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CHAiTKB 1: INTRODUCTION

In nuclear spectroscopy it is always necessary to assume a 

particul r form for the wavefunction which is to represent the motion 

of a single nucleon in the nucleus. Since the inception of the shell 

model in 191»9, extensive use has been made of harmonic oscillator 

orbitals, including the spheroidal harmonic oscillator orbitals of 

Nilsson (N55).

The original reason for the popularity of such orbitals is 

that the analytic properties of these functions add a good deal of 

simplifycation to shell-model calculations as well as the fact that 

they reproduce level ordering with a reasonable degree of faithfulness.

An attempt to add a more formal justification to the weight 

of a decade of reasonably successful use led Newton (NE59) to examine 

the consistency of an oscillator potential by means of a Hartree- 

Fock calculation. Newton found that the oscillator wave functions 

are, in fact, close to being self-consistent. In addition, he 

found that the bound state eigen functions and eigen values of a 

"cut-off” oscillator well, (which is the physically more realistic 

case), differ negligibly from the corresponding states of an infinite 

oscillator well.

Further justification was added by Brueckner, Lockett and 

Rotenberg (BL61), who, in an investigation of the actual average 

potential seen by a nucleon in a light nucleus, by more fundamental 
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techniques, found that the single particle orbitals they subsequently 

derived were very similar to those of the oscillator.

Although a still better single particle potential, (in the 

sense of being more realistic), has been found to be the Woods- 

Saxon potential, the much greater computational ease inherent with the 

use of oscillator functions, along with the above formal justification, 

has ruled in their favour^-.

It has also become more certain, since 1955, that some nuclei 

are best described by deformed, (in particular, spheroidal), single 

particle potentials, rather than spherically symmetric potentials. 

Although originally applied mainly to those regions of the nuclide 

chart where the nuclei show obvious deformation, more recent investi

gations have included light nuclei as well. Volkov (V64 and V65) and 

Volkov and Hughes (VH65) have performed extensive calculations for 

p-shell nuclei using the single particle wave functions

T « C exp (-a (x2 ♦ y2)/2 - b«2/2)

1 For light nuclei, Woods-Saxon and oscillator levels are very

similar - see 3. £. Brown - Unified Theory of Nuclear Models 

Chapter J.

s s

T s C b 2 exp (-a (x2+y2)/2 - b ®2/2)
o o o o °

T±1 « C±1 a1 (x±iy) exp (-a1<x2+y2)/2 - s2/2)
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where each orbital has its own set of oscillator constants. 

The a and ”b” constants are related by a deformation-dependent 

factor. These calculations have shown that most lp nuclei are, 

in fact, deformed and that the degree of deformation is a sensitive 

function of the two-nucleon interaction, in particular, of the 

amount of Majorana exchange included in the interaction.

These results have accentuated the importance of the 

deformed single particle potential and the necessity of extending 

these calculations to the 2s-ld shell. However, this extension 

is computationally difficult due partly to the fact that the wave 

functions used are not true harmonic oscillator functions for the 

2s and ld_ orbitals and so matrix elements must be worked out. 

laboriously, by hand in a Cartesian basis.

The present thesis describes a new approach in which the 

harmonic oscillator equation is solved in a cylindrical representation 

to provide single particle wave functions. These wave funct'ons have 

the virtue that (a) they naturally preserve the cylindrical symmetry 

of the problem, (maintaining M as a good quantum number, where M is 

the projection of the total angular momentum, J, or the space-fixed 

r-ari«)( (b) they are expressible in terms of simple products of 

functions which form complete sets, thus permitting the simple 

derivation of general expressions for matrix elements as functions 

of the single-particle quantum number.- and oscillator constants, and

2 The significance of having different oscillator constants,

a / ao / ap will be explained at a later point in the thesis.



(c), this derivation can be performed without a separation into 

centre of mass and relative coordinates so that one need not maintain 

the same oscillator constant for all single-particle orbitals.

These general expressions have been derived for a nuclear 

interaction with a Gaussian ra ial dependence and then used in an 

intermediate coupling calculation, with no configuration mixing, of 

relative binding energies in the 2s-ld shell. Since J is not a good quantum 

number , the term "intermediate coupling” is used in the sense that 

the calculation yields the result of such coupling in the limit of 

zero deformation. As described in (V6.5) this is done by the use of 

Slater determinants characterised by the total M value of the system.

The calculation shows the variation of the binding energies 

of possible configurations, for given A and Z, with deformation in a 

"Nilsson-like" manner.

Ideally, one would like to perform these calculations for the 

whole 2s-ld shell. However, certain obvious time limitations have 

permitted the extension of this work only to the first few nuclei of 

the shell



CHAPTER 2> THE DERIVATION CF Tlte, WAVE FUHCTICNS

In cylindrical coordinates 2 has the fora,

-fa - 5

Thus, the wave equation for the three-dimensional harmonic 

oscillator is

| ay iy5* y? ^*(^-<>2p2-o^2 z2)?=o <2-d

where A - e, ex . X*- P
hZ h °

and CX . JjlJL- P
z h

In these definitions, £ is the energy eigen value and

M and P are the oscillator frequencies.
o z

The wave functions we seek are the solutions of

Equation (2-1) and can be obtained by the usual method of separation 

of variables, l.e., by setting * Hj5) • V) • z<«>
On substitution into (2-1) this yields the three separate

equations,

, (A - CX2 z2) 1 -0 <2-2)
, 2 z zdz

5
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$ * - 0 *• 

and

♦ < a* - ex2 p2 - p - o (2-4)

where >/ ♦ .

The solutions of (2-2) and (2-J) are well-known and are
Zn - «n e'^ Hn ({cC X) and $( , ~X_

respectively, where Hn(x) is a Hermite polynomial.

The solution of (2-4) is not as well-known but works out 

quite easily, as is shown in Appendix A, to be

F(f) . • i/"' tap2)
2

where n ■ —— - ' a I - 1 and L^(x) is the associated Laguerre

polynomial defined by

V(x) » .2..«L.
p io <p"s): <k * s): ®:

Our wave function thus becomes

„?<p2 I — '
f ’ NelB,lP ® I,,Il " * Hn ^%Z>

2 ® (2.5)
II

5 There exists an alternative definition for Lp(z) which is

5^ (P+k) LzX Since this function is used in another context

P"11
in Appendix B we adopt the convention of denoting it by ^^(z).
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where the normalization constant N Is given by

, 2<X(|) • * o< * *
R - -~=- ( -]-----~------ -----rz ) ( -------)'JaT L( I ml *|) :J 5 *2* nB:

The quantum numbers, a, n nnd n^ are restricted as 

follows!

® ■ °» ±1. ±2, ...

n ■ 0, 2, 6, ...

% . 0, 1. 2, . . .

In addition, the energy eigen values are given by

£ a ( I a I + a + 1) h 4* (n ♦ 5) h M
* * a

'Hie explicit ”2s~ld*’ wave functions used in thia work ares

1 . N . e 2 (1-^ P2) • (2"6)
2,0,0 2s . « j 0

_ bozz

'ooz-’d • *’ • ' (2_7)
• ♦ O 2. 1 2

f N e*i 1 (AX-f) P) e e • 2 b . z
fo,±i,i a±i • ' ** r 11

(ld±l) (2-8)

’O.tz.0 - (CX±2 f’ : Z ' ■

(ld±2) (2-9)
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• »
Hie symbols Id and 2b indicate that these waveo o

functions, at zero deformation, are not true d and a orbitals.o o

However, they closely approximate the true functions and, if 

necessary, can be related to them by simple linear transformations. 

For example, the ldQ orbital, in the spherical representation, is 

given by

fido " yy ( ?o.o,2 * ¥2,o,o5 <2-10)

in the limit of zero deformation.



CHAPTER 3: CALCULATION OF MATRIX KLKMENTS

The interaction that concerns us most has the form

G » ' g(i, j)

1<J
where the g(i,j) have a Gaussian radial dependence

k2 z s2

g/i.j) - e 2 1 J .

The matrix elements of this interaction which must be calculated 

can be written <T(N)/G/f(M)> where T(N) is a (Slater) determinantal 

wave function given explicitly by

V’ • • • \u>
f(N) = (A* )* (2) * (2) . , . (2)

“1 °2 nA

<l> (A) . . . 4> (A)
"1 A

In our particular case <j> (j) is the product of the single
“i

particle wave function (2—5) with a spin and an i-spin function, 

evaluated at the position of the jth particle with the quantum 

numbers (along with spin and i—spin) of the ith particle.

9
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In the applications of this representation to actual nuclei 

a restriction to the case in which there is no configuration mH ying 

has been imposed. This restriction considerably simplifies the 

present mathematics since we need consider only the diagonal elements 

<T(N)/G/r(N)> which are easily shown to be of the form (T64).

<?(N)/GA(N)> « Z—j <| (1) * (2) I g (i,2) I * (1) ♦ (2)>
k>t “k “t “k “t

-<$ (1) ♦„ (2) I g(l,2) I * (1) 4 (2)> (>1)
“k nt nt %

Rrpl i t calculations are then required only for the simple 

direct and exchange elements shown in equation (5-1).

The spin-and i-spin-dependent parts of g(i,j) are separable 

from the r-dependent part. In addition, the spin-and i-spin 

dependent parts of the matrix elements are easily worked out for all 

typical interactions. This leaves us then with just the two integrals 

<\(1> \<2> 1 1 \<1) "'nt<2>> “ B • • • J "1

• fl 71 fi * f 2 *1 *2 **1 **2
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and
<4, (1) ♦ (2)/g (lt2)/0 (1) * (2)> =

K t r nt “k

.<». < . •' (!)
) / / nl,nz^*"l n2*“z2*B2 *nj' z '"2

• fidfi fa *1 d*i d*2 <>5>

to calculate.

These integrals are most easily worked out by separating then 

into products of a ( p ,0)~integration and a z-integration and 

performing these integrations individually. This is worked out in 

detail in Appendices B and C, Thus, from equations (B-8), (B-16) and 

(B—26) we find that the solutions of (3-2) and (3-3) are

<* (1) 4> (2) I g (1,2) I 4> (1) 4> (2)>
"k “t r K t

2 I a. I +2 2 I mJ +2 nq n n
3(7“a) 1 (V~T) 2 • (-—)! (-/)! ( I mJ +-^)‘

. » .b
•( I mJ ♦-£)! 2«n ’ n^ • ( ^~)

/2nl T. 2
v—> . .2 -( I m- I +t+s+l)
/ p ct dg (-a)t+S (r+t+s)’ (a + -tj)

t=0 s»0
^n2 ^n2
V-1 V~’ g^f^-b)1*^ I m2 I +i+j-h€):

X / . / ■ / < ?2 JI (lm2l +i+j+^+l)

i=0 j=0 Z-0 (b+^r - ----------T")
2 2(2a+K )
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56n &n

y r ‘^V26-'n<2r)’ Z_. Z_j 5» °r / , 11 fV^YV2^
3=0 r=0 1=0 \ x± A 1i /

, ^(2n -2s-2r-2i+l)(—i-J Z1
• ♦ k

)6(2n -2s-2r-21) £ n ft n• £ Z? 2%^ *—*• • 

t=0 Z=o ij=0

r
*2n -28-2r-2i-2t-2€+2j+l

(—------------------------------------------------------------  )
2

r—!2n - 2n - 2€ - 2j + 2b +2r+2i+2t+l
r?-^--------------------------------- •>

2

r
i 2n — 2s — 2r — 21 — 2t — 2j + 2€ + 1
(-21------------------------------------- ) (jj0

2

and
<$ (1) ♦ (2) Ig (1,2)1 * (1) * (2)>
\ nt nt “k

_ (a -bl) ( I m, I +1 mJ +2) lm_l +1 I a, I +1 n_ a. (k2) 2 1 2 2 b 2 a 1 Q-)! (/)'.

n, n, *
( I ^1 ♦ ( I .2I ♦ 4-)! <az. bx)

^n. )£n_
y-A y—) . -#( I HL. I + I mJ + m_-m +2a+2t+2)
/ / CXfi DXt (r+s+t)’ 2S+t (a+b+k2)

6=0 tSf
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ZZ Z"1, GXP PXQ I"!* ♦ I °»2I +2p+2q+2i))I2P>q*1

p«0 q-0 i-0 (a+b+k2-kV(a+b+k2))^B2"“l+ * ra2* * * "1* +2p+2q+2i+2)

£ L 3= r A « (V2“V “s’21") <~^) h 2 

s=0 r=0 i=o \ 1 £ A 2 i / e + k

>?(n +n -2s-2r-2i) Yin J6nZ1- 2 ft ft 2—

t=0 £*0 j=o

(—2a -2s-2r-2i-2t-2£+2j +1. p----------------------------------- >

2

r
-V 2n -2s-2r-2i-2t-2j+2^+1
(-i------------------------------------ )

2

x | ’(26+2r+2i+2t-a?-2j+l } (>5)

2

In these equations the oscillator constants (a, a^) and 

(b, b^) correspond to the quantum numbers (n^, n^ , m^) and 

(n3» n t respectively. The other constants shown, (e.g.
z^

ex', CX , , etc.) are defined in Appendix B to which6 6 JT

the reader is directed.

The large number of summations present in the equations

are a result of the generality of the matrix elements, that is,

of the fact that each orbital has been given a unique oscillator
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constant. In no way are they caused by any inherent difficulty 

involved in the problem.

Computer programs hare been written to evaluate (j-4) and (5-5) 

for any given set of the variable parameters involved. These pro

grams have already proved themselves to be tremendously useful since 

they reduce the usually exacting chore of matrix element calculation 

to a few simple computer operations.



CHAPTER U: THE CALCULATION OF BINDING ENERGIES OF

PARTICULAR CONFIGURATIONS AS A FUNCTION OF DEFORMATION

In every configuration in the s-d shell for which calculations 

are performed, a closed-shell core which interacts with the single 

nucleons of the s—d shell has been used. In no case has the possibility 

of particle excitation out of the lp-shell been considered. However, 

as in previous work, V64 and V65, all two particle interactions in and 

with the 0^ core are included in the energy calculation.

As single nucleons are added to the s-d shell they are permuted 

about the available positions (a maximum of 2^). Each unique con

figuration so obtained is then specified by A, Z, M and the single 

particle orbital occupancy and the binding energy is calculated as a 

function of deformation.

The calculation itself has the form of a limited type of Hartree- 

Fock calculation*. It involves taking the diagonal matrix elements 

of the Hamiltonian with respect to determinants with fixed M values. 

The diagonal matrix thus obtained is then minimized with respect to the 

single particle oscillator constants (or, effectively, with respect to 

the individual orbital sizes) and the nuclear deformation.

4 A detailed analysis of this type of calculation may be found

in V65.

15
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Since the nuclear size is varied it is necessary to use a 

saturating effect force in order that the nuclei studied do not 

over-bind. The force that has, in fact, been used has a ’‘soft” 

repulsive core and satisfies appropriate low energy scattering and 

binding energy criteria^.

The fact that only diagonal elements are calculated means 

that configuration mixing is ignored and that the calculations are 

not directly comparable to ones of an intermediate coupling nature. 

However, thi a ia not a serious drawback, since the study of intereat 
here is that of deformation effects.

5 See Chatter 5.



CHAPTER 5: THE EFFECTIVE NUCLEAR FORCE

The first two criteria to consider in a choice of a

nuclear force are that the force be saturating and that the force 

be "realistic”.

The general form of the Hamiltonian used is

H - V(r1;)) (l-»« J* * bp' ♦ bP^)

i»l i>j»l

+ c , £*• s± (5-1)

1-1

where the summations are taken over all particles in the nucleus.
Y q- T

P^, P^ and P^ are the Majorana, Bartlett and Heisenberg exchange 

operators, respectively, and M is the centre of mass kinetic energy 

which must be subtracted out.

The radially dependent part of the two particle potential,

, has the fora

; k 2 k 2
Wru) ’ - exp (- 4— ♦ », exp <- -f- r^) (5-2)

where V V k and k are parameters whose values are fixed by 
a’ r* a r

lp-shell calculations performed for 016 by D. J. Hughes. These

17
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calculations also fixed the values of m, b, h and c used6. The 

criteria which these force parameters were made to satisfy are as 

follows: (i) the s-wave scattering length and the effective range 

must closely approximate the singlet and the triplet scattering 

lengths and effective ranges.

6 The computational program written for the energy calculations

includes the possibility of varying m, b, h and c to obtain the best 

fits to experimental data, but in view of the approximation already made 

in ignoring configuration mixing, such variation would not be sufficiently 

meaningful to be worth the expense in research and computer time.

(ii) the binding energy and size of He**  should be correctly 

given by the appropriate single-determinant equilibrium calculation.

(iii) the binding energy and size of 0^ should be correctly

given by the appropriate single—determinant equilibrium calculation.

Criterion (iii) is extremely important in determining the amount

of Majorana exchange to be used. A change in m of 0.02 can cause a 

change in the O1^ binding energy of JO MeV and thus, once m is set for 

0^, one would expect that it need not be changed again for at least 

the first half of the s-d shell.

It should also be pointed out that more emphasis was placed on 

the binding energy of 0^ than on the size in the final choice of a force 

mixture.

The force finally chosen has a shape similar to the Kallio- 

Koltveit potential (KK64). It has a very ’’soft” core which is well- 

suited to the needs of this investigation since it will decrease, (to a 

small degree), the importance of configuration mixing.
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Pandya and Green (PG64) have shown that the core is very 

important in determining the (rotational) spectra of 2s-ld spectra 

and that the increasing "hardness” of the core uniformly lowers the 

levels with respect to the ground state. Of the various forces 

they tried, the one which best fits experimental data has a core some

what "harder" than the one used here. However, although Volkov and 

Hughes have found similar effects in the lp-shell, they have found in 

addition that cores "harder” than the one used here lower the spectra 

too much, (for an example of such a force see FORCE 1 of V65). Also, 

one must take into account that a long range attractive potential gives 

effects similar to a short range attractive potential with a repulsive 

core.

The explicit values of the parameters used are

V . 97.54 MeV, m - 0.75,

Vr - 105.95 MeV, b - 0.200,

k « 0.9428 h » 0.050,

. 1.8856 fm"1, c » -4.00

(The spin-orbit term is really a non-essential addition for the 

purposes of this study and hense c is frequently set equal to zero 

for purposes of simplification).

These parameters give an 0X^ binding energy of 127.4 MeV 

and a size parameter, (the oscillator constant in e b ), of

1.4 fta.



CHAPTER 6: THE DEPENDENCE OF THE WAVE FUNCTIONS

AND MATRIX ELEMENTS ON DEFORMATION

Th® deformation C is defined by the relation

| - (1 + e/$)/(i - 2 e/j) (6-D

where A and B are the oscillator constants for the j2—dependent and 

z-dependent parts of the wave function, respectively. This is the 

same deformation parameter as defined in Appendix A of N55. Values 

of & )0 represents a prolate deformation while € <0 represents an 

oblate deformation.

As mentioned in the Introduction, Volkov has found that the

best results are obtained by describing each orbital with a unique

set of oscillator constants.

This is theoretically justified by the fact that this provides 

a closer approximation to Woods-Saxon wave functions which are a more 

self-consistent choice.

At the same time, one imposes the restriction that the de

formation, €? , be the same for each orbital, since the deformation 

represents a Hartree—Fock potential which should be similar for each 

orbital. Thus, in the case of the lp-shell, one has A/B = Ao/Bq « A^/B^

In this investigation exactly the same procedure as the one 

used by Volkov is followed for the p-shell orbitals. This involves 

2D
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establishing the value of the parameter CT = A°/A = A^/A and 

minimizing the energy with respect to A alone. Thus one obtains 

the value of Aq for prolate deformations and of A1 for oblate 

deformations. Once Aq is determined for 6 >0 and A^ for e <0, 

the corresponding values of A^ and Aq are obtained by setting the 

ratio of the p±l kinetic energy to the po kinetic energy equal to 

unity.

For the case of O1^ it has been found that the best bind

ing is obtained for AWA^A^. Thus, for the purposes of an 

initial investigation, this equality is maintained in the s-d shell 

calculations as well.

In the case of the s~d shell orbitals a somewhat different 

procedure is followed.
* i

For the 2so and ldQ orbitals it is necessary to use the 

same oscillator constants as for the Is orbital in order to ensure o

the orthogonality and hence, the linear independence, of the wave 

functions. The alternative would be to use different oscillator 

constants and then renormalize the various Slater determinants affected 

which is in itself a non-trivial problem.

For the Id and Id „ orbitals new oscillator constants,
±1 ±2

C, D and E, F, respectively, were used. Once again, the restriction 

of having the same deformation for all orbitals is imposed so that 

A/B » C/D = 5/F. In order to avoid the very time consuming task 

of having three independent energy minimizations with respect to the 

orbital sizes for each deformation, the ratios C/A and E/A were



22

determined by the complete minimization process at zero deformation 

and then used for all other deformations. Thus, with the exception 

of the zero deformation calculation, only the minimization with 

respect to MAM is performed.

/hen different oscillator constants are used there is the 

added complication that one cannot use the method of Elliott and 

Skyrme (Elliott 1955) for subtracting out the centre of mass kinetic 

energy. Thus, the pertinent matrix elements have been worked out by 

hand and subtracted out explicitly in every case in which they occur.

The matrix elements involved in the energy calculation are 

the single particle kinetic energies, which are of the form 

<T . _ I I [< I • 1 ♦ n ♦ 1) h U

Z Zr

+ (n + 4) h ] (6-2)

and the interaction matrix elements which are given by equations 

(j-2) and (J-J) of Chapter 5. The relative importance of these 

matrix elements, with respect to deformation, is determined by the 

amount of Majorana exchange, m, in the force mixture. An investi

gation of the behaviour of the kinetic energies and the various 

matrix elements as a function of deformation has, therefore, been 

made in order to illustrate this.

Thi3 investigation is performed under the assumption of

p *
constant nuclear volumef a n « 0.06^, which is close to the 0 

equilibrium size. The kinetic energies are plotted in Fig.l and



the moat interesting interaction elements, (involving the Id * 

state which makes prolate deformations more favourable and the 

ld±2 state which makes oblate deformations more favourable), are 

shown in Figs.2 through

In a similar investigation for the lp-shell, Volkov, (V65), 

has shown that the direct matrix elements oppose the deformation 

favoured by the corresponding kinetic energies. The exchange 

elements, on the other hand, favour deformation and, although much 

smaller in magnitude than the corresponding direct elements, their 

energy gain is approximately the same as the corresponding energy 

loss of the latter. Thus, if the Majorana exchange parameter is 

small then, due to the predominance of the direct elements, deform

ation becomes unlikely and the nuclei tend to be badly overbound. 

As the value of m increases, so doe6 the relative number of exchange 

matrix elements and the likelihood of deformation. For m slightly 

larger than 0.5 the opposing influences of the direct and exchange 

elements tend to balance and hence equilibrium deformations of 

nuclei are determined by the kinetic energies. Increasing m beyond 

this point gives a decrease in binding, but greater deformations and 

deformation energy gains.



CHAPTER 7? DETAILS OF THE ENERGY COMPUTATIONS

As mentioned in Chapter 6 a ’'complete” minimization is 

performed only for zero deformation. This ia done by first calcul

ating the (diagonal) Hamiltonian matrix, given the occupancy of the 

s-d orbitals in terms of whether the available 24 spaces are or are 

not occupied. The matrix is evaluated for the given force parameters 

to yield an energy value £ (A, C, E) where A, C and E are the three

independent oscillator constants defined in Chapter 6. This energy ia 

then minimized in three independent calculations by applying a parabolic 

fit to each of

(a) £q (A, C. E), £o (A +Aa. C, E), (A ♦ 2 A A, C, E) 

to obtain the best value of A, say A^

(b) <£o <Ap C, E), £ (Ap C ♦ Ac, B), f/Ap C42Ac, S)

to obtain the best value of C, say C^, and

<c) £, (Ap Cp E), & (Ap Cp E ^E),5o (A1,C1 .£*2*0

to obtain the best value of E, say E^.

This gives the best fit value (5^ (A^, C^, ?°T zero ^e^orm~

ation.

The consistency of this process has been tested in several cases 

by repeating each step, but starting with the best fit value, 

£ ^Al*  ^1*  ^1^*  frOn! Preceeding calculation. These tests have 

shown the calculation to be consistent to within at least 1 in 2000.

24
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17 Although the teats were performed for the simple case of 0 , the

results were considered sufficiently positive to ignore adding an 

automatic consistency check to the program, which would be quite 

time consuming.

Once the best fit value of (S has been determined the ratios 

Cj/A^ and are calculated and kept constant for all other values

of deformation. Thus, only the single minimization (a) is performed 

for non-zero deformations.

With the energy calculated for nine values of deformation, 

such that -0.8 - 0,8 and including € »0, one obtains an equilibrium

energy curve from which the equilibrium value of S' can be determined.

The curves that have been calculated in this way are shown in

Figs. and described in the next chapter.



CHAPTER 8: EQUILIBRIUM &i£RGY CURVES FOR Q1?, Q1^.

F19 and He20

17The curves for 0 are divided into the two sets shown 

in Figs, 4a and Ma. The first set illustrates the case in which 

all orbitals have the same oscillator constant and in which the 

spin-orbit term ha6 been omitted from the force mixture. One 

thus obtains the required degeneracy, due to orbital symmetry, of 

the d±l and d±2 states at zero deformation. (The Id * state iso

slightly higher in energy due to its deviation from a true Id
o 

state).

17Since 0 has only one nucleon in the 2s-ld shell, these 

curves essentially show the single nucleon binding due to the field 

set up by, and interactions with, the core. One cannot generalize 

from these curves in order to predict what will happen in heavier 

2s-ld nuclei, but they do give some understanding, in conjunction 

with the curves of other 2s—Id nuclei, of the dynamics of these 

nuclei.

The s-state is relatively higher than predicted by experiment 

but this is typical of harmonic oscillator potentials.*

• The correct level ordering can be obtained with Woods-Saxon

wavefunctions - G. E. Brown, ibid.
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It is important to note that at this point, near the closed 

lp-shell, deformation characteristics are mainly influenced by the 016 

core. Only the 2bq and ld±2 states have significant deviations from 

sphericity which is attributable to the kinetic energy deformation

dependence for these orbitals (see Fig.l). It would thus not be

17unreasonable to treat 0 as a spherical nucleus as has been done in 

the past with good agreement with experiment.

In Fig.4b the d±l and d±2 oscillator constants have been 

varied independently and a spin-orbit term, with strength c > -4,00, 

has been added to the force mixture. One sees that the more symmetric 

d±l states gain more energy from the more complete minimization than 

do the d±2 states. This is most probably due to the symmetry of the 

d±l state, i.e. the lobes of the probability distribution for this 

state are distributed at 45 angles with respect to the z-axis and 

the x-y plane. As the size of the orbital is increased the nucleon’s 

kinetic energy is decreased, but at the same time, the orbital’s overlap 

with the core decreases which, in turn, decreases the energy of the 

nucleon and an eauilibrium orbital size must eventually be reached. 

Clearly, a more symmetric orbital will maintain a better overlap with 

the core as its size is increased and so will gain more relative binding 

energy.

It should be noted, in view of the energy gains of the d±l and 

d±2 states due to the more complete minimization that not allowing the 

Id * orbital to have an oscillator constant which is independent of 
o

that of the s-states may be a rather drastic approximation. However,
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as will be demonstrated in the analysis of the curves for heavier 

nuclei, this can be partially corrected for by allowing variation 

of the lpo and lp±l oscillator constants which are otherwise kept 

equal to the s-state constants.

18The curves for 0 are shown in Fig.5a and Jig.5b. The 

first set, in Fig,5a, result from the force described in Chapter 5 

but with no spin-orbit term. In this investigation only M*0 con

figurations have been considered and of these, calculations were 

performed only for those expected to be important in configuration 

mixing considerations.

The configurations in the first set are underbound by about

10 MeV (which is less than 1 MeV per particle).

The configuration (ldo’J 2 appeared, at first, to be too 

high in energy relative to the others. In order to understand the 

relative binding of the different configurations, a systematic 

variation of the lp and lp.-. oscillator constants has been performed 

for each configuration. It has been found that, whereas configurations 

not involving the ld^' orbital have the greatest binding for c7" = 1.0, 

(where is the parameter defined in Chapter 6), a value of ■ some

what greater than 1.0 is desirable for those configurations which do 

contain it. For 018 only thetldo’j 2 configuration has a really 

significant energy gain resulting from the variation and this is for 

a value of » 1.1J. The curve for this value °F ° has been drawn

with a dashed line in Flg.5a. As can be seen, the energy gain at 

equilibrium deformation is 2 MeV.
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Th® set of curves, in Fig.5b, has been calculated for a 

Majorana parameter m-O.7J rather than ■ . 0.75. Only the case 

G"■ 1.15 has been used for the 2 configuration in this set.

We see that the increase in binding resulting from the m 

value change is slightly more for th® Lid ’J 2 and L28 *J 2 
o o

configurations. However, this difference is probably not too 

significant.

If all configurations with configuration mixing are taken
1 O 

into account one would suspect from these graphs that 0 would be 

found to be a spherical nucleus. This would explain why reasonable 

agreement with experiment has been obtained for this nucleus using 

the Shell Model. However, the observation of anomalously large E-2 

transition rates and of three 0+ states below 6 MeV in seems to 

indicate that deformed configurations may be important as well.

(B64 and BG65).

20The discussion of Ne will show that these phenomena are 

probably due to two-particle excitations from the lp-orbitals to the 

Id orbital, Such excitations would lead to configurations with 
o

prolate deformations of the order € = 0.2 - 0.4.

The curves for F19 are shown in Fig. 6 . Once again we 

have considered only those configurations expected to be important 

in a configuration mixing calculation. Also onfe again, the
t

variation has been performed only for the prominent ldQ configuration 

giving the dashed curve in Jig,6.
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Although the binding is again too low with m=0.75, no 

attempt has been made to correct this since experience has shown (see
18 200 and Ne ) that no significant change in the shapes or relative 

spacings of the curves is obtained as a result of varying m.

These curves show the first definite prolate deformation

obtained among the 2s~ld nuclei. The most important configuration 

f *15is 1 ldQ J y which has an equilibrium deformation of € = 0,25 and a 

deformation energy gain of U.O MeV. The next lowest configuration, 

f ld^J (ld_1] , has a minimum approximately 8.7 MeV above the 

tldQ ] minimum. Since these configurations can only mix in the 

second order one can predict by analogy with results in the p-shell 

that the deformation energy gain which would be obtained in a complete 

calculation of the type performed by Volkov will be several MeV smaller. 

However, the shape of the curve near equilibrium deformation will 

be approximately that of the curve for the dominant configuration, 

i.e., the IId J configuration,
o

Ulis very definite deformation is just what one would expect to 

find for F1^ since good fits to the experimental level structure have been 

made using the collective, rotational, model (P57 and CD6$).

Brown (B64) has pointed out the importance of the VT odd parity 

state in F1^ which is only 110 keV above the ground state. To explain 

the existence of this state he has suggested the introduction of another 

deformed state by exciting a particle from the Nilsson level to put

20
four particles in the level. Once again, the Ne graph offers a 

similar explanation by excitation of a lp±1 particle to completely fill 

the Id orbitals.
o

The last two Figs., 7a and 7b, show the more important M»0
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configurations of No20. The first set of curves, (Fig.7a), has 

been calculated for the force Mixture of Chapter 5, but with no 

spin-orbit term. Once again, a CT"-.variation was performed for the 

important ldQ -dependent states, the results of which are plotted 

with dashed lines.

The most important result obtained is the very pronounced

r • i kdeformation of the -I^o -* configuration with an energy gain of

8 MeV. Appreciable mixing will occur only with the Lld’3
o

tld_jJ configuration, which is also quite deformed so that essentially 

the same deformation characteristics will result from a complete 

calculation of the type performed by Volkov. As in the case of ?9. 

the complete calculation would produce a curve with a smaller deform

ation energy gain, but with a shape, at equilibrium deformation, veryrmuch like that of the curve for the dominant Id configuration.
o

As already mentioned in the considerations of 0^ and 

the prolate gain of the ! Id* ■ configuration has repercussions 
o

16 20 1Q
throughout the first subshell, ffom 0 to He . In the case of r , 

r ’13there is an energy difference between the L ld^ state and the 

Ne20 -Id * ■ ** state of 16 MeV so that one-particle excitation from 
o

the p-shell is likely to be quite favourable. However, to obtain a 

binding of the yb~ level only 110 keV above the ground state it will 

probably be necessary to make allowance for an independent oscillator
t

constant variation for the Id orbital.
iR *

In the case of 0X two-particle excitation to the ldQ orbital
gQ f * 1 4 

shoflld be quite favourable as the energy difference between the Ne L ldQ J 

state and the O1^ • Id *J 2 state is approximately 25 MeV whereas the
o



binding energy per particle is only of the order of 6.0 to 7.0 MeV. 

To see which excitations are actually important it will be necessary 

to explicitly perform the calculations involved. These calculations 

are now being performed by D. J. Hughes. However, the graphs of this 

thesis suggest the qualitative functions to be expected.

For two particle and three-particle excitations have been

suggested by Brown to explain definite rotational levels whose presence 

has recently been experimentally confirmed (06*0,  Once again, it will 

be interesting to see whether complete calculations can reproduce this phenomena. 

It would appear from this investigation that a four-particle excitation 

would be more favourable than a two-particle one, but there is insufficient 

evidence to explicitly stipulate that this is the case. However, it 

is interesting to note that Bassichis and Ripka (B65) have found, as 

a result of a limited Hartree-Fock calculation, that four particle- 

four hole states do give rise to the desired rotational band while two- 

particle-two hole states give rise to badly mixed rotational bands, that 

lie too high in energy.

The second set of curves, in Fig. 7b» sh°w the four lowest 

states of Fig. 7a, recalculated for a Majorana parameter, m, equal to 

0.7^. This very small change in m gives a 10 MeV increase in binding 

but otherwise does not affect the curves.

It is important to note that only very small changes in the 

amount of Majorana exchange used in the force mixture is required to 

obtain a change in the binding energies of the order of 10 to 20 MeV.
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This essentially confirms the original assumption that ■ could be 

kept at the value used to obtain the correct O1^ binding as such 

changes cannot be considered significant in terms of relative gains 

and losses due to deformation.



CIIAPTEB 9> CONCLUSIONS

Harmonic oscillator wavefunctions in cylindrical coordinates 

have been found to form a representation especially suited for 

problems involving deformed nuclei. In applications to the 2s-ld shell 

it has been found that, while some formal difficulties, such as the 

independent variation of all oscillator constants, still require solution, 

several new areas have been opened for future investigation. Of these, 

two areas are of the most immediate interest. The first involves 

particle excitations from lp-shell nuclei into the 2s-ld shell, such 

as in C12 an<j o^, to attempt explanations of recent experimentally 

confirmed phenomena which cannot be predicted by conventional Shell 

Model calculations. The second involves the full extension of the 

calculations of Volkov and Hughes to the 2s-ld shell for which the 

present work has provided the necessary tools.

In the investigation of the 2s—Id shell it has been found that, 

except for possible excited states resulting from particle-hole states, 

0^ and 0^ are essentially spherical nuclei. On the other hand, 

and Ne20, have strong prolate deformations resulting from the progressively 

dominant influence of the Id orbital. Although the calculations
o

have not yet been extended beyond Ne it is expected that this prolateness 

wUl pass into pronounced oblate deformations as we proceed towards 

Mg2\ This prediction is based both on the studies of the lp-shell 

and on the studies made of the interaction matrix elements and the 

kinetic energies.
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It has been found that slight changes in the amount of 

Majorana exchange used in the force mixture is required to obtain 

good binding as we proceed from the closed shell at O1^ to the 

closed sub-shell in Ne20. Although not significant in this study, 

these slight changes probably will have much more importance when 

particle-hole excitations are studied. This is probably due to 

the absence of a tensor force in the force mixture. For closed shell 

nuclei the tensor force contributes nothing to the binding. However, 

away from the closed shell the Majorana admixture must be reduced to 

compensate for the tensor force contributions which are being ignored. 

This compensation will become really significant when particle excit

ations in are considered since then maintaining the same amount of 

exchange for the excited state as for the ground state can cause a 

discrepancy of 10 to 20 MeV in the energy of the excited state.



APPENDIX A: THE SOLUTION OF THE RADIAL PART OF THE

HARMONIC OSCILLATOR WAVE EQUATION

The equation which we wish to solve is

P 37 ‘ff’ ♦ (X-cx272- p p .0

' (A-l)

For J? >>0, equation (A-l) becomes

- o<2 p2 P.O
d p >

from which we immediately obtain, as an asymptotic solution of

(A-l) *|P2

P e

We, therefore, make the substitution

-SS/’2
p<p - e 2 f (p

which yields

t" -2o<f>t . ± t ♦ (/ -2«) t- pi
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Replacing Vo< f> by £ and f( J>) by F( ), this becomes

a?2 - ? a? * ? a< * (<X - 2 - ^5 > r . 0

(A-2)

Writing (A-2) in the standard form,

^2* p(?) £a.,C5)P.O,

we see that it possesses a regular point at ■ 0 since p(lj )o>i

and q(^j . We are thus led to solve (A-2) by the Method of

Froebenius, (B%), that is, by performing the substitution 

rt<> -<s ZL
p«o

Such a substitution leads to the indicial equation

(s2 - m2) a » 0 and hence we obtain s = I m I .
o

It is now convenient, rather than to continue the series 

solution, to define G(^), such that F(<^ ) = G(^), and to

again substitute for F in equation (A-2). We now obtain

i-2- . (1 (2 Iml + 1) - 2<) Sr ♦ ( £ - 2 - 2 1 " 1 )G(<) =° 
d^ < 5

(A-J)

By performing yet another change in variables by setting

x « <S’2 and g(x) = G(^), equation (A-$) becomes

X . ( < Im| ♦ 1) - x) ♦ | e(x) > 0
dx

(A-U)

\»
where n = r— - I m I - 1.

2
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In order that we may obtain a satisfactory wave function, 

the series solution of (A-4) must contain a finite number of terms. 

This can easily be shown to imply that n must be restricted to even 

integral values: 0, 2, \ , If this restriction is made

(A-4) has the form of the equation for the associated Laguerre
I ml 

polynomial (E5U) and hence we can write g(x) = L (x). The
2 

solution of (A-l) is then

^D2- z-l Iml Iml p
P(D) = e 2 (V©T ) La 

' 2

The normalization for P( p ) is easily obtained from the 

properties of the Laguerre polynomials, i.e.

f J (.) t M a. -
0 (A-5)



APPENDIX B: EXPLICIT CALCULATION OF THE DIRECT AND 

EXCHANGE MATRIX ELEMENTS OF A GAUSSIAN INTERACTION

The integrations which we wish to perforin are described 

by equations (3-2) and (3-3) Chapter 3. Both these integrals 

are handled in the same way and may in fact be treated as special 

cases of a single integral in which one has four different sets 

of quantum numbers and four different oscillator constants. This 

approach was in fact used for the z^ - z2 - integration but, for 

the sake of clarity, the direct and exchange elementm were worked 

out separately for the integration over p 0^, />2» However,

in the latter integration four different sets of quantum numbers 

were used for the direct element, thus enabling the reader to better 

visualize how the general integral could be performed. It is this 

part of the direct element which we will consider first.

Substituting from (2-5) and ignoring, for the present, the 

normalization factors, we have

x exp (-

(B-l)

39
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OX and/3 are the oscillator constants for the wavefunctions

of particles 1 and 2 respectively.

We can write
i(«^-«l)01

• . e
i(.5-«1)(01-02) i(e4-«2+«5-m1)02

and hence introduce a new variable of integration, X = (01“02)»
We can now integrate separately over 0, andX . The integration 

over 0- simply yields 2« the integration overX
2 2"^

(2» i(. -«^)/ cobZ
\ e ? e dA which yields

'0

£i(« -n^)*  -p •

• Erdelyi et al - Higher Transcendental Functions Vol.2 p.20

2" • (

We thus have

xl'^ <“/$ LX - T<f^»

«-2>
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Let us set y ■ -iand consider the integration over p

This has the form:

"fi * £ A>

- 4A’A dA «-?>

It is convenient at this point to let x = and substitute

in (B-5) to obtain

Vl' -C 1 5 

•m1 I. 1 -(°<4. ld)x
L^ (0<x) LJL(<Xx) • 2 dx (B-4)

%nl

The best way to proceed is to now express the Laguerre

polynomials as series, i.e.,

>i . 2 ay
)®i t-o <«!♦*)!

04 l'"5 («z) . ^5
S (S -)! ( *5 * s,:

Therefore, _ -.2 t+s

Bj ^“1- ^3 ICW*! *'-1l >S <*S ♦S' >U <-*»>
L ^“1 ’ L ^5 ^s-0 OiBj-*)! ( H’1 + t); Gtaye)!( ■j+Biltis;

- 2
- i C^+'b^1 )! ttaj+'Hji );J / / , Ojd^C-fXx)4*0

t®0 SaO
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Thus, substituting into (B-4) we have, 
rr~~ I 1 +-'m J

HP } uW)/‘'-i1 *S'’
fc2

e 2 [(^ ♦ la-J )» y~ t / 5 ctds(-<Xx)t+e dx

t^ s=0

Therefore M > [(^4- )• (linj +*a^ )•] 5

?. 2 4. *»*
t*® Sa0

A22 -(r+t+b)-(■ -« )-l - -■—■■ ■■■■■■
(<*♦ Bj) ? 1 . (>.W)

where r = 56 ( 1 a^1 + 1 a^ - ♦ a^.

We come now to the/’--integration which is , -

.f!. *«/**

■•X *•
(B-6)

iardelyi et al Tables of Integral Transforms Vol.l, p.185, No.JJ



Again, we make a substitution X - and so obtain,

</’«’ ♦ l.2' )! ♦ !.„! )• ] 2

/I ZL *1 1
i=0 j=0

where e^ and are defined in the same way as and dQ, and

a l«2’ l»4‘ 2
(r+s+t/*^ X X “

(^^^1 [k'*/2(2 -»k2) ] e1fj(-/^)i^xi->'j4,€

~i«o' ~j=o 7x2 <r*s+W)l (n^^)! Z‘

Substituting this into (B-6) we obtain

[<>4n2 + i.2'): ^’22

i»0 j=0 Z=0

^(2i+2j+2€w,-B1+l»2l dx

. I®!1-5' I,,,.,. >x>2
&n_ £n. r+s+t <.«

X^4i s . g^eifj^"^' (^(m^-n^+lm^+|n^| +2i+2j+2^+2))
/ , / , / , *2 Z J *(■,-», +1 ■,! +I.J +21+2J+2Z+2)

>o k*/2(2«A2)) 5 1 21 *

(B-7)



where g^ is defined similarly to e. and f .
Combinin (B-5) and (B-?) we then have that

m . (a.)2 S n *S

r^r 'mJ ♦ * mJ
( * r 2

x ~ ‘■()4ai <’4n2+lB2l ()6n3+l®51 )d

z z7 h .t a. (r+t«)! (<xt 4)
t-0 8=0 ’ 8 2

rt§+t g<e*ifj(-/3)i+j(^(»L5-«1+l»2l +lm4' +2i+2j+Z£))*

X -J /—• Z—J x? ^2 a \ m -nu +' m* +1 mJ +2i+2j+2€+2)
i-o j=o €«o (/«+ — - kVaa^+k2)) 51 2 4

which is the solution of the integral in (B-l).

It is now an easy task to include the normalization and so obtain

for the (/" ,0) part of the direct matrix element:

4/-5-1’ ♦S'*2 c^jS-S'*2

(ten,)! (ten^)! ('n^' + ’>4^)! (*n2+ten2>! (+ ten^)!('m^+ten^)!

2 —>&(' ns * +*«J +m,-Hn1+2t+2s+2)
X ) > ot as (-°<)tM (r»t«): (« ♦ f-) 1 } 5 1

t=0 s=0
ten- tenfc r+s+t „ 4,j . . , , ..

X—‘ gzeifi^’^^i (te(«5-»1+i«2 + “4 + 21 + * 2e^*
/ / / --------- T2 7 - te(mx-m1+lmJ +lmJ + 21+2J+2Z+2)
4^ 4-' 4^ 1- -k '***<k ” 5

(1-8)
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Th. next step ie to work out th. f>v 0V integration

of the exchange element which has the form:

«• X .■ *fl

”2^2 ’ ’"f^2 ^A+i"A

• • e e e

“* <’W1 - Vz ♦ k2flf2 cos <0l‘02))fldflf2df2A^2

(B-9)

wher e and/ ’are the oscillator constants which correspond to the 

quantum numbers (n^, m^) and (n^, n^), respectively.

We can write e

and one. again set (0^ - 0^) ■ ':i' and integrate over 02 and & , The 

integration over 0^ gives 2m and the integration over/'' is

£ ' k2f xf2 oo.^ e

as before.

Thus,

MX . (a.)2 ^<-2-1’41 J{,

. ?z

exp MW./W) (f>* .p2)> Pi ipjfa^z (B-10)



Ab in the case of the direct element we set y

x ■ P y and consider the integration over f 1 (x>*

«fl - f (k2
0

l.2l . -#(<X«Ak2)x .
Lfcn2 * ^2 (B“U)

•«J •■J f , i 1 2
Now, L (w x) L fa (Kx) „ If}^ + 1 b>2* )! ♦S' H J

, J* J* <■*>* (x)^___________________________
”s=o t-o (toys)! ( *■! ♦ ®)5 ()fcn2-t)l <*«2 + t)I s! tl 

and so (B-ll) becomes

«Fx . fi§ 2£L.

f J( )(kW) .■*<“^+1‘2)XX‘J!+l*2l) x“*‘ dx

J (■2-m1)
0 *

_ q2 ^5? ^2’ CX DX.

. [(J^ ♦,«1l )! (£n2 ♦'■2I )J Z_j Z-j "2^ (p+e+t)I 

(£->

.xp (A2/«°< k2,^’2"1’ (k^2(<x +A k2» <M2)

(r+s+t)

where r « $ ( I mJ +'°2 ** *2 + *!?•

We come now to the p2 -integration which is
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/ ;-** <«** *> «-'i «*&
(r+s+t) « ~

k2 - kVc^*/5* kZ))f 2

9 Pz df 2 (B-X?)

^•^ciin following the methods used for the direct element *

we have

MX/>2 - Lo^ ♦ 1^ )• (I6n2 ♦ <»2l)t]2 /**
p=0 q=0 i»0

-.P T ’ (_ IK2) ^m2 ®i^ ! +*m ' ♦ bj2 - + 2p + 2q «. 21)
2 0 2 2

4
exp (-#C*+/^+ k2 - -------- —----- r- ) x) dx

(<* +/?+ k2)
<

(r+s+t+a.-au. )• (k/|/2(0<+^+k2))
where £ * —-— >■■■ £■■ ••• ■■' ....... ■■■■ 1 — ■

(r+s+t-i)* («2 - ♦ i)! 1!

We thus obtain

....
) 2 11 id. pa0 qs0 i=0

^2 (n,2’*l) CXpDXqE1 j (^(Big-a^ Ja^1 Jrn^ + 2p + 2q ♦ 21 + 2))

(- —> <»> + £ t si _ k*/2(<xtA *i«^2p^q*2i*2)
2 2 £

(B-14)
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Combining (B-12) and (B-14) we have the solution to 

(B-9). It now only remains to include the normalization and so 

obtain for the (^, /) part of the exchange matrix element!

(k2)-2-l 2 "I 2 2 CX-1

fax. fa2,
( ^ + (Im2l+&n2)’ CI*  DXt (r+e+t): 2®+t

• W. N. Bailey, Jour. London Math. Soc. 2*>, 291, (19/(8)

, -&(l m.1 +| mJ 2» ♦ 2t ♦ 2) > / /

(#(■-> - m, ♦lm.1 4'mJ ♦ 2p ♦ 2q ♦ 2i))J 2P+q+i 
CX DX E ----- -------- =-------i----------------------- rrj----------- 1 -r-l-'T-T- ~-7s

(B-16)

We now come to the n^-«2-integration, which, as mentioned 

before, shall be treated in the most general form, for which both 

direct and exchange elements will be special cases. This integral is 

, . f J* . - C^)

•J*  mm**

H (^T mJ • 2 <S1 *2> H e7? H I ( *2) d^ d®2

Hg “j. 2

(B-17)

It is convenient to express H/ax) in terms of a polynomial with just

x as the argument. This may be done with the formula 

' a* ‘"2r (a2“l)r u (x)
H (ax) - m! Z__j _ x, ra-2r(
■ r-0 r*  (« - 2r)J



where ’%■’* means either tea or A(m-l), whichever is an integer.

Thus, in our case we have
A, m,-2r r

H ('/“b" «!>-«!!/ -------—---  H (^)
1 ~ 1 r' ("1 " 2r): 1-2 1

£n. n.-2e s
“d H </r.) - v X up <-v , ( >

“l 1 1 - 2.) : “i2*

bo that, H (-/ a t) a $/>” a,) • a,! ■ ! 2—i Z_.
"1 1 *1 1 a-0 rrf

n, -2s 8 «, -2r
t *2. ---- <£=12 1—----- <k^2---- H _ (m.) H _>(z,)
ml (i^ - 2m) I rl (-! - 2r) • n2“2s "l“2r

• *1! "1! / . / . ‘r \-2.C!i) B.-2r <’1)

8=0 r=0

where and 6 are constants with obvious definitions.
s r

Equation (B-17) may now be written

I . J’ h2> h,2</T b2)

f -.(atb)^2- £ x 6
J 1 1 s=0 r=0

\-2. <«1> *1
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The z^-integral is

Il - •** (*2/ertl2) *22 .J X, %

8=0 r=0

j Hni-2e (sl) H«1-2r(sl) exp ("*(< *1 " 9^) *) d^

where e = a + b.

We now let x ■ ^e+ k s_ and y = , s and so obtain

Ve + k * *
. y

8=0 r=0 8 r <• “1 de

/—2 -#(x-y)2 .
H (x/ve+*) e 7-SSr (B-19)
"1 *e+k

We now introduce He (y) such that,
B

H.(«l) . /” He 0*x«)
n n

and substitute into (B-19). Integrating, we then obtain
-)4(ek2/e¥k2)s22 (2#)^ -^b

11 ' • . .k2 ‘■•‘r

rtaG^-Z., V2r) ?
( 1 ’ ‘ 1 ,.k2 

i=0

21 H _ _ _.(k2 so/ ve+k2 /e + k2 - 2) (B-20)
n^+ffl^-2s-2r-2i <

• Erdelyi et al. Integral Transforms Vol.2 p.290 No.17
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We turn now to the Zg-integral which is

P- -44(c+d) « 2 -^(ek2/e+k2) s 2
* * 2

\ ( 77 “z’ ^^-Zs-Zr-Zl^2 V7^2 7* *-k2-2> dz2

(B-21)

2 
We let<X- (c + d) + -~

e+k

and - so that (B-21) becomes
e+k __

__  ofo?/'/««*2-2) di
J2 -J_ • % (^*2> K.2<7r'2)\«,1-2^2r-a

(B-22)

We make the further substitution,

2x = Jfe C*' sf and so obtain

C“ -a/ r- rr
I2 - J e Hn2 <2 x) H«2 « x) ^^-Ss-Sr-a

2 dx (b-25)

» <z7Ix) . ~
* ^sO *■

» n » / H (x>
“ 2* / , € n -2j?

£=0
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Similarly, H (2 /J x) may be written
"2

ZJ “1 %-ad<x) where kj is the appropriate

W 2

function of b>2i d and °^»
&(m, +«_ -2b-2t-21 )

H e^1' ) - ? (^-a-ar-a):
nl“l_2s_2r-2t'/o<Ve » k2—2 t! (n1™1-2e-2r-a.-a)1.

r^~ n^+ffl^-2s-2r-2i-2t t----------2------- -n^-m^+2s+2r+21+2t
(2\/ ) (v e + k - 2)

k /3 *
(------- ----- --------- - 1) H _ 5o _ (x)<X ( e+k2-2) 8^-28-21-21-21

£(n.-Ha -2e-2r-2i)
1 ( 2 -*<^-2^2i^2r)

“ / , (e+ k -2) \ Hni+ffli_2s-2r-2i-2t (x)

t-0

Substituting into (B-23) we obtain

A<n1+ffl1-2B-2r-2i)^2> -14(n. +m.-2s-2r-2i)
i2.21 L Z. ht ez <•* -2>

t=0 ZeO j«0

n2l m2! J • (x) H.2-2J (x) Hn1-Ha1-2r-26-2i-2t(x)

^(il+ffl,-2s-2r-21) JfcUg -£(n_ -hb- -2e-2r-2i

■A V V V
t-0

)4(i81-Hi1-2s-2r-2i-2t+n2-2^+«2-2j-l)

x
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|pm^*ap2»-2r-2i-2t+«i 2-2£-m2+2j+l

• Titchnar Jour. London Math. Soc. 2^, 15» (19^8)

2

(—> ■1+n--2e-2r-2i-2t+m_-2j-n_+2Z+l
I ---------------------------------- -2------------ ) (B-24)

2
p1 n2-2£+«2-2j-B1-n1+28+2r+2i+2t+l

2

Thus, combining (B-20) and (B-24) and including the normal

ization of the wavefunctions, we obtain for the z-integration of the

generalized matrix element

j. 2 <ai- »z; -x1 ✓ 6

VCX 8^0 8 r

min(n_-28,m_-2r)
V~’ nn-2a m,-2r , )$(n_+mn-2s-2r-2i+l)
/ , i: < \ ) ( \ ; (-1-J

HCnJ«1-28-2r-2i) pn$ fa*

2Z EE h^k;2
t«0 £-0 jwO

p’«1-M1-2B-2r-2i-2t+n2-2€-«2+2j+l

2

p’ m +n_ +m_-n5-2s-2r-2i-2t-2j+2€+l
x I ■ -- ------------------------------------------- > (B-26)

2

p’ n24®2-m1-n1-2€-2j+2s+2r+2i+2t+l

2



Note that in (B-26) ( P(]4))5 has been removed by cancellation 

with the normalization and hence we have written I in place of P.

We thus have in (B-26), (B-16) and (B-8) all the calculations 

necessary for the diagonal Slater determinant matrix elements. To 

satisfy the requirements of non—diagonal elements as well would merely 

involve the use of four different oscillator constants, instead of only 

two, in the derivation of (B-8).

It is of interest to note that were we to use a Cartesian

basis rather than a cylindrical one we would need to use only equation 

(B-26) three times, once each for the x-, y-, and z-integrations res

pectively. Sucfr a basis is, of course, unsuited to a problem such 

as the one considered in this thesis, because of the inherent cylindrical 

symmetry.

It should also be noted that when the oscillator constants are 

all equal there is a much more simple and elegant solution to the 

z^-Zg-part of the matrix elements. This solution is shown in Appendix C.



APPENDIX C: THE ^-^-PART OF THE MATRIX ELEMENTS FOR THE

CASE OF EQUAL OSCILIATOR CONSTANTS

We are faced with an integral of the fora

1 - £ £»•*** • x*** •*’X7* .2)

- JEU--- )2
• 2 T. 2 ( 7-^ d^

Ve first set H (y) » 2^ He (2^) and «> obtain,
n u

”a*22 * k^s^ACSa+k2) - s2 ^(n2-»2)

C* /---- ~ k2 2   /— - \_________ (v4a+k2 z.- y-—■—- s_) 
He (_______ »J He ( ^2a aJ da j • 1 V2a+k*

n2 2 b2 c. c

He. (/£ z,) He dzi (C_1)

“1 * 1
________ 2

Let X x7a. -k2 and y. *2 Md

substitute into (C-l) to obtain 2 2
C- -az/ ♦ ?z22/2(2»* )- - *2 /‘V^’ H% ( ,2)

r ^(z-y)2 »«!«!> He (rg_2
He* ( ^2a «2> dz2 j • 2 nx -a+k

/ «) r-(C“2)

HSV2a+k2
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But, the x-integtation yields

£# * <?> <?»

1 ( k~y) * <«-5>

We thus Must now consider the integral

C 2 -fc(n +n-2£) / _ 2 2 [~~2 2
\ • 2 8 y ^2 2 « > B </a,„t ■* ,)
J. 2V 2a +2ak2 ®2 J 2a2 + 2ak2

"l**! v2a + 2k2 V 2(a+ak2)

where we have set w = / ...... ■ 1 ■ y and used the fact that

He (y) « 2“^ H (2“*J).
“ n

(C-4) nay be integrated to obtain ••

(-1)^^ a* (T-^-p”2"2

V2a + 2k

. /2.W [^77~

z, 1±J2) (C-5>

• Erdelyi et al - Tables of Integral Transforms, Vol.2, p.291

•• W. N. Bailey - Jour. London Math. Soc. 2£, 295, (1948)
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a, b; V-1 (a) (b)
"llere 2r - -a * n2 ♦ «i * ”i - « “>« K , —f (e)‘ •” -

h-0 n

the hypergeometric series.

It should be noted that the integral is zero if

(n2 ♦ ®i “ 24) is odd so that r is always an integer.

Rearranging (C-5) and, with (C-3), substituting into (C-2)

we obtain
&(iL+m+n+«) ^^"l*nl^

* - M-- 2 2Z v. £ >
Va +ak 4-0 Z Z

.2 Ms(bl +n_ -24) £(n -Mn.-n, -m. +24)
X (-*-3) (-1) 2 2 1

2a+ k

- rw> «5*r?>** x </?g > “

x , (•>-*' iiid) (c-6)

£ - r 2k

In deriving (C-6) we have once again used unnormalized

wavefunctions. However, the normalization may be added in a straight

forward way as demonstrated in Appendix B,
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CAPTIONS FOR FIGURES

Figure 1: 'Die kinetic energies' deformation-dependence is plotted 

for a constant nuclear volume, ■ 0,064. KEDS is the kinetic
*

energy of the 2so state and REDO, KED1 and KED2 are the kinetic
i

energies of the do • d±l and d±2 states respectively.

Figures 2 and J: The deformation-dependence of typical interaction 

matrix elements is plotted for a constant nuclear volume, a^b => 0.064.

The elements labelled VADO and VAD2 are direct elements between Is , o
i

lp^l wave functions and ldQ and ld+2 wave functions respectively.

A equals s for the Is state, 0 for the lp state and 1 for the lp.. o o XX

state. The corresponding exchange elements are labelled with the same

name followed by an X,

Figures 4 to 7: The binding energy is plotted as a function of deformation 

for various configurations in the first subshell of the 2s-ld shell. 

The nucleus, configuration and value of the Majorana exchange parameter 

used are indicated on the diagrams in each case.
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