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Lay Abstract 

Optimal planning and scheduling of production systems are two very important tasks in 

industrial practice. Their objective is to ensure optimal utilization of raw materials and 

equipment to reduce production costs. In order to compute realistic production plans and 

schedules, it is often necessary to replace simplified linear models with nonlinear ones 

including discrete decisions (e.g., “yes/no”, “on/off”). To compute a global optimal 

solution for this type of problems in reasonable time is a challenge due to their intrinsic 

nonlinear and combinatorial nature.  

The main goal of this thesis is the development of efficient algorithms to solve large-scale 

planning and scheduling problems. The key contributions of this work are the 

development of: i) a heuristic technique to compute near-optimal solutions rapidly, and ii) 

a deterministic global optimization algorithm. Both approaches showed results and 

performances better or equal to those obtained by commercial software and previously 

published methods. 
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Abstract 

In order to compute more realistic production plans and schedules, techniques using 

nonlinear programming (NLP) and mixed-integer nonlinear programming (MINLP) have 

gathered a lot of attention from the industry and academy. Efficient solution of these 

problems to a proven 𝜀-global optimality remains a challenge due to their combinatorial, 

nonconvex, and large dimensionality attributes. 

The key contributions of this work are: 1) the generalization of the inventory pinch 

decomposition method to scheduling problems, and 2) the development of a deterministic 

global optimization method. 

An inventory pinch is a point at which the cumulative total demand touches its 

corresponding concave envelope. The inventory pinch points delineate time intervals 

where a single fixed set of operating conditions is most likely to be feasible and close to 

the optimum. The inventory pinch method decomposes the original problem in three 

different levels. The first one deals with the nonlinearities, while subsequent levels 

involve only linear terms by fixing part of the solution from previous levels. In this 

heuristic method, infeasibilities (detected via positive value of slack variables) are 

eliminated by adding at the first level new period boundaries at the point in time where 

infeasibilities are detected. 

The global optimization algorithm presented in this work utilizes both piecewise 

McCormick (PMCR) and Normalized Multiparametric Disaggregation (NMDT), and 

employs a dynamic partitioning strategy to refine the estimates of the global optimum. 

Another key element is the parallelized bound tightening procedure. 

Case studies include gasoline blend planning and scheduling, and refinery planning. Both 

inventory pinch method and the global optimization algorithm show promising results 

and their performance is either better or on par with other published techniques and 

commercial solvers, as exhibited in a number of test cases solved during the course of this 

work.  
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1. Chapter 1: Introduction 

Planning and scheduling of production systems are two activities in supply chain 

optimization that increase profit margins of the plant sites by utilizing raw materials, 

intermediate components, storage capacity, and production equipment in the best way 

possible along a given time horizon, considering current market conditions and forecasts. 

Planning and scheduling software-based tools have become necessary for most 

companies, especially those that operate on economic markets with fast dynamics, face 

strict environmental regulations, and/or have low profit margins (e.g., commodity 

producers) [1]. 

Current trend in planning and scheduling techniques is to increase the accuracy of the 

mathematical models employed to represent processing units and operational policies 

(taking into account their scalability), as well as the development of advanced algorithms 

to efficiently solve these models to optimality.  

It is often the case that the nature of the production process is inherently nonlinear, and 

operational policies usually rely on discrete decisions (e.g., “yes/no”, “on/off”). 

Therefore, to compute more realistic production plans and schedules, techniques using 

nonlinear programming (NLP) and mixed-integer nonlinear programming (MINLP) are 

required. The challenges associated with nonlinear planning and scheduling problems are 

the following: 

1. Possible nonconvexities, which can introduce multiple local and global optima 

▪ Traditional gradient-based optimization methods can stop at a local 

optimum. Global optimization techniques are thus needed to understand 

the quality of the solution and make better decisions. 

2. Potential need of a large number of partitions to represent the time domain, which 

can result in a model containing thousands or more variables 

▪ The larger the number of time periods or time slots, the larger the number 

of nonconvex terms and discrete variables, thus the higher computational 

cost involved to solve the problem to optimality.  

This thesis summarizes a project focused on the development of two algorithms to solve 

planning and scheduling problems: a heuristic decomposition approach based on the 

inventory pinch concept, and a deterministic global optimization method based on 

dynamic partitioning of piecewise linear relaxations and optimality-based bound 

tightening.  
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In this Chapter, different concepts used throughout this report are briefly described. In 

addition, the objectives and outline of this thesis are presented. 

1.1. Supply chain optimization 

A supply chain consists of all different entities and activities necessary to produce and 

distribute a product to the final customer. These activities include procurement of raw 

materials, transformation and/or purification of the raw materials into intermediate and 

final products, storage and distribution of intermediate and final products, and demand 

forecasting and satisfaction. The physical elements of a supply chain include warehouses, 

distribution centers, production sites, retailers, etc. Supply chain optimization consists of 

determining the best possible flow of materials and information among these elements 

that maximize the performance of the supply chain. The performance of the supply chain 

is defined according to the company’s goals; e.g., increase profit, market share, customer 

satisfaction, and/or decrease costs, lead time, etc.  

Different type of decisions in the supply chain optimization problem can be identified 

based on business functionalities, timeframe, geographical scope, and hierarchical levels. 

The most common classification is shown in Figure 1. There are three basic decision 

levels: strategic, tactical and operational [2–6]. Long-term strategic level defines the 

structure and capacity of the supply chain considering a time horizon of several months or 

years. Medium-term tactical level assigns production and distribution targets to the 

different facilities usually on a weekly or monthly basis. Short-term operational level 

determines the assignment and sequencing of tasks to equipment units for the next few 

hours or days. These three levels are interconnected because the decisions made at one of 

them directly affect others [2, 5, 6].  

In the automation pyramid (Figure 2) there are two more layers below the short-term 

operational level (i.e., scheduling level): real-time optimization and control. The control 

layer involves all the sensors, actuators, and equipment required to meet and follow 

process setpoints, as well as safety and alarm systems. The frequency of the calculations 

required by the control layer is on the order of seconds or even less. The real-time 

optimization (RTO) level provides setpoints to the control layer every few hours. The 

RTO setpoints correspond to a steady-state of the process that is optimal for the current 

production targets and/or market conditions. 
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Figure 1. Supply chain planning tasks classified based on business functionalities and 

time scope 

 

 

Figure 2. Automation pyramid 
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Computational tools based on mathematical programming and simulation techniques have 

become very common in modern industry for supply chain optimization. Mathematical 

models derived from engineering first principles (i.e., material and energy balances, 

thermodynamic relationships, reaction kinetics, etc.) or from historical plant data (i.e., 

data-driven models) are used to represent supply chain elements. These models also 

include operational constraints such as maximum and minimum production, storage, and 

transportation capacities, product demand, product specifications, availability of raw 

materials, inventory policies, etc. A model must be robust, reliable, and relatively easy to 

maintain. Model formulation is key to be able to compute realistic and optimal solutions 

(i.e., plans and schedules) in a reasonable amount of time (depending on the application).  

Given the complexity of modeling an entire supply chain, as well as the high 

computational cost required to solve such model to optimality, supply chain optimization 

is usually carried out by solving smaller optimization problems. It is very common to use 

the scheme shown in Figure 1 (plus geographical scope) to define these smaller problems.  

For production planning and scheduling problems, formulations can be classified based 

on the process type (continuous, batch) and the time representation employed (discrete, 

continuous, and their variants). Models can be classified as well according to their 

mathematical structure (linear, nonlinear, mixed-integer, etc.). Extensive reviews can be 

found in the literature [7–9]. Another key aspect is the algorithm used to solve the 

optimization problem. The solution algorithms can be classified as deterministic, 

stochastic, and heuristic methods. Based on their optimality guarantees, they are classified 

into local and global optimization methods. 

Research efforts have been directed to integrate several decision levels. By taking into 

account the interactions between them, the efficiency of the supply chain can be 

increased. Model formulations and solution algorithms that exploit the structure of the 

integrated problems have been developed in the last decades [10–13], but there is still an 

ongoing research work in this area. 

In section 1.2, an overview of advances and challenges in planning and scheduling of oil 

refinery operations is presented.  

 

1.2. Planning and scheduling of oil refinery operations 

Crude oil is a mixture of different hydrocarbons and, to a lesser extent, other organic and 

inorganic compounds. Most common types of hydrocarbons found in crude oil are 

alkanes, naphthenes, and aromatics. Crude oils from different reservoirs have different 
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attributes (i.e., quality properties or qualities), e.g., density, aromatics, sulfur, and metals 

content, etc. Oil refineries transform crude oil into more valuable products such as 

liquefied petroleum gas, gasoline, diesel, jet fuel, and other hydrocarbon products which 

can be used as either fuels or feedstocks for other chemical processes. The petroleum 

refining industry is still the largest source of energy products in the world [14].  

A petroleum refinery plant is commonly divided into three main sections: crude oil 

unloading and blending, production units, and blending and shipping of final products 

[15, 16]. The crude oil is transported to the plant by tankers or through pipelines, where it 

is unloaded into storage tanks. From these storage tanks, crude oils are then transferred 

into charging tanks where they are mixed. The crude oil mix is fed to the crude 

distillation units (CDUs) where the crude mix is separated into different fractions based 

on their boiling temperature range. The crude oil fractions go through a 

hydrodesulfurization process to remove most of their sulfur content (because sulfur can 

poison the catalysts of downstream units). Subsequently, the crude oil fractions go 

through corresponding chemical processes: i) Catalytic reforming converts low-octane 

naphthas into high-octane reformate, ii) hydrocracking employs hydrogen to break long-

chain hydrocarbons into simpler compounds (mostly diesel and jet fuel), and iii) fluid 

catalytic cracking transforms heavy crude oil fractions into higher value products (mostly 

gasoline and light olefins). Finally, the intermediate products are blended into final 

products, which are shipped through pipelines or distributed by tanker trucks. The final 

products must meet associated minimum and maximum quality specifications. Figure 3 

shows a simplified scheme of an oil refinery plant with one CDU, one continuous 

catalytic reformer (CCR), one hydrocracker (HC), one fluid catalytic cracker (FCC), four 

different hydrotreaters (NHT, DHT, GOHT, RHT), and the gasoline and diesel blending 

sections. Given the complexity of the processes involved and their interconnections, a lot 

of work in the literature has been dedicated to oil refinery planning and scheduling 

problems. 
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Figure 3. Simplified scheme of an oil refinery plant 

 

Production planning in petroleum industries started to use linear programming in the 

1950s [17]. Nonlinear models have gathered more attention since the late 1990s because 

of the technological advances in nonlinear optimization solvers. The general modelling 

framework for a processing unit in a refinery [18] considers i) the flowrate of each 

product stream as a function of the feed flowrate, the feed properties, and unit operating 

conditions, and ii) the properties of each product stream as a function of the feed 

properties, and unit operating conditions. Particular frameworks for storage tanks, 

blenders, and pipelines in a refinery system have been developed too [19, 20]. Discrete-

time formulations are usually employed for planning models [20–24]. The time periods in 

which the planning horizon is discretized are denoted as big-bucket periods [2, 14] 

because the goal of planning models is to provide production and inventory targets for 

each time period, not to exactly define the start and end times of all the tasks involved to 

meet those targets. Mathematical models based on engineering first principles and/or 

empirical correlations, as well as artificial neural networks, have been developed for 

crude distillation units [25–28], hydrocracking units [29], and fluid catalytic cracking 
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units [30–32]. Currently, there exist a renewed interest in data-driven models due to the 

improvements in big-data applications [21, 33, 34].  

Current research trend is to formulate planning models that consider more upstream and 

downstream operations in the supply chain (i.e., enterprise-wide optimization) [14, 35, 

36], integrate more scheduling decisions [2, 10, 12, 13, 37, 38], and that take into account 

the uncertainty in demand, supply, and price forecasts [39–42], while keeping the model 

computationally tractable or developing efficient solution algorithms tailored to model 

formulations. More recently, pinch analysis for production planning has been developed 

[43–45]. This topic is described in section 1.3. 

Production scheduling in oil refineries is usually carried out by scheduling the three 

refinery sections separately [15, 46–49], but solution strategies that account for their 

interdependence have recently been published [37, 50–52]. Compared to planning 

models, scheduling models include more constraints associated with operational policies 

and logistics. These constraints often involve discrete decisions (e.g., yes-no, on-off); 

therefore, most refinery scheduling formulations are mixed-integer linear models. 

Solution strategies for this type of models rely on the branch-and-bound methodology. 

Scheduling decisions are the following: i) To specify the number of tasks required to meet 

production and inventory targets, ii) to associate those tasks to specific units, iii) to select 

the appropriate operating modes of the units, and iv) to determine the sequence of these 

tasks that incurs in the less number of product changeovers in the tanks with low or null 

demurrages (see Figure 4). Discrete-time and continuous-time models have been 

developed for refinery scheduling problems [18, 53–55].  

Current research trend is to develop scheduling formulations with reduced number of 

discrete variables [56, 57], that provide a tight relaxation [58], and that take into 

consideration mode transitions in the processing units [53]. By formulating scheduling 

models of tractable size with strong relaxations, the solution of the refinery-wide 

scheduling problem can be simplified and longer scheduling horizons can be considered. 

Also, integration of planning and scheduling decisions is an ongoing research topic. 
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Figure 4. Scheduling decisions: task assignment, unit assignment, selection of operating 

mode, and task sequencing 

 

1.3. The inventory pinch approach for production planning and 

scheduling 

Pinch analysis was first introduced by Bodo Linhoff during the late 1970’s to calculate 

the minimum amount of heat and cold utilities required in a heat exchanger network [59, 

60]. The concept was quickly adapted to the general case of energy consumption 

minimization and it constitutes one of the first process integration techniques [61, 62]. 

The general idea is to determine the hot and cold composite curves based on the energy 

available at the different temperatures present in the process network, and then identify 

the point at which the two curves are separated by the minimum temperature difference 

allowed (∆𝑇𝑚𝑖𝑛). The reason why the two curves should not touch is because as ∆𝑇𝑚𝑖𝑛 

tends to zero, the heat exchanger area required increases to infinity. Once the two curves 

are separated by ∆𝑇𝑚𝑖𝑛 , the minimum external hot and cold utility requirements (or 

energy targets) can be easily determined (see Figure 5). To achieve these targets, three 

rules must be followed: i) heat must not be transferred across the pinch, ii) there must be 

no external cooling above the pinch, and iii) there must be no external heating below the 

pinch. 
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Figure 5. Pinch point in energy consumption minimization  

 

Pinch analysis techniques have been developed for a wide range of applications: water 

network synthesis [63–65], carbon-constrained energy sector planning [66], and financial 

management [67]. Pinch analysis has been used in production planning too. Singhvi and 

Shenoy [44, 43] used the demand and production composite curves to define how much 

product is necessary to be produced between pinch points. In this case, pinch points are 

defined as the points where the two composite curves touch (i.e., there is no minimum 

separation equivalent to ∆𝑇𝑚𝑖𝑛). 

Castillo et al. [45] developed a different approach to use pinch analysis in production 

planning. Castillo et al. [45] defined an inventory pinch point as the point where the 

cumulative total demand (CDT) curve and the cumulative average total production 

(CATP) curve touch (see Figure 6). The CTD curve is constructed based on the demand 

data. The CATP curve is defined by the minimum number of straight-line segments 

whose initial and last points touch the CTD curve; except for the first segment, which 

starts at the initial total inventory available at the beginning of the planning horizon. The 

inventory pinch points delineate time periods where constant operating conditions are 

likely to be feasible [45].  
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Figure 6. CTD and CATP curves, and inventory pinch points 

Castillo et al. [45] developed an iterative approach: 

1. To optimize operating conditions for pinch-delineated periods, and 

2. To eliminate infeasibilities if they are encountered. 

The inventory pinch approach is very useful when the number of pinch-delineated periods 

is smaller than the original time discretization of the planning problem. This 

dimensionality reduction makes the problem formulation smaller, thus requiring less 

computational effort to solve it to optimality. It also produces optimal or near-optimal 

solutions with operating conditions that remain constant as much as possible, which is 

something desirable from an operational point of view. Chapters 2, 3, and 5 contain more 

details on this methodology.  

The inventory pinch approach is a heuristic technique which does not guarantees globally 

optimal solutions. In section 1.4, a brief review of rigorous global optimization methods 

is presented. 

 

1.4. Deterministic global optimization techniques 

Deterministic global optimization focuses on developing and improving mathematical 

theories, algorithms, and computational tools in order to find a global minimum of the 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

11 
 

objective function 𝑓 subject to the set of constraints 𝑆 by computing lower and upper 

bounds of the objective function 𝑓 that are valid for the whole feasible region 𝑆. The goal 

of deterministic global optimization is to compute an 𝜀 -global optimal solution with 

theoretical guarantees, where 𝜀 > 0 refers to the desired relative difference between the 

upper and lower bounds. 

Consider a minimization problem. To compute lower bounds, deterministic global 

optimization algorithms relax the original nonconvex nonlinear problem into either a 

linear (LP), a mixed-integer linear (MILP), or a convex nonlinear program (NLP). The 

relaxation can be derived using one or a combination of the following methodologies: 

convex envelopes [68–70], piecewise linear relaxations [71–73], αBB underestimators 

[74, 75], the reformulation-linearization technique [76], outer-approximation [77, 78], by 

removing integrality constraints, and other techniques. To iteratively improve the 

relaxation (i.e., make it tighter or closer to the original model), one can rely on spatial 

branch-and-bound [71] (see Figure 7), cutting planes [79], bound tightening [80, 81], 

interval elimination strategies [82], and further partitioning in piecewise relaxations [83]. 

To compute upper bounds (i.e., feasible solutions), information from the relaxation is 

often used by single/multistart NLP strategies and other heuristic techniques. 

 

 

Figure 7. Sketch of a nonconvex function 𝑓(𝑥) (blue curve) and some possible 

relaxations 𝑓𝑅(𝑥) (red curves). By partitioning the domain of variable 𝑥, the relaxations 

become closer to the original function, and the best possible solution (red dot) increases. 

 

Bound tightening (or range reduction) techniques reduce the domain of the variables 

involved in nonlinear terms. There are two main categories: Feasibility-based bound 

tightening (FBBT), and optimality-based bound tightening (OBBT). FBBT is an iterative 

procedure that employs the model constraints and interval arithmetic to imply bounds on 
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the variables [84]. Although FBBT is not the most effective method to reduce the bounds 

of the variables, it does not require too much computational effort and it is very common 

in most global optimization algorithms. On the other hand, OBBT involves solving one 

minimization and one maximization problem for each variable [80]. The minimization 

problem yields a lower bound of the variable, and the maximization problem gives an 

upper bound. These optimization problems can be solved sequentially [85] or in parallel 

[86].  

In a branch-and-bound algorithm, it has been shown that is useful to apply OBBT at each 

node instead of only at the root node, in order to reduce the number of nodes to explore 

and the final optimality gap [87]. Since OBBT is very effective but requires significant 

computational effort, accelerating and approximation techniques have been proposed for 

OBBT in a branch-and-bound framework [88].  

A different strategy is to not use a branch-and-bound framework at all. In this case, 

piecewise linear relaxations are employed and the number of partitions is increased in 

each iteration [83, 86]. By increasing the number of partitions, the relaxation becomes 

tighter. However, increasing the number of partitions results in larger MILP models and 

the difficulty to solve them to optimality (due to the addition of extra binary variables). In 

order to tighten the relaxation and avoid a rapid increase in model size, OBBT can be 

applied before increasing the number of partitions. By reducing the domain of the 

variables, the same number of partitions will yield a tighter relaxation. Given the large 

number of variables involved in bilinear terms (and that each variable requires two 

optimization problems), parallel implementation of OBBT is necessary to develop 

efficient algorithms. 

Global commercial solvers employ a variety of all the previous discussed techniques and 

methodologies. BARON [89] relies heavily on spatial branch-and-bound and linear 

relaxations, but newer versions are moving towards a more significant use of piecewise 

linear relaxations. ANTIGONE [90] relies more on OBBT, cutting planes, and piecewise 

linear relaxations. Currently, there is no commercial solver that will outperform the others 

if using a wide variety of test examples for comparison. In general, for bilinear programs, 

most of the research on global optimization has been done on formulating tighter MINLP 

model formulations, improving piecewise relaxation techniques, and novel algorithmic 

developments. Applications of global optimization methods to refinery planning are 

described in Chapters 6 and 7. 
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1.5. Objectives of the thesis 

The focus of this thesis is the development of efficient algorithms to solve planning and 

scheduling problems that can be formulated as mixed-integer nonlinear programs, with 

nonlinearities strictly due to bilinear and/or quadratic terms. More specifically: 

1. The generalization of the inventory pinch decomposition method to scheduling 

problems, and 

2. The development of a deterministic global optimization method based on dynamic 

partitioning of piecewise linear relaxations and optimality-based bound tightening. 

Thus, this thesis work explores both heuristic and rigorous optimization approaches, their 

particular advantages and disadvantages, and how can they complement each other.  

 

1.6. Thesis Outline 

Chapter 1: Introduction. This chapter summarizes the literature review and the 

fundamental principles related to this project. It also includes the research objectives and 

the thesis outline.  

Chapter 2: “Inventory Pinch Based, Multiscale Models for Integrated Planning 

and Scheduling-Part I: Gasoline Blend Planning”. This chapter presents more details 

about the inventory pinch concept for production planning, and it describes the 

multiperiod inventory pinch (MPIP) algorithm for blend planning problems. MPIP is a 

heuristic technique that decomposes the planning problem into two levels. The 1st level 

optimizes blend recipes, and the 2nd level computes blend plan. Both levels are 

formulated using discrete-time representation. This work has been published in the AIChE 

Journal. 

Chapter 3: “Inventory Pinch Based, Multiscale Models for Integrated Planning 

and Scheduling-Part II: Gasoline Blend Scheduling”. This chapter describes the MPIP 

algorithm for blend scheduling problems. For this type of problems, MPIP employs a 

three level decomposition. The 1st and 2nd levels are constructed as in Chapter 2, while the 

3rd level is a multiperiod MILP model with fixed blend recipes. All three levels are 

formulated using discrete-time representation. This work has been published in the AIChE 

Journal. 

Chapter 4: “Inventory Pinch-Based Multi-Scale Model for Refinery Production 

Planning”. In this chapter, the MPIP algorithm from Chapter 2 is applied to a refinery 
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planning problem. In this example, the inventory pinch points are defined for each 

blending pool, e.g., gasoline and diesel.  

Chapter 5: “Improved Continuous-Time Model for Gasoline Blend Scheduling”. 

This chapter presents a continuous-time blend scheduling model that includes more 

operational constraints than previously published model, but it requires smaller number of 

binary variables. This work has been published in the Computers & Chemical Journal. 

Chapter 6: “Inventory Pinch Gasoline Blend Scheduling Algorithm Combining 

Discrete- and Continuous-Time Models”. This chapter introduces the MPIP-C algorithm 

which is an improved version of the MPIP method. By employing the continuous-time 

blend scheduling model from Chapter 5, MPIP-C requires smaller execution times than 

MPIP and computes better solutions (less switching operations). This work has been 

published in the Computers & Chemical Journal. 

Chapter 7: “Global Optimization Algorithm for Large-Scale Refinery Planning 

Models with Bilinear Terms”. This chapter describes the deterministic global 

optimization algorithm designed for mixed-integer bilinear programs. This algorithm 

computes estimates of the global solution by solving MILP relaxations of the original 

model derived using either Piecewise McCormick or Normalized Multiparametric 

Disaggregation. The estimates of the global solution are refined by increasing the number 

of partitions and reducing the domain of the variables involved in bilinear terms. This 

work has been published in the Industrial & Engineering Chemistry Research Journal. 

Chapter 8: “Global Optimization of Nonlinear Blend-Scheduling Problems”. This 

chapter presents the results obtained for nonlinear blend-scheduling problems using both 

MPIP-C and the global optimization algorithm from Chapter 7. This work has been 

published in the Engineering Journal. 

Chapter 9: “Global Optimization of MIQCPs with Dynamic Piecewise 

Relaxations”. This chapter describes an enhanced version of the algorithm presented in 

Chapter 7. This global optimization algorithm aims to reduce as much as possible the 

domain of the variables involved in bilinear terms by using optimality-based bound 

tightening more extensively. The algorithm also increases or decreases the number of 

partitions depending on the last iteration execution time, optimality gap improvement, 

and average domain reduction. The algorithm switches from piecewise McCormick to 

Normalized Multiparametric Disaggregation when the number of partitions is greater or 

equal to 10. This work has been published in the Journal of Global Optimization. 

Chapter 10: Concluding Remarks. The final chapter explores main conclusions, 

major contributions and future work for this research project.  
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Appendix A, B, and C: Supporting information for Chapters 2 to 9. 
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2. Chapter 2: Inventory Pinch Based, Multiscale Models for Integrated 

Planning and Scheduling-Part I: Gasoline Blend Planning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published in the AIChE Journal. Complete citation: 

Castillo Castillo, P. A., & Mahalec, V. (2014). Inventory pinch based, multiscale models 

for integrated planning and scheduling‐part I: Gasoline blend planning.” AIChE Journal, 

60(6), 2158–2178. Wiley Online Library, doi: 10.1002/aic.14423 

Permission from © American Institute of Chemical Engineers. 

  



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

24 
 

In Chapter 2, the inventory pinch concept for production planning is revisited and the 

multiperiod inventory pinch (MPIP) algorithm is introduced for blend planning problems. 

MPIP relies on a two level decomposition of the original problem. At the 1st level, the 

blend recipes are determined by solving a multiperiod NLP model with periods delineated 

by inventory pinch points. The 2nd level is a multiperiod MILP model (with original 

number of periods defined by the planner) with fixed blend recipes. Both levels are 

formulated using discrete-time representation. One of the key features of the MPIP 

approach is that produces solutions with less variations in blend recipes.  

The MPIP for blend planning is the base for the MPIP algorithm for blend scheduling 

presented in Chapter 3. 
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3. Chapter 3: Inventory Pinch Based, Multiscale Models for Integrated 

Planning and Scheduling-Part II: Gasoline Blend Scheduling 
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In Chapter 3, the multiperiod inventory pinch (MPIP) algorithm is introduced for blend 

scheduling problems. In this case, MPIP decomposes the original problem into three 

levels. The 1st and 2nd levels are constructed based on the methodology presented in 

Chapter 2, with some modifications to the 2nd level MILP model to include a few 

scheduling decisions. The 3rd level is a multiperiod MILP model (with original number of 

periods defined by the scheduler) with fixed blend recipes. All three levels are formulated 

using discrete-time representation. Due to their large size, the 3rd level model is solved 

using a rolling horizon strategy.  



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

48 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

49 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

50 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

51 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

52 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

53 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

54 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

55 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

56 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

57 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

58 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

59 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

60 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

61 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

62 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

63 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

64 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

65 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

66 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

67 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

68 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

69 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

70 
 

 



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

71 
 

4. Chapter 4: Inventory Pinch-Based Multi-Scale Model for Refinery 

Production Planning 
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The first three sections of Chapter 4 are an overview of Chapter 2. Section 4 presents an 

example of the MPIP algorithm from Chapter 2 applied to a refinery planning problem. 

Compared to the gasoline blending problem, the refinery planning problem considers 

different product pools (e.g., gasoline, diesel, kerosene). Therefore, the inventory pinch 

points are determined based on the cumulative product demand curves of each pool.  
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5. Chapter 5: Improved Continuous-Time Model for Gasoline Blend 

Scheduling 
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In Chapter 5, the development of a continuous-time blend scheduling model is presented. 

As the problem size grows (e.g., more blenders, products, orders, and/or longer 

scheduling horizon), this model requires smaller number of binary variables than previous 

published model, while including more logistic constraints found in real practice. 

Although not all the examples were solved to proven optimality, the feasible solutions 

found were better than those previously reported in the literature. 

This continuous-time blend scheduling model is used in Chapter 6 to improve the 

performance of the MPIP algorithm presented in Chapter 3. 
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6. Chapter 6: Inventory Pinch Gasoline Blend Scheduling Algorithm 

Combining Discrete- and Continuous-Time Models 
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In Chapter 6, the MPIP-C algorithm is introduced. It combines the solution strategy 

described in Chapter 3 with the continuous-time blend scheduling model from Chapter 5. 

The continuous-time blend scheduling model enables MPIP-C algorithm to solve the 3rd 

level for the entire time horizon (instead of subintervals as in Chapter 3). The execution 

times required by MPIP-C are almost one order of magnitude shorter than those required 

by MPIP algorithm. It is demonstrated as well that MPIP-C can handle nonlinear blending 

rules. 

Chapter 6 marks a milestone within my Ph.D. project. The MPIP-C method is a heuristic 

approach that provides optimal or near-optimal solutions in a few seconds for linear and 

nonlinear blend scheduling problems, and with a reduced number of blend recipes. This 

fulfills one of the general objectives of this work. 
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7. Chapter 7: Global Optimization Algorithm for Large-Scale Refinery 

Planning Models with Bilinear Terms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published in the Industrial & Engineering Chemistry Research 

Journal. Complete citation: 

Castillo Castillo, P. A., Castro, P. M., & Mahalec, V. (2017). Global optimization 

algorithm for large-scale refinery planning models with bilinear terms. Industrial & 

Engineering Chemistry Research, 56(2), 530–548. American Chemical Society, doi: 

10.1021/acs.iecr.6b01350 

Permission from © American Chemical Society.  

  



Ph. D. Thesis – Pedro A. Castillo 

Castillo 

McMaster University – Chemical Engineering 

 

120 

Chapters 2–6 show the development steps of a heuristic algorithm (i.e., MPIP-C). In 

Chapter 7, a deterministic global optimization algorithm for mixed-integer bilinear 

programs is presented. This method computes estimates of the global solution by solving 

an MILP relaxation of the original model. The relaxation is derived using either 

Piecewise McCormick or Normalized Multiparametric Disaggregation. By increasing the 

number of partitions, and reducing the domain of the variables, the estimates of the global 

solution are improved. The case study used in Chapter 6 is an oil refinery planning 

problem.  
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8. Chapter 8: Global Optimization of Nonlinear Blend-Scheduling 

Problems 
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In Chapter 8, the heuristic and rigorous optimization techniques from the previous two 

Chapters are used to solve nonlinear blend-scheduling problems. MPIP-C is faster 

computing feasible near-optimal solutions than the global optimization method. The 

lower bound on the blend cost computed by MPIP-C is larger than the initial one 

computed by the global optimization algorithm. These results show the importance of the 

MPIP-C technique and how it can improve a deterministic global optimization algorithm. 
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9. Chapter 9: Global Optimization of MIQCPs with Dynamic Piecewise 

Relaxations 
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In Chapter 9, an improved version of the algorithm described in Chapter 7 is presented. 

Compared to the method detailed in Chapter 7, this new version of the algorithm uses 

optimality-based bound tightening not only when a new upper bound is found, but 

whenever the domain of the variables is significantly reduced. In addition, the algorithm 

also increases or decreases the number of partitions depending on the last iteration 

performance, which is defined by the required execution time, optimality gap 

improvement, and average domain reduction. Finally, the algorithm can switch from 

piecewise McCormick to Normalized Multiparametric Disaggregation when the number 

of partitions is greater or equal to 10.  

The test examples include the refinery planning problems from Chapter 6, and 3 

scheduling problems of a hydro energy system. The results show that this version of the 

algorithm is superior to that from Chapter 6.  
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10. Chapter 10: Concluding Remarks 

This thesis has focused on the development of efficient algorithms to solve production 

planning and scheduling problems. Two approaches were considered: i) a heuristic 

algorithm based on the inventory pinch concept to compute near-optimal solutions in 

short execution times, and ii) a rigorous deterministic global optimization algorithm based 

on increasing number of partitions of piecewise linear relaxations. The main case studies 

included gasoline blend planning and scheduling, and refinery planning. 

The inventory pinch algorithm decomposes the problem into three levels: 1) optimization 

of operating conditions and blend recipes, 2) computation of an approximate schedule, 

and 3) detailed scheduling. At the first level, a discrete-time NLP model is formulated, 

where periods are delineated by the inventory pinch points for various product pools (e.g. 

gasoline and diesel). This reduces drastically the number of periods and enables use of 

nonlinear, more accurate refinery models. The second level is solved via discrete-time 

MILP model where periods are delineated by scheduler based on the demand and supply 

data, and the minimum time requirements to complete major tasks (i.e. blend runs, 

product tank service). The third level uses a discrete-time MILP scheduling model (MPIP 

algorithm) or a continuous-time MILP scheduling model (MPIP-C) to determine the exact 

times to carry out the necessary tasks. The second and third levels are linear models since 

the nonlinear constraints are handled at the first level, and the optimal conditions found at 

such level are fixed in the other levels. The algorithm minimizes the total cost which is 

defined as the cost of raw materials, switching cost, and demurrage cost. The algorithm 

eliminates infeasibilities by iteratively re-optimizing operating conditions and blend 

recipes at the first level. 

The deterministic global optimization algorithm relies on discretizing the bilinear or 

quadratic terms dynamically using either piecewise McCormick (PMCR) or normalized 

multiparametric disaggregation (NMDT). The resulting MILP model is solved using 

CPLEX and several feasible solutions are stored in CPLEX’s solution pool and employed 

as starting points for a local nonlinear solver (e.g. CONOPT). These nonlinear models are 

solved in parallel. Then, the estimate of the global solution and the best feasible solution 

are updated. If the relative difference between these two (i.e. the optimality gap) is 

smaller than the tolerance, then the algorithm stops; otherwise, it continues by reducing 

the range of the variables or increasing the number of partitions for the next iteration. The 

domain of the variables involved in nonlinear terms is reduced using an optimality-based 

bound tightening (OBBT) method. This OBBT method consists in solving two 

optimization problems for each variable: a maximization and a minimization of the range 
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of the variable subject to the MILP relaxation constraints. Parallelization of this step is 

required to avoid long execution times.  

 

10.1. Key Findings and Contributions 

The research objectives presented in Chapter 1 have been achieved, and the key 

contributions of this work include: 

10.1.1. The development of a heuristic technique for blend planning and scheduling 

problems: the multiperiod inventory pinch algorithm MPIP. This method 

computes blend plans and schedules with reduced number of different blend 

recipes by reducing the number of time periods using the inventory pinch 

points. The inventory pinch points are defined by the cumulative total demand 

along the planning/scheduling horizon. MPIP employs discrete-time uniform-

grid MILP scheduling model. Results in Chapter 2 and 3 show that MPIP 

computes the same or better solutions than three commercial solvers trying to 

solve the original full-space model. In Chapter 4, MPIP is used to solve a 

refinery planning problem. 

10.1.2. In Chapter 2, results indicate that the solutions computed by the MPIP 

planning algorithm are optimal when the objective function of the second level 

contains only variables that are aggregated at the first level; and they are near-

optimal when the objective function of the second level contains a penalty 

term associated with variables that are not aggregated at the first level, and this 

penalty term is significantly smaller than the cost of raw materials. 

10.1.3. The formulation of a continuous-time unit-specific slot-based MILP 

scheduling model with reduced number of binary variables for gasoline 

blending operations. In Chapter 5, it is shown that the addition of a lower 

bound on the blend cost reduces the execution times required to solve blend 

scheduling problems to optimality.  

10.1.4. The development of the multiperiod inventory pinch algorithm MPIP-C for 

scheduling problems. MPIP-C has all the features of MPIP but it employs a 

continuous-time unit-specific slot-based MILP scheduling model. As shown in 

Chapter 6 and 8, MPIP-C computes solutions in shorter execution times than 

three commercial solvers, and around the same times as another published 

heuristic strategy. 

10.1.5. The development of a deterministic global optimization algorithm for MINLP 

problems where nonlinearities are strictly bilinear and/or quadratic terms. The 

algorithm is based on dynamic partitioning of piecewise linear relaxations 
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(PMCR and NMDT) and optimality-based bound tightening. Chapter 7, 8, and 

9 show that the algorithm performs on par with two commercial global 

solvers, and even better in some examples. 

 

10.2. Future Work Outlook 

The MPIP and MPIP-C algorithms have shown promising results for short-term planning 

and scheduling problems where 1) the cost associated with the raw materials is bigger 

than the cost associated with switching tasks, and 2) the problem can be decomposed into 

2 or 3 decision levels. However, the performance of these heuristic algorithms depends on 

the ability of the modeler to define the constraints that will be included at each level. 

Therefore, it is necessary to develop a systematic approach to generate the mathematical 

models for each level based on the original problem formulation and with minimal 

additional input from the planner/scheduler. Such development will simplify the 

application and implementation of these two inventory pinch-based algorithms to a wider 

variety of planning and scheduling problems, as well as its integration with global 

optimization algorithms (to find feasible solutions).  

A possible next step for the MPIP method is to employ it for solving and linking long- 

and medium-term planning problems. The questions to be answered include: 

1. What granularity of the product demand data to use? Different data granularities 

(e.g., daily and hourly data) could yield different inventory pinch points. 

2. What are the best linking decisions between the long- and medium-term plans? 

These will depend on the selected case study. For example, for an oil refinery, 

these can be the total amount of crude oil to purchase, the crude distillation unit 

throughput, or the final inventory levels. 

The deterministic global optimization algorithm from Chapter 9 can be further enhanced. 

One of the major issues of the current implementation is when the optimality-based 

bound tightening (OBBT) method is not run and the number of partitions in the relaxed 

model is increased. In this situation, the MILP solver might explore many of the nodes 

that were fathomed in the previous iteration. To avoid this unnecessary calculations, it is 

necessary to retrieve the branch-and-bound tree information from the MILP solver. 

Another issue of the deterministic global optimization algorithm is that there is no 

specific rule to select the variable of a bilinear term to be partitioned. The current rule is 

to pick the variables that will lead to the smallest MILP relaxation. The proposed method 

is to make this a dynamic selection during the algorithm run. Let’s consider the bilinear 
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term 𝑥1𝑥2, where 𝑥2 is the partitioned variable at the beginning of the algorithm. Once the 

domain of 𝑥2 cannot be reduced by OBBT, and there is no significant improvement in the 

best possible solution, 𝑥1 becomes the partitioned variable. 

In the dynamic partitioning scheme employed by the deterministic global optimization 

algorithm, the number of partitions of all partitioned variables increase by the same 

factor. A topic that can be investigated is if this factor can be different for each 

partitioned variable, and how to determine it. This can lead to smaller MILP relaxations. 

One possible approach to decrease the time required for solving the MILP relaxations is 

to employ a mathematical decomposition strategy. Either Benders or Lagrangean 

decomposition methods could prove to be useful given the block structure of the 

constraints associated with Piecewise McCormick and Normalized Multiparametric 

Disaggregation. 
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Appendix A: Supporting Information for Chapters 2 and 3 

 

Table A.1. Components data (properties, cost, supply rates and inventory limits)  

Components ALK BUT HCL HCN LCN LNP RFT 

ARO (%vol aromatics) 0 0 0 25 18 2.974 74.9 

BEN (%vol benzene) 0 0 0 0.5 1 0.595 7.5 

MON 93.7 90 79.8 75.8 81.6 66 90.8 

OLF (%vol olefin) 0 0 0 14 27 0 0 

RON 95 93.8 82.3 86.7 93.2 67.8 103 

RVP (psi) 5.15 138 22.335 2.378 13.876 19.904 3.622 

SPG 0.703 0.584 0.695 0.791 0.744 0.677 0.818 

SUL (%vol sulfur) 0 0 0 0.485 0.078 0.013 0 

Cost ($/bbl) 29.2 11.5 20 22 25 19.7 24.5 

Minimum Inventory (×103 bbl) 5 5 5 5 5 5 5 

Maximum Inventory (×103 bbl) 150 75 50 50 150 100 150 

Initial Inventory (×103 bbl) 

Cases 1 – 14 
30 20 20 10 30 20 50 

Supply Rate (×103 bbl/day) 

Cases 1 – 7 
18 5 3 5 25 20 44 
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Table A.2. Supply rate of components along planning horizon, cases 8 – 14 

Component ALK BUT HCL HCN LCN LNP RFT 

L2-period ×103 bbl/day 

1 25 7 0 3 27 20 45 

2 25 7 0 3 27 20 45 

3 25 7 0 3 27 20 45 

4 20 5 3 5 25 18 40 

5 15 3 7 9 20 22 35 

6 15 3 7 9 20 22 35 

7 15 3 7 9 20 22 35 

8 20 5 3 5 25 18 40 

9 20 5 3 5 25 18 40 

10 25 7 0 3 27 22 45 

11 25 7 0 3 27 22 45 

12 25 7 0 3 27 22 45 

13 20 5 3 5 25 18 40 

14 20 5 3 5 25 18 40 
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Table A.3. Minimum and maximum quality specifications of the products 

Specification Minimum Maximum 

Product U87 U91 U93 U87 U91 U93 

ARO (%vol aromatics) 0 0 0 60 60 60 

BEN (%vol benzene) 0 0 0 5.9 5.9 5.9 

MON 81.5 85.7 87.5 - - - 

OLF (%vol olefin) 0 0 0 24.2 24.2 24.2 

RON 91.4 94.5 97.5 - - - 

RVP (psi) 0 0 0 15.6 15.6 15.6 

SPG 0.73 0.73 0.73 0.81 0.81 0.81 

SUL (%vol sulfur) 0 0 0 0.1 0.1 0.1 

 

Table A.4. Product storage tank data 

Product 

tank 

Storable 

products 

Product 

transition 

penalty 

(×103 $) 

Minimum 

hold up 

(×103 bbl) 

Maximum 

hold up 

(×103 bbl) 

Maximum 

delivery 

rate (×103  

bbl/h) 

Initial 

inventory 

(×103 bbl) 

Initial 

product 

Tk-101 U87 - 10 70 10 40 U87 

Tk-102 U91 - 10 70 10 70 U91 

Tk-103 U93 - 10 70 10 30 U93 

Tk-104 U87, U91, U93 14.5 0 40 10 30 U87 

Tk-105 U87, U91, U93 14.5 0 40 10 40 U91 

Tk-106 U87, U91, U93 14.5 0 40 10 30 U91 
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Table A.5. Demand profiles (×103 bbl) and cost coefficient profile for the product inventory slack 

variables (2nd level MILP model) 

D
e
m

a
n

d
 

p
r
o

fi
le

 

P
r
o

d
u

c
t 

L2-period 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 

U87 60 50 50 80 50 60 60 50 75 50 50 50 80 100 

U91 50 80 70 30 50 0 40 30 30 50 40 40 30 50 

U93 30 30 0 0 40 40 0 35 30 0 0 40 30 40 

2 

U87 80 80 60 80 80 100 90 0 0 50 50 30 60 100 

U91 50 50 50 30 30 50 50 30 30 50 0 50 60 50 

U93 30 30 35 30 35 0 30 35 30 0 30 40 30 0 

3 

U87 70 70 50 70 70 60 60 60 50 70 120 0 50 70 

U91 50 50 50 30 30 50 50 30 30 50 50 30 30 50 

U93 30 30 45 30 40 0 0 35 30 0 30 35 0 30 

4 

U87 70 50 50 120 100 30 30 50 75 110 50 50 50 90 

U91 50 80 70 30 50 0 0 30 50 50 0 40 30 0 

U93 30 30 45 0 40 40 0 35 30 30 30 0 30 30 

5 

U87 60 50 50 70 90 80 130 50 0 30 50 50 50 80 

U91 50 80 70 50 50 30 30 30 30 30 0 40 30 0 

U93 30 30 45 0 30 40 30 30 30 30 30 0 30 40 

6 

U87 100 70 80 100 40 30 40 110 0 50 70 100 0 50 

U91 50 80 70 50 30 30 30 50 30 30 30 35 30 30 

U93 30 30 45 30 0 30 30 30 30 0 0 30 30 30 

Cost coefficients for product slack variables 

U87, U91, 

U93 

1.8 

×106 

1.7 

×106 

1.6  

×1

06 

1.5 

×105 

1.4 

×105 

1.3 

×105 

1.2 

×105 

1.1 

×104 

1 

×103 

9 

×102 

8 

×102 

5 

×102 

1 

×102 

5 

×101 
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Appendix B: Supporting Information for Chapters 5, 6, and 8 

 

Table B.1. Demand data 

 Product Demand (kbbl) 
Maximum Delivery Rate 

Dorder
max (kbbl/h) 

Example 12 The rest 3 4 7-8 9 12 14 3 4 7-8 9 12 14 

Order                             

O1 P1 P1 10 10 10 10 10 10 5 5 5 5 5 5 

O2 P2 P2 3 3 3 3 3 3 3 3 3 3 3 3 

O3 P2 P2 3 3 3 3 3 3 3 3 3 3 3 3 

O4 P1 P1 10 10 10 10 10 10 5 5 5 5 5 5 

O5 P2 P2 3 3 3 3 3 3 3 3 3 3 3 3 

O6 P1 P1 10 10 10 10 10 10 5 5 5 5 5 5 

O7 P2 P2 3 3 3 3 3 3 3 3 3 3 3 3 

O8 P1 P1 100 100 100 100 100 100 5 5 5 5 5 5 

O9 P2 P2 3 3 3 3 3 3 3 3 3 3 3 3 

O10 P4 P4 150 150 150 150 100 150 5 5 5 5 5 5 

O11 P3 P3 20 20 60 60 60 60 5 5 5 5 5 5 

O12 P2 P2 30 30 20 20 20 20 5 5 5 5 5 5 

O13 P4 P4 - 60 60 60 60 60 - 5 5 5 5 5 

O14 P3 P3 - 10 15 20 15 20 - 5 5 5 5 5 

O15 P2 P2 - 20 20 20 20 20 - 4 4 4 4 4 

O16 P2 P2 - - 20 20 20 20 - - 5 5 5 5 

O17 P1 P1 - - 10 10 10 10 - - 5 5 5 5 

O18 P1 P1 - - 10 10 10 10 - - 5 5 5 5 

O19 P2 P2 - - 60 60 60 60 - - 5 5 5 5 

O20 P2 P2 - - 40 40 40 40 - - 5 5 5 5 

O21 P5 P1 - - - 30 30 30 - - - 5 5 5 

O22 P5 P5 - - - 40 40 40 - - - 5 5 5 

O23 P3 P3 - - - 20 20 20 - - - 5 5 5 

O24 P5 P5 - - - - 6 6 - - - - 3 3 

O25 P5 P5 - - - - 20 20 - - - - 5 5 

O26 P3 P1 - - - - 30 10 - - - - 4 4 

O27 P3 P4 - - - - 20 20 - - - - 4 5 

O28 P4 P1 - - - - 3 25 - - - - 3 5 

O29 P4 P5 - - - - 15 10 - - - - 3 5 

O30 P1 P4 - - - - 15 15 - - - - 3 5 

O31 P2 P1 - - - - 15 15 - - - - 5 5 

O32 P5 P1 - - - - 20 20 - - - - 2 5 

O33 P1 P4 - - - - 20 20 - - - - 5 5 

O34 P3 P4 - - - - 20 20 - - - - 5 5 

O35 P3 P5 - - - - 30 30 - - - - 5 5 

O36 - P2 - - - - - 3 - - - - - 3 

O37 - P1 - - - - - 10 - - - - - 5 

O38 - P1 - - - - - 40 - - - - - 5 

O39 - P4 - - - - - 10 - - - - - 5 

O40 - P5 - - - - - 10 - - - - - 5 

O41 - P1 - - - - - 15 - - - - - 5 

O42 - P2 - - - - - 20 - - - - - 3 

O43 - P3 - - - - - 15 - - - - - 5 

O44 - P5 - - - - - 20 - - - - - 4 

O45 - P4 - - - - - 10 - - - - - 5 
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Table B.2. Delivery windows 
 Delivery Window [TOstart, TOend] (h) 

Example 3 4 7-8 9 12 14 

Order             

O1 [0,24] [0,24] [0,24] [0,24] [0,24] [0,24] 

O2 [0,24] [0,24] [0,24] [0,24] [0,24] [0,24] 

O3 [0,24] [0,24] [0,24] [0,24] [0,24] [0,24] 

O4 [0,24] [0,24] [0,24] [0,24] [0,24] [0,24] 

O5 [24,48] [24,48] [24,48] [24,48] [24,48] [24,48] 

O6 [24,48] [24,48] [24,48] [24,48] [24,48] [24,48] 

O7 [24,48] [24,48] [24,48] [24,48] [24,48] [24,48] 

O8 [118,190] [118,190] [118,190] [118,190] [118,190] [118,190] 

O9 [144,168] [144,168] [144,168] [144,168] [144,168] [144,168] 

O10 [150.5,185.5] [150.5,185.5] [150.5,185.5] [150.5,185.5] [150.5,185.5] [150.5,185.5] 

O11 [144,168] [144,168] [144,168] [144,168] [144,168] [144,168] 

O12 [24,48] [24,48] [24,48] [24,48] [24,48] [24,48] 

O13 - [0,56] [0,56] [0,56] [0,56] [0,56] 

O14 - [48,72] [48,72] [48,72] [48,72] [48,72] 

O15 - [0,72] [0,72] [0,72] [0,72] [0,72] 

O16 - - [48,72] [48,72] [48,72] [48,72] 

O17 - - [48,72] [48,72] [48,72] [48,72] 

O18 - - [48,72] [48,72] [48,72] [48,72] 

O19 - - [0,50] [0,50] [0,50] [0,50] 

O20 - - [144, 168] [144,168] [144,168] [144,168] 

O21 - - - [96,120] [96,120] [96,120] 

O22 - - - [144,168] [144,168] [144,168] 

O23 - - - [144,168] [144,168] [144,168] 

O24 - - - - [96,120] [96,120] 

O25 - - - - [144,168] [144,168] 

O26 - - - - [144,168] [0,76] 

O27 - - - - [72,96] [120,144] 

O28 - - - - [72,96] [120,144] 

O29 - - - - [96,120] [120,144] 

O30 - - - - [96,120] [120,144] 

O31 - - - - [96,120] [120,144] 

O32 - - - - [96,120] [144,168] 

O33 - - - - [0,76] [144,168] 

O34 - - - - [120,144] [168,192] 

O35 - - - - [120,144] [168,192] 

O36 - - - - - [168,192] 

O37 - - - - - [168,192] 

O38 - - - - - [168,192] 

O39 - - - - - [168,192] 

O40 - - - - - [168,192] 

O41 - - - - - [168,192] 

O42 - - - - - [168,192] 

O43 - - - - - [144,168] 

O44 - - - - - [168,192] 

O45 - - - - - [96,120] 
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Table B.3. Product and component tank data 

Product or 

Component Tank  

Initial 

Product 

Initial 

Stock Vini 

(kbbl) 

Max. 

Capacity 

Vmax 

(kbbl) 

Storable Products (Set JP) 
Max. Delivery Rate 

Dpr
max (kbbl/h) 

Example       
3, 4, 

7, 8 
9, 14 12 3, 4 7-8 9 12 14 

Tk1 P3 30.00 150 P2, P3 P2, P3, P5 P2, P3, P5 20 20 30 30 30 

Tk2 P3 0.00 150 P2, P3 P2, P3, P5 P2, P3, P5 20 20 30 30 30 

Tk3 P2 14.08 150 P2, P3 P2, P3, P5 P2, P3, P5 20 20 30 30 30 

Tk4 P4 25.00 200 P2- P4 P2- P4 P2- P5 20 20 30 30 30 

Tk5 P2 28.49 200 P2, P3 P2, P5 P2, P3, P5 20 20 30 30 30 

Tk6 P2 57.59 150 P2, P3 P2, P5 P2,  P3, P5 20 20 30 30 30 

Tk7 P1 13.79 200 P1, P4 P1, P4 P1, P4 20 20 30 30 30 

Tk8 P1 12.36 150 P1, P4 P1, P4 P1, P4 20 20 30 30 30 

Tk9 P4 23.96 200 P1, P4 P1, P4 P1, P4 20 20 30 30 30 

Tk10 P1 60.00 150 P1, P4 P1, P4 P1, P4 20 20 30 30 30 

Tk11 P1 12.36 150 P1, P4 P1, P4 P1, P4 20 20 30 30 30 

C1 C1 26.46 250 - - - - - - - - 

C2 C2 67.90 300 - - - - - - - - 

C3 C3 59.44 300 - - - - - - - - 

C4 C4 44.44 300 - - - - - - - - 

C5 C5 10.59 200 - - - - - - - - 

C6 C6 19.53 250 - - - - - - - - 

C7 C7 46.91 250 - - - - - - - - 

C8 C8 49.47 250 - - - - - - - - 

C9 C9 44.58 250 - - - - - - - - 
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Table B.4. Product and component property specification (ON, RVPI, SI) 

Comp./ Quality ON RVPI SI 

Product Example 4, 7, 8 9, 12, 14 4, 7, 8 9, 12, 14 4, 7, 8 9, 12, 14 

C1 

Qbc 

86.50 86.50 140.47 140.47 80.00 80.00 

C2 103.66 103.66 68.92 68.92 40.00 40.00 

C3 111.35 111.35 87.68 87.68 0.00 0.00 

C4 113.93 113.93 51.47 51.47 5.00 5.00 

C5 94.50 94.50 175.59 175.59 0.00 0.00 

C6 118.16 118.16 19.91 19.91 0.08 0.08 

C7 144.68 144.68 12.55 12.55 7.50 7.50 

C8 150.66 150.66 110.59 110.59 2.00 2.00 

C9 92.50 92.50 436.34 436.34 30.00 30.00 

P1 

[Qpr
min, Qpr

max] 

[110.45, +] [110.45, +] [15, 170] [15, 170] [0, 45] [0, 45] 

P2 [111.95, +] [111.95, +] [15, 170] [15, 170] [0, 50] [0, 50] 

P3 [108.97, +] [108.97, +] [15, 170] [15, 170] [0, 44] [0, 44] 

P4 [103.24, +] [103.24, +] [15, 170] [15, 170] [0, 50] [0, 50] 

P5 - [115.01, +] - [15, 170] - [0, 48] 

 

Table B.5. Product and component property specification (BI, AI, OI) 

Comp./ Quality BI AI OI 

Product Example 4, 7, 8 9, 12, 14 4, 7, 8 9, 12, 14 4 7, 8 9, 12, 14 

C1 

Qbc 

0.78 0.78 25.00 25.00 1.00 1.00 1.00 

C2 0.98 0.98 31.70 31.70 23.80 23.80 23.80 

C3 1.20 1.20 48.00 48.00 0.85 0.85 0.85 

C4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C5 0.10 0.10 0.00 0.00 0.40 0.40 0.40 

C6 0.01 0.01 0.00 0.00 0.72 0.72 0.72 

C7 0.01 0.01 0.05 0.05 0.00 0.00 0.00 

C8 0.25 0.25 19.20 19.20 0.15 0.15 0.15 

C9 0.09 0.09 24.00 24.00 0.06 0.06 0.06 

P1 

[Qpr
min, Qpr

max] 

[0, 0.86] [0, 0.86] [0, 35.00] [0, 35.00] [0, 20.00] [0, 20.00] [0, 20.00] 

P2 [0, 0.92] [0, 0.92] [0, 36.00] [0, 36.00] [0, 18.00] [0, 18.00] [0, 18.00] 

P3 [0, 0.94] [0, 0.94] [0, 42.00] [0, 42.00] [0, 20.00] [0, 20.00] [0, 20.00] 

P4 [0, 0.90] [0, 0.90] [0, 40.00] [0, 40.00] [0, 18.00] [0, 18.00] [0, 18.00] 

P5 - [0, 0.93] - [0, 40.00] - - [0, 20.00] 
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Table B.6. Product and component property specification (BI, AI, OI) 

Comp.

/ Quality SGI FI OXI 

Produc

t Example 
4, 7, 8 9, 12, 14 4, 7, 8 9, 12, 14 4 7, 8 9 12, 14 

C1 

Qbc 

1.49 1.49 3.45 3.45 0.25 0.25 0.25 0.25 

C2 1.33 1.33 6.25 6.25 0.75 0.75 0.75 0.75 

C3 1.22 1.22 2.36 2.36 2.00 2.00 2.00 2.00 

C4 1.58 1.58 3.56 3.56 1.25 1.25 1.25 1.25 

C5 1.50 1.50 1.96 1.96 0.08 0.08 0.08 0.08 

C6 1.44 1.44 3.65 3.65 0.00 0.00 0.00 0.00 

C7 1.15 1.15 2.96 2.96 0.00 0.00 0.00 0.00 

C8 1.35 1.35 5.46 5.46 18.20 18.20 18.20 18.20 

C9 1.61 1.61 7.95 7.95 0.85 0.85 0.85 0.85 

P1 

[Qpr
min, 

Qpr
max] 

[1.19, 

1.67] 

[1.19, 

1.67] 

[1.4, 

7.60] 

[1.4, 

7.60] 

[0, 

1.85] 

[0, 

2.80] 

[0, 

2.80] 

[0, 

2.80] 

P2 

[1.20, 

1.67] 

[1.20, 

1.67] 

[1.4, 

7.25] 

[1.4, 

7.25] 

[0, 

1.90] 

[0, 

2.75] 

[4, 

7.25] 

[0, 

2.75] 

P3 

[1.18, 

1.67] 

[1.18, 

1.67] 

[1.4, 

7.20] 

[1.4, 

7.20] 

[0, 

2.10] 

[0, 

2.90] 

[0, 

2.90] 

[0, 

2.90] 

P4 

[1.19, 

1.67] 

[1.19, 

1.67] 

[1.4, 

7.50] 

[1.4, 

7.50] 

[0, 

2.00] 

[0, 

2.70] 

[0, 

2.70] 

[0, 

2.70] 

P5 - 

[1.20, 

1.67] - 

[1.4, 

7.40] - - 

[0, 

3.00] 

[0, 

3.00] 

 

Table B.7. Composition constraints (components C1, C2, C3) 

Component   C1 C2 C3 

Product Example 3, 4, 7, 8 9, 12, 14 3, 4, 7, 8 9, 12, 14 3, 4, 7, 8 9, 12, 14 

P1 
[rmin, rmax] 

 

 

  

[0, 0.22] [0, 0.22] [0.10, 1] [0.10, 1] [0, 1] [0, 1] 

P2 [0, 0.24] [0, 0.24] [0.10, 1] [0.10, 1] [0, 1] [0, 1] 

P3 [0, 0.25] [0, 0.25] [0.10, 1] [0.10, 1] [0, 1] [0, 1] 

P4 [0, 0.24] [0, 0.24] [0.10, 1] [0.10, 1] [0, 1] [0, 1] 

P5 - [0, 0.30] - [0.15, 1] - [0, 1] 

 

Table B.8. Composition constraints (components C4, C5, C6) 

Component   C4 C5 C6 

Product Example 3, 4, 7 8 9, 12 14 3, 4, 7, 8 9, 12, 14 3, 4, 7, 8 9, 12, 14 

P1  [rmin, rmax] [0, 0.40] [0, 0.40] [0, 0.40] [0, 0.40] [0, 0.25] [0, 0.25] [0, 0.20] [0, 0.20] 

P2   [0, 0.45] [0, 0.45] [0, 0.45] [0, 0.45] [0, 0.25] [0, 0.25] [0, 0.22] [0, 0.22] 

P3   [0, 0.43] [0, 0.43] [0, 0.43] [0, 0.43] [0, 0.25] [0, 0.25] [0, 0.18] [0, 0.18] 

P4   [0, 0.44] [0, 0.44] [0, 0.44] [0, 0.44] [0, 0.25] [0, 0.25] [0, 0.20] [0, 0.20] 

P5   - - [0, 0.40] [0, 0.40] - [0, 0.25] - [0, 0.20] 

 

Table B.9. Composition constraints (components C7, C8, C9) 

Component   C7 C8 C9 

Product Example 3, 4, 7, 8 9, 12, 14 3, 4, 7, 8 9, 12, 14 3, 4, 7, 8 9, 12, 14 

P1  [rmin, rmax] [0, 0.25] [0, 0.25] [0, 0.30] [0, 0.30] [0, 0.15] [0, 0.15] 

P2   [0, 0.25] [0, 0.25] [0, 0.30] [0, 0.30] [0, 0.18] [0, 0.18] 

P3   [0, 0.25] [0, 0.25] [0, 0.30] [0, 0.30] [0, 0.20] [0, 0.20] 

P4   [0, 0.25] [0, 0.25] [0, 0.30] [0, 0.30] [0, 0.16] [0, 0.16] 

P5   - [0, 0.25] - [0, 0.30] - [0, 0.17] 
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Table B.10. Blender data 

    
ctblend and CVblend at 

time 0 (kbbl)  

Minimum & Maximum Blending Rate, 

Fblend
min and Fblend

max (kbbl/h)  

Allowable Product 

(set BP) 
Ble

nder 

Exa

mple 
3, 4, 7 8, 9, 12 14 

 
3, 4 7 8, 9 12 14 

 

3, 

4, 7 
8 

9, 

12 
14 

A   0 0 0 

 

1.5-20 1.5-25 1.5-25 1.5-30 1.5-30 

 

P1-

P4 

P1

-

P4 

P1

-

P5 

P1

-

P5 

B   - 0 0 

 

- - 1.5-25 1.5-30 1.5-30 

 

- 

P1

-

P4 

P1

-

P5 

P1

-

P5 

C   - - 0 

 

- - - - 1.5-25 

 

- - - 

P1

-

P5 

    Minimum Blend Run Length ctblend
min  (h) 

    P1 P2 P3 P4 P5 

Ble

nder 

Exa

mple 
3, 4, 7 8, 9, 12 14 

3, 

4, 

7 

8, 9, 12 14 3, 4, 7 8, 9, 12 14 

3, 

4, 

7 

8, 

9, 

12 

14 
9, 

12 
14 

A   6 6 6 6 6 6 6 6 6 6 6 6 5 5 

B   - 6 6 - 6 6 - 6 6 - 6 6 5 5 

C   - - 6 - - 6 - - 6 - - 6 - 5 

 

Table B.11. Supply profiles of blend components 

        Feed Flow Rate to Component Tank Fbc (kbbl/h) 

Example Supply 

profile α 

Duration 

(h) 

End time 

FTbc
end (h) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

3, 4 1 100 100 1.2 0.8 1.2 1.2 0.5 0.8 0.0 0.0 1.0 

  2 92 192 0.8 0.6 0.6 0.8 0.5 0.6 0.5 0.5 0.0 

7 1 80 80 1.2 0.8 1.2 1.2 0.7 0.8 0.0 0.0 1.0 

  2 70 150 0.8 0.6 0.6 0.8 0.5 0.6 0.5 0.5 0.0 

  3 42 192 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8 1 80 80 1.2 0.8 1.2 1.2 0.5 0.8 0.0 0.0 1.0 

  2 70 150 0.8 0.6 0.6 0.8 0.5 0.6 0.5 0.5 0.0 

  3 42 192 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

9 1 80 80 1.0 0.5 1.0 1.0 0.5 0.5 0.0 0.0 1.0 

  2 70 150 0.8 0.6 0.6 0.8 0.5 0.6 0.5 0.5 0.0 

  3 42 192 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

12 1 50 50 1.0 0.5 1.0 1.0 0.8 0.5 0.0 0.0 1.0 

  2 50 100 0.8 0.6 0.6 0.8 0.5 0.6 0.5 0.5 0.0 

  3 50 150 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.5 

  4 42 192 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

14 1 50 50 1.0 0.5 1.0 1.0 0.7 0.5 0.5 0.5 1.0 

  2 50 100 0.8 0.6 0.6 0.8 0.5 0.6 0.5 0.5 0.0 

  3 50 150 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.5 

  4 42 192 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table B.12. Economic data 

Component C1 C2 C3 C4 C5 C6 C7 C8 C9 
Scheduling 

Horizon H (h) 

Cost c1 ($/bbl) 20 24 30 25 22 27 50 50 22.5 192 

           

Swing tank Tk1 Tk2 Tk3 Tk4 Tk5 Tk6 Tk7 Tk8 Tk9 Tk10 Tk11 

Transition Cost c3 

(k$/instance) 
14.5 14.5 14.5 19 19 14.5 19 14.5 19 14.5 14.5 

            

Transition Cost in blender c2 

(k$/instance) 
Penalty coefficients for slack variables 

20 c6(n) = {[ (N – n) / N ]^2}·(1000 – 100) +100 

Demurrage Cost c5 (k$/h) c7(n) = 0.5·c6(n) 

2.5 c8 = 1000 
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Appendix C: Supporting Information for Chapter 7 and 9 

 

Table C.1. Supply and demand data for scenario #1 (kbbl)  

Day 1 2 3 4 5 6 7 

RG 40 40 40 50 40 80 80 

PG 30 30 40 20 20 20 20 

K1 10 10 10 10 10 15 10 

D1 10 10 10 10 10 10 10 

D2 10 30 30 30 20 10 20 

CO1 30 30 0 0 0 0 0 

CO2 0 50 70 0 80 0 70 

CO3 40 0 40 50 0 80 70 

CO4 0 30 0 0 30 0 0 

CO5 0 0 0 30 0 30 0 

 

Table C.2. Supply and demand data for scenario #2 (kbbl)  

Day 1 2 3 4 5 6 7 

RG 40 40 0 50 40 80 80 

PG 30 30 40 20 20 0 20 

K1 10 0 10 10 10 15 10 

D1 10 10 10 0 10 10 10 

D2 0 30 30 30 20 0 20 

CO1 0 30 0 30 20 0 0 

CO2 40 50 50 0 70 40 0 

CO3 40 0 40 50 0 80 40 

CO4 0 30 0 0 30 0 20 

CO5 0 0 0 40 0 0 0 
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Table C.3. Supply and demand data for scenario #3 (kbbl)  

Day 1 2 3 4 5 6 7 

RG 40 40 50 80 0 30 90 

PG 0 30 60 50 0 30 50 

K1 0 10 10 10 10 0 20 

D1 10 10 10 0 0 20 20 

D2 20 0 30 30 0 30 20 

CO1 30 0 30 0 20 0 0 

CO2 50 60 70 0 0 60 20 

CO3 60 40 80 20 0 40 0 

CO4 30 30 0 0 0 0 0 

CO5 30 0 0 0 0 0 0 
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Table C.4. Quality data of crude oils CO1 and CO2 (parameter qco(s1,qp,s)) 

Crude 

oil 

Quality 

property 

CDU outlet streams (cuts) 

cdu_pf

_ln 

cdu_atm

_hn 

cdu_atm_

kero 

cdu_atm

_ds 

cdu_atm

_ago 

cdu_vcm

_lgo 

cdu_vcm

_hgo 

cdu_vcm

_rsd 

CO1 sg 0.64 0.75 0.84 0.90 0.93 0.96 1.02 1.07 

CO1 sul 0.00 0.09 0.68 1.93 2.61 3.29 4.69 6.08 

CO1 ron 71.20 44.80 0.00 0.00 0.00 0.00 0.00 0.00 

CO1 mon 69.70 43.10 0.00 0.00 0.00 0.00 0.00 0.00 

CO1 arom 0.00 11.51 12.87 0.00 0.00 0.00 0.00 0.00 

CO1 rvp 5.80 5.80 0.00 0.00 0.00 0.00 0.00 0.00 

CO1 cin 0.00 0.00 34.80 37.80 35.75 33.70 21.95 10.20 

CO1 pour 256.00 332.00 345.00 409.00 451.50 494.00 539.00 584.00 

CO2 sg 0.67 0.76 0.81 0.85 0.88 0.91 0.94 0.98 

CO2 sul 0.00 0.00 0.02 0.22 0.42 0.62 0.96 1.29 

CO2 ron 71.80 44.68 0.00 0.00 0.00 0.00 0.00 0.00 

CO2 mon 70.30 43.08 0.00 0.00 0.00 0.00 0.00 0.00 

CO2 arom 0.00 16.38 20.22 0.00 0.00 0.00 0.00 0.00 

CO2 rvp 3.50 3.50 0.00 0.00 0.00 0.00 0.00 0.00 

CO2 cin 0.00 0.00 43.70 54.00 55.35 56.70 51.35 46.00 

CO2 pour 256.00 332.00 398.00 477.00 520.00 563.00 563.00 563.00 

Units: sul (% wt.), rvp (psig), arom (% vol.), pour (˚R) 
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Table C.5. Quality data of crude oils CO3 and CO4 (parameter qco(s1,qp,s)) 

Crude 

oil 

Quality 

property 

CDU outlet streams (cuts) 

cdu_pf

_ln 

cdu_atm

_hn 

cdu_atm_

kero 

cdu_atm

_ds 

cdu_atm

_ago 

cdu_vcm

_lgo 

cdu_vcm

_hgo 

cdu_vcm

_rsd 

CO3 sg 0.67 0.76 0.82 0.86 0.88 0.91 0.95 0.99 

CO3 sul 0.00 0.00 0.02 0.22 0.43 0.63 0.99 1.35 

CO3 ron 72.00 44.90 0.00 0.00 0.00 0.00 0.00 0.00 

CO3 mon 70.40 43.10 0.00 0.00 0.00 0.00 0.00 0.00 

CO3 arom 0.00 7.86 15.56 0.00 0.00 0.00 0.00 0.00 

CO3 rvp 4.20 4.20 0.00 0.00 0.00 0.00 0.00 0.00 

CO3 cin 0.00 0.00 40.50 53.40 54.90 56.40 48.95 41.50 

CO3 pour 256.00 332.00 393.00 473.00 518.50 564.00 558.50 553.00 

CO4 sg 0.66 0.75 0.82 0.89 0.93 0.97 1.01 1.04 

CO4 sul 0.02 0.07 0.33 1.45 2.40 3.34 4.58 5.81 

CO4 ron 69.50 46.80 0.00 0.00 0.00 0.00 0.00 0.00 

CO4 mon 68.00 45.30 0.00 0.00 0.00 0.00 0.00 0.00 

CO4 arom 0.63 14.21 10.84 24.94 28.06 31.18 31.38 31.58 

CO4 rvp 3.70 3.70 0.00 0.00 0.00 0.00 0.00 0.00 

CO4 cin 0.00 0.00 38.40 40.20 20.10 0.00 0.00 0.00 

CO4 pour 256.00 332.00 389.00 413.00 456.50 500.00 552.50 605.00 

Units: sul (% wt.), rvp (psig), arom (% vol.), pour (˚R) 
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Table C.6. Quality data of crude oil CO5 (parameter qco(s1,qp,s)) 

Crude 

oil 

Quality 

property 

CDU outlet streams (cuts) 

cdu_pf

_ln 

cdu_atm

_hn 

cdu_atm_

kero 

cdu_atm

_ds 

cdu_atm

_ago 

cdu_vcm

_lgo 

cdu_vcm

_hgo 

cdu_vcm

_rsd 

CO5 sg 0.65 0.75 0.81 0.86 0.90 0.94 1.01 1.07 

CO5 sul 0.03 0.21 0.93 2.32 3.16 4.00 5.87 7.74 

CO5 ron 70.20 47.50 0.00 0.00 0.00 0.00 0.00 0.00 

CO5 mon 69.40 46.00 0.00 0.00 0.00 0.00 0.00 0.00 

CO5 arom 0.00 14.60 25.80 0.00 0.00 0.00 0.00 0.00 

CO5 rvp 0.50 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

CO5 cin 0.00 0.00 0.00 54.00 55.35 56.70 51.35 46.00 

CO5 pour 256.00 332.00 415.00 471.00 554.50 638.00 671.00 704.00 

Units: sul (% wt.), rvp (psig), arom (% vol.), pour (˚R) 
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Table C.7. Fixed values for quality properties – part 1 (parameter qfix(s,qp,n) for all n) 

Stream 
Quality property 

sg ron mon rvp arom sul cin Pour 

Alkylate 0.7030 95.0 91.7 6.6 0.0 0.0000 0 0 

All n-butane 

streams 
0.5840 93.8 90.0 138.0 0.0 0.0000 0 0 

nht_hn C 39.8 39.5 0.8 13.1 C     

dht_n 0.7732 55.0 54.0 1.3 22.0 0.0120     

dht_ds C         C 54 458 

goht_hc_n 0.7732 55.0 54.0 1.3 22.0 0.0221     

goht_hc_ds 0.8473         0.0520 54 450 

hc_feed C         C   550 

goht_fcc_n 0.7732 55.0 54.0 1.3 22.0 0.0221     

goht_fcc_ds 0.8473         0.0520 54 450 

fcc_feed C         C   550 

rht_n 0.7732 55.0 54.0 1.3 22.0 0.0471     

rht_ds 0.8473         0.1108 54 450 

FuelOil C         C   510 

reformateA 0.8180 102.0 90.3 6.6 40.0 0.0000     

reformateB 0.8180 93.0 83.4 4.4 40.0 0.0000     

hcgm_ln 0.6601 82.4 79.5 13.0 2.0 0.0005     

hcgm_hn 0.7658 53.5 53.1 0.5 10.0 0.0010     

hckm_ln 0.6641 84.0 80.8 13.0 2.0 0.0005     

hckm_hn 0.7345 61.9 61.7 1.0 7.0 0.0010     

hckm_kero 0.8144       18.5 C   394 

hcdm_ln 0.6673 85.3 81.8 13.0 2.0 0.0005     

hcdm_hn 0.7644 65.4 64.9 0.8 6.0 0.0010     

hcdm_diesel 0.8360         C 51 405 

C = Computed within the model  

Units: sul (% wt.), rvp (psig), arom (% vol.), pour (˚R) 
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Table C.8. Fixed values for quality properties – part 2 (parameter qfix(s,qp,n) for all n) 

Stream 
Quality property 

sg ron mon rvp arom Sul cin pour 

fccA_n 0.7440 91.5 80.7 6.4 0.0 C     

fccA_lco 0.9240         C 51 460 

fccA_hco 0.9710         C 51 480 

fccB_n 0.7450 92.3 81.3 6.4 0.0 C     

fccB_lco 0.9350         C 51 430 

fccB_hco 1.0450         C 51 450 

C = Computed within the model 

Units: sul (% wt.), rvp (psig), arom (% vol.), pour (˚R) 

 

Table C.9. Fixed yields for hydrotreaters (parameter YieldHTU(u,s)) 

Unit Outlet stream Yield (% vol.) 

nht 
nht_nbut 0.08 

nht_hn 100.01 

dht 

dht_nbut 0.02 

dht_n 0.08 

dht_ds 99.90 

goht_hc 

goht_hc_nbut 0.09 

goht_hc_n 0.88 

goht_hc_ds 7.19 

hc_feed 92.31 

goht_fcc 

goht_fcc_nbut 0.09 

goht_fcc_n 0.88 

goht_fcc_ds 7.19 

fcc_feed 92.31 

rht 

rht_nbut 0.50 

rht_n 2.46 

rht_ds 7.34 

FuelOil 88.68 
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Table C.10. Fixed yields for processing units (parameter YieldPU(u,s)) 

Unit Outlet stream Yield (% vol.) 

reformerA 
refA_nbut 7.42 

reformateA 70.69 

reformerB 
refB_nbut 4.44 

reformateB 80.99 

hc_gm 

hcgm_nbut 6.83 

hcgm_ln 33.30 

hcgm_hn 70.76 

hc_km 

hckm_nbut 4.30 

hckm_ln 19.76 

hckm_hn 35.02 

hckm_kero 54.79 

hc_dm 

hcdm_nbut 2.78 

hcdm_ln 10.85 

hcdm_hn 29.37 

hcdm_diesel 70.88 

fccA 

fccA_nbut 2.19 

fccA_n 58.03 

fccA_lco 17.39 

fccA_hco 7.62 

fccA_coke 5.00 

fccB 

fccB_nbut 2.37 

fccB_n 62.75 

fccB_lco 10.43 

fccB_hco 4.57 

fccB_coke 6.63 

 

Table C.11. Sulfur removal factor (parameter SRFfix(u,s)) 

Unit Outlet stream SRFfix(u,s) 

hc_km hckm_kero 0.008 

hc_dm hcdm_diesel 0.020 

fccA 

fccA_n 0.130 

fccA_lco 0.500 

fccA_hco 0.750 

fccB 

fccB_n 0.100 

fccB_lco 0.750 

fccB_hco 0.900 
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Table C.12. Initial quality of storage tanks (parameter qini(s,qp)) 

Tank Outlet stream 
Quality property 

sg ron mon rvp arom sul cin pour 

tank_srhn srhn 0.750 65 63 1 7 0   

tank_hcln hcln 0.667 85.3 81.8 13 2 0   

tank_hchn hchn 0.764 65.4 64.9 0.8 6 0.0001   

tank_srln srln 0.670 78 68 5 20 0   

tank_fccnA fccnA 0.744 90 80 3 20 0.0001   

tank_fccnB fccnB 0.745 92 82 3 20 0.0001   

tank_refA refA 0.818 102 90.3 6.6 40 0   

tank_refB refB 0.818 93 83.4 4.4 40 0   

tank_srk srk 0.814    20 0.3 47 400 

tank_hck hck 0.814    20 0.3 47 400 

tank_ds ds1 0.828    20 0.001 47 470 

tank_hcds hcds 0.836    20 0.001 47 470 

tank_lcoA lcoA 0.924    20 0.001 47 470 

tank_hcoA hcoA 0.971    20 0.001 47 470 

tank_lcoB lcoB 0.935    20 0.001 47 470 

tank_hcoB hcoB 1.045    20 0.001 47 470 

tank_srds srds 0.830    20 0.002 47 470 

Units: sul (% wt.), rvp (psig), arom (% vol.), pour (˚R) 

 

Table C.13. Minimum and maximum feed flow rates to the units (kbbl/day) 

Unit VFmin(u) VFmax(u) 

cdu 72 120 

nht 1 40 

dht 1 40 

goht_hc 1 40 

goht_fcc 1 40 

rht 0 60 

reformerA 4 40 

reformerB 4 40 

fccA 4 40 

fccB 4 40 

hc_gm 4 40 

hc_km 4 40 

hc_dm 4 40 
For all mixers and splitters: VFmin(u) = 0, VFmax(u) = 40 kbbl/day. 
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Table C.14. Initial, minimum, and maximum inventory levels (kbbl) 

Tank Vini(t) Vmin(t) Vmax(t) 

tank_CO1 100 10 200 

tank_CO2 50 10 200 

tank_CO3 80 10 200 

tank_CO4 30 10 200 

tank_CO5 10 10 200 

tank_rgas 100 20 200 

tank_pgas 20 20 200 

tank_kero 20 20 200 

tank_D1 40 20 200 

tank_D2 40 20 200 

tank_srhn 5 5 50 

tank_hcln 68 5 100 

tank_nbut 25 5 100 

tank_hchn 74 5 100 

tank_srln 16 5 50 

tank_refA 27 5 100 

tank_refB 24 5 100 

tank_fccnA 35 5 100 

tank_fccnB 26 5 100 

tank_ds 35 5 100 

tank_lcoA 32 5 100 

tank_hcoA 19 5 100 

tank_lcoB 26 5 100 

tank_hcoB 30 5 100 

tank_hcds 5 5 100 

tank_srk 19 5 100 

tank_hck 20 5 100 

tank_srds 20 5 50 
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Table C.15. Tank, mixer, and unit subsets 

ID Tanks Description 

T1 
tank_CO1, tank_CO2, tank_CO3, 

tank_CO4, tank_CO5 
No quality computation 

T2 

tank_rgas, tank_pgas, tank_kero, 

tank_D1, tank_D2, tank_nbut, 

tank_hcln, tank_hchn, tank_refA, 

tank_refB  

Quality of the outlet stream is equal to the quality of 

the inlet stream 

T3 
tank_srln, tank_srhn, tank_srk, 

tank_srds 

Quality properties are computed with blending 

equations 

T4 

tank_ds, tank_hcds, tank_lcoA, 

tank_hcoA, tank_lcoB, tank_hcoB, 

tank_srds, tank_hck, tank_fccA, 

tank_fccB 

Only sulfur content is computed with blending 

equations, all the other properties of the outlet stream 

are equal to those of the inlet stream 

ID Mixers Description 

MX1 mixer6_coke No quality computation 

MX2 mixer1_nbut 
Quality of the outlet stream is set equal to a specified 

value 

MX3 
mixer2_naphtha, mixer3_diesel, 

mixer4_hcln, mixer5_hchn  

Quality of the outlet stream is equal to the quality of 

the main inlet stream 

MX4 
mixer_nht, mixer_ds_ago, 

mixer_tgo_hc, mixer_tgo_fcc 

Quality properties are computed with blending 

equations 

ID Units Description 

CDU cdu Crude distillation units 

HTU nht, dht, goth_fcc, goth_hc, rht Hydrotreating units 

MU 
reformerA, reformerB, fccA, fccB, 

hc_gm, hc_km, hc_dm  
Units representing an operating mode 

PU 
reformerA, reformerB, fccA, fccB, 

hc_gm, hc_km, hc_dm 

Processing units (reformer, fluid catalytic cracker, 

hydrocracker) 

RU 
REFORMER, HYDROCRACKER, 

FLUID_CATALYTIC_CRACKER 
Physical unit with different operating modes 
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Values used for remaining parameters 

Parameters HTSmin(u) and HTSmax(u) are equal to 0.8 and 0.998, respectively, for all 

hydrotreaters (i.e. uHTU).  

Parameter RSRmax(u) is equal to 50 ton/day for all hydrotreaters (i.e. uHTU).  

Parameters VRmin(t) and VRmax(t) are equal to 0 and 300 kbbl/day, respectively, for all 

storage tanks. 

Parameters VFTRmin(ru) and VFTRmax(ru) are equal to 4 and 40 kbbl/day, respectively, for 

all units ruRU.  Parameter VFmin(u) is equal to 4 kbbl for all units uPU. 

Parameters VBRmin(b) and VBRmax(b) are equal to 10 and 120 kbbl/day, respectively, for 

all blenders.  Parameter Vblendmin(s) is equal to 3 kbbl for all products s:(b,s)BO. 

 

Quality blending equations for storage tanks 

The equations in this subsection are the actual form of eq. 31 shown in the paper for each 

type of tank. There are four classes of tanks considered.  There are tanks that only require 

the volumetric balance (i.e. mathematical model given by eqs. 27-30 from the paper) 

since it is assumed that 1) the tank has a single inlet, 2) the quality of the inlet stream is 

known and it does not change with time, 3) the quality of the initial material in the tank is 

the same as that of the inlet stream, and 4) the quality of the outlet stream is used in the 

next unit, thus it is not necessary to include it here.  These type of tanks are assigned to 

set T1.   

Set T2 includes the tanks for which we assume that the quality of the outlet stream is 

equal to the quality of the inlet stream.  Therefore, eq. 31 for a tank from set T2 is 

replaced by eq. C1.   

( ) ( )nqpsqnqpsq ,,1,, =  SQTOTIT2  ),(:,),(:,)1,(:1,, qpsqpstsstsnt  

 (C1) 

Set T3 consists of the tanks that include the quality balance equations for all the possible 

quality properties.  Thus, eq. 31 for tanks belonging to set T3 is replaced by eqs. C2-C15. 

( ) ( ) ( )nsVFlownqpsqnqpsQVFlow ,,,,, =  SQTIT3  ),(:,),(:,, qpsqpstsnt

 (C2) 
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( ) ( ) ( )ntVnqpsqnqptQVTank ,,,,, =  SQTOT3  ),(:,),(:,, qpsqpstsnt  

 (C3) 

( ) ( ) ( )nqptnumQVntdenVnqpsq ,,,,, =   

QLVSQTOT3  qpqpsqpstsnt ,),(:,),(:,,    

 (C4) 

( ) ( ) ( )nqptnumQVSGntdenVSGnqpsq ,,,,, =

 QLWSQTOT3  qpqpsqpstsnt ,),(:,),(:,,    

 (C5) 

( ) ( ) ( )tVnsVFlowntdenV
s

ini,, += 
TI

 1, = nt T3      

 (C6) 

( ) ( ) ( )1,,, −+= 


ntVnsVFlowntdenV
s TI

 1,  nt T3     

 (C7) 

( ) ( ) ( ) ( )qpsqtVnqpsQVFlowntdenVSG
s

,1,,, iniini += 
TI

 TOT3 == 1sg,,1, sqpnt

 (C8) 

( ) ( ) ( )1,,,,, −+= 


nqptQVTanknqpsQVFlowntdenVSG
s TI

 sg,1, = qpnt T3

 (C9) 

( ) ( ) ( )nqpsqnqpsQVFlownqpsQVFlowSG ,1,,,,, =  

 sg1,,),(:,),(:,, = qpqpqpsqpstsnt QLWSQTIT3   

 (C10) 

( ) ( ) ( )nqpsqnqptQVTanknqptQVTankSG ,1,,,,, =

 sg1,,),(:,),(:,, max = qpqpqpsqpstsnnt QLWSQTOT3  

 (C11) 
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( ) ( ) ( ) ( )qpsqtVnqpsQVFlownqptnumQV
s

,1,,,, iniini += 
TI

  

 QLVSQTOT3 = qpqpsqpsnt ,),1(:,1,1,    

 (C12) 

( ) ( ) ( )1,,,,,, −+= 


nqptQVTanknqpsQVFlownqptnumQV
s TI

 

 QLVSQT3  qpqpsqpnt ,),1(:,1,      

 (C13) 

( ) ( ) ( ) ( ) ( )1,1,1,,,, iniiniini qpsqqpsqtVnqpsQVFlowSGnqptnumQVSG
s

+= 
TI

 

 sg1,,),1(:,1,1, == qpqpqpsqpsnt QLWSQTOT3   

 (C14) 

( ) ( ) ( )1,,,,,, −+= 


nqptQVTankSGnqpsQVFlowSGnqptnumQVSG
s TI

 

 QLWSQT3  qpqpsqpnt ,),1(:,1,      

 (C15) 

Finally, the tanks that only require the quality balance equations for the sulfur content 

property (‘sul’), and assume all the other properties of the outlet stream to be equal to the 

inlet stream, conform the set T4.  Therefore, eq. 31 for tanks from set T4 is replaced by 

eqs. C16-C25. 

( ) ( ) ( )nsVFlownqpsqnqpsQVFlow ,,,,, =  }sulsg,{,),(:,,  qpstsnt TIT4  

 (C16) 

( ) ( ) ( )ntVnqpsqnqptQVTank ,,,,, =  }sulsg,{,),(:,,  qpstsnt TOT4  

 (C17) 

( ) ( ) ( )nqptnumQVSGntdenVSGnqpsq ,,,,, =  sul,),(:,, = qpstsnt TOT4  

 (C18) 

( ) ( ) ( ) ( )qpsqtVnqpsQVFlowntdenVSG
s

,1,,, iniini += 
TI

 TOT4 == 1sg,,1, sqpnt

 (C19) 
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( ) ( ) ( )1,,,,, −+= 


nqptQVTanknqpsQVFlowntdenVSG
s TI

 sg,1, = qpnt T4

 (C20) 

( ) ( ) ( )nqpsqnqpsQVFlownqpsQVFlowSG ,1,,,,, =  

 sg1,sul,),(:,, == qpqpstsnt TIT4      

 (C21) 

( ) ( ) ( )nqpsqnqptQVTanknqptQVTankSG ,1,,,,, =

 sg1,sul,),(:,, max == qpqpstsnnt TOT4     

 (C22) 

( ) ( ) ( ) ( ) ( )1,1,1,,,, iniiniini qpsqqpsqtVnqpsQVFlowSGnqptnumQVSG
s

+= 
TI

 

 sg1,sul,1,1, === qpqpsnt TOT4      

 (C23) 

( ) ( ) ( )1,,,,,, −+= 


nqptQVTankSGnqpsQVFlowSGnqptnumQVSG
s TI

 

 sul,1, = qpnt T4        

 (C24) 

( ) ( )nqpsqnqpsq ,,1,, =  

sul,),(:,),(:,)1,(:1,,  qpqpsqpstsstsnt SQTOTIT4   

 (C25) 

 

Output flow and quality constraints for mixers 

Eq. 34 from the paper takes the form given by eq. C26 for all mixers. 

( ) ( )nuVFnsVFlow ,, =  UOMX  ),(:,, susun      

 (C26) 

Eq. 35 from the paper is replaced according to the mixer type.  The general set of mixers 

MX is divided into the following subsets: MX1, MX2, MX3 and MX4.  MX1 are the 

mixers for which we only need a material balance around them; i.e. their mathematical 

model is composed by eqs. 32-33 from the paper and eq. C26.   
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MX2 is the subset of mixers for which we fix the value of the qualities at the outlet to a 

pre-specified value using eq. C27.   

( ) ( )nqpsqnqpsq ,,,, fix=  SQUOMX2  ),(:,),(:,, qpsqpsusun   

 (C27) 

MX3 is composed by the mixers that set the quality of their outlet streams equal to the 

quality of their corresponding main inlet stream, as expressed by eq. C28.   

( ) ( )nqpsqnqpsq ,,1,, =  

 SQUMIUOMX3  ),(:,),(:1,),(:,, qpsqpsussusun   

 (C28) 

MX4 is constituted by mixers that consider the quality balance using eq. C29-C33. 

( ) ( ) ( )nqpsqnsVFlownqpsQVFlow ,,,,, =  

 SQUIMX4  ),(:,),(:,, qpsqpsusun     

 (C29) 

( ) ( ) ( )nqpsqnqpsQVFlownqpsQVFlowSG ,1,,,,, =

 sg1,,),(:,),(:,, = qpqpqpsqpsusun QLWSQUIMX4   

 (C30) 

( ) ( ) ( )


=
UI)1,(:1

,,1,,,
sus

nqpsQVFlownqpsqnuVF

 QLVSQUOMX4  qpqpsqpsusun ,),(:,),(:,,    

 (C31) 

( ) ( ) ( )


=
UI)1,(:1

,,1,,,
sus

nqpsQVFlowSGnqpsqnudenVSG

 QLWSQUOMX4  qpqpsqpsusun ,),(:,),(:,,    

 (C32) 

( ) ( )


=
UI)1,(:1

,,1,
sus

nqpsQVFlownudenVSG  sg,),(:,, = qpsusun UOMX4  

 (C33) 
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Output flow and quality constraints for hydrotreaters 

Eq. 34 from the paper takes the form given by eq. C34 for all hydrotreaters. 

( ) ( ) ( )nuVFsuYieldnsVFlow HTU ,,, =  UOHTU  ),(:,, susun    

 (C34) 

For all the hydrotreaters, eq. 35 from the paper is replaced by eqs. C35-C41. 

( ) ( ) ( )nsVFlownqpsqnsMFlow ,,,, =   sg,),(:,, = qpsusun UOUIHTU  

 (C35) 

( ) ( ) ( ) ( ) ( )nuRSnsMFlownqpsqnsMFlownqpsq
sussus

,,,,,1,,1
),(:)1,(:1

+= 
 UOUI

 

 sul,, = qpun HTU        

 (C36) 

( ) ( ) ( )nLuRSRnuRS  max,  HTU un,       

 (C37) 

( )( ) ( ) ( ) ( )( ) ( )nqpsquHTSnqpsqnqpsquHTS ,,1,,,,1 minmax −−

 sul,),(:,, = qpsusun UOSHTU      

 (C38) 

( ) ( )nqpsqnqpsq ,,198.0,, =  sg,),(:,)1,(:1,, = qpsussusun UOSUIHTU

 (C39) 

( ) ( )nqpsqnqpsq ,,,, fix=  SQUOSUOHTU  ),(:,/),(:,, qpsqpsusun  

 (C40) ( ) ( )nqpsqnqpsq ,,,, fix=  

 sulsg,,),(:,),(:,,  qpqpsqpsusun SQUOSHTU    

 (C41) 
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Output flow and quality constraints for other processing units 

(reformer, hydrocracker, fluid catalytic cracker) 

Eq. 34 from the paper takes the form given by eq. C42 for the processing units from set 

PU. 

( ) ( ) ( )nuVFsuYieldnsVFlow PU ,,, =  UOPU  ),(:,, susun    

 (C42) 

For all the units from set PU, eq. 35 from the paper is replaced by eqs. C43-C44. 

( ) ( ) ( )nqpsqsuSRFnqpsq ,,1,,, fix =  sul,),(:,, = qpsusun UOPU   

 (C43) 

( ) ( )nqpsqnqpsq ,,,, fix=  sul,),(:,),(:,,  qpqpsqpsusun SQUOPU  

 (C44) 

 

Bilinear terms 

The bilinear terms appear in eqs. C2-C5, C10-C11, C16-C18, C21-C22, C29-C32, and 

C35-C36. 


