulation, considers nonlinear blending equations, and does not
allow simultaneous receipt and delivery by product tanks. This is
a non-convex MINLP model, and it will be denoted as model P {or
problem P). The main features of the scheduling model are high-
lighted in this section.

The scheduling model uses unit-specific time slots of varying
length to determine when a specific task needs to be executed in
each unit {blenders and tanks in this case). We assign a sufficient-
ly high number of time slots, which will likely be higher than the
number of slots required for blending each grade. This ensures that

P.A. Castillo Castiflo et al. / Engineering 3 (2017) 188-201

there are sufficient degrees of freedom (enough available switches)
to meet the varying product-delivery schedule,

The start time of a unit slot is equal to the end time of the previ-
ous one. The first unit slot starts at the beginning of the scheduling
horizon, and the end of the last unit slot matches exactly the end
of the horizon. Blending tasks begin at the start of a time slot, but
can finish before its end. Delivery tasks from product tanks can start
and finish within the corresponding slot, It is assumed that com-
ponent tanks are continuously receiving material at some specified
rate (i.e., the supply profile). Time periods are used to delineate the
points where changes occur in the supply rates and/or quality of
blend components. Time slots are assigned to these time periods.
A time slot must end within its assigned period. However, for com-
ponent tanks, the last time slot of a period must end exactly at that
period’s boundary (in order to properly respect the changes in supply
rates and/or quality of blend components). Fig. 4 shows a graphical
representation of these unit-specific time slots for a blending system
with two blend component tanks (CT1, CT2), one blender (B1), and
two product tanks (PT1, PT2). Unit slots 1 and 2 are pre-assigned to
period 1, while slots 3 and 4 are pre-assigned to period 2. Note that
the optimization has determined that slot 3 in the CT2 grid, and slot 4
in the PT1 grid, have zero length.

The objective of the scheduling model is to minimize the blend
cost (i.e., materials cost), the switching cost associated with each
blend run, product changeovers in the swing tanks, the number of
“delivery runs” (i.e., the number of time slots used to deliver a spe-
cific order from a given tank), and the demurrage cost. Delivery runs
are penalized in order to avoid computing delivery schedules that
deliver the same order from several tanks at the same time, and to
minimize intermittent deliveries of the same order from the same
tank.

Binary variables are employed in the model to determine, at each
time slot, the following discrete decisions:

» Which product tank each blender is feeding (one variable for

each blender-tank connection);

» What gasoline grade is stored in each product tank {one varia-

ble for each grade-tank pair); and

* What demand order each product tank is partially or complete-

ly fulfilling (one variable for each tank-order connection).

With these binary variables, other discrete decisions can be mod-
eled with 0-1 continuous variables, such as:

» What gasoline grade each blender is producing;

» The status of a blender (running or idle);

« The transition of a blender from running to being idle, or vice

versa;

» When a new blend run starts;

= Product transitions in the blenders; and

» Product changeovers in the swing tanks.

The scheduling model also considers variable blending rates,

Period 1 Period 2 —»

Slot 1 Slot 2 Slot 3 Slot 4
CT1 -

Slot 1 Slot 2
CT2

Slot 1 Slot 2 Slot 3 Slot 4

B1

Slot 1 Slot 2 | slets Slot 4
P I 2

Slot 1 Slot 2 Slot 3] Slot 4
r2lzzzz | R | R ‘ %

77 Receiving [} Sending == Blending
Fig. 4. Representation of unit-specific time slots employed in the scheduling model.

variable delivery rates, blender- and product-specific setup times for
the blenders (i.e., idle times for, e.g., cleaning or sensor recalibration
purposes), maximum delivery rates from blend component tanks
to the blenders, minimum blend size, and minimum running times
for each blender and product. Other constraints include the material
balances, product composition specifications, product quality speci-
fications, and linear and/or nonlinear blending equations.

The difficulty in solving this scheduling model to global optimal-
ity arises from the following factors:

= The significant number of discrete decisions that can be made,

which are directly related to the number of time slots, gasoline
grades, blenders, product tanks, and demand orders (the com-
binatorial nature of the problem);

+ The inclusion of nonlinear blending equations (the non-convex

nature of the problem); and

= All the considered operational constraints,

Castillo and Mahalec [16] found that introducing constraints reg-
arding minimum blend cost and minimum switching cost can im-
prove the quality of the solution and reduce the execution times for
small- to medium-size problems, The minimum blend cost is com-
puted using the approach delineated in Castillo et al. [40].

The nonlinear blending equations are presented next, since they
were rewritten in such a way that nonlinear terms are only bilinear
or quadratic.

Nonlinear blending equations

Eq. (1) to Eq. (19) are the proposed reformulation of the ethyl
RT-70 model for octane blending [5,41]. Bilinear terms appear in
Eqs. (1), (13), (14), and (18). Quadratic terms appear in Eqs. (15),
(16), (17), and (19). Main sets, subscripts, variables, and parameters
are described next. Set I ={:} consists of the blend components,
BL = {b{} is constituted by the blenders, N1 = {»} is the time slots,
and set QN = {(#, n)} represents the time slots associated with each
quality profile 8. Variable V(s bl, n) indicates the volume of blend
component i to blender b/ during slot n, Variable ¥,.,.(5!, n) is the
volume being processed by blender b/ during slot #. The volume
fraction of component ; going into blender 4/ during slot » is denot-
ed by variable +{i, b/, n). Parameter O, (i, ¢, #) represents the value
of quality property e for blend component / and quality profile .
sens(i, 0) is a parameter known as the octane number sensitivity; it
is the difference between the octane numbers, that is, RON - MON,
of blend component i and quality profile 4. The values for the ethyl
RT-70 model coefficients are taken from Singh et al. [5] and are as
follows: a, = 0.03224, a, = 0.00101, a; = 0, a, = 0.0445, a, = 0.00081,
and a; = -0,0645 x 107,

Voo (4 Dl) = r(d, BI, 0}V, (bl n) Vi, bl, ne N1 (1)
N (bl m) = Z!r(j" bl, n)Q, (i, e, 6)
Ve="RON", b, ne N1, 8:(6, n_]e QN
o™ (b =3 (i Bl n)Q, (i e 6) (3)
Ve="MON", b/, nc N1,0:(0, n)c QN

O, (b]. n) = Z:f‘(f, bl n)Q, (1‘. e 8)

Ve="01", bl, ne N1,8:(0, ”)CQN @
A (01, 1) = X, 6.1)Q, (3. .0) ®)
Ve="Ar", b, ne N1,0:(6, n)e QN
Ot (1) =2, (161 . (1. 0)'] ©
Ve="01", bl, neN1,0:(0, n)c QN
A;;f;(b}, n)= Z‘,T(f’ bi, ”)I:Qw (j’ B 9)2:| (7

We="Ar", bl, ne N1,8:(8, n)c QN

146

PA Castillo Castitlo et al. f Engineering 3 (2017) 188-201

sens,, (L m)=3 r(t, 6L n) sens(1, 8) ¥4, bl ne NI (8

sendie (bLm) =Y rl1, 5L 1) G, (1 & 0) sens(1, 6) @)
Ye—“RON", 4, 7 N1, 8:(6, 7)< QN

seﬂs:,:fm (&1, n)= er‘(f, b, G, (1 & 6)sens(s, 8)

(10}
We="MON", &, ne Nl 8:(8 5)= QN
Qo (b1 & 1) =2 (8, n)+ 5] senst (54, m)— w5 (b) |
+2, [OF, (b4 2)- 012, (54 n)] an
+ 5| A2, (b 8)- 2. ArS,, (Bl n)+ Ard, (b1 7) |
We="RON", b, s= N1
(00 &)= 2 (52)+ 5, senst™ (4] @) - el (81, 1))
+a [OF (b, n) = 012, (b, 7)] (12)
+ 5[Ar23, (b2 6)— 2. A3, (6L m)+ Ard, (b1)]
We="MON", 5 ne N1
rE (bh 1) = IV (L 1) sens, (bl #) Whi,neNl (13)
rsl:ém (b2)= ri‘fSON (b2 1) sens, (b1,7) Whi ne N1 (14)
Arl (Bl 2y= A, (bl) whineNI (15)
Ol (B 1)Y= O (bl 8)° WhL neN1 (16)
Ar23 (8L 1) = AL (b, 5F Wbl ne Nl 17)
A8, (b1)= AL (61 5) Ar2,, (5L 51) WhineN1 (18)
Ard, (b5 n)= Ar2, (8] n) Wb, meNI (19)

4. Piecewise linear relaxations

As mentioned in Section 1, the use of piecewise linear relaxations
is becoming more widespread due to the maturity of MILP solvers.
Piecewise McCormick relaxation (PMCR) and the NMDT will be
employed in this work. These techniques replace each bilinear term
in model P with a single variable, thus linearizing the correspond-
ing equations. This single variable is then subject to various linear
constraints, which add extra continuous and binary variables to the
model. If equal to 1, these extra binary variables activate a specific
interval of the domain (i.e., partition) of one of the variables in the

bilinear term (denoted as the discretized variable). The number of
partitions is denoted as MF, and it is assumed that all discretized
variables have the same number of partitions. PMCR has a linear
relation between &P and the number of extra binary variables re-
quired per discretized variable, while NMDT exhibits a logarithmic
relation. For a more detailed explanation of these methods, the
reader is encouraged to review Refs. [16,37].

The resulting MILP model is denoted as model PR and is a relax-
ation of problem P. This means that the optimal solution of model
PR is a valid estimate of the global solution of P (in the minimiza-
tion case, this will be a lower bound, Z5). Moreover, an estimate
of the best possible solution of model PR is a valid estimate of the
global optimum of P. Therefore, even if model PR is not solved to
optimality by a MILP solver within a given allocated time, a new
estimate of the global solution can still be found. The larger the
number of partitions, the closer model PR is to model P; see Hg. 5
for an illustration with an example involving a single discretized
variable.

If the relaxation is tight, then its optimal solution will be very
close to the original optimum. Hence, a strategy to find a feasible
solution to the original problem P (in the minimization case, this
will be an upper bound, US) is to initialize PP with the optimal solu-
tion of model PR. Since some MILP solvers, such as CPLEX, can store
multiple feasible solutions to the MILP problem, potentially leading
to different selutions of P due to the different starting points, we use
a multi-start strategy in parallel fashion. Note that, for practical rea-
sons related to the speed and robustness of commercial solvers, it is
more convenient to solve NLP models instead of MINLPs. This is the
reason why the values of the binary variables are fixed, converting
problem P (MINLP) into PF (NLP). The compact notations of models P,
PR, and PF are as followys:

Model P:

min (%)

st £(x p)<0 Yme M0}
L5 2= oK+ Bpit oyt YmeM
D= < xe i
xeR”, yeln, ¥

Model PR:

min A (x)

st fp (% p)s0 Wme Mf{0}
FAE Py =Y o B5a Bt Cpy b d, YmeM

1.8 1.8

16 fux - —_—1x)
' AN - === 15()

14 ¢ 1 14

12}

§x)

1.0

08

fi{x)and f

06

04

0.2

(x)

R
)

f.(x)and f,

0 05 10 15 20 25 30
X

(b)

35 40 45

Fig. 5. Accuracy ofthe relaxation (f," with Tespact to exact representation ify) of the boundaries of a feasible region increases with the number of partitions { maximization prob-

lem). {a) 10 partitions; [b) 100 partitions.

147

PA. Castillo Castillo et al. / Engineering 3(2017) 188-201

grlxwv, z)<0 ¥neN
&% wv, z)= Hyxt Awt Bv+ Cz+d, YnelN
I <x2 i

Model PF:
min £ { 1}
st £r (620 Wme M0}
£ (5= Z[w}ﬂTamXi,rj + Bt Cpft dy Wme M
UES SF-S S o
r=RB*

Note that, in this section, set M = {#] represents all the origi-
nal constraints, set N = {»n} represents all the constraints required
by the piecewise linear relaxation technique, and set BLT = {(, /)}
represents all the bilinear terms. Variables x and y are the original
continuous and binary variables, respectively, and v and z are the
extra continuous and binary variables, respectively, required by
the relaxation strategy. Variable wy is the continuous variable that
replaces the bilinear term x;x;. Scalars &, v, Iw, /v, and Iz represent
the size of vectors x, y, w, v, and z, respectively. Parameters = and x¥
are respectively the lower and upper bounds of the x variables. Note
that quadratic terms can be treated as bilinear terms.

5. Tightening bounds on the variables

Model PR becomes tighter (i.e., closer to model P) as the number
of partitions of the discretized variables is increased. However, an
increase in the number of partitions produces an increment in the
size of model PR and, after a certain number of partitions, model PR
can become computationally intractable. Therefere, anether tech-
nique is required in order to avoid the necessity of a large number
of partitions. In this work, an OBET methoed is employed [34,42]. The
idea is to reduce the demain of the variables invelved in nonlinear
terms by computing new bounds of these variables by solving two
optimization problems (a maximization problem and a minimiza-
tion problem per variable). This is done after a new and better feasi-
ble solution to P is computed. After reducing the domain of the vari-
ables, model PR becomes closer to P without increasing the number
of partitions, as shown in Fig. 6.

The mathematical model used in OBBT is denoted as model PRE,
which is constructed as a relaxation of P, but with a different ob-
jective function and an extra constraint. Te compute a lower bound
of variable x,, that is, xr, the objective function is to minimize this
variable. To compute an upper bound of variable x, that is, %, the

18

16
14
1.2
1.0
08

fu(x} and fg(x}

objective function is to maximize this variable. In order to compute
new bounds, the extra constraint added imposes the condition that
the value of the relaxed version of the original objective function,
that is, £ (x, »), must be at least as good as the current best feasible
solution.

Note that models PR and PRB can use different relaxations. In
this work, model PRB employs standard McCormick envelopes [32]
and integrality requirements on variables y are dropped, thus reduc-
ing PRB to linear programming (LP). The lower and upper bounds
of variable x, are updated with the optimal solutions of the corre-
sponding LP model. Compact notation of model PRB is shown below
for a minimization preblem.

Model PRB:

Jé’:min,q (Jd“ = ma}c)g\)
st f(x) UB
{x y)<0 VmeM/{O}
fFixy)= E[U}BLT&. W+ B x+C ytd YmeM

Fm
5 (x W <0 vieK
2 (x W= Hyx+ we d, WieK
O gxz A’
reR™, ye[U, I]W,WEJRN

OBBT consists of solving these LP models for all the variables
involved in nonlinear terms, in a parallel framework, to reduce exe-
cution times. Thus, the bounds will generally be weaker than when
solving the problems sequentially. Since the number of instances
to solve can be very large, instances are solved in different blocks.
These blecks are defined by a maximum number of problems to
be solved in parallel. After one block is solved, the corresponding
bounds are updated and then the next block is solved. Fig. 7 shows
the flowchart of the OBET methed. Note that OBET is applied only
once per variable.

6. Global optimization algorithm

The steps of the proposed global optimization algorithm are
presented next for a minimization problem. Fig. 8 shows the corme-
sponding flowchart. Note that the algorithm can be applied to any
MINLP problem with nonlinearities exclusive to bilinear or quadratic
terms.

(1) Initialize algorithm parameters. Define the number of parti-

tions to be used {NFP,, NF;, ..., NPy} and set NF = MF,. Set the

fo(x)

RaSETI0)

(x)

R
0

f(x)and f

¢ 05 10 15 20 25 30

35 40 45

(b)

Fig. 6. Accuracy of the relaxation increases when the domain of the variables involved in nonlinear terms is reduced. (a) 10 partitions with »< [0, 4.5]; {b) 10 partitions with

re [225,27)

148

P.A. Castillo Castillo et al. / Engineering 3 (2017) 188-201

Define the sequence of
variables subject to bound
tightening

.

Define maximum number of
model PRB instances to be
solved in parallel

v

Based on the previous
step, blocks consisting of
model PRB instances will

be defined

v

Initialize b =1

l Parallelized
| Solve block b |47

Update corresponding b=hid
lower and upper bounds

i b

‘ All blocks have been No

solved?

Yes

Fig. 7. Flowchart of the OBBT method.

(1)
Initialize algorithm
parameters

)
@

Lower bound computation:

lower bound 2B = -, upper bound U8 = +=, total number of
iterations counter IT,,, = 1, iterations with the same number
of partitions /T, e = 1, maximum number of total iterations
/7%, maximum number of iterations with the same number
of partitions /77 ., maximum total time 77ME}%, and mini-
mum relative tolerance «.

(2) Lower bound computation. Solve MILP model PR using the
CPLEX solver with parallel and solution pool options active.
Update LB with the best possible selution from CPLEX, if this
value is greater than the previous LB,

(3) Upper bound computation. Use the solutions stored in the
CPLEX solution pool as starting points for NLP model PF,
Solve NLP model PF instances in parallel using a local non-
linear solver. Update UB if any of the computed solutions is
feasible and has a smaller objective function value than the
previous UB,

(4) Update optimality gap. The following formula is used in this
step: OptGap = (UB — LB)/LB » 100,

(5) Check termination criteria. Stop if OptGap < ¢, if IT,,,,, = 1155, if
the total execution time is equal to or greater than 7/ME™, or
if the number of partitions has already reached ~P,,,,. Other-
wise, continue to Step 6.

(6) If the upper bound U8 did not improve in Step 3, or if /7 ,ump
= [T ., continue to Step 7. Otherwise, reduce the domain
of the variables involved in nonlinear terms using the OBBT
method described in Section 5; set /7, = Ty + 1 and 17,
=IT e + 1, and then go back to Step 2.

(7) Increase the number of partitions to the next specified value.
Set /T,y = 1T,qq + 1 and go back to Step 2.

Although the main elements of the algorithm have already been

proposed (e.g., PMCR, NMDT, OBBT), the novelty is related to the way in
which they are implemented. More specifically: (1) the CPLEX solution

""""" Solve MILP model PR; <+
i update best possible solution

CPLEX

Parallelized

solution pool | l
S J @) _
: Upper bound computation:
fffffffff » Solve NLP model PF

Apply OBBT method

(7)
©) Increase the number of

(4)
Update optimality gap

v

(5) No
Check termination criteria:

(multi-start strategy); partitions
update best feasible solution
Yes No

Did best feasible solution
improve?

Termination criterion is met?

Yes

Fig. 8. Flowchart of the global optimization algorithm.

PA. Castillo Castilio et al. / Engineering 3 (2017) 188-201

pool is used to store starting points for model PF, @) instances of
model PF are solved in parallel, @ OBBT is applied to blocks of var-
iables and in a parallel framework, and @ no branching strategy
is employed.

7. Case studies

The tests in this paper consist of Examples 4, 8, 12, and 14 from
Li and Karimi [2]. The difference in this work is that the ethyl RT-
70 models are considered for blending RON and MON properties (as
described in Section 3.1) instead of blend indices. RON index corre-
lations from Li et al. [13], shown in Eq. (20) and Eq. (21), were used
to comptute the actual RON values from the blend indices given by
Li and Karimi [3]. RBN denotes the research octane number blend
index. MON values were assumed in this work and the correspond-
ing minimum product specifications were set equal to zero; there-
fore, MON constraints will not be active at the optimal solution.
Quality properties of blend components are assumed to be known
{recall Section 2); therefore, Eq. (20) and Eq. {21) are only used to

Table 1
Summary of the blending system examples.

convert the blend components’ RBN values to RON values before
the optimization runs (i.e., they do not appear in the optimization
problems).

REN=RON+115 0 RON<85 (20)

RBN = exp(0.0135RON + 3.422042) RON > 85 (21)

Table 1 describes the size of the blending system examples. In-
formation about the periods, their duration, their corresponding
time slots, and the orders that can be delivered within such periods
is presented in Table 2. RON and MON values and their respective
specifications are shown in Table 3. Table 4 presents the statistics
regarding the size of model P when not using the constraints on the
minimum blend and switching costs. When using such constraints,
four equations are added to the model (minimum blend cost, mini-
mum number of delivery runs, minimum number of blend runs, and
minimum number of product changeovers in the swing tanks). Note
that the size of the blending system and its corresponding schedul-
ing model increase from Example 4 to Example 14.

Example ID Number of blenders Number of orders Number of products Number of product tanks Number of quality properties
4 1 15 4 11 9
8 2 20 4 11 9
12 2 35 5 11 9
14 3 45 5 1 9
Table 2

Periods, duration, time slots, and orders that can be delivered in each period.

Example D Period Duration (h) Slots Orders that can be delivered
4 1 100 12 01-07, 012-015
2 9z 3,4 08-011
8 1 80 12 01-07, 012-019
2 70 3,4 08
3 42 56 08-011, 020
12 1 50 1-3 01-07, 012,013, 015, 019, 033
2 50 4-6 014-018§, 027, 028,033
3 50 7-9 08, 021, 024, 029-032, 034,035
4 42 10-12 08-011, 020, 022, 023, 025,026
14 1 50 1-3 01-07, 012, 013, 015, 019, 026
2 50 4-7 014-018, 026
3 50 §-10 08,021,024, 027-031, 045
4 42 11-13 08-011, 020, 022,023, 025,032-041
Table 3
RON and MON values and specifications.
Property Blend components Product specifications [min, max]
C1 C2 3 4 5 C6 7 C8 c9 P1 P2 P3 P4 P5
RON 75 903 95.6 97.3 83 100 115 118 81 [95,200] [96, 200] [94, 200] [90, 200] [98, 200]
MON 66 808 805 917 7 100 109 100 72 [0,200] [0, 200] [0.200] [0, 200] [0, 200]
Table 4
Statistics of model P.
Example ID Number of equations Number of variables Number of binary variables Number of bilinear terms
4 6207 2503 433 168
8 9297 3323 553 336
12 23 087 8170 1317 672
14 32574 10693 1628 1092

150

PA. Castillo Castillo et al. / Engineering 3 (2017) 188-201

8. Results

All the examples were solved on a computing machine Intel®
Core™ {7-4710HQ central processing unit (CPU), 2.50 GHz, 12 GB
random-access memory (RAM), Windows 10 (8-core). The global
optimization algorithm was implemented in Python 2.7. The Py-
thon script generates general algebraic modeling system (GAMS)
files with the corresponding mathematical models, which are then
solved by employing the GAMS-Python application program inter-
face (API). The selected solvers were CPLEX 12.6 for model PR and
model PRB, and CONOPT 3 for model PE.

The global optimization algorithm termination criteria were as
follows: 0.01% optimality gap or 3600 s (1 h). There was no limit on
the total number of iterations, nor on the iterations with the same
number of partitions. The numbers of partitions in model PR when
using PMCR were {2, 4, 8, 16, 32}, and when using NMDT were {10,
100, 1000}

The termination criteria for the MILP problems (instances of
model PR) were: an optimality gap of 0.01% or 600 s. The CPLEX
parallel option was active (in deterministic mode) with a maximum
number of threads equal to 8. In addition, the CPLEX solution pool
option was active with a maximum pool capacity of 30 and the
replacement option that generates diverse solutions. Thus, a maxi-
mum of 30 instances of model PF was solved per iteration using the
GAMS parallel computing grid facility. CONOPT 3 default termina-
tion criteria were used.

The termination criteria for the LP problems (instances of model
PRB) were: optimality or 60 5. A maximum number of 100 LP prob-
lems were solved in parallel using the GAMS parallel computing grid
facility.

For comparison purposes, the global commercial solvers BARON
15.9 [33] and ANTIGONE 1.1 [34] were employed to solve the orig-
inal model P using the same termination criteria as the proposed
global optimization algorithm.

Section 8.1 presents the results obtained when not including the
constraints on the minimum blend cost and minimum switching
cost, while Section 8.2 shows the results when such constraints are
added to the model. A comparison with previously published heu-
ristic methods is included in Section 8.3.

8.1. Not using constraints on the minimum blend and switching costs

A comparison of the results obtained by the proposed algorithm
with those obtained by commercial solvers is presented in Table 5.
For simplicity, we refer to our proposed algorithm as GO-PMCR
when it uses piecewise McCormick relaxation to construct model
PR and as GO-NMDT when it employs the NMDT.

ANTIGONE, BARON, and GO-PMCR compute the same solution for
Examples 4 and 8. GO-NMDT computes the same solution for Exam-
ple 4, but the final solution for Example 8 is slightly higher. GO-PMCR
computes better solutions than GO-NMDT and ANTIGONE in all ex-
amples. In this work, this is because GO-PMCR can use more distinct
numbers of partitions (2, 4, 8, 16, 32) than GO-NMDT (10, 100, 1000;
thus, it generates more feasible solutions from the MILP relaxation.

Table 5
Summary of results (not using constraints on the minimum blend and switching costs).

BARON does not find a feasible solution for Examples 12 and 14
within 1 h. Based on the log files generated by commercial solvers,
it seems that BARON relies more on the branching procedure, while
ANTIGONE focuses more on the MILP relaxation and bound-tight-
ening steps (as our proposed algorithm does). Feasible integer solu-
tions for scheduling problems may be found only at deep nodes in
the branch-and-bound tree [43], which can be of significant size
when the number of binary variables is large.

In Examples 4 and 8, the algorithm and the commercial solvers
compute similar optimality gaps. For Examples 12 and 14, BARON
cannot compute an optimality gap (no feasible solution was found),
and GO-PMCR cbtains a lower optimality gap than GO-NMDT and
ANTIGONE.

Both commercial solvers and the proposed algorithm did not
solve all four examples to the desired tolerance within 1 h. The
times reported in Table 5 are the times in which the best solution
was found. GO-PMCR and GO-NMDT require shorter times than both
commercial solvers. GO-NMDT is significantly faster than GO-PMCR
only in the small-sized Example 4. Note that, for the number of
partitions selected, the size of the MILP relaxation grows faster with
GO-NMDT than with GO-PMCR. Therefore, MILP relaxations are of-
ten faster to solve to optimality with GO-PMCR. However, GO-PMCR
will require more iterations. Based on the three factors considered
(i.e., best solution found, optimality gap, and time to best solution),
GO-PMCR shows the best performance. Fig. 9 shows the total num-
ber of binary variables in the relaxation of the scheduling model
{i.e, model PR) when using PMCR and NMDT, at each iteration of
the algorithm and for each example. It shows that, for the selected
partition values, PMCR requires fewer binary variables in the first
4-5 iterations than NMDT at any iteration. This is expected since the
partitions when using PMCR are fewer than 8 in those iterations,
and NMDT starts with 10. Note that flat sections in the curves in-
dicate that the OBBT method was applied instead of increasing the
number of partitions.

The major differences between the proposed algorithm and BAR-
ON are:

= The use of piecewise relaxation methods for bilinear terms in-

stead of standard McCormick envelopes; and

* Dynamically increasing the number of partitions in order to

tighten the MILP relaxation, instead of implementing a branch-
ing strategy.

These features seem to be adequate for the scheduling problems
presented here. We do not claim that our proposed algorithm will al-
ways be better than BARON when solving a different type of problem.

Our proposed algorithm and ANTIGONE perform similarly, but
differ mainly in the following areas:

« The use of NMDT as a piecewise relaxation technique;

* How the number of partitions is increased in each iteration;

* When and how to apply OBBT; and

* The use of the CPLEX solution pool to store feasible solutions

from the MILP relaxations and use them as starting points to
solve the NLP problem.

Finally, ANTIGONE and BARON can handle more than just biline-
ar and quadratic terms; in addition, they apply other mathematical

Example ID Best solution found (1000 USD) Optimality gap (¥)

Time to best solution (s)

ANTIGONE BARON GO-PMCR GO-NMDT ANTIGONE BARON GO-PMCR GO-NMDT ANTIGONE BARON GO-PMCR GO-NMDT
4 4633 4633 4633 4633 6.90 6.37 6.31 6.37 2350 Q30 616 120
8 8203 8203 8203 8223 9.53 953 919 949 1708 3273 714 1391
12 16 650 NF 15408 15440 2051 NA 14.00 14.22 1631 3 600 1411 1438
14 21 360 NF 21 316 31639 12.50 NA 1231 4092 3600 3 600 2911 2904

NF = not found; NA = not available.

151

PA. Castillo Castillo et al. / Engineering 3(2017) 188-201

techniques capable of improving performance (e.g., reformulation-
linearization technique, cutting planes, feasibility-based bound
tightening, different branching strategies, etc.).

82. Using constraints on the minimum blend and switching costs

For this case, the results computed by the algorithm and com-
mercial solvers are presented in Table 6. The most notable differenc-
es with respect to Table 5 are the smaller optimality gaps and the
shorter times for Examples 4 and 8.

Both commercial solvers and the algorithm find similar solutions
for Examples 4 and 8. BARON still does net find a feasible solution for
Examples 12 and 14 within the allocated time. GO-PMCR computes
better solutions than GO-NMDT for Examples 12 and 14, which in
turn has better solutions than ANTIGONE. Mote that the addition of
bounds caused an increment in the number of solutions for Example 8.
Since the solutions from Section 8.1 are still feasible even with the
inclusien of the constraints regarding minimum blend and switching
costs, this suggests that such constraints are affecting the selvers. This
effect is also observed in ANTIGONE in Examples 12 and 14.

Regarding optimality gaps, most of the same observations as in
Section 8.1 can be made. Similar optimality gaps are computed by all
methods for Examples 4 and 8. For Examples 12 and 14, GO-PMCR
calculates lower optimality gaps than GO-NMDT and ANTIGONE.

Both commercial solvers and the propesed algorithm solve Ex-
ample 4 to the desired tolerance; BAROM is the slowest. For Example
12, the time to the best solution required by GO-PMCR is larger than
that required by GO-NMDT; however, it must be considered that
GO-PIVICE computes a better solution.

9000
—e— Ex4 PMCR
8000+ —* Ex4 NMDT 1
—8— Ex8 PMCR
—— Ex8 NMDT
70001 o Ey12 PMCR 1
—-&— Ex12 NMDT

—&— Ex14 PMCR 1

—A— Ex14 NMDT A

6000 1

5000

4000 1

3000

Total binary variables in model PR

2000

1000

Iteration

Fig. 9. Mumber of binary variables in model PR art each iteration of the algorithm.

Table 6
Summary of results (using constraints on the minimum blend and switching costs).

Overall, GO-PMCR shows the best performance once again. For il-
lustration purposes, the blend and delivery schedules computed for
Example 14 by the algerithm using PVICR are shown in Fg. 10 and
Fg. 11, respectively.

8.3. Comparison with heuristic methods

In this section, the proposed algorithm is compared with previ-
ously published heuristic methods [15,21]. Table 7 [15,21] contains
the best solution found by those methods and the time required to
compute such solutions. Note that heuristic methods do not com-
pute an optimality gap since they aim te find close-to-optimal selu-
tions very rapidly, and they do not spend time estimating and refin-
ing the value of the global optimal solution. These heuristic methods
are tailored to the examples used in this work. These methods con-
struct the final solution by decomposing the original problem into
different levels, each one with different accuracy and complexity.
Short execution times are achieved by solving the least complex
level first and then, in each subsequent level, fixing the values of the
most important variables to those from the previous level's solution.

The objective function of the scheduling model employed in this
worl is the same as the one used by Castillo and Mahalec [15]. This
objective function penalizes each individual blend run, even when
the same produdt is being blended in contiguous blend runs. On the
other hand, Cerdd et al. [21] did not penalize the number of indi-
vidual blend runs, but only penalized the product transitions in the
blenders. We show the adjusted values of the solutions reported by
Cerdd et al. [21]; that is, individual blend runs are penalized.

All methods find the same solution for Example 4. In general, all
the methods compute very similar solutiens for the remaining ex-
amples. Solutions from Cerdd et al. [21] have higher costs for Exam-
ples§, 12, and 14 because they did not originally penalize individual
blend runs. The methed from Cerda et al. [21] might compute sim-
ilar solutions to those from the other metheds if it used the same
objective function.

Heuristic methods still require smaller execution times than the
prepesed global optimization algerithm. This is expected, because
those methods do not involve as many steps as global optimization
techniques. The propesed global optimization algorithm dees not
find solutions of the same quality as quickly as the two selected heu-
ristic methods. To compute feasible solutions in each iteration, our
proposed algorithm needs to first solve a MILP (i.e., model PR). The
selution of the MILP is the most time-consuming step, thus reducing
the speed required to compute new feasible solutions. Moreover, the
small number of partitions at the beginning of the algorithm may
result in weak MILP relaxations, which generate starting points for
the NLP models that are far from the global optimum.

These results indicate the need to improve the corresponding step
to compute feasible solutions, or to simply integrate heuristic meth-
ods into the proposed algorithm.

9. Conclusions

In this work, we presented a global optimization algorithm that

Fxample [D Best solution found (1000 USD) Optimality gap (%)

Time to best sohations)

ANTIGOMNE BARON GO-FMCE GONMMDT ANTIGONE BARCN GO-FMCE GO-MMDT ANTIGONE — BARON GO-PMCE GO-NBMDT
4 4635 4633 4635 4633 0.01 .07 0.01 001 26 296 30 14
2 8207 204 8206 8204 0.05 0.02 0.04 00z a5t 1218 103 140
12 23 590 NF 15584 15403 34,80 NA 0.01 013 3333 3600 2674 T4
14 23 520 NF 21370 21360 9.68 NA 0.13 053 1636 3600 254 2845

WF =not found; NA = not available.

152

P.A. Castillo Castillo et al. / Engineering 3 (2017) 188-201

Quantity (kbbl)
Pl P2 pojmm P P
To product tank PT No.
98 136
. C —————————
E 5 2
°
m
sl
163 113 104 93 85
A — = =
9 1 10 9 1
0 24 48 72 96 120 144 168 192
Time (h)

Fig. 10. Blend schedule computed for Example 14 by the proposed algorithm using PMCR. Kbbl is short for kilobarrel, 1 kbbl = 158.9873 m”,

PT11 [os (10) o021 (30) [os(ss5)
}l ! 032 (20) 037 (10)
pT10 [©1(10) 018 (10) 028 (25)
08 (15 038 (40)
026 (4) 045 (10) 031 (15) 19) bsas 15)
PT9] 013 (39) 0 027 (20) D:ﬁ]oazt(zo)
033 (20) 010(150) Jo3s (10)
030 (15)
pTg | 026 (2) 0 017 (10)
., PT7po4(10) [025 (4)
c
jul
§ pTe [019 (58)
3 015 (20) 020 (40)
o pr5 O7 (3)[L, C[1 o16 (20) [J 042 (20)
012 (20)
pr4 [013 (25) 0192)
pTaf 02(3) 105(3) [09(2) [036 (3)
Q3(3) 022 (40) 040 (10)
PT2 024 (6)[]] 029 (10) E_“, 035 (30)
025 (20) 044 (20)
PT1 [Jo14 (20) 011 (60)
Order (Quantity in kbbl) 043 (157 0230
0 24 48 72 96 120 144 168 192

Time (h)

Fig. 11. Delivery schedule computed for Example 14 by the proposed algorithm using PMCR.

Table 7
Comparison with heuristic methods,

Example 1D Best solution found (1000 USD) Time to best solution (s)
Castillo and Cerdaetal. [21] Cerdaetal, [21] GO-PMCR GO-NMDT Castillo and Cerddetal, [21] GO-PMCR GO-NMDT
Mahalec [15] adjusted values Mahalec [15]

4 4633 4613 4633 4633 4633 3 04 30 14

8 8203 8163 8223 8206 8204 6 75 103 140

12 15403 15 342 15442 15384 15 403 17 310 2674 742

14 21263 21181 21301 21270 21360 24 210 2574 2845

can solve MINLP problems with bilinear and quadratic terms. The
algorithm computes estimates of the global solution by constructing
and solving MILP problems that are relaxations of the original prob-
lem obtained by using either PMCR or NMDT, These methods discre-
tize the domain of one of the variables of a bilinear term into several
partitions, and introduce extra binary and continuous variables into
the model. To improve the estimates of the global optimum, the

153

number of partitions is increased during the algorithm,

To avoid a rapid increase in the model size due to a large number
of partitions, an OBBT method is used. The MILP relaxation will be
closer to the original problem if the number of partitions stays the
same but the domain of the variables is reduced. The OBBT method
solves several LPs in a parallel setting.

The CPLEX solution pool is active and stores different feasible

PA. Castille Castifio et al. / Engineering 3 (2017) 188-201

solutions found during the branch-and-bound procedure to solve
the MILP relaxation. These solutions are then used as starting points
for a nonlinear solver to find feasible solutions to the original prob-
lem. This step is also parallelized.

We showed that the proposed algorithm can be used to schedule
gasoline-blending operations, taking into consideration the distri-
bution problem and the most important operational constraints. We
employ a continuous-time MINLP scheduling model [16] where the
ethyl RT-70 models are used for octane blending.

The proposed algorithm was compared with two commercial
solvers and two heuristic methods. The elements under evaluation
were: the best solution found, the corresponding optimality gap,
and the time to best solution. The proposed algorithm with PMCR
showed a better performance than with NMDT. In our large-sized
examples, the proposed algorithm with either PMCR or NMDT per-
formed better than the commercial global solvers. This result shows
that further research on this algorithm may be very promising. Both
selected heuristic methods provided good solutions in shorter ex-
ecution times than the global algorithms. This result indicates that
the step to compute feasible solutions can still be improved.

We tested the performance of the algorithm by solving the sched-
uling model for two scenarios: (D not including lower bounds on the
blend cost and switching costs, and @ including such bounds. The
first problem is harder to solve and is representative of a kind of mod-
el one may write without diligently trying to reduce the search space
as much as possible. Adding a tight lower bound to the blending cost
as a constraint, as well as adding the lower bound to the switching
costs, enables algorithms to search smaller spaces and improves their
performance. This result also indicates that the relaxations are still
not tight enough. Future work will include the derivation and addi-
tion of redundant and symmetry-breaking constraints; the testing
of a different relaxation scheme for quadratic, cubic, and higher
order terms {e.g., outer approximation); and the modification of the
bound-tightening method in order to speed up the algorithm.

Acknowledgements

Support by Ontario Research Foundation, McMaster Advanced
Control Consortium, and Fundagdo para a Ciéncia e Tecnologia (In-
vestigador FCT 2013 program and project UID/MAT/04561/2013) is
gratefully acknowledged.
Compliance with ethics guidelines

Pedro A. Castillo Castillo, Pedro M. Castro, and Vladimir Mahalec
declare that they have no conflict of interest or financial conflicts to
disclose.

Nomenclature

Sets and subscripts

BL = {&i} Blenders

E-{e} Quality properties

I={i} Blend components and corresponding storage tanks

N1={n} Time slots

QN={(8,#n)} Time slot » is associated with the period with quality
profile &

Parameters

a, a, ... a; Coefficients for the ethyl RT-70 model

O li,e, 8 Value of quality property e of blend component i dur-
ing quality profile 8

sens (i, 6) Octane number sensitivity, i.., octane difference RON

—MON for blend component i during quality profile 8

Continuous variables
Arog (bl m) Volumetric average of the aromatics content of the
processed material by blender &/ during slot »
Volumetric average of the squared value of the aro-
matics content of the processed material by blender &/
during slot »
Squared value of Ar,, (4], n)
Squared value of A, (b1, n)
Product of 477, (bf, v) and Ar2

Squared value of Ar2,, (b1, n)

Ar, bl n)

Ar2,, (bl n)
Ar2z (bl n)
Ar3,, (bl n)
Ard,, (bl n)

(bi, m)

avg

O, . (bl, n) Volumetric average of the olefins content of the pro-
cessed material by blender & during slot »
Ol (b, n) Volumetric average of the squared value of the olefins

content of the processed material by blender 4/ during
slot n

Ol2,,(bl,n) Squared value of O, (bl n)

G (bl e,n) Value of quality property e of the processed material
by blender b during slot »

r(i, bl n) Volume fraction of blend component i going into
blender #f during slot n

roN bl ny Volumetric average of the motor octane number of the
processed material by blender &/ during slot »

rﬁ (&, n) Volumetric average of the research octane number of
the processed material by blender b during slot

rsueN(bl,n) Product of rge (b, n) and sens,, (b1, n)

FSmg (blm) Product of r? (b, ») and sens,, (b, n)

sens, (bl n) Volumetric average of the octane number sensitivity

of the processed material by blender &/ during slot »

senspa (b1, 1) Volumetric average of the octane number sensitivity
times the motor octane number

sensﬂ(bl, n) Volumetric average of the octane number sensitivity

times the research octane number

Vet (b1, 8) Volume being processed by blender & during slot »

V. G, b1,) Volume of blend component i transferred to blender &/
during slot »

References

[1] Harjunkoski [, Maravelias CT, Bongers P, Castro PM, Engell S, Grossmann IE, et al.
Scope for industrial applications of production scheduling models and solution
methods. Comput Chem Eng 2014;62:161-93.

[2] Méndez CA, Grossmann IE, Harjunkoski I, Kaboré P. A simultaneous optimization
approach for off-line blending and scheduling of oil-refinery operations. Comput
Chem Eng 2006;30(4):614-34.

[3] LiJ, Karimil. Scheduling gasoline blending operations from recipe determination
to shipping using unit slots. Ind Eng Chem Res 2011;50(15):9156-74.

[4] Li], Xiao X, Floudas CA. Integrated gasoline blending and order delivery opera-
tions: Part . Short-term scheduling and global optimization for single and multi-
period operations. AIChE | 2016;62(6): 2043-70.

[5] Singh A, Forbes JF, Vermeer PJ, Woo SS. Model-based real-time optimization of
automotive gasoline blending operations. | Process Contr 2000;10(1:43-58.

[6] Joly M, Pinto JM. Mixed-integer programming techniques for the scheduling of
fuel oil and asphalt production. Chem Eng Res Des 2003;81(4 :427-47.

[7] Floudas CA, Lin X. Continuous-time versus discrete-time approaches for sched-
uling of chemical processes: A review. Comput Chem Eng 2004;28(11):2109-29.

[8] Sundaramoorthy A, Maravelias CT. Computational study of network-based
mixed-integer programming approaches for chemical production scheduling.
Ind Eng Chem Res 2011;50({9):5023-40.

[9] Maravelias CT. General framework and modeling approach classification for
chemical production scheduling. AIChE | 2012;58(6):1812-28.

[10] Jia Z, lerapetriton M. Mixed-integer linear programming model for gasoline
blending and distribution scheduling. Ind Eng Chem Res 2003;42(4):825-35.

[11] Jia Z, lerapetritou M. Efficient short-term scheduling of refinery operations based
on a continuous time formulation. Comput Chem Eng 2004;28(6-7):1001-19.

[12] Glismann K, Gruhn G. Short-term scheduling and recipe optimization of blend-
ing processes. Comput Chem Eng 2001;25(4-6):627-34.

[13] Li J, Karimi [, Srinivasan R. Recipe determination and scheduling of gasoline
blending operations. AIChE | 2010;56(2):441-65.

[14] Castillo PAC, Mahalec V. Inventory pinch based, multiscale models for inte-
grated planning and scheduling—Part II: Gaseline blend scheduling. AIChE |
2014:60(7:2475-97.

[15] Castille PAC, Mahalec V. Inventory pinch gaseline blend scheduling algo-

154

PA. Castillo Castillo et al. / Engineering 3 (2017) 188-201

rithm combining discrete- and continuous-time models. Comput Chem Eng
2016;84:611-26.

[16] Castille PAC, Mahalec V. Improved continuous-time model for gasoline blend
scheduling. Comput Chem Eng 2016;84:627-46.

[17] Lotero [, Trespalacios F, Grossmann [E, Papageorgiou DJ, Cheon MS. An MILP-
MINLP decomposition method for the global optimization of a source based
model of the multiperiod blending problem. Comput Chem Eng 2016;87:13-35.

[18] Castro PM. New MINLP formulation for the multiperiod pooling problem. AIChE
] 2015;61(11):3728-38.

[19] Kolodziej SP, Grossmann IE, Furman KC, Sawaya NW. A discretization-based ap-
proach for the optimization of the multiperiod blend scheduling problem. Com-
put Chem Eng 2013;53:122-42.

[20] Cerda), Pautasso PC, Cafaro DC. A cost-effective model for the gasoline blend
optimization problem. AIChE | 2016;62(9):3002-19.

[21] Cerdd], Pautasso PC, Cafaro DC. Optimizing gasoline recipes and blending opera-
tions using nonlinear blend models. Ind Eng Chem Res 2016;55(28): 7782-800.

[22] Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global
optimization. Math Program 2005;103(2):225-49.

[23] Misener R, Floudas CA. ANTIGONE: Algerithms for continuous/integer global
optimization of nonlinear equations. | Glob Optim 2014;59(2):503-26.

[24] Beland N, Kalinowski T, Rigtering F. New multi-commodity flow formuladons for
the pooling problem. | Glob Optim 2016;66(4):669-710.

[25] Sherali HD, Alameddine A. A new reformulation-linearization technique for bi-
linear programming problems. | Glob Optim 1992;2(4):379-410.

|26] Ryoo HS, Sahinidis NV. A branch-and-reduce approach for global optimization. |
Glob Optim 1996;8(2):107-38.

[27] Smith EMB, Pantelides CC. Global optimization of noncenvex MINLPs. Comput
Chem Eng 1997;21(Suppl):5791-6.

[28] Belotd P, Lee J, Liberti L, Margot F, Wachter A. Branching and bounds tightening
techniques for non-convex MINLP. Optim Methods Softw 2009;24(4-5):597-
634.

[29] Achterberg T. SCIP: Solving constraint integer programs. Math Program Comput
2009;1(1):1-41.

|30] Castro PM. Spatial branch-and-bound algorithm for MIQCPs featuring multipar-

155

ametric disaggregation. Optim Methods Softw. Epub 2016 Dec 13.

[31] Castillo PC, Castro PM, Mahalec V. Global optimization algerithm for large-
scale refinery planning models with bilinear terms. Ind Eng Chem Res
2017:56(2):530-48.

[32] McCormick GP. Computability of global solutions to factorable noncon-
vex programs: Part [-Convex underestimating problems. Math Program
1976:10(1):147-75.

[33] Karuppiah R, Grossmann IE. Global optimization for the synthesis of integrated
water systems in chemical processes. Comput Chem Eng 2006;30(4 }:650-73.

[34] Castro PM. Tightening piecewise McCormick relaxations for bilinear problems.
Comput Chem Eng 2015;72:300-11.

[35] Misener R, Thompson JP. Floudas CA. APOGEE: Global optimization of standard,
generalized, and extended pooling problems via linear and logarithmic parti-
tioning schemes. Comput Chem Eng 2011;35(5): 876-92.

[36] Kolodziej 5, Castro PM, Grossmann lE. Global optimization of bilinear programs
with a multiparametric disaggregation technique.] Glob Optim 2013;57(4):
1039-63.

[37] Castro PM. Normalized multiparametric disaggregation: An efficient relaxation
for mixed-integer bilinear problems. | Glob Optim 2016;64(4):765-84.

[38] Castro PM, Grossmann IE. Global optimal scheduling of crude oil blending oper-
ations with RTN continuous-time and multiparametric disaggregation. Ind Eng
Chem Res 2014;53(39):15127-45.

[39] Castro PM. Source-based discrete and continuous-time formulatiens for the
crude oil pooling problem. Comput Chem Eng 2016;93:382-401.

[40] Castillo PAC, Mahalec ¥, Kelly |D. Inventory pinch algorithm for gasoline blend
planning. AIChE] 2013;59(10):3748-66.

[41] Healy WC, Maassen CW, Peterson RT. A new approach to blending octanes. In:
Proceedings of the 24th Midyear Meeting of American Petroleum Institute’s Di-
vision of Refining; 1959 May 27; New York, US; 1959, p. 132-136.

[42] Castro PM, Grossmann [E. Optimality-based bound contraction with multipar-
ametric disaggregation for the global optimization of mixed-integer bilinear
problems. | Glob Optim 2014;59(2):277-306.

[43] Kallrath . Planning and scheduling in the process industry. OR Spectrum
2002;24(1):219-250.

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Chapter 9: Global Optimization of MIQCPs with Dynamic Piecewise
Relaxations

This chapter has been published online in the Journal of Global Optimization. Complete
citation:

Castillo Castillo, P. A., Castro, P. M., & Mahalec, V. (2017). Global optimization of

MIQCPs with dynamic piecewise relaxations. Journal of Global Optimization. doi:
10.1007/s10898-018-0612-7.

156

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

In Chapter 9, an improved version of the algorithm described in Chapter 7 is presented.
Compared to the method detailed in Chapter 7, this new version of the algorithm uses
optimality-based bound tightening not only when a new upper bound is found, but
whenever the domain of the variables is significantly reduced. In addition, the algorithm
also increases or decreases the number of partitions depending on the last iteration
performance, which is defined by the required execution time, optimality gap
improvement, and average domain reduction. Finally, the algorithm can switch from
piecewise McCormick to Normalized Multiparametric Disaggregation when the number
of partitions is greater or equal to 10.

The test examples include the refinery planning problems from Chapter 6, and 3
scheduling problems of a hydro energy system. The results show that this version of the
algorithm is superior to that from Chapter 6.

157

oo
J Glob Optim @ CrossMark
hitps://doi.org/10.1007/5 10898 018 06127

Global optimization of MIQCPs with dynamic piecewise
relaxations

Pedro A. Castillo Castillo! . Pedro M. Castro?
Vladimir Mahalec!

Received: 2 June 2017 / Accepted: 23 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract We propose a new deterministic global optimization algorithm for solving
mixed-integer bilinear programs. It relies on a two-stage decomposition strategy featuring
mixed-integer linear programming relaxations to compute estimates of the global optimum,
and constrained non-linear versions of the original non-convex mixed-integer nonlinear pro-
gram to find feasible solutions. As an alternative to spatial branch-and-bound with bilinear
envelopes, we use extensively piecewise relaxations for computing estimates and reducing
variable domain through optimality-based bound tightening. The novelty is that the number of
partitions, a critical tuning parameter affecting the quality of the relaxation and computational
time, increases and decreases dynamically based on the computational requirements of the
previous iteration. Specifically, the algorithm alternates between piecewise McCormick and
normalized multiparametric disaggregation. When solving ten benchmark problems from
the literature, we obtain the same or better optimality gaps than two commercial global
optimization solvers.

Keywords Mixed-integer nonlinear programming - Global optimization of quadratic
programs with bilinear terms - Piecewise linear relaxations - Optimality-based bound
tightening

1 Introduction

We aim to solve a special class of nonconvex mixed-integer nonlinear programming (MINLF)
problems to e-global optimality, where s is anon-zero tolerance. Froblem P is a mixed-integer
quadratically constrained problem (MIQCP) where nonlinearities are due to bilinear terms

B Pedro M. Castro
pmcastro @fe.ul.pt

1 Department of Chemical Engineering, McMaster University, Hamilton, ON LES 4A7, Canada

Centro de Matematica Aplicagdes Fundamentais e Investigagio Operacional, Faculdade de Ciéncias,
Universidade de Lisboa, 1749-016 Lisbon, Portugal

Published online: 14 February 2018 @ Springer

158

J Glob Optim

x; x; of continuous variables x with finite lower x% and upper x¥ bounds, and binary variables
y appear linearly in the constraints:

f[f = min fO (xa)’)

st Sy (x,¥) =0 Vg < Q/ {0}

Ja (. 3) =2 jyemr @ijgwij + Bex + Cqy +dy Yg €Q

Wi i Vi, j) € BL @)
ij = &iXj JJ)YE

0=xl=x <=V

xe Ry (0, 1)V, we RBU

BL s an (7, j)-index set defining all bilinear terms, Q represents the set of all functions
appearing in the constraints and objective function (g = 0), which excludes auxiliary equa-
tions defining new sets of bilinear variables w. The total number of original continuous
variables is {x, while the number of original binary variables is 7y. We assume that P is
feasible with global optimal solution fg.

Many relevant engineering problems can be formulated as P. Others, closely resemble
P, the difference being the presence of constraints with exponential terms for estimating the
capital cost. Examples can be found in pooling problems [1-4], synthesis of general multi-
component process networks [5,6], design of water networks [7-11], short-term planning of
oil refineries [12,13], scheduling of crude-oil blending operations [14—16] and hydro energy
systems [17].

Nonconvex optimization problem P can present multiple local and global optima.
Cradient-based methods cannot guarantee finding a global selution and they do not tell,
at termination, how far the best feasible solution is from the best possible solution (le.,
the best estimate of the global optimum) [18]. Deterministic global optimization algo-
rithms are required for such purposes, with their development being a very active research
area.

Deterministic global optimization algerithms rely on a relaxation of P to compute esti-
mates of the global solution, on various techniques to iteratively improve such estimates, and
on methods to compute feasible solutions. They aim to reduce the relative difference between
the best feasible and best possible solutions below . The quality of the best possible solution
depends on the tightness of the relaxation, which in turn depends on the size of the domain
of the variables (i.e., x¥ — x). The smaller the domain, the closer the relaxation is to the
original nonconvex function.

Spatial branch-and-bound (SBB) is the most common method to systematically reduce
the domain of the variables. In SBB, branching is applied on discrete variables, as well as
on continuous variables involved in nonlinear terms [19,20]. Branching occurs one vari-
able at a time and it generates two child nodes, each with a smaller domain than the parent
node, leading to potentially tighter relaxations. Whenever the best possible solution at anode
becomes worse than the best feasible solution, the node is fathomed (pruned). Cutting planes
and bound-tightening techniques have been incorporated in SBB algorithms to improve the
relaxation and reduce the number of nodes to explore. Although SBB guarantees conver-
gence to an s-global solution, computational time can grow exponentially with problem
size.

The tightest linear relaxation for a bilinear term is given by McCormick envelopes [21].
They are generated by four inequalities that have a low computational cost. Many determin-
istic global optimization algorithms employ McCormick envelopes as their only relaxation
technique for bilinear terms [5,12,22,23]. However, McCormick envelopes usually provide
a weak relaxation when at least one of the variables involved in a bilinear term has a signif-
icantly large domain. This led to the development of piecewise linear relaxation techniques

@ Springer

159

J Glob Optim

that improve the quality of the relaxation by partitioning the variables domain (the larger
the number of partitions, the tighter the relaxation). However, since piecewise linear relax-
afions introduce additional binary and continuous variables, there exists a trade-off between
tightness and the computational effort required to solve the MILP to optimality.

The piecewise McCormick relaxation [24-27] partitions the domain of one of the variables
involved in a bilinear term and constructs McCormick envelopes for each partition. The major
drawback of piecewise McCormick is that the number of additional binary variables increases
linearly with the number of partitions. This important issue fostered the development of relax-
ation techniques where the number of binary variables increases logarithmically with respect
to the number of partitions [2,28,29], with one example being normalized multiparametric
disaggregation. Piecewise linear relaxations have been used in SBB algorithms [2,30,31],
but they can also be deployed as an alternative to the SBB framework [13,28,32-34], as well
as in decomposition methods [26].

The semidefinite programming (SDP) relaxation of MIQCPs has also been extensively
studied. Problem (P} is a lifted reformulation, with extra variables w;; and non-convex
constraints w;; = x;x;. [t can berelaxed as a pair of inequalities, W — xxT =0 {convex) and
xxl — W = 0 (non-convex). In order to produce strong convex relaxations, Saxena et al. [33]
use the convex SDP inequality to derive convex quadratic cuts and exploit the non-convex
mmequality to derive disjunctive cuts. Their cutting plane algorithm also relies on McCormick
envelopes to strengthen the initial relaxation of the MIQCF, later removing all non-binding
(at the solution of the convex relaxation) RLT inequalities when generating disjunctive cuts.
In the companion paper [36], Saxena et al. study methods that capture the strength of such
extended SDP relaxations but are defined only in the space of the x variables. By replacing
the RLT convexification of (P) with an alternative that splits matrix A, defining bilinear
terms x! Ax, as a difference of positive semidefinite and symmetric matrices, they show how
to project the extended RLI fermulation in the original space by solving linear programs
(LPs). A similar procedure is performed when adding the convex inequality W — xx¥ 3= 0
to the extended RLI formulation, leading te the solution of SDPs rather than LPs. For the
GLOBALLAib instances, relaxations from projected fermulations are almost as strong as those
from [35], with the advantage of being solved two orders of magnitude faster.

In this work, we present a deterministic global optimization algorithm to solve MINLP
problems of type P. The main novelty is the use of a dynamic partitioning scheme for
piecewise relaxations, not only to compute the lower bound, but also for performing
optimality-based bound tightening (OBBT) for all variables appearing in bilinear terms [33].
The extensive use of OBBT contrasts with commercial global optimization solvers [37-
39], which apply some restricted version of it, always featuring the simplest bilinear
envelopes [40]. Dynamic partitioning refers to changing the number of partitions between
iterations. Although the same term has been applied in [34], there are major differences
between the two algorithms, as can be seen in Fig. 1.

Nagarajan et al. [34] assume that a local solution (x*, y*, w*) to (P) is given and divide
their global optimization algorithm in two parts. [n part one, a sequence of OBBT iterations
is performed to reduce the domain of all x variables. The procedure stops when bound
improvement in consecutive iterations falls below a specified tolerance. Part two involves
the solution of relaxation problems (PR) derived from piecewise McCormick envelopes.
The domain of bilinearly appearing variables x; and x; is partitioned in a non-uniform way.
Partitions are dynamically added around the current solution (local solution x* in the first
iteration and optimal solution from the relaxation problem xRin subsequent iterations) until
thenormalized improvement on the lower bound LB from (PR) is less than a given tolerance,

@ Springer

160

J Glob Optim

Nagarajan et al. [34] Current work
xk | | x¥ (PR
Given feasible solution x*,y*,w* Feasible solution x*,y*,w* following (PR}
L., oBBT |
i L | | e lF
oL | | U 1"5 0 | XoX; |
I 1
| ! | B Univariate partitioning on x; |
L OBBT v B L | | o (PR}
It — —x PE 1 [£ solves fast |
F at x — x¥ o gl | | xY ©0BBT |
E i |
L « [t B o | | | 4o PR
X x | * "IE: \ | | | \ solves fast !
x* - !
g ., OBBT |
= | ‘g xt | | xYsmall domalin |
Relaxation (PR)from B reduction |
piecewise McCormick I L e e R E D(r;RJn i
Bheriate partitioning on x;, ; R o)
R | Univeriate partitioning on X; :
R — L s {xV A | | oBET |
! ! ! ‘ - \ | X7 effective again |
a R B . !
5 Y | | ;I il i & LBalcktraclk numll::ar oflpartlllu‘nsu {PR) i
|- | T Tzt {7 solves very st |
= | .
l L | | ‘ﬁlf | | U (”W”W"W”W"””7”””"”””””7””7”:
* | K I e xb] x¥ OBBT |
' § !
i ‘§ Incrzeue agaln number of parlltlo;s PR) i
v o XY soves fast |

Fig. 1 Comparison of dynamic partitioning schemes

xR variables remain in the same partitions and the size of such partitions is already very small,

or the computation hits a time limit.

The algorithm proposed in this work does not assume a feasible solution i1s given. In the
first iteration, it solves a simple relaxation problem (McCormick envelopes) to try to find one
very quickly. This process is repeated in subsequent iterations to improve the upper bound
UB, and consequently the bounds from OBBT (step omitted from Fig. 1 since the focus is on
comparing the lower bounding procedure). The integration of OBBT and (PR) steps is the
first major difference compared to [34]. The second difference is that our algorithm relies on
univariate and uniform partitioning. Uniform partitioning, by giving the same importance to
all regions of the domain, may protect us against frequent x® movements from narrower to
wider partitions, meaning potentially fewer iterations at the expense of more partitions (larger
problems) per iteration. The next partitioning level is decided based on (PR)’s computational
requirements. Figure 1 assumes (PR) solves fast before reaching N = 8 partitions in iteration
4, coinciding with OBBT becoming ineffective. To further improve domain reduction, it
is thus worth to try plecewise relaxation strategies for OBBT, not considered in [34], by
selecting N = 2. [teration 5 also backtracks to N = 4 for (PR), illustrating that dynamic
partitioning can go in both directions. Finally, and te benefit from the better scaling of
problem size with the number of partitions when reaching N = 10, the algorithm will
change the relaxation technique from piecewise McCormick to normalized multiparametric
disaggregation.

@ Springer

161

I Glob Optim

08-
= 087
M 04-

02

Fig. 2 Bilinear function x;x; in [0, 1]2

2 Computing lower bounds

If y variables remain binary and all original constraints ¢ € Q/ {0} are kept, the simplest
relaxation of P is obtained by removing equations w;; = x;x,;. However, it is also the
weakest, Narrowing the domain of variables w;; to regions WRy will potentially lead to a
tighter relaxation. Since P is feasible, so is its relaxation PR. If flfR is the global optimal
solution of PR, then fIsz = fp, representing a lower bound on the global optimal solution
of P.

fpr =min fo(x,y)

st fp(x,y) =0 ¥q € Q/ {0}
Ja (. ¥) =226 peL @ijqwij + Bgx + Coy +4dy Vg = Q (PR)
wi; € WRy ¥, j) € BL

OExLSxExU
xeR¥ y {0, 1), we RIBU

Three alternative ways of defining regions WR;; for relaxation problem PR will be dis-
cussed next.

2.1 McCormick relaxation (SMCR)

The standard McCormick relaxation for bilinear function w;; = x; x; represented in Fig. 2,
is given by Eqs. {1-4). These equations define regions WRy; that form the convex hull for
x; x5, see Hig. 3.

wij = xx) +xxf —xfxl Y, j) = BL (1
wij = xxl +xpal —xPxY W,) e BL (2)
wij < xx) +xxf —xUxt V(i j) € BL (3)
wij < xx? +xjx] —xlxY Y j) e BL (4)

2.2 Piecewise linear relaxations

Piecewise McCormick and normalized multiparametric disaggregation are well-known
examples of piecewise relaxation techniques that typically use the same number of parti-

@ Springer

162

J Glob Optim

Fig. 3 Feasible region from McCormick envelopes for bilinear function x;x ; in [0, 1]2

tions N for every partitioned variable x ;. Both introduce additional binary variables into the
problem, creating non-convex regions WR;.

2.2.1 Piecewise McCormick relaxation (PMCR)

Fiecewise McCormick uses binary variable z j, to identify the active () partition for variable

x;. The McCormick envelopes in Eqs. (1-4) can then benefit from tighter bounds x;: <

xJ‘:.“n and x;t’; = xJ,U, computed by Egs. (5-6). The mixed-integer linear relaxation can be
formulated as a disjunction and convex-hull reformulated [41] into Egs. (7-15). Notice the
new continuous disaggregated variables ¥;,, and ¥; ;,,. The feasible region associated to PMCR
using 4 partitions is illustrated in Fig. 4. Notice that it is closer to the original bilinear function

(Fig. 2) than SMCR (Fig. 3).

(xJU — xJ‘:‘) (n—1)

L L LS
xjn:xj+ N V].(I,])GBL,I@G{L...,N} (5)
U I (x«? B x«%) (n)
X =5+ ~ Yi:{, jeBL,nes{l, ..., N} (6)
N
wij 2 Y (Snad, + %t — zxPal) VG e BL (7
n=1
N
wiy = 3 (Gl el 2l) ¥y € BL ®)
n=1
N
wij =y (xijnxm b E zmxyxfn) Y (i, j) € BL ©)
n=1
N
wig =y (;%Unxj’; +E ek — zj,zxij;) Vi, j) BL (10)
n=1
N
X = Zfijn ¥ (i, j) € BL (11)

@ Springer

163

T Glob Optim

08-
i~ 06
= 04-

Fig. 4 Feasible region from piecewise McCommick relaxation with 4 partitions for bilinear term x;x;
in[0, 1P

N
Xj= Y % ¥j:G j)eBL (12)
n=1
N
ZZ;H:1Vj:(i,j)€BL (13)
n=1
xtzm < Bm=xlzm YU,) eBLone(l,. .., N) (14
whzjn < Fjn < xzje ¥i:(hj) eBLone{l,... N} (15)

2.2.2 Normalized multiparameliic disaggregation (NMDT)

Normalized multiparametric disaggregation provides an equivalent relaxation to PMCR but
can be orders of magnitude more efficient computationally. However, the number of partitions
is restricted to powers of ten, i.e. N = 1077, with p £ Z~ being the accuracy parameter
chosen by the user. The normalized [0, 1] domain of variable x; is discretized considering all
digitsk < {0, ..., 9} of the decimal representation system and positions! < {p, ..., —1}.Itis
then linked to the real domain of x; through continuous variable 4 ; and global beunds xj-“ and

x?. Note that continuous variable Ak ; allows 4 ; to take continuous values between discrete
peints. The active partition for x; is identified by the non-zero values of (— p) binary variables
Zjki,» one per position /. The number of binary variables per variable is thus 10 log,q N versus
N when using PMCR. Equations (16-26) provide the NMDT relaxation that also requires
continuous variables v;;, Av;;, and i 5. It is illustrated in Fig. 5 for p = —1 (N = 10),
which is already very similar to Fig. 2.

wij = xixk + oy (xf - x}) (i, j) € BL (16)

xj:x}+kj(x§f—xj}) Vj: (i, j)eBL (amn
-1 9

hj= Ar;+3 3 100 kzj Vi, j) e BL (18)
I=p k=0

0= Ax; =107 ¥j:(,j)eBL (19)

@Springcr

164

J Glob Optim

Fig. 5 Feasible region from normalized multiparametric disaggregation with p = —1 for bilinear term x;x
in [0, 1]
-1 9
vij = > 10" k- &+ Avij ¥, j) € BL (20)
I—p k=0
xbAr; < Avy = sUAx; ¥, j) e BL (21)
Av,-j = 107 (x,- — x{“) -I—ngAAj Y (i, j = BL (22)
A = 107 x,--x}f)+x§”mj Y (i, j) £ BL (23)
9
X Fgju V(0) eBLIE (p .., 1) @4
k=0
zju=1VYj:GjeBLlcip ..., 1} (25)
k=0
wlzi < G < sl Y HeBLlcip, ..., 1}, ke{0,....9) (26)

3 Optimality-based bound tightening (OBBT)

For all three relaxation techniques described in Sect. 2, the volume of region WR f? depends on

bounds x‘r‘, ij . xL and xV. Itis thus desirable to strengthen such bounds (raise x;~ and x}“, and

i b i
decrease ij and x¥) to obtain a tighter relaxation (higher flfR). One way to do it, is through
optimality-based bound tightening (OBBT). For each variable 2 =« BLV = {h| (4, j) =
BL A (h=4{vh = j)} involved in a bilinear term, lower and upper bounds are computed
by solving one minimization and one maximization problem, respectively. These problems,
denoted as PRB, are like relaxation problem PR but with a different objective function
(now the variable to minimize/maximize) and an additional constraint, which imposes the

value of the objective function in P, fi(x, ¥), to be less or equal than the current upper
bound I/ 5.

i

@ Springer

165

T Glob Optim

x;‘;‘ = min Xy, (xf = maxxh)
st. fo(x,v) <UB

Jex,y) =0 ¥q € Q/ 10}

Ja(x,y) = 2 aijgwij + Bex + Coy +dy Vg Q (PRB)
(i, ;/)eBL

wi; € WRy Y (i, j) € BL

0=xf eyl

xeR¥ yecy, we RBL

Remark 1 Given thatmany problems may need to be solved, the complexity of problems PRB
should be manageable. Region WR;; will be generated from either the standard or piecewise
McCormick envelopes with a low number of partitions (N < 10). With the former, binary
variables are further relaxed, ' < [0, 1]ly , to work with linear problems (LPs) instead of
MILPs (Y < {0, 1}*).

Other types of probing methods can be found in the literature that also solve bounded
relaxations of the problem to extract further information on the variables, e.g. to identify
conflicts between binary variables y [42]. They are not part of this work.

4 Generating upper bounds

Previous work has shown that an effective way to compute a good feasible solution to non-
convex MINLPproblem P, is torely on a two-stage MILP/NLP strategy. Any feasiblesolution
to MILP problem PR can be used to extract the values xR, yR and w?® of variables x, y and
w. Parameters y® will then replace binary variables y in P, reducing it to NLP problem PF.
PF will be solved by a local NLP solver, after initializing variables x and w with parameters
xR and wk, to facilitate convergence. Note that PF is a restricted version of P, and so it is not
necessarily feasible. If feasible, the optimal solution (x*, y*, w*) of PF is an upper bound
[/ B on the global solution of P, i.e. fip = fp.

Jpp = min fo (x)

st f(x) =0 Vg < Q/ {0}
Jay= X aijgwij+ Bex +Coy" +dy Vg eQ

(i, ;1eBL (PF)
Wij = X Xj Y, j) € BL

0=xl <x<xV
x e RY, e RIBL

5 Global optimization algorithm

We now propose a global optimization algorithm for the solution of any mixed-integer non-
linear program that can be written as problem P. [t is summarized in Fig. 6 and detailed in
Tables 1 and 2.

Assumed given are the selection of partitiened variables x ; in every bilinear term, variable
bounds x* and ¥, and a variety of tuning parameters. Problem-specific settings include the
pre-specified values that the number of partitions can take when solving PR (Npp) and PRB
(Npgg), maximum computational time and relative optimality tolerance (e.g. TIMETF", epR).
The other parameters will be named while describing the algorithm.

@ Springer

166

J Glob Optim

Step 1
Specify:
Partitioned variables
Variable bounds x* and xY
Stopping criteria
General algorithm settings

:

Step 2
Initialize algorithm parameters
IT=1

Step 3
Depth search method

A

Step 4 Step 10
OBBT IT=IT+1

Step 5
Solve model PR

Step 9
Determine if:

« Npp should be increased/decreased
* Npzg should be increased
« OBBT should be applied
* Model PR should use all the

remaining time available
F

r
Step 6
Solve model PF

v
Step 7
Update OptGap

Step 8
Stopping criteria
met ?

No

Yes

Final solution

Fig. 6 Flowchart of the proposed global optimization algorithm

@ Springer

167

J Glob Optim

Following theinitialization step, the algorithm computes thelower bound LB using the sim-
plest McCormick relaxation. In subsequent iterations, step 5 will typically involve piecewise
linear relaxations. Note that once OBBT loses efficiency (flag LASTpp = 1), the maximum
computational time TIMEZS* will be reset to the remaining time to run the algorithm. Step
3 solves one MILP problem of type PR, gathering a maximum of apeo! solutions in a pool.
If the optimal solution f}sz is higher than the lower bound, the latter is updated.

Remark 2 Region WR; in problem PR is computed using piecewise McCormick envelopes
whenever Npp < {1, 2, ..., 9}. Normalized multiparametric disaggregation is used instead
for Npp = {10, 100, 1000, ...} (p € {..., =3, =2, —1}.

Remark 3 'The lower bound is updated using the best possible solution at termination for
problem PR and not the best-found feasible solution. The same is true for problem PRB,
when it is an MILE

In step 6, we use the values (xR, yE, wR) of the variables in the previous solutions to help
computing upper bounds. A total of npool problems of type PF are solved in parallel using
npar threads. Amongst those that are feasible, the one with the lowest objective function fpp
can set the upper bound U/B. Note that PF is solved by a local NLP solver and so this step is
much faster than steps 4-5. It is the reason why no execution-time constraints are enforced.

With the lower and upper bound, step 7 computes the relative optimality gap OptGap.
Step 8 stops the algorithm if the termination criteria is met, either a relative tolerance below
£ or a computational time (TIME) above maximuimn value TIME™*, Decisions related to the
dynamic partitioning scheme are taken in step 9.

The details of step 9 can be found in Table 2. Two flags are used: NNTE = 1 indi-
cates that we have the necessary conditions for increasing the number of partitions in
problem PR; NNpr = 1 gives the sufficient condition for selecting the next setting in
{NPR firsts - » NPR last }> see 9c. These are the initial values for the first entry in 9a, which
checks the time spent solving PR (TIME pp).

If greater or equal to TIMETZ”, it means that we should try to backtrack and reduce the
number of partitions in the next iteration to reduce the complexity of PR, unless we are
already in the coarsest setting Npg, firs; or have previously backtracked to Npg; either way,
we will definitely not increase Npp, 1.e. NNpp = 0. The same is true if TTME pp is within
TIMETR” and the maximum time ratio r7g”, and LASTpp = 0. We also set NN3F = 0 to
later decide how to improve the lower bound.

It the number of partitions did not increase in the previous iteration (NN pgp = 0) and PR
was solved rather fast (below minimum time ratio tr}"i"), we will try to generate a better
lower bound by rising Npp in the next iteration. This concludes step 9a.

Step 9b takes measures when the average domain reduction in OBBT is below the min-
imum target of ADR™". This is not an issue if PR problems can be solved rather fast
(NNpp = 1), we simply avoid spending time in the next iteration with an inefficient OBBT
by making D Ogppr = 0. On the other hand, if we do not meet the necessary condition to
increase Npp (NNEF = 0), we may need to move towards termination of the algorithm.

If the next possible value of Npgp is lower than Npp, then we might still be able to get
a good domain reduction by increasing Nppg. Counters of LF (C £}§B) and MILP (C “g"f}%‘n)]
problems solved are then reset. Else, we increase the appropriate counter by one. We then
proceed to the last if-then-else. If we have already solved at least one MILP in OBBT and
found that ADR < ADR™" then the most reasonable thing to do is to give all remaining time
to PR by making LASTpr = 1. If the domain reduction was low but we have been solving

@ Springer

168

J Glob Optim

LPs in OBBT, then we also move towards the end while allowing one more OBBT run, now
solving MILPs, after selecting the next value of Npgg.

We then proceed to the next iteration in step 10. Steps 3 and 4 are the first procedures of
iteration I'T but do not occur in the first iteration to quickly compute an optimality gap.

Step 3 involves a depth search and is detailed in Sect. 5.1.

Step 4 executes optimality-based bound tightening to reduce the variables domain. It is
triggered by DOgppr = 1 and involves solving two PRB problems per variable, after setting
the number of partitions N to Npgg. Since the number of variables involved in bilinear terms
can be significantly large, it 1s much more efficient to solve the multiple instances of problem
PRB in parallel rather than sequentially (see results in Sect. 7.6). This procedure is repeated
until OBBT has been applied on all x;, variables involved in bilinear terms. We then compute
the average domain reduction ADR (%) using Eq. (27).

(xU,prevmus xL,premous) _ (xf,updared_x;,updated)

1 i h
R= |BLV| BRIy (x}?,previous_xﬁ,,previous) »x 100
(27

Remark 4 Npgp = 0 riggers the computation of relaxed region WRy; of bilinear function
wij = X; x; from the McCormick envelopes with binary variables relaxed (recall Remark 1).

5.1 Depth search method

MIQCPs have two sources of complexity: (1) a combinatorial source from binary variables;
(2) a non-convexity source from bilinear terms. A stronger combinatorial component is
assoclated to a higher difficulty finding the global optimal solution and can be addressed by
generating a larger number of feasible sclutions for P. This should be done preferably in the
earlier stages of the global optimization algorithm, since a better upper bound (I/B) helps
to improve the bounds computed by problem PRB. It is activated in the second iteration
(IT = 2) or when ADR < ADR™" if general setting DOpg = 1.

The depth search method works by dynamically increasing the number of partitions in
PR from the current Npp value. Note that it is not needed to solve PR to optimality since
the focus here i1s not on the lower bound. Because the MILP solver normally finds multiple
feasible solutions in the early nodes of the search tree, we stop at time TIMEF". Sclutions
obtained after solving PR with more partitions are potentially better (higher fI?R), leading
to values of the medel variables that are closer te the feasible region of P. As explained in
Sect. 4, these values are then used to initialize PF, potentially leading to a better I/ B. The
depth search method stops after I T7¢* increments in the number of partitions, resetting Npg
to its original value.

Overall, depth search is very similar to the search performed by the main algorithm.
However, it does not use OBBT and it always increases the number of partitions from one
iteration to the next.

6 Benchmark problems

Two different sets of MIQCP benchmark problems from the literature are used to evaluate
the performance of the proposed global optimization algorithm.

@ Springer

169

J Glob Optim

Table 1 Global optimization algorithm

1. Given
Selection of non-partitioned x; and partitioned variables x; for every bilinear term in P
Variable bounds: x* and x¥
Settings for solving PR: Npp € {Npg firsts - Nppiast}s TIMERE™, £pg, npool
Settings for solving PRB: Nppg € {Nppp first: -+ Nprpiase), TIMERRE . eppp, npar
General settings: TIME™*, g, ADR™™, DOps, trig™, trf%™, [T
2. Initialization
LB = —,UB = 4, IT = 1,ITps = 1, TIME = 0, ADR = ADR™™" 4 0.1, DOgppr = 1,
LASTpp = 0, Npg = Npa sirst» Nors = Npgs, firsts NNGR® =1,NNpg = 1, C}I"l}!’.ﬂ =0, Cﬁﬁ!‘ip =0
3. Depth search method {see Section 5.1)
IfDOps =1and IT > 1,
IfIT = 2 or ADR < ADR™#
Generate up to ITE™ feasible solutions, if best is better than UB, update UB; update(TIME)
4, Optimality-based bound tightening (OBBT)
KIr>1 andDOom,T = 1,
N = Npgg
For every bilinear appearing variable x; and using npar threads
Solve PRB minimizing x, up to TIMEFSF to obtain x,; xk = max (xf, x,)
Solve PRB maximizing xj,, up to TIMEFEE to obtain Xy; xf = min (x¥,%;)
Compute average domain reduction ADR; update(TIME)
5. Lower bound computation
If LAST, PR = 1,
TIMERE™ = TIME™®* — TIME
N = Npp
If Npg = 10,
Solve problem PR with WRy from NMDT up to TIMEEE™, storing npool feasible solutions
Else,
Selve problem PR with WRy from PMCR up to TIMEPY*, storing npool feasible solutions
LB = max (LB, fi}); update(TIMEpy); update(TIME),
6. Upper bound computation
For every (x®, y®, w®) solution in npool and using npar threads,
Initialize (x, w) with (x%, w®).
Solve problem PF.
If feasible and fpp < UB, UB = fpy, update optimal solution (x*, y*,w*)
update(TIME)
7. Optimality gap computation
OptGap = [—=] X 100.
8. Check termination criteria
Stop if OptGap < € or TIME > TIME™a*
9. Modify number of partitions
See details in Table 2
10. Continue to next iteration
IT=IT+1;gotoStep 3

@ Springer

170

J Glob Optim

Table 2 Global optimization algorithm—dynamic partitioning scheme

9. Modify number of partitions
NNPR = NNF'EC
a. Check time spent solving problem FR
If NNpgp =1,
I TIMEpg = TIMERF*,
If Npr # Npg firs and Npp € NBEF,
N = NEE™ U Npg
Npp = previous(Npg)
NNJE® = 0; NNpg = 0.
Elself TIMEpy 2 trig” - TIMEES*,
If LASTpg = 0,
NNJES = 0; NNpg = 0.
Elself NNpp = 0,
I TIMEpy < troi® - TIMERY™,
NNZEE = 1; NNpg = 1.
b. Check average domain reduction
If NNpg = 1 and ADR < ADR™",
DOgpgr =10
If NNB§° =0,
Ifﬂext(NpRB) < NPR!
Nogp = next(Npgs)
Cihe = 0; CHIEF = 0.
Else,
IfNPRB = 0,
Cks = Cika +1
Else,

MILP _ ~MILP
CPRB — “PRB +1

If Npge 2 1,
If CMILF =1,
IFADR < ADR™n

NN;‘EC = 1, NNPR = 0, LASTPR = 1, andDOoBBT = U

Else,
fChp =2,
If ADR < ADR™n

NN;‘:C = 1, NNPR = 0, LASTPR = 1, andDOOBBT =1

Npgp = next(Npgp)
¢. Partitions of problem PR
NNz =1,

Npg = next(Npg)

The first set deals with the short-term scheduling of a hydroelectric system [17], where the
aim is to maximize the daily profit considering hourly changing electricity prices and start-up
costs for the power plants. Power generation is modelled as a bilinear function of discharge
flowrate and head change, with binary variables identifving if a plant is producing energy on
a given hour (needed to enforce lower and upper bounds on power production and discharge
flowrate) and startups. Like in our previous global optimization studies [31,33], we consider
the original problem with 7 reservoirs (HYD7) and simpler versions with 2 (HYD2) and 4

reservoirs (HYD4).

@ Springer

171

J Glob Optim

Table 3 MIQCP model statistics

Benchmark problem HYD2 HYD4 HYD7 SCITP1-SC3TP1 SCITP3-SCATP3
Equations 573 1145 2003 1504 4526
Binary variables 96 192 336 12 36
Total variables 433 865 1513 1234 3716
Variables in bilinear terms 118 260 473 342 1132
Bilinear terms 192 384 672 476 1608

The second set consists of planning problems from a petroleum refinery [13]. The objective
is to minimize the total operating cost of the system that includes processing units with
alternative operating modes and storage tanks. Binary variables identify active modes and
products being blended. Bilinear terms appear as the product of volumetric flows and quality
properties in the material balances. We solve seven problems with different crude-oil supply
and product demand data. Three involve a single period of operation (SC1TP1-SC3TP1),
while in the others, the weekly time horizon is divided in three periods of fixed length
(SCITP3-SC4TP3).

The model statistics in Table 3 show that the ratio between the number of binary variables
and bilinear terms varies significantly between the two sets of problems (1:2 vs. 1:50). For
the hydre problems, a stronger combinatorial compenent is asseciated to a higher difficulty
finding the global optimal solution and can be addressed by generating a larger number
of feasible solutions of P. We thus activate the depth search method (DOps = 1), with a
maximum of five increments in the number of partitions (/755" = 5). The refinery problems
do not benefit from the time-consuming depth search method and so DOpgs = 0.

6.1 Tuning parameters

The optimization algorithm presented in Sect. 5 has a few parameters affecting its perfor-
mance. Most of the values selected were independent of problem type, while one was tuned to
adjust to instance size. It is beyond the scope of this paper to present a thorough computational
study involving such parameters.

MILP problems PR were solved for a number of partitions Npgp < {1, 2,4, 8, 10, 100,
1000}. The termination criteria were either a relative optimality tolerance spg = 0.0001%
or amaximum time TIMETF” equal to: 400s while OBBT is effective; or the remaining time
available, otherwise. The number of partitions Npg will increase in the next iteration if the
time solving PR divided by TIMEZR” is less or equal than tr}fi # — (0.05. On the other hand,
if the time ratio is greater of equal than 175" = 0.75, Npg will not change. The solution
pool option of the MILP solver was active, with a pool capacity of apool = 60, thus leading
to a maximum of 60 instances of PF solved in parallel per iteration.

The OBBT step involves solving LLPs, Npgp = 0, and MILP problems, Nppp <
{2,3,4,5,6,7) (recall Remark 4). In the latter case, the relative tolerance for problems
PRB is eppp = 0.0001%, while the maximum time TIMETg} is instance dependent: 130,
135, 145, 45 and 70s for problems HYD2, HYD4, HYD7, SCH#IP1 and SCH#TP3, respec-
tively. A maximum of npar = 80 instances were solved in parallel and the minimum average
domain reduction to consider OBBT effective was ADR™" = 5%,

For the hydro problems, the algorithm terminates when the optimality gap & < 0.0001%
or upon reaching a wall time TIME™® = 18§,000s. For the refinery problems, the values

@ Springer

172

J Glob Optim

are 0.01%, and 3600/10,800 s when dealing with one/three periods. The partitioned variables
in the hydro problems are the discharge flowrates. In the refinery problems, the partitioned
variables are the stream flowrates, the inventory levels in the storage tanks, and the quality
variables associated with the specific gravity.

7 Numerical results

All mathematical models and the global optimization algorithm were implemented in GAMS
24.7.3, taking advantage of its parallel computing grid facility. The MILP problems were
solved by CPLEX 12.6.3, running in parallel deterministic mode and using up to 8 threads.
CONOPT 3.17A solved the NLP problems. The MINLP benchmark problems were also
solved by commercial global optimization solvers BARON 16.5 [37] and ANTIGONE
1.1 [39] using the same termination criteria. The former is centered around spatial branch-
and-bound, while the latter focuses more on solving piecewise linear relaxations, applying
bound tightening techniques, and generating different types of cutting planes. The hardware
consisted of a server with an AMD OpteronTM Processor 6386 SE (2.79 GHz), 32 available
cores, 64 GB RAM, and running Windows Server 2008 R2 Enterprise.

7.1 Comparison to our previous algorithms

The global optimization algorithms in our previous work have used piecewise relaxations in
a different manner, see details in Table 4. They are responsible for the literature results in
Table 5.

Results in [31] for the hydro problems came from a spatial branch-and-bound algorithm
using the NMDT relaxation with Npp = 10 partitions. OBBT was called in every node of the
tree, prior to solving the relaxation problem (as in the current work), and involved solving a
sequence of LPs (Npgpg = 0).

The algorithm solving the refinery problems in [13] used dynamic partitioning in the
relaxation step as a replacement to spatial B&B, similarly to the one proposed in this work.
The difference is that the number of partitions only increased, until reaching the computational
time limit. Now, we enforce timing constraints per iteration to use the available time more
efficiently, backtracking on the number of partitions whenever the relaxation problem cannot
be solved to optimality. The two algorithms also share the parallel solution strategy for the
bound contracting problems. However, the current algorithm calls OBBT more often, once
per iteration and while domain reduction remains effective, instead of following the finding
of a better solution. More importantly, our new algorithm adjusts to problem complexity by
dynamically switching between McCormick and piecewise McCormick relaxations. In the
former case, binary variables y are relaxed, leading to LPs instead of the MILPs (Npgpp = 1)
in [13].

7.2 Performance overview

Table 5 shows the optimality gap and computational time required by the different algo-
rithms, and results from the literature. The highlight is that the new algorithm always returns
the lowest optimality gap. It can solve four problems to the given tolerance, compared to
three problems by ANTIGONE and one by BARON. Our previous attempts with algorithms
featuring piecewise relaxation methods and optimality-based bound tightening solved none
of these benchmark problems to optimality. An ability to find the global optimal solution is

@ Springer

173

J Glob Optim

(= N‘dn)yomreuiq (qomro yolA] e8tameootd) SN 10 84T oI poos ST UOTIONPAT UTRWOp oTYAY (Uasopydn) smuens oN I0A JUSTINY
VN (omuro oI SJIIA 19 red woTin[os Ieneq Surpuy uodpy {dn) smreusc oN [¢7] sweqord Atsuyoy
VN sqT [enusnbog 291)) JO PPOU AXDAS U] (01 = N) oneIg 891 [1¢] sworqoxd o1piyg

des 1990 sweTqord Jo ABareI)S d=ys uomexETar q¥q
Burnonnreg adf1 19890 19490 S[e2 L0 Burnonnreg renedg ATNIR3Y/3IUBTFNY

suiroSe snotaaad pue Juammo Jo seInjesd fAqRL

pringer

s

174

J Glob Optim

L9490 i

STOTIRIANTINO] TR SONSST RSN PIOAR 0] $2NTRA WUAUCD INJNS Jo dn Fumess 01 90p (% 1°0 TdL7IS 107 1420%2 94 ("0 URIIM $1509) [¢1] 01 paredwioo sanfea uaregIp ATYSTS ,

Tewmndogns ST UOTIN[OS punoz-isaf
"L "1996 UL paqUIossp SWYIHOB[E 10] SISy,
{5 = ded Anpeumndo) uonnyos eundo [©QO18 O “(,,,, T WILL) YIUT] ST TleA T LM

TLM TLM TLA TLM &0 al’0 ae’c 990 2€°€TE S €dL¥FDS
LM TLM LA LA 4080 qIT'L ceT Lo'0 28'68LES £dleds
“TLAM “TLM “TLA “TLA 490 0g0 49¢°1 LTO 2C°8LE 6 €dLTIS
LM TLM LA LA 4090 £6°0 96'1 oL’0 28°195°GC ¢dL1DS
006¢T L€ “TLAA “TLAA 0D 0D €70 810 28'86LES 1dLEDS
90T 691 TLA TLA 0D 0D 1T0 90°0 2£66L°6F IdLCIS
€LOT ¥19 TLA TLA oD oD o cro 21°895°G¢C IdLTDS
LA TLM LA LA q09T'T q918°T qS8CT q09¢'T LE96' L LdJAH
LM TLM TLA TLA SOF0 gete’l q08e’T 45850 STI8TLE FIAH
0Ere TLM LIVLT TLA oD 9¢c0 0D €000 0 TTL 60T ¢dAH
uryuoly HNODLINY NOYvd MBI anImos[y HNODLINY NOAVL RIS
(=) owm TreAy (95) ded Anpewund wnmndo we[qorg

SJ[NS2I AINJRINT] pUE s19A70s uoTezIundo [Pqo(s [erarswros ‘ayuode pesodord usemyeq uostreduio]y g ajqe],

pringer

&3

175

J Glob Optim

UOTIONPRT UTRMIOp 95RISAR YTV

z z z 4 T 0 T T £ L FYd y Teurg

1% i3 i3 ¥ ¥ 8 v ¥ g 0001 ddy Teury

818 T'SL 658 008 VL6 TCe 8.6 6°ZE 0°L9 $66 {95) Spunoq [EI)IUL SNKISA [RUY YV
€0L €L 0'€L T99 [ag 098 08 0LT §¢e 9¢e (95) LEG0 uoneIsy 81 qqV
FOT'ET 9€6°01 F60°€ET FOTET 0£97 8861 0€9T Stig 0T9€ 8692 paafos gy J Jo seouwsU]
€12 81¢ 991 96T 911 LOT 091 FEl 11 €07 PATOS 4 J0 sS0uRISU]

- - - - - - - 9z11 T0€T €17 {8) yareas yydop ur Sy,

1896 0546 9LL6 £996 €T 1299 | 6877 811 90LE T06€ (s) o8e1s L0 ur my,
0¢1 L01 801 £l 8¢ 9t £9 69 93 SCI (s) swapqord g4 Surajos sy,
86 006 98 0t6 €55 ¥t 928 98¢°ZI L06°TI ! (5) swaqqoxd g Buraos sy,

L 9 L L < t < 9 8 ¥l SUOTYRISI]
€dLDS €dLEDs €dLIDs £dLIDS 1dLEDS 141708 TALIDS LIAH PIAH TIAH wa[qord

unyLIose seu o1} Jo soueuiiojrad i) Noge TOTRUIIOUT Pa[IEIa(] 9 A[qRL

Pringer

s

176

J Glob Optim

also an important performance metric. The commercial global optimization solvers are doing
better in this respect, returning suboptimal solutions in three problems compared te our new
algorithms” four. It is an indication that there is still room for improving the upper bounding
procedure.

BARON solves HYD?2 three times slower, refurning considerable larger gaps for the other
problems. The poorer performance in the refinery problems might be due to the large number
of variables involved in bilinear terms (see Table 3), and thus the potentially large number
of nodes to explore in spatial branch-and-bound. ANTIGONE is an overall better performer
than BARON and is considerable faster in the single period refinery problems. One possible
explanation for the latter behavior is that cutting planes, or other techniques, are more efficient
at reducing the domain of model variables than OBBT, when the problem size is small.

7.3 More detailed performance information

To understand how the algorithm is solving the benchmark problems, we show in Table 6
information related to: the total number of iterations; total time spent solving problems PR
(step 5) and PF (step 6); executing OBBT (step 4) and depth search procedures (step 3);
number of PF and PRB instances solved; average domain reduction in first and last OBBT
call, with respect to the initial bounds; and number of partitions used in PR and PRB (final
setting).

Piecewise relaxations are explored further in HYDZ, with the algorithmn reaching the
maximum defined number of partitions for PR (Npg = 1000) and PRB (Npgg = 7). This is
not surprising, considering that HYD?2 has the fewest bilinear terms and variables appearing
in bilinear terms (recall Table 3). As a consequence, we obtain the largest domain reduction
(99.5%). Notice that HYD?2 is the only problem taking advantage of the relaxation from
multiparametric disaggregation.

The final OBBT domain reduction is strongly dependent on problem size, decreasing to
67 and 32.9% when the number of reservoirs in the hydro preblems increases from 2 to 4
and 7, and from above 95% to below 86% when switching from the single to the three-period
refinery problems.

The time spent performing optimality-based bound tightening typically far exceeds the
time spent solving relaxation problems. The two exceptions are HYD4 and HYD7, for which
domain reduction became ineffective for Nppp = 3 and 2 (while reaching the TIME%
limit), and all remaining time was allocated to the final PR problems with Npp = 4 par-
titions. Refinery problems SC#TP3 exhibited a similar behavior, with the larger number of
PRB instances solved explaining the longer OBBT time. Options to improve the algorithm
performance for such problems involve extending the time limit and reducing the number of
PRB instances to be solved in parallel.

7.4 Closing the gap

The extensive use of time-consuming yet very efficient piecewise relaxation techniques by
our algorithm, is clearly visible when plotting the optimality gap as a function of wall time,
see Figs. 7 and 8. Recall from Fig. 6 that the optimality gap is only updated after a sequence of
procedures: OBBT (tightens the variable bounds); solving problem PR (computes the lower
bound, which may only improve with respect to the LB incumbent in the last moments of
solving the MILP to optimality); solving NLP problems PF (compute the upper bound). The
consequence is a stepwise profile with major drops in optimality gap compared to a smoother
profile from the commercial solvers. Notice that there g still some progress towards the end

@ Springer

177

J Glob Optim

h

Fig. 7 Optimality gap versus
wall time for hydro problems

HYD2

[S*)

| —

b —
0 3000 6000 9000 12000 15000 18000

L=

w

HYD4

Opt. Gap (%)

0
0 3000 6000 9000 12000 15000 18000

I Algorithm
4t , |——ANTIGONE
i HYD7 | —gaRoN

L
oY S—
fa SO e e e e e e S it
1
0

0 3000 6000 9000 12000 15000 18000
Time (s)

of the search (SC#TP3 problems in Fig. 8), when the solvers have already plateaued. One
disadvantage is that it may take a few hundred seconds to go below the gaps of ANTIGONE
and BARON.

7.5 Removing the effect of OBBT

The four problems that were solved by the proposed algorithm to global optimality have in
common the reduction of the domain of the variables invelved in bilinear terms to less than
95% of the initial ranges, on average. Wenow test the performance of the commercial solvers
after setting the variables domain to the final range obtained by our algorithm. The influence
of the upper bound is also removed by initializing with the optimum.

@ Springer

178

J Glob Optim

[
)

SC1TP1 SC1TP3
25 25 fremmen
2 2
15 15

0 600 1200 1800 2400 3000 3600 00 1800 3600 5400 7200 9000 10800

SC2TP1 SC2TP3

Opt. Gap (%)
Opt. Gap (%)
G

00 600 1200 1800 2400 3000 3600 0 1800 3600 3400 7200 9000 10800
3 SC3TP1 3 SC3TP3
i --=-= Algorithm)
o —— ANTIGONE 23
2 : —BARON 2
i
1.5 | 1_5‘\\1
| .
' 1 L e W
= L L L L L L
_E 05
ol o e . . 5 e e
0 600 1200 1800 2400 3000 3600 0 1800 3600 5400 7200 9000 10800
Time (s) Time (s)

Fig. 8 Optimality gap versus wall time for refinery problems

The results in Table 7 show that the warm start helps ANTIGONE and BARON to solve
such four problems in less than a minute. Improvements for HYD4, HYD7 and the refinery
problems (with ANTIGONE) are minor. For the latter, BARON reduces the gap to less than
half the values in Table 5. Neither solver can reach optimality gaps as low as the proposed
algorithm, highlighting the importance of piecewise relaxations.

7.6 Sequential versus parallel OBBT

It remains to explain our choice for a parallel rather than a sequential implementation of
optimality-based bound tightening. Figure 9 shows the optimality gap versus time profiles
for refinery problems SC1TP1 and SCITP3 and a fixed number of partitions in problems

@ Springer

179

J Glob Optim

Tahle 7 Performance of

. Problem Optimality gap (%) Wall time (5)
commercial solvers after warm
start ANTIGONE BARON ANTIGONE BARON
HYD2 GO GO 46 3
HYD4 1241 1.157 WTL WTL
HYD7 1.805 2.002 WTL WTL
SCITP1 GO GO 3 3
SC2TP1 GO GO 3 4
SC3TP1 GO GO 3 8
SCITP3 0.84 0.85 WTL WTL
SC2TP3 028 028 WTL WTL
SC3TP3 1.03 1.10 WTL WTL
SCATP3 0.64 072 WTL WTL
3 ScC1TP1 3 SCI1TP3
25 | 2.5 .
I~ - & | | ;
S ! & o2t ;
=9 | =9 E
= 13 i & L5t
& 11 ~ !
= i z '
& H o8 =+
i
05 fony 0.5
0 L =-] I R L 1 J D n I L 1 1 I
0 600 1200 1800 2400 3000 3600 0 1800 3600 5400 7200 9000 10800
Time (s) Time (s)
..... Parallel, N, =0 — - —Parallel, NPRB—Z

; = ; =2
_Sequenhal,NPRB 0 —Sequenhal,NPRB 2

Fig. 9 Optimality gap profiles for sequential versus parallel OBBT

PR (Nprp = 2) and PRB, leading to the solution of LP (Npgp = 0) or MILP problems
(Nprp = 2).

Results for the easiest SC1TP1 problem show that there are no major differences between
the sequential and parallel implementations when solving LP problems. The optimality gaps
are better when optimizing the bounds for one variable after the other (as expected) and not
much time is lost compared to the parallel approach, for which the overhead of exchanging
information between the threads is high. After the second iteration, the gaps become very
similar and the lower computational time starts to be noticeable. Switching to MILP problems
improves the relaxation quality and makes the parallel implementation far more competitive,
with three iterations of OBBT taking less time and returning significantly smaller gaps than
one iteration with the sequential approach.

Sequential OBBT with a piecewise relaxation (Nppg = 2) is no longer an option for the
larger SC1TP3, i.e. three hours are not enough to complete one iteration. We can still tackle
one iteration with the parallel approach, but it is far more efficient to rely on the standard
McCormick relaxation. Overall, the benefits from a parallel implementation of OBBT become

‘@ Springer

180

J Glob Optim

increasingly more important with the increase in the number of variables in bilinear terms
and the number of partitions in PRB.

8 Conclusions

This paper has presented anew global optimization algorithm for mixed-integer quadratically
constrained problems that does not employ spatial branch-and-bound. The novel aspect is the
use of dynamic partitioning in piecewise relaxations, not only to compute lower bounds for
the problem being minimized, but also toreduce the domain of the variables involved in bilin-
ear terms. Relaxations range from the simplest bilinear envelopes at the start, to univariate
plecewise McCormick, up to normalized multiparametric disaggregation, which is compu-
tationally more efficient for 10 partitions and beyond. The first type provides a quick lower
bound, with the algorithm then switching to piecewise relaxations to refine such estimate.
The number of partitions keeps increasing while the relaxation problem remains solvable
to the given tolerance within the specified time. In case of severe increase in complexity,
the algorithm backtracks to the previous setting, focusing more on optimality-based bound
tightening (OBBT). Heuristic rules are used to decide when to increase/decreagse the number
of partitions in OBBT.

The algorithm has been designed to take advantage of parallel computing when doing
OBBT and computing upper bounds. Rather than reducing one at a time the domain of the
many variables that appear in bilinear terms, which leads to the tightest bounds, multiple
variables are handled simultaneously to reduce the computational wall time. A solution pool
iz activated when solving the MILP relaxation problems, to generate alternative initialization
points for solving restricted NLPs of the original non-convex problem that, if feasible, provide
upper bounds. These are also solved in parallel.

The algorithm has been tested on ten industrially relevant benchmark problems, three
hydroelectric scheduling problems with more discrete decisions and petroleum refinery plan-
ning problems with a larger number of bilinear terms. The computational results have shown
that more problems can be solved to e-global optimality. For the other six problems, the final
optimality gaps were better than the values reported in the literature and lower than the ones
from state-of-the-art commercial global optimization solvers ANTIGONE and BARON. The
latter remained above our algorithm even when starting from a reduced variable range (from
our last OBBT iteration). It shows that as problem size increases, plecewise relaxations with
just 2 and 4 partitions can already provide tighter lower bounds than spatial branch-and-
bound. Commercial solvers should thus use them to a greater extent.

Acknowledgements Support by Ontaric Research Foundation, McMaster Advanced Control Consortium,
and Fundagio para a Ciéneia e Tecnologia (Projects IF/00781/2013 and UID/MAT/04561/2013), is gratefully
appreciated.

References

1. Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex generalized pooling prob-
lem. AIChE J. 52, 1027-1037 (20086)

2. Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and
extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35,
8§76-892 (2011)

@ Springer

181

I Glob Optim

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29,

Castro, PM.: New MINLP formulation for the multiperiod pooling problem. AIChE J. 61, 3728-3738
(2015)

Lotero, L, Trespalacios, F,, Grossmann, L.E., Papageorgiou, D.J., Cheon, M.-S.: An MILP-MINLP decom-
position method for the global optimization of a source based model of the multiperiod blending problem.
Comput. Chem. Eng. 87, 13-35 (2016)

Quesada, I., Grossmann, LE.: Global optimization of bilinear process netwaorks with multicomponent
flows. Comput. Chem. Eng. 19, 1219-1242 (1995)

Lee, S., Grossmann, LE.: Global optimization of nonlinear generalized disjunctive programming with
bilinear equality constraints: applications to process networks. Comput. Chem. Eng. 27, 1557-1575
(2003)

Faria, D.C., Bagajewicz, M.]J.: Novel bound contraction procedure for global optimization of bilinear
MINLP problems with applications to water management problems. Comput. Chem. Eng. 35, 446-455
(2011)

Rubio-Castro, E., Ponce Ortega, I M., Sema-Gonzilez, M., El-Halwagi, M.M., Pham, V.: Global opti-
mization in property-based interplant water integration. AIChE J. 59, 813-833 (2013)

Alnour, 5., Linke, P, El-Halwagi, M.M.: Spatially constrained interplant water network synthesis with
watertreatment options. In: Eden, MLR , Siirola, J.ID.S., Towler, G.P (eds.) Proceedings of the 8th Intemna-
tional Conference on Foundations of Computer-Aided Process Design, pp. 237-242. Elsevier, Amsterdam
(2014)

Teles, P, Castro, PM., Matos, H. A : Global o ptimization of water networks design using multiparametric
disaggregation. Comput. Chem. Eng. 40, 132-147 (2012)

Koleva, M.N., Styan, C.A., Papageorgiou, L.G.: Optimisation approaches for the synthesis of water
treatment plants. Comput. Chem. Eng. (2017)

Andrade, T., Ribas, G., Oliveira, F.: A strategy based on convex relaxation for solving the oil refinery
operations planning problem. Ind. Eng. Chem. Res. 55, 144-155 (2018)

Castillo Castillo, P, Castro, PM., Mahalec, V.: Global optimization algorithm for large-scale refinery
planning models with bilinear terms. Ind. Eng. Chem. Res. 36, 530-548 (2017)

Castro, PM., Grossmann, LE.: Global optimal scheduling of crude oil blending operations with RTN
continuous-time and multiparametric disaggregation. Ind. Eng. Chem. Res. 53, 1512715145 2014)
Cerda, I, Pautasso, P.C., Cafaro, D.C.. Efficient approach for scheduling crude oil operations in marine-
access refineries. Ind. Eng. Chem. Res. 54, 8219-8238 (2015)

Zhao, Y., Wu, N, Li, Z., Qu, T.: A novel solution approachto a priority-slot-based continuous-time mixed
integer nonlinear programming formulation fora crude-oil scheduling problem. Ind. Eng. Chem. Res. 55,
10955-10967 (2016)

Cataldo, J.P.S., Pousinho, HM.I., Mendes, V.M.F.: Hvdro energy systems management in Portugal: profit-
based evaluation of a mixed-integer nonlinear approach. Energy 36, 500-507 (2011)

Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (2013)

Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8,
107-138 (1996)

Smith, EM.B., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21,
S791-8796 (1997)

McCommick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I —Convex
underestimating problems. Math. Program. 10, 147-175 (1976)

Karuppiah, R., Grossmann, LE.: Global optimization for the synthesis of integrated water systems in
chemical processes. Comput. Chem. Eng. 30, 650-673 (2006)

Alfaki, M., Haugland, D.: A multi-commodity flow formulation for the generalized pooling problem. I.
Glob. Optim. 56, 917-937 (2013)

Bergamini, M L., Aguirre, P., Grossmann, I.: Logic-based outer approximation for globally optimal syn-
thesis of process networks. Comput. Chem. Eng. 29, 19141933 (2005)

Wicaksono, D.S., Karimi, I.A.: Piecewise MILP under and overestimators for global optimization of
bilinear programs. AIChE J. 54, 9011008 (2008)

Li, X., Chen, Y., Barton, PI.: Nonconvex generalized benders decomposition with piecewise convex
relaxations for global optimization of integrated process design and operation problems. Ind. Eng. Chem.
Res. 51, 7287-7299 (2012)

Castro, PM.: Tightening piecewise McCormick relaxations for bilinear problems. Comput. Chem. Eng.
72, 300-311 (2015)

Kolodziej, S., Castro, PM., Grossmann, LE.: Global optimization of bilinear programs with a multipara-
metric disaggregation technique. J. Glob. Optim. 57, 1039-1063 (2013)

Castro, PM.: Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilin-
ear problems. I. Glob. Optim. 64, 765-784 (2016)

@ Springer

182

J Glob Optim

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Faria, D.C., Bagajewicz, M.I.: A new approach for global optimization of a class of MINLP problems
with applications to water management and pooling problems. AIChE J. 58, 2320-2335 (2012)

Castro, PM.: Spatial branch-and-bound algorithm for MIQCPs featwring multiparametric disaggregation.
Optim. Methods Softw. 32, 719-737 (2017)

Castro, PM., Teles, J.P.: Comparison of global optimization algorithms for the design of water-using
networks. Comput. Chem. Eng. 52, 249-261 (2013)

Castro, PM., Grossmann, LE.: Optimality-based bound contraction with multiparametric disaggregation
for the global optimization of mixed-integer bilinear problems. J. Glob. Optim. 59, 277-306 (2014)
Nagarajan, H., Lu, M., Yamangil, E., Bent, R.: Tightening McCormick relaxations for nonlinear programs
via dynamic multivariate partitioning. In: Rueher, M. (ed.) Principles and Practice of Constraint Program-
ming: 22nd International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings,
pp. 369-387. Springer, Cham (2016)

Saxena, A., Bonami, P, Lee, I.: Convex relaxations of non-convex mixed integer quadratically constrained
programs: extended formulations. Math. Program. 124, 383411 (2010)

Saxena, A., Bonami, P, Lee,].: Convex relaxations of non-convex mixed integer quadratically constrained
programs: projected formulations. Math. Program. 130, 350413 (2011)

Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math.
Program. 103, 225-249 (2005)

Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 57,
3-50(2013)

Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of non-
linear equations. J. Glob. Optim. 59, 503-526 (2014)

Gleixner, A.M., Berthold, T, Miiller, B., Weltge, S.: Three enhancements for optimization-based bound
tightening. J. Glob. Optim. 67, 731-757 (2017)

Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems.
SIAM J. Algebr. Discrete Methods 6, 466-486 (1985)

Atamturk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Conflict graphs in solving integer programming
problems. Eur. J. Oper. Res. 121, 40-55 (2000)

@ Springer

183

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Chapter 10: Concluding Remarks

This thesis has focused on the development of efficient algorithms to solve production
planning and scheduling problems. Two approaches were considered: i) a heuristic
algorithm based on the inventory pinch concept to compute near-optimal solutions in
short execution times, and ii) a rigorous deterministic global optimization algorithm based
on increasing number of partitions of piecewise linear relaxations. The main case studies
included gasoline blend planning and scheduling, and refinery planning.

The inventory pinch algorithm decomposes the problem into three levels: 1) optimization
of operating conditions and blend recipes, 2) computation of an approximate schedule,
and 3) detailed scheduling. At the first level, a discrete-time NLP model is formulated,
where periods are delineated by the inventory pinch points for various product pools (e.g.
gasoline and diesel). This reduces drastically the number of periods and enables use of
nonlinear, more accurate refinery models. The second level is solved via discrete-time
MILP model where periods are delineated by scheduler based on the demand and supply
data, and the minimum time requirements to complete major tasks (i.e. blend runs,
product tank service). The third level uses a discrete-time MILP scheduling model (MPIP
algorithm) or a continuous-time MILP scheduling model (MPIP-C) to determine the exact
times to carry out the necessary tasks. The second and third levels are linear models since
the nonlinear constraints are handled at the first level, and the optimal conditions found at
such level are fixed in the other levels. The algorithm minimizes the total cost which is
defined as the cost of raw materials, switching cost, and demurrage cost. The algorithm
eliminates infeasibilities by iteratively re-optimizing operating conditions and blend
recipes at the first level.

The deterministic global optimization algorithm relies on discretizing the bilinear or
quadratic terms dynamically using either piecewise McCormick (PMCR) or normalized
multiparametric disaggregation (NMDT). The resulting MILP model is solved using
CPLEX and several feasible solutions are stored in CPLEX’s solution pool and employed
as starting points for a local nonlinear solver (e.g. CONOPT). These nonlinear models are
solved in parallel. Then, the estimate of the global solution and the best feasible solution
are updated. If the relative difference between these two (i.e. the optimality gap) is
smaller than the tolerance, then the algorithm stops; otherwise, it continues by reducing
the range of the variables or increasing the number of partitions for the next iteration. The
domain of the variables involved in nonlinear terms is reduced using an optimality-based
bound tightening (OBBT) method. This OBBT method consists in solving two
optimization problems for each variable: a maximization and a minimization of the range

184

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering

Castillo

of the variable subject to the MILP relaxation constraints. Parallelization of this step is
required to avoid long execution times.

10.1.

Key Findings and Contributions

The research objectives presented in Chapter 1 have been achieved, and the key
contributions of this work include:

10.1.1.

10.1.2.

10.1.3.

10.1.4.

10.1.5.

The development of a heuristic technique for blend planning and scheduling
problems: the multiperiod inventory pinch algorithm MPIP. This method
computes blend plans and schedules with reduced number of different blend
recipes by reducing the number of time periods using the inventory pinch
points. The inventory pinch points are defined by the cumulative total demand
along the planning/scheduling horizon. MPIP employs discrete-time uniform-
grid MILP scheduling model. Results in Chapter 2 and 3 show that MPIP
computes the same or better solutions than three commercial solvers trying to
solve the original full-space model. In Chapter 4, MPIP is used to solve a
refinery planning problem.

In Chapter 2, results indicate that the solutions computed by the MPIP
planning algorithm are optimal when the objective function of the second level
contains only variables that are aggregated at the first level; and they are near-
optimal when the objective function of the second level contains a penalty
term associated with variables that are not aggregated at the first level, and this
penalty term is significantly smaller than the cost of raw materials.

The formulation of a continuous-time unit-specific slot-based MILP
scheduling model with reduced number of binary variables for gasoline
blending operations. In Chapter 5, it is shown that the addition of a lower
bound on the blend cost reduces the execution times required to solve blend
scheduling problems to optimality.

The development of the multiperiod inventory pinch algorithm MPIP-C for
scheduling problems. MPIP-C has all the features of MPIP but it employs a
continuous-time unit-specific slot-based MILP scheduling model. As shown in
Chapter 6 and 8, MPIP-C computes solutions in shorter execution times than
three commercial solvers, and around the same times as another published
heuristic strategy.

The development of a deterministic global optimization algorithm for MINLP
problems where nonlinearities are strictly bilinear and/or quadratic terms. The
algorithm is based on dynamic partitioning of piecewise linear relaxations

185

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

(PMCR and NMDT) and optimality-based bound tightening. Chapter 7, 8, and
9 show that the algorithm performs on par with two commercial global
solvers, and even better in some examples.

10.2. Future Work Outlook

The MPIP and MPIP-C algorithms have shown promising results for short-term planning
and scheduling problems where 1) the cost associated with the raw materials is bigger
than the cost associated with switching tasks, and 2) the problem can be decomposed into
2 or 3 decision levels. However, the performance of these heuristic algorithms depends on
the ability of the modeler to define the constraints that will be included at each level.
Therefore, it is necessary to develop a systematic approach to generate the mathematical
models for each level based on the original problem formulation and with minimal
additional input from the planner/scheduler. Such development will simplify the
application and implementation of these two inventory pinch-based algorithms to a wider
variety of planning and scheduling problems, as well as its integration with global
optimization algorithms (to find feasible solutions).

A possible next step for the MPIP method is to employ it for solving and linking long-
and medium-term planning problems. The questions to be answered include:

1. What granularity of the product demand data to use? Different data granularities
(e.g., daily and hourly data) could yield different inventory pinch points.

2. What are the best linking decisions between the long- and medium-term plans?
These will depend on the selected case study. For example, for an oil refinery,
these can be the total amount of crude oil to purchase, the crude distillation unit
throughput, or the final inventory levels.

The deterministic global optimization algorithm from Chapter 9 can be further enhanced.
One of the major issues of the current implementation is when the optimality-based
bound tightening (OBBT) method is not run and the number of partitions in the relaxed
model is increased. In this situation, the MILP solver might explore many of the nodes
that were fathomed in the previous iteration. To avoid this unnecessary calculations, it is
necessary to retrieve the branch-and-bound tree information from the MILP solver.

Another issue of the deterministic global optimization algorithm is that there is no
specific rule to select the variable of a bilinear term to be partitioned. The current rule is
to pick the variables that will lead to the smallest MILP relaxation. The proposed method
is to make this a dynamic selection during the algorithm run. Let’s consider the bilinear

186

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

term x;x,, where x, is the partitioned variable at the beginning of the algorithm. Once the
domain of x, cannot be reduced by OBBT, and there is no significant improvement in the
best possible solution, x; becomes the partitioned variable.

In the dynamic partitioning scheme employed by the deterministic global optimization
algorithm, the number of partitions of all partitioned variables increase by the same
factor. A topic that can be investigated is if this factor can be different for each
partitioned variable, and how to determine it. This can lead to smaller MILP relaxations.

One possible approach to decrease the time required for solving the MILP relaxations is
to employ a mathematical decomposition strategy. Either Benders or Lagrangean
decomposition methods could prove to be useful given the block structure of the
constraints associated with Piecewise McCormick and Normalized Multiparametric
Disaggregation.

187

Ph. D. Thesis — Pedro A. Castillo

Castillo

McMaster University — Chemical Engineering

Appendix A: Supporting Information for Chapters 2 and 3

Table A.1. Components data (properties, cost, supply rates and inventory limits)

Components ALK BUT HCL HCN LCN LNP RFT
ARO (%vol aromatics) 0 0 0 25 18 2.974 74.9
BEN (%vol benzene) 0 0 0 0.5 1 0.595 7.5
MON 93.7 90 79.8 75.8 81.6 66 90.8
OLF (%vol olefin) 0 0 0 14 27 0 0
RON 95 93.8 82.3 86.7 93.2 67.8 103
RVP (psi) 5.15 138 22.335 2.378 13.876 | 19.904 | 3.622
SPG 0.703 0.584 0.695 0.791 0.744 0.677 0.818
SUL (%vol sulfur) 0 0 0 0.485 0.078 0.013 0
Cost ($/bbl) 29.2 115 20 22 25 19.7 24.5
Minimum Inventory (x102 bbl) 5 5 5 5 5 5 5
Maximum Inventory (x10%bbl) 150 75 50 50 150 100 150
Initial Inventory (x10° bbl)
30 20 20 10 30 20 50
Cases1-14
Supply Rate (x102 bbl/day)
18 5 3 5 25 20 44
Cases1-7

188

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Table A.2. Supply rate of components along planning horizon, cases 8 — 14

Component ALK BUT HCL HCN LCN LNP RFT
L2-period x10% bbl/day
1 25 7 0 3 27 20 45
2 25 7 0 3 27 20 45
3 25 7 0 3 27 20 45
4 20 5 3 5 25 18 40
5 15 3 7 9 20 22 35
6 15 3 7 9 20 22 35
7 15 3 7 9 20 22 35
8 20 5 3 5 25 18 40
9 20 5 3 5 25 18 40
10 25 7 0 3 27 22 45
11 25 7 0 3 27 22 45
12 25 7 0 3 27 22 45
13 20 5 3 5 25 18 40
14 20 5 3 5 25 18 40

189

Ph. D. Thesis — Pedro A. Castillo

Castillo

McMaster University — Chemical Engineering

Table A.3. Minimum and maximum quality specifications of the products

Specification Minimum Maximum
Product u87 U9l u93 u87 U9l uU93
ARO (%vol aromatics) 0 0 60 60 60
BEN (%vol benzene) 0 0 5.9 5.9 59
MON 81.5 85.7 87.5 - - -
OLF (%vol olefin) 0 0 24.2 24.2 24.2
RON 91.4 94.5 97.5 - - -
RVP (psi) 0 0 15.6 15.6 15.6
SPG 0.73 0.73 0.73 0.81 0.81 0.81
SUL (%vol sulfur) 0 0 0.1 0.1 0.1
Table A.4. Product storage tank data
Product Minimum | Maximum Maximum Initial
Product Storable transition delivery | . Initial
tank products penalty (:;(IJCBI 1;3) (:;(I)c; t;JlE)I) rate (x10° '(2\1%2?&3)/ product
(x10° $) bbl/h)
Tk-101 u87 - 10 70 10 40 us7
Tk-102 U9l - 10 70 10 70 U9l
Tk-103 u93 - 10 70 10 30 u9s3
Tk-104 | U87,U91, U93 145 0 40 10 30 us7
Tk-105 | U87,U91, U93 14.5 0 40 10 40 U9l
Tk-106 | U87,U91, U93 14.5 0 40 10 30 U9l

190

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Table A.5. Demand profiles (x10° bbl) and cost coefficient profile for the product inventory slack
variables (2" level MILP model)

L2-period

§ g_ E 1 2 3 4 5 6 7 8 9 10 11 12 13 14
us7 60 50 50 80 50 60 60 50 75 50 50 50 80 100

1 U9l 50 80 70 30 50 0 40 30 30 50 40 40 30 50

u93 30 30 0 0 40 40 0 35 30 0 0 40 30 40
us7 80 80 60 80 80 100 90 0 0 50 50 30 60 100

2 U9l 50 50 50 30 30 50 50 30 30 50 0 50 60 50

uU93 30 30 35 30 35 0 30 35 30 0 30 40 30 0

us7 70 70 50 70 70 60 60 60 50 70 120 0 50 70

3 U9l 50 50 50 30 30 50 50 30 30 50 50 30 30 50

uU93 30 30 45 30 40 0 0 35 30 0 30 35 0 30

us7 70 50 50 120 100 30 30 50 75 110 50 50 50 90

4 U9l 50 80 70 30 50 0 0 30 50 50 0 40 30 0
uU93 30 30 45 0 40 40 0 35 30 30 30 0 30 30

us7 60 50 50 70 90 80 130 50 0 30 50 50 50 80

5 U9l 50 80 70 50 50 30 30 30 30 30 0 40 30 0
uU93 30 30 45 0 30 40 30 30 30 30 30 0 30 40

us7 100 70 80 100 40 30 40 110 0 50 70 100 0 50

6 U9l 50 80 70 50 30 30 30 50 30 30 30 35 30 30
uU93 30 30 45 30 0 30 30 30 30 0 0 30 30 30

Cost coefficients for product slack variables
1.6

u87, Ual, 1.8 1.7 15 14 13 1.2 11 1 9 8 5 1 5

u93 x10° %108 >(<)61 x10° x10° x10° x10° x10* | x10® | x10% | x10% | x10? | x10% | x10!

191

Ph. D. Thesis — Pedro A. Castillo

Castillo

McMaster University — Chemical Engineering

Appendix B: Supporting Information for Chapters 5, 6, and 8

Table B.1. Demand data

Maximum Delivery Rate

Product Demand (kbbl) Dorcer™ (Kbbl/h)
Example 12 The rest 3 4 7-8 9 12 14 3 4 78 9 12 14
Order
o1 P1 P1 10 10 10 10 10 10 5 5 5 5 5 5
02 P2 P2 3 3 3 3 3 3 3 3 3 3 3 3
03 P2 P2 3 3 3 3 3 3 3 3 3 3 3 3
04 P1 P1 10 10 10 10 10 10 5 5 5 5 5 5
05 P2 P2 3 3 3 3 3 3 3 3 3 3 3 3
06 P1 P1 10 10 10 10 10 10 5 5 5 5 5 5
o7 P2 P2 3 3 3 3 3 3 3 3 3 3 3 3
08 P1 P1 100 100 100 100 100 100 | 5 5 5 5 5 5
09 P2 P2 3 3 3 3 3 3 3 3 3 3 3 3
010 P4 P4 150 150 150 150 100 150 | 5 5 5 5 5 5
0o11 P3 P3 20 20 60 60 60 60 5 5 5 5 5 5
012 P2 P2 30 30 20 20 20 20 5 5 5 5 5 5
013 P4 P4 - 60 60 60 60 60 - 5 5 5 5 5
014 P3 P3 - 10 15 20 15 20 - 5 5 5 5 5
015 P2 P2 - 20 20 20 20 20 - 4 4 4 4 4
016 P2 P2 - - 20 20 20 20 - - 5 5 5 5
017 P1 P1 - - 10 10 10 10 - - 5 5 5 5
018 P1 P1 - - 10 10 10 10 - - 5 5 5 5
019 P2 P2 - - 60 60 60 60 - - 5 5 5 5
020 P2 P2 - - 40 40 40 40 - - 5 5 5 5
021 P5 P1 - - - 30 30 30 - - - 5 5 5
022 P5 P5 - - - 40 40 40 - - - 5 5 5
023 P3 P3 - - - 20 20 20 - - - 5 5 5
024 P5 P5 - - - - 6 6 - - - - 3 3
025 P5 P5 - - - - 20 20 - - - - 5 5
026 P3 P1 - - - - 30 10 - - - - 4 4
027 P3 P4 - - - - 20 20 - - - - 4 5
028 P4 P1 - - - - 3 25 - - - - 3 5
029 P4 P5 - - - - 15 10 - - - - 3 5
030 P1 P4 - - - - 15 15 - - - - 3 5
031 P2 P1 - - - - 15 15 - - - - 5 5
032 P5 P1 - - - - 20 20 - - - -2 5
033 P1 P4 - - - - 20 20 - - - - 5 5
034 P3 P4 - - - - 20 20 - - - - 5 5
035 P3 P5 - - - - 30 30 - - - - 5 5
036 - P2 - - - - - 3 - - - - - 3
037 - P1 - - - - - 10 - - - - - 5
038 - P1 - - - - - 40 - - - - - 5
039 - P4 - - - - - 10 - - - - - 5
040 - P5 - - - - - 10 - - - - - 5
041 - P1 - - - - - 15 - - - - - 5
042 - P2 - - - - - 20 - - - - - 3
043 - P3 - - - - - 15 - - - - - 5
044 - P5 - - - - - 20 - - - - - 4
045 - P4 - - - - - 10 - - - - - 5

192

Ph. D. Thesis — Pedro A. Castillo

Castillo

McMaster University — Chemical Engineering

Table B.2. Delivery windows

Delivery Window [TO®", TOe] (h)

Example 3 4 7-8 9 12 14
Order

01 [0,24] [0,24] [0,24] [0,24] [0,24] [0,24]
02 [0,24] [0,24] [0,24] [0,24] [0,24] [0,24]
03 [0,24] [0,24] [0,24] [0,24] [0,24] [0,24]
04 [0,24] [0,24] [0,24] [0,24] [0,24] [0,24]
05 [24,48] [24,48] [24,48] [24,48] [24,48] [24,48]
06 [24,48] [24,48] [24,48] [24,48] [24,48] [24,48]
o7 [24,48] [24,48] [24,48] [24,48] [24,48] [24,48]
08 [118,190] [118,190] [118,190] [118,190] [118,190] [118,190]
09 [144,168] [144,168] [144,168] [144,168] [144,168] [144,168]
010 [150.5,185.5] [150.5,185.5] [150.5,185.5] [150.5,185.5] [150.5,185.5] [150.5,185.5]
011 [144,168] [144,168] [144,168] [144,168] [144,168] [144,168]
012 [24,48] [24,48] [24,48] [24,48] [24,48] [24,48]
013 - [0,56] [0,56] [0,56] [0,56] [0,56]
014 [48,72] [48,72] [48,72] [48,72] [48,72]
015 [0,72] [0,72] [0,72] [0,72] [0,72]
016 - [48,72] [48,72] [48,72] [48,72]
017 [48,72] [48,72] [48,72] [48,72]
018 [48,72] [48,72] [48,72] [48,72]
019 [0,50] [0,50] [0,50] [0,50]
020 [144, 168] [144,168] [144,168] [144,168]
021 - [96,120] [96,120] [96,120]
022 [144,168] [144,168] [144,168]
023 [144,168] [144,168] [144,168]
024 - [96,120] [96,120]
025 [144,168] [144,168]
026 [144,168] [0,76]
027 [72,96] [120,144]
028 [72,96] [120,144]
029 [96,120] [120,144]
030 [96,120] [120,144]
031 [96,120] [120,144]
032 [96,120] [144,168]
033 [0,76] [144,168]
034 [120,144] [168,192]
035 [120,144] [168,192]
036 - [168,192]
037 [168,192]
038 [168,192]
039 [168,192]
040 [168,192]
041 [168,192]
042 [168,192]
043 [144,168]
044 [168,192]
045 [96,120]

193

Ph. D. Thesis — Pedro A. Castillo

Castillo

McMaster University — Chemical Engineering

Table B.3. Product and component tank data

. Max.
. Initial ; i
Product or Initial ini | Capacity Max. Delivery Rate
Component Tank | Product St&cbli)x \/max Storable Products (Set JP) Dy (kbbl/h)
(kbbl)

Example 37 ?3 9,14 12 3,4 7-8 9 12 14
Tkl P3 30.00 150 P2,P3 P2,P3,P5 P2,P3,P5 | 20 20 30 30 30
Tk2 P3 0.00 150 P2,P3 P2,P3,P5 P2,P3,P5| 20 20 30 30 30
Tk3 P2 14.08 150 P2,P3 P2,P3,P5 P2,P3,P5 | 20 20 30 30 30
Tk4 P4 25.00 200 P2- P4 P2- P4 P2- P5 20 20 30 30 30
Tk5 P2 28.49 200 P2, P3 P2, P5 P2,P3,P5 | 20 20 30 30 30
Tk6 P2 57.59 150 P2, P3 P2, P5 P2, P3,P5| 20 20 30 30 30
Tk7 P1 13.79 200 P1, P4 P1, P4 P1, P4 20 20 30 30 30
Tk8 P1 12.36 150 P1, P4 P1, P4 P1, P4 20 20 30 30 30
Tk9 P4 23.96 200 P1, P4 P1, P4 P1, P4 20 20 30 30 30
Tk10 P1 60.00 150 P1, P4 P1, P4 P1, P4 20 20 30 30 30
Tk11 P1 12.36 150 P1, P4 P1, P4 P1, P4 20 20 30 30 30

C1 C1 26.46 250 - - - - - - - -
C2 C2 67.90 300 - - - - - - - -
C3 C3 59.44 300 - - - - - - - -
C4 C4 44.44 300 - - - - - - - -
C5 C5 10.59 200 - - - - - - - -
C6 Cé 19.53 250 - - - - - - - -
C7 C7 46.91 250 - - - - - - - -
C8 C8 49.47 250 - - - - - - - -
C9 C9 44.58 250 - - - - - - - -

194

Ph. D. Thesis — Pedro A. Castillo

Castillo

McMaster University — Chemical Engineering

Table B.4. Product and component property specification (ON, RVPI, SI)

Comp./ Quality ON RVPI Sl

Product Example 4,7,8 9,12, 14 4,7,8 9,12, 14 4,7,8 9,12, 14
C1 86.50 86.50 140.47 140.47 80.00 80.00
c2 103.66 103.66 68.92 68.92 40.00 40.00
C3 111.35 111.35 87.68 87.68 0.00 0.00
c4 113.93 113.93 51.47 51.47 5.00 5.00
C5 Qbe 94.50 94.50 175.59 175.59 0.00 0.00
C6 118.16 118.16 19.91 19.91 0.08 0.08
c7 144.68 144.68 12.55 12.55 7.50 7.50
c8 150.66 150.66 110.59 110.59 2.00 2.00
C9 92.50 92.50 436.34 436.34 30.00 30.00
P1 [110.45, +o0] [110.45, +0] | [15, 170] [15, 170] [0, 45] [0, 45]
P2 [111.95, +0] [111.95, +0] | [15,170] [15, 170] [0, 50] [0, 50]
P3 [Qo™, Qu™>] | [108.97, +0] [108.97, +0] | [15, 170] [15, 170] [0, 44] [0, 44]
P4 [103.24, +o0] [103.24, +0] | [15,170] [15, 170] [0, 50] [0, 50]
P5 - [115.01, +o0] - [15, 170] - [0, 48]

Table B.5. Product and component property specification (BI, Al, Ol)

Comp./ Quality Bl Al Ol

Product Example 4,7,8 912,14 | 4,7,8 9,12,14 4 7,8 9,12, 14
C1 0.78 0.78 25.00 25.00 1.00 1.00 1.00
C2 0.98 0.98 31.70 31.70 23.80 23.80 23.80
C3 1.20 1.20 48.00 48.00 0.85 0.85 0.85
o7} 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C5 Qne 0.10 0.10 0.00 0.00 0.40 0.40 0.40
C6 0.01 0.01 0.00 0.00 0.72 0.72 0.72
C7 0.01 0.01 0.05 0.05 0.00 0.00 0.00
c8 0.25 0.25 19.20 19.20 0.15 0.15 0.15
C9 0.09 0.09 24.00 24.00 0.06 0.06 0.06
P1 [0,0.86] [0,0.86] | [0,35.00] [0,35.00]| [0,20.00] [0,20.00] [0, 20.00]
P2 [0,0.92] [0,0.92] | [0,36.00] [0,36.00] | [0,18.00] [0,18.00] [0, 18.00]
P3 [Qu™", Qu™] | [0,0.94] [0,0.94] | [0,42.00] [0,42.00] | [0,20.00] [0,20.00] [0, 20.00]
P4 [0,0.90] [0,0.90] | [0,40.00] [0,40.00] | [0,18.00] [0,18.00] [0, 18.00]
P5 - [0,0.93] - [0, 40.00] - - [0, 20.00]

195

Ph. D. Thesis — Pedro A. Castillo

Castillo

McMaster University — Chemical Engineering

Table B.6. Product and component property specification (Bl, Al, OI)

Comp.
/ Quality SGlI FI oXI
Produc 47,8 912,14 | 47,8 912,14 | 4 7,8 9 12,14
t Example
C1 1.49 1.49 3.45 3.45 0.25 0.25 0.25 0.25
c2 1.33 1.33 6.25 6.25 0.75 0.75 0.75 0.75
C3 1.22 1.22 2.36 2.36 2.00 2.00 2.00 2.00
C4 1.58 1.58 3.56 3.56 1.25 1.25 1.25 1.25
C5 Qoe 1.50 1.50 1.96 1.96 0.08 0.08 0.08 0.08
C6 1.44 1.44 3.65 3.65 0.00 0.00 0.00 0.00
c7 1.15 1.15 2.96 2.96 0.00 0.00 0.00 0.00
c8 1.35 1.35 5.46 546 | 1820 1820 1820 18.20
C9 1.61 1.61 7.95 7.95 0.85 0.85 0.85 0.85
[1.19, [1.19, [1.4, [1.4, [0, [0, [0, [0,
P1 1.67] 1.67] 7.60] 7.60] | 1.85] 2.80] 2.80] 2.80]
[1.20, [1.20, [1.4, [1.4, [0, [0, [4, [0,
P2 1.67] 1.67] 7.25] 7.25] | 1.90] 275] 7.25] 2.75]
[Qo™, [1.18, [1.18, [1.4, [1.4, [0, [0, [0, [0,
P3 Qp™] 1.67] 1.67] 7.20] 7.20] | 210] 290] 290] 2.90]
[1.19, [1.19, [1.4, [1.4, [0, [0, [0, [0,
P4 1.67] 1.67] 7.50] 7.50] | 2.00] 270] 270] 2.70]
[1.20, [1.4, [0, [0,
P5 - 1.67] - 7.40] - - 300] 3.00]
Table B.7. Composition constraints (components C1, C2, C3)
Component Cl C2 C3
Product Example 3,4,7,8 912,14 3,4,7,8 912,14 3,47,8 9,12, 14
P1 [pma [0,022] [0,0.22] [0.10,1] [0.10, 1] [0,1] [0,1]
P2 ’ [0,024] [0,0.24] [0.10, 1] [0.10, 1] [0,1] [0,1]
P3 [0,025] [0,0.25] [0.10, 1] [0.10, 1] [0,1] [0,1]
P4 [0,024] [0,0.24] [0.10,1] [0.10, 1] [0,1] [0,1]
P5 - [0, 0.30] - [0.15, 1] - [0,1]
Table B.8. Composition constraints (components C4, C5, C6)
Component C4 C5 C6
Product Example 3,4,7 8 9,12 14 3,4,7,8 9,12,14 3,4,7,8 9,12,14
P1 [r™", rm>] [0, 0.40] [0,0.40] [0,0.40] [0,0.40] [0,0.25] [0,0.25] [0,0.20] [0, 0.20]
P2 [0,0.45] [0,0.45] [0,0.45] [0,0.45] [0,0.25] [0,0.25] [0,0.22] [0,0.22]
P3 [0,0.43] [0,043] [0,0.43] [0,0.43] [0,0.25] [0,0.25] [0,0.18] [0,0.18]
P4 [0,044] [0,0.44] [0,0.44] [0,0.44] [0,0.25] [0,0.25] [0,0.20] [0, 0.20]
P5 - - [0,0.40] [0, 0.40] - [0, 0.25] - [0, 0.20]
Table B.9. Composition constraints (components C7, C8, C9)
Component C7 C8 C9
Product Example 3,4,7,8 9,12,14 3,4,7,8 9,12,14 3,4,7,8 9,12, 14
P1 [rmin, pmax] [0,025] [0,025] [0,0.30] [0,0.30] [0,0.15] [0, 0.15]
P2 [0,025] [0,025] [0,0.30] [0,030] [0,0.18] [0, 0.18]
P3 [0,025] [0,025] [0,0.30] [0,0.30] [0,0.20] [0, 0.20]
P4 [0,025] [0,025] [0,0.30] [0,0.30] [0,0.16] [0, 0.16]
P5 - [0, 0.25] - [0, 0.30] - [0,0.17]

196

Ph. D. Thesis — Pedro A. Castillo
Castillo

McMaster University — Chemical Engineering

Table B.10. Blender data

Ctolend aNd CVpienq at Minimum & Maximum Blending Rate, Allowable Product
time 0 (kbbl) Foiend™" and Fpiend™™ (Kbbl/h) (set BP)
Ble Exa 3, 9,
nder mple 3,4,7 8,912 14 3,4 7 8,9 12 14 4.7 8 12 14
pp. PL PL P1
A 0 0 0 15-20 15-25 1525 15-30 1.5-30 P4 - - -
P4 P5 P5
P1 P1 P1
B - 0 0 - - 15-25 15-30 1.5-30 - - - -
P4 P5 P5
P1
C - - 0 - - - - 1.5-25 - - - -
P5
Minimum Blend Run Length ctyend™ (h)
P1 P2 P3 P4 P5
Ble Exa 3, 3, 8, 9
3,4,7 8,912 14| 4, 8,912 14 3,4,7 8,912 14 4, 9, 14 i 14
nder mple 12
7 7 12
A 6 6 6 6 6 6 6 6 6 6 6 6 5 5
B - 6 6 | - 6 6 - 6 6 - 6 6|5 5
C - - 6 | - - 6 - - 6 - - 6| - 5
Table B.11. Supply profiles of blend components
Feed Flow Rate to Component Tank Fy. (kbbl/h)
Example Supply Duration End time Cil C2 C3 C4 ¢C5 C6 C7r «€C8 (9
profile o (h) FToc™ (h)
3,4 1 100 100 12 08 12 12 05 08 00 00 10
2 92 192 08 06 06 08 05 06 05 05 00
7 1 80 80 12 08 12 12 07 08 00 00 10
2 70 150 08 06 06 08 05 06 05 05 00
3 42 192 00 00 00 00 00 00 00 00 OO0
8 1 80 80 12 08 12 12 05 08 00 00 10
2 70 150 08 06 06 08 05 06 05 05 00
3 42 192 00 00 00 00 00 00 00 00 00
9 1 80 80 10 05 10 10 05 05 00 00 10
2 70 150 08 06 06 08 05 06 05 05 00
3 42 192 00 00 00 00 00 00 00 00 00
12 1 50 50 10 05 10 10 08 05 00 00 10
2 50 100 08 06 06 08 05 06 05 05 00
3 50 150 05 05 05 05 05 05 00 00 05
4 42 192 00 00 00 00 00 00 00 00 OO0
14 1 50 50 10 05 10 10 07 05 05 05 10
2 50 100 08 06 06 08 05 06 05 05 00
3 50 150 05 05 05 05 05 05 00 00 05
4 42 192 00 00 00 00 00 00 00 00 0.0

197

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Table B.12. Economic data

Scheduling
Component Cl C2 C3 C4 C5 C6 C7 C8 C9 Horizon H (h)
Cost ¢y ($/bbl) 20 24 30 25 22 27 50 50 22.5 192
Swing tank Tkl Tk2 Tk3 Tk4 Tk Tk6é Tk7 Tk8 Tk9 Tk10 Tkl1

Transition Cost c3

. 145 145 145 19 19 145 19 145 19 14.5 14.5
(k$/instance)

Transition Cost in blender c;

(k$/instance) Penalty coefficients for slack variables

20 cs(n) = {[(N—n) /N]72}-(1000 — 100) +100
Demurrage Cost c¢s (k$/h) c7(n) = 0.5-ce(n)
2.5 cs = 1000

198

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Appendix C: Supporting Information for Chapter 7 and 9

Table C.1. Supply and demand data for scenario #1 (kbbl)

Day 1 2 3 4 5 6 7
RG 40 40 40 50 40 80 80
PG 30 30 40 20 20 20 20
K1 10 10 10 10 10 15 10
D1 10 10 10 10 10 10 10
D2 10 30 30 30 20 10 20
co1 30 30 0 0 0 0 0
co2 0 50 70 0 80 0 70
co3 40 0 40 50 0 80 70
CO4 0 30 0 0 30 0 0
Co5 0 0 0 30 0 30 0

Table C.2. Supply and demand data for scenario #2 (kbbl)

Day 1 2 3 4 5 6 7
RG 40 40 0 50 40 80 80
PG 30 30 40 20 20 0 20
K1 10 0 10 10 10 15 10
D1 10 10 10 0 10 10 10
D2 0 30 30 30 20 0 20
co1 0 30 0 30 20 0 0
co2 40 50 50 0 70 40 0
co3 40 0 40 50 0 80 40
CO4 0 30 0 0 30 0 20
COo5 0 0 0 40 0 0 0

199

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Table C.3. Supply and demand data for scenario #3 (kbbl)

Day 1 2 3 4 5 6 7
RG 40 40 50 80 0 30 90
PG 0 30 60 50 0 30 50
K1 0 10 10 10 10 0 20
D1 10 10 10 0 0 20 20
D2 20 0 30 30 0 30 20
co1 30 0 30 0 20 0 0
co2 50 60 70 0 0 60 20
co3 60 40 80 20 0 40 0
CO4 30 30 0 0 0 0 0
Co5 30 0 0 0 0 0 0

200

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Table C.4. Quality data of crude oils CO1 and CO2 (parameter gco(s1,gp,s))

CDU outlet streams (cuts)
Crude Quality

oil property ~ cdu_pf cdu_atm cdu_atm_ cdu_atm cdu_atm cdu_vem cdu_vcm cdu_vcm
_In _hn kero _ds _ago _lgo _hgo _rsd
Cco1 sg 0.64 0.75 0.84 0.90 0.93 0.96 1.02 1.07
Cco1 sul 0.00 0.09 0.68 1.93 2.61 3.29 4.69 6.08
COl1 ron 71.20 44.80 0.00 0.00 0.00 0.00 0.00 0.00
COl1 mon 69.70 43.10 0.00 0.00 0.00 0.00 0.00 0.00
Cco1 arom 0.00 1151 12.87 0.00 0.00 0.00 0.00 0.00
Cco1 rvp 5.80 5.80 0.00 0.00 0.00 0.00 0.00 0.00
COl1 «cin 0.00 0.00 34.80 37.80 35.75 33.70 21.95 10.20
COl1 pour 256.00 332.00 345.00 409.00 451.50 494.00 539.00 584.00
Co2 sg 0.67 0.76 0.81 0.85 0.88 0.91 0.94 0.98
Co2 sul 0.00 0.00 0.02 0.22 0.42 0.62 0.96 1.29
Co2 ron 71.80 44.68 0.00 0.00 0.00 0.00 0.00 0.00
CO2 mon 70.30 43.08 0.00 0.00 0.00 0.00 0.00 0.00
CO2 arom 0.00 16.38 20.22 0.00 0.00 0.00 0.00 0.00
Cco2 rvp 3.50 3.50 0.00 0.00 0.00 0.00 0.00 0.00
Cco2 cin 0.00 0.00 43.70 54.00 55.35 56.70 51.35 46.00
CO2 pour 256.00 332.00 398.00 477.00 520.00 563.00 563.00 563.00

Units: sul (% wt.), rvp (psig), arom (% vol.), pour (‘R)

201

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Table C.5. Quality data of crude oils CO3 and CO4 (parameter gco(s1,gp,s))

CDU outlet streams (cuts)
Crude Quality

oil property ~ cdu_pf cdu_atm cdu_atm_ cdu_atm cdu_atm cdu_vem cdu_vcm cdu_vcm
_In _hn kero _ds _ago _lgo _hgo _rsd
COo3 sg 0.67 0.76 0.82 0.86 0.88 0.91 0.95 0.99
COo3 sul 0.00 0.00 0.02 0.22 0.43 0.63 0.99 1.35
CO3 ron 72.00 44.90 0.00 0.00 0.00 0.00 0.00 0.00
CO3 mon 70.40 43.10 0.00 0.00 0.00 0.00 0.00 0.00
COos3 arom 0.00 7.86 15.56 0.00 0.00 0.00 0.00 0.00
COos3 rvp 4.20 4.20 0.00 0.00 0.00 0.00 0.00 0.00
CO3 «cin 0.00 0.00 40.50 53.40 54.90 56.40 48.95 41.50
CO3 pour 256.00 332.00 393.00 473.00 518.50 564.00 558.50 553.00
CO4 sg 0.66 0.75 0.82 0.89 0.93 0.97 1.01 1.04
CO4 sul 0.02 0.07 0.33 1.45 2.40 3.34 4.58 581
CO4 ron 69.50 46.80 0.00 0.00 0.00 0.00 0.00 0.00
CO4 mon 68.00 45.30 0.00 0.00 0.00 0.00 0.00 0.00
CO4 arom 0.63 14.21 10.84 24.94 28.06 31.18 31.38 31.58
CO4 rvp 3.70 3.70 0.00 0.00 0.00 0.00 0.00 0.00
CO4 cin 0.00 0.00 38.40 40.20 20.10 0.00 0.00 0.00
CO4 pour 256.00 332.00 389.00 413.00 456.50 500.00 552.50 605.00

Units: sul (% wt.), rvp (psig), arom (% vol.), pour (‘R)

202

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Table C.6. Quality data of crude oil CO5 (parameter gco(s1,gp,s))

CDU outlet streams (cuts)
Crude Quality

oil property ~ cdu_pf cdu_atm cdu_atm_ cdu_atm cdu_atm cdu_vem cdu_vcm cdu_vcm
_In _hn kero _ds _ago _lgo _hgo _rsd
CO5 sg 0.65 0.75 0.81 0.86 0.90 0.94 1.01 1.07
CO5 sul 0.03 0.21 0.93 2.32 3.16 4.00 5.87 7.74
CO5 ron 70.20 47.50 0.00 0.00 0.00 0.00 0.00 0.00
CO5 mon 69.40 46.00 0.00 0.00 0.00 0.00 0.00 0.00
CO5 arom 0.00 14.60 25.80 0.00 0.00 0.00 0.00 0.00
CO5 rvp 0.50 1.00 0.00 0.00 0.00 0.00 0.00 0.00
CO5 «cin 0.00 0.00 0.00 54.00 55.35 56.70 51.35 46.00
CO5 pour 256.00 332.00 415.00 471.00 554.50 638.00 671.00 704.00

Units: sul (% wt.), rvp (psig), arom (% vol.), pour (‘R)

203

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Table C.7. Fixed values for quality properties — part 1 (parameter q™(s,qp,n) for all n)

Quality property

Stream .
sg ron mon rvp arom sul cin Pour

Alkylate 07030 950 917 66 00 0.000 0 0
Alln-butane o cory 938 900 1380 0.0 0.0000 0 0
streams

nht_hn C 398 395 08 131 C

dht_n 07732 550 540 13 220 0.0120

dht_ds C cC 54 458
goht he. n 07732 550 540 13 220 00221

goht hc ds 0.8473 0.0520 54 450
hc_feed C C 550
goht fcc n 07732 550 540 13 220 00221

goht_fcc_ds 0.8473 0.0520 54 450
fcc_feed C C 550
tht_n 07732 550 540 13 220 0.0471

tht_ds 0.8473 0.1108 54 450
FuelOil C C 510

reformateA 0.8180 102.0 90.3 6.6 40.0 0.0000
reformateB 0.8180 93.0 83.4 4.4 40.0 0.0000

hcgm_In 0.6601 824 79.5 13.0 2.0 0.0005
hcgm_hn 0.7658 53.5 53.1 0.5 10.0 0.0010
hckm_In 0.6641 84.0 80.8 13.0 2.0 0.0005
hckm_hn 0.7345 619 61.7 1.0 7.0 0.0010
hckm_kero 0.8144 18.5 C 394
hcdm_In 0.6673 85.3 81.8 13.0 2.0 0.0005
hcdm_hn 0.7644 654 64.9 0.8 6.0 0.0010
hcdm_diesel 0.8360 C 51 405

C = Computed within the model
Units: sul (% wt.), rvp (psig), arom (% vol.), pour (‘R)

204

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Table C.8. Fixed values for quality properties — part 2 (parameter q™(s,qp,n) for all n)

Stream Quality property

sg ron mon rvp arom Sul cin pour
fccA_n 0.7440 91.5 80.7 6.4 0.0 C
fccA_lco 0.9240 C 51 460
fccA_hco 0.9710 C 51 480
fceB_n 0.7450 92.3 81.3 6.4 0.0 C
fceB_lco 0.9350 C 51 430
fccB_hco 1.0450 C 51 450

C = Computed within the model
Units: sul (% wt.), rvp (psig), arom (% vol.), pour (‘R)

Table C.9. Fixed yields for hydrotreaters (parameter Yieldntu(u,s))

Unit Qutlet stream Yield (% vol.)

nht nht_nbut 0.08
nht_hn 100.01
dht_nbut 0.02

dht dht_n 0.08
dht_ds 99.90
goht_hc_nbut 0.09
goht_hc _n 0.88

goht_he goht_hc_ds 7.19
hc feed 92.31
goht_fcc_nbut 0.09
goht_fcc_n 0.88

goht fee goht_fcc_ds 7.19
fcc feed 92.31
rht_nbut 0.50
rht_n 2.46

M e ds 7.34
FuelQil 88.68

205

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Table C.10. Fixed yields for processing units (parameter Yieldpu(u,s))

Unit Outlet stream Yield (% vol.)

reformerA refA_nbut 7.42
reformateA 70.69
reformerB refB_nbut 4.44
reformateB 80.99
hcgm_nbut 6.83

hc_gm hcgm_In 33.30
hcgm_hn 70.76
hckm_nbut 4.30

he km hckm_In 19.76
- hckm_hn 35.02
hckm_Kkero 54.79
hcdm_nbut 2.78

he dm hcdm_In 10.85
- hcdm_hn 29.37
hcdm_diesel 70.88
fccA_nbut 2.19

fccA n 58.03

fccA fccA_lco 17.39
fccA_hco 7.62

fccA coke 5.00
fccB_nbut 2.37

fccB_n 62.75

fccB fccB_lco 10.43
fccB_hco 4.57
fccB_coke 6.63

Table C.11. Sulfur removal factor (parameter SRF™(u,s))

Unit Outlet stream SRF™(u,s)

hc_ km hckm_kero 0.008
hc_dm hcdm_diesel 0.020
fccA_n 0.130

fccA fccA_lco 0.500
fccA _hco 0.750

fccB_n 0.100

fccB fccB_Ico 0.750
fccB_hco 0.900

206

Ph. D. Thesis — Pedro A. Castillo

Castillo

McMaster University — Chemical Engineering

Table C.12. Initial quality of storage tanks (parameter g"™(s,qp))

Quality property

Tank Outlet stream

sg ron mon rvp arom sul cin pour
tank_srhn srhn 0.750 65 63 1 7 0
tank_hcln hcln 0.667 85.3 81.8 13 2 0
tank_hchn hchn 0.764 65.4 64.9 0.8 6 0.0001
tank_srln srin 0.670 78 68 5 20 0
tank_fccnA - feccnA 0.744 90 80 3 20 0.0001
tank_fccnB fcenB 0.745 92 82 3 20 0.0001
tank_refA refA 0.818 102 90.3 6.6 40 0
tank_refB refB 0.818 93 83.4 4.4 40 0
tank_srk srk 0.814 20 0.3 47 400
tank_hck hck 0.814 20 0.3 47 400
tank_ds dsl 0.828 20 0.001 47 470
tank_hcds hcds 0.836 20 0.001 47 470
tank_IcoA IcoA 0.924 20 0.001 47 470
tank_hcoA hcoA 0.971 20 0.001 47 470
tank_IcoB IcoB 0.935 20 0.001 47 470
tank_hcoB hcoB 1.045 20 0.001 47 470
tank_srds srds 0.830 20 0.002 47 470

Units: sul (% wt.), rvp (psig), arom (% vol.), pour (‘R)

Table C.13. Minimum and maximum feed flow rates to the units (kbbl/day)

Unit VE™'(u) VF™X(u)
cdu 72 120
nht 1 40
dht 1 40
goht_hc 1 40
goht_fcc 1 40
rht 0 60
reformerA 4 40
reformerB 4 40
fccA 4 40
fccB 4 40
hc_gm 4 40
hc_km 4 40
hc dm 4 40

For all mixers and splitters: VF™"(u) = 0, VF™(u) = 40 kbbl/day.

207

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Table C.14. Initial, minimum, and maximum inventory levels (kbbl)

Tank Vi) VTN VmE()

tank_CO1 100 10 200
tank_CO2 50 10 200
tank_CO3 80 10 200
tank_CO4 30 10 200
tank_CO5 10 10 200
tank_rgas 100 20 200
tank_pgas 20 20 200
tank_kero 20 20 200
tank_D1 40 20 200
tank_D2 40 20 200
tank_srhn 5 5 50
tank_hcln 68 5 100
tank_nbut 25 5 100
tank_hchn 74 5 100
tank_srin 16 5 50
tank_refA 27 5 100
tank_refB 24 5 100
tank_fccnA 35 5 100
tank_fccnB 26 5 100
tank_ds 35 5 100
tank_IcoA 32 5 100
tank_hcoA 19 5 100
tank_lcoB 26 5 100
tank_hcoB 30 5 100
tank_hcds 5 5 100
tank_srk 19 5 100
tank_hck 20 5 100
tank _srds 20 5 50

208

Ph. D. Thesis — Pedro A. Castillo

Castillo

McMaster University — Chemical Engineering

Table C.15. Tank, mixer, and unit subsets

ID Tanks Description
tank_CO1, tank_CO2, tank_CO3, . .
T1 tank_CO4. tank_CO5 No quality computation
tank_rgas, tank_pgas, tank_kero,
T tank_D1, tank_D2, tank_nbut, Quality of the outlet stream is equal to the quality of
tank_hcln, tank_hchn, tank_refA, the inlet stream
tank_refB
T3 tank_srin, tank_srhn, tank_srk, Quality properties are computed with blending
tank_srds equations
tank_ds, tank_hcds, tank_IcoA, . . .
tank hcoA. tank IcoB, tank hcoB, Only _sulfur content is compute.d with blending
T4 - = - equations, all the other properties of the outlet stream
tank_srds, tank_hck, tank_fccA, .
— - - are equal to those of the inlet stream
tank_fccB
ID Mixers Description
MX1 mixer6_coke No quality computation
MX2 mixerl nbut Quality of the outlet stream is set equal to a specified
- value
mixer2_naphtha, mixer3_diesel, Quality of the outlet stream is equal to the quality of
MX3 . . .
mixer4_hcln, mixer5_hchn the main inlet stream
MX4 mixer_nht, mixer_ds_ago, Quality properties are computed with blending
mixer_tgo_hc, mixer_tgo_fcc equations
ID Units Description
CDU cdu Crude distillation units
HTU nht, dht, goth_fcc, goth_hc, rht Hydrotreating units
reformerA, reformerB, fccA, fccB, . . .
MU he._gm, he,_km, h_dm Units representing an operating mode
reformerA, reformerB, fccA, fccB, Processing units (reformer, fluid catalytic cracker,
PU
hc_gm, hc_km, hc_dm hydrocracker)
RU REFORMER, HYDROCRACKER, Physical unit with different operating modes

FLUID_CATALYTIC_CRACKER

209

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Values used for remaining parameters

Parameters HTS™"(u) and HTS™®(u) are equal to 0.8 and 0.998, respectively, for all
hydrotreaters (i.e. ue HTU).

Parameter RSR™(u) is equal to 50 ton/day for all hydrotreaters (i.e. ue HTU).

Parameters VR™"(t) and VR™(t) are equal to 0 and 300 kbbl/day, respectively, for all
storage tanks.

Parameters VFTR™"(ru) and VFTR™(ru) are equal to 4 and 40 kbbl/day, respectively, for
all units rue RU. Parameter VF™"(u) is equal to 4 kbbl for all units u € PU.

Parameters VBR™"(b) and VBR™(b) are equal to 10 and 120 kbbl/day, respectively, for
all blenders. Parameter Vblend™"(s) is equal to 3 kbbl for all products s:(b,s) € BO.

Quality blending equations for storage tanks

The equations in this subsection are the actual form of eq. 31 shown in the paper for each
type of tank. There are four classes of tanks considered. There are tanks that only require
the volumetric balance (i.e. mathematical model given by eqgs. 27-30 from the paper)
since it is assumed that 1) the tank has a single inlet, 2) the quality of the inlet stream is
known and it does not change with time, 3) the quality of the initial material in the tank is
the same as that of the inlet stream, and 4) the quality of the outlet stream is used in the
next unit, thus it is not necessary to include it here. These type of tanks are assigned to
set T1.

Set T2 includes the tanks for which we assume that the quality of the outlet stream is
equal to the quality of the inlet stream. Therefore, eq. 31 for a tank from set T2 is
replaced by eq. C1.

q(s,ap,n)=q(sLgp,n) VteT2,n,sl:(t,s) e Tl,s:(t,s) € TO,qp: (5,qp) € SQ
(C1)

Set T3 consists of the tanks that include the quality balance equations for all the possible
quality properties. Thus, eq. 31 for tanks belonging to set T3 is replaced by egs. C2-C15.

QVFlow(s,qp,n) = q(s,qp,n)-VFlow(s,n) VteT3,n,s:(t,s)eTl,qp:(s,qp) € SQ
(C2)

210

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

QVTank (t,qp,n)=q(s,qp,n)-V(t,n) Vte T3,n,s:(t,s) e TO,qp: (s,qp) € SQ
(C3)

q(s,gp,n)-denV (t,n) = numQV (t,gp,n)

VteT3,n,s:(t,s) e TO,qp:(s,qp) € SQ,qp € QLV
(C4)

q(s,ap, n)- denVSG(t,n) = numQVSG(t, gp, n)
VteT3,n,s:(t,s) e TO,qp: (s,gp) € SQ,qp € QLW
(C5)

denV(t,n)="Y VFlow(s,n)+V™(t) VteT3,n=1

seTl

(C6)

denV (t,n)= > VFlow(s,n)+V(t,n-1) vteT3,n>1

seTl

(C7)

denVSG(t,n)= > QVFlow(s,gp,n)+V ™ (t)-q™(sLap) VteT3,n=10p=sg,sle TO

seTl

(C8)

denVSG(t,n)= "> QVFlow(s,gp,n)+QVTank(t,qp,n-1) VteT3,n>1qp =5

seTl

(C9)

QVFIowSG (s, qp,n) = QVFlow(s,gp,n)-g(s, qpl,n)
VteT3,n,s:(t,s)eTl,gp:(s,qp) € SQ,qp € QLW, gpl=sg
(C10)

QVTankSG(t,qp,n)= QVTank t,qp,n)- (s, qpL,n)
VteT3,n<n™ s:(t,s) e TO,qp:(s,gp) € SQ,qp € QLW, gpl =sg
(C11)

211

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

numQV (t,gp,n) = > QVFlow(s,qp,n)+V ™ (t)-q" (sL ap)

seTl
VteT3,n=1sle TO,qp: (sl qp) € SQ,qp € QLV
(C12)

numQV (t,qp,n) = ZQVHOW(S, gp,n)+QVTank (t,qp,n 1)

seTl

VteT3,n>1qp:(sLgp) € SQ,qp € QLV
(C13)

numQVSG(t,gp,n)= > QVFIowsG (s, ap,n)+V ™ (t)-q™ (s1,qp)- g™ (sL, qp)

seTl
VteT3,n=1sleTO,qp: (s qp) € SQ,qp € QLW,qpl=sg
(C14)

numQVSG(t,qp,n)= > QVFIowSG (s,qp, n)+ QVTankSG (t, qp,n 1)

seTl

VteT3,n>1qp:(sLqgp) € SQ,qp € QLW

(C15)
Finally, the tanks that only require the quality balance equations for the sulfur content
property (‘sul’), and assume all the other properties of the outlet stream to be equal to the

inlet stream, conform the set T4. Therefore, eq. 31 for tanks from set T4 is replaced by
egs. C16-C25.

QVFlow(s,qp,n)=q(s,ap,n)-VFlow(s,n) Vte T4,n,s:(t,s) e Tl,qp e{sg, sul}
(C16)

QVTank (t,qp,n)=q(s,qp,n)-V(t,n) Vte T4,n,s:(t,s) e TO,qp e {sg, sul}
(C17)

q(s,ap,n)- denVSG(t,n) = numQVSG(t,qp,n) Vte T4,n,s:(t,s) e TO,qp =sul
(C18)
denVSG(t,n)= > QVFlow(s,gp,n)+V ™ (t)-q™(sLap) VteT4,n=1gp=sg,sle TO

seTl

(C19)

212

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

denVSG(t,n)= "> QVFlow(s,gp,n)+QVTank(t,qp,n-1) VteT4,n>1qp =5

seTl

(C20)

QVFIowSG (s, qp,n) = QVFlow(s,gp,n)-g(s, qpl,n)
VteT4,n,s:(t,s)eTl,qp=sul,qpl=sg
(C21)

QVTankSG (t, gp,n) = QVTank (t,qp, n)- q(s, gpL, n)
VteT4,n<n™ s:(t,s) e TO,qp = sul,gpl=sg
(C22)
numQVSG(t,gp,n)= > QVFIowsG (s, qp,n)+V ™ (t)- g™ (s1,qp)- g™ (sL, qp1)

seTl
VteT4,n=1:s1eTO,qp =sul,gpl=sg
(C23)

numQVSG(t, qp,n)= > QVFIowsG (s,qp,n)+QVTankSG(t,qp,n—1)

seTl
VteT4,n>1gp=sul
(C24)

a(s.ap,n)=q(sL, qp,n)

VteT4,n,sl:(t,s) e Tl,s:(t,s) e TO,qp: (s,qp) € SQ,qp = sul
(C25)

Output flow and quality constraints for mixers
Eq. 34 from the paper takes the form given by eq. C26 for all mixers.
VFlow(s,n)=VF(u,n) ¥n,ueMXs:(u,s) e UO

(C26)

Eq. 35 from the paper is replaced according to the mixer type. The general set of mixers
MX is divided into the following subsets: MX1, MX2, MX3 and MX4. MX1 are the
mixers for which we only need a material balance around them; i.e. their mathematical
model is composed by egs. 32-33 from the paper and eq. C26.

213

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

MX2 is the subset of mixers for which we fix the value of the qualities at the outlet to a
pre-specified value using eq. C27.

q(s,qp,n)=q™(s,gp,n) Vn,ue MX2,s:(u,s) € UO,qp: (s,qp) € SQ
(C27)

MX3 is composed by the mixers that set the quality of their outlet streams equal to the
quality of their corresponding main inlet stream, as expressed by eq. C28.

a(s,qp,n) = q(sL ap,n)
vn,ueMX3,s:(u,s) e UO,sl: (u,s) e UMI,qgp: (s,gp) € SQ
(C28)

MX4 is constituted by mixers that consider the quality balance using eq. C29-C33.

QVFlow(s, gp,n)=VFlow(s,n)-q(s,qp,n)
vn,ueMX4,s:(u,s) e Ul,qp:(s,qp) € SQ
(C29)

QVFIowSG (s,qp,n) = QVFlow(s,gp,n)-g(s, qpl,n)
vn,ueMX4,s:(u,s) e Ul,gp: (s,qp) € SQ,qp € QLW, gpl =g
(C30)

VF(u,n)-q(s,ap,n)= > QVFlow(sL,gp,n)

sl(u,s1)eUl

vn,ueMX4,s:(u,s) e UO,gp: (s,qp) € SQ,qp € QLV
(C31)

denVSG(u,n)-q(s,ap,n)= > QVFIowSG (sL,qp,n)

sl(u,s1)eUl

vn,ueMX4,s:(u,s) e UO,qp:(s,gp) € SQ,qp € QLW
(C32)

denVSG(u,n)= > QVFlow(sLgp,n) Vn,ue MX4,s:(u,s) e UO,qp =sg

sl:(u,s1)eUl

(C33)

214

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Output flow and quality constraints for hydrotreaters

Eq. 34 from the paper takes the form given by eq. C34 for all hydrotreaters.

VFlow(s,n) = Yield,, (u,s)-VF (u,n) ¥n,ueHTU,s:(u,s) e UO
(C34)

For all the hydrotreaters, eq. 35 from the paper is replaced by egs. C35-C41.

MFlow(s,n) = q(s, qp,n)-VFlow(s,n) vn,ueHTU,s:(u,s) e UluUO,qp =sg
(C35)
> q(sLap,n)- MFlow(sLn)= " q(s,ap,n)- MFlow(s,n)+RS(u,n)
sl(u,s1)eUl s:(u,s)eUO
vn,ueHTU,qp =sul
(C36)

RS(u,n)< RSR™*(u)-L(n) Vn,ueHTU
(C37)

(L— HTS™ (u))- a(s, gp.n) < q(s, gp,n) < (L— HTS™ (u))- q(s, qp, n)
vn,ueHTU,s:(u,s) e UOS,qp =sul
(C38)

q(s,qp,n)=0.98-q(sl,qp,n) Vn,ueHTU,sl: (u,s1) e Ul,s: (u,s) e UOS,qp =sg
(C39)
q(s,qp,n)=q™(s,qp,n) ¥n,ue HTU,s:(u,s) e UO/UOS,qp: (s,qp) € SQ

(C40) q(s,ap.n)=q™(s,qp,n)
vn,ueHTU,s:(u,s) € UOS,qp: (s,qp) € SQ,qp {sg, sul}
(C41)

215

Ph. D. Thesis — Pedro A. Castillo McMaster University — Chemical Engineering
Castillo

Output flow and quality constraints for other processing units
(reformer, hydrocracker, fluid catalytic cracker)

Eq. 34 from the paper takes the form given by eq. C42 for the processing units from set
PU.

VFlow(s,n) = Yield,, (u,s)-VF (u,n) ¥n,uePU,s:(u,s)eUO
(C42)

For all the units from set PU, eq. 35 from the paper is replaced by eqs. C43-C44.

q(s,gp,n) = SRF™(u,s)-q(sL,gp,n) Vn,uePU,s:(u,s)eUO,qp =sul
(C43)

q(s,gp,n)=q™(s,gp,n) ¥n,uePU,s:(u,s)eUO,qp:(s,qp) € SQ,qp = sul
(C44)

Bilinear terms

The bilinear terms appear in egs. C2-C5, C10-C11, C16-C18, C21-C22, C29-C32, and
C35-C36.

216

