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ABSTRACT

Finite element simulation of contact/impact problems using the penalty method is 

a well-established capability. The automatic penalty stiffness provides an easy way to 

implement the contact analysis. However, this way in which the penalty stiffness is 

associated with the material property and geometry of the master surface can lead to 

inappropriate distributions of contact pressure at edges or mesh transitions, or even cause 

much numerical noise. A new method of defining the penalty stiffness, which is 

associated with geometry of the slave surface, the reference penetration and reference 

contact pressure, is developed to consistently relate forces on contacting nodes with the 

contact pressure. This technique is successfully applied to several examples as the 

clamping simulation during the punch test and the rolling process. The results of such 

applications of new contact stiffness model demonstrate the effectiveness of such a model 

in avoiding the stress edge effect and the accompanying numerical noise. As an 

alternative approach to define the penalty stiffness, this new model provides another 

option for the contact analysis and gives the users more possibilities to control the contact 

performance.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to the Contact Problem

Contact problems involve the interaction between two or more parts coming into 

contact with each other. Contact-impact phenomena are quite common in our lives: a 

typical example is the vehicle crash. In engineering, the contact interactions are usually 

intentional such as the metal forming process, in which the form of the part is achieved 

through the contact interaction of punch and metal sheet, die and metal sheet. Although 

contact phenomena are common in both life and engineering applications, the effects are 

often accounted for approximately due to complexity of the analysis. For many practical 

applications, the experiment may be an easy and economical way to get straight results, 

which can avoid complicated calculation. In some circumstances, the cost of the 

experiment makes it undesirable to use such tests as the car crash experiment, or if safety 

issues make such experiments impossible such as nuclear reactor components. 

Furthermore, the knowledge of the mechanism of the contact interaction will be desired 

since it can benefit us with its prediction of possible outcomes that can have practical 

usage. For example, the simulation of the machining process will lead to the better 

understanding of the stress buildup during the machining and such knowledge will 

directly improve the design of the tool by enhancing the quality of machining and life

1
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span of the machine tool. Obviously, the understanding of the contacting mechanism will 

also lead to the better performance of the intentional contact practice and the avoidance 

of the unexpected contact behavior in engineering applications. All such motivations led 

to many people to simulate contact since the last century.

Studies of contact problems in the first stage came with Newton’s third law and 

Coulomb’s friction law which are still used in many analyses. Suppose two blocks (Fig.

1-1) come into contact with each other. The contact force and the frictional force are

subjected to the following conditions:

Ft = F2, Nt = N2 (Newton’s third law)

Fi</JiNi (Coulomb’s friction law) (1-1)

^3 — /^2^3

where are the frictional coefficient between body A and body B, body B and

ground. When the tangential force is less than the product of normal force and the friction

coefficient, the bodies remain in the relative static state (sticking). If the tangential force 

exceeds such a value, the bodies will enter the state of sliding.

The major difficulty of this approach is that it can not determine the stress 

distribution along the contacting surface. Rather, the bodies are assumed rigid and only

resultant forces are considered. In practical work, the contact stress on or beneath the 

contact surface may be more important since many material failures are due to the high
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stress concentration at the specific contact area. Hertz did a significant study and 

developed a model to present such stress during the contact. The model, which assumes 

contact to be an elastic problem with small deformation, shows that pressure distribution 

along the contact surface is in a form of ellipse in a frictionless model. The maximum

stress and shear stress (Fig. 1-2) according to Hertz model [1] are as follows

°max=-C<TC imax=CrC O'2)

where ca, cT are the normal and shear stress coefficients for the contact bodies which is

determined by the contacting conditions and material properties.

Although Hertzian contact theory demonstrates the force distribution or the 

contacting stress on the contact surfaces, there are many restrictions:

1) The contact body must be linearly elastic.

2) There can be no friction force along the contact surfaces.

3) The displacement must be very small.

Such restrictions limit its application since many problems involving the friction, 

material nonlinear characteristics or large deformation (nonlinear geometry) are beyond 

the scope of such methods. Following the Hertz’s work, research has been focused on the 

solution of the contact problem by the analytical and experimental approaches. Johnson 

[2] studied the contact with analytical methods to release some of the constraints on the 

Hertzian contact problems. During this stage, geometry and deformation of the contact
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bodies are assumed in such a way that available mathematical tools can be used to get

analytical (closed-form) solutions to contact/impact problems. Such methods are still too 

restrictive and limit their applications to special problems. The breakthrough of such 

research was brought by introducing the numerical technique with the development of the 

digital computer and finite element method, all of which bring the research of the contact 

problem to a higher level of complexity.

1.2 Finite Element Method to Solve the Contact Problem

The finite element method has been developed to solve the problems of 

continuum and structural deformation and loading which are so complicated in either 

geometry configuration or material consideration that the traditional analytical approach 

is unable to get a closed-form solution. Thus, a numerical technique must be applied to 

find accurate approximation. Contact/impact problems are such typical cases. The 

literature shows that finite element method solution of contact problems had been 

investigated for a long time and its method and application touch almost every aspect of 

engineering. Zhong [3] gave a detailed list of the problems solved by the finite element 

method for different contact problems. In metal cutting problems, Strenkowski [4] for the 

first time introduced the concept of the element deletion based on the effective plastic 

strain to simulate the contact interaction between the work piece and tool, and 

successfully analyzed the orthogonal metal cutting. Following this, Obikawa et al [5], 

Shih [6] and Black et al [7] developed new geometric mesh separation criteria and 

friction contact models to simulate the contact in machining process in the 3D model.
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Rolling processes have also drawn attention: J. J. Park et al [8], Bhargava et al [9] and 

Kulkarni et al [10] presented a typical contact simulation for the plane-strain rolling and 

plate rolling in 3-D model. The regular mechanical engineering contact interaction has 

also been tried in applications such as bearings by Cheng et al [11] and Torstenfelt [12], 

the fitting of shafts to sleeve and hubs by Okamato et al [13] and Francise [14].

In general, the basic ingredients for the finite element procedure to solve contact 

problems may be summarized as follows:

1. Variational formulation which provides a basis for the finite element

discretization.

2. Element formulation which calculates the basis of finite element discretization for

the continuum and create the matrix and load vector equations.

3. Material selection which determines the strain and stress relations for the element

formulation.

4. Contact restraint method which applies the restraint conditions on the contact

bodies.

5. Friction law which governs the friction force and motion between contact bodies

6. Contacting searching algorithm.

7. Numerical time integration method.
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Due to specific characteristics of the contact, the finite element solution of contact 

problems has typical features. The following sections concern the main categories of the

research on contact problems using the finite element method.

1.3 Contact Restraint

Contact and impact problems involve the contact restraints that must be imposed 

on the contact boundaries. Numerically, the constraint equations are introduced to the 

governing equations to enforce the impenetrability and sticking and sliding condition of 

the contact bodies. Typically, there are two basic methods: the penalty method and the 

Lagrange multiplier method. Both methods can be applied to the system via the principle 

of stationary potential energy. For a conservative mechanical system, the total potential 

energy will include strain energy of distorted bodies and the potential possessed by the 

applied loads. The potential energy of a discretized system [15], [16] can be expressed in

the conventional finite element procedure as follows:

n=|{M}r/f{M}-{M}rF (1-3)

where n is the potential energy of the system, K is the stiffness of the system, {«} is the

displacement of the node vector and F is the external force applied on the specific 

nodes. The principle of stationary potential energy states that:
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Among all admissible configuration of a conservation system, those that satisfy 

the equations of equilibrium make the potential stationary with respect to small 

admissible variations of displacement.

In the contact problem, the contacting restraints can be added to potential energy 

as a specific potential function in following two methods:

1.3.1 The Lagrange Multiplier Method

A concise mathematical consideration of contact constraints can be obtained with

the use of a method called the Lagrange multiplier method [3], [15]. The Lagrange

multiplier method introduces the contact constraint equation by use of extra unknowns, 

the Lagrange multipliers. These multipliers, upon solving the augmented system of 

equations, represent the reaction forces at constrained degrees of freedom.

During the contact, a gap function G representing constraint conditions is 

introduced to correspond with the initial distance between the two contacting bodies. The 

gap function decreases with the hitting body approaching the target body and becomes 

zero when both touch. The gap function is required to keep positive all the relative 

displacements during the contact, which is determined by the nature of the contact

condition. That is:

G(w)>0 (1-4)

Gap function can be expressed as a function of displacement by using the Taylor series:
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G(u) = G0+——[u} = G0 + g{u} (1-5)
ou

where the higher order derivatives of the gap function are ignored and g is first order

derivative of G with respect to u.

To enforce such constraint conditions to the equation (1-3), a free scale A 

Lagrange multiplier is multiplied to the gap function and added to the potential

functional.

n(M,A) = |{M}r/f{M}-{M}rF + Ar(G0+g{M}) d-6)

The principle of stationary potential energy is applied to the equation (1-6) to give

drr t

= K{u} - F + AgT =0
OU

= g{u} + G0 =0 (1-7)

Equation (1-7) in a matrix form is as follows:

k gT u ' F '

_8 0 A "Go.

The lower partition of above equation is the equation of constraint and equation (1-8) is 

solved for both A and {w}. The satisfaction of the equation (1-8) automatically imposes

the contact constraints to the system. By solving the equations, the displacement {«} and
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Lagrange multiplier A will be obtained. The Lagrange multiplier A is interpreted as the 

contacting forces at corresponding contacting nodes. Examples for the application of 

Lagrange multiplier method in solving the contact problems are presented by Bathe [17] 

and Katona [18], in which it is coupled with the implicit methods giving an efficient way

to obtain a solution.

An obvious disadvantage of the Lagrange multiplier method is that it introduces

the new variable A, which increases the bandwidth of the matrix of the whole contact 

system and correspondingly decreases the calculation efficiency of the solution. Such a 

disadvantage becomes more obvious for multi-body contact, which makes the Lagrange 

multiplier method inefficient for some contact analyses.

1.3.2 The Penalty Method

Another typical way to apply the contact constraints, the penalty method, can 

overcome such disadvantages and is widely used in the explicit method. To introduce the 

basic constraints in the penalty method [19], [20], a penalty function is applied to the

contacting bodies according to a potential.

nB~— STaS (1-9)
p 2

where a is penalty stiffness applied to approximately enforce the contact restraint on the 

contacting bodies, and & is the penetration function (finite penetration allowed) when the
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contact occurs between the contacting bodies. The forces associated with the penalty 

function are given by the product of the penetration and the penalty stiffness.

fp=at> (1-10)

The penetration function can be written as a function of nodal displacement in 

terms of a Taylor series expansion with the higher order derivatives ignored:

= S0 Au] = 50 + Q{u} (1-11)
ou

In the equation (1-11), <50 is the penetration of each contacting node, and Q is a matrix

of the partial derivatives of the penetration function for each contacting node.

Upon substitution of equation (1-11) into equation (1-9), the potential function to be

minimized becomes

n = - {w}r K{u} - {u}T F+-8TaS
2 2 (1-12) 

=±{u}tK{u}-{u}tF+±(60 +Q{u})Tatf0 +Q{u})

After applying the principle of stationary potential energy to the equation (1-12), it takes

the form:

^ = (K + QTaQ){u}-F + QTaSo=O (1-13)
ou

Writen in a conventional finite element form, this is
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(K + QTaQ){u} = F-QTaS0 (1-14)

It is clear from the equation (1-14) that in the penalty method, the penalty 

function as a constraint function changes the stiffness of the system when the contact 

conditions have been activated. The penalty matrix may significantly increase the 

bandwidth of the structural equations which depends on how many degrees of freedom 

are introduced and numbered and what degrees of freedom are coupled by the constraint 

equations. Also, in the penalty method, the penalty stiffness must be chosen in an 

allowable range since the contact penalty stiffness will greatly influence the solution. The 

penalty stiffness must be large enough to be effective in keeping penetrations small but 

not as large as to provoke the numerical difficulties [21]. For example, if the penalty

stiffness is too big, it will cause the ill conditioning of the system matrix and instability of 

the solution. Such an effect will be discussed in the following chapters.

The penalty method is extensively used in the finite element analysis of contact 

problems since it has a simple form of application and there are no new degrees of 

freedom introduced. Its simplicity is the big advantage over the Lagrange multiplier 

method. Kikuchi [22] presented a smoothing technique for oscillating contact pressure 

created by the penalty method. Chandrasekaran [23] successfully presented 2-D 

frictional contact model with the penalty method by imposing geometric constraints on 

the pseudo equilibrium configuration. Kulak [24] introduced an adaptive interface 

elements based on the penalty method to handle the changing contact configuration 

allowing for surface sliding. When the penalty method is coupled with the master-slave
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(slide-line) approach in an explicit transient finite element method [25], [26], [27], it 

takes on a more closed and efficient form to solve the complex three-dimensional 

problems.

1.4 Contact Searching Approaches

In the finite element method for contact problems, another main topic is the 

contact searching approach, the purpose of which is to locate the hitting nodes to the 

potential targets. An effective searching algorithm normally influences the reliability and 

efficiency of the numerical solution and even determines the success of the final solution. 

Much effort has been made so far to find an effective way. For example, Hallquist [28] 

and Samual [29] presented the general concept and method to treat the sliding interface 

between the contact surfaces. In the specific application of searching algorithm for the 

contact problems, Manuel et al. [30] focused on the metal forming process, Belytschko 

[31] presented the pinball algorithm for both the penalty and Lagrangian multiplier 

method, and Jerry et al. [32] developed the 3-D impact-penetration algorithm with 

erosion. The typical contact searching approaches are discussed below.

1.4.1 Node-to-Node Contact Searching

In the node-to-node searching algorithm, it is assumed that contacting bodies can 

only undergo small displacement and rotation, and the contacting boundaries are 

discretized such that only the nodes on the boundaries can get into contact. This contact 

searching is used in the early study by Zienkiewicz [33] and Okamoto [13]. Since it
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imposed many restrictions during the solution, the node-to-node contact searching is 

seldom used in the large deformation and complicated geometry problem.

1.4.2 Bucketing Searching

This method was developed by Hallquist [25] which allows the contact between 

the nodes and surfaces. In this algorithm, all contact surfaces are set as a single set of 

contact groups. The searching procedure is performed in three stages:

1 ) A target node which is closest to the hitting node is found.

2) The target segment containing the target node which is closest to the hitting node is

found.

3) The distance between the hitting node and target segment is calculated, if the 

penetration is negative, the contact forces proportional to such penetration are applied 

to hitting node and nodes on the target segment.

During searching for closest target node to a specific hitting node, the bucketing 

searching (fig. 1-3) is used, which defines a sorting of the nodes in relative buckets. To find 

the closest node for a given hitting node, it is only needed to compare the hitting node with 

those in the same bucket as the hitting node or within a neighboring bucket of the bucket 

containing the hitting node. The length size of bucket should be defined such that largest 

segment can be completely included in the buckets. If the given hitting node located in one 

specific bucket, its left and right neighboring buckets are to be selected in a comparison. 

The bucketing searching algorithm provides a general approach for the 3D contact
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problem. The size of the bucket must be properly chosen to keep an efficient searching 

calculation, especially for a big model containing hundreds of thousands of nodes.

1.4.3 Master-Slave Searching

The master-slave searching approach is extensively used in most finite element 

codes such as LS-DYNA [25], ABAQUS [26] and H3DMAP [27] since it has simple form 

when coupled with the friction model. In the master-slave searching, the approaches of the 

searching steps are the same in the bucketing searching. But the contacting hitting surface 

and target surface have to be predefined as the slave and master surface before the process. 

To find the closest target node for a given hitting node, only the corresponding master 

surface which containing the target nodes will be examined. All the remaining surface 

elements are ignored during the searching procedure.

The master-slave searching approach is conceptually simple, but, since it needs to

predefine the pair of the contacting surface, problems will become complicated and 

inefficient for the contact problems which involve the newly generated contact surfaces. 

Such an example is the machining problem, where the chip formation during the machining 

makes simulation complex by using the master-slave searching approach since contact 

restraints may not be practically specified by predefined contact sets. In such 

circumstances, either an additional searching algorithm to find the new contact sets, or 

specification of all potential contacts should be applied. Either way, computational 

efficiency can suffer greatly. Still the master-slave method is often highly successful, and a 

detailed discussion of master-slave searching approach is presented in the next chapter.
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1.5 Friction in the Contact Problem

Friction phenomena exist in all contact problems, and in many engineering

applications, the effects of the friction play an important role. For example, in the metal

forming process, the friction between the work piece and the tool greatly influences the 

forming process and quality of the product. So far, much research has been done to solve 

contact problems with friction in the finite element method. Gu [34], Haber [35] and 

Hallquist [45] successfully simulated the sliding model between the contact surfaces. Sauve 

[27] solved the friction problem by using a non-classical friction law. N. Patir [36] used 

the hydrodynamic lubrication theory to simulate the lubrication and friction in the bulk 

metal-forming processes, followed by the K.K. Sun [37] and W. R. D. Wilson [38]. Also,

W. K. Liu [39] applied the Arbitrary Lagrangian-Eulerian finite element elements along 

with the hydrodynamic lubrication finite element to simulate the friction force and lubricant 

flow during the metal forming process. This put the research of friction in FEA method into 

more practical situations. Typically, the conventional friction laws in contact problem

model by using finite element method may be classified in the two ways described below.

1.5.1 Classical Friction Law

In the classical law of friction, there are two stages when contact occurs between

bodies: sticking and sliding. If the two bodies are at rest or moving together without 

relative motion, the two bodies are supposed to be in a state of sticking, and friction force is 

calculated by multiplying the normal force perpendicular to the contact surface with the
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static friction coefficient. If the tangential force exceeds this product, the dynamic

coefficient of friction will be used to calculate the friction force as:

F,=-^dFn^ d-15)

where fid is the dynamical friction coefficient, v, is the relative motion of the contacting

bodies.

1.5.2 Non-Classic Laws of Friction

Non-classical law friction has been well presented by Fredriksson [40] to overcome 

the physical deficiency in the contact problem encountered when using the classical friction 

law. In engineering applications, the elastic-plasticity friction model is well established 

under numerical procedures in [25], [26], [27]. During contact, the relation between the 

frictional force/, and tangential displacement u, is plotted in Fig. 1-4, where a constant

normal contact is assumed. When | /, | is smaller than the friction limit fc, the relation

between / and w, is given by:

d-16)

where Ef is the slope.

When the friction reaches the limit, the limiting value of tangential force is applied in the 

direction of tangential motion.



17

1.6 Contact Penalty Stiffness in the Penalty Method

As mentioned earlier, in the finite element method to solve contact problems, the 

penalty method has been extensively used with the explicit approach because it has a 

simple closed form and no new degrees of freedom are added to the system. It is effective 

as long as the proper choice of the contacting penalty stiffness keeps the stability of the 

system. Early work by Hallquist [28] for two-dimensional sliding contact (master/slave 

slide lines) led to the establishment of the more general three-dimensional algorithms that 

are in current use. Given the nature of sliding contact, this approach is most effective in 

the explicit finite element codes [25], [26], [27]. In its present form, the penalty method 

with master/slave surfaces is applicable to 3-D problems which include friction.

However, the penalty function method requires a penalty stiffness to be 

determined for each contacting node. The stability of the contact interference and contact 

stress distribution over the contact region largely depend on the successful choice of the 

contact stiffness a. In the master-slave searching algorithm, the accepted automatic

method for determining the penalty stiffness is based on the geometry and material 

properties of the elements associated with the master surface.

P 2
a =—(KA ) (1-17)

y m 7

where K is material bulk modulus of the element of the master segment, Am is area of the

master segment, V is volume of the element associated with master segment, and p is a
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dimensionless scale factor. The contact interference force then obtained by the product of 

the penetration and the stiffness. This method successfully overcomes the problem of the 

stability of the numerical time integration while requiring only one user defined constant.

1.7 Limitation of Automatic Penalty Stiffness Method

Although the automatic penalty stiffness method coupled with master-slave 

searching approach successfully simulates most of 3-D contact cases, it has a major 

disadvantage, that is, whenever the mesh of the slave surface is not uniform with that of 

master surface, a higher stress will occur at such contacting regions. Also, the unexpected 

higher contact forces and stress will distribute along the comers and edges of slave 

contact surfaces, this is called the stress edge effect. The reason for the stress edge effect 

is that the value of the contact force acting on the slave nodes is proportional to the 

geometry and material property of the master surface, but the transient response of each 

slave node is based on the structural and inertial property of the slave node itself. 

Furthermore, the resulting nonuniform distribution of stress over the contacting surface 

sometimes may cause unexpected noise or vibration. This may even affect the stability 

of the system in the dynamic transient solution if stress oscillates over the yield stress of 

the elastic-plastic materials.

1.8 Objectives of this Thesis

The objective of thesis is to overcome the limitation of the automatic penalty 

stiffness method, which sometimes may cause the high stress distribution along the edge
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over the contact region. This requires development of a new contact stiffness model and 

its implementation into a finite element code to test its capabilities and computation 

efficiency. Also, application of the finite element code to selection of cases is required to 

compare the results of the old and new methods, and to verify the effectiveness of the

new model.

1.9 Outline of this Thesis

The thesis includes five chapters beginning with the introduction which illustrates 

the nature of the contact problem and importance of finite element solution to the general 

contact problem. The typical topics of finite element method solving contact problems

are reviewed. And the objectives of this thesis are presented with a final brief summary of

the outline.

In Chapter two, the formulation of general contact problem is presented. The 

penalty method with the explicit transient method (central different method) is derived 

from the physical kinematic conditions and contact restraints are imposed in a closed 

form. Also, the master-slave algorithm is discussed in the 3-D contacting model. Finally, 

the friction law is presented and corresponding interface force is applied to the 

discretized finite element formulation. This chapter is the basis of the penalty method to 

solve the contact problem with the central difference approach.

In Chapter three, the contact penalty stiffness is discussed in detail as to how it 

affects the stability of the numerical solution and current methods to select it. However,
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the current method to choose the penalty stiffness raises the two questions: the stress edge 

effect and numerical inaccuracy and instability. In this chapter, the new method to select 

the penalty stiffness which can overcome such drawbacks is presented and slave area 

concept is discussed and numerical procedure is demonstrated.

In Chapter four, the selections of examples are demonstrated to verify the 

effectiveness of the new method in both the theoretical tests and the practical cases. 

Finally in chapter five, the main conclusions of this thesis are summarized along with 

some suggestions for the future work.
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Fig. 1-1 Contact Force in Two Blocks
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Fig. 1-2 Contact Pressure in Hertzian Contact Theory
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Fig. 1-4 Tangential Contact Forces as a Function of 
Tangential Displacement in Non-Classic Friction Law



CHAPTER 2

CONTACT PROBLEMS WITH PENALTY METHOD

The Lagrange multiplier method and the penalty method are two main methods to 

apply the contact constraints on the hitting bodies. The penalty method is extensively 

used, since its computer implementation is relatively simple, and no more new degrees of 

freedom are introduced into the system. In this chapter, the mathematical formulation of 

contact problems with the penalty method to define the constraints is developed and

included in the central difference approach for transient problems. Also, the 3-D master­

slave (slide-line) contacting searching algorithm is used and the friction force based on 

the plastic friction model is introduced to account for the sticking and sliding during the 

contact. Since the formulation is developed in a general form and no restrictions are 

imposed on the analysis, the whole formulation is suitable for all the 3-D kinematic 

impact problems, linear or non-linear. The explicit computational method provides the 

accurate and tractable solution to large-scale problems from the metal forming simulation 

to the machining simulation, from the crashworthy impact problems to the structural-to- 

structural interface problems.

2.1 Penalty Method for the Contact Problem

2.1.1 Governing Equations for the Contacting Bodies

25
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The general contacting system may be defined as different regions of contact in 

one body or more than one contacting body interacting with one another, and interacting 

contact may occur between two bodies or between separate regions of a single body. For 

a study model, two bodies can be introduced without losing any generality. Figure 2-1 

shows two such bodies brought into contact by the prescribed force applied on the surface 

of body 2 in a global coordinate system x, y and z.

2.1.1.1 Equilibrium Condition

For the specific time t, the equation of motion of the contacting system can be 

obtained by applying the momentum principle to the system [41], which indicates that 

time rate of change of total momentum on a particle equals the vector sum of all external

forces. On the contacting bodies, the equilibrium equations of the system can be obtained

as:

do ji

dxj
+ F: (2-1)

where z and j take on value of 1,2,3 corresponding to x, y and z directions respectively 

and summation over repeated indices is implied.

The variables in equation (2-1) are as follows:
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o is Cauchy stress components, Xj is the coordinates in x, y and z direction respectively,

X; is velocity components, Ft is the body force components and p is the mass density of

the material.

2.1.1.2 Strain-displacement Relations

According to the infinitesimal strain theory, if the displacement field is such that 

its first derivative is small and the products of partial derivatives can be ignored, then 

infinitesimal strain tensor is given by

(2-2)

where the comma indicates differentiation such that m, is partial derivative of M,with

respect to x .

2.1.1.3 Constitutive Equation (Stress-strain Relations)

A constitutive equation associates the stress with strain in deformed bodies. And 

such relation totally depends on the property of materials. For a fully isotropic material, 

elastic properties are the same in all directions. The Hooke’s law governs such relations

as:

C’,y=>i-<5..£tt+2/ze,y (2-3)
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where f kk is hydrostatic components of the strain, etj is deviatoric components of the

strain, is the Kronecker’s delta, and A,// are Lame constants defined as

A =------------------ u =---------- (2-4)
(l + v)(l-2v) 2(l + v)

In equation (2-4), E is Young’s modulus and v is Poisson’s ratio.

For the elastic-plastic material, an incremental stress-strain relation will be used in 

the range of plastic state according to the plasticity theory [42],

{¿<7} = [E W} = [£]( {de} - {de p}) (2-5)

where {Jo}is the stress increment, {dee}is the elastic strain increment, {de} is total

strain increment and {dep} is plastic strain increment.

By applying the associated flow rule of plasticity for the ductile metal, the plastic

strain increment {dep} can be expressed as

3F
da

}dA dA = {C,}{de} (2-6)

where dA is a scalar called plastic multiplier, F is the yield function which is a function 

of stress {a}, W is plastic work and a is a hardening parameter given by

F(o,a,Wp) = Q (2-7)
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According to the yield criterion, to satisfy the constitutive law, dF must be no

greater than zero (dF < 0), or in other words, the stress component can not overpass the 

yield surface. The mathematical expression of yield criterion is as follows:

dF =
dF
da

[a} +
dF

dW,
rdWp = 0 (2-8)M +

p J

The combination of equation (2-6), (2-7) and (2-8) gives the way of stress 

increment calculation when material enters the regime of plasticity. The finite element 

method to calculate the stress for the elastic-plastic material can be found in [15] and

[16].

2.1.1.4 Continuity Conditions

The contacting bodies must satisfy the continuity condition of motion which is 

given as in [41].

p + p^ = Q (2-9)
dX;

In absence of mass transport, the continuity equation is given as:

p'V' = pV (2-10)

where p' ,V‘ ,p, and V are the density and volume at time t and at initial configuration

respectively.
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2.1.1.5 Boundary Conditions

The contacting bodies must satisfy the kinematic boundary condition and traction 

boundary condition at time t on the boundaries.

«,'=</' o,y«7=^ (2-11)

where d' is imposed displacement at time t, rij is unit outward normal to the boundaries

and Pt is the tractions applied to contacting bodies.

2.1.1.6 Contact Conditions

For a pair of contacting bodies (Fig. 2-1), a jump condition must be satisfied

along the contact discontinuities as:

(<T,y - <T(y )n,j =0 on boundary (2-12)

where denotes the normal vector of the contacting bodies, <7,y,<T,y are the stress

component on the contact surface, and the superscripts “+” and denote the two sides 

of a contact surface representing body 1 and body 2.

2.1.2 Discretization of Governing Equations

The previous section defines the differential equations and boundary conditions 

which are called the strong form governing the conditions for the contacting system. The 

analytical solution for differential equations rarely can be achieved in the contact problem
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because of the complicated geometric configuration and contacting constraints. An 

integral expression (weak form) which implicitly contains the differential equations 

coupled with numerical techniques provides the possibility to solve such problems. This 

is the basis of the Finite Element Method. Typically, there are two ways [15] to get the 

discretized governing equation in Finite Element Methods: Variational Formulation 

Method and Weighted Residual Method. The Variational formulation is based on the 

principle of stationary potential energy which has been discussed in Chapter one. Here,

the weighted residual method (Galerkin Method) is used to derive the discretized 

governing equation for the contact problem since the equilibrium and boundary

conditions may be considered directly without the need to derive the functional of

deformed contact bodies for the variational formulation method. The weighted residual

method provides an approximate solution for a governing differential equation whose 

exact solution is difficult to determine. Suppose for an arbitrary physical system, the 

governing equation and boundary condition are symbolized as

Du- f = 0 in domain V

Bu-g-0 on boundary S of V (2-13)

If an approximate solution u can be found to make the residual of equation (2-13)

small enough, then u can be used to project the exact solution of the equation. Normally,

u interpolates as a polynomial function, u = u(a,x). For the specific a, the residual may
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vanish for some value of x, but they are not zero for all x, except when u is the exact

solution.

The equation governing the dynamic response of the contacting bodies can be 

directly derived by using the Galerkin method of weighted residuals [15]. For the 

contacting bodies, the residual function for the equilibrium equation (equation 2-1) and 

boundary and contacting conditions (equation 2-9, equation 2-11) can be expressed in the

weak form as

R = Rv + Rh =0

where N is a weighting function, x and <7,y are the approximation function of the x, and

cr respectively.

Since N

and from Gauss’s Theorem, the integral of the divergence of vector over a volume

bounded by a closed surface is equal to the integral of the outer normal component of the

vector over the closed surface,

(2-15)
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Substituting equations (2-15) into equation (2-14), the weighted residual becomes

•dNR = fNp^dV + - fNFtdV - fNPds = 0
Jv K At Jv^r 1 Jb ‘ Jbdt Jvdx

(2-16)

For all the elements, the equation at time t becomes

(2-17)

If the weighting function N is chosen the same as the interpolation function for the 

displacement field, velocity field and stress field, then

(2-18)
7=1

and the discretized governing equation will take the form

The discretization of governing equations for the dynamic contact analysis can be

rewritten in a form as

M—+F' =F'
dt ,nt ext

(2-20)

where the mass matrix are defined as



34

(2-21)

and internal force and external force are defined as

(2-22)

(2-23)

2.1.3 Contact Restraints in the Penalty Method

As discussed earlier, the contact problem is characterized by contact restraints 

which must be imposed on contacting boundaries when the contact occurs. In the penalty 

method, penalty forces as the contact constraints will apply to contacting bodies when 

two bodies come into contact. The contact constraint equations are introduced into the

governing equation through the penalty force f as follows

(2-24)

where a is the contacting penalty stiffness, which will be discussed in detail in next

chapter, un is a vector of displacement normal to the contact boundary bc, and<5d is the

initial gap between the contact surfaces.
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Equation (2-20) coupled with contact penalty constraint equation (2-24), provides 

a simple implementation for the contact problem when the contact occurs. The resulting 

equation of motion including the contact force is

(2-25)

2.2 Master-Slave Searching Algorithm

In the solution of the contact problem, the searching procedure to locate hitting 

nodes and potential contacting targets is very important since it will determine the contact 

constraint force and will influence the efficiency of the numerical solution. The master­

slave algorithm provides an efficient way to incorporate the 3-D contact /impact surface 

undergoing the separation and overlap. The contacting region is described in terms of a 

master-slave pair of surfaces (Fig. 2-2). One surface is designated as the master surface 

and the other as the slave surface. In this contact searching algorithm, the slave surface 

(hitting boundary) and master surface (the target boundary) are specified prior to the 

solution of the problem. Only the predefined contact nodes on the slave surface (slave 

nodes) are checked against the contact segment on the master surface to search contacting 

nodes of the hitting boundary. Undefined nodes are ignored in the procedure of 

searching.
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2.2.1 Master Segment Searching

In contact searching, slave nodes are tested against the corresponding master 

segment, and if any penetration is detected, the contacting constraint condition (equation 

2-24) is activated during the current iteration and contact force is applied to the 

contacting slave nodes and master segment. The searching procedures consists of four 

main steps:

1) Search the closest master segment for specific nodes.

2) Test for the penetration and determine the slave node penetration point on the master

surface.

3) Calculate and restore the interface force.

4) Modify of system internal force and friction force to account for contact conditions

Of all the steps for the contacting search, the search for the master segment 

closest to the slave node is the most important. Prior to testing for contact, a search is 

performed for the master surface in proximity to the slave node which includes two main 

basic steps:

1) Find the closest master node nm to the slave noden5

2) Determine which of the master surfaces associated to nm is closest to ns
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In application of searching, a hitting node must not pass more than one master 

surface in one time step. Otherwise, the algorithm may lose track of which master 

segments are near hitting node and contact will not be detected.

For each master segment, a territory is defined as shown in (Fig. 2-3). By 

definition, the territory of master segment is defined by domain which is created by the 

master nodes in the plane. The segment is defined to have a positive side and negative 

side. The positive side of the master segment is the side on which contact may occur. The 

definition of the positive side is arbitrary as long as the normal vector of the master 

segment is in opposite direction of the slave segment.

A slave node is assumed to be in contact with master segment if following condition is

satisfied:

-¿„<¿<<5, (2-26)

where <5rf,<5pare controlled distance and controlled penetration for the contact

respectively, and ¿> is the penetration function of slave node to the master segment. The 

control distance ¿d can be set to zero or a non-zero value which accounts for the 

thickness of shell elements when the contact occurs. The control penetration ¿p is

discussed in detail in the next chapter.

After the above condition is determined, the following test must be conducted on 

master surface connected to nm:
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1) Test hitting slave node in the domain of the corresponding closest master segment

(Fig.2-4)

(AxS,+1)-(5,xS,+1)>0

(S(.xA)(S,.xS,.+1)>0 (2-27)
(S,.xA)(AxS,.+1)>0

where 5,, Si+1 are the master segment edge vectors, E is vector from master node nm

to slave node nsand A is projection of vector £ onto master segment.

At least, two of these three conditions must be satisfied to ensure the slave node either

ns lies in the master segment Mi or on one of the edges.

2) In some cases, more than one master segment satisfies the above inequality. For 

instance, the slave node lies in the comer of the two master segments which is 

perpendicular to each other (Fig. 2-5). In this case, a surficial contact test is needed.

The minimum normal surficial distance is used to determine the candidate master

segment.

3) In other cases, the slave node or its projection onto the master segment lies on the

edge of the master segments. In this case, the following equation is checked.

A-Si

|5,|
= max 

i=i,NM

A-S, (2-28)

where NM is the number of master segments related to the master nm
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The segment edge S, corresponding to the maximum value is the required

intersection and the master segment containing edge S, will be the target segment.

2.2.2 Interface Contact Forces

Once the above searching phase is complete and corresponding master segment 

and slave node pairs are determined at time t, the contact conditions of slave node with 

the master segment are tested with:

¿<0 é=E*b (2-29)

where b is the average normal of master segment.

When penetration is detected for the specific hitting node, the interface forces are 

applied to this slave node and master segment according to the equation (2-24).

The discretized forms of the interface forces are as follows:

1) Interface forces at the slave node for the corresponding master segment

bx
Fs = -<5cdz?2 ► 

A.

(2-30)

2) Interface forces at the master segment node j
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Fmj = ôaN] (2-31)

where N} are the bi-linear interpolation functions for the master segment.

For the slave node, the interface force is directly added to it once the penetration 

occurs. Interface forces acting on the master segment must be properly weighted on its 

nodes. The interpolation function provides the proper distribution of the interface at each 

node of the master segment. Normally, the bi-linear interpolation function N} can be

used to obtain the simple interpolation of interface force at specific hitting point on the 

master segment to the four comers of the master segment.

2.3 Friction Model

In the master-slave model, the frictional condition existing between the pair of 

contacting surfaces is determined by the relative magnitude of the normal and tangential 

force at the contacting surface. In other words, the tangential friction force is associated 

with the normal contact force. The friction forces are generated to resist the relative 

sliding motion of contacting master-slave surface. When the slave nodes are detected to 

penetrate the master segment, the incremental contact force is evaluated using the penalty 

stiffness multiplied by the difference in the tangential movement according to

-i+Ai -tAF = a(E - E )

-i+Af -f - 
Fc ~ Fc + &FC

(2-32)
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The total contact forces must be resolved into normal and tangential components.

The resultant tangential forces are then compared to the maximum frictional force fiFN ,

where /z is the friction coefficient and FN is the normal force. If the tangential forces

are less than ¿¡FN, the slave node keeps sticking along the master segment. Otherwise, the

slave node slides relative to the master segment.

For sticking /z | FN |>| FT |

For sliding

The condition for the friction forces can be stated as

F, =4f-jmin(|fr I) (2-33)
T I

This friction model is a similar to an elastic-perfectly plastic model. However, in the 

contact problem, especially in forming processes, the tangential forces along the 

contacting surface in the large deformation sometimes may exceed the yield shear stress 

of the material, causing unrealistically high shear stress distribution along the contacting 

surface. Therefore, a third criterion [26], [27] is used to limit the friction force according

to the shear strength of the material. Then, equation (2-33) is augmented to

I
(2-34)
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where the Fshear =1A, I is the maximum shear stress of the material and A is the area

relating force to stress which will be discussed in the next chapter.

2.4 Numerical Explicit Integration

The general equation (equation 2-25) for the contact bodies using the penalty 

method is a coupled differential equation system called a finite element 

semidiscretization because, although the displacements are discrete functions of space, its 

velocity and acceleration are still continuous function of time. For its solution, a 

numerical integration method is required. The central difference (explicit) method, which 

is commonly used in engineering analysis, is used for the time explicit integration of the 

semidiscretized motion equations.

2.4.1 Central Difference Operator

The central difference method [15] approximates velocity and acceleration by

expanding the Taylor serious about time t in a mid-step formula to obtain

{x}i+Af/2 = [x},_Ai/2 + Afix}' + O(Af2) for velocity

{x}r+Al ={x}'+Af{x}'+A'/2+O(Af2) for coordinates (2-35)

By ignoring the higher order terms, equation (2-35) becomes

{x},+A,/2 = [x},_Ai/2 + Af{x}
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{x}'+Ai ={%}'+Af{x}'+A,/2 (2-36)

Combining the equation (2-25) with equation (2-36) then,

{x}'=M-1[Fe'(-Fi't+/J (2-37)

To solve the equation effectively, the diagonal lumped mass is chosen to provide an 

easily invertible M.

2.4.2 Procedure for the Central Difference Method

1) Calculate the acceleration for the time step t

{x}'=M-‘[Fe',-F't+/p]

2) Calculate the current time step Az

3) Calculate the velocity and acceleration

{i}'+A,/2 ={i}'-A,/2 +Az{x}'

{x}'+Ai ={x}'+Az{x}'+a,/2

4) Update time t + Az

5) Update the internal forces F/(Af contact forces {/p}'+Ai

6) Repeat stepl to step 5
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The flow chart is present in the (Fig. 2-7)

2.4.3 Time Stability

In each time step, to keep the stability of the system, the critical time step based on

the Courant stability of limited Azrr < 2 / is applied, where Q)^ is the highest

frequency of the contacting system. Care must be taken in using the penalty method to 

solve the contact problem in explicit procedure (central difference method). The penalty 

method introduces penetration which can be controlled by choosing the penalty stiffness. 

However, the penalty stiffness contributes to the stiffness matrix but not to the mass matrix, 

which will cause the frequencies to go up. Therefore, the critical time step will in general 

decrease when the contact forces are introduced into the system. The amount of such 

contribution depends on the penalty stiffness. The larger the penalty stiffness, the more the 

critical time step size is likely to be reduced.

The reduction of time step directly influences the computation time and efficiency. 

Therefore, the proper selection of the penalty stiffness in the central difference method to 

ensure that time step Ai is not reduced too much when contact occurs will determine the

success of the numerical solution.
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Fig. 2-1 Contact of Arbitrary Bodies
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Fig. 2-2 Master-Slave Surface Concept
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Fig 2-3 Master-Slave Surface Definition
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Fig 2-5 Surficial Contact of Master Segment Search
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Fig. 2-6 Contact Friction Forces
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Fig2-7 Flow Chart of the Central Difference Operator



CHAPTER 3

CONTACT PENALTY STIFFNESS

Since the penalty method does not introduce unknown variables to the system, it 

becomes the most effective way to use the explicit method (central difference method) to 

do analysis. However, the contact penalty stiffness must be properly chosen to avoid the 

instability of the system, which is caused by the changing of the system stiffness with the 

addition of the penalty constraints. In this chapter, the effects of the contact penalty 

stiffness on calculation efficiency are discussed, and the new contact stiffness model is 

presented to overcome the drawbacks which are raised by the current approach.

3.1 Penalty Method in the Explicit Method

The success of the penalty method in the explicit approach to solve the contact 

problem depends on two factors. One is the finite mesh size which will influence the 

penalty method efficiency in the contact problem analysis. A fine mesh layout of the 

model means the small length of the elements for analysis. In the central difference 

method, the stable time step is controlled by the high frequency of the finite element 

model, which is closely approximated by the upper bound:

(3-1)

52
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In equation (3-1), c is the acoustic wave speed which is the speed of the sound traveling 

through the element, and L is the minimum of the length of element in the finite element

model.

Basically, this relates the maximum frequency to the time for a wave to traverse 

the smallest element. As the size of element goes smaller, the highest frequency of the 

system goes up, and it needs much smaller time step to keep the stability of the system 

solution. This results in a large number of time steps during the analysis.

Another factor which influences the efficiency of the penalty method in the 

explicit procedure is the contact penalty stiffness. The contact stiffness in the penalty 

method greatly influences the performance of the contact behavior. Since the penetration 

in the penalty method is controlled by the value of penalty stiffness, the accuracy of the 

solution using the penalty method largely depends on the choosing of the stiffness. In the 

explicit analysis, too small penalty stiffness may result in a big penetration and cause 

unacceptable results. The penalty stiffness must be big enough to control the penetration 

under a certain desirable level. However, too large penalty stiffness may produce many 

numerical problems in the solution or even make a solution impractical. In the analysis, 

an increase in the penalty stiffness results in the decrease of the critical step. As the 

penalty stiffness goes to infinity, the time step must approach to the zero to keep the 

stability of the solution. So the successful application of the penalty method in the 

explicit approach depends on how to properly choose the penalty stiffness to keep the 

stability and efficiency of the analysis procedure at the same time.
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3.2 Automatic Determination of Penalty Stiffness

The problem-dependent characteristics of contact make a good estimate of 

penalty stiffness difficult. As the contact stiffness a acts as a linear compression spring 

when the penetration occurs between the master and slave surface, the value of a may 

reduce the time-step that can be used to guarantee the stability of the explicit time 

integration. Also, the problem-dependent characteristics make it difficult for the users to 

properly choose the stiffness.

To overcome such drawbacks, the typical way in [25], [26] and [27] to obtain the 

penalty stiffness is to relate the stiffness with the geometry and material properties of the

master surface. For master surfaces attached to solid elements,

P 2 
= ~(kX ) 

V m
a (3-2)

where K is material bulk modulus of the element of the master segment, Am is area of the

master segment, V is volume of the solid element associated with master segment and ft

is scale factor (a dimensionless parameter). A commonly used default value of /5 = 0.1 is

suitable if meshing of master surface is identical to that of slave surface and contacting 

bodies are of materials with similar stiffness. This contact penalty stiffness applies to the

three-dimensional linear continuum hexahedron finite element formulation. For the linear

continuum shell element, the penalty stiffness takes form as
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a = pKk 4. 4 4
hk ’|Vta I’IVml I

(3-3)

where hk is the thickness of shell element associated the master segment k, and V kn, V„,i

are the two lengths of the diagonals of the shell element of the master segment k.

Since the penalty stiffness of equation (3-2) and (3-3) is based on the geometry 

and material properties of the element which is associated with the master segment, the 

magnitude of the time step remains almost unchanged for the iteration in the explicit 

method if the meshing of master surface and slave surface is uniform. Thus, it will not 

affect the stability of the system and the efficiency of the solution. During each time step, 

after obtaining the penalty stiffness, the interacting contact forces are then obtained by 

the product of penetration and this stiffness, which usually provides acceptable contact 

characteristics without disrupting the conditional stability of explicit time integration

scheme.

3.3 Problems of the Automatic Penalty Stiffness

The automatic determination of penalty stiffness works well for most of the 

contact problems. However, this method of determining contact stiffness raises two 

problems.

1) Nonuniform contact pressure occurs at edges or regions of mesh transition (fig. 3-1). 

Since the interface forces are associated with the geometry and mesh size of the 

master surface, the corresponding force acting on the each slave node will be
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proportional to the master area property, but the structural and inertial properties of 

the slave nodes depend on the slave surface geometry. This will cause nonuniform 

response of the slave nodes to the corresponding contact forces such that stress will 

be higher at comers and edges of a slave surface, the stress edge effect. Similar 

nonuniformity can also occur at mesh transitions for the same reason as mentioned 

above. The occurrence of higher stress at edges can cause premature plastic 

deformation even when nominal contact pressure should result in elastic response. In 

such cases, equilibrium may be difficult to reach and the contact force may be

observed to oscillate.

2) The distribution of friction forces along the contact surfaces can be adversely affected 

since the stick/slip condition may be erroneously determined due to the 

nonuniformity in contact pressure arising from point 1 above. The reason for this is 

that in the master slave searching approach, the friction force is directly associated 

with the contact force which has been discussed in chapter 2.

3.4 New Contact Stiffness Penalty Model

The new contact stiffness model is developed on the basis of elimination of the 

stress edge effect over the contact region and reaching the uniform pressure condition 

along the contact surface even for nonuniform meshing of the master surface. Since the 

dynamic response of each slave node is proportional to its inertial property, if the 

interface forces (controlled by the penalty stiffness) can be associated with the mass 

property of the slave nodes, the response can also be consistent and uniform pressure
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condition can be reached without considering the mesh of the master segment. In this 

thesis, a new method to select the penalty stiffness is developed. Other than to associate 

the contact penalty stiffness with the corresponding property of master segment, the new 

stiffness depends on the material property and the geometry of slave surface. It still keeps 

in mind the need to maintain the stability of the explicit integration. The new contact

stiffness is calculated as

Sref

where Pref is the reference contact pressure normally defined to be less than the normal

yield stress of the material of slave segment, Sref is the reference penetration 

corresponding to a contact pressure of Pref , and As is the area associated with each slave

node.

The concept of As is as follows (Fig. 3-2): For the linear continuum quadrilateral

elements (solid or shell), the slave node area is a discrete representation of a continuous 

distribution of the slave surface. The slave node area is obtained by proportionally 

placing the area of the each element at the nodes that are associated to the element, such

that the sum of the slave node area of the element is the total element surface. The sum of

all the slave areas for the specific slave node will form the total slave node area for that 

slave node. For example, the slave node area of node P takes the areas from elements
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1,2,3,4- The slave node /? will take the area from the element land element 4 and Q will

only take the area from the element 3.

An efficient calculation of the area of the quadrilateral element is presented by 

Liu W. K. in [43]. Here, an approximated area calculation of quadrilateral element has 

been used. It is supposed that four node in the slave segment takes the same amount area 

that is the quarter of the area of the slave segment. To account for the warped 

quadrilateral element, the slave segment are divided into two triangles, the sum of the 

areas of the triangles approximates for the space area of the warped element. The 

efficiency of the calculation of slave node area in the explicit method is not a problem 

since a criterion to update the slave node area can be set during the analysis, say, 2

percent or 5 percent of the distortion of the slave area will activate update the slave node

area.

Since the contact stiffness in each contact set is associated with the

corresponding slave node areas, which are proportional to the value of structural and 

inertial properties of each slave node under uniform bodies, it is expected that dynamic 

response for each slave nodes during the contact remains consistent. This will avoid the 

stress edge effect as mentioned before. At each time iteration, friction forces are also 

detected and compared with the normal forces, since the friction forces are associated 

with the motion of the salve node along the master segment, such forces are proportional 

to the contact forces during the sticking state or to the limiting friction if sliding is going
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to happen. So, this method can also keep a uniform friction force distribution along the 

contacting surface when surfaces are set at the sticking state.

The application of this new method must take into consideration the magnitudes 

of the reference contact pressure and reference penetration since the reference contact 

pressure and its associated reference penetration are defined by the users. If the resulting 

value of a ends up being too small, excessive penetration of slave nodes into the master 

segment may occur which makes the solutions improper. If the penalty stiffness is too 

high, the time step required for stability may be prohibitively small in the explicit method 

and may lead to slow convergence or even makes the solution impractical when the 

penalty stiffness is much higher than the stiffness of the contact system itself.

3.5 User Perspective

The new approach of selecting the penalty stiffness gives the user more options to 

control the contact performance than the automatic penalty stiffness. The users have to 

define the reference penetration and reference contact pressure for each contact set. 

Since both variables have clear physical meanings according to the actual contact 

conditions, there should be no difficulty to make such a selection.

For the reference penetration 8ref, it is a problem-dependant parameter. For

example, in most cases, it can be a fraction of the element depth below the contact 

because during the contact, maximum penetration is not expected to pass over one 

contact element, otherwise it might cause the ill-conditioning of the analysis. Also, it can
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be related to geometric tolerance of surface roughness of work piece in machining 

process since such selection would not affect nominal dimensions and would be

consistent with actual situation.

For the reference contact pressure Pref , it should be associated with the material

property of the slave surface. For example, the reference contact pressure ^ref should be

less than the yield stress of the slave element material. Such a definition will limit the 

contact surface to be undergoing the excessive pressure which may even exceed the yield

stress of the contact bodies.

The new way to select the contact stiffness is based on the geometry and material 

property of the slave surface during each iteration. While the time stability is not any 

more difficult to reach compared with the automatic penalty stiffness. Care must be taken 

to consider the time step during the analysis. As discussed earlier, the penalty stiffness 

can increase the frequency of the system, so the time step will reduce with the 

introduction of new penalty stiffness. Since the users will control the penalty stiffness, 

the improper selection of an excessively small reference penetration Sref or a high

reference pressure may greatly reduce the time step. In some circumstances, the 

compromise between efficiency and accuracy could require careful consideration to get 

job done. Overall, the new way gives the users more possibilities to control the contact 

performance.
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3.6 Implementation the New Approach into F.E. Code

The new approach to calculate the penalty stiffness described in the preceding 

sections has been implemented into the explicit module of three dimensional non-linear 

transient dynamic finite element computer code H3DMAP 6.2. In order to achieve 

maximum versatility and make it open for further development, H3DMAP has been 

organized in a modular form. Owing to its open architecture, it is possible to modify the 

program by simply inserting new modules and adding the new variables to the global

array.

3.6.1. Algorithm Data Structure

In the H3DMAP, the contact data structure is set up the contact algorithm data 

manager (COMMON) subroutine. The addressees which point to the specific location 

within a single dimension array, A(I), are calculated from the problem input parameters. 

All the program array variables are contained in this array. The amount of memory 

required varies with the size of the problem considered. For new variables, such as the 

reference penetration, reference pressure, maximum shear stress and control parameter, 

the unique addresses must be assigned to them by predefining the “A” array.

3.6.2. Module Functions

In the H3DMAP, the contact algorithm module fits into the framework of explicit 

code architecture. The various subroutines, from which the contact algorithm is
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comprised, are shown in figure 3-3. The implementation of algorithm occurs in three

steps:

1) Contact data input and array initialization

CONMAN: contact algorithm manager which sets up the address of the appropriate 

variables in global array “A”.

Subroutine CONMAN has been expanded to set new addresses to the “A” array for the 

new variables: reference penetration, reference pressure and maximum shear stress.

CALIN1, CALIN2, CALIN3: reads the contact algorithm control information and

master/slave definition for each contact set.

Subroutines CALIN 1, CALIN2, CALIN3 have been modified to read the data of new

variables.

2) Initialization of contact parameters

CALI1, CALI2: match master surface segments to element sides and initialize the contact 

search algorithm.

Subroutine CALI1 has been modified to trigger the new penalty stiffness calculation if 

the control parameter is selected.

3) Solution phase
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CALI: loops over all slave nodes in a contact set, and searches for current closest master

segment.

CAL2: checks for penetration of slave nodes into a designated master surface found in 

search phase (CALI). For contact, the point of penetration within a segment is found and 

internal element force vector is updated using calculated interface forces.

The new subroutine SLAVEAREA is added into the EXPRES module. The

SLAVEAREA calculates the slave node area and corresponding new penalty stiffness 

according to the current geometry of slave surface. The new contact stiffness is called by

the CALI and CAL2 to account for the new interface force calculations. Also the CALI

and CAL2 have been modified for the new computation of contact forces.

Since H3DMAP is organized in modular form, the other modulars such as 

nonlinear creep analysis can successfully call the proceeding modified subroutine without 

any other modifications. Therefore, the new penalty stiffness method has become an 

additional option available for the general application of the finite element code.
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Fig. 3-2 Slave Nodes Area
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Fig. 3-3 Contact Algorithm Module Structure



CHAPTER 4

EXAMPLES

In this chapter several test cases are presented to compare the effectiveness of the

contact stiffness in the new method with that in the old method. Both frictionless and

friction models, and uniform meshing and nonuniform meshing models are studied. It 

should be noted that three of the test cases just present the effectiveness of the new 

method, so much simplified models are selected to make such comparisons easily and 

clearly. Also, the two other practical and more complicated examples are presented to 

show the application of the new method in realistic modeling situations. One case is the 

clamping simulation during the punching process, which shows how the new method can 

avoid the numerical noise to keep the stability of the system. The other one is the rolling 

process which shows the uniform shear stress distribution over the rolled plate in the new 

method, the results of which are consistent to the analytical solution in the metal forming 

process [44], All the examples are performed on the contact algorithm developed for the 

explicit finite element code H3DMAP [46] with relative modification on the contact 

stiffness calculation, the method of which is presented in Chapter 3.

4.1 Test Cases

4.1.1 A Cube Block Compression without Friction

4.1.1.1 Finite Element Modeling

67
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A cube block compression test (Fig. 4-1) is used to test the contact algorithm

between the shell and solid contact. In the test, the block (0.2x0.2x0.2m cube) is modeled

as four solid elements. The compression plate (master surface) is modeled as a single 

shell element. Such simplification will make comparison relatively easy for two reasons:

1) All the reacting contact stiffness between each slave nodes and master segment 

will be exactly the same for one single master segment definition during the 

process of transient response. This makes the slave surface property (the mesh 

size and material property) the only fact influencing the contacting forces and

makes the comparison easy.

2) If the plate is modeled as numerous shell elements, warped shell might occur 

during contact with initial velocity loading since the reacting contact force is 

different.This makes the final results incomparable, and single shell avoids such

influence.

In this simple test, the initial velocity (5 m/s) in the negative y direction 

(downward) is applied to the four corners of this single shell element. The top surface of 

the cube is modeled as slave surface and the bottom is fixed in all directions. As the plate 

drops down, the contact reaction occurs when the slave nodes penetrate the shell (master 

segment) and corresponding contact force will apply to the slave nodes and single shell 

element. The contact force will increase as the penetration goes up, so the kinetic energy 

of the shell element will reduce until that it bounces back. Also, the contacting force on 

the slave nodes will cause the deformation of the block (solid element) and internal solid

https://0.2x0.2x0.2m
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energy will increase in the range of the elastic plastic field. In this test, the block is 

modeled as elastic perfectly plastic material and the shell is elastic. The thickness of the 

shell element is 0.01m. In the new method, the reference contact pressure is set below the 

yield stress of the solid material, the reference penetration is set at one tenth of the 

thickness of the element below the contact surface. The transient analysis is done by 

comparing both methods at a time (0.007 second) well after the single shell element has 

bounced back. Also, one of the four solid elements is selected to present its stress 

response during the whole process. Such analysis would not lose the generalization since 

the four elements show the same dynamic response during the compression.

4.1.1.2 Results and Discussion

The comparison of Von Mises stress in both methods (the contact stiffness 

defined by the master property and contact stiffness defined by the slave node property) 

(Fig. 4-2 and Fig. 4-3) at the time of 0.007 shows a great difference of stress distribution 

on the contact surface. For the method of which the stiffness is defined by the master 

geometry, the highest stress occurs on the four comers and the center of block shows the 

lowest stress, the typical stress edge effect. The new method pictured in figure 4-3 shows 

a very uniform stress distribution over the contact surface since the transient response of 

the slave nodes caused by the contact force is proportional to the structural and inertial 

configuration of the slave nodes and that is also consistent with analytical solution of 

stress distribution for the non-friction model. The quantitative comparison of the two 

methods is difficult since the penalty stiffness cannot be precisely matched. It should be
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noticed that since the transient solution is used on this test, the stress on the contact

surface should vary with the different time interval but at the specific time, the response 

of the contacting force on the slave nodes should be exactly the same for all the nodes in

this frictionless model no mater where the slave nodes is located.

The comparisons of stress dynamic response of one of the four solid elements 

(element 3) during the whole contacting process show more interesting results. In figure 

4-4 and figure 4-5, the von Mises stress shows a different variation for both methods 

during the period of 0.007 second. For the old method, the von Mises stress keeps 

vibrating with different amount of amplitude after the plate bounces back when the 

contact is finished. Such results are caused by the difference of stress distribution on the

four corners and the stress at the center even in one element. Such unbalanced stress

dynamic response in one element will cause the numerical noise even after the contact

finish since the nodes fail to reach equilibrium for the transient analysis. In the new 

method, the stress amplitude during the response is almost the same since all nodes in 

each element keep the same response because of the new way of applying the contact

force.

4.1.2 A Cube Block Compression with Nonuniform Meshing and without Friction

4.1.2.1 Finite Element Modeling

The model of this test is similar to the previous one but the solid block is modeled 

as solid element with bias meshing (Fig. 4-6) and elastic plastic material is used in this
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case. The block is modeled as elastic plastic material with the yielding 500 MPa. The

shell is elastic with the thickness 0.01m. In the new method, the reference contact

pressure sets as 6 MPa and the reference penetration 0.003m. The loading is controlled 

by the constant velocity applied (5 m/s) to the four corners of the plate in the negative y 

direction (downward) during the first 0.058 second. After that, the constant velocity 

reduces smoothly to zero. Such loading will maintain the desired displacement control.

Also, the transient analysis is done by comparing both methods at a time (0.007 second). 

Since biased meshing is used for the slave surface, the stress distribution will be partly 

affected by such mesh patterns.

4.1.2.2 Results and Discussion

Compared to the stress results of the uniform meshing (Fig.4-2), the distribution of Von 

Mises stress in the figure 4-7 shows an unsymmetrical distribution. The high stress 

occurring at the finer meshed elements (the right top side of the block) is almost five 

times the stress at the center, and the stress on the left side is below the stress on the right 

side. The meshing pattern of the slave surface accounts for such a difference since the 

slave nodes will take the same amount of contacting force from the single master shell

element but the masses of the slave nodes are not uniform. It is obvious that in the old

method, meshing is an important factor for the stress and the slave surface meshing size, 

and the meshing transition will affect the stress distribution over the contact surface. 

Taking a look at the stress distribution on the whole contact surface, note that the model
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should respond elastically for the given displacement, but stress in the old method (Fig. 

4-7) has encountered some yielding (500 MPa) at the comers with small elements.

The new method pictured in Figure 4-8 shows a very uniform stress distribution 

over the contact surface, while the slight stress difference along the cube block is due to 

stress wave propagation from the top surface to bottom due to the explicit transient 

solution technique which is undamped in these examples. Note that the model correctly 

responds elastically for the given displacement.

4.1.3 Cube Block Compression with Friction (Uniform Mesh)

4.1.3.1 Finite element modeling

This case (Fig. 4-9) tests the shear stress distribution along the contact surface

caused by the friction force. The finite element model is similar to the first test case 

except the friction coefficient is applied between the single shell and block with the static 

friction coefficient 0.17 and dynamic friction coefficient 0.13. The material for the solid 

is still elastic perfectly-plastic and the shell is elastic. The reference contact pressure is 

set to 80 MPa, and the reference penetration 0.001m. The loading of the test is in two

steps:

1) Constant vertical velocity (5m/s) is applied to the four comers of master surface 

during the first 0.0041second in the negative y direction (downward) and keeps 

such displacement during the next step loading.
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2) Then, constant velocity (5 m/s) in the horizontal direction (x direction) is applied

to the shell element.

Such loading can keep a constant displacement on the single shell. Since there is friction 

between the shell and solid element, horizontal loading will convert to shear stress on the

solid contact surface. Examining the shear stress on the top surface of the solid can reveal

the different results between the two methods because the shear stress is also associated

with motions of the slave nodes, and slave node motion is directly associated with the 

contact force and contact stiffness as discussed in Chapter 3. In order to get pure shear 

stress that is completely created by friction, periodic symmetry is applied on the four 

vertical surfaces of the cube block to constrain any volume change that occurs during the 

compression stage of loading. In this case, sticking is supposed between the contact 

surface and the friction coefficient is chosen to avoid relative sliding of the contact 

surfaces with respect to each other.

4.1.3.2 Results and Discussion

The shear stress plot (Fig. 4-11) of the modified contact stiffness for the friction 

model shows a uniform stress distribution in the X-Z plane. Since the friction force is 

directly associated with shear stress and the friction force is proportional to the contact 

force acting on the slave nodes, it is clear that the suitable values of contact stiffness 

a have maintained the uniform distribution of the contact pressure necessary for the 

corresponding uniform shear stress. For the original method (Fig. 4-10), the distribution 

of the shear stress shows a gradient from the left to the right. This is because the
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compression step causes higher stress at the corners and horizontal motion of the master 

segment creates friction force accounting for the higher accumulated shear stress in the 

left comer than that in the right side. The stress difference is almost doubled.

Figures 4-12 and 4-13 show the contact force variation in the x direction (the 

direction of shear) during the whole period of time (0.007) for one of the elements. Such 

contact force is proportional to the shear stress since it causes the block to shear. Both 

methods demonstrate the similar trend during the loading period. However, the contact 

force variation in the new method is smoother during the loading process, this is because 

the selection of the penalty stiffness accounts for such a uniform distribution in the new 

method. Also, the magnitude of contact force is incomparable since the method to define 

the penalty stiffness is different.

4.2 Sample Studies

4.2.1 Clamping Simulation for Punch Test

4.2.1.1 Finite Element Modeling

The punch process is a typical multiple-contact problem with extensive 

application in the industry. During the process, four sets of contact are introduced: 1) 

punch and work piece. 2) work piece and die. 3,4) work piece clamping (upper surface 

with blank holder and bottom surface with the blank holder). In the punch test example 

previously considered in [47], the clamping of a flat specimen was prone to excessive 

noise from the contact surfaces which may cause error in the plastic strain accumulation.
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The punching process (Fig. 4-14) is modeled as follows: The simulation uses a one 

quarter model according to the planes of symmetry on the long vertical edge in view in 

figures 4-14, the left end of the specimen (4xl0x.47mm). The punch and die are both 

modeled as shell elements and the upper blank holder (also shell) clamps the specimen 

(model as a solid element) in the stage of the clamping by way of the vertical pressure 

applied to the blank holder which contacts the top surface of the right half of the 

specimen. Support from below is through contact with a rigid lower die. After the initial

clamping is finished, the motion imposed on the punch pushes the punch through the 

work piece to get deformed shape. During this stage, another two contacts occur: the 

punch and work piece, work piece and die. The specimen is modeled as variable 

hardening elastic plastic material with yield stress o ys = 200 MPa. And the blank holder

is elastic. The vertical pressure is applied to the blank holder to create the clamping force 

for the initial stage in the punch test.

4.2.1.2 Results and Discussion

As shown in Figure 4-15, the normal stress over the clamped section shows a 

typical stress edge affect and variation in stress at the mesh transitions when the old 

method is used. The normal stress distribution of the new method (Fig. 4-16) shows 

satisfactory results during a constant pressure clamping on the metal. The quite uniform 

stress distribution along the surface avoids noisy dynamic response and keeps the 

clamping in a quiet state.



76

By comparing the contact force (or average pressure) with both methods, it is 

clear that the original method will cause an inconsistent dynamic response of slave node 

along the contacting surface due to the contact force applied on the nodes, and system 

continues to vibrate as it unsuccessfully seeks a suitable equilibrium configuration (Fig. 

4-17). On the contrary, Figure 4-18 shows that the new method overcomes such a 

drawback and the system smoothly reaches a state of stabilization after the loading is

finished.

By examining the contact force acting on the punched section through the whole 

punch procedure (Fig. 4-19 and Fig. 4-20), it is obvious that the contact pressure more

smoothly reaches its highest value by using the new method than that of old method. This 

is because the interface forces acting on the surface of contact elements are more uniform

in the new method and the system remains in a state of good equilibrium configuration.

The plastic strain over the working model also shows the difference between the 

old method and the new method (Fig. 4-21 and Fig. 4-22). In the new method, the plastic 

strain is more evenly distributed over the punched section than that in the old method

since interface force is more uniform with the new method.

4.2.2 Rolling Process

4.2.2.1 Finite Element Modeling

Another sample study is the rolling process simulation. Rolling is a typical 

contact process which the roller squeezes the metal plate along the direction of
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elongation. Since the purpose of the model is to examine the shear stress distribution

caused by the friction force, a simplified model is made without consideration of back

and front tension and without consideration of the lubrication between the tooling and 

work piece. A quarter model is defined for the finite element analysis since the rolling 

plate and the roller is also symmetrical in the y direction. In this model (Fig. 4-23) the 

roller is modeled as an elastic material. The work piece (160x50x18.5mm) is modeled as 

an elastic plastic material with isotropic hardening. The constant angular velocity 2 

radian/s is applied to all the roller nodes. To get rolling process started, the constant force 

is applied at the right end of the plate for 0.55 second until enough contact surface is 

reached and friction force can squeeze metal plate forward. In the new method, the 

reference pressure is set to 70MPa and allowed penetration sets one-tenth the thickness of 

the contacting slave element. The rolling process is a high friction contact problem since 

the friction force acts as the driving force to squeeze the plate in the direction of 

elongation. A high dynamic friction coefficient of 0.4 is chosen in this simulation. Since 

the friction force between the roller and plate is the main external force, the 

corresponding shear stress will reflect such contact condition and show the different 

results of both methods of defining the penalty stiffness.

4.2.2.2 Results and Discussion

The shear stress shown in the picture 4-24 and 4-25 is the residual shear stress 

after the rolling process is finished. Figure 4-24 presents typical stress edge effect on the 

free edge of the rolled plate by using the old method. And such high stress patch
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disappears in the new method. The high shear stress at the right hand of the plate is 

caused by the initial force to get plate moving forward. Note that the high shear stress at 

the edge might cause the instability of the system. Since the plate is totally in the state of 

plastic deformation, such a non-equilibrium stress configuration will continue the plastic 

deformation and increase the unexpected plastic strain even after the rolling process is

finished.
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Fig. 4-4 Von Mises Stress during the Contact (Old Method)

Fig. 4-5 Von Mises Stress during the Contact (New Method)
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion Related to the New Method to Defíne the Penalty Stiffness

A new way to define the contact stiffness is developed and implemented with its 

application in several tests and cases. The new method ensures that the slave node forces 

are consistently related to contact pressure and shear stress through the appropriate slave 

surface geometry. This permits a uniform stress distribution on the contact surface 

without the concern for the presence of edges or mesh nonuniformity. Also the new 

method will avoid the numerical noise for the dynamic transient analysis in the contact 

problem by using the explicit method. The new penalty stiffness is obtained in terms of 

reference penetration and reference pressure which is defined by the user according to the 

condition of actual contact situation. Stability is no more difficult to ensure than the 

other methods, and the user inputs have a clear physical meaning. Also, the 

computational efficiency is not a big problem because the time of slave area calculation is 

much smaller than that of numerical integration in the explicit method.

5.2 Recommendations for the Reference Penetration and Pressure Selection

In the new method, since the penalty stiffness is defined by the user, the selection 

of both the reference penetration and pressure will greatly influence the simulation
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performance. High pressure will cause a high contacting force and big reference 

penetration may cause excessive actual penetration. From comparison of the results of 

both methods, it is recommended that the reference contact pressure should correspond to

the yield stress of a contacting material, and the reference penetration should be a fraction 

of the element depth below the contact. This can ensure that excessive penetration will 

not occur and at the same time it will keep the stability of system for the contact problem 

with the explicit method.

5.3 Recommendation for Future Work

With regard to finite element solution to the general contact problem in the 

penalty method, the selection of penalty stiffness is truly problem-dependent. Automatic 

penalty stiffness gives the users an easy way to implement the analysis but raises the 

problem of the stress edge effect. The new method provides an approach to eliminate 

such unexpected high stress, but users have to define the contact parameters according to

the actual situations.

The case studies show that the user defined parameters, the reference penetration 

and reference pressure, may greatly influence the final results. A study of influence of 

varied control parameters with different modeling conditions would be of great help for 

industrial application and deep understanding of the mechanism of contact. 

Computational efficiency with the introduction of the slave area calculation is also worth 

study since in the explicit method time efficiency is always a big concern, especially for 

multi-body contact models with large numbers of degree of freedom.
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