
A Model-Based Approach to Formal

Assurance Cases

A Model-Based Approach to Formal

Assurance Cases

By

Nicholas Annable, B.Eng Mechatronics

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements for the Degree

Master of Applied Science

McMaster University

© Copyright by Nicholas Annable, March, 2020

Master of Applied Science (March, 2020) McMaster University

(Software Engineering) Hamilton, Ontario

Title: A Model-Based Approach to Formal Assurance Cases

Author: Nicholas Annable, B.Eng Mechatronics (McMaster

University)

Supervisors: Alan Wassyng, Mark Lawford

Number of Pages: vii, 92

ii

Abstract

The rapidly increasing complexity of safety-critical embedded systems has been

the cause of difficulty in assuring the safety of safety-critical embedded systems

and managing their documentation. More specifically, current approaches to

safety assurance are struggling to keep up with the complex relationships be-

tween the ever growing number of components and the sheer amount of code

underlying safety-critical embedded systems such as road vehicles. We believe

that an approach to safety assurance able to cope with this complexity must: i)

have sound mathematical foundations on which safety assurance can be built;

and ii) provide a formal framework with precisely defined semantics in which

the assurance can be represented. In doing this, assurance can be made less

ad-hoc, more precise and more repeatable. Sound mathematical foundations

also facilitate the creation of tools that automate many aspects of assurance,

which will be invaluable in coping with the complexity of modern-day and

future embedded systems. The model-based framework that achieves this is

Workflow+. This framework is rigorous, developed on proven notations from

model-based methodologies, comprehensively integrates assurance within the

development activities, and provides the basis for more formal assurance cases.

iii

Acknowledgments

Thank you to my supervisors Dr. Alan Wassyng and Dr. Mark Lawford for

their support and guidance along the way.

A big thank you to Zinovy Diskin. This work would not have been possible

without him. I am extremely grateful for the countless hours he spent working

with me on and teaching me about topics related to my research. He challenged

me to get things done right, no matter how long it took or how tight the

deadline was, and was always there working alongside me. We often worked

tirelessly to get things done, and in that time I learned a lot about what is

possible with enough dedication and resolve, for which I am grateful.

Thank you to my examiners Richard Paige and Franya Franek for showing

interest in my research and taking the time to examine my work.

Thank you to Joseph D’Ambrosio, Galen Ressler, Sigrid Wagner, Sahar

Kokaly, Lucian Patcas and Ramesh S for providing invaluable advice and feed-

back on my work from an industry perspective.

Finally, thank you to my family and friends for their unwavering support

and for tolerating the many nights and weekends I spent working on my re-

search.

iv

Contents

Descriptive Note ii

Abstract iii

Acknowledgments iv

Table of Contents vii

List of Figures viii

Declaration of Academic Achievement x

1 Introduction 1

1.1 Current Approaches . 1

1.2 Why do we Need a Formal Approach? 2

1.3 How to Make Assurance More Formal 3

1.4 Introducing Workflow+ . 5

1.5 Structure of the Thesis . 6

1.6 Contribution . 6

2 Related Work 8

3 Workflow+ Framework 10

3.1 Requirements of Workflow+ . 10

3.2 Workflow+ Framework Overview 12

3.3 Workflow+ Metamodels and Their Instances 16

3.3.1 Running Example: Workflow+ Metamodels and Their

Instances . 18

v

3.4 Workflow+ Metamodel Decomposition 21

3.4.1 Running Example: Workflow+ Metamodel Decomposition 23

3.5 Using Aspects for Cross-Cutting Concerns 25

3.5.1 Running Example: Using Aspects for Cross-Cutting Con-

cerns . 26

3.6 Adding Argumentation to the Model 27

3.6.1 Running Example: Adding Assurance to the Model . . . 32

3.7 Conformance to Normative Metamodel 41

3.7.1 Running Example: Conformance to Normative Metamodel 45

4 Workflow+ Approach To Assurance 49

4.1 The Generic Workflow+ Approach 49

4.2 Workflow+ Models As Assurance Case Templates 54

4.3 An Example from the Automotive Domain 57

4.3.1 Abstract Model . 57

4.3.2 First Refinement: Concept Phase 59

4.3.3 Second Refinement: HARA 62

4.3.4 Third Refinement (1) - Situation Analysis and Hazard

Identification . 63

4.3.5 Third Refinement (2) - Classification of Hazardous Event 67

4.3.6 Third Refinement (3) - Determination of Safety Goal . . 68

4.3.7 Tying it All Together . 70

4.3.8 A More Specific Template 72

5 Discussion 76

5.1 Advantages of Model-Based Documentation 76

5.1.1 Making Assurance Less Ad-hoc 77

5.1.2 Improved Traceability 77

5.1.3 Improved Granularity . 78

5.2 The Potential for Tool Support and Automation 79

5.2.1 Impact Analysis . 79

5.2.2 Automation . 80

5.2.3 Integrating Assurance with Development 81

5.3 Multiview Modelling . 82

vi

6 Evaluation 83

7 Conclusion 85

7.1 Future work . 86

vii

List of Figures

3.1 Workflow+, block diagrams and model transformations 12

3.2 An example of a metamodel (left) and an instance (right) 13

3.3 Workflow+ overview: metamodels, their instances and argumen-

tation . 15

3.4 An illustration of a simple Workflow+ process and two of its

instances . 17

3.5 Bakery: a simple Workflow+ metamodel defining the process of

making bread and an instance documenting its execution 18

3.6 An illustration of Workflow+ metamodel decomposition 22

3.7 Bakery: a refinement of the process defined in Figure 3.5 24

3.8 Bakery: Advice metamodel . 28

3.9 Bakery: entry points for advice metamodel 29

3.10 Bakery: weaving in the review metamodel for the Mix process . 30

3.11 An illustration of the mapping of constraint composition and

the mapping of natural-language arguments to constraints . . . 31

3.12 An overview of Workflow+ with argumentation (see Figure 3.3) . 32

3.13 Bakery: Make Bread process from Figure 3.5 with argumentation 35

3.14 Bakery: Mix process from Figure 3.7 with argumentation 37

3.15 Bakery: Knead process from Figure 3.7 with argumentation . . 38

3.16 Bakery: Bake process from Figure 3.7 with argumentation . . . 39

3.17 Bakery: Mix, Knead and Bake processes with composed argu-

mentation . 40

3.18 An overview of Workflow+ with a normative workflow 44

3.19 Bakery: normative Workflow+ metamodel 46

viii

3.20 Bakery: A Workflow+ metamodel conforming to the normative

metamodel in Figure 3.19 . 47

4.1 Workflow+ conformance chain 53

4.2 V-model as shown in [5] . 58

4.3 High-level Workflow+ metamodel of the process described in

ISO 26262 [5] . 59

4.4 Concept phase as shown in ISO 26262-3 [5] 61

4.5 Workflow+ metamodel of the concept phase as described in ISO

26262-3 [29] . 61

4.6 Workflow+ metamodel of HARA as described in ISO 26262-3 [29] 64

4.7 Workflow+ metamodel of situation analysis and hazard identi-

fication as described in ISO 26262-3 [29] 66

4.8 Workflow+ metamodel of situation analysis and hazard iden-

tification with argumentation as as described in ISO 26262-3

[29] . 66

4.9 Workflow+ metamodel of classification of hazardous events as

described in ISO 26262-3 [29] 68

4.10 Workflow+ metamodel of classification of hazardous events with

argumentation as described in ISO 26262-3 [29] 69

4.11 Workflow+ metamodel of determination of safety goal as de-

scribed in ISO 26262-3 [29] . 71

4.12 Workflow+ metamodel of determination of safety goal with ar-

gumentation as described in ISO 26262-3 [29] 71

4.13 Overview of decomposition of the processes within ISO 26262 [5] 73

4.14 An example of a Workflow+ template for Situation analysis and

hazard identification (see Figure 4.8) 75

ix

Declaration of

Academic Achievement

My contribution has been mainly to the development of the Workflow+framework.

This has included creating and documenting detailed examples as part of pro-

ducing deliverables for a research project with an industrial partner, and to

be used in technical reports. I have worked closely with our industrial part-

ner to understand their needs and ensure Workflow+ addresses those needs.

I have also contributed by developing explanations and detailed figures that

form the basis of a recent publication on Workflow+ and also aid in introduc-

ing Workflow+ to practitioners and researchers who are new to this form of

modelling.

x

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Chapter 1

Introduction

1.1 Current Approaches

A common approach to certifying safety-critical systems is to produce an as-

surance case arguing the safety of some particular system of interest that a

regulator can then review [1]. Popular techniques are to use Goal Structuring

Notation (GSN) or Claims Arguments Evidence (CAE) diagrams to structure

the argument for a systems safety. The main objective of these techniques is

to provide a systematic, structured way to use evidence to argue the safety of

a system. The idea behind this is to bring scientific rigour into the realm of

system safety, thus improving the safety of systems by requiring objective ar-

guments supported by evidence that can be assessed and critiqued by experts

before safety-critical systems are approved for use.

The arguments in assurance cases can generally be divided into two groups:

process-focused and product-focused arguments [2]. Process-focused argu-

ments focus on demonstrating that certain processes have been properly ex-

ecuted by qualified people while building the system of interest. The idea is

1

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

that building a system by following processes and procedures known to pro-

duce safe systems can give confidence in and be used to argue the safety of a

system. Product-focused arguments focus on demonstrating that the system

of interest has certain properties desirable for safety. The idea is that the

satisfaction of all properties P desirable for safety gives confidence in and can

be used to argue the safety of a system. It is common to see both approaches

used in assurance cases.

1.2 Why do we Need a Formal Approach?

Unfortunately, current approaches to building assurance cases fall short of their

goal to provide a way to bring rigour into the world of system safety. The for-

mal foundations of current methods for reasoning in assurance cases are largely

unclear, leading to questions about the effectiveness of such approaches, as ex-

plained in [2]. This leaves regulators with the task of assessing the soundness

of methods of reasoning on a case-by-case basis. Ideally, there should be a

fixed set of established principles (both product-focused and process-focused)

which can be used to form arguments, allowing regulators to focus on en-

suring these principles were respected rather than identifying the underlying

principles themselves.

Another drawback of current approaches is that there is a lack of well-

defined meaning for the building blocks of such assurance cases. This becomes

clear when looking at different assurance cases built by different teams. Each

team will have assigned their own ad-hoc meaning to each diagrammatic ele-

ment used in the assurance case, potentially resulting in drastically different

structures of argumentation. Additionally, in looking at assurance cases made

2

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

using current approaches it can be seen that this lack of well-defined mean-

ing leads to a great deal of information being left implicit; as teams create

and become accustomed to their own ad-hoc methodologies, information that

seems obvious to them (but is not to someone from the outside) tends to be

omitted. This lack of well-defined meaning further increases the burden on

regulators reviewing assurance cases, again shifting the focus from the content

of the assurance case to understanding its structure in the first place. This is

discussed in more detail in [3].

Together, these issues undermine a regulators ability to review assurance

cases by requiring them to either decipher assurance cases on their own and

introduce subjectivity to the reviewing process or work with developers to

understand the assurance case, introducing confirmation bias to the reviewing

process. Moreover, when each assurance case is structured differently than

the last, it is difficult to gain expertise in evaluating assurance cases, and

identifying flaws with safety implications is much more difficult. We believe

this is largely the result of a lack of formal foundations and that a more formal

approach could address these issues.

Additionally, a lack of consistency between assurance cases makes it diffi-

cult to produce tools to support their development. We believe that introduc-

ing formal foundations will improve consistency between assurance cases and

thus enable effective tooling to be built.

1.3 How to Make Assurance More Formal

It is not possible to formally demonstrate the safety of a system. When it

comes to process-focused approaches, the nondeterministic nature of human

3

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

processing makes it impossible to formally demonstrate that a process was

properly executed. The most that can be done is to review the documentation

of execution and the outputs of processes in the context of its input to make a

judgement as to whether or not the process was properly executed. This results

in a rather indirect and thus informal proof that the processes were in fact

well executed. Even if it were possible to formally demonstrate that processes

were properly executed, the reasoning as to why those processes will lead to

a safe system when properly executed is based on experience which cannot be

formalised. These issues prevent safety from being formally demonstrated by

any process-focused arguments.

Formal demonstration of safety is not any easier for product-focused ap-

proaches. The infinite number of interactions between a system and its envi-

ronment make it impossible to formally demonstrate that safety-related prop-

erties will always hold. Even if this were formally possible, the exact reasons

as to why the satisfaction of these properties gives confidence in the safety

of a system are based on experience and expert opinion that cannot be for-

malised. Similarly to the process-focused situation, these issues prevent safety

from being formally demonstrated by any product-focused arguments.

Although neither product- or process-focused approaches can formally prove

safety, the major issues with assurance cases (discussed in 1.2) can be addressed

by:

1) Providing sound mathematical foundations on which arguments for safety

assurance can be built

2) Providing a formal framework with precisely defined semantics in which

the arguments from a) can be precisely represented

4

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

We believe that in doing this, we can directly improve the understandabil-

ity of and consistency between assurance cases, allowing regulators to gain

expertise in making objective assessments on the safety of the product being

considered. We also believe that providing a framework with precisely defined

semantics and introducing regularity into the structure of assurance cases will

allow for more powerful tools to be built.

1.4 Introducing Workflow+

We propose the Workflow+ framework as a mathematical foundation that en-

ables a rigorous model-driven approach to the development of assurance cases

for embedded systems. Model-based development of complex embedded sys-

tems has proven to be effective, in part by enabling more detailed analysis

and automated management of design artefacts through model management

(a study on the use of MBD in industry can be found in [4]). We believe it

only makes sense to utilize these model-based approaches for safety assurance

for the same reasons. For the reasons mentioned in 1.2 we believe that the

improved traceability, the well-defined approach, the improved detail and po-

tential for automation inherent in the model-based Workflow+ approach will

pave the way for more rigorous safety assurance. Additionally, the Workflow+

approach creates an opportunity for the safety of systems to be planned for

ahead of development, as well as an opportunity to better integrate safety and

development.

The Workflow+ framework allows for the modelling of assurance cases by

providing mechanisms to model all aspects of Safety Engineering Processes

(SEPs) and assurance cases, including processes, data, verification and vali-

5

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

dation(V&V), detailed traceability and argumentation. In doing this, we can

capture both process-focused and product-focused aspects of safety assurance

and present them in a fully traceable and unified way. The “plus” in Workflow+

refers to a special feature of Workflow+ that allows for complex data flow and

process flow to be captured in one unified model, rather than having them

disjoint.

1.5 Structure of the Thesis

The remaining sections of the thesis are structured as follows: First, we de-

scribe Workflow+ in an informal and intuitive way, along with relatable exam-

ples to demonstrate its core mechanisms and how they are used in Section 3.

Next, we describe the Workflow+ approach to safety assurance more formally

in Section 4.1. With the approach described both formally and informally, we

proceed by providing a more relevant example of how Workflow+ can be used

to model processes used in the automotive industry by creating Workflow+

metamodels of the ISO 26262 standard ([5]) in Section 4.3. Finally, the ad-

vantages of the Workflow+ approach are discussed in Section 5.

1.6 Contribution

The work presented in this thesis is heavily based on the work done in a

collaborative research project between the McMaster Centre for Software Cer-

tification (McSCert) and an industrial partner. While the idea of Workflow+

and its mathematical foundations are not my own, I played a critical role in

its development by working with the McSCert team to shape Workflow+ into

6

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

its current form, which we believe is very promising (See Section 6).

Broadly speaking, the development of Workflow+ aimed to create a frame-

work that is a marriage of formal mathematical modelling and software en-

gineering principles. My main role was to live in between these two areas,

working with experts on both sides to ensure that the Workflow+ framework

met the needs of a model-based framework for safety cases. I worked closely

with experts on both sides to figure out how to shape the Workflow+ framework

to capture the safety-related software engineering principles.

Additionally, I was heavily involved in the development of the material used

to deliver the outcomes of our work on the Workflow+ framework. To be more

specific, I co-authored several technical reports and a paper on Workflow+

submitted for publication ([3], [6]) and was heavily involved in:

1. Producing deliverables for a research project with an industrial partner

2. Conceiving of and producing examples to illustrate Workflow+ to stake-

holders

3. Working with our industrial partner to understand their needs and ensure

they are met

Finally, this thesis is a summary of much of the work done by McSCert in

developing Workflow+ to date, and is intended to serve as an introduction to

the Workflow+ framework that can be provided to those who are interested

in understanding the framework. Thus, this thesis itself serves as another

contribution to the research project.

7

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Chapter 2

Related Work

GSN/CAE approaches to safety assurance (see [7], [8]) were inspirational

sources due to their focus on decomposition and the hierarchical structuring of

assurance cases, along with their use of development artefacts (i.e. evidence)

as support for arguments of a systems safety, both of which are cornerstones

of the Workflow+ approach to assurance.

There is a large body of work related to assurance case development. [9]

and [10] provide good descriptions of this body of work, and list many related

references. [11] provides a very detailed analysis of the types of evidence that

are used to support arguments in assurance cases.

Researchers have been aware of the issues we discussed regarding assurance

cases for quite some time (see [2], published in 2010). There has been work

towards overcoming these issues, for example through the use of assurance

case templates as discussed in [12] and through exploration of applying formal

methods to assurance cases [13].

[14] discusses how most tools for GSN/CAE assurance case development

target manual development of safety cases, and motivates the use of tooling

8

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

built upon formal foundations to facilitate automation of the development of

GSN/CAE assurance cases.

The Structured Assurance Case Metamodel (SACM) ([15]) is a standard

that specifies a metamodel for assurance cases that is more expressive than

GSN/CAE approaches and facilitates model-based assurance [16]. A recent

example of work towards using SACM for model-based assurance is [17]. Other

work related to model-based management of assurance cases includes [18]

(which also discusses modelling of ISO 26262 [5]), and [19].

The Software and Systems Process Engineering Meta-Model (SPEM) Spec-

ification provides a framework for the standardized specification, development

and management of software/systems engineering processes [20]. Work to-

wards using SPEM as a basis for the automatic generation of process defi-

nitions based on the context of a process’s application can be found in [21].

This idea of model-based automatic process generation has the potential to be

applied to the situational refinement of process definitions in Workflow+.

In contrast to the works described above, the approach presented in this

thesis does not use GSN/CAE-style argumentation as a basis for assurance.

The theoretical foundations of the Workflow+ approach to assurance are laid

out in [3] (cited many times throughout this thesis), with [22] as a precursor

to these ideas.

9

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Chapter 3

Workflow+ Framework

3.1 Requirements of Workflow+

A model-based approach to formal assurance cases of embedded systems re-

quires a modelling framework that is able to capture all information relevant

to safety and, using this information, develop a convincing argument for safety.

More specifically, to be effective in supporting safety assurance the modelling

framework must capture the following to an arbitrary level of granularity:

i) safety and design related data about the system, its operating environ-

ment (includes users), and assumptions

ii) process specifications, definitions and control flow

iii) people-related information regarding processes, such as qualifications,

role, etc.

iv) input/output relationships between data and processes

v) data-to-data and data-to-process constraints

10

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

vi) reviews of data and processes to determine that they are valid

vii) argumentation over these entities explaining their contribution to safety

viii) the mechanism that facilitates building arguments over this information

must allow for explicit and detailed traceability to any of the information

mentioned above to ensure that all necessary information and context is

referenced.

Currently, no single modelling framework is well equipped to capture all

information needed for safety assurance of embedded systems. Block diagrams

are well equipped to model the complex dynamic structures such as processes

or control flows followed during the development of embedded systems, but

are unable to adequately represent the accompanying complex data structures.

On the other hand, model transformations are very well equipped to represent

these complex data structures, but are extremely difficult to compose even in

simple cases[23], let alone in complex (but common) situations such as control

loops.

As first discussed in [22], it is possible to fill in this gap by modelling both

workflow and data structure together in UML (Unified Modelling Language)

class diagrams. This is exactly what was done in developing the Workflow+

framework (see Figure 3.1). Class diagrams inherently allow for complex data

structures with complex diagrammatic constraints (e.g. using the Object Con-

straint Language (OCL)) to be represented, and their extensibility allows pro-

cesses and control flows to be modelled and related to data with precise trace-

ability. Workflow+ is a fully formalizable framework, but at the time of writing

its formalization is still a work in progress and is left for future work. How-

ever, it is already far more rigorous, precise and comprehensive than existing

11

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Figure 3.1: Workflow+, block diagrams and model transformations

methods for developing (safety) assurance cases.

3.2 Workflow+ Framework Overview

We begin by describing the model-based engineering terms used to describe

the Workflow+ framework. We consider a model to be a representation of some

real-world data created for some particular purpose. We consider metamodels

to be abstractions that describe the structure these models must have to be

useful for their purpose. It is common for this relationship between models and

metamodels to be described as an instance-metamodel relationship, where an

instance is a model that follows all of the rules in the metamodel. For example,

suppose that we want to model real-world cars and their owners for the purpose

of record keeping (see Figure 3.2). We first create a (UML) metamodel (left)

to describe the structure of models that are useful for record keeping, which

12

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-03, 5:57 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/Meal%20Example_new.svg

Figure 3.2: An example of a metamodel (left) and an instance (right)

specifies that each model of a car can be associated with one model of a person,

and each model of a person can be associated with more than one model of a

car. That is, in the records each person can own more than one car, but each

car can only be owned by one person. With this metamodel, we can instantiate

it to model real-world cars and their owners. One possible instance (right)

shows an example of a model representing a person John and the ownership

of his car and truck. To reiterate, the metamodel (left) specifies the required

structure of models representing real-world people and the cars they own.

Instances of this metamodel are models of real-world people and the cars they

own that honour the structure defined in the metamodel. We talk about

metamodels being instantiated to realize an instance of the metamodel. We

hope that this example is simple enough to avoid notation-related confusion.

The notation used is explained in more detail in the following sections.

The Workflow+ framework provides a formal way to model workflows with

both complex dataflow and control flow, such as those carried out by engi-

neers during the development of safety-critical embedded systems. (The “+”

in Workflow+ signifies the fact that in our workflow models, the output of the

workflow, sometimes referred to as a work product, is refined at different stages

of the process.) This enables precise definitions of workflows that are to be fol-

lowed, along with precise documentation of the execution of these workflows.

13

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

The Workflow+ framework provides the modelling mechanisms to achieve this

through the use of Workflow+ metamodels and instances. Workflow+ meta-

models serve as definitions of workflows (including the data used). When the

workflow described in a Workflow+ metamodel is executed, it is instantiated

to model its real-world execution (again, including the related data). Cur-

rently, Workflow+ metamodels are created using profiled UML class diagrams

designed to capture process definitions, data definitions, control flow involv-

ing those processes and data, data-to-data and data-to-process traceability,

as well as constraints over processes and data. When the workflow defined

by a Workflow+ metamodel (defined using a class diagram) is executed, the

defining class diagram is instantiated as an object diagram to document that

execution. Finally, assurance-related arguments can be included, almost me-

chanically, over the content of the Workflow+ metamodel. It can be shown that

arguments on a metamodel also apply to its instances (more on this later).

These concepts are illustrated in Figure 3.3. A black-box Workflow+ meta-

model, which defines some complex workflow is shown to be executed in the

real-world (note that traceability is included in process and data definitions).

That execution is documented by an instance of the Workflow+ metamodel

defining the workflow. There is argumentation that is built over the Workflow+

metamodel that also applies to instances of that metamodel. Note the differ-

ences between the lines in Figure 3.3: the solid line represents an instance-

metamodel relationship, the dashed black line represents a mapping from ar-

gumentation to the metamodel, and the blue dashed line represents a derived

mapping from argumentation over the metamodel to an instance of that meta-

model (recall that argumentation over metamodels also applies to instances).

There are significant advantages of this approach that will become more

14

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

WRUkÁRZ+ InVWance
(Model documenting
e[ecution of workÁow)

WRUkÁRZ+ MeWamRdel
(workÁow deÀnition) real-world

e[ecution¬of
¬workÁow deÀnition

Argumentation
derived mapping

based on

Instantiation

WRUkÁRZ+ MeWamRdel
(workÁow¬deÀnition)

s\ntactic
constraint

declarations

semantic
constraint

declarations

process + data +
control Áow +

constraint declarations
process + data

instances

WRUkÁRZ+ MeWamRdel'
(workÁow¬deÀnition reÀnement)

more detailed process
+ data + control Áow +
constraint declarations

WRUkÁRZ+ MeWamRdel
(workÁow¬deÀnition)

process + data +
control Áow +

constraint declarations

process + data +
control Áow deÀnitions

S\ntactic
Argumentation Semantic

Argumentation

Composed
Argumentation

mappingmapping

real-world
e[ecution¬of

¬workÁow deÀnition

WRUkÁRZ+ InVWance
(Model documenting
e[ecution of workÁow)

process + data
instances

satisÀed
s\ntactic

constraints

satisÀed
semantic

constraints¬

Instantiation

derived mapping

derived mapping

argument derivation

WRUkÁRZ+ MeWamRdel
(manufacturer's

workÁow¬deÀnition)

s\ntactic
constraint

declarations

semantic
constraint

declarations

process + data +
control Áow deÀnitions

S\ntactic
Argumentation

Semantic
Argumentation

Composed
Argumentation

mappingmapping

real-world
e[ecution¬of

¬workÁow deÀnition

WRUkÁRZ+ InVWance
(Model documenting
e[ecution of workÁow)

process + data
instances

satisÀed
s\ntactic

constraints

satisÀed
semantic

constraints¬

Instantiation

derived mapping

derived mapping

argument derivation

NRUmaWiYe WRUkÁRZ+ MeWamRdel
(workÁow guidance from regulator)

s\ntactic
constraint

declarations

semantic
constraint

declarations

process + data +
control Áow deÀnitions

Argumentation to be
supported

based on

ReÀnement

ReÀnement

ReÀnement

Figure 3.3: Workflow+ overview: metamodels, their instances and argumenta-
tion

apparent in later sections, and were strong motivators of this methodology.

Three of the most important are: i) assurance becomes less ad hoc and much

more rigorous; ii) assurance is not artificially separated from development and

so traceability is comprehensive and natural; and iii) the modelling paradigm

lends itself naturally to generating various views of the models, and one of

those views can be GSN-like, so readers who appreciate the intuitive aspects

of GSN still get that view of the assurance, but it is based on this rigorous more

predictable approach. Finally, Workflow+ metamodels can be instantiated to

document execution of the process defined by the metamodel.

The following sections provide more detail on these core mechanisms of the

Workflow+ framework with the help of a running example of how Workflow+

can be used to model and create an assurance case for the process a bakery

follows when making bread. The example was chosen to illustrate Workflow+

using an example that most people will understand without getting embroiled

in system/software engineering specifics. The example still has real-world com-

15

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

plexity that has to be taken into account, and we believe it has many parallels

with embedded-systems development.

3.3 Workflow+ Metamodels and Their Instances

Workflow+ metamodels are profiled class diagrams defining workflows con-

sisting of process definitions, data definitions, control flow, data-to-data and

data-to-process traceability, and constraints over processes and data.

Data definitions specify how instances of data (i.e. models of real-world

data) can be structured. Classes stereotyped as Process have been introduced

to specify processes whose instances document their real-world executions (i.e.

when a process defined by a Process class is executed, instances of that class

document its real-world execution). Process classes take data classes and/or

associations as input and output classes and/or associations. It is this abil-

ity to model processes that use and produce associations that fundamentally

distinguishes Workflow+ from traditional block diagrams, and the ability to

add detailed control flow to complex data structures that distinguishes it from

basic model transformations.

We use green boxes stereotyped Process to denote process classes, yellow

boxes to denote data classes, green arrows to denote dataflow to/from pro-

cesses, black lines to denote regular UML associations, and red text to denote

OCL-style constraints. Instances of objects are denoted by name : type. In-

stances of processes are denoted by exeX : type, where X is a unique identifier

for some particular execution of a process used to distinguish between different

executions of the same process. Figure 3.4 illustrates this notation. The meta-

model defines a process usefulProcess that, when executed, takes some data of

16

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Figure 3.4: An illustration of a simple Workflow+ process and two of its in-
stances

type InputData and produces data of type OutputData, along with an associa-

tion between InputData and OutputData. Two example instances documenting

two hypothetical executions of this process are shown.

In general, there are two types of processes that can be modelled using

Workflow+: Process and Query. A Process class is used to model any processes

that must be carried out by humans, whereas a Query class represents a process

that is simple enough to be mechanized and automated. A simple example of

a Query is using input variables and a look up table to determine an output

value. No Queries appear in the running example, but they are used in the

automotive Workflow+ models appearing in Section 4.

When a Workflow+ metamodel is executed, we instantiate the metamodel

as an object diagram to document its execution. That is, when the workflow

defined by the Workflow+ metamodel is executed, the metamodel is instanti-

ated as an object diagram where objects model real-world data and process

executions.

There is extensive literature on this concept of instantiation, for example

see [24]. In order for an instance to be considered valid, it must conform to all

constraints in its metamodel.

17

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-03, 6:07 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/Meal%20Example_new.svg

Figure 3.5: Bakery: a simple Workflow+ metamodel defining the process of
making bread and an instance documenting its execution

3.3.1 Running Example: Workflow+ Metamodels and

Their Instances

Figure 3.5 shows a very simple example of a Workflow+ metamodel specifying

the workflow used to make a very bland piece of bread (left) and a sample

instance documenting its execution (right). In simple terms, Figure 3.5 defines

a workflow where flour and water are processed to make a piece of bread and

shows the documentation of a possible execution of that process. We explain

the metamodel and its instance in parallel.

In the metamodel, there is one (green) process class named MakeBread de-

fined, which is specified as Make pieces of bread using 1:1.5 ratio of water to

flour for each piece. This process has two (yellow) data classes defined as its

inputs (Water and Flour) and one defined as its output (PieceofBread), each

with an attribute mass. When instantiated, these data classes model real-

world data; for example, Water is instantiated by the object water1 : Water,

which is a model representing 0.1kg of real-world water. When real-world

18

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

water and flour are used to execute MakeBread, we can model this process

execution by instantiating the MakeBread process (exe1 : MakeBread) and cre-

ating input dataflow associations from the models of that real-world water and

flour used (water1 : Water and flour1 : Flour respectively) to exe1 : MakeBread,

and an output dataflow association from exe1 : MakeBread to a model of the

real-world piece of bread produced (piece1 : PieceofBread).

The associations between data classes in the metamodel specify the rela-

tionships between those class’s instantiations. For example, when instantiated

the association between Water and MakeBread relates instances of PieceofBread

to the instance of Water it was made with. Instances of these associations

are generated during the execution of a process (hence the green arrow from

MakeBread to these associations in the metamodel and in the instance).

Constraints over the metamodel are used to restrict its possible instances.

Thus, when a process’s definition is executed and documented by instantiating

that process’s metamodel, the constraints restrict how that process can be

executed. We make use of two types of constraints: multiplicities and OCL-

style constraints.

Multiplicities, placed at association ends, specify how many instances of

classes can be associated with one another. For example, the multiplicities

on the arrow from Water to MakeBread specify that exactly one instance of

water (the 1 closer to Water) is input to one execution of MakeBread (the 1

closer to MakeBread). If, for example, an instance of this process was created

where an instance of water is associated with two instances of MakeBread, this

multiplicity constraint would be violated and the instance would be invalid. In

this metamodel, most multiplicities are 1 (i.e. only a one-to-one instance rela-

tionship is allowed), with the exception of those attached to PieceofBread. The

19

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

one-to-many (1..*) constraint on the end of the association from MakeBread to

PieceofBread specifies that each instance modelling the execution of MakeBread

can be associated with 1..* instances of PieceofBread; that is, each real-world

execution of the MakeBread process can produce one or more pieces of bread.

The 1..* on the associations from Water and Flour to PieceofBread indicate

that each instance of Water and Flour can be associated with 1..* instances

of PieceofBread; that is, the same water and flour can be used to make more

than one piece of bread (but would obviously need to be divided at some point

within the execution of MakeBread).

OCL-style constraints are used to express more complex constraints over

the metamodel. We refer to these as “OCL-style” because we use the concepts

underlying OCL constraints, but write them in natural language to avoid the

heavy syntax (and lack of readability) of OCL constraints. In this example,

there is only one OCL-style constraint (shown in red text). The dashed red

lines leading from this association link the constraint to the classes that it

applies to. This constraint states mass of flour used must equal 1.5*(mass of

water used), which requires that the values of mass of instances of Water and

Flour must be in the correct proportions.

With the components of the metamodel and its instances described, we

summarize the two. The metamodel defines the process of making bread by

specifying the process MakeBread, its input classes Water and Flour, its out-

put class PieceofBread, associations between its input and output classes, and

constraints over these classes/associations. The instance documents a sample

execution of this process, where 0.1kg of water and 0.15kg of flour (modelled

by water1 : Water, and flour1 : Flour respectively) were used to execute the

MakeBread process. This execution produced a 0.2kg piece of bread (modelled

20

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

by piece1 : PieceofBread), whose model was then associated with the instances

of Water and Flour used. Note that it is not a mistake that the mass of the

bread is not equal to the sum of the masses of flour and water used - water

weight is lost during the baking process. This instance is considered to be a

valid instance because all constraints in the metamodel are satisfied.

This is just a sample instance; there are many other possible instances

that will also satisfy all constraints in the metamodel. The purpose of the

metamodel is to include constraints such that all of its possible instances are

acceptable for the purpose of the metamodel.

3.4 Workflow+ Metamodel Decomposition

Workflow+ metamodels are defined using a compositional and formalizable

framework, and can be decomposed into more detailed metamodels by re-

fining data and process definitions. The concept of metamodel refinement is

discussed in [25]. At the time of writing the compositionality of the Workflow+

framework has yet to be formally demonstrated, and is left for future work.

Figure 3.6 illustrates a Workflow+ metamodel’s decomposition. The more

abstract metamodel Workflow + Metamodel is less detailed, and provides less

detail on the specifics of what its processes, data, etc. entail. In other words,

it provides less detail on how to execute the workflow it defines. When it is

refined into Workflow + Metamodel Refinement′, more detail is added to the

definitions of processes, data, etc., providing more detail (or, from another

perspective, more limitations) on how the workflow can be executed.

In general, processes and data in metamodels are decomposed alongside

one another; after all, more detailed process or data descriptions do not add

21

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

WRUkÁRZ+ InVWance
(Model documenting
e[ecution of workÁow)

WRUkÁRZ+ MeWamRdel
(workÁow deÀnition) real-world

e[ecution¬of
¬workÁow deÀnition

Argumentation
derived mapping

based on

Instantiation

WRUkÁRZ+ MeWamRdel
(workÁow¬deÀnition)

s\ntactic
constraint

declarations

semantic
constraint

declarations

process + data +
control Áow +

constraint declarations
process + data

instances

WRUkÁRZ+ MeWamRdel'
(workÁow¬deÀnition reÀnement)

more detailed process
+ data + control Áow +
constraint declarations

WRUkÁRZ+ MeWamRdel
(workÁow¬deÀnition)

process + data +
control Áow +

constraint declarations

process + data +
control Áow deÀnitions

S\ntactic
Argumentation Semantic

Argumentation

Composed
Argumentation

mappingmapping

real-world
e[ecution¬of

¬workÁow deÀnition

WRUkÁRZ+ InVWance
(Model documenting
e[ecution of workÁow)

process + data
instances

satisÀed
s\ntactic

constraints

satisÀed
semantic

constraints¬

Instantiation

derived mapping

derived mapping

argument derivation

WRUkÁRZ+ MeWamRdel
(manufacturer's

workÁow¬deÀnition)

s\ntactic
constraint

declarations

semantic
constraint

declarations

process + data +
control Áow deÀnitions

S\ntactic
Argumentation

Semantic
Argumentation

Composed
Argumentation

mappingmapping

real-world
e[ecution¬of

¬workÁow deÀnition

WRUkÁRZ+ InVWance
(Model documenting
e[ecution of workÁow)

process + data
instances

satisÀed
s\ntactic

constraints

satisÀed
semantic

constraints¬

Instantiation

derived mapping

derived mapping

argument derivation

NRUmaWiYe WRUkÁRZ+ MeWamRdel
(workÁow guidance from regulator)

s\ntactic
constraint

declarations

semantic
constraint

declarations

process + data +
control Áow deÀnitions

Argumentation to be
supported

based on

ReÀnement

ReÀnement

ReÀnement

Figure 3.6: An illustration of Workflow+ metamodel decomposition

much unless their counterparts are also more detailed. In theory, there is no

limit on how much detail can be added in each decomposition step, or on how

many times a metamodel can be decomposed. The level of detail included is

ultimately up to the designer of a Workflow+ metamodel, who can chose to

include (or omit) as much detail as makes sense depending on its use. An

added benefit of Workflow+ metamodel refinement is that the composition-

ality of Workflow+ metamodels allows different parts of a metamodel to be

decomposed independently. This allows for parts of a process that are well-

understood (e.g. mechanizable processes) to be decomposed to great levels of

detail, while still leaving black-box processes abstractly defined (e.g. a process

requiring creativity and human execution).

In our work with industrial partners, we have found that utilizing the con-

cept of modular decomposition can be of great help when explaining and pre-

senting metamodels. By presenting metamodels from an abstract perspective

at first and modularly introducing more detail, we have been able to effec-

tively communicate our models to industrial partners, even if they did not

22

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

have experience in metamodelling.

3.4.1 Running Example: Workflow+ Metamodel Decom-

position

Suppose that a bakery would like to start producing bread using the process

defined in Figure 3.5. However, MakeBread as defined in Figure 3.5 is not

detailed enough and thus not very useful to someone attempting to make bread,

so the bakery decomposes the process to better define how their bread will be

made. Figure 3.7 shows the decomposition of the metamodel in Figure 3.5.

In this decomposed metamodel, the classes Water and Flour have had their

mass attribute set to 5kg and 7.5kg respectively. That is, instances of each

are forced to have the masses specified in the metamodel. Because the actual

values in instances of Figure 3.7 must comply with the constraint on Water,

Flour and MakeBread in Figure 3.5, the constraint is no longer necessary. The

process MakeBread has been decomposed into three subprocesses: Mix, Knead

and Bake. When executed, the first of these processes, Mix, takes 5kg of

water and 7.5kg of flour and produces a 12.5kg mixture of water and flour.

This mixture is used for an execution of the process Knead, which kneads

the mixture and results in a batch of dough consisting of 50 pieces of 0.25kg

dough. Finally, this batch of dough is used by an execution of Bake, which

loads the dough onto pans and bakes it for a specific amount of time at a

specific temperature, producing a batch of 50 pieces of bread.

Output arrows to associations have been omitted to simplify the diagram.

These associations, for example between Mixture, Flour and Water, can be

assumed to always be created between the inputs and outputs of a process, in

23

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-03, 6:07 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/Meal%20Example_new.svg

Figure 3.7: Bakery: a refinement of the process defined in Figure 3.5

this case by Mix.

The refined process of making bread in Figure 3.7 can be refined again and

again until the desired level of detail is reached (e.g. different decompositions

for different sizes of bread), but we stop the decomposition here. This decom-

posed metamodel can be instantiated to document its execution in a way that

complies with the metamodel described in Figure 3.7.

24

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

3.5 Using Aspects for Cross-Cutting Concerns

It is not uncommon to see identically named aspects of a process occurring

in multiple places within a larger, more complex process. For example, a

review process needs to be carried out after a requirements process, after a

design process, after a coding process, etc. The review may be a review of

the process, it may be a review of the output of the process, or it may even

be a review of the people who carried out the process. Rather than include

multiple versions of these reviewing processes in the model, we propose to

document these cross-cutting concerns similar to the way developed by the

aspect-oriented programming community [26].

Workflow+ metamodels can be enriched with aspect metamodels which can

be developed separately and weaved into the main Workflow+ metamodel. We

are not aware of any aspect-oriented frameworks for metamodelling, but we

will make use of the main idea of aspect weaving [27] and leave the development

and formalization of such a framework for future work. More precisely, a cross-

cutting concern is specified by an advice metamodel whose entry point specifies

where it is to be weaved into the main metamodel. The entry point(s) of an

aspect metamodel can be specified to apply to any subset of processes in the

metamodel being weaved into, ranging from a single process to all of them.

It should be noted that the individual instances of the aspect metamodel

can (will) be different. This fits the general idea of instances of metamodels,

and is especially necessary for aspect metamodels since it is highly unlikely

that the individual instances should be identical. For example, the high level

descriptions of the essential components of a requirements review and design

review can be specified in the metamodel and may be worded identically, but

25

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

the details of how they are implemented will surely be different.

A more formal description of aspect weaving in Workflow+ can be found

in [3].

3.5.1 Running Example: Using Aspects for Cross-Cutting

Concerns

Suppose that the bakery would like to implement some quality-control mea-

sures to ensure their bread is of the highest quality. More specifically, they

would like to keep track of the people involved in each process and add reviews

by experienced bakers to each stage in their process. Both of these are typ-

ical cross-cutting concerns for a process, where very similar (if not identical)

additions are added to many stages in a process.

Figure 3.8 shows an example of a simple advice metamodel that implements

the needs of the bakery’s bread making process. In this advice metamodel, a

review process is specified where an experienced baker looks at the bakers

involved along with the input and output data of a process, and makes a

determination as to whether or not the output is valid (i.e. acceptable) in

the context of the input data. The red constraint T on the value of Valid?

requires that the review must determine that outputData is valid, otherwise

this constraint will be violated and a flag will be raised to notify the bakers.

The entry point for this advice metamodel specifies that it applies to processes

of any type (i.e. it applies to all processes).

Figure 3.9 shows how we denote the entry points of the advice metamodel,

where purple circles are entry points for the reviewing process which produces

the Valid? attribute of the process being reviewed. This same advice meta-

26

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

model is woven into each step in the bakery’s process.

Figure 3.10 shows an example of instance of Mix with the full advice meta-

model woven into it. Note that purple arrows are used for inputs/outputs of

reviewing processes to differentiate them from regular process inputs/outputs

and that the outputs to associations were omitted to ease reading of the

diagram. In this example, the experienced baker sees that one instance of

flour1 : Flour and water1 : Water were used by Mix to produce mixture1 : Mixture.

The experienced baker uses their expertise to make a judgement as to whether

or not the real-world mixture modelled by mixture1 : Mixture is valid given the

inputs used. In this example it turns out that mixture1 : Mixture is in fact

valid. We could make this review more specific by defining the steps of the

review, for example by requiring reviews of texture, consistency, etc., but for

the purposes of this example we leave the reviewing solely up to the judgement

of the experienced baker.

3.6 Adding Argumentation to the Model

Argumentation in Workflow+ is centred around data-driven inference directly

over metamodels. Workflow+ metamodels are built to require all instances to

be a) syntactically correct (i.e. well-formed) via OCL-style constraints and

multiplicities and b) semantically correct (i.e. verified/validated) via con-

straints on results of reviewing, simulation, testing, etc. In our running ex-

ample, validation is achieved solely by reviewing, but as stated could also be

achieved by testing, simulation, etc. These syntactic and semantic constraints

can be augmented with natural-language descriptions allowing them to be in-

terpreted as arguments as to why they ensure executions will be correct.

27

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-03, 6:07 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/Meal%20Example_new.svg

Figure 3.8: Bakery: Advice metamodel

28

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-03, 6:07 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/Meal%20Example_new.svg

Figure 3.9: Bakery: entry points for advice metamodel

29

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-03, 6:07 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/Meal%20Example_new.svg

Figure 3.10: Bakery: weaving in the review metamodel for the Mix process

These syntactic and semantic constraints (and their associated natural-

language arguments) can be composed into higher-level derived constraints

(and arguments). These higher-level constraints (and arguments) can then

be composed repeatedly, resulting in a constraint derivation tree. That is,

low-level semantic and syntactic constraints can be used to derive higher-level

arguments until the highest-level argument in the derivation tree is reached.

This is illustrated in Figure 3.11, and a more detailed definition of this inference

can be found in [3].

In every case of constraint derivation, the underlying justification (similar

to strategies in GSN assurance cases) is ”The underlying constraints are all

that is necessary to claim the derived constraint”. In future work, mechanisms

to supplement these constraint derivations with external justifications (e.g.

expert opinion, case studies, etc.) will be introduced. The idea is that in

specific domains, collections of established derivation patterns with trusted

justifications will be available for the designers of workflows to draw on.

30

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

syntactic
constraint

semantic
constraint

Syntactic
Argument

Semantic
Argument

Composed
Argumentation

Composed
constraint

Figure 3.11: An illustration of the mapping of constraint composition and the
mapping of natural-language arguments to constraints

Whether or not these arguments do in fact ensure that executions will be

correct is beyond the scope of the arguments themselves; all they do is provide

an explanation as to why the creators of the workflow believe the that the con-

straints will result in correct executions. Additionally, even if these constraints

do result in the executions desired by the workflow’s creators, whether or not

these executions are appropriate for the task at hand is another question alto-

gether. Workflow+ metamodels are subject to (and actually invite) criticism

from those interested in ensuring there are no flaws in the workflow definition.

This issue of determining whether or not the process definition is adequate is

discussed in more detail in 3.7.

A view of this argumentation akin to a GSN assurance case can be devel-

oped quite mechanically.

With these syntactic and semantic constraints in place in the metamodel,

the soundness of this constraint derivation allows us to be sure that any valid

execution of the process will satisfy all low-level constraints, and thus all high-

level constraints will hold for any valid execution of the process. Again, see [3]

for more details.

31

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

WRUkÁRZ+ InVWance
(Model documenting
e[ecution of workÁow)

WRUkÁRZ+ MeWamRdel
(workÁow deÀnition) real-world

e[ecution¬of
¬workÁow deÀnition

Argumentation
derived mapping

based on

Instantiation

WRUkÁRZ+ MeWamRdel
(workÁow¬deÀnition)

s\ntactic
constraint

declarations

semantic
constraint

declarations

process + data +
control Áow +

constraint declarations
process + data

instances

WRUkÁRZ+ MeWamRdel'
(workÁow¬deÀnition reÀnement)

more detailed process
+ data + control Áow +
constraint declarations

WRUkÁRZ+ MeWamRdel
(workÁow¬deÀnition)

process + data +
control Áow +

constraint declarations

process + data +
control Áow deÀnitions

S\ntactic
Argumentation Semantic

Argumentation

Composed
Argumentation

mappingmapping

real-world
e[ecution¬of

¬workÁow deÀnition

WRUkÁRZ+ InVWance
(Model documenting
e[ecution of workÁow)

process + data
instances

satisÀed
s\ntactic

constraints

satisÀed
semantic

constraints¬

Instantiation

derived mapping

derived mapping

argument derivation

WRUkÁRZ+ MeWamRdel
(manufacturer's

workÁow¬deÀnition)

s\ntactic
constraint

declarations

semantic
constraint

declarations

process + data +
control Áow deÀnitions

S\ntactic
Argumentation

Semantic
Argumentation

Composed
Argumentation

mappingmapping

real-world
e[ecution¬of

¬workÁow deÀnition

WRUkÁRZ+ InVWance
(Model documenting
e[ecution of workÁow)

process + data
instances

satisÀed
s\ntactic

constraints

satisÀed
semantic

constraints¬

Instantiation

derived mapping

derived mapping

argument derivation

NRUmaWiYe WRUkÁRZ+ MeWamRdel
(workÁow guidance from regulator)

s\ntactic
constraint

declarations

semantic
constraint

declarations

process + data +
control Áow deÀnitions

Argumentation to be
supported

based on

ReÀnement

ReÀnement

ReÀnement

Figure 3.12: An overview of Workflow+ with argumentation (see Figure 3.3)

Figure 3.12 illustrates the idea of argumentation over a Workflow+ meta-

model. Syntactic and semantic constraints over process, data and control flow

definitions in the metamodel are annotated with syntactic and semantic argu-

mentation, respectively, and used to derive higher-level argumentation. When

an instance of this metamodel is created that satisfies all constraints, we can be

sure that all argumentation built over the constraints definitions also applies

to an instance in which those constraints are satisfied.

3.6.1 Running Example: Adding Assurance to the Model

Suppose now that the bakery needs to do more than satisfy themselves about

the quality of their bread. They also need to guarantee quality to their cus-

tomers! Thus, the bakery wants to document a convincing argument for each

loaf of bread, demonstrating that it is of acceptable quality. The abstract pro-

cess definition in Figure 3.5 annotated with syntactic and semantic arguments

is shown in Figure 3.13.

32

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

The syntactic argument summarizes the syntactic constraints for the en-

tire process definition. That is, it is a natural-language description of what

is ensured through syntactic constraints over the process definition. While

we could annotate each individual constraint, this becomes cumbersome so

we summarize them as one argument. In this case, the syntactic constraints

ensure that the mass attributes of instances of Water and Flour used are in the

correct proportions(red OCL-style constraint) and that the ingredients used

are in fact documented (the multiplicities requiring an association from in-

stances of Water and Flour to PieceofBread). These constraints are captured

by the light pink argument attached to the entire process definition. If these

constraints are indeed satisfied by an instance, we can be sure that, according

to what was documented, the correct amount of flour and water were used and

everything documented is properly structured. This gives us some confidence

in the correctness of the instances, but it does not provide any confidence that

the process was actually executed properly, or documented properly. For ex-

ample, it is certainly possible that the correct amount of water and flour were

used in the wrong way, or that the amounts documented do not reflect what

was actually used; detecting this is left for semantic checks. The intention of

syntactic arguments is to provide a “sanity check” on what is documented,

and to enable the automatic detection of (relatively) simple errors when docu-

menting executions. These automatic checks can provide feedback on violated

constraints in the process of constructing the instance to bring attention to

issues before the entire instance is built, and ensure that documentation is

well-formed before more time-consuming (and expensive) semantic checks (i.e.

reviews, testing, etc.) are carried out.

Semantic arguments explain the semantic constraints in the process defi-

33

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

nition. In this case there is only one semantic check, achieved by reviewing

the output of MakeBread. This review uses the same advice metamodel shown

previously. In the review, an experienced baker checks the validity of each

piece of bread output by assessing its quality (i.e. it is not burned, it is crispy

and is soft but firm). The pink constraint T requires that the value of Valid?

output by this process must be True for an instance to be considered correct.

In doing this, we are syntactically encoding a requirement for semantic valid-

ity of an instance. That is, if for any reason the value of Valid? is anything

but True, the instance will be considered invalid. The argument related to

this validity check is captured by the dark pink argument. It is in this review

that the correct execution of the process is assessed. Based on the documen-

tation of the execution, and with access to the real-world piece(s) of bread

being assessed, an experienced baker determines whether or not the process

was properly executed and that the output is valid in the context of its in-

put. That is, by looking at documentation of what was used and what was

produced, an experienced baker can use their expertise to identify signs that

something went wrong during the process execution. The signs to look out for

can be included in the specification of the review process, but are omitted for

simplicity.

We can compose these syntactic and semantic arguments to derive the

argument bread is of high quality, which applies to the entire process specifi-

cation. In the future when support for justification of derivations is included

in Workflow+ a justification here could be “We have had success making this

bread for a very long time”. This justification is obviously informal, and high-

lights the informal nature of assurance. The experience of the bakery cannot

be formalized, but is still a very important part of their assurance case. Nev-

34

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-15, 4:10 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/Meal%20Example_new.svg

Figure 3.13: Bakery: Make Bread process from Figure 3.5 with argumentation

ertheless, Workflow+ provides the bakery a framework in which justifications

can be included in a formal way.

To summarize, the syntactic and semantic constraints on the metamodel

(i.e. process definition) level require checks on instances of the metamodel.

Syntactic correctness of an instance can be checked automatically through

instance conformance. Semantic correctness cannot be determined automat-

ically, so we weave in a review process outputting the value of the attribute

Valid?, and put the constraint T on the output of that review process. In do-

ing this, we require that any valid execution must run the review process, and

that the review determines if the output is valid (i.e. execution is correct). If

instances of this metamodel are valid, i.e. all syntactic constraints are satisfied

and all reviews determine that outputs are valid, then we can be sure that the

arguments related to these constants hold.

Just as the process definition in Figure 3.13 is not very informative for

someone trying to make bread, the constraints and corresponding arguments

do not do much to convince us that the bread will be of acceptable quality.

The bakery now looks to the more instructive metamodel in Figure 3.7 to

35

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

provide a more transparent and convincing argument for the quality of the

bread produced.

When the MakeBread process was decomposed, what the bakery did was

add more detail on the steps followed to produce PieceofBread from Flour and

Water. While doing this, they also added more detailed constraints over the

(more detailed) workflow to ensure that its executions will be correct. From

these more detailed constraints, we can create more detailed argumentation

over the (more detailed) workflow.

To create argumentation for this workflow with multiple processes, the ap-

proach remains the same: we must annotate each process with syntactic and

semantic argumentation and derive higher-level argumentation. The argumen-

tation for each process within MakeBread is explained individually below.

For the Mix process, the syntactic constraints require that exactly the cor-

rect ingredients (5kg of water and 7.5kg of flour) must be combined to produce

a 12.5kg mixture. These constraints give us confidence that executions will be

correct because correct instances of Water and Flour must be used, and the

mass of the instance of Mixture will be what we were expecting. From these

constraints, we create the syntactic argument mixture is correct weight, amount

of flour in mixture is 1.5 times amount of water. The semantic constraint on

Mixture ensures that its instances are reviewed for quality (i.e. ingredients

are evenly distributed throughout the mixture), from which we create the se-

mantic argument Mixture is reviewed for quality (ingredients evenly distributed

throughout). This semantic argument gives us confidence that executions will

be correct because an experienced baker must determine that the resulting

instance of Mixture is acceptable. From these arguments, we can derive the

argument mixture is made well. See Figure 3.14.

36

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-15, 4:46 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/Meal%20Example_new.svg

Figure 3.14: Bakery: Mix process from Figure 3.7 with argumentation

For the Knead process, the syntactic constraints require that the mixture

used is documented and that each piece of dough produced has the correct

mass. These constraints give us confidence that executions will be correct be-

cause the instance of Mixture used must be documented and each instance of

PieceofDough must have the mass expected. From these constraints, we cre-

ate the syntactic argument mixture used is documented, each piece of dough

has correct mass. The semantic constraint on BatchofDough ensures that its

instances are reviewed for quality (i.e. the correct shape and well-kneaded),

from which we create the semantic argument Batch of dough is reviewed for

quality (correct shape, not under or over kneaded). This semantic argument

gives us confidence that executions will be correct because an experienced

baker must determine that the resulting instance of BatchofDough is accept-

able. From these arguments, we can derive the argument dough is made well.

See Figure 3.15.

For the Bake process, the syntactic constraints require that the batch of

dough used is documented, that each piece of dough used has the correct mass,

and that each piece of bread produced has the correct mass. These constraints

give us confidence that executions will be correct because we will know which

37

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-15, 4:46 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/Meal%20Example_new.svg

Figure 3.15: Bakery: Knead process from Figure 3.7 with argumentation

batch of dough is used (knowing that each piece of dough used was of accept-

able quality, i.e the correct weight and shape, is essential for a correct execution

of Bake), and that the mass of each instance of PieceofBread produced is cor-

rect (we can infer if bread is well-baked based on the mass; bread that is too

heavy could be a sign of high water content in undercooked bread, and bread

that is too light could be a sign of low water content in overcooked bread).

From these constraints, we create the syntactic argument batch of dough used

is documented, each piece of bread has correct mass. The semantic constraint

on BatchofBread ensures that its instances will be reviewed for quality (i.e.

bread is not burned, crispy, soft but firm), from which we create the seman-

tic argument Batch of bread is reviewed for quality (not burned, crispy, soft

but firm). This semantic argument gives us confidence that executions will

be correct because an experienced baker must determine that the resulting

instance of BatchofBread is acceptable. From these arguments, we can derive

the argument bread is made well. See Figure 3.16

Now that each process has its arguments specified, what remains is to com-

pose these arguments to complete the argument derivation tree. Composition

of arguments is done by following the composition of processes. In this simple

38

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-15, 4:46 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/Meal%20Example_new.svg

Figure 3.16: Bakery: Bake process from Figure 3.7 with argumentation

case with sequential composition of processes, the constraint derivation is also

done in the same sequential order.

From the (blue) argument combining the syntactic and semantic arguments

of Mix, we know that all conforming instances will use water and flour to

produce a mixture of acceptable quality. Similarly, from the argument of

Knead, we know that all conforming instances will use a mixture to produce

a batch of dough of acceptable quality. Finally, from the argument of Bake,

we know that all conforming instances will use a batch of dough to produce a

batch of bread of acceptable quality. Composing these arguments, we can say

that if a) the mixture is made well, b) the dough is made well, c) the bread is

made well, then that batch of bread is of acceptable quality. This is captured

by the derived argument bread is of high quality. See Figure 3.17.

In other words, if the execution every step along the way is syntactically

and semantically correct, then the final product that is ultimately created

using the inputs to the process is correct. While this may sound like it is

an entirely process-focused argument, the inclusion of reviewing processes and

data-related constraints (e.g. on mass attributes) allows us to add product-

focused components to the argumentation.

39

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-15, 4:46 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/Meal%20Example_new.svg

Figure 3.17: Bakery: Mix, Knead and Bake processes with composed argu-
mentation

40

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Thus, we have created an argument structure over the abstract and de-

composed workflows that show arguments as to why the bakery’s bread is

of acceptable quality. To reiterate, these argument structures do not prove

that the bread is of acceptable quality, it merely explains the intentions of

the process’s creators and why they think it will produce quality bread. The

workflows and their argumentation are subject to criticism and feedback from

those who think it may be flawed. For example, one could argue that 50

pieces of bread per batch is too many because they believe small batches re-

sult in higher quality bread. The precisely defined semantics of the Workflow+

process definition, the detailed traceability and well-defined argument pattern

allows for external critics to understand and analyze the workflow effectively

and provide meaningful feedback.

3.7 Conformance to Normative Metamodel

So far, we have discussed how Workflow+ metamodels can be built, instantiated

and have arguments built over them. What we have not addressed is how

we can be sure that these Workflow+ process definitions are appropriate for

their purpose. The complexity of real-world environments and the processes

used to develop safety-critical systems makes it impossible to prove without

doubt that a safety engineering process (including both product- and process-

focused aspects) will produce a safe system for some particular application

in a particular environment. In general, the approach used is to call upon

domain experts with years of experience in building and observing safety-

critical systems in the real world to create guidelines by which safety-critical

systems in their domain should be built, and analyze these systems and how

41

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

they were developed to make sure that the safety risk they pose is adequately

low (a societal decision dependent on many factors including the application

domain) – before they are put into use. These guidelines and analysis do not

ensure that safety-critical systems will operate safely with absolute certainty,

but do represent an honest attempt to use all available knowledge to make

sure these systems operate safely. If this attempt turns out to fail and harm

is caused, the cause can be determined and addressed in the development

guidelines and avoided in the future. This issue is particularly prevalent when

using emerging technologies with little to no use in the real world to draw on

when making guidelines for development.

To be more specific, in the world of safety-critical embedded systems, it

is common for a regulator (i.e. domain experts empowered by legislation)

to require that a safety engineering process must conform to some standards

(i.e. normative documents). These standards should be conservative in that

they must restrict how safety-critical systems can be developed by not allow-

ing radical changes from design patterns/technologies that are already well

understood [2].

With that said, we can now explain how to gain confidence in argumenta-

tion over Workflow+ metamodels. In the running example, we demonstrated

how a process definition can have argumentation built over it. We propose

to use Workflow+ metamodels to encode the requirements of normative docu-

ments to form a normative Workflow+ metamodel. This normative Workflow+

metamodel should be sufficiently restrictive to prevent radical changes to well-

known design patterns, but still be general enough to allow manufactures to

use their own established procedures/processes to produce their systems. It

would also provide argumentation related to the constraints in the normative

42

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Workflow+ metamodel to precisely express their intent. Manufacturers would

then take this normative Workflow+ metamodel and specialize it however they

see fit. In their specialization, they must also include argumentation that re-

fines (i.e. implements) the argumentation in the normative Workflow+ meta-

model. Following this, the regulators who issued the normative Workflow+

metamodel can assess the manufacturer’s specialization and make a judgement

as to whether or not the manufacturer has actually designed a workflow that

meets their requirements. Finally, with an approved workflow, any instance of

a system created using the manufacturer’s approved workflow will satisfy all

constraints and arguments by virtue of instance-metamodel conformance and

can be considered acceptably safe according to the norms in that domain and

at that time.

This idea is illustrated in Figure 3.18. In this figure, we show that there is

a normative metamodel built by regulators to provide guidance to manufac-

turer’s in the specific domain it applies to. Over this workflow, the regulator

includes argumentation that needs to be supported by argumentation over the

workflow’s refinements. When a manufacturer implements the workflow they

want to use by refining the normative metamodel, they also include argumen-

tation over their workflow and use the inference mechanism from Section 3.6

to show how the constraints over their refined workflow implement the argu-

mentation required by the normative metamodel. Again, when the workflow

created by a manufacturer is executed, we can be sure that instances also sat-

isfy all argumentation in the metamodel. Thus, if the normative Workflow+

metamodel specifies what must be done during the development of a system,

and if the manufacturer implements the normative Workflow+ metamodel in a

way that satisfies the regulator, and an instance of the manufacturer’s workflow

43

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Workflow+ Metamodel
(manufacturer's

workflow definition)

syntactic
constraint

declarations

semantic
constraint

declarations

process + data +
control flow definitions

Syntactic
Argumentation

Semantic
Argumentation

Composed
Argumentation

mappingmapping

real-world
execution of

 workflow definition

Workflow+ Instance
(Model documenting
execution of workflow)

process + data
instances

satisfied
syntactic

constraints

satisfied
semantic

constraints

Instantiation

derived mapping

derived mapping

argument derivation

Normative Workflow+ Metamodel
(workflow guidance from regulator)

syntactic
constraint

declarations

semantic
constraint

declarations

process + data +
control flow definitions

Argumentation to be
supported

based on

Refinement

Refinement

Conformance

Figure 3.18: An overview of Workflow+ with a normative workflow

satisfies all constraints, then we can be sure that the execution documented

by that instance (and the system it produced) are acceptable – based on the

content of the normative metamodel.

For example, consider that during the development of a certain type of

system, regulators deem that simulations validating the behaviour of part of a

system are required. The regulator could include a black-box process requiring

simulation and include an associated argument specifying what the simulation

must achieve. Then, a manufacturer could implement that black-box simu-

lation process based on their own internal approach (which is likely to differ

from other manufacturers) and add argumentation as to why their approach

satisfies the intent of the normative metamodel. A regulator could then look

at the manufacturer’s workflow to assess their approach to simulation, try to

identify issues or gaps in argumentation and determine if it does indeed satisfy

their intent.

It is important to note that this approach does not exclude the possibility

for instances to require external validation and/or verification. It is entirely

44

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

possible for independent validation and verification processes to be included in

the workflow. For example, a normative Workflow+ metamodel could require

that certain processes/data must be reviewed by a third party rather than

the manufacturer themselves. If these reviews are not executed, the instance

would be invalid, resulting in violated constraints and unsatisfied arguments.

3.7.1 Running Example: Conformance to Normative

Metamodel

In Figure 3.17 in Section 3.6.1 we showed the bakery’s argumentation as to

why it’s process will result in quality bread, but the question as to whether or

not this process will in fact result in quality bread remains unanswered. To

answer this question, we will use the concept of conformance to a normative

metamodel.

We will now frame the metamodel and argumentation specified in Fig-

ure 3.5 as a normative metamodel, then use it to argue the correctness of the

bakery’s process based on conformance to that normative metamodel. Fig-

ure 3.19 shows this metamodel with slightly different argumentation than Fig-

ure 3.16; the metamodel now only has one white argument attached to it,

which states bread is of high quality. This argument is now white to denote

that it is not fully supported, and that the argument and workflow it applies to

require decomposition. We also modified Figure 3.17 such that it decomposes

both the process and argumentation in Figure 3.19, shown in Figure 3.20.

The first part of demonstrating conformance to the normative metamodel

is syntactic: does the decomposition of the normative metamodel conform to

all constraints? The second part of conformance to the normative metamodel

45

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-15, 4:12 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/Meal%20Example_new.svg

Figure 3.19: Bakery: normative Workflow+ metamodel

is semantic: does the decomposition implement the normative metamodel in

a way that its creators would agree with?

To answer the syntactic question related to conformance, we carry out the

mechanical (and automatable) task of checking that all syntactic constraints

in the normative metamodel are satisfied by its refinement. In this example,

we see that all syntactic constraints are satisfied (e.g. Water and Flour are to

be used in a ratio of 1.5:1, all multiplicities are satisfied). We also must check

that the refined metamodel implements the correct argumentation. In this

example, we can see that the highest level of argumentation in the normative

metamodel and its refinement are the same (note the white arguments).

To answer the semantic question related to conformance, some sort of regu-

latory body must check the decomposition of the process and its argumentation

to determine if it does indeed implement the intentions of the normative meta-

model. For the sake of example, assume that this normative workflow belongs

to an organization that must approve a processes before it can be used to

46

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

20
20

-0
2-

15
, 4
:4

6
PM

Pa
ge

 1
 o

f
1

fil
e:

//
/U

se
rs

/n
ic

k/
G

M
/G

M
_D

oc
s/

G
M

_D
oc

um
en

ts
/D

el
iv

er
ab

le
s%

20
an

d%
20

G
M

%
20

Re
sp

on
se

s/
N

ic
ks

Th
es

is
/t

he
si

s/
fig

ur
es

/M
ea

l%
20

Ex
am

pl
e_

ne
w

.s
vg

F
ig

u
re

3.
20

:
B

ak
er

y
:

A
W

or
k
fl
ow

+
m

et
am

o
d
el

co
n
fo

rm
in

g
to

th
e

n
or

m
at

iv
e

m
et

am
o
d
el

in
F

ig
u
re

3.
19

47

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

make bread using their recipe. This organization would look at the bakery’s

implementation of their normative workflow along with its argumentation and

make a judgement as to whether or not the implementation does indeed im-

plement their intentions, and determine if it will in fact produce quality bread

according to their expertise in their recipe.

48

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Chapter 4

Workflow+ Approach To

Assurance

4.1 The Generic Workflow+ Approach

The Workflow+ approach to assurance can be seen as an integration of process-

and product-focused approaches. The approach relies on process-focused foun-

dations, but using Workflow+ modelling techniques allows product-focused as-

pects to be accurately encoded in a process-focused approach. For example, if

a product-focused approach requires that a system satisfies some property P,

we can implement that product-focused requirement by requiring the execution

of a process that ensures the property P is satisfied. In this way Workflow+

can be used as a unifying foundation for the modelling and analysis of both

systems themselves (the product-focused side) and the safety engineering pro-

cesses (SEPs) followed to produce these systems (the process-focused side),

including all verification and validation (V&V) required.

We propose to use the following definition of safety as the core of assurance

49

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

cases built using Workflow+:

Definition 1 (Main) System X is considered to be acceptably safe (for a

given application A in a given environment E) if the manufacturer’s safety

engineering process, SEP, satisfies the following two conditions:

SEP is acceptably-well defined for a class of systems including X (4.1)

SEP’s definition is acceptably-well executed for X (4.2)

Demonstrating that (4.1) is satisfied entails proving that some set of ac-

cepted standards, best practices, etc., (as determined by experts in the field)

are respected by the SEP. In the field of safety-critical embedded systems, a

well-defined SEP must

a) Demonstrate that the requirements specification will result in a safe sys-

tem

b) Demonstrate that the system satisfies its requirements within tolerance

c) Demonstrate that the system does not implement behaviour not specified

within the requirements, unless those behaviours have been shown to not

interfere with the specified requirements

These points are often demonstrated using a combination of process- and

product-focused approaches. In a Workflow+ setting, a well-defined SEP must

include the necessary process, data and constraint definitions that if properly

followed will result in a system that satisfies the three conditions above.

50

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Condition (4.2) is then achieved by demonstrating that this SEP was ac-

ceptably well executed using artefacts from development. That is, if the SEP

definition includes everything needed to ensure safety, and the SEP is prop-

erly executed, then the system is considered acceptably safe for its application

in a given environment. To reiterate, a well-defined SEP must include both

product- and process-focused considerations for the safety of a system.

To make the conditions in Definition 1 technical and verifiable, we use three

Workflow+ models: WfSEP that models the SEP, WfexeSEP(X) that models the

SEPs execution for the system X, and WfNorm that models a body of normative

documents (standards, best practices, expert knowledge, on-site manuals, etc.)

which prescribe how the SEP should be defined. In this setting, we can redefine

the conditions in Definition 1 in the following way:

Definition 2 (Main, more formal) System X is considered to be accept-

ably safe if the following two conformance conditions are satisfied:

WfexeSEP(X)
V&V
inst WfSEP
V&V

ref WfNorm (4.3)

where WfNorm and WfSEP represent Workflow+ models, WfexeSEP represents an

execution of WfSEP.
inst represents an instance-of conformance mapping, and

ref represents a conformance mapping between a workflow and its refinement.

The significance of V&Vis explained in the following paragraphs.

WfNorm is considered to be given (e.g., by regulators and/or appropriate

standards) and models a high-level workflow along with argumentation as to

why this workflow assures safety. Then, a manufacturer’s WfSEP must a) refine

and conform to the workflow in WfNorm and b) produce argumentation over

51

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

their refined workflow conforming to the argumentation in WfNorm. Finally,

WfexeSEP must conform to WfSEP. Through the soundness of logical inference, we

can be sure that the arguments in WfSEP hold for its executions (see 3.6).

V&V of each conformance mapping has two parts: semantic and syntactic.

Syntactic conformance requires that all structure and constraints in the model

being conformed to are satisfied. For
inst, this entails ensuring that WfexeSEP

satisfies all constraints (typing mappings, multiplicity constraints and more

complex OCL constraints) in WfSEP. For
ref , this entails ensuring that WfSEP

does not violate any structural constraints in WfNorm. Checking syntactic con-

formance in this sense is a well-known model management problem, and with

appropriate tool support can be done automatically.

Semantic conformance requires all syntactically valid information to be

meaningful and correct. For
inst, this requires manual reviewing of WfexeSEP

by qualified individuals to ensure all data is valid and processes were prop-

erly executed, which is captured by integrating V&V (e.g. reviewing, testing,

simulation, etc.) processes to be executed into WfSEP. This reviewing can be

done by the manufacturer, regulator or both. For
ref , this requires the regu-

lator to ensure that WfSEP (including both the workflow and argumentation)

adequately implements the workflow and argumentation in WfNorm.

Once all of these conformance conditions are satisfied, we can be sure that

a system satisfies all product-focused conditions and was produced according

to all process-focused constraints encoded in WfNorm. If we have confidence

that WfNorm properly encodes what is required for a system to be considered

safe, we know that WfSEP properly implements the intent of WfNorm, and WfexeSEP

is a correct execution of WfSEP, we can then be confident that the system itself

is safe. In the field of safety-critical embedded systems, if WfNorm adequately

52

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

recoverSem.pdf |=

ArgumentationNorm

conf. (inst)

|=

Processes
& Data

WFSEP

ArgumentationSEP

WFexe

ArgumentationSEP

Processes
& Data

WFNorm

conf. (ref)

|=V&V
Processes

& Data |=V&V

|=V&V

Safety Case

Figure 4.1: Workflow+ conformance chain

implements the three points mentioned alongside Definition (1), then we can

be confident that the embedded system is acceptably safe. Altogether, WfNorm,

WfSEP, WfexeSEP and all conformance mappings constitute an assurance case (see

Figure 4.1).

To summarize, satisfaction of (4.1) and (4.2) in Definition 1 can now be

demonstrated by the well-defined and formalizable tasks of demonstrating the

conformance mappings WfSEP
ref WfNorm and WfexeSEP
inst WfSEP, respectively.

It is worth mentioning again that while Workflow+ provides a formal frame-

work within which safety can be argued, it does not provide a way to formally

prove safety. The qualitative and quantitative infinity of possible interactions

of a system with its environment makes a fully formal proof of safety impos-

sible, and any efforts to ensure the safety of a system that can be completed

in finite time have the potential to be incomplete. Instead, our approach,

similar to most other approaches currently used, relies heavily on the exper-

tise of those creating WfNorm and evaluating conformance of WfSEP and WfexeSEP.

Through years of experience developing and watching systems operating in

the field, confidence in the efficacy of approaches to safety can be evaluated

and used to update best practices that should be followed to ensure safety.

What Workflow+ does provide is a modelling framework capable of formally

expressing these best practices and checking that they are adequately followed

53

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

in a semi-automatable way. For those issues which cannot be demonstrated

automatically, the detailed traceability and granularity of Workflow+ models

allows experts to conduct reviews with total access to all necessary informa-

tion. We believe that a model-based approach to arguing safety facilitates

the construction of both theory and tools that will cope effectively with the

complexity of the systems of the future, and that Workflow+ is well suited to

play this role.

4.2 Workflow+ Models As Assurance Case Tem-

plates

When dealing with safety-critical systems, is it necessary to plan for the safety

of the system ahead of its development. To help in this planning, it has been

proposed to use assurance case templates to specify nearly-complete assurance

cases for a particular type of system before development begins [12]. The idea is

that a template should include sufficiently prescriptive limitations on systems

it applies to (as determined collectively by experts in the field), but still allow

enough flexibility so as to not unduly interfere with the creative design of

the systems. That is, assurance case templates should specify higher-level

safety strategy and the overall structure of the corresponding assurance case to

guide the development of lower-level safety strategies. A significant addition

to assurance case templates was the specification of acceptance criteria in

evidence nodes within the template. This guides development of the system

and the assurance case that is instantiated from the template can then be

checked for conformance with these acceptance criteria.

54

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Workflow+ is well suited to implementing the idea behind assurance case

templates. In fact, the inclusion of WfNorm in the Workflow+ approach to

safety does exactly this by requiring the definition of a high-level workflow with

argumentation created by domain experts that guides the specification of the

WfSEP that will actually be executed. Since Workflow+ is formally defined, it

is possible to formally express what is required by an assurance case template.

When compared to assurance case templates created using current approaches

to safety assurance, we believe that the Workflow+ approach can solve common

problems in the refinement of assurance case templates for execution by offering

well-defined, accurate process specifications with detailed traceability and by

providing suitable decomposition (i.e. implementation) mechanisms.

As we shall see, data items in WfSEP most often are associated with evi-

dence in the (to be) developed system, and the notion of acceptance criteria

is supported by both relevant constraints as well as textual specification. In

fact, the derived assurance steps that are introduced based on constraints can

lead the way to providing acceptance criteria. For example, in a model re-

garding hazard analysis, we specify both process and data associated with the

hazard analysis. In particular, in automotive functional analysis we will likely

specify that safety gaols are developed to mitigate hazards. The associated

constraints will dictate that each hazard is mitigated by at least one safety

goal and that each safety goal mitigates at least one hazard. We then derive a

syntactic check that can be automatically verified, that these associations ex-

ist. There are also semantic checks to see if each safety goal associated with a

hazard does, in reality, mitigate that hazard. The review can list criteria that

reviewers must check for in order to “prove” the validity of that review. For

example, reviewers may be told to check that: i) the safety goal is described in

55

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

sufficient detail to be able to determine its scope and effect; ii) the safety goal

describes reasoning as to why and how the safety goal mitigates the hazard;

iii) any prior history of that safety goal being used to mitigate that hazard

is described; and iv) sufficient references to back up the claim that the safety

goal mitigates that hazard are included. In this example, i) ..iv) are really

acceptance criteria for the evidence to be provided, i.e. the review.

The modular nature of Workflow+ also allows for multiple normative work-

flows (i.e. templates) be be built hierarchically for different use cases. For

example, a broad standard such as ISO 26262 [5] could be translated into

a normative workflow that applies to all electrical and/or electronic systems

within road vehicles. Then, this generic template could be refined to be more

applicable to specific types of systems, such as adaptive cruise control and

automatic braking. Then, it could be refined yet again to apply to specific

vehicle platforms. This is analogous to optional paths in GSN-style templates

(see [28]). The benefits of this hierarchical Workflow+ approach include:

• ease of audit/validation – as many templates share as much structure as

possible;

• repeatability – as each execution will follow many of the same processes;

and

• potentially increased productivity – as widely-applicable tools for model

transformation can be used to carry out refinements and instantiate tem-

plates.

56

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

4.3 An Example from the Automotive Domain

To illustrate a real-world Workflow+ model and its role as an assurance case

template, a normative workflow derived from ISO 26262 [5] (referred to as “the

standard”) is provided. It is important to note that because of the complexity

of the standard, full Workflow+ models of it are too complex to present in this

thesis. This normative workflow is only meant to demonstrate how standards

can be encoded as Workflow+ metamodels, and does not completely capture

all information contained within the portions of the standard modelled. To

provide context and ease understanding, we will introduce the normative work-

flow of the standard by starting at an abstract level and decomposing until a

sufficient level of detail is reached.

4.3.1 Abstract Model

We begin by creating a model of the workflow defined by the standard at a

very abstract level. Using Figure 4.2 (figure 1 from ISO 26262-3 [29]), we can

model this abstract workflow as shown in Figure 4.3. In this workflow, we

can see that at a high level the standard consists of 5 processes, each produc-

ing one work product: Concept Phase; Product Development at the System

Level; Product Development at the Hardware Level; Product Development at

the Software Level; and Production, Operation, Service and Decommissioning.

The remaining boxes in Figure 4.2 numbered 1, 2, 8, 9 and 10 do not represent

processes, but rather supporting information that is to be integrated into the

processes modelled where needed. We assume that each work product is be

used by all subsequent processes, that each work product will have traceabil-

ity with all other work products, and that the entire process begins with some

57

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Figure 4.2: V-model as shown in [5]

informal requirements for the system under consideration. Note that there is

an double-headed arrow between Product Development at the Hardware Level

and Product Development at the Software Level in Figure 4.2 indicating that

these processes are carried out iteratively, which is captured by including a loop

from WorkProducts(4) back to 3 − ProductDevelopmentattheHardwareLevel. Ar-

gumentation for this level of abstraction are not provided by the standard.

Thus, we have a Workflow+ metamodel capturing the process dictated by the

standard at an abstract level. Note that multicoloured arrows are used only to

improve readability, and multiplicities are omitted to avoid clutter (for those

interested, they would all be 1).

58

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-03, 5:15 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/ISO%20HARA.svg

Figure 4.3: High-level Workflow+ metamodel of the process described in ISO
26262 [5]

4.3.2 First Refinement: Concept Phase

Now, we decompose the process 1 − ConceptPhase and its associated data.

Figure 4.4 shows a close up of the Concept Phase portion of Figure 4.2,

where we can see that the Concept Phase consists of 3 subprocesses: Item

Definition, Hazard Analysis and Risk Assessment (HARA), and Functional

Safety Concept. Looking further into ISO 26262-3 [29], Table A.1 conveniently

lists the work product(s) of each process, which in combination constitute

WorkProducts(1). This is captured in the Workflow+ metamodel in Figure 4.5.

In this metamodel, informal requirements for the system in consideration are

used to create the item definition. Following this, HARA is is carried out using

the item definition. Finally the Functional Safety Concept is carried out using

the Item Definition and HARA Report.

It is at this level of detail that the concrete objectives of the processes within

59

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

the standard become apparent. Table A.1 in ISO 26262-3 [29] describes these

objectives. As is suggested by ISO 26262-10 [30] section 5.3.1, we interpret

these objectives as the high-level arguments that must be demonstrated by the

work products in the concept phase.

In a Workflow+ setting, we can formulate these as high-level arguments

that refinements of the workflows producing these work products must imple-

ment (see Section /refnormativesection). This is also shown in Figure 4.5, but

with slightly different notation than was used in Section 3.7. In the interest

of compact and readable diagrams, we mapped these arguments only to the

data produced by a workflow, rather than to the entire workflow itself. For-

mally, this is to be interpreted as applying to the entire workflow producing

the output data mapped to an argument, including input data, output data,

constraints and process definitions. For example, the argument attached to

ItemDefinition indicates that it applies to the entire Workflow+ definition of

the ItemDefinition process, including InformalRequirements, ItemDefinition, the

associations between these elements, and the constraints over this metamodel.

To reiterate, these arguments are included to express what the argumen-

tation over each workflow must achieve, but do not specify how it is to be

achieved. The derived arguments, however, remain blue as they are derived

from the arguments as shown, regardless of how the white arguments are im-

plemented.

Note that while the standard does not provide an objective for the Concept

Phase as a whole, we were still able to derive a higher-level argument for the

entire Concept Phase. This argument could be included in the higher-level

metamodel in Figure 4.3.

60

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Figure 4.4: Concept phase as shown in ISO 26262-3 [5]

2020-02-03, 5:15 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/ISO%20HARA.svg

Figure 4.5: Workflow+ metamodel of the concept phase as described in ISO
26262-3 [29]

61

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

4.3.3 Second Refinement: HARA

Next we proceed by decomposing the HARA process in Figure 4.6. We begin

by creating an abstract outline of the clauses described in ISO 26262-3 [29]

section 6.4, where there are 3 subsections that describe the processes to be

carried out by HARA: Situation analysis and hazard identification, Classifi-

cation of hazardous events, and Determination of safety goals. When each

of these processes is executed, it produces a part of the HARA report. Note

that because the standard does not give the output of these clauses a name,

for convenience we have used the name of the subsection as the name of its

corresponding process and output.

Without considering details, it is clear that executions of these processes,

in order of execution, must produce a correct and complete set of Hazardous

Events, produce a correct ASIL classification for each Hazardous Event, and

produce a correct Safety Goal for each Hazardous Event. According to the mul-

tiplicity constraints in the Workflow+ metamodel, an execution of the process

Situation Analysis and Hazard Identification produces one instance of Situation Analysis and Hazard Identification (data)

, which must include a complete set of Hazardous Events for the Item Definition

used as input. This is then to used by many executions of Classification of Hazardous Event,

which each produce a classification for one Hazardous Event (i.e. one instance

of Classification of Hazardous Event (data) is produced per execution). Finally,

each execution of Determine Safety Goal must take one Hazardous Event in

Situation Analysis and Hazard Identification (data) along with its ASIL classifi-

cation from Classification of Hazardous Event (data) and produce a safety goal

(i.e. one instance of Determination of Safety Goal (data) per execution).

We can formulate the objectives of each process as arguments that refine-

62

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

ments of the workflows producing the data shown must implement. In Fig-

ure 4.6 we include these objectives as arguments mapped to the data produced

by their respective processes (recall that these arguments are to apply to the

entire workflow producing the data with a mapping to an argument). Again,

these arguments are white to indicate that they require implementation. These

arguments can then be composed to show how they are an implementation of

the argument on HARA as a whole.

These three HARA processes can now be further decomposed. It is at this

next level of decomposition that things get more interesting - the standard

provides a great deal of detail on how the processes within HARA are to be

executed, the data produced and how they are interrelated in ISO 26262-3 [29]

section 6.4. We will treat the following as the final decomposition step and add

syntactic and semantic arguments to the process definitions. In the interest of

compact and readable diagrams, different notation will be used to show how

arguments relate to constraints, but the meaning is the same as explained in

3.6. Again, note that our model of ISO 26262-3 [29] section 6 is not necessarily

complete; we are only illustrating how it can be modelled using Workflow+,

not providing a complete model.

4.3.4 Third Refinement (1) - Situation Analysis and

Hazard Identification

Figure 4.7 shows the decomposition of Situation Analysis and Hazard Iden-

tification. Through analysis of the clauses in ISO 26262-3 [29] section 6.4.2,

we have modelled the data that is to be documented and their relationships.

First, we notice that the operational situations of items must be defined. For

63

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

20
20

-0
2-

04
, 1

1:
34

 P
M

Pa
ge

 1
 o

f
1

fil
e:

//
/U

se
rs

/n
ic

k/
G

M
/G

M
_D

oc
s/

G
M

_D
oc

um
en

ts
/D

el
iv

er
ab

le
s%

20
an

d%
20

G
M

%
20

Re
sp

on
se

s/
N

ic
ks

Th
es

is
/t

he
si

s/
fig

ur
es

/IS
O

%
20

H
A

RA
.s

vg

F
ig

u
re

4.
6:

W
or

k
fl
ow

+
m

et
am

o
d
el

of
H

A
R

A
as

d
es

cr
ib

ed
in

IS
O

26
26

2-
3

[2
9]

64

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

convenience in adding constraints, we say that an item has a group of In-

tended Operational Situations (Operational Situation Set) that consists of all

Intended Operational Situations. Next, we see that an Item is analysed to de-

termine the set of vehicle-level hazards that it’s malfunctioning behaviour can

potentially cause. Again, we model this using a group of hazards (Hazard Set)

that consists of all Vehicle Level Hazards identified for an Item. These Vehicle

Level Hazards and Intended Operational Situations of an item are then anal-

ysed to determine when they, in combination, can lead to a Hazardous Event,

producing a group of Hazardous Events related to an Item.

Over this refined data, we can add constraints whose associated arguments

support the (white) argument of Situation Analysis and Hazard Identification

as shown in Figure 4.8. First, we place syntactic constraints on Operational

Situation Set and Hazard Set that ensure they are in fact present in an in-

stance. Next, we place semantic constraints on the same data requiring their

instances to be reviewed for correctness and completeness. Next, we place

similar syntactic and semantic constraints on Hazardous Event Set requiring

it to be present and reviewed for correctness and completeness in an instance.

Finally, with all of these syntactic and semantic constraints and their asso-

ciated arguments, we can derive higher level arguments which, as shown in

Figure 4.8, do in fact implement the argument on Situation Analysis and Haz-

ard Identification.

65

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-03, 5:15 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/ISO%20HARA.svg

Figure 4.7: Workflow+ metamodel of situation analysis and hazard identifica-
tion as described in ISO 26262-3 [29]

2020-02-03, 5:15 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/ISO%20HARA.svg

Figure 4.8: Workflow+ metamodel of situation analysis and hazard identifica-
tion with argumentation as as described in ISO 26262-3 [29]

66

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

4.3.5 Third Refinement (2) - Classification of Hazardous

Event

Figure 4.9 shows the decomposition of Classification of Hazardous Event. Each

execution of this process takes a hazardous event identified by an execution of

Situation Analysis and Hazard Identification as input, and first determines the

Severity and Controllability of the Hazardous Event, along with the Exposure

of the operational situation involved in that Hazardous Event. Finally, the

Hazardous Event has an ASIL computed based on these attributes. Because

computing the ASIL amounts to using the look up table in ISO 26262-3 [29]Ta-

ble 4, the ASIL determination can be implemented as an automated Query that

takes in a Hazardous event along with its Severity, Exposure and Controlla-

bility. Note that according to the multiplicities, Classification of Hazardous

Event must be executed once for each hazardous event.

Note that here, it can be seen why it is necessary to be able to model

processes that output relationships between input and output data. The data

from Situation Analysis and Hazard Identification is not simply used as input

data, it is built upon, and for safety assurance we need to be able to model

this accurately in order to assure that the process was correctly followed.

Over this refined data, we can add constraints whose associated arguments

support the (white) argument of Classification of Hazardous Event as shown

in Figure 4.10. First, we place syntactic constraints on all data requiring

that they are present in an instance. Next, we add semantic constraints over

Severity, Controllability and Exposure requiring their instances to be reviewed

for correctness. Because Look Up ASIL is an automated query, instead of

reviewing its output we can certify the Query to always output correct results

67

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-03, 5:15 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/ISO%20HARA.svg

Figure 4.9: Workflow+ metamodel of classification of hazardous events as de-
scribed in ISO 26262-3 [29]

given correct input, shown by the constraint on Look Up ASIL saying that

it is certified. This is in many ways similar to compiler certification, where

compilers used for safety-critical applications are, or should be, certified to

generate correct code.

4.3.6 Third Refinement (3) - Determination of Safety

Goal

Figure 4.11 shows the decomposition of Determination of Safety Goal. Each

execution of this process takes a Hazardous Event along with its ASIL and

computes a Safety Goal to mitigate that Hazardous Event. Following this,

through a query the Safety Goal is traced to the ASIL ratings of the Hazardous

Event it mitigates, and assigned an ASIL equal to the highest ASIL of all

68

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

20
20

-0
2-

10
, 1

0:
30

 P
M

Pa
ge

 1
 o

f
1

fil
e:

//
/U

se
rs

/n
ic

k/
G

M
/G

M
_D

oc
s/

G
M

_D
oc

um
en

ts
/D

el
iv

er
ab

le
s%

20
an

d%
20

G
M

%
20

Re
sp

on
se

s/
N

ic
ks

Th
es

is
/t

he
si

s/
fig

ur
es

/IS
O

%
20

H
A

RA
.s

vg

F
ig

u
re

4.
10

:
W

or
k
fl
ow

+
m

et
am

o
d
el

of
cl

as
si

fi
ca

ti
on

of
h
az

ar
d
ou

s
ev

en
ts

w
it

h
ar

gu
m

en
ta

ti
on

as
d
es

cr
ib

ed
in

IS
O

26
26

2-
3

[2
9]

69

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

mitigated Hazardous Events if there is more than one.

Over this refined data, we can add constraints whose associated arguments

support the (white) argument of Determination of Safety Goals as shown in

Figure 4.12 . First, we place a syntactic constraint requiring a Safety Goal

to be present in an instance and add a semantic constraint requiring that

the safety goal is reviewed for correctness, allowing us to say that the safety

goal is correct. Recall the mention of acceptance criteria in Section 4.2 – the

acceptance criteria of this review could, for example, involve checking that:

i) the safety goal is described in sufficient detail to be able to determine its

scope and effect; ii) the safety goal describes reasoning as to why and how the

safety goal mitigates the hazard; iii) any prior history of that safety goal being

used to mitigate that hazard is described; and iv) sufficient references to back

up the claim that the safety goal mitigates that hazard are included. Next,

we add a constraint that the Query Assign ASIL must be certified and that

a Safety Goal must be associated with an ASIL, allowing us to say that each

Safety Goal is assigned the correct ASIL.

4.3.7 Tying it All Together

Thus, we have defined a partial decomposition of the standard, ranging from

the most abstract level to the lowest level of HARA. The processes that re-

main can also be decomposed using information provided by the standard,

but for the purpose of this thesis we stop our decomposition here. Figure 4.13

illustrates this decomposition. In it, we show that we began by defining a

high-level Workflow+ model of the standard with constraints/argumentation

omitted (Figure 4.3). Then, we decomposed the Concept Phase while leaving

70

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

2020-02-03, 5:15 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/ISO%20HARA.svg

Figure 4.11: Workflow+ metamodel of determination of safety goal as described
in ISO 26262-3 [29]

2020-02-03, 5:15 PM

Page 1 of 1file:///Users/nick/GM/GM_Docs/GM_Documents/Deliverables%20and%20GM%20Responses/NicksThesis/thesis/figures/ISO%20HARA.svg

Figure 4.12: Workflow+ metamodel of determination of safety goal with argu-
mentation as described in ISO 26262-3 [29]

71

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

the remaining four processes as black boxes (Figure 4.5). Next, we decom-

posed the HARA portion of the Concept Phase, leaving Item Definition and

Functional Safety Concept as black boxes (Figure 4.6). Following this, we re-

fined the three processes within HARA (Figure 4.8, Figure 4.10, Figure 4.12).

Of course, there are traceability and input/output relationships between these

decomposed processes as shown previously, which are omitted for simplicity.

4.3.8 A More Specific Template

Because the standard is intended to apply to all electronic/electrical systems

within road vehicles, a complete Workflow+ metamodel based on the standard

would serve as a WfNorm for any electronic/electrical system within a road

vehicle. That is, the WfNorm is a template for the design and analysis of all

electronic/electrical systems within road vehicles.

This WfNorm could then be decomposed to apply to a specific subset of elec-

tronic/electrical systems within vehicles. To illustrate this, we will use an ex-

ample where the Situation Analysis and Hazard Identification is decomposed to

apply specifically to systems within pickup trucks. During the decomposition,

the Intended Operational Situations of pickup trucks are determined ahead of

time and fixed (i.e. cannot be changed). This is illustrated in Figure 4.14,

where the Operational Situation Set for pickup trucks has been changed to

grey to indicate that it is fixed, and the Situation Analysis process has been

removed as it does not need to be executed in this refinement. These Intended

Operational Situations include city driving, highway driving, towing, etc., for

example. Now, for assurance, this set of Operational Situations is reviewed to

be correct beforehand, so we make the constraints grey to indicate that they

72

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

H
ig

h-
Le

ve
l I

SO
 2

62
62

 W
F+

 M
od

el
(F

ig
ur

e
3.

23
)

H
ig

h-
Le

ve
l I

SO
 2

62
62

 W
F+

 M
od

el
(F

ig
ur

e
3.

23
)

R
efi

ne
m

en
t 1

.1
 -

C
on

ce
pt

 P
ha

se
(F

ig
ur

e
3.

25
)

R
efi

ne
m

en
t 1

.2
Pr

od
uc

t
D

ev
el

op
m

en
t a

t
th

e
H

ar
dw

ar
e

Le
ve

lC
on

ce
pt

Ph
as

e

R
efi

ne
m

en
t 1

.3
Pr

od
uc

t
D

ev
el

op
m

en
t a

t
th

e
Sy

st
em

Le
ve

l

R
efi

ne
m

en
t 1

.4
Pr

od
uc

t
D

ev
el

op
m

en
t a

t
th

e
So

ftw
ar

e
Le

ve
l

R
efi

ne
m

en
t 1

.5
Pr

od
uc

tio
n,

O
pe

ra
tio

n,
Se

rv
ic

e
an

d
D

ec
om

m
is

si
on

in
g

H
ig

h-
Le

ve
l I

SO
 2

62
62

 W
F+

 M
od

el
(F

ig
ur

e
3.

23
)

R
efi

ne
m

en
t 1

.1
 -

C
on

ce
pt

 P
ha

se
(F

ig
ur

e
3.

25
)

R
efi

ne
m

en
t 1

.1
.2

 -
H

AR
A

(F
ig

ur
e

3.
26

)
R

efi
ne

m
en

t
1.

1.
1

Ite
m

D
efi

ni
tio

n

R
efi

ne
m

en
t

1.
1.

3
Fu

nc
tio

na
l

Sa
fe

ty
 C

on
ce

pt

R
efi

ne
m

en
t 1

.2
Pr

od
uc

t
D

ev
el

op
m

en
t a

t
th

e
H

ar
dw

ar
e

Le
ve

lC
on

ce
pt

Ph
as

e

R
efi

ne
m

en
t 1

.3
Pr

od
uc

t
D

ev
el

op
m

en
t a

t
th

e
Sy

st
em

Le
ve

l

R
efi

ne
m

en
t 1

.4
Pr

od
uc

t
D

ev
el

op
m

en
t a

t
th

e
So

ftw
ar

e
Le

ve
l

R
efi

ne
m

en
t 1

.5
Pr

od
uc

tio
n,

O
pe

ra
tio

n,
 S

er
vi

ce
an

d
D

ec
om

m
is

si
on

in
g

H
ig

h-
Le

ve
l I

SO
 2

62
62

 W
F+

 M
od

el
(F

ig
ur

e
3.

23
)

R
efi

ne
m

en
t 1

.1
 -

C
on

ce
pt

 P
ha

se
(F

ig
ur

e
3.

25
)

R
efi

ne
m

en
t 1

.1
.2

 -
H

AR
A

(F
ig

ur
e

3.
26

)
R

efi
ne

m
en

t 1
.1

.2
.1

 -
Si

tu
at

io
n

An
al

ys
is

 a
nd

 H
az

ar
d

Id
en

tifi
ca

tio
n

(F
ig

ur
e

3.
28

)

R
efi

ne
m

en
t 1

.1
.2

.2
 -

C
la

ss
ifi

ca
tio

n
of

 H
az

ar
do

us
 E

ve
nt

s
(F

ig
ur

e
3.

30
)

R
efi

ne
m

en
t 1

.1
.2

.3
 -

D
et

er
m

in
at

io
n

of
 S

af
et

y
G

oa
ls

(F
ig

ur
e

3.
32

)
R

efi
ne

m
en

t
1.

1.
1

Ite
m

D
efi

ni
tio

n
R

efi
ne

m
en

t
1.

1.
3

Fu
nc

tio
na

l
Sa

fe
ty

 C
on

ce
pt

R
efi

ne
m

en
t 1

.2
Pr

od
uc

t
D

ev
el

op
m

en
t a

t
th

e
H

ar
dw

ar
e

Le
ve

lC
on

ce
pt

Ph
as

e

R
efi

ne
m

en
t 1

.3
Pr

od
uc

t
D

ev
el

op
m

en
t a

t
th

e
Sy

st
em

Le
ve

l

R
efi

ne
m

en
t 1

.4
Pr

od
uc

t
D

ev
el

op
m

en
t a

t
th

e
So

ftw
ar

e
Le

ve
l

R
efi

ne
m

en
t 1

.5
Pr

od
uc

tio
n,

O
pe

ra
tio

n,
Se

rv
ic

e
an

d
D

ec
om

m
is

si
on

in
g

F
ig

u
re

4.
13

:
O

ve
rv

ie
w

of
d
ec

om
p

os
it

io
n

of
th

e
p
ro

ce
ss

es
w

it
h
in

IS
O

26
26

2
[5

]

73

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

are already checked. Note that the rest of the constraints have been omitted

from the refined model to improve readability, but they are exactly the same

as in the unrefined model.

Now, with this set of Intended Operational Situations fixed, the Exposure

classification of these Intended Operational Situations can also be determined

ahead of time. Figure 4.14 shows an illustrative example in which the city

and highway driving Exposure ratings have been fixed at E4, and the towing

Exposure rating fixed at E2.

Thus, we have demonstrated how a normative workflow can be decomposed

to apply to more specific types of systems. In doing this, we have effectively

reduced the workload in executing the WfNormprescribed by the standard for a

pickup truck by only requiring the execution of Situation Analysis once to be

used for any electronic/electric system in a pickup truck, rather than having

it re-executed every time. Obviously, there is opportunity to decompose tasks

that are much more time consuming than determining operational situations,

and when done at scale, provides a great opportunity for improved produc-

tivity. Additionally, in making this refined template we have also reduced the

burden on those reviewing the SEP execution by only requiring the set of op-

erational situations to be reviewed once, rather than after each execution of

Situation Analysis.

To anyone with knowledge of how SEPs are executed in practice, it is

obvious that the idea of reusing previously determined data is done often,

and was not invented by us. What we have done, however, is provided a

means of accurately documenting this reuse and integrating it directly into an

assurance case. Non-model-based approaches to this same reuse often result

in the previously mentioned issues related to productivity and reviewing.

74

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

F
ig

u
re

4.
14

:
A

n
ex

am
p
le

of
a

W
or

k
fl
ow

+
te

m
p
la

te
fo

r
S
it

u
at

io
n

an
al

y
si

s
an

d
h
az

ar
d

id
en

ti
fi
ca

ti
on

(s
ee

F
ig

u
re

4.
8)

75

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Chapter 5

Discussion

In this section, we discuss several benefits of the Workflow+ approach to safety

assurance. These benefits are divided into two sections, one on the advantages

of model-based documentation for safety assurance, and the other on the po-

tential for tool support and automation of Workflow+ based assurance cases.

5.1 Advantages of Model-Based Documenta-

tion

Through experience trying to use current approaches to safety assurance in

a model-based setting and using Workflow+, we have gained insight into the

advantages and disadvantages of model-based documentation using these ap-

proaches. We discuss these advantages and disadvantages in the following

subsections.

76

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

5.1.1 Making Assurance Less Ad-hoc

Current approaches to assurance can be ad-hoc and reliant upon how individ-

ual safety experts interpret the safety requirements, the certification standards,

and the syntax itself. More specifically, there is no precisely defined method-

ology for assurance when using GSN; it relies on individual engineer expertise

([3] goes into more detail on this). There are benefits to this, as engineers can

optimize the process of constructing an assurance case based on their experi-

ence in their respective domains, but this comes at the price of repeatability

and learnability. An important benefit of using Workflow+ is the clear method-

ology that is to be followed when build assurance arguments; this will ideally

enable engineers to more readily learn the techniques, and for the steps to be

repeatable.

In comparison with GSN, the semantics for each element of Workflow+,

as well as the role each element plays in the assurance process, are precisely

defined. This should lead to fewer opportunities for misinterpretation. Ad-

ditionally, Workflow+’s structure makes managing large assurance cases more

systematic, repeatable and inexpensive.

5.1.2 Improved Traceability

Detailed traceability is essential for assurance cases of complex systems because

it improves understandability and allows for all necessary information to be

directly linked to assurance arguments. Current approaches lack mechanisms

to include direct traceability and often rely on implicit traceability between

arguments (See [3]). This implicit traceability is manageable for small-scale

assurance case, but in large-scale industrial safety cases it is often much more

77

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

difficult to identify and understand traceability that is left implicit, especially

when cross-cutting concerns branch over multiple argument legs. This places

an undue burden on independent reviewers to discover this implicit structure

on their own, and when compounded with the ad-hoc structure typical of

GSN-style safety cases can lead to significant misunderstanding of the intended

argument structure. This prevents independent reviewers from being able to

review an assurance case with sufficient/required certainty and gets in the way

of identifying subtle but potentially dangerous flaws in arguments.

Workflow+ was developed from the ground-up with this in mind and en-

ables detailed data-to-data and data-to-process traceability. All traceability

necessary between data and processes underlying arguments is maintained ex-

plicitly, eliminating the issues related to implicit data-to-data and data-to-

process traceability, and allowing for cross-cutting concerns to be accurately

and explicitly represented. When paired with the well-defined structure of

Workflow+ assurance cases, Workflow+ provides significantly improved under-

standability and is better suited for independent reviewing.

5.1.3 Improved Granularity

As was demonstrated, Workflow+ metamodels can be decomposed in a modular

manner to an arbitrary level of granularity. In theory, current approaches such

as GSN can also be refined to an arbitrary level of granularity, but people

tend to avoid doing this. Process refinement and decomposition is a well-

understood procedure that can be formally defined and is intuitive. In contrast,

GSN assurance case decomposition would be very hard due to the level of

implicit information: when one accurately decomposes a GSN diagram, they

78

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

run the risk of destroying the implicit structure. Moreover, the navigability

and comprehensibility of GSN-style safety cases suffer as higher levels of detail

are added due to the presence of cross-cutting concerns and lack of explicit

traceability. Workflow+ can provide an advantage over current approaches by

providing mechanisms that manage the complexity of fine-grained assurance

cases, namely a) maintaining explicit traceability and b) enabling modular

process and data decomposition, which improves understandability.

5.2 The Potential for Tool Support and Au-

tomation

Through experience trying to use current approaches to safety assurance in

a model-based setting and using Workflow+, we have gained insight into the

possibilities for tool support and automation using these approaches. In the

following subsections, we discuss these advantages and disadvantages.

5.2.1 Impact Analysis

When dealing with highly complex embedded systems, it can be difficult to

determine the impact of incremental design changes on the system’s assurance

case. As systems continue to increase in complexity, even the most experienced

engineers will have trouble keeping up with the thousands of connections be-

tween design and their respective elements of an assurance case. Continuing

to do impact analysis “by hand” will result in increased cost, lost productiv-

ity and potentially safety concerns stemming from the inevitable human error

when combing through thousands of data points. Current approaches lack the

79

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

traceability within/between work products that is necessary for build tooling

supporting impact analysis.

The model-based nature of Workflow+ provides the necessary foundations

for impact analysis to be automated as much as is possible. The detailed gran-

ularity and traceability possible in Workflow+ metamodels allow for tools to

be built that can automatically follow traceability links to all related data and

their associated arguments (i.e. automatically trace changed data to impacted

processes/data/arguments), rather than just to work products that contain

large quantities of information. This allows tools that point engineers directly

to the processes that need to be re-executed as the result of a change. On

top of this, the well-defined semantics of Workflow+ metamodels and assur-

ance cases allows for an explicit ontology of change propagation that enables

a well-defined approach to assurance of incremental changes to systems.

5.2.2 Automation

As systems continue to increase in complexity, it is desirable to automate

as much of the assurance case development as possible to reduce develop-

ment costs. Building Workflow+ on well-established model-based development

(MBD) principles allows tool developers to leverage a wide range of pre-existing

techniques for managing assurance cases, including automated querying to

search for assurance cases, and transformations for applying templates.

Additionally, the model-based approach of Workflow+ allows for static syn-

tactic correctness to be checked automatically. As more granularity is added to

the Workflow+ metamodel, semantically significant properties can be encoded

in the structure of the metamodel through the use of constraints. For example,

80

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

if there are certain structural properties of design-related elements desirable

for safety, then the corresponding constraints can be placed on the metamodel

to allow these properties to be automatically checked. Table 1 in ISO 26262-6

[31] outlines properties of software architectural design that are desirable for

avoiding systematic faults. Many of these properties, such as restricted size

of interfaces, restricted size of complexity of software components and loose

coupling between software components are all good candidates for automatic

checking through constraints over detailed models.

An MBD approach also allows for some processing required in a workflow

to be automated, as was shown for the process Look Up ASIL in Figure 4.10.

It is possible for these automated tasks to be certified to have trustworthy

outputs with correct inputs (similar to how compilers can be qualified). Thus,

time can be saved by automating the process itself, and also by not requiring

the outputs of these automated processes to be reviewed.

5.2.3 Integrating Assurance with Development

The model-based approach of Workflow+ opens up the opportunity for Workflow+

models to be directly integrated with model-based development or V&V tools.

This allows assurance to be built directly over data from development, rather

than having an assurance case as a separate document with references to de-

velopment documentation. With direct access to artefacts from development,

some aspects of assurance cases to be automatically generated and validated

based on the content of those design artefacts. While it is possible to integrate

GSN approaches with development [32], integrating Workflow+ with develop-

ment will allow for more scalable solutions that are more well-suited for impact

81

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

analysis. Also, its direct traceability into the environment facilitates dealing

with feature interactions that stretch into the environment.

5.3 Multiview Modelling

As is clear by this point, there are many ways of representing different Workflow+

models. To reiterate what was said earlier, models or instances) are represen-

tations of reality designed for a specific purpose. In order to fulfil the purpose

of a model, it is sometimes necessary to alter the representation or level of ab-

straction of a model to make it more useful or readily accessible (i.e. readable,

understandable, etc.)

In the context of Workflow+ the complexity of workflow definitions makes

it particularly important to be able to abstract away unnecessary information

depending on the needs of a workflow’s users. For example, for a safety engineer

executing a specific process from a workflow, it is not necessary for them to be

presented any information other than what is directly relevant to the process

they are executing. Another example is when presenting safety strategies to

stakeholders who are not entirely familiar with the process - a higher-level

view of the workflow is appropriate, rather than overloading them with every

little detail of a workflow. The modularity and compositionality of Workflow+

enable this by allowing individual parts of a workflow to be composed and

decomposed as needed to provide the necessary level of abstraction and scope

for a particular purpose.

82

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Chapter 6

Evaluation

The Workflow+ framework was developed during a collaborative research project

with a large automotive OEM related to model-based approaches to managing

assurance cases. This research project began by trying to find a model-based

way to manage GSN-style safety cases, but we quickly came to realize that the

potential for automation in this setting fell well short of what we wanted. Thus,

Workflow+ was born, and through collaboration with our industrial partners,

we were able to develop Workflow+.

The general feedback from our industrial partner was positive, and in their

opinion Workflow+ is a very promising way of modelling, documenting, man-

aging and automating their safety assurance processes. Additionally, during

an internship with our industrial partner, the author was able to work closely

with them to further develop the Workflow+ framework and make sure it was

being developed in a way that would meet their needs. One of the projects

worked on by the author was to conduct a survey of issues raised during man-

ual reviews of safety-related work products, which found that 46% of issues

with safety-related work products were syntactic issues and have the poten-

83

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

tial to be automatically detected using the model-based Workflow+ approach,

even before a review begins. This was seen as promising as, at the very least,

it would improve the productivity of reviewers and allow them to focus on

identifying more serious issues within work products.

This experience working with our industrial partner essentially served as an

evaluation of Workflow+ and from their feedback we conclude that Workflow+

is indeed a useful contribution in the field of model-based safety assurance and

has the potential to be more rigorous and repeatable in industrial projects

than is currently achievable.

84

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Chapter 7

Conclusion

This thesis began by discussing the issues surrounding current approaches to

safety assurance. We discussed two of the most significant issues that must be

overcome to improve the rigour of safety assurance and make them less ad-hoc:

a) the absence of mathematical foundations for reasoning; and b) the lack of

well-defined semantics for the building blocks of assurance cases. Together,

these issues undermine the effectiveness of safety assurance and a regulator’s

ability to critically assess the safety of a system.

Workflow+ has been presented as an an approach to safety assurance that

addresses these issues. Its well-defined semantics and approach to reason-

ing/argumentation provide a promising way to overcome the issues of cur-

rent approaches to safety assurance. Additionally, its model-based nature and

traceability mechanisms facilitate the creation of powerful tool support based

on established MBD principles, enabling automation of the management of

safety cases including change impact analysis, and the tight integration of

safety with development.

As systems become more complex, the limitations of traditional approaches

85

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

to safety assurance are becoming more difficult to manage. Workflow+ is a

framework that can improve upon traditional methods and provide solutions

to their limitations, ultimately making the problem of safety assurance more

manageable.

My contribution has been mainly to the development of Workflow+. This

has included creating and documenting detailed examples as part of producing

deliverables for a research project with an industrial partner, and to be used

in technical reports. I have worked closely with our industrial partner to un-

derstand their needs and ensure Workflow+ addresses those needs. I have also

contributed by developing explanations and detailed figures that form the basis

of a recent publication on Workflow+ and also aid in introducing Workflow+

to practitioners and researchers who are new to this form of modelling.

7.1 Future work

Future work on the Workflow+ framework falls into two categories: formaliza-

tion and the creation of tooling. The idea of Workflow+ and the role it plays

in safety assurance are more or less clear as described in this thesis, but the

framework is still in its conceptual phase. Formalization of many aspects of

the framework are still works in progress, as is the implementation of tools

for Workflow+. As formalization and the creation of tooling are carried out,

Workflow+ will take on a more concrete and usable form.

When more fully formalized, and with adequate tool support, concrete

design patterns, approaches to assurance in specific domains, automation ca-

pabilities and methodologies for assessing Workflow+ assurance cases can be

established and put into practice.

86

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

Bibliography

[1] Robin E. Bloomfield and Peter G. Bishop. “Safety and Assurance Cases:

Past, Present and Possible Future - an Adelard Perspective”. In: Making

Systems Safer - Proceedings of the Eighteenth Safety-Critical Systems

Symposium, Bristol, UK, February 9-11, 2010. 2010, pp. 51–67. url:

https://doi.org/10.1007/978-1-84996-086-1_4 (cit. on p. 1).

[2] Alan Wassyng et al. “Software Certification: Is There a Case against

Safety Cases?” In: Foundations of Computer Software. Modeling, Devel-

opment, and Verification of Adaptive Systems - 16th Monterey Workshop

2010, Redmond, WA, USA, March 31- April 2, 2010, Revised Selected

Papers. 2010, pp. 206–227. url: https://doi.org/10.1007/978-3-

642-21292-5_12 (cit. on pp. 1, 2, 8, 42).

[3] Zinovy Diskin et al. Assurance via workflow+ modelling and confor-

mance. McSCert Technical Report. 2019. arXiv: 1912.09912 [cs.SE]

(cit. on pp. 3, 7, 9, 26, 30, 31, 77).

[4] John Hutchinson et al. “Empirical Assessment of MDE in Industry”.

In: Proceedings of the 33rd International Conference on Software Engi-

neering. ICSE ’11. Waikiki, Honolulu, HI, USA: Association for Com-

87

https://doi.org/10.1007/978-1-84996-086-1_4
https://doi.org/10.1007/978-3-642-21292-5_12
https://doi.org/10.1007/978-3-642-21292-5_12
https://arxiv.org/abs/1912.09912

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

puting Machinery, 2011, 471–480. isbn: 9781450304450. url: https:

//doi.org/10.1145/1985793.1985858 (cit. on p. 5).

[5] ISO. ISO 2626: Road Vehicles – Functional Safety. version 2. 2018 (cit.

on pp. 6, 9, 56–59, 61, 73).

[6] Nicholas Annable et al. “Model-driven safety of autonomous vehicles”.

In: Consortium for Software Engineering Research, 2020 (to appear) (cit.

on p. 7).

[7] Tim Kelly. “Arguing Safety – A Systematic Approach to Managing

Safety Cases”. PhD thesis. University of York, 1998 (cit. on p. 8).

[8] Adelard LLP. Adelard Safety Case Development Manual. Tech. rep. http:

//www.adelard.com/resources/ascad/. 1998 (cit. on p. 8).

[9] David J Rinehart, John C Knight, and Jonathan Rowanhill. Current

Practices in Constructing and Evaluating Assurance Cases With Appli-

cations to Aviation. 2015 (cit. on p. 8).

[10] John Rushby. Understanding and Evaluating Assurance Cases. Technical

Report SRI-CSL-15-01. SRI International, 2015 (cit. on p. 8).

[11] Sunil Nair et al. “An extended systematic literature review on provision

of evidence for safety certification”. In: Information & Software Tech-

nology 56.7 (2014), pp. 689–717. url: https://doi.org/10.1016/j.

infsof.2014.03.001 (cit. on p. 8).

[12] A. Wassyng et al. “Can Product-Specific Assurance Case Templates Be

Used as Medical Device Standards?” In: IEEE Design Test 32.5 (2015),

pp. 45–55. issn: 2168-2364 (cit. on pp. 8, 54).

88

https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/1985793.1985858
http://www.adelard.com/resources/ascad/
http://www.adelard.com/resources/ascad/
https://doi.org/10.1016/j.infsof.2014.03.001
https://doi.org/10.1016/j.infsof.2014.03.001

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

[13] John Rushby. “Formalism in safety cases”. In: Making Systems Safer.

Springer, 2010, pp. 3–17 (cit. on p. 8).

[14] Ewen Denney and Ganesh Pai. “Tool support for assurance case devel-

opment”. In: Automated Software Engineering 25.3 (2018), pp. 435–499.

issn: 1573-7535. url: https://doi.org/10.1007/s10515-017-0230-5

(cit. on p. 8).

[15] OMG. Object Management Group Structured assurance case metamodel

- SACM. 2019. url: https://www.omg.org/spec/SACM/About-SACM/

(cit. on p. 9).

[16] Ran Wei et al. “Model based system assurance using the structured

assurance case metamodel”. In: Journal of Systems and Software 154

(2019), 211–233. issn: 0164-1212. url: http://dx.doi.org/10.1016/

j.jss.2019.05.013 (cit. on p. 9).

[17] Yakoub Nemouchi et al. “Isabelle/SACM: Computer-Assisted Assurance

Cases with Integrated Formal Methods”. In: Integrated Formal Meth-

ods. Ed. by Wolfgang Ahrendt and Silvia Lizeth Tapia Tarifa. Cham:

Springer International Publishing, 2019, pp. 379–398. isbn: 978-3-030-

34968-4 (cit. on p. 9).

[18] Yaping Luo et al. “Extracting Models from ISO 26262 for Reusable

Safety Assurance”. In: Safe and Secure Software Reuse - 13th Inter-

national Conference on Software Reuse, ICSR 2013, Pisa, Italy, June

18-20. Proceedings. 2013, pp. 192–207. url: https://doi.org/10.

1007/978-3-642-38977-1_13 (cit. on p. 9).

[19] Sahar Kokaly et al. “A model management approach for assurance case

reuse due to system evolution”. In: Proceedings of the ACM/IEEE 19th

89

https://doi.org/10.1007/s10515-017-0230-5
https://www.omg.org/spec/SACM/About-SACM/
http://dx.doi.org/10.1016/j.jss.2019.05.013
http://dx.doi.org/10.1016/j.jss.2019.05.013
https://doi.org/10.1007/978-3-642-38977-1_13
https://doi.org/10.1007/978-3-642-38977-1_13

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

International Conference on Model Driven Engineering Languages and

Systems, Saint-Malo, France, October 2-7, 2016. 2016, pp. 196–206. url:

http://dl.acm.org/citation.cfm?id=2976792 (cit. on p. 9).

[20] OMG. Object Management Group Software & Systems Process Engineer-

ing Metamodel - SPEM. 2008. url: https://www.omg.org/spec/SPEM/

About-SPEM/ (cit. on p. 9).

[21] Julio A. Hurtado Alegŕıa et al. “An MDE Approach to Software Process

Tailoring”. In: Proceedings of the 2011 International Conference on Soft-

ware and Systems Process. ICSSP ’11. Waikiki, Honolulu, HI, USA: As-

sociation for Computing Machinery, 2011, 43–52. isbn: 9781450307307.

url: https://doi.org/10.1145/1987875.1987885 (cit. on p. 9).

[22] Zinovy Diskin et al. “Assurance via model transformations and their hi-

erarchical refinement”. In: Proceedings of the 21th ACM/IEEE Interna-

tional Conference on Model Driven Engineering Languages and Systems,

MODELS 2018, Copenhagen, Denmark, October 14-19, 2018. 2018, pp. 426–

436. url: https://doi.org/10.1145/3239372.3239413 (cit. on pp. 9,

11).

[23] Zinovy Diskin, Abel Gómez, and Jordi Cabot. “Traceability Mappings as

a Fundamental Instrument in Model Transformations”. In: Fundamen-

tal Approaches to Software Engineering - 20th International Conference,

FASE 2017, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,

2017, Proceedings. 2017, pp. 247–263. url: https://doi.org/10.1007/

978-3-662-54494-5_14 (cit. on p. 11).

90

http://dl.acm.org/citation.cfm?id=2976792
https://www.omg.org/spec/SPEM/About-SPEM/
https://www.omg.org/spec/SPEM/About-SPEM/
https://doi.org/10.1145/1987875.1987885
https://doi.org/10.1145/3239372.3239413
https://doi.org/10.1007/978-3-662-54494-5_14
https://doi.org/10.1007/978-3-662-54494-5_14

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

[24] Thomas Kühne. “Matters of (Meta-) Modeling”. In: Software & Systems

Modeling 5.4 (2006), pp. 369–385. issn: 1619-1374. url: https://doi.

org/10.1007/s10270-006-0017-9 (cit. on p. 17).

[25] Thomas Kühne. “On model compatibility with referees and contexts”.

In: Software & Systems Modeling 12.3 (2013), pp. 475–488. issn: 1619-

1374. url: https://doi.org/10.1007/s10270-012-0241-4 (cit. on

p. 21).

[26] Gregor Kiczales et al. “Aspect-oriented programming”. In: ECOOP’97

— Object-Oriented Programming. Ed. by Mehmet Akşit and Satoshi

Matsuoka. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 220–

242. isbn: 978-3-540-69127-3 (cit. on p. 25).

[27] Erik Hilsdale and Jim Hugunin. “Advice Weaving in AspectJ”. In: Pro-

ceedings of the 3rd International Conference on Aspect-oriented Software

Development. AOSD ’04. Lancaster, UK: ACM, 2004, pp. 26–35. isbn:

1-58113-842-3. url: http://doi.acm.org/10.1145/976270.976276

(cit. on p. 25).

[28] T. Chowdhury et al. “Principles for Systematic Development of an As-

surance Case Template from ISO 26262”. In: 2017 IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW).

2017, pp. 69–72 (cit. on p. 56).

[29] ISO. ISO 2626: Road Vehicles – Functional Safety – Part 3: Concept

phase. version 2. 2018 (cit. on pp. 57, 59–64, 66–69, 71).

[30] ISO. ISO 2626: Road Vehicles – Functional Safety – Part 10: Guidelines

on ISO 26262. version 2. 2018 (cit. on p. 60).

91

https://doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.1007/s10270-012-0241-4
http://doi.acm.org/10.1145/976270.976276

M.A.Sc. Thesis – Nicholas Annable McMaster University – Computing and Software

[31] ISO. ISO 2626: Road Vehicles – Functional Safety – Part 6: Product

development at the software level. version 2. 2018 (cit. on p. 81).

[32] R. Hawkins et al. “Weaving an Assurance Case from Design: A Model-

Based Approach”. In: 2015 IEEE 16th International Symposium on High

Assurance Systems Engineering. 2015, pp. 110–117 (cit. on p. 81).

92

	Descriptive Note
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	Declaration of Academic Achievement
	Introduction
	Current Approaches
	Why do we Need a Formal Approach?
	How to Make Assurance More Formal
	Introducing Workflow+
	Structure of the Thesis
	Contribution

	Related Work
	Workflow+ Framework
	Requirements of Workflow+
	Workflow+ Framework Overview
	Workflow+ Metamodels and Their Instances
	Running Example: Workflow+ Metamodels and Their Instances

	Workflow+ Metamodel Decomposition
	Running Example: Workflow+ Metamodel Decomposition

	Using Aspects for Cross-Cutting Concerns
	Running Example: Using Aspects for Cross-Cutting Concerns

	Adding Argumentation to the Model
	Running Example: Adding Assurance to the Model

	Conformance to Normative Metamodel
	Running Example: Conformance to Normative Metamodel

	Workflow+ Approach To Assurance
	The Generic Workflow+ Approach
	Workflow+ Models As Assurance Case Templates
	An Example from the Automotive Domain
	Abstract Model
	First Refinement: Concept Phase
	Second Refinement: HARA
	Third Refinement (1) - Situation Analysis and Hazard Identification
	Third Refinement (2) - Classification of Hazardous Event
	Third Refinement (3) - Determination of Safety Goal
	Tying it All Together
	A More Specific Template

	Discussion
	Advantages of Model-Based Documentation
	Making Assurance Less Ad-hoc
	Improved Traceability
	Improved Granularity

	The Potential for Tool Support and Automation
	Impact Analysis
	Automation
	Integrating Assurance with Development

	Multiview Modelling

	Evaluation
	Conclusion
	Future work

