ANISOTROPIC HARMONIC OSCILLATOR WAVE SUNCTIONS

THE USE OF ANISOTROPIC HARNOIIC OSGILLATOR WAVE FUNCTIONS IN A CILINDRICAL RUPRESENTATION FOR SPECTEOSCOPIC CALCULAYIOMS

 ByLESLIE ALEXANDER COPLIE B.Sc.
A Thesis
Submitted to the Facuity of Graduate Studies in Partial Fulfilment of the Requirements
for the degree
Master of Science
McMaster University
October, 1965
(ii)

MCHASTER OIIVERSITTY. Hemilton, Ontario.

s The Use of Anisotropic Harmonic Oscillator Wave Functions in a CJlindrical Representation for Spectroscopic Calculations.

AUTHOR: Leslie Alexander Copley, B.Se. (Carloton Uaiversity)

SUPERVISOR: Profescor A. B. Volkor

NOMBER OF PMGES: (vi), 71
SCOPE AND CONTENTS:
This work is concerned with the derivation of general analytical
formulae for the matrix elements, in an M representation, of an effective two-mucleon interaction. The anisotropic harmonic oscillator wave equation is solved in cylindrical coordimates and the subsequent wave functions used to find the desired matrix element expressions. Since these expressions are in a form conducive to rapid machine computation this representation is well suited for spectroscopic calculations for deformed nuclei. This is illustrated by the calculation of the relative binding energies, by means of a limited Hartree-Fock wethod, of several meleonic conflgarations in the 2z-1d shell.

ACMOWTMMOMMVS

I visk to thank enpervisor, Profecsor A. B. Volkov, for his invalable guldance and aselstance throughout the courbe of this mork. IIE constant and objective optimin in the face of secingly inpaseble obstacles was a continuous source of incpiration.

It 1e pleasure to aleo thank Mr. D. J. Hughes for ans valuablo discuselons and for many helpinl angestions and asedstance in competer prograning.

I Indebtet to the Mational Research Council of Canade for ilmancial expport while engaged in this work.

TABTS OF CONTMNS

CHAPTMR 18 Introduction 1
CRAPTMR 28 Darivation of the Wave Punction 5
CHAPTER 38 Calculation of Matrix Elemente 9
CRIPINR 48 The Calculation of Binding Bnergies of Particular
Configurations as arnction of Deforwation 15
CBAPTER 58 The Refective Raclear Force 17CHAPTER 63 The Depeadence of the Wave Functions and
Matrix menents on Doformation 20
CHAPTER 7: Details of the Energ Compatations 24
CMAFTER 8: Equilibriv. Fhorgy Curres for $0^{17}, 0^{18}, F^{19}$ and $n e^{20}$ 26
CHAPTER 9: Conclugions 34
APPMTDIX A8 The Solution of the Radial Part of the Hamonic Oseillator Uave Equation 36
APFELDIX Bz Bxplicit Calculation of the Direct and Erchange Matrix klements of a GausaianAPPETDIX Cs
Interaction 39
The $2_{1}^{-E_{2}}$-Part of the Matrix 5lemente for the Cane of Equal Cscillator Constants 55
Captions for Flaurea $57 a$
Mrure 18 Deformation-Dopendence of the Kimetic Enorgies 58
Prure 23 Deformation-Dopendence of Iypical Direst

(a) Goed Overlay 59
(b) Poor Overlap 60
Flgere 3s Deformation-Dependence of Typical BrohangeMatrix Miencete De to Wave Functions Having
(a) Good Overlap 61
(b) Peor Ovorlap 62
Figure 48 Binding Energy as a Pumetion of Deformationfor 0^{17} Conffeurations wth(a) All Orbitals Having the Same Oscillator
Constant 63
(b) Independent Variation of the Oacillator Constants 64
Figure 58 Binding Rinergy an a Punction of Doformationfor Some $M=0$ Conflgurations of 0^{18} with
(a) $m=0.75$ 65
(b) $m=0.73$ 66Figure 68 Binding Einorg as a Function of Doformationfor Some $M=$ Configurations of r^{19}67
Figure 7: Binding Dhergy as a Puection of Doformationfor some $\mathrm{H}=\mathrm{O}$ Configurations of He^{20} with$(\mathrm{a})=0.75$68
(b) $=0.74$ 69

CHAFTGR IS INTRODOCTICM

> In meclear spectroscopy it is alvays necensary to assume a particuler form for the wavefunction which is to represeat the motion of a simgle meleon in the nuclera. Shace the inception of the shell model in 1949, extensive nse has been made of hamonic oscillator orbitals, includines the apheroidal hamonic oscillator orbitals of Milsson (M55).

> The original reason for the popolarity of such orbitals is that the analytic properties of these functions add a good deal of cirplification to shellmodel calculations well as the fact that they reproduce level ordering with a reasonable degree of faithfulnese.

> An atteurpt to add a more formal fustification to the weight of a decade of reasonably successful use led Newton (NS59) to exarine the consistency of on oscillator potentiml by means of a HartreeFock calculation. Nowton found that the oscillator wave functions are, in fact, close to being self-consisteat. In addition, he fourd that the bound state eifen functions and eigen valuea of a "cut-off" oselllator vell, (which is the physically more realistic case), differ negigibly from the corresponding states of an infinite oscillator woll.

Further fustification was added by Brueckner, Lockett and Roteaberg (BL61), who, in an investigation of the actual average potential seen by a nucleon in a lieht nuclous, by more fundemental
sechaiques, found that the single particle arbitale they subsequeatly derived vere very siailar to those of the oscillator.

Although a atill better aingle particle potetial, (in the sense of being more realiutic), has been found to be the WoodeSamon potential, the mach greater computational ease inherent with the mse of oscillator functions, along with the above formal juetification, hae rulod is thoir faveur ${ }^{\text {. }}$.

It has also become more cortain, since 1955, that some moclel are best described by deformed, (in particular, opheroidal), single particle potentials, rather than opherically symotric potentiala. Although origimally applied mainly to those regions of the melide chart were the muclei show obvious doformation, more recent investigations have included light muclef as vell. Volkov (V64 and V65) and Volkov and fughes (VI65) have performed extensive calculations for p-shell maclel paing the single particle wave functions

$$
\begin{aligned}
& y_{0}=c_{s} \exp \left(-a\left(x^{2}+y^{2}\right) / 2-b z^{2} / 2\right) \\
& y_{0}=c_{0} b_{0} z \exp \left(-a_{0}\left(x^{2}+y^{2}\right) / 2-b_{0} z^{2} / 2\right) \\
& y_{ \pm 1}=c_{ \pm 1} a_{1}(x+1 y) \exp \left(-a_{1}\left(x^{2}+y^{2}\right) / 2-b_{1} z^{2} / 2\right)
\end{aligned}
$$

1 For light melel, Woods-Sexon and oscillator levels are very sinilar - eee G. E. Bron - Unified Theory of Huclear Hodels Chapter 3.
where ach orbital has its own set of oseillator constants ${ }^{2}$. The "a" and "n" constanta are related by a deformation-dependent factor. These calculations have shom that nost ip nuclei are, in fact, deformed and that the degree of deformation is a sonsitive function of the two-meleon interaction, in particular, of the awount of Majorana exchange included in the interaction. These reaults have accentuated the importance of the doforsed single particle potential and the necessity of extonding these calculations to the 2z-1d sholl. However, this extenedon is computationally difflcult due partly to the fact that the vave function used are not true harmonic oscillator functions for the 28. and ld orbitals and so matrix elemente must be worked out, labomously, by hand in a Gartesian basis.

The present theais deacribes a nev approach in which the harmonic oscillator equation is nolved in a cylindrical representation to provide single particle wave functions. These wave functions have the virtue that (a) they naturally preserve the cylindrical symmetry of the problea, (naintaining M as a good quantum number, where M is the projection of the total angular momentura, J, or the space-fixed s-ads). (b) they are expressible in terms of admple products of functions which form complete sets, thus pernitting the simple derivation of general expressions for matrix elements as functions of the single-particle quantum numbers and oscillator constants, and

2 The aignificance of having different oscillator constants, a $\leqslant a_{0} \neq a_{1}$. will be explained at a later point in the thesie.
(c), this derivation can be performed without a separation into centre of mass and relative coordinates so that one need not maintain the same oscillator constant for all singlo-particle orbitals.

These general expressions have bon derived for a melear interaction with anassian radial dependence and then used in an Laternediate coupling calculation, with no configuration mixing, of relative binding energies in the cid shell. Since J is not a good quantum number. the tern "intermediate coupling" is used in the sense that the calculation yields the result of such coupling in the limit of zero deformation. As described in (V65) this is done by the use of Slater determinants characterized by the total M value of the system. The calculation shows the variation of the binding energies of possible configurations, for given A and Z, with deformation in a "hilsson-like" manner.

Ideally, one would lite to perform these calculations for the whole 2s-ld shell. However, certain obvious time limitations have permitted the extension of this work only to the first few nuclei of the shell.

In cylindrical coordinates ∇^{2} hae the form,

$$
\nabla^{2} \equiv \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\partial^{2}}{\partial s^{2}}
$$

Then, the rave equation for the three-dimensional harmonic oscillator is

$$
\begin{equation*}
\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial F}{\partial \rho}\right)+\frac{1}{\rho 2} \frac{\partial^{2} y}{\partial \phi^{2}}+\left(\lambda-\alpha^{2} \rho^{2}-\alpha_{z}^{2} z^{2}\right) \eta=0 \tag{2-1}
\end{equation*}
$$

where $\lambda=\frac{8 m^{2} m}{n^{2}} E, \alpha=\frac{4 m^{2} m}{h} \nu$.
and

$$
c x_{z}=\frac{4 x^{2} m}{h} \nu_{z^{2}}
$$

In these definitions, \mathbb{E} is the energy eigen value and W_{0} and W_{z} are the oscillator frequencies.

The wave functions we eek are the solutions of
Equation (2-1) and can be obtained by the usual method of separation of variables, $i . e_{.}$, by setting $\bar{\equiv} P(\rho) \cdot \Phi(\varphi) \cdot z(z)$

On substitution into (2-1) this yields the three separate
equations.

$$
\begin{equation*}
\frac{d^{2} z}{d z^{2}}+\left(\lambda_{z}-\alpha_{z}^{2} z^{2}\right) z=0 \tag{2-2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2 \Phi}}{d \varphi^{2}}+m^{2 \Phi}=0 \tag{2-3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\rho} \frac{d}{d \rho}\left(\rho \frac{d p}{d \rho}\right)+\left(\lambda-\alpha^{2} \rho^{2}-\frac{m^{2}}{\rho^{2}}\right) p=0 \tag{2-4}
\end{equation*}
$$

where $\lambda^{\prime}+\lambda_{z}=\lambda$.
The solutions of $(2-2)$ and $(2-3)$ are woll-known and are $z_{n_{z}}=n_{n_{z}} e^{-\frac{\alpha_{z} z^{2}}{z}} H_{n_{z}}\left(\sqrt{\alpha_{z}} y\right)$ and $\Phi_{(\varphi)}=\frac{1}{\sqrt{2 m}} e^{\text {in } \varphi}$ respectively, where $g_{n}(x)$ is a Hermite polynomial. The solution of $(2-4)$ is not as well-known but works out
quite easily, as is shown in Appendix A, to be

$$
P(\rho)=e^{-\frac{\alpha}{2} \rho^{2}}(\sqrt{\alpha} \rho)^{\mid=1} \cdot \sum_{\frac{n}{2}}^{1=1}\left(\alpha \rho^{2}\right)
$$

where $a=\frac{\lambda^{\prime}}{2}-1 \square 1-1$ and $L_{p}^{k}(x)$ is the associated Laguerre polynomial defined by

$$
{ }^{3} I_{p}^{k}(x)=\sum_{s=0}^{p} \frac{(-1)^{s}[(p+k)!]^{s}}{(p-s)!(k+s)!s!}
$$

Our wave function thus becomes

$$
y_{n, m, n_{z}}=\left.\left.N^{1 m^{\varphi}} e^{-\frac{\alpha p^{2}}{2}}(\sqrt{\alpha} \rho)^{\prime}\right|_{L}\right|_{\frac{n}{2}} ^{\prime}\left(\alpha \rho^{2}\right) e^{-\frac{\alpha}{2} z^{2}} n_{n}\left(\sqrt{\alpha_{z}} z\right)
$$

3 There exists an alternative definition for $L_{p}^{k}(\varepsilon)$ which is $\sum_{n=0}^{P_{1}}\left({ }_{p-n}^{p+k}\right) \frac{(-\Sigma)^{n}}{n!}$. Since this function is used in another context In Appendix B we adopt the convention of denoting it by $\mathcal{L}_{\mathrm{p}}^{\mathrm{k}}(\mathrm{z})$.
whore the normalization constant N is given by

$$
\pi=\frac{1}{\sqrt{2 a}}\left(\frac{2 \alpha\left(\frac{n}{2}\right):}{\left.\left(1-1+\frac{n}{2}\right)!\right]^{3}}\right)^{*}\left(\frac{\alpha_{2}^{k}}{x^{k / 2} 2^{1 / 2} n_{8}!}\right)^{n}
$$

$$
\text { The quantum moaners, m, } n \text { and } z_{z} \text { are restricted as }
$$

follows:

$$
\begin{aligned}
n & =0, \pm 1, \pm 2, \ldots \\
n & =0,2,4,6, \ldots \\
a_{8} & =0,1,2, \ldots
\end{aligned}
$$

In addition, the energy eigen values are given by

$$
\sum_{m, n, n_{s}}=(1 m 1+m+1) h N_{0}+\left(n_{z}+\frac{1}{2}\right) h N_{z}
$$

the explicit "2-1d" wave functions used in this work ares

$$
\begin{align*}
& { }_{2,0,0}=N_{2 e^{\prime}} e^{-\frac{\alpha_{s}}{2} p^{2}}\left(1-\alpha_{0} p^{2}\right) \cdot \frac{b s z^{2}}{2}-\left(2 s_{0}^{1}\right) \tag{2-6}\\
& \nabla_{0,0,2}=N_{d_{0}} \cdot 0^{-\frac{\alpha 0}{2} p^{2}-\frac{b o z^{2}}{2}\left(4 b_{0} z^{2}-2\right)\left(1 d_{0}{ }^{\prime}\right)} \tag{2-7}\\
& \Sigma_{0, \pm 1,1}=\#_{d \pm 1} e^{ \pm 1 \varphi_{0}}\left(\sqrt{\alpha_{ \pm 1}} \rho\right) e^{-\frac{Q_{ \pm 11}^{2}}{2} p^{2}-\frac{b-1}{2} z^{2}} \cdot 2 b_{ \pm 1}{ }^{2} \\
& \nabla_{0, \pm 2,0}=2 \cdot N_{d \pm 2} e^{ \pm 21 \varphi}\left(\alpha_{ \pm 2} \rho^{2}\right) e^{-\frac{a}{2} \pm 2 \rho^{2}-\frac{b}{2} \pm 2 z^{2}}-
\end{align*}
$$

The aybools $1 d_{0}$. and 20° indicate that these wave functions, at zero deformation, are not true d_{0} and orbitals. However, they closely approximate the true functions and, if meceamary, can be related to them by ample linear transformations. For example, the id orbital, in the spherical representation, is given by

$$
\begin{equation*}
I_{0}=\frac{1}{\sqrt{3}}\left(\sqrt{2}{ }_{0,0,2}+2,0,0\right) \tag{2-10}
\end{equation*}
$$

In the limit of zero deformation.

CHAPYESR 3: CALCULATCION OF MATRIX ELEMENRS

The interaction that concerns us most has the form

$$
G=\sum_{1\langle j} g(i, j)
$$

where the $g(1, j)$ have a Gaussian radial dependence

$$
g_{r}(i, j)=e^{-\frac{k^{2}}{2}\left(r_{i}-r_{j}\right)^{2}}
$$

The matrix elements of this interaction which must be calculated can be written $\langle\Psi(N) / G / \Psi(M)\rangle$ where $\Psi(N)$ is a (Slater) deterrainantal wave function given explicitly by

$$
\Psi(N)=(A!)^{1 / 2}\left|\begin{array}{cccc}
\phi_{n_{1}}(1) & \phi_{n_{2}}(1) & \cdots & \phi_{n_{A}}(1) \\
\phi_{n_{1}}(2) & \phi_{n_{2}}(2) & \cdots & \phi_{n_{A}}(2) \\
\cdots & \cdots & \cdots \cdots & \cdots \\
\phi_{n_{1}}(A) & \cdots & \cdots & \phi_{n_{A}}(A)
\end{array}\right|
$$

In our particular case $\phi_{n_{1}}(j)$ is the product of the single particle wave function (2-5) with a spin and an 1-spin function, evaluated at the position of the j th particle with the quantum numbers (along with spin and i-spin) of the ith particle.

In the applications of this representation to actual nuclei a restriction to the case in which there is no configuration mixing has been imposed. This restriction considerably simplifies the present mathematics since we need consider only the diagonal elements $\langle Y(N) / G / Y(N)\rangle$ which are easily shown to be of the form (T64).

$$
\begin{align*}
& \left.\left\langle I(N) / G / Q^{\prime}(N)\right\rangle=\left.\sum_{k\rangle t}\left\langle\phi_{n_{k}}(1) \phi_{n_{t}}(2)\right| g(2,2)\right|_{n_{k}}(1) \phi_{n_{t}}(2)\right\rangle \\
& -\left\langle\phi_{n_{k}}(1) \phi_{n_{t}}(2)\right| g(1,2)\left|\phi_{n_{t}}(1) \phi_{n_{k}}(2)\right\rangle \quad(3-1) \tag{3-1}
\end{align*}
$$

Explicit calculations are then required only for the simple direct and exchange elements shown in equation ($3-1$).

The spin-and i-spin-dependent parts of $g(1, j)$ are separable from the r-dependent part. In addition, the spin-and i-spin dependent parts of the matrix elements are easily worked out for all typical interactions. This leaves us then with just the two integrals

$$
\begin{equation*}
\cdot \rho_{1}^{d} \rho_{1} \rho_{2}^{d} \rho_{2}^{d \phi_{1} d x_{2} d_{z_{1}} d_{z_{2}}} \tag{3-2}
\end{equation*}
$$

$$
\begin{aligned}
& \left.\left\langle\phi_{n_{k}}(1) \Phi_{n_{t}}(2)\right| g_{r}(1,2)\left|\phi_{n_{k}}(1) \phi_{n_{t}}(2)\right\rangle=\int^{\prime}\right\} \cdots \int \phi_{n_{1} ; n_{z_{1}}}^{*}, w_{1} \\
& e^{-\frac{k^{2}}{2}\left[\left(\vec{\rho}_{1}-\vec{\rho}_{2}\right)^{2}-\left(z_{1}-z_{2}\right)^{2}\right]} \\
& \phi_{n_{1}},\left(\frac{1}{n}\right)_{z}, m_{1} \quad \phi_{n_{2}}, n_{z_{2}}^{(2)}, m_{z}
\end{aligned}
$$

and

$$
\begin{equation*}
\text { - } \phi_{n_{1}, n_{z_{1}}, m_{1}}^{(2)_{1}} \rho_{1} d \rho_{1} \rho_{2} d \phi_{1} d \phi_{2} d z_{1} d z_{2} \tag{3-3}
\end{equation*}
$$

to calculate.
These integrals are most easily worked out by separating then into products of a (ρ, ϕ)-integration and a z-integration and performing these integrations individually. This is worked out in detail in Appendices B and C. Thus, from equations (B-8), (B-16) and $(B-26)$ we find that the solutions of $(3-2)$ and $(3-3)$ are

$$
\begin{aligned}
& \left\langle\left.\left.\phi_{n_{k}}(1){\phi_{n_{t}}}(2)\right|_{g_{r}}(1,2)\right|_{\phi_{n_{k}}}(1) \phi_{n_{t}}(2)\right\rangle \\
& =(\sqrt{a})^{2\left|n_{1}\right|+2}(\sqrt{b})^{2 \mid m_{2}}{ }^{1+2} \cdot\left(\frac{n_{1}}{2}\right)!\left(\frac{n_{2}}{2}\right):\left(\left|m_{1}\right|+\frac{n_{1}}{2}\right)! \\
& \cdot\left(\left|m_{2}\right|+\frac{n_{2}}{2}\right): 2 \cdot n_{z_{1}}: n_{z_{2}}:\left(\frac{a_{z} \cdot b_{z}}{\alpha}\right)^{1 / 2} \\
& \sum_{t=0}^{1 / 2 n_{1}} \sum_{s=0}^{2 / 2 n_{1}} c_{t} d_{s}(-a)^{t+8}(r+t+s)!\left(a+\frac{k^{2}}{2}\right)^{-\left(\left|m_{1}\right|+t+s+1\right)} \\
& \times \sum_{i=0}^{1 / 2 n_{2}} \sum_{j=0}^{1 / 2 n_{2}} \sum_{l=0}^{n+q_{j} t} \frac{\varepsilon_{\ell} i_{j}(-b)^{i+j}\left(\left|n_{2}\right|+i+j+2\right):}{\left(b+\frac{k^{2}}{2}-\frac{k^{4}}{\left.2(2 a+i)^{2}\right)}\right)^{\left(1 m_{2} \mid+i+j+l+1\right)}}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\phi_{n_{k}}(1) \phi_{n_{t}}(2) / g_{\boldsymbol{r}}(1,2) / \phi_{n_{t}}(1) \phi_{n_{k}}(2)\right\rangle=
\end{aligned}
$$

$$
\begin{align*}
& \times \sum_{s=0}^{1 / 2 n_{z}} \sum_{r=0}^{1 / 2 n_{z}} \gamma_{s} \sum_{i=0}^{\min \left(n_{z_{1}}-2 s_{1} m_{z_{1}}-2 r\right)} 1:\binom{n_{z_{1}}^{-28}}{1}\binom{m_{z_{1}}^{-2 r}}{1} \\
& \left.\left(\frac{1}{1+k^{2}}\right)^{1 /\left(2 n_{2}\right.}-2 s-2 r-2 i+1\right) \\
& x \sum_{t=0}^{k(2 n} \sum_{l=0}^{-2 \theta-2 r-21)} \sum_{d=0}^{1 / 2 n} h_{t} \epsilon_{l} k_{j} 2^{-8-r-t-l-j} x \\
& \left.\int_{\left(\frac{2 n}{2}-2 s-2 r-2 t-2 t-2 \ell+2 j+1\right.}^{2}\right) \\
& \left.\frac{\sum_{z_{2}}^{2 n}-2 n_{z_{1}}-2 l-2 j+2 s+2 r+2 i+2 t+1}{2}\right) \\
& \left.\int \frac{12 n_{2}-2 s-2 r-21-2 t-2 j+2 l+1}{2}\right) \tag{3-4}
\end{align*}
$$

and

$$
\begin{aligned}
& \left\langle\phi_{n_{k}}(1) \phi_{n_{t}}(2)\right| g_{r}(1,2)\left|\phi_{n_{t}}(1) \psi_{n_{k}}(2)\right\rangle \\
= & \left(k^{2}\right)^{\left(m_{2}-n_{1}\right)} 2^{\left(\left|m_{1}\right|+\left|m_{2}\right|+2\right)} b^{\left|m_{2}\right|+1} a^{\left|m_{1}\right|+1}\left(\frac{n_{1}}{2}\right)!\left(\frac{n_{2}}{2}\right)! \\
& \left(\left|m_{1}\right|+\frac{n_{2}}{2}\right)!\left(\left|m_{2}\right|+\frac{n_{2}}{2}\right)!\frac{2 n_{z_{1}}!n_{z_{2}}!}{\sqrt{\infty}}\left(a_{z} \cdot b_{z}\right)^{y_{2}}
\end{aligned}
$$

$\sum_{B=0}^{1 / 2 n_{1}} \sum_{t=0}^{1 / 2 n_{2}} c x_{B} D x_{t}(r+s+t)!2^{s+t}\left(a+b+k^{2}\right)^{-k\left(1 m_{1} 1+1 m_{2} 1+m_{2}^{\left.-m_{1}+2 s+2 t+2\right)}\right.}$

$$
\sum_{t=0}^{k_{n} n_{1} l^{+n} z_{2}^{-2(-2 r-2 i)}} \sum_{l=0}^{1 / 2 n} \sum_{j=0}^{1 / 2 n} n_{t} n_{l} \in_{l} k_{j} 2^{-8-r-t-l-j}
$$

$$
=\Gamma_{\left(\frac{2 n_{z_{2}}-2 \varepsilon-2 r-2 i-2 t-2 \ell+2 j+1}{2}\right)}^{2}
$$

$$
\left.\times \Gamma^{2 n_{21}-2 s-2 r-21-2 t-2 j+2 \ell+1}\right)
$$

$$
\begin{equation*}
x \prod^{\prime} \frac{2 s+2 r+2 i+2 t-2 j-2 j+1}{2} \tag{3-5}
\end{equation*}
$$

In these equations the oscillator constants ($\mathrm{a}_{\mathrm{a}} \mathrm{a}_{\mathrm{z}}$) and (b, b_{z}) correspond to the quantum numbers ($n_{1}, n_{z_{1}}, n_{1}$) and ($n_{2}, n_{z_{2}}, m_{2}$), respectively. The other constants shown, (eeg. $\alpha_{1} c x_{B}, \gamma_{B}, \delta_{r}$, etc.) are defined in Appendix B to which the reader is directed.

The large number of summations present in the equations are a result of the generality of the matrix elements, that is, of the fact that each orbital has been given unique oscillator

$$
\begin{aligned}
& \sum_{p=0}^{1 / 2 n_{1}} \sum_{q=0}^{1 / 2 n_{2}} \sum_{i=0}^{r+a q t} \frac{c x_{p} D x_{a} E_{1}\left(\frac{1}{2}\left(m_{2}-m_{1}+\left|m_{1}\right|+\left|m_{2}\right|+2 p+2 q+21\right)\right)!2^{p+q+1}}{\left(a+b+k^{2}-k^{4} /\left(a+b+k^{2}\right)\right)^{1 / 2\left(m_{2}-m_{1}+\left|m_{2}\right|+\left|m_{1}\right|+2 p+2 q+2 i+2\right)}} \\
& \sum_{s=0}^{1 / n_{z_{1}}} \sum_{r=0}^{1 / 2 n_{z_{2}}} \gamma_{s} \delta_{r} \sum_{i=0}^{\sin \left(n_{z_{1}}-2 s, n_{z_{2}}-2 r\right)} 1!\binom{n_{z_{1}}^{-2 s}}{i}\binom{n_{z_{2}}-2 r}{i}\left(\frac{1}{1+k^{2}}\right)^{1 / n\left(n z_{1}+n\right.} z_{2}^{-2 s-2 r-2 i+1)}
\end{aligned}
$$

constant. In no way are they caused by any inherent difficulty involved in the problem.

Computer programs have been written to evaluate (3-4) and (3-5)
for any given set of the variable parameters involved. These programs have already proved themselves to be tremendously useful since they reduce the usually exacting chore of matrix element calculation to a few simple computer operations.

CBIPTER 48 THR CALCULATION OF BINDING ENEROIES OF

PARTSICUIAR CONFIGURATIONS AS A FUNCTION OF DFPORAATION

In every conflguration in the a-d shell for which calculations are performed, a closed-shell 0^{16} core which interacte with the single meleons of the snd shell has been used. In no case has the possibility of particle excitation out of the lp-shell been considered. However, as in previous work, $V 64$ and V65, all two particle interactions in and with the 0^{16} core are included in the energy calculation.

As single nucleons are added to the smd shell they are permuted about the available positions (a maxdmum of 24). Each unique configuration so obtained is then specifled by A, Z, M and the single particle orbital occupancy and the binding energy is calculated as a function of deformation.

The calculation itself has the form of limited type of HartreeFock calculation ${ }^{4}$. It involves taking the diagonal matrix elements of the Hamiltonian with respect to determinantw with fixed M values. The diagonal matrix thus obtained is then minimized with respect to the single particle oscillator constants (or, effectively, with respect to the individual orbital sizes) and the nuclear deformation.

4 A dotailed analysis of this type of calculation may be found 1. V65.

Abstract

Since the muclear size is varied it is necessary to use saturating offect force in order that the nuclei studied do not orer-bind. The force that has, in fact, been used has a "soft" ropalsive core and satisfles appropriate low energy scattering and binding energy criterla ${ }^{5}$.

The fact that only diagonsl elements are calculated means that conflgaration mixing is ignored and that the calculations are not directiy comparable to ones of an intermediate coupling nature. Howerer, this is not a serious drawback, since the study of interest here is that of deformation effects.

5 See Chatter 5.

CBAPEER 5: THE ETFDCTIVE NUCLEAR FORCE

The first two criteria to consider in a choice of a nuclear force are that the force be saturating and that the force be "realistic".

The general form of the Hamiltonian used is

$+c \sum_{i=1}^{A}, l_{1} \cdot s_{i}$
where the summations are taken over all particles in the nucleus. $p_{i f}^{x}, P_{i j}^{\sigma}$ and $P_{i j}^{\top}$ are the Majorana, Bartlett and Heisenberg exchange operators, respectively, and $T_{C . M}$. is the centre of mass kinetic energy which must be subtracted out.

The radially dependent part of the two particle potential,
$V\left(r_{i j}\right)$, has the form

$$
\begin{equation*}
V\left(r_{1 j}\right)=-V_{a} \exp \left(-\frac{k_{r}^{2}}{2} r_{i j}^{2}\right)+V_{r} \exp \left(-\frac{k_{a}^{2}}{2} r_{i j}^{2}\right) \tag{5-2}
\end{equation*}
$$

where V_{a}, V_{r}, k_{a} and k_{r} are parameters whose values are fixed by lp-shell calculations performed for 0^{16} by D. J. Hughes. These
calculations also fixed the values of m, b, h and c used ${ }^{6}$. The criteria which these force parameters were made to satisfy are as followss (1) the s-wave scattering longth and the effective range sust closely approxdmate the singlet and the triplet scattering lengths and offective ranges.
(1i) the binding energy and size of He^{4} should be correctly given by the appropriate single-determinant equilibrium calculation. (iii) the binding energy and size of 0^{16} should be correctiy given by the appropriate single-determinant equilibrium calculation.

C-iterion (iii) is extremely important in detercining the amount of Majorana exchange to be used. A change in m of 0.02 can cause a change in the 0^{16} binding enorgy of 30 MoV and thus, once is set for 0^{16}, one would expect that it need not be changed again for at least the first half of the s-d shell.

It should also be pointed out that more emphasis was placed on the binding energy of 0^{16} than on the sige in the final choice of a force inture.

The force finally chosen has a shape similar to the KallioKoltreit potential (KK64). It has a very "soft" core which is wellsuited to the needs of this investigation since it will decrease, (to a satall degree), the importance of configuration mixdig.

6 The comptational progrem written for the energy calculations includes the possibility of varying m, b, h and c to obtain the best fits to experimental data, but in fiew of the approximation already made In ignoring configuration mixing, such variation would not be sufficiently maningful to be worth the expense in research and computer time.

Pandya and Green (PG64) have shown that the core is very iaportant in deteraining the (rotational) spectra of 2e-ld spectra and that the increasing "hardness" of the core uniformly lowers the lovels with respect to the ground state. Of the various forces they tried, the one which best fits experimental data has a core somewhat "harder" than the one used here. However, although Volkov and Hughes have found sindlar effects in the lp-shell, they have found in addition that cores "hardor" than the one used here lower the spectra too mach, (for an example of auch a force see FORCE 1 of V65). Also, one mast take into account that a long range attractive potential gives effects sinilar to a short range attractive potential with a repulsive core.

The explicit values of the parameters used are

$$
\begin{aligned}
& v_{a}=97.54 \mathrm{MeV}, \quad=0.75, \\
& V_{r}=103.95 \mathrm{MeV}, \quad b=0.200 \text {, } \\
& z_{a}=0.9428 \mathrm{fm}^{-1}, \quad h=0.050 \text {, } \\
& k_{z}=1.8856 e^{-1} \quad c=-4.00
\end{aligned}
$$

(The spin-orbit term is really a non-essential addition for the purposes of this study and hense c is frequently set equal to zero for purposes of simplification).

These parameters give an 0^{16} binding energy of 127.4 MeV and a size parameter, (the oscillator constant in $e^{-1 /\left(\frac{r}{b}\right)^{2}}$), of

$$
1.4 \mathrm{fm}
$$

GTAPRIT: 6: THIS DMPEMDNCE OF TH:S WAVE PUNCTIONS

AND MATRIX BLBMENTS ON DETFORMATTON

The deformation \in is defiaed by the relation

$$
\begin{equation*}
\frac{A}{B}=(1+\epsilon / 3) /(1-2 \epsilon / 3) \tag{6-1}
\end{equation*}
$$

where A and B are the oscillator constants for the P-dependent and z-dependent parts of the wave function, respectively. This is the same deformation parameter as defined in Appendix A of N55. Values of $\in>0$ represents a prolate deformation while $\in\langle 0$ represents an oblate deformation.

As mentioned in the Introduction, Volkov has found that the beat results are obtained by deacribing each orbital with a unique set of oscillator constants.

This is theoretically justified by the fact that this provides a closer approximation to Woods-Saxon wave functions which are a more self-consistent choice.

At the same tive, one imposes the restriction that the doformation, ϵ, be the same for each orbital, since the deformation represents a Hartree-Fock potential which should be similar for each orbital. Thus, in the case of the $1 p-s h e l l$, one has $A / B=A_{0} / B_{0}=A_{1} / B_{2}$.

In this investigation exactly the same procedure as the one used by Volkov is followed for the p-shell orbitals. This involves
establishing the value of the parameter $\sigma=A_{0} / A=A_{1} / A$ and mininizing the energy with respect to A alone. Thus one obtains the value of A_{0} for prolate deformatione and of A_{1} for oblate deforeations. Once A_{0} is determined for $\left.\in\right\rangle 0$ and i for $\in\langle 0$, the corresponding values of A_{1} and A_{0} are obtained by setting the ratio of the ptl kinetic energy to the p_{0} kinetic energy equal to unity.

For the case of 0^{16} it has been found that the best binding 18 obtained for $A \approx A_{0} \approx A_{1}$. Thus, for the purposes of an initial investigation, this equality is maintained in the g-d shell calculations as well.

In the case of the s-d shell orbitals a somewhat different procedure is followed.

For the $2 s_{0}{ }_{0}$ and $1 d_{0}{ }_{0}$ orbitals it is necessary to use the same oscillator constants as for the lso orbital in order to ensure the orthogonality and hence, the linear independence, of the wave functions. The alternative would be to use different oscillator comstants and then renomalize the various Slater determinants affected which is in itself a non-trivial problem.

For the $1 d_{ \pm 1}$ and $1 d_{ \pm 2}$ orbitals new oscillator constants, C, D and E, F, reapectively, were used. Once again, the restriction of having the same deformation for all orbitals is imposed so that $A / B=C / D=5 / T$. In order to avoid the very time consuming task of having three independent energy minimizations with respect to the orbital sizes for each deformation, the ratios C / A and E / A were
deterndned by the complete einirization process at zero deformation and then used for all other deformations. Thus, with the exception of the zero doformation calculation, only the minimization with respect to "A" is performed.

When different oscillator constants are used there is the added complication that one cannot use the method of Elliott and Skyrme (ijlilott 1955) for subtracting out the centre of wass kinetic energy. Thus, the pertinent matrix elements have been worked out by hand and aubtracted out explicitly in every case in which they occur.

The matrix elements involved in the energy calculation are the af agle particle kinetic energies, which are of the form

$$
\begin{align*}
\left\langle Y_{n, m, n}\right| \frac{p^{2}}{2 m}\left|\Psi_{n, m, n_{z}}\right\rangle= & \frac{1}{2}\left[(|n|+n+1) h \nu_{0}\right. \\
& \left.+\left(n_{z}+\frac{1}{2}\right) h \omega_{z}\right] \tag{6-2}
\end{align*}
$$

and the interaction matrix elements which are given by equations $(3-2)$ and $(3-3)$ of Chapter 3. The relative importance of these matrix elements, with respect to deformation, is determined by the amount of Majorana exchange, m, in the force inture. An investigation of the behaviour of the kinetic energies and the various matrix elcments as a function of deformation has, therefore, bean wade in order to illustrate this.

This investigation is performed under the assumption of constant nuclear volume, $a^{2} D=0.064$, which is close to the 0^{16} equilibrium size. The kinetic energies are plotted in Fig.l and
the most interesting interaction elemonts, (involving the ld ${ }_{0}$ state which makes prolate deformations more favourable and the $1 d_{ \pm 2}$ state which makes oblate defomations more favourable), are shown in Figs. 2 through

In a sinilar investigation for the Ip-shell, Volkov, (V65), has shown that the direct matrix elements oppose the doformation favoured by the corresponding kinetic energies. The exchange elemonts, on the other hand, favour deformation and, although much cmaller in magnitude than the corresponding direct elemente, their energy gain 16 approxdmately the same as the corresponding energy loss of the latter. Thus, if the Majorana exchange parameter is gamall then, due to the predominance of the direct elements, deformation becomes unlikely and the nuclei tend to be badly overbound. As the value of m increases, $s 0$ does the relative number of exchange matrix elemente and the likelihood of deformation. For milghty larger than 0.5 the opposing influences of the direct and exchange elements tend to balance and hence equilibrium deformations of maclei are detemined by the kinetic energies. Increasing wimond this point gives a decrease in binding, but greater deformations and deformation energy gains.

CHAPTLR 7: DETAILS OF THE ENERGI COMPUTATIONS

As mentioned in Chapter 6 a "complete" minierization is performed only for zero deformation. This is done by first calculating the (diagonal) Hamiltonian matrix, given the occupancy of the sod orbitals in terms of whether the available 24 spaces are or are not occupied. The matrix is evaluated for the given force parameters to Field an energy value $E_{0}(A, C, E)$ where A, C and E are the three independent oscillator constants defined in Chapter 6. This energy is then mindeized in three independent calculations by applying a parabolic fit to each of
(a) $E_{0}(A, C, E), \mathcal{E}_{0}(A+\Delta A, C, E), \mathcal{E}_{0}(A+2 \Delta A, C, E)$ to obtain the best value of A, say A_{1}
(b) $\mathcal{E}_{0}\left(A_{1}, C, E\right), \mathcal{E}_{0}\left(A_{1}, C+\Delta C, E\right), \varepsilon_{0}\left(A_{1}, C+2 \Delta C, E\right)$ to obtain the best value of C_{0} say C_{1}, and
(c) $\mathcal{E}_{0}\left(A_{1}, C_{1}, E\right), \mathcal{E}_{0}\left(A_{1}, C_{1}, E+\triangle E\right), \mathcal{E}_{0}\left(A_{1}, C_{1}+E+2 \Delta E\right)$ to obtain the best value of E_{1} say E_{1}.

This gives the best ft value $C_{0}\left(A_{1}, C_{1}, E_{1}\right)$ for zero deformation.

The consistency of this process has been tested in several cases by repeating each step, but starting with the best flt value, $\mathcal{E}_{0}\left(A_{1}, C_{1}, F_{1}\right)$, from the preceeding calculation. These tests have shown the calculation to be consistent to within at least 1 in 2000.

Although the tests vere performed for the simple case of 0^{17}, the results vere considered sufficiently positive to ignore adding an automatic consistency check to the program, which would be quite time consuming.

Once the best fit value of \mathcal{E}_{0} has been determined the ration C_{1} / A_{1} and E_{1} / A_{1} are calculated and kept constant for all other values of deformation. Thus, only the single minimization (a) is performed for non-zero deformations.

With the onergy calculated for nine values of deformation, such that $-0.8 \leq € \leq 0.8$ and including $\in=0$, one obtains an equilibsium energy curve from which the equilibriun value of E can be determined. The curves that have been calculated in this way are show in Fige. 4-7and described in the next chapter.

CHNPTER 88 ERUILIBRIUM ENERGY CURVES TOR $0^{17} 0^{18}$

F^{-19} and K^{20}

The curves for 0^{17} are divided into the two sets show in P1gs. 4a and 4b. The Nirst set 111ustrates the case in which all orbitals have the same oscillator constant and in which the spin-orbit term has been anitted frow the force mixture. One thus obtains the required degeneracy, due to orbital symmetry, of the $d \pm 1$ and $d \pm 2$ states at zero deformation. (The ld ${ }_{0}$. state is silghtly higher in energy due to its deviation from a true ld. state).

Since 0^{17} has only one mucleon in the $2 s-1 d$ shell, these curves essentially show the single nucleon binding due to the field set up by, and interactions with, the core. One cannot generalize from these curves in order to predict what will happen in heavier 2s-ld macloi, but they do give some understanding, in conjunction with the curves of other 2a-ld naclef, of the dynamics of these muclei.

The e-state is relatively higher than predicted by experiment but this is typical of hamonic oscillator potentials."

[^0]It is inportant to note that at this point, near the closed lp-shell, deformation charqeteristics are mainly influenced by the 0^{16} core. Only the 2s." and ldat states have significant deviations from sphericity which is attributable to the kiaotic energy deformationdependence for these arbitals (see Fig.1). It would thas not be unreasonable to treat 0^{17} as a spherical nucleus as has been done in the past with good egreement with exporiment.

In Fig. 4 b the $\mathrm{d} \pm 1$ and $\mathrm{d} \pm 2$ oscillator constante have bean varied independently and a spin-orbit term, with strength $c=-4.00$, has been added to the force mixture. One sees that the more symetric d ± 1 states gain more energy from the nore complete ninieization than do the $d \pm 2$ states. This is nost probably due to the gymetry of the d ± 1 state, i.e. the lobes of the probability distribution for this state are distributed at 45° angles with respect to the z-axis and the $x-y$ plane. As the aise of the orbital is increased the nucleon's kinetic energy is decreased, but at the same time, the orbital's overlap With the core decreases which, in turn, decreases the energy of the nucleon and an equilibsium orbital size must eventually be reached. Clearly, a more symetric orbital will maintain a better overlap with the core as its size is increased and so will gain more relative binding energy.

It should be noted, in riew of the energy gains of the dal and $d \pm 2$ states due to the more complete minimization that not allowing the 1d ${ }_{0}$ 'orbital to have an oscillator constant which is independent of that of the smatates may be a rather drastic approdmation. However,
as will be demonstrated in the analysis of the curves for heavier melei, this can be partially corrected for by allowing variation of the $1 p_{0}$ and $1 p \pm 1$ oseillator constants which are otherwise kept equal to the s-state constants.

The curves for 0^{18} are show in Fig.5a and Mg. 5b. The first set, in $\mathrm{FIg}_{\mathrm{g}}$ 5a, result from the force described in Chapter 5 but with no spin-orbit term. In this investigation only $M=0$ configurations have been considered and of these, calculations were performed only for those expected to be inportant in configuration Mding considerations.

The configurations in the first set are underbound by about 10 MeV (which is less than 1 MeV per particle).

The configuration $\left[1 d_{0}{ }^{\dagger}\right]{ }^{2}$ appeared, at flirst, to be too high in energy relative to the others. In order to understand the relative binding of the different configurations, a systematic variation of the $1 p_{0}$ and $I_{p_{ \pm 1}}$ oselilator constants has been performed for each configuration. It has been found that, whereas configurations not involving the $1 d_{0}$ orbital have the greateat binding for $\bar{T}=1.0$, (where $\sigma_{\text {is }}$ the parameter defined in Chapter 6), a value of σ^{\prime} somewhat greater than 1.0 is desirable for those configurations which do contain it. For 0^{18} only the [la j ${ }^{2}$ configuration has a really significant energy gain resulting from the variation and this is for a value of $\sigma=1.13$. The curve for this value of σ has been drawn with a dashed line in FMg.5a. As can be seen, the energy gain at equilibrium deformation is 2 MeV .

The sot of curvea, in $\mathrm{Fig}_{\mathrm{B}} .5 \mathrm{~b}$, has been calculated for a Majorana parameter $=0.73$ rather than $=0.75$. Only the case $\sigma=1.13$ has been used for the $\left[2 d_{0}{ }^{\prime}\right]^{2}$ conflguration in this set.

We soe that the increase in binding resulting frow the value change is slightly more for the $\left[1 d_{0}\right]^{2}$ and $\left[2 s_{0}{ }^{\prime}\right]^{2}$ configurations. Hovever, this difference is probably not too significant.

If all Mmo configurations with conflguration mixing are taken into account one would suspect from these graphs that 0^{18} would be found to be a spherical nuclens. This would explain why reasonable agreement with experiment has been obtained for this nucleus using the Shell Model. However, the observation of anomalously large E-2 tranedtion rates and of three 0^{+}states below 6 MeV in 0^{18} seems to indicate that deforsed configurations nay be important as well. (B64 and BG65).

The discusedion of Ne^{20} rill show that these phenonena are probably due to two-particle excitations from the lp-orbitals to the 1d. orbital. Such excitations would lead to configurations with prolate deformations of the order $\epsilon=0.2-0.4$.

The M /月 curves for F^{19} are shown in FIg .6 . Once again we have considered only those configurations expected to be important in a configuration mixing calculation. Also once again, the variation has been performed only for the prominent ld. configuration giving the dashed curve in Fig.6.

Although the binding is again too low with $m=0.75$, no atteapt has been made to correct this since experience has shown (see 0^{18} and Ne^{20}) that no significant change in the shapes or relative spacings of the curves is obtained as a result of varying m.

These curves show the flrst deflinite prolate deformation obtained among the 2o-ld muclei. The most important configuration is $\left[1 d_{0}\right.$ "] 3 which has an equilibrium deformation of $\epsilon=0.25$ and a deformation energy gain of 4.0 MeV . The next lowest configuration, [1d $]_{11} 2\left[1 d_{-1}\right]$, has a minimum approxdmately 8.7 MeV above the $\left[1 d_{0}{ }^{\prime}\right] 3$ miximum. Since these configurations can only mix in the second order one can predict by analogy with results in the p-shell that the deformation energy gain which would be obtained in a complete calculation of the type performed by Volkov will be several MoV earaller. However, the shape of the $K=$ curve near equilibrium deformation will be approximately that of the curve for the dominant configuration, 1.0.. the $\left[1 d_{0}{ }^{*}\right] 3$ configuration.

This very definite deformation is just what one would expect to find for F^{19} since good ifts to the experimental level structure have been made using the collective, rotaticnal, model (P57 and CD63).

Brown (B64) has pointed out the importance of the $k=$ odd parity state in F^{19} which is only 110 keV above the ground state. To explain the existence of this state he has suggested the introduction of another deformed state by exciting a particle from the k^{-}N1sson level to put four particles in the k^{+}level. Once again, the $N e^{20}$ graph offers a similar explanation by excitation of a $1 p_{ \pm 1}$ particle to completely fill the $1 d_{0}$ orbitals.

The last two Figs., 7a and 7b, show the more important M=0
configurations of N^{20}. The first set of curves, (Fig.7a), has been calculated for the force mixture of Chapter 5, but with no spin-orbit term. Once again, a σ-variation was performed for the inportant $1 d_{0}$ "-dependent states, the results of which are plotted wth dashed lines.

The most important result obtained is the very pronounced deformation of the [10 $\left.{ }_{0}\right]^{4}$ configuration with an energy gain of

8 MeV . Appreciable aixing will occur only with the [1d:] 3 [ld $]_{1}$] configuration, which is also quite deformed so that essentially the same deformation characteristics will result from a complete calculation of the type performed by Volkov. As in the case of F^{19}. the complete calculation would produce a curve with a saller deformation energy gain, but with a shape, at equillbriun deformation, very mech like that of the curve for the dominant [1d $\left.{ }_{0}^{1}\right]^{4}$ configuration. As already mentioned in the considerations of 0^{18} and F^{19}, the prolate gain of the $\left[1 d^{\prime}\right]^{4}$ conflguration has repercussions throughout the first subshell, ffom 0^{16} to Ne^{20}. In the case of F^{19}. there is an energy difference between the $\left[1 d_{0}^{1}\right] 3$ state and the $\mathrm{Me}^{20}\left[1 \mathrm{e}_{0}^{1]} 4\right.$ state of 16 MoV so that one-particle excitation from the p-shell is likely to be quite favourable. However, to obtain a binding of the k^{-}level only 110 keV above the ground state it 111 probably be necessary to make allowance for an independent oscillator constant variation for the $1 d_{0}^{\prime}$ orbital.

In the case of 0^{18} two-particle excitation to the $1 d_{0}{ }^{\prime}$ orbital shofld be quite favourable as the energy difference between the $N e^{20}\left[1 d_{0}^{\prime}\right]^{4}$ state and the $0^{I 8}\left[1 d_{0}\right]^{2}$ state is approximately 25 MeV whereas the
binding energy per particle is only of the order of 6.0 to 7.0 MoV . To see which oxcitations are actually important it will be necesaary to explicitly perform the calculations involvod. These calculations are now being performed by D. J. Hughes. However, the graphs of this thesis suggest the qualitative fuactions to be expected.

For 0^{16}, two particle and threo-particle excitations have bean suggested by Brown to explain definite rotational lovels whose presence has recently been experimentally confirmed (C64). Once again, it will be interesting to see whether complete calculations can reproduce this phenomena. It would appear from this investigation that a four-particle excitation would be more favourable than a two-particle one, but there is insufficient ovidence to explicitly stipulate that this is the case. However, it is interesting to note that Bassichis and Ripka (B65) have found, as a result of a lindted Hartree-Fock calculation, that four particlefour hole states do give rise to the desired rotational band wile two-particlo-two hole states give rise to badiy ined rotational bands, that ile too high in energy.

The second set of curves, in Fig. 7b, show the four lowest states of FIg. 7a, recalculated for a Majorana parameter, m, equal to 0.74. This very small change in mives a 10 MeV increase in binding but otherwise does not affect the curves.

It is important to note that only very mall changes in the anount of Majorana exchange used in the force mixture is required to obtain a change in the binding energies of the order of 10 to 20 MeV .

This cesentially conflins the original assumption that a could be kept at the value used to obtain the corroct 0^{16} binding as such changes cannot be considered signiflcunt in termes of relative gatns and losses due to deformation.

CHAPYER 98 CONCLDSIONS

Harmonic oscillator wavefunctions in cylisdrical coordinatee have been found to form a representation especially suited for problems involving deformed nuclei. In applications to the 2s-1d shell it has been found that, while some formal difficulties, such as the independent variation of all oscillator constants, still require colution, several new areas have been opened for future investigation. Of these, two areas are of the most immediate interest. The first involves particle excitations from lposhell nuclei into the 2s-ld shell, such as in C^{12} and 0^{16}, to attempt explanations of recent experimentally confirmed phenomena which cannot be predicted by conventional Shell Hodel calculations. The second involves the full extension of the calculations of Volkov and Hughes to the 2s-ld shell for which the present work has providod the necessary tools.

In the investigation of the 2s-1d shell it has been found that, except for possible excited states resulting from particle-hole states, 0^{17} and 0^{18} are essentially spherical nuclei. On the other hand, F^{19} and $N e^{20}$. have strong prolate deformations resulting from the progressively dominant influence of the $1 d_{0}$ orbital. Although the calculations have not yet been extended beyond Ne^{20} it is expected that this prolateness will pass into pronounced oblate deformations as we proceed towarda Mg^{24}. This prediction is based both on the studies of the lp-shell and on the studies made of the interaction matrix elements and the kinetic energies.

It has beon found that slight changes in the amount of Majorana exchange used in the force mixture is required to obtain good biading as we proceed from the closed shell at 0^{16} to the closed cub-shell in Ne^{20}. Although not significant in this study, these alight changes probably will have much more importance when particle-hole excitations are studied. This is probably due to the absence of a tensor force in the force mixture. For closed shell nuclei the tensor force contributes nothing to the binding. However, avay from the closed shell the Majorana admature must be reduced to compensate for the tensor force contributions which are being ignored. This compensation will become really aigniflcant when particle excitations in 0^{16} are considered since then maintaining the some anount of exchange for the excited state as for the grownd state can cause a dizerepancy of 10 to 20 MeV in the energy of the excited state.

APPENDIX A: THE SOLUTION OF THE RADIAL PART OF THE

HARMONIC OSCILLATOR WAVE EXOATIOK

The equation which we wish to solve is

$$
\frac{1}{\rho} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)+\left(\lambda^{\prime}-\alpha^{2} \rho^{2}-\frac{n^{2}}{\rho^{2}}\right) p=0
$$

For $\rho \gg 0$, equation $(a-1)$ becomes

$$
\frac{d^{2} p}{d p^{2}}-\alpha^{2} \rho^{2} p=0
$$

from which we immediately obtain, as an asymptotic solution of (A-1)

$$
p \sim e^{ \pm \frac{\alpha}{2} p^{2}}
$$

We, therefore, make the substitution

$$
P(\rho)=e^{-\frac{\alpha}{2} \rho^{2}}((\rho)
$$

which yields

$$
i^{\prime \prime}-2 \alpha \rho i^{\prime}+\frac{1}{\rho} i^{\prime}+\left(\lambda^{\prime}-2 \alpha\right) i-\frac{n^{2}}{\rho^{2}} p=0
$$

Replacing $\sqrt{\alpha} \rho$ by ξ and (ρ) by $\mathbb{F}(\xi)$, this becomes

$$
\begin{equation*}
\frac{d^{2} F}{d \xi^{2}}-2 \xi \frac{d F}{d \xi}+\frac{1}{\xi} \frac{d F}{d \xi}+\left(\frac{\lambda^{1}}{\alpha}-2-\frac{m^{2}}{\xi^{2}}\right) F=0 \tag{A-2}
\end{equation*}
$$

Writing ($A-2$) in the standard form,

$$
\frac{d^{2} F}{d \xi^{2}}+p(\xi) \frac{d F}{d \xi}+q(\xi) F=0
$$

we see that it possesses a regular point at $\xi=0$ since $p(\xi) \sim \frac{1}{\xi}$ and $q(\xi) \sim \frac{1}{\xi^{2}}$. We are thus led to solve $(A-2)$ by the Method of Froebenius, (B56), that is, by performing the substitution $F(\xi)=\xi^{s} \sum_{\nu=0}^{x^{\infty}} a_{\nu} \xi^{\mu}$.

Such a substitution leads to the indicial equation $\left(a^{2}-m^{2}\right) a_{0}=0$ and hence we obtain $s=|m|$.

It is now convenient, rather than to continue the series solution, to define $G(\xi)$, such that $F(\xi)=\xi^{\text {dm }} G(\xi)$, and to again substitute for F in equation $(A-Z)$. We now obtain

$$
\frac{d^{2} G}{d \xi^{2}}+\left(\frac{1}{\xi}\left(\left.2\right|_{m} \mid+1\right)-2 \xi\right) \frac{d G}{d \xi}+\left(\frac{\lambda^{\prime}}{\alpha}-2-2|\underline{\infty}|\right)_{G}(\xi)=0
$$

By performing yet another change in variables by setting $x=\xi^{2}$ and $g(x)=G(\xi)$, equation $(A-3)$ becomes

$$
\begin{equation*}
x \frac{d^{2} g(x)}{d x^{2}}+((|m|+1)-x) \frac{d g(x)}{d x}+\frac{n}{2} g(x)=0 \tag{A-4}
\end{equation*}
$$

where $n=\frac{\lambda_{0}}{2}-|m|-1$.

In order that wo may obtain a satisfactory wave function, the series solution of ($A-4$) mast contain a finite number of terms. This can easily be shown to imply that n must be restricted to even integral values: $0,2,4, \ldots$ If this restriction is made (A-4) has the fore of the equation for the associated Laguerre polynomial (054) and hence we can write $g(x)=L_{\frac{n}{2}}^{|m|}(x)$. The solution of ($A-1$) is then

$$
P(\rho)=e^{-\frac{\alpha p^{2}}{2}}(\sqrt{\alpha} \rho)^{|m|} I_{\frac{n}{2}}^{|m|}\left(\alpha p^{2}\right)
$$

The normalization for $P(\rho)$ is easily obtained from the properties of the Laguerre polynomials, i.e.

$$
\int_{0}^{\infty} e^{-z} z^{k} L_{p}^{k}(z) L_{q}^{k}(z) d z=\frac{[(p+k)!]^{3}}{p!} \partial_{p q}
$$

APPWDIX B: EXPLICIT CALCULATION OF THE DIRECT AND

EXCHANGE MATRIX GTLMENTS OF A GAUSSIAN INTERACTION

The integrations which we wish to perform are described by equations $(3-2)$ and $(3-3)$ of Chapter 3 . Both these integrals are handled in the same way and may in fact be treated as special cases of a single integral in which one has four different sets of quantum numbers and four different oscillator constants. This approach was in fact used for the $z_{1}-z_{2}$ - integration but, for the sake of clarity, the direct and exchange elements were worked out separately for the integration over $P_{1}, \phi_{1}, \rho_{2}, \phi_{2}$. However, in the latter integration four different sets of quantum numbers were used for the direct element, thus enabling the reader to better Visualize how the general integral could be performed. It is this part of the direct element which we will consider first.

Substituting from (2-5) and ignoring, for the present, the normalization factors, we have

$$
\begin{align*}
& \times L_{1}^{I m_{2}} \operatorname{lm}_{2}^{\prime}\left(\alpha \rho_{1}^{2}\right){ }_{1}^{1 m_{3} m_{3}^{\prime}}\left(\alpha \rho_{1}^{2}\right) e^{-\beta \rho_{2}^{2}} e^{-\alpha \rho_{1}^{2}} e^{i\left(m_{3}-m_{1}\right) \phi_{1}} e^{i\left(m_{4}-m_{2}\right) \phi_{2}} \\
& =\exp \left(-\frac{k^{2}}{2} \rho_{1}^{2}-\frac{k^{2}}{2} \rho_{2}^{2}+k^{2} \rho_{1} \rho_{2} \cos \left(\phi-\phi_{2}\right)\right) \rho_{1} d \rho_{1} \rho_{2} d \rho_{2} d \phi_{1} d \phi_{2} \tag{B-1}
\end{align*}
$$

Cr and β are the oscillator constants for the vavofunctions of particles 1 and 2 respectively.

> We can write

$$
\begin{aligned}
& e^{i\left(m_{3}-m_{1}\right) \phi_{1}} \cdot e^{i\left(m_{4}-m_{2}\right) \phi_{2}} \\
& =e^{i\left(m_{3}-m_{1}\right)\left(\phi_{1}-\phi_{2}\right)} \cdot e^{i\left(m_{4}-m_{2}+m_{3}-m_{1}\right) \phi_{2}}
\end{aligned}
$$

and hence introduce a now variable of integration, $\mathcal{Z}=\left(\varnothing_{1}-\phi_{2}\right)$, We can now integrate separately over \emptyset_{2} and . The integration over ϕ_{2} simply yields $2 \% \delta_{m_{1}+m_{2}-m_{3}-m_{4}, 0}$ and the integration over χ is

$$
\int_{0}^{2 \pi} i\left(m_{3}-m_{1}\right) \nVdash k^{2} P_{1} P_{2} \text { cos } \psi \text { which yields }
$$

$$
2 m e^{\frac{1 / 2}{}\left(n_{3}-m_{1}\right) \pi} J_{\left(m_{3}-m_{1}\right)}\left(-i k^{2} \rho_{1} \rho_{2}\right)
$$

We thus have

$$
\begin{aligned}
& M=(2 \pi)^{2} \delta_{m_{1}+m_{2}-m_{3}-m_{4}, 0} \iint^{1 / i\left(m_{3}-m_{1}\right) \pi}{ }_{\left.\left(m_{3}-m_{1}\right)^{\left(-i k^{2}\right.} \rho_{1} \rho_{2}\right)} \\
& x\left(\sqrt{\beta} \rho_{2}\right)^{I m_{2}^{\prime}+{ }^{\prime} m_{4}^{\prime}} L_{y_{2} m_{2}}^{I m_{2}^{\prime}}\left(\beta \rho_{2}^{2}\right) L \sum_{4 / m_{4}}^{m_{4}}\left(\beta \rho_{2}^{2}\right)\left(\sqrt{\alpha} \rho_{1}\right)^{I m_{1}^{\prime}+1 m_{3}^{\prime}} \\
& =x_{x_{1}}^{\ln _{1}^{1}}\left(\alpha \rho_{1}^{2}\right) \quad \ln _{3}^{1}\left(\alpha \rho_{1}^{2}\right) \exp \left(\beta \rho_{2}^{2}-\alpha \rho_{1}^{2}-\frac{k^{2}}{2}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)\right) \\
& \rho_{1} d \rho_{1} \rho_{2} d \rho_{2}(B-2)
\end{aligned}
$$

[^1]Let us set $J=-i \rho_{2}$ and consider the integration over P_{1}. This has the forms

$$
\begin{aligned}
& \left.M P_{1}=\int_{0}^{\infty}{ }^{J}\left(m_{3}-m_{1}\right)^{\left(k^{2} y\right.} \rho_{1}\right)\left(\sqrt{\alpha} \rho_{1}\right)^{\prime m_{1}^{\prime}+m_{3}^{\prime}} L_{L_{1} m_{1}}^{\prime}\left(\alpha \rho_{1}^{\prime}\right)
\end{aligned}
$$

It is convenient at this point to let $x=\rho_{1}^{2}$ and substitute in $(B-3)$ to obtain

$$
\begin{align*}
& \rho_{1}=\int_{0}^{\infty} \frac{(\sqrt{\alpha})^{\prime}}{2} m_{1}^{\prime}+m_{3}^{\prime} J_{\left(m_{3}-m_{1}\right)}\left(k^{2} y x^{1 / 2}\right) \quad x^{1 / 2\left(\left|m_{1}\right|+\mid m_{3} 1\right)} \\
& L_{x_{2}}^{\ln _{1}^{\prime}}\left(\alpha_{x}\right) \sum_{x_{m}}^{I_{3}^{n}}\left(\alpha_{x}\right) e^{-\left(\alpha^{\alpha}+\frac{x^{2}}{2}\right) x} d x \tag{B-4}
\end{align*}
$$

The best way to proceed is to now express the Lagnerre polynomials as series, 1.e.,

$$
L_{v_{2 n}}^{\prime}\left(\alpha_{x}^{\prime}=\sum_{t=0}^{t / 2} \frac{\left[\left(\% n_{1}+I_{m_{1}}^{\prime}\right)!\right]^{2}}{\left(\% n_{1}-t\right)!\left(n_{1}+t\right)!} \frac{\left(-^{\alpha} x\right)^{t}}{t!}\right.
$$

and

$$
\operatorname{Lem}_{3}^{1}\left(\alpha_{x}\right)=\sum_{s=0}^{1} \frac{\left[\left(\log _{3}+l_{m_{3}} \mid\right)!\right]^{2}}{\left(\operatorname{lom}_{3}-s\right)!\left(m_{3}+s\right)!} \frac{\left(-\alpha_{x}\right)^{s}}{s!}
$$

Therefore,

$$
\begin{aligned}
& =\left[\left(1 / 2 n_{1}+\left.\right|_{n_{1}} 1\right):\left(1_{2} a_{3}+i_{m_{3}} \mid\right)\right]^{2} \sum_{t=0}^{1 / 2 n_{1}} \sum_{8=0}^{1 / 2 n_{1}} c_{t} d_{s}\left(-\alpha_{x}\right)^{t+s}
\end{aligned}
$$

Thus, substituting into ($B-4$) we have,

$$
\begin{aligned}
& -\left(\alpha+\frac{k^{2}}{2}\right) \times\left[\left(1 / 2 n_{2}+1 m_{2} 1\right):\left(m_{n}+1 m_{3}\right)!\right]^{2} \sum_{t=0}^{1 / 2 n_{2}} \sum_{=00}^{1 / 2 n_{n}} c_{t} d\left(-\alpha_{x}\right)^{t+0} d x \\
& \text { Therefore } K \rho_{1}=\left[\left(k_{m_{1}}+I_{m_{1}}^{\prime}\right)!\left(k_{n} 3+n_{3} \mid\right)!\right]^{2} \frac{(\sqrt{\alpha})}{2} m_{1}^{\prime}+I_{m_{3}}^{\prime} \\
& \left.\sum_{t=0}^{k+1} \sum_{s=0}^{x, 3} c_{t} d_{s}(-\alpha)^{t+s}(r+t+s):\left(\frac{k^{2} x^{2}}{2}\right)^{\left(113^{-m} 1\right.}\right) \\
& \left(\alpha+\frac{k^{2}}{2}\right)-(x+t+8)-\left(x_{3}-1\right)-1 \quad-\frac{x^{4} 7^{2}}{\left(4 \alpha-2 x^{2}\right)} \\
& \left.\chi_{(r+s+t)}^{m^{-m_{1}}} \frac{\left(k^{4} y^{2}\right.}{4 \alpha+2 k^{2}}\right) \\
& (B-5)^{\circ}
\end{aligned}
$$

where $r=k\left({ }^{\prime} n_{1}^{\prime}+{ }^{\prime} m_{3}^{\prime}-m_{3}+m_{1}\right)$.
We come now to the P_{2}-integration which is

$$
\begin{aligned}
& M \rho_{2}=\int_{0}^{\infty}\left(\frac{-i k^{2} \rho_{2}}{2}\right)^{\left(m_{3}-m_{1}\right)}\left(\sqrt{\beta} \rho_{2}\right)^{1 m_{2}^{1}+m_{4}^{\prime}} \rho_{(r+s+t)}^{\left(m_{3}^{-1 n_{1}}\right)}\left(\frac{-k^{4} \rho_{2}^{2}}{2\left(2^{\alpha}+k^{2}\right)}\right. \\
& \times I_{2}^{1 m_{2}^{\prime}}\left(\beta \rho_{2}^{2}\right) \lim _{2}^{1} \lim _{4}^{\prime}\left(\beta \rho_{2}^{2}\right) \exp \left(-\left(\beta+\frac{k^{2}}{2}-\frac{k^{4}}{2\left(2^{\alpha \alpha}+k^{2}\right)}\right) \rho_{2}^{2}\right) \rho_{2}^{d} \rho_{2}
\end{aligned}
$$

Again, we make a substitution $x=\rho_{2}^{2}$ and so obtain,

$$
\begin{aligned}
& \sum_{i=0}^{1 / 2 n_{2}} \sum_{j=0}^{1 / 2 n_{4 n}} e_{i} i_{j}\left(-\beta_{x}\right)^{i+j}
\end{aligned}
$$

where c_{i} and f_{j} are defined in the same way as c_{t} and d_{s}, and

$$
\begin{aligned}
& \mathcal{L}_{(r+\sigma+t)}^{\left(n_{3}-m_{1}\right)}\left(\frac{-x^{4} x}{2\left(2^{\alpha}+x^{2}\right)} \sum_{y_{2 n_{2}}}^{\ln _{2}^{\prime}} \sum_{k / n_{4}}^{1 m_{4}!}=\left[\left(1 / n_{2}+m_{2}\right)!\left(1 / n_{4}+m_{m_{4}} \mid\right)!\right]^{2}\right.
\end{aligned}
$$

Substituting this into (B-6) we obtain

$$
\begin{aligned}
& M \rho_{2}=\int_{0}^{\infty}\left(\frac{-i k^{2}}{2}\right)^{\left(m_{3}-m_{1}\right)} \frac{(\sqrt{\beta})^{\prime} m_{2}^{\prime}+1 m_{4}^{\prime}}{2} \exp \left(-\left(\beta+\frac{k^{2}}{2}-\frac{k^{4}}{2\left(2^{\alpha}+k^{2}\right)}\right) x\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.x^{k(2 i} 21+2 j+2 \ell+m_{3}-m_{1}+\ln _{2}^{\prime}+\operatorname{lm}_{4} \mid\right) \quad d x \\
& =\left(\frac{-1 k^{2}}{2}\right)^{m_{3}-m_{1}} \frac{(\sqrt{B})^{1 m_{2}}}{2}{ }^{1+m_{4} 1}\left[\left(1 / n_{2}+\operatorname{lm}_{2} 1\right)!\left(1 / m_{4}+1 m_{4} \mid\right)!\right]^{2}
\end{aligned}
$$

where g_{ℓ} is defined similarly to c_{i} and f_{j}.

$$
\text { Combining }(B-5) \text { and }(B-7) \text { we then have that }
$$

$=\sum_{t=0}^{4 m} \sum_{s=0}^{1 m} 3_{t} d_{s}(-\alpha)^{t+s}(r+t+s)!\left(\alpha_{+} \frac{k^{2}}{2}\right)^{-k\left(\left|m_{1}\right|+\left|m_{3}\right|+m_{3}-m_{2}+2 t+2 s+2\right)}$
which is the solution of the integral in (B-1).
It is now an easy task to include the normalization and so obtain for the (f, \varnothing) part of the direct matrix element:

$$
c_{t} d_{s}(-\alpha)^{t+s}(r+t+B):\left(\alpha+\frac{k^{2}}{2}\right)^{-1 / 2\left(m_{1}!+l^{\prime} 3^{+\infty} 3^{-2}+2 t+2 s+2\right)}
$$

$$
\begin{aligned}
& \left.n=(2 \pi)^{2} \delta_{m_{2}+m_{2}-m_{3}-m_{4}, 0}\left(\frac{k^{2}}{2}\right)^{\left(m_{3}-m_{1}\right)} \quad \frac{(\sqrt{\alpha}}{2}\right)^{\prime m_{1}^{\prime}}+m_{3}^{\prime}
\end{aligned}
$$

The next step is to work out the $\rho_{2}, \varnothing_{1}, \rho_{2}, \varnothing_{2}$ integration of the exchange element which has the form:

$$
\begin{aligned}
& m x=\iiint \int\left(\sqrt{\beta} \rho_{2}\right)^{1 m_{2}^{\prime}}\left(\sqrt{\alpha} \rho_{1}\right)^{1 m_{1}^{\prime}}\left(\sqrt{\alpha} \rho_{2}\right)^{1 m_{1} \mid}\left(\sqrt{\beta} \rho_{1}\right)^{\left|m_{2}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\alpha}{2} \rho_{2}^{2}-\frac{\beta}{2} \rho_{1}^{2} \cdot-\frac{\beta}{2} \rho_{2}^{2} \cdot e^{-i m_{1} \phi_{1}-i m_{2} \phi_{2}} \operatorname{in}_{2} \phi_{1}+1 \phi_{1} \phi_{2} \\
& \exp \left(-\frac{k^{2}}{2} \rho_{1}^{2}-\frac{k^{2}}{2} \rho_{2}^{2}+x^{2} \rho_{1} \rho_{2} \cos \left(\phi_{2}-\phi_{2}\right)\right) \rho_{1} d \rho_{1} \rho_{2}^{d} \rho_{2} d \phi_{1} d \phi_{2}
\end{aligned}
$$

where $\alpha_{\text {and }} \beta_{\text {are the oscillator constants which correspond to the }}$ quantum numbers (n_{1}, m_{1}) and (n_{2}, m_{2}), respectively. We can write $e^{i\left(m_{2}-m_{1}\right) \phi_{1}} \quad e^{i\left(m_{1}-m_{2}\right) \phi_{2}}=e^{i\left(m_{2}-m_{1}\right)\left(\phi_{1}-\phi_{2}\right)}$
and once again sot $\left(\phi_{1}-\phi_{2}\right)=\psi$ and integrate over \varnothing_{2} and X. The integration over ϕ_{2} gives 2π and the integration over $\mathcal{Z}_{\text {is }}$

$$
\int_{0}^{2 \pi} e^{i\left(m_{2}-m_{1}\right) x} e^{k^{2} \rho_{1} \rho_{2} \cos ^{\chi}} d x=2 \pi e^{\frac{1}{2}\left(m_{2}-m_{1}\right) \pi} J_{\left(m_{2}-m_{1}\right)}\left(-i k^{2} \rho_{1} \rho_{2}\right)
$$

as before.
Thus,

$$
\begin{aligned}
& m x=(2 \pi)^{2} e^{1 / 2 i}\left(m_{2}-m_{1}\right) \pi \iint_{\left.J_{\left(m_{2}\right.}-m_{1}\right)}\left(-i k^{2} \rho_{1} \rho_{2}\right) \alpha^{I_{1} \mid} \beta^{\mid m_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left(-k\left(\alpha+\beta+k^{2}\right)\left(\rho_{1}^{2}+\rho_{2}^{2}\right)\right) \rho_{1} d \rho_{1} \rho_{2} d \rho_{2}
\end{aligned}
$$

As in the case of the direct element we set $y=-i \rho_{2}$, $x=\rho_{1}^{2}$ and consider the integration over $\rho_{1}(x)$:

$$
\begin{align*}
& M x \rho_{1}=\int_{0}^{\infty} J\left(m_{2}-m_{1}\right)\left(x^{2} y x^{1 / 2}\right) \quad x^{1 / 2\left(m_{1}^{\prime}\right.}+m_{2}^{\prime} m_{L} \int_{1 / 2 n_{1}}^{I_{m_{1}}}(\alpha x) \\
& \ln _{\ln _{2}}^{\ln _{2}}(\beta x):-k\left(\alpha+\beta+k^{2}\right) x \quad \frac{d x}{2} \tag{B-11}
\end{align*}
$$

$$
=\sum_{s=0}^{\operatorname{lom}_{n}} \sum_{t=0}^{\operatorname{sam}_{2}} \frac{(-\alpha)^{s}(-\beta)^{t}(x)^{s+t}}{\left(\ln _{2}-s\right)!\left(\ln _{1}+s\right)!\left(\operatorname{kan}_{2}-t\right)!\left(\ln _{2}+t\right): s!t!}
$$

and so (B-11) becomes

$$
\begin{align*}
& n x p_{1}=\left[\left(1 / n_{1}+{ }^{\prime} m_{1} \mid\right)!\left(1 / n_{2}+I_{2} \mid\right)!\right]^{2} \sum_{s=0}^{1 / 2 n} \sum_{t=0}^{1 / m n_{2}} \frac{c x_{s} D x_{t}}{2} \\
& \int_{0}^{J}\left(m_{2-m_{1}}\right)\left(x^{2} y x^{y}\right) e^{-k\left(\alpha+\beta+k^{2}\right) x} x^{y / 2\left(n_{1}^{\prime}+n_{2}^{\prime}\right.}{ }^{1} x^{s+t} d x \\
& =\left[\left(y_{2}+l_{1} \mid\right):\left(x_{2}+n_{2}^{\prime}\right)!\right]^{2} \sum_{s=0}^{x / 2} \sum_{t=0}^{x / m} 2^{2} \frac{c x_{b} D x_{t}}{2}(x+s+t): \\
& \left(\frac{k^{2}}{2}\right)^{\left(m_{2}-m_{1}\right)}\left(k_{2}\left(\alpha_{+} \beta+k^{2}\right)\right)^{-*\left(m_{1}^{\prime}+m_{2}^{\prime}+m_{2}-m_{1}+2 s+2 t+2\right)} \\
& \exp \left(-k^{4} y^{2} / 2\left(\alpha_{+} \beta+k^{2}\right) \chi^{(r+s+t)}\left(z^{-n}\right)\left(k^{4} y^{2} / 2\left(\alpha+\beta+k^{2}\right)\right)\right. \tag{B-12}
\end{align*}
$$

where $r=k\left(\left|m_{2}\right|+\left|m_{2}\right|-m_{2}+m_{1}\right)$.
We come now to the P_{2}-integration which is

$$
\begin{align*}
& \left.n \times \rho_{2}=\int_{0}^{\infty}\left(\frac{-i k^{2}}{2}\right)^{\left(m_{2}-m_{1}\right)} \rho_{2}^{\left(m_{2}-m_{1}\right)} \rho_{2}\left|m_{1}\right|{ }^{\infty} m_{2} \right\rvert\, \\
& \mathcal{L}_{(r+s+t)}^{\left(m_{2}-m_{1}\right)}\left(-k^{4} \rho \frac{2}{2} 2\left(\alpha+\beta+k^{2}\right)\right) \quad \sum_{k_{2 n_{2}}}^{\operatorname{lm} m_{2}}\left(\beta \rho_{2}^{2}\right) L_{k_{1} n_{1}}^{\operatorname{lm}_{1} 1}\left(\alpha \rho_{2}^{2}\right) \\
& -k\left(\alpha+\beta+k^{2}-k^{4} /\left(\alpha+\beta+k^{2}\right)\right) \rho_{2}^{2} \\
& \rho_{2} \rho_{2} \tag{B-13}
\end{align*}
$$

Again following the methods used for the direct element,
vo have

$$
\begin{aligned}
& m x \rho_{2}=\left[\left(1 / m_{1}+I_{w_{1}} \mid\right)!\left(1 / m_{2}+I_{2} \mid\right)!\right]^{2} \sum_{p=0}^{1 / n} \sum_{q=0}^{1 / 2 n_{2}} \sum_{i=0}^{r+a+i t} \\
& \left.\frac{c x_{p} p x_{q} E_{1}}{2} \int_{0}^{\infty}\left(-\frac{i x^{2}}{2}\right)\left(m_{2}-m_{1}\right) x^{1 / 2\left(m_{1}\right.}{ }^{\prime}+m_{2}^{\prime}+m_{2}-m_{1}+2 p+2 q+2 i\right) \\
& \exp \left(-x^{n}\left(\alpha+\beta+k^{2}-\frac{k^{4}}{\left(\alpha+\beta+k^{2}\right)}\right) x\right) d x \\
& \text { where } E_{1}=\frac{\left(r+s+t+m_{2}-m_{2}\right):\left(k^{4} / 2\left(\alpha+\beta+k^{2}\right)\right)^{1}}{(r+s+t-1)!\left(m_{2}-m_{1}+1\right)!\text { i! }}
\end{aligned}
$$

We thus obtain

$$
\begin{align*}
& k x_{2}=\left[\left(1 / n_{1}+I_{m_{1}} \mid\right):\left(1 / n_{2}+I_{2} \mid\right)\right]^{2} \sum_{p=0}^{1 / n_{1}} \sum_{q=0}^{1 / n_{2}} \sum_{i=0}^{\infty+\infty+1} \\
& \left(-\frac{1 k^{2}}{2}\right) \tag{B-14}
\end{align*}
$$

Combining (B-12) and (B-14) we have the solution to (B-9). It now only romains to include the normalization and so obtain for the (P, Φ) part of the exchange matrix element:

We nov come to the $\mathrm{g}_{1}-\mathrm{E}_{2}$-integration, which, as mentioned before, shall be treated in the most general form, for which both direct and exchange elements will be special cases. This integral is

$$
\begin{aligned}
& I=\int_{-\infty}^{\infty} \int_{-}^{-\frac{a}{2} z_{1}^{2}} e^{-\frac{b}{2} z_{1}^{2}} e^{-\frac{c}{2} z_{2}^{2}} e^{-\frac{d}{2} z_{2}^{2}} n_{n_{1}}\left(\sqrt{a} z_{1}\right) \\
& n_{n_{2}}\left(\sqrt{e} z_{2}\right) e^{-\frac{k^{2}}{2}\left(z_{1}-z_{2}\right)^{2}} H_{z_{1}}\left(\sqrt{b} z_{1}\right) H_{m_{2}}\left(\sqrt{d} z_{2}\right) d z_{1} d z_{2}
\end{aligned}
$$

$$
(8-17)
$$

It is convenient to express $H_{\text {(}}(a x)$ in terms of a polynomial with just x as the argument. This may be done with the formula*

$$
H_{\square}(a x)=m!\sum_{r=0}^{x a m} \frac{a^{m-2 r}\left(a^{2}-1\right)^{r}}{r!(a-2 r)!} H_{m-2 r}(x)
$$

$$
\begin{align*}
& \left(x^{2}\right)^{\left(m_{2}-z_{1}\right)} 2^{\left(l_{2} \mid+m_{2}+2\right)} \beta m_{2}+1 \alpha_{1}^{\prime}+1\left(1 / m_{1}\right)!\left(\% m_{2}\right): \\
& \left(\left|n_{1}\right|+\mid \ln _{1}\right)!\left(\left|m_{2}\right|+k n_{2}\right)!\sum_{s=0}^{n} \sum_{t=0}^{n n_{n}} c x_{s} D x_{t}(r+b+t)!2^{s+t} \\
& \left.\left(\alpha+\beta+k^{2}\right)^{-k\left(1 m_{1}\right.}+1 m_{i}+m_{2}-m_{1}+2 t+2 t+2\right) \sum_{p=0}^{j / n_{1}} \sum_{q=0}^{t m_{2}} \sum_{i=0}^{\operatorname{sis}+t} \\
& \operatorname{cx}_{p} D x_{q} E_{i} \frac{\left(n\left(n_{2}-n_{2}+n_{1}^{\prime}+n_{2}^{\prime}+2 p+2 q+2 i\right)\right)!2^{p+q+1}}{\left(\alpha_{+} \beta_{+}+k^{2}-k^{4} /\left({ }^{\alpha}+\beta+k^{2}\right)\right)} \tag{B-16}
\end{align*}
$$

whore＂fou＂means either 期 or $k(m-1)$ ，whichever is an integer．
Thus，in our case we have

$$
H_{m_{1}}\left(\sqrt{b} a_{1}\right)=m_{1}: \sum_{r=0}^{k_{n}} \frac{(b)^{m_{1}-2 x}(b-1)^{r}}{r!\left(m_{1}-2 r\right)!} H_{m_{1}-2 x}\left(z_{1}\right)
$$

and

$$
H_{n_{1}}\left(\sqrt{2} z_{1}\right)=n_{1}: \sum_{s=0}^{k_{n}} \frac{(a)^{n_{1}-2 s}(a-1)^{s}}{s!\left(n_{1}-2 s\right)!} n_{n_{1}-s}\left(z_{1}\right)
$$

so that，$H_{n_{1}}\left(\sqrt{a} a_{1}\right) a_{a_{1}}\left(\sqrt{b} a_{1}\right)=n_{1}: a_{1}: \sum_{s=0}^{j / m m_{n}} \sum_{r=0}^{1 / 2 m} m_{1}$

$$
\frac{(a)^{n_{1}-2 s}(a-1)^{!}}{s!\left(n_{1}-2 s\right)!} \quad \frac{(b)^{n_{1}^{-2 r}}(b-1)^{r}}{x!\left(n_{1}-2 r\right)!} H_{n_{2}-2 s}\left(z_{1}\right) H_{n_{1}-2 x}\left(z_{1}\right)
$$

$$
=n_{1}: n_{1}: \sum_{s=0}^{1 / n_{n}} \sum_{r=0}^{1 / m_{n} i} \gamma_{s} \sigma_{r} H_{n_{1}-2 s}\left(z_{1}\right) g_{n_{1}-2 r}\left(n_{1}\right)
$$

where γ_{s} and δ_{r} are constants with obvious definitions．

$$
\text { Equation (} B-17 \text {) may now be written }
$$

$$
\begin{aligned}
& I=\int_{-\infty}^{\infty} e^{-k(c+d) z_{2}^{2}} H_{n_{2}}\left(\sqrt{c} z_{2}\right) H_{n_{2}}\left(\sqrt{d} z_{2}\right) d z_{2} \\
& \int_{-\infty}^{\infty} e^{-k(a+b) z_{1}{ }^{2}-\frac{k^{2}}{2}\left(z_{1}{ }^{2}-2 z_{1} z_{2}+z_{2}{ }^{2}\right)} n_{n_{1}!m_{1}: \sum_{s=0}^{1 / 6 n_{1}} \sum_{r=0}^{1 / m_{n}} \gamma_{s} \sigma_{r}}^{l}
\end{aligned}
$$

$$
\begin{equation*}
H_{B_{1}-28}\left(z_{1}\right) H_{m_{1}-2 r^{2}}\left(z_{1}\right) \quad d z_{1} \tag{B-18}
\end{equation*}
$$

The $1_{1}^{\text {-integral }}$ is

$$
\begin{aligned}
& I_{1}=-x\left(a x^{2} / e+k^{2}\right) z_{2}^{2} n_{1}!n_{1}: \sum_{s=0}^{1 / n n_{n}} \sum_{r=0}^{1 / 2 m_{n}} \gamma_{s} \delta_{r} \\
& \int_{-\infty}^{\infty} H_{n_{1}-2 s}\left(z_{1}\right) H_{n_{1}-z z}\left(z_{1}\right) \exp \left(-k_{2}\left(\left(\sqrt{e+k^{2}} z_{1}-k^{2} / \sqrt{e+k^{2}} z_{2}\right)\right)^{2}\right) d z_{1}
\end{aligned}
$$

where $=a+b$ 。
We now let $x=\sqrt{0+k^{2}} \quad z_{1}$ and $y=\frac{k^{2}}{\sqrt{0}+k^{2}} \varepsilon_{2}$ and so obtain

$$
\begin{align*}
& I_{1}=e^{-1 k\left(e k^{2} / 0+k^{2}\right) z_{2}^{2}} \quad n_{1}!m_{1}!\sum_{s=0}^{1 / n n_{1}} \sum_{r=0}^{1 / m m_{1}} \gamma_{s} \delta_{r} \int_{-\infty}^{\infty} H_{n_{1}-z \varepsilon}\left(x / \sqrt{e+k^{2}}\right) \\
& H_{1}-2 x\left(x / \sqrt{++k^{2}}\right) \cdot \frac{-k(x-y)^{2}}{\frac{d x}{\sqrt{+k^{2}}}} \tag{B-19}
\end{align*}
$$

We now introduce $\mathrm{He}_{\mathrm{n}}(\mathrm{y})$ such that,

$$
H_{n}\left(\alpha_{x}\right)=2^{1 / 2 \pi} H_{n}\left(2^{1 / \alpha_{x}}\right)
$$

and substitute into $(\mathrm{B}-19)$. Integrating, we then obtain

$$
I_{1}=0^{-k\left(c x^{2} / 0+x^{2}\right) \varepsilon_{2}^{2}} \frac{(2 \pi)^{k} n_{1}: m_{1}:}{0+k^{2}} \sum_{s=0}^{2 n} \sum_{r=0}^{1 / m} \gamma_{s} \delta_{r}
$$

$\sum_{i=0}^{\sin (n} 1^{\left.-2 s, n_{1}-2 x\right)}$ i: $\left(n_{1}^{n-2 s}\right)\left(m_{1}^{-2 r}\right)\left(\frac{e+k^{2}-2}{e+k^{2}}\right)^{1 / 2\left(n_{1}+m_{1}-2 s-2 r-2 i\right)}$

$$
\begin{equation*}
\left.2^{i} \quad k_{n}+1_{1}-2 s-2 r-2 i^{\left(k^{2}\right.} z_{2} \sqrt{0+k^{2}} \sqrt{0+k^{2}-2}\right) \tag{B-20}
\end{equation*}
$$

[^2]We turn nov to the z_{2}-integral which is

$$
\begin{aligned}
& I_{2}=\int_{-\infty}^{\infty} e^{-k(e+d)} z_{2}^{2} \cdot-\hbar\left(o x^{2} / \theta+k^{2}\right) z_{2}^{2} H_{n_{2}}\left(\sqrt{0} z_{2}\right) \\
& \left.H_{m_{2}}\left(\sqrt{d} z_{2}\right) \quad B_{y_{1}+z_{2}}-20-2 x-z x^{\left(x^{2}\right.} z_{2} \sqrt{0+x^{2}} \sqrt{0+k^{2}-2}\right) d z_{2} \\
& \text { (B-21) }
\end{aligned}
$$

$$
\text { Wo } \operatorname{lot} \alpha=(e+d)+\frac{e k^{2}}{0+k^{2}}
$$

and $\beta=\frac{k^{4}}{0+k^{2}}$ so that ($B-21$) becomes

$$
I_{2}=\int_{-\infty}^{\infty} 0^{-1 / \alpha z_{2}^{2}} H_{n_{2}}\left(\sqrt{e z_{2}}\right) H_{m_{2}}\left(\sqrt{d} z_{2}\right) H_{n_{1}+m_{1}-20-2 r-2 i}^{\left(\sqrt{\beta} z_{2} / \sqrt{0+k^{2}-2}\right) d z_{2}}
$$

We make the further substitution,

$$
\begin{gathered}
a^{2}=\alpha_{z_{2}}^{2} \text { and so obtain } \\
I_{2}=\int_{-\infty}^{\infty} e^{-2 x^{2}} H_{n_{2}}\left(2 \sqrt{\frac{c}{2}} x\right) H_{n_{2}}\left(2 \sqrt{\frac{g}{\alpha}} x\right) H_{n_{1}+n_{1}}-28-2 x-21
\end{gathered}
$$

$\sqrt{\frac{2}{\alpha}} \mathrm{dx}$
Now, $H_{n_{2}}\left(2 \sqrt{\frac{c}{\alpha}} x\right)=\sum_{l=0}^{1 / 2 n_{2}} \quad \frac{n_{2}!\left(2 \sqrt{\left.\frac{c}{\ell}\right)^{n_{2}}}{ }^{-2 l}\left(4 \frac{c}{c}-1\right)^{\ell}\right.}{\ell!\left(n_{2}-2 \ell\right)!} H_{n_{2}}-2 l(x)$

$$
=n_{2}: \sum_{\ell=0}^{2} \epsilon_{\ell n_{n_{2}-2 \ell}(x)}
$$

$$
\text { Similarly, } H_{2}\left(2 \sqrt{\frac{d}{Q}} x\right) \text { may be written }
$$

$m_{2}!\sum_{j=0}^{1 / m} z_{j} \mathrm{H}_{2}-2 j(x)$ where k_{j} is the appropriate
function of $w^{\prime} d$ and $o r$, and,

$$
\begin{aligned}
& \left(2 \sqrt{\frac{\beta}{\alpha}}\right)^{n+1} 1^{-2 s-2 x-21-2 t}\left(\sqrt{0+k^{2}-2}\right)^{-n_{1}^{-n}}+2 s+2 r+21+2 t \\
& \left(\frac{4 \beta}{\alpha\left(0+k^{2}-2\right)}=1\right)^{t} E_{n_{1}+m_{1}-2 s-2 x-21-2 t}(x) \\
& =\sum_{t=0}^{x\left(n_{1}+n_{1}-20-2 r-21\right)}\left(0+k^{2}-2\right)^{-1 /\left(n_{1}+l_{1}-20-21+2 r\right)} n_{t} H_{n_{1}+n_{1}-2 s-2 r-21-2 t}(x)
\end{aligned}
$$

Substituting into ($B-23$) we obtain

$$
\begin{aligned}
& I_{2}=\sum_{t=0}^{k\left(n_{1}+\omega_{1}-2 s-2 r-21\right)} \sum_{l=0}^{h} \sum_{j=0}^{k / m m_{2}} 2, h_{t} k_{j / \alpha}^{2}\left(e+k^{2}-2\right)^{-k\left(n_{1}+m_{l}-2 \theta-2 r-21\right)} \\
& n_{2}!m_{2}!\int_{-\infty}^{\infty} e^{-2 x^{2}} H_{n_{2}-2 \ell}(x) \quad E_{m_{2}-2 j}(x) m_{n_{1}+m_{1}-2 x-2 s-2 i-2 t}(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& k\left(n_{1}+n_{1}-2 s-2 r-21-2 t+n_{2}-2 l+n_{2}-2 j-1\right)
\end{aligned}
$$

Toms, combining $(B-20)$ and $(B-24)$ and including the normalIzation of the wavefunctions, we obtain for the reintegration of the generalized matrix element

$$
I=\frac{2\left(n_{1}: n_{2}: n_{1}: m_{2}:\right)^{1 / 2}(a b c d)^{1 / 4}}{\sqrt{O}} \sum_{0=0}^{1 / 2 n_{1}} \sum_{r=0}^{1 / 2} l_{1} \gamma_{B}
$$

$\sum_{t=0}^{k\left(a_{1}+1_{1}^{-2 s-2 r-2 i)}\right.} \sum_{k=0}^{k_{n}} \sum_{j=0}^{k=2} n_{t} \in k_{j} 2^{-s-r-t-2-j} x$
$x\left[\frac{1}{1} \frac{1+1}{2-2--2 r-21-2 t+n_{2}-26-1} 2^{+2 j+1}\right)$
$=\Gamma\left(\frac{n_{1}+n+m_{2}-n_{2}-2 s-2 x-21-2 t-21+22+1}{2}\right)$
$\left.x \int_{\left(\frac{1}{2}+2^{-n} 1^{-n}-2 l-21+2 s+2 r+21+2 t+1\right.}^{2}\right)$

- Mtchmar sh, Jour. London Math. Soc. 23, 15. (1948)

Note that in $(B-26)(\Gamma(/ 2))^{3}$ has been removed by cancellation with the normalisation and hence we have written Γ in place of Γ.

We thes have in ($\mathrm{B}-26$), $(\mathrm{B}-16)$ and $(\mathrm{B}-8)$ all the calculations necessary for the diagonal slater determinant matrix elements. To satisfy the requirenentb of non-diagonal eleaents as well would merely involve the use of four different oscillator constants, instead of only two, in the derivation of ($\mathrm{B}-8$).

It is of interest to note that were we to use a Cartesian bacis rather than a cylindrical one we would need to use only equation ($B-26$) three times, once each for the $x-, J$, and z-integrations resppetively. Such a basis is, of course, unsuited to a problem sach as the one considered in this thesis, because of the inherent cylindrical symetry.

It should also be noted that when the oscillator constants are all equal there is a much more simple and elegant solution to the $z_{1}-z_{2}$-part of the matrix elemants. This solution is shown in Appendix C.

APPENDIX Cz THE $\mathrm{E}_{1} \mathrm{~EB}_{2}$-PART OF THE MATRIX ELEMENTS FOR THE

CAST OF FODAL OSCILLATOR CONSTANTS

He are faced with an integral of the form

$$
\begin{aligned}
& I=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \bullet^{-a z_{1}^{2}} \bullet^{-a z_{2}^{2}} H_{n_{1}}\left(\sqrt{a} z_{1}\right) H_{z_{2}}\left(\sqrt{a} z_{2}\right) \\
& -\frac{k^{2}}{2}\left(\varepsilon_{1}-z_{2}\right)^{2} H_{m_{1}}\left(\sqrt{a} z_{1}\right) H_{m_{2}}\left(\sqrt{a} z_{2}\right) d z_{1} d z_{2^{*}}
\end{aligned}
$$

We first set $G_{n}(y)=2^{1 / 20} H_{n}\left(2^{1 / y} y\right)$ and so obtain,

$$
\left.{H \theta_{n_{2}}}\left(\sqrt{2 a} z_{2}\right) H_{m_{2}}\left(\sqrt{2 a} z_{2}\right) d \varepsilon_{2} \int_{-\infty}^{\infty} e^{-1 / 2\left(\sqrt{2 a+k^{2}}\right.} z_{1}=\sqrt{2 a+k^{2}} \frac{k^{2}}{z_{2}}\right)^{2}
$$

$$
\begin{equation*}
2^{j\left(n_{1}+m_{1}\right)} \mathrm{He}_{n_{1}}\left(\sqrt{2 a} z_{1}\right) \mathrm{He}_{m_{1}}\left(\sqrt{2 a} z_{1}\right) d z_{1} \tag{c-1}
\end{equation*}
$$

$$
\text { Let } x=\sqrt{2 a+k^{2}} z_{1} \text { and } y=\frac{k^{2}}{\sqrt{2 a+k^{2}}} z_{2} \text { and }
$$

substitute into $(\mathrm{C}-1)$ to obtain

$$
\begin{aligned}
& I=\int_{-\infty}^{\infty} e^{-a z_{2}^{2}+k^{4} z_{2}^{2} / 2\left(2 a+k^{2}\right)-\frac{k^{2}}{2} z_{2}^{2} 2^{1 /\left(n_{2}+m_{2}\right)} H_{n_{2}}\left(\sqrt{2 a} \Sigma_{2}\right)}
\end{aligned}
$$

$$
\begin{align*}
& \text { He } m_{1}\left(\sqrt{\frac{2 a}{2 a+k^{2}}} \text { x) } \frac{d x}{\sqrt{2 a+k^{2}}}\right. \tag{C-2}
\end{align*}
$$

But, the x-1ntegtation fields

$$
\begin{align*}
& \frac{2^{2(}\left(n_{1}+n_{1}\right)}{\sqrt{2 a+k^{2}}}(2 a)^{1 / 2} \sum_{l=0}^{\min \left(n_{1}, m_{1}\right)} e:\left(\frac{n_{1}}{l}\right)\left(\frac{n_{1}}{l}\right)\left(\frac{k^{2}}{2_{a}+k^{2}}\right)^{k\left(m_{1}+n_{1}-2 l\right)} \\
& x \mathrm{Ee}_{\mathrm{m}_{1}+\frac{1+2}{2}}-2 \ell\left(\frac{\sqrt{2 a}}{k}-y\right) \quad . \tag{c-3}
\end{align*}
$$

We the must now consider the integral

$$
\begin{align*}
& \left.\int_{-\infty}^{\infty} e^{-w^{2}} 2^{-\psi\left(m_{1}+n_{1}-2 l\right)} H_{n_{2}} \sqrt{\frac{2 a^{2}+a k^{2}}{2 a^{2}+2 a k^{2}}} v\right) H_{m_{2}}\left(\sqrt{\frac{2 a^{2}+a k^{2}}{2 a^{2}+2 a k^{2}}} w\right) \\
& \left.H_{n_{1}+n_{1}-2 \ell}\left(\frac{k v}{\sqrt{2 a+2 k^{2}}}\right) \sqrt{\frac{2 a+k^{2}}{2\left(a^{2}+a k^{2}\right.}} \quad d w \quad \text { (}-4\right) \tag{c-4}
\end{align*}
$$

Where we have set $v=\sqrt{\frac{2\left(a^{2}+a k^{2}\right)}{k^{4}}}$ y and used the fact that $H_{e_{\bar{n}}}(y)=2^{-1 / m} H_{n}\left(2^{-1 / y}\right)$.
(c-4) may be integrated to obtain **
$(-1)^{r-1} 1^{-2} 1+2 l 2^{2 r} \Gamma(r+4)\left(\frac{k}{\sqrt{2 a+2 k^{2}}}\right)^{n+m} 2$
$\times\left(\sqrt{\frac{2 a^{2}+a k^{2}}{2 a^{2}+2 a k^{2}}}\right)^{m_{1}+n_{1}-2 l} 2^{-k\left(m_{1}+n_{1}-2 l\right)} \sqrt{\frac{2 a+k^{2}}{2\left(a^{2}+a k^{2}\right)}}$
$x=\left(\frac{n_{2}-r}{-m_{2} ;} \quad \frac{a+k^{2}}{2 k^{2}}\right)$

- Erdelyi et al - Tables of Integral Transforms, Vol.2, p. 291
- W. N. Bailey - Jour. London Math. Soc. 23, 295, (1948)
where $2 r=m_{2}+n_{2}+n_{1}+n_{1}-26$ and $\left.F^{a_{1} b_{3}} z\right)=\sum_{n=0} \frac{(a)_{n}(b)_{n}}{n!(c)_{n}} n^{n}-$ the hypergeometric series.

It should be noted that the integral is zero is
$\left(n_{2}+m_{2}+m_{1}+n_{1}-2 \ell\right)$ is odd 00 that r is always an integer. Rearranging ($C-5$) and, with ($C-3$), substituting into (C-2)
vo obtain

$$
\begin{align*}
& I=\frac{2^{k\left(n_{1}+n_{1}+n_{2}+n_{2}\right)}}{\sqrt{2}^{2}+a k^{2}}(\pi)^{k / 2} \sum_{l=0}^{\ln \left(m_{1} \cdot n_{1}\right)} \quad l!\left(_{k}^{n}\right)\left(l_{l}^{n_{l}}\right) \\
& \times\left(\frac{k^{2}}{2 a+k^{2}}\right)^{k\left(n_{1}+n_{1}-2 l\right)}(-1)^{k\left(n_{2}+m_{2}-n_{1}-m_{1}+2 l\right)} \\
& =\Gamma(r+k)\left(\frac{k}{a+k^{2}}\right)^{a^{+n}} \times\left(\sqrt{\frac{2 a^{2}+a k^{2}}{a^{2}+a k^{2}}}\right)^{m_{1}+n_{1}-2 \ell} \\
& =F\left(\begin{array}{ll}
-2^{\prime-m} 2^{j} \\
k-r & a+x^{2} \\
a x^{2}
\end{array}\right) \tag{c-6}
\end{align*}
$$

In deriving ($C-6$) we have once again used unnormalized wavefuactions. However, the normalization may be added in a straightforward way as demonstrated in Appendix B.

CAPTIONS FOR FIGURES

Mgure 13 The kinetic onergies' deformation-dependence is plotted for a constant nuclear volume, $a^{2} b=0.064$. KROS is the kinetic onergy of the 25°. state and KKDO, KEDI and KED2 are the kinetie enorgies of the $d_{0}{ }^{\prime}, d_{ \pm 1}$ and $d_{ \pm 2}$ states respectively.
Pigures 2 and 3: The deformation-dependence of typical interaction matrix elements is plotted for a constant nuclear volume, $a^{2} b=0.064$. The elements labelled vaDO and vad2 are direct elements betwean l_{0}. ${ }^{1 p_{ \pm 1}}$ wave functions and $1 d_{0}{ }^{\prime}$ and $1 d_{ \pm 2}$ wave functions respectively. A equals a for the 1so state, 0 for the ${I p_{0}}$ state and 1 for the $1 p_{i 1}$ state. The correoponding exchange elements are labolled with the same name followed by an X.
Figures 4 to 7: The binding energy is plotted as a function of deformation for various configurations in the first subshell of the 2s-ld shell. The nucleus, configuration and value of the Majorana exchange parameter used are indicated on the diagrame in each case.

BIBLIOGRAPHI

General Reforencess M. A. Preston, Physics of the Nucleus,
Reading, Mass: Addison-Wesley, 1962.
P. Goldhamer, Structure of Light Muclel,

Rev. Mod. Phys. 35, 40, (1963).
G. E. Brown, Unified Theory of Nuclear Models, Amsterdam: North-Holland Pub. Co., 1964.
(B56)
(B161)
(8065)
(CD63)
($\operatorname{B54}$)
J. C. Burkill, Theory of Ordinary Differential Equations, P.36. Edinburgh; Oliver \& Bojd, 1956.
G. E. Brown, Congres International de Physique Ahcleaire, Vol.1, p.129. Paris, 1964. W. H. Bassichus and G. Ripica, Phys. Letts, 15, 320, (2965).
K. A. Brueckner, A. M. Lockett, and M. Rotenberg, Phys. Rev. 121, 255, (1961).
G. E. Brown and A. M. Green - preprint - 1965.
E. B. Carter, G. E. Mitchell, and R. H. Davis, Phys. Rev. 133. B1421, (1964).
B. E. Chi and J. P. Davidson, Phys. Rev. 131. 366, (1963).

Erdelyi, Magres, Oberhettinger and Tricomi, Higher Transcendental Functions, Vol.2, p. 288, and Morse and Feshbach, Methods of Theoretical Physics, Vol.1, p.784. New York: McGraw-Hill, 1954 and 1953.
(inliott 1955)
(KR64)
(N55)
(N459)
(P57)
(PG64)
(764)
(v64)
(v65)
(vi65)
J. P. Millott and T. H. R. Skyrme, Proc. Roy. Soc. (London) A232, 561, (1955).
A. Kallio and K. Kolltveit, Macl. Phys. 53. 87. (1964).
S. G. Nilsson - Danske Videnskab. Solskab, Mat.-fys. Medd. 29, 16, (1955).
E. B. Paul, Phil Mag. 2, 311, (1957)
S. P. Pandya and I. M. Green, Nucl. Phys. 27. 658, (1964).
Tinkham, Group Theory and Guantum Mechanice,
p. 164-65. New York: MoGraw-Hill, 1964.
A. B. Volkor, Phys. Lette., 12, 118, (1964).
A. B. Volkov, Nucl. Phys. - to be published, 1965.
A. B. Volkov and D. J. Hughes - Private Commanication.

[^0]: - The currect level ordering can be obtained with WoodsmSaxon wavefunctions - G. E. Brown, ibid.

[^1]: Brdelyi et al - Higher Transcendental Functions Vol. 2 p. 20

[^2]: - Eedelyi ot al. Integral Transforms Vol. 2 p. 290 No. 17

