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Abstract

This thesis details the design, fabrication and measurement of an integrated optical 

Bragg grating filter, operating at a free space wavelength of 1532 nm, based on 

silicon-on-insulator (SOI) ridge waveguide.

Grating-based integrated devices can interact with optical signals in photonic 

integrated circuits (PIC) in such a way as to selectively transmit, reflect or detect the 

signals that are resonant with these devices. Channel filters can access one channel of 

a wavelength division multiplexed signal without disturbing the other channels and 

are therefore important elements in WDM communications. Resonator filters are 

attractive candidates because they can potentially realize the narrowest linewidth for a 

given device size.

Device models for this kind of device are developed by using the MATLAB 

programming language. Coupled mode theory (CMT) for filters, and the effective 

index method (EIM) which reduces a three dimensional (3D) analysis into two 

dimensions is used as modeling theoretical background. Computer modeling identifies 

the effect of device structure on the performance of the devices, and is also used to 

predict the output characteristics of this kind of device. This provides an 

understanding of device physics and operation, and a basis for comparison with 

experimental results.

A common fabrication sequence for integrated optical Bragg grating filters based 

on SOI ridge waveguides is designed, developed and demonstrated. This includes the 

photomask for optical ridged waveguide, interferometic lithography for grating 

pattern and high accuracy RIE etching.
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This work demonstrates Bragg grating as a technology for realizing PIC in SOI 

material system, and presents the technology required to design, fabricate, 

characterize, and model these integrated devices.

iii



Acknowledgements

First of all, I want to extend my sincere gratitude to my supervisor, Dr. Paul 

Jessop, for his time, advice, insight and guidance during my Master study.

I would like to thank Dr. Doug Bruce for the cleanroom help, advices in planning 

the fabrication and setting up testing experiments in the lab.

I also would like to give thanks to my other colleagues at the Center for 

Electronphotonic Materials & Devices: Dr. Weihong Jiang, Dr. Daizong Li for 

training grating processing and their suggestions and discussion for my research work; 

Dr. Zhilin Peng for his assistance in clean room. I am grateful to Andy Duft whom I 

often made overworked. Contributed greatly to his excellent job and experience for 

doing AFM measurements, I can present wonderful AFM images in my thesis which 

is very important in my research work. Here, I want to make my special thanks to 

Graham Pearson, one of my best friends, who helped me a lot in the lab. Also summer 

student, Grant, without his help in programming the software of Labview controlling 

system, the test and analysis work would have been much more difficult.

Finally, I would like to thank my parents for their many years support throughout 

all aspects of my life. Without their moral support, useful suggestions, constant 

encouragements and financial support, the completion of this work would not have 

been possible.



Contents

List of Figures vii

List of Tables ix

Chapterl. Introduction
1.1 Overview............................................................................................................................... 1
1.2 Structure of This Thesis..................................................................................................... 3
1.3 Introduction to Optical Waveguides.................................................................................4
1.4 TE and TM Modes in an Asymmetric Slab Waveguide................................................ 8

Chapter 2. SOI Optical Waveguides
2.1 Introduction to Silicon-On-Insulator (SOI)..................................................................... 14
2.2 Modeling Methods

2.2.1 The Effective Index Method.................................................................................... 16
2.2.2 The Beam Propagation Method...............................................................................19

Chapter 3 Theories and Analysis
3.1 Bragg Grating Basics.........................................................................................................25
3.2 A Perturbation Theory of Coupled Modes in Dielectric Optical Waveguides..........27
3.3 Periodic Waveguide............................................................................................................29
3.4 Coupled Mode Solutions................................................................................................... 34

Chapter 4 Grating Fabrication and Characterization
4.1 Grating Fabrication Techniques........................................................................................ 37
4.2 Characterization Technique

4.2.1 Atomic Force Microscopy (AFM) Characterization.............................................42
4.2.2 Diffraction Pattern Characterization.......................................................................44

Chapter 5 Experimental Results
5.1 Experimental Setup............................................................................................................. 47
5.2 Measurements......................................................................................................................48
5.3 Explanation of Higher Order Dips.................................................................................... 50
5.4 Polarization Dependence of SOI Rib Waveguides.........................................................52
5.5 Fiber PIC Coupling............................................................................................................. 53

Chapter 6 Computer Simulation and Optimization
6.1 Introduction.......................................................................................................................... 55
6.2 Variation of Grating Period...............................................................................................55
6.3 Variation of Grating Depth................................................................................................64
6.4 Variation of Grating Length...............................................................................................65
6.5 Device Optimization...........................................................................................................67

Chapter 7 Conclusions
7.1 Recommendations for Future Research..........................................................................69

v



Appendix A
1. Simulation of Transmission Spectrum of 2.2 um SOI Waveguide.................................72
2. Variation of Grating Depth on 2.2 um SOI Waveguide.................................................. 74

References...................................................................................................................................77

vi



List of Figures 

1.1 A Slab ( 8 / 8y = 0) Dielectric Waveguide ................................................. 7

1.2 The Field Distributions of Different Modes; Different Propagation Constants� ......... 8 
1.3 Dispersion Curves for the Fundamental Mode of Silicon on Insulator 

Waveguides, nl=l, n2=3.5, n3=1.45 ........................................................... 13 
2.1 Silicon-on-Insulator (SOI) Structure ............................................................ 15  
2.2 SOI Rib Waveguide Structure .................................................................... 15 
2.3 Cross Section of a Rib Waveguide Used With the EIM ..................................... 17 
2.4 Side View of Single Mode Profile ............................................................. .20 
2.5 Three Dimentional View of Single Mode Profile ............................................. 20 
2.6 Single Mode Characteristics of SOI Waveguides ............................................. 2 1  
2. 7 Single Mode Profile from IR CCD Camera .................................................... 22 
2.8 Higher Order Modes Profile .................................................................... .23 
2.9 Leaky Mode Characteristics of SOI Waveguides ............................................ 24 
3.1 Schematic Illustration of Bragg Reflection .................................................... 25  
3.2 A Corrugated Periodic Waveguide .............................................................. 32 
3.3 (upper) A Corrugated Section of a Dielectric Waveguide. The Incident and 

Reflected Intensities inside the Corrugated Section (lower) ............................... 36 
4.1 Illustration of Grating Fabrication System .................................................... 3 8 
4.2 Schematic Diagram of Good Developed, Overdeveloped, and 

Underdeveloped Grating .......................................................................... 41 
4.3 Schematic Illustration of AFM ................................................................ .43 
4.4 Schematic Diagram Illustrating the Problem with Performing Lithography 

over Topographic Features ....................................................................... 44 
4.5 AFM Image of Grating Profile ................................................................. .45 
4.6 AFM Image of SOI Rib Waveguide with Grating Profile on its Top ..................... .46 
5.1 Experimental Setup Used to Test Bragg Grating Integrated on SOI 

Waveguides .............................................. ; ......................................... 47 
5.2 (a) Measured TM Transmission Spectrum for Bragg Gratings ............................ .49

(b) Measured TE & TM Transmission Spectrum for Bragg Gratings ..................... .49 
5.3 Coupling Energy between the Forward and Backward Traveling Modes ................ 50 
5.4 Dispersion Diagram of SOI Waveguides ..................................................... .51 
6.1 Simulation of Transmission Spectrum of2.2 um SOI 

(a) Grating Pitch=220nm ................................................................ , ....... 55 
(b) Grating Pitch=221nm ........................................................................ 57 
( c) Grating Pitch=222nm ........................................................................ 57 
( d) Grating Pitch=22 3nm ........................................................................ 58 
(e) Grating Pitch=224nm ........................................................................ 58 
(f) Grating Pitch=225nm ......................................................................... 59 

6.2 Computer Diagram of Simulation ............................................................. 56 
6.3 Simulation of Transmission Spectrum of 2.5 um SOI 

(a) Grating Pitch=220nm ........................................................................ 60 

vii 



(b) Grating Pitch=221nm................................................................................................... 61
(c) Grating Pitch=222nm...................................................................................................61
(d) Grating Pitch=223nm...................................................................................................62
(e) Grating Pitch=224nm...................................................................................................62
(f) Grating Pitch=225nm.................................................................................................... 63

6.4 Variation of Grating Depth on 2.2 um SOI waveguide................................................. 64
6.5 Variation of Grating Length on 2.2 um SOI Waveguide

(a) Grating Length=0.5cm................................................................................................. 65
(b) Grating Length=lcm.................................................................................................... 66
(c) Grating Length= 1.5cm.................................................................................................66

7.1 3D view of a tunable filter.................................................................................................69
7.2 Grating Integrated Mach Zehnder Interferometer........................................................... 70

viii



List of Tables

Table 2-1 Effective Index Difference in Rib SOI Central (2.2um) and Side (2um)
Regions............................................................................................................ 18

Table 2-2 Effective Index Difference in Rib SOI Central (2.2um) and Side (lum)
Regions............................................................................................................ 18

Table 3-1 Bragg Periods A for Some Common Waveguide Materials, Assuming a
Free Space Operating Wavelength of 1550nm..........................................26

Table 4-1 Grating Fabrication Recipe............................................................................ 39



CHAPTER 1 INTRODUCTION

1.1 Overview

During the past decade, the world has seen an explosive growth in optical 

telecommunications, fueled in part by the rapid expansion of the Internet. Not only are 

optical telecommunications systems constantly improving in their performance and 

capacity, but the deployment of optical systems is spreading deeper into the consumer 

market. Fiber optic networks will be routed directly into neighborhoods, households, 

and even to the back of each computer. [1] In the more distant future, it is possible 

that even the signals bouncing between the different components inside the computer 

will be transmitted and received optically. As optical fiber gradually replaces copper 

cables, it will become necessary for many of the electronic network components to be 

replaced by equivalent optical components: splitters, filters, routers, and switches.

In order for these optical components to be compact, manufacturable, low cost, and 

integratable, it is highly desirable that they be fabricated on a planar surface. The 

concept of integrated optics has existed since 1969 when a complete work of 

waveguide analysis and design of waveguide bends and filters was presented [2], 

However, it is only recently that favorable conditions for the development of this 

technology have emerged. The bandwidth requirements for internet services and the 

promise of high bandwidth links to homes are driving the development of high data 

rate communication systems. Wavelength division multiplexing (WDM), which is the 

main approach to increasing the capacity of optical fibers, relies heavily on devices 

for efficient signal processing at the optical level, thus creating a need for low cost 

high performance integrated optical devices. With channel spacing of 100GHz and 

higher becoming standard for long haul communications, there is a requirement for 
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high performance filters to maintain channel separation. The wider the filter 

bandwidth, the less stringent are the tolerances for its center frequency and the less the 

sensitivity of filter performance to environmental changes.

The minimum size of integrated optics devices depends on the dielectric contrast 

of the layers used to form the components. High index contrast (HIC) waveguides 

have a high index core and a low index cladding. Examples of HIC material systems 

with the advantage that they are compatible with silicon ULSI processing are strip 

waveguide of silicon (Si) or silicon nitride (SijN^, on a silicon dioxide (SiC>2) 

substrate with air or SiC>2 cladding. The index differences of 2-2.5 and 0.5-1 , 

respectively are much larger than those of typical wave guiding systems, such as 

optical fibers or doped silica waveguides, which have index differences as small as 

0.01. HIC waveguides are characterized by stronger light confinement. Thus, abrupt 

changes in the light flow can be achieved very efficiently in a very small area, and 

HIC waveguides have much smaller cross section dimensions than the above 

mentioned ordinary fiber wave guiding systems, which have cross sectional 

dimensions on the order of 1 Ox 10pm2. They also tend to have stronger polarization 

dependence, greater scattering loss caused by surface roughness, and connection to 

fibers is much more difficult. Of great importance is also the ability to couple light 

efficiently into and out of the photonic integrated circuits (PIC), which is a very 

challenging task due to the large mode mismatch between fibers and integrated 

waveguides. Moreover, because of the miniature size of such devices, even a high 

dB/cm loss corresponds to a low overall loss, allowing the dense integration of optical 

devices on a chip. [3]

The devices examined in this thesis are Bragg gratings for wavelength filtering 

based on silicon on insulator (SOI) material system. Such devices are essential 
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components of photonic integrated circuits (PIC). This thesis not only describes the 

fabrication and characterization of an integrated Bragg grating on silicon on insulator 

ridge waveguide, but also demonstrates the computer simulation transmission spectra 

of this promising new wavelength filtering device. To our knowledge, this is the first 

time to use computer simulation to predict resonance frequency of Bragg grating filter, 

and the experimental results can well agree with the computer simulation.

1.2 Structure of This Thesis

Chapter 1 of this thesis presents the theory relevant to optical waveguides. Mode 

solutions for asymmetric waveguides are presented and discussed. Chapter 2 describes 

the silicon on insulator (SOI) material system. Single mode conditions and 

calculations for SOI waveguides are discussed and explained. Modeling methods such 

as effective index method (EIM) and beam propagation method (BPM) are reviewed. 

Chapter 3 discusses the coupled mode theory (CMT) and derives the equation for 

coupling coefficient AT, which is very important to analyze energy exchange between 

two modes. Detailed grating fabrication techniques are presented in chapter 4, and a 

specific experimental fabrication recipe for Bragg grating on SOI is also discussed. 

Characterization techniques and personal skills are also reported in this chapter. 

Chapter 5 presents experimental setup and results illustrating the filter performance. 

Higher order dips and loss mechanisms are also discussed. Chapter 6 utilizes 

computer simulation to explore all the grating parameters and comes up with 

optimization designs. Chapter 7 summarizes the results drawn from this project, and 

briefly discusses future research.
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1.3 Introduction to Optical Waveguides

Optical waveguides connect various parts of an optical circuit, just as metallic 

strips connect various electrical components on an integrated circuit. However, optical 

waves travel in the waveguide in distinct optical modes, with spatial distribution of 

optical energy that is confined to the area near the waveguide core. This waveguide is 

produced by varying the refractive index of the material such that the core has a 

higher index than the cladding layers on either side. A brief review of the physics of 

wave propagation in materials is given here, and a more detailed derivation can be 

found in [4].

The behavior of electromagnetic waves in matter can be determined by a set of 

partial differential equation called Maxwell’s equations,

(1-1)

„ rt -t d DV x H = J+------ (1.2)
dt

V D = p (1.3)

v-i? = o (i.4)

Where the above quantities are defined as follows:

->
E the electric field intensity, in V/m;

—>

D the electric displacement vector, in Coul/m2;

H the magnetic field intensity, in A/m;
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B the magnetic displacement vector, in Wb/m2;

J the electric current density, in A/m2;

p the electric charge density, in Coul/m3 .

These equations are usually combined with the following constitutive relations,

D = s E (1.5)

B = p H (1.6)

where £ and p are the dielectric constant and magnetic permeability of the medium 

respectively, and we have assumed homogeneous, linear and isotropic media. In 

vacuum £ and p are denoted as£a andpo, which are scalar constants.

Taking the curl of both sides of Eq. (1.1), combining with Eq. (1.2), (1.5), and 

-> -> -»
(1.6), and using the vector triple identity V X V X E = V(V • E} — V2 E, we can 

obtain wave equation,

V2E(r) + £>2(r)E(r) = 0 (1.7)

where k2 = Ct)2 p£0 = (2,711 A)2 and n = -^£ / £0 is the index of refraction. The 

solutions are subject to the continuity of the tangential components of E and H at 

the dielectric interfaces. In Eq. (1.7) die form of the field is taken as

£'(r,0 = ^(x,^)e/M) (1.8)

/3 is defined as the propagation constant, which is the z component of the local 

propagation vector, and a more intuitive quantity to work with is the effective index, 

N, which is defined as /? = Nk0 .So that (1.7) becomes
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^dx2
(1-9)

The basic features of the behavior of dielectric waveguides can be elucidated with 

the help of a slab (planar) model in which no variation exists in one (for example, y) 

dimension. [5] Channel waveguides, in which the waveguide dimensions are finite in 

both the x and y directions, approach the behavior of the planar guide when one 

dimension is considerably larger than the other. Even when this is not the case, most 

of the phenomena of interest are only modified in a simple quantitative way when 

going from a planar to a channel waveguide. Because of the immense mathematical 

simplification that results, we will limit most of the following treatment to planar 

waveguides such as the one shown in the figure 1-1, in which nl, n2, and n3 are the 

refractive index of cladding layer, core layer and substrate layer respectively. 

Putting d / dy = 0 in (1.9) and writing it separately in regions I, II, and ID yields 

Region I

Region II

Region HI

E(x) + (k2n2 - fi2)E(x) = 0 (1.10a)

E(x) + (k2n2 - fi2)E(x) = 0 (1.10b)

E(x) + (k2n2 - fi2)E(x) = Q (1.10c)

where E(x) is the electrical field at the cross section of slab waveguide . In order to 

obtain stable electrical field solution propagating along z direction without radiating, 

which is defined as guided mode in Region II, we should specify kQH3 < /3 < kQfl2,

H2 > ,which means the inner layer possesses the highest index of refraction.

Thus, the solution is sinusoidal in region n, but is exponential in regions I and HI.

6



nl
x

I

Figure 1-1 A Slab (6 / dy — 0) Dielectric Waveguide

Two such solutions are shown in Figure l-2(b) and (c). The energy carried by these 

modes is confined to the vicinity of the guiding layer II.

As we consider the propagation constant in the propagation

regime kofl3 < /3 < kon2 , the allowed values /3 are discrete. The number of 

confined modes depends on the width t, the frequency, and the indices of 

refraction , U2, tl3. At a given wavelength the number of confined modes increases 

from 0 with increasing t. At some t, the mode TEi becomes confined. Further 

increases in t will allow TE2 to exist as well, and so on. Other situations are 

considered as radiation modes, like Figure l-2(d), for whichkjlx < /3 < kQH3, and 

exponential behavior in region I, sinusoidal behavior in regions II and III. 

ForO < /3 < konx, as in Figure 1-2 (e), solution becomes sinusoidal in all three 

regions, and will quickly radiate into free space. Figure 1-2 (a) is just a solution for Eq 

(1.10), so it is not physically realizable and thus does not correspond to a real wave.
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D

Figure 1-2 The Field Distributions of Different Modes; Different Propagation

Constants p.

1.4 TE and TM Modes in an Asymmetric Slab Waveguide [5]

Since this thesis deals with asymmetric (nx ) slab waveguide, it is useful to 

derive the mode solution for the general asymmetric slab waveguide shown in Figure 

1-1. We limit the derivation to the guided modes that according to Figure 1-2 have 

propagation constants /3

kon2<p <kQn2

where, to be specific, n3 >n2.

TE Mode

The field component Ey of the TE modes obeys the wave equation

V2Eyi(x,y,z) + ^2^on2Eyi=O i=l,2,3 (1.11-1)

8



where Region I refers to the layer and the (real) electric field is given by

Eyi (x, y, z, t) = Re[E z (x, y, z)eiM ]

For waves propagating along the z direction and for d I Oy =0 we have

Eyi^,y,z) = Ey{x)eipz (1-11-2)

The transverse function E (x) is taken as

c

Cexp(-gx)

Ey-< C(cosxh-^sinxh)

C(costh+—sin/A) exp[p(x+/)]
I h

0 < x < oo

-t<x<Q

- 00 < x < -t

(1.11-3)

Applying (1.11-1) to (1.11-3) results in

h = (nX-^T 
q = ^-nXT 
p = ^-n^T (1.11-4)

The acceptable solutions for E and Hz = (i I a)fl)(dE / 5x) should be 

continuous at both x=0 and x=-t. The choice of coefficients in (1.11-3) is such as to 

make Ey continuous at both interfaces as well as (3Ey I dx) at x=0. By imposing 

the continuity requirement on dEy / dx at x=-t, we get from (1.11-3)

hsinth-qcosth = p(cos th +—sin th) (i.n-5)
h

9



The constant, C, appearing in (1.11-3) is arbitrary, yet for many applications, 

especially those in which propagation and exchange of power involve more than one 

mode, it is advantageous to define C in such a way that it is simply related to total 

power in the mode. We choose C so that the field Ey(x) in (1.11-3) corresponds to a 

power flow of one watt (per unit width in y direction) in the mode. A mode for which 

Ey=AEy(x) will thus correspond to a power flow of |y4| watts/m. The normalization 

condition becomes

(1.11-6)

where the symbol m denotes the rath confined TE mode and Hx 'dEy I dz, .

Using (1.11-3) in (1.11-6) leads, after substantial but straightforward calculation,

cto
_________________ (fif-l_________________ x 1 / 2

m (1.11-7)

Since the modes E[™} are orthogonal, we have

[ EwE(m}dx =J-m y y

1(DL1 c
-------- O, (1.11-8)

TM Modes

The derivation of the confined TM modes is similar in principle to that of the TE

modes. The field components are

E,(x,z,i) = — = A// (1.11-9)
G)£ OZ G)£
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EXx,z,t) = —
G)£ OX

The transverse function, Hy(x), is taken as

Hy(x) = \

h- C(— cos th + sin r/z)e/’(x+') 
q x<-t

C(-—cosxh + sinxh)
q

--Ceqx
. q

-t < X < 0
(1.11-10)

X>0

The continuity of Hy and Ez at the two interfaces leads, in a manner similar to

(1.11-5), to the eigenvalue equation

K-pq

where

(1.11-11)

The normalization constant, C, is chosen so that the field represented by (1.11-9)

and (1.11-10) carries one watt per unit width in the y direction

2
f H E'dx = — ^ EEldx = \

Carrying out the integration using (1.11-10) gives

Wo

P t trFm eff

11



t q2+h2 1-------------+
q2+h2

p2 + h2 1 . 
p2 + h2 <P

(1.11-13)

Normalized frequency V and the normalized guide index b are defined as

v = k0t^n2-n2 (1-12)

and b = (N2-n2)/(n2-n2̂  (1.13)

arE =(n2-n2)/(n22-n2) (1.14) for TE modes

TM

( \23. ZkzZL (1.15) for TM modesa

in asymmetry waveguides. Using definitions (1.12) to (1.15), the eigenvalue equation 

(1.11-5) can be rewritten in the normalized form

= (m + l)?r + tan'1 ^b/(1-b) + tan'1 y](b + a)/(I-b) (1.16) 

where m=0, 1,2,3... denotes the mode number. A numerical evaluation for the above 

expression yields a normalized dispersion curve as presented in Figure 1-3. [6] In 

general a mode becomes confined above a certain (cutoff) value of t/X. At the cutoff 

value p=0, and the mode extends to x=-co. For increasing values of t/X, p>0, and the 

mode becomes increasingly confined to layer 2. This is reflected in the effective mode 

index 0A/2jc that, at cutoff, is equal to n3, and which, for large t/X, approaches n2.

12



Dispersion curves of SOI slab waveguides
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Figure 1-3 Dispersion Curves for the Fundamental Mode of Silicon on Insulator

Waveguides, nl=l, n2=3.5, n3=1.45
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CHAPTER 2 SOI OPTICAL WAVEGUIDES

2.1 Introduction to Silicon-On-Insulator (SOI)

Silicon-on-insulator (SOI) is a critical material for future photonic-integrated 

circuits (PIC). The SOI structure possesses unique optical properties owing to the 

large refractive index difference between silicon (n=3.5) and SiO2 (n=1.45). This has 

led to the investigation of the optical properties of SOI waveguides and the 

development of a number of photonic integrated circuits (PIC’s). Excellent optical 

properties as well as true compatibility with silicon CMOS integrated circuit 

technology are highly promising for future low-cost photonic integrated circuits. [7] 

In my research, the SOI wafers are purchased from IBIS Technology Inc. These SOI 

wafers are fabricated by SIMOX technology [8] [22], which means Separation by 

Implanted Oxygen technology uses implantation of oxygen at high doses (~1018 cm'3) 

followed by a high temperature anneal to form a buried SiO2 layer in a silicon wafer. 

Figure 2-1 is the basic configuration of SOI structure. In this thesis, the SOI wafers 

that were used had layer thickness of: 2.2um/1.09um/675um for Si/SKVSi 

respectively. I used 2.2um SOI because, in thin top silicon layer, gratings will 

compose strong perturbation of transmission waves.

Single mode propagation with low loss is a prerequisite for the operation of most 

PIC’s. Conventional wisdom suggests that the large refractive index step in SOI 

prevents single mode propagation unless the waveguide has submicrometer transverse 

dimensions, in which case it will have extremely poor coupling efficiency to optical 

fibers. However, as shown by Soref and Pogossian [9] [10], single mode propagation 

is possible in SOI waveguides with transverse dimensions that are large compared to 

the optical wavelength in the material. They proposed a simple relation, equation (2.1) 

14



between the width and the etch depth of rib waveguides for the single mode 

propagation.

1 1.45 3.5 n

Figure 2-1 Silicon-on-Insulator (SOI) Structure

t < r/(l-r2)1/2 (2.1)

where r = r = h^lH^, = h + q, Heff = H + q,

q = rJ{k^-nT} + rJ{k^-nX},
weff-w + 2yc/{k(n2-n2y/2} , nf, ns, and nc are refractive indices of the 

guiding region, the substrate and the air respectively as shown in Figure 2-2.

s = 1 for TE modes and (n<;jS/nf)2 for TM modes, k=27i/X, X is the wavelength.

W
<------------- >

nC
I

—5
H
________

"s

Figure 2-2 SOI Rib Waveguide Structure 
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This interesting phenomenon occurs in rib waveguide. While the rib waveguide may 

be multimode, the higher order modes “leak” into the surrounding slab regions during 

propagation resulting in an effective single mode propagation in the rib region [11], 

which will be illustrated in beam propagation method in the next section.

2.2 Modeling Methods

There are many different methods to simulate and analyze integrated optic devices. 

This thesis uses primarily the effective index method (EIM) and the beam propagation 

method (BPM). The EIM is usually used for calculating the propagation constants of 

the guided modes, and BPM is used to simulate the transmission of light through a 

photonic device.

2.2.1 The Effective Index Method [12]

The effective index method is a useful technique to find the propagation constant 

of a dielectric waveguide. As an example, a waveguide structure such as illustrated in 

Figure 2-2(a) can be separated into three different regions as Figure 2-2(b). We first 

solve a slab waveguide problem with refractive index nf inside and nc, ns out side the 

waveguide. The eigenequation for the Ey component will be that of the TE modes of a 

slab guide. We can use (1.12) to calculate the normalized frequency, in which t is the 

thickness H or 1 of each region respectively.

Combining (1.12) to (1.14) these parameters into the eigenvalue equation for the 

TE modes, we can obtain

V Jl-b = (m + l)/r + tan

16



where m=0,l,2,.. ..This can be used to solve the effective indices Nf and Ni. When the 

effective index in each region is determined, we can determine the effective index of 

the rib waveguide by calculating the three layers slab waveguide horizontally with the 

waveguide width W, as Figure 2-3 (c).

(a) The cross section of ridge waveguide

(b) Slab waveguide in the vertical direction

(c) Slab waveguide in lateral direction

"1 Hl
W

Figure 2-3 Cross Section of a Rib Waveguide Used With the EIM

This method can be easily used by computer algorithms. In my research, MATLAB 

programs are used to calculate the effective index of the fundamental mode of a rib 

SOI waveguide. I use 4um wide SOI rib and an etch depth of 0.2 um. From the Table 

2-1, we can see all the higher order modes in the central region have effective index 

smaller than the effective index of the lowest order mode in the side regions, which 

means these higher order modes will not satisfy the total internal reflection, and will 

quickly radiate into side region. By restricting the ribs etch depth to values for which 

this condition is met, we can achieve single mode operation of rib SOI waveguides.
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Mode Number Neff (I): Mode Neff in Central Region

Neff (II): Mode Neff in Side Region

Table 2-1 Effective Index Difference in Rib SOI Central (2.2um) and Side (2um)

Regions

However, if the rib etch depth is as deep as lum, mode 1 in the central region will 

have larger effective index than the fundamental mode in the side region, which 

means mode 1 will also be confined in the central region resulting in multimode 

operation. Since the side region is etched down to 1.2um thick, there are only 4 modes 

supported and other higher order modes will be cutoff. Table 2-2 presents this case as 

an opposite example comparing to Table 2-1.
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2.8
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■ Neff(l)
• Neff(ll)

Neff (I): Mode Neff in Central Region

Neff(l) Neff(ll)
Mode 0 3.48444483 3.43481231
Mode 1 3.43739931 3.23308878
Mode 2 3.35774947 2.87316582
Mode 3 3.24326245 2.30447149

Neff (II): Mode Neff in Side Region

o 3

Mode Number

Table 2-2 Effective Index Difference in Rib SOI Central (2.2um) and Side

(1.2um) Regions
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2.2.2 The Beam Propagation Method

The BPM method is simple in implementation and extremely versatile. It allows 

simulation of the electric field as light travels through a waveguide structure, and 

includes higher order and radiation mode effects. The basic idea of BPM is 

propagating an input light beam over a very small distance through homogeneous 

media and correcting the index profile changes (i.e. geometry changes) in the 

propagation direction, during this distance to simulate mode propagation.

I use Optiwave BPM [13] [14] and Apollo Photonics [15] software to simulate the 

single mode condition of rib SOI waveguide. Figure 2-4 and 2-5 are the computer 

simulation pictures of fundamental mode profile in the rib waveguides, and 3 

dimensional image of fundamental mode which demonstrate the mode intensity 

distribution. We find the 4 um wide, 0.2um deep rib SOI waveguide is truly single 

mode as shown in Figure 2-6. Figure 2-7 is the CCD camera photo of single mode 

image, from this photo we can observe that only one bright light spot in the whole 

image which is the experimental proof of single mode operation.

Furthermore, if we intentionally couple higher order modes as presented in Figure 

2-8 into this kind of structure, all the higher order modes will quickly leak away into 

the side region, which is illustrated in Figure 2-9.
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Figure 2-4 Side View of Single Mode Profile

Figure 2-5 Three Dimentional View of Single Mode Profile
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Figure 2-7 Single Mode Profile from IR CCD Camera

22



Figure 2-8 Higher Order Mode Profiles
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CHAPTER 3 Theories and Analysis

3.1 Bragg Grating Basics

The Bragg grating may be though of as a one dimensional diffraction grating 

which diffracts light from the forward traveling mode into the backward traveling 

mode. The condition for diffraction into the reverse traveling mode is called the Bragg 

condition. In order for light to be efficiently diffracted in the opposite direction, the 

reflections from subsequent periods of the grating must interfere constructively. The 

principle of reflection from a Bragg grating in a waveguide structure is illustrated 

schematically in Figure 3-1. This means that the Bragg period A must be related to 

the free space wavelength A o by:

A = (3.1)

where N is the effective index of refraction of the structure, which depends on the 

materials comprising the waveguide. Zo / N is the wavelength inside of the dielectric 

material. Because the period of the grating is precisely half of the wavelength of light 

in the waveguide, the reflections from subsequent teeth in the grating generate 

constructive interference.

Figure 3-1 Schematic Illustration of Bragg Reflection
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Generally speaking, for fiber optic networks the desired operating wavelength is 

approximately 1550 nm. Table 3-1 lists the appropriate Bragg grating periods for a 

few common waveguide materials.

Eq (3.1) assumes that the phase accumulation between reflections from adjacent 

grating teeth is precisely half wavelength. This is the condition for a first order Bragg 

grating. It is also possible to utilize higher order diffraction to couple to the forward 

and backward modes. The more general condition for constructive interference is that 

the phase accumulation between subsequent reflections must be an integral number of 

wavelengths. The Bragg condition for an Lth order Bragg grating is:

A =
2A

(3-2)

In this work, we consider only first-order (L=l) Bragg gratings, because the 

diffraction efficiency which means the contradirectional coupling strength is generally 

strongest for the first diffracted order. Nevertheless, some people build higher order 

Bragg gratings simply because the required grating pitch is substantially larger, which 

simplifies the fabrication process.

Table 3-1 Bragg Periods A for Some Common Waveguide Materials, Assuming a

Material Si InP/lnGaAsP SiO2
n (refractive index) 3.5 3.17 1.46

Bragg grating period 220nm 245nm 535nm

Free Space Operating Wavelength of 1550nm
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3.2 A Perturbation Theory of Coupled Modes in Dielectric Optical Waveguides

[5] [16] [17]

In chapter 2, we obtained solutions for the confined modes supported by a slab 

dielectric waveguide. An increasingly large number of experiments and devices 

involve coupling between such modes. A typical example is coupling of forward-to- 

backward modes by means of a corrugation in one of the waveguide interface. In this 

segment, such coupling will be described.

We start with the wave equation in the form

x d2E(r,t} d2 .^E(r,t) = ns„—+ P(r,t) (3.3)
ot ot

The total medium polarization can be taken as the sum

P{r, t) = Po (r, t) + (r, t) (3.4)

where P0(r,t) = |>(r) - (35)

is the polarization induced by E(r, t) in the unperturbed waveguide whose dielectric 

constant is e(r). The perturbation polarization Ppert(r, t) is then defined by (3.4) and 

represents any deviation of the polarization from that of the unperturbed waveguide. 

Using (3.4) and (3.5) in (3.3) gives

= (3.6)

and similar expressions for Ex and Ez.

Ignoring the possibility of coupling to the continuum of radiation modes, we 

expand the total field in the “perturbed” waveguide as a superposition of confined 

modes

£ (r;r) = iz^(Z)£;,(x)ew--> +c.c. (3.7)
2 m
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where m indicates the mth discrete eigenmode which satisfies

- p: )e';' w+(x) = 0 (3.8)
ox

where e(r) =eon (r).

Substitution of (3.7) in (3.6) leads to

d2E(m}
-—^- + a)2^(r)E^eifS' 

ox
+ ^-^)E(m',eip^ + c.c 

dz2 y

(3-9)

And we not that in view of (3.8) the sum of the first three terms in (3.9) is zero. We 

assume “slow” variation so that

dA_____ m

dz

and obtain from (3.9)

= (3.10)” dz ot

And take the product of (3.10) with E^ (x) and integrate from - to . The result,

using (1.11-10), is

Us ^'(<«+Az)_ M z e‘O»-p,z)__

dz dz

(311)
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The presence of two terms on the left side of (3.11) is due to the fact that the 

summation over m in (3.10) contains two terms involving (x) for each value 

of m, one wave designated as (-), traveling in the -z direction, and the other (+), 

traveling in the +z direction.

Equation (3.11) can be used to treat a large variety of mode interactions, and in my 

experiment, I am most concerned with periodic waveguides.

3.3 Periodic Waveguide

Consider a periodic dielectric waveguide in which the periodicity is due to a 

corrugation of one of the interfaces as shown in Figure 3-1. Such periodic waveguides 

are used for optical filtering.

The Corrugation is described by the dielectric perturbation Az>(f) = £’qAw2(t) 

such that the total dielectric constant is

s (r) = s(r) + As(f)

The perturbation polarization is from (3.2) and (3.3)

= Af (r)£(r,0 = &n2(r)s0E(r,t) (3.12)

Since Aft2(f) is a scalar, it follows from (3.6) that the corrugation couples only 

TE to TE modes and TM to TM, but not TE to TM.

To be specific, consider TE mode propagation. Using (3.7) in (3.12) gives

+c.c.] (3.13)

which, when used in (1.11-9), leads to

dz dz
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(3-14)
= -~-^7XK ^kn\x,z)E\m\x)dxei(M-p^ +c.c]

4ty dt *

The right side of (3.14) may be considered as a source wave term driving the forward 

wave A<+> exp[z(tf?f —/? z)] and the backward wave A^ exp[z(zw/ + flz)] 

on the left side. In order for a wave to be driven by a source, both source wave and 

driven wave must have the same frequency so that the interaction will not average out 

to zero over a long time (long compared to a period of their difference frequency). 

Equally important: Both source and driven wave need to have nearly the same phase 

dependence exp (ipz) so that the interaction does not average out to zero with distance 

of propagation z. If, for example, it is desired that the forward wave As(+)exp[i(®t-[3z)] 

be excited, it is necessary that at least one term on the right side of (3.14), say the /th 

one, vary as exp[i(®t-Pz)] with P= ps. If no other terms on the right side of (3.14) 

satisfy this condition, we simplify the equation by keeping only the forward wave on 

the left side and /th on the right. We describe this situation by saying that the 

perturbation An2(x, z) couples the forward (+s) mode to the /th mode and vice versa.

To be specific, let us assume that the period A n the z direction of the perturbation 

An2(x,z) is so chosen that lit/te ps for some integer 1. We can expand An2(x, z) of a 

square wave perturbation as a Fourier series

Azz2(x,z) = Azz2(x) Ja^,(2^/A)z (3.15)
g=-oo

The right side of (3.14) now contains a term (q=l, m=s) proportional to

Asl exp[i(2/7t/A-ps)z]. But--------- p ~ /? , so that this term is capable of driving
A

synchronously the amplitude As(’)exp(ipsz) on the left side of (3.14) with the result
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i^Q
4

4(+) L^n\x)[E(;\x)}2 dxate‘ QA6)

The coupling between the backward As( ) and the forward As(+) by the /th harmonic of

2
An (x,z) can thus be described by

(3.17)

and reciprocally

where

(3.18)

(319>A

We note that the total power carried by both modes is conserved, since

|-[|AT-|AT] = 0 (3.20)

az

Let us consider the specific “square-wave” corrugation of figure 3-2. In this case the 

periodicity (period = A) in the z direction is accounted for by taking
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z = 1.: - 0
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Guiding layer n2

x - 0

x - —a

X - — t

Substrate "3

Figure 3-2 A Corrugated Periodic Waveguide

1 2 1
Aw2(x,z) = Aw2(x)[- + — (sinz7z + -sin3/7z + ...)]

2 71

= An2(x)£a/e"'fe
/

1=1, 3,5... (3.21)

where

so that

A«2(x) = <
-rz<x<0
elsewhere

(3.22)

°<=\

— i
7d
0

2n

I -odd
I = even

0

1 = 0
7

and for 1 odd we obtain from (3.18) and (3.21)
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k = f kn\x)[E{s\x)}2dx (3.23)

In practice the period A is chosen so that, for some particular 1, A/? 0 . We note

that for A/? = 0

A(s) 

g

2
(3-24)

where — 271 / j3s is the guide wavelength of the 5th mode.

We can now use the field expansion (1.11-3) plus (3.22) to perform the integration

of (3.23)

£ A/r ((x)]’ = (n’ - n]) £ [£« (x)]’ dx

= (n,! -n*)C, ffcosxA sinxA y<Zx (3.25)

Although the integral can be calculated exactly from (1.11-3) and (1.11-5), but an 

especially simple result follows if we consider that operation is sufficiently above 

propagation cutoff, t(n2-nj)/sX» 1 so that from (1.11-4) and (1.11-5)

A « n2k0

s=l, 2,...= transverse mode number

hs

(3.26)

The results can be verified using (1.11-4) and (1.11-5). In addition since qs>>hs,

we have, from (1.11-7),

4h2G)JLl
(3.27) 

33



in the well confined regime and has hsa«l the integral of (3.25) becomes

) £ [££>«dx = (»; - Ayfl+ 3- + -~)

and, using (3.26)

2?r2s2 (fl2-fl.2)zflVri 3 Xia 3 (Xia}1 ,K «--------------- — (-) [1 +-----------------------+--------- --------—1 (3.28)
31X fl2 t 27i(n22-n2} 4^2 (fl22-fl,2)

The problem of two wave coupling by a corrugation has thus been deduced to a 

pair of coupled differential equations (3.17) and an expression (3.28) for the coupling 

constant.

3.4 Coupled Mode Solutions

Let us return to the coupled mode equations (3.17). For simplicity let us put

A( ’ = A , A(+) = B and write them ass 7 s

->2(AA)z

--- = KabAe+,2^P}2 (3.29) 
dz

Consider a waveguide with a corrugated section of length L as in Figure 3-2. A

wave with an amplitude B(0) is incident from the left on the corrugated section.

The solution of (3.29) for this case subject to A(L)=0 is

A(z)e‘f‘ = B(0)
fir p'1'"'

--------------------------------- sinh[S(z - Z)] 
- \/3 sinh(SZ) + iS cosh(SZ) (3.30)

B(z)e~ifiz = 5(0)
-k/3h(SL) + iScosh(SL)

{\/3 sinh[5(z - Z)] + iS cosh[5(z - Z)]}
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where

(3.31)

S = ^!-(A/?)2

Under the phase matching conditions A0=O, we have

—[y(z~£)3
k cosh kL

b(z}=b^^£^1
cosh/cZ

(3.32)

A plot of the mode powers and for this case is shown in Figure

3-3. For sufficiently large arguments of the cosh and sinh function in (3.32), the 

incident mode power drops off exponentially along the perturbation region. This 

behavior, however, is not due to absorption but to reflection of power into the 

backward traveling mode A.

From (3.7) and (3.30) we find that the z dependent parts of the wave solutions in 

the periodic waveguide are exponentials with propagation constants

(3.33)

where we used A/? = /? — / A.

A short section of a corrugated waveguide thus acts as a high reflectivity mirror for

frequencies near the Bragg value, G)o. The transmission

T B(L)
5(0)

and reflection
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Figure 3-3 (upper) A Corrugated Section of a Dielectric Waveguide. The Incident and

Reflected Intensities inside the Corrugated Section (lower)
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CHAPTER 4 Grating Fabrication and Characterization

4.1 Grating Fabrication Techniques

All grating patterning performed in this thesis was done using a holographic 

system (i.e. by two beam interference). The steps required for grating patterning are 

illustrated in Figure 4-1 with further detail provided in Table 4-1. In brief, grating 

fabrication requires patterning, etching, cleaning.

The patterning for a grating is in many ways similar to patterning other structures. 

The main difference is the small scale of the grating features which introduce 

additional difficulties, especially in the determination of the quality of the patterning.

Before applying photoresist on the sample, precleaning is quite important for 

following processing procedure. The samples should be placed in UV ozone oven for 

10 minutes to grow thin oxide films on silicon and then be put into buffered 

hydrofluoric acid for 30 seconds to get rid of the thin oxide films in order to remove 

organic contamination and modify surfaces for better adhesion. After precleaning 

procedure, photoresist is ready to spin on the samples. The photoresist (PR) used is 

Shipley 1808 which is a positive resist (i.e. exposed areas are removed during 

developing). Due to the small feature size, the PR is thinned in a ratio of 2:3 PR: 

thinner, and spun on at 5000rpm to ensure the formation of a thin layer of photoresist. 

After the photoresist is spun-on to the semiconductor surface, the sample undergoes a 

soft bake on a hot plate. (A soft bake is a low temperature bake required to partially 

cure the PR before the exposure is made.) Also, since the grating features are so 

small, the soft bake temperature is more critical. It is essential that the hot plate is 

allowed to stabilize at the correct temperature for at least 30 minutes.
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If the hot plate is too cold, the PR won’t set properly and too much of the PR will be 

removed during the development. Either way, the grating will be patchy. Even a 5 °C 

temperature variation is enough to noticeably affect the grating quality.

Figure 4-1 Illustration of Grating Fabrication System

With the soft bake completed, the PR is exposed in the UV holographic setup 

(Figure 4-1). The apparatus consists of a Kimmons HeCd laser which emits 

wavelength at 325nm, a spatial filter that ensures the beam uniformity and expands 

the beam, a beam splitter to form the two beams required for interference. Two 

rotating mirrors are used to redirect the beams onto the sample and to vary the grating 

period.

Normal exposure times are 60s for a 318uW/cm2 arm power (i.e. the 1cm diameter 

detector measures 318uW in each arm). Ideally, both beams will have an identical 

power level to ensure that the nodes in the standing wave pattern formed from the 

interference have zero power and do not expose the photoresist. Both beams must be 

incident on the sample at the same angle from the normal otherwise the photoresist 

will develop with a non-uniform profile.
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Step Purpose/Comments

Allow HeCd Laser to warm up

O3 10 minutes Cleaning sample step 1

BHF 30s Cleaning sample step 2

Apply thinned PR RP: Thinner 2:3

Spin PR at 5000rpm PR thickness is approximate 80nm

Softbake 1 min at 80°C Softbake temperature is critical

Expose in holographic system for 60s Detector reading=318uW

Develop in Microposit CD30 developer

for 80s

Slow agitation works best

Hardbake 2 minutes at 110°C Prepare for etching grating

RIE etching 50s at 200W CF4: 30sccm O2: 5sccm

PR Etching rate: 80nm/min

Si Etching rate: 30nm/min

Soak in Acetone for 5 mins To remove PR

Rinse in DI Cleaning sample

Table 4-1 Grating Fa jrication Recipe

The grating period is varied by rotating the mirrors, and the beams are wide 

enough to provide adequate sample coverage for a quarter wafer. It is always 

preferable to move as few components as possible when system is properly aligned. 

The grating period is related to the diffracted angle by the equation
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2 sin#
(4.1)

where A is the grating period, A,laser is the wavelength of the HeCd laser (which is 

325nm), and 3 is the measured diffracted angle. To change the reflection wavelength, 

one first calculates the required grating period (A) using the effective index of 

fundamental mode of SOI rib waveguide and the equation

A
2N

A = (4-2)

where is the Bragg wavelength, and N is the effective index of fundamental 

mode(N=3.48 for 4um ridge width SOI). The required angle of diffraction is then

calculated from Eq.(4.1). The amount that each of the mirrors must be rotated is

calculated by 

mirror

3current -3t arg el
(4-3)

2

where #„rrOT( is the current grating diffraction angle and #arge, is the target 

diffraction angle. To change the grating period, the mirrors are rotated in opposite 

directions: rotating the mirrors toward each other increases the grating period, rotating 

the mirrors away from each other decreases the grating period. The rotation of the 

mirrors must be controlled to a high degree of accuracy. For example, to change the 

reflection wavelength from 1550 to 1530nm, the grating period must be changed from 

223 to 220nm (corresponding to diffraction angles of 46.7775 and 47.6154
o

respectively) which means that each of the mirrors must be rotated by only 0.4190 . 

Extremely tight control of the mirror angle is required for WDM applications where 

the reflection wavelength needs to be controlled to a fraction of a nanometer.
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Development of the exposed photoresist is the next critical step after the exposure. 

The developer used is Shipley CD-30. The development procedure affects the amount 

of PR removed which will affect the grating pattern quality as illustrated in Figure 4-2. 

An underdeveloped pattern results in regions where not enough of the photoresist is 

removed, and an overdeveloped pattern results in areas where too much of the 

photoresist is removed. Hence, both an underdeveloped and an overdeveloped grating 

will result in regions where the grating is not etched properly into the semiconductor. 

Determination of the development time is relies on personal experience. We should 

observe the color change of the PR very carefully when the PR appears to be dark and 

then begin to be bright, we should stop the development process immediately and 

rinse the sample with distilled water. The amount and the uniformity of PR removed 

are affected by the amount of agitation of the sample during the development. A slow 

agitation appears to work best in my experience.

PR HOT Enough

Completely 
Removed

1.
PR 

Removed

1

Good Development Overdevelopment Underdevelopment

Figure 4-2 Schematic Diagram of Good Developed, Overdeveloped, and

Underdeveloped Grating
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After the development, the grating period is measured by using the rotation stage 

in Figure. 4-1 before etching. A HeCd laser wavelength sensitive paper screen with a 

hole in center is inserted in the optical path and a removable mirror is also inserted to 

direct the laser beam through the hole in the screen and onto the sample. With 

gratings on the sample, the sample will display a zeroth order diffraction pattern on 

the screen which is the principal maxima [18]. By noting the scale of the rotation 

stage, we will know the initial angle of principal maxima. Afterwards, we rotate the 

rotational stage clockwise and counter clockwise, and observe the ± 1 order 

diffraction pattern on the screen. By recording the scale of the rotation stage, the + 1 

order diffraction angle is obtained, respectively. Ideally, the + 1 order diffraction 

angle should be identical, but in experiment, we add these two angles together and 

divided by 2 to achieve an average angle value, which is the 0 value in Eq (4.1). 

Thus, by using Eq (4.1), we can determine if the grating period A is the desired value.

There are two methods for assessing the grating quality: atomic force images; 

diffraction from the grating using the light from a white light source, and from the 

HeCd laser.

4.2 Characterization Technique

4.2.1 Atomic Force Microscopy (AFM) Characterization

Since the AFM can resolve very tiny features as 5-10nm resolution, and show 

critical information about surface features with unprecedented clarity, the AFM is 

most accurate and advanced technology to characterize the quality of the gratings and 

determine the period and the depth of the gratings.

Like all other scanning probe microscopes, the AFM utilizes a sharp probe 

moving over the surface of a sample in a raster scan. In the case of the AFM, the 
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probe is a tip on the end of a cantilever which bends in response to the force between 

the tip and the sample. The first AFM used a scanning tunneling microscope at the 

end of the cantilever to detect the bending of the lever, but now most AFMs employ 

an optical lever technique. Figure 4-3 is schematic illustration about how a typical 

AFM works. As the cantilever flexes, the light from the laser is reflected onto the split 

photodiode. By measuring the difference signal (A-B), changes in the bending of the 

cantilever can be measured.

Figure 4-3 Schematic Illustration of AFM

There are three primary modes of AFM: Contact mode, non-contact mode and 

tapping mode. A tapping mode AFM was used in this work, which is the most 

common mode used in AFM. When operated in air or other gases, the cantilever is 

oscillated at its resonant frequency (often hundreds of kilohertz) and positioned above 

the surface so that it only taps the sample surface during scanning. This still involves 

a contact with the sample, but the very short time over which this contact means that 

lateral forces are dramatically reduced as the tip scans over the surface. When 

imaging poorly immobilized or soft samples, tapping mode may be a better choice 

than contact mode. Figure 4-5 and Figure 4-6 are the AFM images of gratings profile 
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and the SOI rib waveguide with gratings on its top. The grating pattern is first formed 

and then a rib waveguide is patterned by standard photolithology. This kind of process 

procedure is desirable, because conventional spin techniques lead to extremely 

uneven resist coverage as shown in Figure 4-4 if we fabricate rib first, which is 

problematic for grating patterning fine period structures.

Substrate with topography

Figure 4-4 Schematic Diagram Illustrating the Problem with Performing Lithography

over Topographic Features

4.2.2 Diffraction Pattern Characterization

The second method to check the quality of the grating is to use a white light source 

to inspect the diffraction pattern formed by grating. This kind of characterization 

technique can easily be used right after grating fabrication. The diffracted light should 

be a uniform blue color with the intensity of the diffracted light being proportional to 

the depth of the grating in the photoresist. Black regions signify areas of 

overdevelopment where the grating has been completely removed. However, if the 

grating appears too dazzling, the grating might be underdeveloped, not enough of the 

photoresist removed, which will result in a patchy grating after etching. Another test 

of quality of the grating pattern is the quality of the diffraction pattern obtained by 

using the beam from the HeCd laser. The diffracted spot should be uniform with very

44



few side fringes. If the diffraction pattern appears to have multiple side rings that 

means the sample is nonuniformly developed.

Digital Instruments NanoScope 
Scan size 2.500 pm
Scan rate 1.001 Hz
Number of samples 512
Image Data Height
Data scale 250.0 nm

X 0.500 pm/div
Z 250.000 nm/div

•jratinl-wang

Figure 4-5 AFM Image of Grating Profile
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Figure 4-6 AFM Image of SOI Rib Waveguide with Grating Profile on its Top
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CHAPTER 5 Experiment Results

The characteristics of the Bragg Grating on SOI Rib waveguide are discussed in 

this chapter.

5.1 Experimental Setup

An optical system, as shown in Figure 5-1, was set up on a floating optical bench 

to test the performance of the Bragg grating on a SOI wafer. A New Focus 6427 

tunable laser was used as the wavelength tunable light source. The light was coupled 

into the chip by using a tapered fiber which was put through a polarization controller. 

The light emerging from the chip was collected with a 20 X microscope objective lens 

and a linear polarizer was inserted to analyze the polarization of the light. CCD 

camera was used to ensure proper alignment and single mode operation.

Polarization 
Controller
/—coo-----

Tunable Laser

New Focus 
6427

Monitor

Detector Bata acquisition

£=J

Tapered 
Fiber

D= 0

IL 
Positioner

Bragg 
Reflector

£=J

2fl* Objectiue Mirror 
Lens

ccd Camera

Figure 5-1 Experimental Setup Used to Test Bragg Grating Integrated on SOI

Waveguides
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5.2 Measurements

After the device was inserted and all the elements are aligned, the detected power 

decreased by approximately 16-20 dB. This insertion loss includes mode mismatch at 

the input facet, waveguide propagation loss, possible grating induced loss, Fresnel 

reflection at both facets. The theoretically calculated Fresnel reflection loss is around 

6dB for both TE and TM mode. The 10 dB remaining loss is mainly believed as 

propagation loss. Although SOI has extremely low loss nearZ=1.55um, the ridge 

waveguides have roughness and irregularities in the side walls which arise during 

lithographic and reactive ion etching processing. I anticipate that improvements to the 

fabrication sequence will lead to lower propagation loss.

Figure 5-2 depicts the measured transmission spectrum for a 1cm long Bragg 

grating. The transmission spectrum shows two distinct dips, and more might be 

present at shorter wavelengths that our laser could not reach. The first dip at 1518nm 

can be identified with grating assisted coupling between the forward traveling 

bounded fundamental mode and the backward traveling 1st higher order mode, 

whereas the final dip at 1532nm corresponds to the anticipated coupling from the 

forward to the backward guided fundamental mode. Since the designed grating pitch 

is 220nm, according to the Bragg condition as Eq. (5.1), with the fundamental mode 

index 3.48, we can calculate the reflection wavelength at 1531.2nm. Thus, the 

experimental result and the theory calculation are well agreed with each other.

2JVA = 2 (5.1)

where N is the effect index of fundamental mode, A is the grating pitch, and X is 

designed reflection wavelength.
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Figure 5-2 (a) Measured TM Transmission Spectrum for Bragg Gratings

(b) Measured TE & TM Transmission Spectrum for Bragg Gratings
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5.3 Explanation of Higher Order Dips [19]

With the grating on top of the ridge waveguide, the Bragg grating creates a 

coupling between the modes wherever the difference between their propagation 

constants is equal to the vector of the grating as follows, which is called phase 

matching condition:

(5.2)
A

where the A is the period of the Bragg grating, n and m are corresponding to the 

order of modes. Conventionally, positive values of /3 correspond to forward 

traveling modes, while negative values correspond to backward traveling modes.

Figure 5-3 Coupling Energy between the Forward and Backward Traveling Modes

If a grating with wave vector 2 /?0 is added to the waveguide, it can couple the 

forward and backward traveling waves because the difference in propagation constant 

between the forward and backward traveling fundamental modes is precisely 2 .

Figure 5-4 depicts the calculated dispersion relation {/3 vs Z) for the first four TE 

modes of slab SOI structure. The negative propagation constants correspond to the 

lowest four backward traveling modes. The Bragg grating creates a coupling between 
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the modes wherever the difference in propagation constants satisfy Eq. (5.2). The two 

arrows drawn in Figure 5-4 illustrate the two wavelengths at which light from the 

forward traveling fundamental mode can be coupled to a backward traveling mode.

Dispersion Relation
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---------- o
.............. . ~............. 2.....
forward modes 3
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J I I I I L
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-1.5

Wavelength (nm)

Figure 5-4 Dispersion Diagram of SOI Waveguides

At wavelength 1518nm, the forward traveling fundamental mode has been coupled to 

the first higher order mode which will propagate backward bound. Since our rib SOI 

waveguide only supports fundamental mode propagation, this higher order mode can 

not be supported by the rib SOI waveguide, and it will quickly radiate into side region 

as propagating backward. Thus, at wavelength 1518nm, there is a dip corresponding 

to the 1st order leaky mode. Since all the higher modes are leaky, we can associate the 

higher order modes with leaky modes. At lower wavelength, there should be more 
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dips corresponding to the 2nd, 3rd order leaky modes, where our laser wavelength can 

not reach. But in the next chapter, with the computer simulation, we can precisely 

identify the wavelength at which the dips will occur.

Observed from the transmission spectrum, the 1st leaky mode linewidth is wider 

than the fundamental mode. This is an interesting phenomenon. For the fundamental 

mode, all scattered components will add constructively, and the linewidth will be 

narrowest. For higher order modes, although they are phase matched with 

fundamental mode, and there will still be scattered components, these scattered 

components will sum with slight different phases. The higher the order mode, the 

greater the difference involved, and there will be wider linewidth.

The reflection strength of different modes is also varying. This is due to variations 

in the overlap integral of the higher modes with the fundamental mode over the 

grating region. Initially, all the modes are orthogonal. This means that an integral over 

the whole guide cross section, of a product of the transverse field of two modes, is 

zero. And any two modes will not have energy exchange. But with the grating 

existing, the boundary condition has been changed, and grating will introduce net 

overlap integral sections between two modes. Therefore, energy can be transferred 

from one mode to another, and if the overlap integral section is larger, the reflection 

strength will be stronger.

5.4 Polarization Dependence of SOI Rib waveguides [20]

As depicted in Figure 5-2 (b), TE and TM peaks are separated by lnm, which 

shows the birefringence effect. Silicon is not an intrinsically bireffingent material. 

The main source of birefringence is from the rib waveguide structure. Rib waveguides, 

unlike circular waveguides or square waveguides, do not have a symmetrical 
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geometry. This will result in different confinement of two perpendicular polarization, 

TE and TM modes. This birefringence problem is an intrinsic drawback associated 

with rib SOI waveguides. We can minimize this effect by using a deep etch in the rib 

waveguide, but if we etch the rib too deep, the higher order modes will also be 

confined. It will contaminate the transmission spectrum. Moreover, if we etch the rib 

too deep, the grating perturbation on top of the rib will be weak and this will result in 

shallow dips. In the next chapter, I will discuss the optimization of Bragg gratings 

integrated on SOI rib waveguides.

5.5 Fiber PIC coupling [3]

Silicon on Insulator (SOI) materials are high index contrast (HIC) waveguiding 

materials that enable the dense integration of many devices on single photonic 

integrated circuit (PIC). A major disadvantage of this approach is the difficulty of 

coupling light into and out of an optical fiber. Approximating the fiber mode by a 

Gaussian distribution, the mode field diameter (MFD) of a fiber is defined as the 1/e2 

diameter of the Gaussian power distribution and is approximately 15% larger than the 

core diameter. The typical MFD of a single mode fiber is 8-10 um and the mode cross 

section is ideally circular. A tapered fiber has a typical output beam diameter ~50% of 

the typical MFD and ~20 um focal length. A HIC waveguide has a mode profile in the 

micron range and the mode cross section is highly elliptical. The large mode 

mismatch leads to very inefficient fiber-waveguide coupling with most of the power 

lost to radiation. The coupling loss between fibers and waveguides, assuming that 

they are perfectly aligned [21], is:
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4
Loss (dB) =—10 log*

MFDX
^MFD2

(5-3), MFD f 
MFDX 7

If we ignore the ellipticity of a waveguide mode and apply (5.3) to get an estimate for 

the coupling between a tapered fiber and a waveguide with 5:2 MFD ratio, we can 

find 3.2 dB loss.

Other loss mechanism can be attributed to the Fresnel reflection. At each facet 

between silicon and air, there will be reflection loss. Assuming fiber and PIC are 

properly aligned, and at normal incidence, for both TE and TM modes will have

reflection loss according to (5.4)

(5-4)

With the refractive index n=3.5 of silicon, and air index 1, we can calculate the

Fresnel reflection R=0.30864. This value of R corresponds to a reflection of 30.864

percent of the emitted optical power back into to air. Given that

Pcoupled ~ (1-R) Psource (5-5)

The power loss L in decibels is found from following formula:

P
L=-101og(-^-)=-101og(l-/?) = -101og(0.691358)=i.6dB

^source

At both facets, the loss will be doubled as 3.2 dB. In summary, 6.4 dB loss is expected 

for 2.2um SOI rib waveguide resulting from mode mismatch loss and reflection loss. 

Other loss mechanism can be mainly attributed to rib waveguide surface roughness, I 

expect to use ECR-RIE, and CI2 to etch the rib waveguide in the future, which will 

greatly improve the surface smoothness.
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CHAPTER 6 Computer Simulations and Optimization

6.1 Introduction

In this chapter, we will discuss the various parameters which will influence the 

performance of the Bragg Grating Reflector by using MATLAB software package. 

Furthermore, we can use the computer simulation to come up with better proposals to 

design optimized devices. The fundamental scheme of computer simulation is 

presented as Figure 6-2 and source MATLAB codes are listed in appendix A. The 

main computer simulation scheme is based on coupled mode theory (CMT). [23] [24] 

[25]

6.2 Variation of Grating Period

Since we use the holographic system to fabricate the grating on top of the SOI 

waveguides, not like e-beam lithography, it is difficult to change the grating period by 

1 nm per step. But using computer simulation, we can investigate the effects of 

varying of grating period. The following waveguide parameters are used: nc=l(air), 

nf=3.5(silicon), ns=1.5(SiO2), grating depth=80nm, grating length L=1 cm, top silicon 

thickness=2.2um.

Figure 6-1 Simulation of Transmission Spectrum of 2.2 um SOI
(a) Grating Pitch=220nm
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Figure 6-2 Computation Diagram of Simulation
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(f) Grating Pitch=225nm
Figure 6-1 Simulation of Transmission Spectrum of 2.2 um SOI

It can be seen in Figure 6-1, when we consider the effective index of fundamental 

mode is 3.48 and the grating period is varying from 220nm to 225nm, the Bragg 

Reflection wavelength shifted from 1531nm to 1566nm. Figure 6-1 (a) is of particular 

interest, because the computer simulation result agrees qualitatively with the 

measured data presented in Figure 5-2, in spite of the simplifying approximations 

made (i.e., replacing the ridge with a slab). The fundamental mode reflection appears 

at 1531nm, the 1st higher order mode reflection appears at 1518nm. Since our tunable 

laser can not reach wavelength below 1500nm, there are only two dips presented on 

the transmission spectrum. With Figure 6-1 (a), we can predict there should be the 

third dip at wavelength around 1480nm, which is corresponding to the fundamental 

mode coupled to the second higher order mode. Since using holographic lithography
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to fabricate Bragg grating, precise control of the grating period is quite difficult. The 

wavelength range of the tunable laser that we use to test chips is 75nm, from 1500nm 

to 1575nm. This requires the grating period between 215nm to 226nm, only an 1 lnm 

range; otherwise, we can not observe dips on the transmission spectrum. Using the 

computer simulation, we can easily determine which grating period is appropriate for 

device application.

With the Grating period increased, another effect that we observe is that at lower 

wavelength there are more dips due to the fact that more higher order modes will 

satisfy the phase matching condition, and the coupling between fundamental mode to 

higher order modes will happen. The strength of reflection is mainly dependent on the 

overlap integral between the fundamental mode and the higher order mode over the

grating region.

Figure 6-3 Simulation of Transmission Spectrum of 2.5 um SOI
(a) Grating Pitch= 220nm
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Figure 6-3 Simulation of Transmission Spectrum of 2.5 um SOI

Compared with a 2.2um thick SOI waveguide, a 2.5um thick SOI waveguide has 4 

distinct dips with the grating pitch 221nm. This result illustrate that with thicker 

guiding layer, more mode numbers can be supported, and grating will readily assist 

coupling from fundamental mode to higher order modes.
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6.3 Variation of Grating Depth

The effect of grating depth on SOI waveguide has also been investigated. The top 

silicon thickness is 2.2 um with the grating length of 1cm.And the transmission

spectrum of grating depth of 60nm, 70nm, and 80nm are shown in Figure 6-4.

Figure 6-4 Variation of Grating Depth on 2.2 um SOI Waveguide

As presented from Figure 6-4, 60nm deep grating will reflect 25% of the optical 

power, 70nm deep grating will reflect 50% of the optical power, and 80nm deep 

grating will reflect 100% optical power. The grating depth effect is dramatic in 

determining reflection strength, deeper etching of the grating will increase the 

coupling coefficient K (2.5424e3, 3.2807e3, 4.1293e3 for the three etch depths 

presented in Figure 6-4) and results in strong reflection. Another useful aspect of 

Figure 6-4 is we can determine the saturation reflection strength of grating depth. As 

we etch grating deeper and deeper, there should be a maximum of reflection. From 

simulation, we can see with 80nm grating depth, the reflection will approach 100%.
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This computer simulation is based on a slab waveguide, in a real device we have ridge 

waveguide and the electrical field of mode will penetrate into the rib region. And 

gratings on top of the rib waveguide will create a stronger perturbation than slab 

waveguide. Thus, with even shallow grating depth perturbation will achieve the 

maximum reflection.

6.4 Variation of Grating Length

Grating length is also an important parameter that we should consider in research

work. Three cases with 0.5cm, 1cm and 1.5cm long and 60nm deep gratings are 

studied as follows:

Figure 6-5 Variation of Grating Length on 2.2 um SOI Waveguide
(a) Grating Length=0.5cm
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By increasing the length of Bragg grating, the reflection strength will increase and 

the linewidth of the reflection will be narrower, which demonstrate the good 

wavelength selectivity. But increase grating length will increase the device size and 

device will experience more propagation loss due to the roughness of the sidewall. 

Furthermore, compared to the grating depth effect, increase grating length is not a 

salient method to enhance reflection. In a general sense, most of the energy is 

concentrated in the center of the rib waveguide, so make deeper gratings will effect 

more energy portion, and cause powerful perturbation. Therefore, if other parameters 

are limited due to fabrication restricts, we can increase grating length to achieve 

strong reflection, but it is a better way to increase grating depth to obtain strong 

reflection.

6.5 Device Optimization

In summary, all the grating parameters have been explored to observe the influence 

on reflection by computer simulation. Utilizing these results, we can conclude that the 

best grating structure on 2.2 um SOI should have 222nm grating pitch, 80um depth, 

and rib waveguide width could be 4 um and rib depth could be 0.26um.
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CHAPTER 7 Conclusions

This thesis describes the design, fabrication, measurement and modeling of an 

integrated optical Bragg grating filter, based on a silicon on insulator (SOI) ridge 

waveguide, which demonstrates the potential application for DWDM communication 

system.

Narrow band optical wavelength filters are building blocks for the DWDM system. 

A periodic grating in an optical waveguide is often used to provide an efficient mode 

coupling mechanism in narrow band filter design. [26] Furthermore, with the 

emergence of the SOI material system, we want to explore the possibilities of 

combining Bragg grating on SOI material which is fully compatible with silicon 

processing technology. [27]

Our observations show that a nominally single mode ridge waveguide can have 

higher order leaky modes with the existence of a grating, which lead to a loss 

mechanism on the short wavelength of the transmission spectrum. Although radiation 

loss is an undesirable effect for add/drop filters, it might be possible to exploit this 

effect for other applications such as gain equalization. With computer simulation that 

we designed based on coupled mode theory (CMT), we can quantify the transmission 

spectrum and predict the leaky mode wavelength. This can lead us to optimize the 

device structure and achieve the desirable wavelength for system design. Furthermore, 

all the grating parameters are investigated by computer simulation, which will give us 

a clear knowledge of what is the most salient influence upon coupling coefficient and 

reflection strength.

68



7.1 Recommendations for Future Research

Silicon photonic integrated circuits (PIC’s) are intriguing subjects for exploration 

in their own right, but the impetus for investigating silicon photonics comes mainly 

from the vision of optoelectronics: the integration of optics and electronics on the 

same substrate. The resulting chips are called optoelectronic integrated circuits 

(OEIC’s), and well designed OEIC will have performance and functionality greater 

than those of the optical and electrical circuits taken alone.

An electrically controlled filter for the selection of channels in DWDM optical 

network can be proposed to be the future research work. [28] In addition to gratings 

on top of a Rib waveguide, a forward biased P-i-N diode can be fabricated across the 

Rib, as Figure 7-1. Therefore, the wavelength selectivity is obtained by free carrier 

injection.

Figure 7-1 3D View of a Tunable Filter
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Another potential future project can be explored is grating integrated Mach- 

Zehnder interferometer [29] as Figure 7-2. For certain wavelength that satisfies the 

Bragg condition of grating, the wavelength will get reflected and the output signal 

will be zero. Moreover, we can further utilize this wavelength to realize add/drop 

multiplexer. The ability to integrate Mach-Zehnder interferometer and gratings in this 

way without the need for any old fabrication trimming or adjustment could prove to 

be a good selling point for integrated Bragg gratings filters.

Figure 7-2 Grating Integrated Mach Zehnder Interferometer

Furthermore, more experimental and theoretical investigation of these devices 

could lead to a design which has little or no birefringence. Another limitation of this 

material system is the polarization dependence of perturbation. One solution to this 

problem would be to corrugate the sidewalls of the structure in addition to the top 

surface, in order to balance the TE and TM feedback. Since we neglected the 

70



longitudinal field component Ez of TM modes when computing the overlap integral, 

more theoretical work should be done to investigate the coupling coefficient for the 

TM polarization.

Finally, much can be done to optimize the spectral response of a Bragg grating by 

intentionally introducing chirp and apodization. One way to achieve apodization is to 

adjust the lateral extent of the grating, by making the grating only cover part of the 

waveguide rather than the entire waveguide. Another way would be to adjust the 

depth of the grating across the device. For Bragg gratings formed by physical 

corrugations, the process of apodization invariably changes the effective index of the 

waveguide. For this reason, apodization and chirp are inextricably tied together. There 

are two ways to construct a filter with pure apodization. One way is to modify the 

waveguide width in tandem with the apodization profile such that the effective index 

of the waveguide remains constant. Another approach would be to intentionally chirp 

the grating in addition to apodization in order to compensate for the change in 

effective index induced by the apodization.

It is my hope that this thesis provides useful information to encourage others to 

develop new creative applications.
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Appendix A

Matlab Source Codes

1. Simulation of Transmission Spectrum of 2.2 um SOI Waveguide 
display('START');
format long;

%Index
nc=l;
nf=3.5;
ns=1.5;

%Grating Pitch
gpitch=220e-9

% Wavelength Range
wr=linspace( 1400e-9,1600e-9,200);

%Grating height
a=0.08e-6

%SOI Si Thickness
thick=2.2e-6;

%Loop

for lambda_scan=l 500e-9:1 e-9:1600e-9

syms neff
m=0;
pi=3.1415926;
k0=2*pi/lambda_scan; 
gammac=kO.*sqrt(neffA2-ncA2);
kx=kO. *sqrt(nfA2-neffA2);
gammas=kO. * sqrt(neffA2-ns A2);
neff=solve(kx. *thick-(m+1 )*pi+atan(kx./gammas)+atan(kx./gammac)); 
neff=abs(double(neff));
fun=neff;

for m=0:8
pi=3.1415926;
neff==solve(kx. *thick-(m+1 )*pi+atan(kx./gammas)+atan(kx./gammac)); 
neff=abs(double(neff));

if (abs(abs(neff*k0)+abs(fun*k0)-2*pi/gpitch)<le4)
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%Calculation of kappa
k=2 * (m+1) *pi A2 ./(3. * lambda_scan). * ((nfA2-
ncA2)/nf).*(a/thick)A3.*(l+3/(2*pi).*lambda_scan./(a.*sqrt(nfA2- 
ncA2))+3/4/pi/pi.*lambda_scan.*lambda_scan./(nfA2-ncA2)/a/a);

%Parameters
betaO=pi/gpitch; 
beta=2*pi*abs(double(neff))./wr; 
deltra_beta=beta-betaO;
s=sqrt(kA2-(deltra_beta.*deltra_beta));

%Grating Length
length=le-2;

%Numerator
rhol=i.*s*exp(-i*betaO*length);

%Deumerator
rho2=exp(-i. *beta*length). *(-deltra_beta.*sinh(s. *length)+i. *s. *cosh(s. *length));

%Teff
t=rhol ,/rho2;

%Display
figure(l)
hold on
title('Transmission Spectrum');
xlabelf W avelength(um)');
ylabel('Transmission'); 
legend('pitch=220nm');
plot(wr,abs(t).*abs(t),'b');

end

end 

end
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2. Variation of grating depth on 2.2 um SOI waveguide
% Wavelength Range
lambda_scan=linspace( 1,5e-6,1,6e-6);

%Index
nc=l;
nf=3.5;
ns=1.5;

%SOI Si Thickness
thick=2.2e-6;

%Grating height
a=0.06e-6

%Calculation of kappa
lambda=1.55e-6;
k=2 *piA2 ./(3. * lambda). * ((nfA2-
ncA2)/nf).*(a/thick)A3.*(l+3/(2*pi).*lambda./(a.*sqrt(nfA2- 
ncA2))+3/4/pi/pi.*lambda.*lambda./(nfA2-ncA2)/a/a);

%Parameters
beta0=pi/0.224e-6;
beta=2*pi*3.48./lambda_scan;
deltra_beta=beta-betaO;
s=sqrt(kA2-(deltra_beta.*deltra_beta));

%Length
length=le-2;

%Numerator
rhol =i. *s*exp(-i*betaO*length);

%Deumerator
rho2=exp(-i.*beta*length).*(-deltra_beta.*sinh(s.*length)+i.*s.*cosh(s.*length));

%Teff
t=rhol./rho2;

%Display
figure(l);
plot(lambda_scan,abs(t).*abs(t),'b');
title('Simulation of Grating Depth Effect');
xlabel('Wavelength(um)');
ylabel('Transmission');

%Grating height
a=0.07e-6
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%Calculation of kappa
lambda=1.55e-6;
k=2 *piA2./(3. *lambda). *((nfA2- 
ncA2)/nf).*(a/thick)A3.*(l+3/(2*pi).*lambda./(a.*sqrt(nfA2- 
ncA2))+3/4/pi/pi.*lambda.*lambda./(nfA2-ncA2)/a/a);

%Parameters
beta0=pi/0.224e-6; 
beta=2*pi*3.48./lambda_scan;
deltra_beta=beta-betaO; 
s=sqrt(kA2-(deltra_beta.*deltra_beta));

%Length
length=le-2;

%Numerator
rho 1 =i. * s*exp(-i*betaO*length);

%Deumerator
rho2=exp(-i.*beta*length).*(-deltra_beta.*sinh(s.*length)+i.*s.*cosh(s.*length));

%Teff
t=rhol./rho2;

%Display
figure(l)
hold on
plot(lambda_scan,abs(t).*abs(t),'r');
hold off

%Grating height
a=0.08e-6

%Calculation of kappa
lambda=1.55e-6;
k=2*piA2./(3. *lambda). *((nfA2-
ncA2)/nf). * (a/thick) A3. *( 1 +3/(2 *pi). *lambda./(a. * sqrt(nfA2- 
ncA2))+3/4/pi/pi.*lambda.*lambda./(nfA2-ncA2)/a/a);

%Parameters
beta0=pi/0.224e-6; 
beta=2*pi*3.48./lambda_scan;
deltra_beta=beta-betaO;
s=sqrt(kA2-(deltra_beta.*deltra_beta));

%Length
length=le-2;

%Numerator
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rho l=i.*s*exp(-i*betaO* length);

%Deumerator
rho2=exp(-i. *beta* length). * (-deltra_beta. * sinh(s. *length)+i. * s. * cosh(s. * length));

%Teff
t=rhol./rho2;

%Display
figure(l)
hold on
plot(lambda_scan,abs(t).*abs(t),'g');
hold off
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