NUMERICAL INTEGRATION OF STIFF DIFFERENTIAL-ALGEBRAIC EQUATIONS

NUMERICAL INTEGRATION OF STIFF DIFFERENTIAL-ALGEBRAIC EQUATIONS

By

REZA ZOLFAGHARI

A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy

McMaster University (School of Computational Science and Engineering)

Doctor of Philosophy (2020), Hamilton, Ontario

TITLE:

AUTHOR: Reza Zolfaghari

SUPERVISOR: Professor Nedialko. S. Nedialkov

Department of Computing and Software
McMaster University

NUMBER OF PAGES: ix, 268

Abstract

Systems of differential-algebraic equations (DAEs) arise in many areas including electrical circuit simulation, chemical engineering, and robotics. The difficulty of solving a DAE is characterized by its index. For index-1 DAEs, there are several solvers, while a high-index DAE is numerically much more difficult to solve. The DAETS solver by Nedialkov and Pryce integrates numerically high-index DAEs. This solver is based on explicit Taylor series method and is efficient on non-stiff to mildly stiff problems, but can have severe stepsize restrictions on highly stiff problems.

Hermite-Obreschkoff (HO) methods can be viewed as a generalization of Taylor series methods. The former have smaller error than the latter and can be A- or L- stable. In this thesis, we develop an implicit HO method for numerical solution of stiff high-index DAEs. Our method reduces a given DAE to a system of generally nonlinear equations and a constrained optimization problem. We employ Pryce's structural analysis to determine the constraints of the problem and to organize the computations of higher-order Taylor coefficients (TCs) and their gradients. Then, we use automatic differentiation to compute these TCs and gradients, which are needed for evaluating the resulting system and its Jacobian.

We design an adaptive variable-stepsize and variable-order algorithm and implement it in C++ using literate programming. The theory and implementation are interwoven in this thesis, which can be verified for correctness by a human expert. We report numerical results on stiff DAEs illustrating the accuracy and performance of our method, and in particular, its ability to take large steps on stiff problems.

Acknowledgements

This thesis would not have been possible without the expertise and guidance of my supervisor Dr. Ned Nedialkov. He shared with me his profound knowledge about design and evaluation of a numerical software for differential equations. He offered me invaluable suggestions and resources to improve my programming skills and technical writing and spent incredibly many hours on reading and commenting on my codes, writing and slides. I am and have been extremely grateful for his constant support.

I would like to thank my supervisory committee members, Dr. Bartosz Protas (Mathematics \& Statistics) and Dr. Tim Field (Electrical \& Computer Engineering), for their continuous advice and help. I thank Dr. Wayne Enright and Dr. Kenneth R. Jackson (Department of Computer Science, University of Toronto) for giving me the opportunity to present my work at University of Toronto and for valuable hints and discussions. I wish to thank Dr. Andreas Griewank (Institute of Mathematics, Humboldt-Universität zu Berlin) for being my external examiner. His constructive comments greatly improved the thesis.

To my parents, thank you for inspiring me and loving me without ceasing. To my wife, thank you for standing by me through thick and thin. To my daughter, you have been a source of joy and encouragement, thank you.

Finally, I gratefully acknowledge the support of the Ontario Trillium Scholarship.

Contents

1 Introduction 2
1.1 Motivation 4
1.2 Contributions 5
1.3 Thesis organization 6
2 Background 8
2.1 Stability and stiffness 8
2.2 Pryce's structural analysis 10
2.3 Automatic differentiation 14
2.3.1 Forward mode 15
2.3.2 Reverse mode 15
2.3.3 Taylor coefficients 16
2.3.4 The FADBAD++ package 17
2.4 Literate programming 18
2.5 The DAETS solver 19
3 An Hermite-Obreschkoff method for ODEs 20
3.1 Hermite-Obreschkoff formula 21
3.2 Proposed method 25
4 An Hermite-Obreschkoff method for DAEs 30
4.1 Computational scheme for Taylor coefficients 31
4.2 Proposed method 34
4.3 Implementation 39
4.3.1 Classes in DAETS 39
4.3.2 The HO class 41
4.3.3 The Gradients class 42
4.3.4 The StiffDAEsolver class 43
4.3.5 The IrregularMatrix class 44
5 Computing Taylor coefficients 45
5.1 Solving linear systems 45
5.1.1 Forming the matrix 46
5.1.2 Implementation 48
5.2 Solving nonlinear systems 55
5.2.1 Solving $\mathrm{f}_{I_{0}}=0$ by KINSOL 56
6 Computing gradients of Taylor coefficients 63
6.1 Computational scheme for gradients 64
6.2 Implementation 67
6.2.1 Initializing gradients 69
6.2.2 Computing \mathbf{B}_{s} 72
6.2.3 Computing $\left[\mathcal{B}_{s}\right]_{k}$ 73
6.2.4 Solving $\mathbf{A}_{0}\left[\mathbf{Y}_{s}\right]_{k}=\left[\mathcal{B}_{s}\right]_{k}$ 74
6.2.5 Correcting initial guess 74
7 Solving the Hermite-Obreschkoff system 76
7.1 Convergence of the iteration 77
7.2 Implementation 79
7.2.1 Evaluating residual 85
7.2.2 Computing Jacobian 97
7.3 Implementation of HO method for one step 101
7.3.1 Setting parameters 102
7.3.2 Powers of the stepsize 104
7.3.3 Solving the system 105
8 Integration strategies 109
8.1 Hermite-Nordsieck vector 110
8.1.1 Implementation 112
8.2 Prediction 114
8.2.1 Implementation 114
8.3 Error estimation 116
8.3.1 Implementation 118
8.4 Stepsize and order selection 120
8.4.1 Implementation 122
9 The integrator function 129
9.1 Integration by HO method 130
9.1.1 Preparation for integration 134
9.1.2 Checking the stepsize 143
9.1.3 Finding an initial guess 144
9.1.4 Applying the HO method 145
9.1.5 Projection 147
9.1.6 Computing higher-order TCs 148
9.1.7 Error estimation 150
9.1.8 Preparation for next step 151
9.1.9 Optional output 158
9.2 The function integrate 160
10 Numerical results 164
10.1 Basic usage 164
10.1.1 Problem definition 164
10.1.2 Main program 165
10.2 Numerical experiments 169
10.2.1 Test problems 169
10.2.2 Accuracy 181
10.2.3 Efficiency 184
10.2.4 Variable-order versus fixed-order 185
11 Conclusions 190
A The integrator function in DAETS 193
B The IrregularMatrix class 200
C KINSOL 213
D Files 217
D. 1 The HO class 217
D.1.1 Constructor 218
D.1.2 Destructor 220
D. 2 The Gradients class 223
D.2.1 Constructor 224
D.2.2 Destructor 224
D. 3 The StiffDAEsolver class 225
D.3.1 Constructor 226
D.3.2 Destructor 227
D. 4 Nonlinear Solver 229
D. 5 Auxiliary functions 231
D.5.1 Generalized divided differences 234
D. 6 Enumerations 236
D. 7 Examples 236
D.7.1 Van der Pol oscillator 236
D.7.2 Oregonator 238
D.7.3 Chemical Akzo Nobel 241
D.7.4 A highly stiff index-2 DAE 243
D.7.5 Car Axis 245
D.7.6 Multi Pendula 248

List of Figures

4.1 Solver class diagram. 40
9.1 Algorithm overview. 131
10.1 Van der Pol, plots of x and x^{\prime} versus t. 170
10.2 Oregonator, plots of x, y and z versus t. 172
10.3 Chemical Akzo Nobel, plots of x_{1}, \ldots, x_{6} versus t. 174
10.4 Index-2 from Van der Pol, plots of x, x^{\prime} and y versus t. 176
10.5 Car axis, plots of x_{l}, y_{l}, x_{r} and y_{r} versus t. 179
10.6 Multi Pendula, index-17, plots of x_{1}, \ldots, x_{8} versus t. 182
10.7 Multi Pendula, index-17, plots of y_{1}, \ldots, y_{8} versus t. 182
10.8 Accuracy diagrams. 183
10.9 Work precision diagrams. 184
$10.10 p+q$ during the integration interval with tol $=10^{-8}$. 186
10.11 Van der Pol, variable-order versus fixed-order. 187
10.12 Oregonator, variable-order versus fixed-order. 187
10.13 Chemical Akzo Nobel, variable-order versus fixed-order. 188
10.14 Index-2 from Van der Pol, variable-order versus fixed-order. 188

Ph.D. Thesis - Reza Zolfaghari McMaster University - CSE
10.15 Car Axis, variable-order versus fixed-order. 189

Chapter 1

Introduction

Many dynamical systems are modelled as differential-algebraic equations (DAEs). In this work, we consider the general formulation ${ }^{1}$

$$
\begin{equation*}
f_{i}\left(t, \text { the } x_{j} \text { and derivatives of them }\right)=0, \quad i=0,1, \ldots, n-1, \tag{1.1}
\end{equation*}
$$

where $x_{j}(t), j=0,1, \ldots, n-1$, are state variables, and t is the time variable. The formulation (1.1) may include high-order derivatives and equations that are jointly nonlinear in leading derivatives. Assuming that the functions f_{i} and x_{j} are sufficiently differentiable, we develop a numerical method for (1.1).

The difficulty of solving a DAE is characterized by its index. Numerical methods for DAEs have been studied by different groups in mathematics, computer science and engineering. There are various definitions of the index in the literature: differentiation index [11], perturbation index [28], tractability index [24], strangeness index [34], structural index

[^0][17], and geometric index [56]. A DAE of index ≥ 2 is considered high-index DAE. For analysis and comparison of various index concepts see [12,22,23, 35, 39, 54, 55] .

The difficulty of solving a DAE is mainly due to hidden constraints that are not explicitly given in the system. If these constraints are not forced during the integration, the computed solution may drift off from the true solution due to numerical errors [35, p. 217].

Numerical methods for DAEs can be divided into two classes [4, p. 261]:

1. methods based on direct discretizations of the given DAE, e.g., backward differentiation formula (BDF) for index-1 DAEs [7,21], and Radau methods for some special index ≤ 3 DAEs [28].
2. methods that involve an index reduction prior to a discretization, e.g., stabilization techniques $[19,28,61]$, projection methods $[2,3]$, and the differential-geometric approach [53].

When a dynamical system is modelled as (1.1), the state variables usually have a physical significance. Changing the system may produce less meaningful variables. Using a solver based on a direct discretization of the original DAE enables a scientist or engineer to explore easier the effect of modelling changes and parameter variation [7, p. 2]. Furthermore, an index reduction method may be costly and involve user intervention [4, p. 261]. It also can destroy sparsity and prevent the exploitation of the system's structure [7, p. 2].

1.1 Motivation

For index-1 DAEs, there are several solvers, e.g., DASSL [7], IDA of SUNDIALS [31], and MATLAB's ode15s and ode23t. However, a high-index DAE is numerically much more difficult to solve. Basically, solving a high-index problem needs differentiation, instead of integration only. High-index DAE solvers such as RADAU5 [28], MEBDFDAE [13], BIMD [8] and PSIDE [65] solve some DAEs of index ≤ 3.

DAETS by Nedialkov and Pryce [43,45-47] is a powerful tool for non-stiff high-index DAEs. It uses the Pryce's structural analysis (Σ-method) [54] to analyze a DAE and solve it numerically by expanding the solution in Taylor series (TS) at each integration step. DAETS is suitable for non-stiff to mildly stiff problems, and is not efficient on very stiff systems. This thesis focuses on developing a method suitable for solving stiff DAEs.

Stiff problems are problems for which certain implicit numerical integration methods perform tremendously better than explicit ones [28]. Such problems arise in the study of atmospheric phenomena, chemical kinetics, chemical reactions occurring in living species, electronic circuits, mechanics, and molecular dynamics [1]. Using an explicit Taylor series method, DAETS cannot be very efficient for highly stiff DAEs. A promising approach is to develop an implicit Hermite-Obreschkoff (HO) method, which is known to have much better stability, in the ODE sense, than Taylor series methods.

Derivation and properties of HO methods for first-order ODEs are discussed in [14, 25] and [36, p. 199]. These methods have recently been applied to systems arising from electrical circuits [20,67] and the forward-dynamics problem of a single-loop kinematic chain [40].

1.2 Contributions

The following are the main contributions of this thesis.

- Using the HO formula for some derivatives of state variables x_{j} in (1.1), determined by the Pryce's Σ-method, we develop an HO method which reduces the DAE (1.1) to a system of equations and a constrained optimization problem. The proposed method can be A- or L- stable in ODE sense.
- We employ the Σ-method to organize the computations of gradients of higher-order Taylor coefficients in terms of independent ones. Then, we use automatic differentiation to compute these gradients for constructing the Jacobian of the reduced system of equations required by Newton's method.
- We define a specially tailored vector for a function at a point. Constructing this vector for solution components enables us to find an initial guess for the solution and to estimate the discretization error of the HO method with different orders. As a result, we design an adaptive variable-stepsize and variable-order algorithm for integrating the problem.
- We implement our algorithm in C++ using literate programming. The theory, documentation, and source code are interwoven in this thesis, which can be verified for correctness by a human expert, like in a peer-review process.

1.3 Thesis organization

The rest of this thesis is organized as follows.
Chapter 2 gives an overview of relevant concepts and background.
In Chapter 3, we derive the HO formula and employ it for the numerical solution of an ODE of a general form.

In Chapter 4, we develop an HO method for the DAE (1.1) using the HO formula and Pryce's structural analysis.

Chapter 5 describes and implements the computations of higher-order TCs as solution components are given.

Chapter 6 derives and implements the computations of gradients of higher-order TCs in terms of solution components.

In Chapter 7, we solve the resulting nonlinear system using a modified Newton iteration and implement the HO method for one step.

In Chapter 8, we first define and construct Hermite-Nordsieck vectors for solution components. Then, we show how these vectors are employed to predict a solution and to estimate the discretization error. Finally, stepsize and order selection strategies are derived.

Chapter 9 describes the components of the algorithm and implements the integrator function.

In Chapter 10, we first give an example of coding a function defining a DAE, and a main program to solve the problem with DAETS. Then, we report numerical results on stiff ODEs and DAEs.

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

Chapter 11 gives concluding remarks.

Chapter 2

Background

In this chapter, we present the background needed for the remaining of this thesis. §2.1 gives a brief overview of stability and stiffness concepts. $\S 2.2$ summarizes the main steps of Pryce's structural analysis. $\S 2.3$ presents some basic concepts of automatic differentiation. $\S 2.4$ discusses literate programming. Finally, $\S 2.5$ gives an overview of DAETS.

2.1 Stability and stiffness

The stability of an integration method for initial-value problems in ordinary differential equations (ODEs) is typically studied on the test problem

$$
y^{\prime}=\lambda y, \quad y(0)=y_{0},
$$

where $\operatorname{Re}(\lambda)<0$. Since the exact solution $y(t)=y_{0} e^{\lambda t}$ decays exponentially, a stepsize h must be selected such that the sequence of numerical approximations $y_{i} \approx y(i h), i=1,2, \ldots$

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE
is monotonically decreasing. A region in the complex z-plane (with $z=\lambda h$) for which a numerical method preserves this property is called the stability domain of the method [28, p. 16].

If we use an integration method with a small stability domain, we may need to choose a very small stepsize h to maintain stability. Therefore, a desirable property for a numerical integrator is to have a large stability domain.

An integration method is A-stable if its stability domain contains the entire left half z-plane [16]. A weakness of the A-stability definition is that it does not distinguish [4, p. 56] between

$$
\operatorname{Re}(\lambda) \rightarrow-\infty
$$

and

$$
-1 \ll \operatorname{Re}(\lambda) \leq 0, \quad|\operatorname{Im}(\lambda)| \rightarrow \infty
$$

Another weakness of A-stability definition is that if $\operatorname{Re}(\lambda) \rightarrow-\infty$ and h is not small, the numerical solutions y_{i} may decay to zero very slowly [36, p. 236]. This leads us to a stronger concept of stability. A method is said to be L-stable [18] if it is A-stable and

$$
\frac{y_{i+1}}{y_{i}} \rightarrow 0 \text { as } \lambda h \rightarrow-\infty .
$$

Consider a system of ordinary differential equations of the form

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y}) \tag{2.1}
\end{equation*}
$$

Suppose that all eigenvalues λ_{i} of the Jacobian matrix $\partial \mathbf{f} / \partial \mathbf{y}$ are in the left half z-plane so that the ratio $\max _{i}\left|\lambda_{i}\right| / \min _{i}\left|\lambda_{i}\right|$ is large. Hence, the solution of the system (2.1) contains
very fast components as well as very slow components [15]. If an integration method with small stability domain, as in many explicit methods, is used for solving such problem, it might become very inefficient. In this case, the system (2.1) is called stiff [5, p. 130]. Although the eigenvalues of $\partial \mathbf{f} / \partial \mathbf{y}$ play central role in the stiffness of (2.1), the size of the system, the smoothness of the solution and the integration interval are also important [28, p. 1].

Ideally, one would like to use an A-stable (or L-stable) method to solve stiff problems. However, it is known that no linear multistep formula of order greater than 2 can be A-stable [16]. As a result of this barrier, one could use so-called $A(\alpha)$-stable methods, $\alpha \in(0, \pi / 2)$, for which the sector

$$
\mathbb{C}_{\alpha}=\{\lambda h \in \mathbb{C}:|\arg (-\lambda)|<\alpha, \lambda \neq 0\}
$$

is contained in the stability domain [66]. Prime example of these methods are BDF methods of orders 1 to 5 .

Explicit Taylor series methods of order κ for $\kappa \rightarrow \infty$ are A-stable, i.e., the size of the stability domain grows linearly with κ in its radius [6]. Hence, a high-order method can be used on moderately stiff problems [6,45].

2.2 Pryce's structural analysis

Before a numerical method is applied to a DAE, some kind of structural analysis is necessary to determine DAE's structure and index. Among structural analysis methods, Pantelides's
algorithm [51] is widely used. Pryce's Σ-method [54] is becoming increasingly popular [$38,45,48,57,58,68]$ due to its capability of analyzing high-order systems. In this section, we review this method for a DAE in the form of (1.1).

The Σ-method for (1.1) consists of the following steps.

1. Build the signature matrix $\boldsymbol{\Sigma}=\left(\sigma_{i j}\right)$, where

$$
\sigma_{i j}=\left\{\begin{array}{l}
\text { order of the highest order derivative to which } x_{j} \text { occurs in } f_{i} ; \text { or } \\
-\infty \quad \text { if } x_{j} \text { does not occur in } f_{i}
\end{array}\right.
$$

2. Find a highest value transversal (HVT) of $\boldsymbol{\Sigma}$. A transversal T of Σ is a set of n positions (i, j) with one entry in each row and each column. We seek a transversal with the maximal value

$$
\operatorname{Val}(\boldsymbol{\Sigma})=\sum_{(i, j) \in T} \sigma_{i j}
$$

3. Compute n-dimensional non-negative integer vectors \mathbf{c} and \mathbf{d} that satisfy

$$
\begin{array}{ll}
d_{j}-c_{i} \geq \sigma_{i j}, & \text { for all } i, j=0,1, \ldots, n-1, \text { and } \\
d_{j}-c_{i}=\sigma_{i j}, & \text { for all }(i, j) \in \mathrm{HVT}
\end{array}
$$

Vectors \mathbf{c} and \mathbf{d} are referred to as the offsets of the problem. They are not unique, but we choose the smallest or canonical offsets; smallest being in the sense of $a \leq b$ if $a_{i} \leq b_{i}$ for all i.
4. Form the system Jacobian matrix \mathbf{J} with

$$
(\mathbf{J})_{i j}=\frac{\partial f_{i}^{\left(c_{i}\right)}}{\partial x_{j}^{\left(d_{j}\right)}}= \begin{cases}\frac{\partial f_{i}}{\partial x_{j}^{\left(\sigma_{i j}\right)},} & \text { if } d_{j}-c_{i}=\sigma_{i j}, \text { and } \tag{2.3}\\ 0 & \text { otherwise }\end{cases}
$$

5. Seek values for the x_{j} and for appropriate derivatives, consistent with the DAE, and at which \mathbf{J} is nonsingular. If such values are found, we say the method "succeeds" and there is locally a unique solution of the DAE.

When the method succeeds:

- $\operatorname{Val}(\boldsymbol{\Sigma})$ equals the number of degrees of freedom (DOF) of the DAE, that is the number of independent initial conditions required.
- The structural index is defined by

$$
\nu_{s}=\max _{i} c_{i}+ \begin{cases}1 & \text { if some } d_{j} \text { is } 0 \\ 0 & \text { otherwise }\end{cases}
$$

The structural index is an upper bound for differentiation index, which is the minimum number of differentiations needed to reduce a DAE to a system of ODEs.

We illustrate the above concepts using the following example.

Example 2.1. The simple pendulum DAE in Cartesian coordinates is

$$
\begin{align*}
& 0=f=x^{\prime \prime}+\lambda x \\
& 0=g=y^{\prime \prime}+\lambda y+G \tag{2.4}\\
& 0=h=x^{2}+y^{2}-L^{2}
\end{align*}
$$

Here the state variables are $x, y, \lambda ; G$ is gravity, and L is the length of the pendulum.

Ph.D. Thesis - Reza Zolfaghari

The signature matrix of this DAE is
\(\left.\boldsymbol{\Sigma}=$$
\begin{array}{c}x \\
f \\
f \\
h\end{array}
$$ \begin{array}{ccc}x \& \lambda \& c_{i}

2^{\bullet} \& -\infty \& 0

-\infty \& 2 \& 0^{\bullet}

0 \& 0^{\bullet} \& -\infty\end{array}\right]\)\begin{tabular}{c}
0

0

2

d_{j}

2

2
\end{tabular}

where an HVT is marked by \bullet. The system Jacobian matrix (2.3) is

$$
\mathbf{J}=\left[\begin{array}{ccc}
\partial f / \partial x^{\prime \prime} & 0 & \partial f / \partial \lambda \tag{2.5}\\
0 & \partial g / \partial y^{\prime \prime} & \partial g / \partial \lambda \\
\partial h / \partial x & \partial h / \partial y & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & x \\
0 & 1 & y \\
2 x & 2 y & 0
\end{array}\right],
$$

which is nonsingular $\left(\operatorname{det}(\mathbf{J})=-2\left(x^{2}+y^{2}\right)=-2 L^{2} \neq 0\right)$ and the method succeeds. The structural index is

$$
\nu_{s}=\max _{i} c_{i}+1=c_{2}+1=3,
$$

which is the same as the differentiation index.

Definition 2.1. The DAE (1.1) is called quasilinear if $x_{j}^{\left(d_{j}\right)}, j=0,1, \ldots, n-1$, occur in a jointly linear way in the $f_{i}, i=0,1, \ldots, n-1$, and non-quasilinear otherwise [47].

Example 2.2. For (2.4), the relevant derivatives $x_{j}^{\left(d_{j}\right)}$ are $x^{\prime \prime}, y^{\prime \prime}$ and λ. Their occurrence is jointly linear in f, g and h, so the system is quasilinear. It would still be quasilinear, if f were changed to $x^{\prime \prime} x+x \lambda, x^{\prime \prime} x^{\prime}+x \lambda, x^{\prime \prime} y+x \lambda$, or to $x^{\prime \prime} y^{\prime}+x \lambda$. However, it would be non-quasilinear if it were changed to $\left(x^{\prime \prime}\right)^{2}+x \lambda, x^{\prime \prime} y^{\prime \prime}+x \lambda$, or to $x^{\prime \prime} \lambda+x \lambda$.

Ph.D. Thesis - Reza Zolfaghari

2.3 Automatic differentiation

Automatic differentiation (AD) is the process of differentiating a computer program based on the chain rule [29]. Suppose that a computer program \mathcal{P} computes a differentiable function $\mathcal{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with runtime T. This program can be implemented as a sequence of instructions $\left\{I_{1} ; I_{2} ; \ldots ; I_{r}\right\}$ computing the elementary differentiable functions $\mathbf{f}_{i}: \mathbb{R}^{n_{i-1}} \rightarrow$ $\mathbb{R}^{n_{i}}, i=1, \ldots, r$, with $n_{0}=n$ and $n_{r}=m$, such that

$$
\begin{equation*}
\mathbf{y}=\mathcal{F}(\mathbf{x})=\mathbf{f}_{r}\left(\ldots\left(\mathbf{f}_{2}\left(\mathbf{f}_{1}(\mathbf{x})\right)\right) \ldots\right), \quad \mathbf{x} \in \mathbb{R}^{n} \tag{2.6}
\end{equation*}
$$

That is,

$$
\begin{aligned}
& I_{1} \text { computes } \mathbf{y}_{1}=\mathbf{f}_{1}(\mathbf{x}), \\
& I_{i} \text { computes } \mathbf{y}_{i}=\mathbf{f}_{i}\left(\mathbf{y}_{i-1}\right), \text { for } i=2, \ldots, r,
\end{aligned}
$$

and we obtain $\mathbf{y}=\mathbf{y}_{r} \in \mathbb{R}^{m}$.
Applying the chain rule to (2.6) gives

$$
\mathcal{F}^{\prime}(\mathbf{x})=\mathbf{f}_{r}^{\prime}\left(\mathbf{y}_{r-1}\right) \cdots \mathbf{f}_{2}^{\prime}\left(\mathbf{y}_{1}\right) \mathbf{f}_{1}^{\prime}(\mathbf{x})
$$

To avoid the above matrix-matrix products, we may create a new program with runtime T that computes one of the following matrix-vector products

$$
\mathcal{F}^{\prime}(\mathbf{x}) \dot{\mathbf{x}}, \quad \text { or } \quad \overline{\mathbf{y}} \mathcal{F}^{\prime}(\mathbf{x})
$$

with some seed vectors $\dot{\mathbf{x}} \in \mathbb{R}^{n \times 1}$ and $\overline{\mathbf{y}} \in \mathbb{R}^{1 \times m}$.

Ph.D. Thesis - Reza Zolfaghari

2.3.1 Forward mode

In the forward or tangent mode, we compute

$$
\dot{\mathbf{y}}=\mathcal{F}^{\prime}(\mathbf{x}) \dot{\mathbf{x}}=\mathbf{f}_{r}^{\prime}\left(\mathbf{y}_{r-1}\right) \cdots \mathbf{f}_{2}^{\prime}\left(\mathbf{y}_{1}\right) \mathbf{f}_{1}^{\prime}(\mathbf{x}) \dot{\mathbf{x}}
$$

The program \mathcal{P}^{\prime}, referred to as tangent program, is created as the sequence of instructions $\left\{I_{1}^{\prime} ; I_{1} ; I_{2}^{\prime} ; I_{2} ; \ldots ; I_{r}^{\prime}\right\}$ where
I_{1}^{\prime} computes $\dot{\mathbf{y}}_{1}=\mathbf{f}_{1}^{\prime}(\mathbf{x}) \dot{\mathbf{x}}$,
I_{i}^{\prime} computes $\dot{\mathbf{y}}_{i}=\mathbf{f}_{i}^{\prime}\left(\mathbf{y}_{i-1}\right) \dot{\mathbf{y}}_{i-1}$, for $i=2, \ldots, r$.

The variables $\dot{\mathbf{y}}_{i} \in \mathbb{R}^{n_{i} \times 1}, i=1, \ldots, r$, are called tangent variables, and we obtain $\dot{\mathbf{y}}=$ $\dot{\mathbf{y}}_{r} \in \mathbb{R}^{m \times 1}$.

Since the $\mathbf{f}_{i}, i=1, \ldots, r$, in (2.6) are elementary functions, the Jacobian matrices \mathbf{f}_{i}^{\prime}, $i=1, \ldots, r$, are very sparse and differ from the identity only in a few positions. To obtain $\mathcal{F}^{\prime}(\mathrm{x})$, we can repeatedly call the tangent program using the Cartesian basis vectors in \mathbb{R}^{n} as seeds. This yields the complete Jacobian in a runtime of $\mathcal{O}(n T)$.

2.3.2 Reverse mode

In the reverse or adjoint mode, we compute

$$
\overline{\mathbf{x}}=\overline{\mathbf{y}} \mathcal{F}^{\prime}(\mathbf{x})=\overline{\mathbf{y}} \mathbf{f}_{r}^{\prime}\left(\mathbf{y}_{r-1}\right) \cdots \mathbf{f}_{2}^{\prime}\left(\mathbf{y}_{1}\right) \mathbf{f}_{1}^{\prime}(\mathbf{x})
$$

The program $\overline{\mathcal{P}}$, referred to as adjoint program, is created as the sequence of instructions $\left\{I_{1} ; I_{2} ; \ldots ; I_{r} ; \bar{I}_{r} ; \bar{I}_{r-1} ; \ldots ; \bar{I}_{1}\right\}$, where

$$
\begin{aligned}
& \bar{I}_{r} \text { computes } \overline{\mathbf{x}}_{r}=\overline{\mathbf{y}}_{r}^{\prime}\left(\mathbf{y}_{r-1}\right), \\
& \bar{I}_{i} \text { computes } \overline{\mathbf{x}}_{i}=\overline{\mathbf{x}}_{i+1} \mathbf{f}_{i}^{\prime}\left(\mathbf{y}_{i-1}\right), \text { for } i=r-1, r-2, \ldots, 2, \\
& \bar{I}_{1} \text { computes } \overline{\mathbf{x}}_{1}=\overline{\mathbf{x}}_{2} \mathbf{f}_{i}^{\prime}(\mathbf{x}) .
\end{aligned}
$$

The variables $\overline{\mathbf{x}}_{i} \in \mathbb{R}^{1 \times\left(n_{i-1}\right)}, i=1, \ldots, r$, are called adjoint variables and we obtain $\overline{\mathbf{x}}=\overline{\mathbf{x}}_{1} \in \mathbb{R}^{1 \times n}$. By calling the adjoint program repeatedly with all Cartesian basis vectors in \mathbb{R}^{m}, the Jacobian $\mathcal{F}^{\prime}(\mathbf{x})$ can be computed with runtime $\mathcal{O}(m T)$. Therefore, reverse methods can greatly reduce the computational cost if $m \ll n$.

2.3.3 Taylor coefficients

TCs of a sufficiently differentiable function can be generated automatically by formulas developed by Moore [42, p.107-130]. Denote the k th TC of a function u at a point a by

$$
u_{k}=\frac{u^{(k)}(a)}{k!} .
$$

If sufficient TCs of functions u and v at a are given, we can compute the k th TC of a function $w(t)=f(u(t), v(t))$ at a using classical rules for automatic differentiation of arithmetic
operations and elementary functions. For example,

$$
\begin{align*}
w=u+c v & \Rightarrow \quad w_{k}=u_{k}+c v_{k}, \quad c \text { is a constant } \tag{2.7}\\
w=u v \quad & \Rightarrow \quad w_{k}=\sum_{r=0}^{k} u_{r} v_{k-r}, \tag{2.8}\\
w=u / v \quad & \Rightarrow \quad w_{k}=\frac{1}{v_{0}}\left[u_{k}-\sum_{r=0}^{k-1} w_{r} v_{k-r}\right], \quad v_{0} \neq 0 \\
w=\sqrt{u} \quad & \Rightarrow \quad w_{0}=\sqrt{u_{0}}, w_{k}=\frac{1}{2 w_{0}}\left[u_{k}-\sum_{r=1}^{k-1} w_{r} w_{k-r}\right], k \geq 1, \\
w=\exp (u) \quad & \Rightarrow \quad w_{0}=\exp \left(u_{0}\right), w_{k}=\frac{1}{k} \sum_{r=0}^{k-1}(k-r) w_{r} u_{k-r}, k \geq 1
\end{align*}
$$

Similar formulas can be derived for other elementary functions, e.g., sin, \cos , \log , \ldots [26, Chapter 10]. We also use

$$
\begin{equation*}
w=u^{(m)} \quad \Rightarrow \quad w_{k}=(k+1)(k+2) \cdots(k+m) u_{k+m} \tag{2.9}
\end{equation*}
$$

Consider a function $w(t)=f(\mathbf{u}(t))$, with $\mathbf{u}: \mathbb{R} \rightarrow \mathbb{R}^{n}$. The computational complexity of evaluating $w_{0}, w_{1}, \ldots, w_{k}$ is [42]

- $\mathcal{O}(k)$, if f is linear, or
- $\mathcal{O}\left(s k^{2}\right)$, if f involves s multiplications, divisions, and/or elementary functions.

Packages for generating TCs include ADOL-C [27] and FADBAD++ [63].

2.3.4 The FADBAD++ package

We compute required TCs and their gradients through operator overloading. This approach is carried out using FADBAD++ developed by Stauning and Bendtsen [63]. This package contains C++ templates and works by overloading arithmetic operations and elementary
functions to include calculation of derivatives. To enable these overloaded operations the arithmetic type (normally double) is changed to the appropriate AD-type. The AD-types are defined by three templates $\mathrm{F}<>$ for forward mode, $\mathrm{B}<>$ for reverse mode and $\mathrm{T}<>$ for Taylor coefficients. A unique feature of FADBAD++ is the ability to compute high order derivatives in a flexible way by combining the methods of automatic differentiation. These combinations are produced by applying the templates on themselves. For example the combination $\mathrm{T}<\mathrm{F}<$ double \gg can be used to compute gradients of Taylor coefficients [46].

2.4 Literate programming

Literate programming was introduced by Donald Knuth [32] in the early 1980s based on the idea that [52] "programs should be written more for people's consumption than for computers' consumption". In a literate program, documentation and code are in one source. Then literate programming tools either tangle the program to produce a source code suitable for compilation, or weave it to produce a document suitable for typesetting.

A literate program is presented in a form that enhances the readability of code [62]. An algorithm is decomposed into smaller parts and explained in that order is most appropriate to aid comprehension. Each named block of code is called a chunk or section, and each chunk can refer to other chunks by name. The description of a chunk is as important as its code, encouraging careful design and documentation [52].

This thesis is a literate program using CWEB [33] and its ctangle and cweave utilities. This literate programming tool enables the inclusion of documentation and $\mathrm{C}++$ code in a

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

CWEB file, which is a LATEX file with additional statements for dealing with C++ code [44].

2.5 The DAETS solver

The DAETS (DAE by Taylor Series) solver [43,45-47] accepts a DAE of the general form (1.1) where the functions f_{i} are sufficiently differentiable. It first employs the Σ-method to analyze the DAE and prescribe a stage by stage solution scheme. This scheme indicates at each stage which equations need to be solved and for which Taylor coefficients (TCs) for the solution. Then, it computes these TCs up to some order using automatic differentiation and expands the solution in a Taylor series. This solver is implemented as a collection of C++ classes in the variable-stepsize and fixed-order mode where a typical order is in the range $12-20$.

Chapter 3

An Hermite-Obreschkoff method for

ODEs

Obreschkoff [50] developed in 1940 a quadrature formula that utilizes derivatives of the integrand up to any order at two points. It appears that Milne [41] was the first to advocate the use of this formula for the numerical solution of ordinary differential equations [36]. Quadrature formulae involving higher-order derivatives go back to Hermite in 1912 [30]. Obreschkoff's formula can be derived using an Hermite polynomial that interpolates the integrand and a certain number of its derivatives at two points. For these reasons, we refer to methods based on such formulae as Hermite-Obreschkoff (HO) methods.

We derive the HO formula that determines the relation between Taylor coefficients of the k th derivative of a sufficiently differentiable function at two points, §3.1. Then, we develop a numerical method for an ODE of the general form (implicit and any order), §3.2.

3.1 Hermite-Obreschkoff formula

In this section, we derive a relation between Taylor coefficients of a sufficiently differentiable function at two points. For arbitrary non-negative integers p and q, and for a scalar function $y \in C^{p+q+1}[a, b]$, consider the identity

$$
\begin{equation*}
y(b)-y(a)=\int_{a}^{b} y^{\prime}(t) d t \tag{3.1}
\end{equation*}
$$

Denoting $h=b-a$ and

$$
g(s)=y^{\prime}(a+s h), \quad 0 \leq s \leq 1
$$

we have

$$
\begin{equation*}
\int_{a}^{b} y^{\prime}(t) d t=h \int_{0}^{1} g(s) d s \tag{3.2}
\end{equation*}
$$

Following the idea in [14], we approximate $g(s)$ with an Hermite interpolating polynomial that interpolates $g(s)$ and a certain number of its derivatives at the two endpoints a and b. Let Π_{n} be the set of all polynomials whose degrees do not exceed n. There is a unique interpolating polynomial $P(s) \in \Pi_{p+q-1}$ [64, p. 52], such that

$$
\begin{array}{ll}
P^{(j)}(0)=g^{(j)}(0)=h^{j} y^{(j+1)}(a), & j=0,1, \ldots, p-1, \quad \text { and } \tag{3.3}\\
P^{(j)}(1)=g^{(j)}(1)=h^{j} y^{(j+1)}(b), & j=0,1, \ldots, q-1 .
\end{array}
$$

The Lagrangian representation of P has the form [64, p. 52]

$$
\begin{equation*}
P(s)=\sum_{j=0}^{p-1} h^{j} y^{(j+1)}(a) L_{j}^{p q}(s)+\sum_{j=0}^{q-1} h^{j} y^{(j+1)}(b) L_{j}^{q p}(s), \tag{3.4}
\end{equation*}
$$

with generalized Lagrange polynomials $L_{j}^{p q}, L_{j}^{q p} \in \Pi_{p+q-1}$ defined as follows. Denote

$$
\begin{array}{ll}
l_{j}^{p q}(s)=\frac{s^{j}(1-s)^{q}}{j!}, & j=0,1, \ldots, p-1, \quad \text { and } \\
l_{j}^{q p}(s)=\frac{s^{p}(s-1)^{j}}{j!}, & j=0,1, \ldots, q-1
\end{array}
$$

Then

$$
\begin{aligned}
L_{p-1}^{p q}(s) & =l_{p-1}^{p q}(s), & L_{q-1}^{q p}(s)=l_{q-1}^{q p}(s), \\
L_{j}^{p q}(s) & =l_{j}^{p q}(s)-\left.\sum_{i=j+1}^{p-1} \frac{d^{i}}{d s^{i}} l_{j}^{p q}(s)\right|_{s=0} L_{i}^{p q}(s), & j=p-2, p-3, \ldots, 0, \quad \text { and } \\
L_{j}^{q p}(s) & =l_{j}^{q p}(s)-\left.\sum_{i=j+1}^{q-1} \frac{d^{i}}{d s^{i}} l_{j}^{q p}(s)\right|_{s=1} L_{i}^{q p}(s), & j=q-2, q-3, \ldots, 0 .
\end{aligned}
$$

By induction

$$
\left.\frac{d^{m}}{d s^{m}} L_{j}^{p q}(s)\right|_{s=0}= \begin{cases}1 & \text { if } j=m \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\left.\frac{d^{m}}{d s^{m}} L_{j}^{q p}(s)\right|_{s=1}= \begin{cases}1 & \text { if } j=m \\ 0 & \text { otherwise }\end{cases}
$$

which show that (3.4) satisfies in (3.3).
Using the convergence theorem of Hermite interpolation [64, p. 57], there exists $\zeta(s) \in$ $[0,1]$ such that

$$
\begin{equation*}
g(s)=P(s)+\frac{s^{p}(s-1)^{q}}{(p+q)!} g^{(p+q)}(\zeta(s)) . \tag{3.5}
\end{equation*}
$$

Denote

$$
Q(s)=(p+q)!\frac{g(s)-P(s)}{s^{p}(s-1)^{q}}
$$

which is a continuous function on the interval $(0,1)$. By (3.3) and (3.5) we can assume, without loss of generality, that

$$
g^{(p+q)}(\zeta(s))= \begin{cases}Q(s), & s \in(0,1) \\ \lim _{s \rightarrow 0^{+}} Q(s), & s=0 \\ \lim _{s \rightarrow 1^{-}} Q(s), & s=1\end{cases}
$$

Clearly $g^{(p+q)}(\zeta(s))$ is continuous on $[0,1]$.
Integrating (3.5), we write

$$
\begin{equation*}
\int_{0}^{1} g(s) d s=\int_{0}^{1} P(s) d s+\int_{0}^{1} \frac{s^{p}(s-1)^{q}}{(p+q)!} g^{(p+q)}(\zeta(s)) d s \tag{3.6}
\end{equation*}
$$

Denote

$$
\begin{aligned}
& c_{j+1}^{p q}=\int_{0}^{1} L_{j}^{p q}(s) d s, \quad \text { and } \\
& c_{j+1}^{q p}=\int_{0}^{1} L_{j}^{q p}(s) d s
\end{aligned}
$$

Integrating the interpolating polynomial (3.4), we obtain

$$
\begin{equation*}
\int_{0}^{1} P(s) d s=\sum_{j=0}^{p-1} h^{j} y^{(j+1)}(a) c_{j+1}^{p q}+\sum_{j=0}^{q-1} h^{j} y^{(j+1)}(b) c_{j+1}^{q p} . \tag{3.7}
\end{equation*}
$$

By the mean-value theorem for integrals

$$
\begin{align*}
\int_{0}^{1} \frac{s^{p}(s-1)^{q}}{(p+q)!} g^{(p+q)}(\zeta(s)) d s & =\frac{g^{(p+q)}(\delta)}{(p+q)!} \int_{0}^{1} s^{p}(s-1)^{q} d s \\
& =(-1)^{q} \frac{p!q!}{(p+q)!} \frac{y^{(p+q+1)}(\eta)}{(p+q+1)!} h^{p+q} \tag{3.8}
\end{align*}
$$

for some $\delta \in(0,1)$ and $\eta \in(a, b)$. Substituting (3.2) in (3.1), and by (3.6), (3.7) and (3.8),
we obtain

$$
\begin{aligned}
y(b)-y(a)= & h \int_{0}^{1} g(s) d s \\
= & h \int_{0}^{1} P(s) d s+h \int_{0}^{1} \frac{s^{p}(s-1)^{q}}{(p+q)!} g^{(p+q)}(\zeta(s)) d s \\
= & \sum_{j=0}^{p-1} h^{j+1} y^{(j+1)}(a) c_{j+1}^{p q}+\sum_{j=0}^{q-1} h^{j+1} y^{(j+1)}(b) c_{j+1}^{q p} \\
& +(-1)^{q} \frac{p!q!}{(p+q)!} \frac{y^{(p+q+1)}(\eta)}{(p+q+1)!} h^{p+q+1},
\end{aligned}
$$

which we write it as

$$
\begin{equation*}
\sum_{j=0}^{q} c_{j}^{q p} y^{(j)}(b) h^{j}-\sum_{j=0}^{p} c_{j}^{p q} y^{(j)}(a) h^{j}=(-1)^{q} \frac{p!q!}{(p+q)!} \frac{y^{(p+q+1)}(\eta)}{(p+q+1)!} h^{p+q+1} \tag{3.9}
\end{equation*}
$$

The coefficients $c_{j}^{p q}$ and $c_{j}^{q p}$ are known to be [14,25]

$$
\begin{align*}
c_{j}^{p q} & =\frac{p!(p+q-j)!}{j!(p+q)!(p-j)!}, & & j=0,1, \ldots, p \tag{3.10}\\
c_{j}^{q p} & =(-1)^{j} \frac{q!(p+q-j)!}{j!(p+q)!(q-j)!}, & j & =0,1, \ldots, q \tag{3.11}
\end{align*}
$$

There is an important fact about these coefficients stated as the following theorem.

Theorem 3.1. [14,49] Let $R^{p q}(z)$ be the rational (p, q) Pade approximation of $\exp (z)$. The coefficients (3.10) and (3.11) are identical with the coefficients of $R^{p q}(z)$. That is,

$$
R^{p q}(z)=\frac{\sum_{j=0}^{p} c_{j}^{p q} z^{j}}{\sum_{j=0}^{q} c_{j}^{q} z^{j}} .
$$

Consider a function $x \in C^{p+q+k+1}[a, b]$ with $k \geq 0$. Replacing y by $x^{(k)}$ in (3.9), we obtain

$$
\sum_{j=0}^{q} c_{j}^{q p} x^{(k+j)}(b) h^{j}-\sum_{j=0}^{p} c_{j}^{p q} x^{(k+j)}(a) h^{j}=(-1)^{q} \frac{p!q!}{(p+q)!} \frac{x^{(k+p+q+1)}(\eta)}{(p+q+1)!} h^{p+q+1}
$$

Ph.D. Thesis - Reza Zolfaghari
which we write as

$$
\begin{align*}
\sum_{j=0}^{q} c_{j}^{q p}(k+j)!\frac{x^{(k+j)}(b)}{(k+j)!} h^{j} & -\sum_{j=0}^{p} c_{j}^{p q}(k+j)!\frac{x^{(k+j)}(a)}{(k+j)!} h^{j} \\
& =(-1)^{q} \frac{p!q!}{(p+q)!} \frac{x^{(k+p+q+1)}(\eta)}{(p+q+1)!} h^{p+q+1} \tag{3.12}
\end{align*}
$$

Denoting the l th Taylor coefficient of x at a τ by $(x(\tau))_{l}$, and denoting

$$
\begin{align*}
& \alpha_{k j}=c_{j}^{p q}(k+j)!, \quad \text { and } \tag{3.13}\\
& \beta_{k j}=c_{j}^{q p}(k+j)!, \tag{3.14}
\end{align*}
$$

we write (3.12) as

$$
\begin{equation*}
\sum_{j=0}^{q} \beta_{k j}(x(b))_{k+j} h^{j}-\sum_{j=0}^{p} \alpha_{k j}(x(a))_{k+j} h^{j}=(-1)^{q} \frac{p!q!}{(p+q)!} \frac{x^{(k+p+q+1)}(\eta)}{(p+q+1)!} h^{p+q+1} \tag{3.15}
\end{equation*}
$$

We call (3.15) the (p, q) Hermite-Obreschkoff (HO) formula for $x^{(k)}(t)$ at a and b. This formula shows the relation between TCs of $x^{(k)}(t)$ at a and b up to orders p and q, respectively.

3.2 Proposed method

Consider an ODE of the form

$$
f\left(t, y, y^{\prime}, \ldots, y^{(d)}\right)=0
$$

where $f: \mathbb{R}^{d+2} \rightarrow \mathbb{R}$ is sufficiently differentiable, $\partial f / \partial y^{(d)} \neq 0$, and the initial values

$$
y\left(t^{*}\right), y^{\prime}\left(t^{*}\right), \ldots, y^{(d-1)}\left(t^{*}\right)
$$

are given. Although this equation can be converted into a d-dimensional system of first-order equations, we are interested in integrating it directly.

Denote

$$
\mathbf{y}_{<d}^{*}=\left[\left(y\left(t^{*}\right)\right)_{0},\left(y\left(t^{*}\right)\right)_{1}, \ldots,\left(y\left(t^{*}\right)\right)_{d-1}\right] .
$$

Generating TCs of f at t^{*} using automatic differentiation (see §2.3.3) and equating them to zero, we can compute the higher-order TCs of y at t^{*}. That is, for each $j=d, d+1, \ldots$, a function T_{j} is defined such that

$$
\left(y\left(t^{*}\right)\right)_{j}=T_{j}\left(t^{*}, \mathbf{y}_{<d}^{*}\right)
$$

Example 3.1. The Van der Pol oscillator evolves in time according to the following secondorder ODE

$$
\begin{equation*}
f\left(t, y, y^{\prime}, y^{\prime \prime}\right)=y^{\prime \prime}-\mu\left(1-y^{2}\right) y^{\prime}+y=0 . \tag{3.16}
\end{equation*}
$$

Here μ is a scalar parameter indicating the strength of the damping.
For brevity, we also write TCs without parentheses; y_{i} rather that $(y)_{i}$. Given $y_{0}=y(t)$ and $y_{1}=y^{\prime}(t)$, we can compute higher-order TCs in terms of y_{0} and y_{1}. Applying (2.7), (2.8) and (2.9) to (3.16) at t, we write

$$
\begin{aligned}
f_{0} & =\left(y^{\prime \prime}-\mu\left(1-y^{2}\right) y^{\prime}+y\right)_{0} \\
& =\left(y^{\prime \prime}\right)_{0}-\left(\mu\left(1-y^{2}\right) y^{\prime}\right)_{0}+y_{0} \\
& =2 y_{2}-\mu\left(1-y^{2}\right)_{0}\left(y^{\prime}\right)_{0}+y_{0} \\
& =2 y_{2}-\mu\left(1-y_{0}^{2}\right) y_{1}+y_{0},
\end{aligned}
$$

$$
\begin{aligned}
f_{1} & =\left(y^{\prime \prime}-\mu\left(1-y^{2}\right) y^{\prime}+y\right)_{1} \\
& =\left(y^{\prime \prime}\right)_{1}-\left(\mu\left(1-y^{2}\right) y^{\prime}\right)_{1}+y_{1} \\
& =6 y_{3}-\mu\left(\left(1-y^{2}\right)_{0}\left(y^{\prime}\right)_{1}+\left(1-y^{2}\right)_{1}\left(y^{\prime}\right)_{0}\right)+y_{1}, \\
& =6 y_{3}-\mu\left(1-y_{0}^{2}\right) 2 y_{2}-\mu\left(-2 y_{0} y_{1}\right) y_{1}+y_{1},
\end{aligned}
$$

Equating the above TCs to zero, we obtain

$$
\begin{align*}
y_{2} & =T_{2}\left(y_{0}, y_{1}\right)=\frac{1}{2}\left(\mu\left(1-y_{0}^{2}\right) y_{1}-y_{0}\right) \\
y_{3} & =T_{3}\left(y_{0}, y_{1}\right)=\frac{1}{6}\left(\mu\left(1-y_{0}^{2}\right) 2 y_{2}+\mu\left(-2 y_{0} y_{1}\right) y_{1}-y_{1}\right) \tag{3.17}\\
& \vdots \\
y_{p+1} & =T_{p+1}\left(y_{0}, y_{1}\right)
\end{align*}
$$

Assume that we have computed at t^{*} the TCs

$$
\left(y\left(t^{*}\right)\right)_{0},\left(y\left(t^{*}\right)\right)_{1}, \ldots,\left(y\left(t^{*}\right)\right)_{p+d-1}
$$

The objective is to find

$$
\mathbf{y}_{<d}=\left[\left(y\left(t^{*}+h\right)\right)_{0},\left(y\left(t^{*}+h\right)\right)_{1}, \ldots,\left(y\left(t^{*}+h\right)\right)_{d-1}\right]
$$

for a given stepsize h. Using the (p, q) HO formula (3.15) for $y^{(k)}(t)$ with $k=0,1, \ldots, d-1$
at t^{*} and $t^{*}+h$ yields to

$$
\begin{aligned}
& \sum_{j=0}^{q} \beta_{k j}\left(y\left(t^{*}+h\right)\right)_{k+j} h^{j}-\sum_{j=0}^{p} \alpha_{k j}\left(y\left(t^{*}\right)\right)_{k+j} h^{j} \\
& \quad=\sum_{j=0}^{q} \beta_{k j} T_{k+j}\left(t^{*}+h, \mathbf{y}_{<d}\right) h^{j}-\sum_{j=0}^{p} \alpha_{k j} T_{k+j}\left(t^{*}, \mathbf{y}_{<d}^{*}\right) h^{j} \\
& \quad=(-1)^{q} \frac{p!q!}{(p+q)!} \frac{y^{(p+q+k+1)}\left(\eta_{k}\right)}{(p+q+1)!} h^{p+q+1}
\end{aligned}
$$

Hence, we can solve the nonlinear (in general) system of equations

$$
\begin{equation*}
\sum_{j=0}^{q} \beta_{k j} T_{k+j}\left(t^{*}+h, \tilde{\mathbf{y}}_{<d}\right) h^{j}-\sum_{j=0}^{p} \alpha_{k j} T_{k+j}\left(t^{*}, \mathbf{y}_{<d}^{*}\right) h^{j}=0, \quad k=0,1, \ldots, d-1 \tag{3.18}
\end{equation*}
$$

to find $\tilde{\mathbf{y}}_{<d}$ as an approximation to $\mathbf{y}_{<d}$.
We call this method the (p, q) Hermite-Obreschkoff (HO) method. Clearly, the choices $(1,0),(0,1)$ and $(1,1)$ yield the explicit Euler method, the implicit Euler method and the trapezoidal scheme, respectively. Moreover, the choices $(p, 0)$ and $(0, q)$ yield the explicit and implicit Taylor series methods, respectively. Hence, we can consider the HO methods as a generalization of Taylor series methods.

Example 3.2. Consider the Van der Pol equation in Example 3.1. Assume that we have computed y_{j}^{*}, for $j=0, \ldots, p+1$ by (3.17). To find \widetilde{y}_{0} and \widetilde{y}_{1} as approximations to $y\left(t^{*}+h\right)$ and $y^{\prime}\left(t^{*}+h\right)$, respectively, using the $(p, q) \mathrm{HO}$ method (3.18), we can solve the following system of two nonlinear equations

$$
\begin{gathered}
\sum_{j=0}^{q} \beta_{0 j} T_{j}\left(\widetilde{y}_{0}, \widetilde{y}_{1}\right) h^{j}-\sum_{j=0}^{p} \alpha_{0 j} y_{j}^{*} h^{j}=0, \\
\sum_{j=0}^{q} \beta_{1 j} T_{j+1}\left(\widetilde{y}_{0}, \widetilde{y}_{1}\right) h^{j}-\sum_{j=0}^{p} \alpha_{1 j} y_{j+1}^{*} h^{j}=0,
\end{gathered}
$$

where $\alpha_{0 j}$ and $\alpha_{1 j}$ are given by (3.13), and $\beta_{0 j}$ and $\beta_{1 j}$ are given by (3.14).

Ph.D. Thesis - Reza Zolfaghari

Theorem 3.2. [14] For arbitrary non-negative integers p and q and for $y \in C^{p+q+d}\left[t^{*}, t^{*}+h\right]$, the (p, q) HO method (3.18) has the order of consistency $p+q$; the order of the local error is $p+q+1$.

By Theorem 3.1

$$
\widetilde{y}\left(t^{*}+h\right)=R^{p q}(\lambda h) y\left(t^{*}\right),
$$

when the (p, q) HO method (3.18) is used for the test problem $y^{\prime}=\lambda y$. This leads to the following theorem.

Theorem 3.3. [14] For $y \in C^{p+q+d}\left[t^{*}, t^{*}+h\right]$, the (p, q) HO method (3.18) is

- A-stable if $q \in\{p, p+1, p+2\}$, and
- L-stable if $q \in\{p+1, p+2\}$.

Thus, an HO method can be made to yield an approximation of arbitrary order without conflicting with the A-stability (or L-stability) requirement.

Chapter 4

An Hermite-Obreschkoff method for

DAEs

In this chapter, we develop a numerical method based on Pryce's structural analysis and the HO formula (3.15) for a DAE of the general form (1.1). The overall solution process goes in steps over the t range. TCs are computed up to a chosen order at the current t^{*}. Using the HO formula (3.15) for a certain number of derivatives of the state variables at t^{*} and $t^{*}+h$, we compute approximate values for solution components at $t^{*}+h$, and this process repeats. Here, we describe one step of this method. First, we explain how the computational scheme for TCs is guided by the two non-negative integer vectors \mathbf{c} and \mathbf{d} (see $\S 2.2$) found by Pryce's structural analysis, $\S 4.1$. Then, we describe the proposed HO method in §4.2. Finally, we present the implementation of the method in §4.3.

4.1 Computational scheme for Taylor coefficients

In general, it is not obvious how the various equations obtained by differentiating the original DAE equations f_{i} can be organized to solve for the TCs of the state variables x_{j}. This is made clear by the offsets \mathbf{c} and \mathbf{d}, which tell us that the computation forms a sequence of stages $[45,54]$. The process starts at stage $s_{d}=-\max _{j} d_{j}$ and is performed for stages $s=s_{d}, s_{d}+1, \ldots$, as follows.

At stage s, we consider the set of equations

$$
\begin{equation*}
\left(f_{i}\right)_{s+c_{i}}=0, \quad \text { for all } i \text { such that } s+c_{i} \geq 0 \tag{4.1}
\end{equation*}
$$

to determine values for

$$
\begin{equation*}
\left(x_{j}\right)_{s+d_{j}}, \quad \text { for all } j \text { such that } s+d_{j} \geq 0 \tag{4.2}
\end{equation*}
$$

using previously found

$$
\begin{equation*}
\left(x_{j}\right)_{l}, \quad \text { for all } j \text { such that } 0 \leq l<s+d_{j} . \tag{4.3}
\end{equation*}
$$

Example 4.1. For the pendulum, we obtained $\mathbf{c}=[0,0,2]$ and $\mathbf{d}=[2,2,0]$ in Example 2.1. The process implied by (4.1) and (4.2) is illustrated in Table 4.1. For brevity, the TCs will be written without parentheses: x_{l} rather than $(x)_{l}$, etc.

To express (4.1) and (4.2) in a more compact form, let

$$
\mathcal{Z}_{n}=\{(z, l): z=0,1, \ldots, n-1, l=0,1, \ldots\}
$$

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

stage	uses equations	to obtain	previously found
-2	$0=h_{0}=x_{0}^{2}+y_{0}^{2}+L^{2}$	x_{0}, y_{0}	
-1	$0=h_{1}=2 x_{0} x_{1}+2 y_{0} y_{1}$	x_{1}, y_{1}	x_{0}, y_{0}
0			
\vdots	$\left\{\begin{array}{l}0=f_{0}=2 x_{2}+\lambda_{0} x_{0} \\ 0=g_{0}=2 y_{2}+\lambda_{0} y_{0}+G \\ 0=h_{2}=2 x_{0} x_{2}+x_{1}^{2}+2 y_{0} y_{2}+y_{1}^{2}\end{array}\right.$		
\vdots	\vdots		

Table 4.1: Computational scheme for TCs of the pendulum.
and for a $s \in \mathbb{Z}$ define

$$
\begin{aligned}
& I_{s}=\left\{(i, l) \in \mathcal{Z}_{n}: l=s+c_{i}\right\}, \quad \text { and } \\
& J_{s}=\left\{(j, l) \in \mathcal{Z}_{n}: l=s+d_{j}\right\} .
\end{aligned}
$$

Denote by $\mathbf{f}_{I_{s}}$ the vector of $\left(f_{i}\right)_{l}$ for $(i, l) \in I_{s}$, and by $\mathbf{x}_{J_{s}}$ the vector of $\left(x_{j}\right)_{l}$ for $(j, l) \in J_{s}$. The order of entries does not matter, but assume fixed. Also, define $I_{\leq s}$ to be the union of I_{l} for all $l \leq s$, and similarly for $I_{<s}, J_{\leq s}, J_{<s}$. With the above notation, we write (4.1) as

$$
\begin{equation*}
\mathbf{f}_{I_{s}}\left(t, \mathbf{x}_{J_{<s}}, \mathbf{x}_{J_{s}}\right)=0 \tag{4.4}
\end{equation*}
$$

In the solution process, $\mathbf{x}_{J_{<s}}$ is known (as (4.3)), and we solve for $\mathbf{x}_{J_{s}}$ (as (4.2)). We will describe this process in Chapter 5.

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

Example 4.2. For the pendulum, let

$$
\mathbf{x}_{J_{<0}}=\left[x_{0}, x_{1}, y_{0}, y_{1}\right],
$$

be known at t. Using (4.4), we have the scheme in (Table 4.2).

stage	solve	to obtain
0	$0=f_{I_{0}}\left(t, \mathbf{x}_{J_{<0}}, \mathbf{x}_{J_{0}}\right)$	$\mathbf{x}_{J_{0}}=\left[x_{2}, y_{2}, \lambda_{0}\right]$
1	$0=f_{I_{1}}\left(t, \mathbf{x}_{J_{<1}}, \mathbf{x}_{J_{1}}\right)$	$\mathbf{x}_{J_{1}}=\left[x_{3}, y_{3}, \lambda_{1}\right]$
2	$0=f_{I_{2}}\left(t, \mathbf{x}_{J_{<2}}, \mathbf{x}_{J_{2}}\right)$	$\mathbf{x}_{J_{2}}=\left[x_{4}, y_{4}, \lambda_{2}\right]$
\vdots	\vdots	\vdots
$p-1$	$0=f_{I_{p-1}}\left(t, \mathbf{x}_{J_{<p-1}}, \mathbf{x}_{J_{p-1}}\right)$	$\mathbf{x}_{J_{p-1}}=\left[x_{p+1}, y_{p+1}, \lambda_{p-1}\right]$

Table 4.2: Scheme to compute TCs for pendulum in a compact form.

Before we propose a method which prescribes how to compute $\mathbf{x}_{J_{<0}}$ at $t^{*}+h$ for a given stepsize h, we define an irregular matrix.

Definition 4.1. Let \mathbf{v} be a vector of m positive integers. An irregular matrix of size \mathbf{v}, is a matrix with m rows and v_{i} entries in its i th row.
Example 4.3. $\mathbf{A}=\left[\begin{array}{lll}3 & -1 \\ 0 & & \\ 5 & 1 & 2\end{array}\right]$ is an irregular matrix of size $\mathbf{v}=[2,1,3]$.

Example 4.4. Consider the following irregular matrix of size d,

$$
\left[\begin{array}{cccc}
\left(x_{0}\right)_{0} & \left(x_{0}\right)_{1} & \ldots & \left(x_{0}\right)_{d_{0}-1} \tag{4.5}\\
\left(x_{1}\right)_{0} & \left(x_{1}\right)_{1} & \ldots & \left(x_{1}\right)_{d_{1}-1} \\
\vdots & & & \\
\left(x_{n-1}\right)_{0} & \left(x_{n-1}\right)_{1} & \ldots & \left(x_{n-1}\right)_{d_{n-1}-1}
\end{array}\right] .
$$

The vector $\mathbf{x}_{J_{<0}}$ is created by concatenating rows of (4.5).

4.2 Proposed method

Consider the DAE (1.1) with canonical offsets \mathbf{c} and \mathbf{d} found by the Σ-method (see §2.2).
Given $\mathbf{x}_{J_{<0}}$ at t^{*}, denote it by $\mathbf{x}_{J_{<0}}^{*}$, assume that we have solved (4.4) for $s=0,1, \ldots, p-1$ and computed at this point the TCs

$$
\begin{array}{cccc}
\left(x_{0}^{*}\right)_{0}, & \left(x_{0}^{*}\right)_{1}, & \ldots & \left(x_{0}^{*}\right)_{p+d_{0}-1}, \\
\left(x_{1}^{*}\right)_{0}, & \left(x_{1}^{*}\right)_{1}, & \ldots & \left(x_{1}^{*}\right)_{p+d_{1}-1}, \\
\vdots & & & \\
\left(x_{n-1}^{*}\right)_{0}, & \left(x_{n-1}^{*}\right)_{1}, & \ldots & \left(x_{n-1}^{*}\right)_{p+d_{n-1}-1} .
\end{array}
$$

Our goal is to find values for $\mathbf{x}_{J_{<0}}$ at $t^{*}+h$. We refer to them as independent TCs. By (4.5), the number of these TCs is

$$
\begin{equation*}
N=\sum_{j=0}^{n-1} d_{j} . \tag{4.6}
\end{equation*}
$$

Using the (p, q) HO formula (3.15) for $x_{j}^{(k)}(t)$, for $j=0, \ldots, n-1$, and $k=0, \ldots, d_{j}-1$, at t^{*} and $t^{*}+h$, we obtain

$$
\begin{equation*}
\sum_{r=0}^{q} \beta_{k r}\left(x_{j}\right)_{k+r} h^{r}-\sum_{r=0}^{p} \alpha_{k r}\left(x_{j}^{*}\right)_{k+r} h^{r}=e_{p q} \xi_{j k} h^{p+q+1} \tag{4.7}
\end{equation*}
$$

where

$$
\begin{align*}
& e_{p q}=\frac{(-1)^{q} p!q!}{(p+q)!}, \quad \text { and } \tag{4.8}\\
& \xi_{j k}=\frac{x_{j}^{(p+q+1+k)}\left(\eta_{j k}\right)}{(p+q+1)!}, \quad \text { with } \eta_{j k} \in\left(t^{*}, t^{*}+h\right) \tag{4.9}
\end{align*}
$$

Using the computational scheme for TCs in $\S 4.1$, we can compute higher-order TCs in terms of independent ones. That is, there is a function $T_{j, k+r}$ such that

$$
\begin{align*}
& \left(x_{j}^{*}\right)_{k+r}=T_{j, k+r}\left(t^{*}, \mathbf{x}_{J_{<0}}^{*}\right) \tag{4.10}\\
& \left(x_{j}\right)_{k+r}=T_{j, k+r}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right) \tag{4.11}
\end{align*}
$$

Substituting (4.10) and (4.11) in (4.7), we obtain

$$
\begin{equation*}
\sum_{r=0}^{q} \beta_{k r} T_{j, k+r}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right) h^{r}-\sum_{r=0}^{p} \alpha_{k r} T_{j, k+r}\left(t^{*}, \mathbf{x}_{J_{<0}}^{*}\right) h^{r}=e_{p q} \xi_{j k} h^{p+q+1} \tag{4.12}
\end{equation*}
$$

Hence, we can solve the nonlinear (in general) system of N equations

$$
\begin{equation*}
\sum_{r=0}^{q} \beta_{k r} T_{j, k+r}\left(t^{*}+h, \widetilde{\mathbf{x}}_{J_{<0}}\right) h^{r}-\sum_{r=0}^{p} \alpha_{k r} T_{j, k+r}\left(t^{*}, \mathbf{x}_{J_{<0}}^{*}\right) h^{r}=0 \tag{4.13}
\end{equation*}
$$

for $j=0, \ldots, n-1$ and $k=0, \ldots, d_{j}-1$, to find $\widetilde{\mathbf{x}}_{J_{<0}}$ as an approximation to $\mathbf{x}_{J_{<0}}$.
To write the system (4.13) in a matrix form, addition and subtraction are defined as element-wise operations on elements of irregular matrix operands of same sizes. Multiplication of an irregular matrix by a scalar is defined as multiplication of every entry of the irregular matrix by the scalar. Also, we define a product between an irregular matrix and a vector.

Definition 4.2. For an irregular matrix \mathbf{A} of size \mathbf{v} and a vector \mathbf{z} of size $\max _{i} v_{i}$, we define the product

$$
\mathbf{B}=\mathbf{A} \otimes \mathbf{z}
$$

Ph.D. Thesis - Reza Zolfaghari
such that \mathbf{B} is an irregular matrix of size \mathbf{v} with entries $(\mathbf{B})_{i j}=(\mathbf{A})_{i j} z_{j}$.

Example 4.5. Consider the pendulum with given $\mathrm{x}_{J_{<0}}^{*}$. As in Table 4.2, we can compute at t^{*} the TCs

$$
\begin{array}{llll}
x_{0}^{*}, & x_{1}^{*}, & \ldots & x_{p+1}^{*}, \\
y_{0}^{*}, & y_{1}^{*}, & \ldots & y_{p+1}^{*}, \\
\lambda_{0}^{*}, & \lambda_{1}^{*}, & \ldots & \lambda_{p-1}^{*} .
\end{array}
$$

To find

$$
\widetilde{\mathbf{x}}_{J_{<0}}=\left[\widetilde{x}_{0}, \widetilde{x}_{1}, \widetilde{y}_{0}, \widetilde{y}_{1}\right],
$$

as an approximation to $\mathbf{x}_{J_{<0}}$ at $t^{*}+h$, we solve the nonlinear system

$$
\begin{array}{r}
\sum_{r=0}^{q} \beta_{0 r} T_{0 r}\left(t^{*}+h, \widetilde{\mathbf{x}}_{J_{<0}}\right) h^{r}-\sum_{r=0}^{p} \alpha_{0 r} x_{r}^{*} h^{r}=0, \\
\sum_{r=0}^{q} \beta_{1 r} T_{0, r+1}\left(t^{*}+h, \widetilde{\mathbf{x}}_{J_{<0}}\right) h^{r}-\sum_{r=0}^{p} \alpha_{1 r} x_{r+1}^{*} h^{r}=0, \\
\sum_{r=0}^{q} \beta_{0 r} T_{1 r}\left(t^{*}+h, \widetilde{\mathbf{x}}_{J_{<0}}\right) h^{r}-\sum_{r=0}^{p} \alpha_{0 r} y_{r}^{*} h^{r}=0, \\
\sum_{r=0}^{q} \beta_{1 r} T_{1, r+1}\left(t^{*}+h, \widetilde{\mathbf{x}}_{J_{<0}}\right) h^{r}-\sum_{r=0}^{p} \alpha_{1 r} y_{r+1}^{*} h^{r}=0 .
\end{array}
$$

Here $\alpha_{0 r}$ and $\alpha_{1 r}$ are given by (3.13), and $\beta_{0 r}$ and $\beta_{1 r}$ are given by (3.14). Also, for $l=r, r+1$, we have

$$
\begin{aligned}
& \widetilde{x}_{l}=T_{0 l}\left(t^{*}+h, \widetilde{\mathbf{x}}_{J_{<0}}\right), \\
& \widetilde{y}_{l}=T_{1 l}\left(t^{*}+h, \widetilde{\mathbf{x}}_{J_{<0}}\right) .
\end{aligned}
$$

Using the product in Definition 4.2, we can write the above system in the following
compact form

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\widetilde{x}_{0} & \widetilde{x}_{1} \\
\widetilde{y}_{0} & \widetilde{y}_{1}
\end{array}\right] \otimes\left[\begin{array}{c}
\beta_{00} \\
\beta_{10}
\end{array}\right]+\left[\begin{array}{cc}
\widetilde{x}_{1} & \widetilde{x}_{2} \\
\widetilde{y}_{1} & \widetilde{y}_{2}
\end{array}\right] h \otimes\left[\begin{array}{c}
\beta_{01} \\
\beta_{11}
\end{array}\right]+\ldots+\left[\begin{array}{cc}
\widetilde{x}_{q} & \widetilde{x}_{q+1} \\
\widetilde{y}_{q} & \widetilde{y}_{q+1}
\end{array}\right] h^{q} \otimes\left[\begin{array}{c}
\beta_{0 q} \\
\beta_{1 q}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
x_{0}^{*} & x_{1}^{*} \\
y_{0}^{*} & y_{1}^{*}
\end{array}\right] \otimes\left[\begin{array}{c}
\alpha_{00} \\
\alpha_{10}
\end{array}\right]+\left[\begin{array}{cc}
x_{1}^{*} & x_{2}^{*} \\
y_{1}^{*} & y_{2}^{*}
\end{array}\right] h \otimes\left[\begin{array}{c}
\alpha_{01} \\
\alpha_{11}
\end{array}\right]+\ldots+\left[\begin{array}{cc}
x_{p}^{*} & x_{p+1}^{*} \\
x_{p}^{*} & y_{p+1}^{*}
\end{array}\right] h^{p} \otimes\left[\begin{array}{c}
\alpha_{0 p} \\
\alpha_{1 p}
\end{array}\right] . }
\end{aligned}
$$

That is,

$$
\sum_{r=0}^{q}\left[\begin{array}{cc}
\widetilde{x}_{r} & \widetilde{x}_{r+1} \\
\widetilde{y}_{r} & \widetilde{y}_{r+1}
\end{array}\right] h^{r} \otimes\left[\begin{array}{c}
\beta_{0 r} \\
\beta_{1 r}
\end{array}\right]=\sum_{r=0}^{p}\left[\begin{array}{cc}
x_{r}^{*} & x_{r+1}^{*} \\
y_{r}^{*} & y_{r+1}^{*}
\end{array}\right] h^{r} \otimes\left[\begin{array}{c}
\alpha_{0 r} \\
\alpha_{1 r}
\end{array}\right] .
$$

Let $d=\max _{j} d_{j}$. Denote

$$
\begin{align*}
\mathbf{a}_{r} & =\left[\alpha_{0 r}, \alpha_{1 r}, \ldots, \alpha_{d-1, r}\right], \tag{4.14}\\
\mathbf{b}_{r} & =\left[\beta_{0 r}, \beta_{1 r}, \ldots, \beta_{d-1, r}\right], \tag{4.15}
\end{align*}
$$

and the irregular matrices

$$
\begin{align*}
\mathbf{F}^{[r]}\left(t, \mathbf{x}_{J_{<0}}\right) & =\left[\begin{array}{cccc}
T_{0, r}\left(t, \mathbf{x}_{J_{<0}}\right) & T_{0, r+1}\left(t, \mathbf{x}_{J_{<0}}\right) & \ldots & T_{0, r+d_{0}-1}\left(t, \mathbf{x}_{J_{<0}}\right) \\
T_{1, r}\left(t, \mathbf{x}_{J_{<0}}\right) & T_{1, r+1}\left(t, \mathbf{x}_{J_{<0}}\right) & \ldots & T_{1, r+d_{1}-1}\left(t, \mathbf{x}_{J_{<0}}\right) \\
\vdots \\
T_{n-1, r}\left(t, \mathbf{x}_{J_{<0}}\right) & T_{n-1, r+1}\left(t, \mathbf{x}_{J_{<0}}\right) & \ldots & T_{n-1, r+d_{n-1}-1}\left(t, \mathbf{x}_{J_{<0}}\right)
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\left(x_{0}\right)_{r} & \left(x_{0}\right)_{r+1} & \ldots & \left(x_{0}\right)_{r+d_{0}-1} \\
\left(x_{1}\right)_{r} & \left(x_{1}\right)_{r+1} & \ldots & \left(x_{1}\right)_{r+d_{1}-1} \\
\vdots & & & \\
\left(x_{n-1}\right)_{r} & \left(x_{n-1}\right)_{r+1} & \ldots & \left(x_{n-1}\right)_{r+d_{n-1}-1}
\end{array}\right], \tag{4.16}
\end{align*}
$$

and \mathbf{E} whose the (j, k) th entry is $\xi_{j k}$, for $j=0, \ldots, n-1, k=0, \ldots, d_{j}-1$. Then, (4.12) can be written in the following form

$$
\begin{equation*}
\sum_{r=0}^{q} \mathbf{F}^{[r]}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right) h^{r} \otimes \mathbf{b}_{r}-\sum_{r=0}^{p} \mathbf{F}^{[r]}\left(t^{*}, \mathbf{x}_{J_{<0}}^{*}\right) h^{r} \otimes \mathbf{a}_{r}=e_{p q} h^{p+q+1} \mathbf{E} . \tag{4.17}
\end{equation*}
$$

Denoting

$$
\begin{equation*}
\mathbf{F}\left(\mathbf{x}_{J_{<0}}\right)=\sum_{r=0}^{q} \mathbf{F}^{[r]}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right) h^{r} \otimes \mathbf{b}_{r}-\sum_{r=0}^{p} \mathbf{F}^{[r]}\left(t^{*}, \mathbf{x}_{J_{<0}}^{*}\right) h^{r} \otimes \mathbf{a}_{r}, \tag{4.18}
\end{equation*}
$$

(4.17) is

$$
\begin{equation*}
\mathbf{F}\left(\mathbf{x}_{J_{<0}}\right)=e_{p q} h^{p+q+1} \mathbf{E} \tag{4.19}
\end{equation*}
$$

To find $\widetilde{\mathbf{x}}_{J_{<0}}$ as an approximation to $\mathbf{x}_{J_{<0}}$, we solve

$$
\begin{equation*}
\mathbf{F}\left(\widetilde{\mathbf{x}}_{J_{<0}}\right)=0 \tag{4.20}
\end{equation*}
$$

We refer to (4.20) as Hermite-Obreschkoff system. Since our interest in this method is for stiff DAEs, we must solve (4.20) using a Newton's method which will be described
in Chapter 7. By (4.17) and (4.16), we need to solve (4.4) for $s=0,1, \ldots, q-1$ at each iteration of Newton's method. Hence, the constraints $\mathbf{f}_{I_{<0}}=0$ are not enforced during the above discretization. Therefore, the system (4.20) may lead to a numerical solution, say $\mathbf{x}_{J_{<0}}^{\mathrm{HO}}$, that violates the constraints $\mathbf{f}_{I_{<0}}=0$. To avoid this a likely drift-off phenomenon, we perform a projection step onto these algebraic constraints after each successful integration step. That is, the constrained optimization problem

$$
\begin{equation*}
\min _{\mathbf{x}_{J_{<0}}}\left\|\mathbf{x}_{J_{<0}}-\mathbf{x}_{J_{<0}}^{\mathrm{HO}}\right\|_{2} \quad \text { subject to } \quad \mathbf{f}_{I_{<0}}\left(t, \mathbf{x}_{J_{<0}}\right)=0 \tag{4.21}
\end{equation*}
$$

is solved.

4.3 Implementation

DAETS is implemented as a collection of C++ classes. We manage the implementation of the proposed HO method by adding four classes and some functions to this solver. First we list the classes in DAETS along with brief descriptions. Then, we introduce the new ones. All classes are depicted in Figure 4.1.

4.3.1 Classes in DAETS

SAdata computes equation and variable offsets.

TaylorSeries is a pure virtual class for computing and accessing TCs. Class FadbadTS implements the functionality of TaylorSeries using the FADBAD++ package.

Jacobian is a pure virtual class for computing the system Jacobian. Class FadbadJac

Figure 4.1: Solver class diagram. The arrows with the triangle denote inheritance; a normal arrow from class A to class B means A uses B.
implements the functionality of Jacobian using the FADBAD++ package.

DAEsolver implements the integration process and contains policy data about the integration, such as Taylor series order, accuracy tolerance and type of error test.

DAEsolution implements the moving point. This includes the numerical solution and the current value of t; also data describing the current state of the solution.

DAEpoint is a base class for DAEsolution. An object of this class stores an irregular matrix whose entries representing derivatives $x_{j}^{(k)}$.

Ph．D．Thesis－Reza Zolfaghari
McMaster University－CSE

Constants stores various constants，such as default values for order，tolerance，etc．needed during integration．

IpoptFuncs provides the functions needed by IPOPT in（4．21）．

Parameters encapsulates various parameters that can be set before integration，such as order，tolerance，smallest allowed stepsize，etc．

Stats collects various statistics during an integration，such as CPU time，number of steps， percentage rejected steps，etc．

SigmaMatrix provides functions for computing the signature matrix of a DAE．These computations are performed by propagating SigmaVector objects through operator overloading．

4．3．2 The HO class

This class constructs and solves the HO system（4．20）．
\langle HO Declarations 23$\rangle \equiv$

class HO \｛

public：
〈HO Public Functions 344 〉；
private：
\langle HO Private Functions 35\rangle ；
\langle HO Data Members 28〉；
\};

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

This code is used in chunk 343.

The constructor and destructor of the $\mathbf{H O}$ class are in Appendix D.1. We will declare the data members and implement the functions in next chapters. We use the following
$24\langle$ enumeration type for HO method 24$\rangle \equiv$
typedef enum \{
HO_JAC_SINGULAR $=-3, \quad / *$ if Jacobian of (4.20) is singular $* /$
SYS_JAC_SINGULAR, /* if system Jacobian is singular */
STAGEO_FAIL, /* if computing TCs at stage zero fails $* /$
HO_SUCCESS, /* if evaluating required functions in HO method succeeds */
HO_CONVERGENT /* if iteration method for HO system is convergent $* /$
\} HoFlag;
This code is used in chunk 369.

4.3.3 The Gradients class

It employs the FADBAD++ package to compute gradients of TCs needed for the Jacobian of (4.20).
$25\langle$ Gradients Declarations 25$\rangle \equiv$
class Gradients \{
public:
\langle Gradients Public Functions 82\rangle;
private:
\langle Gradients Data Members 80\rangle;

Ph．D．Thesis－Reza Zolfaghari

```
};
```

This code is used in chunk 350.

The constructor and destructor of the Gradients class are in Appendix D．2．We will declare the data members and implement the functions in Chapter 6.

4．3．4 The StiffDAEsolver class

This class implements the integration process．
$27\langle$ StiffDAEsolver Declarations 27〉三

```
class StiffDAEsolver : public daets ::DAEsolver {
public:
```

〈StiffDAEsolver Public Functions 357〉；
private：
\langle StiffDAEsolver Private Functions 360\rangle ；
\langle StiffDAEsolver Data Members 192\rangle ；
\};
This code is used in chunk 356.

friend class StiffDAEsolver；

See also chunks $34,38,39,41,42,43,46,47,50,52,53,74,78,85,119,120,123,126,128,129,132,133$ ， $139,144,150,153,155,157,158,167$ ，and 174

This code is used in chunk 23.

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

The constructor and destructor of the StiffDAEsolver class are in Appendix D.3. We will declare the data members and implement the functions in Chapter 8 and Chapter 9.

4.3.5 The IrregularMatrix class

It is a template class that overloads the arithmetic operations and required functions for irregular matrices. The implementation is in Appendix B.

Chapter 5

Computing Taylor coefficients

To compute a numerical solution of a DAE by the proposed HO method in $\S 4.2$, we should find higher-order TCs as independent ones are given. That is, given $\mathbf{x}_{J_{<s}}$ at t, we solve the system (4.4) for $s \geq 0$ to find $\mathbf{x}_{J_{s}}$ at this point. This system is square for $s \geq 0$, where it can be nonlinear when $s=0$, but always linear for $s>0$ [45,54]. We first consider the case of linear square systems in $\S 5.1$ and then describe the nonlinear case in $\S 5.2$.

5.1 Solving linear systems

When (4.4) is linear at $s=0$ and for $s>0$, we apply one iteration of Newton's method to (4.4) to solve for $\mathbf{x}_{J_{s}} \in \mathbb{R}^{n}$. Given $\mathbf{x}_{J_{<s}}$ as constants and $\widetilde{\mathbf{x}}_{J_{s}}$ as an initial guess for $\mathbf{x}_{J_{s}}$,
denote

$$
\begin{array}{ll}
\mathbf{b}_{s}=\mathbf{f}_{I_{s}}\left(t, \mathbf{x}_{J_{<s}}, \widetilde{\mathbf{x}}_{J_{s}}\right), & \mathbf{b}_{s} \in \mathbb{R}^{n}, \tag{5.1}\\
\mathbf{A}_{s}=\frac{\partial \mathbf{f}_{I_{s}}}{\partial \mathbf{x}_{J_{s}}}\left(t, \mathbf{x}_{J_{<s}}, \widetilde{\mathbf{x}}_{J_{s}}\right), & \mathbf{A}_{s} \in \mathbb{R}^{n \times n}
\end{array}
$$

Then (4.4) is

$$
\begin{equation*}
0=\mathbf{b}_{s}+\mathbf{A}_{s}\left(\mathbf{x}_{J_{s}}-\widetilde{\mathbf{x}}_{J_{s}}\right) \tag{5.2}
\end{equation*}
$$

Here \mathbf{A}_{s} does not depend on $\widetilde{\mathbf{x}}_{J_{s}}$. Before we describe the solution process of (5.2) for $\mathbf{x}_{J_{s}}$, we show how \mathbf{A}_{s} is obtained.

5.1.1 Forming the matrix

The (i, j)th entry of \mathbf{A}_{s} is [46]

$$
\begin{equation*}
\left(\mathbf{A}_{s}\right)_{i j}=\frac{\partial\left(f_{i}\right)_{s+c_{i}}}{\partial\left(x_{j}\right)_{s+d_{j}}}=\frac{\partial f_{i}^{\left(s+c_{i}\right)} /\left(s+c_{i}\right)!}{\partial x_{j}^{\left(s+d_{j}\right)} /\left(s+d_{j}\right)!}=\frac{\left(s+d_{j}\right)!}{\left(s+c_{i}\right)!} \cdot \frac{\partial f_{i}^{\left(s+c_{i}\right)}}{\partial x_{j}^{\left(s+d_{j}\right)}} \tag{5.3}
\end{equation*}
$$

where $s+c_{i} \geq 0$ and $s+d_{j} \geq 0$. Using Griewank's Lemma [46]

$$
\frac{\partial f_{i}^{\left(s+c_{i}\right)}}{\partial x_{j}^{\left(s+d_{j}\right)}}=\frac{\partial f_{i}^{\left(c_{i}\right)}}{\partial x_{j}^{\left(d_{j}\right)}}
$$

in (5.3), we write it as

$$
\begin{align*}
\left(\mathbf{A}_{s}\right)_{i j} & =\frac{\left(s+d_{j}\right)!}{\left(s+c_{i}\right)!} \cdot \frac{\partial f_{i}^{\left(c_{i}\right)}}{\partial x_{j}^{\left(d_{j}\right)}}=\frac{\left(s+d_{j}\right)!}{\left(s+c_{i}\right)!} \cdot \frac{c_{i}!\partial\left(f_{i}\right)_{c_{i}}}{d_{j}!\partial\left(x_{j}\right)_{d_{j}}} \\
& =\frac{c_{i}!}{\left(s+c_{i}\right)!} \cdot \frac{\partial\left(f_{i}\right)_{c_{i}}}{\partial\left(x_{j}\right)_{d_{j}}} \cdot \frac{\left(s+d_{j}\right)!}{d_{j}!} \tag{5.4}
\end{align*}
$$

Let \mathbf{C}_{s} and \mathbf{D}_{s} be diagonal matrices such that the i th entry on their main diagonals are $\left(s+c_{i}\right)!/ c_{i}!$ and $\left(s+d_{i}\right)!/ d_{i}!$, respectively. Then, from (5.4)

$$
\begin{equation*}
\mathbf{A}_{s}=\mathbf{C}_{s}^{-1} \mathbf{A}_{0} \mathbf{D}_{s} \quad \text { for } s \geq 0 \tag{5.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\mathbf{A}_{0}\right)_{i j}=\frac{\partial\left(f_{i}\right)_{c_{i}}}{\partial\left(x_{j}\right)_{d_{j}}}=\frac{d_{j}!}{c_{i}!} \frac{\partial f_{i}^{\left(c_{i}\right)}}{\partial x_{j}^{d_{j}}}=\frac{1}{c_{i}!}(\mathbf{J})_{i j} d_{j}! \tag{5.6}
\end{equation*}
$$

That is, $\mathbf{A}_{0}=\partial \mathbf{f}_{I_{0}} / \partial \mathbf{x}_{J_{0}}$ can be written as a diagonally-scaled version of the system Jacobian \mathbf{J} given in (2.3).

Example 5.1. For the pendulum in Example 2.1, the elements of $\mathbf{f}_{I_{0}}$ are

$$
\begin{aligned}
& f_{0}=2 x_{2}+\lambda_{0} x_{0}, \\
& g_{0}=2 y_{2}+\lambda_{0} y_{0}+G \\
& h_{2}=2 x_{0} x_{2}+x_{1}^{2}+2 y_{0} y_{2}+y_{1}^{2}
\end{aligned}
$$

By (5.6), we obtain

$$
\begin{aligned}
\mathbf{A}_{0} & =\left[\begin{array}{lll}
\partial f_{0} / \partial x_{2} & \partial f_{0} / \partial y_{2} & \partial f_{0} / \partial \lambda_{0} \\
\partial g_{0} / \partial x_{2} & \partial g_{0} / \partial y_{2} & \partial g_{0} / \partial \lambda_{0} \\
\partial h_{2} / \partial x_{2} & \partial h_{2} / \partial y_{2} & \partial h_{2} / \partial \lambda_{0}
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & x_{0} \\
0 & 2 & y_{0} \\
2 x_{0} & 2 y_{0} & 0
\end{array}\right] \\
& =\operatorname{diag}[1,1,2]^{-1} \mathbf{J} \operatorname{diag}[2,2,1]
\end{aligned}
$$

with \mathbf{J} given in (2.5).
At stage $s=0$, given $\mathbf{x}_{J_{<0}}=\left[x_{0}, x_{1}, y_{0}, y_{1}\right]$, we compute $\mathbf{x}_{J_{0}}=\left[x_{2}, y_{2}, \lambda_{0}\right]$, by solving

$$
\begin{aligned}
& 0=2 x_{2}+\lambda_{0} x_{0}, \\
& 0=2 y_{2}+\lambda_{0} y_{0}+G, \\
& 0=2 x_{0} x_{2}+x_{1}^{2}+2 y_{0} y_{2}+y_{1}^{2} .
\end{aligned}
$$

It can be written as

$$
0=\underbrace{\left[\begin{array}{ccc}
2 & 0 & x_{0} \\
0 & 2 & y_{0} \\
2 x_{0} & 2 y_{0} & 0
\end{array}\right]}_{\mathbf{A}_{0}} \underbrace{\left[\begin{array}{l}
x_{2} \\
y_{2} \\
\lambda_{0}
\end{array}\right]}_{\mathbf{x}_{J_{0}}}+\left[\begin{array}{c}
0 \\
G \\
x_{1}^{2}+y_{1}^{2}
\end{array}\right] .
$$

At stage $s=1$, taking $\mathbf{x}_{J_{<0}}$ and $\mathbf{x}_{J_{0}}$ as known, we compute $\mathbf{x}_{J_{1}}=\left[x_{3}, y_{3}, \lambda_{1}\right]$ by solving

$$
\begin{aligned}
& 0=6 x_{3}+\lambda_{0} x_{1}+\lambda_{1} x_{0}, \\
& 0=6 y_{3}+\lambda_{0} y_{1}+\lambda_{1} y_{0}, \\
& 0=2 x_{0} x_{3}+2 x_{1} x_{2}+2 y_{0} y_{3}+2 y_{1} y_{2} .
\end{aligned}
$$

It can be written as

$$
0=\underbrace{\left[\begin{array}{ccc}
6 & 0 & x_{0} \\
0 & 6 & y_{0} \\
2 x_{0} & 2 y_{0} & 0
\end{array}\right]}_{\mathbf{A}_{1}} \underbrace{\left[\begin{array}{l}
x_{3} \\
y_{3} \\
\lambda_{1}
\end{array}\right]}_{\mathbf{x}_{J_{1}}}+\left[\begin{array}{c}
\lambda_{0} x_{1} \\
\lambda_{0} y_{1} \\
2 x_{1} x_{2}+2 y_{1} y_{2}
\end{array}\right]
$$

with

$$
\mathbf{A}_{1}=\operatorname{diag}[1,1,3]^{-1} \mathbf{A}_{0} \operatorname{diag}[3,3,1] .
$$

5.1.2 Implementation

To compute \mathbf{C}_{s} and \mathbf{D}_{s}, we precompute factorials in the constructor of the $\mathbf{H O}$ class and store them in

Ph.D. Thesis - Reza Zolfaghari

The function comp_cs_ds is implemented to compute the entries of \mathbf{C}_{s} and \mathbf{D}_{s}.
\langle HO Private Functions 35$\rangle \equiv$
double $c o m p _c s _d s($ int s, int $o f f s e t)$
$\left\{\quad / *\right.$ offset is either c_{i} or d_{j}. If c_{i} e.g., returns $\left(s+c_{i}\right)!/ c_{i}!* /$ return factorial_[$s+$ offset $] /$ factorial_[offset $]$;
\}

See also chunk 347.

This code is used in chunk 23.

We can set the initial guess $\widetilde{\mathbf{x}}_{J_{s}}$ to zero. However, using a good approximation can lead to better accuracy, as the solution process (5.8) can be regarded as one step of an iterative refinement of an already reasonable solution. After the first step, we use the (currently) computed TCs as an initial guess for the TCs for the next step. This happens automatically in DAETS since TCs are stored in an array: the values in this array are used as an initial guess and overwritten with the new TCs [45].

From (5.2), we solve the following system of linear equations

$$
\begin{equation*}
\mathbf{A}_{s} \boldsymbol{\delta}_{s}=\mathbf{b}_{s} \tag{5.7}
\end{equation*}
$$

and compute

$$
\begin{equation*}
\mathbf{x}_{J_{s}}=\widetilde{\mathbf{x}}_{J_{s}}-\boldsymbol{\delta}_{s} \tag{5.8}
\end{equation*}
$$

$\mathrm{By}(5.5)$, (5.7) is

$$
\mathbf{C}_{s}^{-1} \mathbf{A}_{0} \mathbf{D}_{s} \boldsymbol{\delta}_{s}=\mathbf{b}_{s}
$$

Ph.D. Thesis - Reza Zolfaghari
which leads to

$$
\begin{equation*}
\mathbf{A}_{0} \mathbf{D}_{s} \boldsymbol{\delta}_{s}=\mathbf{C}_{s} \mathbf{b}_{s} \tag{5.9}
\end{equation*}
$$

We find $\mathbf{x}_{J_{s}}$ by the following steps:

- compute \mathbf{b}_{s},
- compute $\boldsymbol{\beta}_{s}=\mathbf{C}_{s} \mathbf{b}_{s}$,
- solve $\mathbf{A}_{0} \mathbf{y}_{s}=\boldsymbol{\beta}_{s}$ for \mathbf{y}_{s}, and
- $\operatorname{set} \mathbf{x}_{J_{s}}=\widetilde{\mathbf{x}}_{J_{s}}-\mathbf{D}_{s}^{-1} \mathbf{y}_{s}$.

They are implemented in the function CompTCsLinear.
$37\langle$ Definitions of HO Private Functions 37$\rangle \equiv$

```
void HO ::CompTCsLinear(int s)
```

\{
$\left\langle\right.$ compute $\left.\mathbf{b}_{s} 40\right\rangle$;
$\left\langle\right.$ compute $\left.\boldsymbol{\beta}_{s}=\mathbf{C}_{s} \mathbf{b}_{s} 44\right\rangle ;$
$\left\langle\right.$ solve $\left.\mathbf{A}_{0} \mathbf{y}_{s}=\boldsymbol{\beta}_{s} 54\right\rangle ;$
$\left\langle\right.$ compute and set $\left.\mathbf{x}_{J_{s}}=\widetilde{\mathbf{x}}_{J_{s}}-\mathbf{D}_{s}^{-1} \mathbf{y}_{s} 56\right\rangle ;$
\}
See also chunks $49,51,57,62,69,79,121,124,127,130,135,137,145,146,147,151,154,156,161,168$, $170,221,262,263$, and 280

This code is used in chunk 348.

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

5.1.2.1 Computing \mathbf{b}_{s}

The HO class maintains a pointer to an object of the TaylorSeries class from DAETS.
$38\langle$ HO Data Members 28$\rangle+\equiv$
daets :: TaylorSeries $* t s_{-} ; \quad / *$ the source code of DAETS is in namespace daets $* /$

To evaluate the \mathbf{b}_{s} in (5.1), we call EvalEqnsAtStage from the TaylorSeries class. This function stores \mathbf{b}_{s} at
$39\langle$ HO Data Members 28$\rangle+\equiv$
double $* r h s_{-}$;
$40\left\langle\right.$ compute $\left.\mathbf{b}_{s} 40\right\rangle \equiv$

$$
t s_{-}-E v a l E q n s A t S t a g e\left(s, r h s_{-}\right) ;
$$

This code is used in chunk 37.

5.1.2.2 Computing β_{s}

An HO object obtains all structural data about the given DAE through a pointer to an object of the SAdata class.

41 〈HO Data Members 28$\rangle+\equiv$ const daets ::SAdata $*$ sadata_;

For convenience, we can get the size of the DAE through sadata_ and store it in n_{-}.
$42\langle$ HO Data Members 28$\rangle+\equiv$
int n_{-};

Ph.D. Thesis - Reza Zolfaghari

The offsets are computed and stored during the structural analysis in a SAdata object. Calling the functions get_c and get_d from the SAdata class, we can access the equation and variable offsets, respectively. In the constructor of the $\mathbf{H O}$ class, we store the offsets in c_{-}and d_{-}.

43 〈HO Data Members 28$\rangle+\equiv$

$$
\boldsymbol{\operatorname { s t d }}:: \text { vector }\langle\text { size_t }\rangle c_{-}, d_{-} ;
$$

After the \mathbf{b}_{s} is computed and stored at $r h s_{-}$, we compute $\boldsymbol{\beta}_{s}$.
$44\left\langle\right.$ compute $\left.\boldsymbol{\beta}_{s}=\mathbf{C}_{s} \mathbf{b}_{s} 44\right\rangle \equiv$
for (int $i=0 ; i<n_{-} ; i++$)

$$
r h s_{-}[i] *=c o m p _c s_{-} d s\left(s, c_{-}[i]\right) ;
$$

This code is used in chunk 37.

5.1.2.3 Solving $\mathbf{A}_{0} \mathbf{y}_{s}=\beta_{s}$

In the $\mathbf{H O}$ class, we store the current time in

46 〈HO Data Members 28$\rangle+\equiv$
double t_{-};

The HO class maintains a pointer to an object of the Jacobian class.
$47\langle$ HO Data Members 28$\rangle+\equiv$
daets :: Jacobian $* j a c_{-}$;

We implement the function CompA0 that computes \mathbf{A}_{0} by calling computeJacobian from the Jacobian class and returns it at jac column-wise using getScaledDenseJacobian.

Ph.D. Thesis - Reza Zolfaghari
$49\langle$ Definitions of HO Private Functions 37$\rangle+\equiv$

```
void HO ::CompAO(double *jac)
    {
    SetIndepTCsJac( ); /* sets }\mp@subsup{\mathbf{x}}{\mp@subsup{J}{<0}{}}{}\mathrm{ in the Jacobian object */
    jac_->setT(t_);
```



```
    {
        jac_->computeJacobian(s);
        jac_->getScaledDenseJacobian(s,jac);
    }
    ts_->set_time_coeffs(t_, 1);
        jac_`resetAll();
    }
```

Since \mathbf{A}_{0} depends on $\mathbf{x}_{J_{<0}}$, stored in indep_tcs_, we first set these TCs in the Jacobian object.
\langle HO Data Members 28$\rangle+\equiv$
IrregularMatrix $\langle\mathbf{d o u b l e}\rangle$ indep_tcs_;

This is done by the function SetIndepTCsJac, which calls set_indep_var_coeff from the Jacobian class. set_indep_var_coeff $(j, k, t c)$ sets $t c$ to be the k th TC for j th variable.

Ph.D. Thesis - Reza Zolfaghari
\{
for (int $j=0 ; j<n_{-} ; j+$)
for (int $k=0 ; k<d_{-}[j] ; k+$)

$$
\text { jac_sset_indep_var_coeff }(j, k, \text { indep_tcs_ }(j, k)) ;
$$

\}

After computing \mathbf{A}_{0}, we find the LU factorization of \mathbf{A}_{0} and store it at
$52\langle$ HO Data Members 28$\rangle+\equiv$
double $*$ sys_jac_;

The pivot vector that defines the permutation matrix is stored at
$53\langle$ HO Data Members 28$\rangle+\equiv$
int $* i p i v_{-} ;$

Using this LU factorization, LSolve computes a solution and stores it at $r h s_{-}$.
$54\left\langle\right.$ solve $\left.\mathbf{A}_{0} \mathbf{y}_{s}=\boldsymbol{\beta}_{s} 54\right\rangle \equiv$
daets ::LSolve(n_, sys_jac_, ipiv_, rhs_);
This code is used in chunk 37.

5.1.2.4 Correcting the initial guess

The initial guess $\widetilde{\mathbf{x}}_{J_{s}}$ is corrected by (5.8), which is equivalent to

$$
\mathbf{x}_{J_{s}}=\widetilde{\mathbf{x}}_{J_{s}}-\mathbf{D}_{s}^{-1} \mathbf{y}_{s} .
$$

We call get_var_coeff (j, l) from the TaylorSeries class to return the previously stored TC as an initial guess for $\left(x_{j}\right)_{l}$. Then set_var_coeff $(j, l, t c)$ sets $t c$ to be the l th TC for j th

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE
variable.
$56\left\langle\right.$ compute and set $\left.\mathbf{x}_{J_{s}}=\widetilde{\mathbf{x}}_{J_{s}}-\mathbf{D}_{s}^{-1} \mathbf{y}_{s} 56\right\rangle \equiv$

$$
\begin{aligned}
& \text { for }\left(\text { int } j=0 ; j<n_{-} ; j++\right) \\
& \left\{\begin{array}{l}
\left\{h s_{-}[j] /=\text { comp_cs_ds }\left(s, d_{-}[j]\right) ; \quad / * \mathbf{D}_{s}^{-1} \mathbf{y}_{s} * /\right. \\
\text { int } l=s+d_{-}[j] ; \\
\text { double } t c=t s_{-} \rightarrow g e t_{-} v a r_{-} \text {coeff }(j, l)-r h s_{-}[j] ; \quad / * \widetilde{\mathbf{x}}_{J_{s}}-\mathbf{D}_{s}^{-1} \mathbf{y}_{s} * / \\
t s_{-} \rightarrow \text { set_var_coeff }(j, l, t c) ; \quad / * \mathbf{x}_{J_{s}}=\widetilde{\mathbf{x}}_{J_{s}}-\mathbf{D}_{s}^{-1} \mathbf{y}_{s} * / \\
\}
\end{array}\right.
\end{aligned}
$$

This code is used in chunk 37.

5.2 Solving nonlinear systems

In non-quasilinear DAEs, (4.4) is nonlinear when $s=0$. That is, we need to solve the nonlinear system

$$
\begin{equation*}
\mathbf{f}_{I_{0}}\left(t, \mathbf{x}_{J_{<0}}, \mathbf{x}_{J_{0}}\right)=0 \tag{5.10}
\end{equation*}
$$

whose unknown is $\mathbf{x}_{J_{0}} \in \mathbb{R}^{n}$.
The function CompTCsNonlinear is implemented to solve the system (5.10) by calling routines in the KINSOL software package [31]. In this function, x stores an initial guess for $\mathbf{x}_{J_{0}}$. After solving the system successfully, x is updated with the computed solution. The return value of type HoFlag is one of the following:

Ph.D. Thesis - Reza Zolfaghari

- HO_SUCCESS, if $\mathbf{x}_{J_{0}}$ is computed successfully, or
- STAGEO_FAIL, if solving (5.10) fails.

57

\langle Definitions of HO Private Functions 37$\rangle+\equiv$
HoFlag HO :: CompTCsNonlinear (double $* x$)
\{
HoFlag flag;
$\left\langle\right.$ solve $\left.\mathbf{f}_{I_{0}}=075\right\rangle ;$
if $($ flag \equiv HO_CONVERGENT)
return HO_SUCCESS;
else
return STAGEO_FAIL;
\}

5.2.1 Solving $\mathrm{f}_{I_{0}}=0$ by KINSOL

KINSOL is part of the SUNDIALS suite [31]. KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov, Picard, and fixed point solvers. KINSOL's Newton solver employs the Modified or Inexact Newton method and the resulting linear systems can be solved by direct (dense, sparse, or banded) or iterative methods.

To solve (5.10) by KINSOL, we should implement the required functions that evaluate $\mathbf{f}_{I_{0}}$ and $\partial \mathbf{f}_{I_{0}} / \partial \mathbf{x}_{J_{0}}$.

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

5.2.1.1 Evaluating $f_{I_{0}}$

We provide a function FcnKinsol of type KINSysFn that evaluates $\mathbf{f}_{I_{0}}$. In this function, x is the given variable vector, and f is the output vector. They are of type \mathbf{N} _Vector which is a generic vector in SUNDIALS.
$59\langle$ Nonlinear Solver Functions 59$\rangle \equiv$

```
int FcnKinsol(N_Vector }x,\mathbf{N_Vector f, void *user_data)
{
```

 \(\left\langle\right.\) set parameters to evaluate \(\left.\mathbf{f}_{I_{0}} 60\right\rangle\);
 \(\left\langle\right.\) evaluate \(\left.\mathbf{f}_{I_{0}} 64\right\rangle\);
 return 0 ;
 \}
 See also chunks $65,101,177,178$, and 340

This code is used in chunk 364.

In all SUNDIALS solvers, the type realtype is used for all floating-point data, with the default being double. Calling the function N_VGetArrayPointer_Serial from NVECTOR operations, we create pointers to realtype arrays $x d a t a$ and $f d a t a$ from \mathbf{N} _Vectors x and f, respectively.
$60\left\langle\right.$ set parameters to evaluate $\left.f_{I_{0}} 60\right\rangle \equiv$
realtype $* x d a t a=N_{-} V G e t A r r a y P o i n t e r _S e r i a l ~(x) ;$
realtype $* f d a t a=N _V G e t A r r a y P o i n t e r _S e r i a l ~(f) ;$
See also chunk 63.

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

This code is used in chunk 59.

Given x as a guess for $\mathbf{x}_{J_{0}}$, the function EvalEqnsStageZero below evaluates $\mathbf{f}_{I_{0}}$ by calling EvalEqnsAtStage from the TaylorSeries class and stores it at f.

61
\langle Definitions of HO Public Functions 61$\rangle \equiv$

$$
\text { void HO ::EvalEqnsStageZero(const double } * x \text {, double } * f)
$$

$$
\{
$$

SetStageZeroTCs(x);
$t s_{-} \rightarrow$ EvalEqnsAtStage $(0, f) ;$
\}

See also chunk 148.
This code is used in chunk 348.

The function SetStageZeroTCs sets x to be TCs of variables at stage zero. That is, by calling set_var_coeff $\left(j, d_{-}[j], x[j]\right), x[j]$ will be the $d_{-}[j]$ th TC of the j th variable.
$62\langle$ Definitions of HO Private Functions 37$\rangle+\equiv$
void HO ::SetStageZeroTCs(const double $* x)$
\{

$$
\text { for (int } j=0 ; j<n_{-} ; j+\text {) }
$$

$$
t s_{-} \rightarrow \text { set_var_coeff }\left(j, d_{-}[j], x[j]\right)
$$

\}

Assume that an object of the $\mathbf{H O}$ class is passed through the user_data parameter. We cast a pointer to the $\mathbf{H O}$ class from user_data.

Ph.D. Thesis - Reza Zolfaghari
$63\left\langle\right.$ set parameters to evaluate $\left.\mathbf{f}_{I_{0}} 60\right\rangle+\equiv$
$\mathbf{H O} * h o=(\mathbf{H O} *)$ user_data $;$

Now, we call EvalEqnsStageZero to
$64\left\langle\right.$ evaluate $\left.\mathbf{f}_{I_{0}} 64\right\rangle \equiv$
ho \neg EvalEqnsStageZero(xdata,fdata);
This code is used in chunk 59 .

5.2.1.2 Computing $\partial \mathbf{f}_{I_{0}} / \partial \mathbf{x}_{J_{0}}$

We provide a function JacKinsol of type KINLsJacFn that evaluates $\partial \mathbf{f}_{I_{0}} / \partial \mathbf{x}_{J_{0}}$. In this function, x is the given variable vector, and f is the output vector. The output Jacobian matrix is stored at sun_jac of type SUNMatrix which is a generic matrix in SUNDIALS.
$65\langle$ Nonlinear Solver Functions 59$\rangle+\equiv$
int JacKinsol(N_Vector x, N_Vector f, SUNMatrix sun_jac, void *user_data, N_Vector tmp1, \mathbf{N} _Vector tmp2)
\{
$\left\langle\right.$ set parameters to evaluate $\left.\frac{\partial \mathbf{f}_{I_{0}}}{\partial \mathbf{x}_{J_{0}}} 66\right\rangle$;
$\left\langle\right.$ compute $\left.\frac{\partial \mathbf{f}_{I_{0}}}{\partial \mathbf{x}_{J_{0}}} 71\right\rangle ;$
$\left\langle\right.$ store the computed $\frac{\partial \mathbf{f}_{I_{0}}}{\partial \mathbf{x}_{J_{0}}}$ at sun_jac 73\rangle;
return 0 ;
\}

Ph.D. Thesis - Reza Zolfaghari

Calling the function SUNDenseMatrix_Columns, we obtain the size of the system and store it in n. In SUNDIALS solvers the type sunindextype is used for integer data.
$\left\langle\right.$ set parameters to evaluate $\left.\frac{\partial \mathbf{f}_{I_{0}}}{\partial \mathbf{x}_{J_{0}}} 66\right\rangle \equiv$
sunindextype $n=$ SUNDenseMatrix_Columns(sun_jac);
See also chunks 67, 68, and 70

This code is used in chunk 65 .

Calling the function N_{-}VGetArrayPointer_Serial, we create a pointer to realtype array xdata from x.
$\left\langle\right.$ set parameters to evaluate $\left.\frac{\partial \mathbf{f}_{I_{0}}}{\partial \mathbf{x}_{J_{0}}} 66\right\rangle+\equiv$ realtype $* x d a t a=N_{-} V G e t A r r a y P o i n t e r _S e r i a l ~(x) ;$

The function SUNDenseMatrix_Data is called to return the pointer jacobian to the data array for sun_jac.
$\left\langle\right.$ set parameters to evaluate $\left.\frac{\partial \mathbf{f}_{I_{0}}}{\partial \mathbf{x}_{J_{0}}} 66\right\rangle+\equiv$
realtype $* j a c o b i a n=S U N D e n s e M a t r i x _D a t a\left(s u n _j a c\right)$;

To compute \mathbf{A}_{0} for given $\mathbf{x}_{J_{0}}$, we first set these TCs in the Jacobian object. This is done by the function SetStageZeroTCsJac, which calls set_indep_var_coeff from the Jacobian class.
$69\langle$ Definitions of HO Private Functions 37$\rangle+\equiv$
void HO ::SetStageZeroTCsJac(const double $* x$)
\{

```
        for (int j=0;j< n_; j++)
        jac_->set_indep_var_coeff (j,d_[j],x[j]);
}
```

Then, we cast a pointer to the HO class from user_data.

See also chunk 72.

This code is used in chunk 65.

Now, we call CompAO from the $\mathbf{H O}$ class to compute $\partial \mathbf{f}_{I_{0}} / \partial \mathbf{x}_{J_{0}}$ and store it column-wise at jacobian.
$\left\langle\right.$ compute $\left.\frac{\partial \mathbf{f}_{I_{0}}}{\partial \mathbf{x}_{J_{0}}} 71\right\rangle+\equiv$ ho \rightarrow CompAO(jacobian);

In SUNDIALS, SM_COLUMN_D $\left(s u n _j a c, j\right)$ returns a pointer to the first element of the j th column of sun_jac.
$\left\langle\right.$ store the computed $\frac{\partial \mathbf{f}_{I_{0}}}{\partial \mathbf{x}_{J_{0}}}$ at sun_jac 73$\rangle \equiv$

$$
\text { for (int } \mathrm{col}=0 ; \operatorname{col}<n ; \mathrm{col}++)
$$

$$
\text { SM_COLUMN_D }\left(s u n _j a c, c o l\right)=j a c o b i a n ~+c o l ~ * n ;
$$

This code is used in chunk 65.

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

5.2.1.3 Calling KINSOL

After providing the functions FcnKinsol and JacKinsol for evaluating $\mathbf{f}_{I_{0}}$ and $\partial \mathbf{f}_{I_{0}} / \partial \mathbf{x}_{J_{0}}$, respectively, we pass them as arguments of the function NSolveKin (implemented in Appendix C). Here, we set the tolerance to be $\max \{10 \epsilon$, tol $/ 100\}$, where ϵ is the machine precision, and tol is the integration tolerance sotred in
$74\langle$ HO Data Members 28$\rangle+\equiv$ double tol_;
$75\left\langle\right.$ solve $\left.\mathbf{f}_{I_{0}}=075\right\rangle \equiv$
double min_tol $=10 *$ std $::$ numeric_limits $<$ double $>::$ epsilon ()$;$
double $t o l=\mathbf{s t d}:: \max ($ min_tol,tol_/100);
int max_num_iter $=4$;
flag $=$ NSolveKin $\left(n_{-}\right.$, tol, max_num_iter,x, FcnKinsol, JacKinsol,$($ void $*)$ this $) ;$
This code is used in chunk 57.

Chapter 6

Computing gradients of Taylor

coefficients

To solve the HO system (4.20) using Newton's method, we need to compute the gradients

$$
\frac{\partial\left(x_{j}\right)_{k+r}}{\partial \mathbf{x}_{J_{<0}}}
$$

for $j=0, \ldots, n-1, k=0, \ldots, d_{j}-1$, and $r=0, \ldots, q$. Let $\nabla=\partial / \partial \mathbf{x}_{J_{<0}}$ and denote for a row or column vector \mathbf{u} with elements $u_{1}, u_{2}, \ldots, u_{m}$,

$$
\nabla \mathbf{u}=\left[\begin{array}{c}
\nabla u_{1} \\
\nabla u_{2} \\
\vdots \\
\nabla u_{m}
\end{array}\right]
$$

By (4.10) and the computational scheme for TCs in §4.1, we can obtain the required gradients if we compute the Jacobian matrices $\nabla \mathbf{x}_{J_{s}}$ for $0 \leq s<q$.

Recall that $\mathbf{x}_{J_{<0}}$ is a vector with N independent TCs, and $\mathbf{x}_{J_{s}}$ is a vector of size n containing TCs of state variables at stage $s \geq 0$. Hence, $\boldsymbol{\nabla} \mathbf{x}_{J_{s}}$ is a Jacobian matrix of size $n \times N$. In this chapter, we show how $\nabla \mathbf{x}_{J_{s}}$ can be computed using automatic differentiation. First, we derive a method for their computations in §6.1. Then, we implement the required functions to compute them in §6.2.

6.1 Computational scheme for gradients

Differentiating (4.4) with respect to $\mathbf{x}_{J_{<0}}$, we obtain

$$
\begin{equation*}
\frac{\partial \mathbf{f}_{I_{s}}}{\partial \mathbf{x}_{J_{<s}}} \nabla \mathbf{x}_{J_{<s}}+\frac{\partial \mathbf{f}_{I_{s}}}{\partial \mathbf{x}_{J_{s}}} \nabla \mathbf{x}_{J_{s}}=0 \tag{6.1}
\end{equation*}
$$

Denote the left hand side of equation (6.1) by

$$
\mathbf{g}_{I_{s}}\left(t, \mathbf{x}_{J_{\leq s}}, \nabla \mathbf{x}_{J_{<s}}, \nabla \mathbf{x}_{J_{s}}\right)
$$

Given $\mathbf{x}_{J_{\leq s}}$ and $\nabla \mathbf{x}_{J_{<s}}$ at t, we can find $\nabla \mathbf{x}_{J_{s}}$ by solving the system

$$
\begin{equation*}
\mathbf{g}_{I_{s}}\left(t, \mathbf{x}_{J_{\leq s}}, \nabla \mathbf{x}_{J_{<s}}, \nabla \mathbf{x}_{J_{s}}\right)=0 \tag{6.2}
\end{equation*}
$$

which is linear in $\nabla \mathbf{x}_{J_{s}}$, and $\partial \mathbf{g}_{I_{s}} / \partial\left(\nabla \mathbf{x}_{J_{s}}\right)$ is \mathbf{A}_{s} in (5.5). As in $\S 5.1$, we can apply one iteration of Newton's method to (6.2) to find $\nabla \mathbf{x}_{J_{s}} \in \mathbb{R}^{n \times N}$. That is, given $\mathbf{x}_{J_{\leq s}}$ and $\nabla \mathbf{x}_{J_{<s}}$ as constants, and $\widetilde{\nabla \mathbf{x}}_{J_{s}}$ as a an initial guess for $\nabla \mathbf{x}_{J_{s}}$,

$$
\begin{equation*}
\boldsymbol{\nabla} \mathbf{x}_{J_{s}}=\widetilde{\nabla \mathbf{x}}_{J_{s}}-\mathbf{A}_{s}^{-1} \mathbf{B}_{s} \tag{6.3}
\end{equation*}
$$

Ph.D. Thesis - Reza Zolfaghari
where

$$
\begin{equation*}
\mathbf{B}_{s}=\mathbf{g}_{I_{s}}\left(t, \mathbf{x}_{J_{\leq s}}, \nabla \mathbf{x}_{J_{<s}}, \widetilde{\nabla \mathbf{x}_{J_{s}}}\right) \tag{6.4}
\end{equation*}
$$

is a Jacobian matrix of size $n \times N$ containing the gradients of TCs of equations at stage s.

Example 6.1. For the pendulum in Example 2.1, we have $\mathbf{x}_{J_{<0}}=\left[x_{0}, x_{1}, y_{0}, y_{1}\right]$. Clearly,

$$
\begin{aligned}
& \nabla x_{0}=[1,0,0,0], \\
& \nabla x_{1}=[0,1,0,0], \\
& \nabla y_{0}=[0,0,1,0], \\
& \nabla y_{1}=[0,0,0,1] .
\end{aligned}
$$

The computational schemes for $\nabla \mathbf{x}_{J_{0}}$ and $\nabla \mathbf{x}_{J_{1}}$ are illustrated as follows.
At stage $s=0,(4.4)$ is

$$
\begin{aligned}
& 0=2 x_{2}+\lambda_{0} x_{0}, \\
& 0=2 y_{2}+\lambda_{0} y_{0}+G, \\
& 0=2 x_{0} x_{2}+x_{1}^{2}+2 y_{0} y_{2}+y_{1}^{2} .
\end{aligned}
$$

Differentiating with respect to $\mathbf{x}_{J_{<0}}$, we obtain

$$
\begin{aligned}
& 0=2 \nabla x_{2}+\lambda_{0} \nabla x_{0}+x_{0} \nabla \lambda_{0}, \\
& 0=2 \nabla y_{2}+\lambda_{0} \nabla y_{0}+y_{0} \nabla \lambda_{0}, \\
& 0=2 x_{2} \nabla x_{0}+2 x_{0} \nabla x_{2}+2 x_{1} \nabla x_{1}+2 y_{2} \nabla y_{0}+2 y_{0} \nabla y_{2}+2 y_{1} \nabla y_{1} .
\end{aligned}
$$

It can be written as

$$
0=\underbrace{\left[\begin{array}{ccc}
2 & 0 & x_{0} \\
0 & 2 & y_{0} \\
2 x_{0} & 2 y_{0} & 0
\end{array}\right]}_{\mathbf{A}_{0}} \underbrace{\left[\begin{array}{l}
\nabla x_{2} \\
\nabla y_{2} \\
\nabla \lambda_{0}
\end{array}\right]}_{\nabla \mathbf{x}_{J_{0}}}+\underbrace{\lambda_{0} \nabla y_{0}}_{\lambda_{0} \nabla x_{0}} \begin{array}{c}
\frac{\partial \mathbf{f}_{I_{0}}}{\partial \mathbf{x}_{J_{<0}}} \nabla \mathbf{x}_{J_{<0}} \\
2 x_{2} \nabla x_{0}+2 x_{1} \nabla x_{1}+2 y_{2} \nabla y_{0}+2 y_{1} \nabla y_{1}
\end{array}] .
$$

At stage $s=1$, (4.4) is

$$
\begin{aligned}
& 0=6 x_{3}+\lambda_{0} x_{1}+\lambda_{1} x_{0}, \\
& 0=6 y_{3}+\lambda_{0} y_{1}+\lambda_{1} y_{0}, \\
& 0=2 x_{0} x_{3}+2 x_{1} x_{2}+2 y_{0} y_{3}+2 y_{1} y_{2} .
\end{aligned}
$$

Differentiating with respect to $\mathbf{x}_{J_{<0}}$, we obtain

$$
\begin{aligned}
0= & 6 \nabla x_{3}+\lambda_{0} \nabla x_{1}+x_{1} \nabla \lambda_{0}+x_{0} \nabla \lambda_{1}+\lambda_{1} \nabla x_{0}, \\
0= & 6 \nabla y_{3}+\lambda_{0} \nabla y_{1}+y_{1} \nabla \lambda_{0}+y_{0} \nabla \lambda_{1}+\lambda_{1} \nabla y_{0}, \\
0= & 2 x_{3} \nabla x_{0}+2 x_{0} \nabla x_{3}+2 x_{1} \nabla x_{2}+2 x_{2} \nabla x_{1}+2 y_{3} \nabla y_{0} \\
& +2 y_{0} \nabla y_{3}+2 y_{1} \nabla y_{2}+2 y_{2} \nabla y_{1} .
\end{aligned}
$$

It can be written as

$$
\begin{aligned}
& 0=\underbrace{\left[\begin{array}{ccc}
6 & 0 & x_{0} \\
0 & 6 & y_{0} \\
2 x_{0} & 2 y_{0} & 0
\end{array}\right]}_{\mathbf{A}_{1}} \underbrace{\left[\begin{array}{l}
\nabla x_{3} \\
\nabla y_{3} \\
\nabla \lambda_{1}
\end{array}\right]}_{\nabla \mathbf{x}_{J_{1}}} \\
&+\underbrace{\lambda_{0} \nabla y_{1}+y_{1} \nabla \lambda_{0}+y_{0} \nabla \lambda_{1}+\lambda_{1} \nabla y_{0}}_{\lambda_{0} \nabla x_{1}+x_{1} \nabla \lambda_{0}+x_{0} \nabla \lambda_{1}+\lambda_{1} \nabla x_{0}} \\
&\left.\frac{\partial \mathbf{f}_{I_{1}}}{2 x_{3} \nabla x_{0}+2 x_{1} \nabla x_{2}+2 x_{2} \nabla x_{1}+2 y_{3} \nabla y_{0}+2 y_{1} \nabla y_{2}+2 y_{2} \nabla y_{1}}\right]
\end{aligned}
$$

6.2 Implementation

The number of independent TCs, N (4.6), is stored in
\mathbf{B}_{s} is a matrix of size $n \times N$, and the k th column of this matrix contains the gradients of the TCs of equations at stage s in terms of k th independent TC. Let $[\mathbf{A}]_{k}$ denote the k th column of a matrix \mathbf{A}. We need to solve the system of linear equations

$$
\mathbf{A}_{s}\left[\mathbf{G}_{s}\right]_{k}=\left[\mathbf{B}_{s}\right]_{k}, \quad k=0,1, \ldots, N-1
$$

to find the k th column of the matrix \mathbf{G}_{s}. By (5.5), we write

$$
\mathbf{C}_{s}^{-1} \mathbf{A}_{0} \mathbf{D}_{s}\left[\mathbf{G}_{s}\right]_{k}=\left[\mathbf{B}_{s}\right]_{k},
$$

Ph.D. Thesis - Reza Zolfaghari
which leads to

$$
\begin{equation*}
\mathbf{A}_{0} \mathbf{D}_{s}\left[\mathbf{G}_{s}\right]_{k}=\mathbf{C}_{s}\left[\mathbf{B}_{s}\right]_{k} \tag{6.5}
\end{equation*}
$$

That is, we need to

- compute \mathbf{B}_{s},
- compute $\left[\mathcal{B}_{s}\right]_{k}=\mathbf{C}_{s}\left[\mathbf{B}_{s}\right]_{k}$,
- solve $\mathbf{A}_{0}\left[\mathbf{Y}_{s}\right]_{k}=\left[\mathcal{B}_{s}\right]_{k}$ to find $\left[\mathbf{Y}_{s}\right]_{k}$, and
$\cdot \operatorname{set}\left[\boldsymbol{\nabla} \mathbf{x}_{J_{s}}\right]_{k}=\left[\widetilde{\boldsymbol{\nabla}} \mathrm{x}_{J_{s}}\right]_{k}-\mathbf{D}_{s}^{-1}\left[\mathbf{Y}_{s}\right]_{k}$.

This is implemented by the function CompGradients which computes $\boldsymbol{\nabla} \mathbf{x}_{J_{s}}$ at stages $s=$ $0,1, \ldots, q-1$ where $\mathbf{x}_{J_{<s}}$ is given.
$79\langle$ Definitions of HO Private Functions 37$\rangle+\equiv$ void HO :: CompGradients(int q) \{
$\left\langle\right.$ initialize $\left.\nabla \mathbf{x}_{J_{<q}} 86\right\rangle$;
$\left\langle\operatorname{set} \mathbf{x}_{J_{<q}} 88\right\rangle$;
for (int $s=0 ; s<q ; s+$)
\{
$\left\langle\right.$ compute $\left.\mathbf{B}_{s} 91\right\rangle$;
for $\left(\right.$ int $\left.k=0 ; k<n u m _i n d e p_{-} t c s_{-} ; k++\right)$
\{

$$
\left\langle\text { compute }\left[\mathcal{B}_{s}\right]_{k}=\mathbf{C}_{s}\left[\mathbf{B}_{s}\right]_{k} 93\right\rangle ;
$$

```
            < solve A}\mp@subsup{\mathbf{A}}{0}{}[\mp@subsup{\mathbf{Y}}{s}{}\mp@subsup{]}{k}{}=[\mp@subsup{\mathcal{B}}{s}{}\mp@subsup{]}{k}{}94\rangle
```



```
            }
        }
}
```


6.2.1 Initializing gradients

A Gradients object obtains all structural data of the given DAE through a pointer to a SAdata object.
$80\langle$ Gradients Data Members 80$\rangle \equiv$
const daets ::SAdata $*$ sadata_;

See also chunks $81,89,164$, and 352

This code is used in chunk 25.

We use the forward mode of FADBAD++ to differentiate TCs. The input variables are in
fadbad $:: \mathbf{T}\langle\mathbf{f a d b a d}:: \mathbf{F}\langle\mathbf{d o u b l e}\rangle\rangle * g r a d _i n_{-} ;$

First, we need to initialize $\nabla \mathbf{x}_{J_{<q}}$. We define the function set_var_grad_component which sets value for the derivative of $\left(x_{j}\right)_{l}$ with respect to the k th independent TC.

```
void set_var_grad_component(int j, int l, int k, double der)
{
```

```
    grad_in_[j][l].d(k)=der;
    \}
```

See also chunks $84,87,90,92,95,165,353$, and 354

This code is used in chunk 25.

The $\nabla \mathbf{x}_{J_{<0}}$ is the $N \times N$ identity matrix and we initialize gradients of higher-order TCs with zeros. This is implemented by the function initialize_gradients. In this function, we call fadbad :: diff to indicate the independent TCs that we want to differentiate with respect to. Calling $\operatorname{diff}(k, m), m$ becomes the number of independent TCs and k denotes the index of the independent TC.
$84\langle$ Gradients Public Functions 82$\rangle+\equiv$

```
void initialize_gradients(int q,int num_indep_tcs)
{
    int k=0; / * kth independent TC */
        for (int j=0;j< sadata_->get_size(); j++)
        {
        int dj = sadata_->get_d (j);
        for (int l= 0; l<dj;l++)
            grad_in_[j][l].diff (k++,num_indep_tcs); /* \nabla\mp@subsup{\mathbf{x}}{\mp@subsup{J}{<0}{}}{}\mathrm{ identity matrix */}
        for (int l=dj;l<q+dj;l++)
        {
            grad_in_[j][l].diff(0,num_indep_tcs);
```

Ph.D. Thesis - Reza Zolfaghari

```
            set_var_grad_component(j,l,0,0);
            }
        }
}
```

The HO class maintains a pointer to a Gradients object.

85 〈HO Data Members 28$\rangle+\equiv$
Gradients *grads_;

Now, we can call initialize_gradients.
$86\left\langle\right.$ initialize $\left.\nabla \mathbf{x}_{J_{<q}} 86\right\rangle \equiv$ grads_-initialize_gradients(q, num_indep_tcs_);

This code is used in chunk 79.

Since we always compute $\mathbf{x}_{J_{<q}}$ before computing gradients, we copy it's entries to $\nabla \mathbf{x}_{J_{<q}}$. The function set_var_coeff is defined to set the l th TC of x_{j} in grad_in_.
$87\langle$ Gradients Public Functions 82$\rangle+\equiv$

$$
\text { void set_var_coeff(int } j, \text { int } l \text {, double } t c \text {) }
$$

\{
grad_in_[j][l].x()=tc;
\}
$88\left\langle\operatorname{set} \mathrm{x}_{J_{<q}} 88\right\rangle \equiv$
for (int $j=0 ; j<n_{-} ; j+$)

```
for (int l=0;l<d_[j]+q;l++)
{
        double tc = ts_->get_var_coeff (j,l);
        grads_->set_var_coeff (j,l,tc);
}
```

This code is used in chunk 79.

6.2.2 Computing B_{s}

We first define the function EvalEqnCoeffGrad which computes an entry of \mathbf{B}_{s} in (6.4) and stores it in grad_out_. This contains the output variables in the differentiation process.
$89\langle$ Gradients Data Members 80$\rangle+\equiv$
fadbad :: T/fadbad ::F \langle double $\rangle\rangle$ *grad_out_;

EvalEqnCoeffGrad (i, l) computes $\nabla\left(f_{i}\right)_{l}$. This is done by calling the function eval from
FADBAD++.
$90\langle$ Gradients Public Functions 82$\rangle+\equiv$ void EvalEqnCoeffGrad(int i, int l)
\{
grad_out_[i].reset();
grad_out_[i].eval(l);
\}

Then by calling EvalEqnCoeffGrad all entries of \mathbf{B}_{s} are computed.

Ph.D. Thesis - Reza Zolfaghari
$91\left\langle\right.$ compute $\left.\mathbf{B}_{s} 91\right\rangle \equiv$

$$
\begin{aligned}
& \text { for (int } \left.i=0 ; i<n_{-} ; i++\right) \\
& \{ \\
& \text { int } l=c_{-}[i]+s ; \\
& \text { grads }- \text { EvalEqnCoeffGrad }(i, l) ; \\
& \}
\end{aligned}
$$

This code is used in chunk 79.

6.2.3 Computing $\left[\mathcal{B}_{s}\right]_{k}$

To access the computed gradients in \mathbf{B}_{s}, we define the function get_eqn_grad_component.
Denote by y_{k} the k th component of $\mathbf{x}_{J_{<0}}$. Then, get_eqn_grad_component (i, l, k) returns $\partial\left(f_{i}\right)_{l} / \partial y_{k}$ which is the i th element of the column vector $\left[\mathbf{B}_{s}\right]_{k}$ where $l=s+c_{i}$.
$92\langle$ Gradients Public Functions 82$\rangle+\equiv$
double get_eqn_grad_component(int i, int l, int k) const
return grad_out_[i][l].d(k);
\}

Here, we multiply these elements by the corresponding entries on the main diagonal of matrix \mathbf{C}_{s}. The resulting column vector is stored at $r h s_{-}$.
$93\left\langle\right.$ compute $\left.\left[\mathcal{B}_{s}\right]_{k}=\mathbf{C}_{s}\left[\mathbf{B}_{s}\right]_{k} 93\right\rangle \equiv$
for (int $\left.i=0 ; i<n_{-} ; i++\right)$
\{

```
    int \(c i=c_{-}[i] ;\)
    int \(l=c i+s ;\)
    \(r h s_{-}[i]=g r a d s_{-} \rightarrow g e t \_e q n \_g r a d \_c o m p o n e n t(i, l, k) *\) comp_cs_ds \((s, c i) ;\)
\}
```

This code is used in chunk 79.

6.2.4 Solving $\mathbf{A}_{0}\left[\mathbf{Y}_{s}\right]_{k}=\left[\mathcal{B}_{s}\right]_{k}$

We have the LU factorization of \mathbf{A}_{0} stored at sys_jac_ with ipiv_ that contains the pivot indices that define the required permutation matrix. Using this LU factorization, LSolve computes a solution of $\mathbf{A}_{0}\left[\mathbf{Y}_{s}\right]_{k}=\left[\mathcal{B}_{s}\right]_{k}$ and stores it in $r h s_{-}$.
$94\left\langle\right.$ solve $\left.\mathbf{A}_{0}\left[\mathbf{Y}_{s}\right]_{k}=\left[\mathcal{B}_{s}\right]_{k} 94\right\rangle \equiv$
daets ::LSolve(n_{-}, sys_jac_, ipiv_, rhs_);
This code is used in chunk 79.

6.2.5 Correcting initial guess

The k th column of the initial guess $\widetilde{\boldsymbol{V x}}_{J_{s}}$ is corrected by (6.3) which is equivalent to

$$
\left[\boldsymbol{\nabla} \mathbf{x}_{J_{s}}\right]_{k}=\left[\widetilde{\boldsymbol{\nabla}}_{J_{s}}\right]_{k}-\mathbf{D}_{s}^{-1}\left[\mathbf{Y}_{s}\right]_{k} .
$$

To access the computed gradients in $\nabla \mathbf{x}_{J_{s}}$, we define the function get_var_grad_component. Denote by y_{k} the k th component of $\mathbf{x}_{J_{<0}}$. Then, get_var_grad_component (j, l, k) returns $\partial\left(x_{j}\right)_{l} / \partial y_{k}$ which is the j th element of the column vector $\left[\boldsymbol{\nabla} \mathbf{x}_{J_{s}}\right]_{k}$ where $l=s+d_{j}$.
$95\langle$ Gradients Public Functions 82$\rangle+\equiv$
double get_var_grad_component(int j, int l, int k) const

Ph.D. Thesis - Reza Zolfaghari

```
{
    return grad_in_[j][l].d(k);
}
```

Also, the function set_var_grad_component is employed to set the corrected gradient.
$96\left\langle\right.$ compute and set $\left.\left[\boldsymbol{\nabla} \mathbf{x}_{J_{s}}\right]_{k}=\left[\widetilde{\boldsymbol{\nabla}} \mathrm{x}_{J_{s}}\right]_{k}-\mathbf{D}_{s}^{-1}\left[\mathbf{Y}_{s}\right]_{k} 96\right\rangle \equiv$

$$
\text { for (int } \left.j=0 ; j<n_{-} ; j++\right)
$$

$$
\{
$$

int $l=d_{-}[j]+s ;$
double der $=$ grads_ \rightarrow get_var_grad_component (j, l, k)
$-r h s_{-}[j] / c o m p _c s_{-} d s\left(s, d_{-}[j]\right) ;$
grads_ \rightarrow set_var_grad_component $(j, l, k$, der $)$;
\}
This code is used in chunk 79.

Chapter 7

Solving the Hermite-Obreschkoff system

In this chapter, we solve the Hermite-Obreschkoff system (4.20) using Newton's method. Let $\mathbf{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}\right)$ be the vector of size N created by concatenating rows of the irregular matrix $\mathbf{F}\left(\mathbf{x}_{J_{<0}}\right)$ in (4.18). We compute

$$
\begin{equation*}
\mathbf{x}_{J_{<0}}^{m}=\mathbf{x}_{J_{<0}}^{m-1}-\mathbf{J}_{\mathrm{HO}}^{-1} \mathbf{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}^{m-1}\right), \quad m=1,2, \ldots, \tag{7.1}
\end{equation*}
$$

where an initial guess $\mathbf{x}_{J_{<0}}^{0} \in \mathbb{R}^{N}$ is constructed from the past behaviour of the solution, and $\mathbf{J}_{\mathrm{HO}}=\partial \mathbf{f}_{\mathrm{HO}} / \partial \mathbf{x}_{J_{<0}}$ at $\mathbf{x}_{J_{<0}}^{0}$. The computation of $\mathbf{x}_{J_{<0}}^{0}$ is discussed in §8.2. We describe how we test the convergence of the iteration (7.1) and improve the reliability of this test in §7.1. Then, this iteration is implemented in §7.2. Finally, in §7.3 we implement a function that performs one step of the HO method.

7.1 Convergence of the iteration

In general, (4.20) may have multiple solutions. Provided that $\mathbf{x}_{J_{<0}}^{0}$ is a good guess, we wish to find the closest solution to it. The iterative procedure (7.1) should be a contraction mapping in a ball about $\mathbf{x}_{J_{<0}}^{0}$. Contraction from $\mathbf{x}_{J_{<0}}^{0}$ is a hypothesis guaranteeing local existence and uniqueness of the solution [60]. By observing the iterates, we would like to gain some confidence that the process is converging reasonably fast so as to obtain a solution economically. Our experience suggests that it is better to reduce the step size in order to improve the accuracy of $x_{J_{<0}}^{0}$ and the rate of convergence of the iteration than to iterate many times [60]. Here, we iterate (7.1) at most 4 times.

To obtain $\mathbf{x}_{J_{<0}}^{m}$, we first solve the linear system

$$
\begin{equation*}
\mathbf{J}_{\mathrm{HO}} \boldsymbol{\delta}^{m}=\mathbf{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}^{m-1}\right), \tag{7.2}
\end{equation*}
$$

whose unknown is $\boldsymbol{\delta}^{m} \in \mathbb{R}^{N}$. Then we write

$$
\mathbf{x}_{J_{<0}}^{m}=\mathbf{x}_{J_{<0}}^{m-1}-\boldsymbol{\delta}^{m}
$$

The matrix $\mathbf{J}_{\text {Но }}$ is nonsingular for sufficiently small stepsize h [25]. This matrix is usually rather ill-conditioned with the consequence that solving a linear system involving it may not be very accurate. Assuming $\mathrm{x}_{J_{<0}}^{0}$ is close to the solution, the difference $\left\|\boldsymbol{\delta}^{m}\right\|=$ $\left\|\mathbf{x}_{J_{<0}}^{m-1}-\mathbf{x}_{J_{<0}}^{m}\right\|$ is rather small. Computing δ^{m} from (7.2), we can usually get an accurate $\mathbf{x}_{J_{<0}}^{m}$ even when $\boldsymbol{\delta}^{m}$ has only a few digits correct [59]. To solve (7.2), the matrix \mathbf{J}_{HO} is factored into a product of an upper and lower triangular matrix. \mathbf{J}_{HO} is usually dense and we perform the factorization and the solution of the system (7.2) by routines in the LAPACK
software package. When the system to be solved is large, the costs of computing and factoring \mathbf{J}_{HO} dominate the cost of the integration.

We use a weighted root mean square (WRMS) norm, denoted $\|\cdot\|_{\text {wrms }}$, for all error-like quantities [31]

$$
\begin{equation*}
\|\mathbf{v}\|_{\mathrm{wrms}}=\sqrt{\frac{1}{N} \sum_{k=0}^{N-1}\left(\frac{v_{k}}{\mathrm{atol}+\mathrm{rtol} \cdot\left|y_{k}\right|}\right)^{2}} \tag{7.3}
\end{equation*}
$$

where rtol and atol are relative and absolute error tolerances, N is defined in (4.6), and y_{k} for $k=0, \ldots, N-1$, are components of the solution at the beginning of the step. For brevity, we drop the subscript wrms on norms in what follows.

If $\widetilde{\mathbf{x}}_{J_{<0}}$ is the solution of (4.20), when will the iteration error $\left\|\widetilde{\mathbf{x}}_{J_{<0}}-\mathbf{x}_{J_{<0}}^{m}\right\|$ be sufficiently small? It is well-known that [59]

$$
\left\|\widetilde{\mathbf{x}}_{J_{<0}}-\mathbf{x}_{J_{<0}}^{m}\right\| \leq \frac{\rho}{1-\rho}\left\|\boldsymbol{\delta}^{m}\right\|
$$

where ρ is an estimate of the rate of convergence of the iteration (7.1). Following Shampine [59], we continue the iteration until

$$
\begin{equation*}
\frac{\rho}{1-\rho}\left\|\delta^{m}\right\|<0.1 \tag{7.4}
\end{equation*}
$$

so that the iteration error $\left\|\widetilde{\mathbf{x}}_{J_{<0}}-\mathbf{x}_{J_{<0}}^{m}\right\|$ will be sufficiently small. After evaluating the solution of (4.20) by (7.1), we may not accept the result because the discretization error $\left\|e_{p q} h^{p+q+1} \mathbf{E}\right\|$ in (4.19) is large. The constant 0.1 in (7.4) was chosen so that the errors due to terminating the iteration (7.1) would not adversely affect the discretization error estimates.

The rate of convergence is estimated, whenever two or more iterations have been taken,
by [59]

$$
\begin{equation*}
\rho \approx \frac{\left\|\boldsymbol{\delta}^{m}\right\|}{\left\|\boldsymbol{\delta}^{m-1}\right\|} \tag{7.5}
\end{equation*}
$$

If $\rho>0.9$, or $m>4$, and the iteration has not yet converged, then the iteration (7.1) is considered to have failed at solving (4.20).

7.2 Implementation

We implement the function NSolve based on the considerations in §7.1. In this function, size is the size of the system, and x contains an initial guess for the solution. After solving the system successfully, x will be updated with the computed solution. weight is used to compute the required WRMS norms. Fcn and Jac are functions which compute $\mathrm{f}_{\mathrm{HO}}(\mathbf{u})$ and \mathbf{J}_{HO} for a given value of a vector \mathbf{u}, respectively. user_data is a pointer to user data, which here is a pointer to the $\mathbf{H O}$ class.

NSolve returns one of the following values of type HoFlag:

- SYS_JAC_SINGULAR, if evaluating $\mathrm{f}_{\mathrm{HO}}\left(\mathrm{x}_{J_{<0}}^{m-1}\right)$ fails as the system Jacobian is singular,
- STAGEO_FAIL, if evaluating $\mathrm{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}^{m-1}\right)$ fails as solving $\mathbf{f}_{I_{0}}=0$ in (5.10) fails,
- HO_SUCCESS, if $\mathrm{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}^{m-1}\right)$ is computed successfully,
- HO_JAC_SINGULAR, if \mathbf{J}_{HO} is singular, or
- HO_CONVERGENT, if the iteration (7.2) for solving $\mathrm{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}\right)=0$ is convergent.

Ph.D. Thesis - Reza Zolfaghari
$101\langle$ Nonlinear Solver Functions 59$\rangle+\equiv$
HoFlag NSolve(int size, const IrregularMatrix \langle double \rangle \&weight, double $* x$, EvalF
Fcn, EvalJ Jac, double *residual, double $*$ jacobian, int $* i p i v$, void *user_data)
\{
\langle declare variables for nonlinear solver 113\rangle;
$\left\langle\right.$ compute $\left.\mathrm{f}_{\mathrm{HO}}\left(\mathrm{x}_{J_{<0}}^{0}\right) 102\right\rangle ;$
$\left\langle\right.$ compute $\left.\mathbf{J}_{\mathrm{HO}} 103\right\rangle$;
$\left\langle\right.$ find LU factorization of $\left.\mathbf{J}_{\text {НО }} 104\right\rangle$;
for (int $m=1 ; m \leq 4 ; m+$)
\{
$\left\langle\right.$ solve $\left.\mathbf{J}_{\mathrm{HO}} \boldsymbol{\delta}^{m}=\mathrm{f}_{\mathrm{HO}}\left(\mathrm{x}_{J_{<0}}^{m-1}\right) 106\right\rangle ;$
$\left\langle\right.$ evaluate $\left.\left\|\boldsymbol{\delta}^{m}\right\| 112\right\rangle ;$
$\left\langle\right.$ compute iteration_error $\left.=\frac{\rho}{1-\rho}\left\|\boldsymbol{\delta}^{m}\right\| 115\right\rangle ;$
$\left\langle\right.$ compute $\left.\mathbf{x}_{J_{<0}}^{m}=\mathbf{x}_{J_{<0}}^{m-1}-\boldsymbol{\delta}^{m} 108\right\rangle ;$
$\left\langle\right.$ compute $\left.\mathrm{f}_{\mathrm{HO}}\left(\mathrm{x}_{J_{<0}}^{m}\right) 109\right\rangle$;
if (iteration_error <0.1)
return HO_CONVERGENT;
$\left\langle\right.$ save $\left\|\boldsymbol{\delta}^{m}\right\|$ for computing ρ in next iteration 116$\rangle ;$
\}
return HO_SUCCESS;

Ph.D. Thesis - Reza Zolfaghari
\}

We call a function Fcn which computes $\mathbf{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}^{0}\right)$ and stores it at residual (see §7.3.3.2).
$102\left\langle\right.$ compute $\left.\mathrm{f}_{\mathrm{HO}}\left(\mathrm{x}_{J_{<0}}^{0}\right) 102\right\rangle \equiv$
HoFlag $f c n _$flag $=F c n($ size,x, residual, user_data $) ;$
if $\left(f c n _f l a g \equiv\right.$ SYS_JAC_SINGULAR $\vee f c n _f l a g \equiv$ STAGEO_FAIL $)$
return fcn_flag;

This code is used in chunk 101.

Also, we call a function $J a c$ which computes and stores \mathbf{J}_{HO} at jacobian (see §7.3.3.2).
$103\left\langle\right.$ compute $\left.\mathbf{J}_{\text {Но }} 103\right\rangle \equiv$
Jac(size, x, jacobian, user_data);
This code is used in chunk 101.

To solve (7.2), the matrix \mathbf{J}_{HO} is factored into a product of an upper and lower triangular matrix.
$104\left\langle\right.$ find LU factorization of $\left.\mathbf{J}_{\mathrm{HO}} 104\right\rangle \equiv$
int jac_flag;
daets ::LU(size, jacobian, ipiv, \&jac_flag);
See also chunk 105.
This code is used in chunk 101.

Now, jacobian contains both lower and upper triangular matrices. The pivot vector that defines the permutation matrix is stored at ipiv. If the Jacobian is singular we terminate with

Ph.D. Thesis - Reza Zolfaghari
the return value HO_JAC_SINGULAR.
$105\left\langle\right.$ find LU factorization of $\left.\mathbf{J}_{\text {НО }} 104\right\rangle+\equiv$

$$
\text { if }\left(j a c _f l a g \neq 0\right)
$$

return HO_JAC_SINGULAR;

Using the above factorization, LSolve computes $\boldsymbol{\delta}^{m}$ and stores it at residual.
$106\left\langle\right.$ solve $\left.\mathbf{J}_{\mathrm{HO}} \boldsymbol{\delta}^{m}=\mathbf{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}^{m-1}\right) 106\right\rangle \equiv$
daets ::LSolve(size, jacobian, ipiv, residual);
This code is used in chunk 101.

Now, we can call the function subtract.
$107\langle$ Auxiliary functions 107$\rangle \equiv$
void subtract (int size, const double $* x$, double $* y$)
\{
for (int $i=0 ; i<\operatorname{size} ; i+$)

$$
y[i]-=x[i] ;
$$

\}

See also chunks $111,125,160,172,184,185,188,189,205,208,210,226,230,281,285,289,291$, and 367

This code is used in chunk 366.
to
$108\left\langle\right.$ compute $\left.\mathbf{x}_{J_{<0}}^{m}=\mathbf{x}_{J_{<0}}^{m-1}-\boldsymbol{\delta}^{m} 108\right\rangle \equiv$ subtract(size, residual, x);

This code is used in chunk 101.

Ph.D. Thesis - Reza Zolfaghari

Similarly, at each iteration m, we compute $\mathbf{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}^{m}\right)$ and store it at residual.
$109\left\langle\right.$ compute $\left.\mathrm{f}_{\mathrm{HO}}\left(\mathrm{x}_{J_{<0}}^{m}\right) 109\right\rangle \equiv$

```
fcn_flag \(=\) Fcn \((\) size,\(x\), residual, user_data \() ;\)
    if \(\left(f c n \_f l a g \equiv\right.\) SYS_JAC_SINGULAR \(\vee f c n \_f l a g \equiv\) STAGEO_FAIL \()\)
        return fcn_flag;
```

 This code is used in chunk 101.
 To compute the rate of convergence and the iteration error, we need to evaluate $\left\|\boldsymbol{\delta}^{m}\right\|$. This is done by calling the following function which computes $\|v\|$ in (7.3) for a given vector v of size size. Here the (j, k) th entry of the irregular matrix \mathbf{W} is

$$
\begin{equation*}
w_{j k}=\frac{1}{\mathrm{atol}+\operatorname{rtol} \cdot\left|x_{j}^{(k)}\right|} \quad \text { for }(j, k) \in J_{<0} . \tag{7.6}
\end{equation*}
$$

$111\langle$ Auxiliary functions 107$\rangle+\equiv$

$$
\text { double CompWRMSnorm (const double } * v \text {, const IrregularMatrix }\langle\text { double }\rangle \& w \text {) }
$$

\{
int $i=0$;
double $s=0$;

for (size_t $k=0 ; k<w . n u m_{-}$cols $(j) ; k+$)
\{
double $z=v[i++] * w(j, k)$;
$s+=z * z ;$
\}

Ph.D. Thesis - Reza Zolfaghari
$s /=w . n u m _e n t r i e s() ;$
return std :: sqrt(s);
\}
$112\left\langle\right.$ evaluate $\left.\left\|\boldsymbol{\delta}^{m}\right\| 112\right\rangle \equiv$
double norm_delta $=$ CompWRMSnorm (residual, weight);
This code is used in chunk 101.

When $\left\|\boldsymbol{\delta}^{m}\right\|$ is smaller than some multiple of the machine precision, we are not able to use (7.5) to estimate ρ. In such a case, we accept the computed $\mathbf{x}_{J_{<0}}^{m}$ that it is as accurate as possible for the machine being used. This situation happens either if the prediction is extremely good or when the tolerance is very small [59]. On the first iteration, if $\left\|\boldsymbol{\delta}^{1}\right\|$ is very small, the iteration is terminated and we accept $\mathbf{x}_{J_{<0}}^{1}$ as a solution. When $m>1$ we can get an estimate of the rate of convergence by (7.5).
$113\langle$ declare variables for nonlinear solver 113$\rangle \equiv$
double iteration_error = 1.0;
See also chunk 114.

This code is used in chunk 101.
$114\langle$ declare variables for nonlinear solver 113$\rangle+\equiv$
double rate_convergence, norm_delta_prev $=1$;
$115\left\langle\right.$ compute iteration_error $\left.=\frac{\rho}{1-\rho}\left\|\boldsymbol{\delta}^{m}\right\| 115\right\rangle \equiv$ if (norm_delta $<10 *$ std $::$ numeric_limits $<$ double $>::$ epsilon())

Ph.D. Thesis - Reza Zolfaghari

```
iteration_error \(=\) norm_delta;
else
    if \((m \equiv 1)\)
        iteration_error \(=10 *\) norm_delta;
    else
    \{
        rate_convergence \(=\) norm_delta/norm_delta_prev;
        if (rate_convergence \(\geq 0.9\) )
        return HO_SUCCESS;
        iteration_error \(=(\) rate_convergence \(/(1-\) rate_convergence \()) *\) norm_delta \(;\)
    \}
```

This code is used in chunk 101.

Finally we
$116\left\langle\right.$ save $\left\|\boldsymbol{\delta}^{m}\right\|$ for computing ρ in next iteration 116$\rangle \equiv$ norm_delta_prev $=$ norm_delta;

This code is used in chunk 101.

7.2.1 Evaluating residual

Denote

$$
\begin{align*}
\boldsymbol{\psi} & =\sum_{r=0}^{p} \mathbf{F}^{[r]}\left(t^{*}, \mathbf{x}_{J_{<0}}^{*}\right) h^{r} \otimes \mathbf{a}_{r} \quad \text { and } \tag{7.7}\\
\boldsymbol{\varphi}\left(\mathbf{x}_{J_{<0}}\right) & =\sum_{r=0}^{q} \mathbf{F}^{[r]}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right) h^{r} \otimes \mathbf{b}_{r} \tag{7.8}
\end{align*}
$$

where $\mathbf{F}^{[r]}, \mathbf{a}_{r}$, and \mathbf{b}_{r} are defined in (4.16), (4.14), and (4.15), respectively. Given $\mathbf{x}_{J_{<0}}$, we need to evaluate

$$
\begin{equation*}
\mathbf{F}\left(\mathbf{x}_{J_{<0}}\right)=\boldsymbol{\varphi}\left(\mathbf{x}_{J_{<0}}\right)-\boldsymbol{\psi} \tag{7.9}
\end{equation*}
$$

We first compute ψ which does not depend on $\mathrm{x}_{J_{<0}}$. Then we evaluate $\varphi\left(\mathrm{x}_{J_{<0}}\right)$. Finally, we implement the function CompF to compute (7.9).

7.2.1.1 Computing ψ

By (7.7), we first set $\psi=0$, and then
for $r=0,1, \ldots, p$

- compute \mathbf{a}_{r},
- form $\mathbf{F}^{[r]}\left(t^{*}, \mathbf{x}_{J_{<0}}^{*}\right) h^{r}$, and
- accumulate $\boldsymbol{\psi}+=\mathbf{F}^{[r]}\left(t^{*}, \mathbf{x}_{J_{<0}}^{*}\right) h^{r} \otimes \mathbf{a}_{r}$.

We store p in

119 〈HO Data Members 28$\rangle+\equiv$
int p_{-};
and implement the function CompPsi to compute ψ and store it in
$120\langle$ HO Data Members 28$\rangle+\equiv$
IrregularMatrix \langle double $\rangle p s i_{-}$;

In this function, $t c s$ contains TCs $\mathbf{x}_{J_{<p}}^{*}$ at t^{*}.

Ph.D. Thesis - Reza Zolfaghari

121 〈Definitions of HO Private Functions 37$\rangle+\equiv$

```
void HO ::CompPsi(const std :: vector <vector <double}\rangle\rangle&tcs
    {
    psi_.set_to_zero(); /* \psi = 0 */
    for (int r=0;r\leq p_; r++)
    {
        comp_a(r); /* computes }\mp@subsup{\mathbf{a}}{r}{}*
        FormFr (r,tcs); /* forms F F
        multiply_add(f_,coef_,psi_); /* computes }\boldsymbol{\psi}+=\mp@subsup{\mathbf{F}}{}{[r]}(\mp@subsup{t}{}{*},\mp@subsup{\mathbf{x}}{\mp@subsup{J}{<0}{}}{*})\mp@subsup{h}{}{r}\otimes\mp@subsup{\mathbf{a}}{r}{}*
    }
}
```


Computing \mathbf{a}_{r}

By (3.13) and (4.14), the k th element of the vector \mathbf{a}_{r} is

$$
c_{r}^{p q}(k+r)!.
$$

The coefficients $c_{r}^{p q}$ are precomputed and stored in

123 \langle HO Data Members 28$\rangle+\equiv$
std :: vector $\langle\mathbf{d o u b l e}\rangle$ $c p q_{-}$;

By (3.10), $c_{0}^{p q}=1$, and

$$
c_{r}^{p q}=\frac{p-r+1}{r(p+q-r+1)} c_{r-1}^{p q}, \quad \text { for } r=1, \ldots, p
$$

The function CompCpq computes these coefficients.

Ph.D. Thesis - Reza Zolfaghari

124 〈Definitions of HO Private Functions 37$\rangle+\equiv$ void HO :: $\operatorname{CompCpq()}$
\{
cpq_.resize $\left(p_{-}+1\right)$;
$c p q_{-}[0]=1.0 ;$
for (int $r=1 ; r \leq p_{-} ; r+$)
$c p q_{-}[r]=\left(c p q_{-}[r-1] *\left(p_{-}-r+1\right)\right) /$ double $\left(r *\left(p_{-}+q_{-}-r+1\right)\right)$;
\}

For a scalar z and a vector \mathbf{u}, the following function computes $\mathbf{v}=z * \mathbf{u}$.
$125\langle$ Auxiliary functions 107$\rangle+\equiv$ void scalar_times_vector(double z, int size, double $* u$, double $* v$) \{
for (int $l=0 ; l<\operatorname{size} ; l+$) $v[l]=z * u[l] ;$
\}

The function comp_a is implemented to compute the elements of \mathbf{a}_{r} and store them in
$126\langle$ HO Data Members 28$\rangle+\equiv$
std :: vector \langle double \rangle coef_;
$127\langle$ Definitions of HO Private Functions 37$\rangle+\equiv$
void HO ::comp_a(int $r)$

Ph.D. Thesis - Reza Zolfaghari

```
{
    scalar_times_vector(cpq_[r],coef_.size(),factorial_.data() + r,coef_.data());
}
```


Forming $\mathbf{F}^{[r]}\left(t^{*}, \mathbf{x}_{J_{<0}}^{*}\right) h^{r}$

We precompute powers of h on each step and store them in

128
\langle HO Data Members 28$\rangle+\equiv$
std :: vector \langle double \rangle h_pow_;

By (4.10) and (4.16), the (j, k) th entry of the irregular matrix $\mathbf{F}^{[r]}\left(t^{*}, \mathbf{x}_{J_{<0}}^{*}\right) h^{r}$ is $\left(x_{j}^{*}\right)_{k+r} h^{r}$, and $t c s[j][k+r]$ contains the TC $\left(x_{j}^{*}\right)_{k+r}$. Hence,

$$
\left(x_{j}^{*}\right)_{k+r} h^{r}=\operatorname{tcs}[j][k+r] \cdot h^{r} .
$$

The function FormFr is implemented to compute these entries and store them in

129 〈HO Data Members 28$\rangle+\equiv$
IrregularMatrix \langle double $\rangle f_{-}$;
$130\langle$ Definitions of HO Private Functions 37$\rangle+\equiv$

```
void HO ::FormFr(int r, const std :: vector <vector <double\rangle\rangle &tcs)
{
    for (size_t j = 0; j< n_; j++)
        for (size_t k}=0;k<\mp@subsup{d}{-}{\prime}[j];k++
        f_(j,k) =tcs[j][k+r]*h_pow_[r];
    }
```


7.2.1.2 Evaluating $\varphi\left(\mathbf{x}_{J_{<0}}\right)$

Given $\mathrm{x}_{J_{<0}}$, we need to evaluate $\varphi\left(\mathrm{x}_{J_{<0}}\right)$. After computing higher-order TCs, we first set $\boldsymbol{\varphi}\left(\mathrm{x}_{J_{<0}}\right)=0$. Then, by (7.8), for each $r=0,1, \ldots, q$, we

- compute \mathbf{b}_{r},
- form $\mathbf{F}^{[r]}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right) h^{r}$, and
- compute $\boldsymbol{\varphi}\left(\mathbf{x}_{J_{<0}}\right)+=\mathbf{F}^{[r]}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right) h^{r} \otimes \mathbf{b}_{r}$.

We store q in
$132\langle$ HO Data Members 28$\rangle+\equiv$
int q_{-};
and implement the function CompPhi to evaluate $\varphi\left(\mathrm{x}_{J_{<0}}\right)$ and store it in

133 〈HO Data Members 28$\rangle+\equiv$

IrregularMatrix \langle double $\rangle p h i_{-}$;

This function returns one of the following values of type HoFlag

- SYS_JAC_SINGULAR, if system Jacobian is singular,
- STAGEO_FAIL, if solving the nonlinear system for computing TCs at stage zero in non-quasilinear DAEs fails, or
- HO_SUCCESS, if $\varphi\left(\mathbf{x}_{J_{<0}}\right)$ is computed successfully.

Ph.D. Thesis - Reza Zolfaghari
\langle Definitions of HO Private Functions 37$\rangle+\equiv$
HoFlag HO ::CompPhi(const double $* x$)
\{
$\left\langle\operatorname{set} \mathbf{x}_{J_{<0}} 136\right\rangle$;
$\left\langle\right.$ compute $\mathbf{x}_{J_{s}}$, for $\left.s=0,1, \ldots, q-1141\right\rangle$;
phi_.set_to_zero ()$; \quad / * \varphi\left(\mathrm{x}_{J_{<0}}\right)=0 * /$
for (int $r=0 ; r \leq q_{-} ; r+$)
\{
comp_b(r); $/ *$ computes $\mathbf{b}_{r} * /$
$\operatorname{FormFr}(r) ; \quad / *$ forms $\mathbf{F}^{[r]}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right) h^{r} * /$
multiply_add $\left(f_{-}\right.$, coef_, phi_ $) ; \quad / * \boldsymbol{\varphi}\left(\mathbf{x}_{J_{<0}}\right)+=\mathbf{F}^{[r]}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right) h^{r} \otimes \mathbf{b}_{r} * /$
\}
return HO_SUCCESS;
\}

Setting $\mathrm{x}_{J_{<0}}$

We first copy the entries of x to indep_tcs_.
$136\left\langle\operatorname{set} \mathbf{x}_{J_{<0}} 136\right\rangle \equiv$
indep_tcs_.set (x);
See also chunk 138.

This code is used in chunk 135.

Ph.D. Thesis - Reza Zolfaghari

Then, the function SetIndepTCs sets entries of indep_tcs_in the object of the TaylorSeries class for computing TCs by calling set_var_coeff.
$137\langle$ Definitions of HO Private Functions 37〉+三
void HO ::SetIndepTCs ()
\{
for (int $j=0 ; j<n_{-} ; j+$)
for (int $\left.k=0 ; k<d_{-}[j] ; k++\right)$ $t s_{-} \rightarrow$ set_var_coeff $(j, k$, indep_tcs_($\left.j, k)\right)$;
\}
$138\left\langle\right.$ set $\left.\mathbf{x}_{J_{<0}} 136\right\rangle+\equiv$
SetIndepTCs();

Computing $\mathrm{X}_{J_{<q}}$

Given $\mathbf{x}_{J_{<0}}$, we can compute $\mathbf{x}_{J_{s}}$, for $s=0,1, \ldots, q-1$ (see Chapter 5). Recall that (4.4) for computing $\mathbf{x}_{J_{0}}$ is

- linear in quasilinear DAEs and the matrix \mathbf{A}_{0} is in terms of $\mathbf{x}_{J_{<0}}$. In this case, after computing \mathbf{A}_{0} and finding it's LU decomposition, we call the function CompTCsLinear(0).
- nonlinear in non-quasilinear DAEs and the matrix \mathbf{A}_{0} is in terms of $\mathbf{x}_{J_{\leq 0}}$. Hence, we first call the function CompTCsNonlinear () to compute $\mathbf{x}_{J_{0}}$ and store it in tcs_stageO_. Then, we compute \mathbf{A}_{0} and find it's LU decomposition required later for computing $\mathbf{x}_{J_{s}}, s=1,2, \ldots, q-1$.

Ph.D. Thesis - Reza Zolfaghari
$139\langle$ HO Data Members 28$\rangle+\equiv$
double *tcs_stage0_;

To check if the given DAE is quasilinear, we call the function isLinear from the SAdata class.
$141\left\langle\right.$ compute $\mathbf{x}_{J_{s}}$, for $\left.s=0,1, \ldots, q-1141\right\rangle \equiv$

$$
\begin{aligned}
& \text { if }(\text { sadata_-isLinear }()) \\
& \{
\end{aligned}
$$

CompA0(sys_jac_);
$\left\langle\right.$ find LU factorization of $\left.\mathbf{A}_{0} 142\right\rangle$;
CompTCsLinear(0);
\}
else
\{
jac_•resetAll();

HoFlag info $=$ CompTCsNonlinear(tcs_stage0_);
if $($ info \equiv STAGEO_FAIL)
return info;
SetStageZeroTCs(tcs_stage0_);
SetStageZeroTCsJac(tcs_stage0_);
CompAO(sys_jac_);
$\left\langle\right.$ find LU factorization of $\left.\mathbf{A}_{0} 142\right\rangle$;

Ph.D. Thesis - Reza Zolfaghari
\}

See also chunk 143.

This code is used in chunk 135.

We use the LU decomposition of \mathbf{A}_{0} for solving systems of linear equations (5.9) and (6.5).
$142\left\langle\right.$ find LU factorization of $\left.\mathbf{A}_{0} 142\right\rangle \equiv$
int sys_info;
daets ::LU(n_, sys_jac_, ipiv_, \&sys_info);
if $($ sys_info $\neq 0)$
return SYS_JAC_SINGULAR;

This code is used in chunk 141.

The system (4.4) for computing $\mathbf{x}_{J_{s}}, s=1,2, \ldots, q-1$ is linear. In addition, we have the LU decomposition of \mathbf{A}_{0}. Hence, CompTCsLinear (s) computes $\mathbf{x}_{J_{s}}$.
$143\left\langle\right.$ compute $\mathbf{x}_{J_{s}}$, for $\left.s=0,1, \ldots, q-1141\right\rangle+\equiv$

$$
\text { for (int } s=1 ; s<q_{-} ; s+\text {) }
$$

CompTCsLinear (s);

Computing \mathbf{b}_{r}

By (3.14) and (4.15), the k th element of the vector \mathbf{b}_{r} is

$$
c_{r}^{q p}(r+k)!.
$$

The coefficients $c_{r}^{q p}$ are precomputed and stored in

Ph.D. Thesis - Reza Zolfaghari

144 〈HO Data Members 28$\rangle+\equiv$
std :: vector \langle double \rangle cqp_;

By (3.11), $c_{0}^{q p}=1$, and

$$
c_{r}^{q p}=-c_{r-1}^{q p} \frac{q-r+1}{r(p+q-r+1)}, \quad \text { for } r=1, \ldots, q
$$

The function CompCqp computes these coefficients.
145
\langle Definitions of HO Private Functions 37$\rangle+\equiv$
void HO :: $\operatorname{CompCqp()}$
$\{$

$$
\text { cqp_.resize }\left(q_{-}+1\right)
$$

$$
c q p_{-}[0]=1.0
$$

$$
\begin{aligned}
& \text { for }\left(\text { int } r=1 ; r \leq q_{-} ; r++\right) \\
& \quad c q p_{-}[r]=\left(-c q p_{-}[r-1] *\left(q_{-}-r+1\right)\right) / \text { double }\left(r *\left(p_{-}+q_{-}-r+1\right)\right)
\end{aligned}
$$

\}

The function comp_b is implemented to compute the elements of \mathbf{b}_{r} and store them in coef_.
$146\langle$ Definitions of HO Private Functions 37$\rangle+\equiv$
void HO ::comp_ $b($ int $r)$
$\{$
scalar_times_vector $\left(c q p_{-}[r]\right.$, coef_.size (), factorial_.data ()$\left.+r, \operatorname{coef}_{-} . d a t a()\right)$;
\}

Forming $\mathbf{F}^{[r]}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right) h^{r}$
By (4.11) and (4.16), the (j, k) th entry of the irregular matrix $\mathbf{F}^{[r]}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right) h^{r}$ is $\left(x_{j}\right)_{r+k} h^{r}$. We implement the function FormFr to compute these entries and store them in f_{-}.
$147\langle$ Definitions of HO Private Functions 37$\rangle+\equiv$

```
void HO ::FormFr(int r)
```

\{
for $\left(\boldsymbol{s i z e}_{-} \mathbf{t} j=0 ; j<n_{-} ; j+\right.$)
for $\left(\right.$ size_t $\left.k=0 ; k<d_{-}[j] ; k+\right)$
$f_{-}(j, k)=t s_{-} \rightarrow g e t_{-} v a r_{-}$coeff $(j, r+k) * h \not p o w_{-}[r] ;$
\}

7.2.1.3 The function $C o m p F$

The function CompF computes $\mathbf{F}\left(\mathbf{x}_{J_{<0}}\right)$ in (7.9) and stores it in f_{-}. In this function, the input array x contains $\mathbf{x}_{J_{<0}}$, the output f contains $\mathbf{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}\right)$ by concatenating the rows of $\mathbf{F}\left(\mathrm{x}_{J_{<0}}\right)$.
$148\langle$ Definitions of HO Public Functions 61$\rangle+\equiv$
HoFlag HO :: CompF (const double $* x$, double $* f$)
\{
HoFlag info $=\operatorname{CompPhi}(x) ; \quad / *$ evaluates $\varphi\left(\mathbf{x}_{J_{<0}}\right) * /$
if $($ info \neq HO_SUCCESS $)$
return info;

```
    f_ =phi_- psi_; / /* F
    f_.to_vector }(f);\quad/* copies entries of F F (\mp@subsup{\mathbf{x}}{\mp@subsup{J}{<0}{}}{})\mathrm{ to }f*
    return info;
}
```


7.2.2 Computing Jacobian

For an irregular matrix \mathbf{M}, denote by $\boldsymbol{\nabla} \mathbf{M}$ the irregular matrix whose (j, k) th entry is

$$
(\nabla \mathbf{M})_{j k}=\nabla(\mathbf{M})_{j k}
$$

Let $\nabla=\partial / \partial \mathbf{x}_{J_{<0}}$. Recall that $\mathbf{F}^{[r]}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right)$ given by (4.16) is an irregular matrix whose (j, k) th entry is $\left(x_{j}\right)_{k+r}=T_{j, k+r}\left(t^{*}+h, \mathbf{x}_{J_{<0}}\right)$. Hence, $\boldsymbol{\nabla} \mathbf{F}^{[r]}$ is an irregular matrix with

$$
\begin{equation*}
\left(\nabla \mathbf{F}^{[r]}\right)_{j k}=\nabla\left(x_{j}\right)_{k+r} \tag{7.10}
\end{equation*}
$$

By (4.18), we can write

$$
\begin{equation*}
\boldsymbol{\nabla} \mathbf{F}=\sum_{r=0}^{q} \boldsymbol{\nabla} \mathbf{F}^{[r]} h^{r} \otimes \mathbf{b}_{r} \tag{7.11}
\end{equation*}
$$

To compute (7.11), we first set $\boldsymbol{\nabla F}=0$, and then
for $r=0,1, \ldots, q$,

- compute \mathbf{b}_{r},
- form $\boldsymbol{\nabla} \mathbf{F}^{[r]} h^{r}$, and
- accumulate $\boldsymbol{\nabla} \mathbf{F}+=\boldsymbol{\nabla} \mathbf{F}^{[r]} h^{r} \otimes \mathbf{b}_{r}$.

Ph.D. Thesis - Reza Zolfaghari

This is implemented by the function CompHoJac which stores $\boldsymbol{\nabla F}$ in

```
IrregularMatrix \std ::vector <double }\rangle\rangle\mathrm{ f_prime_;
```

In this function, the output ho_jac contains the Jacobian \mathbf{J}_{HO} column-wise, as we later pass it to the linear solver.

151 〈Definitions of HO Private Functions 37$\rangle+\equiv$ void HO ::CompHoJac(double $\left.* h o _j a c\right)$ \{

CompGradients(q_);

```
f_prime_.set_to_zero(); /* sets \nablaF = 0 */
```

 for (int \(r=0 ; r \leq q_{-} ; r+\))
 \{
 comp_b(r); \(/ *\) computes \(\mathbf{b}_{r} * /\)
 FormFrPrime \((r) ; \quad / *\) forms \(\boldsymbol{\nabla} \mathbf{F}^{[r]} h^{r} * /\)
 multiply_add(fr_prime_, coef_,f_prime_); \(\quad / * \boldsymbol{\nabla} \mathbf{F}+=\boldsymbol{\nabla} \mathbf{F}^{[r]} h^{r} \otimes \mathbf{b}_{r} * /\)
 \}
 f_prime_.to_vector(ho_jac);
 \(\left\langle\right.\) compute \(\left\|\mathbf{J}_{\mathrm{HO}}\right\|_{\infty}\), if requested 159\(\rangle\);
 \}

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

7.2.2.1 Forming $\boldsymbol{\nabla} \mathbf{F}^{[r]} h^{r}$

From (7.10), the (j, k) th entry of $\boldsymbol{\nabla} \mathbf{F}^{[r]} h^{r}$ is $\nabla\left(x_{j}\right)_{k+r} h^{r}$. Calling the function CompGradients, gradients of all TCs are computed (see Chapter 6). To access their components, we call the function get_var_grad_component from the Gradients class. Denote by y_{l} the lth component of $\mathbf{x}_{J_{<0}}$. Then, get_var_grad_component $(j, k+r, l)$ returns $\frac{\partial\left(x_{j}\right)_{k+r}}{\partial y_{l}}$. The function form_grad stores $\frac{\partial\left(x_{j}\right)_{k+r}}{\partial y_{l}} h^{r}$ for $l=0, \ldots, N-1$, in tc_grad.
\langle Definitions of HO Private Functions 37$\rangle+\equiv$

$$
\begin{aligned}
& \text { void HO ::form_grad(int } \left.j, \text { int } k, \text { int } r, \text { std }:: \text { vector }\langle\text { double }\rangle \& t c _g r a d\right) \\
& \{ \\
& \text { for }\left(\text { size_t } l=0 ; l<n u m _i n d e p_{-} t c s_{-} ; l++\right) \\
& \quad t c _g r a d[l]=g r a d s_{-} \rightarrow g e t _v a r_{-} g r a d _c o m p o n e n t ~ \\
& \\
& \}
\end{aligned}
$$

Now, we can compute all entries of and store them in
\langle HO Data Members 28$\rangle+\equiv$

IrregularMatrix \langle std $::$ vector \langle double $\rangle\rangle$ fr_prime_;

This is implemented by the function FormFrPrime.
$156\langle$ Definitions of HO Private Functions 37$\rangle+\equiv$
void HO :: FormFrPrime (int r)

Ph.D. Thesis - Reza Zolfaghari
\{
for (size_t $^{\text {t }} j=0 ; j<n_{-} ; j+$)
for $\left(\right.$ size_t $k=0 ; k<d_{-}[j] ; k+$)
form_grad $\left(j, k, r, f r _p r i m e _(j, k)\right)$;
\}

For some experiments, we may need the condition number of the Jacobian matrix \mathbf{J}_{HO}.
157 〈HO Data Members 28$\rangle+\equiv$
bool need_cond_jac_= false;

Here, we compute $\left\|\mathbf{J}_{\mathrm{HO}}\right\|_{\infty}$ by routines in the LAPACK software package and store it in norm_jac_, as we later use it to compute the condition number.

158 〈HO Data Members 28$\rangle+\equiv$
double norm_jac_;
$159\left\langle\right.$ compute $\left\|\mathbf{J}_{\mathrm{HO}}\right\|_{\infty}$, if requested 159$\rangle \equiv$
if (need_cond_jac_)
norm_jac_ $=\operatorname{MNorm}\left(n u m _i n d e p_{-} t c s_{-}, h o _j a c\right)$;
This code is used in chunk 151.
$160\langle$ Auxiliary functions 107$\rangle+\equiv$
double $\operatorname{MNorm}($ int n, double *mat)
\{
int $l d a=n$;

```
    char norm = ' I';
    double *work = new double[ }n\mathrm{ ];
    double mat_norm = dlange_(&norm,&n,&n,mat, &lda,work);
    delete[] work;
    return mat_norm;
}
```


7．3 Implementation of $\mathbf{H O}$ method for one step

To implement one step of the proposed HO method in §4．2，we
－set parameters to form the HO system，
－compute powers of the stepsize h needed in computing ψ in（7．7）and φ in（7．8），
－compute ψ which does not depend on $\mathrm{x}_{J_{<0}}$ ，and
－form and solve the HO system（4．20）．

The above tasks are implemented in the function CompHoSolution．In this function，x contains an initial guess for the solution．After solving the system successfully，x will be updated with the computed solution．weight is used to compute the required WRMS norms． tcs＿prev contains TCs at the previous t ．

161 〈Definitions of HO Private Functions 37〉＋三

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

```
HoFlag HO :: CompHoSolution(double t, double h, double tol, const
                    IrregularMatrix <double\rangle &weight, const std :: vector <vector <double\rangle\rangle
    &tcs_prev, daets ::DAEpoint &x)
{
    < set parameters to form the HO system 163\rangle;
    <compute powers of h 173>;
    CompPsi(tcs_prev); /* computes }\boldsymbol{\psi}*
    < solve the HO system 179\rangle; /* returns the HoFlag info and the solution */
    if (info \equiv HO_CONVERGENT)
        <update x 180 \;
        <reset parameters 181 \;
    return info;
}
```


7.3.1 Setting parameters

Calling the function set_order, we set the order for the TaylorSeries object.

163
\langle set parameters to form the HO system 163$\rangle \equiv$

$$
\begin{aligned}
& t s_{-} \rightarrow \text { set_order }\left(q_{-}\right) ; \\
& t s_{-} \rightarrow \operatorname{set} h\left(q_{-}\right) ;
\end{aligned}
$$

See also chunks 166, 169, and 171
This code is used in chunk 161.

We set TCs and gradients of t and store them in

Ph.D. Thesis - Reza Zolfaghari
$164\langle$ Gradients Data Members 80$\rangle+\equiv$
fadbad :: T/fadbad ::F \langle double $\rangle\rangle$ t_tfdouble_;

All these coefficients and gradients are zero unless the first two TCs which are t and $d t$. The function set_time_coeffs is implemented to set them.
$165\langle$ Gradients Public Functions 82$\rangle+\equiv$

```
void set_time_coeffs(double t, double dt)
    {
        t_tfdouble_[0] = t;
        t_tfdouble_[1] = dt;
        }
```

166 〈 set parameters to form the HO system 163$\rangle+\equiv$
grads_ \rightarrow set_time_coeffs $\left(t_{-}, 1\right)$;
$t s_{-} \rightarrow$ set_time_coeffs $\left(t_{-}, 1\right)$;

In the $\mathbf{H O}$ class, we store the current stepsize in
$167\langle$ HO Data Members 28$\rangle+\equiv$
double h_{-};

The function set_h sets the stepsize in this class.
$168\langle$ Definitions of HO Private Functions 37$\rangle+\equiv$ void HO :: set_h(double $h)\left\{h_{-}=h ;\right\}$

169 〈 set parameters to form the HO system 163$\rangle+\equiv$

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE
set_h(h);

The function set_t sets the current t in the $\mathbf{H O}$ class.
$170\langle$ Definitions of HO Private Functions 37$\rangle+\equiv$
void HO :: set_ t (double $t)\left\{t_{-}=t ;\right\}$

171 〈 set parameters to form the HO system 163$\rangle+\equiv$
set_t $t(t) ;$

7.3.2 Powers of the stepsize

Given h, the function CompPowers H computes $h _$pow so that $h _p o w[i]$ contains h^{i}.
$172\langle$ Auxiliary functions 107$\rangle+\equiv$
void CompPowersH(int size, double h, std :: vector \langle double \rangle \&h_pow)
\{
if $\left(h _p o w . s i z e() \neq\right.$ size $)$
h_pow.resize (size);
$h _p o w[0]=1$;
for $($ size_t $i=1 ; i<$ size $; i+$)
$h _p o w[i]=h * h _p o w[i-1]$;
\}

Calling this function, we
$173\langle$ compute powers of $h 173\rangle \equiv$
int $s i z e _h _p o w=s a d a t a_{-} \rightarrow g e t _m a x _d()+p_{-}+q_{-}+1 ;$

```
CompPowersH(size_h_pow,h,h_pow_);
```

This code is used in chunk 161.

7.3.3 Solving the system

To solve the HO system (4.20) using the function NSolve implemented in §7.2, we require an initial guess for the solution and two functions, which evaluate $f_{\mathrm{HO}}(\mathbf{u})$ and $\mathbf{J}_{\mathrm{HO}}(\mathbf{u})$ for a given vector \mathbf{u}. In addition, we need

174 〈HO Data Members 28$\rangle+\equiv$
double $* i n d e p_{-} t c s_{-} f l a t _, \quad / *$ to store the input vector $\mathbf{u} * /$
*residual_flat_, $\quad / *$ to store the vector $\mathbf{f}_{\mathrm{HO}} * /$
*ho_jacobian_; $\quad / *$ to store \mathbf{J}_{HO} and $* /$
int $*$ ho_ipiv_; $\quad / *$ for the pivot vector that defines the permutation matrix of the LU factorization of $\mathbf{J}_{\mathrm{HO}} \cdot * /$

7.3.3.1 The initial guess

$x(j, k)$ contains an initial guess for $x_{j}^{(k)}$. Hence, $x(j, k) / k!$ gives an initial guess for the TC $x_{j}^{(k)} / k!$, which is stored as the (j, k) th entry of the irregular matrix indep_tcs_.
$\left\langle\right.$ get $\mathbf{x}_{J_{\leq \alpha}}^{0}$ from $\left.x \quad 175\right\rangle \equiv$
indep_tcs_.set $(x) ; \quad / *$ the irregular matrix indep_tcs_ contains derivatives */
indep_tcs_/=factorial_; $\quad / *$ indep_tcs_ contains TCs $* /$
indep_tcs_.to_vector(indep_tcs_flat_); /* the array indep_tcs_flat contains TCs */
See also chunk 176.

This code is used in chunk 179.

Ph.D. Thesis - Reza Zolfaghari

For non-quasilinear problems, we also require an initial guess for TCs at stage zero.
$176\left\langle\right.$ get $\mathbf{x}_{J_{\leq \alpha}}^{0}$ from $\left.x \quad 175\right\rangle+\equiv$

$$
\begin{aligned}
& \text { if }(\neg \text { sadata_ } \rightarrow \text { isLinear }()) \\
& \left\{\begin{array}{l}
\text { for (int } \left.j=0 ; j<n_{-} ; j+\right) \\
\{ \\
\text { int } d j=d_{-}[j] ; \\
\quad \text { tcs_stage0_ }[j]=x(j, d j) / \text { factorial_ }[d j] ; \\
\} \\
\text { tol_= tol; } \quad / * \text { see } \S 5.2 .1 .3 * / \\
\}
\end{array}\right.
\end{aligned}
$$

7.3.3.2 Required functions to call NSolve

The function Fcn evaluates $\mathrm{f}_{\mathrm{HO}}(\mathbf{u})$ by calling the function CompF from the $\mathbf{H O}$ class. In this function, n is the size of the input vector x and the evaluated $\mathbf{f}_{\mathrm{HO}}(\mathbf{u})$ is stored at f.
$177\langle$ Nonlinear Solver Functions 59$\rangle+\equiv$

```
HoFlag Fcn(int }n\mathrm{ , double *x, double *f, void *user_data)
{
    HO *ho = (HO *) user_data;
```

 HoFlag info \(=h o \rightarrow \operatorname{Comp} F(x, f)\);
 return info;
 \}
 Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

We implement the function Jac to compute $\mathbf{J}_{\text {Но }}$ by calling the function CompHoJac from the $\mathbf{H O}$ class. In this function, n is the size of the input vector x and the computed $\mathbf{J}_{\mathrm{HO}}(\mathbf{u})$ is stored at $j a c$.
$178\langle$ Nonlinear Solver Functions 59$\rangle+\equiv$

```
void Jac(int n, double *x, double *jac, void *user_data)
    {
        HO *ho =(\mathbf{HO *) user_data;}
        ho`CompHoJac(jac);
    }
```

We can now call the function NSolve.
$179\langle$ solve the HO system 179$\rangle \equiv$
$\left\langle\right.$ get $\mathbf{x}_{J_{\leq \alpha}}^{0}$ from x 175 $\rangle ; \quad / * \alpha$ given by (8.9) $* /$
HoFlag info $=$ NSolve(num_indep_tcs_, weight,indep_tcs_flat_, Fcn, Jac, residual_flat_, ho_jacobian_,ho_ipiv_, (void $*)$ this);

This code is used in chunk 161.

7.3.3.3 Updating x

After solving the system, we extract the derivatives from TCs to update x.
$180\langle$ update $x 180\rangle \equiv$

$$
\begin{aligned}
& \text { for (int } \left.j=0 ; j<n_{-} ; j++\right) \\
& \left.\qquad \text { for (int } k=0 ; k \leq d_{-}[j] ; k++\right)
\end{aligned}
$$

$$
x(j, k)=t s_{-} \rightarrow \text { get_var_coeff }(j, k) * \text { factorial_ }[k] ;
$$

This code is used in chunk 161.

Finally, we
$181\langle$ reset parameters 181$\rangle \equiv$

$$
t s_{-} \rightarrow r e s e t A l l() ;
$$

This code is used in chunk 161.

Chapter 8

Integration strategies

An important part in the design of a numerical algorithm is to estimate the error of a numerical solution. Here, we need to estimate \mathbf{E} in (4.19), so that $e_{p q} h^{p+q+1} \mathbf{E}$ can be calculated as an approximation to the discretization error of (4.20). Since we wish to implement our HO method in a variable-order mode, we also need to estimate the error for each alternative order that is under consideration.

In the present chapter, we first create a Nordsieck vector for an Hermite interpolating polynomial in §8.1. Then, we show how this vector is used to predict a solution, §8.2, and to estimate the discretization error, §8.3. Finally, the stepsize and order selection strategies are derived in §8.4.

8.1 Hermite-Nordsieck vector

For a scalar function $y \in C^{m}[a, b]$, the vector

$$
\left[y(t), y^{\prime}(t), \frac{y^{\prime \prime}(t)}{2!}, \ldots, \frac{y^{(m)}(t)}{m!}\right]
$$

is referred to as a Nordsieck vector for y at t [10]. In this section, we create a Nordsieck vector for an Hermite interpolating polynomial. We employ this vector to predict a solution, $\S 8.2$, and to estimate the discretization error, §8.3.

Given

$$
\begin{equation*}
y(a), y^{\prime}(a), \ldots, y^{(p)}(a) \quad \text { and } \quad y(b), y^{\prime}(b), \ldots, y^{(q)}(b) \tag{8.1}
\end{equation*}
$$

there is a unique interpolating polynomial $P(t) \in \Pi_{p+q+1}$ (see e.g., [64, p. 52], such that

$$
\begin{align*}
& P^{(j)}(a)=y^{(j)}(a), \quad \text { for } \quad j=0,1, \ldots, p \quad \text { and } \\
& P^{(i)}(b)=y^{(i)}(b), \quad \text { for } \quad i=0,1, \ldots, q . \tag{8.2}
\end{align*}
$$

Using the generalized divided differences (see e.g. [64, p. 56])

$$
\begin{aligned}
& y[\underbrace{b, \ldots, b}_{i}] \frac{y^{(i-1)}(b)}{(i-1)!}, \quad i=0,1, \ldots, q+1, \\
& y[\underbrace{a, \ldots, a}_{j}]=\frac{y^{(j-1)}(a)}{(j-1)!}, \quad j=0,1, \ldots, p+1, \\
& y[\underbrace{b, \ldots, b}_{i}, \underbrace{a, \ldots, a}_{j}] y[\underbrace{b, \ldots, b}_{i-1}, \underbrace{a, \ldots, a}_{j}]-y[\underbrace{b, \ldots, b}_{i}, \underbrace{a, \ldots, a}_{j-1}] \\
& a-b
\end{aligned},
$$

$i=1, \ldots, q+1$ and $j=1, \ldots, p+1$, and denoting

$$
\begin{equation*}
\gamma_{j}=y[\underbrace{b, \ldots, b}_{q+1}, \underbrace{a, \ldots, a}_{j}] \tag{8.3}
\end{equation*}
$$

then

$$
\begin{equation*}
P(t)=\sum_{j=0}^{q} \frac{y^{(j)}(b)}{j!}(t-b)^{j}+(t-b)^{q+1} \sum_{j=1}^{p+1} \gamma_{j}(t-a)^{j-1} \tag{8.4}
\end{equation*}
$$

is the Hermite interpolating polynomial satisfying (8.2).
Consider the following Nordsieck vector for P at b

$$
\begin{equation*}
\left[P(b), P^{\prime}(b), \frac{P^{\prime \prime}(b)}{2!}, \ldots, \frac{P^{(p+q+1)}(b)}{(p+q+1)!}\right] . \tag{8.5}
\end{equation*}
$$

Differentiating (8.4) and setting $t=b$, we obtain

$$
\begin{equation*}
P^{(q+j)}(b)=(q+j)!\gamma_{j}, \quad \text { for } \quad j=1, \ldots, p+1 \tag{8.6}
\end{equation*}
$$

By (8.3) and (8.6), we write

$$
\begin{equation*}
\frac{P^{(q+j)}(b)}{(q+j)!}=y[\underbrace{b, \ldots, b}_{q+1}, \underbrace{a, \ldots, a}_{j}] . \tag{8.7}
\end{equation*}
$$

Using (8.2) and (8.7), the Nordsieck vector (8.5) is

$$
\begin{equation*}
[y(b), y^{\prime}(b), \ldots, \frac{y^{(q)}(b)}{q!}, y[\underbrace{b, \ldots, b}_{q+1}, a], y[\underbrace{b, \ldots, b}_{q+1}, a, a], y[\underbrace{b, \ldots, b}_{q+1}, \underbrace{a, \ldots, a}_{p+1}]] \tag{8.8}
\end{equation*}
$$

We refer to (8.8) as the (p, q) Hermite-Nordsieck vector for y at b.
Let

$$
\alpha= \begin{cases}-1 & \text { if the DAE is quasilinear } \tag{8.9}\\ 0 & \text { otherwise }\end{cases}
$$

Assume that values for $x_{j}(a), x_{j}^{\prime}(a), \ldots, x_{j}^{\left(p+d_{j}+\alpha\right)}(a)$ and $x_{j}(b), x_{j}^{\prime}(b), \ldots, x_{j}^{\left(q+d_{j}+\alpha\right)}(b)(j=$ $0, \ldots, n-1)$ are given. For a $(j, k) \in J_{\leq \alpha}$, we use

$$
\begin{align*}
& {\left[x_{j}^{(k)}(a), x_{j}^{(k+1)}(a), \ldots, x_{j}^{(k+p)}(a)\right] \text { and }} \tag{8.10}\\
& {\left[x_{j}^{(k)}(b), x_{j}^{(k+1)}(b), \ldots, x_{j}^{(k+q)}(b)\right]} \tag{8.11}
\end{align*}
$$

and construct the (p, q) Hermite-Nordsieck vector for $x_{j}^{(k)}$ at b.

8.1.1 Implementation

To construct the (p, q) Hermite-Nordsieck vector for $x_{j}^{(k)}$ at b, we first merge the vectors (8.10) and (8.11) to form

$$
\begin{equation*}
\mathbf{y}=\left[x_{j}^{(k)}(b), \ldots, x_{j}^{(k+q)}(b), x_{j}^{(k)}(a), \ldots, x_{j}^{(k+p)}(a)\right] \tag{8.12}
\end{equation*}
$$

Then, we use

$$
\begin{equation*}
[\underbrace{b, b, \ldots, b}_{q+1}, \underbrace{a, a, \ldots, a}_{p+1}], \tag{8.13}
\end{equation*}
$$

and (8.12) to form a tableau and compute the generalized divided differences (8.7) (see Appendix D.5.1). We implement the function CompNordsieck to construct the (p, q) HermiteNordsieck vectors for all $x_{j}^{(k)}$ at b and store them in nordsieck. In this function, $t _v e c$ is (8.13). $d e r s _a$ and ders_b contain $x_{j}(a), x_{j}^{\prime}(a), \ldots, x_{j}^{\left(p+d_{j}+\alpha\right)}(a)$ and $x_{j}(b), x_{j}^{\prime}(b), \ldots, x_{j}^{\left(q+d_{j}+\alpha\right)}(b)$ $(j=0, \ldots, n-1)$, respectively.
$184\langle$ Auxiliary functions 107$\rangle+\equiv$
void CompNordsieck(size_t p, size_t q,
const std $::$ vector \langle double $\rangle \& t _v e c$, const std $::$ vector \langle std $::$ vector \langle double $\rangle\rangle$
\&ders_ a, const $\mathbf{s t d}::$ vector $\langle\mathbf{s t d}::$ vector \langle double $\rangle\rangle \& d e r s _b$,
IrregularMatrix $\langle\mathbf{s t d}$:: vector \langle double $\rangle\rangle$ \&nordsieck)
\{
size_t nord_size $=p+q+2$;
std :: vector $\langle\mathbf{d o u b l e}\rangle$ (nord_size);
for (int $j=0 ; j<$ nordsieck.num_rows ()$; j+$)

Ph.D. Thesis - Reza Zolfaghari

```
    for (int k=0; k<nordsieck.num_cols(j);k++)
    {
        merge_ders (k,p,q,ders_a jj],ders_b[j],y);
        comp_gen_divdif (t_vec,y,nordsieck(j,k)); /* see Appendix D.5.1 */
    }
}
```

The function merge_ders is implemented to merge the vectors (8.10) and (8.11) and get
$185\langle$ Auxiliary functions 107$\rangle+\equiv$
void merge_ders(int k, int p, int q, const std $::$ vector \langle double $\rangle \& v _a$, const
$\boldsymbol{\operatorname { s t d }}::$ vector \langle double $\rangle \& v _b$, std $::$ vector \langle double $\left.\rangle \& y\right)$
\{
for $($ size_t $r=0 ; r \leq q ; r+$)

$$
y[r]=v_{-} b[k+r] ;
$$

for $\left(\right.$ size_t $^{\mathbf{t}} r=0 ; r \leq p ; r+$)

$$
y[q+1+r]=v _a[k+r] ;
$$

\}

8.2 Prediction

To solve the system (4.20) using the iteration (7.1), we need an initial guess for $\mathbf{x}_{J_{<0}}$ at the next point. If the DAE (1.1) is non-quasilinear, we also need an initial guess for $\mathrm{x}_{J_{0}}$ to solve (5.10).

For an $x_{j}^{(k)}$ with $(j, k) \in J_{\leq \alpha}$, where α is given by (8.9), suppose that the values

$$
\begin{align*}
& x_{j}^{(k)}(a), \ldots, x_{j}^{(k+p-1)}(a) \text { and } \tag{8.14}\\
& x_{j}^{(k)}(b), \ldots, x_{j}^{(k+q)}(b),
\end{align*}
$$

are given. Denoting by $P_{j k}$ the polynomial interpolating (8.14), we approximate

$$
\begin{equation*}
x_{j}^{(k)}(b+h) \approx P_{j k}(b+h), \quad \text { for a given } h . \tag{8.15}
\end{equation*}
$$

The (p, q) Hermite-Nordsieck vector for $x_{j}^{(k)}$ at b contains the coefficients of the polynomial $P_{j k} \in \Pi_{p+q}$. Let v_{l} be the $(l+1)$ th element of this vector. Then

$$
\begin{equation*}
P_{j k}(t)=\sum_{l=0}^{q} v_{l}(t-b)^{l}+(t-b)^{q+1} \sum_{l=1}^{p} v_{q+l}(t-a)^{l-1} . \tag{8.16}
\end{equation*}
$$

Hence, given the Hermite-Nordsieck vector we just need to evaluate the polynomial at $b+h$.
The error of the approximation (8.15) is (see e.g., Theorem 2.1.5.9 in [64])
$x_{j}^{(k)}(b+h)-P_{j k}(b+h)=\frac{x_{j}^{(k+p+q+1)}\left(\eta_{j k}\right)}{(p+q+1)!} h^{q+1}(h+b-a)^{p} \quad$ for some $\eta_{j k} \in[a, b+h]$.

8.2.1 Implementation

We implement the function PredictSolution to evaluate $P_{j k}(b+h)$ for all $(j, k) \in J_{\leq \alpha}$. In this function, t is $b+h$, and $\operatorname{nordsieck}(j, k)$ contains the (p, q) Hermite-Nordsieck vector for $x_{j}^{(k)}$ at b. The predicted values are stored in the DAEpoint prediction.

188 〈Auxiliary functions 107$\rangle+\equiv$
void PredictSolution(int p, int q, double a, double b, double t, const
IrregularMatrix \langle std :: vector \langle double $\rangle\rangle$ \&nordsieck, daets ::DAEpoint \&prediction)
\{
for (size_t $j=0 ; j<$ nordsieck.num_rows ()$; j++)$
for (size_t $k=0 ; k<$ nordsieck.num_cols $(j) ; k+$)
$\operatorname{prediction}(j, k)=$ eval_hermite $(p, q, a, b, t, \operatorname{nordsieck}(j, k)) ; \quad / * P_{j k}(t) * /$
\}

8.2.1.1 Evaluating the polynomial

Denoting $x=t-b, y=t-a$, and $s=P_{j k}(t)$, (8.16) is

$$
\begin{equation*}
s=v_{0}+v_{1} x+v_{2} x^{2}+\ldots+v_{q+1} x^{q+1}+v_{q+2} x^{q+1} y+\ldots+v_{q+p} x^{q+1} y^{p-1} . \tag{8.17}
\end{equation*}
$$

We can rewrite (8.17) in the form
$s=v_{0}+x\left[v_{1}+x\left[v_{2}+\ldots+x\left[v_{q+1}+y\left[v_{q+2}+y\left[v_{q+3}+\ldots+y\left[v_{q+p-1}+y v_{q+p}\right]\right]\right]\right]\right]\right]$,
and compute it by the following function.
$189\langle$ Auxiliary functions 107$\rangle+\equiv$

> double $e v a l _h e r m i t e($ int p, int q, double a, double b, double t, std $::$ vector \langle double $\rangle v$) $\{$

$$
\text { double } x=t-b ;
$$

$$
\text { double } y=t-a \text {; }
$$

```
double \(s=v[q+p]\);
for (int \(l=q+p-1 ; l \geq q+1 ; l--)\)
        \(s=s * y+v[l] ;\)
    for \((\mathbf{i n t} l=q ; l \geq 0 ; l--)\)
        \(s=s * x+v[l] ;\)
    return \(s\);
\}
```


8.3 Error estimation

To provide an estimate for the discretization error (4.19), we need to estimate (4.9), namely,

$$
\begin{equation*}
\frac{x_{j}^{(p+q+1+k)}\left(\eta_{j k}\right)}{(p+q+1)!} \quad \text { where } \eta_{j k} \in\left(t^{*}, t^{*}+h\right) \tag{8.18}
\end{equation*}
$$

for each $(j, k) \in J_{<0}$.
Denote by $u_{j k}$ and $v_{j k}$ the $(p+q+1)$ th elements of the (p, q) Hermite-Nordsieck vectors for $x_{j}^{(k)}$ at t^{*} and $t^{*}+h$, respectively. From (8.5), we approximate

$$
\begin{align*}
\frac{x_{j}^{(k+p+q)}\left(t^{*}\right)}{(p+q)!} & \approx u_{j k} \quad \text { and } \\
\frac{x_{j}^{(k+p+q)}\left(t^{*}+h\right)}{(p+q)!} & \approx v_{j k} . \tag{8.19}
\end{align*}
$$

By the mean-value theorem, there is an $\widetilde{\eta}_{j k} \in\left(t^{*}, t^{*}+h\right)$ such that

$$
x_{j}^{(k+p+q+1)}\left(\widetilde{\eta}_{j k}\right)=\frac{x_{j}^{(k+p+q)}\left(t^{*}+h\right)-x_{j}^{(k+p+q)}\left(t^{*}\right)}{h} .
$$

Using the approximations (8.19), we write

$$
x_{j}^{(k+p+q+1)}\left(\widetilde{\eta}_{j k}\right) \approx \frac{v_{j k}(p+q)!-u_{j k}(p+q)!}{h} .
$$

Then we use

$$
\begin{equation*}
\widetilde{\xi}_{j k}=\frac{v_{j k}-u_{j k}}{h(p+q+1)} \approx \frac{x_{j}^{(k+p+q+1)}\left(\widetilde{\eta}_{j k}\right)}{(p+q+1)!} \tag{8.20}
\end{equation*}
$$

as an estimation for (8.18).

Theorem 8.1. For a scalar function $y \in C^{p+q+1}[a, b]$ and the polynomial (8.4) obtained from data (8.1) we have

$$
y^{(m)}(b)-P^{(m)}(b)=\mathcal{O}\left((b-a)^{p+q+2-m}\right), \quad \text { for } m=q+1, q+2, \ldots, p+q+2 \text {. }
$$

Proof. Using the convergence theorem of Hermite interpolation (see e.g., Theorem 2.1.5.9 in [64]), we can write

$$
y(t)-P(t)=\frac{y^{(p+q+2)}\left(\eta_{t}\right)}{(p+q+2)!}(t-a)^{p+1}(t-b)^{q+1}, \quad \text { for some } \quad \eta_{t} \in[a, b]
$$

with $t \in[a, b]$. Denote

$$
w(t)=(t-a)^{p+1}(t-b)^{q+1} .
$$

Differentiating $w(t)$, and setting $t=b$, the proof follows from

$$
w^{(m)}(b)=\mathcal{O}\left((b-a)^{p+q+2-m}\right) .
$$

The proof of this, although elementary, is tedious and we omit it.

Here, $u_{j k}$ and $v_{j k}$ are the $(p+q)$ th derivatives of Hermite interpolating polynomials of the form (8.4). Computing the (p, q) Hermite-Nordsieck vectors for $x_{j}^{(k)}$ at t^{*} and $t^{*}+h$ with accurate data, we obtain approximations (8.19) with the error of order $\mathcal{O}\left(h^{2}\right)$ by Theorem 8.1. However, in practice, we compute Hermite-Nordsieck vectors using the approximate data with errors depending on the user specified tolerance.

If approximate data of a function y contain errors of order $\mathcal{O}\left(h^{r}\right)$, then an m th order differentiation of an interpolating polynomial of any degree $\geq(r-1)$ obtained from this data yields approximations of $y^{(m)}$ with reduced order of accuracy $\mathcal{O}\left(h^{r-m}\right)$ [9]. Therefore, if we apply a (p, q) HO method when $p+q$ and user specified tolerances are large, then (8.20) is not a good estimation for (8.18).

Let the irregular matrix $\widetilde{\mathbf{E}}$ contain the values $\widetilde{\xi}_{j k}$ for $(j, k) \in J_{<0}$. We compute

$$
\begin{equation*}
e_{p q} h^{p+q+1} \widetilde{\mathbf{E}} \tag{8.21}
\end{equation*}
$$

where $e_{p q}$ is the error constant given by (4.8). We refer to (8.21) as the estimated discretization error (EDE).

8.3.1 Implementation

The StiffDAEsolver class maintains a pointer to an object of the $\mathbf{H O}$ class.
$192\langle$ StiffDAEsolver Data Members 192$\rangle \equiv$
$\mathbf{H O}$ *ho_;

See also chunks 195, 196, 197, 212, 229, 233, 235, 253, 295, and 361

This code is used in chunk 27.

The constructor and destructor of the StiffDAEsolver class are given in Appendix D.3. We declare the data members and implement the functions in this chapter and Chapter 9.

The function EstErrHO is implemented to compute the norm of (8.21). In this function, order is $p+q$ and weight is used to compute the scaled WRMS norm in (8.21).
$194\langle$ Definitions of StiffDAEsolver Private Functions 194$\rangle \equiv$

Ph．D．Thesis－Reza Zolfaghari

```
double StiffDAEsolver :: EstErrHO(int order, double e_pq,
        const IrregularMatrix (double\rangle &weight)
    {
    <compute e pq}\mp@subsup{h}{}{p+q+1}\widetilde{\mathbf{E}}199\rangle
```



```
}
```

See also chunks 203，215，220，222，223，234，238，258，297，and 336

This code is used in chunk 362.

Assume that for all $(j, k) \in J_{<0}$ the (p, q) Hermite－Nordsieck vectors for $x_{j}^{(k)}$ at t^{*} have been stored in

195 〈StiffDAEsolver Data Members 192〉＋三
IrregularMatrix $\langle\mathbf{s t d}::$ vector $\langle\mathbf{d o u b l e}\rangle\rangle$ nordsieck＿cur＿；
and at $t^{*}+h$ they have been stored in

196 〈StiffDAEsolver Data Members 192〉＋三
IrregularMatrix \langle std $::$ vector \langle double $\rangle\rangle$ nordsieck＿trial＿；

That is，the nordsieck＿trial＿$(j, k)[p+q]$ contains $v_{j k}$ ，and nordsieck＿cur＿$(j, k)[p+q]$ contains $u_{j k}$ ．By（8．20），

$$
h \tilde{\xi}_{j k}=\frac{v_{j k}-u_{j k}}{p+q+1} .
$$

For each $(j, k) \in J_{<0}$ we compute $h \widetilde{\xi}_{j k}$ and store it in
197 〈StiffDAEsolver Data Members 192〉＋三

Ph.D. Thesis - Reza Zolfaghari

IrregularMatrix \langle double $\rangle e d e$ _;

$198\left\langle\right.$ compute $\left.h \widetilde{\xi}_{j k} 198\right\rangle \equiv$

$$
\text { ede_ }(j, k)=(\text { nordsieck_trial_ }(j, k)[\text { order }]-\text { nordsieck_cur_ }(j, k)[\text { order }]) /(\text { order }+1) ;
$$

This code is used in chunk 199.

Now, we estimate the error as
$199\left\langle\right.$ compute $\left.e_{p q} h^{p+q+1} \widetilde{\mathbf{E}} 199\right\rangle \equiv$

$$
\begin{aligned}
& \text { for (int } \left.j=0 ; j<e d e_{-} . n u m _r o w s() ; j++\right) \\
& \text { for (int } \left.k=0 ; k<e d e_{-} . n u m_{-} \text {cols }(j) ; k++\right) \\
& \quad\left\langle\text { compute } h \widetilde{\xi}_{j k} 198\right\rangle ; \\
& \text { ede } e_{-} *=h o_{-} \rightarrow h_{-} p o w_{-}[\text {order }] * e_{-} p q ;
\end{aligned}
$$

This code is used in chunk 194.

Finally, by calling wrms_norm function from the IrregularMatrix class, we compute the norm of the error.
$200\left\langle\right.$ compute $\left.\left\|e_{p q} h^{p+q+1} \widetilde{\mathbf{E}}\right\| 200\right\rangle \equiv$
return ede_.wrms_norm(weight);
This code is used in chunk 194.

8.4 Stepsize and order selection

Suppose that we intend to apply the (p, q) HO method to solve a DAE. Since our interest in this method is for stiff problems, we choose the parameters p and q such that the method is

Ph.D. Thesis - Reza Zolfaghari McMaster University - CSE
at least A-stable. For given integer $\kappa>0$, by Theorem 3.3, we choose

$$
\begin{equation*}
p=\left\lceil\frac{\kappa}{2}\right\rceil \quad \text { and } \quad q=\kappa-p \tag{8.22}
\end{equation*}
$$

That is, if κ is odd, then $q=p+1$, and the method is L-stable. When κ is even, then $q=p$, and the method is A-stable.

We provide the HO method with a variable-order formulation. After an accepted step, we consider keeping the same order, κ, or $\kappa-1$ or $\kappa+1$. We consider the HO parameters p and q for the next step as in Table 8.1.

last step		considered for next step	
κ	$\kappa-1$	κ	$\kappa+1$
(p, p)	$(p-1, p)$	(p, p)	$(p, p+1)$
$(p, p+1)$	(p, p)	$(p, p+1)$	$(p+1, p+1)$

Table 8.1: Considered (p, q) for next step.

After applying the method of order κ with stepsize h_{κ} for the last step, we consider stepsizes \widehat{h}_{i} to continue the integration with orders $i \in\{\kappa-1, \kappa, \kappa+1\}$ determined by

$$
\widehat{h}_{i}=\sigma_{i} h_{\kappa},
$$

where

$$
\begin{equation*}
\sigma_{i}=\left(\frac{s_{i}}{\left\|\mathrm{EDE}_{i}\right\|}\right)^{1 /(i+1)} \tag{8.23}
\end{equation*}
$$

Here s_{i} is a safety factor and EDE_{i} is the EDE given by (8.21) at order i.

In a variable-order formulation, we need to know a priori an estimation of the computational cost per step for each order that is under consideration for the next step. Ignoring the cost of computing \mathbf{A}_{0} which is strongly problem dependent, the computational cost of the (p, q) HO method per step is $\mathcal{O}\left(n^{3}+N n^{2} q+N q^{2}+N^{3}\right)$ (see Table 8.2). We define the following cost per step function for the $(p, q) \mathrm{HO}$ method

$$
\begin{equation*}
\mathcal{C}(n, N, q, h)=\frac{1}{h}\left(n^{3}+N n^{2} q+N q^{2}+N^{3}\right) . \tag{8.24}
\end{equation*}
$$

We determine the order $i \in\{\kappa-1, \kappa, \kappa+1\}$ for the next step that minimizes (8.24).

task	computational complexity
LU factorization of \mathbf{A}_{0}	$\mathcal{O}\left(n^{3}\right)$
computing $\mathbf{x}_{J_{s}}$ for $s=0, \ldots, q-1$	$\mathcal{O}\left(n^{2} q+q^{2}\right)$
evaluating $\mathbf{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}\right)$	$\mathcal{O}(N(p+q))$
computing $\nabla \mathbf{x}_{J_{s}}$ for $s=0, \ldots, q-1$	$\mathcal{O}\left(N n^{2} q+N q^{2}\right)$
evaluating \mathbf{J}_{HO}	$\mathcal{O}\left(N^{2} q\right)$
LU factorization of \mathbf{J}_{HO}	$\mathcal{O}\left(N^{3}\right)$
substitutions for solving $\mathbf{J}_{\mathrm{HO}} \boldsymbol{\delta}=-\mathbf{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}\right)$	$\mathcal{O}\left(N^{2}\right)$
total	$\mathcal{O}\left(n^{3}+N n^{2} q+N q^{2}+N^{3}\right)$

Table 8.2: Cost of the (p, q) HO method per step.

8.4.1 Implementation

To determine the order $i \in\{\kappa-1, \kappa, \kappa+1\}$ for the next step that minimizes (8.24), we

Ph．D．Thesis－Reza Zolfaghari
－compute $\sigma_{i}(8.23)$ ，
－compute

$$
\begin{equation*}
\mathcal{C}_{i}=\frac{1}{\sigma_{i}}\left(n^{3}+N n^{2} q_{i}+N q_{i}^{2}+N^{3}\right) \tag{8.25}
\end{equation*}
$$

for the $\left(p_{i}, q_{i}\right)$ HO method，and
－find i that minimizes（8．25）．

We implement the function SelectOrder to select the order for the next step．In this function， sigma＿k is σ_{κ} ，weight is used to compute the scaled WRMS norm，and the vector epq contains the constants $\left|e_{p q}\right|$ in（4．8）for the p and q under consideration．This function returns an OrderFlag．
\langle enumeration type for order selection 202$\rangle \equiv$

typedef enum \｛

DECREASE＿ORDER，／＊if the order for the next step should be $\kappa-1, * /$ DONT＿CHANGE＿ORDER，$\quad / *$ if the integration could continue with order $\kappa, * /$ INCREASE＿ORDER $/ *$ if the order for the next step should be $\kappa+1 * /$
\} OrderFlag;

This code is used in chunk 369.

203 〈Definitions of StiffDAEsolver Private Functions 194〉＋三
OrderFlag StiffDAEsolver ：：SelectOrder（int k ，double sigma＿k，const
IrregularMatrix \langle double \rangle \＆weight，const std ：：vector \langle double \rangle \＆epq）
\｛

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE
$\left\langle\right.$ compute $\sigma_{\kappa-1}$ and $\left.\sigma_{\kappa+1} 204\right\rangle$;
$\left\langle\right.$ compute $\mathcal{C}_{\kappa-1}, \mathcal{C}_{\kappa}$ and $\left.\mathcal{C}_{\kappa+1} 207\right\rangle$;
$\left\langle\right.$ find $\min \left\{\mathcal{C}_{\kappa-1}, \mathcal{C}_{\kappa}, \mathcal{C}_{\kappa+1}\right\}$ to determine the possible order change 211\rangle;
\langle check not to exceed maximum or fall minimum order 213\rangle;
return flag;
\}

Calling the function $\operatorname{EstErrHO}$, we estimate $\left\|\mathrm{EDE}_{\kappa-1}\right\|$ and $\left\|\mathrm{EDE}_{\kappa+1}\right\|$ and store them in ede_low and ede_high, respectively. epq[0] contains the $\left|e_{p q}\right|$ corresponding to order $\kappa-1$ and $e p q[2]$ contains this term for order $\kappa+1$ (see Table 8.1).
$204\left\langle\right.$ compute $\sigma_{\kappa-1}$ and $\left.\sigma_{\kappa+1} 204\right\rangle \equiv$
double ede_low $=\operatorname{EstErrHO}(k-1, e p q[0]$, weight $)$;
double ede_high $=\operatorname{EstErrHO}(k+1$, epq $[2]$, weight $)$;
See also chunk 206.
This code is used in chunk 203.

We implement the following auxiliary function to compute (8.23).
$205\langle$ Auxiliary functions 107$\rangle+\equiv$
double comp_sigma(int order, double lte, double safety)
\{
double power $=1.0 /($ order +1$)$;
double sigma $=\mathbf{s t d}::$ pow(safety/lte, power $)$;
return sigma;

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE
\}

Calling this function, we compute $\sigma_{\kappa-1}$ and $\sigma_{\kappa+1}$ and store them in sigma_low and sigma_high, respectively.
$206\left\langle\right.$ compute $\sigma_{\kappa-1}$ and $\left.\sigma_{\kappa+1} 204\right\rangle+\equiv$
double sigma_low $=$ comp_sigma $(k-1$, ede_low, 0.1$)$;
double sigma_high $=$ comp_sigma $(k+1$, ede_high, 0.05 $)$;

To compute $\mathcal{C}_{\kappa-1}$ and $\mathcal{C}_{\kappa+1}$ we first select the HO parameters $\left(p_{\kappa-1}, q_{\kappa-1}\right)$ and $\left(p_{\kappa+1}, q_{\kappa+1}\right)$ as in Table 8.1.
$207\left\langle\right.$ compute $\mathcal{C}_{\kappa-1}, \mathcal{C}_{\kappa}$ and $\left.\mathcal{C}_{\kappa+1} 207\right\rangle \equiv$ int $p=h o_{-} \rightarrow p_{-}$, $q=h o_{-} \rightarrow q_{-}$,
$n=h o_{-}-n_{-}$, $n n=h o _\rightarrow n u m _i n d e p _t c s_{-}$,
p_high, p_low, q_high, q_low;
if $(p \equiv q)$
\{
p_high $=p$;
$q _h i g h=p+1 ;$
p_low $=p-1$;
q_{-}low $=p ;$
\}

Ph.D. Thesis - Reza Zolfaghari

```
else
{
    p_high = p+1;
        q_high = p+1;
        p_low = p;
        q_low = p;
    }
```

See also chunk 209.

This code is used in chunk 203.

We implement the following function to compute (8.25).
$208\langle$ Auxiliary functions 107$\rangle+\equiv$
double cost_per_step $($ int n, int $n n$, int p, int q, double h) \{
int $n 2=n * n ;$
int $n 3=n * n 2$;
int $n n 3=n n * n n * n n ;$
int $q 2=q * q ;$
double cost $=(n 3+n n * n 2 * q+n n * q 2+n n 3) / h ;$
return cost;
\}

Ph.D. Thesis - Reza Zolfaghari

Calling the function cost_per_step, we compute $\mathcal{C}_{\kappa-1}, \mathcal{C}_{\kappa}$ and $\mathcal{C}_{\kappa+1}$ and store them in cost_low, cost_k, and cost_high, respectively.
$209\left\langle\right.$ compute $\mathcal{C}_{\kappa-1}, \mathcal{C}_{\kappa}$ and $\left.\mathcal{C}_{\kappa+1} 207\right\rangle+\equiv$
double cost_low $=$ cost_per_step $\left(n, n n, p_{-} l o w, q_{-} l o w\right.$, sigma_low $)$;
double cost_k $=$ cost_per_step $(n, n n, p, q$, sigma_k);
double cost_high $=$ cost_per_step $\left(n, n n, p_{-} h i g h, q_{-} h i g h\right.$, sigma_high $)$;

The new order is then chosen to minimize $\left\{\mathcal{C}_{\kappa-1}, \mathcal{C}_{\kappa}, \mathcal{C}_{\kappa+1}\right\}$. This is done by the following function.
$210\langle$ Auxiliary functions 107$\rangle+\equiv$
OrderFlag min_cost $($ double $\cos t 1$, double $\operatorname{cost} 2$, double $\cos t 3)$
\{

$$
\text { if }((\cos t 1<\cos t 2) \wedge(\cos t 1<\cos t 3))
$$

return DECREASE_ORDER;
if $((\cos t 3<\cos t 2) \wedge(\operatorname{cost} 3<\operatorname{cost} 1))$
return INCREASE_ORDER;
return DONT_CHANGE_ORDER;
\}
$211\left\langle\right.$ find $\min \left\{\mathcal{C}_{\kappa-1}, \mathcal{C}_{\kappa}, \mathcal{C}_{\kappa+1}\right\}$ to determine the possible order change 211$\rangle \equiv$
OrderFlag flag $=$ min_cost $($ cost_low, cost_k,cost_high $)$;
This code is used in chunk 203.

Ph．D．Thesis－Reza Zolfaghari

Finally，we check if the new order is in the range of specified minimum and maximum orders stored in

212 〈StiffDAEsolver Data Members 192〉＋三 int min＿order＿，max＿order＿；
$213\langle$ check not to exceed maximum or fall minimum order 213$\rangle \equiv$ if $((k \equiv$ max＿order＿\wedge flag \equiv INCREASE＿ORDER $) \vee$

$$
(k \equiv \text { min_order_ } \wedge \text { flag } \equiv \text { DECREASE_ORDER }))
$$

return DONT＿CHANGE＿ORDER；
This code is used in chunk 203.

Chapter 9

The integrator function

To start an integration and to obtain the required data for computing the Hermite-Nordsieck vectors (§8.1), we use the explicit Taylor series method on the first step. This is carried out by the IntegrateByExplicitTS function, Appendix A. Then, we use our HO method, step by step, from the found solution by IntegrateByExplicitTS up to a final time.

In this chapter, we first describe the components of our overall algorithm and implement the function Integrate ByHO for integrating the given problem using the HO method in §9.1. Then, in $\S 9.2$ we implement the function integrate which advances the solution from the initial time up to the final time by calling the functions IntegrateByExplicitTS and Integrate ByHO .

9.1 Integration by HO method

Consider the DAE (1.1) and assume that the following are given

- absolute error tolerance atol, and relative error tolerance rtol,
- current order κ, minimum order $\kappa_{\text {min }}$ and maximum order $\kappa_{\max }$,
- previous time $t_{\text {prev }}$, current time $t_{\text {cur }}$ and final time $t_{\text {end }}$,
- TCs $\mathbf{x}_{J_{<p+\alpha}}$ at $t_{\text {prev }}$ and $\mathbf{x}_{J_{<q+\alpha}}$ at $t_{\text {cur }}$ with $p=\lceil\kappa / 2\rceil, q=\kappa-p$, and α in (8.9), and - a trial stepsize h.

Our algorithm for integrating (1.1) using the HO method in §4.2 to find a numerical solution $\mathbf{x}_{J_{<0}}$ at $t_{\text {end }}$ consists of the following steps (see Figure 9.1 for an illustration).

1. Prepare for integration, that is,

- compute $p=\lceil\kappa / 2\rceil, q=\kappa-p$, coefficients $c_{r}^{p q}$ in (3.10) for $r=0, \ldots, p$, and $c_{r}^{q p}$ in (3.11) for $r=0, \ldots, q$, and the error constants $e_{p q}$ in (4.8) for orders $\kappa-1$, κ and $\kappa+1$,
- compute the weights (7.6) required for the WRMS norm (7.3),
- construct an irregular matrix $\mathbf{H N}_{\text {cur }}$ whose (j, k) th entry is the (p, q) HermiteNordsieck vector for $x_{j}^{(k)},(j, k) \in J_{\leq \alpha}$, at $t_{\text {cur }}$ (see $\S 8.1$), and
- the minimum allowed stepsize $h_{\text {min }}$.

Figure 9.1: Algorithm overview.
2. Check and adjust the stepsize h, that is, if $h<h_{\text {min }}$ terminate the integration and return the solution at $t_{\text {cur }}$. Otherwise, adjust h, if needed, such that $t_{\text {trial }}=t_{\text {cur }}+h \leq t_{\text {end }}$.
3. Find an initial guess for $\mathbf{x}_{J_{\leq \alpha}}$ at $t_{\text {trial }}$ using $\mathbf{H N}_{\text {cur }}$ (see §8.2).
4. Compute $\mathbf{x}_{J_{\leq 0}}^{\text {HO }}$ at $t_{\text {trial }}$, that is, construct and solve the HO system $\mathbf{F}\left(\mathbf{x}_{J_{<0}}\right)=0$ to obtain a solution $\mathbf{x}_{J_{<0}}^{\mathrm{HO}}$ at $t_{\text {trial }}$ (see $\S 7.3$). In addition, compute $\operatorname{TCs} \mathbf{x}_{J_{0}}^{\mathrm{HO}}$ at $t_{\text {trial }}$ by solving (see Chapter 5)

$$
\mathbf{f}_{I_{0}}\left(t_{\text {trial }}, \mathbf{x}_{J_{<0}}^{\mathrm{HO}}, \mathbf{x}_{J_{0}}^{\mathrm{Ho}}\right)=0 .
$$

If solving one of the above systems fails, then $h \leftarrow h / 2$ and go to 2 .
5. Solve the constrained optimization problem

$$
\min _{\mathbf{x}_{J \leq 0}}\left\|\mathbf{x}_{J_{\leq 0}}-\mathbf{x}_{J_{\leq 0}}^{\mathrm{Ho}}\right\|_{2} \quad \text { subject to } \quad \mathbf{f}_{I_{\leq 0}}\left(t_{\text {trial }}, \mathbf{x}_{J_{\leq 0}}\right)=0
$$

to obtain the projected solution $\mathbf{x}_{J \leq 0}^{\mathrm{PR}}$ at $t_{\text {trial }}$. If the projection fails, then $h \leftarrow h / 2$ and go to 2 .
6. Compute TCs $\mathbf{x}_{J_{<q+\alpha}}^{\mathrm{PR}}$ at $t_{\text {trial }}$ by solving (see Chapter 5)

$$
\mathbf{f}_{I_{s}}\left(t_{\text {trial }}, \mathbf{x}_{J_{<s}}^{\mathrm{PR}}, \mathbf{x}_{J_{s}}^{\mathrm{PR}}\right)=0, \quad s=1, \ldots, q+\alpha .
$$

7. Compute EDE, that is,

- use $\mathbf{x}_{J_{<p+\alpha}}$ at $t_{\text {cur }}$ and $\mathbf{x}_{J_{<q+\alpha}}^{\mathrm{PR}}$ at $t_{\text {trial }}$ to construct an irregular matrix $\mathbf{H N} \mathbf{N}_{\text {trial }}$ whose (j, k) th entry is the (p, q) Hermite-Nordsieck vector for $x_{j}^{(k)},(j, k) \in J_{\leq \alpha}$, at $t_{\text {trial }}$, and
- use $\mathbf{H N}_{\text {cur }}$ and $\mathbf{H N}_{\text {trial }}$ to compute EDE (see §8.3).

8. If $\|\mathrm{EDE}\|>1$, then $h \leftarrow h / 2$ and go to 2 . If $\|\mathrm{EDE}\| \leq 1$ and $t_{\text {trial }}=t_{\text {end }}$, then terminate the integration with $\mathbf{x}_{J_{<0}}^{\mathrm{PR}}$ as our solution at $t_{\text {end }}$. Otherwise, prepare to perform the next step, that is,

- $t_{\text {cur }} \leftarrow t_{\text {trial }}$,
- $\mathbf{H N}_{\text {cur }} \leftarrow \mathbf{H N}_{\text {trial }}$,
- update the weights using entries of $\mathbf{x}_{J_{<0}}^{\mathrm{PR}}$,
- update $h_{\text {min }}$,
- predict a stepsize h for next step,
- determine an order κ with $\kappa_{\text {min }} \leq \kappa \leq \kappa_{\text {max }}$ for next step (see $\S 8.4$). If change in order, compute $p=\lceil\kappa / 2\rceil, q=\kappa-p$, coefficients $c_{r}^{p q}$ for $r=0, \ldots, p$, and $c_{r}^{q p}$ for $r=0, \ldots, q$, and the error constants $e_{p q}$ for orders $\kappa-1, \kappa$ and $\kappa+1$, and
- go to 2 .

This algorithm is carried out by the function Integrate ByHO . In this function, x contains an initial point and will be updated by the solution at $t_{\text {end }}$. If the function cannot reach $t_{\text {end }}$, the solution at some $t<t_{\text {end }}$ is returned.

Ph．D．Thesis－Reza Zolfaghari

〈 declare variables for integration 218 ；
\langle prepare for integration 216\rangle ；
while $\left(x . t_{-} \neq t_{-}\right.$end $)$
\｛
\langle check and adjust the stepsize $h 247\rangle$ ；
$\left\langle\right.$ find an initial guess for $\left.\mathbf{x}_{J_{\leq \alpha}} 250\right\rangle$ ；
$\left\langle\right.$ compute $\left.\mathbf{x}_{J \leq 0}^{\mathrm{HO}} 252\right\rangle$ ；
$\left\langle\right.$ project $\mathbf{x}_{J \leq 0}^{\mathrm{HO}}$ onto constraints 260\rangle ；
〈 compute higher－order TCs 266 〉；
\langle estimate the error 270\rangle ；
\langle prepare for next step 275〉；
〈 optional output 292 〉；
\}
\}

9．1．1 Preparation for integration

The DAEsolver class has the protected member params＿which is a pointer to an object of the Parameters class．We obtain absolute and relative tolerances by calling getAtol and getRtol from Parameters class and store them in atol and rtol，respectively．
$216\langle$ prepare for integration 216$\rangle \equiv$
double atol $=$ params＿\rightarrow getAtol () ；
double rtol $=$ params＿$\rightarrow \operatorname{getRtol}()$ ；

Ph.D. Thesis - Reza Zolfaghari

$$
\text { x.stats_ } \rightarrow \text { setTols }(\text { atol }, \text { rtol }) ;
$$

See also chunks $219,225,228,232,237,240,242,244,246,255$, and 268

This code is used in chunk 215.

9.1.1.1 Parameters and coefficients of the method

Given the order, we compute parameters p and q in the (p, q) HO method by (8.22).
$218\langle$ declare variables for integration 218$\rangle \equiv$
int p, q;

See also chunks 224, 227, 231, 236, 239, 241, 243, 249, 251, 259, 267, 269, 277, 283, 287, and 288

This code is used in chunk 215.
$219\langle$ prepare for integration 216$\rangle+\equiv$

$$
\begin{aligned}
& p=x . \text { order }_{-} / 2 \\
& q=x . \text { order }_{-}-p
\end{aligned}
$$

We implement the function set_pq_comp_coeffs to

- set p and q in the $\mathbf{H O}$ object,
- compute coefficients $c_{r}^{p q}$ in (3.10) for $r=0, \ldots, p$, and $c_{r}^{q p}$ in (3.11) for $r=0, \ldots, q$, and
- compute $\left|e_{p q}\right|$ in (4.8) for all $(i, j) \mathrm{HO}$ methods that are under consideration for the next step.

Ph．D．Thesis－Reza Zolfaghari
McMaster University－CSE

```
void StiffDAEsolver :: set_pq_comp_coeffs(int p,int q, std ::vector<double\rangle&ho_epq)
{
    ho_->set_pq(p,q);
    ho_->CompCpq();
    ho_->CompCqp();
    CompEpq(p,q,ho_epq);
}
```

The function set＿pq in the HO class sets the parameters p and q of the (p, q) HO method．

221 〈Definitions of HO Private Functions 37〉＋三
void HO $:: s_{\text {set_p }} p q($ int p, int $q)$
\{
$p_{-}=p ;$
$q_{-}=q ;$
\}

We implement the function CompErrorCanstant to compute $\left|e_{p q}\right|$ for the $(p, q) \mathrm{HO}$ method．
$222\langle$ Definitions of StiffDAEsolver Private Functions 194$\rangle+\equiv$ inline double StiffDAEsolver ：：CompErrorConstant（int p ，int q ） \｛
return ho＿\rightarrow factorial＿$[p] *$ ho＿\rightarrow factorial＿$[q] /$ ho＿\rightarrow factorial＿$[p+q]$ ；
\}

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

Calling this function, the function CompEpq computes $e_{i j}$ for all $(i, j) \mathrm{HO}$ methods that are under consideration for the next step as in Table 8.1.
\langle Definitions of StiffDAEsolver Private Functions 194〉+三
void StiffDAEsolver :: CompEpq(int p, int q, std $::$ vector \langle double $\left.\rangle \& e _p q\right)$
\{
$\operatorname{assert}\left(e _p q \cdot \operatorname{size}() \equiv 3\right)$;

$$
\mathbf{i f}(p \equiv q)
$$

$$
\{
$$

$e_{_} p q[0]=\operatorname{CompErrorConstant}(p-1, p) ;$
$e_{_} p q[1]=\operatorname{CompErrorConstant}(p, p) ;$
$e_{_} p q[2]=\operatorname{CompErrorConstant}(p, p+1)$;
\}
else
\{
$e_{_} p q[0]=\operatorname{CompErrorConstant}(p, p) ;$
$e_{_} p q[1]=\operatorname{CompErrorConstant}(p, p+1) ;$
$e _p q[2]=\operatorname{CompErrorConstant}(p+1, p+1)$;
\}
\}
$224\langle$ declare variables for integration 218$\rangle+\equiv$
std :: vector \langle double \rangle epq (3);

Ph.D. Thesis - Reza Zolfaghari
$225\langle$ prepare for integration 216$\rangle+\equiv$

$$
\text { set_pq_comp_coeffs }(p, q, e p q) ;
$$

9.1.1.2 The weights for WRMS norm

To compute the WRMS norm given by (7.3) for the error estimation (8.21), we precompute (7.6). The following function performs this task.
$226\langle$ Auxiliary functions 107$\rangle+\equiv$
void CompWeight (const daets ::DAEpoint $\& x$, double rtol, double atol, IrregularMatrix \langle double $\rangle \& w)$
\{
for (size_t $j=0 ; j<w . n u m _r o w s() ; j+$) for $\left(\mathbf{s i z e}_{\mathbf{\prime}} \mathbf{t} k=0 ; k<w . n u m _\right.$cols $\left.(j) ; k++\right)$

$$
w(j, k)=1.0 /(\text { atol }+\mathbf{s t d}:: \operatorname{fabs}(x(j, k)) * r t o l) ;
$$

\}

Calling CompWeight, we store (7.6) in
$227\langle$ declare variables for integration 218$\rangle+\equiv$
IrregularMatrix \langle double \rangle weight;
weight $=$ IrregularMatrix \langle double $\rangle\left(h o_{-} \rightarrow d_{-}\right)$;
$228\langle$ prepare for integration 216$\rangle+\equiv$
CompWeight (x, rtol, atol, weight);

Ph．D．Thesis－Reza Zolfaghari
McMaster University－CSE

9．1．1．3 Hermite－Nordsieck vectors

$x . t_{-}$contains the current time．To construct the (p, q) Hermite－Nordsieck vectors for $x_{j}^{(k)}$ ， $(j, k) \in J_{\leq \alpha}$ ，at $x . t_{-}$by the function CompNordsieck implemented in $\S 8.1$ ，we need（8．13）， （8．10）and（8．11），with $a=t_{-} p r e v_{-}$and $b=x . t_{-}$．

229 〈StiffDAEsolver Data Members 192〉＋三
double t_{-}prev＿；

The following function returns the vector（8．13）through $t_{-} v e c$ ．
$230\langle$ Auxiliary functions 107$\rangle+\equiv$

$$
\begin{aligned}
& \text { void } \text { create_t_vec }\left(\text { double } a, \text { double } b, \text { int } p, \text { int } q, \text { std }:: \text { vector }\langle\text { double }\rangle \& t _v e c\right) \\
& \left\{\begin{array}{l}
\text { if }\left(t_{-} \text {vec.size }() \neq(p+q+2)\right) \\
\quad t_{-} \text {vec.resize }(p+q+2) ; \\
\text { for (int } i=0 ; i \leq q ; i++) \\
\quad t_{-} v e c[i]=b ; \\
\text { for }(\text { int } i=0 ; i \leq p ; i++) \\
\quad t_{-} v e c[q+1+i]=a ; \\
\}
\end{array}\right.
\end{aligned}
$$

We call the function create＿t＿vec to create the vector（8．13）and store it in
231 〈declare variables for integration 218$\rangle+\equiv$
std ：：vector \langle double \rangle t＿vec＿cur；

Ph．D．Thesis－Reza Zolfaghari
t＿vec＿cur．reserve（max＿order＿＋2）；

232
\langle prepare for integration 216$\rangle+\equiv$
create＿t＿vec $\left(t-p r e v_{-}, x . t_{-}, p, q, t_{-} v e c _c u r\right) ;$

Scaled TCs $\mathbf{x}_{J_{<p}}$ at t_{-}prev＿are stored in

233 〈StiffDAEsolver Data Members 192〉＋三
std $::$ vector \langle std $::$ vector \langle double $\rangle\rangle$ tcs＿prev＿；
and x ．savedTCs＿contains scaled TCs $\mathbf{x}_{J_{<q}}$ at $x . t_{-}$．However，in（8．10）and（8．11），we need derivatives $x_{j}^{(l)}$ at t_{-}prev＿and $x . t_{-}$，respectively．We implement the function unscale＿tcs to unscale TCs．
$234\langle$ Definitions of StiffDAEsolver Private Functions 194$\rangle+\equiv$ void StiffDAEsolver ：：unscale＿tcs（const std ：：vector \langle double \rangle \＆pow＿h， std $::$ vector $\langle\mathbf{s t d}::$ vector \langle double $\rangle\rangle \& t c s)$
$\{$
for (size_t $j=0 ; j<\operatorname{tcs.size}() ; j+$)
for $($ size_t $l=0 ; l<t c s[j] . \operatorname{size}() ; l++)$
$t c s[j][l] /=$ pow_h[l];
\}

In this function，we need the powers of the stepsize．The $x . h_{-}$saved＿tcs＿contains the current stepsize，and the previous stepsize is stored in

235 〈StiffDAEsolver Data Members 192〉＋三

Ph.D. Thesis - Reza Zolfaghari

```
double h_prev_;
```

We use the function CompPowersH implemented in §7.3.2 to compute the powers of the previous and current stepsizes and store them in
$236\langle$ declare variables for integration 218$\rangle+\equiv$
std :: vector $\langle\mathbf{d o u b l e}\rangle h_{-}$prev_pow_, h_{-}cur_pow_;
respectively.

237
\langle prepare for integration 216$\rangle+\equiv$
int size_h_pow $=$ sadata_ \rightarrow get_max_d ()$+x . o r d e r_{-}+1 ;$

CompPowersH (size_h_pow,h_prev_, h_prev_pow_);
CompPowersH(size_h_pow, x.h_saved_tcs_, h_cur_pow_);

The following function extracts derivatives from TCs.
$238\langle$ Definitions of StiffDAEsolver Private Functions 194〉+三
void StiffDAEsolver ::tcs_to_ders(const std :: vector $\langle\boldsymbol{s t d}::$ vector \langle double $\rangle\rangle$

$$
\& t c s, \boldsymbol{s t d}:: \text { vector }\langle\boldsymbol{\operatorname { s t d }}:: \text { vector }\langle\text { double }\rangle\rangle \& d e r s)
$$

\{
ders $=t c s ;$
for (size_t $j=0 ; j<\operatorname{ders.size}() ; j++)$
for $($ size_t $l=0 ; l<\operatorname{ders}[j]$.size ()$; l++)$ $\operatorname{ders}[j][l] *=$ ho_-factorial_[l];
\}

Ph.D. Thesis - Reza Zolfaghari

Calling the functions unscale_tcs and tcs_to_ders, we store (8.10) in

239 declare variables for integration 218$\rangle+\equiv$
std $::$ vector $\langle\mathbf{s t d}::$ vector \langle double $\rangle\rangle$ ders_prev;
$240\langle$ prepare for integration 216$\rangle+\equiv$
unscale_tcs(h_prev_pow_, tcs_prev_);
tcs_to_ders(tcs_prev_, ders_prev);

Analogously, we store (8.11) in

241 〈declare variables for integration 218$\rangle+\equiv$
std :: vector $\langle\mathbf{s t d}::$ vector $\langle\mathbf{d o u b l e}\rangle\rangle$ ders_cur;

242 〈prepare for integration 216$\rangle+\equiv$ unscale_tcs(h_cur_pow_, x.savedTCs_); tcs_to_ders(x.savedTCs_,ders_cur);
for ($\operatorname{size} \mathbf{t} \boldsymbol{t} j=0 ; j<$ sadata_ $_{-}$get_size ()$; j++$) for $\left(\right.$ size_t $l=0 ; l \leq$ sadata_ $\left._{-} g e t_{-} d(j) ; l++\right)$ $h o_{-} \rightarrow t s_{-} \rightarrow$ set_var_coeff $\left(j, l, x . s a v e d T C s _[j][l]\right)$;

Now, we can call the function CompNordsieck to obtain the (p, q) Hermite-Nordsieck vectors for $x_{j}^{(k)},(j, k) \in J_{\leq \alpha}$, at $x . t_{-}$and store them in nordsieck_cur_.
$243\langle$ declare variables for integration 218$\rangle+\equiv$
std :: vector $\langle\mathbf{s i z e} \mathbf{t}\rangle$ nord_size (sadata_ \rightarrow get_size ());
for (int $j=0 ; j<$ sadata_ \rightarrow get_size ($) ; j++$)

Ph.D. Thesis - Reza Zolfaghari

```
nord_size \([j]=x . g e t N u m D e r i v a t i v e s(j)\);
std :: vector \(\langle\) double \(\rangle\) nord_vec(max_order_);
nordsieck_cur_ = IrregularMatrix \(\langle\mathbf{s t d}:: \mathbf{v e c t o r}\langle\mathbf{d o u b l e}\rangle\rangle(\) nord_size, nord_vec \() ;\)
```

$244\langle$ prepare for integration 216$\rangle+\equiv$
CompNordsieck(p, q, t_vec_cur,ders_prev,ders_cur,nordsieck_cur_);

We call the function compHmin to compute the smallest allowed stepsize.
$245\langle$ compute the smallest allowed stepsize 245$\rangle \equiv$
double $h _$smallest $=$daets $::$compHmin $\left(x, t _\right.$end, params_ $\left._{-}\right)$;
params_-setHmin(h_smallest);
This code is used in chunks 246 and 275
$246\langle$ prepare for integration 216$\rangle+\equiv$
〈compute the smallest allowed stepsize 245 〉

9.1.2 Checking the stepsize

x.htrial_ contains the trial stepsize. Comparing $x . h t r i a l_{-}$with the smallest allowed stepsize, we decide to terminate the integration if the stepsize is too small.
$247\langle$ check and adjust the stepsize $h 247\rangle \equiv$

```
if (fabs(x.htrial_) < params_->getHmin())
{
state = daets ::htoosmall;
x.state_= daets ::DAEsolution ::EndOfPath;
```

Ph.D. Thesis - Reza Zolfaghari

```
        x.stats_->stopTimer();
        return;
    }
```

See also chunk 248.

This code is used in chunk 215.
$x . t t r i a l _$contains the trial time, namely, $x . t t r i a l_{-}=x . t _+x . h t r i a l_{-} .$Calling the function daets ::checkIfLastStep, we adjust the stepsize x.htrial_ such that x. ttrial_ $\leq t$ end .

248 〈check and adjust the stepsize $h 247\rangle+\equiv$
daets ::checkIfLastStep(x.ttrial_, x.htrial_, x.t_, t_end);

9.1.3 Finding an initial guess

We have already obtained the (p, q) Hermite-Nordsieck vectors for $x_{j}^{(k)},(j, k) \in J_{\leq \alpha}$, at $x . t_{-}$and stored them in nordsieck_cur_. Hence, we can call the function PredictSolution implemented in $\S 8.2$ to find an initial guess for $\mathbf{x}_{J_{\leq \alpha}}$ and store it in
$249\langle$ declare variables for integration 218$\rangle+\equiv$
daets ::DAEpoint ho_solution(*this);
$250\left\langle\right.$ find an initial guess for $\left.\mathrm{x}_{J_{\leq \alpha}} 250\right\rangle \equiv$
PredictSolution $\left(p, q, t_{-} v e c _c u r[q+1], t _v e c _c u r[0], x . t t r i a l _,\right.$nordsieck_cur_, ho_solution);

This code is used in chunk 215.

9．1．4 Applying the HO method

We call the function CompHoSolution implemented in $\S 7.3$ to compute the solution of the
HO system（4．20）．It returns the computed solution $\mathbf{x}_{J_{\leq 0}}^{\mathrm{HO}}$ at $x . t$ trial＿through ho＿solution．
251 〈declare variables for integration 218$\rangle+\equiv$
HoFlag ho＿flag；
$252\left\langle\right.$ compute $\left.\mathbf{x}_{J \leq 0}^{\mathrm{HO}} 252\right\rangle \equiv$

$$
\begin{aligned}
& \text { ho_flag }=\text { ho_-CompHoSolution }\left(x . t t r i a l_{-}, \text {x.htrial_, } x . t o l_{-}, \text {weight }, x . s a v e d T C s_{-},\right. \\
& \quad \text { ho_solution })
\end{aligned}
$$

$$
\operatorname{assert}\left(h o _f l a g \neq\right. \text { SYS_JAC_SINGULAR); }
$$

See also chunk 257.
This code is used in chunk 215.

By default，we disable the computing of the condition number of \mathbf{J}_{Ho} ．

253 〈StiffDAEsolver Data Members 192〉＋三
bool cond＿flag＿＝false；

However，a user can activate it by calling the function comp＿cond．
\langle Definitions of StiffDAEsolver Public Functions 254$\rangle \equiv$
void StiffDAEsolver ：：comp＿cond（）\｛ cond＿flag＿＝true；\}

See also chunks 294 and 296

This code is used in chunk 362.
\langle prepare for integration 216$\rangle+\equiv$

Ph.D. Thesis - Reza Zolfaghari
ho_-need_cond_jac(cond_flag_);

If the iteration (7.1) for solving the HO system (4.20) is not convergent, we half the stepsize and repeat the step.
x.htrial_/ $=2$;
x.stats_ \rightarrow countSteps(false); $\quad / *$ counts the number of rejected steps $* /$

SetSavedTCs $\left(x\right.$. savedTCs $\left.s_{-}, q\right) ; \quad / *$ see bellow */
continue;
\}

We implement the function SetSavedTCs to set the TCs at $x . t_{-}$in the TaylorSeries object. We will use them later as initial guesses for TCs at next point (see §5.1).
$258\langle$ Definitions of StiffDAEsolver Private Functions 194$\rangle+\equiv$ void StiffDAEsolver ::SetSavedTCs(const std $::$ vector \langle std $::$ vector \langle double $\rangle\rangle \& t c s$, int q)
\{

$$
\begin{aligned}
& \text { for }\left(\text { int } j=0 ; j<\text { sadata_ }_{-} \text {get_size }() ; j++\right) \\
& \text { for }\left(\text { int } l=0 ; l<q+\operatorname{sadata_ } \rightarrow \text { get_d } d(j) ; l++\right) \\
& \quad h o_{-} \rightarrow t s_{-} \rightarrow \text { set_var_coeff }(j, l, t c s[j][l]) ;
\end{aligned}
$$

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE
\}

9.1.5 Projection

The projection step is done by calling the function daets::projectTSsolution. It returns the projected solution $\mathbf{x}_{J_{\leq 0}}^{\mathrm{PR}}$ at $x . t$ trial_ through x.xtrial_. Since the matrix $\mathbf{A}_{0}=\partial \mathbf{f}_{I_{0}} / \partial \mathbf{x}_{J_{0}}$ is used for projection, this function computes and returns the updated \mathbf{A}_{0} as well.

259 〈 declare variables for integration 218$\rangle+\equiv$
bool projected;
$260\left\langle\right.$ project $\mathbf{x}_{J_{\leq 0}}^{\mathrm{HO}}$ onto constraints 260$\rangle \equiv$
int exitflag;
daets ::projectTSsolution(x.ttrial_, ho_solution,params_ \rightarrow get_ts_proj_tol(),jac_, \&x.xtrial_,ho_ssys_jac_, \&exitflag);
projected $=\neg$ exitflag;
See also chunk 261.
This code is used in chunk 215.

If solving this problem fails, we half the stepsize and repeat the step.

261
$\left\langle\right.$ project $\mathbf{x}_{J \leq 0}^{\mathrm{HO}}$ onto constraints 260$\rangle+\equiv$
if (\neg projected)
$\{$
x.htrial_/ $=2$;
x.stats_ \rightarrow countSteps $($ false $) ; \quad / *$ counts the number of rejected steps $* /$

SetSavedTCs(x.savedTCs_, q);
continue;
\}

9.1.6 Computing higher-order TCs

To compute the (p, q) Hermite-Nordsieck vectors for $x_{j}^{(k)},(j, k) \in J_{\leq \alpha}$, at $t_{\text {trial }}$, we need $\mathbf{x}_{J_{<q+\alpha}}^{\mathrm{PR}}$ at $t_{\text {trial }}$. Given $\mathbf{x}_{J_{\leq 0}}^{\mathrm{PR}}$ and \mathbf{A}_{0}, the following function computes $\mathbf{x}_{J_{s}}^{\mathrm{PR}}, s=1,2, \ldots, q+\alpha$ at $t_{\text {trial }}$ by calling the function CompTCsLinear after finding the LU decomposition of \mathbf{A}_{0} (see §5.1). Here, x contains $\mathbf{x}_{J \leq 0}^{\mathrm{PR}}$.
\langle Definitions of HO Private Functions 37$\rangle+\equiv$
bool HO :: CompTCs(daets ::DAEpoint $\& x)$
\{ $\left\langle\operatorname{set} \mathbf{x}_{J \leq 0}^{\mathrm{PR}} 264\right\rangle$; $\left\langle\right.$ find LU decomposition of $\left.\mathbf{A}_{0} 265\right\rangle$; for (int $s=1 ; s \leq q_{-}-$sadata_$_{-}$isLinear ()$\left.; s++\right)$ CompTCsLinear(s); return true;
\}

The $x(j, k)$ contains the projected $x_{j}^{(k)}$ at $t_{\text {trial }}$. Hence, $x(j, k) / k$! gives the projected TC $x_{j}^{(k)} / k!$. we implement the function SetProjected to compute and set these TCs for $j=0,1, \ldots, n-1$ and $k=0,1, \ldots, d_{j}$.

Ph．D．Thesis－Reza Zolfaghari

263 〈Definitions of HO Private Functions 37〉＋三 void HO ：：SetProjected（daets ：：DAEpoint $\& x)$
\{
for (int $j=0 ; j<n_{-} ; j+$)
for (int $k=0 ; k \leq d_{-}[j] ; k+$)
\{
double $t c=x(j, k) /$ factorial_ $[k]$;
$t s_{-} \rightarrow s e t_{-} v a r_{-} c o e f f(j, k, t c) ;$
\}
\}
SetProjected(x);

This code is used in chunk 262.

The sys＿jac＿contains \mathbf{A}_{0} ．We need its LU decomposition．
$265\left\langle\right.$ find LU decomposition of $\left.\mathbf{A}_{0} 265\right\rangle \equiv$
int sys＿info；
daets ：：LU（ n_{-}, sys＿jac＿，ipiv＿，\＆sys＿info）；
if $($ sys＿info $\neq 0)$
return false；
This code is used in chunk 262.

Ph.D. Thesis - Reza Zolfaghari

Calling the function CompTCs, we compute $\mathbf{x}_{J_{<q+\alpha}}$.
$266\langle$ compute higher-order TCs 266$\rangle \equiv$
bool computed_tcs $=$ ho_ \rightarrow CompTCs(x.xtrial_);
assert(computed_tcs);
This code is used in chunk 215.

9.1.7 Error estimation

Analogously to §9.1.1.3, we compute Hermite-Nordsieck vectors for $x_{j}^{(k)},(j, k) \in J_{\leq \alpha}$, at x.ttrial_ and store them in

267 〈declare variables for integration 218$\rangle+\equiv$
nordsieck_trial_ $=\mathbf{I r r e g u l a r M a t r i x}\langle\mathbf{s t d}::$ vector $\langle\mathbf{d o u b l e}\rangle\rangle($ nord_size, nord_vec $) ;$
such that
$268\langle$ prepare for integration 216$\rangle+\equiv$
nordsieck_trial_ = nordsieck_cur_; $\quad / *$ for memory allocation. $* /$

Calling the function create_t_vec, we create and store the vector (8.13) with $a=x . t_{-}$and
$b=x . t t r i a l_{-}$in
$269\langle$ declare variables for integration 218$\rangle+\equiv$
std :: vector \langle double \rangle t_vec_trial;
$270\langle$ estimate the error 270$\rangle \equiv$
create_t_vec $\left(x . t-x . t t r i a l _, p, q, t _v e c _t r i a l\right) ;$
See also chunks 271, 272, 273, and 274

Ph.D. Thesis - Reza Zolfaghari

This code is used in chunk 215.

We need TCs at $x . t _$and $x . t t r i a l _.$
$271\langle$ estimate the error 270$\rangle+\equiv$

$$
\begin{aligned}
& \text { tcs_prev }_{-}=x . \operatorname{savedTCs} ; \quad \quad / *{\text { tcs_prev_contains TCs at } x . t_{-} * /}^{x . \operatorname{saveTCs}\left(h o_{-} \rightarrow t s_{-}\right) ; \quad / * x . \operatorname{savedTCs} \text { contains TCs at } x . t t r i a l_{-} * /}
\end{aligned}
$$

We call the function $t c s _$to_ders to extract derivatives from TCs.
\langle estimate the error 270$\rangle+\equiv$

```
tcs_to_ders(tcs_prev_,ders_prev);
tcs_to_ders(x.savedTCs_,ders_cur);
```

Now, we can call the function CompNordsieck which returns the (p, q) Hermite-Nordsieck vectors for $x_{j}^{(k)},(j, k) \in J_{\leq \alpha}$, at $x . t t r i a l_{-}$through nordsieck_trial_.
\langle estimate the error 270$\rangle+\equiv$

CompNordsieck($p, q, t _v e c _t r i a l$, ders_prev,ders_cur,nordsieck_trial_);

Using nordsieck_cur_ and nordsieck_trial_, we compute \|EDE\| in (8.21) by calling the function EstErrHO implemented in $\S 8.3$ and store it in $x . e_{-}$.

274
\langle estimate the error 270$\rangle+\equiv$

$$
x . e_{-}=\operatorname{EstErrHO}\left(x . o r d e r_{-}, \text {epq }[1], \text { weight }\right)
$$

9.1.8 Preparation for next step

If $\|\mathrm{EDE}\| \leq 1$ and $t_{\text {trial }}<t_{\text {end }}$, we prepare to perform the next step. If $\|\mathrm{EDE}\|>1$, we half the stepsize and repeat the step.
$275\langle$ prepare for next step 275$\rangle \equiv$

$$
\text { if }\left(x . e_{-} \leq 1\right)
$$

〈 compare the taken stepsize and order with previous ones 276\rangle;
\langle accept the solution 279 \rangle;
\langle predict the stepsize for next step 284\rangle;
$x . t o l_{-}=$atol + rtol $* x . m a x _n o r m() ;$
\langle determine the order for next step 290\rangle;
\langle compute the smallest allowed stepsize 245\rangle;
CompWeight(x.xtrial_, rtol, atol, weight);
t_vec_cur $=t_{-} v e c_{-}$trial;
nordsieck_cur_ = nordsieck_trial_;
\}
else
\{
x.htrial_/=2;
x.savedTCs_ = tcs_prev_;

SetSavedTCs (x.savedTCs_, q);
x.stats_ \rightarrow countSteps $($ false $) ; \quad / *$ counts the number of rejected steps $* /$
continue;
\}

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

This code is used in chunk 215.

We call the function setHminMax from the Stats class to check if x.htrial_ is the smallest or largest stepsize.

276 〈compare the taken stepsize and order with previous ones 276$\rangle \equiv$

$$
\text { x.stats_ } \rightarrow \text { setHminMax }\left(f a b s\left(x . h t r i a l _\right)\right) ;
$$

See also chunk 278.
This code is used in chunk 275.

In addition, we check if x.order_ is the largest order that has been applied so far.
$277\langle$ declare variables for integration 218$\rangle+\equiv$
int largest_order $=x$. order_;

278 〈compare the taken stepsize and order with previous ones 276$\rangle+\equiv$

```
if (largest_order \leqx.order_)
    {
        largest_order = x.order_;
        x.stats_->setOrder(largest_order);
    }
```

 If \(\|\mathrm{EDE}\| \leq 1\) and \(t_{\text {trial }}=t_{\text {end }}\), we terminate the integration and accept \(\mathbf{x}_{J_{<0}}^{\mathrm{PR}}\) as our solution
 at $t_{\text {end }}$.
$279\langle$ accept the solution 279$\rangle \equiv$

$$
\text { x.t_ }=\text { x.ttrial_; }
$$

```
(daets ::DAEpoint \&) \(x=x . x\) trial_;
\(\left\langle\right.\) compute condition number of \(\mathbf{J}_{\mathrm{HO}}\), if requested 282\(\rangle\);
x.printData( );
\(x\). state_ = daets \(::\) DAEsolution \(::\) OnPath ;
\(x . s t a t s_{-} \rightarrow\) countSteps \((\) true \() ; \quad / *\) counts the number of accepted steps \(* /\)
if \(\left(x . t_{-} \equiv t_{-} e n d\right)\)
break;
```

This code is used in chunk 275.

We implement the function CompCondJac to compute the condition number of $\mathbf{J}_{\text {Hо }}$. In this function, RCond computes the reciprocal condition number of a matrix by routines in the LAPACK software package.

280 〈 Definitions of HO Private Functions 37$\rangle+\equiv$

```
double HO ::CompCondJac()
```

 \{
 double rcond \(=\) RCond(num_indep_tcs_, ho_jacobian_, norm_jac_);
 assert \((\) rcond \(\neq 0)\);
 return 1/rcond;
 \}
 In the following function, mat is the LU factorized matrix.

281 〈Auxiliary functions 107$\rangle+\equiv$
double $R C o n d$ (int n, double $*$ mat, double mat_norm)

```
{
    int lda = n;
    char norm = 'I';
    double *work = new double[4*n];
    int *iwork}=\mathrm{ new int [n];
    double rcond;
    int info;
    dgecon_(&norm, &n, mat, &lda, &mat_norm, &rcond, work,iwork, &info);
    delete[] work;
delete[] iwork;
return rcond;
}
```

Calling the function CompCondJac, we store the condition number of $\mathbf{J}_{\text {Но }}$ in x.cond_jac_. $282\left\langle\right.$ compute condition number of \mathbf{J}_{HO}, if requested 282$\rangle \equiv$

$$
\begin{aligned}
& \text { if }(\text { cond_flag_) } \\
& x . c o n d _j a c_{-}=h o_{-} \operatorname{Comp} \operatorname{CondJac}() ;
\end{aligned}
$$

This code is used in chunk 279.

9.1.8.1 The stepsize selection

To predict a stepsize for the next step, we first compute σ in (8.23) and store it in

283 〈declare variables for integration 218$\rangle+\equiv$
double sigma;

Ph.D. Thesis - Reza Zolfaghari
$284\langle$ predict the stepsize for next step 284$\rangle \equiv$

$$
\text { sigma }=\text { comp_sigma }\left(x . \text { order }_{-}, x . e_{-}, 0.16\right) ;
$$

See also chunk 286.
This code is used in chunk 275.

Then, we call the following function.
$285\langle$ Auxiliary functions 107$\rangle+\equiv$

$$
\text { double comp_stepsize(double sigma, double max_sigma, double } \left.h _ \text {old }\right)
$$

\{
double $h _n e w$;
if $($ sigma $>$ max_sigma $)$
$h _n e w=0.5 *$ max_sigma $* h _o l d ;$
else

$$
h _ \text {new }=0.5 * \text { sigma } * h _ \text {old } ;
$$

return h_new;
\}
$286\langle$ predict the stepsize for next step 284$\rangle+\equiv$

$$
\text { x.htrial_= comp_stepsize(sigma }, 2.5, \text { x.htrial_); }
$$

9.1.8.2 The order selection

We count the number of successful consecutive steps and store it in
287 〈declare variables for integration 218$\rangle+\equiv$

Ph.D. Thesis - Reza Zolfaghari
int consecutive_acc_count $=0$;

After integrating the problem for at least two successful consecutive steps with the current order, we call the function SelectOrder which returns

288 〈declare variables for integration 218$\rangle+\equiv$

OrderFlag order_flag;

If the order needed to be changed, we would update the parameters p and q by Table 8.1. This is done by the following function.

289 〈Auxiliary functions 107$\rangle+\equiv$
void update $p q($ OrderFlag flag, int $\& p$, int $\& q)$
$\{$
if $($ flag \equiv DECREASE_ORDER) $p \equiv q ? p--: q-;$
if $($ flag \equiv INCREASE_ORDER $)$
$p \equiv q ? q+: p+;$
$\operatorname{assert}(p \leq q) ;$
\}

Thus, we
$290\langle$ determine the order for next step 290$\rangle \equiv$

$$
\text { if }(\text { consecutive_acc_count } \geq 1 \text {) }
$$

$\{$

```
    order_flag = SelectOrder(x.order_, sigma,weight,epq);
    if (order_flag f= DONT_CHANGE_ORDER)
    {
        update_pq(order_flag, p,q);
        x.order_ = p+q;
        set_pq_comp_coeffs(p,q,epq);
        consecutive_acc_count = 0;
    }
}
else
    consecutive_acc_count++;
```

This code is used in chunk 275.

9．1．9 Optional output

To display the current t ，the number of steps，the stepsize，the error，and the order during the integration，we implement the following function．

291 〈Auxiliary functions 107〉＋三
void PrintProgress（double t ，int no＿steps，double h ，double err，int order）
\｛
static char $*$ OutputString $=($ char $*)$＂பபபப $t_{\sqcup}=\sqcup \% .4 \mathrm{e}_{\sqcup \sqcup \sqcup}$ step \backslash

static char delete＿space［80］；

```
sprintf(delete_space,OutputString, , ,no_steps, h,err,order);
fprintf(stderr,"%s",delete_space);
for(unsigned int i=0;i<strlen(delete_space);i++)
fputc(8, stderr);
}
```

$292\langle$ optional output 292$\rangle \equiv$
if (x.print_progress_ ≥ 0)
\{
PrintProgress(x.t_, x.getNumAccSteps(), x.htrial_, x.e_, x.order_);
sleep (x.print_progress_);
\}

See also chunk 293.
This code is used in chunk 215.

To simplify writing output to a file，we can turn on the one－step mode which is an optional output feature in DAETS．In this mode，we return after each successful step and reuse the solution as an input for the integrator function in the next call．

293 〈optional output 292〉＋三

> if (x.onestep_mode_)
\｛

```
x.state_= daets ::DAEsolution ::OnPath;
state = daets ::success;
```

```
    x.stats_->stopTimer();
    return;
}
```


9.2 The function integrate

In this section, we implement the function integrate which advances a numerical solution of a DAE of the form (1.1) from an initial time up to a final time. In this function, x contains an initial point and will be updated by the solution at $t_{\text {end }}$. If the function cannot reach $t_{\text {end }}$, the solution at some $t<t_{\text {end }}$ is returned.
\langle set order 298 \rangle;
\langle integrate by explicit TS method on the first step 300\rangle;
\langle integrate by HO method up to the final time 301\rangle;
\}

A user can specify the minimum and maximum orders for the HO method by calling the function SetMinMaxOrder. This function stores the orders in

Ph.D. Thesis - Reza Zolfaghari
int $u s e r_{-} m i n _o r d e r_{-}, u s e r_{-} m a x _o r d e r_{-} ;$
\langle Definitions of StiffDAEsolver Public Functions 254$\rangle+\equiv$
void StiffDAEsolver :: SetMinMaxOrder(int min, int max)
\{
user_min_order_ $=$ min;
user_max_order_ = max;
\}

To obtain the user specified orders, we implement the function GetMinMaxOrder. If the user does not call SetMinMaxOrder function, we will consider the default values, 1 and 20.

297 〈Definitions of StiffDAEsolver Private Functions 194〉 $+\equiv$
void StiffDAEsolver :: GetMinMaxOrder ()
\{
if $($ user_min_order_ $\equiv 0$)
\{
min_order_ $=1$;
max_order_ $=20$;
\}
else
\{
min_order_ = user_min_order_;
max_order_ = user_max_order_;

Ph.D. Thesis - Reza Zolfaghari
\}
$298\langle$ set order 298$\rangle \equiv$

GetMinMaxOrder();

See also chunk 299.

This code is used in chunk 294.

We start the integration with the minimum order.
$299\langle$ set order 298$\rangle+\equiv$
x. order_ $=$ min_order_;

We call the function IntegrateByExplicitTS to use the explicit Taylor series method on the first step.
$300\langle$ integrate by explicit TS method on the first step 300$\rangle \equiv$
IntegrateByExplicitTS $\left(x, t_{-}\right.$end, 1, state $) ; \quad / *$ terminate if the stepsize is too small $* /$
if (state \equiv daets $::$ htoosmall)
return;
if $\left(x . t_{-} \equiv t_{-} e n d\right) \quad / *$ checks if the final time has reached $* /$
\{
state $=$ daets $::$ success $;$
x.stats_-stopTimer ();
return;
\}

Ph.D. Thesis - Reza Zolfaghari

This code is used in chunk 294.

Then, we call the function Integrate ByHO to continue the integration using the HO method up to the final time.
$301\langle$ integrate by HO method up to the final time 301$\rangle \equiv$
IntegrateByHO (x, t_end, state $)$;
/* terminate the integration if the stepsize is too small $* /$
if (state \equiv daets $::$ htoosmall)
return;
state $=$ daets $::$ success $;$
x.stats_-stopTimer ();

This code is used in chunk 294.

Chapter 10

Numerical results

In this chapter, we start with an example showing a basic integration with DAETS, §10.1. Then in $\S 10.2$, we show results from solving several test problems.

10.1 Basic usage

To integrate a DAE problem using DAETS, a user should specify the problem and provide a main program.

10.1.1 Problem definition

A DAE must be specified by a template function. As an example consider the simple pendulum in Example 2.1. The following function evaluates (2.4). Here, the Diff operator performs the differentiation of a variable with respect to t. That is, Diff $(x[j], l)$ results in $x_{j}^{(l)}$. The input $x[0], x[1], x[2]$ store the state variables x, y, λ, respectively, and the output

Ph.D. Thesis - Reza Zolfaghari
$f[0], f[1], f[2]$ store the evaluated f, g, h, respectively.
$304\langle$ Pendulum 304〉 \equiv

$$
\begin{aligned}
& \text { template }\langle\text { typename } \mathbf{T}\rangle \\
& \text { void } \operatorname{fcn}(\mathbf{T} t, \text { const } \mathbf{T} * x, \mathbf{T} * f \text {, void } * \text { param }) \\
& \{ \\
& \text { const double } G=9.8, L=10.0 ; \\
& \quad f[0]=\operatorname{Diff}(x[0], 2)+x[0] * x[2] ; \\
& \quad f[1]=\operatorname{Diff}(x[1], 2)+x[1] * x[2]-G ; \\
& f[2]=\operatorname{sqr}(x[0])+\operatorname{sqr}(x[1])-\operatorname{sqr}(L) ; \\
& \}
\end{aligned}
$$

10.1.2 Main program

We implement a main program for this problem and explain its parts.
$305\langle$ solve simple pendulum 305$\rangle \equiv$
int $\operatorname{main}($ int $\arg c, \mathbf{c h a r} * \operatorname{argv}[])$
\{
\langle set size of DAE and integration interval 306 ;
\langle create a solver 307\rangle;
\langle set order and tolerance 308\rangle;
\langle create a DAEsolution object 309\rangle;
\langle set initial values 310\rangle;
\langle integrate the problem 311〉;

Ph.D. Thesis - Reza Zolfaghari

〈output results 312\rangle;
return 0 ;
\}

First we set the DAE size and integration interval.
$306\langle$ set size of DAE and integration interval 306$\rangle \equiv$

$$
\text { int } n=3 \text {; }
$$

double $t 0=0$, tend $=100$;

This code is used in chunk 305.

Then, we construct an object solver of the class StiffDAEsolver, where we pass the size of the problem and the function $f c n$. A predefined macro STIFF_DAE_FCN is used to simplify a call to the constructor of the class StiffDAEsolver (see Appendix D.3).
$307\langle$ create a solver 307$\rangle \equiv$
sdaets :: StiffDAEsolver $\operatorname{solver}(n$, STIFF_DAE_FCN $(f c n))$;
This code is used in chunks $305,372,377,382,386$, and 390

We intend to investigate the accuracy of the numerical solutions computed by our HO method with different orders over a range of tolerances. We obtain minimum and maximum orders, and the exponent r for tolerance 10^{-r} from the command prompt and set them.
$308\langle$ set order and tolerance 308$\rangle \equiv$

$$
\text { int } \text { min_order }=\text { atoi }(\operatorname{argv}[1]) ;
$$

int $m a x _o r d e r=a t o i(\operatorname{argv}[2])$;

```
int exp =atoi(argv[3]);
double tol = std ::pow (10, -exp);
solver.setTol(tol);
solver.SetMinMaxOrder(min_order,max_order);
```

This code is used in chunks 305, 372, 377, 382, 386, 390, and 394

Another key object for problem solution is a DAEsolution object which may be viewed as a point moving along the solution path.
daets ::DAEsolution x (solver);

This code is used in chunks $305,372,377,382,386,390$, and 394

We set the initial values for the problem by calling the functions set T and set X from the class DAEsolution. The function set T initializes the independent variable, and $\operatorname{set} X(j, l, a)$ initializes $x_{j}^{(l)}=a$.
$310\langle$ set initial values 310$\rangle \equiv$

$$
\begin{aligned}
& x \cdot \operatorname{set} T(t 0) \\
& . \operatorname{set} X(0,0,-10 \cdot 0) \cdot \operatorname{set} X(1,0,0.0) \quad / * \operatorname{sets} x, y * / \\
& . \operatorname{set} X(0,1,0.0) \cdot \operatorname{set} X(1,1,1.0) ; \quad / * \operatorname{sets} x^{\prime}, y^{\prime} * /
\end{aligned}
$$

This code is used in chunk 305.

The integration is performed by the call to the function integrate implemented in §9.2. If the SolverExitFlag is success, the DAEsolution object x contains solution values at tend; otherwise, x contains solution values at the reached t between $t 0$ and tend.

Ph.D. Thesis - Reza Zolfaghari
$311\langle$ integrate the problem 311$\rangle \equiv$

> daets ::SolverExitFlag flag;
solver.integrate (x, tend, flag);
if $($ flag \neq daets $::$ success $)$
daets ::printSolverExitFlag(flag);
This code is used in chunks $305,372,377,382,386,390$, and 394

Denote the i th component of a reference solution at tend by r_{i} and the i th component of a computed solution at tend by x_{i}. We first estimate the relative error in x_{i} by $\left|x_{i}-r_{i}\right| /\left|r_{i}\right|$. Then, the minimum number of correct digits in a numerical solution at tend, denoted by significant correct digits (SCD), is

$$
\mathrm{SCD}=-\log _{10} \| \text { relative error at the end of integration interval } \|_{\infty}
$$

We also need the CPU time, and the number of accepted and rejected steps. These values are obtained by calling the functions getCPUtime, getNumAccSteps and getNumRejSteps, respectively. For all examples, we output the above results in table.dat which is in a format suitable for gnuplot to produce plots.
$312\langle$ output results 312$\rangle \equiv$
ofstream plot_out("table.dat", ios ::app);
plot_out $\ll \exp \ll " \backslash t " \ll m i n _o r d e r \ll " \backslash t " \ll m a x _o r d e r \ll$
"\t" << CompSCD $(x) \ll " \backslash t " \ll x . g e t C P U t i m e() \ll " \backslash t " \ll$
$x . g e t N u m A c c S t e p s()+x . g e t N u m R e j S t e p s() \ll e n d l ;$
plot_out.close();

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

This code is used in chunks $305,372,377,382,386,390$, and 394

10.2 Numerical experiments

In §10.2.1, we consider several test problems to examine the capacity of our code for solving stiff ODEs and DAEs. We perform experiments in which the code is run repeatedly on each of the problems with tolerances

$$
\begin{equation*}
\text { atol }=\mathrm{rtol}=10^{-r}, \quad r=1, \ldots, 13 . \tag{10.1}
\end{equation*}
$$

First, we study the accuracy of the computed solutions on test problems in §10.2.2. Then, we examine the efficiency of our code on these problems in §10.2.3. Finally, we compare the performance of the variable-order version of the code against the fixed-order version in §10.2.4.

All numerical results are produced on an $\operatorname{Intel}(\mathrm{R})$ Core(TM) i7-6700HQ, CPU 2.60 GHz with Ubuntu 18.04.1 LTS, 16 GB RAM, and 64KB L1, 256 KB L2, and 6144 KB L3 cache.

10.2.1 Test problems

In this section, we describe 4 stiff problems from the Test Set for IVP Solvers [37], namely, Van der Pol oscillator, Oregonator, Chemical Akzo Nobel, and Car Axis. In addition, we describe an artificial stiff index-2 DAE and a Multi Pendula problem. We present template functions for evaluating these ODEs or DAEs. The main programs for integrating these problems are in Appendix D.7.

Figure 10.1: Van der Pol, plots of x and x^{\prime} versus t.

10.2.1.1 Van der Pol oscillator

To illustrate how our solver performs on a problem which repeatedly changes character during the integration interval, we consider the well-known Van der Pol oscillator [37],

$$
\begin{equation*}
x^{\prime \prime}-\mu\left(1-x^{2}\right) x^{\prime}+x=0, \quad x(0)=2, x^{\prime}(0)=0, \tag{10.2}
\end{equation*}
$$

with parameter $\mu=1000$ over the interval [0,2000]. Plots of the solution components to this problem are shown in Figure 10.4.

The following template function evaluates (10.2).
$316\langle$ Van der Pol 316$\rangle \equiv$

```
template <typename T
void fcn(\mathbf{T}t,\mathrm{ const T * * , T *f, void *param )}
{
```

 double \(m u=1 \cdot 10^{3}\);
 \(f[0]=\operatorname{Diff}(x[0], 2)-m u *(1-\operatorname{sqr}(x[0])) * \operatorname{Diff}(x[0], 1)+x[0] ;\)
 Ph.D. Thesis - Reza Zolfaghari
\}
This code is used in chunk 375.

10.2.1.2 Oregonator

The Oregonator system [37] is a chemical model with a periodic solution describing the Belousov-Zhabotinskii reaction. It is presented in the form of the following ODEs

$$
\begin{align*}
& x^{\prime}=77.27\left(y+x\left(1-8.375 \cdot 10^{-6} x-y\right)\right) \\
& y^{\prime}=(z-y(1+x)) / 77.27 \tag{10.3}\\
& z^{\prime}=0.161(x-z)
\end{align*}
$$

over the interval $[0,360]$. Plots of the solution components to this problem are shown in Figure 10.4.

The following template function evaluates (10.3).
$319\langle$ Oregonator 319$\rangle \equiv$

$$
\begin{aligned}
& \text { template }\langle\text { typename } \mathbf{T}\rangle \\
& \text { void } f c n(\mathbf{T} t, \text { const } \mathbf{T} * x, \mathbf{T} * f, \text { void } * \text { param }) \\
& \{ \\
& \text { double } s=77.27, w=0.161, q=8.375 \cdot 10^{-6} ; \\
& \quad f[0]=\operatorname{Diff}(x[0], 1)-s *(x[1]-x[0] * x[1]+x[0]-q * \operatorname{sqr}(x[0])) \text {; } \\
& \quad f[1]=\operatorname{Diff}(x[1], 1)-(1 / s) *(-x[1]-x[0] * x[1]+x[2]) ; \\
& f[2]=\operatorname{Diff}(x[2], 1)-w *(x[0]-x[2]) ; \\
& \}
\end{aligned}
$$

This code is used in chunk 380.

Figure 10.2: Oregonator, plots of x, y and z versus t.

Ph.D. Thesis - Reza Zolfaghari

10.2.1.3 Chemical Akzo Nobel

This is a non-quasilinear DAE of index 1 of the form

$$
\begin{equation*}
\mathbf{K} \mathbf{x}^{\prime}=\mathbf{g}(\mathbf{x}) \tag{10.4}
\end{equation*}
$$

with $\mathbf{x} \in \mathbb{R}^{6}$ over the interval $[0,180]$. It describes a chemical process, in which two species are mixed, while carbon dioxide is continuously added, to produce a product. The defining equations are in [37]. Plots of the solution components to this problem are shown in Figure 10.3. The following template function defines (10.4).
$320\langle$ Chemical Akzo Nobel 320$\rangle \equiv$

```
template <typename T
```



```
    {
```

 double \(k l=18.7, k 2=0.58, k 3=0.09, k 4=0.42, k b i g=34.4, k l a=3.3\),
 \(k s=115.83\), po \(2=0.9\), hen \(=737 ;\)
 \(\mathbf{T} r l=k l *(\operatorname{pow}(x[0], 4)) * \operatorname{sqrt}(x[1])\),
 \(r 2=k 2 * x[2] * x[3]\),
 \(r 3=k 2 / k b i g * x[0] * x[4]\),
 \(r 4=k 3 * x[0] *(\operatorname{sqr}(x[3]))\),
 \(r 5=k 4 *(\operatorname{sqr}(x[5])) * \operatorname{sqrt}(x[1])\),
 fin \(=k l a *(p o 2 / h e n ~-x[1]) ;\)
 \(f[0]=-\operatorname{Diff}(x[0], 1)-2 * r 1+r 2-r 3-r 4 ;\)
 \(f[1]=-\operatorname{Diff}(x[1], 1)-0.5 * r 1-r 4-0.5 * r 5+f i n ;\)

Figure 10.3: Chemical Akzo Nobel, plots of x_{1}, \ldots, x_{6} versus t.

$$
\begin{aligned}
& f[2]=-\operatorname{Diff}(x[2], 1)+r 1-r 2+r 3 ; \\
& f[3]=-\operatorname{Diff}(x[3], 1)-r 2+r 3-2 * r 4 ; \\
& f[4]=-\operatorname{Diff}(x[4], 1)+r 2-r 3+r 5 ; \\
& f[5]=k s * x[0] * x[3]-x[5] ; \\
& \}
\end{aligned}
$$

This code is used in chunk 385.

10.2.1.4 A highly stiff index-2 DAE

From the Van der Pol problem (10.2), we construct an artificial stiff index-2 DAE,

$$
\begin{array}{r}
x^{\prime \prime}-\mu\left(1-x^{2}\right) x^{\prime}+x=0, \\
x y^{\prime}-z=0, \tag{10.5}\\
x^{2}-y^{2}+5=0,
\end{array}
$$

where $\mu=1000$ and $t \in[0,2000]$. Plots of the solution components to this problem are shown in Figure 10.4.

The following template function evaluates (10.5).

322
\langle Stiff index-2 322$\rangle \equiv$
template \langle typename $\mathbf{T}\rangle$
void $f c n(\mathbf{T} t$, const $\mathbf{T} * x, \mathbf{T} * f$, void $*$ param $)$
\{
double $m u=1 \cdot 10^{3}$;
$f[0]=\operatorname{Diff}(x[0], 2)-m u *(1+(-\operatorname{sqr}(x[0]))) * \operatorname{Diff}(x[0], 1)+x[0] ;$

Figure 10.4: Index-2 from Van der Pol, plots of x, x^{\prime} and y versus t.

$$
\begin{aligned}
& \quad f[1]=\operatorname{Diff}(x[1], 1) * x[0]-x[2] ; \\
& \quad f[2]=\operatorname{sqr}(x[0])-\operatorname{sqr}(x[1])+5 ;
\end{aligned}
$$

This code is used in chunk 389.

10.2.1.5 Car Axis

A simple model of a car axis going over a bumpy road is [37]

$$
\begin{aligned}
\mathbf{K} \mathbf{p}^{\prime \prime} & =\mathbf{g}(t, \mathbf{p}, \boldsymbol{\lambda}), \\
0 & =\boldsymbol{\phi}(t, \mathbf{p}),
\end{aligned}
$$

with \mathbf{p}, \mathbf{g} of dimension 4 , and $\boldsymbol{\lambda}, \boldsymbol{\phi}$ of dimension 2 . Here, $\mathbf{p}=\left(x_{l}, y_{l}, x_{r}, y_{r}\right)^{T}$, and $\left(x_{l}, x_{r}\right)$ and $\left(y_{l}, y_{r}\right)$ are the coordinates of the left and right wheels, respectively; $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}\right)^{T}$ are Lagrange multipliers. This problem is a moderately stiff DAE of index 3. Figure 10.5 shows the solutions x_{l}, y_{l}, x_{r}, and y_{r}.

The following template function defines the Car Axis DAE.
\langle Car Axis 323$\rangle \equiv$
\#define $x l x[0]$
\#define $y l \quad x[1]$
\#define $x r \quad x[2]$
\#define $y r \quad x[3]$
\#define lam1 $x[4]$
\#define lam2 $\quad x[5]$

```
template \(\langle\) typename \(\mathbf{T}\rangle\)
void \(f c n(\mathbf{T} t\), const \(\mathbf{T} * x, \mathbf{T} * f\), void \(*\) param \()\)
\{
    double eps \(=1 \cdot 10^{-2}, M=10.0\), eps \(M=\operatorname{sqr}(e p s) * M / 2, L=1.0, \mathrm{~L} 0=0.5\),
        \(W=10.0, R=0.1 ;\)
    \(\mathbf{T} y b=R * \sin (W * t)\),
        \(x b=\operatorname{sqrt}(\operatorname{sqr}(L)-\operatorname{sqr}(y b))\),
        \(L l=\operatorname{sqrt}(\operatorname{sqr}(x l)+\operatorname{sqr}(y l))\),
        \(L r=\operatorname{sqrt}(\operatorname{sqr}(x r-x b)+\operatorname{sqr}(y r-y b)) ;\)
    \(f[0]=-e p s M * \operatorname{Diff}(x l, 2)+(\mathrm{L} 0-L l) * x l / L l+\operatorname{lam} 1 * x b+2.0 * \operatorname{lam} 2 *(x l-x r) ;\)
    \(f[1]=-e p s M * \operatorname{Diff}(y l, 2)+(\mathrm{LO}-L l) * y l / L l+\operatorname{lam} 1 * y b+2.0 * l a m 2 *(y l-y r)-e p s M ;\)
    \(f[2]=-e p s M * \operatorname{Diff}(x r, 2)+(\mathrm{LO}-\operatorname{Lr}) *(x r-x b) / \operatorname{Lr}-2.0 * \operatorname{lam} 2 *(x l-x r) ;\)
    \(f[3]=-e p s M * \operatorname{Diff}(y r, 2)+(\mathrm{L} 0-L r) *(y r-y b) / \operatorname{Lr}-2.0 * \operatorname{lam} 2 *(y l-y r)-e p s M ;\)
    \(f[4]=x l * x b+y l * y b ;\)
    \(f[5]=\operatorname{sqr}(x l-x r)+\operatorname{sqr}(y l-y r)-\operatorname{sqr}(L) ;\)
    \}
```

This code is used in chunk 393.

Figure 10.5: Car axis, plots of x_{l}, y_{l}, x_{r} and y_{r} versus t.

10.2.1.6 Multi Pendula

To illustrate how our code can handle higher index DAEs, we consider the DAE problem consisting of P pendula [47]

$$
\begin{align*}
& 0=x_{1}^{\prime \prime}+\lambda_{1} x_{1}, \\
& 0=y_{1}^{\prime \prime}+\lambda_{1} y_{1}-G, \\
& 0=x_{1}^{2}+y_{1}^{2}-L^{2}, \tag{10.6}\\
& 0=x_{i}^{\prime \prime}+\lambda_{i} x_{i}, \\
& 0=y_{i}^{\prime \prime}+\lambda_{i} y_{i}-G, \quad i=2,3, \ldots, P, \\
& 0=x_{i}^{2}+y_{i}^{2}-\left(L+c \lambda_{i-1}\right)^{2},
\end{align*}
$$

where G, L and c are given constants. Here, the first pendulum is undriven, and pendulum $i-1$ exerts a driving effect on pendulum i for $i=2,3, \ldots, P$. This DAE is of size $3 P$ and index $2 P+1$ [47].

The following template function evaluates (10.6).

```
    template\langletypename T
    void fcn(\mathbf{T}t,\mathbf{const}\mathbf{T}*x,\mathbf{T}*f,\mathrm{ void *parameters)}
    {
```

 double \(*\) constants \(=(\) double \(*)\) parameters,
 $$
\begin{aligned}
& G=* \text { constants }, \\
& L=*(\text { constants }+1), \\
& c=*(\text { constants }+2)
\end{aligned}
$$

$$
\begin{aligned}
& \text { int } P=*(\text { constants }+3) ; \\
& f[0]=\operatorname{Diff}(x[0], 2)+x[0] * x[2] ; \\
& f[1]=\operatorname{Diff}(x[1], 2)+x[1] * x[2]-G ; \\
& f[2]=\operatorname{sqr}(x[0])+\operatorname{sqr}(x[1])-\operatorname{sqr}(L) ; \\
& \text { for (int } i=1 ; i<P ; i++) \\
& \{ \\
& \quad f[3 * i]=\operatorname{Diff}(x[3 * i], 2)+x[3 * i] * x[3 * i+2] ; \\
& \quad f[3 * i+1]=\operatorname{Diff}(x[3 * i+1], 2)+x[3 * i+1] * x[3 * i+2]-G ; \\
& \quad f[3 * i+2]=\operatorname{sqr}(x[3 * i])+\operatorname{sqr}(x[3 * i+1])-\operatorname{sqr}(L+c * x[3 * i-1]) ; \\
& \} \\
& \}
\end{aligned}
$$

See also chunk 396.

This code is used in chunk 398.

Here, we consider 8 pendula and set $G=9.8, L=10$ and $c=0.1$. The index of the DAE is 17 . Plots of the computed x_{1}, \ldots, x_{8} and y_{1}, \ldots, y_{8} versus t are shown in Figures 10.6 and 10.7.

10.2.2 Accuracy

We have computed the SCD of numerical solutions with tolerances (10.1). For problems from the Test Set for IVP Solvers, we determine SCD using the reference solutions given in [37]. For other problems, we determine SCD using the reference solutions computed by our code with atol $=\mathrm{rtol}=10^{-14}$. Plots of SCD versus tolerance for the above test problems

Figure 10.6: Multi Pendula, index-17, plots of x_{1}, \ldots, x_{8} versus t.

Figure 10.7: Multi Pendula, index-17, plots of y_{1}, \ldots, y_{8} versus t.

Figure 10.8: Accuracy diagrams.
are displayed in Figure 10.8. The output data confirm the success of the HO method for the accurate numerical solutions of these test problems. Also, our experiments show that the projection (4.21) maintains the accuracy of the HO method.

Figure 10.9: Work precision diagrams.

10.2.3 Efficiency

We plot CPU time versus SCD for each problem in Figure 10.9.

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

10.2.4 Variable-order versus fixed-order

Plots in Figure 10.10 show how $p+q$ in the (p, q) HO method changes during the integration interval for the test problems running the code with atol $=$ rtol $=10^{-8}$, min_order $=1$ and max_order $=20$. We also show the work-precision diagrams for the above problems using variable-order and fixed-order strategies in Figures 10.11 to 10.15.

In Figure 10.10 for Van der Pol, Oregonator, and the DAE (10.5), we see that during the times when the solution is changing rapidly, the order is increased, and when it is changing more slowly, the code selects low orders. From the Figures 10.11, 10.12 and 10.14, we observe that the variable-order scheme gives the best performance for these problems.

In Figure 10.10 for Chemical Akzo Nobel and Car Axis, we see that the order is increased up to a high-order and is barely changed after that. Figures 10.13 and 10.15 show that our order selection scheme works reasonably robustly for these problems. A fixed-order strategy is useful when we know in advance a good order for a particular problem and precision, but the variable-order strategy works for all problems.

Figure 10.10: $p+q$ during the integration interval with tol $=10^{-8}$.

Figure 10.11: Van der Pol, variable-order versus fixed-order.

Figure 10.12: Oregonator, variable-order versus fixed-order.

Figure 10.13: Chemical Akzo Nobel, variable-order versus fixed-order.

Figure 10.14: Index-2 from Van der Pol, variable-order versus fixed-order.

Ph.D. Thesis - Reza Zolfaghari McMaster University - CSE

Figure 10.15: Car Axis, variable-order versus fixed-order.

Chapter 11

Conclusions

In this thesis, we have developed and implemented an implicit Hermite-Obreschkoff (HO) method for numerical solution of a stiff DAE. We employ Pryce's structural analysis to determine the constraints of the problem and to organize the computations of required Taylor coefficients (TCs) and their gradients. Then, we use automatic differentiation to compute these TCs and gradients and form the residual vector and Jacobian matrix required for Newton's iteration.

Given a general DAE described by a computer program, the structural analysis data are obtained via operator overloading. Hence, a simulation software that automatically converts a model to a DAE need not to produce it in a particular (first-order or lower-index) form.

The relation between Taylor coefficients of the k th derivative of a sufficiently differentiable function at two points can be determined by the HO formula. We developed our HO method using this formula for some derivatives of state variables of the DAE, deter-
mined from the structural analysis data. The method can be A- or L- stable and can handle high-index DAEs.

We defined the Hermite-Nordsieck vector for a sufficiently differentiable function at a point. Constructing Hermite-Nordsieck vectors for solution components at each step, we find an initial guess for the solution, required for Newton's iteration, and estimate the discretization error of the HO method with different orders. As a result, we designed an adaptive variable-stepsize and variable-order algorithm for integrating a DAE problem. We have implemented our algorithm in $\mathrm{C}++$ using literate programming.

We considered several test problems to examine the ability of our code to solve stiff ODEs and DAEs. We performed experiments in which the code was run repeatedly on each of the problems with different tolerances. The output data confirm the success of the HO method for the accurate numerical solutions of the test problems. Also, we compared the performance of the variable-order version of the code against the fixed-order version. We observed that the variable-order scheme gives better performance.

It is clear that our numerical method is expensive in that it requires repeated evaluations of TCs and their gradients. Generally, on problems for which a solver based on a Runge-Kutta or a multistep method is already very efficient, our code may not be competitive. However, it will be competitive on problems that current methods cannot handle because of high index, or if high accuracy is required.

Several related investigations follow naturally from this thesis. A scheme can be developed for automatically determining whether a DAE can be solved more efficiently using
the explicit Taylor series method or the HO method. Switching between these methods can be more efficient than using one of the methods alone for problems which are non-stiff in some regions of the integration interval and stiff in other regions. The stiffness detection and switching strategies will be addressed in a future work.

The Jacobian matrix for Newton's iterations is usually dense, and we perform the LU factorization to compute the solution of the corresponding linear systems. Hence, our code is not efficient for large DAE problems. Alternatively, we can use an iterative (Krylov) method to solve the linear systems. Since the Jacobian matrix is ill-conditioned in stiff problems, the convergence of any Krylov-based algorithm is slow. Developing an efficient preconditioner is essential to making the convergence of Newton-Krylov iterations sufficiently fast. Construction of such preconditioner is left for future research.

Appendix A

The integrator function in DAETS

As explained in Chapter 9, we first integrate a given DAE using the explicit Taylor series method on the first step. The following function is an adapted version of the function integrate in DAETS implemented by Nedialkov and Pryce. The algorithm of this function is described in [47].
$336\langle$ Definitions of StiffDAEsolver Private Functions 194〉+三
void StiffDAEsolver ::IntegrateByExplicitTS(daets ::DAEsolution $\& x$, double
t_end, unsigned int num_steps, daets ::SolverExitFlag \&state)
\{
daets $::$ DAEpoint $t s(*$ this $)$;
daets :: DAEpoint $t s _$saved $(t s)$;
double errorTS, errorPRJ;
bool projected, accepted, computed_tcs;

```
unsigned int step_count \(=0\);
int exitflag;
double direction \(=\left(t_{-}\right.\)end \(\left.\geq x . t_{-}\right) ? 1:-1\);
double atol \(=\) params_ \(\rightarrow\) getAtol () ;
double \(r\) tol \(=\) params_ \(\rightarrow \operatorname{getRtol}()\);
\(x . s t a t s \_\rightarrow\) setTols(atol, rtol);
if \((x\). state \(\quad \equiv\) daets \(::\) DAEsolution \(::\) Initial \()\)
\{
    \(x . s t a t s \_\)-reset ( );
    \(x . s t a t s \_\rightarrow\) startTimer ( );
    state \(=\operatorname{checkInput}(x) ;\)
    if (state \(\neq\) daets \(::\) success \()\)
    \{
        x.stats_-stopTimer ( );
        return;
    \}
    daets :: DAETS_H_SCALE = 1.0;
    \(x . x t r i a l_{-}=x ;\)
    daets ::projectInitPoint(x,params_-get_ipopt_proj_tol( ),jac_,ipopt_funcs_,
        \&x.xtrial_, x.sysJac_, \&exitflag);
    if \((\) exitflag \(\neq 0)\)
```

```
{
    if (exitflag \equiv 5)
        state = daets ::toofewdof;
        else
        state = daets :: nonconsistentpt;
        x.stats_-stopTimer( );
        return;
}
x.setFirstEntry();
x.updatePoint(x.xtrial_);
x.state_= daets ::DAEsolution :: InitialConsistent;
x.htrial_ = 1.0;
x.htrial_ = fabs(x.htrial_) *direction;
bool computed_tcs = tcs_ad_->compTCs X (x);
assert(computed_tcs);
x.setDerivatives(tcs_ad_);
x.printData( );
x.e_ = estError(tcs_ad_, x.order_, x.htrial_);
x.tol_= atol +rtol *std ::min(x.max_norm(), x.xtrial_.max_norm());
x.htrial_ = daets ::compInitialStepSize(x.htrial_, x.tol_, x.e_, x.order_);
x.htrial_= daets :: restrictStepsize(x.htrial_,params_->getHmin(),
```

```
    params_->getHmax());
}
if (x.t_ \equivt_end)
{
        x.stats_-stopTimer();
        return;
    }
    x.htrial_ = fabs(x.htrial_) * direction;
    x.saveTCs(tcs_ad_); /* for tcs_prev_ needed later for HO method */
    while (step_count < num_steps)
    {
```

 double \(h_{-}\)smallest \(=\)daets \(::\)compHmin \(\left(x, t_{-}\right.\)end,params_);
 params_ \(\rightarrow\) setHmin(h_smallest);
 do
 \{
 do
 \{
 if $\left(\right.$ fabs $\left(x . h t r i a l_{-}\right)<$params_ $_{-}$getHmin ()$)$
\{
state $=$ daets $::$ htoosmall;
x. state_ $=$ daets $::$ DAEsolution $::$ EndOfPath;

```
        x.stats_-stopTimer( );
        return;
    }
    daets::checkIfLastStep(x.ttrial_, x.htrial_, x.t_, t_end);
    tcs_ad_->compTSsolution(x.order_, x.htrial_, &ts);
    errorTS = estError(tcs_ad_, x.order_, x.htrial_);
    tcs_ad_->getX(&ts_saved);
    projectTSsolution(x.ttrial_,ts,params_->get_ts_proj_tol(),jac_, &x.xtrial_,
        x.sysJac_, &exitflag);
    projected = ᄀexitflag;
        if (\negprojected)
        {
        x.htrial_* = .5;
        x.stats_->countSteps(false);
        tcs_ad_->setX(ts_saved);
    }
while ( }\neg\mathrm{ projected);
errorPRJ = (ts - x.xtrial_).max_norm( )/std ::max(x.xtrial_.max_norm( ), 1.0);
x.e_ = errorTS + errorPRJ;
x.tol_ = atol + rtol *std ::min(x.xtrial_.max_norm( ), x.max_norm( ));
accepted =(x.e_ \leqx.tol_);
```

```
if (accepted)
{
    t_prev_= x.t_;
    tcs_prev_ = x.savedTCs_;
    h_prev_= x.h_saved_tcs_;
    x.t_ = x.ttrial_;
    (daets ::DAEpoint &) }x=x.xtrial_; 
    x.state_= daets ::DAEsolution ::OnPath;
    computed_tcs = tcs_ad_->compTCs X (x);
    assert(computed_tcs);
    x.printData();
    x.saveTCs(tcs_ad_);
    x.e_= daets ::estError(tcs_ad_, x.order_, x.htrial_);
    x.htrial_ = daets ::compStepSize(x.htrial_, x.tol_, x.e_, x.order_);
    step_count++;
}
else
{
    x.htrial_= daets ::compStepSizeRej(x.htrial_, x.tol_, x.e_, x.order_);
    tcs_ad_ssetX(ts_saved);
}
```

Ph.D. Thesis - Reza Zolfaghari

```
            x.htrial_= daets :: restrictStepsize(x.htrial_, params_->getHmin(),
                params_->getHmax());
            x.stats_->countSteps(accepted);
        } while (\negaccepted);
        x.stats_->setHminMax(fabs(x.htrial_));
        if (x.t_ \equivt_end }\vee\mathrm{ x.state_ = daets ::DAEsolution :: EndOfPath)
        {
            state = daets :: success;
            x.stats_stopTimer( );
            return;
        }
        if (x.print_progress_ \geq 0)
        {
            PrintProgress(x.t_, x.getNumAccSteps( ), x.htrial_, x.e_, x.order_);
            sleep(x.print_progress_);
        }
    }
}
```


Appendix B

The IrregularMatrix class

We store the definition of this class in the file irregularmatrix.h.
338 〈irregularmatrix.h 338$\rangle \equiv$
\#ifndef SRC_IRREGULARMATRIX_H_
\#define SRC_IRREGULARMATRIX_H_
\#include <assert.h>
\#include <cmath>
\#include <iostream>
\#include <stdexcept>
\#include <vector>
\#include "daepoint.h"
namespace sdaets
\{

```
template \(\langle\) class \(\mathbf{T}\rangle\)
class IrregularMatrix \{
public:
```

 explicit IrregularMatrix (const std \(::\) vector \(\langle\) size_t \(\rangle \& d)\{\operatorname{resize}(d) ;\}\)
 explicit IrregularMatrix(const std ::vector \(\langle\) size_t \(\rangle \& d\), const \(\mathbf{T} \& M)\);
 explicit IrregularMatrix() \{ \}
 T \&operator ()(int \(i\), int \(j\)) \(\left\{\right.\) return \(\left.x_{-}[i][j] ;\right\}\)
 T operator (\()(\) int \(i\), int \(j)\) const \(\left\{\right.\) return \(\left.x_{-}[i][j] ;\right\}\)
 size_t \(n u m _r o w s()\) const \(\left\{\right.\) return \(x_{-}\). size (); \}
 size_t \(n u m\) _cols \((\) int \(i)\) const \(\left\{\right.\) return \(\left.x_{-}[i] . \operatorname{size}() ;\right\}\)
 size_t \(n u m _e n t r i e s()\) const;
 void \(\operatorname{set}(\mathbf{c o n s t} \operatorname{std}::\) vector \(\langle\mathbf{T}\rangle \& v)\);
 void \(\operatorname{set}(\) const double \(* v)\);
 void \(\operatorname{set}(\) const daets :: DAEpoint \(\& x)\);
 void \(\operatorname{set}(\) double \(a)\);
 void set_to_zero();
 void to_vector (double \(* v\));
 IrregularMatrix \(\langle\mathbf{T}\rangle\) \&operator \(+=(\) const IrregularMatrix \(\langle\mathbf{T}\rangle \& x) ;\)
 IrregularMatrix \(\langle\mathbf{T}\rangle\) \&operator \(-=(\) const IrregularMatrix \(\langle\mathbf{T}\rangle \& x) ;\)
 IrregularMatrix \(\langle\mathbf{T}\rangle\) \&operator \(*=(\) const std \(::\) vector \(\langle\) double \(\rangle \& v)\);
 IrregularMatrix \(\langle\mathbf{T}\rangle\) \&operator \(/=(\) const std :: vector \(\langle\) double \(\rangle \& v)\);
 IrregularMatrix $\langle\mathbf{T}\rangle$ \&operator $*=($ double v); double wrms_norm(const IrregularMatrix \langle double \rangle \&weight);
private:
void resize (const std $::$ vector \langle size_t $\rangle \& d$);
$\boldsymbol{\operatorname { s t d }}::$ vector $\langle\mathbf{s t d}::$ vector $\langle\mathbf{T}\rangle\rangle x_{-} ;$
\};
template \langle class $\mathbf{T}\rangle$
size_t IrregularMatrix $\langle\mathbf{T}\rangle$:: num_entries() const
\{
size_t $n u m=0$;
for ($\operatorname{size} \mathbf{t} \boldsymbol{t} i=0 ; i<$ num_rows ()$; i++)$

$$
\text { num }+=\text { num_cols }(i) ;
$$

return num;
\}
template \langle class $\mathbf{T}\rangle$
void IrregularMatrix $\langle\mathbf{T}\rangle::$ resize (const std $::$ vector \langle size_t $\rangle \& d$)
\{
x_{-}.resize (d.size ());
for (size_t $i=0 ; i<d . \operatorname{size}() ; i++)$

$$
x_{-}[i] . \operatorname{resize}(d[i]) ;
$$

\}

```
template}\langle\mathbf{class T
IrregularMatrix }\langle\mathbf{T}\rangle:: IrregularMatrix(const std :: vector \langlesize_t \rangle&d, const T
            &M)
{
    resize(d);
    for (size_t i= 0; i<num_rows();i++)
        for (size_t j= 0; j< num_cols(i); j++)
            (*this) (i,j) = M;
}
template}\langle\mathbf{class T
void IrregularMatrix }\langle\mathbf{T}\rangle:: set(const std :: vector \langleT T \ &v
{
    assert(num_entries() \leqv.size());
    size_t k=0;
    for (size_t i=0;i<num_rows();i++)
        for (size_t j=0; j<num_cols(i); j++)
        (*this)}(i,j)=v[k++]
}
template}\langle\mathbf{class T
void IrregularMatrix }\langle\mathbf{T}\rangle::\operatorname{set}(\mathbf{const}\mathrm{ double *v)
{
```

```
    size_t k=0;
    for (size_t i= 0;i<num_rows();i++)
    for (size_t j= 0; j<num_cols(i); j++)
        (*this)}(i,j)=v[k++]
}
template\langleclass T>
void IrregularMatrix }\langle\mathbf{T}\rangle:: set(const daets ::DAEpoint &x
{
    assert(this`num_rows() \leqx.getNumVariables());
    for (size_t i= 0;i< this`num_rows();i++)
    {
        assert(this`num_cols}(i)\leqx.getNumDerivatives(i))
        for (size_t j = 0; j< this`num_cols(i); j++)
            (*this)}(i,j)=x.getX(i,j)
    }
}
template\langleclass T
void IrregularMatrix }\langle\mathbf{T}\rangle::\operatorname{set}(\mathbf{double}a
{
    for (size_t i= 0;i<num_rows();i++)
        for (size_t j= 0; j<num_cols(i); j++)
```

```
    (*this)}(i,j)=a
}
template}\langle\mathbf{class T
IrregularMatrix }\langle\mathbf{T}\rangle&\mathbf{IrregularMatrix }\langle\mathbf{T}\rangle::\mathrm{ operator }+=(\mathrm{ const
        IrregularMatrix }\langle\mathbf{T}\rangle&x
{
    assert(x.num_rows( ) = num_rows( ));
    for (size_t i=0;i<x.num_rows(); i++)
    {
        assert(x.num_cols}(i)\equivnum_cols(i))
        for (size_t j=0; j<x.num_cols(i); j++)
            (*this)}(i,j)+=x(i,j)
    }
    return *this;
}
template}\langle\mathbf{class T}
IrregularMatrix }\langle\mathbf{T}\rangle\mathrm{ & IrregularMatrix }\langle\mathbf{T}\rangle:::0perator -=(const
        IrregularMatrix }\langle\mathbf{T}\rangle&x
{
    assert(x.num_rows( ) \equivnum_rows( ));
    for(size_t i=0;i<x.num_rows();i++)
```

```
    {
        assert(x.num_cols}(i)\equivnum_cols(i))
        for (size_t j= 0; j<x.num_cols(i); j++)
            (*this)(i,j) -= x(i,j);
    }
    return *this;
}
template\langleclass T\
IrregularMatrix }\langle\mathbf{T}\rangle\mathrm{ &IrregularMatrix }\langle\mathbf{T}\rangle::\mathrm{ operator }*=(\mathrm{ const
            std ::vector <double\rangle & v)
{
    for (size_t i=0;i<num_rows();i++)
    {
        assert(v.size() \geq this }\neg\mathrm{ num_cols(i));
        for(size_t j= 0; j<num_cols(i); j++)
            (*this)}(i,j)*=v[j]
    }
    return *this;
}
template\langleclass T>
IrregularMatrix }\langle\mathbf{T}\rangle&\mathrm{ IrregularMatrix }\langle\mathbf{T}\rangle::operator *=(double v
```

```
{
    for(size_t i= 0;i<num_rows();i++)
    {
        for (size_t j= 0; j<num_cols(i); j+)
        (*this)}(i,j)*=v
    }
    return *this;
}
template}\langle\mathbf{class T
IrregularMatrix }\langle\mathbf{T}\rangle&IrregularMatrix \langleT T ::operator /=(const std :: vector <double
            &v)
{
    for(size_t i= 0;i< this`num_rows();i++)
        for(size_t j= 0; j< this`num_cols(i); j++)
            (*this)})(i,j)/=v[j]
    return *this;
}
IrregularMatrix \(\langle\) double \(\rangle\) operator \(*\) (double \(v\), const IrregularMatrix \(\langle\) double \(\rangle\) \(\& M) ;\)
void multiply_add(const std :: vector \(\langle\) double \(\rangle \& u\), double \(z\), std \(::\) vector \(\langle\) double \(\rangle\) \(\& v)\);
```

Ph.D. Thesis - Reza Zolfaghari

```
    void multiply_add(const IrregularMatrix <double }\rangle&A,\mathrm{ const std :: vector <double}
                &z,IrregularMatrix <double }\rangle&B)
    void multiply_add(const IrregularMatrix }\langle\mathrm{ std :: vector }\langle\mathrm{ double }\rangle\rangle&A,\mathrm{ const
            std :: vector <double\rangle & z, IrregularMatrix }\langle\mathrm{ std :: vector }\langle\mathrm{ double }\rangle\rangle&B)
            template}\langle\mathbf{class T
            IrregularMatrix }\langle\mathbf{T}\rangle\mathrm{ operator -(const IrregularMatrix }\langle\mathbf{T}\rangle&A,\mathrm{ const
            IrregularMatrix }\langle\mathbf{T}\rangle&B
        {
            IrregularMatrix }\langle\mathbf{T}\rangleC=A
            C-= B;
            return C;
            }
    }
#endif
```

We store the definition of all functions of the IrregularMatrix class in the file irregularmatrix.cc:
〈irregularmatrix.cc 339$\rangle \equiv$
\#include "irregularmatrix.h"
\#include "daepoint.h"
namespace sdaets
\{
template \rangle

```
void IrregularMatrix <double}\rangle::to_vector(double *v
{
    size_t k=0;
    for (size_t i=0; i<num_rows();i++)
        for (size_t j= 0; j< num_cols(i); j++)
        v[k++]=(*this)}(i,j)
}
template<>
void IrregularMatrix }\langle\mathrm{ std ::vector }\langle\mathrm{ double }\rangle\rangle::to_vector(double *v
{
    size_t count = 0;
    for (size_t k=0;k<num_entries();k++)
        for (size_t i=0;i<num_rows();i++)
            for(size_t j= 0; j<num_cols(i); j++)
            v[count++]=(*this)(i,j)[k];
}
template <>
double IrregularMatrix <double \rangle::wrms_norm(const IrregularMatrix <double}
    &w)
{
    size_t n= this`num_entries();
```

```
    assert(w.num_entries( ) \equivn);
    assert(w.num_rows( ) \equiv this`num_rows( ));
    double }s=0
    for (size_t i=0; i< this`num_rows( );i++)
        for (size_t }j=0;j<\mathbf{this}->num_cols(i);j++
        {
            double ew_ij=(*this})(i,j)*w(i,j)
                s+=(ew_ij*ew_ij);
        }
    s/= n;
    return std ::sqrt(s);
}
template <>
void IrregularMatrix <double\::set_to_zero( )
{
    for (size_t i=0;i<num_rows();i++)
        for (size_t j=0;j<num_cols(i);j+)
        (*this})(i,j)=0
}
template}\langle
void IrregularMatrix }\langle\mathrm{ std ::vector }\langle\mathrm{ double }\rangle\rangle:: set_to_zero( )
```

```
{
```

 for \(\left(\right.\) size_t \(^{\mathbf{t}} i=0 ; i<\) num_rows ()\(\left.; i++\right)\)
 for \(\left(\right.\) size_t \(\left.j=0 ; j<n u m _c o l s(i) ; j+\right)\)
 for (size_t \(k=0 ; k<(* \mathbf{t h i s})(i, j) . \operatorname{size}() ; k++)\)
 \((*\) this \()(i, j)[k]=0 ;\)
 \}
IrregularMatrix \langle double \rangle operator $*($ double v, const IrregularMatrix \langle double \rangle
$\& M)$
\{
IrregularMatrix \langle double $\rangle C=M$;
$C *=v ;$
return C;
\}
void multiply_add(const std $::$ vector \langle double $\rangle \& u$, double z, std $::$ vector \langle double \rangle
$\& v)$
\{
$\operatorname{assert}(v . \operatorname{size}() \equiv u . \operatorname{size}())$;
for (size_t $i=0 ; i<u . \operatorname{size}() ; i++)$
$v[i]+=u[i] * z ;$
\}
void multiply_add(const IrregularMatrix \langle double $\rangle \& A$, const std :: vector \langle double \rangle

```
                &z, IrregularMatrix {double }\rangle&B
    {
        for (size_t i= 0;i<A.num_rows();i++)
        for(size_t j=0; j<A.num_cols(i); j++)
            B(i,j)+=A(i,j)*z[j];
    }
    void multiply_add(const IrregularMatrix }\langle\mathrm{ std :: vector }\langle\mathrm{ double }\rangle\rangle&A,\mathrm{ const
            std ::vector <double\rangle & z, IrregularMatrix \langlestd :: vector <double}\rangle\rangle&B
    {
        for (size_t i= 0;i<A.num_rows();i++)
        for(size_t j=0;j<A.num_cols(i); j+)
        multiply_add (A(i,j),z[j],B(i,j));
    }
}
```


Appendix C

KINSOL

$340\langle$ Nonlinear Solver Functions 59$\rangle+\equiv$
HoFlag NSolveKin(int n, double tol, int max_it, double $* x 0$, KINSysFn
$f c n$, KINLsJacFn jac, void $\left.* u s e r _d a t a\right)$
\{
\mathbf{N} _Vector x, s;
$x=N_{-}$VMake_Serial $(n, x 0)$;
$s=N_{-} V N e w _\operatorname{Serial}(n) ;$
N_VConst_Serial(ONE, s);
/* instantiate a KINSOL solver object */
void $*$ kmem $=$ KINCreate ();
assert(kmem);
/* specify the pointer to user-defined memory */
int flag $=$ KINSetUserData(kmem,user_data $)$;
$\operatorname{assert}(f l a g \equiv$ KIN_SUCCESS $) ;$
flag $=$ KINSetFuncNormTol(kmem,tol);
flag $=$ KINSetScaledStepTol(kmem,tol);
flag $=$ KINSetNumMaxIters(kmem,max_it);
/* disable all future error message output */
flag $=\operatorname{KINSetErrFile}(k m e m, \Lambda) ;$
$\operatorname{assert}($ flag \equiv KIN_SUCCESS $) ;$
/* specify the problem defining function fcn, */
/* allocate internal memory for kinsol, and initialize kinsol. */
flag $=\operatorname{KINInit}($ kmem $, f c n, x) ;$
$\operatorname{assert}($ flag \equiv KIN_SUCCESS $) ;$
/* create dense SUNMatrix */

SUNMatrix $J=\operatorname{SUNDenseMatrix}(n, n)$;
/* create dense SUNLinearSolver object */
SUNLinearSolver LS $=$ SUNLinSol_Dense (x, J);
/* attach the matrix and linear solver to KINSOL */
flag $=$ KINSetLinearSolver $(k m e m$, LS,$J) ;$
$\operatorname{assert}(f l a g \equiv$ KINLS_SUCCESS $) ;$
/* Set the Jacobian function */
if (jac)

```
{
    flag = KINSetJacFn(kmem,jac);
    assert(flag \equiv KINLS_SUCCESS);
}
    /* maximum number of iterations between computing the Jacobian */
flag = KINSetMaxSetupCalls(kmem,1);
assert(flag \equiv KIN_SUCCESS);
            /* solve the nonlinear system */
int strategy = KIN_NONE; /* basic Newton iteration */
flag = KINSol(kmem, x,strategy, s,s);
HoFlag ho_flag;
if (flag < 0)
    ho_flag = HO_SUCCESS;
else
{
    ho_flag = HO_CONVERGENT;
    x0 = N_VGetArrayPointer_Serial(x);
}
N_VDestroy_Serial(x);
N_VDestroy_Serial(s);
KINFree(&kmem);
```

SUNLinSolFree(LS);
SUNMatDestroy (J);
return ho_flag;
\}

Appendix D

Files

D. 1 The HO class

We store the definition of this class in the file ho.h:
$343\langle$ ho.h 343$\rangle \equiv$ \#ifndef SRC_HO_H_ \#define SRC_HO_H_ \#include <vector>
\#include "constants.h"
\#include "daepoint.h"
\#include "fadbadts.h"
\#include "fadiff.h"
\#include "taylorseries.h"

```
#include "gradients.h"
#include "ho_enumtypes.h"
#include "irregularmatrix.h"
#include "sadata.h"
#include "sysjac.h"
#include "tadiff.h"
    namespace sdaets
    {
        <HO Declarations 23>
    }
#endif
```


D.1. 1 Constructor

$344\langle$ HO Public Functions 344$\rangle \equiv$
HO(daets ::TaylorSeries $* t s$, daets $::$ Jacobian $* j a c$, Gradients $* g r a d)$
: ts_(ts), jac_(jac), grads_(grad) \{
sadata_ $=t s_{-} \rightarrow$ get_sadata ()$;$
$n_{-}=s a d a t a_{-} \rightarrow$ get_size ()$;$
num_indep_tcs_ $=0$;
for (int $j=0 ; j<n_{-} ; j+$)

$$
\text { num_indep_tcs_ }+=\text { sadata_ } \rightarrow \text { get_d } d(j) ;
$$

$d_{-} . r e s i z e\left(n_{-}\right)$;

Ph.D. Thesis - Reza Zolfaghari

```
c_.resize(n_);
for (int }i=0;i<\mp@subsup{n}{-}{\prime};i++
{
    d_[i] = sadata_->get_d (i);
    c_[i] = sadata_->get_c(i);
}
sys_jac_ = new double[n_ * n_];
rh\mp@subsup{s}{-}{}= new double[n_];
ipiv_= new int[n_];
tcs_stage0_ = new double[n_];
h_pow_.resize(sadata_->get_max_d() + daets ::Constants ::kMaxOrder_);
indep_tcs_ = IrregularMatrix }\langle\mathbf{double}\rangle(\mp@subsup{d}{-}{})
psi_= IrregularMatrix }\langle\mathrm{ double }\rangle(\mp@subsup{d}{-}{\prime})
phi_ = IrregularMatrix }\langle\mathrm{ double }\rangle(\mp@subsup{d}{-}{\prime})
f_ = IrregularMatrix }\langle\mathrm{ double }\rangle(\mp@subsup{d}{-}{})
tc_grad_.resize(num_indep_tcs_);
fr_prime_ = IrregularMatrix }\langle\mathrm{ std :: vector }\langle\mathrm{ double }\rangle\rangle(\mp@subsup{d}{-}{\prime},tc_grad_)
f_prime_= IrregularMatrix }\langle\mathrm{ std ::vector <double }\rangle\rangle(\mp@subsup{d}{-}{\prime},tc_grad_)
coef_.resize(sadata_->get_max_d());
factorial_.resize(daets ::Constants ::kMaxOrder_);
daets ::compFactorial(daets :: Constants ::kMaxOrder_,_factorial_.data( ));
```

Ph.D. Thesis - Reza Zolfaghari

```
    residual_flat_ = new double[num_indep_tcs_];
    indep_tcs_flat_ = new double[num_indep_tcs_];
    \(h o \_j a c o b i a n_{-}=\)new double \([\)num_indep_tcs_ \(*\) num_indep_tcs_];
    ho_ipiv_ = new int[num_indep_tcs_];
\}
```

See also chunks 345 and 346

This code is used in chunk 23.

D.1.2 Destructor

```
\(345\langle\) HO Public Functions 344\(\rangle+\equiv\)
\(\sim \mathbf{H O}()\)
\{
    delete[] sys_jac_;
    delete[] rhs_;
    delete[] ipiv_;
    delete[] tcs_stage0_;
    delete[] residual_flat_;
    delete[] indep_tcs_flat_;
    delete[] ho_jacobian_;
    delete[] ho_ipiv_;
    \}
```

The class HO has the following public member functions

Ph.D. Thesis - Reza Zolfaghari
$346\langle$ HO Public Functions 344$\rangle+\equiv$
HoFlag Comp F (const double $* x$, double $* f$);
void CompHoJac (double *ho_jac);
void EvalEqnsStageZero(const double $* x$, double $* f$);
void SetStageZeroTCsJac (const double $* t c$);
void CompAO(double *jac);

The private member functions are listed bellow
$347\langle$ HO Private Functions 35$\rangle+\equiv$
void set_t(double t);
void set_h(double $h)$;
void form $_$grad (int i, int j, int k, std $::$ vector \langle double $\rangle \& t c _$grad $)$;
void FormFrPrime (int r);
void $c o m p _a($ int $r)$;
void $c o m p _b($ int $r)$;
void $\operatorname{FormFr}($ int r, const std $::$ vector \langle vector \langle double $\rangle\rangle \& t c s)$;
void $\operatorname{FormFr}($ int $r)$;
void CompPsi(const std $::$ vector \langle std $::$ vector \langle double $\rangle\rangle \& t c s)$;
void set_p $q($ int p, int $q) ;$
void CompCpq();
void CompCqp();
HoFlag CompHoSolution(double t, double h, double tol,

```
const IrregularMatrix <double\rangle &weight, const std :: vector \langlevector <double}\rangle
&tcs_prev, daets ::DAEpoint &x);
```

void SetIndepTCs();
void SetProjected(daets ::DAEpoint $\& x$);
void SetIndepTCsJac ();
HoFlag CompPhi(const double $* x$);
void CompGradients(int q);
HoFlag CompTCsNonlinear(double *tc);
void SetStageZeroTCs(const double *tc);
void CompTCsLinear (int k);
void need_cond_jac(bool flag) \{ need_cond_jac_=flag; \}
bool $C o m p T C s($ daets $::$ DAEpoint $\& x)$;
double CompCondJac ();

We store the definition of all functions of the HO class in the file ho.cc:

```
348 <ho.cc 348\rangle\equiv
    #include <assert.h>
    #include "ho.h"
    #include "daepoint.h"
    #include "ho_auxiliary.h"
    #include "irregularmatrix.h"
    #include "nsolve_functions.h"
```

Ph.D. Thesis - Reza Zolfaghari

```
#include "taylorseries.h"
    namespace sdaets {
        <Definitions of HO Private Functions 37>
        <Definitions of HO Public Functions 61\rangle
        }
```


D. 2 The Gradients class

We store the definition of this class in the file gradients.h.
$350\langle$ gradients.h $\quad 350\rangle \equiv$
\#ifndef GRADIENTS_H_
\#define GRADIENTS_H_
\#include "constants.h"
\#include "fadiff.h"
\#include "tadiff.h"
\#include "sadata.h"
namespace sdaets
\{
typedef fadbad ::T/fadbad :: F \langle double $\rangle\rangle$ TFdouble;
typedef void $(*$ TFadiff $)($ TFdouble t, const TFdouble $* y$, TFdouble $* f$, void $* p$);

〈Gradients Declarations 25〉
\}

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE
\#endif

D.2.1 Constructor

In the constructor, we allocate the necessary memory, and generate the computational graph by calling daefun.
\langle Gradients Data Members 80$\rangle+\equiv$

TFadiff daefun_;

353 〈Gradients Public Functions 82$\rangle+\equiv$
Gradients(TFadiff daefun, daets ::SAdata $*$ sadata, void $*$ dae_params)
: sadata_(sadata), daefun_(daefun) \{ int $n=$ sadata_ \rightarrow get_size () ;
t_tfdouble_ = 0.0;
grad_in_ $=$ new TFdouble $[2 * n]$;
grad_out_ = grad_in_ $+n$;
assert(grad_in_ ^grad_out_ ^daefun_);
daefun_(t_tfdouble_, grad_in_, grad_out_, dae_params);
\}

D.2.2 Destructor

354 〈Gradients Public Functions 82$\rangle+\equiv$
~Gradients()
\{

Ph.D. Thesis - Reza Zolfaghari
delete[] grad_in_;
\}

D. 3 The StiffDAEsolver class

We store the definition of this class in the file stiff_daesolver.h:

```
356 <stiff_daesolver.h 356\rangle\equiv
#ifndef INCLUDED_STIFF_DAESOLVER_H
#define INCLUDED_STIFF_DAESOLVER_H
#include "DAEsolver.h"
#include "ho.h"
#include "gradients.h"
#include "irregularmatrix.h"
#include "nsolve_functions.h"
#include "ho_enumtypes.h"
#define STIFF_DAE_FCN (f)(daets :: TdoubleOrgFun) }f,(\mathrm{ daets :: TFadiff)
        f,(daets::TFadiff) f,f,f
    namespace daets {
        void projectInitPoint(const DAEsolution &x_approx, double ipopt_proj_tol,
        Jacobian *jac,IpoptFuncs * ipopt_funcs, DAEpoint *x_projected, double
        *system_jac,int *exitflag);
```

 void projectTSsolution(double \(t\), const DAEpoint \(\& X\), double \(t s _p r o j _t o l\), Jacobian
 $$
\left.* j a c_{-}, \text {DAEpoint } * X p r o j, \text { double } * \text { sysJac, int } * \text { exitflag }\right) ;
$$

double estError（daets ：：TaylorSeries＊auto＿diff，int p ，double h ）；
\}
namespace sdaets \｛
〈StiffDAEsolver Declarations 27〉
\}
\＃endif

D．3．1 Constructor

$357\langle$ StiffDAEsolver Public Functions 357$\rangle \equiv$ template \langle typename TSFun，typename JacFun，typename GradFun〉 StiffDAEsolver（int n ，TSFun $t s _f u n$ ，JacFun $j a c _f u n$ ，

GradFun grads＿fun，daets ：：SigmaMatrixFen fcn3，daets ：：FCN＿NONL
fcn4，void $*$ dae＿params $=\Lambda$ ）throw（std ：：logic＿error）：
daets ：：DAEsolver（ $n, t s _f u n, j a c _f u n, f c n 3, f c n 4$ ，dae＿params）
\｛
fadbad＿grads＿＝new Gradients（（TFadiff）grads＿fun，sadata＿，dae＿params）； assert（fadbad＿grads＿）；
$h o_{-}=$new HO $\left(t c s_{-} a d_{-}, j a c_{-}, f a d b a d _g r a d s_{-}\right)$；
$\operatorname{assert}\left(h o _\right)$；
user＿min＿order＿＝0；
user＿max＿order＿＝0；

Ph.D. Thesis - Reza Zolfaghari

```
        ede_ = IrregularMatrix }\langle\mathrm{ double }\rangle(h\mp@subsup{o}{-}{}->\mp@subsup{d}{-}{\prime})
}
```

See also chunks 358 and 359

This code is used in chunk 27.

D.3.2 Destructor

$358\langle$ StiffDAEsolver Public Functions 357$\rangle+\equiv$
~StiffDAEsolver ()
\{

$$
\text { if }(\neg \text { isIllPosed }())
$$

$$
\{
$$

delete $h o _$; delete $f a d b a d _g r a d s _;$ \}
\}

The StiffDAEsolver class has the following public member functions
359 〈StiffDAEsolver Public Functions 357$\rangle+\equiv$
void integrate(daets ::DAEsolution $\& x$, double tend, daets ::SolverExitFlag \&state)
throw(std :: logic_error);
void SetMinMaxOrder(int, int);
void comp_cond ();
$360\langle$ StiffDAEsolver Private Functions 360$\rangle \equiv$
void GetMinMaxOrder（）；
void IntegrateByExplicitTS（daets ：：DAEsolution \＆x，double t＿end，unsigned int num＿steps，daets ：：SolverExitFlag \＆state）；
void Integrate ByHO （daets ：：DAEsolution $\& x$ ，double t_{-}end，daets ：：SolverExitFlag \＆state）；
void SetSavedTCs（const std $::$ vector \langle std $::$ vector \langle double $\rangle\rangle \& t c s$, int q ）；
double EstErrHO（int order，double epq，const IrregularMatrix \langle double \rangle \＆weight）；
void tcs＿to＿ders（const std $::$ vector \langle std $::$ vector \langle double $\rangle\rangle \& t c s$, std $::$ vector \langle std $::$ vector \langle double $\rangle\rangle\langle d e r s) ;$
void unscale＿tcs（const std $::$ vector $\langle\mathbf{d o u b l e}\rangle \& p o w _h$, $\boldsymbol{\operatorname { s t d }}::$ vector $\langle\boldsymbol{\operatorname { s t d }}::$ vector \langle double $\rangle\rangle \& t c s$ ）；
double CompErrorConstant（int p ，int q ）；
void CompEpq（int p ，int q ，std $::$ vector \langle double $\rangle \& e p q)$ ；
void set＿pq＿comp＿coeffs（int p ，int q, std $::$ vector $\left.\langle\mathbf{d o u b l e}\rangle \& h o _e p q\right) ;$
OrderFlag SelectOrder（int m ，double sigma＿m，const IrregularMatrix \langle double \rangle \＆weight，const std ：：vector \langle double \rangle \＆epq）；

This code is used in chunk 27.

361 〈StiffDAEsolver Data Members 192〉＋三
Gradients $*$ fadbad＿grads＿；

We store the definition of all functions of the StiffDAEsolver class in the file stiff＿daesolver．cc：

Ph.D. Thesis - Reza Zolfaghari

```
<stiff_daesolver.cc 362\rangle\equiv
#include "stiff_daesolver.h"
    namespace sdaets
    {
        <Definitions of StiffDAEsolver Private Functions 194\rangle
        <Definitions of StiffDAEsolver Public Functions 254\rangle
    }
```


D. 4 Nonlinear Solver

363 〈nsolve_functions.h 363$\rangle \equiv$
\#ifndef NSOLVE_FUNCTIONS_H
\#define NSOLVE_FUNCTIONS_H
\#include <kinsol/kinsol.h>
\#include <nvector/nvector_serial.h>
\#include <stdio.h>
\#include <stdlib.h>
\#include <sundials/sundials_math.h>
\#include <sundials/sundials_types.h>
\#include <sunlinsol/sunlinsol_dense.h>
\#include <sunlinsol/sunlinsol_spgmr.h>
\#include <sunmatrix/sunmatrix_dense.h>

Ph.D. Thesis - Reza Zolfaghari
\#include "ho.h"
\#include "ho_auxiliary.h"
\#include "ho_enumtypes.h"
\#include "norms.h"
\#define ONERCONST (1.0)
namespace sdaets \{
typedef $\mathbf{H o F l a g}(*$ EvalF $)($ int, double $*$, double $*$, void $*)$;
typedef void $(*$ EvalJ $)($ int, double $*$, double $*$, void $*)$;
HoFlag Fcn(int n, double $* x$, double $* f$, void $*$ user_data);
void $\operatorname{Jac}\left(\right.$ int n, double $* x$, double $* j a c$, void $\left.* u s e r _d a t a\right)$;
HoFlag NSolve(int n, const IrregularMatrix \langle double \rangle \&weight, double $* x 0$, EvalF fcn, EvalJ jac, double *residual, double *jacobian, int *ipiv, void *user_data); int FcnKinsol(N_Vector x, \mathbf{N} _Vector f, void $\left.* u s e r _d a t a\right)$; int JacKinsol(N_Vector x, N_Vector f, SUNMatrix J, void $*$ user_data, N_Vector tmp1, N_Vector tmp2);

HoFlag NSolveKin(int n, double tol, int max_it, double $* x 0$, KINSysFn fcn, KINLsJacFn jac, void *user_data);
\}
\#endif

These functions are defined in the file
$364\langle$ nsolve_functions.cc 364$\rangle \equiv$

Ph.D. Thesis - Reza Zolfaghari

```
#include "nsolve_functions.h"
    namespace sdaets {
```

 〈Nonlinear Solver Functions 59〉;
 \}

D. 5 Auxiliary functions

We create the header file ho_auxiliary.h to declare all auxiliary functions.
$365\langle$ ho_auxiliary.h 365$\rangle \equiv$
\#ifndef INCLUDED_HO_AUXILIARY_H_
\#define INCLUDED_HO_AUXILIARY_H_
\#include <stdio.h>
\#include <stdlib.h>
\#include <string.h>
\#include <sys/select.h>
\#include <unistd.h>
\#include <vector>
\#include <cstddef>
\#include "daepoint.h"
\#include "ho.h"
\#include "ho_enumtypes.h"
\#include "irregularmatrix.h"
\#include "norms.h"
namespace daets $\{$
extern double DAETS_H_SCALE;
extern void L Solve (int n, double $* J a c$, int $* i p i v$, double $* F c n$);
extern void LU(int n, double $* J a c$, int $* i p i v$, int $* i n f o$);
extern void compFactorial(int n, double $*$ factorial);
\}
namespace sdaets \{
extern "C"
\{
double dlange_(char $* n o r m$, int $* m$, int $* n$, double $* a$, int $* l d a$, double $*$ work $)$;
void dgecon_(char $*$ norm, int $* n$, double $* a$, int $* l d a$, double $* a n o r m$, double
*rcond, double *work, int *iwork, int *info);
\}
void comp_gen_divdif(const std ::vector \langle double $\rangle \& x$, const std $::$ vector \langle double \rangle

$$
\& f, \mathbf{s t d}:: \text { vector }\langle\text { double }\rangle \& c) ;
$$

void CompWeight(const daets ::DAEpoint $\& y$, double rtol, double atol, IrregularMatrix \langle double $\rangle \& w$);
double CompWRMSnorm(const double $* v$, const IrregularMatrix \langle double $\rangle \& w$);
void PrintProgress (double t, int no_steps, double h, double error, int order);
void update $p q($ OrderFlag $f l a g$, int $\& p$, int $\& q)$;
double comp_stepsize(double sigma, double max_sigma, double h_old);
double comp_sigma(int order, double ede_m, double safty);
void create_t_vec(double t_{-}prev, double $t_{-} c u r r$, int p, int q, std :: vector \langle double \rangle

$$
\left.\& t _v e c\right) ;
$$

void merge_ders(int k, int p, int q, const std $::$ vector \langle double $\rangle \& v _a$, const $\boldsymbol{\operatorname { s t d }}:: \mathbf{v e c t o r}\langle$ double $\rangle \& v _b$, std $::$ vector \langle double $\rangle \& y$);
void CompNordsieck(size_t p, size_t q, const std $::$ vector \langle double $\rangle \& t _v e c$, const std $::$ vector \langle std $::$ vector \langle double $\rangle\rangle$ $\& d e r _o l d e r$, const std $::$ vector \langle std $::$ vector \langle double $\rangle\rangle \& d e r _o l d$, IrregularMatrix \langle std $::$ vector \langle double $\rangle\rangle \& c)$;
double $e v a l _h e r m i t e($ int p, int q, double a, double b, double t, std ::vector \langle double $\rangle v$);
void PredictSolution(int p, int q, double a, double b, double t, const IrregularMatrix \langle std :: vector \langle double $\rangle\rangle$ \&nordsieck, daets :: DAEpoint \&prediction);
void subtract (int n, const double $* x$, double $* y$);
double cost_per_step $($ int n, int $n n$, int p, int q, double $h)$;
OrderFlag min_cost (double $\cos t 1$, double $\cos t 2$, double $\cos t 3)$;
void CompPowersH(int size, double h, std :: vector \langle double \rangle \&h_pow);
void scalar_times_vector(double a, int n, double $* u$, double $* v$);
double $R \operatorname{Cond}($ int n, double $* m a t$, double mat_norm);
double $\operatorname{MNorm}($ int n, double $* m a t)$;

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE
\}

\#endif

These functions are defined in the file ho_auxiliary.cc.
$366\langle$ ho_auxiliary.cc 366$\rangle \equiv$
\#include "ho_auxiliary.h"
namespace sdaets \{
\langle Auxiliary functions 107 \rangle;
\}

D.5.1 Generalized divided differences

Given two vectors

$$
\begin{aligned}
& \mathbf{x}=\left[x_{0}, x_{1}, \ldots, x_{n-1}\right] \quad \text { and } \\
& \mathbf{y}=\left[y_{0}, y_{1}, \ldots, y_{n-1}\right],
\end{aligned}
$$

we implement the function comp_gen_divdif to compute the generalized divided differences

$$
c_{j}=y\left[x_{0}, \ldots, x_{j}\right], \quad \text { for } j=0, \ldots, n-1
$$

$367\langle$ Auxiliary functions 107$\rangle+\equiv$ void comp_gen_divdif(const std $::$ vector \langle double $\rangle \& x$, const $\boldsymbol{\text { std }}::$ vector \langle double \rangle $\& y$, std $::$ vector $\langle\mathbf{d o u b l e}\rangle \& c$)
$\{$

$$
\text { size_t } n=y \cdot \operatorname{size}()
$$

```
    assert(n \equivx.size());
    c= y;
    n--;
    double clast, temp;
    for(size_t j = 0; j<n; j++)
    {
        clast =c[j];
        for (size_t }i=j+1;i\leqn;i++
        {
            if (x[i] \equivx[i-j-1])
            c[i]/=(j+1);
        else
        {
            temp =c[i];
            c[i] =(c[i]-clast )/(x[i]-x[i-j-1]);
                clast = temp;
            }
        }
    }
}
```

Ph.D. Thesis - Reza Zolfaghari

D. 6 Enumerations

We create the header file ho_enumtypes.h to define all required enumerations.
$369\langle$ ho_enumtypes.h 369$\rangle \equiv$
\#ifndef HO_ENUMTYPES_H_
\#define HO_ENUMTYPES_H_
namespace sdaets \{
\langle enumeration type for order selection 202〉;
\langle enumeration type for HO method 24\rangle;
\}
\#endif

D. 7 Examples

The interface to DAETS is in the file stiff_daesolver.h.

D.7.1 Van der Pol oscillator

The following program integrates (10.2).
$372\langle$ solve Van der Pol 372$\rangle \equiv$
int $\operatorname{main}($ int $\arg c, \mathbf{c h a r} * \operatorname{argv}[])$
\{
\langle set size of Van der Pol and integration interval 373 \rangle;
\langle create a solver 307\rangle;

Ph.D. Thesis - Reza Zolfaghari

```
        < create a DAEsolution object 309 \rangle;
        < set order and tolerance 308 >;
        < set Van der Pol initial values 374\rangle;
        <integrate the problem 311\rangle;
        < output results 312\rangle;
        return 0;
}
```

This code is used in chunk 375.
\langle set size of Van der Pol and integration interval 373$\rangle \equiv$
const int $n=1$;
double $t 0=0.0$, tend $=2000$;
This code is used in chunk 372.
$374\langle$ set Van der Pol initial values 374$\rangle \equiv$

$$
\begin{aligned}
& x . \operatorname{set} T(t 0) \\
& \quad . \operatorname{set} X(0,0,2) \\
& \quad . \operatorname{set} X(0,1,0.0) ;
\end{aligned}
$$

This code is used in chunk 372.

375
\langle vdpol.cc 375$\rangle \equiv$
\#include "stiff_daesolver.h"
\#include <fstream>
double CompSCD (daets :: DAEsolution $\& x$);

```
< Van der Pol 316〉;
< solve Van der Pol 372 \;
double CompSCD(daets :: DAEsolution & x)
{
    double y[2];
    y[0] = 1.706167732170469;
    y[1] =-0.8928097010248125\cdot10-3;
    double error_norm = 0;
    for(int i=0;i<2;i++)
    {
        double }r=fabs((x.getX(0,i)-y[i])/y[i])
        if (r>error_norm)
        error_norm = r;
    }
    return -log10(error_norm);
}
```


D.7.2 Oregonator

The following program integrates (10.3).
$377\langle$ solve Oregonator 377$\rangle \equiv$
int $\operatorname{main}($ int $\arg c, \mathbf{c h a r} * \operatorname{argv}[])$

Ph.D. Thesis - Reza Zolfaghari

```
{
    < size of Oregonator and the integration interval 378 >;
        < create a solver 307 ;;
        < create a DAEsolution object 309 >;
        < set order and tolerance 308 \;
        < set Oregonator initial values 379\rangle;
        <integrate the problem 311\rangle;
        < output results 312\rangle;
        return 0;
}
```

This code is used in chunk 380.
$378\langle$ size of Oregonator and the integration interval 378$\rangle \equiv$
const int $n=3$;
double $t 0=0.0$, tend $=360$;

This code is used in chunk 377.
$379\langle$ set Oregonator initial values 379$\rangle \equiv$

$$
\begin{aligned}
& \text { x.set } T(t 0) \\
& \quad . \operatorname{set} X(0,0,1) \\
& . \operatorname{set} X(1,0,2) \\
& . \operatorname{set} X(2,0,3)
\end{aligned}
$$

This code is used in chunk 377.

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE
$380\langle$ orego.cc 380$\rangle \equiv$
\#include "stiff_daesolver.h"
\#include <fstream>
double CompSCD(daets ::DAEsolution \&);
\langle Oregonator 319 \rangle;
\langle solve Oregonator 377\rangle;
double $\operatorname{CompSCD}$ (daets :: DAEsolution \& x)
\{
double $y[3]$;
$y[0]=0.1000814870318523 \cdot 10^{1} ;$
$y[1]=0.1228178521549917 \cdot 10^{4} ;$
$y[2]=0.1320554942846706 \cdot 10^{3} ;$
double error_norm $=0$;
for (int $i=0 ; i<3 ; i+$)
\{
double $r=\operatorname{fabs}((x . g e t X(i, 0)-y[i]) / y[i])$;
if $\left(r>e r r o r _n o r m\right)$
error_norm $=r$;
\}
return - log10(error_norm);
\}

Ph．D．Thesis－Reza Zolfaghari

D．7．3 Chemical Akzo Nobel

The main program is
382 〈solve Chemical Akzo Nobel 382$\rangle \equiv$ int $\operatorname{main}($ int $\arg c, \mathbf{c h a r} * \operatorname{argv}[])$
\｛
〈 set size of Chemical Akzo Nobel and integration interval 383〉；
\langle create a solver 307\rangle ；
\langle create a DAEsolution object 309\rangle ；
\langle set order and tolerance 308\rangle ；
〈 set Chemical Akzo Nobel initial values 384〉；
\langle integrate the problem 311〉；
〈output results 312\rangle ；
return 0 ；
\}

This code is used in chunk 385.

383 〈 set size of Chemical Akzo Nobel and integration interval 383$\rangle \equiv$

$$
\text { int } n=6
$$

double $t 0=0$ ，tend $=180$ ；
This code is used in chunk 382.
$384\langle$ set Chemical Akzo Nobel initial values 384$\rangle \equiv$

$$
x \cdot \operatorname{set} T(t 0)
$$

$$
\begin{aligned}
& . \operatorname{set} X(0,0,0.444) \cdot \operatorname{set} X(0,1,0) \\
& . \operatorname{set} X(1,0,0.00123) \cdot \operatorname{set} X(1,1,0) \\
& . \operatorname{set} X(2,0,0.0) \cdot \operatorname{set} X(2,1,0) \\
& . \operatorname{set} X(3,0,0.007) \cdot \operatorname{set} X(3,1,0) \\
& . \operatorname{set} X(4,0,0.0) \cdot \operatorname{set} X(4,1,0) \\
& . \operatorname{set} X(5,0,0)
\end{aligned}
$$

This code is used in chunk 382.
$385\langle$ chemakzo.cc 385$\rangle \equiv$
\#include "stiff_daesolver.h"
\#include <fstream>
double CompSCD(daets :: DAEsolution $\& x$);
\langle Chemical Akzo Nobel 320 \rangle;
〈solve Chemical Akzo Nobel 382\rangle;
double CompSCD(daets :: DAEsolution \& x)
\{
double $y[6]$;
$y[0]=0.1150794920661702 ;$
$y[1]=0.1203831471567715 \cdot 10^{-2} ;$
$y[2]=0.1611562887407974 ;$
$y[3]=0.3656156421249283 \cdot 10^{-3} ;$
$y[4]=0.1708010885264404 \cdot 10^{-1} ;$

```
    y[5] = 0.4873531310307455 \cdot 10-2;
    double error_norm = 0;
    for (int i=0;i<6;i++)
    {
        double }r=\operatorname{fabs}((x.getX(i,0)-y[i])/y[i])
        if (r>error_norm)
        error_norm = r;
        }
        return - log10(error_norm);
}
```


D．7．4 A highly stiff index－2 DAE

The main program integrating（10．5）is
$386\langle$ solve Stiff index－2 386〉 \equiv
int $\operatorname{main}($ int $\arg c, \mathbf{c h a r} * \arg v[])$
\｛
\langle set size of Stiff index－2 and integration interval 387〉；
\langle create a solver 307\rangle ；
\langle create a DAEsolution object 309\rangle ；
\langle set order and tolerance 308\rangle ；
\langle set Stiff index－2 initial values 388\rangle ；
\langle integrate the problem 311〉；

Ph．D．Thesis－Reza Zolfaghari
McMaster University－CSE

〈output results 312\rangle ；
return 0 ；
\}

This code is used in chunk 389.
$387\langle$ set size of Stiff index－2 and integration interval 387$\rangle \equiv$
const int $n=3$ ；
double $t 0=0.0$ ，tend $=2000$ ；
This code is used in chunk 386.
$388\langle$ set Stiff index－2 initial values 388$\rangle \equiv$

$$
\begin{aligned}
& x \cdot \operatorname{set} T(t 0) \\
& \quad . \operatorname{set} X(0,0,2) \cdot \operatorname{set} X(0,1,0) \\
& \quad . \operatorname{set} X(1,0,3) ;
\end{aligned}
$$

This code is used in chunk 386.
$389\langle$ vdpol＿index2．cc 389$\rangle \equiv$
\＃include＂stiff＿daesolver．h＂
\＃include＜fstream＞
double CompSCD（daets ：：DAEsolution \＆x）；
\langle Stiff index－2 322\rangle ；
〈solve Stiff index－2 386 〉；
double CompSCD（daets ：：DAEsolution \＆x ）
\｛

```
double \(y[3]\);
\(y[0]=1.706167732170469 ;\)
\(y[1]=-0.8928097010248125 \cdot 10^{-3} ;\)
\(y[2]=\operatorname{sqrt}(y[0] * y[0]+5) ;\)
double \(r\), error_norm \(=0\);
for (int \(i=0 ; i<2 ; i+\) )
\{
        \(r=\operatorname{fabs}((x . \operatorname{get} X(0, i)-y[i]) / y[i]) ;\)
        if \(\left(r>e r r o r \_n o r m\right)\)
        error_norm \(=r\);
    \}
    \(r=\operatorname{fabs}((x \cdot \operatorname{get} X(1,0)-y[2]) / y[2]) ;\)
    if \(\left(r>e r r o r \_n o r m\right)\)
        error_norm \(=r\);
return - log10(error_norm);
```

\}

D.7.5 Car Axis

The main program for integrating this problem is
$390\langle$ solve Car Axis 390$\rangle \equiv$
int $\operatorname{main}($ int $\arg c, \mathbf{c h a r} * \operatorname{argv}[])$
\{

Ph．D．Thesis－Reza Zolfaghari
\langle size of Car Axis and the integration interval 391$\rangle ;$ \langle create a solver 307\rangle ；
\langle create a DAEsolution object 309\rangle ；
\langle set order and tolerance 308\rangle ；
〈set Car Axis initial values 392\rangle ；
\langle integrate the problem 311〉；
〈output results 312\rangle ；
return 0 ；
\}

This code is used in chunk 393.
$391\langle$ size of Car Axis and the integration interval 391$\rangle \equiv$ const int $n=6$ ；
double $t 0=0.0$ ，tend $=3.0$ ；

This code is used in chunk 390.

The initial condition given in［37］is as follows．
$392\langle$ set Car Axis initial values 392$\rangle \equiv$

$$
x \cdot \operatorname{set} T(t 0)
$$

$$
. \operatorname{set} X(0,0,0.0) \cdot \operatorname{set} X(0,1,-0.5)
$$

$$
. \operatorname{set} X(1,0,0.5) \cdot \operatorname{set} X(1,1,0.0)
$$

$$
. \operatorname{set} X(2,0,1.0) \cdot \operatorname{set} X(2,1,-0.5)
$$

$$
. \operatorname{set} X(3,0,0.5) \cdot \operatorname{set} X(3,1,0.0)
$$

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE

This code is used in chunk 390.

393
\langle caraxis.cc 393$\rangle \equiv$
\#include "stiff_daesolver.h"
\#include <fstream>
double CompSCD(daets ::DAEsolution $\& x$);
\langle Car Axis 323\rangle;
\langle solve Car Axis 390 \rangle;
double CompSCD(daets ::DAEsolution \& x)
\{
double $y[6], y p[4]$;
$y[0]=0.493455784275402809122 \cdot 10^{-1} ;$
$y p[0]=-0.770583684040972357970 \cdot 10^{-1} ;$
$y[1]=0.496989460230171153861 ;$
$y p[1]=0.744686658723778553466 \cdot 10^{-2} ;$
$y[2]=0.104174252488542151681 \cdot 10^{1} ;$
$y p[2]=0.175568157537232222276 \cdot 10^{-1} ;$
$y[3]=0.373911027265361256927 ;$
$y p[3]=0.770341043779251976443 ;$
$y[4]=-0.473688659084893324729 \cdot 10^{-2} ;$
$y[5]=-0.110468033125734368808 \cdot 10^{-2} ;$
double error_norm $=0$;

Ph.D. Thesis - Reza Zolfaghari

```
    for (int i=0;i<6;i++)
    {
        double r=fabs((x.getX (i,0)-y[i])/y[i]);
        if (r>error_norm)
        error_norm = r;
    }
    for (int i=0;i<4;i++)
    {
        double }r=\operatorname{fabs}((x.getX(i,1)-yp[i])/yp[i])
        if (r>error_norm)
        error_norm = r;
    }
    return -log10(error_norm);
}
```


D.7.6 Multi Pendula

Our main program is
$394\langle$ solve Multi Pendula 394$\rangle \equiv$
int $\operatorname{main}(\mathbf{i n t} \arg c, \mathbf{c h a r} * \operatorname{argv}[])$
\{
〈 set size of Multi Pendula and integration interval 395 \rangle;
sdaets :: StiffDAEsolver solver (n, STIFF_DAE_FCN $(f c n)$, parameters $)$;

Ph.D. Thesis - Reza Zolfaghari
\langle create a DAEsolution object 309\rangle;
\langle set order and tolerance 308 \rangle;
\langle set Multi Pendula initial values 397\rangle;
\langle integrate the problem 311〉;
\langle output results 312\rangle;
return 0 ;
\}
This code is used in chunk 398.
\langle set size of Multi Pendula and integration interval 395$\rangle \equiv$
double $t 0=0.0$, tend $=50$;
int $P=8$;
int $n=3 * P$;
double $G=9.8, L=10, c=0.1$;
double parameters []$=\{G, L, c,($ double $) P\}$;

This code is used in chunk 394.

We set initial conditions as follows.
$396\langle$ Multi Pendula 326$\rangle+\equiv$
void SetInitialConditions(double $t 0$, daets ::DAEsolution $\& x$, int P)
\{
$x . \operatorname{set} T(t 0)$;
for (int $i=1 ; i \leq P ; i+$)

Ph．D．Thesis－Reza Zolfaghari
$\{$
$x \cdot \operatorname{set} X(3 * i-3,0,1) \cdot \operatorname{set} X(3 * i-3,1,0)$
. $\operatorname{set} X(3 * i-2,0,0) \cdot \operatorname{set} X(3 * i-2,1,1)$ ；
for（int $k=2 ; k<2 *(P-i+1) ; k+)$
$x \cdot \operatorname{set} X(3 * i-3, k, 0)$. $\operatorname{set} X(3 * i-2, k, 0)$. $\operatorname{set} X(3 * i-1, k-2,0)$ ；
\}
\}
$397\langle$ set Multi Pendula initial values 397$\rangle \equiv$

$$
\text { SetInitialConditions }(t 0, x, P) \text {; }
$$

This code is used in chunk 394.
$398\langle$ multipend．cc 398$\rangle \equiv$
\＃include＂stiff＿daesolver．h＂
\＃include＜fstream＞
double CompSCD（daets ：：DAEsolution $\& x$ ）；
void SetInitialConditions（double $t 0$ ，daets ：：DAEsolution $\& x$ ，int P ）；

〈Multi Pendula 326〉；
〈 solve Multi Pendula 394 〉；
double $\operatorname{CompSCD}$（daets ：：DAEsolution $\& x$ ）
\｛

Ph.D. Thesis - Reza Zolfaghari
double $y[24]$;
$y[0]=-6.4831571036071827 ;$
$y[1]=7.6137161734561474 ;$
$y[2]=2.2484325549960991 ;$
$y[3]=-4.0364902310106219 ;$
$y[4]=9.3943688566338341 ;$
$y[5]=3.0461516420251065 ;$
$y[6]=-3.6572225101397066 \cdot 10^{-1} ;$
$y[7]=1.0298123174512218 \cdot 10^{1} ;$
$y[8]=2.7030793890008225 ;$
$y[9]=-9.9545920353178730 ;$
$y[10]=-2.5269195812728182 ;$
$y[11]=-1.8563855044649777 \cdot 10^{-1}$;
$y[12]=-9.3676724491232601 ;$
$y[13]=3.4461254187504720 ;$
$y[14]=7.5958908054680752 \cdot 10^{-1} ;$
$y[15]=-9.9849301250615969 ;$
$y[16]=1.3513394519675139 ;$
$y[17]=4.0315262620453329 \cdot 10^{-1} ;$
$y[18]=-9.9383198467905878 ;$
$y[19]=1.4274905238555882 ;$

```
    \(y[20]=4.0229079570012122 \cdot 10^{-1} ;\)
    \(y[21]=-9.9318259110677296 ;\)
    \(y[22]=1.4714054650187212 ;\)
    \(y[23]=4.1054226578576264 \cdot 10^{-1} ;\)
    double error_norm \(=0\);
    for (int \(i=0 ; i<24 ; i++)\)
    \{
        double \(r=\operatorname{fabs}((x . \operatorname{get} X(i, 0)-y[i]) / y[i])\);
        if \(\left(r>e r r o r \_n o r m\right)\)
        error_norm \(=r\);
    \}
    return - log10(error_norm);
```

\}

Bibliography

[1] R. C. A I KEn, Stiff computation, vol. 169, Oxford University Press New York, 1985.
[2] U. M. Ascher, H. Chin, and S. Reich, Stabilization of DAEs and invariant manifolds, Numerische Mathematik, 67 (1994), pp. 131-149.
[3] U. M. Ascher and L. R. Petzold, Projected implicit Runge-Kutta methods for differential-algebraic equations, SIAM Journal on Numerical Analysis, 28 (1991), pp. 1097-1120.
[4] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, 1998.
[5] K. Atkinson, W. Han, and D. E. Stewart, Numerical solution of ordinary differential equations, vol. 108, John Wiley \& Sons, 2011.
[6] R. B A R R Io, Performance of the Taylor series method for ODEs/DAEs, Appl. Math. Comp., 163 (2005), pp. 525-545.
[7] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, second ed., 1996.
[8] L. BRUGNANO and C. Magherini, The BiM code for the numerical solution of ODEs, Journal of Computational and Applied Mathematics, 164 (2004), pp. 145-158.
[9] O. BRUNO AND D. Hoch, Numerical differentiation of approximated functions with limited order-of-accuracy deterioration, SIAM Journal on Numerical Analysis, 50 (2012), pp. 1581-1603.
[10] M. Calvo, F. Lisbona, and J. MontiJano, On the stability of variablestepsize Nordsieck BDF methods, SIAM journal on numerical analysis, 24 (1987), pp. 844-854.
[11] S. Campbell and C. Gear, The index of general nonlinear DAEs, Numerische Mathematik, 72 (1995), pp. 173-196.
[12] S. L. Campbell and E. Griepentrog, Solvability of general differentialalgebraic equations, SIAM Journal on Scientific Computing, 16 (1995), pp. 257-270.
[13] J. C A S H, Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic equations, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 459, The Royal Society, 2003, pp. 797-815.

Ph.D. Thesis - Reza Zolfaghari
[14] G. F. Corliss, A. Griewank, P. Henneberger, G. Kirlinger, F. A. Potra, and H. J. Stetter, High-order stiff ODE solvers via automatic differentiation and rational prediction, in International Workshop on Numerical Analysis and Its Applications, Springer, 1996, pp. 114-125.
[15] G. Dahlquist et al., Problems related to the numerical treatment of stiff differential equations, in International Computing Symposium, 1973, pp. 307-314.
[16] G. G. Dahleuis t, A special stability problem for linear multistep methods, BIT Numerical Mathematics, 3 (1963), pp. 27-43.
[17] I. Duff And C. GEAR, Computing the structural index, SIAM Journal on Algebraic and Discrete Methods, 7 (1986), pp. 594-603.
[18] B. L. Ehle, On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems, PhD thesis, University of Waterloo, Waterloo, Ontario, 1969.
[19] E. Eich-Soellner and C. FÜhrer, Numerical methods in multibody dynamics, vol. 45, Springer, 1998.
[20] E. Gad, M. Nakhla, R. Achar, and Y. Zhou, A-stable and L-stable highorder integration methods for solving stiff differential equations, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28 (2009), pp. 1359-1372.

Ph.D. Thesis - Reza Zolfaghari
[21] C. GEAR, Simultaneous numerical solution of differential-algebraic equations, IEEE transactions on circuit theory, 18 (1971), pp. 89-95.
[22] C. W. Gear, Differential-algebraic equation index transformations, SIAM Journal on Scientific and Statistical Computing, 9 (1988), pp. 39-47.
[23] ——, Differential algebraic equations, indices, and integral algebraic equations, SIAM Journal on Numerical Analysis, 27 (1990), pp. 1527-1534.
[24] E. Griepentrog and R. Marz, Differential-algebraic equations and their numerical treatment, in Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 88., BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1986. With German, French and Russian summaries.
[25] A. Griewan k, ODE solving via automatic differentiation and rational prediction, Pitman Research Notes in Mathematics Series, (1996), pp. 36-56.
[26] , Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Frontiers in applied mathematics, SIAM, Philadelphia, PA, 2000.
[27] A. Griewank, D. Juedes, And J. Utke, ADOL-C, a package for the automatic differentiation of algorithms written in $C / C++$, ACM Trans. Math. Software, 22 (1996), pp. 131-167.
[28] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Verlag, Berlin, second ed., 1991.

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE
[29] A. H A R O, Automatic differentiation tools in computational dynamical systems, Univ. of Barcelona Preprint, (2008).
[30] C. Hermite, Oeuvres de Charles Hermite (Gautheir-Villar, Paris), vol, 1912.
[31] A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, and C. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM TOMS, 31 (2005), pp. 363-396.
[32] D. E. Knuth, Literate Programming, Center for the Study of Language and Information, Stanford, CA, USA, 1992.
[33] D. E. Knuth and S. Levy, The CWEB System of Structured Documentation, Addison-Wesley, Reading, Massachusetts, 1993.
[34] P. Kunkel and V. Mehrmann, Index reduction for differential-algebraic equations by minimal extension, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 84 (2004), pp. 579-597.
[35] P. Kunkel and V. L. Mehrmann, Differential-algebraic equations: analysis and numerical solution, European Mathematical Society, Zürich, Switzerland, 2006.
[36] J. Lambert, Computational Methods in Ordinary Differential Equations, Wiley, 1977.

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE
[37] F. MazZia and F. Iavernaro, Test set for initial value problem solvers, Tech. Rep. 40, Department of Mathematics, University of Bari, Italy, 2003. http: //pitagora.dm.uniba.it/~testset/.
[38] R. McKenzie and J. Pryce, Structural analysis based dummy derivative selection for differential algebraic equations, BIT Numerical Mathematics, 57 (2017), pp. 433-462.
[39] V. Mehrmann, Index concepts for differential-algebraic equations, Encyclopedia of Applied and Computational Mathematics, (2015), pp. 676-681.
[40] P. Milenkovic, Numerical solution of stiff multibody dynamic systems based on kinematic derivatives, Journal of Dynamic Systems, Measurement, and Control, 136 (2014), p. 061001.
[41] W. E. Milne, A note on the numerical integration of differential equations, Journal of Research of the National Bureau of Standards, 43 (1949), pp. 537-542.
[42] R. Moore, Interval Analysis, Prentice-Hall, Englewood, N.J., 1966.
[43] N. Nedialkov and J. Pryce, DAETS user guide, Tech. Rep. CAS 08-08NN, Department of Computing and Software, McMaster University, Hamilton, ON, Canada, June 2013. 68 pages, DAETS is available at http://www.cas.mcmaster. ca/~nedialk/daets.

Ph.D. Thesis - Reza Zolfaghari
McMaster University - CSE
[44] N. S. NEDIA L K OV, Implementing a rigorous ODE solver through literate programming, in Modeling, Design, and Simulation of Systems with Uncertainties, A. Rauh and E. Auer, eds., Springer, 2011, pp. 3-19.
[45] N. S. Nedialkov and J. D. Pryce, Solving differential-algebraic equations by Taylor series (I): Computing Taylor coefficients, BIT Numerical Mathematics, 45 (2005), pp. 561-591.
[46] _ Solving differential-algebraic equations by Taylor series (II): Computing the system Jacobian, BIT Numerical Mathematics, 47 (2007), pp. 121-135.
[47] __, Solving differential-algebraic equations by Taylor series (III): the DAETS code, JNAIAM J. Numer. Anal. Indust. Appl. Math, 3 (2008), pp. 61-80.
[48] T. Nguyen-Ba, H. Yagoub, H. Hao, and R. Vaillancourt, Pryce pre-analysis adapted to some DAE solvers, Applied Mathematics and Computation, 217 (2011), pp. 8403-8418.
[49] N. Obrechkoff, Sur les quadrature mecaniques, Spisanic Bulgar Akad Nauk, 65 (1942), pp. 191-289.
[50] N. Obreshkov, Neue quadraturformeln, Verlag der Akademie der Wissenschaften, in Kommission bei W. de Gruyter, 1940.
[51] C. C. Pantelides, The consistent initialization of differential-algebraic systems, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 213-231.

Ph.D. Thesis - Reza Zolfaghari
[52] M. Pharr and G. Humphreys, Physically Based Rendering: From Theory to Implementation, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.
[53] F. A. Potra and W. C. Rheinbold, On the numerical solution of EulerLagrange equations, Journal of Structural Mechanics, 19 (1991), pp. 1-18.
[54] J. D. PRYCE, A simple structural analysis method for DAEs, BIT Numerical Mathematics, 41 (2001), pp. 364-394.
[55] G. Reissig, W. S. Martinson, and P. I. Barton, Differential-algebraic equations of index 1 may have an arbitrarily high structural index, SIAM J. Sci. Comput., 21 (1999), pp. 1987-1990.
[56] W. C. R hein b old t, Differential-algebraic systems as differential equations on manifolds, Mathematics of computation, 43 (1984), pp. 473-482.
[57] L. Scholz and A. Steinbrecher, Regularization of DAEs based on the Signature method, BIT Numerical Mathematics, 56 (2016), pp. 319-340.
[58] _ Structural-algebraic regularization for coupled systems of DAEs, BIT Numerical Mathematics, 56 (2016), pp. 777-804.
[59] L. F. S HAMPINE, Implementation of implicit formulas for the solution of ODEs, SIAM Journal on Scientific and Statistical Computing, 1 (1980), pp. 103-118.
[60] ——, Efficient use of implicit formulas with predictor-corrector error estimate, Journal of computational and applied mathematics, 7 (1981), pp. 33-35.

Ph.D. Thesis - Reza Zolfaghari
[61] B. SimEON, MBSPACK-Numerical integration software for constrained mechanical motion, Surveys on Mathematics for Industry, 5 (1995), pp. 169-201.
[62] M. Smith, Towards modern literature programming, University of Canterbury. Department of Computer Science, (2001).
[63] O. Stauning and C. Bendtsen, FADBAD++ web page, May 2003. http: //www.imm.dtu.dk/fadbad.html.
[64] J. Stoer and R. Bulirsch, Introduction to numerical analysis, vol. 12, Springer Science \& Business Media, 2013.
[65] P. Van der Houwen and J. De Swart, Parallel linear system solvers for Runge-Kutta methods, Advances in Computational Mathematics, 7 (1997), pp. 157181.
[66] O. B. Widlund, A note on unconditionally stable linear multistep methods, BIT Numerical Mathematics, 7 (1967), pp. 65-70.
[67] Y. Zhou, Stable high order methods for circuit simulation, PhD thesis, Carleton University, 2011.
[68] R. Zolfaghari and N. S. Nedialkov, Structural analysis of linear integralalgebraic equations, Journal of Computational and Applied Mathematics, 353 (2019), pp. 243-252.

List of Refinements

 291367 〉 Used in chunk 366.

〈Car Axis 323〉 Used in chunk 393.

〈Chemical Akzo Nobel 320〉 Used in chunk 385.
＜Definitions of HO Private Functions 37495157626979121124127130135137145146 $\begin{array}{llllllllll}147 & 151 & 154 & 156 & 161 & 168 & 170 & 221 & 262 & 263 \\ 280\end{array}$ Used in chunk 348.

〈Definitions of HO Public Functions 61 148〉 Used in chunk 348.

〈 Definitions of StiffDAEsolver Private Functions 194203215220222223234238258297 336）Used in chunk 362.

〈Definitions of StiffDAEsolver Public Functions 254294296 〉 Used in chunk 362.

〈Gradients Data Members 808189164352\rangle Used in chunk 25.

〈Gradients Declarations 25〉 Used in chunk 350.

〈Gradients Public Functions $828487909295165353 \quad 354$ 〉 Used in chunk 25.
 $\left.\begin{array}{llllllllll}132 & 133 & 139 & 144 & 150 & 153 & 155 & 157 & 158 & 167 \\ 174\end{array}\right\rangle \quad$ Used in chunk 23.

Ph．D．Thesis－Reza Zolfaghari
McMaster University－CSE
\langle HO Declarations 23〉 Used in chunk 343.
〈HO Private Functions 35 347〉 Used in chunk 23.
〈HO Public Functions 344345346 〉 Used in chunk 23.
〈Multi Pendula 326 396〉 Used in chunk 398.
〈Nonlinear Solver Functions 5965101177178 340〉 Used in chunk 364.
〈Oregonator 319〉 Used in chunk 380.
〈Pendulum 304〉
〈Stiff index－2 322〉 Used in chunk 389.
〈StiffDAEsolver Data Members 192195196197212229233235253295 361〉 Used in chunk 27.

〈StiffDAEsolver Declarations 27〉 Used in chunk 356.
〈StiffDAEsolver Private Functions 360〉 Used in chunk 27.
〈StiffDAEsolver Public Functions 357358 359〉 Used in chunk 27.
〈Van der Pol 316〉 Used in chunk 375.
\langle accept the solution 279〉 Used in chunk 275.
〈caraxis．cc 393〉
〈check and adjust the stepsize $h 247248$ 〉 Used in chunk 215.

〈check not to exceed maximum or fall minimum order 213〉 Used in chunk 203.
\langle chemakzo．cc 385〉
〈compare the taken stepsize and order with previous ones 276278 〉 Used in chunk 275.
$\left\langle\right.$ compute $\left.\left[\mathcal{B}_{s}\right]_{k}=\mathbf{C}_{s}\left[\mathbf{B}_{s}\right]_{k} 93\right\rangle \quad$ Used in chunk 79.
$\left\langle\right.$ compute $\left.\boldsymbol{\beta}_{s}=\mathbf{C}_{s} \mathbf{b}_{s} 44\right\rangle \quad$ Used in chunk 37.
$\left\langle\right.$ compute $\left.\frac{\partial \mathbf{f}_{I_{0}}}{\partial \mathbf{x}_{J_{0}}} 7172\right\rangle \quad$ Used in chunk 65.
$\left\langle\right.$ compute $\left.\mathbf{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}^{m}\right) 109\right\rangle \quad$ Used in chunk 101.
$\left\langle\right.$ compute $\mathrm{f}_{\mathrm{HO}}\left(\mathrm{x}_{J_{<0}}^{0}\right)$ 102 \rangle Used in chunk 101.
$\left\langle\right.$ compute $\mathbf{J}_{\mathrm{HO}} 103$ 〉 Used in chunk 101.
$\left\langle\right.$ compute $\left.\mathbf{B}_{s} 91\right\rangle \quad$ Used in chunk 79.
$\left\langle\right.$ compute $\left.\mathbf{b}_{s} 40\right\rangle$ Used in chunk 37.
$\left\langle\right.$ compute $\left.\mathbf{x}_{J_{<0}}^{m}=\mathbf{x}_{J_{<0}}^{m-1}-\boldsymbol{\delta}^{m} 108\right\rangle \quad$ Used in chunk 101.
$\left\langle\right.$ compute $\mathbf{x}_{J_{s}}$ ，for $\left.s=0,1, \ldots, q-1141143\right\rangle \quad$ Used in chunk 135.
$\left\langle\right.$ compute $\mathcal{C}_{\kappa-1}, \mathcal{C}_{\kappa}$ and $\left.\mathcal{C}_{\kappa+1} 207209\right\rangle \quad$ Used in chunk 203.
$\left\langle\right.$ compute $\left\|\mathbf{J}_{\mathrm{HO}}\right\|_{\infty}$ ，if requested 159\rangle Used in chunk 151.
$\left\langle\right.$ compute $\left.\left\|e_{p q} h^{p+q+1} \widetilde{\mathbf{E}}\right\| 200\right\rangle \quad$ Used in chunk 194.
$\left\langle\right.$ compute $\sigma_{\kappa-1}$ and $\left.\sigma_{\kappa+1} 204206\right\rangle$ Used in chunk 203.
$\left\langle\right.$ compute $\mathbf{x}_{J_{\leq 0}}^{\mathrm{HO}} 252257$ 〉 Used in chunk 215.
$\left\langle\right.$ compute $\left.e_{p q} h^{p+q+1} \widetilde{\mathbf{E}} 199\right\rangle \quad$ Used in chunk 194.
$\left\langle\right.$ compute $\left.h \widetilde{\xi}_{j k} 198\right\rangle$ Used in chunk 199.
$\left\langle\right.$ compute and set $\left.\left[\boldsymbol{\nabla} \mathbf{x}_{J_{s}}\right]_{k}=\left[\widetilde{\boldsymbol{\nabla}} \mathbf{x}_{J_{s}}\right]_{k}-\mathbf{D}_{s}^{-1}\left[\mathbf{Y}_{s}\right]_{k} 96\right\rangle \quad$ Used in chunk 79.
$\left\langle\right.$ compute and set $\left.\mathbf{x}_{J_{s}}=\widetilde{\mathbf{x}}_{J_{s}}-\mathbf{D}_{s}^{-1} \mathbf{y}_{s} 56\right\rangle \quad$ Used in chunk 37.

〈 compute condition number of \mathbf{J}_{HO} ，if requested 282\rangle Used in chunk 279 ．
\langle compute higher－order TCs 266\rangle Used in chunk 215.

〈 compute powers of $h 173\rangle$ Used in chunk 161.

Ph．D．Thesis－Reza Zolfaghari

〈 compute the smallest allowed stepsize 245 〉 Used in chunks 246 and 275.
$\left\langle\right.$ compute iteration＿error $\left.=\frac{\rho}{1-\rho}\left\|\boldsymbol{\delta}^{m}\right\| 115\right\rangle \quad$ Used in chunk 101.
〈 create a solver 307 〉 Used in chunks 305，372，377，382，386，and 390.
\langle create a DAEsolution object 309\rangle Used in chunks 305，372，377，382，386，390，and 394.
＜declare variables for integration $\begin{array}{llllllllllllll}218 & 224 & 227 & 231 & 236 & 239 & 241 & 243 & 249 & 251 & 259 & 267 & 269 & 277\end{array}$ $283287288\rangle \quad$ Used in chunk 215.
$\left\langle\begin{array}{llll}\langle & \text { declare variables for nonlinear solver } 113 & 114\rangle & \text { Used in chunk } 101 .\end{array}\right.$

〈 determine the order for next step 290〉 Used in chunk 275.

〈enumeration type for HO method 24 〉 Used in chunk 369.

〈enumeration type for order selection 202〉 Used in chunk 369.

〈estimate the error 270271272273274 〉 Used in chunk 215.
$\left\langle\right.$ evaluate $\left.\left\|\boldsymbol{\delta}^{m}\right\| 112\right\rangle \quad$ Used in chunk 101.
$\left\langle\right.$ evaluate $\left.\mathbf{f}_{I_{0}} \quad 64\right\rangle$ Used in chunk 59.
$\left\langle\right.$ find $\min \left\{\mathcal{C}_{\kappa-1}, \mathcal{C}_{\kappa}, \mathcal{C}_{\kappa+1}\right\}$ to determine the possible order change 211\rangle Used in chunk 203.

〈 find LU decomposition of $\mathbf{A}_{0} 265$ 〉 Used in chunk 262.
$\left\langle\right.$ find LU factorization of $\mathbf{J}_{\mathrm{HO}} 104105$ 〉 Used in chunk 101.
$\left\langle\right.$ find LU factorization of $\left.\mathbf{A}_{0} 142\right\rangle \quad$ Used in chunk 141.
$\left\langle\right.$ find an initial guess for $\left.\mathbf{x}_{J_{\leq \alpha}} 250\right\rangle \quad$ Used in chunk 215.
$\left\langle\begin{array}{llll}\text { get } \mathbf{x}_{J_{\leq \alpha}}^{0} & \text { from } x & 175 & 176\rangle\end{array}\right.$ Used in chunk 179.

〈gradients．h 350\rangle
\langle ho．cc 348\rangle

```
Ph.D. Thesis - Reza Zolfaghari
<ho.h 343>
<ho_auxiliary.cc 366>
<ho_auxiliary.h 365>
<ho_enumtypes.h 369>
<initialize \nabla \}\mp@subsup{\mathbf{x}}{\mp@subsup{J}{<q}{}}{}86\rangle\quad\mathrm{ Used in chunk 79.
<integrate by HO method up to the final time 301\rangle Used in chunk 294.
<integrate by explicit TS method on the first step 300\rangle Used in chunk 294.
<integrate the problem 311\rangle Used in chunks 305, 372, 377,382, 386, 390, and 394.
<irregularmatrix.cc 339>
<irregularmatrix.h 338>
<multipend.cc 398>
<nsolve_functions.cc 364\rangle
<nsolve_functions.h 363>
<optional output 292 293> Used in chunk 215.
<orego.cc 380\rangle
< output results 312\rangle Used in chunks 305,372, 377,382, 386, 390, and 394.
<predict the stepsize for next step 284 286\ Used in chunk 275.
<<prepare for integration 216 219 225 228 232 237 240 242 244 246 255 268) Used in
        chunk 215.
<prepare for next step 275\rangle Used in chunk 215.
\langleproject }\mp@subsup{\mathbf{x}}{\mp@subsup{J}{\leq0}{\prime}}{\textrm{HO}}\mathrm{ onto constraints 260 261 \ Used in chunk 215.
```

Ph．D．Thesis－Reza Zolfaghari
McMaster University－CSE
\langle reset parameters 181\rangle Used in chunk 161.
$\left\langle\right.$ save $\left\|\boldsymbol{\delta}^{m}\right\|$ for computing ρ in next iteration 116\rangle Used in chunk 101.
$\left\langle\operatorname{set} \mathbf{X}_{J_{<0}} 136138\right\rangle \quad$ Used in chunk 135.
$\left\langle\right.$ set $\left.\mathbf{X}_{J_{<q}} 88\right\rangle \quad$ Used in chunk 79.
$\left\langle\right.$ set $\left.\mathbf{x}_{J_{\leq 0}}^{\mathrm{PR}} 264\right\rangle \quad$ Used in chunk 262.
〈 set order 298299 〉 Used in chunk 294.

〈 set Car Axis initial values 392 〉 Used in chunk 390.

〈set Chemical Akzo Nobel initial values 384〉 Used in chunk 382.

〈set Multi Pendula initial values 397〉 Used in chunk 394.

〈 set Oregonator initial values 379 〉 Used in chunk 377.

〈 set Stiff index－2 initial values 388 〉 Used in chunk 386.

〈 set Van der Pol initial values 374 〉 Used in chunk 372.
\langle set initial values 310\rangle Used in chunk 305.
\langle set order and tolerance 308$\rangle \quad$ Used in chunks 305，372，377，382，386，390，and 394.
$\left\langle\right.$ set parameters to evaluate $\left.\frac{\partial \mathbf{f}_{I_{0}}}{\partial \mathbf{x}_{J_{0}}} 66 \quad 676870\right\rangle \quad$ Used in chunk 65.
〈 set parameters to evaluate $\mathbf{f}_{I_{0}} 6063$ 〉 Used in chunk 59.

〈set parameters to form the HO system $\begin{array}{llllll}163 & 166 & 169 & 171\rangle & \text { Used in chunk } 161 .\end{array}$

〈 set size of Chemical Akzo Nobel and integration interval 383〉 Used in chunk 382.

〈 set size of DAE and integration interval 306〉 Used in chunk 305.

〈 set size of Multi Pendula and integration interval 395〉 Used in chunk 394.

〈 set size of Stiff index－2 and integration interval 387〉 Used in chunk 386.

〈set size of Van der Pol and integration interval 373〉 Used in chunk 372.
〈size of Car Axis and the integration interval 391〉 Used in chunk 390.
〈size of Oregonator and the integration interval 378〉 Used in chunk 377.
$\left\langle\right.$ solve $\left.\mathbf{J}_{\mathrm{HO}} \boldsymbol{\delta}^{m}=\mathbf{f}_{\mathrm{HO}}\left(\mathbf{x}_{J_{<0}}^{m-1}\right) 106\right\rangle \quad$ Used in chunk 101.
$\left\langle\right.$ solve $\left.\mathrm{f}_{I_{0}}=075\right\rangle \quad$ Used in chunk 57.
$\left\langle\right.$ solve $\left.\mathbf{A}_{0}\left[\mathbf{Y}_{s}\right]_{k}=\left[\mathcal{B}_{s}\right]_{k} 94\right\rangle \quad$ Used in chunk 79.
$\left\langle\right.$ solve $\left.\mathbf{A}_{0} \mathbf{y}_{s}=\boldsymbol{\beta}_{s} 54\right\rangle \quad$ Used in chunk 37.
〈 solve Car Axis 390〉 Used in chunk 393.
〈 solve Chemical Akzo Nobel 382〉 Used in chunk 385.
〈 solve Multi Pendula 394〉 Used in chunk 398.
〈solve Oregonator 377〉 Used in chunk 380.
〈solve Stiff index－2 386〉 Used in chunk 389.
〈 solve Van der Pol 372〉 Used in chunk 375.
〈solve simple pendulum 305 〉
〈 solve the HO system 179〉 Used in chunk 161.
〈stiff＿daesolver．cc 362〉
〈stiff＿daesolver．h 356〉
$\left\langle\right.$ store the computed $\frac{\partial \mathbf{f}_{I_{0}}}{\partial \mathbf{x}_{J_{0}}}$ at sun＿jac 73〉 Used in chunk 65.
〈update x 180〉 Used in chunk 161.
〈vdpol．cc 375\rangle
〈vdpol＿index2．cc 389〉

[^0]: ${ }^{1}$ In order to match the theory and implementation that follows, we start the indexing from 0 as in $\mathrm{C} / \mathrm{C}++$.

