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CHAPTER 1: INTRODUCTION 

1.1 Developmental Origins of Health and Disease (DOHaD) 

 The Developmental Origins of Health and Disease (DOHaD) is a field that has become 

prominent in recent years for its potential role in the prevention of non-communicable diseases 

(NCDs) such as diabetes, cancer, and asthma/allergy. Increasing evidence has demonstrated that 

early life exposures, including those that occur in utero, may have significant and life-long effects 

on an individual’s health and predisposition to disease. This process has come to be known as 

‘fetal programming’, where the prenatal environmental exposures experienced leads to an 

‘adaptive’ physiological response in the fetus.  

 The DOHaD field was introduced in the 90’s with the description of the ‘thrifty gene’ 

hypothesis. Hales and Barker proposed in 1992 that inadequate nutrition in early development 

impaired endocrine pancreatic function and increased susceptibility to type 2 diabetes mellitus 

(T2DM).1 Specifically, they suggested that poor nutrition in utero and in early life cause the 

growing fetus (often with low birth weight) to develop mechanisms to conserve and utilize 

nutrients; thus, the ‘thrifty phenotype’ hypothesis was born. This concept of fetal programming, 

in which environmental influences have a persistent effect on the growing fetus’ structural and 

functional development, has been further characterized by the increasing body of DOHaD 

research.2 

 A key series of studies in the field involved outcomes related to the Dutch Hunger Winter. 

In the spring and winter of 1944, German occupation and train strikes combined to cause famine 

across social classes in the western region of The Netherlands during which daily caloric intake 

was only 400 – 800 calories per person. Women who were pregnant at the time and their offspring 

were thus exposed to prenatal undernutrition, and these individuals have been studied since the 
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tragedy of the Hunger Winter to observe its effects on their long-term health.3 They have shown 

increased risk of glucose intolerance, heart disease, and other chronic illnesses well into adult life, 

providing compelling evidence for fetal programming based on this severe prenatal caloric 

restriction.4 

 As the prevalence of NCDs increases, knowledge of how they develop and what we may 

do to prevent them is becoming more necessary to individual and population health. Insights into 

the earliest aetiologies of these diseases provide an opportunity for long-lasting intervention that 

may ease societal burden while improving health for both pregnant mothers and their offspring.  

1.2 Gestational Diabetes Mellitus (GDM) 

 The original description of the ‘thrifty phenotype’ was based on observations of increased 

type 2 diabetes in low birth weight populations, and issues of maternal and offspring dysglycemia 

have continued to occupy a prominent space in DOHaD research.1 Gestational diabetes mellitus 

(GDM) has drawn particular focus, as this dysglycemic condition can have significant short- and 

long-term effects on both the mother and offspring. It has been estimated to affect 2 – 12% of 

pregnancies, and rates are increasing with the rising prevalence of obesity.5 During the prenatal 

period GDM increases risk of respiratory distress, macrosomia, cardiac malformations, Caesarian 

section, birth trauma, preterm birth, and pre-eclampsia/eclampsia; mothers who develop GDM 

during their pregnancy later experience a higher rate of metabolic syndrome and T2DM as well.6 

Offspring exposed to GDM show increased glucose dysregulation in the long-term, including 

increased levels of cardiovascular disease (CVD), hypertension, and T2DM.7 Cohort studies 

involving mothers and infants experiencing GDM provide an invaluable resource in elucidating 

the basis of fetal programming.  
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 Like T2DM, GDM is characterized by insulin resistance, and can be diagnosed when 

glucose intolerance first occurs in pregnancy.7 The oral glucose tolerance test (OGTT) is routinely 

administered between the 24th and 28th week of pregnancy in either a 2- or 1-step method with a 

50g or 75g glucose challenge, respectively. Glucose is measured at baseline (fasting), 1, and 2 

hours, and a single elevated value is diagnostic for GDM. The cut-off values set by the 

International Association of Diabetes and Pregnancy Study Groups (IADPSG) and commonly used 

in Canada are, for a 2-step OGTT, glucose levels of ≥ 5.3 mmol/L at fasting, ≥ 10.6 mmol/L at 1h, 

and ≥ 9.0 mmol/L at 2 hours. Slightly lower cut-offs for a 1-step OGTT are ≥ 5.1 mmol/L, ≥ 10.0 

mmol/L, and ≥ 8.5 mmol/L at fasting, 1 hour, and 2 hours, respectively. 

 However, these values may not be optimal internationally and for all ethnicities. South 

Asian populations in particular face a high rate of GDM, estimated at up to 24% of all pregnancies.8 

While the ‘thrifty phenotype’ was initially described as such because it was based on 

undernourished and low birth weight infants, studies in South Asian populations expanded the 

concept to show an increased incidence of T2DM in adults who were short at birth and had a high 

ponderal index, indicating a U-shaped risk pattern for birth weight.9 The Pune Maternal Nutrition 

Study further characterized what they described as the ‘thin-fat Indian baby’, demonstrating that 

babies born to rural Indian mothers compared to white Caucasian women in Southampton, UK, 

were smaller in all body measurements but preserved body fat as measured by skinfold 

thicknesses.10 The authors suggest that this may continue postnatally and predispose to insulin 

resistance, adding further complexity to the DOHaD relationships and mechanisms potentially at 

play. More recent study of South Asian women in the Born in Bradford cohort has established that 

optimal diagnostic cut-offs may also vary based on ethnicity, and identified values of ≥ 5.2 mmol/L 

and ≥ 7.2 mmol/L at fasting and 2 hours which they suggest using in South Asian populations. 
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1.3 DNA Methylation & Epigenetics 

 While the evidence for fetal programming in exposures such as dysglycemia is substantial, 

a key question in DOHaD is how exactly these prenatal environments can affect the fetus in ways 

that persist into adulthood. One of major mechanisms theorized to underly this process is 

epigenetic modification. Epigenetics refers to genetic changes that do not affect the genetic code 

but modify gene expression in heritable, transmissible ways. These changes include histone 

modifications, microRNAs (miRNAs), and the best characterized mechanism, DNA methylation. 

Histone modifications involve the addition of chemical groups (ex. acetylation, methylation, 

phosphorylation) to specific amino acids in the histone proteins around which DNA strands wrap. 

Factors such as the size and charge of the added group(s) can alter chromatin structure by causing 

expansion or condensation of DNA packaging. This in turn affects the ability of transcription 

factors and other proteins to access the necessary sequence(s) to initiate gene expression. miRNAs 

are small, non-coding RNAs (ncRNAs) which contain sequence that is complimentary to one or 

more transcriptional products. By binding to messenger RNA (mRNA) transcripts, miRNAs 

reduce translation of their complimentary targets and thereby inhibit protein production. 

DNA methylation directly affects the nuclear DNA through the addition or subtraction of 

a methyl group to the 5’ carbon of a cytosine base. This modification is maintained through DNA 

replication by the action of DNA methyltransferases (DNMTs) and is therefore heritable across 

cell division and can be maintained long-term. Methylation occurs at CpG dinucleotides, where a 

cytosine and guanine are adjacent. Overall these dinucleotides are underrepresented in the human 

genome, but those present are generally concentrated in ‘islands’ often located upstream of gene 

promoter regions. CpG islands tend to have consistent methylation across sites and contribute to 

genetic regulation. Methylation levels near gene promoters may affect protein binding and 
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influence gene expression, with increased methylation generally leading to decreased expression 

and vice versa. 

 In combination, these epigenetic mechanisms play a crucial role in cellular differentiation 

and environmental interaction. During development stem cells undergo dramatic epigenetic 

changes as part of the process of both stimulating and maintaining differentiation.11 Similarly, the 

relative plasticity of the epigenome (compared to the genetic code) allows cells to respond to 

environmental stimuli such as stress and toxins in a productive (gene expression changes) and 

transmissible manner.12 DNA methylation in offspring can be affected not only by the parental 

epigenomes but also by the fetus’ in utero experience, making this a prime candidate mechanism 

by which environmental exposures could result in long-term fetal programming. 

Unsurprisingly, GDM has remained a key exposure of interest. Targeted studies have often 

focused on the IGF2/H19 locus, where imprinted genes are known to show methylation changes 

when programming the metabolic profile in early life.13 Methylation at the IGF2/H19 locus was 

associated with low birth weight and intrauterine hyperglycemia in a GDM model.13 IGF2/H19 

methylation appears to modulate fetal growth and may be crucial in metabolic programming for 

late onset obesity.14 At the genome-wide level, recent EWASs have demonstrated genome-wide 

changes to offspring methylation associated with exposure to GDM.15 Other prenatal exposures 

and childhood health outcomes have also shown associations with differential DNA 

methylation.16–18  

 The primary method for assessing DNA methylation involves treating DNA with sodium 

bisulfite. Unlike DNA replication within the cell, expansion using the polymerase chain reaction 

(PCR) does not maintain DNA methylation patterns. Genomic DNA is therefore treated with 

sodium bisulfite, which converts all unmethylated cytosine bases to uracil. 5-methylcytosine is 
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unaffected by this treatment, so following amplification of converted DNA any remaining cytosine 

bases are known sites of methylation. Unmethylated cytosines will instead be sequenced as 

thymine bases. Chip-based technology incorporates this method with probe-based assays to 

provide genome-wide coverage of DNA methylation. The Illumina 27K, 450K, and EPIC 

BeadChip arrays assess methylation at > 27 000, > 450 000, and > 850 000 sites across the genome, 

respectively. 

 Site-specific DNA methylation is generated using two probe types on the 450K and EPIC 

models, which necessitates further statistical adjustment to normalize. Relative red and green 

intensities are converted to β values as a representation of methylation. The methylated (M) and 

unmethylated (U) channels are used to calculate β = M/(M+U+α), where α is an offset value. β 

values range from 0 (no methylation) to 1.0 (fully methylated), and particularly in a heterogeneous 

tissue like blood, most sites will show partial methylation as the β value represents a composite 

measure from all cells involved.  

1.4 Blood Composition & Methylation 

 Blood is often sampled for use in both GWASs and EWASs, but poses significant 

challenges in accurately assessing epigenetic markers. While genomic sequence is expected to 

remain consistent across cell types, DNA methylation and other epigenetic processes may show 

dramatic variation between cell populations. Although blood is a heterogeneous tissue, blood-

based methylation methods will simply report a single β value per site which represents the mean 

value across all cell types within the sample. Not correcting for inter-individual variations in 

cellular composition may therefore yield biased results driven or influenced by blood composition 

rather than the variable of interest. 
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 Solutions for this issue have focused on deriving estimated cellular composition from the 

overall methylation values observed using two primary methods: reference-free, and reference-

based. Reference-free algorithms use statistical models to represent underlying composition; for 

example, the ReFACTor algorithm generates principal components that can act as covariates to 

account for cell composition.19 In contrast, reference-based methods depend on reference datasets 

detailing methylation patterns of purified blood cells. The Houseman et al. (2012) method uses 

100 significant probes with the greatest magnitude of effect (50 positive and 50 negative) for each 

cell type and combines these data with user-inputted datasets to estimate the relative proportions 

of named cells: B, CD4+ T, and CD8+ T cells, eosinophils, granulocytes, monocytes, neutrophils, 

and NK cells.20  

 Studies using cord blood samples have faced additional hurdles as the differences in 

cellular composition between cord and peripheral blood necessitate separate reference panels. 

Bakulski et al. (2016) developed a reference-based method for calculating cord blood cellular 

composition based on the Houseman algorithm which uses 100 significant probes with the greatest 

magnitude of effect (regardless of direction) for each cell type and provides estimates for B, CD4+ 

T, and CD8+ T cells, granulocytes, monocytes, neutrophils, and nucleated red blood cells 

(nRBCs).21 The reference panel incorporates a smaller number of individual samples than those 

referenced for peripheral blood and may generate less accurate estimates. However, despite the 

limitations, both methods provide a novel option for estimating cellular composition in blood 

without the need for cytometry.  

1.5 Conclusions 

 The study of genome-wide DNA methylation in cord blood is an essential experimental 

model in characterizing the process of fetal programming. Evidence suggests that prenatal 
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exposures may modify infant DNA methylation, patterns which may be maintained long-term and 

influence lifelong health. This is a key mechanism of interest in the DOHaD field, but there remain 

many difficulties in assessing the evidence available thus far. 

 In contrast to GWASs, the results of which are compiled in numerous databases, EWASs 

remain largely independent with little apparent effort to review and replicate findings. There are 

many published EWAS papers, but finding all those relating to a particular outcome remains 

challenging. Furthermore, attempts at replication are inconsistent, and some studies (particularly 

those published soon after the release of the 450K BeadChip) fail to make sufficient statistical 

adjustments to their datasets especially regarding blood cell deconvolution. This thesis will 

therefore provide an overview and replication of existing evidence in the field while further 

exploring the nature of the relationship between dysglycemia and infant DNA methylation. 
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CHAPTER 2: DNA Methylation Changes in Cord Blood and the Developmental Origins of 

Health and Disease – a Review and Replication Study 

 

2.1 Introduction 

The Developmental Origins of Health and Disease (DOHaD) is an area of study that has 

become increasingly popular in recent years. It is now evident that early life exposures, including 

those happening in utero, have significant effects on the development of later health conditions in 

children and adults. This may occur through fetal programming, whereby the environment 

experienced in utero may ‘program’ a fetus for the expected environment outside the womb in a 

manner that may have a significant impact on health. It is suspected that epigenetic mechanisms, 

in particular DNA methylation, may mediate the process of fetal programming. Alterations in 

DNA methylation have been associated with a variety of prenatal exposures and childhood health 

outcomes, including: gestational diabetes, maternal smoking, gestational age, and asthma.16–18,22 It 

has been well established that the prenatal environment can modify the fetal epigenome, which 

may lead to long-term effects. 

 While DNA methylation has been consistently implicated in the DOHaD model, there has 

been a lack of consistency in the way this problem has been addressed. Due in part to technological 

constraints, many early analyses were targeted to specific loci already known to be involved in the 

outcome of interest. The development of the Illumina HumanMethylation27 BeadChip (27K) and 

the subsequent 450K and Epic models have allowed true epigenome-wide association studies 

(EWASs) to be conducted. This has provided an unprecedented scope and consistent site notation 

to the field which allows for replication and validation of previous findings.  
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 Perhaps in part because of the relative novelty of the genome-wide technology, there is 

currently a lack of consensus around findings in many areas. A PubMed search for ‘epigenome-

wide association study’ generates almost 600 results, but without consistency and replication it is 

very difficult to assess the merit of this growing body of evidence. We thus propose to search and 

review the literature surrounding several DOHaD areas of interest and conduct a replication study 

in two birth cohorts. This will serve to 1) gather the available evidence for the role of DNA 

methylation in fetal programming by maternal dysglycemia, maternal pre-pregnancy BMI, diet 

during pregnancy, maternal smoking, and gestational age; 2) identify any loci implicated 

consistently across these studies to better characterize the underlying processes, and 3) help to 

demonstrate how replicable these DNA methylation findings may be and suggest causes for any 

lack of reproducibility. 

2.2 Methods 

2.2.1 Literature Search Strategy and Study Selection  

A generalized search was conducted in the PubMed database in order to identify EWASs 

conducted in birth cohorts and related to the DOHaD paradigm. In concordance with the outcomes 

of interest in the NutriGen data, we restricted our search to five exposures: prenatal nutrition 

(especially dietary patterns), maternal smoking, maternal or infant dysglycemia (especially GDM), 

gestational age, and maternal pre-pregnancy BMI. The following search was used: "cord blood" 

AND "DNA methylation" AND "pregnancy" AND ("diet" OR "nutrition" OR "dietary pattern" 

OR "diabetes" OR "dysglycemia" OR "glucose" OR "insulin" OR "smoking" OR "gestational age" 

OR "weight" OR "BMI"). All returned abstracts were then screened for our inclusion and exclusion 

criteria, with some studies moving on for full text evaluation and possible inclusion in our review. 

 In addition to the requirement that EWASs be related to one of our five exposures of 
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interest, we also restricted included studies to those reporting a genome-wide significant 

association in cord blood. Targeted studies, those that reported statistically insignificant results, or 

EWASs in peripheral blood or placental tissue were therefore excluded, among others. Our search 

returned a total of 151 results which were screened at the abstract level. Of these, 42 full text 

articles were accessed for closer inspection, and a final 15 studies were identified for inclusion in 

our review.  

2.2.2 Replication in the Literature 

 For three of our exposures of interest (gestational age, dysglycemia, and smoking), we 

identified more than one published EWAS paper reporting genome-wide significant DNA 

methylation changes in cord blood. We therefore extracted the significant sites reported in each of 

these studies in order to assess the status of the literature for each exposure and whether any sites 

had been independently replicated across papers. We therefore first looked for any sites identified 

as significant in 2 or more EWASs of the same exposure, also considering whether the direction 

of effect was consistent between studies. Next, significant loci for each outcome were assessed for 

their proximity to one another; loci showing 2 or more significant sites < 50kb, < 100kb, and < 

200kb apart were identified. Finally, all significant sites across all four represented outcomes 

(BMI, GDM, gestational age, and smoking) were compared to isolate any sites significantly 

associated with more than one of our exposures of interest.  

2.2.3 NutriGen Study, Cohorts, & Measures 

 Data were generated as part of the NutriGen study, an alliance of four Canadian birth 

cohorts seeking to better understand the impact of maternal and infant nutrition on infant and child 

health and disease. The Family Atherosclerosis Monitoring In Early life (FAMILY) cohort is 

designed to study determinants of CVD and is comprised of 859 mothers/901 infants, primarily 
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white Caucasian, from Southwestern Ontario. They were recruited between 2004 and 2009 with 

long-term (5+ year) follow-up. The Canadian Healthy Infant Longitudinal Development (CHILD) 

study is a longitudinal birth cohort study based out of four Canadian centres. 3 600 mother/child 

pairs were recruited between 2008 and 2012 with the primary goal of investigating environmental 

and genetic determinants of allergic disorders. The South Asian birth Cohort (START) began 

recruiting in 2011 in urban Canada as well as rural and urban Bangalore in order to study 

environmental, genetic, and epigenetic influences on adiposity, growth, and cardio-metabolic 

factors in a birth cohort of South Asian women. Finally, the Aboriginal Birth Cohort (ABC) 

enrolled pregnant mothers from the Six Nations Reserve in Ontario. Beginning in 2012 women 

were recruited to study the determinants of cardiometabolic health and type 2 diabetes (T2DM) in 

an Aboriginal population.  

 The NutriGen study combines participants from all four of these cohorts to investigate 

nutrition and environmental determinants of childhood health, with a focus on genetic, epigenetic, 

and microbiome contributions. All cohorts administered a food frequency questionnaire (FFQ) to 

assess prenatal diet and collected anthropometric and other health measures of the mother and 

infant throughout pregnancy and early childhood. These variables have been harmonized across 

cohorts for comparisons. Cord blood was also collected at birth for genetic and cardiometabolic 

analysis. 

Many of the metrics collected by the NutriGen cohorts are utilized in our epigenetic 

investigations. FFQ data were explored with principal component (PC) analysis to derive 

individual scores representing dietary patterns; vegetarianism was represented as a dietary pattern 

in these models, and was also tested as a unique binary yes/no variable. Individual nutrient 

information regarding fatty acid intake was used, including: polyunsaturated fatty acids (PUFAs), 
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saturated fats, and the ratio of PUFAs to saturated fats (P:S). Two diet quality scores, the modified 

Alternative Healthy Eating Index (mAHEI) and the DOHaD score developed by the NutriGen 

group, were calculated and tested as well. Dietary variables were adjusted for total energy 

consumption when applicable. In START, OGTT results were available (as well as the harmonized 

GDM variable in both START and CHILD), and AUC glucose tested as another measure of 

maternal glycemic control. It was modeled as both a continuous variable and a binary variable 

based on a cut-off of 835. The OGTT results also allowed us to conclude participants’ GDM status 

using the previously described cut-offs developed in the Born in Bradford cohort for South Asian 

women (Farrar et al., 2015).  Maternal smoking and pre-pregnancy BMI were available in CHILD 

only (START had no smokers).  

 To further study the role of genetics and epigenetics in the relationship between prenatal 

exposures and offspring health, most participants (mothers and infants) were assessed for genome-

wide genotyping using the Illumina HumanCoreExome BeadChip. A subset of infant in START 

and CHILD, approximately 500 from each, were also assayed for genome-wide DNA methylation. 

Because CHILD is a multi-ethnic cohort (unlike START, which exclusively recruited South Asian 

women, the samples chosen for methylation analysis were distributed across the ethnicities 

represented.  

2.2.4 Genome-Wide Methylation Assay 

 Cord blood samples were collected upon delivery in each cohort and processed for DNA 

extraction using standard protocols. Bisulfite conversion was used to prepare DNA samples for 

chip-based assay. Samples were hybridized to the Illumina HumanMethylation450K BeadChip 

array, designed for genome-wide DNA methylation assessment. The 450K chip contains > 485 

000 sites covering > 96% of RefSeq genes, with an average (but variable) 17 probes per gene. It 
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is a two-colour array that also employs two types of probes for measurement to improve coverage. 

In loci assessed with the Infinium I assay, there are two probes per site: a ‘methylated’ probe 

corresponding to a cytosine extension, and an ‘unmethylated’ probe with a thymine extension. The 

relative intensities of these two probes is used to calculate methylation at these loci. In the Infinium 

II design, a single probe is used, which can be extended with either a ‘methylated’ or 

‘unmethylated’ base. The relative intensities generated by each of the extensions provides an 

estimate of methylation. The Infinium II design is more suited to many areas of the genome and 

increases the total number of sites that can be included for assay; this probe type therefore 

represents the majority of the sites on the 450K.  

 A total of 512 START and 511 CHILD cord blood samples were selected from their 

respective cohorts and randomized across arrays for methylation assessment. Illumina iScan 

software was used to read intensities and generate and export idat files to R for pre-processing and 

quality control. 

2.2.5 Data Pre-Processing and Quality Control 

Raw data from iScan were imported into R version 3.2.0 with the minfi package, which 

was used for all subsequent quality control and pre-processing.23 Samples from the START and 

CHILD cohorts were processed separately. Sample quality was assessed in each cohort first based 

on missingness criteria; any samples with a proportion of failed probes > 0.01 was removed from 

analysis (a total of 2 samples in START and 14 in CHILD). The getSex function in minfi was also 

used to estimate biological sex in each sample based on the methylation patterns of the X and Y 

chromosomes. This was compared to the reported sex and inconsistent samples were removed. In 

total 5 sample were removed from START and 7 from CHILD based on these criteria. A final 

sample of 506 individuals in START and 511 in CHILD remained. 
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 Probe quality was determined with missingness criteria based on probe failure in > 0.05 of 

samples. Any probes exceeding this threshold were excluded: 756 from START, 634 from CHILD. 

In addition, certain underlying probe sequences have been demonstrated to influence perceived 

methylation status. Probes that contain a single nucleotide polymorphism (SNP) at or near the site 

of interrogation may bind inconsistently depending on genotype. There are also many probes that, 

in part due to the difficulty of working with bisulfite-converted DNA, have been shown to 

hybridize to more than one genomic location. This could also lead to spurious methylation 

estimates. For this reason, all probes known to contain a SNP (70 889) or demonstrate cross-

reactivity (29 233) were also removed from analysis. A final dataset of 393 400 probes in START 

and 393 449 probes in CHILD remained following these quality control measures. Table 1 

summarizes the quality control measures applied and the samples/sites lost at each level. 

 

Table 1. Summary of samples and probes excluded at each stage of quality control. 

Samples Probes 

 START CHILD  START CHILD 

Initial 512 511 Initial > 485 000 

Sex Check 5 7 Failed 756 634 

Missingness 2 14 Polymorphic 70 889 

Final 506 491 Cross-Reactive 29 233 

   Final 393 400 393 449 

 

The two-type probe design of the 450K chip presents an obstacle in data processing, as the 

probe types generate two independent peaks that must be unified. The subset within-array 
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normalization (SWAN) method was used to normalize the START data following quality control 

to reduce differences in beta value distribution between probe types.24 Technical differences such 

as when the chip was run can also affect the distribution of beta values across samples. The comBat 

algorithm in the sva package, which uses surrogate variables, was applied to correct for these 

potential batch effects based on chip.25 The reference-free ReFACTor algorithm was used to 

determine the top 7 principal components of cellular composition, which were incorporated into 

our statistical models.19 

 A dataset based on regions of DNA methylation was also generated using the cpgCollapse 

function in minfi. Briefly, this method combines any sites less than 500 bp apart with a total width 

no greater than 1500 bp into a single region. This average of nearby beta values increases statistical 

power while better reflecting the underlying biology of DNA methylation patterns. 

2.2.6 Epigenome-Wide Association 

 We tested a variety of exposures and outcomes for association with cord blood DNA 

methylation, focusing on areas similar to our literature review: diet (including dietary patterns, 

macronutrient intake, diet quality scores, gestational age, GDM, and smoking during pregnancy 

(CHILD only). GDM and dysglycemia outcomes were assessed for association in our regional 

datasets as well as the standard site-by-site data. Statistical analysis was applied only to the white 

European subset (N = 295) of the CHILD population, as this was the only ethnic group with enough 

individuals available for study. Table 2 outlines the variables tested for association with DNA 

methylation in both the START and CHILD cohorts. 
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Table 2. Variables tested for epigenome-wide association in the START and CHILD cohorts 

Cohort Diet Dysglycemia Other 

START Patterns 

- PC-based 

- Vegetarian 

Nutrients 

- eaPUFAs 

- ea P:S 

Scores 

- mAHEI 

- DOHaD  

GDM 

- Harmonized 

- SA cut-offs 

AUC glucose 

- Continuous 

Binary 

GestAge 

CHILD Patterns 

- PC-based 

- Vegetarian 

Nutrients 

- eaPUFAs 

- ea P:S 

Scores 

- mAHEI 

- DOHaD 

GDM 

- Harmonized  

GestAge 

Maternal Smoking 

 

 

Multivariable linear regression models were used to test for association between DNA 

methylation β values at each site and our continuous variables; multivariable logistic regression 

models were used for binary outcomes. Metrics known or observed to influence DNA methylation 

were incorporated as covariates in our models: maternal age, infant sex, gestational age, study 

centre, processing time (CHILD only), smoking (CHILD only), and cellular composition. 

Statistical significance was assessed using the Bonferroni multiple testing correction with 

thresholds of p < 1.27 x 10-7 and p < 2.76 x 10-7 for the site-by-site and regional datasets, 

respectively. False discovery rate-adjusted p values were also calculated, with significance set at 

FDR-adjusted p < 0.05. All association testing took place in START and CHILD separately, 

generating independent results for each cohort.  
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2.2.7 Replication Study 

 Where possible given available data, we used the START and CHILD cohorts to conduct 

a targeted replication analysis based on the findings of our literature review. Linear and logistic 

regression models were constructed for each variable as they were in our EWAS analyses, but only 

those sites identified in the literature as significantly associated with a given outcome were tested. 

Data for gestational age and GDM were available in both START and CHILD, while smoking and 

pre-pregnancy BMI were assessed only in CHILD. Bonferroni-adjusted p-value thresholds were 

set for each model. Table 3 summarizes the traits and sites tested in each cohort as well as the 

significance thresholds applied. 

Table 3. Replication models tested in START and CHILD for each outcome 

Outcome Sites in 

Literature 

Available in 

CHILD 

Available in 

START 

Adjusted 

threshold 

GDM 307 216 216 < 0.00023 

GestAge 309 278 279 < 0.00018 

Smoking 161 94 NA < 0.00053 

BMI 1 1 NA  < 0.05 

 

2.3 Results 

2.3.1 Literature Search & Review 

 Our literature search returned a total of 151 studies to be screened for our inclusion and 

exclusion criteria. Abstract screening eliminated 109 studies, leaving 42 remaining for full-text 

access. This deeper review identified a final 15 papers meeting our criteria. Four of our five areas 

of interest were represented by at least one study; we did not find any papers reporting genome-

wide significant effects of prenatal diet on DNA methylation in cord blood. The 15 included papers 

are distributed across our remaining exposures: 1 for maternal pre-pregnancy BMI, 3 for 
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gestational age, 4 for maternal dysglycemia, and 7 for maternal smoking. Figure 1 details the 

literature review and study screening process.  

 

Figure 1. Search and screening process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2 Replication in the Literature 

 Replication of results within existing literature was inconsistent across outcomes but was 

identified at multiple sites for both gestational age and maternal smoking. The three included 

studies focused on gestational age reported a total of 310 significant sites, 9 of which were 

identified by more than one paper. One site (cg16536918) in the vasopressin (AVP) gene was 
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replicated by all 3 papers examined. The 7 studies of maternal smoking reported 142 unique sites, 

of which 35 were replicated. Two of the 7 maternal smoking studies identified sites with no 

replication within the literature, but the remaining 5 papers all demonstrated overlapping results, 

including one site (cg16536918) in the aryl hydrocarbon receptor repressor (AHRR) gene 

replicated by 5/5 of these studies. In all replicated sites (a total of 9 for gestational age and 35 for 

maternal smoking), the reported direction of effect (increased or decreased methylation) was 

consistent in all instances of significant association for that site. Figures 2 and Table 4 illustrate 

the replicated sites observed within the literature for association with gestational age and maternal 

smoking, respectively. 

 

Figure 2. Overview of all sites associated with gestational age. Green sites showed increased 

methylation, red sites were decreased. 
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Table 4. Significant sites and direction of effect duplicated across studies. Green sites showed 

increased methylation; red sites were decreased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The 4 papers focused on GDM were also assessed for replication, but although a total of 

307 sites were reported to be significantly associated with GDM, none of these sites was replicated 

in the literature. The single study of pre-pregnancy BMI identified only 1 significantly associated 

Site Zhang Reese Kupers Richmond Joubert Gene

cg05575921 AHRR

cg21161138 AHRR

cg23067299 AHRR

cg25949550 CNTNAP2

cg11924019 CYP1A1

cg12101586 CYP1A1

cg18092474 CYP1A1

cg22549041 CYP1A1

cg05549655 CYP1A1

cg06338710 GFI1

cg14179389 GFI1

cg04535902 GFI1

cg10399789 GFI1

cg09662411 GFI1

cg09935388 GFI1

cg12876356 GFI1

cg18146737 GFI1

cg18316974 GFI1

cg25189904 GNG12

cg19089201 MYO1G

cg12803068 MYO1G

cg22132788 MYO1G

cg04180046 MYO1G

cg13834112

cg04598670
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site which of course showed no replication. Table 5 summarizes the replicated sites for each 

outcome based on our review of the literature. 

 

Table 5. Sites demonstrating replication in the literature for each outcome. 

Outcome Number of 

Studies 

Total Sig. 

Sites 

Replicated in 

Literature 

Replicated 

Sites 

Genes 

GestAge 3 310 9 cg03098721 

cg07816074 

cg15626350 

cg16536918 

cg27210390 

cg05294455 

cg16301617 

cg16545105 

cg26385222 

TTLL7 

SH3TC1 

ESR1 

AVP 

TOM1L1 

MYL4 

TMC6 

CRHBP 

HCA112 

Smoking 7 142 35 cg05575921 

cg21161138 

cg23067299 

cg25949550 

cg05549655 

cg11924019 

cg12101586 

cg18092474 

cg22549041 

cg04535902 

cg06338710 

cg09662411 

cg09935388 

cg10399789 

cg12876356 

cg14179389 

cg18146737 

cg18316974 

cg25189904 

cg04180046 

cg12803068 

cg19089201 

cg22132788 

cg04598670 

cg13834112 

AHRR 

AHRR 

AHRR 

CNTNAP2 

CYP1A1 

CYP1A1 

CYP1A1 

CYP1A1 

CYP1A1 

GFI1 

GFI1 

GFI1 

GFI1 

GFI1 

GFI1 

GFI1 

GFI1 

GFI1 

GNG12 

MYO1G 

MYO1G 

MYO1G 

MYO1G 

 

 

GDM 4 307 0 NA NA 

BMI 1 1 NA NA NA 
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 Although some sites were directly replicated within the literature for both the gestational 

age and smoking outcomes, this may underestimate the actual overlap in findings if multiple papers 

have reported sites located near each other. We therefore looked for clusters of significant sites 

identified in different papers but localized within 50, 100, and 200 kb. For gestational age, a total 

of 12 regions containing nearby sites from different studies were identified (Table 6). Among 

results of the smoking studies, 5 clusters were identified, several of which contained sites that were 

directly replicated in addition to those nearby but reported in only a single paper (Table 7). Most 

of the regions identified for both outcomes had a total genomic span of < 50 kb, which may be a 

close enough proximity to suggest that perhaps these different site readings are signalling the same 

locus. 

 

Table 6. Gestational age sites in proximity. 

Chr Gene 

Total 

Sites 

Total 

Distance Site Location Distance Papers 

5 CRHBP 2 112 cg21842274 76248637 112 Shroeder 

    

cg16545105 76248749 NA Knight, Schroeder 

6 HIST1H3E 2 131 cg26092675 26225258 131 Bohlin 

    

cg07922606 26225389 NA Knight 

6 NA 3 7000 cg13959344 32901642 6597 Bohlin 

 

HLA-DMB 

  

cg17022232 32908239 403 Bohlin 

 

HLA-DMB 

  

cg00575744 32908642 NA Knight 

10 VENTX 2 69291 cg19875532 135052004 69291 Bohlin 
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TUBGCP2; 

ZNF511 

  

cg15856055 135121295 NA Knight 

11 NEAT1 3 132608 cg11352146 65192550 100544 Bohlin 

 

SCYL1 

  

cg22417398 65293094 32064 Shroeder 

 

LTBP3 

  

cg08965235 65325158 

 

Bohlin 

12 TENC1 2 2002 cg06311778 53441582 2002 Knight 

    

cg17094065 53443584 NA Bohlin 

12 NCOR2 3 1211 cg04347477 125002007 467 Bohlin 

    cg22580512 125002474 744 Knight 

    cg22820108 125003218 NA Knight 

14 TGFB3 2 180 cg03395898 76448011 180 Shroeder 

    cg16187883 76448191 NA Bohlin 

16 

LOC100128788; 

SRRM2 3 131889 cg03507326 2801952 46845 Bohlin 

 

TESSP1 

  

cg19403023 2848797 85044 Knight 

 

FLYWCH2 

  

cg12741488 2933841 NA Knight 

16 ADCY7 2 82 cg06897661 50322074 82 Bohlin 

    

cg23580000 50322156 NA Knight 

20 

MRPS26; 

GNRH2 4 39435 cg26060255 3025968 26256 Knight 

 

OXT 

  

cg26267561 3052224 13119 Shroeder 

 

AVP 

  

cg25551168 3065343 60 Shroeder 
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AVP 

  

cg16536918 3065403 NA 

Bohlin,Knight, 

Schroeder 

21 HLCS 2 43208 cg21081878 

 

43208 Bohlin 

 

DSCR6 

  

cg12564962 

 

NA Shroeder 

 

Table 7. Smoking sites in proximity. 

Chr Gene 

Total 

Sites 

Total 

Distance Site Location Distance Papers 

1 GNG12 2 18 cg25189904 68299493 18 Replicated 

    

cg26764244 68299511 NA Reese 

1 GFI1 9 2293 cg10399789 92945668 464 Replicated 

    

cg09662411 92946132 55 Replicated 

    

cg06338710 92946187 513 Replicated 

    

cg18146737 92946700 125 Replicated 

    

cg12876356 92946825 210 Replicated 

    

cg18316974 92947035 297 Replicated 

    

cg04535902 92947332 256 Replicated 

    

cg09935388 92947588 373 Replicated 

    

cg14179389 92947961 NA Replicated 

5 AHRR 9 82454 cg01970407 323320 587 Kupers 

    

cg23067299 323907 62 Replicated 

    

cg08606254 323969 44478 Zhang 

    

cg03991871 368447 396 Joubert 
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cg11902777 368843 4535 Richmond 

    

cg05575921 373378 19542 Replicated 

    

cg14817490 392920 6440 Kupers 

    

cg21161138 399360 6414 Replicated 

    

cg22937882 405774 NA Kupers 

7 MYO1G 4 632 cg19089201 45002287 199 Replicated 

    

cg22132788 45002486 250 Replicated 

    

cg04180046 45002736 183 Replicated 

    

cg12803068 45002919 NA Replicated 

15 CYP1A1 6 1378 cg23680900 75017924 1219 Kupers 

    

cg05549655 75019143 60 Replicated 

    

cg12101586 75019203 48 Replicated 

    

cg22549041 75019251 32 Replicated 

    

cg11924019 75019283 19 Replicated 

    

cg18092474 75019302 NA Replicated 

 

No site significantly associated with GDM was replicated within the literature we 

reviewed. However, some of the sites reported by different papers are located near each other, 

including two pairs (cg14088574 and cg02990567, cg08440349 and 84486704) which are less 

than 50KB apart. There are also 3 reported sites on chromosome 16, each from a different study, 

and all within 200KB of each other. While none of these nearby sites map to the same genes, their 

proximity does suggest that certain loci may be more strongly implicated than others. Table 8 

shows the pairs of nearby sites, while Table 9 illustrates the potential cluster on chromosome 16.  



31 
 

Table 7. GDM sites in proximity 

Chr Site Location Study Site Location Study Distance 

6 cg14088574 33234976 Haertle cg02990567 33266961 Kang 31985 

10 cg11818589 134800741 Weng cg06355908 134897731 Finer 96990 

15 cg13794888 75917792 Kang cg06717289 75978121 Finer 60329 

19 cg11449134 51897791 Haertle cg26605406 52074318 Kang 176527 

20 cg03467235 21003839 Weng cg23695133 21087075 Kang 83236 

16 cg26828643 88802820 Haertle cg08136432 88902276 Weng 99456 

 

Table 8. GDM cluster on chromosome 16 

Chr Site Location Distance Study 

16 cg02219997 84328104 158600 Kang 

16 cg08440349 84486704 33317 Haertle 

16 cg05208607 84520021 NA Weng 

 

 Finally, the results for each outcome (GDM, gestational age, smoking, and BMI) were 

compared. A single site, cg11864574, was reportedly negatively associated with gestational age 

and positively associated with maternal smoking.18,26 This site is located in the body of the sperm 

associated antigen 6 (SPAG6) gene. Although SPAG6 has not been the focus of many studies, it 
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was found to be differentially methylated in the promoter region as well as differentially expressed 

in non-small cell lung cancers.27  

2.3.3 Population Characteristics 

 Table 9 summarizes the population characteristics of the participants from START and 

CHILD included in our EWAS and replication analyses. Following quality control, pre-processing, 

and restriction to white European participants in CHILD, a total of 491 START and 295 CHILD 

samples moved forward. 

 

Table 9. Population characteristics of START and CHILD participants 

 START CHILD  

Sample Size 491 295 

Ethnicity South Asian White European 

Maternal Age (years, µ ± SD) 30.9 ± 3.9 32.7 ± 4.4 

Infant Sex (% Female) 51.9 46.1 

Gestational Age (weeks, µ ± SD) 39.2 ± 1.3 39.5 ± 1.3 

Birth Weight (g, µ ± SD) 3265 ± 454.5 3498.6 ± 485.9 

GDM (%/N) 13.2/65 5.1/15 

Smoking (%/N) 0/0 7.8/23 

 

2.3.4 Epigenome-Wide Associations 

 None of our models investigating the effects of diet, dysglycemia, or maternal smoking 

identified any sites associated at a genome-wide significant level. However, gestational age was 

significantly associated with DNA methylation at 1044 and 1560 sites in START and CHILD, 
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respectively. The top 10 sites most significantly associated with gestational age in each cohort are 

annotated in Table 10. 

 

Table 10. Top 10 sites most significantly associated with gestational age in START and CHILD 

Site P Value Chr Location Gene 

START 

cg04347477 6.42E-22 12 125002007 NCOR2 

cg17133774 3.89E-21 1 6198667 CHD5 

cg11932158 3.58E-19 3 155422129 PLCH1 

cg18623216 4.93E-18 3 155421970 PLCH1 

cg16103712 7.70E-18 8 99023869 MATN2 

cg00220721 8.80E-18 11 36422443 PRR5L 

cg12713583 1.01E-17 19 940724 ARID3A 

cg08412913 1.21E-17 16 85429522 
 

cg06870470 1.94E-17 19 11315767 DOCK6 

cg03048432 2.72E-17 14 51290751 NIN 

CHILD 

cg18623216 1.42E-24 3 155421970 PLCH1 
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cg16103712 2.42E-24 8 99023869 MATN2 

cg11932158 8.52E-24 3 155422129 PLCH1 

cg12713583 1.85E-23 19 940724 ARID3A 

cg08817867 5.13E-23 17 19656554 
 

cg20334115 6.10E-21 1 226107899 PYCR2 

cg17133774 1.19E-20 1 6198667 CHD5 

cg02001279 3.28E-20 19 940967 ARID3A 

cg12697139 1.91E-18 1 209571889 
 

cg23009780 1.72E-17 2 96774492 
 

 

2.3.5 Replication in NutriGen Cohorts 

 We conducted a replication study of our literature findings in the START and CHILD 

cohorts. The significant sites for each outcome identified through our literature review were used 

in a targeted replication analysis. GDM and gestational age were tested in both START and 

CHILD, while smoking and pre-pregnancy BMI replication was confined to CHILD due to data 

availability. No sites with reported association with GDM or pre-pregnancy BMI were significant 

in our replication models. Of the 94 sites associated with maternal smoking and available in our 

CHILD dataset, 8 reached Bonferroni-level significance (Table 11). All 8 of these sites had been 

previously replicated in the literature according to our review. 
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Table 11. Maternal smoking sites replicated in CHILD 

 

P Value CHR Location Gene 

cg05549655 3.77E-06 15 75019143 CYP1A1 

cg11924019 2.23E-05 15 75019283 CYP1A1 

cg22549041 3.55E-05 15 75019251 CYP1A1 

cg23067299 4.75E-05 5 323907 AHRR 

cg22132788 7.90E-05 7 45002486 MYO1G 

cg18092474 0.000122 15 75019302 CYP1A1 

cg12803068 0.000278 7 45002919 MYO1G 

cg12101586 0.000409 15 75019203 CYP1A1 

 

 A total of 279 and 278 sites from the literature and available in CHILD and START, 

respectively, were targeted for replication of their association with gestational age. Both models 

generated statistically significant results, with 81 sites replicating in START and 81 in CHILD. 

Moreover, 54 of these sites were replicated in both cohorts. Each cohort also replicated 7/9 sites 

previously replicated in our literature review; only one of these sites (cg15626350) failed to 

replicated in either cohort. Table 12 summarizes the design and results of all six replication models 

tested. 
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Table 12. Summary of replication study results for outcomes in START and CHILD 

Outcome Literature 

Sig. Sites 

Available in 

CHILD 

CHILD Sig. 

Sites 

Available in 

START 

START Sig. 

Sites 

GDM 307 216 0 216 0 

GestAge 309 278 87 279 81 

Smoking 161 94 8 NA NA 

BMI 1 1 0 NA NA 

 

2.4 Discussion 

The recent proliferation of the epigenome-wide association study has generated a wealth 

of available evidence for the role of DNA methylation in the DOHaD paradigm. Despite many 

outcomes being examined by multiple studies, it is difficult to elucidate from a basic search what 

the most pertinent findings are and whether those have been replicated across studies. Our own 

EWAS analyses failed to generate genome-wide significant results for almost all variables, an 

issue that many studies in our screening also faced. We thus conducted a literature search, review, 

and replication study to determine the significant EWAS findings in the field related to diet, 

maternal dysglycemia, maternal BMI, gestational age, and maternal smoking.  

 Our search revealed that some of these relationships have been characterized far more 

successfully than others. We were unable to find an EWAS in cord blood that identified a 

significant relationship between DNA methylation and maternal diet at the genome-wide level. 

While diet is a notoriously difficult variable to measure and work with, this deficit combined with 

our inability to reach genome-wide significance in our own analyses suggests that there may be 

minimal effects of maternal diet on methylation, or that these effects are so small they cannot yet 

be identified with current techniques and sample sizes. The body of research for maternal pre-

pregnancy BMI was similarly sparse, with a single study identifying one significant site in 
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ZCCHC10. In contrast, both gestational age and maternal smoking were investigated by multiple 

studies and showed consistency across studies and the ability to replicate findings. 

Gestational age was the only variable that reached genome-wide significance in our EWAS 

analysis, with > 1000 significant sites identified in both the South Asian START and white 

European CHILD cohorts. The systematic review also located three additional studies looking at 

gestational age that were considered in our replication analysis. A total of 10 sites were identified 

in at least 2/3 of these studies, with one site in AVP showing consistent significance in all three 

papers. This site also reached genome-wide significance in our original EWAS. A list of 279 

important sites was compiled from the results of our systematic review and run as a targeted 

replication in START and CHILD, with 81/279 replicating at Bonferonni significance.  

 The successful replication combined with the repeated identification of specific sites 

suggests a strong and regulated relationship between gestational age and DNA methylation. AVP 

codes for arginine vasopressin, which along with oxytocin regulates uterine contractions and 

impacts the timing of delivery. Other delivery-related genes such as estrogen receptor 1 (ESR1) 

and the corticotropin releasing hormone binding protein (CRHBP) were also consistently identified 

across studies.28 Gestational age thus may influence the DNA methylation of important pathways 

involved in childbirth in a consistent and replicable manner.  

 As with gestational age, there was consistency observed across studies for maternal 

smoking, even when the outcome was measured differently (ex. Self-reported smoking vs. 

measured cotinine levels). In particular, the site cg05575921 in AHRR was identified in 5/7 papers, 

and two other sites in this gene were also found in 3/7. This aryl hydrocarbon receptor repressor 

plays an important role in detoxifying compounds from tobacco smoke through the aryl 

hydrocarbon receptor (ArH) signaling pathway.17 Multiple sites in CYP1A1, also involved in this 
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pathway, were identified across studies as well. This consistent implication of a crucial pathway 

in tobacco metabolism suggests that the effects being seen are in fact a direct result of the tobacco 

exposure. In fact, the same genes have demonstrated differential methylation in cases of adult 

smoking.  

 Questions remain despite the consistency of findings. The study by Reese et al. (2017) 

attempted to generate a methylation ‘score’ to use as a clinical biomarker of sustained maternal 

smoking.26 However, a tool such as this may still be imperfect based on our current understanding. 

Studies disagree on the dose-response relationship, although most seem to identify sustained 

smoking as key rather than smoking discontinued early in pregnancy. Preliminary results from an 

African American cohort suggest that sites may replicate across ethnicities, but more research is 

needed to ensure any ‘smoking signature’ develops is applicable outside of a white European 

population. Finally, there is some evidence for sex-specific effects on the fetus that may need to 

be addressed.29 Despite these remaining questions, the consistency observed across many studies 

on smoking is very encouraging.   

 Despite finding four studies examining the relationship between gestational diabetes and 

infant methylation, there was far less consistency observed across studies for this outcome than 

for gestational age or maternal smoking. No site was identified in more than one paper, nor were 

the same genes implicated repeatedly. We did find some evidence that broader loci may be 

involved; three sites across three papers were within a 200KB range on chromosome 16, and there 

were two pairs of sites identified within 50KB of each other. All the sites observed failed to 

replicate within our cohort.  

Similarly, maternal pre-pregnancy BMI was associated with a significant change in only one 

site in the single paper published. While this is a comment on the lack of available evidence as 
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much as anything else, it does suggest that these more diffuse exposures (dysglycemia, obesity) 

may have a more subtle and difficult to elucidate effect on the developing epigenome.  

 Taken together, these results illuminate some interesting trends in EWAS data. First, it is 

gratifying to observe that for some outcomes it is indeed possible to identify consistent changes in 

DNA methylation. It is perhaps unsurprising that this occurred for gestational age and maternal 

smoking. Age has repeatedly been seen to have a strong relationship with DNA methylation, so 

much so that ‘clocks’ have been developed to determine an adult’s biological age using their 

methylation patterns. Two of the papers included in our systematic review were developing a 

similar clock for predicting gestational age. Given that gestational age is both an ‘exposure’ a trait 

intrinsic to the fetus itself, it makes sense that there are consistent observable changes in cord blood 

methylation based on this outcome. Interestingly, the sites most useful in predicting gestational 

age are almost entirely different from those used in adult methylation ‘clocks’, underscoring the 

importance of studying fetal and infant methylation directly rather than drawing conclusions from 

adult samples.18 Maternal smoking, while still a comparatively ‘external’ exposure, is also a very 

strong variable to work with as well; tobacco smoke is a known carcinogen with documented 

negative outcomes in pregnancy.  

 Changes caused by exposures such as GDM or pre-pregnancy BMI seem to be far more 

difficult to characterize. It is understandable that the effects on a fetus growing in a dysglycemic, 

obesogenic, or inflammatory environment may be less extreme and more diffuse than those 

resulting from exposure to a toxin. The frequently duplicated sites for gestational age and smoking 

were located in AVP and ARHH, respectively, both genes intricately involved in mediating their 

associated exposures. The effects of a dysglycemic uterine environment may not affect a single 

process this dramatically. There may also be an issue of power in these studies. If the effects are 
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consistent, but small in magnitude and involved in various processes scattered across the genome, 

a small sample size may be simply unable to detect their presence accurately. The largest GDM 

study identified here was approximately 300 total cases and controls. In contrast, larger GWAS 

analyses may use hundreds of thousands of participants to elucidate small effect sizes.  

 In conclusion, we were able to systematically review the evidence for DNA methylation in 

DOHaD and replicate some findings in our cohorts. Gestational age and sustained maternal 

smoking both show consistent alterations to cord blood methylation across multiple studies. 

Studies of GDM have identified genome-wide significant changes, but these have failed to be 

duplicated by other groups in independent EWAS analyses. These results demonstrate the promise 

of DNA methylation in explaining the process of fetal programming, while showing that there is 

still much to be done to better characterize the relationship with many types of exposures. 
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CHAPTER 3: Evaluating the role of cellular composition in cord blood GIR 

 

3.1 Introduction 

The rising prevalence of non-communicable diseases such as cardiovascular disease 

(CVD) and diabetes poses a significant challenge in population health. Increasingly, early life 

experiences, including in utero exposures, are being shown to have an important effect on these 

long-term health outcomes. These observations have led to the concept of fetal programming, in 

which the environment experienced by a fetus during gestation may affect its development and 

disease risk in later stages of life. An increasing body of literature around the Developmental 

Origins of Health and Disease (DOHaD) has demonstrated the importance of understanding these 

early events to manage health across a lifetime.  

3.1.1 Maternal Dysglycemia & Gestational Diabetes 

One gestational exposure of significant interest in the DOHaD community is gestational 

diabetes (GDM), as this appears to have short- and long-term effects on both maternal and child 

health. GDM is identified based on evidence of glucose intolerance with a first onset during 

pregnancy.7  This is generally evaluated based on an oral glucose tolerance test (OGTT) 

administered between weeks 24 and 28 of gestation.30  

The prevalence of GDM is variable, but it has been estimated at 10% in the USA, 5.4% in 

Europe, and 7.24% in a large French study.7,31,32 Six different criteria applied to the South Asian 

women in the Born in Bradford cohort generated an estimated prevalence between 4% and 24%. 

Risk factors include increased maternal age and obesity/BMI.30,33 This poses a significant health 

risk to both the pregnant women and their children in the short and long term. Billionnet et al. 

(2017) studied GDM in a cohort of 716 152 births in France and found an increase in risk of 
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preterm birth, Caesarian section, pre-eclampsia/eclampsia, macrosomia, respiratory distress, birth 

trauma, and cardiac malformations.32 Beyond the perinatal period, mothers who experience GDM 

are more likely to develop metabolic syndrome and/or type 2 diabetes (T2DM) after their 

pregnancy.6  

 Children of GDM mothers experience fetal programming based on this exposure that leads 

to lifelong health consequences. In particular, they are at higher risk for glucose dysregulation in 

their own lives; they experience a higher rate of cardiovascular disease (CVD), hypertension, and 

T2DM.7 GDM is therefore a key factor in the developmental origins of health and disease at the 

individual and population level. A better understanding of the means by which in utero exposure 

programs long-term health factors may lead to more effective interventions in GDM and its 

associated morbidities. 

3.1.2 DOHaD & Epigenetics 

One of the most promising mechanisms thought to produce the phenomenon of fetal 

programming is epigenetic modification, which causes altered gene expression without affecting 

the underlying genetic code. Epigenetic marks are both modifiable and heritable, allowing for the 

possibility of an early alteration to persist through cell generations to adulthood. The most 

characterized epigenetic mechanism is DNA methylation, in which a methyl group is added to the 

fifth cytosine in a CpG dinucleotide (pair of adjacent cytosine and guanine bases. DNA 

methylation is crucial for gene regulation; in general, an increase in DNA methylation at a gene 

promoter leads to decreased expression of that gene, and vice versa.  

 Numerous studies have demonstrated an association between exposure to a dysglycemic in 

utero environment and altered DNA methylation patterns in placental and infant tissues. Of 

particular interest is the IGF2/H19 locus, an imprinted region involved in metabolic programming. 
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Differential methylation and gene expression have been observed at this locus in cord blood 

samples exposed to intrauterine hyperglycemia.13 Epigenome-wide association studies (EWASs) 

have also identified a variety of genes with potentially altered methylation patterns. Cardenas et 

al. (2018) examined placental tissue and observed differential methylation at 7 sites over four 

genes, correlating to altered expression in three of these.34 Similar studies in cord blood have 

together identified > 100 potential sites of differential methylation in GDM cases.15,35,36 However, 

the same sites are not replicated across studies and EWAS results are often different than targeted 

analyses. It seems likely that DNA methylation patterns are therefore playing an important role in 

long-term programming of the fetal genome upon exposure to GDM, but more investigation must 

be done to identify consistent and replicable effects.  

3.1.3 Fetal Insulin Sensitivity 

In addition to identifying GDM-induced changes in cord blood, it is important to 

characterize alterations that directly relate to glucose homeostasis in the infant. Measures of fetal 

insulin sensitivity can help describe an infant’s metabolism and may also be associated with 

changes in DNA methylation. Insulin sensitivity at birth can be assessed in cord blood samples, 

and is often quantified using circulating concentrations of proinsulin, as well as the glucose-to-

insulin ratio (GIR). Alterations in both measures have been observed in cases of maternal 

dysglycemia.37  

Cord blood GIR has been associated with numerous gestational exposures and metabolism-

related infant metrics. In a study of infants of dysglycemic compared to euglycemic pregnancies, 

Luo et al. (2010) demonstrated a significantly reduced GIR in association with both high OGTT 

blood glucose levels and GDM.37 Gesteiro et al. (2011) found a reduction in GIR in infants born 

to mothers with impaired glucose tolerance (IGT) compared to their normal maternal glucose 
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tolerance (NGT) counterparts.38 Sahasrabuddhe et al. (2013) used a composite outcome measure 

of ‘complicated pregnancy’, which included cases such as pregnancy induced hypertension (PIH), 

thyroid dysfunction, and GDM. This outcome was also associated with decreased GIR in cord 

blood.39 Preterm birth has also been shown to positively correlate with GIR and other measures of 

insulin sensitivity.40 

 Other studies have examined the relationship between GIR and metabolism-related 

measures in cord blood. Luo et al. (2013) found that the concentration of cord blood leptin, but not 

adiponectin, was associated with the GIR as well as proinsulin level. They suggested that this could 

be a mechanism by which a predisposition to obesity and insulin resistance could be transmitted 

from mother to infant.41 Another study by Zhao et al. (2014) looked at arachidonic acid (AA) and 

docosahexaenoic acid (DHA) levels in cord blood. These fatty acids are important in maintaining 

pancreatic beta-cell function and structure and were hypothesized to be involved in fetal insulin 

sensitivity. Although AA showed no correlation, DHA concentrations were lower in the offspring 

of GDM mothers compared to non-diabetics and were associated with lower fetal insulin 

sensitivity (both GIR and proinsulin concentration). The authors suggested that these reduced 

DHA levels may be involved in the perinatal programming leading to increased type 2 diabetes 

(T2DM) susceptibility.42 

3.1.4 Conclusion 

In order to better characterize the relationship between maternal dysglycemia, fetal insulin 

sensitivity, and long-term programming, we propose to examine the role of DNA methylation. The 

primary goal is to determine the association between genome-wide DNA methylation and the GIR 

in infant cord blood. Changes in methylation found to be associated with GIR may provide clues 
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as to what biological processes are being affected by maternal dysglycemia and how these translate 

into lifelong predispositions.  

3.2 Methods 

3.2.1 Study Population & Outcome Measures 

Data were generated as part of the NutriGen study, which aims to understand the impact of 

maternal nutrition and exposures in long-term infant and child health. Of particular interest is the 

role of genetics and epigenetics in these relationships. This study combines four diverse Canadian 

birth cohorts: the Family Atherosclerosis Monitoring In Early life (FAMILY) cohort, the Canadian 

Health Infant Longitudinal Development (CHILD), the South Asian birth Cohort (START), and 

the Aboriginal Birth Cohort (ABC). Measures of maternal and infant health were collected and 

harmonized across cohorts for analysis. A subset of approximately 500 samples each from START 

and CHILD were also assessed for genome-wide DNA methylation.  

Additionally, cord blood samples in START were assessed for levels of glucose and insulin. 

A composite variable was created using the ratio of measured glucose:insulin. Because this yielded 

small values, they were multiplied by ten for use in models. The final variable, (glucose:insulin) x 

10, is our GIR.  

Follow-up analysis utilized a subset of samples from the Steroids In caRdiac Surgery Trial 

(SIRS Trial). This is a multicentre, international, randomized controlled trial to investigate the 

effect of perioperative steroid administration on death and MI in patients undergoing cardiac 

surgery requiring cardiopulmonary bypass. Peripheral blood from adult patients was collected and 

a subset were assessed for genome-wide DNA methylation. We accessed these data following 

standard preprocessing and quality control measures, leaving a remaining sample of 466 

individuals.  



46 
 

3.2.2 Genome-Wide DNA Methylation 

 Cord blood samples were processed and DNA was extracted using standard protocols. In 

preparation for the methylation assay, samples underwent sodium bisulfite treatment. Briefly, this 

process converts unmethylated cytosine bases to uracil, leaving methylated cytosines unchanged 

and allowing for the relative quantification of DNA methylation at a given site. 

Samples were assayed with the Illumina HumanMethylation450K BeadChip, which 

measures DNA methylation at > 485 000 sites genome-wide covering > 96% of RefSeq genes. A 

total of 512 START and 511 CHILD samples were randomized across arrays for methylation 

assessment. Intensities were read with the Illumina iScan and idat files exported to R for pre-

processing and quality control. 

3.2.3 Data Processing and Quality Control 

 Raw iScan data were imported into the R version 3.2.0 which was used for all pre-

processing, quality control, and downstream statistical analysis. First, idat files were loaded into 

the R/Bioconductor minfi package. Any samples showing > 1% of probes failing detection were 

removed. Genetic sex was estimated using the getSex function and compared to phenotypically 

reported sex; any mismatched samples were also removed. Next, probes were assessed for 

missingness, and those showing failure in > 1% of samples were excluded. Probes known to be 

cross-reactive or to contain SNPs were removed as well. A total of 506 START and 491 CHILD 

samples remained following the application of all quality control measures, with a final 393 400 

and 393 449 sites, respectively (Table 13). Data were normalized with subset within-array 

normalization (SWAN) and exported from minfi as beta (β) values.24 Batch effects were corrected 

for by chip using the ComBat algorithm in the sva package.25 Because data in the START cohort 

were used in an EWAS analysis, we also created a regional START dataset in minfi with the 
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cpgCollapse function, generating regions no wider than 1500 bp with all sites < 500 bp apart. 

Analysis in CHILD samples was restricted to white European individuals to ensure a large enough 

sample to avoid confounding.  

Underlying cellular composition was estimated in processed START, CHILD, and SIRS 

samples using several methods. The reference-free ReFACTor algorithm was used to generate the 

first 7 principal components (PCs) representing cellular composition. The estimateCellCounts 

function in the minfi package also incorporates the Houseman et al. (2012) and Bakulski et al. 

(2016) methods for estimating proportions of relative cell types in peripheral blood and cord blood, 

respectively.20,21 Cell counts were estimated based on peripheral blood algorithms in SIRS and 

cord blood in START and CHILD. 

 

Table 13. Summary of samples and probes excluded at each stage of quality control. 

Samples Probes 

 START CHILD  START CHILD 

Initial 512 511 Initial > 485 000 

Sex Check 5 7 Failed 756 634 

Missingness 2 14 Polymorphic 70 889 

Final 506 491 Cross-Reactive 29 233 

   Final 393 400 393 449 
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3.2.4 Epigenome-Wide Association 

An EWAS was conducted in START to determine the relationship between DNA 

methylation patterns and GIR in the infant cord blood. Statistical analysis was performed using R 

version 3.2.0. A multivariable linear regression model was used to test for association and was 

adjusted for maternal age, infant sex, gestational age, study centre, and the top 7 principal 

components of cellular composition as determined by the ReFACTor algorithm.19 Statistical 

significance was set using the Bonferroni correction for multiple testing at p < 1.27 x 10-7 and p < 

2.76 x 10-7 for the site-by-site and regional datasets, respectively. 

Part 2: Cellular Composition 

3.2.5 Verifying Associations 

Several methods were used to validate the statistically significant findings. First, the 

multivariable linear regression model was repeated with the GIR variable replaced with a 

permutation for ten iterations. The GIR was then winsorized, log transformed, and quantile 

normalized, and the regression analysis redone using each version of the variable. For best results 

the quantile normalized GIR variable (QGIR) was used in all downstream analyses.  

3.2.6 Identifying Independent Signals 

A forward stepwise regression model was used to test the independence of the top signals in 

the QGIR association. Based on Bonferroni correction the threshold for significance was set at p 

< 1.27 x 10-7.  In the first iteration, the most significant site from our original association analysis 

was incorporated into the regression model as a covariate. The most significant site from these 

results was then added to the model, and so on until no significant associations remained. These 

and all subsequent models included the first 5 principal components of ancestry (derived from 

START genotyping data) as covariates in addition to those previously listed.  
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The top 5 sites from the QGIR analysis were also assessed for correlation with each other. 

Correlation between each possible pairing of the top 5 sites was calculated. 

3.2.7 Pathway Analysis  

To investigate underlying biological relationships that may be driving the observed 

associations, we conducted pathway analysis. This method attempts to characterize biological 

pathway that are statistically overrepresented among the more significant sites identified. Slight 

modifications were necessary to accommodate methylation data as the tools are primarily designed 

for genotyping results. First the InCroMap tool was applied, using both the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) and Gene Ontology (GO) annotations. The Data-driven 

Expression Prioritized Integration for Complex Traits (DEPICT) method was also used, which 

combines numerous annotation sets.  

3.2.8 Methylation Risk Score 

Next, a risk score was constructed for both START, CHILD, and SIRS samples using the top 

associations from the regression analysis.  First, the site-by-site and regional regressions for QGIR 

were repeated excluding all cellular composition estimates as covariates to identify the top 10 most 

significant regions. The lead site within each region was defined as the one reaching the strongest 

significance in the site-by-site model. The risk score was calculated as the sum of the product of 

the beta value and effect size at each of these 10 sites over every sample.  

To test which cell types may be involved in the observed relationship, this risk score was used 

in a subsequent linear regression model with the estimated underlying cell counts as the predicted 

variable. This association was conducted in START and CHILD (cord blood) as well as the SIRS 

methylation samples (adult peripheral blood). In CHILD, 184 samples underwent a complete blood 
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count (CBC), and our methylation risk score was therefore also tested for association in this subset 

with directly quantified cellular proportions.  

3.2.9 Blueprint Epigenome Project 

To further investigate the role of individual cell types, data were obtained from Blueprint 

Epigenome. This project aims to generate reference epigenomes for healthy and malignant 

haematopoieitic cells. Their data included 64 venous blood and 46 cord blood samples. We 

accessed genome-wide DNA methylation data for all available cell types for both cord and venous 

blood. In cord blood, two each of the following were used: neutrophils, monocytes, dendritic cells, 

B cells, and CD8T cells, as well as one macrophage. For venous blood we accessed two each of: 

monocytes, macrophages, dendritic cells, neutrophils, NK cells, B cells, CD8T cells, and CD4T 

cells. All methylation data were imported in the form of BigWig files and processed using the 

WiggleTools package. Beta values for the ten sites used in the methylation risk score were exported 

from each sample. and assessed across cell types to determine which cell(s) showed an inverse 

methylation pattern compared to the others.  

 

3.3 Results 

Part 1: GIR and Methylation Association 

3.3.1 Study Population 

 Table 14 summarizes the population characteristics observed in the mothers and infants 

from START and the white Europeans subset of CHILD.  
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 START CHILD (European) 

Sample Size 491 295 

Maternal Age (years, µ ± SD) 30.9 ± 3.9 32.7 ± 4.4 

Infant Sex (% Female) 51.9 46.1 

Gestational Age (weeks, µ ± 

SD) 

39.2 ± 1.3 39.5 ± 1.3 

Birth Weight (g, µ ± SD) 3265 ± 454.5 3498.6 ± 485.9 

GDM (%) 13.2 5.1 

Smoking (%) NA 7.8 

 

Table 14. Population characteristics in START and CHILD methylation samples. 

 

 

3.3.2 Epigenome-Wide Association 

 Our initial EWAS, conducted using our untransformed GIR variable, led to genome-wide 

significant findings in both the site-by-site and regional datasets. A total of 13 significant sites and 

8 regions were identified. Table 15 shows the significant sites and their associated genes. Overall, 

both site and regional models had 4 significant genes in common: DNAJB6, CXXC5, AP3D1, and 

ABI3.   

 

Site Estimate P Value Chr. Position Gene Location 

cg06858263 -0.00099 3.54E-09 7 157148509 DNAJB6 5'UTR 

cg13707793 -0.00106 2.51E-08 5 139045301 CXXC5 5'UTR 

cg16214653 -0.00176 2.82E-08 15 100048500 
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cg08087047 -0.00101 4.23E-08 17 72461209 CD300A TSS1500 

cg09159050 -0.00105 4.51E-08 1 1563500 MIB2 Body 

cg12811871 -0.00184 5.09E-08 4 2322078 ZFYVE28 Body 

cg25892537 -0.00091 5.35E-08 4 6611128 MAN2B2 Body 

cg05875239 -0.0021 5.92E-08 14 99787559 

  
cg11133963 -0.00123 6.68E-08 17 47297512 ABI3 Body 

cg05656688 -0.00145 9.59E-08 1 25254088 RUNX3 Body 

cg04392554 -0.00174 1.00E-07 22 46685472 TTC38 Body 

cg01830256 -0.00119 1.13E-07 14 105861940 PACS2 3'UTR 

cg11349093 -0.00109 1.19E-07 19 2112885 AP3D1 Body 

Table 15. Sites showing genome-wide significant association with untransformed GIR. 

Part 2: Cellular Composition 

3.3.3 Verifying Association 

 In ten permutations no statistical significance or evidence of association was observed. 

Transforming the GIR variable increased the number of significant sites, and analysis moving 

forward used the QGIR. Compared to the original 13 significant sites, a total of 190 reached 

significance in the QGIR regression model (including 12/13 previously associated sites). The top 

15 most significant associations are detailed in Table 16. QGIR was also shown to be significantly 

associated with > 60 regions. These results suggest a true association with our outcome rather than 

a spurious finding due to underlying data distribution or other issues.    
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Site Estimate P Value Chr Location Gene 

cg13917614 -0.02434 7.97E-13 17 40125660 CNP 

cg03538296 -0.01669 3.85E-12 1 15392433 KIAA1026 

cg12811871 -0.01925 5.01E-12 4 2322078 ZFYVE28 

cg15220605 -0.01944 9.16E-12 17 80393595 HEXDC 

cg18247172 -0.01658 1.17E-11 15 91370233 
 

cg00910503 -0.01595 1.33E-11 17 80393666 HEXDC 

cg01291375 -0.01318 1.49E-11 6 170753313 
 

cg11349093 -0.01142 1.84E-11 19 2112885 AP3D1 

cg06706159 -0.02199 2.95E-11 19 18260350 MAST3 

cg26355072 -0.0154 2.96E-11 5 141674679 
 

cg24137511 -0.0173 4.34E-11 19 18260330 MAST3 

cg15636859 -0.014 6.31E-11 20 55982844 RBM38 

cg03831847 -0.01663 6.80E-11 16 88832485 FAM38A 

cg09115713 -0.01752 1.09E-10 16 88832476 FAM38A 

cg09159050 -0.01064 1.09E-10 1 1563500 MIB2 

 

Table 16. Top 15 sites most significantly associated with QGIR. 
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3.3.4 Identifying Independent Signals 

 In both the site-by-site and regional datasets, significance was eliminated after just one 

iteration of the stepwise regression model; the incorporation of only the top DMP/DMR was 

enough to remove the observed association. This suggests that rather than being a set of 

independent signals, the significant sites/regions are in fact related in some way despite falling on 

a variety of chromosomes across the genome. Beta values at the five top sites were also seen to 

correlate strongly to each other (Table 17). There is no obvious structural explanation underlying 

these findings, which suggests instead that the observed associations may be driven by a common 

biological relationship among the genes identified.  

 

Site cg03538296 cg13917614 cg12811871 cg15220605 cg18247172 

cg03538296 1.00 0.79 0.82 0.78 0.7 

cg13917614 0.79 1.00 0.9 0.85 0.86 

cg12811871 0.82 0.9 1.00 0.85 0.83 

cg15220605 0.78 0.85 0.85 1.00 0.82 

cg18247172 0.7 0.86 0.83 0.82 1.00 

 

Table 17. Pearson correlation coefficients (r) for the 5 most significantly associated sites. 

 

3.3.5 Pathway Analysis 

 Pathway analysis allowed us to characterize what biological processes may be involved in 

our results. The InCroMap tool generated non-specific pathways that were inconsistent with those 

identified by DEPICT. In contrast, DEPICT repeatedly implicated pathways involved in ‘Hemic 

and Immune Systems’ (Table 18), which suggests a role for processes such as haematopoiesis. 

This further implies that underlying cellular heterogeneity not accounted for by the ReFACTor 

PCs may be driving the association. Cellular composition was therefore derived using the Bakulski 

et al. (2016) method, generating estimates for each cell type and allowing for further investigation 

into which hemic cell(s) may be involved in the observed relationship.21 
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Table 18. Most significantly enriched pathways identified by DEPICT. 

 

3.3.6 Methylation Risk Score 

 The methylation risk score was constructed based on the sites in Table 19 and assessed for 

its association with QGIR in START as well as measures of cellular composition in CHILD, 

START, and SIRS. Results were significant in all these models (p < 0.05). The START and 

CHILD results suggest that lymphocytes are playing an important role in modulating the risk score, 

but it is unclear which cell population(s) may be responsible. The SIRS data, deconvoluted using 

a more robust reference panel, show clearer effects the directionality of the relationships (Table 

20). This indicates a potential role for natural killer (NK) cells in driving the observed association.   
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Table 19. Lead sites and estimates for the 10 regions most significantly associated with QGIR and 

used to generate methylation risk scores in START, CHILD, and SIRS.  

 

 

Table 20. Association between methylation risk score and cell composition in SIRS 

 

3.3.7 Blueprint Epigenome 

 DNA methylation in the individual cell lines accessed from the Blueprint Epigenome 

Project support the hypothesis that natural killer cells are driving our results. Although the small 

number of samples prohibited statistical analysis, all sites consistently showed inverted 



57 
 

methylation patterns in NK cells as compared to other blood cells in both cord and venous blood 

samples (Table 21). 

Site Estimate Neutr Mono DC Macro B Cell CD8T NK 

cg13917614 -0.0244 0.962 0.962 0.855 0.932 1 0.949 0 

cg15220605 -0.0202 0.948 1 0.839 0.978 1 1 0.533 

cg12811871 -0.0195 0.949 0.912 0.806 0.967 0.94 1 0.053 

cg03538296 -0.0172 0.958 0.955 0.773 0.946 0.955 0.944 0 

cg18247172 -0.0170 0.97 0.965 0.88 0.867 1 0.833 0.147 

cg06706159 -0.0226 0.91 0.948 0.906 0.907 0.96 0.929 0.034 

cg16412914 -0.0116 0.933 0.959 0.857 0.912 1 0.968 0.174 

cg11349093 -0.0113 0.947 0.986 0.863 0.969 0.949 1 0.136 

cg12226453 -0.0133 0.866 0.971 0.77 0.954 0.981 0.739 0.074 

cg03886681 -0.0101 1 0.958 0.9 0.923 0.867 1 0.075 

 

Table 21. Methylation at risk score sites in individual cell lines 

 

Most compelling is the observation that all 10 sites used to generate the risk score 

demonstrated a negative association with the QGIR outcome, but trend toward hypermethylation 

(approaching β = 1.0) in all non-NK blood cells. NK cells, however, are the only ones showing 

hypomethylation (approaching β = 0), strongly suggesting that they are responsible for the 

observed direction of effect. This inverse pattern is also consistent at the two positively associated 

sites assessed. Overall, these findings provide convincing evidence that NK cells are playing a key 

role in the relationship between cord blood QGIR and DNA methylation. 

3.4 Discussion 

In this study we sought to characterize the relationship between cord blood GIR and DNA 

methylation. We found that GIR is significantly associated with 190 CpG sites and > 60 regions, 

but that despite their distribution across the genome these sites are all correlated with each other 

rather than representing independent signals. The identification of ‘Hemic and Immune System’ 

pathways with the DEPICT pathway analysis tool was the first suggestion that this relationship 

may be driven by underlying cellular composition. By utilizing a methylation risk score and data 
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from the Blueprint Epigenome Project, we were able to identify natural killer (NK) cells as the 

population most strongly influencing our results. 

3.4.1 Natural Killer (NK) Cells 

 Natural killer (NK) cells were first described in the 1970s and have since become 

characterized as a key component of the innate immune system.43 Approximately 15% of 

circulating lymphocytes are NK cells, and most knowledge of NK cells comes from the study of 

peripheral blood.44 Originally two subsets of NK cells were identified: CD56dim (which have potent 

cytotoxic activity and are the dominant subset in peripheral blood and lung tissue) and CD56bright 

(cytokine-producing but with poor cytotoxic ability) cells.43 However, this categorization vastly 

underestimates the diversity amongst NK cells, which is in turn related to their function(s). A study 

of monozygotic twins and unrelated donors using mass spectrometry estimated 6 000 – 30 000 

phenotypic populations of NK cells in an individual.45 Cytomegalovirus exposure can also cause 

clonal-like expansion of NK cells, significantly modifying their DNA methylation patterns and 

yielding cells more similar to toxic CD8+ T cells than to typical NK cells.46 The variety of NK cell 

phenotypes beyond the initial subset definitions is beginning to become apparent.  

NK cells are best known for their role in non-self response, in particular for killing malignant 

cells of hematopoietic origin as well as virus-infected.43,44,46,47  They also produce and respond to 

many cytokines and chemokines, and interact with a both immune and non-immune cells.46 In 

response to cytokine production by nearby cells, NK cells release further cytokines and 

chemokines and thereby potentiate their responsiveness to cellular targets.46 They are also 

regulated through a complex system of activating and inhibitory receptors that sense ligands on 

surrounding cells. Inhibitory receptors often target HLA class 1 ligands, enabling NK cells to target 

cells without self-HLA class 1 expression in a process known as ‘missing self’ recognition.46 
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Horowitz et al. (2013) noted that inhibitory receptor expression is driven largely by genetics, while 

environmental factors are most influential on activation receptor expression.45 Recent findings 

have also identified infection-induced adaptations in NK cells, suggesting that they may have 

durable, memory-like responses in addition to their role in innate immunity.43 

 A successful pregnancy is also dependent on uterine NK (uNK) cells. In early gestation, 

interaction between NK cells and dendritic cells (DCs) is crucial in developing maternal tolerance 

and beginning angiogenesis.48 uNK cells produce the IL-10 necessary for DC interaction which 

allows for enhanced angiogenesis and placental development; uterine artery remodeling also 

requires proper NK cell function.49 

3.4.2 NK Cells & Obesity 

 Obesity has been demonstrated to have a significant effect on NK cell phenotype and 

function. O’Rourke et al. (2013) identified an increased activation profile in NK cells derived from 

adipose tissue compared to peripheral blood.50 They later suggested that NK cells may be able to 

regulate adipose tissue macrophages and influence insulin resistance. Other studies have supported 

both these claims. Viel et al. (2017) compared peripheral blood NK cells between obese and non-

obese individuals and identified an activated phenotype associated with obesity and characterized 

by elevated CD69 and granzyme B along with decreased CD16. They also noted a trend toward 

increased numbers of NK cells with increasing BMI.51 Bahr et al. (2018) observed no significant 

changes in total NK cells between normal-weight and obese individuals but did identify changes 

in NK cell subsets. They found that obese subjects showed increased numbers of CD56bright (low 

cytotoxicity) NK cells and a decrease in CD56dim (high cytotoxicity) cells.52  

 This dysregulation of NK cells may have a direct effect on key obesity-related health 

outcomes. NK cell uptake of lipids from the environment may interfere with mTOR-PPAR 
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pathways and cause metabolic paralysis, thereby interfering with the cytotoxic process and 

efficient tumour killing.53 This may be one mechanism by which the incidence of certain cancers 

increases in obese populations. The previously noted tendency of NK cells in adipocytes to recruit 

macrophages may also lead to excess IL-1β production by these macrophages and resulting insulin 

resistance and T2DM.54 Obesity may also interfere with proper uNK cell function. Perdu et al. 

(2016) identified a significant reduction of uNK cell numbers in obese compared to lean women 

as well as impaired uterine artery remodeling. uNK cells in obese women also overexpressed 

decorin, which limited trophoblast survival and inhibited placental development.49  

3.4.3 NK Cells & Atherosclerosis 

 NK cells may also be involved in another disease of chronic inflammation: atherosclerosis. 

They have been observed within atherosclerotic plaques in humans, and may in fact be recruited 

to the site by chemokines known to be present in these lesions. Monocyte chemoattractant protein-

1 (MCP-1) and fractalkine (CX3CL1) are both found in atherosclerotic lesions and are known to 

be a chemoattractant to NK cells and to induce NK cell migration and activation, respectively.55 

Within plaques they are mostly found within tissues adjacent to the necrotic core as well as in 

shoulder regions.47 Higher circulating NK cell levels have also observed in patients with severe 

atherosclerotic disease.55 In particular, increased activation of NK cells by various methods may 

increase atherosclerosis and high-risk plaque development.56 However, most evidence in humans 

is limited to observation and association; murine models have attempted to elucidate a causal role 

for NK cells in atherosclerosis. 

 In beige mice (which carry a mutated Lyst gene causing a loss of cytolytic NK cell 

function) with an LDLR-/- background, a potential atheroprotective effect of NK cells was 

observed that may be cytokine-mediated.57 In contrast, LDLR-/- mice with Ly49A transgenic bone 
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marrow modeling NK cell deficiency showed reduced lesions, suggesting that NK cells may be 

pro-atherogenic.58 Selathurai et al. (2014) used a combination of gain- and loss-of-function models 

in ApoE-/- mice on a high-fat diet and determined that NK cells are indeed atherogenic and that 

they contribute to necrotic core expansion through perforin and granzyme B production.59 

However, all of these studies suffered from being unable to attribute the results exclusively to NK 

cells, as their models also affect other cytotoxic lymphocytes. More recently, Nour-Eldine et al. 

(2018) utilized several novel mouse models and demonstrated no direct effect of NK cells on 

atherosclerosis but suggested that they may play a role in cases of systemic NK-cell 

overactivation.60 In particular, they provided evidence that the proatherogenic effects of anti-

asialoganglioside M1 antiserum treatment noted by studies such as that by Selathurai et al. (2014) 

is due to effects on CD8+ T and NKT cells.  

 Overall, a role for NK cells in atherosclerosis seems promising, but the evidence is as yet 

inconclusive and in most cases indirect. It has also been suggested that crosstalk between NK and 

DC cells may exacerbate atherosclerosis, perhaps through IFN-γ release and inflammatory 

incitement.47 Much remains to be elucidated regarding NK cells in this disease model and their 

interaction with other players such as macrophages and DCs.  

 

3.4.4 Conclusions 

Our findings, in combination with numerous other observations of disturbed NK cell levels in 

inflammatory disease, suggest that perhaps the long-term effects of maternal dysglycemia and 

insulin sensitivity are modulated at the tissue level by moderating cellular composition. This 

counters the general assumption that epigenetic mechanisms such as DNA methylation are the 
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primary mediator in the process of fetal programming. Instead, methylation differences may be the 

result of changes to the underlying cell populations, as observed here with NK cells.  

A major limitation of this study is our inability to directly quantify NK cells. Almost all of our 

cellular composition estimates were derived from methylation data rather than being directly 

assessed in blood. While lymphocytes can be reported as part of a CBC, this is only a proportional 

measure relative to other cell types and does not provide an independent NK variable. It may be 

possible to use an ELISA-based assay to target NK-specific proteins (such as CD335 or S1PR5) 

in order to develop a method of measuring NK cells from venous blood samples. This would allow 

for quantification in large sample sizes to generate direct association analyses with inflammatory 

and CVD-related outcomes. 

Future investigations will also focus on the genetics underlying cellular composition. The 

deconvolution methods developed for DNA methylation arrays can be used in publicly available 

datasets to derive cellular composition. Where genotyping data are also available, genome-wide 

association analyses may be conducted in order to identify what genes and processes are most 

implicated in determining the proportion of various blood cell types. This may provide greater 

insight into the mechanisms by which cellular composition may be modified in gestational 

exposure paradigms. 
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CHAPTER 4: DISCUSSION 

 

4.1 Study Overview 

 

 In these studies, we attempted to achieve a better understanding of the role of DNA 

methylation in the mediation of fetal programming. By conducting a systematic review and 

replication study, we were able to gather the available EWAS evidence related to numerous 

outcomes into a cohesive whole. This demonstrated that some exposures are well characterized; 

for example, differential methylation associated with maternal smoking and gestational age has 

been reported in multiple papers with notable consistency across studies regarding the significant 

loci identified. Other relationships have sparser evidence available. While GDM was the subject 

of several papers, sample sizes were generally small and results failed to replicate across studies. 

Literature regarding DNA methylation changes associated with maternal pre-pregnancy BMI and 

prenatal diet is negligible. Overall, despite promising results in several exposures, significant gaps 

in the field of epigenetics and DOHaD remain and what evidence is available is poorly organized 

and often inconsistent.  

 Following our review of the literature, we were able to utilize our NutriGen dataset in a 

replication study. We replicated many loci associated with both gestational age and smoking; 

however, the sites reportedly related to GDM exposure and the single locus associated with pre-

pregnancy BMI failed to replicate in our models. These findings are in line with the results of our 

literature review and the ability of other cohorts to identify significance. 

 To better characterize the relationship between dysglycemia and DNA methylation we then 

conducted an epigenome-wide association analysis using fetal insulin sensitivity (measured as 
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GIR) as our outcome. Contrary to our previous models, clear genome-wide significance was 

achieved at numerous CpG sites, but these signals were all found to associate with one another 

through their involvement with hematological pathways. We were able to identify changes in 

underlying cellular composition within blood samples as the origin of the observed differences in 

methylation, and determined that NK cells are likely driving these associations. These changes in 

NK cell count could be responsible for many of the long-term inflammatory effects of a 

dysglycemic environment. While some exposures, such as maternal smoking, clearly cause direct 

changes in DNA methylation patterns, the results of this investigation suggest that we must also 

consider the possibility that fetal programming may be mediated at the tissue level by altering the 

relative levels of different cell types. This is particularly relevant to studies using heterogeneous 

tissues such as blood in their investigations and certainly merits further research to elucidate its 

role in DOHaD. It also suggests that earlier EWAS studies that did not account for cellular 

heterogeneity may require re-analysis and interpretation, and we should be mindful of the potential 

for false positive results generated by underlying cellular proportions. 

 

4.2 Tissue Modification & Neutrophil-to-Lymphocyte Ratio (NLR) 

 

 The results of our study of insulin sensitivity and DNA methylation in cord blood suggest 

that the predicted role of epigenetic modification in DOHaD models may need to be reconsidered. 

Prenatal exposures are generally hypothesized to cause persistent alterations in offspring DNA 

methylation, which would then cause downstream changes in gene expression and influence long-

term phenotype development. While this model may hold true for some exposures (the consistency 

of results relating to maternal smoking, for example, suggests this may be the mechanism), our 
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findings lead us to believe that it may be an incorrect or incomplete description of fetal 

programming in other settings. Instead, alterations may occur at the tissue level, which then leads 

to observed changes in DNA methylation. It is important to note that tissue-level changes could 

be occurring in tissues other than blood, which would be difficult to identify using a blood-based 

assays. In the case of insulin sensitivity, we inferred altered NK cell counts and therefore overall 

changes in the cellular composition of the cord blood samples. Modifications such as this could 

have significant effect on immune function and inflammation, both key processes in the 

development of NCDs.  

 Of particular relevance in the case of dysglycemia and insulin sensitivity is measurement 

of the neutrophil-to-lymphocyte ratio (NLR). The NLR is constructed from the complete blood 

count (CBC), a routine clinical measure, and appears to have independent utility in assessing 

prognosis of NCDs including cancer.61 NLR is an important indicator of subclinical inflammation 

in other chronic conditions as well; it can aid in risk stratification of patients with coronary artery 

disease (CAD) and may be a predictive marker of insulin resistance in T2DM.62,63 NLR is 

significantly increased in both diabetic and prediabetic populations and may have a strong 

predictive role in dysglycemia.64 

 Increased NLR is associated with elevated HbA1c in individuals with T2DM.65 It may also 

predict complications, as NLR shows association with numerous measures of diabetic 

comorbidities, including carotid artery intima-media thickness and diabetic peripheral 

neuropathy.66,67 While NLR does not appear to be a predictive marker of GDM, elevation 

indicating subclinical inflammation may still be an important measure in pregnancy.68  

 By inducing even small changes in the proportions of blood cell populations, in utero 

exposures could cause magnified alterations to the ratio of these cell types and dramatically 
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influence markers such as the NLR. Our studies of insulin sensitivity indicate that GDM may 

modify the quantity of NK cells in cord blood; this suggests that perhaps changes to NK cell 

populations, reflected in the denominator (lymphocytes) of the NLR may be driving some of its 

predictive power in dysglycemic environments. While few studies have examined alterations in 

cellular composition, Hadartis et al. (2016) did examine cord blood hematopoietic stem and 

progenitor cell (HSPC) populations in GDM vs normoglycemic pregnancies and identified 

increased proportions of CD34+CD45dim cells. They suggested that this may be the result of 

increased fetal stem cell mobilization in cases of GDM but cautioned that their conclusions were 

limited by a small (N = 87) sample size.69 In combination with our findings, it seems probable that 

GDM causes changes to underlying cellular composition in infants that may be related to their 

long-term health.  

 

4.3 Conclusions 

 

 Systematic review of EWAS literature in the DOHaD field revealed an area of research 

with a great deal of promise but little current organization or consistency. Unlike GWASs, which 

use well-established terminology and are catalogued in various databases, EWASs related to 

DOHaD can prove difficult to find and comparing between studies may be impeded by 

methodological differences. Despite this, several prenatal exposures are linked to specific and 

replicable changes in cord blood DNA methylation, providing compelling evidence for the role of 

epigenetics in fetal programming.  

 In cases of dysglycemia, our results provide novel evidence that even when differential 

DNA methylation is observed, this may be the result of tissue-level modifications rather than 
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genetic regulation. Preliminary results suggest that NK cells in particular may have a key influence 

on insulin sensitivity and the predictive power of the NLR. However, further study must be 

undertaken to better characterize these relationships. Study of individual cell populations through 

cytometry, rather than composite measures of overall blood methylation, may help to elucidate the 

way NK cells effect change in immunological processes upon dysglycemic exposure.  

 The ability to use genome-wide methylation data and deconvolution algorithms to 

accurately estimate cellular proportions also provides exciting methodology to better understand 

the genetic basis of blood composition. Large sample sizes that may be too cumbersome for 

cytometric techniques can now have their relative cell proportions quantified using methylation 

arrays. In study populations that measure both genome-wide genotype and DNA methylation, a 

GWAS could be conducted to search for associations between an individual’s genetics and their 

cellular composition. This could be an invaluable tool for understanding the genetic basis of 

measures like the NLR and their role in long-term health. Methylation-derived NLR (mdNLR) has 

already been calculated by several studies and investigated for association with rheumatoid 

arthritis and several cancers.70–73 Exciting new techniques such as this will undoubtedly only 

increase our understanding of the complicated but fascinating process of fetal programming and 

its relationship with epigenetics.   
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