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Abstract

Clustering and classification is the process of finding underlying group structure in

heterogenous data. With the rise of the “big data” phenomenon, more complex data

structures have made it so traditional clustering methods are oftentimes not advisable

or feasible. This thesis presents methodology for analyzing three different examples

of these more complex data types. The first is three-way (matrix variate) data, or

data that come in the form of matrices. A large emphasis is placed on clustering

skewed three-way data, and high dimensional three-way data. The second is click-

stream data, which considers a user’s internet search patterns. Finally, co-clustering

methodology is discussed for very high-dimensional two-way (multivariate) data. Pa-

rameter estimation for all these methods is based on the expectation maximization

(EM) algorithm. Both simulated and real data are used for illustration.
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Chapter 1

Introduction

In the past, data could often be analyzed using straightforward, off-the-shelf, statisti-

cal methods. Nowadays, however, with more complex data structures available today,

due to the “big data” phenomenon, traditional methods are often not advisable and

in many cases do not work.

This is particularly true in the area of clustering which is the process of revealing

underlying (hidden) group structure in data, and is fundamental to computational

statistics and machine learning. One may perform a cluster analysis on gene expres-

sion data to reveal previously unknown subtypes of a medical condition, a species of

maize, etc. There are many methods for clustering presented in the literature, but

they generally fall into two classes, distance based and model based clustering. Dis-

tance based methods group objects together based on their distance from each other,

according to some distance measure, so that objects in the same cluster are “closer” to

each other, and objects in different clusters are farther away from each other. There

are many drawbacks to such methods, two of which are mentioned here. The first is

that these methods are quite inflexible when it comes to cluster structure. The second
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is that it may be difficult, or in some cases impossible, to define a distance metric to

use for a particular type of data. The second general method, which is popular and

very present in the literature, is model-based clustering. Such methods rely on the

finite mixture model (see Chapter 2.1) which assumes that each observation comes

from one of a number (G) of probability distributions. This reduces the problem of

clustering to finding to which one of these G distributions each observation belongs.

The effectiveness of model-based clustering comes from its flexibility. Specifically, the

probability distribution can be chosen to allow high-dimensional data, a variety of

data types, a data stream, or even a combination of two or all three of these. This

thesis presents model-based clustering techniques for analyzing some of these com-

plex, and not so complex, data types encountered today, including three-way data,

with an emphasis on skewed three-way data, high- dimensional data, and clickstream

data. A detailed outline is now given in Section 1.1.

1.1 Outline

1.1.1 Chapter 2

Chapter 2 will present a detailed background on model-based clustering, clustering

skewed two-way (multivariate data), and clustering high-dimensional data. In addi-

tion, model selection, convergence, and performance criteria are discussed.

1.1.2 Chapters 3 to 6

Chapters 3 to 6 present a detailed development of methodology for clustering three-

way data. Three-way data come in the form of matrices instead of traditional vectors,
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and until relatively recently, there was a relative paucity of methods available for

analyzing three-way data. Specifically, analyses were restricted to either vectorizing

the data, or assuming matrix variate normality. The assumption of normality when

analyzing three-way data, as in the two-way case, can be problematic in the presence

of outliers or skewness. Chapter 3 develops a total of four skewed matrix variate

distributions based on their multivariate counterparts. This work is based on two

publications, Gallaugher and McNicholas (2017), and Gallaugher and McNicholas

(2019c). Chapter 4, based on Gallaugher and McNicholas (2018b), then utilizes

these four distributions in the mixture model context for model-based clustering and

classification. To our knowledge, this is the first use of skewed matrix variate variate

distributions in the mixture model paradigm.

Just like in the multivariate case, dimensionality can become a problem when

analyzing three-way data due to the increase in the number of scale parameters. In

Chapter 5, the mixture of factor analyzers model is extended to the matrix vari-

ate case. This model is called a mixture of matrix variate bilinear factor analyzers

(MMVBFA) model. Chapter 6 then presents the skewed version of the mixtures of

matrix variate bilinear factor analyzers using the four skewed distributions devel-

oped in Chapter 3. Chapters 5 and 6 are based on the publications Gallaugher and

McNicholas (2018c) and Gallaugher and McNicholas (2019b), respectively.

1.1.3 Chapter 7

At this point in the thesis, the topics become more diverse. In Chapter 7, methodology

for clustering and classification of clickstream data is presented. Many methods for

modelling clickstream data are presented in the literature; however, very few of these
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are in the area of model-based clustering. One such method is a mixture of discrete

first order Markov chains. This type of methodology is useful for clickstream data

from a website with multiple categories such as amazon.com, or a news website with

categories such as weather, sports, breaking news, and so forth. The main drawback

of this method is that it is unable take into account the amount of time spent on

each website. This would be important, for example, if the website user accidentally

entered the wrong category, and then immediately exit the category. Using a discrete

time Markov chain would detect the entry to that category and may subsequently

provide unhelpful product suggestions. The methodology presented herein allows the

modelling of the amount of time spent in each category. This chapter is based on

Gallaugher and McNicholas (2018a), available on arXiv.

1.1.4 Chapter 8

Chapter 8 presents a small extension of the mixtures of bilinear factor analyzers

model by restricting the scale and factor loading matrices, creating a family of 64

models. This is essentially a matrix variate version of the parsimonious Gaussian

mixture models presented by McNicholas and Murphy (2008), and allows for further

parameter reduction and model flexibility. The material on which this chapter is

based can be found in Gallaugher and McNicholas (2020).

1.1.5 Chapter 9

In a clustering scenario, imposing an assumption of multivariate normality can be

problematic when the data is skewed. Because of this, many methods have been

proposed in the literature for clustering skewed data; however, they generally fall
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into one of two classes. The first is to consider a mixture model with skewed densi-

ties, and the second is to utilize a transformation to approximate normality alongside

model-based clustering. Although the two methodologies are compared in their re-

spective publications, there is no indication as to which situation one method might

be preferable to another. In Chapter 9, measures of cluster overlap, skewness, and

kurtosis are considered on benchmark data to extensively compare these two methods

of clustering skewed data.

1.1.6 Chapter 10

The last topic presented in this thesis in Chapter 10 is in the area of co-clustering

for high-dimensional two-way data. Co-clustering performs clustering on both the

rows (observations) and columns (variables) of a data matrix. The result is the co-

clustering of the data matrix into blocks with the observations in each block being

independent and identically distributed. This is very useful for very high-dimensional

datasets as the number of free parameters is independent of the dimensionality of

the data, and because it can be performed when the number of variables exceeds

the number of observations. However, the model is not very flexible, and increasing

the flexibility requires an increase in the number of row-clusters and column-clusters

which is generally not advisable. Herein, a parameter-wise co-clustering model is

presented that allows for two different partitions in columns according to means and

variances using the Gaussian distribution. This effectively improves the flexibility

of the co-clustering model while still maintaining a high degree of parsimony. The

material for this chapter is based on Gallaugher et al. (2018), available on arXiv.

Finally, potential areas of future work are discussed in Chapter 11.
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Chapter 2

Background

2.1 Finite Mixture Models and Model-Based Clus-

tering

Clustering and classification look at finding and analyzing underlying group structures

in data. One common method used for clustering is model-based, and generally makes

use of a G-component finite mixture model. A random variable X from a finite

mixture model has density

f(x | ϑ) =
G∑
g=1

πgfg(x | θg),

where ϑ = (π1, π2, . . . , πG,θ1,θ2, . . . ,θG), fg(·) is the gth component density, and

πg > 0 is the gth mixing proportion such that
∑G

g=1 πg = 1. McNicholas (2016a) traces

the association between clustering and mixture models back to Tiedeman (1955), and

the earliest use of a finite mixture model for clustering can be found in Wolfe (1965),
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who uses a Gaussian mixture model. Other early work in this area can be found in

Baum et al. (1970) and Scott and Symons (1971), and a recent review of model-based

clustering is given by McNicholas (2016b).

Although the Gaussian mixture model is well-established for clustering, largely

due to its mathematical tractability, quite some work has been done in the area of

non-Gaussian mixtures. For example, some work has been done using symmetric com-

ponent densities that parameterize concentration (tail weight), e.g., the t distribution

(Peel and McLachlan, 2000; Andrews and McNicholas, 2011; Andrews et al., 2011; An-

drews and McNicholas, 2012; Lin et al., 2014) and the power exponential distribution

(Dang et al., 2015). There are also several examples of mixtures of skewed distribu-

tions such as the NIG distribution (Karlis and Santourian, 2009; Subedi and McNi-

cholas, 2014), the skew-t distribution (Lin, 2010; Vrbik and McNicholas, 2012, 2014;

Lee and McLachlan, 2014; Murray et al., 2014a,b), the shifted asymmetric Laplace dis-

tribution (Morris and McNicholas, 2013; Franczak et al., 2014), the variance-gamma

distribution (McNicholas et al., 2017), and the generalized hyperbolic distribution

(Browne and McNicholas, 2015).

Recently, there has been an interest in the mixtures of matrix variate distributions,

e.g., Viroli (2011) and Anderlucci and Viroli (2015) consider multivariate longitudinal

data with the matrix variate normal distribution and Doğru et al. (2016) consider a

finite mixture of matrix variate t distributions.

7
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2.2 Clustering and Classification for High Dimen-

sional Data

Although the Gaussian mixture model is widely used, problems arise when the data

dimensionality p increases. The main contribution to the number of free parameters

is through the component covariance matrices Σg. Therefore, as a starting point,

many methods try to impose parsimonious constraints on Σg. A detailed background

is presented by Bouveyron and Brunet-Saumard (2014) and McNicholas (2016b).

In the multivariate case, the mixture of factor analyzers model is widely used. If

Xi represents a p-dimensional random vector, with xi as its realization, the factor

analysis model for X1, . . . ,Xn is

Xi = µ+ ΛUi + εi,

where µ is a location vector, Λ is a p× q matrix of factor loadings with q < p, Ui ∼

Nq(0, I) denotes the latent factors, εi ∼ Nq(0,Ψ), where Ψ = diag(ψ1, ψ2, . . . , ψp),

and Ui and εi are each independently distributed and independent of one another.

Under this model, the marginal distribution of Xi is Np(µ,ΛΛ′ + Ψ). Probabilis-

tic principal component analysis (PPCA) arises as a special case with the isotropic

constraint Ψ = ψIp (Tipping and Bishop, 1999b).

Ghahramani and Hinton (1997) develop the mixture of factor analyzers model,

which is a Gaussian mixture model with covariance structure Σg = ΛgΛ
′
g + Ψ. A

small extension was presented by McLachlan and Peel (2000a), who utilize the more

general structure Σg = ΛgΛ
′
g + Ψg. Tipping and Bishop (1999a) introduce the

closely-related mixture of PPCAs with Σg = ΛgΛ
′
g + ψgI. McNicholas and Murphy
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(2008) constructed a family of eight parsimonious Gaussian models by considering

combinations of the constraints Λg = Λ, Ψg = Ψ and Ψg = ψgI. McNicholas and

Murphy (2010) and Bhattacharya and McNicholas (2014) extend the work McNicholas

and Murphy (2008).

We note that under the most constrained model of McNicholas and Murphy (2008)

there are a total of

#ParamsMFA = (G− 1) +Gp+ pq − q(q − 1)/2 + 1 (2.1)

free parameters. It is clear that although the number of free parameters associated

with these models is linear in p, it is still nevertheless dependent on the dimen-

sion. Consequently, these models are still not suitable for very high dimensional

data. Moreover, these methods may not be viable when n > p, which is common

in applications such as gene expression data, word processing data, single nucleotide

polymorphism data, etc.

There has also been work on extending the mixture of factor analyzers to other

distributions, such as the skew-t distribution (Murray et al., 2014b, 2017), the gen-

eralized hyperbolic distribution (Tortora et al., 2016), the skew-normal distribution

(Lin et al., 2016), the variance-gamma distribution (McNicholas et al., 2017), and

others (e.g., Murray et al., 2017).

Alternatively, Bouveyron et al. (2007) use the spectral decomposition of Σg

Σg = Dg∆gD
′
g,
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where Dg is the orthogonal matrix of eigenvectors and ∆g is a diagonal matrix of cor-

responding eigenvalues for which they impose the structure ∆g = diag(a1g, . . . , aqgg, bg, . . . , bg),

where akg are the qg largest eigenvalues and bg is average of the remaining p−qg eigen-

values. This also greatly reduces the number of free parameters, i.e.,

#ParamsBouveyron = (G− 1) +Gp+
G∑
g=1

qg[p− (qg + 1)/2] +
G∑
g=1

qg + 2G. (2.2)

Again, however, the number of free parameters is dependent on the dimensionality of

the data.

Finally, there are also variable selection procedures such as `1 penalization meth-

ods which take advantage of sparsity to perform variable selection and parameter

estimation simultaneously. The first such proposed method is presented by Pan and

Shen (2007) who consider equal, diagonal covariance matrices between groups and

apply an `1 penalty to the mean vectors. A lasso method is then used for parame-

ter estimation. This is extended by Zhou et al. (2009), who consider unconstrained

covariance matrices and apply an `1 penalty for both the mean and covariance param-

eters. Although these methods are useful for dealing with the dimensionality problem,

the `1 penalty shrinks the parameters, thus introducing bias, as discussed by Meynet

and Maugis-Rabusseau (2012). Moreover, the Bayesian information criterion (BIC;

Schwarz, 1978) may not be suitable for high-dimensional data. A detailed review of

each of these methods is given by Biernacki and Maugis (2017).
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2.3 Model Selection, Convergence, and Performance

Criteria

2.3.1 Model Selection

In a general clustering scenario, the number of components (groups) G are not known

a priori. It is, therefore, necessary to select an adequate number of components.

There are two methods that are quite common in the literature. The first is the

Bayesian information criterion (BIC; Schwarz, 1978), which is defined as

BIC = 2`(ϑ̂)− p logN, (2.3)

where `(ϑ̂) is the maximized log-likelihood, N is the number of observations, and p is

the number of free parameters. Note that the BIC can sometimes be defined as the

negative of (2.3).

Another criterion common in the literature is the integrated completed likelihood

(ICL; Biernacki et al., 2000). The ICL can be approximated as

ICL ≈ BIC + 2

ng∑
i=1

G∑
g=1

MAP(ẑig) log ẑig,

where

MAP(ẑig) =


1 if arg maxh=1,...,G {ẑig} = g,

0 otherwise.

The ICL can be viewed as penalized version of the BIC, where the penalty is for

uncertainty in the component membership. The the ICL is considered, in general the

11
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results are very similar, and therefore for the analyses herein we only present results

using the BIC.

2.3.2 Convergence Criterion

Parameter estimation for all methods presented herein utilize a form of the expec-

tation maximization (EM; Dempster et al., 1977) algorithm. Determining when the

algorithm has converged is a difficult task. A simple convergence criterion is based

on lack of progress in the log-likelihood, where the algorithm is terminated when

l(t+1) − l(t) < ε, where ε > 0 is a small number. Oftentimes, however, the likelihood

can plateau before increasing again, thus using lack of progress would terminate the

algorithm prematurely (see McNicholas et al., 2010, for examples). Another option,

and one that is used for our analyses, is a criterion based on the Aitken acceleration

(Aitken, 1926). The Aitken acceleration at iteration t is

a(t) =
l(t+1) − l(t)

l(t) − l(t−1)
,

where l(t) is the observed likelihood at iteration t. We then have an estimate, at

iteration t+ 1, of the log-likelihood after many iterations:

l(t+1)
∞ = l(t) +

(l(t+1) − l(t))
1− a(t)

(Böhning et al., 1994; Lindsay, 1995). As suggested by McNicholas et al. (2010), the

algorithm is terminated when l
(k+1)
∞ − l(k) ∈ (0, ε). In general, we set the value of ε

based on the magnitude of the log-likelihood. Specifically, for each AECM algorithm

in our analyses, after five iterations we set ε to a value three orders of magnitude
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lower than the log-likelihood. Unless stated otherwise, this criterion is used for all

simulations and real data analyses.

2.3.3 Classification Performance

To assess classification performance, the adjusted Rand index (ARI; Hubert and

Arabie, 1985) is used. The ARI is the Rand index (Rand, 1971) corrected for chance

agreement. The ARI compares two different partitions—in our case, predicted and

true classifications—and takes a value of 1 if there is perfect agreement. The expected

value of the ARI under random classification is 0. A detailed discussion on the ARI

is provided by Steinley (2004).

2.4 Inverse and Generalized Inverse Gaussian Dis-

tributions

The derivation of the matrix distributions and parameter estimation discussed in

Chapters 3 and 4, will rely heavily on the generalized inverse Gaussian distribution,

and to a lesser extent the inverse Gaussian distribution. A random variable Y follows

an inverse Gaussian distribution if its probability density function is of the form

f(y|δ, γ) =
δ√
2π

exp{δγ}y−
3
2 exp

{
−1

2

(
δ2

y
+ γ2y

)}
,

for δ, γ > 0. For notational purposes, we will denote this distribution by IG(δ, γ).

The generalized inverse Gaussian distribution has two different parameterizations,

both of which will be useful. A random variable Y has a generalized inverse Gaussian
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distribution parameterized by a, b > 0 and λ ∈ R, denoted by GIG(a, b, λ) if its

probability density function can be written as

f(y|a, b, λ) =
(a/b)

λ
2 yλ−1

2Kλ(
√
ab)

exp

{
−ay + b/y

2

}

where

Kλ(u) =
1

2

∫ ∞
0

yλ−1 exp

{
−u

2

(
y +

1

y

)}
dy

is the modified Bessel function of the third kind with index λ. Some expectations of

functions of a GIG random variable with this parameterization have a mathematically

tractable form, e.g.,

E(Y ) =

√
b

a

Kλ+1(
√
ab)

Kλ(
√
ab)

, (2.4)

E (1/Y ) =

√
a

b

Kλ+1(
√
ab)

Kλ(
√
ab)

− 2λ

b
, (2.5)

E(log Y ) = log

(√
b

a

)
+

1

Kλ(
√
ab)

∂

∂λ
Kλ(
√
ab). (2.6)

Although this parameterization of the GIG distribution will be useful for pa-

rameter estimation, for the purposes of deriving the density of the matrix variate

generalized hyperbolic distribution, it is more useful to take the parameterization

g(y|ω, η, λ) =
(w/η)λ−1

2ηKλ(ω)
exp

{
−ω

2

(
w

η
+
η

w

)}
, (2.7)

where ω =
√
ab and η =

√
a/b (Browne and McNicholas, 2015). For notational

clarity, we will denote the parameterization given in (2.7) by I(ω, η, λ).
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2.5 Variance-Mean Mixtures

A p-variate random vector X defined in terms of a variance-mean mixture, has a

probability density function of the form

f(x) =

∫ ∞
0

φp(x|µ+ wα, wΣ)h(w|θ)dw,

where the random variable W > 0 has density function h(w|θ), and φp(·) represents

the density function of the p-variate Gaussian distribution. This representation is

equivalent to writing

X = µ+Wα+
√
WV, (2.8)

where µ is a location parameter, α is the skewness, V ∼ Np(0,Σ) with Σ as the scale

matrix, and W has density function h(w|θ). Note that W and V are independent.

Many multivariate distributions can be obtained through a variance mean mixture

by changing the distribution of W . For example, the multivariate skew-t distribution

with ν degrees of freedom arises as a special case with W ∼ IG
(
ν
2
, ν

2

)
, where IG(·)

denotes the inverse Gamma distribution with density function

f(x|α, β) =
βα

Γ(α)
x−α−1 exp

{
−β
x

}
.

The p-dimensional generalized hyperbolic distribution, GHp(µ,α,Σ, ψ, χ, λ), as

given in McNeil et al. (2005), was shown to arise as a special case of (2.8) by taking

W ∼ GIG(ψ, χ, λ). However, there was a restriction that |Σ| = 1. Simply relaxing

this constraint results in an identifiability problem. In Browne and McNicholas (2015),

this was discussed, and the authors proposed the reparameterization ω =
√
ψχ, η =
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√
χ/ψ. The representation of X is then as in (2.8), with W ∼ I(ω, 1, λ).

The p-dimensional variance-gamma distribution, VGp(µ,α,Σ, λ, ψ), results as a

limiting case of the generalized hyperbolic by taking λ > 0, and χ→ 0. The precise

details can be found in McNicholas et al. (2017); in essence, the variance-gamma

distribution also arises as a special case of (2.8), with W ∼ gamma(λ, ψ/2), where

gamma(a, b) denotes the gamma distribution with density

f(w|a, b) =
ba

Γ(a)
wa−1 exp{−bw},

where a, b > 0. However, we again have an identifiability issue using this represen-

tation if we remove the constraint |Σ| = 1. In McNicholas et al. (2017), the authors

propose setting E(W ) = 1, resulting in the reparameterization γ := λ = ψ/2.

Finally, we have the p-dimensional normal inverse Gaussian (NIG) distribution,

NIGp(µ,α,Σ, δ, γ). In Karlis and Santourian (2009), the authors derived the p-

dimensional NIG distribution using a variance-mean mixture with W ∼ IG(δ, γ).

However, there was once again a restriction on the determinant of Σ. To remove this

restriction and maintain identifiability, Karlis and Santourian (2009) set δ = 1, and

set κ = γ.

2.6 Analysis of Three-Way Data

2.6.1 Examples of Three-Way Data

As already discussed, many methods exist for clustering multivariate data involving

skewness or outliers, for clustering high dimensional data, and for dealing with data
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of different types. However, there was, until recently, a relative paucity of methods for

clustering three-way data. Consider that three-way data comes in the form of three-

dimensional arrays, so that each observation is a matrix instead of a vector. With

modern data, there are many emerging data types that naturally come as matrices.

For example, a greyscale image comes in the form of pixel intensity matrix. In

Figure 5.2, we show two different greyscale images. The first is taken from the MNIST

dataset of handwritten digits, in this case a six, LeCun et al. (1998). The second is a

face from the famous Olivetti faces dataset from the R package RnavGraphImageData

(Waddell and Oldford, 2013). A second example of three-way data that is becoming

very common in health studies, is multivariate longitudinal data. Longitudinal data

consists of a measurement of interest that is collected over time and creating a vector

for each individual. However, many times multiple variables are collected on an

individual over time, and thus creating a vector for each column and resulting in a

matrix observation on each individual.
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Figure 2.1: Two examples of greyscale images.
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2.6.2 Matrix Variate Distributions

Three-way data such as multivariate longitudinal data or greyscale image data can

be easily modelled using a matrix variate distribution. There are many examples

of such distributions presented in the literature, the most notable being the matrix

variate normal distribution. For notional clarity, X is used to denote a realization of

a random matrix X unless stated otherwise. An n× p random matrix X follows an

n×p matrix variate normal distribution with location parameter M and scale matrices

Σ and Ψ of dimensions n × n and p × p, respectively, denoted by Nn×p(M,Σ,Ψ) if

the density of X can be written as

f(X | M,Σ,Ψ) =
1

(2π)
np
2 |Σ| p2 |Ψ|n2

exp

{
−1

2
tr
(
Σ−1(X−M)Ψ−1(X−M)′

)}
.

(2.9)

A well-known, and useful, property of the matrix variate normal distribution (Harrar

and Gupta, 2008) is

X ∼ Nn×p(M,Σ,Ψ) ⇐⇒ vec(X ) ∼ Nnp(vec(M),Ψ⊗Σ), (2.10)

where Nnp(·) is the multivariate normal density with dimension np, vec(M) is the

vectorization of M, and ⊗ is the Kronecker product.

The matrix variate normal has many elegant mathematical properties that have

made it so popular, e.g., Viroli (2011) uses a mixture of matrix variate normal distri-

butions for clustering. However, there are non-normal examples such as the Wishart

distribution (Wishart, 1928) and the skew-normal distribution, e.g., Chen and Gupta

(2005), Domı́nguez-Molina et al. (2007), and Harrar and Gupta (2008). More infor-

mation on matrix variate distributions can be found in Gupta and Nagar (1999).
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2.6.3 Note on Identifiability

It is important to note that the estimates for Σ and Ψ for the matrix variate normal

distribution are only unique up to a strictly positive constant. Therefore, to eliminate

the identifiability issue, a constraint needs to be imposed on Σ or Ψ. Anderlucci and

Viroli (2015), suggest taking the trace of Ψ to be equal to p; however, it is much

simpler to set the first diagonal element of Σ to be 1 and this is the constraint we

use in the analyses herein.

Discussion of identifiability would not be complete without mention of the la-

bel switching problem in the case of clustering. This well-known problem is due to

the invariance of the mixture model to relabelling of the components (Redner and

Walker, 1984; Stephens, 2000). While the label switching problem is a real issue in

the Bayesian paradigm (see Stephens, 2000; Celeux et al., 2000, for some discussion),

it is of no practical concern for the work carried out herein. However, it is a theoret-

ical identifiability issue and we note that it be resolved by specifying some ordering

on the model parameters, e.g., simply requiring that π1 > π2 > · · · > πG often works

and ordering on other parameters can be imposed as needed.

2.6.4 Benefits Over Vectorization

One alternative to matrix variate analysis for matrix variate data is to consider the

vec- torization of the data and perform multivariate techniques. However, the benefits

of using matrix variate methods are twofold. The first being specifically for the case

of multivariate longitudinal data. Performing the analysis using a matrix variate

model has the benefit of simultaneously considering the temporal covariances (via Σ)

as well as the covariances for the variables (via Ψ). Performing multivariate analysis
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on the vectorization of the data would not have this benefit without imposing some

structure on the scale matrix. The second benefit is the reduction in the number

of parameters. If the matrix variate data is n × p, vectorization would result in np

dimensional vectors, therefore resulting in (n2p2 + np)/2 free scale parameters when

using multivariate analysis. However, when using a matrix variate model, there are

two lower dimensional matrices that comprise the scale parameters with a total of

(n2 + p2 + n+ p)/2 free scale parameters. Thus, for n = p, there is a reduction from

quartic to quadratic complexity in n and, for almost all values of n and p, there will

be a (often substantial) reduction in the number of free scale parameters.
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Chapter 3

Four Skewed Matrix Variate

Distributions

3.1 Matrix Variate Skew-t Distribution

3.1.1 Derivation

Analogous to the multivariate case, an n× p random matrix X has a variance-mean

mixture representation if

X = M +WA +
√
WV , (3.1)

where M and A are n×p location and skewness matrices, respectively, V ∼ Nn×p (0,Σ,Ψ),

and W ∈ R+ is a positive random variable. We will say that an n × p random

matrix X has a matrix variate skew-t distribution, MVSTn×p(M,A,Σ,Ψ, ν), if
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W ∼ IG
(
ν
2
, ν

2

)
. Analogous to its multivariate counterpart, M is a location ma-

trix, A is a skewness matrix, Σ and Ψ are scale matrices, and ν is the degrees of

freedom.

It then follows that

X |w ∼ Nn×p (M + wA, wΣ,Ψ)

and thus the joint density of X and W is

f(X, w | ϑ) = f(X | w)f(w)

=
ν
2

ν
2

(2π)
np
2 |Σ| p2 |Ψ|n2 Γ(ν

2
)
w−

ν+np
2
−1

× exp

{
− 1

2w

(
tr
(
Σ−1(X−M− wA)Ψ−1(X−M− wA)′

)
+ ν
)}

,

(3.2)

where ϑ = (M,A,Σ,Ψ, ν). We note that the exponential term in (3.2) can be written

as

exp
{

tr(Σ−1(X−M)Ψ−1A′)
}
× exp

{
−1

2

[
δ(X; M,Σ,Ψ) + ν

w
+ wρ(A; Σ,Ψ)

]}
,

where

δ(X; M,Σ,Ψ) = tr(Σ−1(X−M)Ψ−1(X−M)′) and ρ(A; Σ,Ψ) = tr(Σ−1AΨ−1A′).
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Therefore, the marginal density of X is

f(X) =

∫ ∞
0

f(X, w)dw

=
ν
2

ν
2

(2π)
np
2 |Σ| p2 |Ψ|n2 Γ(ν

2
)

exp
{

tr(Σ−1(X−M)Ψ−1A′)
}

×
∫ ∞

0

w−
ν+np

2
−1 exp

{
−1

2

[
δ(X; M,Σ,Ψ) + ν

w
+ wρ(A,Σ,Ψ)

]}
dw.

Making the change of variables given by

y =

√
ρ(A,Σ,Ψ)√

δ(X; M,Σ,Ψ) + ν
w

we can write

fMVST(X | ϑ) =
2
(
ν
2

) ν
2 exp { tr(Σ−1(X−M)Ψ−1A′)}

(2π)
np
2 |Σ| p2 |Ψ|n2 Γ(ν

2
)

(
δ(X; M,Σ,Ψ) + ν

ρ(A,Σ,Ψ)

)− ν+np
4

×K− ν+np
2

(√
[ρ(A,Σ,Ψ)] [δ(X; M,Σ,Ψ) + ν]

)
.

The density of X , as derived here, be considered a matrix variate extension of the

multivariate skew-t density used by Murray et al. (2014b,a). For the purposes of

parameter estimation, note that the conditional density of W is

f(w | X) =
f(X | w)f(w)

f(X)

=
[ρ(A,Σ,Ψ)/(δ(X; M,Σ,Ψ) + ν)]

λ
2 wλ−1

2Kλ(
√
ρ(A,Σ,Ψ)[δ(X; M,Σ,Ψ) + ν])

× exp

{
−ρ(A,Σ,Ψ)w + [δ(X; M,Σ,Ψ) + ν]/w

2

}
.
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Therefore, W | X ∼ GIG (ρ(A,Σ,Ψ), δ(X; M,Σ,Ψ) + ν, λ), where λ = −(ν+np)/2.

Finally, we note that

X ∼ MVSTn×p(M,A,Σ,Ψ, ν) ⇐⇒ vec(X ) ∼ MSTnp(vec(M), vec(A),Ψ⊗Σ, ν),

(3.3)

where MSTnp(·) denotes the multivariate skew-t distribution with location parameter

vec(M), skewness parameter vec(A), scale matrix Ψ⊗Σ, and ν degrees of freedom.

This can be easily seen from the representation given in (3.1) and the property of

the matrix normal distribution given in (2.10). Note that the normal variance-mean

mixture representation (3.1) as well as the relationship with the multivariate skew-t

distribution (3.3) present two convenient methods to generate random matrices from

the matrix variate skew t distribution.

Note that parameter estimation for the matrix variate skew-t is performed via an

expectation conditional maximization (ECM) algorithm. To reduce space, the details

are not presented here, as it is equivalent to the algorithm for a single component

mixture of skew-t distributions presented in detail in Chapter 4.

3.1.2 Simulations

We conducted two simulations to look at the estimation of the parameters. In both

simulations we took 50 different datasets of size 100, from a 3 × 4 matrix skew t
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distribution. Also, in both simulations, we took

Σ =


1 0.5 0.1

0.5 1 0.5

0.1 0.5 1

 Ψ =



1 −0.5 0.5 0.1

−0.5 1 −0.5 0.6

0.5 −0.5 1 −0.4

0.1 0.6 −0.4 1


and ν = 4. In simulation 3.1, we took the location and skewness matrix to be M1,

A1 respectively and M2, A2 in simulation 3.2, where

M1 =


0 1 −1 0

1 0 0 −1

0 1 −1 0

 A1 =


1 −1 0 1

1 −1 0 1

1 −1 0 1



M2 =


1 −6 −1 −1

−3 5 −4 1

1 −4 −1 5

 A2 =


1 −1 0.5 0

0.5 −0.5 0.5 0.5

0 0 0.5 0


In Figures 3.1 and 3.2, we show line plots of the marginals for each column (labelled

V1, V2, V3, V4) of a typical dataset from simulation 3.1 and 3.2 respectively. The

dashed red lines denote the mean.

In Figure 3.1, the skewness in columns 1, 2, and 4, for simulation 3.1, is very

prominent when visually compared to column 3 which has zero skewness. The skew-

ness is also apparent in the lineplots for simulation 3.2, however, because the values

of the skewness are generally less than those for simulation 3.1, it is not as prominent.

In Table 3.1, we show a table with the component wise means of the parameters
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Figure 3.1: Typical marginals of the matrix variate skew-t distribution for Simulation
3.1 for (a) V1, (b) V2, (c) V3 and (d) V4. The red dashed lines denote the mean.

as well as the component wise standard deviations. We see that the estimates of the

mean matrix and skewness matrix are very close to the true value for both simulations.

Moreover, we see that the estimates of Σ and Ψ correspond approximately to the

their true values as well, and thus so would the Kronecker product, which we don’t

show here to save space.
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Figure 3.2: Typical marginals of the matrix variate skew-t distribution for Simulation
3.2 for (a) V1, (b) V2, (c) V3 and (d) V4. The red dashed lines denote the mean.

3.2 Three More Skewed Matrix Variate Distribu-

tions

3.2.1 Matrix Variate Generalized Hyperbolic Distribution

In a similar manner to the matrix variate skew-t distribution derive the density for

a matrix variate generalized inverse Gaussian distribution. In this case, to avoid

the indentifiability issue discussed in Browne and McNicholas (2015), we take W ∼

I (ω, 1, λ), where ω is a concentration parameter and λ is the index parameter. The
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Table 3.1: Component wise averages and standard deviations for the estimated pa-
rameters for simulations 3.1 and 3.2 for the matrix variate skew-t distribution.

Sim M(sd) A(sd) Σ(sd) Ψ(sd) ν(sd)

1

 −0.04 1.04 −1.01 −0.02
1.01 0.03 0.03 −1.01
0.01 1.04 −0.97 −0.01


 0.045 0.031 0.030 0.031

0.033 0.047 0.025 0.023
0.034 0.042 0.019 0.021



 1.07 −1.06 0.03 1.04
1.01 −1.04 −0.01 1.03
1.02 −1.03 −0.01 1.04


 0.039 0.030 0.014 0.032

0.031 0.037 0.013 0.028
0.033 0.040 0.008 0.029



 1.00 0.50 0.10
0.50 1.02 0.52
0.10 0.52 1.02


 0.000 0.043 0.056

0.043 0.096 0.073
0.056 0.073 0.119




0.98 −0.48 0.48 0.11
−0.48 0.96 −0.48 0.58

0.48 −0.48 0.97 −0.39
0.11 0.58 −0.39 0.99





0.16 0.10 0.09 0.06
0.10 0.14 0.09 0.09
0.09 0.09 0.12 0.07
0.06 0.09 0.07 0.13




4.22
(0.63)

2

 0.99 −6.01 −0.99 −1.02
−2.98 4.98 −3.97 0.96

1.00 −3.99 −0.98 4.99


 0.029 0.033 0.028 0.023

0.048 0.032 0.041 0.025
0.031 0.038 0.036 0.022



 1.03 −1.02 0.51 0.01
0.50 −0.51 0.49 0.52
0.01 −0.02 0.50 0.00


 0.027 0.033 0.016 0.010

0.022 0.018 0.020 0.018
0.015 0.016 0.017 0.013



 1.00 0.48 0.08
0.48 0.99 0.49
0.08 0.49 1.01


 0.000 0.049 0.040

0.049 0.094 0.070
0.040 0.070 0.119




1.01 −0.50 0.50 0.10
−0.50 0.99 −0.49 0.58

0.50 −0.49 0.98 −0.38
0.10 0.58 −0.38 0.97





0.137 0.086 0.083 0.063
0.086 0.153 0.084 0.111
0.083 0.084 0.121 0.069
0.063 0.111 0.069 0.142




4.22
(0.92)

density of X in this case is

fMVGH(X|ϑ) =
exp { tr(Σ−1(X−M)Ψ−1A′)}

(2π)
np
2 |Σ| p2 |Ψ|n2Kλ(ω)

(
δ(X; M,Σ,Ψ) + ω

ρ(A,Σ,Ψ) + ω

) (λ−np2 )
2

×K(λ−np/2)

(√
[ρ(A,Σ,Ψ) + ω] [δ(X; M,Σ,Ψ) + ω]

)
,

where ω > 0 is a concentration parameter, and λ ∈ R is an index parameter.

We note that the density of X , as derived here, is similar to that in Browne and

McNicholas (2015), and we denote this distribution by MVGHn×p(M,A,Σ,Ψ, λ, ω).

For the purposes of parameter estimation, note that the conditional density of W is

f(w|X) =
f(X|w)f(w)

f(X)

=

(
ρ(A,Σ,Ψ) + ω

δ(X; M,Σ,Ψ) + ω

) (λ−np/2)
2 wλ−np/2−1

2K(λ−np/2)

√
[ρ(A,Σ,Ψ) + ω] [δ(X; M,Σ,Ψ) + ω]

× exp

{
−(ρ(A,Σ,Ψ) + ω)w + [δ(X; M,Σ,Ψ) + ω]/w

2

}
.

Therefore, W |X ∼ GIG (ρ(A,Σ,Ψ) + ω, δ(X; M,Σ,Ψ) + ω, λ− np/2).
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Note that a multiple scaled matrix variate generalized hyperbolic distribution was

derived by Thabane and Safiul Haq (2004). While the distribution they derive is

sometimes referred to as a matrix variate generalized hyperbolic distribution, the

model of Thabane and Safiul Haq (2004) is in fact multiple scaled — a fact that may

be confirmed by observing that they use a matrix variate distribution for the mixing

variable W. Not only does this mean that the distribution presented by Thabane and

Safiul Haq (2004) is different to the matrix variate generalized hyperbolic distribution

presented herein, but it also means that neither one of these distributions is a special

case of the other. Some useful details about the multiple scaled generalized hyperbolic

distribution are given by McNicholas (2016a, Chp. 7).

3.2.2 Matrix Variate Variance-Gamma Distribution

We now derive the density of a matrix variate variance-gamma distribution in much

the same way as the generalized hyperbolic case. However, we now take W ∼

gamma(γ, γ), resulting in the joint distribution

f(X, w|ϑ) =
γγ

(2π)
np
2 |Σ| p2 |Ψ|n2 Γ(γ)

wγ−
np
2
−1

× exp

{
− 1

2w
tr
(
Σ−1(X−M− wA)Ψ−1(X−M− wA)′

)
− γw

}
.

Following the same procedure as before, the density of X is then

fMVVG(X|ϑ) =
2γγ exp { tr(Σ−1(X−M)Ψ−1A′)}

(2π)
np
2 |Σ| p2 |Ψ|n2 Γ(γ)

(
δ(X; M,Σ,Ψ)

ρ(A,Σ,Ψ) + 2γ

) (γ−np/2)
2

×K(γ−np2 )

(√
[ρ(A,Σ,Ψ) + 2γ] [δ(X; M,Σ,Ψ)]

)
,
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where γ > 0. We will denote this distribution by MVVGn×p(M,A,Σ,Ψ, γ). Note

that W |X ∼ GIG (ρ(A,Σ,Ψ) + 2γ, δ(X; M,Σ,Ψ), γ − np/2).

3.2.3 Matrix Variate NIG Distribution

Finally, we consider a matrix variate NIG distribution. Derived in much the same

way as the previous distributions, we take W ∼ IG(1, κ). The joint density of X and

W is

f(X, w|ϑ) =
1

(2π)
np
2

+1|Σ| p2 |Ψ|n2
w−( 3+np

2 )

× exp

{
− 1

2w

(
tr
(
Σ−1(X−M− wA)Ψ−1(X−M− wA)′

)
+ 1
)
− wκ2

2
+ κ

}
,

and the density of X is then

fMVNIG(X|ϑ) =
2 exp { tr(Σ−1(X−M)Ψ−1A′) + κ}

(2π)
np
2

+1|Σ| p2 |Ψ|n2

(
δ(X; M,Σ,Ψ) + 1

ρ(A,Σ,Ψ) + κ2

)−(1+np)/4

×K−(1+np)/2

(√
[ρ(A,Σ,Ψ) + κ2] [δ(X; M,Σ,Ψ) + 1]

)
,

where κ > 0. We denote this distribution by MVNIGn×p(M,A,Σ,Ψ, κ), and note

that W |X ∼ GIG (ρ(A,Σ,Ψ) + κ2, δ(X; M,Σ,Ψ) + 1,−(1 + np)/2).

3.2.4 Simulations

We now consider a simple example for each of the three different distributions. Com-

mon elements between the distributions are as follows. We took 50 datasets each with
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100 observations. For each distribution, we took

M =


−5 0 0 1

−2 1 3 0

0 0 6 1

 A =


1 −1 0 1

0.5 −1 0 −0.5

0 −1 0 0

 .

and the scale matrices, Σ and Ψ were

Σ =


1 0.5 0.1

0.5 1 0.5

0.1 0.5 1

 Ψ =



1 0 0 0

0 1 0.5 0.5

0 0.5 1 0.1

0 0.5 0.1 1


.

We took the additional parameters to be λ2 = −2, ω = 2 for the generalized

hyperbolic, γ2 = 4 for the variance-gamma and κ2 = 2 for the NIG. In Figure 3.3,

we show the marginal distributions of the columns for each distribution of a typical

dataset. We label the columns V1, V2, V3, and V4. The marginal location is shown

by the red dashed line.

We now look at the parameter estimates. We show the component-wise means and

standard deviations (in brackets), of the parameter estimates in Table 3.2. We see

that for all three distributions, we get good average estimates in general. However,

one obvious result that is unexpected is the estimate for λ for the matrix variate gener-

alized hyperbolic distribution. The estimate is very different from the true value, and

there is a very large amount of variation. We also notice a deflation in absolute value

for the estimates of the skewness as well as a fair amount of variation. One possible

explanation is that the generalized hyperbolic distribution is over-parameterized, and
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thus the deflation in the estimates for the skewness could be compensation for the

increased value of λ.

Table 3.2: Component wise averages and standard deviations for the estimated pa-
rameters for each of the three distributions.

Generalized Hyperbolic
M (sd) A (sd) Σ (sd) Ψ (sd) λ (sd) ω (sd)

 −4.97 0.05 −0.03 1.02
−1.89 1.01 3.00 0.05

0.10 −0.01 5.98 0.97


 0.212 0.281 0.282 0.247

0.199 0.266 0.245 0.259
0.251 0.160 0.239 0.218



 0.57 −0.69 0.02 0.64
0.23 −0.68 −0.02 −0.34
−0.02 −0.64 0.04 0.02


 0.526 0.820 0.272 0.660

0.276 0.779 0.255 0.398
0.338 0.665 0.173 0.242



 1.00 0.50 0.10
0.50 0.99 0.50
0.10 0.50 1.00


 0.000 0.055 0.061

0.055 0.117 0.079
0.061 0.079 0.112




0.63 0.00 0.01 0.00
0.00 0.64 0.33 0.32
0.01 0.33 0.63 0.07
0.00 0.32 0.07 0.64





0.606 0.057 0.068 0.045
0.057 0.581 0.299 0.297
0.068 0.299 0.596 0.068
0.045 0.297 0.068 0.607




1.63
(2.42)

4.08
(1.33)

Variance Gamma
M (sd) A (sd) Σ (sd) Ψ (sd) γ (sd)

 −4.98 0.01 0.04 0.96
−1.98 1.00 3.02 0.02

0.02 0.05 6.07 1.03


 0.280 0.229 0.254 0.260

0.233 0.240 0.206 0.216
0.238 0.242 0.206 0.195



 0.98 −0.99 −0.00 1.04
0.49 −0.98 0.01 −0.52
0.00 −1.05 −0.06 −0.04


 0.307 0.269 0.256 0.282

0.248 0.256 0.222 0.247
0.260 0.245 0.232 0.225



 1.00 0.51 0.10
0.51 1.01 0.51
0.10 0.51 1.02


 0.000 0.048 0.063

0.048 0.095 0.081
0.063 0.081 0.129




0.99 −0.01 −0.01 0.00
−0.01 0.98 0.47 0.51
−0.01 0.47 0.98 0.09

0.00 0.51 0.09 1.00





0.121 0.064 0.053 0.060
0.064 0.103 0.074 0.072
0.053 0.074 0.121 0.059
0.060 0.072 0.059 0.126




4.20
(1.04)

Normal Inverse Gaussian
M (sd) A (sd) Σ (sd) Ψ (sd) κ (sd)

 −5.02 0.04 0.01 1.03
−1.99 1.04 2.99 0.05

0.02 0.01 5.98 1.01


 0.143 0.134 0.133 0.137

0.137 0.123 0.140 0.117
0.148 0.120 0.128 0.114



 1.16 −1.18 0.01 1.02
0.55 −1.19 0.04 −0.64
0.01 −1.11 0.04 0.02


 0.506 0.446 0.306 0.418

0.390 0.462 0.323 0.357
0.298 0.433 0.271 0.249



 1.00 0.49 0.11
0.49 1.01 0.51
0.11 0.51 1.00


 0.000 0.045 0.053

0.045 0.107 0.077
0.053 0.077 0.119




1.02 0.01 0.01 0.02
0.01 1.06 0.54 0.53
0.01 0.54 1.06 0.11
0.02 0.53 0.11 1.07





0.250 0.065 0.064 0.072
0.065 0.285 0.175 0.139
0.064 0.175 0.281 0.072
0.072 0.139 0.072 0.245




2.12
(0.50)

3.3 Some Properties

Notice that just like matrix variate normal and matrix variate skew-t distributions,

these three matrix variate skewed distributions are related to their multivariate coun-

terparts.

32



PhD Thesis - Michael P.B. Gallaugher McMaster - Mathematics and Statistics

−8

−4

0

4

1.0 1.5 2.0 2.5 3.0
X

V
1

GH

−8

−4

0

4

1.0 1.5 2.0 2.5 3.0
X

V
1

VG

−8

−4

0

4

1.0 1.5 2.0 2.5 3.0
X

V
1

NIG

(a)

−4

−2

0

2

4

1.0 1.5 2.0 2.5 3.0
X

V
2

GH

−4

−2

0

2

4

1.0 1.5 2.0 2.5 3.0
X

V
2

VG

−4

−2

0

2

4

1.0 1.5 2.0 2.5 3.0
X

V
2

NIG

(b)

0

5

10

1.0 1.5 2.0 2.5 3.0
X

V
3

GH

0

5

10

1.0 1.5 2.0 2.5 3.0
X

V
3

VG

0

5

10

1.0 1.5 2.0 2.5 3.0
X

V
3

NIG

(c)

−2.5

0.0

2.5

5.0

7.5

1.0 1.5 2.0 2.5 3.0
X

V
4

GH

−2.5

0.0

2.5

5.0

7.5

1.0 1.5 2.0 2.5 3.0
X

V
4

VG

−2.5

0.0

2.5

5.0

7.5

1.0 1.5 2.0 2.5 3.0
X

V
4

NIG

(d)

Figure 3.3: Marginal distributions for the matrix variate GH, VG and NIG distribu-
tions for (a) V1, (b) V2, (c) V3 and (d) V4. The marginal location (mode) is given
by a red dashed line.
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Specifically,

X ∼ MVGHn×p(M,A,Σ,Ψ, ω, λ) ⇐⇒ vec(X ) ∼ GHnp(vec(M), vec(A),Ψ⊗Σ, ω, λ),

X ∼ MVVGn×p(M,A,Σ,Ψ, γ) ⇐⇒ vec(X ) ∼ VGnp(vec(M), vec(A),Ψ⊗Σ, γ),

X ∼ MVNIGn×p(M,A,Σ,Ψ, κ) ⇐⇒ vec(X ) ∼ NIGnp(vec(M), vec(A),Ψ⊗Σ, κ).

These properties can be easily seen by using the representation of X given in

(3.1) as well as the property of the matrix variate normal distribution given in (2.10).

We can also easily derive the moment generating functions for each of these three

distributions. Using the representation for a random matrix X given in (3.1) and

the moment generating function for the matrix variate normal distribution given in

Dutilleul (1999), we have that the moment generating function in the general case of

a matrix normal variance-mean mixture is

MX (T) = E[exp{ tr(T′X )}] = E[E[exp{ tr(T′X )} | W ]]

= exp{ tr(T′M)}E[exp{W tr(T′A + TΣT′Ψ)}]

= exp{ tr(T′M)}MW ( tr(T′A + TΣT′Ψ)),

where MW (·) is the moment generating function of W . Therefore, in the case of the

generalized hyperbolic distribution, we have that the moment generating function is

exp{ tr(T′M)}
[
1− 2

tr(T′A + TΣT′Ψ)

ω

]−λ
2 Kλ

(√
ω(ω − 2 tr(T′A + TΣT′Ψ))

)
Kλ(ω)

.
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For the variance gamma distribution, the moment generating function is

MMVVG
X (T) = exp{ tr(T′M)}

(
1− tr(T′A + TΣT′Ψ)

γ

)−γ
,

for tr(T′A + TΣT′Ψ) < γ, and, in the case of the NIG distribution, the moment

generating function is

MMVNIG
X (T) = exp{ tr(T′M)} exp

{
κ

(
1−

√
1− 2 tr(T′A + TΣT′Ψ)

κ2

)}
.

Note that the moment generating function for the matrix variate skew-t distribution

does not exist.

It is also important to note that these four skewed matrix variate distributions

have the same identifiability issue as the matrix variate normal distribution.

3.4 Summary

In this chapter, a total of four skewed matrix variate distributions were derived from

a matrix variate normal variance-mean mixture model. These four distributions were

the matrix variate skew-t, generalized hyperbolic, variance-gamma and NIG distri-

butions, respectively. When looking at the estimates in the simulations, we obtained

fairly good results. One exception was the average estimates of λ and the skewness

matrix A for the matrix variate generalized hyperbolic distribution. However, this

could be due to over-parameterization.
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Chapter 4

Finite Mixtures of Skewed Matrix

Variate Distributions

4.1 Methodology

4.1.1 Likelihoods

In the mixture model context, X is assumed to come from a population with G

subgroups each distributed according to the same one of the four skewed matrix

variate distributions discussed previously. Now suppose N n×p matrices X1, . . . ,XN

are observed, then the observed-data likelihood is

L(ϑ) =
N∏
i=1

G∑
g=1

πgf(Xi | Mg,Ag,Σg,Ψg,θg),

where θg are the parameters associated with the distribution of Wig. For the pur-

poses of parameter estimation, we proceed as if the observed data is incomplete. In
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particular, we introduce the missing group membership indicators zig, where

zig =


1 if Xi is in group g,

0 otherwise.

In addition to the missing zig, we also have the latent variables Wig ∈ R+ and we

denote their densities by h(wig | θg).

The complete-data log likelihood, in its general form for any of the distributions

already discussed, is then

`c(ϑ) = L1 + (L2 + C2) + (L3 + C3), (4.1)

where C2 and C3 are constant with respect to the parameters, L1 =
∑N

i=1

∑G
g=1 zigπg,

L2 =
∑N

i=1

∑G
g=1 zigh(wig | θg)− C2, and

L3 =
1

2

N∑
i=1

G∑
g=1

zig
[

tr
(
Σ−1
g (Xi −Mg)Ψ

−1
g A′g

)
+ tr

(
Σ−1
g AgΨ

−1
g (Xi −Mg)

′)
− 1

wig
tr(Σ−1

g (Xi −Mg)Ψ
−1
g (Xi −Mg)

′)− wig tr(Σ−1
g AgΨ

−1
g A′g)

−p log(|Σg|)− n log(|Ψg|)] .

4.1.2 Parameter Estimation

Parameter estimation is performed by using an expectation-conditional maximization

(ECM) algorithm (Meng and Rubin, 1993).

1) Initialization: Initialize the parameters Mg,Ag,Σg,Ψg and other parameters

related to the distribution. Set t = 0.
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2) E Step: Update ẑig, aig, big, cig, where

ẑ
(t+1)
ig =

πgf(Xi | ϑ̂
(t)

g )∑G
h=1 πhf(Xi | ϑ̂

(t)

h )
, a

(t+1)
ig = E(Wig|Xi, zig = 1, ϑ̂

(t)

g ),

b
(t+1)
ig = E

(
1

Wig

|Xi, zig = 1, ϑ̂
(t)

g

)
, c

(t+1)
ig = E(log(Wig)|Xi, zig = 1, ϑ̂

(t)

g ).

Note that the specific updates will depend on the distribution. However, in each case,

the conditional distribution of Wig given the observed data and group memberships

is a generalized inverse Gaussian distribution. Specifically,

W ST
ig | Xi, zig = 1 ∼ GIG (ρ(Ag,Σg,Ψg), δ(X; Mg,Σg,Ψg) + νg,−(νg + np)/2) ,

WGH
ig | Xi, zig = 1 ∼ GIG (ρ(Ag,Σg,Ψg) + ωg, δ(X; Mg,Σg,Ψg) + ωg, λg − np/2) ,

WVG
ig | Xi, zig = 1 ∼ GIG (ρ(Ag,Σg,Ψg) + 2γg, δ(X; Mg,Σg,Ψg), γg − np/2) ,

WNIG
ig | Xi, zig = 1 ∼ GIG

(
ρ(Ag,Σg,Ψg) + κ2

g, δ(X; Mg,Σg,Ψg) + 1,−(1 + np)/2
)
.

Therefore, the exact updates are obtained by using the expectations given in (2.4)–

(2.6) for appropriate values of λ, a, and b.

3) First CM Step: Update the parameters πg,Mg,Ag.

π̂(t+1)
g =

Ng

N
, M̂(t+1)

g =

∑N
i=1 ẑ

(t+1)
ig Xi

(
a(t+1)
g b

(t+1)
ig − 1

)
∑N

i=1 ẑ
(t+1)
ig a(t+1)

g b
(t+1)
ig −Ng

,

Â(t+1) =

∑N
i=1 ẑ

(t+1)
ig Xi

(
b

(t+1)

g − b(t+1)
ig

)
∑N

i=1 ẑ
(t+1)
ig a(t+1)

g b
(t+1)
ig −Ng

,
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where

Ng =
N∑
i=1

ẑ
(t+1)
ig , a(t+1)

g =

∑N
i=1 ẑ

(t+1)
ig a

(t+1)
ig

Ng

, b
(t+1)

g =

∑N
i=1 ẑ

(t+1)
ig b

(t+1)
ig

Ng

.

4) Second CM Step: Update Σg

Σ̂(t+1)
g =

1

Ngp

[
N∑
i=1

ẑ
(t+1)
ig

(
b

(t+1)
ig

(
Xi − M̂(t+1)

g

)
Ψ̂(t)
g

−1
(
Xi − M̂(t+1)

g

)′
− Â(t+1)

g Ψ̂(t)
g

−1
(
Xi − M̂(t+1)

g

)′
−
(
Xi − M̂(t+1)

g

)
Ψ̂(t)
g

−1
Â(t+1)
g

′

+ a
(t+1)
ig Â(t+1)

g Ψ̂(t)
g

−1
Â(t+1)
g

′)]
.

(4.2)

5) Third CM Step: Update Ψg

Ψ̂(t+1)
g =

1

Ngn

[
N∑
i=1

ẑ
(t+1)
ig

(
b

(t+1)
ig

(
Xi − M̂(t+1)

g

)′
Σ̂(t+1)
g

−1
(
Xi − M̂(t+1)

g

)
− Â(t+1)

g

′
Σ̂(t+1)
g

−1
(
Xi − M̂(t+1)

g

)
−
(
Xi − M̂(t+1)

g

)′
Σ̂(t+1)
g

−1
Â(t+1)
g

+ a
(t+1)
ig Â(t+1)

g

′
Σ̂(t+1)
g

−1
Â(t+1)
g

)]
.

(4.3)

6) Other CM Steps: The additional parameters introduced by the distribution of

Wig are now updated. These updates will vary according the distribution and the

particulars for the MVST, MVGH, MVVG and MVNIG distributions are given below.

7) Check Convergence: If not converged, set t = t+ 1 and return to step 2.

Matrix Variate Skew-t Distribution

In the case of the matrix variate skew-t distribution, the degrees of freedom νg need

to be updated. This update cannot be obtained in closed form, and thus needs to be
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performed numerically. We have

LMVST
2 =

N∑
i=1

G∑
g=1

zig

[
νg
2

log
(νg

2

)
− log

(
Γ
(νg

2

))
− νg

2

(
log(wig) +

1

wig

)]
.

Therefore, the update ν
(t+1)
g is obtained by solving (4.4) for νg, i.e.,

log
(νg

2

)
+ 1− ϕ

(νg
2

)
− 1

Ng

N∑
i=1

ẑ
(t+1)
ig (b

(t+1)
ig + c

(t+1)
ig ) = 0, (4.4)

where ϕ(·) denotes the digamma function.

Matrix Variate Generalized Hyperbolic Distribution

In the case of the matrix variate generalized hyperbolic distribution, updates for λg

and ωg are needed. In this case,

LMVGH
1 =

N∑
i=1

G∑
g=1

zig

[
log(Kλg(ωg))− λg logwig −

1

2
ωg

(
wig +

1

wig

)]
. (4.5)

The updates for λg and ωg cannot be obtained in closed form. However, Browne

and McNicholas (2015) discuss numerical methods for these updates and, because

the portion of the likelihood function that include these parameters is the same as in

the multivariate case, the updates described in Browne and McNicholas (2015) can

be used directly here.

The updates for λg and ωg rely on the log-convexity of Ks(t) in both s and t

(Baricz, 2010) and maximizing (4.5) via conditional maximization. The resulting
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updates are

λ̂(t+1)
g = c̄(t+1)

g λ̂(t)
g

[
∂

∂s
log(Ks(ω̂

(t)
g ))

∣∣∣∣
s=λ̂

(t)
g

]−1

, (4.6)

ω̂(t+1)
g = ω̂(t)

g −

[
∂

∂s
q(λ̂(t+1)

g , s)

∣∣∣∣
s=ω̂

(t)
g

][
∂2

∂s2
q(λ̂(t+1)

g , s)

∣∣∣∣
s=ω̂

(t)
g

]−1

, (4.7)

where the derivative in (4.6) is calculated numerically,

q(λg, ωg) =
N∑
i=1

zig

[
log(Kλg(ωg))− λg logwig −

1

2
ωg

(
wig +

1

wig

)]

and c̄
(t+1)
g = (1/Ng)

∑N
i=1 ẑ

(t+1)
ig c

(t+1)
ig . The partials in (4.7) are described in Browne

and McNicholas (2015) and can be written as

∂

∂ωg
q(λg, ωg) =

1

2
[Rλg(ωg) +R−λg(ωg)− (ā(t+1)

g + b̄(t+1)
g )],

and

∂2

∂ω2
g

q(λg, ωg) =
1

2

[
Rλg(ωg)

2 − 1 + 2λg
ωg

Rλg(ωg)− 1 +R−λg(ωg)
2 − 1− 2λg

ωg
R−λg(ωg)− 1

]
,

where Rλg(ωg) = Kλg+1(ωg)/Kλg(ωg).

Matrix Variate Variance-Gamma Distribution

In the case of the matrix variate variance-gamma,

LMVVG
1 =

N∑
i=1

G∑
g=1

zig [γg log γg − log Γ(γg) + γg (logwig − wig)] .
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The update for γg, as in the generalized hyperbolic case, cannot be obtained in closed

form. Instead, the update γ
(t+1)
g is obtained by solving (4.8) for γg, where

log γg + 1− ϕ(γg) + c̄(t+1)
g − ā(t+1)

g = 0. (4.8)

Matrix Variate NIG Distribution

In this case, κg needs to be updated. Note that

LMVNIG
2 =

N∑
i=1

G∑
g=1

zigκg −
κ2
g

2
zigwig

and, therefore, the closed form updates for κg are

κ(t+1)
g =

1

a(t+1)
g

.

4.1.3 Semi-Supervised Classification

In addition to clustering (unsupervised classification), the matrix variate mixture

models introduced here can also be applied for semi-supervised classification. Suppose

that N matrices are observed but that we know the labels for K of the N matrices;

specifically, suppose that K of the N matrices come from one of G classes. Without

loss of generality, order these matrices so it is the first K that have known labels:

X1, . . . ,XK ,XK+1, . . .XN . Now, we know the values of zig for i = 1, . . . , K and the

observed-data likelihood is

L(ϑ) =
K∏
i=1

G∏
g=1

[πgf(Xi | Mg,Ag,Σg,Ψg,θg)]
zig

N∏
j=K+1

H∑
h=1

πgf(Xj | Mh,Ah,Σh,Ψh,θh),
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where θg are the parameters associated with the distribution of Wig. In general,

H ≥ G; however, for the analyses herein, we make the common assumption that

H = G. Parameter estimation, identifiability, etc., follow in an analogous fashion

to the clustering case already described herein. Further details on semi-supervised

classification in the mixture model setting are given in McLachlan and Peel (2000b)

and McNicholas (2016a).

4.2 Illustrations

4.2.1 Overview

Two simulations are performed, where the first simulation has two groups and the

second has three. The chosen parameters have no intrinsic meaning; however, they

can be viewed as representations of multivariate longitudinal data and the param-

eters introduced by the distribution of Wig are meant to illustrate the flexibility in

concentration. Simulation 4.1 considers 3 × 4 data, Simulation 4.2 illustrates 4 × 3

data. In the first simulation, Σg and Ψg are set to

Σ1 =


1 0.5 0.1

0.5 1 0.5

0.1 0.5 1

 , Σ2 =


1 0.1 0.1

0.1 1 0.1

0.1 0.1 1

 ,
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and

Ψ1 =



1 0.5 0.5 0.5

0.5 1 0 0

0.5 0 1 0

0.5 0 0 1


, Ψ2 =



1 0 0 0

0 1 0.5 0.5

0 0.5 1 0.2

0 0.5 0.2 1


.

For notational purposes, let Σ̃g and Ψ̃g be the scale matrices used in Simulation

4.2. We set Σ̃1 = Ψ1, Σ̃2 = Σ̃3 = Ψ2 and Ψ̃1 = Ψ̃3 = Σ1 and Ψ̃2 = Σ2. For each

distribution, the models are fitted for G ∈ {1, 2, 3, 4} and the BIC is used to choose

the number of groups.

4.2.2 Simulation 4.1

In Simulation 4.1, for all four distributions, we take the location and skewness matrices

to be

M1 =


1 0 0 −1

0 1 −1 0

−1 0 2 −1

 , M2 =


3 4 2 4

4 3 3 3

3 4 2 4

 ,

A1 =


1 −1 0 1

1 −1 0 1

1 −1 0 1

 , A2 =


1 1 1 −1

1 1 0.5 −1

1 1 0 −1

 .

For the additional parameters, we took ν1 = 4, ν2 = 20 for the skew-t distribution,

λ1 = λ2 = 2 and ω1 = 4, ω2 = 2 for the generalized hyperbolic distribution, γ1 = 7,

γ2 = 14 for the variance-gamma distribution, and κ1 = 1/2, κ2 = 2 for the NIG distri-

bution. Figure 4.1 shows a typical dataset for each distribution. For visualization, we
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look at the marginal columns which we label V1, V2, V3 and V4. We see that for all

of the columns, except column 4, there is a clear separation between the two groups.

We also note that for the skew-t distribution, there was a severe outlier in group 2

(due to the small degrees of freedom) that we do not show for better visualization.

The orange dotted line is the marginal location parameter for the first group, and the

yellow dotted line is the marginal location for the second group.

Table 4.1 displays the number of groups (components) chosen and the average

ARI values with the associated standard deviations. The ICL results were identical,

and thus are not shown here. We see that the correct number of groups is chosen,

with perfect classification, for all 30 of the datasets when using the MVST, MVVG,

and MVNIG mixtures. However, this is not the case with MVGH mixture, which

underperforms when compared to the other three. However, the eight datasets for

which the incorrect number of components is chosen correspond to datasets for which

the two-component MVGH solution did not converge and, in a real application, alter-

native starting values would be pursued until convergence is achieved for the G = 2

component case.

Table 4.1: The number of groups chosen by the BIC and the average ARI values,
with standard deviations in parentheses, for Simulation 4,1. Note that the MVGH
mixture did not converge for eight of the 30 runs with G = 2.

G = 1 G = 2 G = 3 G = 4 ARI (std. dev.)
MVST 0 30 0 0 1.00 (0.00)
MVGH 4 22 1 3 0.85 (0.34)
MVVG 0 30 0 0 1.00 (0.00)
MVNIG 0 30 0 0 1.00 (0.00)

In Table 4.2, we show the average amount of time per dataset to run the algorithm

for G = 1, 2, 3, 4. We note that these simulations were performed in parallel.
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Figure 4.1: Marginal data for the columns for each of the four distributions for
Simulation 4.1. The dotted lines represent the marginal location parameters with the
orange as the marginal location for group 1 and the yellow for group 2.
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Table 4.2: Average runtimes for Simulation 4.1.

Distribution Average Time (s)
MVST 237.33
MVGH 625.90
MVVG 82.77
MVNIG 349.47

4.2.3 Simulation 4.2

In Simulation 4.2, a three group mixture was considered with 200 observations per

group and the following location and skewness parameters.

M1 =



1 −1 0

0 0 −1

0 1 0

−1 0 −1


, M2 =



−1 1 0

0 0 1

0 −1 0

1 0 1


, M3 =



1 1 2

1 2 0

0 1 1

0 1 0


,

A1 =



1 −1 −1

1 −0.5 −1

1 0 −1

1 0 −1


, A2 = A3 =



1 1 −1

1 0.5 0.5

1 0 0

1 0 0


.

The other parameters we set to ν1 = 4, ν2 = 8, ν3 = 20 for the MVST, λ1 = 4,

λ2 = 0, λ3 = −2 and ω1 = 4, ω2 = ω3 = 2 for the MVGH, γ1 = 7, γ2 = 9, γ3 = 14 for

the MVVG and κ1 = 1/2, κ2 = 1, κ3 = 2 for the MVNIG.

Again, the marginal distributions of a typical dataset is shown in Figure 4.2.

The dotted lines again represent the marginal locations, with orange for the first
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group, yellow for the second, and purple for the third. In Table 4.3, the number of

groups chosen by the BIC as well as the average ARI values, and associated standard

deviations, are presented. Once again, the MVST, MVVG and MVNIG mixtures

outperform the MVGH mixture; once again, this is due to convergence issues. The

issue with convergence for the MVGH mixture with both simulations is possibly due

to the update for, or impact of, the index parameters λ1, . . . , λG.

Table 4.3: The number of groups chosen by the BIC and the average ARI values,
with standard deviations in parentheses, for Simulation 4.2. Note that the MVGH
mixture did not converge for 22 of the 30 runs with G = 2.

G = 1 G = 2 G = 3 G = 4 ARI (std. dev.)
MVST 0 0 30 0 0.97 (0.010)
MVGH 10 8 8 4 0.52 (0.41)
MVVG 0 0 30 0 0.98 (0.0077)
MVNIG 0 0 30 0 0.99 (0.0056)

Table 4.4 shows the average runtime per dataset for Simulation 4.2. Notice that

for the MVGH, MVVG and MVNIG mixtures, each dataset took longer on average,

with the MVGH mixture having the longest runtime as well as the largest increase.

This is to be expected because there is an increase in the number of groups and

observations; however, for the MVVG and MVNIG mixtures, the time differences

between Simulations 4.1 and 4.2 is less notable. In fact, the MVST mixture actually

took less time on average; however, this is because a few datasets for Simulation 4.1

ran to the maximum number of iterations for the G = 4 group mixture thus increasing

the runtime.
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Figure 4.2: Marginal data for the columns for each of the four distributions for
Simulation 4.2. The dotted lines represent the marginal location parameters with the
orange as the marginal location for group 1, yellow for group 2, and purple for group
3.
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Table 4.4: Average runtimes for Simulation 4.2.

Distribution Average Time (s)
MVST 233.67
MVGH 2542.50
MVVG 171.90
MVNIG 581.63

4.3 Image Recognition Example

We now apply the matrix variate mixture models introduced herein to image recogni-

tion with the MNIST handwriting dataset (LeCun et al., 1998). The original dataset

consists of 60,000 training images of handwritten digits 0 to 9, which can be rep-

resented as 28 × 28 pixel matrices with greyscale intensities ranging from 0 to 255.

However, because two unstructured 28 × 28 dimensional covariance matrices would

need to be estimated, model fitting would be infeasible. We stress that this alone is

an indication that dimension reduction techniques will need to be developed in the

future. However, the main goal of this application is to demonstrate the discussed

methods outside of the theoretical confines of the simulations. Therefore, we resized

the original image to a 10× 10 pixel matrix using the resize function in the EBImage

package (Pau et al., 2010) for the R software (R Core Team, 2019). However, there

are problems with sparsity. Specifically, the outside columns and rows all contain

values of 0 because they are outside of the main writing space. Accordingly, there is

no variation in these outer columns and rows, therefore resulting in exactly singular

Σg and Ψg updates. To solve this problem, we replace a value of 0 with a value

between 0 and 2 with increments of 0.1 and added 50 to the non-zero values to make

sure the noise did not interfere with the true signal.
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Each of the matrix variate mixtures introduced herein is applied within the semi-

supervised classification paradigm (Section 3.6). A total of 500 observations from

digit 1 and 500 from digit 7 are sampled from the training set, and then 100 of each of

these digits is considered unlabelled, i.e., 80% of the data are labelled. We performed

the analysis on 30 different such sets. In Table 4.5, we show aggregate classification

tables for the points considered unlabelled for each of the matrix variate mixtures.

In Table 4.6, we show the average ARI values and the average misclassification rates

for the unlabelled points. Note, that for some of the datasets, not all four mixtures

converged; therefore, the total number of observations in the tables need not be the

same for all four distributions. Looking at the classification tables, it is clear that

all of these matrix variate mixtures overall misclassify digit 1 as digit 7 more often

than digit 7 as digit 1. From both the ARI and MCR results, the MVVG mixture

slightly outperforms the other three mixture. It is interesting to note that the MVGH

mixture did not experience the same convergence issues as seen with the simulations.

Table 4.5: Cross-tabulations of true (1,7) versus predicted (P1, P7) classifications
for the points considered unlabelled in the MNIST data, for each of the matrix vari-
ate mixtures introduced herein, aggregated over all runs (for which convergence was
attained).

MVST MVGH MVVG MVNIG
P1 P7 P1 P7 P1 P7 P1 P7

1 2797 203 2813 187 2859 141 2798 202
7 127 2873 125 2875 122 2878 127 2873
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Table 4.6: Average ARI values and misclassification rates (MCR), with associated
standard deviations in parentheses, for each matrix variate mixture approach for the
points considered unlabelled for the MNIST data, aggregated over all runs (for which
convergence was attained).

ARI (std. dev.) MCR(std. dev.)
MVST 0.79 (0.051) 0.055 (0.014)
MVGH 0.80 (0.056) 0.052 (0.016)
MVVG 0.83 (0.043) 0.044 (0.012)
MVNIG 0.79 (0.051) 0.055 (0.014)

4.4 Summary

Four matrix variate mixture distributions, with component densities that parameter-

ize skew- ness, have been used for model-based clustering — and its semi-supervised

analogue — of three-way data. Specifically, we considered MVST, MVGH, MVVG,

and MVNIG mixtures, respectively, and an ECM algorithm was used for parameter

estimation in each case. Simulated and real data were used for illustration. In the

first simulation, there was good separation between the two groups and, in the second,

we increased the number of groups, decreased the separation between the groups, and

obtained similar results to the first. In both simulations, the MVGH mixture often

underperformed when compared to the other three mixtures due to convergence is-

sues. This could be resolved, for example, by restrict- ing the index parameter λ;

however, doing this would essentially eliminate the additional flexibility enjoyed by

the MVGH mixture. In the real data application, the MVVG mixture outperformed

the other three mixtures in terms of both average ARI and average misclassification

rate, and the MVVG mixture consistently ran faster than the other three mixtures.
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Chapter 5

Mixtures of Matrix Variate

Bilinear Factor Analyzers

5.1 Previous Work

Xie et al. (2008) and Yu et al. (2008) consider a matrix variate extension of PPCA in

a linear fashion. For N independent n× p random matrices X1, . . . ,XN , the model

assumes

Xi = M + ΛUi∆
′ + Ei, (5.1)

where M is an n × p location matrix, Λ is an n × q matrix of column factor load-

ings, ∆ is a p × r matrix of row factor loadings, Ui ∼ Nq×r(0, Iq, Ir), and Ei ∼

Nn×p(0, σIn, σIp), with σ ∈ R+. Note that the Ui and the Ei are each independently

distributed and are independent of one another. The main disadvantage of this model

is that, in general, Xi does not follow a matrix variate normal distribution.
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Zhao et al. (2012) present bilinear probabilistic principal component analysis (BP-

PCA) which extends (5.1) by adding two projected error terms. The resulting model

assumes

Xi = M + ΛUi∆
′ + ΛE B

i + E A
i ∆′ + Ei, (5.2)

where E B
i ∼ Nq×p(0, Iq, σBIp), E A

i ∼ Nn×r(0, σAIn, Ir), Ei ∼ Nn×p(0, σAIn, σBIp),

with σA ∈ R+ and σB ∈ R+, and the other terms are as defined for (5.1). In this

model, each of the Ui, E B
i , E A

i and Ei are independently distributed and all are

independent of each other.

It is important to note that the term “column factors” refers to reduction in the

dimension of the columns, which is equivalent to the number of rows, and not a

reduction in the number of columns. Likewise, the term “row factors” refers to the

reduction in the dimension of the rows (number of columns). As discussed by Zhao

et al. (2012) the interpretation of the terms E B and E A are the row and column noise

respectively, whereas the final term E is the common noise. It can be shown using

property (2.10) that under this model X ∼ Nn×p(M,ΛΛ′+σAIn,∆∆′+σBIp). Note

that the covariance structure for the two covariance matrices of the matrix variate

normal are analogous to the covariance structure for the (multivariate) factor analysis

model.
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5.2 Methodology

5.2.1 MMVBFA Model

An MMVBFA model is derived here by extending (5.2). Specifically, we remove the

isotropic constraint and assume

Xi = Mg + ΛgUig∆
′
g + ΛgE

B
ig + E A

ig∆′g + Eig (5.3)

with probability πg, for g = 1, 2, . . . , G, where Mg is an n× p location matrix, Λg is

an n× q column factor loading matrix, with q < n, ∆g is a p× r row factor loading

matrix, with r < p, and

Uig ∼ Nq×r(0, Iq, Ir),

E B
ig ∼ Nq×p(0, Iq,Ψg),

E A
ig ∼ Nn×r(0,Σg, Ir),

Eig ∼ Nn×p(0,Σg,Ψg)

are independently distributed and independent of eachother, Σg = diag{σ1g, σ2g, . . . , σng},

with σjg ∈ R+, j ∈ {1, . . . , n}, and Ψg = diag{ψ1g, ψ2g, . . . , ψpg}, with ψkg ∈ R+,

k ∈ {1, . . . , p}.

Let zi = (zi1, . . . , ziG)′, with zig as defined as in Chapter 4. Using the vectorization

of Xi, and property (2.10), it can be shown that

Xi | zig = 1 ∼ Nn×p(Mg,Σg + ΛgΛ
′
g,Ψg + ∆g∆

′
g).
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Therefore, the density of Xi can be written

f(Xi|ϑ) =
G∑
g=1

πgϕn×p(Xi|Mg,Σg + ΛgΛ
′
g,Ψg + ∆g∆

′
g),

where ϕn×p(·) denotes the n × p matrix variate normal density. Following a similar

procedure to that described by Zhao et al. (2012), by introducing latent variables Y B
ig

and V B
ig , (5.3) can be written

Xi = Mg + ΛgY
B
ig + V B

ig ,

Y B
ig = Uig∆

′
g + E B

ig ,

V B
ig = E A

ig∆′g + Eig.

The two-stage interpretation of this formulation of the model is the same as that

given by Zhao et al. (2012) where this can viewed as first projecting Xi in the column

direction onto the latent matrix Y B
ig , and then Y B

ig and V B
ig are further projected in

the row direction. Likewise, introducing Y A
ig and V A

ig , (5.3) can be written

Xi = Mg + Y A
ig ∆′g + V A

ig ,

Y A
ig = ΛgUig + E A

ig ,

V A
ig = ΛgE

B
ig + Eig.

The interpretation is the same as before only we project in the row direction first

followed by the column direction. It can be shown that

Y B
ig |Xi, zig = 1 ∼ Nq×p(WA

g

−1
Λ′gΣ

−1
g (Xi −Mg),W

A
g

−1
,Ψ∗g),
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and

Y A
ig |Xi, zig = 1 ∼ Nn×r((Xi −Mg)Ψ

−1
g ∆gW

B
g

−1
,Σ∗g,W

B
g

−1
),

where WA
g = Iq + Λ′gΣ

−1
g Λg, WB

g = Ir + ∆′gΨ
−1
g ∆g, Σ∗g = Σg + ΛgΛ

′
g, and

Ψ∗g = Ψg + ∆g∆
′
g.

5.2.2 Parameter Estimation

Suppose we observe N observations X1, . . . ,XN then the log-likelihood is given by

L(ϑ) =
N∑
i=1

log
G∑
g=1

πgϕn×p(Xi|Σg + ΛgΛ
′
g,Ψg + ∆g∆

′
g). (5.4)

To maximize (5.4), the observed data is viewed as incomplete and an AECM is then

to maximize (5.4). There are three different sources of missingingness: the component

memberships z1, . . . , zn as well as the latent variables Y B
ig and Y A

ig . A three-stage

AECM algorithm is now described for parameter estimation.

AECM Stage 1: In the first stage, the complete-data is taken to be the observed

matrices X1, . . . ,XN and the component memberships z1, . . . , zN , and the update for

Mg is calculated. The complete-data log-likelihood in the first stage is then

`(1) = C +
G∑
g=1

N∑
i=1

zig

{
log πg −

1

2
tr[Σ∗g

−1(Xi −Mg)Ψ
∗−1
g (Xi −Mg)

′]

}
,

where C is a constant independent of Mg, Σ∗g and Ψ∗g. In the E-Step, the updates
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for the component memberships zig are given by

ẑig =
πgϕn×p(Xi | M̂g, Σ̂

∗
g, Ψ̂

∗
g)∑G

h=1 πgϕn×p(Xi | M̂h, Σ̂∗h, Ψ̂
∗
h)
,

where ϕn×p(·) denotes the n× p matrix variate normal density. In the CM-step, the

update for Mg is calculated using

M̂g =
1

Ng

N∑
i=1

ẑigXi,

where Ng =
∑N

i=1 ẑig.

AECM Stage 2: In the second stage, the complete-data is taken to be the observed

X1, . . . ,XN , the component memberships z1, . . . , zN and the latent factors Yi
B =

(Y B
i1 ,Y

B
i2 , . . . ,Y

B
iG). The complete-data log-likelihood is then

`(2) = C − Ngp

2
log |Σg| −

1

2

G∑
g=1

N∑
i=1

zigtr
[
Σ−1
g (Xi −Mg)Ψ

∗
g
−1(Xi −Mg)

′

−Σ−1
g ΛgY

B
ig Ψ∗g

−1(Xi −Mg)
′ −Σ−1

g (Xi −Mg)Ψ
∗
g
−1Y B

ig

′
Λ′g

+ Σ−1
g ΛgY

B
ig Ψ∗g

−1Y B
ig

′
Λ′g
]
.

In the E-Step, the following expectations are calculated:

aBig := E[Y B
ig | ϑ̂,Xi, zig = 1] = ŴA

g
−1Λ̂′gΣ̂

−1
g (Xi − M̂g),

and

bBig := E[Y B
ig Ψ∗g

−1Y B
ig

′ | ϑ̂,Xi, zig = 1] = pŴA
g
−1 + aBigΨ̂

∗
g
−1aBig

′
.
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As usual, these expectations are calculated using the current estimates of the param-

eters. In the CM-step Λg and Σg are updated via

Λ̂g =
N∑
i=1

ẑig(Xi − M̂g)Ψ̂
∗
g
−1aBig

′
(

N∑
i=1

ẑigb
B
ig

)−1

,

Σ̂g =
1

Ngp
diag{SBg },

where

SBg =
N∑
i=1

ẑig
[
(Xi − M̂g)Ψ̂

∗
g
−1(Xi − M̂g)

′ − Λ̂ga
B
igΨ̂

∗
g
−1(Xi − M̂g)

′].
AECM Stage 3: In the last stage of the AECM algorithm, the complete data is

taken to be the observed X1, . . . ,XN , the component memberships z1, . . . , zN and

the latent factors Yi
A = (Y A

i1 ,Y
A
i2 , . . . ,Y

A
iG). In this step, the complete-data log-

likelihood is

`(3) = C − Ngn

2
log |Ψg| −

1

2

G∑
g=1

N∑
i=1

zig tr
[
Ψ−1
g (Xi −Mg)

′Σ∗g
−1(Xi −Mg)

−Ψ−1
g ∆gY

A
ig

′
Σ∗g
−1(Xi −Mg)−Ψ−1

g (Xi −Mg)
′Σ∗g

−1Y A
ig ∆′g

+ Ψ−1
g ∆gY

A
ig

′
Σ∗g
−1Y A

ig ∆′g
]
.

In the E-Step, expectations similar to those in the second step are calculated.

aAig := E[Y A
ig | ϑ̂gXi, zig = 1] = (Xi − M̂g)Ψ

−1
g ∆̂gŴ

B
g
−1,

and

bAig := E[Y A
ig

′
Σ∗g
−1Y A

ig | ϑ̂g,Xi, zig = 1] = nŴB
g
−1 + aAig

′
Σ̂∗g
−1aAig.
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In the CM-step we update ∆g and Ψg given by

∆̂g =
N∑
i=1

ẑig(Xi − M̂g)
′Σ̂∗g

−1aAig

(
N∑
i=1

ẑigb
A
ig

)−1

,

Ψ̂g =
1

Ngn
diag{SAg },

where

SAg =
N∑
i=1

ẑig
[
(Xi − M̂g)

′Σ̂∗g
−1(Xi − M̂g)− ∆̂ga

A
ig

′
Σ̂∗g
−1(Xi − M̂g)

]
.

To initialize the AECM algorithm, we employ an alternating emEM strategy (Bier-

nacki et al., 2003). This consists of running the AECM algorithm for a small number

of iterations for different random starting values of the parameters and then use the

parameters that maximize the likelihood to continue with the AECM algorithm until

convergence.

5.2.3 Reduction in Number of Free Covariance Parameters

Because the covariance structure of both covariance matrices in the MVVBFA model

is equivalent to the covariance structure in the multivariate MFA model many of the

results on the number of free covariance parameters may be used here. Specifically

there are nq+n− q(q−1)/2 free covariance parameters in Σ∗g and pr+p− r(r−1)/2

free covariance parameters in Ψ∗g (Lawley and Maxwell, 1962). Therefore, reduction

in the number of free covariance parameters for the row covariance matrix is

1

2
n(n+ 1)− nq − n+

1

2
q(q − 1) =

1

2

[
(n− q)2 − (n+ q)

]
,
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which is positive for (n− q)2 > n+ q. Likewise for the column covariance matrix the

reduction in the number of parameters is

1

2
p(p+ 1)− pr − p+

1

2
r(r − 1) =

1

2

[
(p− r)2 − (p+ r)

]
,

which is positive for (p− r)2 > p+ r.

In applications herein, the model is fit for a range of row factors and column

factors. If the number of row or column factors chosen by the BIC is the maxi-

mum in that range, the relevant number of factors will be increased so long as the

aforementioned conditions are met.

5.3 Data Analyses

5.3.1 Simulations

Simulation 5.1

In the first simulation, G = 2 groups are considered with 10 × 7 matrices. The

mixing proportions are taken to be π1 = π2 = 0.5, and we set N ∈ {200, 400, 800}.

Observations are simulated from (5.3) with q = 2 column factors and r = 3 row

factors. For each value of N , 50 datasets are simulated. For each dataset, for each

N , the correct number of groups, column and row factors are selected. In addition,

perfect classification is achieved (ARI = 1). In Table 5.1, we show the average value

of ‖Mg − M̂g‖1, for g = 1, 2 and for each value of N , over the 50 datasets. Note that
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if W is an n× p matrix then

‖W‖1 = max
1≤j≤p

n∑
i=1

|wij|.

As expected, the estimates of Mg get closer to the true values as the sample size N

in increased. Moreover, the variability of ‖Mg − M̂g‖1 decreases as the sample size

increases.

Table 5.1: Average ‖Mg − M̂g‖1 values over 50 datasets, for g = 1, 2 and N =
200, 400, 800, in Simulation 5.1, with standard deviations in parentheses.

N
g 200 400 800
1 13.97(3.61) 9.66(2.65) 6.48(1.69)
2 12.08(3.25) 7.45(1.79) 5.69(1.32)

Simulation 5.2

The second simulation considers G = 3 groups with 28 × 17 matrices. The mixing

proportions are π1 = π3 = 0.4 and π2 = 0.2, and N ∈ {250, 500, 1000}. Again, 50

datasets are simulated for each N with q = 2 column factors and r = 3 row factors.

As in Simulation 5.1, the correct number of groups, column and row factors are chosen

and perfect classification is achieved. In Table 5.2, we again show the average 1-norms

for the differences between the true and estimated location parameters.

5.3.2 MNIST Digit Recognition

We consider the 28 × 28 MNIST digit dataset (LeCun et al., 1998), which contains

over 60,000 greyscale images of handwritten Arabic digits 0 to 9. The images are

62



PhD Thesis - Michael P.B. Gallaugher McMaster - Mathematics and Statistics

Table 5.2: Average ‖Mg − M̂g‖1 values over 50 datasets, for g = 1, 2, 3 and N =
250, 500, 1000, in Simulation 5.2, with standard deviations in parentheses.

N
g 250 500 1000
1 36.28(7.95) 26.36(5.12) 19.37(4.62)
2 55.23(11.75) 40.42(9.64) 29.30(6.26)
3 39.10(8.89) 27.09(6.37) 19.99(4.45)

represented by 28 × 28 pixel matrices with greyscale intensities ranging from 0 to

255. Because of the lack of variability in the outer rows and columns, some random

noise is added while adding 50 to each of the non-zero elements to avoid confusing

the noise with a true signal. We are interested in comparing digit 1 to digit 7, as

was considered in Gallaugher and McNicholas (2018b). Similar to Gallaugher and

McNicholas (2018b), we consider semi-supervised classification with 25%, 50% and

75% supervision. In each case, 25 datasets are considered, each consisting of 200

observations from each digit, and we fit the model for 10 to 20 column and row

factors.

In Table 5.3, we show an aggregated classification table between the true and pre-

dicted classifications at each level of supervision for the points considered unlabelled.

As expected, slightly better classification performance is obtained when the level of

supervision is increased. Moreover, there is a more substantial difference when going

from 25% supervision to 50% supervision than from 50% to 75%.

Table 5.4 shows the average ARI and MCR over the 25 datasets, with the re-

spective standard deviations, for each level of supervision. We note that we obtain

better results than Gallaugher and McNicholas (2018b) even with a lower level of su-

pervision; however, the results in Gallaugher and McNicholas (2018b) were based on

resized images due to dimensionality constraints whereas this analysis was performed
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Table 5.3: Cross-tabulations of true (1,7) versus predicted (P1, P7) classifications for
the observations considered unlabelled in the MNIST data at each level of supervision,
aggregated over all runs.

25% Supervision 50% Supervision 75% Supervision
P1 P7 P1 P7 P1 P7

1 3550 173 2449 53 1232 26
7 200 3577 51 2447 18 1221

on the original images.

Table 5.4: Average ARI values and MCR, with associated standard deviations in
parentheses, for each level of supervision for the points considered unlabelled for the
MNIST data, aggregated over all runs.

ARI (std. dev.) MCR(std. dev.)
25% 0.82(0.15) 0.050(0.046)
50% 0.92 (0.056) 0.021 (0.015)
75% 0.93 (0.056) 0.018 (0.015)

In Table 5.5 the frequency of the number of factors chosen for each level of super-

vision over the 25 datasets is shown. For the majority of the datasets, the number of

row and column factors lie between 13 and 15.

Finally, in Figure 5.1, heatmaps are displayed for the average estimates of the

location matrices over the 25 runs for each level of supervision for both digits. We

see a slight increase in quality when going from 25% to 50% supervision for digit 7

with the centre of the digit being a little smoother with 50% supervision. There is no

noticeable difference when going from 50% to 75% supervision. This similarity across

the three levels of supervision illustrates the power of semi-supervised classification.
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Table 5.5: Numbers of row and columns factors chosen for the MNIST dataset for
25%, 50% and 75% supervision.

10 11 12 13 14 15 16 17 18 19 20
25% Supervision

Row Factors 0 0 0 2 7 6 4 3 2 1 0
Column Factors 0 0 2 6 7 6 3 1 0 0 0

50% Supervision
Row Factors 0 0 0 4 6 10 2 0 1 1 1
Column Factors 0 0 2 9 7 5 1 1 0 0 0

75% Supervision
Row Factors 0 0 0 1 9 9 3 3 0 0 0
Column Factors 0 0 0 9 11 4 0 0 0 0 1

5.3.3 Olivetti Faces Dataset

Finally, consider the Olivetti faces dataset from the R package RnavGraphImageData

(Waddell and Oldford, 2013). The dataset consists of greyscale images of faces that

were taken between 1992 and 1994 at AT&T laboratories in Cambridge. There were

40 individuals with 10 images of each individual for a total of 400 64×64 images. The

images were taken with varied lighting, expressions (eyes open/closed, smile/frown

etc.), and glasses or no glasses. We fit the model for 15 to 30 column and row

factors, and for G = 1, . . . , 9 components. The BIC chooses three components with

23 column factors and 26 row factors. The estimated mixing proportions are π1 =

0.22, π2 = 0.49, π3 = 0.29. In Figure 5.2, we show a heatmap of the estimated location

parameters for each component. The heatmap for component 3 arguably shows the

clearest image and appears to display the glasses feature.

Upon looking at individual faces classified to component 3 (Figure 5.2), all the

faces have glasses. Moreover, all faces with glasses are classified to component 3

with the exception of two which are classified to component 2. The faces with closed

eyes are scattered throughout the three different components and are not classified
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Figure 5.1: Heatmaps for the average estimated location matrices taken over the 25
runs for digit 1 at 25%, 50% and 75% supervision, respectively (a, b, c), and digit 7
at 25%, 50% and 75% supervision, respectively (d, e, f).

to any one component. Although it is a difficult to determine the main feature that

differentiates component 1 from component 2, it is apparent that the eyebrows for

the faces classified to component 1 tend to be more prominent and higher above

the eyelid. Of course, a semi-supervised approach to these data could be used to

detect specific classes, similar to the MNIST analysis (Section 5.3.2). However, the

unsupervised analysis here has shown that the MMVBFA approach can be effective

at detecting subgroups without training.

66



PhD Thesis - Michael P.B. Gallaugher McMaster - Mathematics and Statistics

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

Figure 5.2: Estimated location matrices for (a) component 1, (b) component 2, and
(c) component 3 for the faces dataset.

5.4 Summary

In this chapter, we developed a MMVBFA model for use in clustering and classifi-

cation of matrix variate data. Two simulations as well as two real data examples

were used for illustration. For each of the simulations, the correct number of compo-

nents and column/row factors were chosen by the BIC for all of the datasets. Perfect

classification performance was also obtained in the simulations. In the MNIST digit

application, even with a lower level of supervision, we obtained better results than

Gallaugher and McNicholas (2018b). However, this is probably due to the fact that

the MMVBFA model could use the full 28 × 28 image. In the faces application, the

BIC chooses three groups with the third group being defined by the presence of the

glasses facial feature.
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Chapter 6

Mixtures of Skewed Matrix Variate

Bilinear Factor Analyzers

6.1 Model Specification

We now consider a mixture of skewed bilinear factor analyzers according to one of

the four skewed distributions discussed previously. Each random matrix Xi from a

random sample distributed according to one of the four distributions can be written

Xi = Mg +WigAg + Vig

with probability πg for g ∈ {1, 2, . . . , G}, πg > 0,
∑G

i=1 πg = 1, where Mg is the

location of the gth component, Ag is the skewness, and Wig is a random variable with

density h(wig|θg). The distribution of the random variable Wig — and so the density

h(wig|θg) — will change depending on the distribution of Xi, i.e., skew-t, generalized
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hyperbolic, variance-gamma, or NIG. Assume also that Vig can be written as

Vig = ΛgUig∆
′
g + ΛgE

B
ig + E A

ig∆′g + Eig,

where Λg is a n × q matrix of column factor loadings, ∆g is a p × r matrix of row

factor loadings, and

Uig|wig ∼ Nq×r(0, wigIq, Ip), E B
ig |wig ∼ Nq×p(0, wigIq,Ψg),

E A
ig |wig ∼ Nn×r(0, wigΣg, Ir), Eig|wig ∼ Nn×p(0, wigΣg,Ψg).

Note that Uig,E B
ig ,E

A
ig , and Eig are all independently distributed and independent of

each other.

To facilitate clustering, introduce the indicator zig, where zig = 1 if observation i

belongs to group g, and zig = 0 otherwise. Then, it can be shown that

Xi | zig = 1 ∼ Dn×p(Mg,Ag,Σg + ΛgΛ
′
g,Ψg + ∆g∆

′
g,θg),

where D is the distribution in question, and θg is the set of parameters related to the

distribution of Wig.

As in the matrix variate normal case, this model has a two stage interpretation

given by

Xi = Mg +WigA + ΛgY
B
ig + RB

ig ,

Y B
ig = Uig∆

′
g + E B

ig ,

RB
ig = E A

ig∆′g + Eig,
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and

Xi = Mg +WigA + Y A
ig ∆′g + RA

ig,

Y A
ig = ΛgUig + E A

ig ,

RA
ig = ΛgE

B
ig + Eig,

which will be useful for parameter estimation.

6.2 Parameter Estimation

Suppose we observe the N n × p matrices X1, . . . ,XN distributed according to one

of the four distributions. We assume that these data are incomplete and employ an

alternating expectation conditional maximization (AECM) algorithm (Meng and van

Dyk, 1997). This algorithm is now described after inititalization.

AECM 1st Stage The complete-data in the first stage consists of the observed

data Xi, the latent variables Wi = (Wi1, . . . ,WiG)′, and the unknown group labels

zi = (zi1, . . . , ziG)′ for i = 1, 2, . . . , N . In this case, the complete-data log-likelihood

is

`C1 = C +
N∑
i=1

G∑
g=1

zig

[
log πg + log h(wig|θg)

− 1

2
tr

{
1

Wig

(Σ∗g)
−1(Xi −Mg)(Ψ

∗
g)
−1(Xi −Mg)

′

− (Σ∗g)
−1(Xi −Mg)(Ψ

∗
g)
−1A′g − (Σ∗g)

−1Ag(Ψ
∗
g)
−1(Xi −Mg)

′

+Wig(Σ
∗
g)
−1Ag(Ψ

∗
g)
−1A′g

}]
,
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where Σ∗g = Σg + ΛgΛ
′
g, Ψ∗g = Ψg + ∆g∆

′
g and C is constant with respect to the

parameters.

In the E-step, we calculate the following conditional expectations:

ẑig =
πgf(Xi | ϑ̂g)∑G
h=1 πhf(Xi | ϑ̂h)

, aig = E(Wig | Xi, zig = 1, ϑ̂g),

big = E
(

1

Wig

∣∣∣∣ Xi, zig = 1, ϑ̂g

)
, cig = E(logWig | Xi, zig = 1, ϑ̂g).

As usual, all expectations are conditional on current parameter estimates; however,

to avoid cluttered notation, we do not use iteration-specific notation. Similar to the

mixtures of skewed matrix variate distributions presented in Chapter 4, it can be

shown

W ST
ig | Xi, zig = 1 ∼ GIG

(
ρ(Ag,Σ

∗
g,Ψ

∗
g), δ(X; Mg,Σ

∗
g,Ψ

∗
g) + νg,−(νg + np)/2

)
,

WGH
ig | Xi, zig = 1 ∼ GIG

(
ρ(Ag,Σ

∗
g,Ψ

∗
g) + ωg, δ(X; Mg,Σ

∗
g,Ψ

∗
g) + ωg, λg − np/2

)
,

WVG
ig | Xi, zig = 1 ∼ GIG

(
ρ(Ag,Σ

∗
g,Ψ

∗
g) + 2γg, δ(X; Mg,Σ

∗
g,Ψ

∗
g), γg − np/2

)
,

WNIG
ig | Xi, zig = 1 ∼ GIG

(
ρ(Ag,Σ

∗
g,Ψ

∗
g) + κ2

g, δ(X; Mg,Σ
∗
g,Ψ

∗
g) + 1,−(1 + np)/2

)
.

Therefore, the exact updates are again obtained by using the expectations given in

(2.4)–(2.6) for appropriate values of λ, a, and b.

In the M-step, we update π̂g, M̂g, Âg, and θ̂g for g = 1, . . . , G. We have:

π̂g =
Ng

N
, M̂g =

∑N
i=1 ẑig (agbig − 1) Xi∑N
i=1 ẑigagbig −Ng

, Â =

∑N
i=1 ẑig

(
bg − big

)
Xi∑N

i=1 ẑigagbig −Ng

,
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where

Ng =
N∑
i=1

ẑig, ag =
1

Ng

N∑
i=1

ẑigaig, bg =
1

Ng

N∑
i=1

ẑigbig.

The update for θg is dependent on the distribution and will be identical to one of

those given in Gallaugher and McNicholas (2018b).

AECM Stage 2 In the second stage, the complete-data consists of the observed

data Xi, the latent variables Wi, the unknown group labels zi, and the latent matrices

Y B
i = (Y B

i1 , . . . ,Y
B
iG) for i = 1, . . . , N . The complete-data log-likelihood at this stage

is

`C2 = C +
N∑
i=1

G∑
g=1

zig
[

log πg + log h(Wig|νg) + log φq×p(Y
B
ig |0,WigIq,Ψ

∗
g)

+ log φn×p(Xi|Mg +WigAg + ΛgY
B
ig ,WigΣg,Ψ

∗
g)
]

= C +
N∑
i=1

G∑
g=1

−1

2
zig

[
− p log |Σg|+ tr

{
1

Wig

Σ−1
g (Xi −Mg)(Ψ

∗
g)
−1(Xi −Mg)

′

−Σ−1
g (Xi −Mg)(Ψ

∗
g)
−1A′g −

1

Wig

Σ−1
g (Xi −Mg)(Ψ

∗
g)
−1Y B

ig

′
Λ′g

−Σ−1
g Ag(Ψ

∗
g)
−1(Xi −Mg)

′ +WigΣ
−1
g Ag(Ψ

∗
g)
−1A′g + Σ−1

g Ag(Ψ
∗
g)
−1Y B

ig

′
Λ′g

− 1

Wig

Σ−1
g ΛgY

B
ig (Ψ∗g)

−1(Xi −Mg)
′ + Σ−1

g ΛgY
B
ig (Ψ∗g)

−1A′g

+
1

Wig

Σ−1
g ΛgY

B
ig (Ψ∗g)

−1Y B
ig

′
Λ′g

}]
.

In the E-step, it can be shown that

Y B
ig | Xi,Wig, zig = 1 ∼

Nq×p((Iq + Λ′gΣ
−1
g Λg)

−1Λ′gΣ
−1
g (Xi −Mg −WigAg),Wig(Iq + Λ′gΣ

−1
g Λg)

−1,Ψ∗g)
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and so we can calculate the expectations

E
(2)
1ig := E[Y B

ig |ϑ̂,Xi, zig = 1] = Lg(Xi − M̂g − aigÂg),

E
(2)
2ig := E

[
1

Wig

Y B
ig

∣∣∣∣ϑ̂,Xi, zig = 1

]
= Lg(big(Xi − M̂g)− Âg),

E
(2)
3ig := E

[
1

Wig

Y B
ig (Ψ∗g)

−1Y B
ig

′
∣∣∣∣ϑ̂,Xi, zig = 1

]
= p(Iq + Λ̂′gΣ̂

−1
g Λ̂g)

−1 + bigLg(Xi − M̂g)(Ψ
∗
g)
−1(Xi − M̂g)

′L′g

− Lg((Xi − M̂g)(Ψ̂
∗
g)
−1Â′g + Âg(Ψ̂

∗
g)
−1(Xi − M̂g)

′)L′g + aigLgÂg(Ψ̂
∗
g)
−1Â′gL

′
g,

where Lg = (Iq + Λ̂′gΣ̂
−1
g Λ̂g)

−1Λ̂′gΣ̂
−1
g .

In the M-step, the updates for Λg and Σg are calculated. These updates are given

by

Λ̂g =
N∑
i=1

ẑig

[
(Xi − M̂g)(Ψ̂

∗
g)
−1E

(2)
2ig

′
− Âg(Ψ̂

∗
g)
−1E

(2)
1ig

′]( N∑
i=1

zigE
(2)
3ig

)−1

and Σ̂g = diag(SLg ), respectively, where

SLg =
1

Ngp

N∑
i=1

ẑig
[
big(Xi − M̂g)(Ψ̂

∗
g)
−1(Xi − M̂g)

′ − (Âg + Λ̂gE
(2)
2ig)(Ψ̂

∗
g)
−1(Xi − M̂g)

′

− (Xi − M̂g)(Ψ̂
∗
g)
−1Â′g + aigÂg(Ψ̂

∗
g)
−1Âg + Λ̂gE

(1)
1ig(Ψ̂

∗
g)
−1Â′g

− (Xi − M̂g)(Ψ̂
∗
g)
−1E

(2)
2ig

′
Λ̂′g + Âg(Ψ̂

∗
g)
−1E

(2)
1ig

′
Λ̂′g + Λ̂gE

(2)
3igΛ̂

′
g

]
.

AECM Stage 3 In the third stage, the complete-data consists of the observed data

Xi, the latent variables Wi, the labels zi and the latent matrices Y A
i = (Y A

i1 , . . . ,Y
A
iG)
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for i = 1, . . . , N . The complete-data log-likelihood at this stage is

`C3 = C +
N∑
i=1

G∑
g=1

zig
[

log πg + log h(Wig|νg) + log φq×p(Y
A
ig |0,WigΣ

∗
g, Ip)

+ log φn×p(Xi|Mg +WigAg + Y A
ig ∆′g,WigΣ

∗
g,Ψg)

]
= C +

N∑
i=1

G∑
g=1

−1

2
zig

[
− n log |Ψg|+ tr

{
1

Wig

Ψ−1
g (Xi −Mg)

′(Σ∗g)
−1(Xi −Mg)

−Ψ−1
g (Xi −Mg)

′(Σ∗g)
−1Ag −

1

Wig

Ψ−1
g (Xi −Mg)

′(Σ∗g)
−1Y A

ig ∆′g

−Ψ−1
g A′g(Σ

∗
g)
−1(Xi −Mg) +WigΨ

−1
g A′g(Σ

∗
g)
−1Ag

+ Ψ−1
g A′g(Σ

∗
g)
−1Y A

ig ∆′g −
1

Wig

Ψ−1
g ∆gY

A
ig

′
(Σ∗g)

−1(Xi −Mg)

+ Ψ−1
g ∆gY

A
ig

′
(Σ∗g)

−1Ag +
1

Wig

Ψ−1
g ∆gY

A
ig

′
(Σ∗g)

−1Y A
ig ∆′g

}]
.

In the E-step, it can be shown that

Y A
ig |Xi,Wig, zig = 1 ∼

Nn×r((Xi −Mg −WigAg)Ψ
−1
g ∆g(Ir + ∆′gΨ

−1
g ∆g)

−1,WigΣ
∗
g, (Ir + ∆′gΨ

−1
g ∆g)

−1)

and so we can calculate the expectations

E
(3)
1ig := E[Y A

ig |ϑ̂,Xi, zig = 1] = (Xi − M̂g − aigÂg)Dg,

E
(3)
2ig := E

[
1

Wig

Y A
ig |ϑ̂,Xi, zig = 1

]
= (big(Xi − M̂g)− Âg)Dg,

E
(3)
3ig := E

[
1

Wig

Y A
ig

′
(Σ∗g)

−1Y A
ig |ϑ̂,Xi, zig = 1

]
= n(Ir + ∆̂′gΨ̂

−1
g ∆̂g)

−1 + bigD
′
g(Xi − M̂g)

′(Σ̂∗g)
−1(Xi − M̂g)Dg

−D′g((Xi − M̂g)
′(Σ̂∗g)

−1Âg + Â′g(Σ̂
∗
g)
−1(Xi − M̂g))Dg + aigD

′
gÂ
′
g(Σ̂

∗
g)
−1ÂgDg,
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where Dg = Ψ̂−1
g ∆̂g(Ir + ∆̂′gΨ̂

−1
g ∆̂g)

−1.

In the M-step, the updates for ∆g and Ψg are calculated. These updates are given

by

∆̂g =
N∑
i=1

ẑig[(Xi − M̂g)
′(Σ̂∗g)

−1E
(3)
2ig − Â′g(Σ̂

∗
g)
−1E

(3)
1ig](

N∑
i=1

zigE
(3)
3ig)
−1

and Ψ̂g = diag(SDg ), respectively, where

SDg =
1

Ngp

N∑
i=1

ẑig[big(Xi − M̂g)
′(Σ̂∗g)

−1(Xi − M̂g)− (Â′g + ∆̂gE
(3)
2ig

′
)(Σ̂∗g)

−1(Xi − M̂g)

− (Xi − M̂g)
′(Σ̂∗g)

−1Âg + aigÂ
′
g(Σ̂

∗
g)
−1Âg + ∆̂gE

(3)
1ig

′
(Σ̂∗g)

−1Âg

− (Xi − M̂g)
′(Σ̂∗g)

−1E
(3)
2ig∆̂

′
g + Â′g(Σ̂

∗
g)
−1E

(3)
1ig∆̂

′
g + ∆̂gE

(3)
3ig∆̂

′
g].

In our simulations and data analyses, we used soft initializations by generating

group memberships at random using a uniform distribution. From these initial soft

group memberships ẑig, we initialize the location matrices using

M̂g =
1

Ng

N∑
i=1

ẑigXi,

where Ng =
∑N

i=1 ẑig. Each skewness matrix is initialized as a matrix with all entries

equal to 0.1—note that matrices with all entries equal to 0 cannot be used because

the component densities would not be defined. The diagonal scale matrices, Σg and

Ψg are initialized as follows

Σ̂g =
1

pNg

diag

{
N∑
i=1

ẑig(Xi − M̂g)(Xi − M̂g)
′

}
,
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and

Ψ̂g =
1

nNg

diag

{
N∑
i=1

ẑig(Xi − M̂g)
′(Xi − M̂g)

}
.

The factor loadings are initialized randomly from a uniform distribution on [−1, 1].

6.2.1 Computational Issues

One situation that needs to be addressed for all four of these distributions, but par-

ticularly the variance-gamma distribution, is the infinite likelihood problem. This

occurs as a result of the update for M̂g becoming very close, and in some cases equal

to, an observation Xi when the algorithm gets close to convergence. A similar situa-

tion occurs in the multivariate case for the mixture of SAL distributions described in

Franczak et al. (2014) and we follow a similar procedure when faced with this issue.

While iterating the algorithm, when the likelihood becomes numerically infinite, we

set the estimate of M̂g to the previous estimate which we will call M̂∗
g. We then

update Âg according to

Â∗g =

∑N
i=1 ẑig(Xi − M̂∗

g)∑N
i=1 ẑigaig

.

The updates for all other parameters remain the same. As mentioned in Franczak

et al. (2014), this solution is a little naive; however, it does generally work quite

well. It is not surprising that this problem is particularly prevalent in the case of the

variance-gamma distribution because the SAL distribution arises as a special case of

the variance-gamma distribution.

Another computational concern is in the evaluation of the Bessel functions. In

the computation of the GIG expected values and the component densities, it may be

the case that the argument is far larger than the magnitude of the index—especially
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in higher dimensional cases. Therefore, in these situations, the result is computa-

tionally equivalent to zero which causes issues with other computations. In such

a situation, we calculate the exponentiated version of the Bessel function, i.e., we

calculate exp(u)Kλ(u) and subsequent calculations can be easily adjusted.

6.3 Simulation Study

A simulation study was performed for each of the four models presented herein. For

each of the four models, we consider d × d matrices with d ∈ {10, 30} and, for each

value of d, we consider datasets coming from a mixture with two components and

π1 = π2 = 0.5. The datasets have sample sizes N ∈ {100, 200, 400} and the following

parameters are used for all four models for each combination of d and N . We take

M1 = 0 and M2 = M1 + C, where C is a matrix with all entries equal to c for

c ∈ {1, 2, 4}. All other parameters are held constant. We take Σ1 = 2Id, Σ2 = Id,

Ψ1 = Id, Ψ2 = 2Id, and A1 = A2 = 1, where 1 is a matrix of 1’s. Three column

factors and two row factors are used with their values being randomly drawn from a

uniform distribution on [−1, 1]. See Table 6.1 for distribution-specific parameters.

Table 6.1: Distribution-specific parameters used for the simulations, where the
acronyms all take the form MMVDFA and denote “mixture of matrix variate D factor
analyzers” with D being either skew-t (ST), generalized hyperbolic (GH), variance-
gamma (VG), or NIG.

Component 1 Component 2
MMVSTFA ν1 = 4 ν2 = 20
MMVGHFA ω1 = 4, λ1 = −4 ω2 = 10, λ2 = 4
MMVVGFA γ1 = 4 γ2 = 10
MMVNIGFA κ1 = 2 κ2 = 4

We fit the MMVSTFA model to data that is simulated from the MMVSTFA
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model using the parameters above together with the distribution-specific parameters

in Table 6.1. We take an analogous approach with the MMVGHFA, MMVVGFA, and

MMVNIGFA models. However, we fit the MMVBFA model to data that is simulated

from the MMVVGFA model—this is done to facilitate an illustration that uses data

simulated from a mixture of skewed matrix variate distributions. We fit all models for

G ∈ {1, 2, 3, 4} and q, r ∈ {1, 2, 3, 4, 5}. In Tables 6.2 and 6.3, we show the number of

times that the BIC correctly chooses the number of groups, row factors, and column

factors. In Table 6.4, the average ARI and corresponding standard deviation for

each setting is shown. As one would expect, for each model introduced herein, the

classification performance generally improves as N increases. However, this is not the

case for the MMVBFA model. In the case d = 10, it is interesting to note that the

number of correct choices made by the BIC for the row and column factors generally

decreases as we increase the separation (Table 6.2). However, when d is increased to

30, there is no clear trend in this regard (Table 6.3). The classification performance

for the four models introduced here in is excellent overall (Table 6.4). However, when

fitting the MMVBFA model to data simulated from the MMVVGFA model, the

BIC never chooses the correct number of groups for N ∈ {200, 400}. Furthermore,

although not apparent from the tables, the model generally overfits the number of

groups which, as in the multivariate case, is to be expected when using a Gaussian

mixture model in the presence of skewness or outliers.
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Table 6.2: Number of datasets for which the BIC correctly chose the number of
groups, row factors, and column factors (d = 10).

MMVSTFA MMVGHFA MMVVGFA MMVNIGFA MMVBFA
c N G q r G q r G q r G q r G q r

1
100 18 15 19 25 16 24 18 10 12 21 21 20 17 15 19
200 23 18 21 25 25 25 21 11 8 24 24 24 0 19 23
400 25 21 21 25 25 25 22 17 15 24 24 25 0 19 14

2
100 18 14 17 25 9 22 16 7 4 17 18 19 16 17 15
200 24 18 19 25 22 22 23 10 2 23 23 24 0 20 20
400 25 23 23 25 25 25 19 20 19 25 24 25 0 21 14

4
100 8 13 14 23 5 10 17 11 0 24 2 7 19 23 9
200 22 9 16 25 4 16 21 8 8 24 7 24 0 18 18
400 25 12 21 25 22 12 17 10 19 21 0 14 0 17 19

Table 6.3: Number of datasets for which the BIC correctly chose the number of
groups, row factors, and column factors (d = 30).

MMVSTFA MMVGHFA MMVVGFA MMVNIGFA MMVBFA
c N G q r G q r G q r G q r G q r

1
100 24 11 12 25 15 18 25 12 12 25 20 21 15 6 2
200 25 17 18 25 22 23 25 21 20 25 23 25 0 4 3
400 25 22 23 25 25 24 25 25 20 25 25 25 0 10 1

2
100 24 15 17 25 17 18 25 13 11 25 22 23 14 5 0
200 25 22 19 25 19 22 25 20 22 25 23 25 0 5 3
400 25 19 20 25 22 24 25 23 24 25 24 25 0 9 8

4
100 24 17 17 25 12 14 25 17 14 25 23 16 18 2 2
200 25 18 20 25 18 23 25 21 22 25 21 21 0 3 8
400 25 15 15 25 20 24 25 19 20 25 21 22 0 5 7
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6.4 MNIST Digits

Gallaugher and McNicholas (2018b,c) consider the MNIST digits dataset; specifically,

looking at digits 1 and 7 because they are similar in appearance. Herein, we consider

the digits 1, 6, and 7. This dataset consists of 60,000 (training) images of Arabic

numerals 0 to 9. We consider different levels of supervision and perform either clus-

tering or semi-supervised classification. Specifically we look at 0% (clustering), 25%,

and 50% supervision. For each level of supervision, 25 datasets consisting of 200 im-

ages each of digits 1, 6, and 7 are taken. As discussed in Gallaugher and McNicholas

(2018b), because of the lack of variability in the outlying rows and columns of the

data matrices, random noise is added to ensure non-singularity of the scale matrices.

Each of the four models developed herein, as well as the MMVBFA model, are fitted

for 1 to 17 row and column factors. In Table 6.5, the average ARI and misclassifica-

tion rate (MCR) values are presented for each model and each level of supervision.

Table 6.5: Average ARI and MCR values for the MNIST dataset for each level of
supervision, with respective standard deviations in parentheses for digits 1,6, and 7.

Supervision MMVSTFA MMVGHFA MMVVGFA MMVNIGFA MMVBFA

0% (clustering)
ARI 0.58(0.09) 0.58(0.09) 0.62(0.1) 0.47(0.1) 0.36(0.09)
MCR 0.17(0.04) 0.17(0.08) 0.15(0.04) 0.22(0.05) 0.28(0.09)

25%
ARI 0.72(0.1) 0.72(0.1) 0.75(0.1) 0.64(0.2) 0.51(0.16)
MCR 0.10(0.04) 0.10(0.04) 0.094(0.04) 0.14(0.07) 0.20(0.07)

50%
ARI 0.83(0.07) 0.85(0.03) 0.83(0.07) 0.81(0.1) 0.72(0.06)
MCR 0.059(0.03) 0.052(0.02) 0.061(0.03) 0.067(0.05) 0.10(0.06)

In the completely unsupervised case, three of the skewed models have a MCR of

around 16%. However, at 25% supervision, this decreases to around 10% and, at 50%

supervision, this falls again to around 5%. At all three levels of supervision, it is clear

that all four skewed mixture models introduced herein outperform the MMVBFA
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model. In fact, the performance of the MMVBFA model at 25% supervision is not as

good as that of the MMVVGFA, MMVGHFA or MMVSTFA models in the completely

unsupervised case (i.e., 0% supervision).
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Figure 6.1: Heat maps of estimated location matrices for the MMVBFA and
MMVVGFA models for each class in the unsupervised case.

It is of interest to compare heat maps of the estimated location matrices for the

MMVBFA and MMVVGFA models for one of the datasets in the unsupervised case

(Figure 6.1). It can be seen that the images are a lot clearer for the MMVVGFA model
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compared to the MMVBFA model. This is particularly prominent when considering

the the results for the digit 6, for which one can see a possible 1 or 7 in the background

for the MMVBFA heat map. Moreover, for digit 1, one can see a faint 6 in the

background when looking at the MMVBFA heat map.

6.5 Summary

The MMVBFA model has been extended to four skewed distributions; specifically,

the matrix variate skew-t, generalized hyperbolic, variance-gamma, and NIG distri-

butions. AECM algorithms were developed for parameter estimation, and the novel

approaches were illustrated on real and simulated data. In the simulations, the models

introduced herein generally exhibited very good performance under various scenarios.

As expected, the MMVBFA model did not perform well when applied to data from

the MMVVGFA model. In the real data example, all four of the skewed matrix vari-

ate models introduced herein performed better than the MMVBFA model. As one

would expect, the difference in performance was most stark in the clustering case.

Software to implement the approaches introduced herein, written in the Julia

language (Bezanson et al., 2017; McNicholas and Tait, 2019), is available in the

MatrixVariate.jl repository (Počuča et al., 2019).
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Chapter 7

Clustering and Semi-Supervised

Classification for Clickstream Data

via Mixture Models

7.1 Background

Clickstream data present an important means of investigating users’ internet be-

haviour. Unsupervised classification, a.k.a. clustering or cluster analysis, or semi-

supervised classification of such data can be very useful in many different areas of

endeavour. Examples can be found in areas as diverse as online marketing and anti-

terrorism. Early examples of clustering clickstream data can be found in the work

of Banerjee and Ghosh (2000, 2001), which looked at concept based clustering, and

longest common sequences respectively. Other examples clustering and classification

of clickstreams can be found in Montgomery et al. (2004), Aggarwal et al. (2003) and

Wei et al. (2012); notably, none of these approaches draw on mixture models.
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The first use of mixture models for clustering for clickstreams can be found in

Cadez et al. (2003), who considered a mixture of first-order Markov models. One

problem, as mentioned in Cadez et al. (2003), is that the number of parameters can

become very high when the number of website categories is very large. To alleviate

this potential problem, Melnykov (2016c) looked at bi-clustering of the clickstreams

and the states to effectively reduce the number of states. Although this was shown to

be successful in simulations, in the real data analyses, only two states were grouped

together.

Herein, a mixture of first-order continuous time Markov models is introduced for

unsupervised and semi-supervised classification of clickstream data. Specifically, the

type of clickstream data considered herein would come from a website with multiple

categories, such as amazon.com, or a news website with categories such as weather,

breaking news, sports, etc., with the clickstreams recording the movement of a user

from one category to another, as well as the amount of time spent in each category. In

practice, the incorporation of continuous time may be desirable in detecting the true

underlying group structure for internet users. Consider the example of monitoring

potentially inappropriate or criminal behaviour: our approach allows for the fact that

an internet user might accidentally click on a link to, or be redirected to, inappropriate

content and then immediately exit the site. When considering a discrete time Markov

chain, the user would have been recorded as entering the inappropriate site, and could

possibly be flagged as a problematic user. However, if the amount of time spent on

the website can be taken into consideration, this may not be classified as suspicious

activity. In the case of online shopping, a user could again click on the wrong category

but immediately switch. Again, using a discrete time model would not be able to take

85



PhD Thesis - Michael P.B. Gallaugher McMaster - Mathematics and Statistics

this into account, and could lead to incorrect product suggestions.

The basis of the proposed methodology rests on the work done in Albert (1960),

who considered the estimation of the infinitesimal generator in a continuous time

Markov model for a single component. Employing this in the mixture-model context

using the EM algorithm is where the novelty lies.

7.2 Mixtures of First-Order Markov Models

Cadez et al. (2003) and Melnykov (2016c) consider a mixture of first-order Markov

models to cluster clickstreams. Consider a website consisting of many different

webpages that can be accessed from one of J categories. The clickstream of in-

terest is given by the transitions from one category to another. Suppose N click-

streams are observed from a population with G types. Now, assume that N1 of

these clickstreams have unknown labels and denote these clickstreams by x
(1)
i =

(x
(1)
i1 , x

(1)
i2 , . . . , x

(1)
iLi

)′, i ∈ {1, 2, . . . , N1}, and N2 of these are labelled denoted similarly

by x
(2)
i = (x

(2)
i1 , x

(2)
i2 , . . . , x

(2)
iLi

)′, i ∈ {1, 2, . . . , N2}, where N2 = N − N1 and Li is the

length of clickstream i. For notational purposes, note that x
(1)
i is an Li-dimensional

vector of the states for the unlabelled clickstream i, and that each element can take

values in the state space, which corresponds to the number of categories. For ex-

ample, if there are 7 categories on a website, each element of x
(1)
i can take values in

{1, 2, . . . , 7}. The same applies to the labelled observations x
(2)
i .
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The one-step transition matrix for group g is

Λg =



λg11 λg12 · · · λg1J

λg21 λg22 · · · λg2J
...

...
. . .

...

λgJ1 λgJ2 · · · λgJJ


.

Now, define the initial probabilities αgxi1 = P (Xi1 = xi1|xi is in group g), for i =

1, 2, . . . , N . For ease of notation, and recalling that xi1 ∈ {1, 2, . . . , J}, denote an

initial probability vector for each group g by αg = (αg1, αg2, . . . , αgJ). Finally, for

ease of notation, denote the total number of transitions from state j to state k for

unlabelled clickstream i by n
(1)
ijk and likewise for labelled clickstream i by n

(2)
ijk.

The observed likelihood is given by

Lobs(ϑ|Do) =

N1∏
i=1

G∑
g=1

{
πg

[
J∏
j=1

α
I(xi1=j)
gj

][
J∏
j=1

J∏
k=1

λ
nijk
gjk

]}
︸ ︷︷ ︸

Unlabelled Observations

×
N2∏
i=1

G∏
g=1

{
πg

[
J∏
j=1

α
I(xi1=j)
gj

][
J∏
j=1

J∏
k=1

λ
nijk
gjk

]}z
(2)
ig

︸ ︷︷ ︸
Labelled Observations

,

(7.1)

where DO is the observed data and

z
(2)
ig =

 1 if labelled observation i is in group g,

0 otherwise.

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is used
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for parameter estimation. The EM algorithm works with the complete-data log-

likelihood, i.e., the log-likelihood of the observed data together with the missing data.

On the E-step, the expected value of the complete-data log-likelihood is computed

and, on the M-step, it is maximized conditional on the current parameter estimates.

The E- and M-steps are iterated until some stopping criterion is satisfied. Defining

the latent z
(1)
ig to be the group indicators for the unlabelled observations, analogous

to z
(2)
ig in (7.2), the complete-data likelihood in this case can be written

Lc =
2∏

m=1

Nm∏
i=1

G∏
g=1

{[
J∏
j=1

α
I(xi1=j)
gj

][
J∏
j=1

J∏
k=1

λ
nijk
gjk

]}z
(m)
ig

.

In this particular case, where the only latent variables in the EM are the z
(1)
ig values,

the EM algorithm can be outlined as follows.

Initialization: Initialize the parameters πg, αg, and Λg for all g = 1, . . . , G.

E Step: Update each ẑ
(1)
ig by calculating

ẑ
(1)
ig =

π̂g

[∏J
j=1 α̂

I(x
(1)
i1 =j)

gj

] [∏J
j=1

∏J
k=1 λ̂

n
(1)
ijk

gjk

]
∑G

g=1 π̂g

[∏J
j=1 α̂

I(x
(1)
i1 =j)

gj

] [∏J
j=1

∏J
k=1 λ̂

n
(1)
ijk

gjk

] .

M Step: Update the parameter estimates via:

π̂g =

∑2
m=1

∑Nm
i=1 ẑ

(m)
ig

N
, (7.2a)
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α̂gj =

∑2
m=1

∑Nm
i=1 ẑigI(x

(m)
i1 = j)∑2

m=1

∑Nm
i=1 ẑ

(m)
ig

, (7.2b)

λ̂gjk =

∑2
m=1

∑Nm
i=1 ẑ

(m)
ig n

(m)
ijk∑2

m=1

∑Nm
i=1

∑J
k′=1 ẑ

(m)
ig n

(m)
ijk′

. (7.2c)

Note that unsupervised classification (clustering) falls out as the special case when

N1 = N .

7.3 Mixture of First-Order Continuous Time Markov

Models

We now discuss an extension of the methodology presented in Cadez et al. (2003) and

Melnykov (2016c) to take into account the amount of time spent in each category.

Consider the same scenario as before, except this time we also observe a sequence of

times spent in each state before transferring to another state; denote this by t
(m)
i =

(t
(m)
i1 , t

(m)
i2 , . . . , t

(m)
iLi

) for i = 1, . . . , N , where m = 1 corresponds to the unlabelled

observations and m = 2 corresponds to the labelled observations. It is important to

note that, unlike the discrete time case, no transitions are made to the same state

in continuous time. These data can be modelled using a mixture of continuous time

Markov chains, with infinitesimal generators

Qg =



qg11 qg12 · · · qg1J

qg21 qg22 · · · qg2J
...

...
. . .

...

qgJ1 qgJ2 · · · qgJJ


,
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where qgjk ≥ 0 for j 6= k and qgjj = −
∑

k 6=j qgjk for g ∈ {1, 2, . . . , G}. The first item

we note here is that the underlying transition probabilities are given by

P (X
(m)
i(l+1) = x

(m)
i(l+1)|X

(m)
il = x

(m)
il ,z

(m)
ig = 1) = −

q
gx

(m)
il x

(m)
i(l+1)

q
gx

(m)
il x

(m)
il

.

The second is that the T
(m)
il are independent and

T
(m)
il |(X

(m)
il = x

(m)
il , z

(m)
ig = 1) ∼ Exp(−q

gx
(m)
il x

(m)
il

),

where Exp(a) denotes an exponential distribution with rate a. We denote the initial

probability vector by αg, as before.

Albert (1960) presents a detailed background for the theory of continuous time

Markov chains, and also discusses the likelihood function for a sample of continuous

time Markov chains for one component. Modifying this likelihood function for use in

the mixture model context with multiple components, we obtain the likelihood

Lobs(ϑ|Do) =

N1∏
i=1

G∑
g=1

πg
 J∏
j=1

α
I(x

(1)
i1 =j)

gj

 J∏
j=1

J∏
k 6=j

q
n

(1)
ijk

gjk

− J∏
j=1

q
I(x

(1)
iLi

=j)

gjj


× exp

 J∑
j=1

L∑
l=1

qgjjt
(1)
il I(x

(1)
il = j)


×

N2∏
i=1

G∏
g=1

πg
 J∏
j=1

α
I(x

(2)
i1 =j)

gj

 J∏
j=1

J∏
k 6=j

q
n

(2)
ijk

gjk

− J∏
j=1

q
I(x

(2)
iLi

=j)

gjj



× exp

 J∑
j=1

L∑
l=1

qgjjt
(2)
il I(x

(2)
il = j)


z

(2)
ig
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and the complete-data log-likelihood is

`c =
2∑

m=1

Nm∑
i=1

G∑
g=1

z
(m)
ig

log πg + J∑
j=1

I(x
(m)
i1 = j) logαgj +

J∑
j=1

J∑
k 6=j

n
(m)
ijk log qgjk

+
J∑
j=1

I(x
(m)
iLi

= j) log(−qgjj) +
J∑
j=1

Li∑
l=1

qgjjt
(m)
il I(x

(m)
il )

 . (7.3)

In the E step, we update the latent indicator variables z
(1)
ig , and these are the only

latent variables for this EM algorithm. At iteration s+ 1, this update is given by

ẑ
(1)
ig =

h(π̂g, α̂g, Q̂g,x
(1)
i , t

(1)
i )∑G

g′=1 h(π̂g′ , α̂g′ , Q̂g′ ,x
(1)
i , t

(1)
i )

, (7.4)

where

h(π̂g, α̂g, Q̂g,x
(1)
i , t

(1)
i ) = π̂g

[
J∏
j=1

(α̂gj)
I(x

(1)
i1 =j)

][
J∏
j=1

(−q̂gjj)I(x
(1)
iL =j)

][
J∏
j=1

J∏
k 6=j

(q̂gjk)
n

(1)
ijk

]

× exp

{
J∑
j=1

Li∑
l=1

q̂gjjt
(1)
il I(x

(1)
il = j)

}
.

In the M step, we update our parameters, π̂g, α̂g and Q̂g. The updates for the π̂g and

α̂g are the same as those in the discrete case, see (7.2a) and (7.2b). We also update

each Q̂g, and these updates are given by

q̂gjk =


∑N
i=1 z

(m)
ig nijk

λ̂gj
if j 6= k,

−
∑

k 6=j q̂gjk if k = j,
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where λ̂gj = a/b with

a =
2∑

m=1

Nm∑
i=1

[
Li∑
l=1

ẑ
(m)
ig t

(m)
il I(x

(m)
il = j) +

J∑
k 6=j

ẑ
(m)
ig n

(m)
ijk

]
,

b =
2∑

m=1

Nm∑
i=1

ẑ
(m)
ig I(x

(m)
iLi

= j) +
2∑

m=1

Nm∑
i=1

J∑
k 6=j

ẑ
(m)
ig n

(m)
ijk .

Notably, the number of free parameters in this continuous time model are the same

as those in the discrete time model.

7.3.1 Computational Issues

We note that calculating the updates for ẑ
(1)
ig using (7.4) can lead to computational

problems. This is due to the calculation of h(·) being computationally equal to 0

for all groups g, which occurs when log h(·) becomes large and negative, followed by

exponentiating this large negative value to get the value of h(·). Taking this into

account, we can rewrite this update as

1

ẑ
(1)
ig

=
G∑

g′=1

exp

{
log

(
π̂g′

π̂g

)
+

J∑
j=1

I(xi1 = j) log

(
α̂g′j
α̂gj

)
+

J∑
j=1

J∑
k=1

nijk log

(
q̂g′jk
q̂gjk

)

+
J∑
j=1

I(xiLi) log

(
q̂g′jj
q̂gjj

)
+

J∑
j=1

Li∑
l=1

I(xil = j)til(q̂g′jj − q̂gjj)

}
,

which allows the ẑ
(1)
ig to be computed directly instead of having to calculate the h(·)

functions for each group separately.

A second computational issue, as discussed in Melnykov (2016c), is the case where

there are no transitions present in the data between two states, i.e., nijk = 0 for all i.

In this case, the estimates for qgjk would be zero for all g. Firstly, this is a problem
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because we can make the reasonable assumption that all states communicate with each

other, making an estimate of zero unrealistic. Secondly, this would cause problems

with the calculation of the likelihood. We, therefore, set a lower bound of 10−6 for

all parameter values.

7.4 Analyses

7.4.1 Simulation 7.1

In the first simulation, we simulated from two groups with infinitesimal generators

Q1 =



−0.100 0.050 0.020 0.020 0.010

0.100 −1.000 0.200 0.100 0.600

0.020 0.050 −0.100 0.005 0.025

0.050 0.050 0.050 −1.000 0.850

0.006 0.004 0.050 0.040 −0.100


,

Q2 =



−0.100 0.001 0.009 0.015 0.075

0.700 −1.000 0.200 0.050 0.050

0.010 0.005 −0.100 0.030 0.055

0.400 0.400 0.100 −1.000 0.100

0.030 0.030 0.020 0.020 −0.100


.

We took sample sizes of N ∈ {50, 100, 200, 400} with clickstream lengths L ranging

from 4 to 25 and 25 to 100. We also considered two cases with equal proportions,

π1 = π2 = 0.5 (Simulation 7.1A) and π1 = 0.2, π2 = 0.8 (Simulation 7.1B). The
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purpose of the second case is that, when looking for suspicious behaviour, it is highly

likely that there are fewer suspicious users than regular users.

In these simulations, we have large separation in the underlying transition prob-

abilities; however, because the diagonal elements are identical between groups, there

is no separation in the average amount of time spent in each category. The results

for Simulations 7.1A and 7.1B for both the discrete and continuous time models are

summarized in Tables 7.1 and 7.2. After fitting the model for G = 1, 2, . . . , 5, we

consider the number of times each G was chosen using the BIC as well as the average

ARI and the associated standard deviation.

In this case, we see that the results for the continuous and discrete models are

almost identical, with only slight variations in the ARI between the two methods. The

BIC in all cases with low values of L, correctly finds two groups for both the continuous

and discrete models. When L is increased, there is a very slight chance of overfitting

the number of groups. It is interesting to note that a higher sample size does not

affect the classification performance as much as a longer length of the clickstream.

Finally, very little difference is seen when changing the mixing proportions. The

similar results between the discrete and continuous time models illustrate the ability

of the continuous time model to effectively detect group structure based solely on

differences in transition probabilities.

7.4.2 Simulation 7.2

In this simulation, we once again look at clustering. This time, data are simulated

from three different groups, with mixing proportions π1 = π2 = π3 = 1/3 (Simulation

7.2A) and π1 = 0.2, π2 = 0.4, π3 = 0.4 (Simulation 7.2B). There are seven states, α1
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is taken to be uniform, α2 gives probability 0.1 for all states except state 7, which

has probability of 0.4, and α3 gives probability 0.1 to all states except state 3, which

has probability 0.4. The infinitesimal generators are taken to be

Q1 =



−0.14 0.05 0.02 0.02 0.01 0.02 0.02

0.10 −1.40 0.20 0.10 0.60 0.20 0.20

0.02 0.05 −0.14 0.01 0.03 0.02 0.02

0.05 0.05 0.05 −1.40 0.80 0.25 0.20

0.01 0.00 0.05 0.04 −0.14 0.04 0.01

0.70 0.10 0.10 0.10 0.10 −1.40 0.30

0.50 0.50 0.05 0.05 0.10 0.20 −1.40



,

Q2 =



−1.40 0.40 0.30 0.15 0.15 0.25 0.15

0.02 −0.14 0.03 0.02 0.03 0.03 0.01

0.30 0.50 −1.40 0.10 0.10 0.20 0.20

0.01 0.01 0.01 −0.14 0.05 0.03 0.03

0.01 0.01 0.04 0.05 −0.14 0.02 0.02

0.70 0.05 0.15 0.05 0.15 −1.40 0.30

0.05 0.05 0.01 0.01 0.01 0.01 −0.14



,
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Q3 =



−1.40 0.20 0.70 0.20 0.10 0.10 0.10

0.60 −1.40 0.20 0.20 0.20 0.10 0.10

0.10 0.10 −1.40 0.80 0.10 0.10 0.20

0.05 0.03 0.03 −0.14 0.01 0.01 0.01

0.05 0.05 0.01 0.01 −0.14 0.01 0.02

1.00 0.02 0.03 0.02 0.03 −1.40 0.30

0.20 0.20 0.20 0.20 0.20 0.40 −1.40



.

In this case, there are two groups with similar underlying transition probabilities,

but different amounts of time on average being spent in each state. The third group

has a large amount of separation in the underlying transition probabilities in com-

parison to the first two. Also, the third group is defined by more time spent in states

4 and 5 on average than the rest of the states. From the results (Tables 7.3 and 7.4),

we see that the continuous time model outperforms the discrete time model in all

cases. Specifically, for short clickstream lengths, the BIC under-fits the true number

of groups in all cases for the discrete model. Increasing N for shorter clickstreams

helps the discrete model a little, i.e., for small N , the discrete time model finds only

one group but, for larger N , two groups are selected, which is closer to the true

number of groups. Increasing the length of the clickstream also helps with selecting

the correct number of groups for the discrete time model, but still requires a sample

size of 600 to choose the correct number of groups in all cases. The continuous time

model performs well for all values of L and N—again, increasing the sample size is

not as impactful as increasing the clickstream length. It is not surprising that the

continuous time model outperforms the discrete time model in this case because there

is very little separation in the underlying transition probabilities for two of the groups
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but the time spent in each state is fairly well separated between the three groups.

Accordingly, the discrete model, being unable to take into account the amount of

time in each state, is unable to distinguish between groups 1 and 2.

Table 7.1: Summary of the results from Simulation 7.1A (π1 = π2 = 0.5).

L from 4 to 25

Sample Size Model G=1 G=2 G=3 G=4 G=5 ARI (sd)
Continuous 0 100 0 0 0 0.935 (0.069)

N=50
Discrete 0 100 0 0 0 0.942 (0.06)
Continuous 0 100 0 0 0 0.955(0.045)

N=100
Discrete 0 100 0 0 0 0.955(0.043)
Continuous 0 100 0 0 0 0.958(0.029)

N=200
Discrete 0 100 0 0 0 0.958(0.029)
Continuous 0 100 0 0 0 0.950(0.026)

N=400
Discrete 0 100 0 0 0 0.950(0.025)

L from 25 to 100

Sample Size Model G=1 G=2 G=3 G=4 G=5 ARI (sd)
Continuous 0 98 2 0 0 0.995 (0.032)

N=50
Discrete 0 98 2 0 0 0.995 (0.035)
Continuous 0 99 1 0 0 0.999(0.012)

N=100
Discrete 0 96 4 0 0 0.994(0.036)
Continuous 0 98 2 0 0 0.999(0.008)

N=200
Discrete 0 98 2 0 0 0.997(0.022)
Continuous 0 99 1 0 0 0.999(0.004)

N=400
Discrete 0 95 5 0 0 0.998(0.012)
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Table 7.2: Summary of the results from Simulation 7.1B (π1 = 0.2, π2 = 0.8).

L from 4 to 25

Sample Size Model G=1 G=2 G=3 G=4 G=5 ARI (sd)
Continuous 0 100 0 0 0 0.940 (0.070)

N=50
Discrete 0 100 0 0 0 0.948 (0.067)
Continuous 0 100 0 0 0 0.955(0.042)

N=100
Discrete 0 100 0 0 0 0.957(0.041)
Continuous 0 100 0 0 0 0.960(0.032)

N=200
Discrete 0 100 0 0 0 0.957(0.032)
Continuous 0 100 0 0 0 0.957(0.024)

N=400
Discrete 0 100 0 0 0 0.958(0.025)

L from 25 to 100

Sample Size Model G=1 G=2 G=3 G=4 G=5 ARI (sd)
Continuous 0 91 9 0 0 0.960 (0.14)

N=50
Discrete 0 91 9 0 0 0.960 (0.14)
Continuous 0 99 1 0 0 0.999(0.004)

N=100
Discrete 0 89 11 0 0 0.965(0.13)
Continuous 0 96 4 0 0 0.992(0.056)

N=200
Discrete 0 91 9 0 0 0.970(0.11)
Continuous 0 96 4 0 0 0.996(0.026)

N=400
Discrete 0 91 9 0 0 0.987(0.067)
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Table 7.3: Summary of results for Simulation 7.2A (π1 = π2 = π3 = 1/3).

L from 4 to 25

Sample Size Model G=1 G=2 G=3 G=4 G=5 ARI (sd)
Continuous 0 0 100 0 0 0.934 (0.045)

N=75
Discrete 34 66 0 0 0 0.302 (0.22)
Continuous 0 0 100 0 0 0.952(0.026)

N=150
Discrete 0 100 0 0 0 0.467(0.043)
Continuous 0 0 100 0 0 0.958(0.021)

N=300
Discrete 0 100 0 0 0 0.477(0.032)
Continuous 0 0 100 0 0 0.956(0.014)

N=600
Discrete 0 100 0 0 0 0.476(0.021)

L from 25 to 100

Sample Size Model G=1 G=2 G=3 G=4 G=5 ARI (sd)
Continuous 0 0 95 5 0 0.994 (0.026)

N=75
Discrete 0 100 0 0 0 0.564 (0.004)
Continuous 0 0 94 6 0 0.994(0.023)

N=150
Discrete 0 89 11 0 0 0.603(0.10)
Continuous 0 0 98 2 0 0.992(0.056)

N=300
Discrete 0 2 98 0 0 0.872(0.051)
Continuous 0 0 97 3 0 0.999(0.006)

N=600
Discrete 0 0 100 0 0 0.882(0.020)
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Table 7.4: Summary of results for Simulation 7.2B (π1 = 0.2, π2 = 0.4, π3 = 0.4).

L from 4 to 25

Sample Size Model G=1 G=2 G=3 G=4 G=5 ARI (sd)
Continuous 0 0 100 0 0 0.935 (0.045)

N=75
Discrete 30 70 0 0 0 0.382 (0.26)
Continuous 0 0 100 0 0 0.948(0.030)

N=150
Discrete 0 100 0 0 0 0.559(0.050)
Continuous 0 0 100 0 0 0.953(0.023)

N=300
Discrete 0 100 0 0 0 0.566(0.034)
Continuous 0 0 100 0 0 0.953(0.015)

N=600
Discrete 0 100 0 0 0 0.569(0.025)

L from 25 to 100

Sample Size Model G=1 G=2 G=3 G=4 G=5 ARI (sd)
Continuous 0 0 98 2 0 0.999 (0.011)

N=75
Discrete 0 100 0 0 0 0.677 (0.007)
Continuous 0 0 96 4 0 0.996(0.021)

N=150
Discrete 0 99 1 0 0 0.682(0.031)
Continuous 0 0 96 4 0 0.997(0.018)

N=300
Discrete 0 29 71 0 0 0.842(0.10)
Continuous 0 0 97 3 0 0.999(0.004)

N=600
Discrete 0 0 100 0 0 0.915(0.018)
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7.4.3 Simulation 7.3

In this simulation, semi-supervised classification was considered by simulating under

the same circumstances as Simulation 7.1A (Simulation 7.3A) and Simulation 7.2A

(Simulation 7.3B). Supervision levels of 20, 40 and 80% were considered, and the

average ARI values for observations considered unlabelled with standard deviations

are shown in Tables 7.5 and 7.6.

For Simulation 7.3A, we again see that the results are very similar between the dis-

crete and continuous time models. Increasing the level of supervision, unsurprisingly

improves the classification performance for short clickstream lengths. When increas-

ing the lengths of the clickstreams, perfect classification performance is achieved.

For Simulation 7.3B, again the clickstream model outperforms the discrete model.

Moreover, increasing the clickstream length again improves the performance for both

models, giving perfect classification for the continuous time model for all levels of

supervision, and a much improved ARI for the discrete time model.

7.4.4 Modified MSNBC Data

There is a dearth of publicly available clickstream data that records the amount of

time spent in each state. Here, the MSNBC dataset that was analyzed in Melnykov

(2016c) is used for illustration, with simulated times added in each state. There

are 17 categories in this dataset: (1) frontpage, (2) news, (3) tech, (4) local, (5)

opinion, (6) on-air, (7) misc, (8) weather, (9) msn-news, (10) health, (11) living, (12)

business, (13) msn-sports, (14) sports, (15) summary, (16) bbs, and (17) travel. The

clickstreams in this data contained within-state repetitions, meaning, for example,

that a user could look at three different pages within the weather category, and would
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be recorded as (5, 5, 5) in the clickstream. To avoid imposing a non-existent group

structure with the simulated time points, the times were simulated using exponential

time with rate 1/w, where w is the number of within-state repetitions. Therefore,

more within-state transitions would result in longer times on average, which would be

a reasonable assumption. The MSNBC data is available in the ClickClust package

Melnykov (2016a) for R (R Core Team, 2019) and modified MSNBC dataset analyzed

herein is available as mMSNBC within the ClickClustCont package (Gallaugher and

McNicholas, 2019a) for R.

Three different cases are considered with the number of groups ranging from G = 1

to G = 5. The first case is our continuous time model (CM), the second is the

discrete model using the data without within-state repetitions (DM), and finally, we

fit the discrete model on the data with within-state repetitions (DWM), which is the

original dataset. Both the DWM and CM models find three groups, and the DM

model finds only two groups. Table 7.7 contains classification tables comparing the

classification results of the CM and DWM models as well as the CM and DM models.

It is interesting to note that the clusters found by the CM and DWM models are

very similar. Moreover, when comparing the CM and DM models, it appears that

observations in groups 1 and 2 using the CM are generally combined into one cluster

in the DM.

These results are not too surprising because the data with within-state transi-

tions would implicitly take into account the amount of time whereas the data with-

out within-state transitions would not contain this information. This also indicates

that if a given clickstream dataset contains the time information but no within-state

transitions, the CM model would have the ability to detect, potentially important,
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additional groups not found by the discrete model.

Table 7.5: Average ARI values for unlabelled observations over 100 datasets, with
standard deviations in parentheses, for Simulation 7.3A.

L from 4 to 25

Sample Size Model 20% Supervision 40% Supervision 80% Supervision
Continuous 0.946(0.069) 0.967(0.068) 0.984(0.079)

N=50
Discrete 0.945(0.071) 0.967(0.068) 0.984(0.079)
Continuous 0.948(0.046) 0.960(0.047) 0.990(0.044)

N=100
Discrete 0.947(0.046) 0.964(0.042) 0.992(0.039)
Continuous 0.954(0.035) 0.969(0.034) 0.987(0.034)

N=200
Discrete 0.954(0.034) 0.969(0.032) 0.987(0.034)
Continuous 0.963(0.020) 0.971(0.022) 0.991(0.021)

N=400
Discrete 0.963(0.020) 0.972(0.021) 0.991(0.021)

L from 25 to 100
Continuous 1.00(0.00) 1.00(0.00) 1.00(0.00)

N=50
Discrete 1.00(0.00) 1.00(0.00) 1.00(0.00)
Continuous 1.00(0.00) 1.00(0.00) 1.00(0.00)

N=100
Discrete 1.00(0.00) 1.00(0.00) 1.00(0.00)
Continuous 1.00(0.00) 1.00(0.00) 1.00(0.00)

N=200
Discrete 1.00(0.00) 1.00(0.00) 1.00(0.00)
Continuous 1.00(0.00) 1.00(0.00) 1.00(0.00)

N=400
Discrete 1.00(0.00) 1.00(0.00) 1.00(0.00)
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Table 7.6: Average ARI values for unlabelled observations over 100 datasets, with
standard deviations in parentheses, for Simulation 7.3B.

L from 4 to 25

Sample Size Model 20% Supervision 40% Supervision 80% Supervision
Continuous 0.959(0.042) 0.968(0.045) 0.988(0.050)

N=75
Discrete 0.501(0.087) 0.594(0.109) 0.828(0.168)
Continuous 0.960(0.028) 0.969(0.029) 0.988(0.033)

N=150
Discrete 0.526(0.074) 0.638(0.065) 0.882(0.103)
Continuous 0.966(0.021) 0.976(0.020) 0.989(0.022)

N=300
Discrete 0.578(0.053) 0.670(0.058) 0.890(0.072)
Continuous 0.967(0.013) 0.975(0.013) 0.993(0.013)

N=600
Discrete 0.616(0.034) 0.702(0.037) 0.890(0.056)

L from 25 to 100
Continuous 1.00(0.00) 1.00(0.00) 1.00(0.00)

N=75
Discrete 0.848(0.080) 0.899(0.069) 0.977(0.071)
Continuous 1.00(0.00) 1.00(0.00) 1.00(0.00)

N=150
Discrete 0.889(0.043) 0.904(0.052) 0.973(0.051)
Continuous 1.00(0.00) 1.00(0.00) 1.00(0.00)

N=300
Discrete 0.906(0.033) 0.927(0.038) 0.978(0.033)
Continuous 1.00(0.00) 1.00(0.00) 1.00(0.00)

N=600
Discrete 0.909(0.021) 0.928(0.020) 0.972(0.027)

Table 7.7: Classification comparison of the CM model with the DWM and DM models
for the MSNBC dataset with simulated time stamps.

DWM DM
CWM 1 2 3 1 2

1 90 4 0 78 16
2 14 128 3 139 6
3 3 4 77 2 82
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7.5 Summary

An approach was introduced that incorporates continuous time for unsupervised and

semi-supervised classification of clickstream data. This approach is based on a mix-

ture of first-order continuous time Markov models. An EM algorithm was outlined

for parameter estimation, and the BIC was used to select the number of groups G.

In the analyses that were carried out, we noted that incorporating the amount

of time spent in each category allowed for the detection of groups of users that the

discrete time model was unable to detect. This was especially true where there was

not a lot of separation in the transition probabilities between groups, but differences

in the average amount of time spent in each state. Moreover, if the amount of time

spent in each state was similar, on average, between groups but there was a lot of

separation in the transition probabilities, the continuous time model performance was

very similar to the discrete time model. Finally, the real data analysis suggested that

if no within-state transitions are considered, but the amount of time is given, then the

continuous model would be able to detect, potentially important, additional groups

not found when using the discrete model. These results indicate that the continuous

time model is possibly more robust than the discrete time model, especially when

there are no within-state transitions provided.
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Chapter 8

Parsimonious Mixtures of Matrix

Variate Bilinear Factor Analyzers

8.1 Introduction

In this chapter, a small extension of the MMVBFA model from Chapter 5. One

feature of the MMVBFA model is that each of the resultant scale matrices has the

same form as the covariance matrix in the (multivariate) mixture of factor analyzers

model. Therefore, MMVBFA lends itself naturally to a matrix variate extension

of the parsimonious Gaussian mixture models (PGMMs) developed by McNicholas

and Murphy (2008). Specifically, we apply combinations of the constraints Λg = Λ,

Σg = Σ, Σg = σgIn with σg ∈ R+, ∆g = ∆, Ψg = Ψ, and Ψg = ψgIp with ψg ∈ R+.

This leads to a total of 64 models, which we refer to as the parsimonious mixtures

of matrix variate bilinear factor analyzers (PMMVBFA) family. In Tables 8.1 and

8.2, the models along with the number of scale parameters are presented for the row

and column scale matrices. We will refer to these as the row and column models,
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Table 8.1: Row models with the respective number of scale parameters.

Λg = Λ Σg = Σ Σg = σgIn Number of Scale Parame-
ters

C C C [nq + n− q(q − 1)/2] + 1
C C U [nq + n− q(q − 1)/2] + n
C U C [nq + n− q(q − 1)/2] +G
C U U [nq + n− q(q − 1)/2] + nG
U C C G[nq + n− q(q − 1)/2] + 1
U C U G[nq + n− q(q − 1)/2] + n
U U C G[nq + n− q(q − 1)/2] +G
U U U G[nq+n− q(q−1)/2]+nG

Table 8.2: Column models with the respective number of scale parameters.

∆g = ∆ Ψg = Ψ Ψg = ψgIr Number of Scale Parame-
ters

C C C [pr + p− r(r − 1)/2] + 1
C C U [pr + p− r(r − 1)/2] + p
C U C [pr + p− r(r − 1)/2] +G
C U U [pr + p− r(r − 1)/2] + pG
U C C G[pr + p− r(r − 1)/2] + 1
U C U G[pr + p− r(r − 1)/2] + p
U U C G[pr + p− r(r − 1)/2] +G
U U U G[pr+ p− r(r− 1)/2] + pG

respectively. Parameter estimation proceeds in the same manner as the MMVBFA

model with the exception of the updates for Σg, Ψg, Λg, and ∆g. The exact updates

are given in Appendix A.
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8.2 Simulations

8.2.1 Simulation 8.1

Three simulations were conducted. In the first, we consider d × d matrices with

d ∈ {10, 20}, G = 2 and M1 = 0,M2 = M
(δ)
LT, where δ ∈ {1, 2, 4} and M

(δ)
LT represents

a lower triangular matrix with δ on and below the diagonal. We consider the case

where both rows and columns have a CCU model. The parameters for the column

factor loading matrices are:

Λ1 = Λ2 =


15 05 05

02 12 02

03 03 13

 (d = 10), Λ1 = Λ2 =


110 010 010

04 14 04

06 06 16

 (d = 20).

The row factor loading matrices are

∆1 = ∆2 =

 −1d/2 0d/2

1d/2 1d/2

 ,
where 1c and 0c represent c-dimensional vectors of 1s and 0s, respectively. The error

covariance matrices are taken to be

Σ1 = Σ2 = Ψ1 = Ψ2 = D,

where D is a diagonal matrix with diagonal entries dtt = t/5 when d = 10 and

dtt = t/10 when d = 20.

Finally, sample sizes of N ∈ {100, 200, 400} are considered with π1 = π2 = 0.5.
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Table 8.3: Number of datasets for which the BIC correctly chose the number of groups
(G), column factors (q), row factors (r), row model (RM), column model (CM), and
the average ARI over 25 datasets (Simulation 8.1)

d = 10 d = 20

δ N G q r RM CM ARI(sd) G q r RM CM ARI(sd)

1
100 0 25 25 25 25 0.000(0.00) 25 24 25 25 25 1.000(0.00)
200 21 25 25 25 25 0.723(0.33) 25 24 24 25 24 1.000(0.00)
400 25 25 25 25 25 0.883(0.04) 25 25 25 25 25 1.000(0.002)

2
100 25 25 25 25 25 1.000(0.00) 25 24 25 25 25 1.000(0.00)
200 25 25 25 25 25 0.999(0.004) 25 25 25 25 25 1.000(0.00)
400 25 25 25 25 25 1.000(0.002) 25 25 25 25 25 1.000(0.00)

4
100 25 25 25 25 25 1.000(0.00) 25 24 25 25 25 1.000(0.00)
200 25 25 24 25 25 1.000(0.00) 25 25 25 25 25 1.000(0.00)
400 25 25 25 25 25 1.000(0.00) 25 25 25 25 25 1.000(0.00)

For each of these combinations, 25 datasets are simulated. The model is fit for

G = 1, . . . , 4 groups, 1 to 5 row factors and column factors, and all 64 scale models,

leading to a total of 6,400 models fit for each dataset.

In Table 8.3, we display the number of times the correct number of groups, row

factors, and column factors are selected by the BIC, as well as the number of times the

row and column models were correctly identified. We also include the average ARI

over the 25 datasets with associated standard deviations. As expected, as the sepa-

ration and sample size increase, better classification results are obtained. The correct

number of groups, column factors, and row factors are chosen for all 25 datasets in

nearly all cases considered. Moreover, the selection of the row and column models is

very accurate in all cases considered.
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8.2.2 Simulation 8.2

In this simulation, similar conditions to Simulation 8.1 are considered, including using

the same mean matrices; however, we place a CUC model on the rows and a UCU

model on the columns. The column factor loading matrices are the same as used

for Simulation 8.1, ∆1 is the same as in Simulation 8.1, and the row factor loadings

matrix for group 2 is

∆2 =

 1d/2 −1d/2

1d/2 0d/2

 .
We take Σ1 = Id,Σ2 = 2Id and Ψ1 = Ψ2 = D, where D is the same as from

Simulation 8.1.

Results are displayed in Table 8.4. Overall, we obtain excellent classification

results, even when the sample size is small and there is little spatial separation. There

is some difficulty in choosing the column model when d = 10 but this issue abates

for N = 400. When d = 20, some difficulty is encountered in choosing the correct

number of column factors q; however, the classification performance is consistently

excellent.
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Table 8.4: Number of datasets for which the BIC correctly chose the number of groups
(G), column factors (q), row factors (r), row model (RM), column model (CM), and
the average ARI over 25 datasets (Simulation 8.2)

d = 10 d = 20

δ N G q r RM CM ARI(sd) G q r RM CM ARI(sd)

1
100 25 25 25 25 25 0.990(0.02) 25 0 25 25 25 1.000(0.00)
200 25 25 25 25 1 0.998(0.007) 25 24 25 25 25 1.000(0.00)
400 25 25 25 25 25 0.997(0.006) 25 25 25 25 25 1.000(0.00)

2
100 25 25 25 25 0 0.998(0.01) 25 0 25 25 25 1.000(0.00)
200 25 25 25 25 0 1.000(0.00) 25 24 25 25 25 1.000(0.00)
400 25 25 25 25 25 0.999(0.003) 25 25 25 25 25 1.000(0.00)

4
100 25 25 25 25 0 1.000(0.00) 25 10 25 25 25 1.000(0.00)
200 25 25 25 25 2 1.000(0.00) 25 23 25 25 25 1.000(0.00)
400 25 25 24 25 25 1.000(0.00) 25 5 25 25 20 1.000(0.00)

8.2.3 Simulation 8.3

In the last simulation, the mean matrices are now diagonal with diagonal entries equal

to δ. A CCU model is taken for the rows. In the case of d = 10, the parameters are

Λ1 = Λ2 =



13 03 03

12 02 12

−12 −12 −12

−13 −13 03


, Σ1 = Σ2 = Id{σ2,2=2,σ9,9=4}.

To clarify this notation, the row scale matrices have 1s on the diagonal except for

places 2 and 9 which have values 2 and 4 respectively. The column scale matrices

have a UCC model with

∆1 =

 −15 05

15 15

 , ∆2 =

 −15 15

15 05

 , Ψ1 = Ψ2 = I10.
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In the case of d = 20, the parameters are

Λ1 = Λ2 =



16 06 06

14 04 14

−14 −14 −14

−16 −16 06


, Σ1 = Σ2 = I30{σ2,2=4,σ9,9=2,σ12,12=3,σ19,19=5},

and

∆1 =

 −110 010

110 110

 , ∆2 =

 −110 110

110 010

 , Ψ1 = Ψ2 = I20.

The results are presented in Table 8.5. In this case, there is more variability in the

correct selection of the row and column models, especially the latter. The selection of

q and r is generally accurate. The classification performance is generally very good

with the exception of the combination of a small sample size N with a low degree of

separation δ.

8.3 MNIST Data Analysis

The MNIST digits dataset is again considered. In this chapter, we consider dig-

its 1 and 2. This dataset consists of 60,000 (training) images of Arabic numerals

0 to 9. We consider different levels of supervision and perform either clustering or

semi-supervised classification. Specifically we look at 0% (clustering), 25%, and 50%

supervision. For each level of supervision, 25 datasets consisting of 200 images each

of digits 1 and 2 are taken. As discussed in Gallaugher and McNicholas (2018b),
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Table 8.5: Number of datasets for which the BIC correctly chose the number of groups
(G), column factors (q), row factors (r), row model (RM), column model (CM), and
the average ARI over 25 datasets (Simulation 8.3)

d = 10 d = 20

δ N G q r RM CM ARI(sd) G q r RM CM ARI(sd)

1
100 0 25 25 25 0 0.000(0.00) 0 25 25 25 0 0.000(0.00)
200 0 25 25 20 0 0.000(0.00) 0 25 25 25 0 0.000(0.00)
400 22 12 25 12 16 0.705(0.27) 22 21 24 19 13 0.833(0.32)

2
100 25 24 25 24 17 0.968(0.04) 21 24 25 25 10 0.840(0.37)
200 25 25 25 25 11 0.984(0.02) 25 25 25 25 11 1.000(0.00)
400 25 20 25 18 22 0.988(0.01) 25 25 25 25 20 1.000(0.00)

4
100 25 24 25 24 15 1.000(0.00) 25 25 25 25 18 1.000(0.00)
200 25 25 25 25 10 1.000(0.00) 25 25 25 25 22 1.000(0.00)
400 25 24 25 20 23 1.000(0.00) 25 25 25 25 17 1.000(0.00)

Table 8.6: Average ARI values and misclassification rates for each level of supervision,
with respective standard deviations in parentheses, for datasets consisting of digits 1
and 2 drawn from the MNIST dataset

Supervision ARI Misclassification rate

0% (clustering) 0.652(0.05) 0.0962(0.02)
25% 0.733(0.059) 0.072(0.02)
50% 0.756(0.064) 0.065(0.018)

because of the lack of variability in the outlying rows and columns of the data matri-

ces, random noise is added to ensure non-singularity of the scale matrices. In Table

8.6, we present the average ARIs and misclassification rates along with respective

standard deviations.

As expected, as the level of supervision is increased, better classification perfor-

mance is obtained. Specifically, the MCR decreases to around 6.5% with an ARI

of 0.756 when the level of supervision is raised to 50%. Moreover, the performance

in the completely unsupervised case is fairly good. In Figure 8.1, heatmaps for the

estimated mean matrices, for one dataset, for each digit and level of supervision are
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Figure 8.1: Heatmaps of the mean matrices, from one of the datasets, for each digit
at each level of supervision.

presented. Although barely perceptible, there is a slight increase in clarity as the

supervision is raised to 50%. For all levels of supervision, the UUU row model is

chosen for all 25 datasets. The chosen model for the columns is the UCU model for 7

of the 25 datasets for 0% and 50% supervision, and 10 datasets for 25% supervision.
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Chapter 9

Skewed Distributions or

Transformations? Incorporating

Skewness in a Cluster Analysis

9.1 Introduction

Due to its mathematical tractability, the Gaussian mixture model holds a special

place in the clustering literature. For all its benefits, however, the Gaussian mixture

model poses problems when dealing with data that is either skewed, or contains out-

liers. Specifically, in the presence of skewness and/or outliers, the Gaussian model

tends to over fit the number of groups. Therefore, many methods have been proposed

over the years to alleviate this issue; however, they fall within two main classes of

methods. The first is to fit a mixture of more flexible distributions such as those that

model skewness and or kurtosis. The second is to perform a suitable transformation

to near normality and then fit a Gaussian mixture based on the transformed data.
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The second is transformation-based mixture models. It assumes that after applying

suitable transformation marginally to each component, data groups follow approxi-

mate normal distributions. The transformation-based mixture model is then derived

based on back-transformation from the Gaussian mixture model. Although these

methods have been compared to a certain extent in their respective papers, there is

still uncertainty as to when one method might be preferred over another. Herein we

aim to fill this gap by performing an extensive study on well known benchmarking

clustering datasets with an extensive set of initialization partitions. In addition to

this extensive comparison between these two classes of methods, a new method for

determining cluster separation is also proposed.

9.2 Mixtures of Skewed Distributions

The first class of methods for dealing with skewness is to consider mixtures of more

flexible distributions, many of which have already been discussed. For purposes of

this chapter, we consider two representatives of these aforementioned distributions,

specifically the variance gamma, and generalized hyperbolic distributions. The main

reason for this selection is because both of these distributions are derived from the

variance-mean mixture model.

If W ∼ Gamma(γ, γ), then the result is the variance gamma distribution (McNi-

cholas et al., 2017) and its density is

fVG(x|ϑ) =
2γγ exp {(x−M)′Σ−1α)}

(2π)
p
2 |Σ| 12 Γ(γ)

(
δ(x; M,Σ)

ρ(α,Σ) + 2γ

) (γ−p/2)
2

×K(γ− p2)

(√
[ρ(α,Σ) + 2γ] [δ(x;µ,Σ)]

)
,
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where δ(X; M,Σ) = (x − µ)′Σ−1(x − µ), ρ(α,Σ) = α′Σ−1α and γ > 0. Likewise

if W ∼ GIG(ω, 1, λ), where GIG represents the generalized inverse Gaussian distri-

bution with the parameterization used by Browne and McNicholas (2015), then the

result is the generalized hyperbolic distribution, with density

fGH(x|ϑ) =
exp {(x− µ)Σ−1α′}

(2π)
np
2 |Σ| 12Kλ(ω)

(
δ(x;µ,Σ) + ω

ρ(α,Σ) + ω

) (λ− p2 )
2

×K(λ−p/2)

(√
[ρ(α,Σ) + ω] [δ(x;µ,Σ) + ω]

)
,

λ ∈ R, ω > 0.

Likewise the skew-t and NIG distributions can be derived in a similar manner.

Parameter estimation is performed using an expectation conditional maximization

(ECM) algorithm, and the details for the VG and GH distributions can be found in

McNicholas et al. (2017) and Browne and McNicholas (2015), respectively.

Skewed distributions that are derived using hidden truncation such as the skew

normal and the skew-t used in Lee and McLachlan (2014) were not considered due to

the computational time associated with these distributions, and the extensive number

of initializations used in the analyses.

The Infinite Likelihood Problem

One numerical aspect of the variance gamma distribution that must be considered

is the infinite likelihood problem. This was discussed by Franczak et al. (2014) for

the skewed asymmetric Laplace (SAL) distribution, and occurs when µ̂g → xi. As

the SAL distribution is a special case of the variance gamma with γ = 1, it is not

surprising that this also occurs for the variance gamma distribution. This is due to the
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density being unbounded when µ̂g → xi and γ < p/2, as discussed in Nitithumbundit

and Chan (2015). This is due to both the Bessel function going to infinity as the

argument approaches 0, and

(
δ(x; M,Σ)

ρ(α,Σ) + 2γ

) (γ−p/2)
2

→∞

if µ→ xi and γ < p/2.

The solution to this problem is not trivial. In Franczak et al. (2014), the authors

propose running the ECM algorithm to the point where this occurs, go back one

iteration and set µ̂g to be the value at the preceding iteration, and update the skew-

ness accordingly. A second possible solution is to bound the density in this situation,

Nitithumbundit and Chan (2015). The problem with both of these solutions, is that

at that point in the algorithm, the parameter estimates have most likely entered an

unstable part of the parameter space. This could in turn dramatically affect the

Therefore, with all of this taken into consideration, we propose restricting γ so

that if γ̂g < p/2 then we let γ̂g = p/2.

It is important to note that this scenario does not occur for the generalized hy-

perbolic, skew-t and NIG distributions, because in all of these cases, the δ(·) term is

accompanied by a positive value, ω in the generalized hyperbolic case, thus ensuring

boundedness of the density function for all values of λ.

9.3 Transformation Methods

The second class of methods to handle skewness in a cluster analysis is the use of some

transformation to near normality, introduced by Zhu and Melnykov (2018); Melnykov
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and Zhu (2018, 2019). The basic idea is to assume that there exists a transforma-

tion, T (X | Λ), where X is the original data vector, and Λ = (λ1, λ2, . . . , λp)
′ is a

transformation vector, such that

T (X | Λ) = (T (x1|λ1), T (x2|λ2), . . . , T (xp|λp)) ∼ N (µ,Σ),

where N (·) represents the p-variate normal distribution with mean µ and covari-

ance Σ. λ1, λ2, . . . , λp are marginal transformation parameters responsible for each

one of the p dimensions, respectively. Herein are considered two different univariate

transformations, namely the power and Manly transformations.

The power transformation, proposed by Yeo and Johnson (2000), is defined as

T (x|λ) =



[(x+ 1)λ − 1]/λ if (x ≥ 0, λ 6= 0),

log(x+ 1) if (x ≥ 0, λ = 0),

−[(−x+ 1)2−λ − 1]/(2− λ) if (x < 0, λ 6= 2),

− log(−x+ 1) if (x < 0, λ = 2).

The Manly transformation (also called the exponential transformation), intro-

duced first by Manly (1976) is defined as

T (x|λ) =

 [exp{λx} − 1]/λ if λ 6= 0,

x otherwise.
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Both of these transformations have been shown to handle both positive and neg-

ative skewness. By applying the back-transformation from p-variate normal distribu-

tion, the corresponding transformation-based density can be written as

fT (x | ϑ) = φ(T (x | Λ);µ,Σ)JT (x | Λ),

where JT (x | Λ) = |∂T (x | Λ)/∂x′| represents the Jacobian derived based on the

back-transformation from normal distribution. For the Manly transformation, its

Jacobian can be written as JT (x | Λ) ≡ exp{Λ′x}. For the power transformation,

JT (x | Λ) ≡
p∏
j=1

(|xj|+ 1)sgn(xj)(λj−1),

where

sgn(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

9.4 Measures used for Comparison

9.4.1 Multivariate Skewness and Kurtosis

For the purposes considered here, an assessment of component skewness and kurtosis

is desirable. It is possible to consider the univariate skewness and kurtosis for each

dimension; however, for higher dimensions this becomes difficult to assess. Therefore,

the use of Mardia’s multivariate skewness and kurtosis (Mardia, 1970) is employed,

as this gives a single measure for skewness and kurtosis, and it provides a test for

assessing multivariate normality.
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The multivariate skewness, β1,p for a multivariate random vector X with mean

vector µ = (µ1, µ2, . . . , µp) and covariance Σ is defined as

β1,p =
∑
r,s,t

∑
r′,s′,t′

σrr
′
σss

′
σtt
′
µ

(rst)
111 µ

(r′s′t′)
111 ,

where σij is the i, j element of the inverse covariance matrix Σ−1 and

µrst111 = E[(Xr − µr)(Xs − µs)(Xt − µt)].

Under multivariate normality, β1,p = 0.

The multivariate kurtosis is similar and is given by

β2,p = E[(X− µ)′Σ−1(X− µ)]2,

and under multivariate normality has value p(p+2). Therefore, we report the kurtosis

as β̂2,p − p(p + 2), so that negative kurtosis corresponds to lighter tails and positive

kurtosis corresponds to heavier tails. In addition to these values, Mardia (1970) also

provides tests to determine if the skewness and kurtosis are significantly different

from what is expected under normality.

These values, along with their p-values for the tests can be calculated using the

R package psych (Revelle, 2018).

9.4.2 Cluster Overlap

One property of a dataset we consider for comparing the two classes of methods is

cluster separation. An outline of the method we propose is described as follows.
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1. Density Estimation:

In this step, a density function f̂g(x) is estimated for each group g ∈ {1, 2, . . . , G} =

G with mixing proportions π1, π2, . . . , πG.

2. Simulation:

For each group g, simulate N observations. Denote these observation matrices

by xg = (xg1,xg2, . . . ,xgN).

3. Calculation:

For each xg and g ∈ G, let Cg denote an N dimensional vector with entry i

being

Cg{i} = argmaxh∈{1,2,...,G}πhf̂g(xih)

4. Map:

For each g, h ∈ G, let

pgh =
1

N

N∑
i=1

I(Cg = h)

and let the G×G map matrix P to be defined as P{g, h} = pgh.

This general method has been used, for example, in Melnykov (2016b) after fitting

the model of interest, and considered pairwise overlap between clusters.

For the purposes considered here, it is desirable that the estimated density cap-

tures the true nature of the component and for simulation to be computationally

feasible. Herein, two different methods are proposed. The first is to consider a mix-

ture of Gaussian distributions,

f̂g(x|ϑ) =
J∑
j=1

πjφp(µj,Σj).
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Although not effective for modelling multiple skewed components, a mixture of

Gaussian distributions is effective for modelling a single skewed component. Moreover,

it is clear that it is simple to simulate from this density function, generally quite

flexible, and can effectively captures the nature of a component.

Another method we propose for density estimation is to consider kernel density

estimation (KDE). This assumes that the estimate of the density can be written

f̂g(x) =
1

n

n∑
i=1

KH(x− xi),

where n is the sample size, H is a smoothing matrix, and, in this case, K(·) is the

Gaussian kernel.

The choice of a smoother matrix is not trivial, especially in the multivariate case,

and many such matrices have been proposed. However, for our purposes, we consider

a diagonal smoother matrix with elements

hj =

(
4

p+ 2

)1/(p+4)

n−1/(p+4)σ̂j,

where σ̂j is the standard deviation of variable j (Härdle and Müller, 1997).

Example: Iris Dataset

An example of the cluster overlap procedure described above is now presented on the

well known Iris dataset, Anderson (1935). This dataset provides four measurements

on three different species of iris. Figure 9.1 displays a pairs plot for the original

dataset, and Figure 9.2 shows 1000 simulated points for each cluster using the two

different density estimation methods described above. Table 9.1 shows the resultant
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Table 9.1: Gaussian mixture and KDE misclassification maps for the iris dataset.

Gaussian Mixture Map:

 1.00 0.00 0.00
0.00 0.98 0.02
0.00 0.03 0.97

 KDE Map:

 1.00 0.00 0.00
0.03 0.77 0.21
0.00 0.17 0.83


misclassification maps for the two different density estimation methods.

Figure 9.1: Pairs plot of the iris dataset.

It is interesting to note that when using KDE, there is more overlap than when

using a Gaussian mixture. The reason for this is simple. When using a mixture of

Gaussian distributions for each component, naturally more points will be simulated

closer to the centre of each mode in the mixture. In the case of KDE estimation, the

points in the tail of the distribution, more importantly the points which lie on the

border of the two clusters, have the same probability as the points in centre of being

chosen as the point around which to simulate.
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[]

[]

Figure 9.2: 1000 simulated points for each component of the iris dataset simulated
using (a) a fitted mixture of Gaussian distributions and (b) using KDE.

125



PhD Thesis - Michael P.B. Gallaugher McMaster - Mathematics and Statistics

General Applicability

It is important to note that in the scenario of a true cluster analysis this method

for measuring cluster overlap is not applicable because the true group labels are not

known. However, this is useful for the purposes presented here as we wish to determine

if cluster separation does result in different performance for the two different methods.

Moreover, this overlap procedure would be useful in other scenarios. One example

would be in the case of a discriminant analysis, where the true labels are known.

Another would be in the case determining separation of classes of categorical variables

such as gender or race in regardless of the method of analysis.

9.4.3 Initialization and Convergence

In order to increase the chances of obtaining the maximum likelihood, many differ-

ent starting values are considered and then the algorithm is ran to full convergence.

Specifically, up to eleven k-means initializations, 1000 soft partitions, up to 100G

(where G is the number of groups) unique hard initializations by running 1 iteration

of the k-means algorithm, see Melnykov and Melnykov (2012) for details, and a hi-

erarchical partition using Ward’s linkage. Note that only 100G hard initializations

are considered because the number of unique hard partitions increases with G. In

addition, although not applicable in practice, but useful for comparison purposes,

initializing with the true labels is considered. The final results are obtained by tak-

ing the largest likelihood over all these initializations, with the exception of the true

labels as this is not applicable in a true cluster analysis.

The same convergence criterion was used for both methods. Specifically, the EM

algorithm is terminated when (`(t+1) − `(t))/|`(t+1)| < 0.0001.
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9.5 Comparison

9.5.1 Some Technical Differences

One main difference between the use of skewed distributions and transformation meth-

ods is how the skewness is how the skewness and kurtosis is modelled. In the case of

the skewed distributions considered here, and many others, the skewness is modelled

explicitly by means of the skewness vector. Moreover, the concentration parameter

also allows for the direct modelling of kurtosis. In the case of transformation meth-

ods, the skewness and kurtosis are modelled implicitly by means of the transformation

vector Λ. Therefore, it can be argued that the use of skewed distributions allows for

slightly increased interpretability concerning skewness and kurtosis.

On the other hand, the transformation methods are more parsimonious in terms

of the number of free parameters. Specifically, transformation methods have a total of

pG additional parameters, when compared to the Gaussian mixture model, from the

transformation vector Λ. In the case of the skewed distributions considered herein,

as well as many others, there are a total of pG+G, or in the case of the generalized

hyperbolic distribution, pG + 2G additional parameters. This is due to the addition

of the concentration/index parameter(s). Although not significant for small G and

large n, this could become significant in the case of larger G and smaller n.

9.5.2 Comparison Using Multiple Datasets

Using the initialization, model selection and convergence criteria outlined previously,

we perform a comparison based on multiple real benchmarking datasets. The primary

reason for this is to get a better sense of situations on which to base simulations.
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However, as will be seen presently, simulations are most likely not necessary.

The first dataset we consider is the iris dataset described previously. Again, this

dataset considers 150 observations from three different species of iris, on four variables.

The results are summarized in Table 9.2 along with the skewness, kurtosis with their

respective p-values, and the classification maps. Both the skewness and kurtosis are

not significantly different than what would be expected under multivariate normality.

Moreover, as discussed previously, and as is well known with this dataset, the first

species is well separated from species 2 and 3, and species 2 and three have a fair

amount of overlap. The overall performance over these methods is identical in terms

of the number of groups chosen, and the classification performance. The likelihood

values are very comparable over all methods, and the lowest BIC is obtained by

the power transformation; however, given the comparable likelihood values and the

additional parameters, this difference is not really significant.

Table 9.2: Results of the skewed models and transformation methods for the Iris
dataset.

Skewed Models Transformations

VG GH Manly Power

Log-Likelihood −307.31 −311.04 −308.24 −306.81
BIC 810.03 827.51 801.86 799.01
M 39 41 37 37
G 2 2 2 2

ARI 0.568 0.568 0.568 0.568

Confusion

 50 0
0 50
0 50

  50 0
0 50
0 50

  50 0
0 50
0 50

  50 0
0 50
0 50


G = 3 p = 4 n : 50 + 50 + 50 = 150

Skewness: (2.90(0.24), 2.84(0.26), 2.97(0.21))

Kurtosis: (1.49(0.45), −2.03(0.30), −0.66(0.74))

KDE Map:

 1.00 0.00 0.00
0.03 0.77 0.21
0.00 0.17 0.83

 Gaussian Map:

 1.00 0.00 0.00
0.00 0.98 0.02
0.00 0.03 0.97


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The second dataset considered was the 13 variable wine dataset from the R package

rattle, Williams (2011), which measures 13 chemical properties of 3 three different

types of wine. Results are shown in Table 9.3. All four methods under fitted the

true number of groups. This could be due to one of two reasons. The first is the

dimensionality of the data and the fact that we are fitting an unconstrained covari-

ance/scale matrix. However, this could also be due to the significant negative kurtosis

for groups 1 and 3. Again, however, there is very little difference in the likelihood

and BIC values. Moreover, in terms of classification performance, the results are very

similar across methods.

Table 9.3: Results of the skewed models and transformation methods for the Wine
dataset.

Skewed Models Transformations

VG GH Manly Power

Log-Likelihood −2188.94 −2189.30 −2153.58 −2144.87
BIC 5605.96 5617.04 5524.88 5507.45
M 237 239 235 235
G 2 2 2 2

ARI 0.461 0.461 0.454 0.469

Confusion

 59 0
66 5
0 48

  59 0
66 5
0 48

  59 0
65 6
0 48

  59 0
67 4
0 48


G = 3 p = 13 n : 59 + 71 + 48 = 178

Skewness: (47.27(0.37), 57.68(2.35e-11), 50.44(0.96))

Kurtosis: (−13.62(8.05e− 3), 10.22(0.029), −16.63(3.52e− 3))

KDE Map:

 0.91 0.08 0.00
0.06 0.90 0.04
0.00 0.13 0.87

 Gaussian Map:

 1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00



The next dataset considered was the bankruptcy dataset from the R package

MixGHD (Tortora et al., 2015) with the results shown in Table 9.4. For all four methods,

the BIC choose one component, and the BIC values are once again comparable. From

the skewness and kurtosis measures and from looking at the plot of the data, it is clear
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that the first component (bankrupt firms) are non-Gaussian and the second group

are approximately Gaussian. Moreover, the misclassification maps suggest overlap

between these two clusters. This actually displays a general issue in the context of

clustering. If a symmetric cluster overlaps with a symmetric cluster and there is

no information about the underlying group structure, then it will be very difficult to

determine if there is one cluster or two. Moreover, as seen here, using skewed methods

do not help in this scenario, as all four fail to capture the two group solution, and

as mentioned before the Gaussian mixture over fits the number of groups. This is

an area that should be addressed in future work, as it is quite possible using these

methods can result in missing a possibly very important group.

Table 9.4: Results of the skewed models and transformation methods for the
Bankruptcy dataset.

Skewed Models Transformations

VG GH Manly Power

Log-Likelihood −114.84 −110.85 −108.94 −106.54
BIC 263.20 259.40 247.21 242.41
M 8 9 7 7

Ĝ 1 1 1 1
ARI 0.000 0.000 0.000 0.000

Confusion

(
33
33

) (
33
33

) (
33
33

) (
33
33

)
G = 2 p = 2 n : 33 + 33 = 66

Skewness: (15.33(< 1e− 16), 0.54(0.56))

Kurtosis: (15.42(< 1e− 16),−1.43(0.30))

KDE Map:

(
0.84 0.16
0.12 0.88

)
Gaussian Map:

(
0.98 0.02
0.02 0.98

)

The diabetes dataset, from Fraley et al. (2012) considers three measurements on

145 non-obese diabetes patients, with three types of diabetes which were classified

as normal, overt and chemical, with results shown in Table 9.5. Again, very little

difference is seen in the performance of the methods.
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Table 9.5: Results of the skewed models and transformation methods for the Diabetes
dataset.

Skewed Models Transformations

VG GH Manly Power

Log-Likelihood −178.75 −176.62 −171.68 −168.24
BIC 491.88 497.57 467.77 480.80
M 27 29 25 25

Ĝ 2 2 2 2
ARI 0.465 0.450 0.465 0.488

Confusion

 32 4
76 0
2 31

  32 4
75 1
2 31

  32 4
76 0
2 31

  32 4
76 0
1 32


G = 3 p = 3 n : 36 + 76 + 33 = 145

Skewness: (9.74(7.09e− 9), 3.45(3.68e− 6), 7.22(1.92e− 5))

Kurtosis: (8.73(1.72e− 06), 3.22(0.010), 3.28(0.085))

KDE Map:

 0.47 0.40 0.13
0.13 0.87 0.01
0.09 0.25 0.66

 Gaussian Map:

 0.91 0.08 0.01
0.02 0.98 0.00
0.02 0.00 0.98



We also considered the AIS dataset, Azzalini (2018), which considers 11 measures

from 100 female and 102 male athletes. The analysis on the full dataset is given in

the supplementary material; however, here we present the results for the three com-

monly used variables for this dataset, namely the BMI, body fat and lean body mass

with the results in Table 9.6. Again, very little difference was seen in performance

for the generalized hyperbolic and both transformation methods. What is interest-

ing, however, is where these misclassifications lie. Specifically, the variance-gamma

misclassifies more men than women whereas the generalized hyperbolic misclassifies

more women than men. Moreover, when comparing the transformation methods,

equal numbers of men and women are misclassified.

The last dataset considered herein was the famous crabs dataset, Venables and

Ripley (2002). This considers two species of crab (blue and orange) and males and

females within each species. The first group are the blue males, the second the blue
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Table 9.6: Results of the skewed models and transformation methods for the AIS
dataset.

Skewed Models Transformations

VG GH Manly Power

Log-Likelihood −619.22 −618.18 −620.77 −604.21
BIC 1381.76 1390.29 1341.12 1347.50
M 27 29 25 25
G 2 2 2 2

ARI 0.847 0.922 0.922 0.922

Confusion

(
99 1
7 95

) (
97 3
1 101

) (
98 2
2 100

) (
98 2
2 100

)
G = 2 p = 3 n : 100 + 102 = 202

Skewness: (2.54(6.53e− 6), 5.66(3.33e− 16))

Kurtosis: (1.69(0.12), 7.97(2.00e− 13))

KDE Map:

(
0.89 0.11
0.09 0.91

)
Gaussian Map:

(
0.98 0.02
0.02 0.98

)

females, the third the orange males, and the fourth the orange females. The results

are shown in Table 9.7. What is very interesting, but not entirely clear from the

overlap, skewness, and kurtosis from the four groups is that the skewed distribution

methods separate the species perfectly, whereas the transformation methods discrim-

inate based on gender. As all methods were run to convergence on many different

initialization values, and the initializations were the same for each method, it is un-

likely that it is due to the initialization. However, Table 9.8 shows the skewness

and kurtosis values and their respective p-values based on sex and species, and it ap-

pears that the transformation methods found one skewed component and a symmetric

component, whereas the skewed distribution methods found two skewed components.

This might suggest that the transformation methods might be slightly more likely to

find symmetric components than the skewed distributions.
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Table 9.7: Results of the skewed models and transformation methods for the Crabs
dataset.

Skewed Models Transformations

VG GH Manly Power

Log-Likelihood 165.25 162.12 144.68 144.62
BIC −49.69 −32.83 −19.16 2.17
M 53 55 51 51
G 2 2 2 2

ARI 0.496 0.496 0.374 0.374

Confusion


50 0
50 0
0 50
0 50




50 0
50 0
0 50
0 50




47 3
6 44

50 0
4 46




47 3
6 44

50 0
4 46


G = 4 p = 5 n : 50 + 50 + 50 + 50 = 200

Skewness: (4.71(0.28), 5.01(0.20), 2.82(0.93), 5.10(0.18))

Kurtosis: (−1.26(0.60),−0.80(0.73),−3.17(0.18),−0.18(0.94))

KDE Map:


0.33 0.25 0.29 0.13
0.20 0.38 0.20 0.22
0.26 0.18 0.37 0.19
0.15 0.31 0.22 0.32

 Gaussian Map:


0.95 0.05 0.00 0.00
0.04 0.96 0.00 0.00
0.00 0.00 0.99 0.01
0.00 0.00 0.01 0.98



9.6 Discussion

From the analyses performed on a variety of datasets and the extensive number

and type of initializations performed, it appears that no one method consistently

outperforms the others, and usually the performance is very similar if not identical.

Moreover, it does not appear that skewness, kurtosis and cluster overlap completely

Table 9.8: Skewness and kurtosis for the crabs dataset based on sex and species
separately.

Skewness (p-value) Kurtosis (p-value)
Males 2.7(0.12) −2.38(0.15)

Females 3.64(0.0046) −0.47(0.78)
Blue 4.9(1.30e− 5) 0.87(0.6)

Orange 4.01(9.50e− 4) 0.37(0.83)
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determines the relative performance of these methods. This is not to say, however,

that there are no differences between the two methods. As seen with the crabs, the

skewed models discriminate based on species, and the transformation methods on

sex. Although not shown herein, the skewed models also discriminate based on sex

when using k-means initializations, but when run using the more flexible initialization

methods, found the species structure. The transformation methods, on the other

hand, always found the sex structure. Therefore, considering that the male crabs do

not display skewness, it is possible that although transformation methods are capable

of modelling skewed data, they are more likely to find symmetric clusters.

In terms of actual properties of the methods, transformation methods are more

parsimonious, controlling for the number of groups, due to the lack of a concentration

(or index) parameter. On the other hand, the use of skewed distributions allows for

the direct calculation of the skewness and concentration which may be of interest in

some scenarios. Therefore, it may not be a question of when one method might be

preferable to another, but rather why one method might be preferable to another in

the context of the analysis in question.
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Chapter 10

Parameter-Wise Co-Clustering for

High-Dimensional Data

10.1 Limitations of Co-Clustering

Co-Clustering is a very useful tool for analyzing high-dimensional data. This method

considers simultaneous partitions of rows and columns, which are then used to orga-

nize the data into homogenous blocks. For traditional co-clustering, as in clustering,

data are assumed to come in the form of an n× p matrix x with rows represented by

x′i. Each individual element of xi is denoted by xij, so that xij is the observation in

row i and column j.

In co-clustering, there is an unknown partition of the rows into G clusters, from

this point onwards referred to as row-clusters, represented by the indicator vector zi =

(zi1, . . . , ziG) ∼ Multinomial(1;π), where zig is as defined previously, π = (π1, . . . , π2)

and Multinomial(·) represents the multinomial distribution. Unlike traditional co-

clustering, however, there is also a partition of the columns into L clusters, referred
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to as column-clusters, represented by the indicator vector wj = (wj1, . . . , wjL) ∼

Multinomial(1;ρ), where wjl = 1 if column j belongs to column-cluster l and wjl = 0

otherwise, and ρ = (ρ1, . . . , ρL). It is assumed that each data point xij is independent

once the zi and wj are fixed. If, in addition, all zi and wj are assumed independent,

and the latent block model is utilized in the same manner as Nadif and Govaert (2010),

then the joint density of x becomes f(x;ϑ) =
∑

z∈Z
∑

w∈W p(z;π)p(w;ρ)f(x|z,w;θ),

where

p(z;π) =
n∏
i=1

G∏
g=1

πzigg , p(w;ρ) =

p∏
j=1

L∏
l=1

ρl
wjl , and

f(x|z,wµ,wΣ;θ) =
n∏
i=1

G∏
g=1

d∏
j=1

L∏
l=1

[
1√

2πσgl
exp

{
− 1

2σ2
gl

(xij − µgl)2

}]zigwjl
,

where µgl and σ2
gl are the mean and variance, respectively, for row-cluster g and

column-cluster l, θ is the set of all µgl and σ2
gl, and ϑ = (π,ρ,θ). The total number

of free parameters in this traditional co-clustering model is

#Paramstrad coclust = G+ L+ 2(GL− 1). (10.1)

Note that (10.1) does not depend on the dimension, making it a very parsimonious

model. Moreover, co-clustering is still possible to perform when p > n.

There are two different ways that one can view co-clustering. The first is that the

main goal is the clustering of rows, and the clustering of columns is solely a way to

solve the problem of dimensionality. However, in certain applications, the clustering

of the columns might also be of interest.
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Although co-clustering has advantages over other high dimensional techniques (es-

pecially in the number of free parameters), the model is fairly restrictive because all

observations in a block are realizations of independent and identically distributed

Gaussian random variables with mean µgl and variance σ2
gl. More flexibility is ob-

tained by fitting more column-clusters and row-clusters, which is not always possible

or advisable. What we propose in the present work is a parameter-wise co-clustering

method by clustering columns according to both means and variances. This is the rea-

son why we adopt hereafter the denomination “parameter-wise” co-clustering, which

is now presented in detail.

10.2 Parameter-Wise Gaussian Co-Clustering

10.2.1 Model to Combine Two Latent Variables in Columns

Recall that traditional co-clustering aims to cluster data such that observations in the

same block have the same distribution. An extension of traditional co-clustering for

data treated as realizations of a Gaussian random variable is now considered. Similar

to traditional co-clustering, there is a partition in rows and columns. However, now

there are two partitions in the columns; specifically, a partition with respect to means

and a partition with respect to variances.

Recall also that the data, which are treated as realizations of a continuous random

variable, are represented as an n × p matrix, x = (xij)1≤i≤n,1≤j≤p. The partition in

rows is again represented by z = (z1, z2, . . . , zn).
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Two Partitions in Columns The partition in columns by means is represented

by wµ = (wµ
1 ,w

µ
2 , . . . ,w

µ
p ), where

wµ
j = (wµj1, w

µ
j2, . . . , w

µ
jLµ) ∼ Multinomial(1;ρµ)

with ρµ = (ρµ1 , ρ
µ
2 , . . . , ρ

µ
Lµ) and the partition in columns by variances is denoted by

wΣ = (wΣ
1 ,w

Σ
2 , . . . ,w

Σ
p ), where

wΣ
j = (wΣ

j1, w
Σ
j2, . . . , w

Σ
jLΣ) ∼ Multinomial(1;ρΣ)

with ρΣ = (ρΣ
1 , ρ

Σ
2 , . . . , ρ

Σ
LΣ). These two partitions in the columns is where the main

novelty lies. Note that G,Lµ and LΣ are the number of row-clusters, column-clusters

by means, and column-clusters by variances, respectively.

Log-Likelihood Using a simple extension of the latent block model the observed

log-likelihood is then

f(x;ϑ) =
∑
z∈Z

∑
wµ∈Wµ

∑
wΣ∈WΣ

p(z;π)p(wµ;ρµ)p(wΣ;ρΣ)f(x|z,wµ,wΣ;µ,Σ),

where

p(z;π) =
n∏
i=1

G∏
g=1

πzigg , p(wµ;ρµ) =

p∏
j=1

Lµ∏
lµ=1

(ρµlµ)w
µ
jlµ , p(wΣ;ρΣ) =

p∏
j=1

LΣ∏
lΣ=1

(ρΣ
lΣ)

wΣ
jlΣ ,

and

f(x|z,wµ,wΣ;µ,Σ) =
n∏
i=1

G∏
g=1

p∏
j=1

Lµ∏
lµ=1

LΣ∏
lΣ=1

[
1√

2πσglΣ
exp

{
− 1

2σ2
glΣ

(xij − µglµ)2

}]zigwµjlµwΣ
jlΣ

.
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In terms of notation, µ = (µ1,µ2, . . . ,µG), where µg = (µg1, µg2, . . . , µgLµ). Note

that µglµ is the mean for row-cluster g and column-cluster by means lµ. Likewise,

Σ = (Σ1,Σ2, . . . ,ΣG), where Σg = (σ2
g1, σ

2
g2, . . . , σ

2
gLΣ) and σ2

glΣ is the variance for

row-cluster g and column-cluster by variances lΣ. Finally, the complete-data log-

likelihood is

p(x, z,wµ,wΣ;ϑ) = C +
n∑
i=1

G∑
g=1

zig log πg +

p∑
j=1

Lµ∑
lµ=1

wµjlµ log ρµlµ +

p∑
j=1

LΣ∑
lΣ=1

wΣ
jlΣ log ρΣ

lΣ

− 1

2

n∑
i=1

G∑
g=1

p∑
j=1

Lµ∑
lµ=1

LΣ∑
lΣ=1

zigw
µ
jlµw

Σ
jlΣ

[
log σ2

glΣ +
(xij − µglµ)2

σ2
glΣ

]
,

where C is a constant with respect to the parameters and ϑ = (π,ρµ,ρΣ,µ,Σ).

From this point on, we refer to this model as parameter-wise co-clustering.

Number of Free Parameters The number of free parameters in the parameter-

wise co-clustering model is

#Paramsnew coclust = G− 1 + Lµ − 1 + LΣ − 1 +GLµ +GLΣ

= G+ (Lµ + LΣ)(G+ 1)− 3.

There are a few comparisons with traditional co-clustering that are now discussed.

First, similar to traditional co-clustering, the number of free parameters for the pro-

posed parameter-wise method is independent of the dimension, meaning a high degree

of parsimony is still maintained. Before mentioning the second point, note that the

column-clusters by means and column-clusters by variances can be combined. For ex-

ample, columns in column-cluster 1 by means and column-cluster 1 by variances can

be combined to form one column-cluster. In general, columns in column-cluster lµ by
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means and column-cluster lΣ by variances can be combined to form one column-cluster

for any combination of lµ and lΣ, leading to a maximum of LµLΣ column-clusters.

There can, however, be fewer than LµLΣ combined column-clusters because it is pos-

sible, for example, that no columns are clustered into column-cluster 3 by means and

column-cluster 2 by variances. Now, assuming G is equal for both parameter-wise

and traditional co-clustering, and Lµ = LΣ = L, then there are only an additional

L−1 free parameters when using the parameter-wise model. Although there are these

additional free parameters, there is the possibility of L2 combined column-clusters,

allowing for a finer partition of the columns and increased flexibility.

There is also the possibility that the parameter-wise model has fewer free pa-

rameters than traditional co-clustering while still maintaining similar flexibility. For

example, if traditional co-clustering is considered with G = 4 and L = 5, then the

total number of free parameters is 47. In the parameter-wise case, if G = 4, Lµ = 3,

LΣ = 3, then the total number of free parameters is 31. In this case, there is a

possibility of a total of nine column-clusters compared to five column-clusters when

using traditional co-clustering.

10.2.2 Parameter Estimation Using the SEM Gibbs Algo-

rithm

The SEM algorithm after initialization at iteration q proceeds as follows.

SE Step: Generate the row partition z(q+1) according to

P (zig = 1|x,wµ(q),wΣ(q)
;µ(q),Σ(q),π(q)) =

π
(q)
g f(xi|wµ(q),wΣ(q)

;µ
(q)
g ,Σ

(q)
g )∑G

g′ π
(q)
g′ f(xi|wµ(q),wΣ(q);µ

(q)
g′ ,Σ

(q)
g′ )

,
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where

f(xi|wµ(q),wΣ(q)
;µ(q)

g ,Σ(q)
g ) =

p∏
j=1

Lµ∏
lµ=1

LΣ∏
lΣ=1

[
1

√
2πσ

(q)

glΣ

exp

{
− 1

2σ2(q)

glΣ

(xij − µ(q)
glµ)2

}]wµ(q)
jlµ

wΣ(q)

jlΣ

.

Generate the column partition by means wµ(q+1) according to

P (wµjlµ = 1|x, z(q+1),wΣ(q)
;µ(q),Σ(q),ρµ(q)) =

ρµ
(q)
lµ f(x·j|z(q+1),wΣ(q)

;µ
(q)
lµ ,Σ

(q))∑Lµ

lµ′ ρ
µ(q)

lµ′
f(x·j|z(q+1),wΣ(q);µ

(q)

lµ′
,Σ(q))

,

where x·j = (x1j, x2j, . . . , xnj), µ
(q)
lµ = (µ

(q)
1lµ , µ

(q)
2lµ , . . . , µ

(q)
Glµ), and

f(x·j|z(q+1),wΣ(q)
;µ

(q)
lµ ,Σ

(q)) =

n∏
i=1

G∏
g=1

LΣ∏
lΣ=1

[
1

√
2πσ

(q)

glΣ

exp

{
− 1

2σ2(q)

glΣ

(xij − µ(q)
glµ)2

}]z(q+1)
ig wΣ(q)

jlΣ

.

Generate the column partition by variances wΣ(q+1)
according to

P (wΣ
jlΣ = 1|x, z(q+1),wµ(q+1);µ(q),Σ(q),ρΣ(q)

) =

ρΣ(q)

lΣ f(x·j|z(q+1),wµ(q+1);µ(q),Σ
(q)

lΣ
)∑LΣ

lΣ′ ρ
Σ(q)

lΣ′
f(x·j|z(q+1),wµ(q+1);µ(q),Σ

(q)

lΣ′
)
,

where Σ
(q)

lΣ
= (σ2(q)

1lΣ , σ
2(q)

2lΣ , . . . , σ
2(q)

GlΣ) and

f(x·j|z(q+1),wµ(q+1);µ(q),Σ
(q)

lΣ
) =

n∏
i=1

G∏
g=1

Lµ∏
lµ=1

[
1

√
2πσ

(q)

glΣ

exp

{
− 1

2σ2(q)

glΣ

(xij − µ(q)
glµ)2

}]z(q+1)
ig wµ

(q+1)
jlµ

.
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M Step: Update the parameters according to

π(q+1)
g =

∑n
i=1 z

(q+1)
ig

n
, ρµlµ

(q+1) =

∑p
j=1w

µ
jlµ

(q+1)

p
, ρΣ

lΣ
(q+1)

=

∑p
j=1 w

Σ
jlΣ

(q+1)

p
,

µ
(q+1)
glµ =

∑n
i=1

∑p
j=1

∑LΣ

lΣ=1 z
(q+1)
ig wµjlµ

(q+1)wΣ
jlΣ

(q+1)
xij∑n

i=1

∑p
j=1

∑LΣ

lΣ=1 z
(q+1)
ig wµjlµ

(q+1)wΣ
jlΣ

(q+1)
=

∑n
i=1

∑p
j=1 z

(q+1)
ig wµjlµ

(q+1)xij∑n
i=1

∑p
j=1 z

(q+1)
ig wµjlµ

(q+1)
,

σ2
glΣ

(q+1)
=

∑n
i=1

∑p
j=1

∑Lµ

lµ=1 z
(q+1)
ig wµjlµ

(q+1)wΣ
jlΣ

(q+1)
(xij − µ(q+1)

glµ )2∑n
i=1

∑p
j=1

∑Lµ

lµ=1 z
(q+1)
ig wµjlµ

(q+1)wΣ
jlΣ

(q+1)
.

After a burn-in period of the algorithm, the estimates of each of the parameters are

just the mean of the runs of the SEM algorithm (the number of runs are assessed ex-

perimentally in Section 4). We denote these final estimates by ϑ̂ = (π̂, ρ̂µ, ρ̂Σ, µ̂, Σ̂).

For the final partition of rows, columns by means, and columns by variances, we fix

the parameters at their estimates and run more iterations of the SE step. We then

assign each row to the row-cluster to which it is assigned most often over these addi-

tional SE steps. Likewise, each column is assigned to the column-cluster by means to

which it is assigned most often over the additional SE steps, and finally each column

is assigned to the column-cluster by variances to which it is assigned most often over

the additional SE iterations. For our simulations and real data analyses, we take 20

such runs to obtain the final partitions ẑ, ŵµ, and ŵΣ.

10.2.3 Model Selection

ICL–BIC As is the case in any clustering scenario, the number of row-clusters,

column-clusters by means, and column-clusters by variances are not known a priori
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and, therefore, a model selection criterion is required. Similar to traditional co-

clustering, the observed log-likelihood is intractable and so the BIC cannot be used.

Therefore, we propose using the integrated complete log-likelihood (ICL; Biernacki

et al., 2000), which relies on the complete data log-likelihood instead of the observed

log-likelihood. This criterion is called the ICL–BIC, similar to that used by Jacques

and Biernacki (2018) and is given by

ICL–BIC = p(x, ẑ, ŵµ, ŵΣ; ϑ̂)−G− 1

2
log n−L

µ + LΣ − 2

2
log p−G(Lµ + LΣ)

2
log np.

From the property proven by Brault et al. (2017), the BIC and ICL–BIC exhibit the

same behaviour for large values of n and/or p, thus the number of blocks chosen by

this criterion is consistent (under some conditions not mentioned here). The model

with the largest ICL–BIC is retained.

Search Algorithm Because an extra layer of complexity is introduced with the

parameter-wise model by considering two column partitions, it may take a very

long time to perform an exhaustive search of all possible combinations of G,Lµ

and LΣ in a pre-defined range. This has been discussed in the literature, specifi-

cally by Robert (2017), and a non-exhaustive search algorithm for the parameter-

wise model is now presented. Specifically, the algorithm begins with the parame-

ters (G,Lµ, LΣ) = (G1, L
µ
1 , L

Σ
1 ). Three models with parameters (G1 + 1, Lµ, LΣ),

(G1, L
µ + 1, LΣ) and (G1, L

µ, LΣ + 1) are then fit. The set with the highest ICL–BIC

is retained and we obtain the set (G2, L
µ
2 , L

Σ
2 ). The procedure is then repeated un-

til a maximum threshold is reached for these parameters or the ICL–BIC no longer
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increases. Although not as pertinent for traditional co-clustering, a similar non-

exhaustive search algorithm can be used for traditional co-clustering.

10.3 Numerical Experiments on Artificial Data

10.3.1 Algorithm and Parameter Estimation Evaluation

Two different simulations are performed to evaluate the algorithm, parameter esti-

mation, and classification performance.

Simulation 10.1

50 datasets are simulated according to the following parameters. n = 1000, p = 100,

G = 3, Lµ = 2, LΣ = 3,

µ =


1 −1

2 −2

3 −3

 , Σ =


1 0.5 0.75

2 1.75 0.25

1.5 2.25 2.5

 ,

and mixing proportions

π = (0.3, 0.3, 0.4), ρµ = (0.4, 0.6), ρΣ = (0.3, 0.3, 0.4).

To clarify notation, the cell glµ in the matrix µ corresponds to the mean of an obser-

vation from row-cluster g and column-cluster by means lµ, i.e., µglµ . Likewise, the cell

glΣ in the matrix Σ corresponds to the variance of an observation from row-cluster g

and column-cluster by variances lΣ, i.e., σ2
glΣ .

144



PhD Thesis - Michael P.B. Gallaugher McMaster - Mathematics and Statistics

A burn-in of 20 iterations for the SEM-Gibbs algorithm is used, followed by 100

iterations, followed by 20 iterations of the SE-step to obtain the final partitions.

The error in the mean estimates is calculated using

∆µ =
∑
g,lµ

|µ̂glµ − µglµ|.

The errors for the other parameters are calculated in a similar fashion and are denoted

by ∆Σ, ∆π, ∆ρµ and ∆ρΣ, respectively. The averaged errors (and their standard

deviations) over the 50 datasets are shown in Table 10.1. The average errors are low

for all variables indicating good parameter recovery.

Table 10.2 displays the average ARI, with standard deviations, for the row, column

by means, and column by variances partitions over the 50 simulated datasets. Notice

that the classification is perfect for both partitions by columns for all simulated

datasets. Moreover, the average ARI for the rows is very high.

Table 10.1: Average error (and standard deviation) of the parameter estimates over
the 50 datasets for Simulation 10.1.

∆µ ∆Σ ∆π ∆ρµ ∆ρΣ

0.14 (0.70) 0.24 (0.75) 0.012 (0.082) 1.44e-15 (5.61e-16) 1.33e-15 (4.59e-16)

Table 10.2: Average ARI (and standard deviation) for the row (ARIr), column by
means (ARIcµ), and column by variances (ARIcΣ) partitions over the 50 datasets for
Simulation 10.1.

ARIr ARIcµ ARIcΣ
0.99 (0.068) 1.00 (0.00) 1.00 (0.00)

In Figure 10.1, the progression of the parameter estimates over the course of the

SEM-Gibbs algorithm is shown for one of the datasets (the other datasets exhibit
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similar behaviour). From these plots, it is clear that a burn-in of 20 iterations is

sufficient to obtain a stable chain.
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Figure 10.1: SEM algorithm parameter estimation progression for one dataset for
(a) the mean parameters µglµ , (b) the variance parameters σ2

glΣ , (c) the row mixing

proportions πg, (d) the column by means mixing proportions ρµlµ , and (e) the column
by variances mixing proportions ρΣ

lΣ for Simulation 10.1.

Finally, in Figure 10.2, the co-clustering results for one of the 50 datasets is

displayed. Note, in this case, the estimated co-clustering result is the same as the

true co-clustering solution. In the top left panel, a heatmap of the original data is

displayed. In the co-clustering by means panel (bottom left), the co-clustering results

for the row-clusters and the column-clusters by means is shown. The co-clustering

by variances panel (bottom right) shows the co-clustering results for the row-clusters

and the column-clusters by variances. Finally, the combined co-clustering (top right)
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displays the co-clustering solution with all combined column-clusters. Specifically,

going from left to right, the first combined column-cluster consists of the columns

partitioned into column-cluster 1 for the means and column-cluster 1 for the variances,

the second combined column-cluster are the columns clustered into column-cluster 2

for the means and column-cluster 1 for the variances and so on. Combining the

column-clusters by means and variances in this manner results in a maximum of

LµLΣ combined column-clusters (as is the case here) thus allowing more flexibility.

It is important to note, however, that there may be cases, as we will see with the real

dataset, when no columns are clustered into a particular pair lµ and lΣ, and thus the

combined co-clustering result might have fewer than LµLΣ combined column-clusters

but never more.

Simulation 10.2

In Simulation 10.2, less separation between groups is considered. A total of 50 datasets

are again considered with the parameters n = 200, p = 500, G = 3, Lµ = 3, LΣ = 2,

µ =


1 1.25 0

2 1.2 1

1.5 1.9 0.5

 , Σ =


1 0.5

2 1.75

1.5 2.25

 ,
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Figure 10.2: Estimated co-clustering solution for one of the fifty datasets from Sim-
ulation 10.1.

and the mixing proportions

π = (0.3, 0.3, 0.4), ρµ = (0.3, 0.5, 0.2), ρΣ = (0.4, 0.6).

Table 10.3 shows the average error of the estimates over the 50 datasets, and the

average ARI values over the 50 datasets for each partition are shown in Table 10.4.
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Again, we obtain very good classification performance for all three partitions. The

progression of the parameter estimates is shown in Figure 10.3. Similar to Simulation

10.1, a burn-in period of 20 iterations is still sufficient to obtain a stable chain. Finally,

Figure 10.4 displays the co-clustering solutions for one of the 50 datasets. Unlike in

the first simulation, there is very little spatial separation between blocks.

Table 10.3: Average error (and standard deviation) of the estimates over the 50
datasets for Simulation 10.2.

∆µ ∆Σ ∆π ∆ρµ ∆ρΣ

0.15 (0.50) 0.085 (0.046) 1.29e-15 (3.91e-16) 0.015 (0.088) 0.0079 (0.0054)

Table 10.4: Average ARI (and standard deviation) for the row (ARIr), column by
means (ARIcµ), and column by variances (ARIcΣ) partitions over the 50 datasets for
Simulation 10.2.

ARIr ARIcµ ARIcΣ
1.00 (0.00) 0.98 (0.080) 0.96 (0.018)

10.3.2 Simulation 10.3

In this simulation, the performance of the ICL–BIC selection criterion is considered.

Again, 50 datasets are simulated with n = 2000, p = 500, G = Lµ = LΣ = 3,

µ =


1 1.25 0

2 1.2 1

1.5 1.9 0.5

 , Σ =


1 0.5 0.25

2 1.75 0.5

1.5 2.25 1

 ,

and mixing proportions

π = (0.3, 0.3, 0.4), ρµ = (0.3, 0.4, 0.3), ρΣ = (0.4, 0.3, 0.3).
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Figure 10.3: Simulation 10.2 SEM algorithm parameter estimation progression for
one dataset for (a) the mean parameters µglµ , (b) the variance parameters σ2

glΣ , (c)

the row mixing proportions πg, (d) the column by means mixing proportions ρµlµ , and
(e) the column by variances mixing proportions ρΣ

lΣ .

An exhaustive search is performed considering each of combination of G,Lµ, LΣ ∈

{2, 3, 4}. In Table 10.5, the number of times each value of G, Lµ and LΣ is chosen by

the ICL–BIC is displayed. For the vast majority of the datasets, the correct model is

chosen by the ICL–BIC.
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Table 10.5: Frequency of the number of row-clusters, column-clusters by means, and
column-clusters by variances chosen by the ICL–BIC over the 50 simulated datasets
when using the exhaustive search in Simulation 10.3.

2 3 4
G 0 49 1
Lµ 0 48 2
LΣ 0 48 2

Figure 10.4: Estimated co-clustering solution for one of the fifty datasets from Sim-
ulation 10.2.
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10.3.3 Simulation 10.4

In the last simulation, the performance of the non-exhaustive search algorithm de-

scribed in Section 3.3 is addressed. In all, 25 datasets are simulated according to the

parameters n = 100, p = 200, G = LΣ = 3, Lµ = 4,

µ =


1 −0.25 0.3 −1

1.25 0 0.1 −0.3

0.5 −1 0 0.1

 , Σ =


1 0.5 0.25

2 1.75 0.5

1.5 2.25 1

 ,

and

π = (0.3, 0.3, 0.4), ρµ = (0.2, 0.3, 0.25, 0.25), ρΣ = (0.5, 0.25, 0.25).

The initial values are taken to be (G1, L
µ
1 , L

Σ
1 ) = (1, 1, 1) and the maximum values

for all three are set to five. In Table 10.6, the number of times each value of G, Lµ

and LΣ is chosen by the ICL–BIC is shown. Notice that the procedure performs quite

well for choosing the correct model.

Table 10.6: Frequency of the number of row-clusters, column-clusters by means, and
column-clusters by variances chosen by the ICL–BIC over the 25 simulated datasets
when using the non-exhaustive search method for Simulation 10.4.

2 3 4
G 0 24 1
Lµ 0 0 25
LΣ 1 24 0
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10.4 Real Data Analyses

10.4.1 Comparing Parameter-Wise and Traditional Co-Clustering

Under Similar Conditions

A subset of the Jester dataset used by Goldberg et al. (2001) is used to compare

parameter-wise co-clustering and traditional co-clustering. The data consist of 100

jokes rated on a “continuous” scale from −10 to 10. A total of 7200 users rated all

100 jokes, and a random sample of 2000 of these users is considered herein.

The non-exhaustive search algorithm is performed for traditional co-clustering

with the number of row-clusters ranging from one to 25 and the number of column-

clusters ranging from one to seven. This results in choosing seven row-clusters and

three column-clusters and the resultant ICL–BIC is −569487.0. With these values

for G and L, the total number of free parameters is 50. In the next section, the non-

exhaustive search algorithm is used for the proposed parameter-wise method; how-

ever, it is interesting to consider the performance of the parameter-wise method under

similar conditions to the results obtained with traditional co-clustering. Specifically,

the parameter-wise method is performed on this dataset with G = 7, Lµ = LΣ = 3.

Under this model, the ICL–BIC is −569010.4, and the total number of free parame-

ters is 52. Note that the ICL–BIC values for both traditional and parameter-wise

co-clustering are quite similar, with a slightly higher value obtained when using

parameter-wise co-clustering. In Figure 10.5, the original data (left panel) and the

traditional co-clustering solution (right panel), are shown, and the co-clustering solu-

tions for parameter-wise co-clustering are displayed (Figure 10.6) in the same format

as the simulations. Notice that a total of seven combined column-clusters are obtained
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when using parameter-wise co-clustering.

Figure 10.5: Traditional co-clustering results for the Jester data.

In Table 10.7, we show a classification table comparing the column-clusters by

means and column-clusters by variances found using parameter-wise co-clustering

and the column-clusters found using traditional co-clustering. There is almost perfect

agreement between the column-clusters from traditional co-clustering and the column-

clusters by means from parameter-wise co-clustering. This, however, is not true for

the column-clusters by variances. This result is somewhat perceptible in the images

of the co-clustering solutions. In Table 10.8, the classification table comparing row-

clusters from traditional and parameter-wise co-clustering is displayed. It is clear

that the row-clusters found by both of these methods are quite comparable — the

ARI when comparing these two partitions is 0.86.
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Figure 10.6: Parameter-wise co-clustering results for the Jester dataset under similar
conditions to the traditional co-clustering solution.

10.4.2 Further Analysis with Parameter-Wise Co-Clustering

The non-exhaustive search algorithm is now performed for parameter-wise co-clustering.

The range of values was one to 25 row-clusters, and one to seven column-clusters by

means and column-clusters by variances resulting in the ICL–BIC choosing a model
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Table 10.7: Classification table comparing the column-clusters by means and column-
clusters by variances for parameter-wise co-clustering and column-clusters from tra-
ditional co-clustering for the Jester dataset.

Means Variances
Traditional 1 2 3 1 2 3

1 43 0 1 28 14 2
2 2 30 0 4 28 0
3 0 0 24 11 0 13

Table 10.8: Classification table comparing row-clusters for parameter-wise and tradi-
tional co-clustering.

Traditional
Parameter-Wise 1 2 3 4 5 6 7

1 427 10 1 0 3 0 16
2 0 350 0 9 0 0 11
3 18 0 180 0 16 0 0
4 0 0 0 216 0 0 3
5 10 11 0 0 241 1 0
6 0 5 0 0 0 103 0
7 2 3 0 4 0 0 360

with 17 row-clusters, six column-clusters by means, and four column-clusters by vari-

ances. The resulting ICL–BIC is −561099.0 and a total of 15 combined column-

clusters are obtained. Notice that there is significant improvement in the ICL–BIC in

this case. In Figure 10.7, we show the parameter-wise co-clustering solution. Because

more row-clusters are obtained, it is far more difficult to visualize the row-clusters.

Moreover, the combined co-clustering solution is very difficult to interpret in this

scenario, which displays the benefit of visualizing the column-clusters by means and

column-clusters by variances separately.
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Figure 10.7: Parameter-wise co-clustering results for the Jester data after performing
the non-exhaustive search algorithm.

Finally, the exhaustive search algorithm is performed for both traditional and

parameter-wise co-clustering. For each value of G ∈ {1, 2, . . . , 25}, the maximum

ICL–BIC over all values of L for traditional co-clustering, and Lµ and LΣ for parameter-

wise co-clustering is considered. In Figure 10.8, we display a plot of this maximum

ICL–BIC against G. For both traditional and parameter-wise co-clustering, the ICL–

BIC begins to plateau around G = 10. Moreover, the ICL–BIC for parameter-wise
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Figure 10.8: Maximum ICL–BIC over L for traditional co-clustering (turquoise), and
Lµ and LΣ for parameter-wise co-clustering (red) for each value of G, against G.

co-clustering is oftentimes, if only very slightly, higher than traditional co-clustering.

Finally, we note that it is very computationally expensive to run the exhaustive search

with parameter-wise co-clustering taking around 24 hours using 25 1200MHz cores

running continuously.

10.5 Summary

A parameter-wise co-clustering algorithm was developed for high-dimensional data.

This parameter-wise method allowed for two partitions of the columns based on both

means and variances, as well as a combined co-clustering solution. This, in essence,

provides more flexibility than traditional co-clustering, while maintaining the high
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degree of parsimony inherent to traditional co-clustering. An SEM Gibbs algorithm

was used for parameter estimation, and evaluated by two simulations. An ICL–BIC

criterion, as well as a non-exhaustive search algorithm, were developed for model

selection.

A subset of the Jester dataset was considered for comparison purposes between

traditional and parameter-wise co-clustering. After applying traditional co-clustering

to the data, parameter-wise co-clustering was performed using similar parameters, i.e.,

sameG and Lµ = LΣ = L. This resulted in similar row-clusters between the two meth-

ods. Furthermore, the column-clusters by means using parameter-wise co-clustering

were almost identical to the column-clusters from traditional co-clustering. This was

not true, however, when comparing the column-clusters by variances and the column-

clusters obtained from traditional co-clustering. Parameter-wise co-clustering also

had a marginally higher ICL–BIC in this case. Using the non-exhaustive search al-

gorithm for parameter-wise co-clustering resulted in far more row-clusters, and many

more combined column-clusters, which displayed the utility of considering the co-

clustering by means, and co-clustering by variances separately from the combined

co-clustering solution.
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Chapter 11

Conclusions

11.1 Discussion

In this thesis, multiple topics in the area of model-based clustering and classification

were considered. The first topic, and main component of the thesis, was the devel-

opment of model-based clustering and classification methodology for three way data.

Specifically, four skewed matrix variate distributions were derived, and then used in

the mixture model context for clustering and classification of three-way data. A ma-

trix variate extension of the mixture of factor analyzers model was then developed

for clustering high-dimensional three-way data using both the matrix variate normal

distribution, and then the four skewed matrix variate distributions.

A second topic involved mixtures of first-order continuous time Markov chains

for clustering clickstream data. This allowed for the amount of time spent in each

category to be taken into consideration. This in turn allowed the detection of groups

of users that the discrete time model was unable to detect.

The third topic, based on the MMVBFA model presented in Chapter 5, imposed
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constraints on the scale and factor loading matrices to develop a family of 64 parsi-

monious models.

The fourth topic considered a detailed comparison between two different methods

for clustering data with skewed components, namely using skewed component densi-

ties, or transformation methods. In general, the results of the two methods were very

similar, but they did have a few differences. Most notably, for the crabs data, the

skewed methods discriminated based on species, whereas the transformation methods

discriminated based on sex.

Finally, a parameter-wise co-clustering model was developed for clustering high

dimensional data. This allowed for more resultant column-clusters, and thus increas-

ing the flexibility of the co-clustering model. Moreover, this additional flexibility is

obtained with very few extra parameters, and in some cases fewer parameters than

traditional co-clustering.

Possible future directions for some of these topics are now addressed.

11.2 Future Work

11.2.1 Three-Way Data Analysis

One problem that has yet to be addressed in the area of three-way data is mixed data

in multivariate longitudinal analysis. In the case of multivariate longitudinal analysis,

there are most likely variables that can not be considered realizations of continuous

random variables and, in some cases, variables that will not change over time. For

example, variables like gender, eye colour and race are variables that will be the same

at all time points. Moreover, variables such as age or number of children might be
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best treated as count variables. In these cases, the use of a continuous matrix variate

distribution would not be advisable. One way forward in this regard, is in a similar

manner to the multivariate case, where the variables (rows or columns of the data

matrices) are partitioned into continuous, categorical and stationary components.

Independence could then be used, as in the multivariate case, to greatly simplify the

problem. This, however, would completely disregard any relationships between the

different types of variables, and in many cases would be an unreasonable assumption.

Therefore, methods similar to the multivariate case could be considered. This will in

turn allow more complex three-way data to be analyzed in the future with applications

in clinical studies, spatial temporal data, etc. Another aspect of three-way data not

yet considered is unbalanced data. For example, it may be the case that a variable is

only measured at certain time points, while others are measured at all time points.

In this case, it is not entirely clear how one might approach this, and will be a

consideration in this project.

A second future direction is in the area of multiway data analysis. Examples

of such data types are black and white video clips, which can be represented as a

third order tensor, coloured images which can also be represented as third order

tensors, and finally coloured video clips which would be fourth order tensors. Work

has already been completed in this area using the tensor variate normal distribution

(Tait and McNicholas, 2019), but can also be extended to skewed tensor distributions.

In addition, a tensor extension of the matrix variate bilinear factor analysis model

can also be considered.
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11.2.2 Clustering Clickstream Data

There are a few potential directions for future work for model based clustering of

clickstream data. For example, a different distribution for the holding time could

be considered. Although the classical approach is to use an exponential holding

time in each state, this may not be realistic in some real applications. This issue

with the exponential distribution is that the model allows for almost immediate or

unrealistically long transition times. This leads us to another issue, i.e., that the

continuous time model is time unit dependent, which also needs to be considered in

a real application. Therefore, the of use a truncated exponential distribution for the

holding time will be a topic of future work. Finally, although conceived in the context

of clickstream data, this methodology could be used in other applications that look

at state transitions, such life events, illnesses, and migration patterns.

11.2.3 Extensions of Parameter-Wise Co-Clustering

Although the parameter-wise co-clustering method presented herein only considered

the use of the Gaussian distribution, it can be extended in various ways. One example

would be to use other continuous distributions with more than one parameter. For

example, one could consider the skew-t distribution and cluster columns based on

location, scale, concentration and skewness. This could also be extended to data that

cannot be considered a realization of a continuous random variable such as ordinal

data where the columns could be partitioned according to mode and precision. The

number of free parameters in each of these cases will not depend on the dimensionality

of the data thus preserving the parsimony inherent to co-clustering.
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11.2.4 Model Averaging

One final area of future work is to consider model averaging. Wei and McNicholas

(2015) introduce mixture model averaging based on the approach of Madigan and

Raftery (1994) using Occam’s window. Mixture model averaging may be applied in

this manner to any of the methodological approaches presented herein to possibly

increase predictive performance.
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Appendix A

Updates for Scale Matrices and

Factor Loadings

The updates for the scale matrices and the factor loading matrices in the AECM al-

gorithm for parsimonious MMVBFA are dependent on the model. The exact updates

for each model are presented here.

Row Model Updates

CCC:

Λ̂ =

(
G∑
g=1

N∑
i=1

ẑig(Xi − M̂g)Ψ̂
∗−1

g aAig
′
)(

G∑
g=1

N∑
i=1

ẑigb
B
ig

)−1

, σ̂ =
1

Nnp
tr{S(1)}.

where

S(1) =
G∑
g=1

N∑
i=1

ẑig
[
(Xi − M̂g)Ψ̂

∗−1

g (Xi − M̂g)
′ − Λ̂aBig

′
Ψ̂∗

−1

g (Xi − M̂g)
′].
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CCU:

Λ̂ =

(
G∑
g=1

N∑
i=1

ẑig(Xi − M̂g)Ψ̂
∗−1

g aBig
′
)(

G∑
g=1

N∑
i=1

ẑigb
B
ig

)−1

, Σ̂ =
1

Np
diag{S(1)},

CUU:

For this model, the update for Λ needs to be performed row by row. Specifically, the

updates are:

Λ̂(j) =

(
N∑
i=1

ẑig(Xi − M̂g)Ψ̂
∗−1

g aBig
′
)

(j)

(
G∑
g=1

1

σg(jj)

N∑
i=1

ẑigb
B
ig

)−1

,

Σ̂g =
1

Ngp
diag{S(2)

g },

where

S(2)
g =

N∑
i=1

ẑig
[
(Xi − M̂g)Ψ̂

∗−1

g (Xi − M̂g)
′ − 2Λ̂aBigΨ̂

∗−1

g (Xi − M̂g)
′ + Λ̂bBigΛ̂

′].
CUC:

Λ̂ =

(
G∑
g=1

1

σ̂g

N∑
i=1

ẑig(Xi − M̂g)Ψ̂
∗−1

g aBig
′
)(

G∑
g=1

1

σ̂g

N∑
i=1

ẑigb
B
ig

)−1

,

σ̂g =
1

Ngnp
tr{S(2)

g }.

UCC:

Λ̂g =

(
N∑
i=1

ẑig(Xi − M̂g)Ψ̂
∗−1

g aBig
′
)(

N∑
i=1

ẑigb
B
ig

)−1

, σ̂ =
1

Nnp
tr{S(3)},
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where

S(3) =
G∑
g=1

N∑
i=1

ẑig
[
(Xi − M̂g)Ψ̂

∗−1

g (Xi − M̂g)
′ − Λ̂ga

B
ig

′
Ψ̂∗

−1

g (Xi − M̂g)
′].

UCU:

Λ̂g =

(
N∑
i=1

ẑig(Xi − M̂g)Ψ̂
∗−1

g aBig
′
)(

N∑
i=1

ẑigb
B
ig

)−1

, Σ̂ =
1

Np
diag{S(3)}.

UUC:

Λ̂g =

(
N∑
i=1

ẑig(Xi − M̂g)Ψ̂
∗−1

g aBig
′
)(

N∑
i=1

ẑigb
B
ig

)−1

, σ̂g =
1

Ngnp
tr{S(4)

g },

where

S(4)
g =

N∑
i=1

ẑig
[
(Xi − M̂g)Ψ̂

∗−1

g (Xi − M̂g)
′ − Λ̂ga

B
igΨ̂

∗−1

g (Xi − M̂g)
′].

UUU:

Λ̂g =

(
N∑
i=1

ẑig(Xi − M̂g)Ψ̂
∗−1

g aBig
′
)(

N∑
i=1

ẑigb
B
ig

)−1

, Σ̂g =
1

Ngp
diag{S(4)

g }.

Column Model Updates

CCC:

∆̂ =

(
G∑
g=1

N∑
i=1

ẑig(Xi − M̂g)
′Σ̂∗

−1

g aAig

)(
G∑
g=1

N∑
i=1

ẑigb
A
ig

)−1

, ψ̂ =
1

Nnp
tr{(1)},
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where

(1) =
G∑
g=1

N∑
i=1

ẑig
[
(Xi − M̂g)

′Σ̂∗
−1

g (Xi − M̂g)− ∆̂aAig
′
Σ̂∗
−1

g (Xi − M̂g)
]
.

CCU:

∆̂ =

(
G∑
g=1

N∑
i=1

ẑig(Xi − M̂g)
′Σ̂∗

−1

g aAig

)(
G∑
g=1

N∑
i=1

ẑigb
A
ig

)−1

, Ψ̂ =
1

Nn
diag{(1)}.

CUU:

For this model, the update for ∆ needs to be performed row by row. Specifically the

updates are:

∆̂(j) =

(
N∑
i=1

ẑig(Xi − M̂g)
′Σ̂∗

−1

g aAig

)
(j)

(
G∑
g=1

1

ψg(jj)

N∑
i=1

ẑigb
A
ig

)−1

,

Ψ̂g =
1

Ngn
diag{(2)

g },

where

(2)
g =

N∑
i=1

ẑig
[
(Xi − M̂g)

′Σ̂∗
−1

g (Xi − M̂g)− 2∆̂aAig
′
Σ̂∗
−1

g (Xi − M̂g) + ∆̂bAig∆̂
′].

CUC:

∆̂ =

(
G∑
g=1

1

ψ̂g

N∑
i=1

ẑig(Xi − M̂g)
′Σ̂∗

−1

g aAig

)(
G∑
g=1

1

ψ̂g

N∑
i=1

ẑigb
A
ig

)−1

,

ψ̂g =
1

Ngnp
tr{(2)

g }.
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UCC:

∆̂g =

(
N∑
i=1

ẑig(Xi − M̂g)
′Σ̂∗

−1

g aAig

)(
N∑
i=1

ẑigb
A
ig

)−1

, ψ̂ =
1

Nnp
tr{(3)},

where

(3) =
G∑
g=1

N∑
i=1

ẑig
[
(Xi − M̂g)

′Σ̂∗
−1

g (Xi − M̂g)− ∆̂ga
A
ig

′
Σ̂∗
−1

g (Xi − M̂g)
]
.

UCU:

∆̂g =

(
N∑
i=1

ẑig(Xi − M̂g)
′Σ̂∗

−1

g aAig

)(
N∑
i=1

ẑigb
A
ig

)−1

, Ψ̂ =
1

Nn
diag{(3)}.

UUC:

∆̂g =

(
N∑
i=1

ẑig(Xi − M̂g)
′Σ̂∗

−1

g aAig

)(
N∑
i=1

ẑigb
A
ig

)−1

, ψ̂g =
1

Ngnp
tr{(4)

g },

where

(4)
g =

N∑
i=1

ẑig
[
(Xi − M̂g)

′Σ̂∗
−1

g (Xi − M̂g)− ∆̂ga
A
ig

′
Σ̂∗
−1

g (Xi − M̂g)
]
.

UUU:

∆̂g =

(
N∑
i=1

ẑig(Xi − M̂g)
′Σ̂∗

−1

g aAig

)(
N∑
i=1

ẑigb
A
ig

)−1

, Ψ̂g =
1

Ngn
diag{(4)

g }.
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Banerjee, A. and Ghosh, J. (2000). Concept-based clustering of clickstream data.

Banerjee, A. and Ghosh, J. (2001). Clickstream clustering using weighted longest

common subsequences. In Proceedings of the web mining workshop at the 1st SIAM

conference on data mining, volume 143, page 144. Citeseer.

Baricz, A. (2010). Turn type inequalities for some probability density functions.

Studia Scientiarum Mathematicarum Hungarica, 47, 175–189.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique

occurring in the statistical analysis of probabilistic functions of Markov chains.

Annals of Mathematical Statistics, 41, 164–171.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: A fresh

approach to numerical computing. SIAM review, 59(1), 65–98.

Bhattacharya, S. and McNicholas, P. D. (2014). A LASSO-penalized BIC for mixture

model selection. Advances in Data Analysis and Classification, 8(1), 45–61.

171



PhD Thesis - Michael P.B. Gallaugher McMaster - Mathematics and Statistics

Biernacki, C. and Maugis, C. (2017). High-dimensional clustering. In Choix de
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Domı́nguez-Molina, J. A., González-Faŕıas, G., Ramos-Quiroga, R., and Gupta, A. K.

(2007). A matrix variate closed skew-normal distribution with applications to

stochastic frontier analysis. Communications in Statistics – Theory and Methods,

36(9), 1691–1703.

Dutilleul, P. (1999). The MLE algorithm for the matrix normal distribution. Journal

of Statistical Computation and Simulation, 64(2), 105–123.

173



PhD Thesis - Michael P.B. Gallaugher McMaster - Mathematics and Statistics

Fraley, C., Raftery, A. E., Murphy, T. B., and Scrucca, L. (2012). mclust version 4

for R: Normal mixture modeling for model-based clustering, classification, and

density estimation. Technical Report 597, Department of Statistics, University of

Washington, Seattle, WA.

Franczak, B. C., Browne, R. P., and McNicholas, P. D. (2014). Mixtures of shifted

asymmetric Laplace distributions. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 36(6), 1149–1157.

Gallaugher, M. P. B. and McNicholas, P. D. (2017). A matrix variate skew-t distri-

bution. Stat, 6(1), 160–170.

Gallaugher, M. P. B. and McNicholas, P. D. (2018a). Clustering and semi-

supervised classification for clickstream data via mixture models. arXiv preprint

arXiv:1802.04849.

Gallaugher, M. P. B. and McNicholas, P. D. (2018b). Finite mixtures of skewed

matrix variate distributions. Pattern Recognition, 80, 83–93.

Gallaugher, M. P. B. and McNicholas, P. D. (2018c). Mixtures of matrix variate bi-

linear factor analyzers. In Proceedings of the Joint Statistical Meetings, Alexandria,

VA. American Statistical Association. Preprint available as arXiv:1712.08664.

Gallaugher, M. P. B. and McNicholas, P. D. (2019a). ClickClustCont: Mixtures of

Continuous Time Markov Models. R package version 0.1.7.

Gallaugher, M. P. B. and McNicholas, P. D. (2019b). Mixtures of skewed matrix

variate bilinear factor analyzers. Advances in Data Analysis and Classification.

doi:10.1007/s11634-019-00377-4.

174



PhD Thesis - Michael P.B. Gallaugher McMaster - Mathematics and Statistics

Gallaugher, M. P. B. and McNicholas, P. D. (2019c). Three skewed matrix variate

distributions. Statistics and Probability Letters, 145, 103–109.

Gallaugher, M. P. B. and McNicholas, P. D. (2020). Parsimonious mixtures of matrix

variate bilinear factor analyzers. In T. Imaizumi et al., editors, Advanced Studies

in Behaviormetrics and Data Science. Springer, Singapore.

Gallaugher, M. P. B., Biernacki, C., and McNicholas, P. D. (2018). Relaxing the

identically distributed assumption in gaussian co-clustering for high dimensional

data. arXiv preprint arXiv:1808.08366.

Ghahramani, Z. and Hinton, G. E. (1997). The EM algorithm for factor analyzers.

Technical Report CRG-TR-96-1, University of Toronto, Toronto, Canada.

Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001). Eigentaste: A constant

time collaborative filtering algorithm. Information Retrieval, 4(2), 133–151.

Gupta, A. K. and Nagar, D. K. (1999). Matrix variate distributions. Chapman &

Hall/CRC Press, Boca Raton.
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