
A GRAPHICS SUBROUTINE LIBRARY - MACPAC

THE DESIGN OF MACPAC

- A GRAPHICS SUBROUTINE LIBRARY

BASED ON A DESIGN PHILOSOPHY

FOR THE NEXT GENERATION

OF GRAPHICS PACKAGES

By

HELEN JEAN VRENJAK, B.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

October 1984

MASTER OF SCIENCE (1984)
(Computation)

mcmaster university
Hamilton, Ontario

TITLE: The Design of MacPac - A Graphics Subroutine Library Based on a
Design Philosophy for the Next Generation of Graphics Packages

AUTHOR: Helen Jean Vrenjak, B.Sc. (McMaster University)

SUPERVISOR: Dr. P.J. Ryan

NUMBER OF PAGES: vii, 171

ii

ABSTRACT

This paper presents the design of a graphics subroutine library,

MacPac, as a contribution to the development of a standard for future

graphics packages. The need for a new graphics standard, and hence the

motivation for the development of MacPac, is illustrated through a de

tailed discussion of existing graphics standards and systems. MacPac is

based on a design philosophy developed by Mark Green for the next

generation of graphics packages. It addresses the hardware and software

ideas of the 80's, incorporating and building upon the valuable and te

sted ideas of a number of existing graphics systems. The design

languages used in the development of MacPac were created by Mark Green

for the design of user interfaces. This work examines the effectiveness

of these languages in the design of a graphics system.

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to both Professor Mark Green

and Dr. Pat Ryan. Professor Green provided the impetus behind this

project, along with the design philosophy and design languages used in

the development of MacPac. Dr. Ryan was instrumental in the completion

of this work. I an very grateful for his patience and guidance

throughout the past few months.

I would like to thank all those friends who supported, encouraged,

and maintained me throughout this work. The fact that many of these

people still speak to me is testimony to their monumental understan

ding.

Finally, I would like to thank my family for their continuous sup

port, encouragement, and faith in me. Special thanks go to my father

for his patience, endurance, and (very importantly) skill in editing

this paper. Last, but far from least, my husband, Milo. Thank you,

Milo, for everything. I dedicate this work to these people.

iv

CONTENTS

Chapter 1 Introduction 1

Chapter 2 Graphics Packages Today 5

2.1 The Current Standards - GKS and Core 7
2.1.1 Methodology 7
2.1.2 GKS and Core - Description and Comparison 8
2.2 Mainstream Methodology Revisited 14
2.2.1 Portability and Device Independence 14
2.2.2 Separation of Input and Output 16
2.2.3 The Synthetic Camera Analogy 17
2.2.4 Resource Management 18
2.3 Resource Management Systems 19
2.3.1 Transformations 20
2.3.2 Segmentation 22
2.3.3 Attributes 23
2.3.4 Input 23
2.3.5 Object-Oriented Systems 24

Chapter 3 Introduction to MacPac 26

3.1 Motivation 26
3.2 Design Philosophy Behind MacPac 28
3.3 The Design Languages 32
3.3.1 The User Modeling Language - UML 34
3.3.2 The Specification Language - GUSL 35
3.3.3 The Base Language 38

Chapter 4 The User Model 41

4.1 Objects 41
4.2 Operators 49

Chapter 5 Display Considerations 60

5.1 Objects 61
5.2 Operators 67

Chapter 6 Specification of MacPac 90

6.1 MacPac Modules 91

v

6.2 Graphical Primitives 124

Chapter 7 Conclusions 137

Appendix A UML and GUSL 144

1 Language Structure - Constructs 144
1.1 UML Constructs 144
1.2 GUSL Constructs 145
1.3 The Base Language - Special Forms 148
2 Pre-defined Theory Operators 149
3 Grammars 150
3.1 Base Language Grammar 151
3.2 UML Grammar 152
3.3 GUSL Grammar 154

Appendix B Basic Graphical Entities 157

1 Raster_display Specification 157
2 Transform Specification 158
3 Colourjnap Specification 161

Appendix C Compendium of Operators 163

1 Display Manipulation Operators 163
2 Image Manipulation Operators 164
3 Figure_Transform Manipulation Operators 166
4 Input_Device Manipulation Operators 168

REFERENCES 169

vi

FIGURES

Figure 2.1 Mainstream Transformations 9
Figure 2.2 Mainstream Input Classes 13

Figure 4.1 An Example of a MacPac Application 45

Figure 6.1 World Specification 96
Figure 6.2 Display Specification 102
Figure 6.3 Image Specification 115
Figure 6.4 Figure_transform Specification 120
Figure 6.5 Input_device Specification 123
Figure 6.6 Input_event Specification 124
Figure 6.7 Line Specification 127
Figure 6.8 Polyline Specification 128
Figure 6.9 Character and Font Specifications 132
Figure 6.10 Text Specification 134

vii

Chapter 1

Introduction

A salient feature of current computer use is the demand for in

teractive graphic control. From home computers with their video

displays to computer-assisted design and manufacturing facilities, the

user expects to manipulate and modify images. He also supposes that

this capability will be universal; viz, that what can be done in one

environment on a particular system can be done anywhere. This creates a

new set of problems for the developers of graphics software systems,

and for the applications programmers who use these systems.

The design of graphics software systems, or graphics packages,

is an important aspect of computer graphics. Without this software,

the rate of production of graphics application programs would be very

slow and only expert programmers would be competent to write them. It

would be impossible to exploit the potential uses of computer graphics

[Newman and Sproull 19791. However, the constant improvement of both

input and output hardware creates an environment of exasperating

fluidity for the designers of these interactive graphics packages.

In the early years of computer graphics, a display was

typically driven by a device-dependent subroutine package provided by

its manufacturer. As graphics terminals became more widely available,

1

2

device-independent packages capable of driving a wide variety of

display devices came into general use. The main goal for device inde

pendence was the promotion of program and programmer portability. Dif

ficulties in transporting application programs between sites, and the

necessity to retrain graphics programmers to understand the idiosyn-

cracies of each new graphics installation encountered, were major de-

terents to potential graphics users [Newman and Van Dam 1978]. A

device-independent graphics package used in conjunction with a high

level programming language had the potential to alleviate these por

tability problems considerably. Unfortunately, because of the wide

variety among these device-independent packages, portability was still

limited to those sites having the particular graphics package used to

develop the application.

By the early 1970*s, the need for standardized computer

graphics practices was widely recognized. The prime advantage of

graphics standards is improved program and programmer portability. With

a standard, graphics software developers are assured that their applica

tion programs will run on any computer or terminal, and graphics users

are free to choose anong vendors for satisfaction of their software re

quirements. For the graphics hardware manufacturer, a standard gives

guidance for future directions in hardware development and increases

the size of the market. It is easier to sell a new computer with its

latest graphics hardware when it does not demolish the user's graphics

software library. A standard may also solve the problem of picture por

tability by graphics-containing database portability. When a picture

3

can be represented as database items, the appropriate representation

and storage standards permit the picture to be displayed by different

computers on different display devices and result in the same visual

image [Hindin 1984].

What emerged were two major standards proposals, the Core

system and the Graphical Kernel System (henceforward GKS), tailored to

the needs of the vector display hardware of the *70’s. As these were

being established, significant advances occurred in display device tech

nology; e.g. the microprocessor-controlled raster display device. Our

approach to software has also changed with the passage of time. This

evolution of both hardware and software raises a question as to the

suitability of our present graphics standards for current applications.

This work presents the design of a new graphics package as a

step in the direction that software systems must take to best accom

modate the hardware and software ideas of the *80’s. In this context we

shall illustrate the influence of the new technology and the new

software approach on the design of graphics standards.

Chapter 2 takes a closer look at what is available today in

graphics software. Core and GKS, as the current standards, are ex

amined in some detail. Their methodology is presented, followed by a

description, and an examination of some methodological problems that

emerged during their implementation and use.

4

A second stream of graphics packages is then described, these

frequently being oriented to raster displays. A common feature of this

second stream is that they attempt to control the allocation of

available graphical resources. Two examples of these systems (CANVAS

and GiGo) are presented. A brief description of object-oriented

graphics systems is also provided, as these represent a new and dif

ferent approach to the design of graphics software.

An introduction to our new graphics system, MacPac, is pre

sented in Chapter 3» MacPac, acronym for McMaster Package, is a

graphics subroutine library based on a design philosophy developed by

Mark Green [Green 1982a], This philosophy, which addresses the next

generation of graphics packages, combines and enhances ideas from the

second stream of systems mentioned above. Chapter 3 examines the motiva

tion for the development of MacPac and introduces the underlying design

philosophy. A secondary purpose for this work is also introduced.

Green [Green 1981] has developed a notation for the design of graphical

user interfaces. It is used in the design of MacPac to determine whe

ther its effectiveness extends to the design and specification of a

graphics system.

Chapters 4,5, and 6 present the design of MacPac from an ini

tial user’s view to a complete specification of the system.

Chapter 2

Graphics Packages Today

Among the first groups to concentrate on a standardized ap

proach to computer graphics software were the ACM SIGGRAPH Graphics

Standards Planning Committee (henceforward GSPC), formed in 1974, and

the Graphics Subcommittee of IFIP Working Group 5.2 (henceforward

WG5.2), formed in 1975. The early efforts of GSPC produced few

tangible results and progress was slow. Although possessing a large

body of knowledge on which to base the design of a software standard,

the GSPC lacked a corresponding methodology. The IFIP WG5.2 Graphics

Subcommittee focused attention on this requirement. In 1976 it spon

sored the successful Workshop on Graphics Methodology at Seillac,

France.

This workshop, by directing attention to several issues in

graphics system design, had a profound effect on the later work of the

GSPC [Newman and Van Dam 1978], The result is the widely known

specification for a core graphics system called Core, published in 1977

and revised in 1979. Another group stimulated by the "spirit of Seil-

lac" was the German National Standards body, Deutsche Institut fur Nor

mung (DIN). This Group developed several early versions of the

Graphical Kernel System (GKS). The International Standards Organiza

5

6

tion (ISO) Working Group on Computer Graphics, containing representa

tives from the American National Standards Institute (ANSI), DIN, and

other national standards bodies, has since modified GKS to its present

version and made it a Draft International Standard [Simons 19831.

The development of graphics software can be separated into two

major streams [Rosenthal 19831. The mainstream, exemplified by GKS and

Core, concentrates on viewing, segments, output primitives, and virtual

input devices. The second stream, called the RasterOp stream by Rosen

thal, attempts to provide facilities whereby graphical resources can be

managed. The important concepts here are windows, the refresh hierar

chy, and pointing for input. Differences in the two streams may at

first appear to reflect the hardware addressed, but the window manager

graphics system GiGo (Graphics in/Graphics out), driving storage tube

terminals, refutes this [Rosenthal 19831. ’’Resource management stream”

is perhaps a more comprehensive name for this second stream of software

development.

This chapter examines the two streams in more detail. Charac

teristics of mainstream systems are followed by a discussion of

problems encountered in mainstream methodology. Finally, resource

management stream systems are considered.

7

¿J__ The Current Standards.- GKS and Core

A major force in the development of GKS and the Core System was

the 1976 IFIP WG5.2 Workshop held at Seillac. This workshop produced a

design methodology that underlies both systems. We discuss this aspect

before providing details of the systems.

¿U__Methodology

The methodology, set out in SIGGRAPH’s 1979 specification for

the Core System [GSPC 19793, may be summarized as follows [Rosenthal

1981]:

- The primary objective of a standard is program and programmer

portability. It should be possible to move a program from one

environment to another without requiring structural changes.

Portability also encompasses the concept of device independence,

whereby application programmers are insulated from the

peculiarities of particular devices.

- Input and output functions should be separated. Input device ac

cess should be in terms of the type of value the device returns;

this is the concept of virtual input devices [Wallace 1976].

- Two coordinate systems should be supported, the world coordinate

system in which the picture for display is constructed, and the

device coordinate system in which the data to be displayed are

represented. Data in world coordinates are converted to device

coordinates by invoking a viewing operation.

8

- A display file, containing a description of the picture in

device coordinates, should be used. Individually modifiable

display file segments, each independent of the other, permit

manipulation of the picture.

- There should be a distinction between functions involved in main

taining the description of a picture, modelling functions, and

those supporting generation of a picture, viewing functions.

2.1.2, GKS..and-CfiTA r Description .an.d...£Qfflparlaon

The description of GKS and the Core System that follows

provides an overview of these systems with respect to some important

concepts in graphics software. More detailed information on the Core

and GKS may be found in the Status Report of The Graphics Standards

Planning Conmittee [GSPC 19791 and the Computer Graphics Special GKS

Issue [X3H3 1984].

2J..2a Transformations

Viewing, as introduced at the Seillac workshop, is based on the

synthetic camera analogy. In this analogy, a scene in world coordinate

space is viewed on a display screen as if by a camera located at a

single point in that space (Figure 2.1a). The camera handles the trans

formation of the scene from world coordinates to the coordinates of the

display medium.

9

World Coordinates

i i i i
! View Transform i

Device Coordinates

Figure 2.1a - Synthetic Camera Analogy

World Coordinates

I I
I I

' View Transform i
i i
i i

Normalized Device Coordinates

Figure 2.1c - GKS Transformations

i Device Transform
11

! ! Device Transform |
i i ii i i

! Device Coordinates ! ! Device Coordinates !

Figure 2.1b - Core System Transformations

i World 1 Coordinates 1 1 World 2 Coordinates |

11
1 View Transform
11

1 1 11 1 1
! ' View Transform I
1 1 11 1 1

! Normalized Device Coordinates 1

1
Ì Device Transform
11

1 1 11 1 1
i ! Device Transform J
1 1 11 1 1

! Device Coordinates 1 I Device Coordinates i

Figure 2.1 - Mainstream Transformations [Rosenthal 19831

10

In practice, however, this simple analogy cannot accommodate

the requirements of either Core or GKS. The stated objective of device

independence is extended by both groups to include the ability for the

same program to drive different devices simultaneously. To accommodate

this, the single transformation from world coordinates to device

coordinates required by the synthetic camera analogy is split into a

two-stage process. First, world coordinates are transformed to nor

malized device coordinates. From there a device-specific transforma

tion is used to transform the scene to the coordinates of the chosen

device. The Core System supports a single global transformation from

world to normalized device coordinates (Figure 2.1b).

In the vast majority of applications, however, several world

coordinate systems and/or several different views are required in the

generation of a picture. When only a single viewing transformation is

available, the application program must recreate the correct viewing

transformation, both on output when modifying the display, and on input

for the conversion of locator coordinates to the appropriate world

coordinates. These considerations led GKS to support multiple normaliza

tion transformations (Figure 2.1c). [Rosenthal 1983).

2.1.2b Segmentation

The concept of segmentation handles the problem of selective

modification. After a picture of an object has been created, the user

may decide to change one area of the object. When the application

11

makes the desired change to the underlying data structure, an updated

picture must be generated. A brute force approach recreates the entire

picture, but both Core and GKS avoid this inelegant solution by the use

of segments.

The description of an object is partitioned into segments that

are individually displayed, and therefore individually modifiable. Each

output segment contains a collection of logically related (as deter

mined by the application programmer) output primitives that are to be

manipulated as a whole. The application programmer may create segments

at will. Initially the segment is in an open state and any primitives

output while it remains open become part of the segment. Thereafter,

the output primitives contained in a segment are subject only to

changes to the segment attributes. In both GKS and Core only one seg

ment may be open at a time. It is worthwhile to note that for these

mainstream systems ’’[segmentation] also addressed the problem of refre

shing the picture after changes, storing a description of the picture

as output primitives in a segmented display file. The range of per

mitted [segment] manipulations was modelled on the capabilities of a

typical refresh vector display, highlighting, visibility and detec

tability changes, and segment transformations” [Rosenthal 1983].

12

2 J..2.Q . Attributes

There are several types of attribute supported by mainstream

systems. Global, or output primitive, attributes apply to primitives as

they are generated and are not subject to retroactive modification. At

tributes of this type may control the geometric aspects of a primitive,

such as the height, width, and style of a character, or may simply de

termine the appearance of a primitive, such as the style (dashed, dot

ted, solid, etc.) of a line. Segment attributes are assigned to seg

ment by name and may be altered at any time. These attributes, which

affect all primitives contained in a segment, control features such as

the visibility and highlighting of the segment. [X3H3 1984] [GSPC

19791.

Additionally, GKS supports workstation attributes. An example

of this is "SET COLOUR REPRESENTATION", whereby the colour to be as

sociated with a particular colour index on a particular workstation is

specified [X3H3 1984]. GKS offers another feature, the bundling of at

tributes, which is not supported by the Core System. Several non

geometric attributes may be grouped under a single identifier that is

an index into a bundle table. The index becomes the single attribute

of the primitive under consideration and, as each workstation has its

own bundle table, the appearance of this primitive may be different on

different workstations [X3H3 1984].

13

2 J , 2d. Virtual Input Devices

The input facilities of these mainstream packages are built

upon an extended concept of virtual input device. The pure virtual

device concept specifies that the only visible aspect of a device is

the type of value it returns. In practice it is obvious that virtual

devices require other visible aspects to enable control of the operator

interface. For example, the ability to control the prompt, echo, and

initial value of an input device is required. This extended concept is

known as the logical input device concept [Rosenthal 1982],

In the mainstream, each input device is assigned to a class de

pendent on the type of value the device returns, and is accessed in

terms of this class. The six possible classes are listed in Figure

2.2. Additionally, information can be obtained from each device in dif

ferent modes. The three modes used by Core and GKS are EVENT, SAMPLE,

and REQUEST. In EVENT mode the input device creates event records and

CLASSES

Locator —> Position (World Coordinates)
Transformation ID (GKS)

Stroke —> Position (World Coordinates)
Transformation ID (GKS)

Valuator —> Real Number
Choice —> Integer
Pick —> Segment Name + Pick ID
String —> Characters

Figure 2.2 - Mainstream Input Classes [Rosenthal 19831.

14

adds them to an input queue. When the application requests input from

a device in this mode the first record in the queue is returned to the

program. In SAMPLE mode the device is simply polled for its current

value when information is desired. If an application requires informa

tion from a device in REQUEST mode, it is suspended until this input

becomes available. Each device has attributes which specify initial

values, restrictions on values returned, and parameters for echo im

plementation. [Rosenthal 19831.

Throughout their development, the proposals for GKS and the

Core System were subjected to intense international review. This

review identified certain problems inherent in the methodology. In

some areas solutions were found which appear to be in conflict with the

methodology, while in others the solutions appear unsatisfactory and

remain controversial [Rosenthal 19811.

2.2.1__Portability and Device Independence

Early in the development of these standards proposals, it was

recognized that the objective of portability is in conflict with the

requirement for high-quality user interfaces. In conjunction with the

extended definition of device independence, portability requires that

the graphics package be sufficiently general to drive any device.

However, to provide for high-quality interaction the application must

be tailored, or be able to tailor itself, to the particular hardware

15

involved. To establish a standard which impedes the construction of

high quality user interfaces will tend to reduce the overall quality of

applications. Both Core and GKS therefore sacrificed rigid adherence

to the methodology to provide mechanisms that allow the application

programmer to take advantage of the available hardware in the creation

of a user interface.

One partial solution to the problem, adopted by GKS, is to let

the application program inquire as to the capabilities of the device it

is driving [Encarnacao 1980]. Unfortunately, the application programmer

must then anticipate the peculiarities of the all devices to be driven

in the future. This involves a large amount of extra code and, because

the required path through the code is chosen at run-time, this overhead

must be carried whether needed or not [Rosenthal 1981].

Additionally, both Core and GKS provide functions that allow

the application programmer access to the non-standard capabilities of

intelligent terminals. In the Core System, the ESCAPE function allows

the programmer to invoke non-standard function names. In GKS this

facility is provided by DRAW, a generalized output function which

enables the user to specify higher level graphics primitives. [Arnold

1980].

16

2.2*2,.. Separation of. Input, ana Output

Additional methodological problems involve the separation of

input and output functions and the concept of virtual input devices.

Experience shows that adherence to these concepts impedes the produc

tion of high-quality user interfaces. Two important factors in the

quality of the human interface are the actions required by the user to

create input and the visual feedback received in response to this in

put. When constructing an application using virtual input devices,

however, the programmer simply selects the virtual device corresponding

to the type of value desired. Also, when the functions of input and

output are clearly separated, the programmer is not provided with the

facility to specify what the echo for this input should look like.

This places the responsibility for the design of user interfaces on the

graphics system implementer, who may not know the application specific

meaning of the input required. Another problem is that the application

programmer has no idea what the user interface will look like if his

program is run at another site, even though the hardware may be iden

tical. [Rosenthal 1981].

The idea of virtual input device has created controversy in yet

another area. As Rosenthal points out :

"The concept of virtual input device tends to segregate input
devices into a number of different classes. This is in
conflict with accepted wisdom in operating system design,
where the objective is generally to unify the various sources
of input into a single concept, such as the ’file’. The di
versity of virtual devices is particularly confusing because
each can be emulated by combinations of the others; there is
no real basis for distinguishing them." [Rosenthal 19813.

17

The seriousness of these problems with respect to user inter

face quality has led GKS and Core to partially abandon the methodology

in this area. Both systems provide facilities which allow the user to

exert some control over echoing. Additionally, the Core system has func

tions for associating input devices into groups and GKS allows for the

emulation of one type of virtual input device by another [Rosenthal

1981].

2.2.3 Th? Synthetic Camera. Analogy

The synthetic camera approach to viewing, introduced in the

original Seillac methodology, leads, to a graphics system that supports

only a single transformation. This transformation may be changed

during construction of a picture but only the most recent or current

transform is known to the graphics system. Unfortunately, the realiza

tion of this concept results in problems for both input and output func

tions. On input, although the user may position a locator device any

where on the screen, the system is able to transmit meaningful world

coordinates only for positions within the last image created, i.e. the

image for which the viewing transform is known. To create more than one

view of a picture, the transform must be altered and the entire picture

reprocessed for each view. As was illustrated in Section 2.1.2a, both

Core and GKS encounter difficulties with this aspect of the me

thodology. GKS partially resolves these problems by supporting multiple

viewing transformations. Because only one transformation may be active

at any given time, however, this output problem persists.

18

2.2.4 Resource Management

A major influence in the design of both GKS and the Core System

was the idea that a distinction should be maintained between the func

tions of modelling and viewing. According to the methodology, the

graphics system handles viewing. All modelling functions must be han

dled externally by the application program. Related to this forced ex

clusion of modelling functions, however, is the mainstream’s lack of

mechanisms to control the allocation of real graphical resources.

Awareness of the need for graphical resource management was

stimulated by the second Seillac workshop in 1979 which stressed the

importance of building interactive applications from existing com

ponents. To do this successfully requires management of the available

graphical resources. It is a way of ensuring that, once an existing

component is invoked, it will access only the graphical resources it

has been allocated.

Conventional programming languages support a modular program

structure that is hierarchical in nature. Parent modules may invoke

submodules that may in turn invoke other submodules. To control the

management of graphical resources within this structure requires a

mechanism whereby the available resources may be allocated in a hierar

chical fashion. A graphics package must assign descriptors to all

graphical resources. Each part of an application may then manipulate

only those resources whose descriptors it has access to. A calling

module may pass descriptors for all or part of its graphical resources

19

onto a submodule. This type of control ensures that no part of the ap

plication will have access to the resources belonging to another part.

Specifically, no called module will have access to any resources which

are not within the control of the module initiating the call. [Rosen

thal 19833.

Neither Core nor GKS provides such a mechanism. These systems

allow all parts of an application access to the entire view surface.

There is no supported hierarchy of pictures on the display and each

module can manipulate every picture. Also, any part of the application

may access any input device. When input is received, the application

must decide to which of its parts that input relates, and handle it ac

cordingly. [Rosenthal 19833.

2.3 Recourse ManagCTren.t Systems

We now turn to the resource management stream of graphics

systems. Here a consensus of ideas and methodology like that

established for mainstream systems does not exist. Many of the

graphics systems in this stream were developed for specific purposes

and/or in unconventional languages such as Smalltalk [Ingalls 1981],

LISP [Sproull 19793, and EDL [Green and Philp 19823. The resultant

variability in these systems makes it difficult to discuss resource

management packages as a group. For illustrative purposes, however, two

of these systems are presented here: the CANVAS package, developed at

Carnegie-Mellon as part of the SPICE project [Ball 19833, and GiGo, an

experimental package developed at Edinburgh University [Rosenthal

20

1981]. Although CANVAS, written in Pascal, was developed for use with

raster displays and GiGo, written in C, is used to drive storage tube

terminals, the structures of the two systems are remarkably similar.

As an aid to comparison, these resource management systems are ex

amined in the same format used to describe the mainstream systems in

Section 2.1.2. A brief description of object oriented graphics systems,

of which the Smalltalk and EDL graphics systems are representative exam

ples, is included at the end of this section. These systems present an

interesting new approach to graphics programming and resource

management.

2.3.1 Transformations

There is a significant difference between the two streams in

their way of transforming data for display. Mainstream packages use

three coordinate systems: world coordinates, normalized device

coordinates, and device coordinates. Both GiGo and CANVAS support only

two coordinate systems. Pictures described in world coordinates are

transformed directly into device coordinates for the desired display.

In GiGo, the Window structure handles this transformation.

Specified within each Window structure are two rectangular areas, one

in application coordinates and the other in device coordinates. These

areas represent a mapping between the two coordinate systems. Each

Window also contains information as to which screen the Window is cur

rently active on. [Rosenthal 1983].

21

When using CANVAS, an application creates a picture by sending

output primitives to one or more ’’canvases". There may be as many can

vases as the application desires and each of these is always available

for output, even if this output is not to be visible. For a canvas

to become visible it must be mapped to a rectangular portion of the

display surface called a viewport. This mapping converts canvas

(world) coordinates directly to viewport (device) coordinates. A canvas

may be mapped to several viewports, but each viewport may display only

one canvas. [Ball 19833.

As several viewports may overlap, CANVAS organizes active view

ports into a hierarchical refresh tree. At the root of this tree is a

special viewport which controls access to the entire display surface.

An active viewport may have several child viewports, each describing a

patch of the display, but these children will have visible effect only

within the portion of the view surface controlled by their parent. A

precedence order is established among siblings to handle any conflicts

which may arise due to overlap of viewports at the same level of the

refresh tree. The only way a viewport may be added to this tree is

through a parent. If a module has access to a viewport descriptor, that

module may create child viewports within this viewport’s display space

but may have no effect on any other part of the display. [Ball 19833.

22

2.3.2 Segmentation

For mainstream systems, segmentation provides both a means of

naming groups of output primitives for manipulation and a vehicle for

storing a picture description for use in future regenerations. Al

though GiGo and CANVAS do not support a segment concept per se, they

possess other facilities capable of playing the same role.

In the GiGo system, the concept of segment is embodied in the

Window structure. Each GiGo Window stores either a list of all

graphical primitives contained in the window or a pointer to a routine

capable of recreating the picture in the window. In this way, the

Window structure corresponds not only to a patch of view surface but to

all the graphics in that patch. GiGo Windows can also play the role of

segments as symbols. In this capacity the Window contains the

graphical primitives of a picture component but is not active on any

screen. Other Windows may then reference this Window to incorporate

its picture component.

In the CANVAS system the combination of canvas and viewport

provides many of the same functions as segments do in the mainstream.

Viewports may be added to and removed from the refresh tree just as seg

ments may be made visible and invisible. Raster operations may be per

formed within a canvas just as segments may be highlighted. Both seg

ments and canvases represent collections of output primitives. Unlike

segments, however, canvases are always open. The only picture storage

provided by CANVAS is the bitmap; a description of the picture as primi

23

tives is not supported. A viewport may store its own complete bitmap

and/or the bitmaps of other viewports which it obscures. At higher

levels a picture is defined procedurally. When regeneration is re

quired the system arranges for appropriate application code to be in

voked. [Rosenthal 19833.

2.3.3 Attributes

Both CANVAS and GiGo support only a single type of attribute.

In GiGo, all attributes are Window attributes. They are stored in the

Window structure and are applied to all primitives belonging to the Win

dow. Similarly, CANVAS attributes are canvas specific and are applied

to all primitives sent to the particular canvas. With this form of at

tribute control, a caller can create an attribute context for a callee

to operate in; i.e. the callee will only be able to affect the at

tributes of the canvas (or window) whose descriptor was provided by the

caller. [Rosenthal 19833.

2.3.4 Input

Neither of these resource management systems support the vir

tual input device concept used by the mainstream. Instead, all

physical devices are mapped into a single input class. For CANVAS this

input class, called the Key Event, returns an integer command code, a

character, and an integer coordinate pair. The single input class sup

ported by GiGo returns a device coordinate position and an integer

code.

24

The handling of input information is also very different be

tween mainstream and resource management packages. In the mainstream,

all parts of an application can access input information from all

devices. In contrast, GiGo and CANVAS ensure that the user’s input in

formation is accessible only to the routine associated with the window

being pointed to. When input is received the GiGo system scans all win

dows active on the view surface until it finds a window containing the

input's device coordinate position. The input routine for this window

is then invoked with the input information and the window descriptor as

arguments. In the CANVAS system, each canvas has an input queue to

which Key Events directed to that canvas are added. A canvas never

sees irrelevant inputs.

CANVAS provides a facility whereby events sent to a canvas may

be passed up the refresh tree to its parent. This is useful when the

application program decides that a certain input cannot be handled at

the received level. It is possible to imitate this facility in GiGo

simply by calling the parent's input routine directly from the input

routine of the child Window. [Rosenthal 19831 [Ball 19831.

2.3.5 Object-Oriented Systems

We conclude our discussion of current graphics packages with a

brief overview of object-oriented graphics systems. These systems,

which we consider to be part of the resource management stream, repre

sent a radically different approach to graphics programming. In fact,

25

the differences from the systems we have examined so far are sufficient

to preclude discussion of object-oriented systems in the format

previously used.

The object is the underlying concept in an object-oriented

system. It may be defined as "a package of information and a descrip

tion of its manipulation" [Robson 1981]. In this way, an object repre

sents both data and the computational processes which manipulate this

data. The information in an object is altered by sending a message to

that object. The content of the message determines which object proce

sses are invoked and thus the information to be updated. In an object-

oriented graphics system, objects are used to structure images on a

display. Each object is responsible for a single image and is al

located a portion of the display surface. The object may have an af

fect on the display screen only within this allocated area. These

object-oriented systems support a small number of graphical primitives

that are used to directly alter a raster display. [Green 1982a].

This brief description of object-oriented graphics systems is

sufficient for the purpose of this work. Although the new ideas seen

in these systems must be considered in any future development, the

systems themselves are very specialized and are therefore not

especially relevant to the development of future standards. If de

sired, further information may be found in the documentation for the

graphics systems of specific object-oriented languages. Two representa

tive examples are the graphics systems for the object-oriented

languages Smalltalk [BYTE 1981] and EDL [Green and Philp 1982].

Chapter 3

Introduction to MacPac

Having reviewed some representative examples of the graphics

systems available today, we turn to the design of MacPac. The under

lying purpose of MacPac is to exemplify an approach that takes advan

tage of current ideas in hardware and software. From a number of such

developments the shape of a new standard graphics package might be ex

pected to emerge.

3.1 Motivation

The progress of technology inevitably requires a corresponding

evolution of the control software. Both Core and GKS were developed for

the hardware of ten years ago. As an initial stage in the design of

the Core system, GSPC surveyed the existing state-of-the-art software.

Some prerequisites for inclusion in this survey were that a system be

installed at several locations, have an established user base, and be

oriented for use with a FORTRAN application program [GSPC 19773» Given

the delay between the time a system is designed, developed, and acce

pted for use by a number of groups, the systems used as models by GSPC

were already years behind the frontier in terms of hardware tech

nology. The survey specifically excluded any system features which "de

26

27

pended extensively on unusual or uncommon hardware features. Thus

matrix processors, raster display background/area commands and similar

interesting features were excluded” [GSPC 19773.

Thus Core and GKS address the predominant display hardware of

their time, the vector display. These devices, having few stand-alone

capabilities, are controlled by the host computer and share its

memory. In both systems they are driven by a display file. This model

is not well suited to the microprocessor-controlled, raster-based

displays that are predominant today. Additionally, the current stan

dards do not provide facilities that allow the application programmer

to take full advantage of the many capabilities of the modern intelli

gent terminal.

Further, the approach to producing graphics applications

software has changed since the establishment of the current standards.

Initially a portable graphics standard was expected to reduce the cost

of producing applications software, but this did not occur. In the

development of a system the application programmer spends most time on

the user interface and application data structures. Tools are becoming

available to aid in these tasks; e.g. user interface management

systems, graphical databases, special purpose modelling systems, etc.

Ideally, any new standard should interface cleanly with these program

development tools [Green 1982a],

28

The current awareness of a need for graphical resource manage

ment is another area where our approach to graphics programming has

changed. If the graphics package does not support resource management,

the application program must assume this function.

Chapter 2 examined several resource managenent stream systems

that address both current hardware and software ideas. In many cases

the development of these systems responded to a need that could not be

satisfied by the existing standards, or addressed methodological

problems encountered in the mainstream. Most of these systems are

oriented to very specific systems and/or applications. Many are

written in uncommon languages that are not widely used or supported.

We need a system capable of fulfilling the needs of a larger audience

of graphics application programmers. It should incorporate the valuable

features of, and exploit our experience with, existing systems.

^.2 Design Philosophy Behind MacPac

We present MacPac as a contribution to the development of a

standard for future graphics packages. MacPac, acronym for McMaster

Package, is a two-dimensional graphics subroutine library based on a

design philosophy developed by Mark Green for the next generation of

graphics packages [Green 1982a]. A summary of this philosophy is

provided here.

29

Green chose the form of a subroutine library as the most viable

structure for future graphics packages. This decision was prompted by

the lack of success of alternatives such as special graphics languages

and programming language extensions. Green also suggests limiting the

system to two dimensions. As most applications do not require three

dimensions, the inclusion of this capability in the graphics package

becomes unnecessary overhead. An add-on subroutine library can usually

fulfill the requirements of those applications that demand three-

dimensional graphics [Green 1982a].

Two major concepts in Green's design philosophy are the figure

and the image. The figure allows the programmer to divide a picture

into logical entities that may be manipulated separately. In this

sense, it plays the role of the segment in mainstream packages, and of

the object, or process, in object-oriented graphics systems. In main

stream systems, however, only one segment is available for output at a

time, a segment may not be modified after creation, and segments may

not refer to other segments. This makes the mainsteam segment a far

more restrictive concept than is desirable. On the other hand, the use

of a separate process for every picture segment is far more general

than required by most applications. As an organizational entity, the

figure falls somewhere between a segment and an object. [Green 1982a].

Each figure is composed of graphical primitives and/or calls to

other figures. There is no limit on the number of figures in existence

at a given time and no restriction on when a figure may be modified.

30

Figure modification is achieved either by changing one of its primi

tives or changing some aspect of a called figure. The primitives of a

called figure may be altered, or the transforms that position figures

within their parent figure may be changed.

A figure becomes visible as a result of a two-stage process.

First, the figure is associated with an image. An image specifies a

list of figures and a coordinate space in which these figures may ap

pear. The image is then associated with an area on one or more

displays. Several images may appear on a single display. Overlap of

images on a display is handled by a system of priority and overlap

rules. Two coordinate systems are in use here. Images and figures are

described in a user-defined coordinate system that may encompass any

subset of the Cartesian plane. When an image is associated with a

display in the second step of the display process, the contents of this

image are mapped from user-defined coordinates into device coordinates.

In his design philosophy, Green supports the inclusion of three

basic graphics primitives: text, line, and polyline. For the text

primitive, a string of characters and a position indicating where this

string is to be placed must be provided. Both end points of a line are

required for the line primitive. Many graphics packages support the

concept of a current position, thereby reducing the arguments required

for specification of a graphical primitive. Unfortunately this concept

becomes ambiguous when transformations are allowed in the application

coordinate space. Also, most graphics displays use the idea of a cur

31

rent position, but this current position rarely coincides with that of

the graphics package. Because of these problems, the notion of current

position is not included in this design philosophy [Green 1982a],

Green also suggests the provision of a facility whereby the

user may define his own graphical primitives. In a graphics ap

plication, there are often graphical entities (shapes) that are used

repeatedly throughout the program. A primitive definition facility

enables the programmer to define these entities as graphical

primitives. Thereafter, when an instance of one of these entities is

required, it may be created through a simple declaration, just as line,

text, and polyline instances are created.

Although Green’s design philosophy does not discuss input hand

ling, it is such an important aspect of any graphics system that some

mention of how MacPac deals with input is necessary. MacPac maps all

physical input devices into a single class which returns a coordinate

position, an integer code, and a character string. When input is

received the image to which that input is directed is notified and

provided with the returned information. The coordinate position

received by an image is always specified in the user-defined coordinate

system of that image. MacPac handles the conversion from device

coordinates before transmitting the input information.

The design of MacPac follows the ideas expressed in this section.

In the discussion of MacPac that ensues we turn first to a description

of the user’s view (Chapter 4). This is elaborated by the inclusion of

32

display considerations (Chapter 5). A final specification of MacPac is

then presented (Chapter 6). In both the description and specification

of the system we make use of design languages developed by Mark Green.

Before proceeding with our discussion of MacPac, an introduction to

these languages and the manner in which they are used in this work is

provided.

2L3_..The Design Languages

In his paper "A Specification Language and Design Notation for

Graphical User Interfaces” [Green 1981], Mark Green presents a me

thodology for the design of graphical user interfaces and a number of

tools which support this methodology. The design methodology itself is

in many ways user interface specific and is therefore of limited use to

us in the development of MacPac. It is oriented towards the design of

individual user interfaces whereas MacPac must support a wide variety

of user applications and their interfaces. The tools introduced in

this paper, however, provide a means of expressing design ideas that is

not limited to the design of graphical user interfaces. As mentioned

in Chapter 1, we will use these tools in the design of the MacPac

system. In this way, we will examine their effectiveness in the design

of a graphics system.

33

Major amongst these tools are a User Modeling Language (hen

ceforward UML) and a Graphical User interface Specification Language

(henceforward GUSL). Both of these languages depend upon a base

language in which all expressions and assertions are written. An over

view of these languages is presented in this chapter. More information

on the structure of the languages, including detailed grammars, may be

found in Appendix A. (All information on these languages is taken from

[Green 1981]).

Before going on to our discussion of these languages, however,

a word on the tone in which they are used in this work is required.

Throughout the development of the MacPac system, these languages were

also experiencing developmental changes. The paper mentioned above

([Green 1981]) provides an introduction to the languages and a simple

example but does not provide information sufficient for their use in an

advanced application. Further information and examples may be found in

some of Green’s later work (e.g. [Green 1982b]). Upon examination of

these later examples, however, it becomes apparent that changes have

been made to the languages since they were introduced in his 1981

paper. Unfortunately, these changes have not been published. As a re

sult conflicting information on legal language constructs has been en

countered on occasion. Because of these problems, we have used the

languages as a descriptive tool in the design of MacPac. They should

not be considered the basis from which a mathematical correctness

analysis could be done. There are a number of loose constructs and

these must be accepted as such. This does not invalidate their use in

34

the design of MacPac, however. The languages are useful in providing a

clear and consistent design description.

3.3.J... Ihe User Modeling Language UML

The first step in the design of MacPac is a description of the

user’s view of the system. In the case of MacPac, the user is the ap

plication programmer. All objects which will be available to the user

must be described. Operators must be provided to allow manipulation of

these objects to suit the user’s requirements. Green refers to the

model constructed to represent the user’s view of the system as the con

trol model. The tool he provides to aid in creation of this model is

UML.

The first major contruct in UML is the OBJECT construct. Ob

ject definitions, which are similar to type definitions, are used to

describe all objects in the user’s domain. There may be several in

stances of a given object type. Each object is described by its at

tributes. The type of an attribute may be either a base type (one

defined in the base language), another object, or a defined theory.

More information on theories will be provided later in this chapter.

The OPERATOR construct is used to describe how objects may be

manipulated. An operator is defined by its pre and post conditions.

The conditions themselves are assertions written in the base language.

All assertions in the pre-condition part of an operator must be true

for successful application of the operator. The assertions in the post

35

condition section determine the effect of the operator. The operator

manipulates the neccessary objects to make all post assertions true.

The specific entities to be manipulated may be indicated to an operator

by way of input parameters. Also, an operator may return a value. The

types of these input and output parameters must be specified in the

operator definition. It should be noted that the only effect an

operator has is that stated explicitly by its post conditions. The

state of objects not explicitly manipulated does not change. For exam

ple, if the purpose of an operator is to remove a given entity from a

set, a post condition might be ’’NOT this_entity in set;”. This operator

would remove only the specified entity from the set. All other en

tities in the set would remain unaffected.

The UML INVARIANT construct provides a means of describing

aspects of the user’s view that are not readily expressed through the

object and operator constructs. Each invariant is an assertion that

must always be true. It is very useful in describing global charac

teristics of the system and giving information on the relationships be

tween objects.

3.3.2 The Specification Language - GUSL

Once the control model is created, it may be used as the star

ting point for the specification of the system. The specification

language developed by Mark Green, GUSL, is based on idea of state

machines. Under this approach, a program is divided into a number of

36

state machines, each having a local state and functions capable of acce

ssing and changing this state. Green likens a state machine to an ab

stract data type. In GUSL, the MODULE construct is used to represent

the state machines of a system. As for objects, there may be several

instances of a single module.

There are four possible components in a GUSL module. The first

two deal with declaration of the entities used and manipulated by the

module. The PARAMETERS component specifies the parameters required to

create a module instance. These may be used to give each module in

stance the appropriate starting state. The DECLARATIONS component of

the module may be used to declare variables for use within the module.

The third component is the DEFINITIONS component. GUSL allows

the definition of syntax macros. Each macro consists of a type, the

name of the macro, parameters input to the macro, and an expression

that defines the macro. These macros, which are used to shorten the

definitions of commonly used functions, make the contents of a module

more readable.

The fourth module component is by far the largest. The FUNC

TIONS component contains the function definitions of all module func

tions that may be used to access and/or change a module's state. There

are three types of GUSL functions: V functions (VFUN), 0 functions

(OFUN), and OV functions (OVFUN).

37

The first type, V functions, are used to access and represent

the state of a module. Each VFUN has three sections; a function

header, pre-conditions, and a function body. The function header con

tains the name of the function and declarations of all input parameters

as well as the type of the value returned by the function. The pre

conditions section contains those assertions that must be true before

the function is invoked. The function body may be either a primitive

or a derived function body. A primitive function body gives the initial

value of the function. The value of a primitive VFUN may be hidden, in

which case it may only be accessed from within the module. A derived

VFUN may be used as an interface between the current module and other

modules in the specification. A derived function body contains a

number of assertions. These are similar to post-conditions in that the

operation of the function serves to make these assertions true. One

assertion must equate a value with the function name as the value to be

returned from the function invocation.

0 functions are used to change the state of a module. The only

way the value of a primitive VFUN may be changed is through an OFUN of

the same module. No value is returned from an OFUN. Each OFUN con

tains pre and post assertions. The pre assertions specify the condi

tions under which the function may be invoked. When an OFUN is invoked,

the post assertions are considered one at a time and in the order pre

sented. The state of the module is modified for each assertion to make

that assertion true. Note that, as a previous assertion may be af

fected by one that follows, it is possible that not all post assertions

will be true after an OFUN is invoked.

38

The structure of an OVFUN is similar to that of an OFUN. The

only difference is that an OVFUN returns a value and so must therefore,

at some point in the post-conditions, equate the function name with a

value.

3.3.3

The major components of the base language are a set of theories

and a number of special forms. Green defines a theory as a data type

and the operations which may be performed on any entity of this type.

There are a number of pre-defined theories in the base language; in

teger, real, set, vector, enumeration, boolean, point, and extent. The

operators of these pre-defined theories are presented in Appendix A.

The base language also allows specifier-defined theories. A theory may

be defined by use of a GUSL module. All operations which may be per

formed on this new theory must be included as functions of the module.

There are two ways of referencing a theory operator (GUSL function) :

1. module_name.function_name(function_parameters)

2. argument function_name module__name

The second form is only possible if the function has a single input

parameter. The argument must be of the same type as this parameter.

Every object in the UML and GUSL descriptions of the system must belong

to one of the pre-defined or specifier-defined theories of the base

language.

39

As mentioned earlier all expressions and assertions of UML and

GUSL are written in the base language. An expression is made up of

values, theory operators, and special forms. A value may be an object,

variable, parameter, or literal. An assertion is simply an expression

that has a true or false value. Both UML and GUSL deal with asser

tions. In many cases two or more expressions are combined to create an

assertion. The special forms of the base language are all assertions.

There are a number of these special forms. The EXISTS and FORALL

special forms provide a means of examining the objects of our system to

see if at least one, respectively all, of these objects satisfies cer

tain conditions. The LET special form allows for creation of a new en

tity which meets specified requirements. The IF special form lets one

choose the set of assertions to be satisfied based on the value of

another assertion. More information on these special forms is provided

in Appendix A.

Two special characters may also be found in base language expre

ssions. The first is the single quote (’). This character is used in

conjunction with an expression to indicate use of the old, or previous,

value of the expression. For example, the expression :

a = *a + 1;

may be interpreted as ’’the current value of a is equal to the previous

value of a plus one". The second special character is the question mark

(?). This may be used in primitive VFUNs to indicate that the initial

value of the VFUN is undefined. However, when a "?’’ is used, there

must be an OFUN in the same module capable of modifying the value of

that VFUN.

40

As we proceed with the design of MacPac, the structure and

syntax of these design languages will become clearer. The constructs

of UML and GUSL are fairly self-explanatory. This section has simply

provided an overview of the notations we will be using in the design

process.

Chapter 4

The User Model

The initial step in the design of MacPac is to describe the de

sired external behavior of the system. As discussed in the next two

subsections, this involves determining what basic entities a user will

be dealing with when using MacPac and then describing the behavior of

these entities.

U__Objects.

When using MacPac, the user is faced with a world containing a

number of display devices. On each display may be seen one or more

images, each of which is composed of one or more figures. As well as

receiving this graphical information, the user is capable of entering

information into the system via an input device. The UML OBJECTS

created for these five basic entities (the world, display devices,

images, figures, and input devices) are presented and discussed below.

From the user's point of view, the world may be described by

the UML object :

41

42

OBJECT world;
ATTRIBUTE display_set : SET OF display;
ATTRIBUTE image_set : SET OF image;
ATTRIBUTE figure_set : SET OF figure_transform;
ATTRIBUTE primitive_set : SET OF primitive;

END;

Every display, image, figure, and graphical primitive that exists in

the user’s world, whether or not it can be seen or is being used at

that particular point in time, is recorded in the appropriate attribute

of the world object.

A display is formally described by the UML object :

OBJECT display;
ATTRIBUTE display_id : integer;
ATTRIBUTE area : extent;
ATTRIBUTE contents : SET OF image;
ATTRIBUTE input_group : SET OF input_device;

END;

The first attribute, "display_id", is an integer descriptor for the

display. Each display in the user's world must have a unique

”display_id" between 1 and x, where x is the number of displays con

tained in the "world.display_set". The next two attributes detail the

size of the display ("area") and the set of images that it contains

("contents"). The "area" attribute of a display specifies the device

coordinate system of that display. For an existing image to be seen on

a display it must be added to the "contents" of the display. Also as

sociated with each display is a set of input devices, "input group".

43

An image is defined by the object :

OBJECT image;
ATTRIBUTE contents : SET OF figure_transform;
ATTRIBUTE positions : VECTOR OF extent;
ATTRIBUTE window : extent;
ATTRIBUTE chosen : boolean;
ATTRIBUTE input_information : input_event;

END;

Each image is made up of a number of figure_transforms. These

figure_transforms are recorded in the "contents” attribute of the image

and may or may not be seen when the image is added to a display depen

ding on the attribute "window”. All figures are described in a user-

defined coordinate system (UCS) which may encompass any subset of the

cartesian plane. The "window" is also defined in the UCS and indicates

what portion of the user’s "world" will be considered when that image

is displayed. Thus an image can contain much more information than is

displayed at any one time and selected portions can be brought to view

by changing the "window" attribute of that image. When an image is

added to the "contents" of a display, an area in the coordinates of

that display must be specified. This area, or viewport, controls where

on the display the image will be seen. The image attribute "positions"

is used to record these viewports. The ith element of "positions" con

tains the image's viewport on the ith display, i.e. the display whose

"display_id" equals i. The value NULL is stored in the "positions"

vector for all entries which correspond to displays on which the image

does not appear. When an image is selected by the user, the attribute

"image.chosen" becomes true and the information from the input device

is stored in "input-information".

44

Figure_transforms are represented by the object :

OBJECT figure_transform;
ATTRIBUTE figure : element;
ATTRIBUTE trans : transform;

END;

where :

TYPE element = (primitive, SET OF figure_transform);
TYPE primitive = (line,text,polyline,user_defined_primitive);

Each figure_transform has two attributes, a ’’figure” and an associated

transformation (’’trans”). The "figure” attribute may be either a

graphical primitive, in which case the figure_.transform is referred to

as elementary, or a collection of other figure_transforms, referred to

as a composite figure_transform. Allowing one figure_transform to be

defined in terms of others enables the user to define standard shapes

and then use them in various figures. Although there are no formal re

strictions, all the graphical information contained in a figure_trans-

form should be logically related. The transformation associated with

each figure positions that figure within a parent figure_transform or

an image.

The relationship between figure_transforms, images, and

displays is perhaps best illustrated by an example. Figure 4.1 pre

sents a simple application of the MacPac system. The top of Figure 4.1

shows a number of figure_transforms which are independent of any

image. Below this we see the coordinate space of an image. Three new

figure_transforms have been created out of existing figure_transforms

B C

FIGURELTRANSFORMS

figure_transforms

■>

IMAGE

Figure 4.1 - An Example of a MacPac Application

DISPLAYS

46

and added to the ’’contents" of the image. We will examine figure_trans-

form "E", which is meant to be a tree, in more detail. This figure_tran-

sform is composed of two child figure_transforms. The "figure" at

tributes of these children are figure_transforms "A" and "C". The

"transform" attributes of the children position these figures together

to create the tree. This tree is then positioned in the image by the

"transform" of figure_.transform "E". The image’s "window" is denoted by

the dashed rectangle, AREA_Z. The bottom of Figure 4.1 shows two

displays which contain this image. The image is seen on each display

in the viewport specified by the "positions" attribute of the image,

i.e. the first element of "positions" would be AREA_X and the second

element would be AREA_Y.

The last basic object a user encounters is the input device.

For our input model all physical input devices are treated as a single

object, defined by :

OBJECT input_device;
ATTRIBUTE where : point;
ATTRIBUTE code : integer;
ATTRIBUTE string : text;
ATTRIBUTE enabled : boolean;
ATTRIBUTE activated : boolean;

END;

To be used for input an input_device must first be enabled, i.e.

"enabled" must be true. While enabled, if the input_device is "ac

tivated", by the user the incoming input information will be recorded

in the attributes "where", "code", and "string". The user action re-

47

quired for activation may be a pushing a button, hitting the enter key,

or one of many other input possibilities. Any activation of the in-

put_device while it is not enabled is ignored. The attribute "where"

specifies a point in device coordinates, "code" returns an integer

code, and "string" contains a character string. If the particular

device in use does not provide a point, an integer code, and/or a

character string, the system will provide the missing information.

This object is accompanied by the object input_event :

OBJECT input_event;
ATTRIBUTE where : point;
ATTRIBUTE code : integer;
ATTRIBUTE string : text;
ATTRIBUTE display_id : integer;

END;

When an input_device is activated by the user, MacPac uses the at

tribute "input_device.where" to determine which image the input informa

tion should be sent to. The image selected is the image that appears

on the display at this point. "Input_device.where" is then transformed

into the UCS of the image and stored in "input_event.where". The in-

put_device attributes "code" and "string" and the "display_id" of the

display from which the input is received are also recorded in the in

put-event. This object then becomes the "input-information" for the

appropriate image.

Associated with these objects are a number of assertions which

must always be true. The first of these invariants is :

48

INVARIANT
FORALL d:display ! d in world.display_set
{

FORALL i:image ' i in d.contents
{

EXISTS x:point ì x in elementii.positions,d.display_id)
{

x in d.area;
1;

};
};

This specifies that each image contained in the "contents” of a display

must be transformed into an area which falls at least partially within

the "area" of the display. In other words, the viewport specified for

an image when it is added to the "contents" of a display must overlap

some portion of the "display.area". The second invariant states that

the point associated with each "activated" input_device belonging to

the "input_group" set of a display must fall within the "area" of the

display :

INVARIANT
FORALL d:display i d in world.display_set
{

FORALL id:input_device ' id in d.input_group AND id.activated
{

id.where in d.area;
1;

};

The above assertions must be true for each display in the

"world.display_set".

Each input_device may be associated with only one display.

This may be stated formally as follows :

49

INVARIANT
FORALL d1,d2:display | d1 in world.display_set AND

d2 in world.display_set AND
d1 != d2

{
NOT EXISTS id:input_device ! id in d1.input group AND

id in d2.input_£roup;
};

The final invariant ensures that only one image may be chosen

for input at any single point in time :

INVARIANT
FORALL i1,i2:image i i1 in world.image_set AND

i2 in world.image_set AND
i1 != i2

{
NOT (i1.chosen AND i2.chosen);

4.2 Operators

Having determined the basic objects a user will be dealing with

when using MacPac, a description of the ways in which the user may

manipulate these objects to meet his/her specific needs is required.

The UML OPERATOR construct is used here to formally describe the

behavior of our UML objects.

The first set of operators we will discuss are those which

manipulate displays. Operators are required to control the visibility

of an image as well as to change the placement of an image on a display

screen. All these operators demand that the display to be manipulated

be provided as an input parameter. In this way it is possible to en

50

sure that the executer of the operator has access to the display device

about to be changed.

The operators developed to control an image’s visibility,

display_image and erase_image, can be seen below :

OPERATOR display_image(d:display;i:image;e:extent);
PRE

d in world.display_set;
i in world.image_set;
EXISTS p:point | p in e

{
p in d.area;

};
POST

i in d.contents;
element(i.positions,d.display_id) = e;

END;

OPERATOR erase_image(d:display;i: image);
PRE

d in world.display_set;
i in d.contents;

POST
NOT i in d.contents;
element(i.positions,d.display_id) = NULL;

END;

The operator display_image adds a given image, i, to the "contents” of

display, d. An area (or viewport), e, defined in display coordinates,

must also be specified. The image will be transformed into this area

for display. This viewport information is stored in the ’’positions"

vector of the image. Erase_image simply removes a specified image from

the "contents” of a given display. The viewport information held in

"i.positions" for this display is also removed.

51

Another display manipulation operator is move_image. This

operator may be used to alter the viewport of an image on a given

display. The new viewport, specified in the operator parameters, must

at least partially overlap the "area” of the display.

OPERATOR move_image(d:display ;i: image;e: extent);
PRE

d in world.display_set;
i in d.contents;
EXISTS p:point i p in e

{
p in d.area;

1;
POST

element(i.positions,d.display_id) = e;
END;

Operators for the manipulation of images are also required.

Essentially, we want to be able to create, alter, and destroy images.

The image itself must be provided as input to all image alteration

operators. As for displays, an image may not be manipulated without

this proof of access to the object.

The UML definition of the create operator is :

OPERATOR create_image(w:extent) -> image;
POST

LET e:VECTOR OF extent I length(e) = ?;
FORALL d:display ' d in world.display_set

{
element(e,d.display_id) = NULL;

LET i:image I i.contents = EMPTY AND i.window = w AND
i.positions = e AND i.chosen=FALSE AND
i.input_information = NULL;

create_image = i;
create_image in world.image_set;
NOT EXISTS didisplay I d in world.display_set AND

create_image in d.contents;
END;

52

Once the user has decided on a particular area of interest (”w”) within

his world, the create_image operator may be used to return a new image

with this attribute. Initially the image will not contain any

figure_transforms or be seen on any display.

Once created, there are a number of ways in which one might

want to alter an image. The UML definitions of the operators

developed for handling these alterations are as follows :

OPERATOR add_to_image (i: image; f: figure_.transform);
PRE

i in world.image_set;
f in world.figure_set;
NOT f in i.contents;

POST
f in i.contents;

END;

OPERATOR remove_from_image(i: image;f:figure_transform);
PRE

i in world.image_set;
f in i.contents;

POST
NOT f in i.contents;

END;

OPERATOR pan_image(i:image;w:extent);
PRE

i in world.image_set;
POST

i.window = w;
END;

As can be seen, a necessary precondition for all alteration operators

is that the image to be altered must exist - ie. it must have been

previously created and therefore added to the "world.image_set". The

53

operators add_to_image and remove_from_image are fairly self-

explanatory. They simply add or remove the specified figure_transform

to or from the specified image. Note that a figure_.transform can only

be added to an image if it does not already exist in that image. This

is in accordance with the definition of a set which does not allow more

than one occurance of a member. Pan_image is useful for looking at dif

ferent parts of an image. This operator allows the user to specify a

new value for the image ’’window”. As discussed in Section 4.1, the ’’win

dow” field of an image specifies an area in the UCS which acts like a

window onto the set of figures the image contains. Any figure, or part

thereof, which falls within this ’’window” may be seen when the image is

added to the ’’contents” of a display. Therefore, by changing the “win

dow” attribute of an image the user may ’’pan" over different sections

of tiie image. This operator may not affect the area of a display in

which an image is seen. MacPac handles the transformation of the new

"image.window” into the viewport specified for the image when it was

originally added to a display.

When the user is finished with any given image, he can destroy

it with the operator :

OPERATOR destroy_image(i: image);
PRE

i in world.image_set;
POST

FORALL d:display Î d in world.display_set AND i in d.contents
{

erase_image(d,i);
};

NOT i in world.image_set;
END;

54

This operator removes the specified image from all displays of which it

is a member of tine '’contents”, and then destroys it by removing it from

the "world.image_set". Note that the figure_transforms of which the

image is composed are not destroyed - their relationship as members of

a set is simply dissolved.

The next set of operators we will discuss are those which

create, alter, and destroy figure_transforms. These operators function

in similar fashion to the corresponding image manipulation operators.

The UML figure_.transform creation operator is :

OPERATOR create_fig_trans(e:element;t:transform) -> figure_transform;
POST

IF NOT(e in world.primitive_set) THEN
LET e:SET OF figure_transform ' e = EMPTY;

ENDIF;
LET y:figure_transform i y.figure = e AND y.trans = t;
create_fig_trans = y;
create_fig_trans in world.figure_set;
NOT EXISTS i:image ' i in world.image_set AND

create fig trans in i.contents;
NOT EXISTS f:figure_transform i f in world.figure_set AND

create_fig_trans in f.figure;
END;

This operator takes as parameters an element and a transform and re

turns a newly created figure_.transform with these attributes. If the

element parameter, "e", is not a previously defined graphical primitive

then it is assumed to be a dummy variable and is assigned the type SET

OF figure_transform. Initially this set is empty. The element "e" then

becomes the "figure" part of the figure_transform and the newly

55

created figure_transform is added to the "world.figure_set". At first

this figure_transform may not belong to the "contents" of any image or

be part of the "figure" of any parent figure_transform.

The possible alterations to a previously created figure_trans-

form are described by the operators :

OPERATOR add_to_figure(f:figure_transform;new:figure_transform);
PRE

f in world.figure_set;
new in world.figure_set;
new != f;
IF NOT (f.figure in world.primitive_set) THEN

NOT new in f.figure;
ENDIF;

POST
IF (f.figure in world.primitive_set) THEN

LET f1:figure_transform ' f1.figure = f.figure AND
fl.trans = f.trans;

LET y:SET OF figure_.transform ! f! in y;
f.figure = y;
LET t:transforme 1,0,0,1,0,0);
f.trans = t;

ENDIF;
new in f.figure;

END;

OPERATOR remove_from_figure(f:figure_transform;old:figure_transform);
PRE

f in world.figure_set;
NOT (f.figure in world.primitive_set);
old in f.figure;

POST
NOT old in f.figure;

END;

OPERATOR transform_figure(f:figure_.transform;t:transform);
PRE

f in world.figure_set;
POST

f.trans = t;
END;

56

The operator add_to_figure is used to add one figure_transform to the

"figure" attribute of another. The complexity of this operator arises

from the lack of restrictions on the receiving figure_.transform "f" -

i.e. "f" may be an elementary figure_transform. If this is the case cer

tain changes must be made to "f" before it is possible to add "new" to

"f.figure". The way the operator handles this situation is to create

another figure_transform, "f1", and give it the attributes of "f".

"F.figure" then becomes a SET OF figure_transforms containing "f1", and

"f.trans" is set to the identity transform. The effect of this manipula

tion is to convert "f" to a composite figure_.transform without changing

the graphical information it contains. The addition of "new" to a com

posite "f" is very straightforward as "new" is simply added to the set

"f.figure". It should be noted, however, that the add_to__figure opera

tion is only allowed if "new" does not already exist in "f.figure".

This ensures that every figure_transform within another figure_trans-

form is uniquely identifiable and is in accordance with the definition

of a set which permits only one occurance of a member.

Remove_from_figure removes the figure_transform "old" from the "figure"

attribute of the figure_transform "f". This operator, for obvious

reasons, requires that the input figure_.transform "f" be a composite

figure_transform. The operator transform_figure takes a figure_trans-

form , "f", and a transformation, "t", as parameters and assigns the

value "t" to "f.trans". This enables a user to move a figure about

simply by changing it’s associated transform.

57

The operator for destroying a f igure_.tr ansf orm is virtually

identical to that for destroying an image :

OPERATOR destroy_fig_trans(f:figure_transform);
PRE

f in world.figure_set;
POST

FORALL f2:figure_transform ! f2 in world.figure_set AND
f in f2.figure

{
remove_from_figure(f2,f);

FORALL i:image Ì i in world.image_set AND f in i.contents
{

remove_from_image(i, f) ;

NOT f in world.figure_set;
END;

The specified figure_.transform, ”f”, is removed from all figure__trans-

forms and images of which it is a part and is then destroyed through

removal from the "world. figure__set". However, if "f.figure" was a set

of figure_transforms, the components of this set are not destroyed -

they simply are no longer related to one another in the same fashion.

Another, not so obvious, operator is required for the manipula

tion of figure_transforms. The need for this operator is perhaps best

illustrated by an example. Say that our user has defined a figure_tran-

sform called "man" which contains all the information necessary to draw

a stick figure on a display. The user is also creating a figure_trans-

form called "group". "Group.figure" is a set of figure_transforms, two

of which are "man_1" and "man_2". Both of these figure_transforms have

the "man" figure_transform mentioned above as their "figure" attribute

and a transformation which positions the man within the larger "group"

igure_.tr

58

figure as their "trans” attribute. Here is where a problem arises -

what if we want one of these men to lift his arm ? If we manipulate

”man_1.figure” we automatically alter ”man_2.figure” as these are one

and the same. A solution to this problem is a copy operator. With

this operator, when several instances of a figure_.transform are needed,

several copies can be made, thereby enabling the user to manipulate

each copy independently. The copy operator developed takes a

figure_transform as input and returns a copy of this figure_transform :

OPERATOR copy(f:figure_transform) -> figure_.transform;
PRE

f in world.figure_set;
POST

LET copy:figure_transform;
IF f.figure in world.primitive_set THEN

LET y:primitive ! y = f.figure;
y in world.primitive_set;
copy.figure = y;

ELSE
FORALL x: figure_.transform I x in f. figure

{
copy(x) in copy.figure;

};
ENDIF;
copy.trans = f.trans;
copy in world.figure_set;
NOT EXISTS i:image ! i in world.image_set AND

copy in i.contents;
END;

The final operator, select_image, enables the user to send

input information to an image. Whenever an enabled input_device is ac

tivated, this operator is invoked with the input_device as argument.

Select_image examines the display associated with this input_device. If

an image appears on the display at the point specified by the in

59

put_device then the input information is relayed to this image and the

image is flagged as chosen. If the point specified by the input_device

does not fall on any visible image then no action is taken.

OPERATOR select_image(id:input_device);
PRE

id.enabled = TRUE;
id.activated = TRUE;
EXISTS d:display 1 d in world.display_set

{
id in d.input group;
id.where in d.area;

};
POST

EXISTS d:display 1 d in world.display AND
id in d.input_group

{
LET b:boolean '

b = EXISTS i:image ! i in d.contents
{

id.where in element(i.positions,d.display_id);
1;

IF b THEN
EXISTS i:image ' i in d.contents AND

id.where in element(i.positions,d.display_id))
{

LET t:transform 1
t.apply(i.window) = element(i.positions,d.display_id);
i.input_information.where = t.rapply(id.where);
i.input_information.code = id.code;
i.input_information.string = id.string;
i.input_information.display_id = d.display_id;
i.chosen = TRUE;

ENDIF;
};

END;

So far we have discussed the objects a user may encounter when

using MacPac and several operations which may be performed on these ob

jects. Nothing has been said, however, about how figure_transforms and

images are actually seen on a display. The following section

discusses this area in detail, modifying the user model as necessary.

Chapter 5

Display Considerations

When one considers how the actual display will be handled in a

system using MacPac, several questions come to mind. For instance,

what does the user actually see on the display screen and how will this

information be represented? What happens if two images overlap on a

display - does one have priority over the other? Also, we have

discussed several operators which alter images and figure_transforms

but nothing has been said about when the alterations become visible to

the user.

In this chapter we will address these display considerations.

The user view presented in Chapter 4 is used as starting point from

which to build a new model; one which incorporates the information nece

ssary to describe what the user sees. We first consider the objects of

MacPac. Several new attributes are added to hold information relevant

to their visual display. The operators which manipulate these objects

are then examined. Their function is expanded to include the effect of

the operator on the visual representation of our MacPac objects. For

reference purposes, a compendium of these operators is provided in Ap

pendix C.

60

61

¿d__ Objects

Before other display related problems can be considered, one

needs an answer to the very important question - what does the user ac

tually see on the display screen and how will this information be repre

sented? As the majority of graphical display devices in use today are

raster based it seems logical to try to describe what is seen on a

display in a form compatible with this. Fortunately, it turns out

that "all the important properties of a raster display can be repre

sented by a GUSL module" [Green,1982b,p.7] which we call

raster_display. As discussed in Chapter 3, any GUSL module may be used

as the type of an attribute. Therefore, our problem of display repre

sentation is solved simply by adding a new attribute, "screen”, of type

raster_display, to the display object. With this representation it is

possible to describe what the user sees on a display at any point in

time as well as how what the user sees is affected by the various

operators.

An attribute of type raster_display was also added to the image

object. As well as providing information on what each image looks like

in the absence of a display screen and other images, this new at

tribute, called "picture", facilitates the display_image operation in

that the information in "image.picture” is in the same form as the in

formation in "display.screen". Therefore, when adding new image infor

mation to a "display.screen", no conversion, other than from UCS to

device coordinates, is required.

62

To handle the problem of image overlap it is necessary to im

pose an ordering on the images contained in a display. This was accom

plished by changing the type of the attribute ’’display.contents” from a

’’SET OF image” to a ’’VECTOR OF image”. The larger the vector index of

an image the higher the ’’priority” of that image - in other words, when

two or more images overlap on a display screen, the image with the lar

gest vector index is seen in the overlap area. It is important to

realize that this ordering is display, NOT image, dependent. An image

does not have any kind of ’’priority” associated with it in the absence

of a display and two different displays may contain the same image at

very different vector indices. The problems of figure_transform overlap

within an image and within a parent figure_transform are handled in

much the same way. The type of the attribute ’’image.contents” was

changed to ’’VECTOR OF figure_transform” and at any point in an image

where two or more figure_transforms overlap it is the figure_transform

with the largest vector index which is seen. The definition of

element, the type of the attribute ”figure_transform.figure", was

changed from :

TYPE element = (primitive,SET OF figure_transform);

to :

TYPE element = (primitive,VECTOR OF figure_transform);

thereby establishing an ordering amongst figure_transforms within a

figure_transform which allows us to handle this overlap problem in the

same way - by relative vector indices.

63

The problem of when new information should become visible to

the user is encountered when the user makes a change to something he is

currently viewing on a display. Should the change appear as soon as it

is made or should the user have to explicitly request an update,

thereby allowing him to make several changes before any are seen? When

one looks at possible uses for the system, it soon becomes obvious that

both updating alternatives are desirable; the one chosen for use is

very situation dependent. In response to this, the boolean attribute

"instant—update" was added to the world object. This attribute allows

the user to choose the updating alternative most suited to his specific

purposes. When "world.instant—update'1 is true any alterations made to

figure_transforms and images on display are seen immediately. When

"world.instant—update" is false these changes will not appear until the

affected displays are refreshed. A new operator, refresh_display,

developed for this purpose will be introduced later in this chapter.

The addition of this user option, however, creates some display

related problems of its own. For instance, if "world.instant—update" is

false and we decide to make changes to an image on display how will

these changes be remembered until they are used. If we go ahead and

make the changes to the image but not the display screen(s), how will

we keep track of whether or not the display screen reflects the "con

tents" of the display. Our solution to this problem involved the addi

tion of the boolean attributes "up_to_date" and "altered" to the

display and image objects respectively. Whenever changes are made to

an image the changes are immediately recorded in the appropriate image

64

attribute (’'window", "positions", or "contents") and "image.altered" is

set to true. When the "picture" attribute is updated to reflect these

changes, "image_altered" is reset to false. If "world.instant_update"

is false, all displays which contain this image are flagged as not

up_to_date as the display "screen" may no longer match the contents of

the display.

Another feature of any visual display is colour information and

control. Both the display and image objects have been extended to ac

comodate colour handling. The attribute "colour_table" was added to

the display object. This attribute is of type colour_map. As for

raster_display, this entity may been represented by a GUSL module and

so may therefore be used as the type of an attribute. Basically, a

colour_map is a an array of bytes which are interpreted by the display

device to produce colours. When dealing with colour information in an

application, integral values are used. These values are actually in

dices into the colour_map, from which the byte pattern used to produce

the colour is retrieved. Three new colour attributes have been added

to the image object : "colour_start", "colour_range", and "background".

"Colour_start" and "colour_range" are used to specify the portion of a

display's "colour_table" which the image may access. All colours in

the image's "picture" must fall within 0 and "colour_range". If the

colour of a figure_transform contained in the image is greater than

"colour_range", the figure is displayed as colour 0. When the image is

added to a display, "colour_start" indicates where in the display's

"colour_table" to start retrieving colours from. For example, if

65

"colour_start" is 25 and a pixel in the images ’’picture” is colour 10,

when this image is added to a display the corresponding ’’screen” pixel

will be set to colour 35. Again, if the calculated value for a "screen”

pixel is greater than the display's "colour_table" maximum, the pixel

is set to colour 0. The attribute "background” allows the user to

specify a background colour for each of his images.

The last two attributes added to the image object are "fill_in-

fojpoints" and "fill_info_colours". These attributes enable the user to

specify areas in the image's UCS which are to filled and the colours

which are to be used to fill them. "Fill_info_points" is a vector of

points and "fill_info_colours" is a vector of colours. These vectors

function as a single unit. The ith entry of fill_info_colours"

specifies the colour to use in filling the area of which the ith entry

of "fill_info_points" is an interior point.

With the addition of these new attributes, the object defini

tions appear as follows :

OBJECT world;
ATTRIBUTE display_set : SET OF display;
ATTRIBUTE image_set : SET OF image;
ATTRIBUTE figure_set : SET OF figure_transform;
ATTRIBUTE primitive_set : SET OF primitive;
ATTRIBUTE instant_update : boolean;

END;

66

OBJECT display;
ATTRIBUTE display_id : integer;
ATTRIBUTE area : extent;
ATTRIBUTE contents : VECTOR OF image;
ATTRIBUTE screen : raster_display;
ATTRIBUTE up_to_date : boolean;
ATTRIBUTE input_group : SET OF input_device;
ATTRIBUTE colour_table : colour_map;

END;

OBJECT image;
ATTRIBUTE contents : VECTOR OF figure_transform;
ATTRIBUTE positions : VECTOR OF extent;
ATTRIBUTE window : extent;
ATTRIBUTE picture : raster_display;
ATTRIBUTE altered : boolean;
ATTRIBUTE background : integer;
ATTRIBUTE colour_start : integer;
ATTRIBUTE colour_range : integer;
ATTRIBUTE fill_info_points : VECTOR OF point;
ATTRIBUTE fill_info_colours : VECTOR OF integer;
ATTRIBUTE chosen : boolean;
ATTRIBUTE input_information : input_event;

END;

The figure_transform, input_device, and input_event objects were un

changed by these display considerations.

Before going on to examine the effect of these display con

siderations on our MacPac operators, it is necessary to introduce some

functions which are required in the next section but are not presented

in detail until Chapter 6. These functions, which operate on the ob

jects and modules defined for MacPac, are similar to those mentioned in

Chapter 3 that we have been using to operate on the predefined theories

of Mark Green’s design language. Firstly, all objects representing

graphical entities have the two functions ’in’ and ’colour’. Both of

these functions take a point as input. Function ’in’ returns true if

67

that point is in the graphical entity. Function ’colour' returns an

integer which represents the colour of the graphical entity at that

point. The objects representing graphical entities in MacPac are

figure_.transform, line, polyline, text, and user_defined_primitives.

Another object, or module, which is used in MacPac is the

raster_display. Two functions which operate on entities of this type

are 'set_pix' and 'pixel'. Function 'set_pix' is used to assign a

colour to a specified pixel in a raster_display. Function 'pixel' takes

a point as parameter and returns the colour of the pixel at that point

in the raster_display. The last set of functions which require introduc

tion here are those which may be applied to transforms. Function 'ap

ply' takes either a point or an extent as its only parameter. The tran

sformation which this module represents is applied to the point, or all

points in the extent, and the transformed point or area is returned.

The inverse function is 'rapply'. This function applies the inverse of

the transformation to an input point, returning the point which results

from this operation.

5.2 . Operators

Now that a representation has been developed to describe what

individual images and displays look like, the operators of Chapter 4

can be altered to include the effect they have on this representation.

It soon becomes evident that many of the operators require similar in

formation on the current structure of the user's world and perform

similar modifications to objects in this world. To reduce the resul

68

ting redundancy in the base language '’code” of the operators, several

functions are defined externally for use by more than one operator. It

should be noted, however, that these functions may not be invoked from

outside of an operator. With this restriction we need not be concerned

with pre-conditions for their use or the order in which they are in

voked as this is under the control of the calling operator. These func

tions are presented and discussed below along with the operators which

make use of them.

In handling the overlap problems discussed in the previous sec

tion, two basic functions - upper_image and upper_figure - prove useful

in several of the operators. Upper_image takes in a display, an image,

and a point on the display which the image maps to. This function re

turns true if the given image has the highest vector index of all

images in the display's ’’contents” which also map to the given point.

Upper_figure behaves in much the same fashion in determining the upper

figure_transform in an image or a parent figure_.transform at a par

ticular point. The input parameters to this function are a vector ("v")

of f igure_.tr ansforms (to accomodate both an "image.contents” and a

"figure_transform.figure"), a figure_transform ("f"), and a point

("p") in the image or parent figure_.transform which the figure__trans-

form "f" maps to. Again, true is returned if the input figure_transform

"f" has the highest vector index of all figure_transforms in "v" which

also map to the point "p".

igure_.tr

69

upper_image(d:display;i:image;p:point) -> boolean;
{

LET int1:integer ' i = element(d.contents,inti);
upper =

FORALL i2:image | i2 in d.contents AND i2 I = i AND
p in element(i2.positions,d.display_id)

{
LET int2:integer ! i2 = element(d.contents,int2);
int2 < inti;

J;
};

upper_figure(v:VECTOR OF figure_transform,
f: f igure_.tr ansform, p: point)->boolean;

{
LET int1:integer , f = element(v,int1);
upper =

FORALL f2:figure_transform i f2 in v AND f2 != f AND
f2.trans.rapply(p) in f2

{
LET int2: integer ! f2 = element(v,int2);
int2 < inti;

};

As mentioned in the previous section, when an image is altered,

all new information is stored in the appropriate image attributes (’’win

dow”, ’’positions”, ’’contents”, etc). At this time the raster_display

’’image.picture”, from which the image is displayed, must also be up

dated. The function update_image_picture proves very useful here.

This function completely recreates the ’’picture” attribute of an image

from information stored in other image attributes. The ’’picture”

raster_display is redefined from the "window” of the image and then

each pixel of ’’picture” is set according to the figure_transforms

stored in the "contents” of the image. Finally, all area fill requests

which affect the image "picture" are executed.

igure_.tr

70

update_image_picture(i: image);
{

LET r:raster_display(truncated.window.lower_left),
truncated.window.upper_right)) ;

i.picture = r;
FORALL p:point Ì p in i.picture

{
i.picture.set_pix(p,i.background);

};
FORALL f:figure_transform i f in i.contents

{
FORALL figpt:point Ì figpt in f AND

f.trans.apply(figpt) in i.picture
{

IF upper_figure(i.contents,f,f.trans.apply(figpt)) THEN
IF f.colour(figpt) > i.colour_range THEN
i.picture.set_pix(f.trans.apply(figpt), 0) ;

ELSE
i.picture.se t_pix(f.trans.apply(figpt),f.color(figpt));

ENDIF;
ENDIF;

update_fill(i);
i.altered = FALSE;

1;

The two functions, update_fill and invoke_fill, handle all area

fill operations. Update_fill examines each point of the given image’s

”fill_info_points” vector. If the point falls within the "picture” of

the image then the invoke_fill function is executed. Update_fill deter

mines the existing ('old’) colour of the image at the fill point

specified. The ’new’ fill colour is retrieved from the "fill_in-

fo_colours" vector. If this colour is greater than the image's

"colour_range", the 'new' fill colour is set to 0. The 'old' and 'new'

colours are sent to the invoke_fill function along with the point at

which to start filling. In the invoke_fill function, the input point is

examined to see if the colour at this point is the 'old' colour. If

i.picture.se

71

so, the colour of the pixel at this point is changed to the ’new’

colour, and the eight points which neighbor the input point are ex

amined via a recursive call to invoke_fill. The algorithm in use here

is a flood-fill of an interior-defined 8-connected region.

update_f ill(i:image);
{

FORALL int:integer ! 0 < int <= length(i.fill_info_points)
{

LET p:point I p = truncate(element(i.fill_info_points,int));
IF p in i.picture THEN

LET new_colour:integer !
new_colour = element(i.fill_info_colours,int);

IF new_colour > i.colour_range THEN
new_colour = 0;

ENDIF;
LET old_colour:integer ! old_colour = i.picture.pixel(p);
invoke_fill(i,p,old_colour,new_colour);

ENDIF;
};

1;

invoke_f ill(i:image;p:point;old,new:integer);
{

IF p in i.picture THEN
IF i.picture.pixel(p) = old THEN

i.picture.set_pix(p,new);
LET p1:point(p.x,p.y+1);
invoke_fill(i,p1,old,new);
LET p2:point(p.x,p.y-1);
invoke_fil1(i,p2,old,new);
LET p3:point(p.x+1,p.y);
invoke_fill(i,p3,old,new);
LET p4:point(p.x+1,p.y+1);
invoke_fill(i,p4,old,new);
LET p5:point(p.x+1,p.y-1);
invoke_f ill(i,p5,old,new);
LET p6:point(p.x-1,p.y);
i nvoke_fill(i,p6,old,new);
LET p7:point(p.x-1,p.y+1);
invoke_fill(i,p7,old,new);
LET p8:point(p.x-1,p.y-1);
invoke_fill(i,p8,old,new);

ENDIF;
ENDIF;

1;

72

If "world.instant_update" is true then every time we update the

“picture” of an image we must also update all displays which contain

that image. The function update_displays was developed to handle this

operation. Update_displays takes in an image, ”i”, and then updates

this image on the ’’display, screen” of each display in the

"world.display_set” which contains ”i”. This update makes use of the

current ’’picture” and ’’positions” attributes of the image and takes

into account the position of the image in the "contents” of each

display.

update_displays(i: image);
{

FORALL d:display 1 d in world.display_set AND i in d.contents
{

LET t:transform !
t.apply(i.window) = element(i.positions,d.display_id);

FORALL p:point ! p in d.screen AND
p in element(i.positions,d.display_id)

{
IF upper_image(d,i,p) THEN

LET c:integer ! c = i.picture.pixel(t.rapply(p)) +
i.colour_start;

IF c > d.colour_table.max THEN
c = 0;

ENDIF;
d.screen.set_pix(p,c);

ENDIF;
};

};
};

Another function used in several of the operators is shrinkvec

tor. This function takes in a vector of images or figure_transforms,

"v", and an image or figure_transform, "item", which is an element of

73

this vector. "Item” is removed from the vector "v" and the vector is

compacted, i.e. all elements of the vector with a higher index than

"item” are shifted to the left by one (their vector index is decreased

by one). In this way any holes which removal of an element may create

in a vector are eliminated. This function is useful for removing an

image from the "contents” of a display or a figure_.transform from the

"contents" of an image or the "figure" of a parent figure_transform.

shrinkvector(v:(VECTOR OF image,VECTOR OF figure_transform);
item:(image,figure_transform));

{
LET index:integer ! item = element(v,index);
FORALL index2:integer ! index <= index2 < length(v)

{
element(v,index2) = element(’v,index2+1);

length(v) = length(’v) - 1;
};

With the use of these functions it is now a simple matter to

modify the MacPac operators of Chapter 4 to include the effects they

have on the image and display attributes which control what the user

sees. Before going on to discuss these changes, however, a new

operator, refresh_display, is introduced. This operator completely

recreates the "screen" attribute of a specified display from the infor

mation contained in the "contents" and "area" of the display. The

"screen" is initialized based on the "area" of the display and all

"screen" pixels are set to colour 0. Each image in the "contents" of

the display is then examined and all pixels of the display screen which

are affected by the image are set to the appropriate colour. A major

74

purpose of this operator is to provide the user with a mechanism

whereby he may explicitly request a refresh of a display screen when

"world.instant_update” is false. Refresh_display will update the

display "screen" to reflect all changes made to images in "display.con

tents" since the last refresh. As this operator brings a display

"screen" up-to-date with its "contents", the flag "up_to_date" is

(re)set to true.

OPERATOR refresh_display(d:display);

PRE
d in world.display_set

POST
IF NOT d.up_to_date THEN

LET s:raster_display(truncate(d.area.lower_left),
truncate(d.area.upper_right));

d.screen = s;
FORALL p:point ! p in d.screen

{
d.screen.set_pix(p,0);

};
FORALL i:image i i in d.contents

{
LET t:transform '

t.apply(i.window) = element(i.positions,d.display_id);
FORALL p:point i p in d.screen AND

p in element(i.positions,d.display_id)
{

IF upper_image(d,i,p) THEN
LET ciinteger ! c = i.picture.pixel(t.rapply(p)) +

i.colour_start;
IF c > d.colour_table.max THEN

c = 0;
ENDIF;
d.screen.set_pix(p,c);

ENDIF;
1;

};
d.up_to_date = TRUE;

ENDIF;
END;

75

The first two operators requiring modification are those which

control an image*s visibility - display_image and erase_image. The new

display_image operator, seen below, serves two purposes. If the

specified image, ”i", does not already exist in the ’’contents'’ of the

given display, "d", then this image is added to the end of the "d.con

tents" vector. The input viewport, "e" is recorded in the "positions"

attribute of the image for use when updating the display "screen". If

"i" is already an element of "d.contents" it is removed from this

vector by a call to shrinkvector. Display_image then adds "i" to the

end of "d.contents", thereby ensuring that this image has highest

priority when it comes to overlap considerations. Note that

display_image may not be used to move an image on a display "screen".

If the image already exists in the "contents" of the display then the

viewport, "e", is set to the value currently held in "i.positions" for

this display. The value for "e" sent as input to this operator is over

written. If "world.instant_update" is true, the display "screen" is up

dated to reflect this new information. The end result is that, when

the display is updated, the image "i" will be seen above all others in

the portion of the display "screen" specified by the viewport area "e".

OPERATOR display__image(d:display;i:image;e:extent) ;
PRE

d in world.display_set;
i in world.image_set;
IF i in d.contents THEN

e = element(i.positions,d.display_id);
ENDIF;
EXISTS p:point ! p in e

{
p in d.screen;

};

76

POST
d.up_to_date = FALSE;
IF NOT (element(d.contents,length(d.contents)) = i) THEN

IF i in d.contents THEN
shrinkvector(d.contents,i);

ENDIF;
element(d.contents,length(d.contents)+1) = i;

ENDIF;
element(i.positions,d.display_id) = e;
IF world.instant_update THEN

LET t:transform i t.apply(i.window) = e;
FORALL p:point Ì p in d.screen AND p in e

{
LET c:integer Ì c = i.picture.pixeKt.rapply(p)) +

i.colour_start;
IF c > d.colour_table.max THEN

c = 0;
ENDIF;
d.screen.se t_pix(p,c);

d.up_to_date = TRUE;
ENDIF;

END;

The erase_image operator is used to erase a given image "i"

from the "screen" of a specified display "d". Erase_image calls the

function shrinkvector to remove "i" from "d.contents" and then resets

the image’s viewport for this display to NULL. If "world.instan t_up-

date" is false then no further action need be taken. If "world.in-

stant_update" is true, a call to refresh_display updates the display

"screen" from its "contents" which, since it no longer contains the

image, has the effect of removing "i" from the screen.

OPERATOR erase_image(d:display;i:image);
PRE

d in world.display_set;
i in d.contents;

d.screen.se

77

POST
d.up_to_date = FALSE;
shrinkvector(d.contents, i) ;
/* NOT i in d.contents */
element(i.positions,d.display_id) = NULL;
IF world.instant_update THEN

refresh_display(d);
ENDIF;

END;

The move_image operator allows the user to move an image which

appears on a display to a different area on the ’'screen” of that

display. The new viewport in which the image is to appear must be

provided as an input parameter to the operator. This new viewport infor

mation is stored in the "positions” attribute of the image. If

world.instant_update is true, refresh_display is called to handle the

repositioning of the image on the display "screen”. It should be noted

that this operator does not change the priority of the image in the

"contents" of the display. Therefore, when the image is displayed in

its new viewport, parts of it may be obscured by images of higher

priority.

OPERATOR move_image(d:display;i:image;e:extent);
PRE

d in world.display_set;
i in d.contents;
EXISTS p:point 1 p in e

{
p in d.screen;

};
POST

d.up_to_date = FALSE;
element(i.positions,d.display_id) = e;
IF world.instant_update THEN

refresh_display(d);
ENDIF;

END;

78

The image manipulation operators also require modification to

reflect these display considerations. The first of these operators to

be considered is the image creation operator. This operator has been

extended to initialize the new image attributes added in section 5.1 as

well as the ’’contents” attribute whose type was changed from SET OF to

VECTOR OF figure_transform. As can be seen, three new input parameters

have been added to the operator, allowing the colour information of the

image to be specified by the user when the image is created. The ’’pic

ture” and ’’altered” attributes of the image are initialized in the func

tion update_image_picture. As the "contents” of the image is empty at

this point, all pixels of the "picture" raster_display, defined from

the "image.window", are set to the specified background color.

OPERATOR create_image(w:extent;bkgd,c_start,c_range:integer) -> image;
POST

LET pos_init:VECTOR OF extent ! length(pos_init) = ?;
FORALL d:display ! d in world.display_set

{
element(pos_init,d.display_id) = NULL;

};
LET con_init:VECTOR OF figure_transform i length(con_init) = 0;
LET fill_p_init:VECTOR OF point I length(fill_p_init) = 0;
LET fill_c_init:VECTOR OF integer J length(fill_c_init) = 0;
LET i:image '

i.contents = con_init AND i.window = w AND
i.positions = pos_init AND i.chosen = FALSE AND
i.input_information = NULL AND i.background = bkgd AND
i.colour_start = c_start AND i.colour_range = c_range AND
i.fill_info_points = fill_p_init AND
i.fill_info_colours = fill_c_init;

create_image = i;
update_image_picture(create_image);
create_image in world.image_set;
NOT EXISTS d:display I d in world.display_set

{
create_image in d.contents;

};
END;

79

The next set of operators to be modified are the image altera

tion operators: add_to_image, remove_front_image, and pan_image. As

discussed in the previous section all changes made to an image are im

mediately recorded in the relevant attribute - "window”, ’’position”, or

’’contents" - of the image. The "picture" attribute of the image must

then be updated to reflect these changes. The "image.altered" at

tribute acts as a flag throughout this process. When the "window",

"position", or "contents" of an image is altered the flag is set to

true. When the "picture" of the image is updated, thereby making all

image information consistent, "image.altered" is set back to false. If

"world.instant_update" is true, all displays containing the image being

altered must be updated to reflect the changes. Otherwise, the

"up_to_date" flag of these displays must be set to false. It should be

noted that, although these operators may change the appearance of an

image on a display "screen", they can not change where the image is

seen or the priority of an image on a display. The alteration process

outlined here accounts for the basic structure of all three alteration

operators, discussed in more detail below.

The add_to_image operator adds a given figure_transform, "f",

to a given image, "i", simply by adding "f" to the end of the vector of

figure_transforms "i.contents". The new figure must also be added to

the "picture" of the image. This is handled by the function up-

date_image_picture which recreates the "picture" of the image from its

80

'•contents", of which "f" is now a member. If "world.instant_update" is

true, the call to update_displays updates the "display.screen", with

respect to the image "i", of all displays that contain "i".

OPERATOR add_to_image (i : image ; f : f igure_.transf orm) ;
PRE

i in world.image_set;
f in world.figure_set;
NOT f in i.contents;

POST
element(i.contents,lengthd.contents)+1) = f;
/* f in i.contents */
i.altered = TRUE;
update_image_picture(i);
IF world.instant_update THEN

update_displays(i);
ELSE

FORALL drdisplay i d in world.display_set AND i in d.contents
{

d.up_to_date = FALSE;
};

ENDIF;
END;

The remove_from_image operator performs the reverse of the

add_to_image operation. A specified figure_transform, "f", is removed

from a given image, "i", by removing "f" from the vector "i.contents".

Again, the "picture" of the image and, if "world.instant_update" is

true, the "screen" of each associated display must be updated. As in

the add_to_image operator, the functions update_image_picture and up-

date_displays handle this procedure.

OPERATOR remove_from_image(i:image;f: figure_.transform);
PRE

i in world.image_set;
f in i.contents;

81

POST
shrinkvector(i.contents,f);
/* NOT f in i.contents */
i.altered = TRUE;
update_image_picture(i);
IF world.instant_update THEN

update_displays(i);
ELSE

FORALL d:display ! d in world.display_set AND i in d.contents
{

d.up_to_date = FALSE;
};

ENDIF;
END;

Pan_image allows the user to change the "window” attribute of a

given image. In this way, the user may alter the window used to view

the ’’contents" of an image. The function update_image_picture is

called to redefine the "picture" attribute of the image from its new

"window". This function also updates the pixels of the new "picture"

from the information in "image.contents". If "world.instant_update" is

true, the displays containing this image are updated with the new "pic

ture" of the image. Again, this operator does not change the position

or priority of an image on any display. Only the appearance of the

image may change.

OPERATOR pan_image(i:image;w:extent);

PRE
i in world.image_set;

POST
i.window = w;
i.altered = TRUE;
update_image_picture(i);

82

IF world.instant_update THEN
update_displays(i);

ELSE
FORALL d:display i d in world.display_set AND i in d.contents

{
d.up_to_date = FALSE;

};
ENDIF;

END;

Two new operators are required to manipulate the new image at

tributes "fill_info_points" and "fill_info_colours". The user should

be able to add and remove fill information as the contents and uses of

an image change. The operators add_fill_info and remove_fill_info,

seen below, provide this facility.

Add_fill_info may be used to add a new area to be filled. This

area is specified by providing a point within the area to the

add_fill_info operator. The ’new’ colour the area is to be filled with

must also be specified. The input point and colour are added to corre

sponding locations in the ”fill_info_points” and ”fill_info_colours”

vectors. If the point designated is within the "picture" of the image,

the operator performs a flood-fill on the "picture" attribute. This in

volves changing all pixels connected to the specified point and of the

same original colour to the ’new’ colour. The function invoke_fill is

used to handle this operation. Note that there is no restriction on

the input point, i.e. it does not have to fall within the "picture" of

the image. In this way fill information may exist for all areas of the

image. The actual fill operation will be executed when the affected

portion of the image falls within the image "window". There is also no

83

restriction that the fill colour be within the image’s ”colour_range”.

However, if the specified colour is outside of this ”colour_range",

colour 0 will be used for filling the indicated area of the image "pic

ture". Add_fill_info returns an integer which represents the index of

the new fill information in the "fill_info_points" and "fill_in-

fo_colours" vectors.

OPERATOR add_fill_info(i:image;p:point;c:integer) -> integer;
PRE

i in world.image_set;
c >= 0;

POST
LET next:integer 1

next = length(i.fill_info_points) + 1;
element(i.fill_info_points,next) = p;
element(i.fill_info_colours,next) = c;
add_fill_info = next;
IF p in i.picture THEN

LET intp:point | intp = truncate(p);
LET new_colour:integer i new_colour = c;
IF new_colour > i.colour_range THEN

new_colour = 0;
ENDIF;
LET old_colour:integer ! old_colour = i.picture.pixel(p);
invoke_f ill(i,intp,old_colour,new_colour);
IF world.instant_update THEN

update_displays(i);
ELSE

FORALL d:display ! d in world.display_set AND
i in d.contents

{
d.up_to_date = FALSE;

ENDIF;
ENDIF;

END;

The operator remove_fill_info may be used to remove fill from

an area of a given image. This operator must be provided with the index

of the fill information. The entries of the "fill_info_points" and

84

”fill_info_colours” vectors at this index are removed and the vectors

are compressed. The image ’’picture” is then recreated from scratch via

a call to update_image_picture. As the removed fill information no

longer exists in the image attributes, the area will no longer be

filled in the image ’’picture”. For both operators, if ’’world.instant__up-

date" is true, all displays containing the altered image must be up

dated. Update_displays is called to handle this function.

OPERATOR remove_fill_info(i:image; index :integer);
PRE

i in world.image_set;
index <= length(i.fill_info_points);

POST
FORALL int:integer ! index <= int < length(i.fill_info_points)

{
elementii.fill_info_points,int) =

elementi’i.fill_info_points,int+1);
elementii.fill_info_colours,int) =

elementi’i.fill_info_colours,int+1);
};

lengthii.fill_info_points) = lengtht’i.fill_info_points) - 1;
length(i.fill_info_colours) = lengthi’i.fill_info_colours) - 1;
update_image_picture(i);
IF world.instantjupdate THEN

update_displays(i);
ELSE

FORALL d:display ì d in world.display_set AND i in d.contents
{

d.up_to_date = FALSE;

ENDIF;
END;

The next set of operators to be considered are the figure_trans-

form manipulation operators. As any change to a figure_transform may

affect an image on display, these operators must be extended to include

the alterations to the figure_transform and associated image and

85

display objects necessary to control what the user sees. Before going

on to discuss the figure_transform operators, however, a function which

proved very useful in the modification of these operators needs to be

defined and discussed.

This function, update_images, takes in a figure_transform, "f",

and then completely updates the ’’image.picture” of all images which con

tain this figure_transform. In this way any changes which have been

made to the input figure_transform will now be accounted for in the

••picture" of each image. If "world.instant_update" is true, these

changes are relayed to the necessary displays by a call to up-

date_displays for each newly updated image. If "world.instant_update"

is false, all displays containing these images are flagged as not up-to-

date as the display "screen" may no longer match the "contents" of the

display. Due to the possible structure of a figure_transform, however,

the images containing "f" may not be the only images effected by the

changes to "f". It may happen that "f" is a member of the "figure" of

another figure_transform which in turn constitutes part of the "figure"

of several other figure_transforms, etc.. At each level the parent

figure_transform may belong to the "contents" of one or more images,

which may or may not be on display. The changes in these figure_trans-

forms, due to the changes in "f", must be relayed to these images and

displays. Update_images handles this situation by calling itself

recursively for every figure_transform which contains the current input

figure_transform.

86

update_images(f:figure_transform);
{

FORALL i:image ' i in world.image_set AND f in i.contents
{

update_image_picture(i);
IF world.instant_update THEN

update_displays(i);
ELSE

FORALL d:display 1 d in world.display_set AND
i in d.contents

{
d.up_to_date = FALSE;

};
ENDIF;

};
FORALL f2:figure_transform ' f2 in world.figure_set AND

f in f2.figure
{

update_images(f2);
};

};

The first figure_transform manipulation operator to be con

sidered is create_fig_trans. As this operator simply creates a new

figure_transform, unassociated initially with any image, very few

changes in its original structure were required to accomodate display

considerations. Create fig trans was modified, as were all the

figure_transform manipulation operators, to take into account the

change from "SET OF figure_transform" to "VECTOR OF figure_transform"

in the type definition of element.

OPERATOR create_fig_trans(e:element;t:transform) -> figure_transform;
POST

IF NOT(e in world.primitive_set) THEN
LET e:VECTOR OF figure_transform ! length(e) = 0;

ENDIF;
LET y:figure_transform 1 y.figure = e AND y.trans = t;
create .fig trans = y;
create_fig_trans in world.figure_set;

87

NOT EXISTS i:image ! i in world.image_set AND
create_fig_trans in i.contents;

NOT EXISTS f:figure_transform I f in world.figure_set AND
create_fig_trans in f.figure;

END;

The modified figure_transform manipulation operators are shown

below. As can be seen, in spite of the different alterations to the

input figure_transform "f” which each operator makes, they all exert

their effect on what the user sees in exactly the same way. In

add_to_figure the "new” input figure_transform is added to the end of

the vector "f.figure”. Remove_from_figure removes the figure_transform

’’old” from the "figure” attribute of "f" through a call to shrinkvec

tor. The transform_figure operator simply assigns the new input trans

formation to the "trans” attribute of the specified figure_transform

"f". In each operator, after the appropriate alterations to "f" have

been made, thè changes are immediately relayed to all affected images

and, if "world.instant_update" is true, to all affected displays. The

procedure update_images handles this operation.

OPERATOR add_to_figure(f:figure_transform;new:figure_transform);

PRE
f in world.figure_set;
new in world.figure_set;
new != f;
IF NOT(f.figure in world.primitive_set) THEN

NOT new in f.figure;
ENDIF;

88

POST
IF (f.figure in world.primitive_set) THEN

LET f1:figure_transform(f.figure,f.trans);
LET y:VECTOR OF f igure_.tr ansform ! element(y,1) = f1 AND

length(y) = 1;
f.figure = y;
LET t:transforme 1,0,0,1,0,0);
f.trans = t;

ENDIF;
element(f.figure,length(f.figure)+1) = new;
update_images(f);

END;

OPERATOR remove_from_figure(f:figure_.transform;old:figure_transform);
PRE

f in world.figure_set;
NOT(f.figure in world.primitive_set);
old in f.figure;

POST
shrinkvector(f.figure,old);
/* NOT old in f.figure */
update_images(f);

END;

OPERATOR transform_figure(f:figure_transform;t:transform);
PRE

f in world.figure_set;
POST

f.trans = t;
update_images(f);

END;

Neither the copy nor the destroy__fig trans operators require

any alterations to accomodate the display considerations discussed in

this chapter. The new figure_transform created by the copy operator may

not initially belong to the "contents” of any image, so has no effect

on what the user sees. Destroy fig trans exerts its effects on images

and displays via calls to remove_froni_image and remove_from_figure.

These operators have already been modified to include their influence

on what is seen by the user.

igure_.tr

89

The operator select_image does not have any effect on the

display of images and figures so does not require any modification in

this area. However, as selection is made based on what appears on the

display screen, it is important that the "screen” reflect the actual

’’contents" of the display when an image is selected. As can be seen

below, another pre-condition has been added to the select_image

operator to ensure that the display is, in fact, up-to-date.

OPERATOR select-image(id:input-device);
PRE

id.enabled = TRUE;
id.activated = TRUE;
EXISTS d:display i d in world.display—set

{
d.up_to_date;
id in d.input_group;
id.where in d.area;

};
POST

EXISTS d:display ! d in world.display AND
id in d.input-group

{
LET b:boolean 1

b = EXISTS i:image ' i in d.contents
{

id.where in element(i.positions,d.display-id);
};

IF b THEN
EXISTS i:image i i in d.contents AND

id.where in element(i.positions,d.display_id)
{

LET t:transform !
t.apply(i.window) = element(i.positions,d.display_id);
i.input—information.where = t.rapply(id.where);
i.input—information.code = id.code;
i.input—information.string = id.string;
i.input—information.display—id = d.display—id;
i.chosen = TRUE;

};
ENDIF;

};
END;

Chapter 6

Specification of MacPac

The final step in the design of MacPac is the specification.

As discussed in Chapter 3, we will use a specification language

developed by Mark Green, GUSL, to define the components of MacPac. A

GUSL specification consists of a number of modules. Each module is a

state machine containing functions that may be used to access and/or

change its state. A module is similar to an abstract data type. In

our specification of MacPac we will revisit the objects of the MacPac

system. These objects, which may be viewed as abstract data types,

will each be defined by a module. The state of an object is repre

sented by its attribute values. Each module will includes functions

that allow inquiry on these attributes. The functions and operators

discussed in previous chapters that change the state of an object will

also be incorporated into the specification of the object.

The specification of the MacPac system has been divided into

two sections. The first section presents the specification of the major

objects of the MacPac system. These are the world, display, image,

figure_transform, input_device, and input_event objects. The last sec

tion deals with the specification of the graphical primitives line,

polyline, and text. Throughout Chapters 4 and 5 we have made use of a

90

91

number of other graphical entities, i.e. transform, raster_display, and

colour_map. These entities, however, are not specific to MacPac. They

are graphical constructs that may be used by any graphics system.

Because of this, the specification of these entities is not included in

this chapter. Instead, their specification may be seen in Appendix B.

6.1 MacPac Modules

The specification of the world object may be seen in Figure

6.1. In MacPac, only one instance of this module per application is per

mitted. Each application using MacPac must initialize the world in

which it will operate. This includes specification of all display

devices to be used and their corresponding input devices. The implemen

tation of the MacPac system must provide a mapping from the devices

initialized by the application to the actual physical devices

available. The implementation must also provide the routines necessary

to convert output from MacPac to a form understandable to each display

device and input to MacPac to a form understandable to MacPac.

As can be seen, it is possible to inquire on all world at

tributes. A new attribute, no_of_display, is introduced in this

specification. This attribute must be provided when the world object is

created along with the desired display_set. Two new functions, in-

stant_update_on and instant_update_off, have also been added. These

functions allow the user to choose the instant_update alternative best

suited to his application. There are no restrictions on when these

functions may be invoked. However, if instant_update is FALSE and in

92

stant_update_on is invoked, all displays must be brought up-to-date.

The display function refresh_display, discussed later in this section,

is used to handle this requirement.

The world module handles the creation of all images, figures,

and graphical primitives which are required by an application. The

creation functions for images and figures are similar to the correspon

ding operators of Chapter 5. The only significant change is the addi

tion of an attribute to the image and figure_transform objects. This

new attribute is an integer identification code which is unique for

every instance of an object. The two hidden functions, max_image and

max_figure, keep track of all identification codes previously assig

ned. Every time a new image or figure_transform is created, the value

of the appropriate function is incremented, and the new value is as

signed as the identification code of the new object. The main purpose

of this identification code is to ease communication between object in

stances. For example, if an image instance is altered and we want to

update all affected displays with the new image information, the ap

propriate update function of each display must be invoked. The image

identification code is sent as argument to this display update function

to indicate which image has been changed. Graphical primitives are

created in much the same way as images and figure_transforms. The crea

tion function is called with the desired attribute values for the

primitive. A new instance of the primitive object is then created and

the primitive is added to the world.primitive_set. Graphical primi

tives do not require the assignment of an identification code. When one

93

of these entities is no longer required it may be removed from the

world module through use of the appropriate destruction function. Note

that when a graphical primitive is destroyed, all elementary

figure_transforms whose figure attribute is this primitive are also de

stroyed .

MODULE world;

PARAMETERS
hardware : SET OF display;
max_display : integer;

FUNCTIONS

VFUN instant_update -> boolean;
INITIALLY

instant_update = TRUE;
END;

VFUN display_set -> SET OF display;
INITIALLY

display_set = hardware;
END;

VFUN image_set -> SET OF image;
INITIALLY

image_set = EMPTY;
END;

VFUN figure_set -> SET OF figure_transform;
INITIALLY

figure_set = EMPTY;
END;

VFUN primitive_set -> SET OF primitive;
INITIALLY

primitive_set = EMPTY;
END;

VFUN no_of_display -> integer;
INITIALLY

no_of_display = max_display;
END;

94

VFUN max_image -> integer;
INITIALLY
HIDDEN

max_image = 0;
END;

VFUN max_figure -> integer;
INITIALLY
HIDDEN

max_figure = 0;
END;

OFUN instant_update_on;
POST

IF instant_update = FALSE THEN
FORALL d:display ! d in display_set

{
d.refresh_display;

};
ENDIF;
instant_update = TRUE;

END;

OFUN instant_update_off;
POST

instan t_update = FALSE;
END;

OVFUN create_image(s:extent;b,st,rg:integer) -> image;
PRE

0 <= b <= rg;
0 <= st;

POST
max_image = max_image + 1;
LET create_image:image(max_image,s,b,st,rg);
create_image.init_image;
create_image.init_picture;
create_image in image_set;

END;

OFUN destroy_image(i:image);
PRE

i in image_set;
POST

FORALL d:display ! d in display_set AND i in d.contents
{

d.erase_image(i);
};

NOT i in image_set;
END;

95

OVFUN create__fig_trans(e:element;t:transform) ->
figure_.tr ansform;

POST
IF NOT e in world.primitive_set THEN

LET e:VECTOR OF figure_transform 1 length(e) = 0;
ENDIF;
max_figure = max_figure + 1;
LET create__fig_trans:figure_transform(max_figure,e, t);
create_fig_trans in figure_set;

END;

OFUN destroy_fi g_.tr ans(f: figure_transform);
PRE

f in figure_set;
POST

FORALL f2:figure_transform | f2 in figure_set AND
f in f2.figure

{
f2.remove_from_figure(f);

FORALL i:image ! i in image_set AND
f in i.contents

{
i.remove_from_image(f);

NOT f in figure_.set;
END;

OVFUN create_line(end1,end2:point;col:integer) -> line;
POST

LET create_line:line(end1,end2,col);
create_line in world.primitive_set;

END;

OFUN destroy_line(l:line);
PRE

1 in world.primitive_set;
POST

FORALL f: figure_.transform | f. figure = 1
{

destroy_fig_trans(f);

NOT 1 in world.primitive_set;
END;

figure_.tr

96

OVFUN create_polyline(endpts:VECTOR OF point;col:integer) ->
polyline;

POST
LET create_polyline:polyline(endpts,col);
create_polyline in world.primitive_set;

END;

OFUN destroy_polyline(pl:polyline);
PRE

pl in world.primitive_set;
POST

FORALL f:figure_transform ! f.figure = pl
{

destroy_fig_trans(f);

NOT pl in world.primitive_set;
END;

OVFUN create_text(where:point;space:integer;char_set:font;
char_cds:VECTOR OF integer;col:integer) -> text;

POST
LET create_text:text(where,space,char_set,char_cds,col);
create_text in world.primitive_set;

END;

OFUN destroy_text(t:text);
PRE

t in world.primitive_set;
POST

FORALL f:figure_transform | f.figure = t
{

destroy_fig_trans(f);
};

NOT t in world.primitive_set;
END;

END MODULE world;

Figure 6.1 - World Specification

The next module to be specified is the display. As mentioned

earlier, all instances of the display module that are to be available

to an application must be defined to the world module when it is

97

initialized. In defining a display, the display_id and tine area, in

display coordinates, of the display must be provided. Also, all input

devices which will be available to the display must be specified.

The functions of each display control what is seen on the

screen of that display. Included in the display functions are the four

display alteration operators discussed in Chapter 5; refresh_display,

display_image, erase_image, and move_image. As very little manipula

tion of these operators was required for their incorporation into the

display specification, we will not discuss them further. Several of the

common functions defined in Chapter 5 may also be used to access or

alter the state of a display. They have therefore been included in the

display specification. Upper_image has been included with few changes

to its original form. Shrinkcontents performs the same function as

shrinkvector, but operates specifically on the contents vector of the

display. Update_displays takes in an image_id as parameter and, if the

display contains an image with this image_id, updates the display

screen with respect to this image.

A new function, set_colour_table, is introduced in the display

specification. This function may be used to define the colour_table

attribute of a display. Another function, outdated, provides a

facility whereby a display may be flagged as being not up-to-date with

respect to the images it contains.

98

MODULE display;

PARAMETERS
d_id : integer;
d_area : extent;
input_hardware : SET OF input_device;

DECLARATIONS
screen_raster : raster(truncate(d_area.lower_left),

truncate(d_area.upper_right));

DEFINITIONS
in_range(p) is area.lower_left.x < p.x < area.upper_right.x

AND area.lower_left.y < p.y < area.upper_right.y;

FUNCTIONS

VFUN display_id -> integer;
INITIALLY

display_id = d_id;
END;

VFUN area -> extent;
INITIALLY

area = d_area;
END;

VFUN contents -> VECTOR OF image;
INITIALLY

contents = EMPTY;
END;

VFUN screen -> raster_display;
INITIALLY
screen = screen_raster;

END;

VFUN up_to_date -> boolean;
INITIALLY
up_to_date = TRUE;

END;

VFUN input_group -> SET OF input_device;
INITIALLY

input group = input_hardware;
END;

99

VFUN colour_table -> colour_map;
INITIALLY

colour_table = ?
END;

OFUN init;
POST

FORALL p:point 1 p in screen
{

screen.set_pix(p,0);

END;

OFUN set_colour_table(new_colours:colour_map);
POST

colour_table = new_colours;
END;

OFUN outdated;
POST

up_to_date = FALSE;
END;

OFUN refresh_display;
POST

init;
FORALL i:image ' i in contents

{
LET t:transform |

t.apply(i.window) = i.viewport(d_id);
FORALL p:point i in_range(p) AND

p in i.viewport(d_id)
{

IF upper_image(i,p) THEN
LET c:integer !

c = i.picture.pixel(t.rapply(p)) +
i.colour_start;

IF c > colour_table.max THEN
o — 0 •

ENDIF;
screen.set_pix(p,c);

ENDIF;
}

};
up_to_date = TRUE;

END;

100

OFUN update_display(i_id:integer);
POST

LET b:boolean !
b = EXISTS i:image i i in contents

{
i.image_id = i_id;

}:
IF b THEN

EXISTS i:image I i in contents AND
i. image_id = i_id

{
LET t:transform !

t.apply(i.window) = i.viewport(d_id);
FORALL p:point i in_range(p) AND

p in i.viewport(d_id)
{

IF upper_image(i,p) THEN
LET c:integer !

c = i.picture.pixel(t.rapply(p)) +
i.colour_start;

IF c > colour_table.max THEN
c = 0;

ENDIF;
screen.set_pix(p,c);

ENDIF;
};

1;
ENDIF;

END;

VFUN upper_image(i:image;p:point) -> boolean;
PRE

i in contents;
p in i.viewport(d_id);

DERIVED
LET inti:integer ' i = element(contents,inti);
upper_image =

FORALL i2:image ' i2 in contents AND
p in i2.viewport(d_id) AND
i2 != i

{
LET int2:integer ! i2 = element(contents,int2);
int2 < inti;

};
END;

101

OFUN shrinkcontents(i:image);
PRE

i in contents;
POST

LET indexiinteger ! i = element(contents,index);
FORALL index2:integer ! index <= index2 < length(contents)

{
element(contents,index2) = element('contents,index2+1);

};
length(contents) = length('contents) -1;

END;

OFUN display_image(i:image;e:extent);
PRE

IF i in contents THEN
e = i.viewport(d_id);

ENDIF;
EXISTS p:point I p in e

{
in_range(p);

i;
POST

IF NOT (element(contents,length(contents)) = i) THEN
IF i in contents THEN

shrinkcontents(i);
ENDIF;
element(contents,length(contents)+1) = i;

ENDIF;
i.set_viewport(d_id,e);
IF world.instant_update THEN

LET t:transform | t.apply(i.window) = e;
FORALL p:point i in_range(p) AND p in e

{
LET c:integer !

c = i.picture.pixel(t.rapply(p)) +
i.colour_start;

IF c > colour_table.max THEN
c = 0;

ENDIF;
screen.set_pix(p,c);

ELSE
outdated;

ENDIF;
END;

102

OFUN erase_image(i:image);
PRE

i in contents;
POST

shrinkcontents(i);
i.set_viewport(d_id,NULL);
IF world.instant_update THEN

refresh_display;
ELSE

outdated;
ENDIF;

END;

OFUN move_image(i:image;e:extent);
PRE

i in contents;
EXISTS p:point | p in e

{
in_range(p);

POST
i.set_viewport(d_id,e);
IF world.instant_update THEN

refresh_display;
ELSE

outdated;
ENDIF;

END;

END MODULE display;

Figure 6.2 - Display Specification

The specification for the image object may be seen in Figure

6.3. As mentioned earlier in this section an identifier attribute,

image_id, has been added to this module. Functions have been provided

to allow inquiry on all image attributes: image_id, contents,

positions, window, picture, altered, background, colour_start,

colour_range, fill_info_points, fill_info_colours, chosen, and input_in

formation.

103

The input parameters required for creation of an image are an

extent and four integers. These parameters represent the desired

values for the image attributes window, image_id, background,

colour_start, and colour_range. When a new instance of the image

module is created, via the world.create_image function, the image is

initialized by the functions init_image and init_picture. Init_image

initializes the positions, contents, fill_info_points, and fill_in-

fo_colours vectors. The positions vector, which has an entry for each

display in the world.display_set, is initially filled with NULL

values. The other three vectors are created but, at this point, do not

contain any entries. Init_picture initializes the picture attribute of

the image, setting each pixel to the background color.

The five image alteration functions discussed in Chapter 5,

add_to_image, remove_from_image, pan_image, add_fill_info, and

remove_fill_info, are also included in the specification. These func

tions mirror the operators of the previous chapter so require little

comment here. When one of these functions is invoked, it may be neces

sary to update all displays containing this image to reflect the

changes to the image. To accomplish this, the update_display function

of each affected display is invoked with the image_id of the image as

parameter. As was seen in the display specification, the up-

date_display function will update the display with respect to this

image. This is an good example of the usefulness of image_id in

providing a means of communicating between modules.

104

The functions update_image_picture, update_fill, invoke_fill,

upper_figure, shrinkvector, and update_images, specified separately in

Chapter 5, have been incorporated into the image module to the extent

that they operate on image objects. Update_images is the only function

that required substantial changes in this incorporation process. The

update_images function defined in Chapter 5 takes in a figure_transform

and updates all images which contain this figure_transform. The func

tion also updates all images containing a parent (or grandparent, etc)

of this input figure_transform via a recursive call to update_images

with the parent figure_transform as input. Update_images has been

split into two parts in its incorporation into the specification of Mac-

Pac. The update_image function of the image module takes a figure_tran-

sform identifier as input. If the image contains a figure_transform

with this identifier, the image picture and all affected display

screens are updated as required. As we will see in the figure_trans-

form specification, this module also contains an update_images func

tion. After a figure_transform has been altered, this function calls

the update_image function of each existing image to handle the update

of all affected image pictures and display screens. The update_images

function of the figure_transform then relays the changes to all parent

figure_transforms via a call to the update_images function of each

parent.

Additionally, five new functions have been provided for

manipulation of images. Two of these functions, set_viewport and view

port, operate on the positions attribute of the image. Set_viewport

105

may be used to specify a new viewport for a particular display. View

port may be used to inquire on the viewport which currently exists for

a display. The function reset_background_colour allows the user to

change the background colour of an image. The new colour specified as

input to this function must be within the existing colour range. Both

the colour_start and colour_range attributes of an image may be changed

using the function reset_colour_submap. If, after the colour_range is

changed, the background colour is greater than the colour_range, the

background is set to colour 0. An interesting use of this function is

to selectively control the visibility of figure_transforms which exist

in the image window. We saw in Chapter 5 that if the colour of a

figure_.transform is greater than the colour_range, the figure_transform

is displayed in colour 0. If 0 is the background colour of the image,

this figure_transform will not be seen even though it has been added to

the image picture. By changing the colour_range the figure can be made

to appear. When either of these colour control functions is invoked,

the image picture attribute and, if world.instant_update is true, the

display screens containing this image are updated to reflect the new

colour information. The fifth function, receive_input, simply sets the

input_information attribute of the image to the value of the input_e-

vent provided as input parameter to this function. Also, the attribute

’chosen’ is set to true.

106

MODULE image;

PARAMETERS
i_id : integer;
i_wndw : extent;
i_bkgd : integer;
i_cstart : integer;
i_crange : integer;

DECLARATIONS
picture_raster : raster_display(truncate(i_wndw.lower_left),

truncate(i_wndw.upper_r ight));

FUNCTIONS

VFUN image_id -> integer;
INITIALLY

image_id = i_id;
END;

VFUN contents -> VECTOR OF figure_transform;
INITIALLY

contents = ?;
END;

VFUN positions -> VECTOR OF extent;
INITIALLY

positions = ?;
END;

VFUN window -> extent;
INITIALLY

window = i_wndw;
END;

VFUN picture -> raster_display;
INITIALLY

picture = picture_raster;
END;

VFUN altered -> boolean;
INITIALLY

altered = FALSE;
END;

VFUN background -> integer;
INITIALLY

background = i_bkgd;
END;

107

VFUN colour_start -> integer;
INITIALLY

colour_start = i_cstart;
END;

VFUN colour_range -> integer;
INITIALLY

colour_range = i_crange;
END;

VFUN fill_infojpoints -> VECTOR OF point;
INITIALLY

fill_info_points = ?
END;

VFUN fill_info_colours -> VECTOR OF integer;
INITIALLY

fill_info_colours = ?
END;

VFUN chosen -> boolean;
INITIALLY

chosen = FALSE;
END;

VFUN input-information -> input_event;
INITIALLY

input_information = NULL;
END;

VFUN viewport(d_id:integer) -> extent;
DERIVED

viewport = element(positions, d_id);
END;

VFUN upper_figure(f:figure_transform;p:point) -> boolean;
PRE

f in contents
f.trans.rapply(p) in f

DERIVED
LET int1:integer I f = element(contents,inti);
upper_figure =

FORALL f2:figure_transform i f2 in contents AND
f2.trans.rapply(p) in f2 AND
f2 != f

{
LET int2:integer ! f2 = element(contents,int2);
int2 < inti;

};
END;

108

OFUN set_viewport(d_id: integer;e:extent);
POST

elementipositions, d_id) = e;
END;

OFUN shrinkcontents(f:figure_transform);
PRE

f in contents;
POST

LET int:integer ! f = elementicontents,index);
FORALL int2:integer i int <= int2 < length(contents)

{
element(contents,int2) = element('contents,int2 + 1);

I;
length(contents) = length('contents) - 1;

END;

OFUN reset_background_colour(newb: integer);
PRE

0 <= newb <= colour_range;
POST

FORALL p:point ! p in picture
{

IF picture.pixel(p) = background THEN
picture.se t_pix(p,newb);

ENDIF;

IF world.instant_update THEN
FORALL d:display I d in world.display_set AND

viewport(d.display_id) != NULL
{

d.update_display(image_id);

ELSE
FORALL d:display Ì d in world.dispiay_set AND

viewport(d.display_id) != NULL
I

d.outdated;

ENDIF;
background = newb;

END;

picture.se

109

OFUN rese t_colour_submap(newstart,newrange:integer);
PRE

newstart >= 0;
newrange >= 0;

POST
colour_start = newstart;
colour_range = newrange;
IF background > newrange THEN

background = 0;
ENDIF;
update_image_picture;
IF world.instant_update THEN

FORALL d:display ! d in world.display_set AND
viewport(d.display_id) != NULL

{
d.update_display(image_id);

};
ELSE

FORALL d:display Ì d in world.display_set AND
viewport(d.display_id) != NULL

{
d.outdated;

};
ENDIF;

END;

OFUN init_image;
POST

LET p_init:VECTOR OF extent i
length(p_init) = world.no_of_display;

FORALL int:integer Ì 0 < int <= length(p_init)
{

elementi p_init,int) = NULL;
};

positions = p_init;
LET c_init:VECTOR OF figure_transform ! length(c_init) = 0;
contents = c_init;
LET point_init:VECTOR OF point i length(point_init) = 0;
fill-inf o_points = point_init;
LET colour_init:VECTOR OF integer i length(colour_init) = 0;
fill_info_colours = colour_init;

END;

OFUN initjpicture;
POST

FORALL p:point i p in picture
{

picture.se t_pix(p,background);

END;

picture.se

110

OVFUN add_fill_info(p:point,c:integer) -> integer;
PRE

c >= 0;
POST

LET next:integer i next = length(fill_info_points) + 1;
element(fill_info_points,next) = p;
element(fill_info_colours,next) = c;
add_fill_info = next;
IF p in picture THEN

LET intp:point I intp = truncate(p);
LET new_colour:integer ! new_colour = c;
IF new_colour > colour_range THEN

new_colour = 0;
ENDIF;
LET old_colour:integer i old_colour = picture.pixel(p);
invoke_f ill(intp,old_colour,new_colour);
IF world.instant_update THEN

FORALL didisplay ! d in world.display_set AND
viewport(d.display_id) != NULL

{
d.update_display(image_id);

};
ELSE

FORALL d:display ' d in world.display_set AND
viewport(d.display_id) != NULL

{
d.outdated;

ENDIF;
ENDIF;

END;

OFUN remove_fill_info(index:integer);
PRE

index <= lengthCfill_info_points);
POST

FORALL int:integer ! index <= int < lengthCfill_info_points)
{

element(fill_info_jpoints,int) =
elementC'fill_info_points,int+1);

elementCfill_info_colours,int) =
elementC'fill_info_colours,int+1);

};
lengthCfill_info_points) = lengthC’fill_info_points) - 1;
lengthCfill_info_colours) = lengthC’fill_info_colours) - 1;
update_image_picture;

111

IF world.instant_update THEN
FORALL d:display J d in world.display_set AND

{
viewport(d.display_id) != NULL

d.update_display(image_id);

ELSE
FORALL d:display I d in world.display_set AND

{
d.outdated;

viewports.display_id) != NULL

ENDIF;
END;

OFUN update_image_picture;

PRE
altered = TRUE;

POST
init_picture;
FORALL f: figure_.transform | f in contents

{
FORALL p:point ! p in f AND

f.trans.rapply(p) in picture
{

IF upper_figure(f,f.trans.apply(p)) THEN

IF f.colour(p) > colour_range THEN
picture.set_pix(f.trans.apply(p),0);

ELSE
picture.set_pix(f.trans.apply(p),

f.colour(p));
ENDIF;

ENDIF;
};

update_f ill;
altered = FALSE;

END;

112

OFUN update_fill;
POST

FORALL int:integer ' 0 < int <= length(fill_info_points)
{

LET pipoint | p = truncate(element(fill_info_points,int));
IF p in picture THEN

LET new_colour:integer I
new_colour = element(fill_info_colours,int);

IF new_colour > colour_range THEN
new_colour = 0;

ENDIF;
LET old_colour:integer I old_colour = picture.pixel(p);
invoke_fill(p,old_colour,new_colour);

ENDIF;

END;

OFUN invoke_fill(p:point;old,new:integer);
POST

IF p in picture THEN
IF picture.pixel(p) = old THEN

picture.set_pix(p,new);
LET p1:point(p.x,p.y+1);
invoke_fill(p1,old,new);
LET p2:point(p.x,p.y-1);
invoke_fill(p2,old,new);
LET p3:point(p.x+1,p.y);
invoke_fill(p3,old,new);
LET p4:point(p.x+1,p.y+1);
invoke_fil1(p4,old,new);
LET p5:point(p.x+1,p.y-1);
invoke_fill(p5,old,new);
LET p6:point(p.x-1,p.y);
invoke_fill(p6,old,new);
LET p7:point(p.x-1,p.y+1);
invoke_f ill(p7,old,new);
LET p8:point(p.x-1,p.y-1);
invoke_fill(p8,old,new);

ENDIF;
ENDIF;

END;

113

OFUN add_to_image(f:figure_transform);
PRE

f in world.figure_set;
NOT f in contents;

POST
element(contents,length(contents)+1) = f;
altered = TRUE;
update_image_picture;
IF world.instant_update THEN

FORALL d:display J d in world.display_set AND
viewport(d.display_id) != NULL

{
d.update_display(image_id) ;

1;
ELSE

FORALL d:display Ì d in world.display_set AND
viewport(d.display_id) != NULL

{
d.outdated;

ENDIF;
END;

OFUN remove_from_image(f:figure_transform);
PRE

f in contents;
POST

shrinkcontents(f);
altered = TRUE;
update_image_picture;
IF world.instant_update THEN

FORALL d:display ! d in world.display_set AND
viewport(d.display_id) != NULL

{
d.update_display(image_id);

ELSE
FORALL d’.display 1 d in world.display_set AND

viewport(d.display_id) != NULL
{

d.outdated;
};

ENDIF;
END;

114

OFUN pan_image(w:extent);
POST

window = w;
LET r:raster_display(truncate(window.lower_left),

truncate(window.upper_right));
picture = r;
altered = TRUE;
update_image_picture;
IF world.instant_update THEN

FORALL d:display J d in world.display_set AND
viewport(d.display_id) != NULL

{
d.update_display(image_id);

ELSE
FORALL d:display i d in world.display_set AND

viewport(d.display_id) != NULL
{

d.outdated;

ENDIF;
END;

OFUN update_image(f_id:i nteger);
POST

LET b:boolean i
b = EXISTS f:figure_transform Ì f in contents

{
f.figure_id = f_id;

IF b THEN
update_image_picture;
IF world.instant_update THEN

FORALL d:display Ì d in world.display_set AND
viewport(d.display_id) != NULL

{
d.update_display(image_id);

ELSE
FORALL d:display Ì d in world.display_set AND

viewport(d.display_id) != NULL
{

d.outdated;
};

ENDIF;
ENDIF;

END;

115

OFUN receive_input(info:input_event);
PRE

info.where in window;
POST

input_information = info;
chosen = TRUE;

END;

END MODULE image;

Figure 6.3 - Image Specification

We now turn to the specification of the figure_transform. As

can been seen, all three figure_transform attributes, figure_id,

figure, and trans, must be provided when defining a figure_transform

instance. Thereafter, it is possible to inquire on these attributes

via functions of the same name.

Two functions that were used extensively in Chapter 5 are pre

sented in detail here. These functions, ’in’ and ’colour’, both

operate in a recursive fashion. If the figure_transform is an elemen

tary figure_transform, i.e. the figure attribute is a graphical

primitive, then the value of each of these functions is simply the

value of that function applied to the figure of the figure_transform.

If the figure_transform is non-elementary, its figure attribute con

tains one or more child figure_transforms. In this situation, the

value of ’in’ or ’colour’ function depends on the results of applying

that function to each of these children. Before applying one of these

functions to a child figure_transform, however, the point provided as

input to the function must be transformed into the space of that child.

116

This is accomplished by applying the inverse of the transform which

positions the child within the parent to the input point. The function

•in' is true if a child figure_transform exists that contains the input

point once it has been transformed into the coordinate space of that

child. Similarly, the function ’colour' returns the colour of the

child figure_transform that is upper-most of all those children which

contain the input point when it is transformed to the child's space.

The functions upper_figure, shrinkvector, and update_images

have been incorporated into this specification. Both upper_figure and

shrinkvector, called shrinkfigure in this module, have been included

with few changes to their original form. The update_images function

found in the figure_transform specification, however, is substantially

different from the update_images function of Chapter 5. These dif

ferences were pointed out and discussed in the examination of the image

object so need not be repeated here.

As for the display and image objects, all operators which

manipulate figure_transforms have been included in this specification.

These operators, discussed in detail in Chapter 5, required few changes

in their incorporation into the figure_transform module.

MODULE figure_transform;

PARAMETERS
f_id : integer;
entry : element;
init_t : transform;

117

DEFINITIONS
boolean elementary IS figure in world.primitive—set;

FUNCTIONS

VFUN figure_id -> integer;
INITIALLY

figure_id = f_id;
END;

VFUN trans -> transform;
INITIALLY

trans = init_t;
END;

VFUN figure -> element;
INITIALLY

figure = entry;
END;

VFUN in(p:point) -> boolean;
DERIVED

IF elementary THEN
in = figure.in(p);

ELSE
in = EXISTS f:figure_transform I f in figure

{
f.trans.rapply(p) in f;

};
ENDIF;

END;

VFUN colour(p:point) -> integer;
PRE

in(p);
DERIVED

IF elementary THEN
colour = figure.colour(p);

ELSE
EXISTS f:figure_transform i f in figure AND

f.trans.rapply(p) in f AND
upper_figure(f,p)

{
colour = f.colour(f.trans.rapply(p));

};
ENDIF;

END;

118

VFUN upper_figure(f:figure_transform;p:point) -> boolean;
PRE

NOT elementary;
f in figure;
in(p);
f.trans.rapply(p) in f;

DERIVED
LET int1:integer ! f = element(figure,int1);
upper_figure =

FORALL f2:figure_transform i f2 in figure AND
f2.trans.rapply(p) in f2 AND
f2 != f

{
LET int2:integer ! f2 = elementi figure,int2);
int2 < inti ;

};
END;

OFUN shrinkfigureif:figure_transform);
PRE

f in figure;
POST

LET int1:integer I f = elementifigure,inti);
FORALL int2:integer Ì inti <= int2 < lengthifigure)

{
elementifigure,int2) = elementi'figure,int2+1);

};
lengthifigure) = lengthi’figure) - 1;

END;

OFUN update_images;
POST

FORALL i:image ' i in world.image_set
{
i.update_image(f_id);

};
FORALL f2:figure_transform i f2 in world.figure_set

{
LET b:boolean '

b = EXISTS f:figure_transform ! f in f2.figure
{

f.figure_id = f_id;
1;

IF b THEN
f2.update_images;

ENDIF;

END;

119

OFUN add_to_figure(new:figure_transform) ;
PRE

new in world.figure_set;
IF NOT elementary THEN

NOT new in figure;
ENDIF;

POST
IF elementary THEN

f1 = world.create_fig_trans(figure,trans);
LET v:VECTOR OF figure_.transform ! length(v) = 1 AND

element(v,1) = f1 ;
figure = v;
LET t:transforme 1,0,0,1,0,0);
trans = t;

ENDIF;
elementefigure,length(figure)+1) = new;
update_images;

END;

OFUN remove_from_figure(old:figure_transform);
PRE

NOT elementary;
old in figure;

POST
shrinkfigure(old);
update_images;

END;

VFUN copy -> figure_transform;
DERIVED

IF elementary THEN
LET y:primitive ' y = figure;
y in world.primitive_set;
copy = world.create_fig_trans(y,trans);

ELSE
LET y:VECTOR OF figure_transform i length(y) = 0;
copy = world.create_fig_trans(y,trans);
FORALL f:figure_transform i f in figure

{
copy.add_to_figure(f.copy);

};
ENDIF;

END;

120

OFUN transform_figure(t:transform);
POST

trans = t;
update_images;

END;

END MODULE figure_transform;

Figure 6.4 - Figure_transform Specification

The final two major MacPac entities requiring specification are

the input_device and input_event. The input_device module may be seen

in Figure 6.5. Each input_device is associated with a single display.

A new attribute, owner_display, that contains the display_id of this

associated display, has been added to the definition of this object.

The value of this attribute must be provided when an input_device is

defined. As discussed earlier, all input_devices that are to be

available to a display must be provided when that display instance is

created. Also, all displays required by an application must be

specified when the world module for that application is created. The

effect of this is that all input_device instances that an application

will use must be defined when the world module is initialized.

Thereafter, no addition or removal of input_devices is permitted.

Although an application may not control the number of in-

put_devices available after the world module is created, input_devices

may be selectively enabled and disenabled. The functions

enable_for_input and disable_input provide this facility. When an in-

put_device is enabled, it may be activated via the activate_in-

121

put_device function. For this function to complete successfully,

however, the display to which the input_device belongs must be up-to-

date. Once activated, the input_device accepts the input information

provided by the user. Each implementation of the MacPac system must

provide mechanisms capable of handling this transfer of information

from the physical input device to the input_device object that repre

sents this physical device. Defaults for missing input information

must also be provided by the implementation. After receiving the input

information, activate_input_device invokes the function select_image.

This function looks for the image which is upper-most on the screen of

the associated display at the point received as input. If it finds

such an image, the input point is transformed into the image’s

coordinate space and the input information is relayed, via the

receive_input function, to the image. If no image appears on the

display screen at this input point, no action is taken. The activation

of the input_device is ignored. When the image selection process is com-

píete,

false.

the activated attribute back to

This readys the input_device for another activation

MODULE input_device;

PARAMETERS
d_id : integer;

FUNCTIONS

VFUN owner_display -> integer;
INITIALLY

owner_display = d_id;
END;

122

VFUN where -> point;
INITIALLY

where = ?;
END;

VFUN code -> integer;
INITIALLY

code = ?;
END;

VFUN string -> text;
INITIALLY

string = ?;
END;

VFUN enabled -> boolean;
INITIALLY

enabled = FALSE;
END;

VFUN activated -> boolean;
INITIALLY

activated = FALSE;
END;

OFUN enable_for_input;
POST

enabled = TRUE;
END;

OFUN disable_input;
POST

enabled = FALSE;
END;

OFUN activate_input_device;
PRE

enabled;
activated = FALSE;
EXISTS d:display ! d.display_id = owner_display

{
d.up_to_date;

1;
POST

activated = TRUE;
read(where,code,string);
select_image;
activated = FALSE;

END;

123

OFUN select_image;
PRE

activated;
POST

EXISTS d:display I d.display_id = owner_display
{

LET b:boolean I
b = EXISTS i:image I i in d.contents

{
where in i.viewport(d.display_id);

IF b THEN
EXISTS i:image ' i in d.contents AND

where in i.viewport(d.display_id) AND
d.upper_image(i,where)

{
LET t:transform i

t.apply(i.window) = i.viewports.display_id);
LET p:point ! p = t.rapply(where);
LET input_info:

i npu t_ev en t (p, code, st r ing,owner_display);
i.receive_input(input_info);

ENDIF;
};

END;

END MODULE input_device;

Figure 6.5 - Input_device Specification

The specification of the input_event object is very straightfor

ward. All attributes of this object must be supplied when an input_e-

vent instance is defined. Functions are provided to allow inquiry on

these attributes after creation. No functions are provided, however,

to change the state of an input_event after it is defined. New input_e-

vents may be created but an existing input_event instance may not be

changed.

124

MODULE input_event;

PARAMETERS
p : point;
cd : integer;
t : text;
d_id : integer;

FUNCTIONS

VFUN input_display_id -> integer;
INITIALLY

input_display_id = d_id;
END;

VFUN where -> point;
INITIALLY

where = p;
END;

VFUN code -> integer;
INITIALLY

code = cd;
END;

VFUN string -> text;
INITIALLY

string = s;
END;

END MODULE input_event;

Figure 6.6 - Input_event Specification

6.2 Graphical Primitives

MacPac supports three basic graphical primitives; line,

polyline, and text. The specification of these primitives is presented

in this section. In Chapter 3, we discussed the inclusion of a fourth

type of graphical primitive, the user-defined primitive. At the end of

this section we will look at what is required to include a user-defined

primitive in a MacPac application.

125

There are many similarities in the modules specifying the line

and polyline primitives. The parameters required when defining a line

are the end points and the colour of the line. To define a polyline, a

vector of points and a colour must be provided. Neighboring elements of

this vector specify the end points of the set of connecting line seg

ments which make up the polyline primitive. The first and last point of

the vector also specify a line segment of the polyline.

The major functions of both modules are ‘in’ and ’colour'.

'In' takes in a point and returns true if this point is contained in

the graphical primitive. For the line module, this amounts to the

simple procedure of checking to see if the input point falls on the

line. There is nothing new about the mathematics applied in this deter

mination. The polyline module must go a step further and check if the

input point falls on any its component line segments. Another function

has been added to the polyline module to aid in this operation. This

function, in_line_segment, takes in the start and end points of a line

segment as well as a point "p". If "p" falls on the line segment

specified by the given start and end points, in_line_segment returns

true. The function ’in' makes use of this function in its determina

tion of whether or not a given point is contained in the polyline

primitive. In_line_segment may also be accessed directly if desired.

The start and end points provided as input to the function, however,

must be two adjacent points in the vertices attribute of the polyline.

The 'colour' functions of both module specifications take a point as

input. This point must be contained in the primitive under examination

126

for successful operation of the function. The value returned by the

’colour’ function is that colour specified when the primitive was

defined.

MODULE line;

PARAMETERS
endpoint1,endpoint2 : point;
col : integer;

DEFINITIONS
boolean vertical IS start.x = end.x;
real x_range IS ¡(end.x - start.x)!;
real y_range IS ¡(end.y - start.y)!;
boolean in_range_x(p) IS l(p.x - end.x)i <= x_range AND

¡(p.x - start.x)i <= x_range;
boolean in_range_y(p) IS !(p.y - end.y)I <= y_range AND

l(p.y - start.y)I <= y_range;

FUNCTIONS

VFUN start -> point;
INITIALLY

start = endpoint1;
END;

VFUN end -> point;
INITIALLY

end = endpoint2;
END;

VFUN slope -> real;
INITIALLY

slope = IF NOT vertical THEN
(end.y - start.y) / (end.x - start.x);

ENDIF;
END;

VFUN in(p:point) -> boolean;
INITIALLY

in = IF vertical THEN
(p.x = end.x) AND in_range_y(p);

ELSE
((p.y-end.y) = slope*(p.x-end.x)) AND
in_range_x(p) AND in_range_y(p);

ENDIF;
END;

127

VFUN colour(p:point) -> integer;
PRE

in(p);
INITIALLY

colour = col;
END;

END MODULE line;

Figure 6.7 - Line Specification

MODULE polyline;

PARAMETERS
corners : VECTOR OF point;
col : integer;

DEFINITIONS

FUNCTIONS

VFUN vertices -> VECTOR OF point;
INITIALLY

vertices = corners;
END;

VFUN in(p:point) -> boolean;
INITIALLY

in = EXISTS p1_idx,p2_idx:integer i
p1_idx <= length(vertices) AND
p2_idx <= length(vertices) AND
(((p2_idx - p1_idx) =1) OR

((p1_idx - 1) AND
(p2_idx = length(vertices))))

{
in_line_segment(element(vertices,p1_idx),

element(vertices,p2_idx),p) ;
J;

END;

128

VFUN in_line_segment(start,end,p:point) -> boolean;
PRE

start in vertices;
end in vertices;
EXISTS idx1,idx2:integer ! element(vertices,idx1) = start AND

element(vertices,idx2) = end;
{

(! idx1 - idx2 | = 1) OR
((idx1 = 1) AND (idx2 = length(vertices))) OR
((idx2 = 1) AND (idx1 = length(vertices)));

};
DERIVED

LET vertical:boolean ! vertical = (start.x = end.x);
LET x_range:real ' x_range = ¡(end.x - start.x)!;
LET y_range:real i y_range = ¡(end.y - start.y)!;
LET in_range_x:boolean i

in_range_x = (¡(p.x - end.x)! <= x_range AND
!(p.x - start.x)! <= x_range);

LET in_range_y:boolean J
in_range_y = (!(p.y - end.y)! <= y_range AND

i(p.y - start.y)! <= y_range);
IF NOT vertical THEN

LET slope:real !
slope = (end.y - start.y) / (end.x - start.x);

ENDIF;
in_line_segment = IF vertical THEN

(p.x = end.x) AND
in_range_y;

ELSE
((p.y-end.y) = slope*(p.x-end.x)) AND
in_range_x AND
in_range_y;

ENDIF;
END;

VFUN colour(p:point) -> integer;
PRE

in(p);
INITIALLY

colour = col;
END;

END MODULE polyline;

Figure 6.8 Polyline Specification

129

Before going on to present the specification of the text

graphical primitive, two new modules need to be defined. These

modules, seen in Figure 6.9, represent the entities character and

font. The structure of our text specification is built upon these two

modules. This breakdown of the text entity is based on previous work

done by Mark Green [Green 1982b].

The approach to character representation that we have chosen is

to view each character as a small raster. The lower left corner of

this raster is always (0,0). The upper right corner of the raster is

specified by the input parameters, max_x and max_y.

user to specify the size of the character. A character

These allow the

does not hold

any colour information. The character raster contains only the values

0 and 1. Any point with value 1 is considered to be ’in’ the charac

ter. The user may specify the points that are to make up the character

via the char_spot function.

Characters are organized into fonts. The size of the charac

ters to be held in the font, represented by max_x and max_y, and the

number of characters in the font must be provided when defining a font

instance. Once defined, the font may be initialized by the function

init_font. This function initializes the character_set vector in which

the characters are stored. At first, each element of this vector is a

raster display of the appropriate size whose pixels are all 0. The func

tion set_char may be used to replace one of these initial characters

with a new one. The new character and an index representing where in

130

the character_set vector it is to be placed must be provided to this

function. Only characters whose width and height are the same as the

max_x and max_y parameters of the font may be added to the font's

character_set. The function get_char takes in an index and returns the

character which appears in the character_set at that index.

MODULE character;

PARAMETERS
max_x,max_y : integer;

DECLARATIONS
lower_left : point(0,0);
upper_right : point(max_x,max_y);
char_raster : raster_display(lower_left,upper_right);

DEFINITIONS
boolean in_range(p) IS 0 <= p.x <= max_x AND

0 <= p.y <= max_y;

FUNCTIONS

VFUN height -> integer;
INITIALLY

height = max_y;
END;

VFUN width -> integer;
INITIALLY

width = max_x;
END;

VFUN in(p:point) -> boolean;
INITIALLY

in = in_range(p) AND (char_pixel(p) =1);
END;

VFUN char_pixel(p:point) -> integer;
PRE

in_range(p);
INITIALLY

char_pixel = char_raster.pixel(p);
END;

131

OFUN char_spot(p:point);
PRE

in_range(p);
POST

char_raster.set_pix(p,1);
END;

END MODULE character;

MODULE font;

PARAMETERS
max_x,max_y : integer;
char_no : integer;

FUNCTIONS

VFUN character_set -> VECTOR OF character;
INITIALLY

character_set = ?;
END;

VFUN char_width -> integer;
INITIALLY

charjwidth = max_x;
END;

VFUN char_height -> integer;
INITIALLY

char_height = max_y;
END;

VFUN get_char(idx:integer) -> character;
PRE

idx <= char_no;
DERIVED

get_char = element(character_set,idx);
END;

VFUN set_char(c:character;idx:integer);
PRE

idx <= char_.no;
c. height = max__y;
c.width = max_x;

DERIVED
element(character_set,idx) = c;

END;

char_.no

132

OFUN init_font;
POST

LET v:VECTOR OF character ! length(v) = char_no;
FORALL idx:integer J 0 < idx <= char_no

{
LET c:character(max_x,max_y);
element(v,idx) = c;

I;
END;

END MODULE font;

Figure 6.9 - Character and Font Specifications

Having defined character and font, it is now possible to define

the text graphical primitive. Several input parameters are required

when defining a text instance. The point in user coordinates where the

text is to be located must be specified. This point represents the

lower_left corner of the first character in the text character string.

The horizontal spacing of the characters must also be provided. The

two input parameters which specify the actual contents of the text

primitive are a vector of integer character codes and a font. Each ele

ment of the vector may be used as an index to the character_set of the

font. The character returned is the character that will appear in the

text character string. The positioning of the integer character codes

in the input vector dictates the positioning of the retrieved charac

ters. The final input parameter is the colour of the text primitive.

As for all our graphical primitives, the major functions of the

text module are ’in* and ’colour'. 'In' takes in a point and returns

true if that point is in the text primitive. To make this deter

133

mination, the function must examine each character represented in the

string attribute and check if the given point is in that character. As

characters are defined in their own coordinate space, we must

manipulate the input point before this check can be made. First, the

lower left corner of the character must be determined by calculating

its distance from the first character in the string. As the lower left

of a character's coordinate space is always (0,0), the input point can

be moved into the character's space simply by subtracting the lower

left corner of the character, as it is positioned in the text character

string, from the input point. We then check to see if this corrected

point is contained in the character. If so, then the original point is

contained in the text primitive. For all points in the text, the func

tion 'colour' returns the colour specified in the input parameters.

MODULE text;

PARAMETERS
low_left : point;
h_space : integer;
char_set : font;
char_codes : VECTOR OF integer;
col_init : integer;

FUNCTIONS

VFUN lower_left -> point;
INITIALLY

lower_left = truncate(low_left);
END;

VFUN chosen_font -> font;
INITIALLY

chosen_font = char_set;
END;

134

VFUN string -> VECTOR OF integer;
INITIALLY

string = char_codes;
END;

VFUN in(p:point) -> boolean;
DERIVED

in = EXISTS idx:integer i 0 < idx <= length(string)
{

LET char_source_.pt: point !
char_source_pt.y = lcwer_left.y AND
char_source_pt.x = (lower_left.x +

((idx—1) * h_space) +
((idx—1) * chosen_font.char_width));

LET corrected_pt:point !
corrected_pt = (p - char_source_pt);

LET char_code:integer i
char_code = elementCstring,idx);

corrected_pt in chosen_font.get_char(char_code);

END;

VFUN colour(p:point) -> integer;
PRE

in(p);
INITIALLY

colour = col_init;
END;

END MODULE text;

Figure 6.10 - Text Specification

Any implementation of the MacPac system should provide a number

of predefined fonts. A standardized approach to the ordering of charac

ters within each font character_set should also be taken. In other

words, the a's should fall at the same vector index within different

font character_sets, and similarly for the b’s, c’s, etc. This type of

standardization facilitates provision of a character decoding scheme.

For instance, a table can be set up that assigns the number 1 to the

char_source_.pt

135

character a, the number 2 to b, and so on. Then, when creating text, if

one enters a string of character codes ’abc’, this will be decoded as

the vector (1,2,3). This is very valuable as it is much easier for a

user to specify text by providing a string of characters as opposed to

a vector of integer character codes. Although most applications do not

make use of special or unusual character_sets, through the functions of

the character and font modules, MacPac provides the user with the

facility to create character_sets of his own design.

It should be noted that none of the modules that define the

graphical primitives of MacPac contain functions capable of modifying

the state of the module. Once a graphical primitive is created it may

not be altered. For instance, neither the end points of a line nor the

characters contained in a text primitive may be changed. If a line or

text is required with new attributes, a new module instance must be

created. As was seen in the previous section, when a graphical primi

tive is no longer required it may be destroyed via the appropriate

world destroy function.

We now turn to the fourth type of graphical primitive, the user-

defined primitive. There are very few restrictions on the inclusion of

user-defined primitives in a MacPac application. When defining a new

primitive type, the user must provide a specification for this primi

tive similar to what we have provided for line, polyline, and text.

The input parameters required for declaration of a primitive instance

must be specified. Also, the functions ’in’ and ’colour’ must be

136

provided. It is the function ’in’ which places the greatest restric

tion on user-defined primitives. Obviously, a function capable of de

termining whether or not a point falls within the graphical primitive

must exist. In effect, a scan conversion function for the primitive

must be provided. An alternative to this is to require that a complete

bit map of the primitive be provided when a primitive instance is

defined. The function ’colour’ is relatively straightforward to sup

ply. Either the user may require that the colour of the primitive be

provided as a separate input parameter, or that the bit map for the

primitive contain colour information. The user must also extend the

world module to provide creation and destruction operators for the user-

defined primitive instances. The world.primitive_set must be kept up-

to-date by these operators.

This concludes the specification of the MacPac system. Ob

viously, from any design, several implementation pathways are pos

sible. The one chosen will invariably depend on the programmer and the

types of applications expected to make use of the graphics system. The

next chapter will touch on some important considerations in the im

plementation of MacPac in the process of evaluating the design of this

system.

Chapter 7

Conclusions

The primary goal of this work was to design a graphics package

based on an existing design philosophy and using a specific design

language; both created by Mark Green. Within this framework, the

graphics package was to address the hardware and software ideas of the

’80’s, incorporating where appropriate the valuable and tested ideas of

existing systems. MacPac is the result of these efforts. In this

chapter we examine the extent to which MacPac meets its design objec

tives.

A major goal in the creation of MacPac was to address tine

raster display hardware predominant today. The fact that MacPac ful

fills this goal is readily seen in the display representation adopted

for the system; the "raster_display" construct. All information re

quired to produce a picture on a display is held in a form compatible

with that used for the refresh buffer of the majority of raster display

devices. This representation allows MacPac to be extremely device inde

pendent. As nearly all raster display devices allow direct loading of

the refresh memory, it is a simple matter to create a device driver to

add a new device to a system. Also, few application changes would be

required to accomodate this new device. MacPac’s display representation

137

138

is particularly compatible with the single address-space architecture

seen in many raster display devices today [Acquah 1982]. Under this

architecture, the raster refresh buffer is contained within the memory

space of the host computer. In this situation, the "screen” attribute

of each MacPac display would actually be the refresh buffer for that

display.

As always, a trade-off is found in this choice of display repre

sentation. To achieve this level of portability, a sacrifice is made

in the ability of an application program to make use of special hard

ware features. If this is of grave importance to the applications at a

particular site, however, the structure of MacPac is sufficiently flex

ible that it may be easily modified to fulfill this requirement. A com

mand file may be incorporated into the image object and the routines

which maintain the image ’’picture” and display ’’screen” are easily

modified to handle this file. In this situation, user-defined

graphical primitives would require specification of the hardware com

mands required to generate the primitive, as well as the ’in’ and

’colour’ functions discussed in Chapter 6.

Another area in which the structure of MacPac addresses current

hardware is in its ready adaptation to a multi-processor environment.

Each image of MacPac may be treated as an independent process. The

image may receive and process input information without needing to be

aware of what other images are responsible for or involved in. Although

the MacPac system currently allows only a single image to be processing

139

input information at any one time, no structural change is required to

allow for the possibility of concurrent image processing.

A second goal of MacPac was to address current ideas in

graphics software. This objective has been realized in several areas.

Of major importance is the inclusion of the mechanisms whereby

graphical resources may be managed. No MacPac entity may be

manipulated unless the manipulator has access to the descriptor for

that entity. It is not possible to add, remove, or move an image on a

display without access to that display. Similarly, one must possess

the descriptor for an image in order to manipulate the attributes of

that image. The same holds true for figure_transforms. The hierar

chical structure of MacPac provides a framework for resource

management. Once an image has been allocated a particular area of a

display screen, any alterations to the image will be seen only in this

allocated area. The ability to control resource management is seen in

other aspects of MacPac as well. For example, an image may be allocated

a colour ’’submap”. This submap specifies a portion of the colour_map

of each display that contains the image. The effect of this is that

the only colours seen within the image’s viewport on a display will be

those found within the allocated portion of that display’s colour_map.

Another example may be seen in MacPac’s input handling facility. Input

information is sent directly to the indicated image (as determined by

the point associated with the input), thus ensuring that an image does

not have access to irrelevant input information.

140

Another area in which MacPac addresses current software ideas

is in its ability to interface with graphical tools, specifically

graphical databases. Graphical information in MacPac is held in a

hierarchical structure. Displays contain images, images contain

figure_transforms, and figure_transforms contain other figure_trans-

forms and/or graphical primitives. This storage structure is very com

patible with a large number of databases. The hierarchical structure

also eases the extraction of graphical information from a database when

it is required for display purposes. Indeed, an implementor may find

that the most viable storage vehicle for the large amount of graphical

information maintained by the MacPac system will be a graphical

database.

In Chapter 2 we discussed several problems inherent in the me

thodology of mainstream packages. Major among these problems were con

siderations of portability and device independence, resource

management, input handling and viewing. The manner in which MacPac ad

dresses the first two problems has already been discussed. Here we

will take a brief look at MacPac's solutions to the problems of viewing

and input handling. The viewing difficulties encountered in mainstream

packages are largely due to the idea of a single "open” segment to

which all output primitives are added. This "open” segment is accom

panied by a single "active transformation". MacPac’s images and

figure_transforms are always "open". Also, there is no such thing as

an "active transformation" in the MacPac system. Graphical information

is stored in its defined form along with related transformations. When

141

it is necessary to (re)create a picture of this information for display

purposes, the graphical data and transformations are available to do

so. Chapter 2 pointed out problems with the concept of virtual input

device, and the resulting segregation of input devices into classes.

This problem is not seen in the MacPac system as all input is mapped

into a single input class. The problem of separation of input and out

put, however, has not been addressed by the MacPac system. Possible en

hancements in this area include the addition of of echo and prompt at

tributes to the input_device object. In all of these problem areas, the

design of MacPac takes into consideration, and incorporates valuable

aspects of, the solutions which existing systems have adopted.

The design of any system intended for widespread use is fraught

with difficulties. What is good for one user may create many problems

for another. Hardware that is standard at one site may not exist at

another. As a result, many compromises and trade-offs must be made in

system design. A number of important trade-offs had to be made in the

design of MacPac. Portability and device-independence was achieved at

the cost of readily available access to hardware facilities. The

ability to store the graphical entities of the application relieves the

program of the chore of re-defining these entities whenever a new view

or picture update is required. This aspect of the system, however,

limits the implementation of MacPac to sites that can fulfill its exten

sive storage requirements. Less significant choices had to be made at

every stage in the design of MacPac. For example, when using MacPac,

two points and a colour must be provided for declaration of a line. The

142

ability to specify the colour of each line as it is created will be use

ful to some users, undesired overhead for others. In most cases,

someone will disagree with the chosen solution to a problem. In the

design of MacPac we have attempted to chose solutions and pathways

which will satisfy the requirements of the majority of users. At the

same time, the design is intended to provide some flexibility in im

plementation possibilities. An implementor may tailor MacPac to re

spond to the available hardware and intended applications at a par

ticular site.

Finally, we need to consider the effectiveness of the design

languages, UML and GUSL, in the development of MacPac. As a descrip

tive tool, these design languages proved to be very useful. Through the

constructs of UML and GUSL it was possible to transform the design

ideas of MacPac into a consistent, clear description of the system.

The structure of the design description also greatly facilitated error

and completeness checking. A problem was encountered, however, in the

use of these design languages for the development of a graphics

system. The languages were originally created for the design of

graphical user interfaces. They were therefore exceptionally useful in

describing the interface between MacPac and an application program.

When dealing with aspects of the system not directly related to this

interface, however, the languages tended to be restrictive. As a re

sult, implementation considerations that may have been incorporated

into the design of the system had a different design tool been used,

were considered to be external to the design of MacPac.

143

Ideally, the next step in the development of MacPac would be

its implementation. Only in this way is it possible to truly test the

usefulness of MacPac for the graphics applications of the *80’s. It

should not be expected that MacPac will prove to be ideal for all uses

and applications. No doubt there will be numerous problems. However,

it is through development efforts such as MacPac, and the learning that

accompanies the effort, that we will eventually arrive at a viable

graphics standard for the hardware and software of the future.

Appendix A

UML and GUSL

.1, Language Structure ? Constructs

U__UML Constructs

The important constructs of UML are the OBJECT, OPERATOR, and

INVARIANT. The structure of these constructs is illustrated below.

OBJECT - The attributes of an object may be referenced as
'object_name.attribute_name'. Each attribute must belong
to one of the theories (pre- or specifier-defined) of the
base language.

OBJECT object_name;
ATTRIBUTE attribute_name : type;
ATTRIBUTE attribute_name : type;

ATTRIBUTE attribute_name : type;
END;

OPERATOR - an operator may have a number of input parameters.
These are specified within brackets in the operator
header. Also, the operator may return a value. The type
of this value is specified after the arrow in the header.
Neither parameters nor a result type are required,
however. All types in the header must be one of the
theories of the base language. The assertions in the body
of the operator are written in the base language. These
assertions may be made up of values, base language
theories, and/or special forms.

144

145

OPERATOR operator_name(parameter_name:type) -> type;
PRE

assertion ;

assertion;
POST

assertion;
assertion;

assertion;
END;

INVARIANT - The assertion of an invariant is written in
the base language. It may contain values, theories,
and/or special forms. The value of this assertion must
always be true.

INVARIANT
assertion;

1.2 GUSL Constructs

The major construct of GUSL is the MODULE. The structure of a

MODULE is shown below. This is followed by information pertinent to

the components of this construct.

MODULE module_name;

PARAMETERS
parameter_name : type;
parameter_name : type;

parameter_name : type;

DECLARATIONS
variable_name : type;
variable_name : type;

variable_name : type;

146

DEFINITIONS
type definition_name(parameter_names) IS expression;
type definition_name(parameter_names) IS expression;

type definition_name(parameter_names) IS expression;

FUNCTIONS

VFUN function_name(parameter_name:type) -> type;
PRE

assertion;
assertion;

assertion;
INITIALLY

function_name = value;
END;

VFUN function_name(parameter_name:type) -> type;
PRE

assertion;
assertion;

assertion;
INITIALLY
HIDDEN

function_name = value;
END;

VFUN function_name(parameter_name:type) -> type;
PRE

assertion;
assertion;

assertion;
DERIVED

assertion;
assertion;

END;
assertion;

147

OFUN funetion_name(parameter_name:type) ;
PRE

assertion;
assertion;

assertion;
POST

assertion;
assertion;

assertion;
END;

OVFUN function_name(paraneter_name:type) -> type;
PRE

assertion;
assertion ;

assertion;
POST

assertion;
assertion;

assertion;
END;

END MODULE module_name;

All types used in a GUSL module must belong to one of the

theories of the base language. In other words, each type used in a

GUSL specification must be either a pre-defined theory of the base

language or must be defined by a GUSL module.

The functions of a module may be referenced in the following

way : ’module_name.function_name(parameters)’. The pre-conditions sec

tion of each function is optional. In the DERIVED section of a VFUN or

the POST section of an OVFUN, at least one of the assertions must as

148

sign a value to function_name. VFUNs with the keyword INITIALLY are

used to access the state of the module. The value of one of these

VFUNs may only be changed by an OFUN of the same module. If the key

word HIDDEN is used, the VFUN may only be accessed from within the

module. All assertions of a module function are written in the

base language. These assertions may be made up of values, base language

theories, and/or special forms. The macros defined in the DEFINITIONS

section of the module may also be used in these assertions.

1.3 The Base Language - Special Forms

Following are the special forms used in the base language.

Each special form has the value true or false depending on the value of

the assertion(s) contained within the special form.

LET - The LET special form attempts to create a new instance
of type ’type_name' which satisfies the given assertions.
If this is possible, the value of the special form is
true.

LET variable_name : type_name ! assertion;

FORALL - The FORALL special form is true if the assertions
in body of the special form are true for all entities of
type ’type_name’ that satisfy ’function(variable_name)'.
The variable, ’variable_name', is local to the special
form. ’Function(variable_name)’ is simply an assertion
involving ’variable_name’.

FORALL variable_name : type_name i function(variable_name)
{

assertions;

EXISTS - The EXISTS special form is true if the assertions
in its body are true for at least one value of
’variable_name‘ that satisfies ’function(variable_name)’.
The variable, ’variable_name’, is local to the special

149

form. ’Function(variable_name)’ is simply an assertion
involving 'variable_name’.

EXISTS variable_name : type_name ! function(variable_name)
{

assertions;
};

IF - The IF special form is used to choose between two sets
of assertions. The choice is based on the value of
another assertion, that which falls after the keyword IF.
If this assertion is true the first set of assertions is
considered. If the value of this assertion is false, the
set of assertions after the keyword ELSE is chosen for
consideration. The IF special form is true if all
assertions in the chosen set are true.

IF assertion THEN
assertions;

ELSE
assertions;

ENDIF;

SELECT - The SELECT special form is used to choose between a
number of sets of assertions. The assertion after each
CASE keyword is examined. If the assertion is true then
the set of assertions associated with that CASE assertion
are chosen. The value of the SELECT special form is true
if all assertions in the chosen set are true.

SELECT
CASE assertion
CASE assertion

{ assertions; };
{ assertions; };

CASE assertion
END SELECT;

assertions; };

Th?orx Qperafcgr^

INTEGER -
arithmetic operators : + ,-,*,/
comparison operators : <,<=,=,!=,>=,>

150

REAL -
arithmetic operators : + ,-,*,/
comparison operators : <,<=,=,!=,>=,>

BOOLEAN -
AND
OR
NOT

SET -
in : takes in an entity of the type contained in the set and

returns true if that entity is in the set.
union : takes in a set and returns the union of this set and

the set whose union function is being invoked.
intersect : takes in a set and returns the intersection of

this set and the set whose intersect function is being
invoked.

VECTOR -
in : takes in an entity of the type contained in the vector

and returns true if that entity is in the vector,
length : returns the length of the vector.
element : takes in an integer and uses this integer as an

index to the vector. The element of the vector that
is located at this index is returned.

POINT -
arithmetic operators : + , -

EXTENT -
in : takes in a point and returns true if that point falls

within the area defined by the extent.

3 Grammars

The grammars that follow are taken directly from the appendices

of Mark Green's technical report "A Specification Language and Design

Notation for Graphical User Interfaces" [Green 19811. The base

language granmar is presented first, followed by the grammars of UML

and GUSL. Both UML and GUSL build upon the constructs of the base

language grammar, adding further contructs of their own to create a

more specialized language.

151

A number of notational conventions are employed in these gram

mars. The use of square brackets indicates that anything within the

brackets is optional. Curly brackets, or braces, indicate that the

what is contained within the brackets may be repeated zero or more

times. All terminals are enclosed in double quotes.

3.1 Base Language Grammar

base_type : : =
11111
1111t1
!i i

"integer”
"real”
"string"
"point"
"extent"
"boolean"
"set_type"
"vector_type"
"enumeration_type";

set_type : : = "SET OF" type;

vector—type ::= "VECTOR OF" type;

enumeration—type :: = "(" literal {"," literal} ")";

literal ::= identifier;

assertion expression;

expression
»

j

value
special_f orm
"(" expression ")"
expression "=" expression;

special—form :: =
i ii i j
!

let_form
forall_form
exists_form
if_form
select_form;

let_form ::= "LET" variable_name ":" type "'" assertion;

forall_form ::= "FORALL" variable_name ":" type ["¡" assertion]
"{" {assertion ";"} "}";

152

exists_form :

if_form :

select_form :

case_item :

variable_name :

3^2 VML Grammer

taskjnodel

task_model_header

task_model_trailer

control_model

control_model_header

control_model_trailer

type_declarations

type_dec

object_definition

object_name

attibute_definition

"EXISTS” variable_name ":" type ["¡" assertion]
"{" {assertion ";"} "}";

"IF” assertion "THEN" {assertion ";"}
["ELSE" {assertion ";"}] "ENDIF";

"SELECT" {case_item} "END SELECT";

"CASE" assertion "{" {assertion ""}";

identifier;

: := task_model_header
[type_declarations]
{object_definition}
{operator_definition}
{invariant}
task_model_trailer ;

::= "TASK MODEL" identifier ";";

::= "END TASK MODEL" identifier ";";

: := control_model_header
[type_declarations]
{obj ect_definition}
{operator_definition}
{invariant}
control_model_trailer;

::= "CONTROL MODEL" identifier ";";

::= "END CONTROL MODEL" identifier ";";

::= "TYPES" {type_dec};

::= identifier "=" type ";";

::= "OBJECT" object_name
{attr ibute_defi nition}
"END;";

identifier;

"ATTRIBUTE" attribute_name ":" type ";";

153

attribute_name • • w identifier;

operator_definition operator_header
[pre_part]
post_part
"END;";

operator_header ::= ’’OPERATOR" operator_name
[parameter list]
["->’’ type]

operator_name : : = identifier;

parameter_list : : = "(’’ parameter_declaration
{’’;’’ parameter_declaration] ’’)’’;

parameter_declaration : : = parameter_name type;

parameter_name : : = identifier;

pre_part : : = ’’PRE" {assertion ";"};

post_part : : = "POST" {assertion

invariant : : = "INVARIANT" assertion

type
i i i

base_type
object_name
theory_name;

value
t
1
111111

object_name
value attribute_name
parameter_name
expression theory_operator expression
expression theory_operator
expression theory_operator

’’(’’ expression_list ’’)";

expression_list • • «— expression {’’," expression};

154

3.3 GUSL Grammar

vfun_def

module : := module_header
[parameter_declarations]
[variable_declarations]
[macro_definitions]
function_definitions
module_trailer;

module_header : := ’’MODULE” module_name;

module_trailer : := "END MODULE" module_name;

module_name : := identifier;

parameter_declarations : := "PARAMETERS" {parameter_dec};

parameter_dec : := parameter_name parameter_type

parameter_name : := identifier;

variable_declarations : := "DECLARATIONS" {variable_dec};

variable_dec : := variable_name ":" type

variable_name : := identifier;

macro_definitions : := "DEFINITIONS" {macro_def};

macro_def : := type macro_header "IS" expression;

macro_header : := macro_name [macro_parameter_list];

macro_name : := identifier;

macro_parameter_list : := ’’(” identifier identifier} ")’’;

function_definitions : := "FUNCTIONS" {function_def};

function_def : : = vfun_def
i ofun_def
! ovfun_def;

::= vfun_header
[pre_part]
vfun_body
"END;";

155

! module_name [parameter—values];

vfun_header "VFUN" function—name
[parameter—list] "->" type

function_name : : = identifier;

parameter_l ist : : = ”(” parm_dec {";’’ parm_dec} ;

parm_dec : : = parameter—name type;

pre_part : : = ’’PRE” {assertion ";"};

vfun-body : : = primitive—body
derived—body;

primitive—body ’’INITIALLY" ["HIDDEN"]
function—name ’’=" expression

derived—body • • "DERIVED" {assertion ’•;'•};

ofun_def • •• • ofun_header
[pre_part]
post—part
"END;";

ofun_header • • "OFUN" function—name
[parameter—list]

post—part • • —• "POST" {assertion ";"};

ovfun_def • • — ovfun_header
[pre_part]
post—part
"END;";

ovfun_header • • "OVFUN" function—name
[parameter—list] "->’’ type ;

parameter—type base_type
module_name;

type * • z: base_type

parameter—values ”(” expression {"," expression} ")";

156

value ::= function_name
î function_name ”(” expression_list ”)”
i parameter_name
i variable_name
î expression function_name expression
i expression function_name
! expression function_name

”(" expression_list

expression_list ::= expression expression};

Appendix B

Basic Graphical Entities

The specifications of the raster_display and transform entities

are derived from those presented in [Green 1982b].

1 Raster display Specification

MODULE raster_display;

PARAMETERS
lower_left : point;
upper_right : point;

DEFINITIONS
boolean in_x_range(p) IS lower_left.x <= p.x <= upper_right.x;
boolean in_y_range(p) IS lower_left.y <= p.y <= upper_right.y;

FUNCTIONS

VFUN frame_store(x,y:integer) -> integer;
INITIALLY
HIDDEN

frame_store = 0;
END;

VFUN in(p:point) -> boolean;
DERIVED

in = in_x_range(p) AND in_y_range(p);
END;

VFUN pixel(p:point) -> integer;
PRE

in_x_range(p);
in_y_range(p);

DERIVED
pixel = frame_store(truncate(p.x),truncate(p.y));

END;

157

158

OFUN set_pix(p:point;int:integer);
PRE

in_x_range(p);
in_y_range(p);

POST
frame_store(truncate(p.x),truncate(p.y)) = int;

END;

END MODULE raster_display;

2. , Trangfprro §pe<?ifi<?atipn

In the transformation specification that follows, the transfor

mation is represented by six real numbers. These are the components of

the transformation matrix :

! rs11 rs12 0 Î
! rs21 rs22 0 Î
i tx ty 1 !

When the transformation is applied to a point (x,y), the transformed

point (x’,y') is found through the following matrix equation :

! x’ y’ ! x y
! rs11 rs12 0

« ! rs21 rs22 0
! tx ty 1

MODULE transform;

PARAMETERS
rs11_init,rs12_init,rs21_init,rs22_init : real;
tx_init,ty_init : real;

159

FUNCTIONS

VFUN rs11 -> real;
INITIALLY

rs11 = rs11_init;
END;

VFUN rs12 -> real;
INITIALLY

rs12 = rs12_init;
END;

VFUN rs21 -> real;
INITIALLY

rs21 = rs21_init;
END;

VFUN rs22 -> real;
INITIALLY

rs22 = rs22_init;
END;

VFUN tx -> real;
INITIALLY

tx = tx_init;
END;

VFUN ty -> real;
INITIALLY

ty = ty_init;
END;

OFUN translate(x,y : real);
POST

tx = ’tx + x;
ty = ’ty + y;

END;

OFUN scale(x,y : real);
PRE

x,y >= 0;
POST

rs11 = ’rs11 * x;
rs12 = 'rs12 * y;
rs21 = ’rs21 * x;
rs22 = ’rs22 * y;
tx = ’tx * x;
ty = ’ty * y;

END;

160

OFUN rotate(a:integer);
PRE

0 <= a < 360;
POST

rs11 = Urs11
rs12 = ('rs11
rs21 = ('rs21
rs22 = ('rs21

* cos(a)) -
* sin(a)) +
* cos(a)) -
* sin(a)) +

tx = (’tx * cos(a)) - (ty

(rs12 * sin(a));
(frs12 * cos(a))
(rs22 * sin(a));
(’rs22 * cos(a))
* sin(a));

END;
ty = (’tx * sin(a)) + ('ty * cos(a));

OFUN reset_.transform;
POST

rs11 = rs11_init;
rs12 = rs12_init;
rs21 = rs21_init;
rs22 = rs22_init;
tx = tx_init;
ty = ty_init;

END;

OVFUN apply(p:point) -> point
POST

LET p1-.point i
p1.x = ((p.x * rs11) + (p.y * rs21) + tx) AND
p1.y = ((p.x * rs12) + (p.y * rs22) + ty);

apply = pl;
END;

OVFUN apply(e:extent) -> extent;
PRE

/* no rotation */
rs12 = 0;
rs21 = 0;
rs11 >= 0;
rs22 >= 0;

POST
LET p1:point i p1 = apply(e.lower_left);
LET p2:point I p2 = apply(e.upper_right);
LET new:extent(p1,p2);
apply = new;

END;

161

VFUN apply(t:transform) -> transform;
DERIVED

LET new_rs11:real !
new_rs11 = ((rsll

LET new_rs12:real i
new_rs12 = ((rsll

LET new_rs21: real !
new_rs21 = ((rs21

LET new_rs22: real !
new_rs22 = ((rs21

LET new_tx:real Î

* t.rs11) +

* t.rs12) +

* t.rs11) +

* t.rs12) +

(rs12 * t.rs21));

(rs12 * t.rs22));

(rs22 * t.rs21));

(rs22 * t.rs22));

new_tx = ((tx * t.rs11) + (ty * t.rs21) + t.tx);
LET new_ty: real i

new_ty = ((tx * t.rs12) + (ty * t.rs22) + t.ty);
LET new_.transform:transform(new_rs11,new_rs12,new_rs21,

new_rs22,new_tx,new_ty);
apply = new_transform;

END;

END MODULE transform;

3 Colour map Specification

MODULE colour_map;

PARAMETERS
size : integer;
colour_init : VECTOR OF integer;

FUNCTIONS

VFUN max -> integer;
INITIALLY

max = size;
END;

VFUN colours -> VECTOR OF integer;
INITIALLY

colours = colour_init;
END;

162

VFUN retrieve_colour(idx:integer) -> VECTOR OF integer;
PRE

1 <= idx <= max;
DERIVED

LET red_idx:integer I red_idx = ((idx - 1) * 3) + 1;
LET green_idx:integer ! green_idx = red_idx + 1;
LET blue_idx:integer ! blue_idx = green_idx + 1;
LET v:VECTOR OF integer ' length(v) = 3;
element(v,1) = element(colours,red_idx);
element(v,2) = element(colours,green_idx);
element(v,3) = element(colours,blue_idx);
retrieve_colour = v;

END;

VFUN set_colour(idx,red,green,blue:integer);
PRE

1 <= idx <= max;
0 <= red,green,blue <= 255;

DERIVED
LET red_idx:integer I red_idx = ((idx - 1) * 3) + 1;
LET greenjldx:integer ' green_idx = red_idx + 1;
LET blue_idx:integer ' blue_idx = green_idx + 1;
element(colours,red_idx) = red;
element(colours,green_idx) = green;
element(colours,blue_idx) = blue;

END;

END MODULE colour_map;

Appendix C

Compendium of Operators

1 Display Manipulation Operators

refresh_display - completely recreates the "screen" of a specified

display from the information held in the "contents" of that

display. First, the "screen" is cleared to colour 0. Each

image in the display "contents" is then considered and the

"screen" pixels affected by the image are updated using the

image's colour information.

display_image - takes a display, an image, and a viewport (extent) as

input. If the image is not currently in the "contents" of the

display, it is added to the end of the "contents" vector,

thereby becoming the image with highest priority in the "con

tents" of the display. The input viewport, which specifies

where on the display "screen" the image is to be seen, is as

signed to the image. If the image is currently in the "con

tents" of the display, it is moved from its current position in

the "contents" vector to the end of the vector. The input view

port has no function here as the image remains in the same view

port it currently occupies. If "instant_update" is true, the

163

164

display ’'screen'* is updated to reflect this new information.

The end result is that the input image will be seen above all

others in the portion of the display "screen” specified by the

image's viewport.

erase_image - removes a specified image from the "contents” of a given

display. If "instan t_update" is true, the image is also

removed (erased) from the "screen” of the display. Any images

which were hidden by this erased image will appear.

move_image - used to change the viewport in which a specified image is

seen on a given display. The image, which must currently ap

pear on the "screen" of the specified display, is assigned the

viewport provided as input to the operator. If "instant_update"

is true, the "screen" of the display is updated to show the

image in its new viewport. The priority of the image in the

"contents" of the display is not changed.

2 Image Manipulation Operators

create_image - creates a new image instance. The "window", "back

ground", "colour_start", and "colour_range" attributes of the

image must be provided as input to the operator. Initially,

the image does not contain any figure_transforms and is not

seen on any display. The "picture" of the image is defined from

the "window" attribute and is initialised to the given "back

ground" colour. The new image instance is added to

"world.image_set".

165

destroy_image - destroys a specified image by removing it from all

displays of which it is a member of the "contents” and then

removing it from the "world.image_set". This operator does not

destroy the figure_transforms of which the image is composed.

It simply destroys their relationship as elements of a vector.

add_to_image - adds a specified figure_transform to the "contents” of a

given image. The "picture" of the image is updated to reflect

this addition. If ”instant_update” is true, all displays con

taining the image are also updated.

remove_from_image - removes a specified figure_.transform from the "con

tents” of a given image. The "picture" of the image is updated

to reflect this change to the image’s "contents”. If "in-

stantjupdate" is true, all displays containing this image are

also updated.

pan_image - changes the "window" attribute of a specified image. The

new value for "window" must be provided as input to the

operator. The "picture" of the image is completely updated to

reflect this new view onto the "contents" of the image. If "in-

stant_update" is true, all displays containing this image are

also updated to reflect the new image "picture".

add_fill_info - adds new fill information to a given image. The point

and colour which specify the fill must be provided as input to

the operator. The point is added to the "fill_info_points"

166

vector and the colour is added to the corresponding location in

the "fill_info_colours" vector. The vector index at which the

point and colour are stored is returned to the caller of the

operator. The image ’’picture” and, if "instant_update” is true,

all displays that contain this image are updated to reflect

this new fill information. The fill operation in effect here

is a flood-fill of an interior defined 8-connected region. The

region is defined by the input point, i.e. the region is all

those pixels connected to the input point and of the sane

colour. The input colour specifies the colour that all these

pixels should be changed to by the fill operation.

remove_fill_info - removes fill information from a given image. The

index at which the fill information may be found in the

”fill_info_points” and ”fill_info_colours” vectors must be

provided as input to this operator. The entries of these vec

tors at this index are removed and the vectors compressed. The

"picture” of the image and, if "instant_update" is true, all

affected displays are updated to reflect this fill information

change.

3 Figure Transform Manipulation Operators

create_fig_trans - creates a new figure_transform instance. Two input

parameters are required by this operator. The first, which

specifies the "figure" of the figure_transform, may be a

167

graphical primitive or may be undefined. If it is undefined,

the ’’figure” is defined as a vector of figure_transforms that

is, initially, empty. The second parameter specifies the ’’tran

sform” of the figure_transform. The new figure_transform in

stance is added to the ’’world.figure_set". Initially, this

figure_transform may not be belong to the ’’contents” of any

image.

destroy fig trans - destroys a specified figure_transform by removing

it from all images and parent figure_transforms of which it is

a part and then removing it from the ’’world.figure_set". This

operator does not destroy the child figure_transforms of a com

posite figure_transform. It simply destroys their relationship

as elements of a vector.

add_to_figure - adds a specified figure_transform to the ’’figure” at

tribute of another (parent) figure_transform. All images that

contain this parent figure_transform and, if ”instant_update”

is true, all displays that contain these images are updated to

reflect this change.

remove_from_figure - removes a specified figure_transform from the

"figure” of another (parent) figure_transform. All images that

contain this parent figure_transform and, if "instant_update"

, is true, all displays that contain these images are updated to

reflect this change.

168

transform_figure - changes the ’’transform” attribute of a given

figure_transform. The new ’’transform” value must be provided

as input to the operator. All images that contain this

figure_transform and, if ”instant_update” is true, all displays

that contain these images are updated to reflect this change.

copy - takes a figure_transform as input and creates a new figure_trans-

form instance which is a copy of this input figure_transform.

Initially, the new figure_transform may not belong to the '’con

tents” of any image.

4 Input Pg-ylg-g- MgniPulatiPn Operators.. .

select_image - sends input information from a specified input device to

an image. When an enabled input_device is activated this

operator is called with the input_device as argument. The

operator determines which image the input is intended for,

based on the point associated with the input_device, and then

relays the input information to this image.

REFERENCES

[Acquah 1982] Acquah, J., Foley, J., Sibert, J., and Wenner, P., "A Con
ceptual Model of Raster Graphics Systems1', Computer Graphics, Vol.
16, No. 3, July 1982.

[Arnold 1981] Arnold, D., "The Requirement for Process Structured
Graphics Systems", Computer Graphics, Vol. 15, No. 2, July 1981.

[Ball 1983] Ball, J.E., "Canvas: the Spice Graphics Package", S108, Com
puter Science Department, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, March 1983.

[BYTE 1981] "Smalltalk", BYTE, Vol. 6, No. 8, August 1981.

[Green 1981] Green, M., "A Specification Language and Design Notation
for Graphical User Interfaces", TR 81-CS-O9, Unit for Computer
Science, McMaster University, Hamilton, Ontario, 1981.

[Green 1982a] Green, M., "A Design Philosophy for the Next Generation
of Graphics Packages", unpublished manuscript, Unit for Computer
Science, McMaster University, Hamilton, Ontario, 1982.

[Green 1982b] Green, M., "A Formal Study of the Window Interaction Tech
nique", Unit for Computer Science, McMaster University, Hamilton,
Ontario, 1982.

[Green and Philp 1982] Green, M., and Philp, P., "The Use of Object
Oriented Languages in Graphics Programming", Proceedings Graphics
Interface '82, May 1982.

[GSPC 1979] SIGGRAPH-ACM (GSPC), "Status Report of the Graphics Stan
dards Planning Committee", Computer Graphics, Vol. 13, No. 3,
August 1979.

169

170

[Foley and Van Dam 1982] Foley, J.D., and Van Dam, A., Fundamentals of
Interactive Computer Graphics ,Addison-Wesley, 1982.

[Hindin 1984] Hindin, H.J., ’’Graphics Standards Finally Start to Sort
Themselves Out”, Computer Design, Vol. 23, No. 5, May 1984.

[Meads 1984] Meads, J.A., ’’The Graphics Standards Battle”, Datamation,
Vol. 30, No. 6, May 1984.

[Michener and Van Dam 1978] Michener, J.C., and Van Dam, A., ”A Func
tional Overview of the Core System with Glossary”, Computing Sur
veys, Vol. 10, No. 4, December 1978.

[Newman and Sproull 1979] Newman, W.M., and Sproull, R.F., Principles
of Interactive Computer Graphics ,Second Edition, McGraw-Hill,
1979.

[Newman and Van Dam 1978] Newman, W.M., and Van Dam, A., "Recent Ef
forts Towards Graphics Standardization”, Computing Surveys, Vol.
10, No. 4, December 1978.

[Robson 1981] Robson, D., ’’Object-Oriented Software Systems”, BYTE,
Vol. 6, No. 8, August 1981.

[Rosenthal 1981] Rosenthal, D.S.H., "Methodology in Computer Graphics
Re-Examined”, Computer Graphics, Vol. 15, No. 2, July 1981.

[Rosenthal 1982] Rosenthal, D.S.H., Michener, J.C., Pfaff, G., Kes-
sener, R., and Sabin, M., "The Detailed Semantics of Graphics
Input Devices", Computer Graphics, Vol. 16, No. 3, July 1982.

[Rosenthal 1983] Rosenthal, D.S.H., "Managing Graphical Resources", Com
puter Graphics, Vol. 17, No. 1, January 1983.

[Simons 1983] Simons, R.W., "Minimal GKS", Computer Graphics, Vol. 17,
No. 3, July 1983.

[Wallace 1976] Wallace, V.L., "The Semantics of Graphics Input
Devices", Computer Graphics, Vol. 10, No. 1, Spring 1976.

[Whitton 1984] Whitton, M.C., ’’Memory Design for Raster Graphics
Displays”, IEEE Computer Graphics and Applications, Vol. 4, No. 3,
March 1984.

[X3H3 1984] ANSI (X3H3), "Special GKS Issue", Computer Graphics, Feb
ruary 1984.

