
NUMERICAL INTEGRATION OF STIFF

DIFFERENTIAL-ALGEBRAIC EQUATIONS

NUMERICAL INTEGRATION OF STIFF

DIFFERENTIAL-ALGEBRAIC EQUATIONS

By

REZA ZOLFAGHARI

A Thesis Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy

McMaster University © Copyright by Reza Zolfaghari, January 2020

McMaster University (School of Computational Science and Engineering)

Doctor of Philosophy (2020), Hamilton, Ontario

TITLE: Numerical Integration of Stiff Differential-Algebraic Equations

AUTHOR: Reza Zolfaghari

SUPERVISOR: Professor Nedialko. S. Nedialkov

Department of Computing and Software

McMaster University

NUMBER OF PAGES: ix, 268

ii

Abstract

Systems of differential-algebraic equations (DAEs) arise in many areas including electri-

cal circuit simulation, chemical engineering, and robotics. The difficulty of solving a DAE

is characterized by its index. For index-1 DAEs, there are several solvers, while a high-index

DAE is numerically much more difficult to solve. The DAETS solver by Nedialkov and

Pryce integrates numerically high-index DAEs. This solver is based on explicit Taylor series

method and is efficient on non-stiff to mildly stiff problems, but can have severe stepsize

restrictions on highly stiff problems.

Hermite-Obreschkoff (HO) methods can be viewed as a generalization of Taylor series

methods. The former have smaller error than the latter and can be A- or L- stable. In

this thesis, we develop an implicit HO method for numerical solution of stiff high-index

DAEs. Our method reduces a given DAE to a system of generally nonlinear equations and

a constrained optimization problem. We employ Pryce’s structural analysis to determine

the constraints of the problem and to organize the computations of higher-order Taylor

coefficients (TCs) and their gradients. Then, we use automatic differentiation to compute

these TCs and gradients, which are needed for evaluating the resulting system and its

Jacobian.

iii

We design an adaptive variable-stepsize and variable-order algorithm and implement it

in C++ using literate programming. The theory and implementation are interwoven in this

thesis, which can be verified for correctness by a human expert. We report numerical results

on stiff DAEs illustrating the accuracy and performance of our method, and in particular, its

ability to take large steps on stiff problems.

iv

Acknowledgements

This thesis would not have been possible without the expertise and guidance of my

supervisor Dr. Ned Nedialkov. He shared with me his profound knowledge about design

and evaluation of a numerical software for differential equations. He offered me invaluable

suggestions and resources to improve my programming skills and technical writing and

spent incredibly many hours on reading and commenting on my codes, writing and slides. I

am and have been extremely grateful for his constant support.

I would like to thank my supervisory committee members, Dr. Bartosz Protas (Mathemat-

ics & Statistics) and Dr. Tim Field (Electrical & Computer Engineering), for their continuous

advice and help. I thank Dr. Wayne Enright and Dr. Kenneth R. Jackson (Department of

Computer Science, University of Toronto) for giving me the opportunity to present my work

at University of Toronto and for valuable hints and discussions. I wish to thank Dr. Andreas

Griewank (Institute of Mathematics, Humboldt-Universität zu Berlin) for being my external

examiner. His constructive comments greatly improved the thesis.

To my parents, thank you for inspiring me and loving me without ceasing. To my wife,

thank you for standing by me through thick and thin. To my daughter, you have been a

source of joy and encouragement, thank you.

Finally, I gratefully acknowledge the support of the Ontario Trillium Scholarship.

iv

Contents

1 Introduction 2

1.1 Motivation . 4

1.2 Contributions . 5

1.3 Thesis organization . 6

2 Background 8

2.1 Stability and stiffness . 8

2.2 Pryce’s structural analysis . 10

2.3 Automatic differentiation . 14

2.3.1 Forward mode . 15

2.3.2 Reverse mode . 15

2.3.3 Taylor coefficients . 16

2.3.4 The FADBAD++ package . 17

2.4 Literate programming . 18

2.5 The DAETS solver . 19

3 An Hermite-Obreschkoff method for ODEs 20

v

3.1 Hermite-Obreschkoff formula . 21

3.2 Proposed method . 25

4 An Hermite-Obreschkoff method for DAEs 30

4.1 Computational scheme for Taylor coefficients 31

4.2 Proposed method . 34

4.3 Implementation . 39

4.3.1 Classes in DAETS . 39

4.3.2 The HO class . 41

4.3.3 The Gradients class . 42

4.3.4 The StiffDAEsolver class . 43

4.3.5 The IrregularMatrix class . 44

5 Computing Taylor coefficients 45

5.1 Solving linear systems . 45

5.1.1 Forming the matrix . 46

5.1.2 Implementation . 48

5.2 Solving nonlinear systems . 55

5.2.1 Solving fI0 = 0 by KINSOL . 56

6 Computing gradients of Taylor coefficients 63

6.1 Computational scheme for gradients . 64

6.2 Implementation . 67

vi

6.2.1 Initializing gradients . 69

6.2.2 Computing Bs . 72

6.2.3 Computing [Bs]k . 73

6.2.4 Solving A0[Ys]k = [Bs]k . 74

6.2.5 Correcting initial guess . 74

7 Solving the Hermite-Obreschkoff system 76

7.1 Convergence of the iteration . 77

7.2 Implementation . 79

7.2.1 Evaluating residual . 85

7.2.2 Computing Jacobian . 97

7.3 Implementation of HO method for one step 101

7.3.1 Setting parameters . 102

7.3.2 Powers of the stepsize . 104

7.3.3 Solving the system . 105

8 Integration strategies 109

8.1 Hermite-Nordsieck vector . 110

8.1.1 Implementation . 112

8.2 Prediction . 114

8.2.1 Implementation . 114

8.3 Error estimation . 116

8.3.1 Implementation . 118

vii

8.4 Stepsize and order selection . 120

8.4.1 Implementation . 122

9 The integrator function 129

9.1 Integration by HO method . 130

9.1.1 Preparation for integration . 134

9.1.2 Checking the stepsize . 143

9.1.3 Finding an initial guess . 144

9.1.4 Applying the HO method . 145

9.1.5 Projection . 147

9.1.6 Computing higher-order TCs . 148

9.1.7 Error estimation . 150

9.1.8 Preparation for next step . 151

9.1.9 Optional output . 158

9.2 The function integrate . 160

10 Numerical results 164

10.1 Basic usage . 164

10.1.1 Problem definition . 164

10.1.2 Main program . 165

10.2 Numerical experiments . 169

10.2.1 Test problems . 169

10.2.2 Accuracy . 181

viii

10.2.3 Efficiency . 184

10.2.4 Variable-order versus fixed-order . 185

11 Conclusions 190

A The integrator function in DAETS 193

B The IrregularMatrix class 200

C KINSOL 213

D Files 217

D.1 The HO class . 217

D.1.1 Constructor . 218

D.1.2 Destructor . 220

D.2 The Gradients class . 223

D.2.1 Constructor . 224

D.2.2 Destructor . 224

D.3 The StiffDAEsolver class . 225

D.3.1 Constructor . 226

D.3.2 Destructor . 227

D.4 Nonlinear Solver . 229

D.5 Auxiliary functions . 231

D.5.1 Generalized divided differences . 234

ix

D.6 Enumerations . 236

D.7 Examples . 236

D.7.1 Van der Pol oscillator . 236

D.7.2 Oregonator . 238

D.7.3 Chemical Akzo Nobel . 241

D.7.4 A highly stiff index-2 DAE . 243

D.7.5 Car Axis . 245

D.7.6 Multi Pendula . 248

x

List of Figures

4.1 Solver class diagram. 40

9.1 Algorithm overview. 131

10.1 Van der Pol, plots of x and x′ versus t. 170

10.2 Oregonator, plots of x, y and z versus t. 172

10.3 Chemical Akzo Nobel, plots of x1, . . . , x6 versus t. 174

10.4 Index-2 from Van der Pol, plots of x, x′ and y versus t. 176

10.5 Car axis, plots of xl, yl, xr and yr versus t. 179

10.6 Multi Pendula, index-17, plots of x1, . . . , x8 versus t. 182

10.7 Multi Pendula, index-17, plots of y1, . . . , y8 versus t. 182

10.8 Accuracy diagrams. 183

10.9 Work precision diagrams. 184

10.10 p+ q during the integration interval with tol = 10−8. 186

10.11 Van der Pol, variable-order versus fixed-order. 187

10.12 Oregonator, variable-order versus fixed-order. 187

10.13 Chemical Akzo Nobel, variable-order versus fixed-order. 188

10.14 Index-2 from Van der Pol, variable-order versus fixed-order. 188

xi

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

10.15 Car Axis, variable-order versus fixed-order. 189

1

Chapter 1

Introduction

Many dynamical systems are modelled as differential-algebraic equations (DAEs). In this

work, we consider the general formulation1

fi(t, the xj and derivatives of them) = 0, i = 0, 1, . . . , n− 1, (1.1)

where xj(t), j = 0, 1, . . . , n − 1, are state variables, and t is the time variable. The

formulation (1.1) may include high-order derivatives and equations that are jointly nonlinear

in leading derivatives. Assuming that the functions fi and xj are sufficiently differentiable,

we develop a numerical method for (1.1).

The difficulty of solving a DAE is characterized by its index. Numerical methods

for DAEs have been studied by different groups in mathematics, computer science and

engineering. There are various definitions of the index in the literature: differentiation index

[11], perturbation index [28], tractability index [24], strangeness index [34], structural index

1In order to match the theory and implementation that follows, we start the indexing from 0 as in C/C++.

2

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

[17], and geometric index [56]. A DAE of index ≥ 2 is considered high-index DAE. For

analysis and comparison of various index concepts see [12, 22, 23, 35, 39, 54, 55] .

The difficulty of solving a DAE is mainly due to hidden constraints that are not explicitly

given in the system. If these constraints are not forced during the integration, the computed

solution may drift off from the true solution due to numerical errors [35, p. 217].

Numerical methods for DAEs can be divided into two classes [4, p. 261]:

1. methods based on direct discretizations of the given DAE, e.g., backward differentia-

tion formula (BDF) for index-1 DAEs [7, 21], and Radau methods for some special

index ≤ 3 DAEs [28].

2. methods that involve an index reduction prior to a discretization, e.g., stabilization

techniques [19, 28, 61], projection methods [2, 3], and the differential-geometric

approach [53].

When a dynamical system is modelled as (1.1), the state variables usually have a physical

significance. Changing the system may produce less meaningful variables. Using a solver

based on a direct discretization of the original DAE enables a scientist or engineer to explore

easier the effect of modelling changes and parameter variation [7, p. 2]. Furthermore, an

index reduction method may be costly and involve user intervention [4, p. 261]. It also can

destroy sparsity and prevent the exploitation of the system’s structure [7, p. 2].

3

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

1.1 Motivation

For index-1 DAEs, there are several solvers, e.g., DASSL [7], IDA of SUNDIALS [31], and

MATLAB’s ode15s and ode23t. However, a high-index DAE is numerically much more

difficult to solve. Basically, solving a high-index problem needs differentiation, instead of

integration only. High-index DAE solvers such as RADAU5 [28], MEBDFDAE [13], BIMD

[8] and PSIDE [65] solve some DAEs of index ≤ 3.

DAETS by Nedialkov and Pryce [43, 45–47] is a powerful tool for non-stiff high-index

DAEs. It uses the Pryce’s structural analysis (Σ-method) [54] to analyze a DAE and solve it

numerically by expanding the solution in Taylor series (TS) at each integration step. DAETS

is suitable for non-stiff to mildly stiff problems, and is not efficient on very stiff systems.

This thesis focuses on developing a method suitable for solving stiff DAEs.

Stiff problems are problems for which certain implicit numerical integration methods

perform tremendously better than explicit ones [28]. Such problems arise in the study of

atmospheric phenomena, chemical kinetics, chemical reactions occurring in living species,

electronic circuits, mechanics, and molecular dynamics [1]. Using an explicit Taylor series

method, DAETS cannot be very efficient for highly stiff DAEs. A promising approach is to

develop an implicit Hermite-Obreschkoff (HO) method, which is known to have much better

stability, in the ODE sense, than Taylor series methods.

Derivation and properties of HO methods for first-order ODEs are discussed in [14, 25]

and [36, p. 199]. These methods have recently been applied to systems arising from electrical

circuits [20, 67] and the forward-dynamics problem of a single-loop kinematic chain [40].

4

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

1.2 Contributions

The following are the main contributions of this thesis.

• Using the HO formula for some derivatives of state variables xj in (1.1), determined

by the Pryce’s Σ-method, we develop an HO method which reduces the DAE (1.1) to

a system of equations and a constrained optimization problem. The proposed method

can be A- or L- stable in ODE sense.

• We employ the Σ-method to organize the computations of gradients of higher-order

Taylor coefficients in terms of independent ones. Then, we use automatic differentia-

tion to compute these gradients for constructing the Jacobian of the reduced system of

equations required by Newton’s method.

• We define a specially tailored vector for a function at a point. Constructing this vector

for solution components enables us to find an initial guess for the solution and to

estimate the discretization error of the HO method with different orders. As a result,

we design an adaptive variable-stepsize and variable-order algorithm for integrating

the problem.

• We implement our algorithm in C++ using literate programming. The theory, docu-

mentation, and source code are interwoven in this thesis, which can be verified for

correctness by a human expert, like in a peer-review process.

5

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

1.3 Thesis organization

The rest of this thesis is organized as follows.

Chapter 2 gives an overview of relevant concepts and background.

In Chapter 3, we derive the HO formula and employ it for the numerical solution of an

ODE of a general form.

In Chapter 4, we develop an HO method for the DAE (1.1) using the HO formula and

Pryce’s structural analysis.

Chapter 5 describes and implements the computations of higher-order TCs as solution

components are given.

Chapter 6 derives and implements the computations of gradients of higher-order TCs in

terms of solution components.

In Chapter 7, we solve the resulting nonlinear system using a modified Newton iteration

and implement the HO method for one step.

In Chapter 8, we first define and construct Hermite-Nordsieck vectors for solution

components. Then, we show how these vectors are employed to predict a solution and to

estimate the discretization error. Finally, stepsize and order selection strategies are derived.

Chapter 9 describes the components of the algorithm and implements the integrator

function.

In Chapter 10, we first give an example of coding a function defining a DAE, and a main

program to solve the problem with DAETS. Then, we report numerical results on stiff ODEs

and DAEs.

6

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Chapter 11 gives concluding remarks.

7

Chapter 2

Background

In this chapter, we present the background needed for the remaining of this thesis. §2.1

gives a brief overview of stability and stiffness concepts. §2.2 summarizes the main steps of

Pryce’s structural analysis. §2.3 presents some basic concepts of automatic differentiation.

§2.4 discusses literate programming. Finally, §2.5 gives an overview of DAETS.

2.1 Stability and stiffness

The stability of an integration method for initial-value problems in ordinary differential

equations (ODEs) is typically studied on the test problem

y′ = λy, y(0) = y0,

where Re(λ) < 0. Since the exact solution y(t) = y0e
λt decays exponentially, a stepsize h

must be selected such that the sequence of numerical approximations yi ≈ y(ih), i = 1, 2, . . .

8

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

is monotonically decreasing. A region in the complex z-plane (with z = λh) for which

a numerical method preserves this property is called the stability domain of the method

[28, p. 16].

If we use an integration method with a small stability domain, we may need to choose a

very small stepsize h to maintain stability. Therefore, a desirable property for a numerical

integrator is to have a large stability domain.

An integration method is A-stable if its stability domain contains the entire left half

z-plane [16]. A weakness of the A-stability definition is that it does not distinguish [4, p. 56]

between

Re(λ)→ −∞,

and

−1� Re(λ) ≤ 0,
∣∣Im(λ)

∣∣→∞.
Another weakness of A-stability definition is that if Re(λ)→ −∞ and h is not small, the

numerical solutions yi may decay to zero very slowly [36, p. 236]. This leads us to a stronger

concept of stability. A method is said to be L-stable [18] if it is A-stable and

yi+1

yi
→ 0 as λh→ −∞.

Consider a system of ordinary differential equations of the form

y′ = f(t,y). (2.1)

Suppose that all eigenvalues λi of the Jacobian matrix ∂f/∂y are in the left half z-plane so

that the ratio maxi|λi| /mini|λi| is large. Hence, the solution of the system (2.1) contains

9

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

very fast components as well as very slow components [15]. If an integration method with

small stability domain, as in many explicit methods, is used for solving such problem, it

might become very inefficient. In this case, the system (2.1) is called stiff [5, p. 130].

Although the eigenvalues of ∂f/∂y play central role in the stiffness of (2.1), the size of

the system, the smoothness of the solution and the integration interval are also important

[28, p. 1].

Ideally, one would like to use an A-stable (or L-stable) method to solve stiff problems.

However, it is known that no linear multistep formula of order greater than 2 can be A-stable

[16]. As a result of this barrier, one could use so-called A(α)-stable methods, α ∈ (0, π/2),

for which the sector

Cα = {λh ∈ C :
∣∣arg(−λ)

∣∣ < α, λ 6= 0},

is contained in the stability domain [66]. Prime example of these methods are BDF methods

of orders 1 to 5.

Explicit Taylor series methods of order κ for κ→∞ are A-stable, i.e., the size of the

stability domain grows linearly with κ in its radius [6]. Hence, a high-order method can be

used on moderately stiff problems [6, 45].

2.2 Pryce’s structural analysis

Before a numerical method is applied to a DAE, some kind of structural analysis is necessary

to determine DAE’s structure and index. Among structural analysis methods, Pantelides’s

10

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

algorithm [51] is widely used. Pryce’s Σ-method [54] is becoming increasingly popular

[38, 45, 48, 57, 58, 68] due to its capability of analyzing high-order systems. In this section,

we review this method for a DAE in the form of (1.1).

The Σ-method for (1.1) consists of the following steps.

1. Build the signature matrix Σ = (σij), where

σij =

order of the highest order derivative to which xj occurs in fi; or

−∞ if xj does not occur in fi.

2. Find a highest value transversal (HVT) of Σ. A transversal T of Σ is a set of n

positions (i, j) with one entry in each row and each column. We seek a transversal

with the maximal value

Val(Σ) =
∑

(i,j)∈T
σij.

3. Compute n-dimensional non-negative integer vectors c and d that satisfy

dj − ci ≥ σij, for all i, j = 0, 1, ..., n− 1, and

dj − ci = σij, for all (i, j) ∈ HVT.

Vectors c and d are referred to as the offsets of the problem. They are not unique, but

we choose the smallest or canonical offsets; smallest being in the sense of a ≤ b if

ai ≤ bi for all i.

4. Form the system Jacobian matrix J with

(J)ij = ∂f
(ci)
i

∂x
(dj)
j

=

∂fi

∂x
(σij)
j

, if dj − ci = σij, and

0 otherwise.

(2.3)

11

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

5. Seek values for the xj and for appropriate derivatives, consistent with the DAE, and at

which J is nonsingular. If such values are found, we say the method "succeeds" and

there is locally a unique solution of the DAE.

When the method succeeds:

• Val(Σ) equals the number of degrees of freedom (DOF) of the DAE, that is the number

of independent initial conditions required.

• The structural index is defined by

νs = max
i
ci +

1 if some dj is 0,

0 otherwise.

The structural index is an upper bound for differentiation index, which is the minimum

number of differentiations needed to reduce a DAE to a system of ODEs.

We illustrate the above concepts using the following example.

Example 2.1. The simple pendulum DAE in Cartesian coordinates is

0 = f = x′′ + λx,

0 = g = y′′ + λy +G,

0 = h = x2 + y2 − L2.

(2.4)

Here the state variables are x, y, λ; G is gravity, and L is the length of the pendulum.

12

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

The signature matrix of this DAE is

Σ =

x y λ ci

f 2• −∞ 0 0

g −∞ 2 0• 0

h 0 0• −∞ 2

dj 2 2 0

,

where an HVT is marked by •. The system Jacobian matrix (2.3) is

J =

∂f/∂x′′ 0 ∂f/∂λ

0 ∂g/∂y′′ ∂g/∂λ

∂h/∂x ∂h/∂y 0

=

1 0 x

0 1 y

2x 2y 0

, (2.5)

which is nonsingular (det(J) = −2(x2 + y2) = −2L2 6= 0) and the method succeeds. The

structural index is

νs = max
i
ci + 1 = c2 + 1 = 3,

which is the same as the differentiation index.

Definition 2.1. The DAE (1.1) is called quasilinear if x(dj)
j , j = 0, 1, . . . , n− 1, occur in a

jointly linear way in the fi, i = 0, 1, . . . , n− 1, and non-quasilinear otherwise [47].

Example 2.2. For (2.4), the relevant derivatives x(dj)
j are x′′, y′′ and λ. Their occurrence is

jointly linear in f , g and h, so the system is quasilinear. It would still be quasilinear, if f

were changed to x′′x + xλ, x′′x′ + xλ, x′′y + xλ, or to x′′y′ + xλ. However, it would be

non-quasilinear if it were changed to (x′′)2 + xλ, x′′y′′ + xλ, or to x′′λ+ xλ.

13

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

2.3 Automatic differentiation

Automatic differentiation (AD) is the process of differentiating a computer program based

on the chain rule [29]. Suppose that a computer program P computes a differentiable

function F : Rn → Rm with runtime T . This program can be implemented as a sequence of

instructions {I1; I2; . . . ; Ir} computing the elementary differentiable functions fi : Rni−1 →

Rni , i = 1, . . . , r, with n0 = n and nr = m, such that

y = F(x) = fr(. . . (f2(f1(x))) . . .), x ∈ Rn. (2.6)

That is,

I1 computes y1 = f1(x),

Ii computes yi = fi(yi−1), for i = 2, . . . , r,

and we obtain y = yr ∈ Rm.

Applying the chain rule to (2.6) gives

F ′(x) = f ′r(yr−1) · · · f ′2(y1)f ′1(x).

To avoid the above matrix-matrix products, we may create a new program with runtime T

that computes one of the following matrix-vector products

F ′(x) ẋ, or yF ′(x),

with some seed vectors ẋ ∈ Rn×1 and y ∈ R1×m.

14

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

2.3.1 Forward mode

In the forward or tangent mode, we compute

ẏ = F ′(x)ẋ = f ′r(yr−1) · · · f ′2(y1)f ′1(x)ẋ.

The program P ′, referred to as tangent program, is created as the sequence of instructions

{I ′1; I1; I ′2; I2; . . . ; I ′r} where

I ′1 computes ẏ1 = f ′1(x)ẋ,

I ′i computes ẏi = f ′i(yi−1)ẏi−1, for i = 2, . . . , r.

The variables ẏi ∈ Rni×1, i = 1, . . . , r, are called tangent variables, and we obtain ẏ =

ẏr ∈ Rm×1.

Since the fi, i = 1, . . . , r, in (2.6) are elementary functions, the Jacobian matrices f ′i ,

i = 1, . . . , r, are very sparse and differ from the identity only in a few positions. To obtain

F ′(x), we can repeatedly call the tangent program using the Cartesian basis vectors in Rn

as seeds. This yields the complete Jacobian in a runtime of O(nT).

2.3.2 Reverse mode

In the reverse or adjoint mode, we compute

x = yF ′(x) = yf ′r(yr−1) · · · f ′2(y1)f ′1(x).

The program P , referred to as adjoint program, is created as the sequence of instructions

{I1; I2; . . . ; Ir; Īr; Īr−1; . . . ; Ī1}, where

15

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Īr computes xr = yf ′r(yr−1),

Īi computes xi = xi+1f ′i(yi−1), for i = r − 1, r − 2, . . . , 2,

Ī1 computes x1 = x2f ′i(x).

The variables xi ∈ R1×(ni−1), i = 1, . . . , r, are called adjoint variables and we obtain

x = x1 ∈ R1×n. By calling the adjoint program repeatedly with all Cartesian basis vectors

in Rm, the Jacobian F ′(x) can be computed with runtime O(mT). Therefore, reverse

methods can greatly reduce the computational cost if m� n.

2.3.3 Taylor coefficients

TCs of a sufficiently differentiable function can be generated automatically by formulas

developed by Moore [42, p.107–130]. Denote the kth TC of a function u at a point a by

uk = u(k)(a)
k! .

If sufficient TCs of functions u and v at a are given, we can compute the kth TC of a function

w(t) = f
(
u(t), v(t)

)
at a using classical rules for automatic differentiation of arithmetic

16

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

operations and elementary functions. For example,

w = u+ cv ⇒ wk = uk + cvk, c is a constant, (2.7)

w = uv ⇒ wk =
k∑
r=0

urvk−r, (2.8)

w = u/v ⇒ wk = 1
v0

uk − k−1∑
r=0

wrvk−r

 , v0 6= 0,

w =
√
u ⇒ w0 = √u0, wk = 1

2w0

uk − k−1∑
r=1

wrwk−r

 , k ≥ 1,

w = exp(u) ⇒ w0 = exp(u0), wk = 1
k

k−1∑
r=0

(k − r)wruk−r, k ≥ 1.

Similar formulas can be derived for other elementary functions, e.g., sin, cos, log, . . .

[26, Chapter 10]. We also use

w = u(m) ⇒ wk = (k + 1)(k + 2) · · · (k +m)uk+m. (2.9)

Consider a function w(t) = f
(
u(t)

)
, with u : R→ Rn. The computational complexity

of evaluating w0, w1, . . . , wk is [42]

• O(k), if f is linear, or

• O(sk2), if f involves s multiplications, divisions, and/or elementary functions.

Packages for generating TCs include ADOL-C [27] and FADBAD++ [63].

2.3.4 The FADBAD++ package

We compute required TCs and their gradients through operator overloading. This approach

is carried out using FADBAD++ developed by Stauning and Bendtsen [63]. This package

contains C++ templates and works by overloading arithmetic operations and elementary

17

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

functions to include calculation of derivatives. To enable these overloaded operations the

arithmetic type (normally double) is changed to the appropriate AD-type. The AD-types

are defined by three templates F<> for forward mode, B<> for reverse mode and T<>

for Taylor coefficients. A unique feature of FADBAD++ is the ability to compute high

order derivatives in a flexible way by combining the methods of automatic differentiation.

These combinations are produced by applying the templates on themselves. For example the

combination T< F<double> > can be used to compute gradients of Taylor coefficients [46].

2.4 Literate programming

Literate programming was introduced by Donald Knuth [32] in the early 1980s based on

the idea that [52] "programs should be written more for people’s consumption than for

computers’ consumption". In a literate program, documentation and code are in one source.

Then literate programming tools either tangle the program to produce a source code suitable

for compilation, or weave it to produce a document suitable for typesetting.

A literate program is presented in a form that enhances the readability of code [62]. An

algorithm is decomposed into smaller parts and explained in that order is most appropriate to

aid comprehension. Each named block of code is called a chunk or section, and each chunk

can refer to other chunks by name. The description of a chunk is as important as its code,

encouraging careful design and documentation [52].

This thesis is a literate program using CWEB [33] and its ctangle and cweave utilities.

This literate programming tool enables the inclusion of documentation and C++ code in a

18

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

CWEB file, which is a LATEX file with additional statements for dealing with C++ code

[44].

2.5 The DAETS solver

The DAETS (DAE by Taylor Series) solver [43, 45–47] accepts a DAE of the general form

(1.1) where the functions fi are sufficiently differentiable. It first employs the Σ-method to

analyze the DAE and prescribe a stage by stage solution scheme. This scheme indicates at

each stage which equations need to be solved and for which Taylor coefficients (TCs) for the

solution. Then, it computes these TCs up to some order using automatic differentiation and

expands the solution in a Taylor series. This solver is implemented as a collection of C++

classes in the variable-stepsize and fixed-order mode where a typical order is in the range

12− 20.

19

Chapter 3

An Hermite-Obreschkoff method for

ODEs

Obreschkoff [50] developed in 1940 a quadrature formula that utilizes derivatives of the

integrand up to any order at two points. It appears that Milne [41] was the first to advocate

the use of this formula for the numerical solution of ordinary differential equations [36].

Quadrature formulae involving higher-order derivatives go back to Hermite in 1912 [30].

Obreschkoff’s formula can be derived using an Hermite polynomial that interpolates the

integrand and a certain number of its derivatives at two points. For these reasons, we refer to

methods based on such formulae as Hermite-Obreschkoff (HO) methods.

We derive the HO formula that determines the relation between Taylor coefficients of the

kth derivative of a sufficiently differentiable function at two points, §3.1. Then, we develop

a numerical method for an ODE of the general form (implicit and any order), §3.2.

20

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

3.1 Hermite-Obreschkoff formula

In this section, we derive a relation between Taylor coefficients of a sufficiently differentiable

function at two points. For arbitrary non-negative integers p and q, and for a scalar function

y ∈ Cp+q+1[a, b], consider the identity

y(b)− y(a) =
∫ b

a
y′(t)dt. (3.1)

Denoting h = b− a and

g(s) = y′(a+ sh), 0 ≤ s ≤ 1,

we have ∫ b

a
y′(t)dt = h

∫ 1

0
g(s)ds. (3.2)

Following the idea in [14], we approximate g(s) with an Hermite interpolating polynomial

that interpolates g(s) and a certain number of its derivatives at the two endpoints a and b.

Let Πn be the set of all polynomials whose degrees do not exceed n. There is a unique

interpolating polynomial P (s) ∈ Πp+q−1 [64, p. 52], such that

P (j)(0) = g(j)(0) = hjy(j+1)(a), j = 0, 1, . . . , p− 1, and

P (j)(1) = g(j)(1) = hjy(j+1)(b), j = 0, 1, . . . , q − 1.
(3.3)

The Lagrangian representation of P has the form [64, p. 52]

P (s) =
p−1∑
j=0

hjy(j+1)(a)Lpqj (s) +
q−1∑
j=0

hjy(j+1)(b)Lqpj (s), (3.4)

21

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

with generalized Lagrange polynomials Lpqj , L
qp
j ∈ Πp+q−1 defined as follows. Denote

lpqj (s) = sj(1− s)q
j! , j = 0, 1, . . . , p− 1, and

lqpj (s) = sp(s− 1)j
j! , j = 0, 1, . . . , q − 1.

Then

Lpqp−1(s) = lpqp−1(s), Lqpq−1(s) = lqpq−1(s),

Lpqj (s) = lpqj (s)−
p−1∑
i=j+1

di

dsi
lpqj (s)

∣∣∣
s=0

Lpqi (s), j = p− 2, p− 3, . . . , 0, and

Lqpj (s) = lqpj (s)−
q−1∑
i=j+1

di

dsi
lqpj (s)

∣∣∣
s=1

Lqpi (s), j = q − 2, q − 3, . . . , 0.

By induction

dm

dsm
Lpqj (s)|s=0=

1 if j = m,

0 otherwise,

and

dm

dsm
Lqpj (s)|s=1=

1 if j = m,

0 otherwise,

which show that (3.4) satisfies in (3.3).

Using the convergence theorem of Hermite interpolation [64, p. 57], there exists ζ(s) ∈

[0, 1] such that

g(s) = P (s) + sp(s− 1)q
(p+ q)! g

(p+q)
(
ζ(s)

)
. (3.5)

Denote

Q(s) = (p+ q)! g(s)− P (s)
sp(s− 1)q ,

22

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

which is a continuous function on the interval (0, 1). By (3.3) and (3.5) we can assume,

without loss of generality, that

g(p+q)
(
ζ(s)

)
=

Q(s), s ∈ (0, 1),

lim
s→0+

Q(s), s = 0,

lim
s→1−

Q(s), s = 1.

Clearly g(p+q)
(
ζ(s)

)
is continuous on [0, 1].

Integrating (3.5), we write

∫ 1

0
g(s)ds =

∫ 1

0
P (s)ds+

∫ 1

0

sp(s− 1)q
(p+ q)! g

(p+q)
(
ζ(s)

)
ds. (3.6)

Denote

cpqj+1 =
∫ 1

0
Lpqj (s)ds, and

cqpj+1 =
∫ 1

0
Lqpj (s)ds.

Integrating the interpolating polynomial (3.4), we obtain

∫ 1

0
P (s)ds =

p−1∑
j=0

hjy(j+1)(a)cpqj+1 +
q−1∑
j=0

hjy(j+1)(b)cqpj+1. (3.7)

By the mean-value theorem for integrals

∫ 1

0

sp(s− 1)q
(p+ q)! g

(p+q)(ζ(s))ds = g(p+q)(δ)
(p+ q)!

∫ 1

0
sp(s− 1)qds

= (−1)q p!q!
(p+ q)!

y(p+q+1)(η)
(p+ q + 1)!h

p+q, (3.8)

for some δ ∈ (0, 1) and η ∈ (a, b). Substituting (3.2) in (3.1), and by (3.6), (3.7) and (3.8),

23

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

we obtain

y(b)− y(a) =h
∫ 1

0
g(s)ds

=h
∫ 1

0
P (s)ds+ h

∫ 1

0

sp(s− 1)q
(p+ q)! g

(p+q)
(
ζ(s)

)
ds

=
p−1∑
j=0

hj+1y(j+1)(a)cpqj+1 +
q−1∑
j=0

hj+1y(j+1)(b)cqpj+1

+ (−1)q p!q!
(p+ q)!

y(p+q+1)(η)
(p+ q + 1)!h

p+q+1,

which we write it as

q∑
j=0

cqpj y
(j)(b)hj −

p∑
j=0

cpqj y
(j)(a)hj = (−1)q p!q!

(p+ q)!
y(p+q+1)(η)
(p+ q + 1)!h

p+q+1. (3.9)

The coefficients cpqj and cqpj are known to be [14, 25]

cpqj = p!(p+ q − j)!
j!(p+ q)!(p− j)! , j = 0, 1, . . . , p, (3.10)

cqpj = (−1)j q!(p+ q − j)!
j!(p+ q)!(q − j)! , j = 0, 1, . . . , q. (3.11)

There is an important fact about these coefficients stated as the following theorem.

Theorem 3.1. [14, 49] Let Rpq(z) be the rational (p, q) Pade approximation of exp(z). The

coefficients (3.10) and (3.11) are identical with the coefficients of Rpq(z). That is,

Rpq(z) =
∑p
j=0 c

pq
j z

j∑q
j=0 c

qp
j z

j
.

Consider a function x ∈ Cp+q+k+1[a, b] with k ≥ 0. Replacing y by x(k) in (3.9), we

obtain

q∑
j=0

cqpj x
(k+j)(b)hj −

p∑
j=0

cpqj x
(k+j)(a)hj = (−1)q p!q!

(p+ q)!
x(k+p+q+1)(η)
(p+ q + 1)! h

p+q+1,

24

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

which we write as

q∑
j=0

cqpj (k + j)!x
(k+j)(b)

(k + j)! h
j −

p∑
j=0

cpqj (k + j)!x
(k+j)(a)

(k + j)! h
j

= (−1)q p!q!
(p+ q)!

x(k+p+q+1)(η)
(p+ q + 1)! h

p+q+1. (3.12)

Denoting the lth Taylor coefficient of x at a τ by
(
x(τ)

)
l
, and denoting

αkj = cpqj (k + j)!, and (3.13)

βkj = cqpj (k + j)!, (3.14)

we write (3.12) as

q∑
j=0

βkj
(
x(b)

)
k+j

hj −
p∑
j=0

αkj
(
x(a)

)
k+j

hj = (−1)q p!q!
(p+ q)!

x(k+p+q+1)(η)
(p+ q + 1)! h

p+q+1. (3.15)

We call (3.15) the (p, q) Hermite-Obreschkoff (HO) formula for x(k)(t) at a and b. This

formula shows the relation between TCs of x(k)(t) at a and b up to orders p and q, respectively.

3.2 Proposed method

Consider an ODE of the form

f
(
t, y, y′, . . . , y(d)

)
= 0,

where f : Rd+2 → R is sufficiently differentiable, ∂f/∂y(d) 6= 0, and the initial values

y(t∗), y′(t∗), . . . , y(d−1)(t∗),

are given. Although this equation can be converted into a d-dimensional system of first-order

equations, we are interested in integrating it directly.

25

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Denote

y∗<d =
[(
y(t∗)

)
0
,
(
y(t∗)

)
1
, . . . ,

(
y(t∗)

)
d−1

]
.

Generating TCs of f at t∗ using automatic differentiation (see §2.3.3) and equating them to

zero, we can compute the higher-order TCs of y at t∗. That is, for each j = d, d+ 1, . . ., a

function Tj is defined such that

(
y(t∗)

)
j

= Tj
(
t∗,y∗<d

)
.

Example 3.1. The Van der Pol oscillator evolves in time according to the following second-

order ODE

f(t, y, y′, y′′) = y′′ − µ(1− y2)y′ + y = 0. (3.16)

Here µ is a scalar parameter indicating the strength of the damping.

For brevity, we also write TCs without parentheses; yi rather that (y)i. Given y0 = y(t)

and y1 = y′(t), we can compute higher-order TCs in terms of y0 and y1. Applying (2.7),

(2.8) and (2.9) to (3.16) at t, we write

f0 =
(
y′′ − µ(1− y2)y′ + y

)
0

=
(
y′′
)

0
−
(
µ(1− y2)y′

)
0

+ y0

= 2y2 − µ
(
1− y2

)
0

(
y′
)

0
+ y0

= 2y2 − µ
(
1− y2

0

)
y1 + y0,

26

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

f1 =
(
y′′ − µ(1− y2)y′ + y

)
1

=
(
y′′
)

1
−
(
µ(1− y2)y′

)
1

+ y1

= 6y3 − µ
((

1− y2
)

0

(
y′
)

1
+
(
1− y2

)
1

(
y′
)

0

)
+ y1,

= 6y3 − µ
(
1− y2

0

)
2y2 − µ(−2y0y1)y1 + y1,

...

Equating the above TCs to zero, we obtain

y2 = T2(y0, y1) = 1
2
(
µ(1− y2

0)y1 − y0
)
,

y3 = T3(y0, y1) = 1
6
(
µ
(
1− y2

0

)
2y2 + µ(−2y0y1)y1 − y1

)
,

...

yp+1 = Tp+1(y0, y1).

(3.17)

Assume that we have computed at t∗ the TCs

(
y(t∗)

)
0
,
(
y(t∗)

)
1
, . . . ,

(
y(t∗)

)
p+d−1

.

The objective is to find

y<d =
[(
y(t∗ + h)

)
0
,
(
y(t∗ + h)

)
1
, . . . ,

(
y(t∗ + h)

)
d−1

]
,

for a given stepsize h. Using the (p, q) HO formula (3.15) for y(k)(t) with k = 0, 1, . . . , d−1

27

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

at t∗ and t∗ + h yields to

q∑
j=0

βkj
(
y(t∗ + h)

)
k+j

hj −
p∑
j=0

αkj
(
y(t∗)

)
k+j

hj

=
q∑
j=0

βkjTk+j
(
t∗ + h,y<d

)
hj −

p∑
j=0

αkjTk+j
(
t∗,y∗<d

)
hj

= (−1)q p!q!
(p+ q)!

y(p+q+k+1)(ηk)
(p+ q + 1)! h

p+q+1.

Hence, we can solve the nonlinear (in general) system of equations

q∑
j=0

βkjTk+j
(
t∗+ h, ỹ<d

)
hj −

p∑
j=0

αkjTk+j
(
t∗,y∗<d

)
hj = 0, k = 0, 1, . . . , d− 1, (3.18)

to find ỹ<d as an approximation to y<d.

We call this method the (p, q) Hermite-Obreschkoff (HO) method. Clearly, the choices

(1, 0), (0, 1) and (1, 1) yield the explicit Euler method, the implicit Euler method and the

trapezoidal scheme, respectively. Moreover, the choices (p, 0) and (0, q) yield the explicit

and implicit Taylor series methods, respectively. Hence, we can consider the HO methods as

a generalization of Taylor series methods.

Example 3.2. Consider the Van der Pol equation in Example 3.1. Assume that we have

computed y∗j , for j = 0, . . . , p+1 by (3.17). To find ỹ0 and ỹ1 as approximations to y(t∗+h)

and y′(t∗ + h), respectively, using the (p, q) HO method (3.18), we can solve the following

system of two nonlinear equations

q∑
j=0

β0jTj
(
ỹ0, ỹ1

)
hj −

p∑
j=0

α0jy
∗
jh

j = 0,

q∑
j=0

β1jTj+1
(
ỹ0, ỹ1

)
hj −

p∑
j=0

α1jy
∗
j+1h

j = 0,

where α0j and α1j are given by (3.13), and β0j and β1j are given by (3.14).

28

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Theorem 3.2. [14] For arbitrary non-negative integers p and q and for y ∈ Cp+q+d[t∗, t∗+h],

the (p, q) HO method (3.18) has the order of consistency p+ q; the order of the local error is

p+ q + 1.

By Theorem 3.1

ỹ(t∗ + h) = Rpq(λh)y(t∗),

when the (p, q) HO method (3.18) is used for the test problem y′ = λy. This leads to the

following theorem.

Theorem 3.3. [14] For y ∈ Cp+q+d[t∗, t∗ + h], the (p, q) HO method (3.18) is

• A-stable if q ∈ {p, p+ 1, p+ 2}, and

• L-stable if q ∈ {p+ 1, p+ 2}.

Thus, an HO method can be made to yield an approximation of arbitrary order without

conflicting with the A-stability (or L-stability) requirement.

29

Chapter 4

An Hermite-Obreschkoff method for

DAEs

In this chapter, we develop a numerical method based on Pryce’s structural analysis and the

HO formula (3.15) for a DAE of the general form (1.1). The overall solution process goes

in steps over the t range. TCs are computed up to a chosen order at the current t∗. Using

the HO formula (3.15) for a certain number of derivatives of the state variables at t∗ and

t∗ + h, we compute approximate values for solution components at t∗ + h, and this process

repeats. Here, we describe one step of this method. First, we explain how the computational

scheme for TCs is guided by the two non-negative integer vectors c and d (see §2.2) found

by Pryce’s structural analysis, §4.1. Then, we describe the proposed HO method in §4.2.

Finally, we present the implementation of the method in §4.3.

30

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

4.1 Computational scheme for Taylor coefficients

In general, it is not obvious how the various equations obtained by differentiating the original

DAE equations fi can be organized to solve for the TCs of the state variables xj . This is

made clear by the offsets c and d, which tell us that the computation forms a sequence of

stages [45, 54]. The process starts at stage sd = −maxj dj and is performed for stages

s = sd, sd + 1, . . ., as follows.

At stage s, we consider the set of equations

(fi)s+ci = 0, for all i such that s+ ci ≥ 0, (4.1)

to determine values for

(xj)s+dj , for all j such that s+ dj ≥ 0, (4.2)

using previously found

(xj)l, for all j such that 0 ≤ l < s+ dj. (4.3)

Example 4.1. For the pendulum, we obtained c = [0, 0, 2] and d = [2, 2, 0] in Example 2.1.

The process implied by (4.1) and (4.2) is illustrated in Table 4.1. For brevity, the TCs will

be written without parentheses: xl rather than (x)l, etc.

To express (4.1) and (4.2) in a more compact form, let

Zn = {(z, l) : z = 0, 1, . . . , n− 1, l = 0, 1, . . .},

31

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

stage uses equations to obtain previously found

−2 0 = h0 = x2
0 + y2

0 + L2 x0, y0

−1 0 = h1 = 2x0x1 + 2y0y1 x1, y1 x0, y0

0

0 = f0 = 2x2 + λ0x0

0 = g0 = 2y2 + λ0y0 +G

0 = h2 = 2x0x2 + x2
1 + 2y0y2 + y2

1

x2, y2, λ0 x0, x1, y0, y1

...
...

...
...

Table 4.1: Computational scheme for TCs of the pendulum.

and for a s ∈ Z define

Is = {(i, l) ∈ Zn : l = s+ ci}, and

Js = {(j, l) ∈ Zn : l = s+ dj}.

Denote by fIs the vector of (fi)l for (i, l) ∈ Is, and by xJs the vector of (xj)l for (j, l) ∈ Js.

The order of entries does not matter, but assume fixed. Also, define I≤s to be the union of Il

for all l ≤ s, and similarly for I<s, J≤s, J<s. With the above notation, we write (4.1) as

fIs
(
t,xJ<s ,xJs

)
= 0. (4.4)

In the solution process, xJ<s is known (as (4.3)), and we solve for xJs (as (4.2)). We will

describe this process in Chapter 5.

32

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Example 4.2. For the pendulum, let

xJ<0 = [x0, x1, y0, y1],

be known at t. Using (4.4), we have the scheme in (Table 4.2).

stage solve to obtain

0 0 = fI0

(
t,xJ<0 ,xJ0

)
xJ0 = [x2, y2, λ0]

1 0 = fI1

(
t,xJ<1 ,xJ1

)
xJ1 = [x3, y3, λ1]

2 0 = fI2

(
t,xJ<2 ,xJ2

)
xJ2 = [x4, y4, λ2]

...
...

...

p− 1 0 = fIp−1

(
t,xJ<p−1 ,xJp−1

)
xJp−1 = [xp+1, yp+1, λp−1]

Table 4.2: Scheme to compute TCs for pendulum in a compact form.

Before we propose a method which prescribes how to compute xJ<0 at t∗ + h for a given

stepsize h, we define an irregular matrix.

Definition 4.1. Let v be a vector of m positive integers. An irregular matrix of size v, is a

matrix with m rows and vi entries in its ith row.

Example 4.3. A =

3 −1

0

5 1 2

is an irregular matrix of size v = [2, 1, 3].

33

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Example 4.4. Consider the following irregular matrix of size d,

(x0)0 (x0)1 . . . (x0)d0−1

(x1)0 (x1)1 . . . (x1)d1−1

...

(xn−1)0 (xn−1)1 . . . (xn−1)dn−1−1

. (4.5)

The vector xJ<0 is created by concatenating rows of (4.5).

4.2 Proposed method

Consider the DAE (1.1) with canonical offsets c and d found by the Σ-method (see §2.2).

Given xJ<0 at t∗, denote it by x∗J<0 , assume that we have solved (4.4) for s = 0, 1, . . . , p− 1

and computed at this point the TCs

(x∗0)0, (x∗0)1, . . . (x∗0)p+d0−1,

(x∗1)0, (x∗1)1, . . . (x∗1)p+d1−1,

...

(x∗n−1)0, (x∗n−1)1, . . . (x∗n−1)p+dn−1−1.

Our goal is to find values for xJ<0 at t∗ + h. We refer to them as independent TCs. By

(4.5), the number of these TCs is

N =
n−1∑
j=0

dj. (4.6)

Using the (p, q) HO formula (3.15) for x(k)
j (t), for j = 0, . . . , n−1, and k = 0, . . . , dj−1,

at t∗ and t∗ + h, we obtain

q∑
r=0

βkr(xj)k+rh
r −

p∑
r=0

αkr(x∗j)k+rh
r = epqξjkh

p+q+1, (4.7)

34

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

where

epq = (−1)qp!q!
(p+ q)! , and (4.8)

ξjk =
x

(p+q+1+k)
j (ηjk)
(p+ q + 1)! , with ηjk ∈ (t∗, t∗ + h). (4.9)

Using the computational scheme for TCs in §4.1, we can compute higher-order TCs in terms

of independent ones. That is, there is a function Tj,k+r such that

(x∗j)k+r = Tj,k+r
(
t∗,x∗J<0

)
, (4.10)

(xj)k+r = Tj,k+r
(
t∗ + h,xJ<0

)
. (4.11)

Substituting (4.10) and (4.11) in (4.7), we obtain

q∑
r=0

βkrTj,k+r
(
t∗ + h,xJ<0

)
hr −

p∑
r=0

αkrTj,k+r
(
t∗,x∗J<0

)
hr = epqξjkh

p+q+1. (4.12)

Hence, we can solve the nonlinear (in general) system of N equations

q∑
r=0

βkrTj,k+r
(
t∗ + h, x̃J<0

)
hr −

p∑
r=0

αkrTj,k+r
(
t∗,x∗J<0

)
hr = 0, (4.13)

for j = 0, . . . , n− 1 and k = 0, . . . , dj − 1, to find x̃J<0 as an approximation to xJ<0 .

To write the system (4.13) in a matrix form, addition and subtraction are defined as

element-wise operations on elements of irregular matrix operands of same sizes. Multipli-

cation of an irregular matrix by a scalar is defined as multiplication of every entry of the

irregular matrix by the scalar. Also, we define a product between an irregular matrix and a

vector.

Definition 4.2. For an irregular matrix A of size v and a vector z of size maxi vi, we define

the product

B = A⊗ z,

35

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

such that B is an irregular matrix of size v with entries (B)ij = (A)ijzj .

Example 4.5. Consider the pendulum with given x∗J<0 . As in Table 4.2, we can compute at

t∗ the TCs

x∗0, x∗1, . . . x∗p+1,

y∗0, y∗1, . . . y∗p+1,

λ∗0, λ∗1, . . . λ∗p−1.

To find

x̃J<0 = [x̃0, x̃1, ỹ0, ỹ1],

as an approximation to xJ<0 at t∗ + h, we solve the nonlinear system

q∑
r=0

β0rT0r
(
t∗ + h, x̃J<0

)
hr −

p∑
r=0

α0rx
∗
rh

r = 0,

q∑
r=0

β1rT0,r+1
(
t∗ + h, x̃J<0

)
hr −

p∑
r=0

α1rx
∗
r+1h

r = 0,

q∑
r=0

β0rT1r
(
t∗ + h, x̃J<0

)
hr −

p∑
r=0

α0ry
∗
rh

r = 0,

q∑
r=0

β1rT1,r+1
(
t∗ + h, x̃J<0

)
hr −

p∑
r=0

α1ry
∗
r+1h

r = 0.

Here α0r and α1r are given by (3.13), and β0r and β1r are given by (3.14). Also, for

l = r, r + 1, we have

x̃l = T0l
(
t∗ + h, x̃J<0

)
,

ỹl = T1l
(
t∗ + h, x̃J<0

)
.

Using the product in Definition 4.2, we can write the above system in the following

36

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

compact form

x̃0 x̃1

ỹ0 ỹ1
⊗

β00

β10
+

x̃1 x̃2

ỹ1 ỹ2
h⊗

β01

β11
+ . . .+

x̃q x̃q+1

ỹq ỹq+1
hq ⊗

β0q

β1q

=

x∗0 x∗1

y∗0 y∗1
⊗

α00

α10
+

x∗1 x∗2

y∗1 y∗2
h⊗

α01

α11
+ . . .+

x∗p x∗p+1

x∗p y∗p+1

hp ⊗

α0p

α1p
.

That is,

q∑
r=0

x̃r x̃r+1

ỹr ỹr+1
hr ⊗

β0r

β1r
=

p∑
r=0

x∗r x∗r+1

y∗r y∗r+1

hr ⊗

α0r

α1r
.

Let d = maxj dj . Denote

ar = [α0r, α1r, . . . , αd−1,r], (4.14)

br = [β0r, β1r, . . . , βd−1,r], (4.15)

and the irregular matrices

37

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

F[r]
(
t,xJ<0

)
=

T0,r(t,xJ<0) T0,r+1(t,xJ<0) . . . T0,r+d0−1(t,xJ<0)

T1,r(t,xJ<0) T1,r+1(t,xJ<0) . . . T1,r+d1−1(t,xJ<0)

...

Tn−1,r(t,xJ<0) Tn−1,r+1(t,xJ<0) . . . Tn−1,r+dn−1−1(t,xJ<0)

=

(x0)r (x0)r+1 . . . (x0)r+d0−1

(x1)r (x1)r+1 . . . (x1)r+d1−1

...

(xn−1)r (xn−1)r+1 . . . (xn−1)r+dn−1−1

, (4.16)

and E whose the (j, k)th entry is ξjk, for j = 0, . . . , n− 1, k = 0, . . . , dj − 1. Then, (4.12)

can be written in the following form

q∑
r=0

F[r]
(
t∗ + h,xJ<0

)
hr ⊗ br −

p∑
r=0

F[r]
(
t∗,x∗J<0

)
hr ⊗ ar = epqh

p+q+1E. (4.17)

Denoting

F(xJ<0) =
q∑
r=0

F[r]
(
t∗ + h,xJ<0

)
hr ⊗ br −

p∑
r=0

F[r]
(
t∗,x∗J<0

)
hr ⊗ ar, (4.18)

(4.17) is

F(xJ<0) = epqh
p+q+1E. (4.19)

To find x̃J<0 as an approximation to xJ<0 , we solve

F(x̃J<0) = 0. (4.20)

We refer to (4.20) as Hermite-Obreschkoff system. Since our interest in this method

is for stiff DAEs, we must solve (4.20) using a Newton’s method which will be described

38

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

in Chapter 7. By (4.17) and (4.16), we need to solve (4.4) for s = 0, 1, . . . , q − 1 at each

iteration of Newton’s method. Hence, the constraints fI<0 = 0 are not enforced during the

above discretization. Therefore, the system (4.20) may lead to a numerical solution, say

xH O
J<0 , that violates the constraints fI<0 = 0. To avoid this a likely drift-off phenomenon, we

perform a projection step onto these algebraic constraints after each successful integration

step. That is, the constrained optimization problem

min
xJ<0
‖xJ<0 − xH O

J<0‖2 subject to fI<0(t,xJ<0) = 0, (4.21)

is solved.

4.3 Implementation

DAETS is implemented as a collection of C++ classes. We manage the implementation of

the proposed HO method by adding four classes and some functions to this solver. First we

list the classes in DAETS along with brief descriptions. Then, we introduce the new ones.

All classes are depicted in Figure 4.1.

4.3.1 Classes in DAETS

SAdata computes equation and variable offsets.

TaylorSeries is a pure virtual class for computing and accessing TCs. Class FadbadTS

implements the functionality of TaylorSeries using the FADBAD++ package.

Jacobian is a pure virtual class for computing the system Jacobian. Class FadbadJac

39

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Gradients

HO

IrregularMatrix

StiffDAEsolver

Constants

Parameters

TaylorSeries

Jacobian

DAEsolver

Stats

SigmaVector

SigmaMatrix

SAdataDAEpoint

DAEsolution IpoptFuncs

Figure 4.1: Solver class diagram. The arrows with the triangle denote inheritance; a normal

arrow from class A to class B means A uses B.

implements the functionality of Jacobian using the FADBAD++ package.

DAEsolver implements the integration process and contains policy data about the integra-

tion, such as Taylor series order, accuracy tolerance and type of error test.

DAEsolution implements the moving point. This includes the numerical solution and the

current value of t; also data describing the current state of the solution.

DAEpoint is a base class for DAEsolution. An object of this class stores an irregular matrix

whose entries representing derivatives x(k)
j .

40

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Constants stores various constants, such as default values for order, tolerance, etc. needed

during integration.

IpoptFuncs provides the functions needed by IPOPT in (4.21).

Parameters encapsulates various parameters that can be set before integration, such as

order, tolerance, smallest allowed stepsize, etc.

Stats collects various statistics during an integration, such as CPU time, number of steps,

percentage rejected steps, etc.

SigmaMatrix provides functions for computing the signature matrix of a DAE. These

computations are performed by propagating SigmaVector objects through operator

overloading.

4.3.2 The HO class

This class constructs and solves the HO system (4.20).

〈HO Declarations 23 〉 ≡23

class HO {

public:

〈HO Public Functions 344 〉;

private:

〈HO Private Functions 35 〉;

〈HO Data Members 28 〉;

};

41

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

This code is used in chunk 343.

The constructor and destructor of the HO class are in Appendix D.1. We will declare the

data members and implement the functions in next chapters. We use the following

〈 enumeration type for HO method 24 〉 ≡24

typedef enum {

HO_JAC_SINGULAR = −3, /∗ if Jacobian of (4.20) is singular ∗/

SYS_JAC_SINGULAR, /∗ if system Jacobian is singular ∗/

STAGE0_FAIL, /∗ if computing TCs at stage zero fails ∗/

HO_SUCCESS, /∗ if evaluating required functions in HO method succeeds ∗/

HO_CONVERGENT /∗ if iteration method for HO system is convergent ∗/

} HoFlag;

This code is used in chunk 369.

4.3.3 The Gradients class

It employs the FADBAD++ package to compute gradients of TCs needed for the Jacobian of

(4.20).

〈Gradients Declarations 25 〉 ≡25

class Gradients {

public:

〈Gradients Public Functions 82 〉;

private:

〈Gradients Data Members 80 〉;

42

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

};

This code is used in chunk 350.

The constructor and destructor of the Gradients class are in Appendix D.2. We will

declare the data members and implement the functions in Chapter 6.

4.3.4 The StiffDAEsolver class

This class implements the integration process.

〈StiffDAEsolver Declarations 27 〉 ≡27

class StiffDAEsolver : public daets ::DAEsolver {

public:

〈StiffDAEsolver Public Functions 357 〉;

private:

〈StiffDAEsolver Private Functions 360 〉;

〈StiffDAEsolver Data Members 192 〉;

};

This code is used in chunk 356.

〈HO Data Members 28 〉 ≡28

friend class StiffDAEsolver;

See also chunks 34, 38, 39, 41, 42, 43, 46, 47, 50, 52, 53, 74, 78, 85, 119, 120, 123, 126, 128, 129, 132, 133,

139, 144, 150, 153, 155, 157, 158, 167, and 174

This code is used in chunk 23.

43

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

The constructor and destructor of the StiffDAEsolver class are in Appendix D.3. We will

declare the data members and implement the functions in Chapter 8 and Chapter 9.

4.3.5 The IrregularMatrix class

It is a template class that overloads the arithmetic operations and required functions for

irregular matrices. The implementation is in Appendix B.

44

Chapter 5

Computing Taylor coefficients

To compute a numerical solution of a DAE by the proposed HO method in §4.2, we should

find higher-order TCs as independent ones are given. That is, given xJ<s at t, we solve the

system (4.4) for s ≥ 0 to find xJs at this point. This system is square for s ≥ 0, where it can

be nonlinear when s = 0, but always linear for s > 0 [45, 54]. We first consider the case of

linear square systems in §5.1 and then describe the nonlinear case in §5.2.

5.1 Solving linear systems

When (4.4) is linear at s = 0 and for s > 0, we apply one iteration of Newton’s method

to (4.4) to solve for xJs ∈ Rn. Given xJ<s as constants and x̃Js as an initial guess for xJs ,

45

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

denote

bs = fIs
(
t,xJ<s , x̃Js

)
, bs ∈ Rn, (5.1)

As = ∂fIs
∂xJs

(
t,xJ<s , x̃Js

)
, As ∈ Rn×n.

Then (4.4) is

0 = bs + As

(
xJs − x̃Js

)
. (5.2)

Here As does not depend on x̃Js . Before we describe the solution process of (5.2) for xJs ,

we show how As is obtained.

5.1.1 Forming the matrix

The (i, j)th entry of As is [46]

(
As

)
ij

= ∂(fi)s+ci
∂(xj)s+dj

= ∂f
(s+ci)
i /(s+ ci)!

∂x
(s+dj)
j /(s+ dj)!

= (s+ dj)!
(s+ ci)!

· ∂f
(s+ci)
i

∂x
(s+dj)
j

, (5.3)

where s+ ci ≥ 0 and s+ dj ≥ 0. Using Griewank’s Lemma [46]

∂f
(s+ci)
i

∂x
(s+dj)
j

= ∂f
(ci)
i

∂x
(dj)
j

in (5.3), we write it as

(
As

)
ij

= (s+ dj)!
(s+ ci)!

· ∂f
(ci)
i

∂x
(dj)
j

= (s+ dj)!
(s+ ci)!

· ci! ∂(fi)ci
dj! ∂(xj)dj

= ci!
(s+ ci)!

· ∂(fi)ci
∂(xj)dj

· (s+ dj)!
dj!

. (5.4)

Let Cs and Ds be diagonal matrices such that the ith entry on their main diagonals are

(s+ ci)!/ci! and (s+ di)!/di!, respectively. Then, from (5.4)

As = C−1
s A0Ds for s ≥ 0, (5.5)

46

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

where (
A0
)
ij

= ∂(fi)ci
∂(xj)dj

= dj!
ci!
∂f

(ci)
i

∂x
dj
j

= 1
ci!

(J)ij dj!. (5.6)

That is, A0 = ∂fI0/∂xJ0 can be written as a diagonally-scaled version of the system Jacobian

J given in (2.3).

Example 5.1. For the pendulum in Example 2.1, the elements of fI0 are

f0 = 2x2 + λ0x0,

g0 = 2y2 + λ0y0 +G,

h2 = 2x0x2 + x2
1 + 2y0y2 + y2

1.

By (5.6), we obtain

A0 =

∂f0/∂x2 ∂f0/∂y2 ∂f0/∂λ0

∂g0/∂x2 ∂g0/∂y2 ∂g0/∂λ0

∂h2/∂x2 ∂h2/∂y2 ∂h2/∂λ0

=

2 0 x0

0 2 y0

2x0 2y0 0

= diag[1, 1, 2]−1 J diag[2, 2, 1],

with J given in (2.5).

At stage s = 0, given xJ<0 = [x0, x1, y0, y1], we compute xJ0 = [x2, y2, λ0], by solving

0 = 2x2 + λ0x0,

0 = 2y2 + λ0y0 +G,

0 = 2x0x2 + x2
1 + 2y0y2 + y2

1.

47

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

It can be written as

0 =

2 0 x0

0 2 y0

2x0 2y0 0

︸ ︷︷ ︸
A0

x2

y2

λ0

︸ ︷︷ ︸
xJ0

+

0

G

x2
1 + y2

1

.

At stage s = 1, taking xJ<0 and xJ0 as known, we compute xJ1 = [x3, y3, λ1] by solving

0 = 6x3 + λ0x1 + λ1x0,

0 = 6y3 + λ0y1 + λ1y0,

0 = 2x0x3 + 2x1x2 + 2y0y3 + 2y1y2.

It can be written as

0 =

6 0 x0

0 6 y0

2x0 2y0 0

︸ ︷︷ ︸
A1

x3

y3

λ1

︸ ︷︷ ︸
xJ1

+

λ0x1

λ0y1

2x1x2 + 2y1y2

,

with

A1 = diag[1, 1, 3]−1 A0 diag[3, 3, 1].

5.1.2 Implementation

To compute Cs and Ds, we precompute factorials in the constructor of the HO class and

store them in

〈HO Data Members 28 〉 +≡34

std ::vector〈double〉 factorial_;

48

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

The function comp_cs_ds is implemented to compute the entries of Cs and Ds.

〈HO Private Functions 35 〉 ≡35

double comp_cs_ds(int s, int offset)

{ /∗ offset is either ci or dj . If ci e.g., returns (s+ ci)!/ci! ∗/

return factorial_[s+ offset]/factorial_[offset];

}

See also chunk 347.

This code is used in chunk 23.

We can set the initial guess x̃Js to zero. However, using a good approximation can lead

to better accuracy, as the solution process (5.8) can be regarded as one step of an iterative

refinement of an already reasonable solution. After the first step, we use the (currently)

computed TCs as an initial guess for the TCs for the next step. This happens automatically

in DAETS since TCs are stored in an array: the values in this array are used as an initial

guess and overwritten with the new TCs [45].

From (5.2), we solve the following system of linear equations

Asδs = bs, (5.7)

and compute

xJs = x̃Js − δs. (5.8)

By (5.5), (5.7) is

C−1
s A0Dsδs = bs,

49

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

which leads to

A0Dsδs = Csbs. (5.9)

We find xJs by the following steps:

• compute bs,

• compute βs = Csbs,

• solve A0ys = βs for ys, and

• set xJs = x̃Js −D−1
s ys.

They are implemented in the function CompTCsLinear.

〈Definitions of HO Private Functions 37 〉 ≡37

void HO ::CompTCsLinear(int s)

{

〈 compute bs 40 〉;

〈 compute βs = Csbs 44 〉;

〈 solve A0ys = βs 54 〉;

〈 compute and set xJs = x̃Js −D−1
s ys 56 〉;

}

See also chunks 49, 51, 57, 62, 69, 79, 121, 124, 127, 130, 135, 137, 145, 146, 147, 151, 154, 156, 161, 168,

170, 221, 262, 263, and 280

This code is used in chunk 348.

50

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

5.1.2.1 Computing bs

The HO class maintains a pointer to an object of the TaylorSeries class from DAETS.

〈HO Data Members 28 〉 +≡38

daets ::TaylorSeries ∗ts_; /∗ the source code of DAETS is in namespace daets ∗/

To evaluate the bs in (5.1), we call EvalEqnsAtStage from the TaylorSeries class. This

function stores bs at

〈HO Data Members 28 〉 +≡39

double ∗rhs_;

〈 compute bs 40 〉 ≡40

ts_~EvalEqnsAtStage(s, rhs_);

This code is used in chunk 37.

5.1.2.2 Computing βs

An HO object obtains all structural data about the given DAE through a pointer to an object

of the SAdata class.

〈HO Data Members 28 〉 +≡41

const daets ::SAdata ∗sadata_;

For convenience, we can get the size of the DAE through sadata_ and store it in n_.

〈HO Data Members 28 〉 +≡42

int n_;

51

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

The offsets are computed and stored during the structural analysis in a SAdata object.

Calling the functions get_c and get_d from the SAdata class, we can access the equation

and variable offsets, respectively. In the constructor of the HO class, we store the offsets in

c_ and d_.

〈HO Data Members 28 〉 +≡43

std ::vector〈size t〉 c_, d_;

After the bs is computed and stored at rhs_, we compute βs.

〈 compute βs = Csbs 44 〉 ≡44

for (int i = 0; i < n_; i++)

rhs_[i] ∗= comp_cs_ds(s, c_[i]);

This code is used in chunk 37.

5.1.2.3 Solving A0ys = βs

In the HO class, we store the current time in

〈HO Data Members 28 〉 +≡46

double t_;

The HO class maintains a pointer to an object of the Jacobian class.

〈HO Data Members 28 〉 +≡47

daets ::Jacobian ∗jac_;

We implement the function CompA0 that computes A0 by calling computeJacobian from

the Jacobian class and returns it at jac column-wise using getScaledDenseJacobian.

52

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈Definitions of HO Private Functions 37 〉 +≡49

void HO ::CompA0(double ∗jac)

{

SetIndepTCsJac(); /∗ sets xJ<0 in the Jacobian object ∗/

jac_~ setT (t_);

for (int s = −sadata_~ get_max_d(); s ≤ 0; s++)

{

jac_~ computeJacobian(s);

jac_~ getScaledDenseJacobian(s, jac);

}

ts_~ set_time_coeffs(t_, 1);

jac_~ resetAll();

}

Since A0 depends on xJ<0 , stored in indep_tcs_, we first set these TCs in the Jacobian

object.

〈HO Data Members 28 〉 +≡50

IrregularMatrix〈double〉 indep_tcs_;

This is done by the function SetIndepTCsJac, which calls set_indep_var_coeff from the

Jacobian class. set_indep_var_coeff (j, k, tc) sets tc to be the kth TC for jth variable.

〈Definitions of HO Private Functions 37 〉 +≡51

void HO ::SetIndepTCsJac()

53

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

{

for (int j = 0; j < n_; j++)

for (int k = 0; k < d_[j]; k++)

jac_~ set_indep_var_coeff (j, k, indep_tcs_(j, k));

}

After computing A0, we find the LU factorization of A0 and store it at

〈HO Data Members 28 〉 +≡52

double ∗sys_jac_;

The pivot vector that defines the permutation matrix is stored at

〈HO Data Members 28 〉 +≡53

int ∗ipiv_;

Using this LU factorization, LSolve computes a solution and stores it at rhs_.

〈 solve A0ys = βs 54 〉 ≡54

daets ::LSolve(n_, sys_jac_, ipiv_, rhs_);

This code is used in chunk 37.

5.1.2.4 Correcting the initial guess

The initial guess x̃Js is corrected by (5.8), which is equivalent to

xJs = x̃Js −D−1
s ys.

We call get_var_coeff (j, l) from the TaylorSeries class to return the previously stored

TC as an initial guess for (xj)l. Then set_var_coeff (j, l, tc) sets tc to be the lth TC for jth

54

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

variable.

〈 compute and set xJs = x̃Js −D−1
s ys 56 〉 ≡56

for (int j = 0; j < n_; j++)

{

rhs_[j] /= comp_cs_ds(s, d_[j]); /∗ D−1
s ys ∗/

int l = s+ d_[j];

double tc = ts_~ get_var_coeff (j, l)− rhs_[j]; /∗ x̃Js −D−1
s ys ∗/

ts_~ set_var_coeff (j, l, tc); /∗ xJs = x̃Js −D−1
s ys ∗/

}

This code is used in chunk 37.

5.2 Solving nonlinear systems

In non-quasilinear DAEs, (4.4) is nonlinear when s = 0. That is, we need to solve the

nonlinear system

fI0

(
t,xJ<0 ,xJ0

)
= 0, (5.10)

whose unknown is xJ0 ∈ Rn.

The function CompTCsNonlinear is implemented to solve the system (5.10) by calling

routines in the KINSOL software package [31]. In this function, x stores an initial guess for

xJ0 . After solving the system successfully, x is updated with the computed solution. The

return value of type HoFlag is one of the following:

55

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

• HO_SUCCESS, if xJ0 is computed successfully, or

• STAGE0_FAIL, if solving (5.10) fails.

〈Definitions of HO Private Functions 37 〉 +≡57

HoFlag HO ::CompTCsNonlinear(double ∗x)

{

HoFlag flag;

〈 solve fI0 = 0 75 〉;

if (flag ≡ HO_CONVERGENT)

return HO_SUCCESS;

else

return STAGE0_FAIL;

}

5.2.1 Solving fI0 = 0 by KINSOL

KINSOL is part of the SUNDIALS suite [31]. KINSOL is a general-purpose nonlinear

system solver based on Newton-Krylov, Picard, and fixed point solvers. KINSOL’s Newton

solver employs the Modified or Inexact Newton method and the resulting linear systems can

be solved by direct (dense, sparse, or banded) or iterative methods.

To solve (5.10) by KINSOL, we should implement the required functions that evaluate

fI0 and ∂fI0/∂xJ0 .

56

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

5.2.1.1 Evaluating fI0

We provide a function FcnKinsol of type KINSysFn that evaluates fI0 . In this function, x is

the given variable vector, and f is the output vector. They are of type N Vector which is a

generic vector in SUNDIALS.

〈Nonlinear Solver Functions 59 〉 ≡59

int FcnKinsol(N Vector x,N Vector f, void ∗user_data)

{

〈 set parameters to evaluate fI0 60 〉;

〈 evaluate fI0 64 〉;

return 0;

}

See also chunks 65, 101, 177, 178, and 340

This code is used in chunk 364.

In all SUNDIALS solvers, the type realtype is used for all floating-point data, with the

default being double. Calling the function N_VGetArrayPointer_Serial from NVECTOR

operations, we create pointers to realtype arrays xdata and fdata from N Vectors x and f ,

respectively.

〈 set parameters to evaluate fI0 60 〉 ≡60

realtype ∗xdata = N_VGetArrayPointer_Serial(x);

realtype ∗fdata = N_VGetArrayPointer_Serial(f);

See also chunk 63.

57

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

This code is used in chunk 59.

Given x as a guess for xJ0 , the function EvalEqnsStageZero below evaluates fI0 by calling

EvalEqnsAtStage from the TaylorSeries class and stores it at f .

〈Definitions of HO Public Functions 61 〉 ≡61

void HO ::EvalEqnsStageZero(const double ∗x,double ∗f)

{

SetStageZeroTCs(x);

ts_~EvalEqnsAtStage(0, f);

}

See also chunk 148.

This code is used in chunk 348.

The function SetStageZeroTCs sets x to be TCs of variables at stage zero. That is, by

calling set_var_coeff (j, d_[j], x[j]), x[j] will be the d_[j]th TC of the jth variable.

〈Definitions of HO Private Functions 37 〉 +≡62

void HO ::SetStageZeroTCs(const double ∗x)

{

for (int j = 0; j < n_; j++)

ts_~ set_var_coeff (j, d_[j], x[j]);

}

Assume that an object of the HO class is passed through the user_data parameter. We

cast a pointer to the HO class from user_data.

58

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 set parameters to evaluate fI0 60 〉 +≡63

HO ∗ho = (HO ∗) user_data;

Now, we call EvalEqnsStageZero to

〈 evaluate fI0 64 〉 ≡64

ho~EvalEqnsStageZero(xdata, fdata);

This code is used in chunk 59.

5.2.1.2 Computing ∂fI0/∂xJ0

We provide a function JacKinsol of type KINLsJacFn that evaluates ∂fI0/∂xJ0 . In this

function, x is the given variable vector, and f is the output vector. The output Jacobian

matrix is stored at sun_jac of type SUNMatrix which is a generic matrix in SUNDIALS.

〈Nonlinear Solver Functions 59 〉 +≡65

int JacKinsol(N Vector x,N Vector f,SUNMatrix sun_jac, void ∗user_data,N Vector

tmp1,N Vector tmp2)

{

〈 set parameters to evaluate
∂fI0

∂xJ0

66 〉;

〈 compute
∂fI0

∂xJ0

71 〉;

〈 store the computed
∂fI0

∂xJ0

at sun_jac 73 〉;

return 0;

}

59

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Calling the function SUNDenseMatrix_Columns, we obtain the size of the system and

store it in n. In SUNDIALS solvers the type sunindextype is used for integer data.

〈 set parameters to evaluate
∂fI0

∂xJ0

66 〉 ≡
66

sunindextype n = SUNDenseMatrix_Columns(sun_jac);

See also chunks 67, 68, and 70

This code is used in chunk 65.

Calling the function N_VGetArrayPointer_Serial, we create a pointer to realtype array

xdata from x.

〈 set parameters to evaluate
∂fI0

∂xJ0

66 〉 +≡
67

realtype ∗xdata = N_VGetArrayPointer_Serial(x);

The function SUNDenseMatrix_Data is called to return the pointer jacobian to the data

array for sun_jac.

〈 set parameters to evaluate
∂fI0

∂xJ0

66 〉 +≡
68

realtype ∗jacobian = SUNDenseMatrix_Data(sun_jac);

To compute A0 for given xJ0 , we first set these TCs in the Jacobian object. This is done

by the function SetStageZeroTCsJac, which calls set_indep_var_coeff from the Jacobian

class.

〈Definitions of HO Private Functions 37 〉 +≡69

void HO ::SetStageZeroTCsJac(const double ∗x)

{

60

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

for (int j = 0; j < n_; j++)

jac_~ set_indep_var_coeff (j, d_[j], x[j]);

}

Then, we cast a pointer to the HO class from user_data.

〈 set parameters to evaluate
∂fI0

∂xJ0

66 〉 +≡
70

HO ∗ho = (HO ∗) user_data;

〈 compute
∂fI0

∂xJ0

71 〉 ≡
71

ho~ SetStageZeroTCsJac(xdata);

See also chunk 72.

This code is used in chunk 65.

Now, we call CompA0 from the HO class to compute ∂fI0/∂xJ0 and store it column-wise

at jacobian.

〈 compute
∂fI0

∂xJ0

71 〉 +≡
72

ho~CompA0(jacobian);

In SUNDIALS, SM_COLUMN_D(sun_jac, j) returns a pointer to the first element of the jth

column of sun_jac.

〈 store the computed
∂fI0

∂xJ0

at sun_jac 73 〉 ≡
73

for (int col = 0; col < n; col++)

SM_COLUMN_D(sun_jac, col) = jacobian + col ∗ n;

This code is used in chunk 65.

61

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

5.2.1.3 Calling KINSOL

After providing the functions FcnKinsol and JacKinsol for evaluating fI0 and ∂fI0/∂xJ0 ,

respectively, we pass them as arguments of the function NSolveKin (implemented in Ap-

pendix C). Here, we set the tolerance to be max{10ε, tol/100}, where ε is the machine

precision, and tol is the integration tolerance sotred in

〈HO Data Members 28 〉 +≡74

double tol_;

〈 solve fI0 = 0 75 〉 ≡75

double min_tol = 10 ∗ std ::numeric_limits < double > ::epsilon();

double tol = std ::max(min_tol, tol_/100);

int max_num_iter = 4;

flag = NSolveKin(n_, tol,max_num_iter, x,FcnKinsol, JacKinsol, (void ∗) this);

This code is used in chunk 57.

62

Chapter 6

Computing gradients of Taylor

coefficients

To solve the HO system (4.20) using Newton’s method, we need to compute the gradients

∂(xj)k+r

∂xJ<0

,

for j = 0, . . . , n− 1, k = 0, . . . , dj − 1, and r = 0, . . . , q. Let∇ = ∂/∂xJ<0 and denote for

a row or column vector u with elements u1, u2, . . . , um,

∇u =

∇u1

∇u2

...

∇um

.

By (4.10) and the computational scheme for TCs in §4.1, we can obtain the required gradients

if we compute the Jacobian matrices ∇xJs for 0 ≤ s < q.

63

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Recall that xJ<0 is a vector with N independent TCs, and xJs is a vector of size n

containing TCs of state variables at stage s ≥ 0. Hence, ∇xJs is a Jacobian matrix of size

n×N . In this chapter, we show how ∇xJs can be computed using automatic differentiation.

First, we derive a method for their computations in §6.1. Then, we implement the required

functions to compute them in §6.2.

6.1 Computational scheme for gradients

Differentiating (4.4) with respect to xJ<0 , we obtain

∂fIs
∂xJ<s

∇xJ<s + ∂fIs
∂xJs

∇xJs = 0. (6.1)

Denote the left hand side of equation (6.1) by

gIs
(
t,xJ≤s ,∇xJ<s ,∇xJs

)
.

Given xJ≤s and ∇xJ<s at t, we can find ∇xJs by solving the system

gIs
(
t,xJ≤s ,∇xJ<s ,∇xJs

)
= 0, (6.2)

which is linear in ∇xJs , and ∂gIs/∂
(
∇xJs

)
is As in (5.5). As in §5.1, we can apply one

iteration of Newton’s method to (6.2) to find ∇xJs ∈ Rn×N . That is, given xJ≤s and ∇xJ<s

as constants, and ∇̃xJs as a an initial guess for ∇xJs ,

∇xJs = ∇̃xJs −A−1
s Bs, (6.3)

64

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

where

Bs = gIs
(
t,xJ≤s ,∇xJ<s , ∇̃xJs

)
(6.4)

is a Jacobian matrix of size n×N containing the gradients of TCs of equations at stage s.

Example 6.1. For the pendulum in Example 2.1, we have xJ<0 = [x0, x1, y0, y1]. Clearly,

∇x0 = [1, 0, 0, 0],

∇x1 = [0, 1, 0, 0],

∇y0 = [0, 0, 1, 0],

∇y1 = [0, 0, 0, 1].

The computational schemes for ∇xJ0 and ∇xJ1 are illustrated as follows.

At stage s = 0, (4.4) is

0 = 2x2 + λ0x0,

0 = 2y2 + λ0y0 +G,

0 = 2x0x2 + x2
1 + 2y0y2 + y2

1.

Differentiating with respect to xJ<0 , we obtain

0 = 2∇x2 + λ0∇x0 + x0∇λ0,

0 = 2∇y2 + λ0∇y0 + y0∇λ0,

0 = 2x2∇x0 + 2x0∇x2 + 2x1∇x1 + 2y2∇y0 + 2y0∇y2 + 2y1∇y1.

It can be written as

65

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

0 =

2 0 x0

0 2 y0

2x0 2y0 0

︸ ︷︷ ︸
A0

∇x2

∇y2

∇λ0

︸ ︷︷ ︸
∇xJ0

+

λ0∇x0

λ0∇y0

2x2∇x0 + 2x1∇x1 + 2y2∇y0 + 2y1∇y1

︸ ︷︷ ︸
∂fI0

∂xJ<0

∇xJ<0

.

At stage s = 1, (4.4) is

0 = 6x3 + λ0x1 + λ1x0,

0 = 6y3 + λ0y1 + λ1y0,

0 = 2x0x3 + 2x1x2 + 2y0y3 + 2y1y2.

Differentiating with respect to xJ<0 , we obtain

0 = 6∇x3 + λ0∇x1 + x1∇λ0 + x0∇λ1 + λ1∇x0,

0 = 6∇y3 + λ0∇y1 + y1∇λ0 + y0∇λ1 + λ1∇y0,

0 = 2x3∇x0 + 2x0∇x3 + 2x1∇x2 + 2x2∇x1 + 2y3∇y0

+ 2y0∇y3 + 2y1∇y2 + 2y2∇y1.

It can be written as

66

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

0 =

6 0 x0

0 6 y0

2x0 2y0 0

︸ ︷︷ ︸
A1

∇x3

∇y3

∇λ1

︸ ︷︷ ︸
∇xJ1

+

λ0∇x1 + x1∇λ0 + x0∇λ1 + λ1∇x0

λ0∇y1 + y1∇λ0 + y0∇λ1 + λ1∇y0

2x3∇x0 + 2x1∇x2 + 2x2∇x1 + 2y3∇y0 + 2y1∇y2 + 2y2∇y1

︸ ︷︷ ︸
∂fI1

∂xJ<1

∇xJ<1

.

6.2 Implementation

The number of independent TCs, N (4.6), is stored in

〈HO Data Members 28 〉 +≡78

int num_indep_tcs_;

Bs is a matrix of size n × N , and the kth column of this matrix contains the gradients

of the TCs of equations at stage s in terms of kth independent TC. Let [A]k denote the kth

column of a matrix A. We need to solve the system of linear equations

As[Gs]k = [Bs]k, k = 0, 1, . . . , N − 1

to find the kth column of the matrix Gs. By (5.5), we write

C−1
s A0Ds[Gs]k = [Bs]k,

67

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

which leads to

A0Ds[Gs]k = Cs[Bs]k. (6.5)

That is, we need to

• compute Bs,

• compute [Bs]k = Cs[Bs]k,

• solve A0[Ys]k = [Bs]k to find [Ys]k, and

• set [∇xJs]k = [∇̃xJs]k −D−1
s [Ys]k.

This is implemented by the function CompGradients which computes ∇xJs at stages s =

0, 1, . . . , q − 1 where xJ<s is given.

〈Definitions of HO Private Functions 37 〉 +≡79

void HO ::CompGradients(int q)

{

〈 initialize ∇xJ<q 86 〉;

〈 set xJ<q 88 〉;

for (int s = 0; s < q; s++)

{

〈 compute Bs 91 〉;

for (int k = 0; k < num_indep_tcs_; k++)

{

〈 compute [Bs]k = Cs[Bs]k 93 〉;

68

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 solve A0[Ys]k = [Bs]k 94 〉;

〈 compute and set [∇xJs]k = [∇̃xJs]k −D−1
s [Ys]k 96 〉;

}

}

}

6.2.1 Initializing gradients

A Gradients object obtains all structural data of the given DAE through a pointer to a

SAdata object.

〈Gradients Data Members 80 〉 ≡80

const daets ::SAdata ∗sadata_;

See also chunks 81, 89, 164, and 352

This code is used in chunk 25.

We use the forward mode of FADBAD++ to differentiate TCs. The input variables are in

〈Gradients Data Members 80 〉 +≡81

fadbad ::T〈fadbad ::F〈double〉〉 ∗grad_in_;

First, we need to initialize ∇xJ<q . We define the function set_var_grad_component

which sets value for the derivative of (xj)l with respect to the kth independent TC.

〈Gradients Public Functions 82 〉 ≡82

void set_var_grad_component(int j, int l, int k,double der)

{

69

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

grad_in_[j][l].d(k) = der;

}

See also chunks 84, 87, 90, 92, 95, 165, 353, and 354

This code is used in chunk 25.

The ∇xJ<0 is the N ×N identity matrix and we initialize gradients of higher-order TCs

with zeros. This is implemented by the function initialize_gradients. In this function, we

call fadbad ::diff to indicate the independent TCs that we want to differentiate with respect

to. Calling diff (k,m), m becomes the number of independent TCs and k denotes the index

of the independent TC.

〈Gradients Public Functions 82 〉 +≡84

void initialize_gradients(int q, int num_indep_tcs)

{

int k = 0; /∗ kth independent TC ∗/

for (int j = 0; j < sadata_~ get_size(); j++)

{

int dj = sadata_~ get_d(j);

for (int l = 0; l < dj; l++)

grad_in_[j][l].diff (k++, num_indep_tcs); /∗ ∇xJ<0 identity matrix ∗/

for (int l = dj; l < q + dj; l++)

{

grad_in_[j][l].diff (0, num_indep_tcs);

70

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

set_var_grad_component(j, l, 0, 0);

}

}

}

The HO class maintains a pointer to a Gradients object.

〈HO Data Members 28 〉 +≡85

Gradients ∗grads_;

Now, we can call initialize_gradients.

〈 initialize ∇xJ<q 86 〉 ≡86

grads_~ initialize_gradients(q, num_indep_tcs_);

This code is used in chunk 79.

Since we always compute xJ<q before computing gradients, we copy it’s entries to ∇xJ<q .

The function set_var_coeff is defined to set the lth TC of xj in grad_in_.

〈Gradients Public Functions 82 〉 +≡87

void set_var_coeff (int j, int l,double tc)

{

grad_in_[j][l].x() = tc;

}

〈 set xJ<q 88 〉 ≡88

for (int j = 0; j < n_; j++)

71

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

for (int l = 0; l < d_[j] + q; l++)

{

double tc = ts_~ get_var_coeff (j, l);

grads_~ set_var_coeff (j, l, tc);

}

This code is used in chunk 79.

6.2.2 Computing Bs

We first define the function EvalEqnCoeffGrad which computes an entry of Bs in (6.4) and

stores it in grad_out_. This contains the output variables in the differentiation process.

〈Gradients Data Members 80 〉 +≡89

fadbad ::T〈fadbad ::F〈double〉〉 ∗grad_out_;

EvalEqnCoeffGrad(i, l) computes ∇(fi)l. This is done by calling the function eval from

FADBAD++.

〈Gradients Public Functions 82 〉 +≡90

void EvalEqnCoeffGrad(int i, int l)

{

grad_out_[i].reset();

grad_out_[i].eval(l);

}

Then by calling EvalEqnCoeffGrad all entries of Bs are computed.

72

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 compute Bs 91 〉 ≡91

for (int i = 0; i < n_; i++)

{

int l = c_[i] + s;

grads_~EvalEqnCoeffGrad(i, l);

}

This code is used in chunk 79.

6.2.3 Computing [Bs]k

To access the computed gradients in Bs, we define the function get_eqn_grad_component.

Denote by yk the kth component of xJ<0 . Then, get_eqn_grad_component(i, l, k) returns

∂(fi)l/∂yk which is the ith element of the column vector [Bs]k where l = s+ ci.

〈Gradients Public Functions 82 〉 +≡92

double get_eqn_grad_component(int i, int l, int k) const

{

return grad_out_[i][l].d(k);

}

Here, we multiply these elements by the corresponding entries on the main diagonal of

matrix Cs. The resulting column vector is stored at rhs_.

〈 compute [Bs]k = Cs[Bs]k 93 〉 ≡93

for (int i = 0; i < n_; i++)

{

73

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

int ci = c_[i];

int l = ci + s;

rhs_[i] = grads_~ get_eqn_grad_component(i, l, k) ∗ comp_cs_ds(s, ci);

}

This code is used in chunk 79.

6.2.4 Solving A0[Ys]k = [Bs]k

We have the LU factorization of A0 stored at sys_jac_ with ipiv_ that contains the pivot

indices that define the required permutation matrix. Using this LU factorization, LSolve

computes a solution of A0[Ys]k = [Bs]k and stores it in rhs_.

〈 solve A0[Ys]k = [Bs]k 94 〉 ≡94

daets ::LSolve(n_, sys_jac_, ipiv_, rhs_);

This code is used in chunk 79.

6.2.5 Correcting initial guess

The kth column of the initial guess ∇̃xJs is corrected by (6.3) which is equivalent to

[∇xJs]k = [∇̃xJs]k −D−1
s [Ys]k.

To access the computed gradients in ∇xJs , we define the function get_var_grad_component.

Denote by yk the kth component of xJ<0 . Then, get_var_grad_component(j, l, k) returns

∂(xj)l/∂yk which is the jth element of the column vector [∇xJs]k where l = s+ dj .

〈Gradients Public Functions 82 〉 +≡95

double get_var_grad_component(int j, int l, int k) const

74

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

{

return grad_in_[j][l].d(k);

}

Also, the function set_var_grad_component is employed to set the corrected gradient.

〈 compute and set [∇xJs]k = [∇̃xJs]k −D−1
s [Ys]k 96 〉 ≡96

for (int j = 0; j < n_; j++)

{

int l = d_[j] + s;

double der = grads_~ get_var_grad_component(j, l, k)

− rhs_[j]/comp_cs_ds(s, d_[j]);

grads_~ set_var_grad_component(j, l, k, der);

}

This code is used in chunk 79.

75

Chapter 7

Solving the Hermite-Obreschkoff system

In this chapter, we solve the Hermite-Obreschkoff system (4.20) using Newton’s method.

Let fHO(xJ<0) be the vector of size N created by concatenating rows of the irregular matrix

F(xJ<0) in (4.18). We compute

xmJ<0 = xm−1
J<0 − J−1

HO fHO(xm−1
J<0), m = 1, 2, . . . , (7.1)

where an initial guess x0
J<0 ∈ RN is constructed from the past behaviour of the solution, and

JHO = ∂fHO/∂xJ<0 at x0
J<0 . The computation of x0

J<0 is discussed in §8.2. We describe how

we test the convergence of the iteration (7.1) and improve the reliability of this test in §7.1.

Then, this iteration is implemented in §7.2. Finally, in §7.3 we implement a function that

performs one step of the HO method.

76

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

7.1 Convergence of the iteration

In general, (4.20) may have multiple solutions. Provided that x0
J<0 is a good guess, we

wish to find the closest solution to it. The iterative procedure (7.1) should be a contraction

mapping in a ball about x0
J<0 . Contraction from x0

J<0 is a hypothesis guaranteeing local

existence and uniqueness of the solution [60]. By observing the iterates, we would like to

gain some confidence that the process is converging reasonably fast so as to obtain a solution

economically. Our experience suggests that it is better to reduce the step size in order to

improve the accuracy of x0
J<0 and the rate of convergence of the iteration than to iterate

many times [60]. Here, we iterate (7.1) at most 4 times.

To obtain xmJ<0 , we first solve the linear system

JHO δ
m = fHO(xm−1

J<0), (7.2)

whose unknown is δm ∈ RN . Then we write

xmJ<0 = xm−1
J<0 − δ

m.

The matrix JHO is nonsingular for sufficiently small stepsize h [25]. This matrix is usually

rather ill-conditioned with the consequence that solving a linear system involving it may

not be very accurate. Assuming x0
J<0 is close to the solution, the difference ‖δm‖ =

‖xm−1
J<0 − xmJ<0‖ is rather small. Computing δm from (7.2), we can usually get an accurate

xmJ<0 even when δm has only a few digits correct [59]. To solve (7.2), the matrix JHO is

factored into a product of an upper and lower triangular matrix. JHO is usually dense and we

perform the factorization and the solution of the system (7.2) by routines in the LAPACK

77

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

software package. When the system to be solved is large, the costs of computing and

factoring JHO dominate the cost of the integration.

We use a weighted root mean square (WRMS) norm, denoted ‖.‖wrms, for all error-like

quantities [31]

‖v‖wrms =

√√√√ 1
N

N−1∑
k=0

(
vk

atol + rtol ·|yk|

)2

, (7.3)

where rtol and atol are relative and absolute error tolerances, N is defined in (4.6), and yk for

k = 0, . . . , N − 1, are components of the solution at the beginning of the step. For brevity,

we drop the subscript wrms on norms in what follows.

If x̃J<0 is the solution of (4.20), when will the iteration error ‖x̃J<0−xmJ<0‖ be sufficiently

small? It is well-known that [59]

‖x̃J<0 − xmJ<0‖ ≤
ρ

1− ρ‖δ
m‖,

where ρ is an estimate of the rate of convergence of the iteration (7.1). Following Shampine

[59], we continue the iteration until

ρ

1− ρ‖δ
m‖ < 0.1, (7.4)

so that the iteration error ‖x̃J<0 − xmJ<0‖ will be sufficiently small. After evaluating the

solution of (4.20) by (7.1), we may not accept the result because the discretization error

‖epqhp+q+1E‖ in (4.19) is large. The constant 0.1 in (7.4) was chosen so that the errors due

to terminating the iteration (7.1) would not adversely affect the discretization error estimates.

The rate of convergence is estimated, whenever two or more iterations have been taken,

78

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

by [59]

ρ ≈ ‖δm‖
‖δm−1‖

. (7.5)

If ρ > 0.9, or m > 4, and the iteration has not yet converged, then the iteration (7.1) is

considered to have failed at solving (4.20).

7.2 Implementation

We implement the function NSolve based on the considerations in §7.1. In this function,

size is the size of the system, and x contains an initial guess for the solution. After solving

the system successfully, x will be updated with the computed solution. weight is used to

compute the required WRMS norms. Fcn and Jac are functions which compute fHO(u) and

JHO for a given value of a vector u, respectively. user_data is a pointer to user data, which

here is a pointer to the HO class.

NSolve returns one of the following values of type HoFlag:

• SYS_JAC_SINGULAR, if evaluating fHO(xm−1
J<0) fails as the system Jacobian is singular,

• STAGE0_FAIL, if evaluating fHO(xm−1
J<0) fails as solving fI0 = 0 in (5.10) fails,

• HO_SUCCESS, if fHO(xm−1
J<0) is computed successfully,

• HO_JAC_SINGULAR, if JHO is singular, or

• HO_CONVERGENT, if the iteration (7.2) for solving fHO(xJ<0) = 0 is convergent.

79

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈Nonlinear Solver Functions 59 〉 +≡101

HoFlag NSolve(int size, const IrregularMatrix〈double〉 &weight,double ∗x,EvalF

Fcn,EvalJ Jac,double ∗residual,double ∗jacobian, int ∗ipiv, void

∗user_data)

{

〈 declare variables for nonlinear solver 113 〉;

〈 compute fHO(x0
J<0) 102 〉;

〈 compute JHO 103 〉;

〈find LU factorization of JHO 104 〉;

for (int m = 1; m ≤ 4; m++)

{

〈 solve JHO δ
m = fHO(xm−1

J<0) 106 〉;

〈 evaluate ‖δm‖ 112 〉;

〈 compute iteration_error = ρ

1− ρ‖δ
m‖ 115 〉;

〈 compute xmJ<0 = xm−1
J<0 − δ

m 108 〉;

〈 compute fHO(xmJ<0) 109 〉;

if (iteration_error < 0.1)

return HO_CONVERGENT;

〈 save ‖δm‖ for computing ρ in next iteration 116 〉;

}

return HO_SUCCESS;

80

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

}

We call a function Fcn which computes fHO(x0
J<0) and stores it at residual (see §7.3.3.2).

〈 compute fHO(x0
J<0) 102 〉 ≡102

HoFlag fcn_flag = Fcn(size, x, residual, user_data);

if (fcn_flag ≡ SYS_JAC_SINGULAR ∨ fcn_flag ≡ STAGE0_FAIL)

return fcn_flag;

This code is used in chunk 101.

Also, we call a function Jac which computes and stores JHO at jacobian (see §7.3.3.2).

〈 compute JHO 103 〉 ≡103

Jac(size, x, jacobian, user_data);

This code is used in chunk 101.

To solve (7.2), the matrix JHO is factored into a product of an upper and lower triangular

matrix.

〈find LU factorization of JHO 104 〉 ≡104

int jac_flag;

daets ::LU(size, jacobian, ipiv,&jac_flag);

See also chunk 105.

This code is used in chunk 101.

Now, jacobian contains both lower and upper triangular matrices. The pivot vector that

defines the permutation matrix is stored at ipiv. If the Jacobian is singular we terminate with

81

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

the return value HO_JAC_SINGULAR.

〈find LU factorization of JHO 104 〉 +≡105

if (jac_flag 6= 0)

return HO_JAC_SINGULAR;

Using the above factorization, LSolve computes δm and stores it at residual.

〈 solve JHO δ
m = fHO(xm−1

J<0) 106 〉 ≡106

daets ::LSolve(size, jacobian, ipiv, residual);

This code is used in chunk 101.

Now, we can call the function subtract.

〈Auxiliary functions 107 〉 ≡107

void subtract(int size, const double ∗x,double ∗y)

{

for (int i = 0; i < size; i++)

y[i] −= x[i];

}

See also chunks 111, 125, 160, 172, 184, 185, 188, 189, 205, 208, 210, 226, 230, 281, 285, 289, 291, and 367

This code is used in chunk 366.

to

〈 compute xmJ<0 = xm−1
J<0 − δ

m 108 〉 ≡108

subtract(size, residual, x);

This code is used in chunk 101.

82

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Similarly, at each iteration m, we compute fHO(xmJ<0) and store it at residual.

〈 compute fHO(xmJ<0) 109 〉 ≡109

fcn_flag = Fcn(size, x, residual, user_data);

if (fcn_flag ≡ SYS_JAC_SINGULAR ∨ fcn_flag ≡ STAGE0_FAIL)

return fcn_flag;

This code is used in chunk 101.

To compute the rate of convergence and the iteration error, we need to evaluate ‖δm‖.

This is done by calling the following function which computes ‖v‖ in (7.3) for a given vector

v of size size. Here the (j, k)th entry of the irregular matrix W is

wjk = 1
atol + rtol · |x(k)

j |
for (j, k) ∈ J<0. (7.6)

〈Auxiliary functions 107 〉 +≡111

double CompWRMSnorm(const double ∗v, const IrregularMatrix〈double〉 &w)

{

int i = 0;

double s = 0;

for (size t j = 0; j < w.num_rows(); j++)

for (size t k = 0; k < w.num_cols(j); k++)

{

double z = v[i++] ∗ w(j, k);

s += z ∗ z;

}

83

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

s /= w.num_entries();

return std ::sqrt(s);

}

〈 evaluate ‖δm‖ 112 〉 ≡112

double norm_delta = CompWRMSnorm(residual,weight);

This code is used in chunk 101.

When ‖δm‖ is smaller than some multiple of the machine precision, we are not able to

use (7.5) to estimate ρ. In such a case, we accept the computed xmJ<0 that it is as accurate

as possible for the machine being used. This situation happens either if the prediction is

extremely good or when the tolerance is very small [59]. On the first iteration, if ‖δ1‖ is

very small, the iteration is terminated and we accept x1
J<0 as a solution. When m > 1 we

can get an estimate of the rate of convergence by (7.5).

〈 declare variables for nonlinear solver 113 〉 ≡113

double iteration_error = 1.0;

See also chunk 114.

This code is used in chunk 101.

〈 declare variables for nonlinear solver 113 〉 +≡114

double rate_convergence, norm_delta_prev = 1;

〈 compute iteration_error = ρ

1− ρ‖δ
m‖ 115 〉 ≡

115

if (norm_delta < 10 ∗ std ::numeric_limits < double > ::epsilon())

84

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

iteration_error = norm_delta;

else

if (m ≡ 1)

iteration_error = 10 ∗ norm_delta;

else

{

rate_convergence = norm_delta/norm_delta_prev;

if (rate_convergence ≥ 0.9)

return HO_SUCCESS;

iteration_error = (rate_convergence/(1− rate_convergence)) ∗ norm_delta;

}

This code is used in chunk 101.

Finally we

〈 save ‖δm‖ for computing ρ in next iteration 116 〉 ≡116

norm_delta_prev = norm_delta;

This code is used in chunk 101.

7.2.1 Evaluating residual

Denote

ψ =
p∑
r=0

F[r]
(
t∗,x∗J<0

)
hr ⊗ ar and (7.7)

ϕ(xJ<0) =
q∑
r=0

F[r]
(
t∗ + h,xJ<0

)
hr ⊗ br, (7.8)

85

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

where F[r], ar, and br are defined in (4.16), (4.14), and (4.15), respectively. Given xJ<0 , we

need to evaluate

F(xJ<0) = ϕ(xJ<0)−ψ. (7.9)

We first compute ψ which does not depend on xJ<0 . Then we evaluate ϕ(xJ<0). Finally, we

implement the function CompF to compute (7.9).

7.2.1.1 Computing ψ

By (7.7), we first set ψ = 0, and then

for r = 0, 1, . . . , p

• compute ar,

• form F[r]
(
t∗,x∗J<0

)
hr, and

• accumulate ψ += F[r]
(
t∗,x∗J<0

)
hr ⊗ ar.

We store p in

〈HO Data Members 28 〉 +≡119

int p_;

and implement the function CompPsi to compute ψ and store it in

〈HO Data Members 28 〉 +≡120

IrregularMatrix〈double〉 psi_;

In this function, tcs contains TCs x∗J<p at t∗.

86

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈Definitions of HO Private Functions 37 〉 +≡121

void HO ::CompPsi(const std ::vector〈vector〈double〉〉 &tcs)

{

psi_.set_to_zero(); /∗ ψ = 0 ∗/

for (int r = 0; r ≤ p_; r++)

{

comp_a(r); /∗ computes ar ∗/

FormFr(r, tcs); /∗ forms F[r]
(
t∗,x∗J<0

)
hr ∗/

multiply_add(f_, coef_, psi_); /∗ computes ψ += F[r]
(
t∗,x∗J<0

)
hr ⊗ ar ∗/

}

}

Computing ar

By (3.13) and (4.14), the kth element of the vector ar is

cpqr (k + r)!.

The coefficients cpqr are precomputed and stored in

〈HO Data Members 28 〉 +≡123

std ::vector〈double〉 cpq_;

By (3.10), cpq0 = 1, and

cpqr = p− r + 1
r(p+ q − r + 1) c

pq
r−1, for r = 1, . . . , p.

The function CompCpq computes these coefficients.

87

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈Definitions of HO Private Functions 37 〉 +≡124

void HO ::CompCpq()

{

cpq_.resize(p_ + 1);

cpq_[0] = 1.0;

for (int r = 1; r ≤ p_; r++)

cpq_[r] = (cpq_[r − 1] ∗ (p_ − r + 1))/double(r ∗ (p_ + q_ − r + 1));

}

For a scalar z and a vector u, the following function computes v = z ∗ u.

〈Auxiliary functions 107 〉 +≡125

void scalar_times_vector(double z, int size,double ∗u,double ∗v)

{

for (int l = 0; l < size; l++)

v[l] = z ∗ u[l];

}

The function comp_a is implemented to compute the elements of ar and store them in

〈HO Data Members 28 〉 +≡126

std ::vector〈double〉 coef_;

〈Definitions of HO Private Functions 37 〉 +≡127

void HO ::comp_a(int r)

88

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

{

scalar_times_vector(cpq_[r], coef_.size(), factorial_.data() + r, coef_.data());

}

Forming F[r]
(
t∗,x∗J<0

)
hr

We precompute powers of h on each step and store them in

〈HO Data Members 28 〉 +≡128

std ::vector〈double〉 h_pow_;

By (4.10) and (4.16), the (j, k)th entry of the irregular matrix F[r]
(
t∗,x∗J<0

)
hr is (x∗j)k+rh

r,

and tcs[j][k + r] contains the TC (x∗j)k+r. Hence,

(x∗j)k+rh
r = tcs[j][k + r] · hr.

The function FormFr is implemented to compute these entries and store them in

〈HO Data Members 28 〉 +≡129

IrregularMatrix〈double〉 f_;

〈Definitions of HO Private Functions 37 〉 +≡130

void HO ::FormFr(int r, const std ::vector〈vector〈double〉〉 &tcs)

{

for (size t j = 0; j < n_; j++)

for (size t k = 0; k < d_[j]; k++)

f_(j, k) = tcs[j][k + r] ∗ h_pow_[r];

}

89

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

7.2.1.2 Evaluating ϕ(xJ<0)

Given xJ<0 , we need to evaluate ϕ(xJ<0). After computing higher-order TCs, we first set

ϕ(xJ<0) = 0. Then, by (7.8), for each r = 0, 1, . . . , q, we

• compute br,

• form F[r]
(
t∗ + h,xJ<0

)
hr, and

• compute ϕ(xJ<0) += F[r]
(
t∗ + h,xJ<0

)
hr ⊗ br.

We store q in

〈HO Data Members 28 〉 +≡132

int q_;

and implement the function CompPhi to evaluate ϕ(xJ<0) and store it in

〈HO Data Members 28 〉 +≡133

IrregularMatrix〈double〉 phi_;

This function returns one of the following values of type HoFlag

• SYS_JAC_SINGULAR, if system Jacobian is singular,

• STAGE0_FAIL, if solving the nonlinear system for computing TCs at stage zero in

non-quasilinear DAEs fails, or

• HO_SUCCESS, if ϕ(xJ<0) is computed successfully.

90

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈Definitions of HO Private Functions 37 〉 +≡135

HoFlag HO ::CompPhi(const double ∗x)

{

〈 set xJ<0 136 〉;

〈 compute xJs , for s = 0, 1, . . . , q − 1 141 〉;

phi_.set_to_zero(); /∗ ϕ(xJ<0) = 0 ∗/

for (int r = 0; r ≤ q_; r++)

{

comp_b(r); /∗ computes br ∗/

FormFr(r); /∗ forms F[r]
(
t∗ + h,xJ<0

)
hr ∗/

multiply_add(f_, coef_, phi_); /∗ ϕ(xJ<0) += F[r]
(
t∗ + h,xJ<0

)
hr ⊗ br ∗/

}

return HO_SUCCESS;

}

Setting xJ<0

We first copy the entries of x to indep_tcs_.

〈 set xJ<0 136 〉 ≡136

indep_tcs_.set(x);

See also chunk 138.

This code is used in chunk 135.

91

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Then, the function SetIndepTCs sets entries of indep_tcs_ in the object of the TaylorSeries

class for computing TCs by calling set_var_coeff .

〈Definitions of HO Private Functions 37 〉 +≡137

void HO ::SetIndepTCs()

{

for (int j = 0; j < n_; j++)

for (int k = 0; k < d_[j]; k++)

ts_~ set_var_coeff (j, k, indep_tcs_(j, k));

}

〈 set xJ<0 136 〉 +≡138

SetIndepTCs();

Computing xJ<q

Given xJ<0 , we can compute xJs , for s = 0, 1, . . . , q − 1 (see Chapter 5). Recall that (4.4)

for computing xJ0 is

• linear in quasilinear DAEs and the matrix A0 is in terms of xJ<0 . In this case, after com-

puting A0 and finding it’s LU decomposition, we call the function CompTCsLinear(0).

• nonlinear in non-quasilinear DAEs and the matrix A0 is in terms of xJ≤0 . Hence, we

first call the function CompTCsNonlinear() to compute xJ0 and store it in tcs_stage0_.

Then, we compute A0 and find it’s LU decomposition required later for computing

xJs , s = 1, 2, . . . , q − 1.

92

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈HO Data Members 28 〉 +≡139

double ∗tcs_stage0_;

To check if the given DAE is quasilinear, we call the function isLinear from the SAdata

class.

〈 compute xJs , for s = 0, 1, . . . , q − 1 141 〉 ≡141

if (sadata_~ isLinear())

{

CompA0(sys_jac_);

〈find LU factorization of A0 142 〉;

CompTCsLinear(0);

}

else

{

jac_~ resetAll();

HoFlag info = CompTCsNonlinear(tcs_stage0_);

if (info ≡ STAGE0_FAIL)

return info;

SetStageZeroTCs(tcs_stage0_);

SetStageZeroTCsJac(tcs_stage0_);

CompA0(sys_jac_);

〈find LU factorization of A0 142 〉;

93

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

}

See also chunk 143.

This code is used in chunk 135.

We use the LU decomposition of A0 for solving systems of linear equations (5.9) and

(6.5).

〈find LU factorization of A0 142 〉 ≡142

int sys_info;

daets ::LU(n_, sys_jac_, ipiv_,&sys_info);

if (sys_info 6= 0)

return SYS_JAC_SINGULAR;

This code is used in chunk 141.

The system (4.4) for computing xJs , s = 1, 2, . . . , q − 1 is linear. In addition, we have

the LU decomposition of A0. Hence, CompTCsLinear(s) computes xJs .

〈 compute xJs , for s = 0, 1, . . . , q − 1 141 〉 +≡143

for (int s = 1; s < q_; s++)

CompTCsLinear(s);

Computing br

By (3.14) and (4.15), the kth element of the vector br is

cqpr (r + k)!.

The coefficients cqpr are precomputed and stored in

94

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈HO Data Members 28 〉 +≡144

std ::vector〈double〉 cqp_;

By (3.11), cqp0 = 1, and

cqpr = −cqpr−1
q − r + 1

r(p+ q − r + 1) , for r = 1, . . . , q.

The function CompCqp computes these coefficients.

〈Definitions of HO Private Functions 37 〉 +≡145

void HO ::CompCqp()

{

cqp_.resize(q_ + 1);

cqp_[0] = 1.0;

for (int r = 1; r ≤ q_; r++)

cqp_[r] = (−cqp_[r − 1] ∗ (q_ − r + 1))/double(r ∗ (p_ + q_ − r + 1));

}

The function comp_b is implemented to compute the elements of br and store them in

coef_.

〈Definitions of HO Private Functions 37 〉 +≡146

void HO ::comp_b(int r)

{

scalar_times_vector(cqp_[r], coef_.size(), factorial_.data() + r, coef_.data());

}

95

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Forming F[r]
(
t∗ + h,xJ<0

)
hr

By (4.11) and (4.16), the (j, k)th entry of the irregular matrix F[r]
(
t∗ + h,xJ<0

)
hr is

(xj)r+khr. We implement the function FormFr to compute these entries and store them in

f_.

〈Definitions of HO Private Functions 37 〉 +≡147

void HO ::FormFr(int r)

{

for (size t j = 0; j < n_; j++)

for (size t k = 0; k < d_[j]; k++)

f_(j, k) = ts_~ get_var_coeff (j, r + k) ∗ h_pow_[r];

}

7.2.1.3 The function CompF

The function CompF computes F(xJ<0) in (7.9) and stores it in f_. In this function, the

input array x contains xJ<0 , the output f contains fHO(xJ<0) by concatenating the rows of

F(xJ<0).

〈Definitions of HO Public Functions 61 〉 +≡148

HoFlag HO ::CompF(const double ∗x,double ∗f)

{

HoFlag info = CompPhi(x); /∗ evaluates ϕ(xJ<0) ∗/

if (info 6= HO_SUCCESS)

return info;

96

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

f_ = phi_ − psi_; /∗ F(xJ<0) = ϕ(xJ<0)−ψ ∗/

f_.to_vector(f); /∗ copies entries of F(xJ<0) to f ∗/

return info;

}

7.2.2 Computing Jacobian

For an irregular matrix M, denote by ∇M the irregular matrix whose (j, k)th entry is

(
∇M

)
jk

= ∇
(
M
)
jk
.

Let ∇ = ∂/∂xJ<0 . Recall that F[r]
(
t∗ + h,xJ<0

)
given by (4.16) is an irregular matrix

whose (j, k)th entry is (xj)k+r = Tj,k+r(t∗ + h,xJ<0). Hence, ∇F[r] is an irregular matrix

with (
∇F[r]

)
jk

= ∇(xj)k+r. (7.10)

By (4.18), we can write

∇F =
q∑
r=0

∇F[r]hr ⊗ br. (7.11)

To compute (7.11), we first set ∇F = 0, and then

for r = 0, 1, . . . , q,

• compute br,

• form ∇F[r]hr, and

• accumulate ∇F += ∇F[r]hr ⊗ br.

97

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

This is implemented by the function CompHoJac which stores ∇F in

〈HO Data Members 28 〉 +≡150

IrregularMatrix〈std ::vector〈double〉〉 f_prime_;

In this function, the output ho_jac contains the Jacobian JHO column-wise, as we later

pass it to the linear solver.

〈Definitions of HO Private Functions 37 〉 +≡151

void HO ::CompHoJac(double ∗ho_jac)

{

CompGradients(q_);

f_prime_.set_to_zero(); /∗ sets ∇F = 0 ∗/

for (int r = 0; r ≤ q_; r++)

{

comp_b(r); /∗ computes br ∗/

FormFrPrime(r); /∗ forms ∇F[r]hr ∗/

multiply_add(fr_prime_, coef_, f_prime_); /∗ ∇F += ∇F[r]hr ⊗ br ∗/

}

f_prime_.to_vector(ho_jac);

〈 compute ‖JHO‖∞, if requested 159 〉;

}

98

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

7.2.2.1 Forming ∇F[r]hr

From (7.10), the (j, k)th entry of∇F[r]hr is∇(xj)k+rh
r. Calling the function CompGradients,

gradients of all TCs are computed (see Chapter 6). To access their components, we call the

function get_var_grad_component from the Gradients class. Denote by yl the lth compo-

nent of xJ<0 . Then, get_var_grad_component(j, k + r, l) returns
∂(xj)k+r

∂yl
. The function

form_grad stores
∂(xj)k+r

∂yl
hr for l = 0, . . . , N − 1, in tc_grad .

〈HO Data Members 28 〉 +≡153

std ::vector〈double〉 tc_grad_;

〈Definitions of HO Private Functions 37 〉 +≡154

void HO :: form_grad(int j, int k, int r, std ::vector〈double〉 &tc_grad)

{

for (size t l = 0; l < num_indep_tcs_; l++)

tc_grad[l] = grads_~ get_var_grad_component(j, k + r, l) ∗ h_pow_[r];

}

Now, we can compute all entries of and store them in

〈HO Data Members 28 〉 +≡155

IrregularMatrix〈std ::vector〈double〉〉 fr_prime_;

This is implemented by the function FormFrPrime.

〈Definitions of HO Private Functions 37 〉 +≡156

void HO ::FormFrPrime(int r)

99

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

{

for (size t j = 0; j < n_; j++)

for (size t k = 0; k < d_[j]; k++)

form_grad(j, k, r, fr_prime_(j, k));

}

For some experiments, we may need the condition number of the Jacobian matrix JHO.

〈HO Data Members 28 〉 +≡157

bool need_cond_jac_ = false;

Here, we compute ‖JHO‖∞ by routines in the LAPACK software package and store it in

norm_jac_, as we later use it to compute the condition number.

〈HO Data Members 28 〉 +≡158

double norm_jac_;

〈 compute ‖JHO‖∞, if requested 159 〉 ≡159

if (need_cond_jac_)

norm_jac_ = MNorm(num_indep_tcs_, ho_jac);

This code is used in chunk 151.

〈Auxiliary functions 107 〉 +≡160

double MNorm(int n,double ∗mat)

{

int lda = n;

100

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

char norm = ’I’;

double ∗work = new double[n];

double mat_norm = dlange_(&norm,&n,&n,mat,&lda,work);

delete[] work;

return mat_norm;

}

7.3 Implementation of HO method for one step

To implement one step of the proposed HO method in §4.2, we

• set parameters to form the HO system,

• compute powers of the stepsize h needed in computing ψ in (7.7) and ϕ in (7.8),

• compute ψ which does not depend on xJ<0 , and

• form and solve the HO system (4.20).

The above tasks are implemented in the function CompHoSolution. In this function, x

contains an initial guess for the solution. After solving the system successfully, x will be

updated with the computed solution. weight is used to compute the required WRMS norms.

tcs_prev contains TCs at the previous t.

〈Definitions of HO Private Functions 37 〉 +≡161

101

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

HoFlag HO ::CompHoSolution(double t,double h,double tol, const

IrregularMatrix〈double〉 &weight, const std ::vector〈vector〈double〉〉

&tcs_prev,daets ::DAEpoint &x)

{

〈 set parameters to form the HO system 163 〉;

〈 compute powers of h 173 〉;

CompPsi(tcs_prev); /∗ computes ψ ∗/

〈 solve the HO system 179 〉; /∗ returns the HoFlag info and the solution ∗/

if (info ≡ HO_CONVERGENT)

〈 update x 180 〉;

〈 reset parameters 181 〉;

return info;

}

7.3.1 Setting parameters

Calling the function set_order, we set the order for the TaylorSeries object.

〈 set parameters to form the HO system 163 〉 ≡163

ts_~ set_order(q_);

ts_~ set_h(q_);

See also chunks 166, 169, and 171

This code is used in chunk 161.

We set TCs and gradients of t and store them in

102

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈Gradients Data Members 80 〉 +≡164

fadbad ::T〈fadbad ::F〈double〉〉 t_tfdouble_;

All these coefficients and gradients are zero unless the first two TCs which are t and dt.

The function set_time_coeffs is implemented to set them.

〈Gradients Public Functions 82 〉 +≡165

void set_time_coeffs(double t,double dt)

{

t_tfdouble_[0] = t;

t_tfdouble_[1] = dt;

}

〈 set parameters to form the HO system 163 〉 +≡166

grads_~ set_time_coeffs(t_, 1);

ts_~ set_time_coeffs(t_, 1);

In the HO class, we store the current stepsize in

〈HO Data Members 28 〉 +≡167

double h_;

The function set_h sets the stepsize in this class.

〈Definitions of HO Private Functions 37 〉 +≡168

void HO ::set_h(double h) { h_ = h; }

〈 set parameters to form the HO system 163 〉 +≡169

103

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

set_h(h);

The function set_t sets the current t in the HO class.

〈Definitions of HO Private Functions 37 〉 +≡170

void HO ::set_t(double t) { t_ = t; }

〈 set parameters to form the HO system 163 〉 +≡171

set_t(t);

7.3.2 Powers of the stepsize

Given h, the function CompPowersH computes h_pow so that h_pow[i] contains hi.

〈Auxiliary functions 107 〉 +≡172

void CompPowersH(int size,double h, std ::vector〈double〉 &h_pow)

{

if (h_pow.size() 6= size)

h_pow.resize(size);

h_pow[0] = 1;

for (size t i = 1; i < size; i++)

h_pow[i] = h ∗ h_pow[i− 1];

}

Calling this function, we

〈 compute powers of h 173 〉 ≡173

int size_h_pow = sadata_~ get_max_d() + p_ + q_ + 1;

104

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

CompPowersH(size_h_pow, h, h_pow_);

This code is used in chunk 161.

7.3.3 Solving the system

To solve the HO system (4.20) using the function NSolve implemented in §7.2, we require

an initial guess for the solution and two functions, which evaluate fHO(u) and JHO(u) for a

given vector u. In addition, we need

〈HO Data Members 28 〉 +≡174

double ∗indep_tcs_flat_, /∗ to store the input vector u ∗/

∗residual_flat_, /∗ to store the vector fHO ∗/

∗ho_jacobian_; /∗ to store JHO and ∗/

int ∗ho_ipiv_; /∗ for the pivot vector that defines the permutation matrix of the LU

factorization of JHO. ∗/

7.3.3.1 The initial guess

x(j, k) contains an initial guess for x(k)
j . Hence, x(j, k)/k! gives an initial guess for the TC

x
(k)
j /k!, which is stored as the (j, k)th entry of the irregular matrix indep_tcs_.

〈 get x0
J≤α

from x 175 〉 ≡175

indep_tcs_.set(x); /∗ the irregular matrix indep_tcs_ contains derivatives ∗/

indep_tcs_ /= factorial_; /∗ indep_tcs_ contains TCs ∗/

indep_tcs_.to_vector(indep_tcs_flat_); /∗ the array indep_tcs_flat contains TCs ∗/

See also chunk 176.

This code is used in chunk 179.

105

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

For non-quasilinear problems, we also require an initial guess for TCs at stage zero.

〈 get x0
J≤α

from x 175 〉 +≡176

if (¬sadata_~ isLinear())

{

for (int j = 0; j < n_; j++)

{

int dj = d_[j];

tcs_stage0_[j] = x(j, dj)/factorial_[dj];

}

tol_ = tol; /∗ see §5.2.1.3 ∗/

}

7.3.3.2 Required functions to call NSolve

The function Fcn evaluates fHO(u) by calling the function CompF from the HO class. In

this function, n is the size of the input vector x and the evaluated fHO(u) is stored at f .

〈Nonlinear Solver Functions 59 〉 +≡177

HoFlag Fcn(int n,double ∗x,double ∗f, void ∗user_data)

{

HO ∗ho = (HO ∗) user_data;

HoFlag info = ho~CompF(x, f);

return info;

}

106

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

We implement the function Jac to compute JHO by calling the function CompHoJac from

the HO class. In this function, n is the size of the input vector x and the computed JHO(u)

is stored at jac.

〈Nonlinear Solver Functions 59 〉 +≡178

void Jac(int n,double ∗x,double ∗jac, void ∗user_data)

{

HO ∗ho = (HO ∗) user_data;

ho~CompHoJac(jac);

}

We can now call the function NSolve.

〈 solve the HO system 179 〉 ≡179

〈 get x0
J≤α

from x 175 〉; /∗ α given by (8.9) ∗/

HoFlag info = NSolve(num_indep_tcs_,weight, indep_tcs_flat_,Fcn, Jac,

residual_flat_, ho_jacobian_, ho_ipiv_, (void ∗) this);

This code is used in chunk 161.

7.3.3.3 Updating x

After solving the system, we extract the derivatives from TCs to update x.

〈 update x 180 〉 ≡180

for (int j = 0; j < n_; j++)

for (int k = 0; k ≤ d_[j]; k++)

107

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

x(j, k) = ts_~ get_var_coeff (j, k) ∗ factorial_[k];

This code is used in chunk 161.

Finally, we

〈 reset parameters 181 〉 ≡181

ts_~ resetAll();

This code is used in chunk 161.

108

Chapter 8

Integration strategies

An important part in the design of a numerical algorithm is to estimate the error of a numerical

solution. Here, we need to estimate E in (4.19), so that epqhp+q+1E can be calculated as an

approximation to the discretization error of (4.20). Since we wish to implement our HO

method in a variable-order mode, we also need to estimate the error for each alternative

order that is under consideration.

In the present chapter, we first create a Nordsieck vector for an Hermite interpolating

polynomial in §8.1. Then, we show how this vector is used to predict a solution, §8.2, and to

estimate the discretization error, §8.3. Finally, the stepsize and order selection strategies are

derived in §8.4.

109

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

8.1 Hermite-Nordsieck vector

For a scalar function y ∈ Cm[a, b], the vectory(t), y′(t), y
′′(t)
2! , . . . ,

y(m)(t)
m!

 ,
is referred to as a Nordsieck vector for y at t [10]. In this section, we create a Nordsieck

vector for an Hermite interpolating polynomial. We employ this vector to predict a solution,

§8.2, and to estimate the discretization error, §8.3.

Given

y(a), y′(a), . . . , y(p)(a) and y(b), y′(b), . . . , y(q)(b), (8.1)

there is a unique interpolating polynomial P (t) ∈ Πp+q+1 (see e.g., [64, p. 52], such that

P (j)(a) = y(j)(a), for j = 0, 1, . . . , p and

P (i)(b) = y(i)(b), for i = 0, 1, . . . , q. (8.2)

Using the generalized divided differences (see e.g. [64, p. 56])

y
[
b, . . . , b︸ ︷︷ ︸

i

]
= y(i−1)(b)

(i− 1)! , i = 0, 1, . . . , q + 1,

y
[
a, . . . , a︸ ︷︷ ︸

j

]
= y(j−1)(a)

(j − 1)! , j = 0, 1, . . . , p+ 1,

y
[
b, . . . , b︸ ︷︷ ︸

i

, a, . . . , a︸ ︷︷ ︸
j

]
=

y
[
b, . . . , b︸ ︷︷ ︸

i−1

, a, . . . , a︸ ︷︷ ︸
j

]
− y

[
b, . . . , b︸ ︷︷ ︸

i

, a, . . . , a︸ ︷︷ ︸
j−1

]
a− b

,

i = 1, . . . , q + 1 and j = 1, . . . , p+ 1, and denoting

γj = y
[
b, . . . , b︸ ︷︷ ︸
q+1

, a, . . . , a︸ ︷︷ ︸
j

]
, (8.3)

110

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

then

P (t) =
q∑
j=0

y(j)(b)
j! (t− b)j + (t− b)q+1

p+1∑
j=1

γj(t− a)j−1, (8.4)

is the Hermite interpolating polynomial satisfying (8.2).

Consider the following Nordsieck vector for P at bP (b), P ′(b), P
′′(b)
2! , . . . ,

P (p+q+1)(b)
(p+ q + 1)!

 . (8.5)

Differentiating (8.4) and setting t = b, we obtain

P (q+j)(b) = (q + j)! γj, for j = 1, . . . , p+ 1. (8.6)

By (8.3) and (8.6), we write

P (q+j)(b)
(q + j)! = y

[
b, . . . , b︸ ︷︷ ︸
q+1

, a, . . . , a︸ ︷︷ ︸
j

]
. (8.7)

Using (8.2) and (8.7), the Nordsieck vector (8.5) isy(b), y′(b), . . . , y
(q)(b)
q! , y

[
b, . . . , b︸ ︷︷ ︸
q+1

, a
]
, y
[
b, . . . , b︸ ︷︷ ︸
q+1

, a, a
]
, y
[
b, . . . , b︸ ︷︷ ︸
q+1

, a, . . . , a︸ ︷︷ ︸
p+1

] . (8.8)

We refer to (8.8) as the (p, q) Hermite-Nordsieck vector for y at b.

Let

α =

−1 if the DAE is quasilinear,

0 otherwise.
(8.9)

Assume that values for xj(a), x′j(a), . . . , x(p+dj+α)
j (a) and xj(b), x′j(b), . . . , x

(q+dj+α)
j (b) (j =

0, . . . , n− 1) are given. For a (j, k) ∈ J≤α, we use

[
x

(k)
j (a), x(k+1)

j (a), . . . , x(k+p)
j (a)

]
and (8.10)

[
x

(k)
j (b), x(k+1)

j (b), . . . , x(k+q)
j (b)

]
, (8.11)

and construct the (p, q) Hermite-Nordsieck vector for x(k)
j at b.

111

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

8.1.1 Implementation

To construct the (p, q) Hermite-Nordsieck vector for x(k)
j at b, we first merge the vectors

(8.10) and (8.11) to form

y =
[
x

(k)
j (b), . . . , x(k+q)

j (b), x(k)
j (a), . . . , x(k+p)

j (a)
]
. (8.12)

Then, we use

[b, b, . . . , b︸ ︷︷ ︸
q+1

, a, a, . . . , a︸ ︷︷ ︸
p+1

], (8.13)

and (8.12) to form a tableau and compute the generalized divided differences (8.7) (see

Appendix D.5.1). We implement the function CompNordsieck to construct the (p, q) Hermite-

Nordsieck vectors for all x(k)
j at b and store them in nordsieck. In this function, t_vec is (8.13).

ders_a and ders_b contain xj(a), x′j(a), . . . , x(p+dj+α)
j (a) and xj(b), x′j(b), . . . , x

(q+dj+α)
j (b)

(j = 0, . . . , n− 1), respectively.

〈Auxiliary functions 107 〉 +≡184

void CompNordsieck(size t p, size t q,

const std ::vector〈double〉 &t_vec, const std ::vector〈std ::vector〈double〉〉

&ders_a, const std ::vector〈std ::vector〈double〉〉 &ders_b,

IrregularMatrix〈std ::vector〈double〉〉 &nordsieck)

{

size t nord_size = p+ q + 2;

std ::vector〈double〉 y(nord_size);

for (int j = 0; j < nordsieck.num_rows(); j++)

112

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

for (int k = 0; k < nordsieck.num_cols(j); k++)

{

merge_ders(k, p, q, ders_a[j], ders_b[j], y);

comp_gen_divdif (t_vec, y, nordsieck(j, k)); /∗ see Appendix D.5.1 ∗/

}

}

The function merge_ders is implemented to merge the vectors (8.10) and (8.11) and get

(8.12).

〈Auxiliary functions 107 〉 +≡185

void merge_ders(int k, int p, int q, const std ::vector〈double〉 &v_a, const

std ::vector〈double〉 &v_b, std ::vector〈double〉 &y)

{

for (size t r = 0; r ≤ q; r++)

y[r] = v_b[k + r];

for (size t r = 0; r ≤ p; r++)

y[q + 1 + r] = v_a[k + r];

}

113

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

8.2 Prediction

To solve the system (4.20) using the iteration (7.1), we need an initial guess for xJ<0 at

the next point. If the DAE (1.1) is non-quasilinear, we also need an initial guess for xJ0 to

solve (5.10).

For an x(k)
j with (j, k) ∈ J≤α, where α is given by (8.9), suppose that the values

x
(k)
j (a), . . . , x(k+p−1)

j (a) and

x
(k)
j (b), . . . , x(k+q)

j (b),
(8.14)

are given. Denoting by Pjk the polynomial interpolating (8.14), we approximate

x
(k)
j (b+ h) ≈ Pjk(b+ h), for a given h. (8.15)

The (p, q) Hermite-Nordsieck vector for x(k)
j at b contains the coefficients of the polynomial

Pjk ∈ Πp+q. Let vl be the (l + 1)th element of this vector. Then

Pjk(t) =
q∑
l=0

vl(t− b)l + (t− b)q+1
p∑
l=1

vq+l(t− a)l−1. (8.16)

Hence, given the Hermite-Nordsieck vector we just need to evaluate the polynomial at b+ h.

The error of the approximation (8.15) is (see e.g., Theorem 2.1.5.9 in [64])

x
(k)
j (b+ h)− Pjk(b+ h) =

x
(k+p+q+1)
j (ηjk)
(p+ q + 1)! hq+1(h+ b− a)p for some ηjk ∈ [a, b+ h].

8.2.1 Implementation

We implement the function PredictSolution to evaluate Pjk(b+ h) for all (j, k) ∈ J≤α. In

this function, t is b + h, and nordsieck(j, k) contains the (p, q) Hermite-Nordsieck vector

for x(k)
j at b. The predicted values are stored in the DAEpoint prediction.

114

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈Auxiliary functions 107 〉 +≡188

void PredictSolution(int p, int q,double a,double b,double t, const

IrregularMatrix〈std ::vector〈double〉〉 &nordsieck,daets ::DAEpoint

&prediction)

{

for (size t j = 0; j < nordsieck.num_rows(); j++)

for (size t k = 0; k < nordsieck.num_cols(j); k++)

prediction(j, k) = eval_hermite(p, q, a, b, t, nordsieck(j, k)); /∗ Pjk(t) ∗/

}

8.2.1.1 Evaluating the polynomial

Denoting x = t− b, y = t− a, and s = Pjk(t), (8.16) is

s = v0 + v1x+ v2x
2 + . . .+ vq+1x

q+1 + vq+2x
q+1y + . . .+ vq+px

q+1yp−1. (8.17)

We can rewrite (8.17) in the form

s = v0 + x

[
v1 + x

[
v2 + . . .+ x

[
vq+1 + y

[
vq+2 + y[vq+3 + . . .+ y[vq+p−1 + yvq+p]]

]]]]
,

and compute it by the following function.

〈Auxiliary functions 107 〉 +≡189

double eval_hermite(int p, int q,double a,double b,double t, std ::vector〈double〉 v)

{

double x = t− b;

double y = t− a;

115

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

double s = v[q + p];

for (int l = q + p− 1; l ≥ q + 1; l−−)

s = s ∗ y + v[l];

for (int l = q; l ≥ 0; l−−)

s = s ∗ x+ v[l];

return s;

}

8.3 Error estimation

To provide an estimate for the discretization error (4.19), we need to estimate (4.9), namely,

x
(p+q+1+k)
j (ηjk)
(p+ q + 1)! where ηjk ∈ (t∗, t∗ + h), (8.18)

for each (j, k) ∈ J<0.

Denote by ujk and vjk the (p+ q+ 1)th elements of the (p, q) Hermite-Nordsieck vectors

for x(k)
j at t∗ and t∗ + h, respectively. From (8.5), we approximate

x
(k+p+q)
j (t∗)
(p+ q)! ≈ ujk and

x
(k+p+q)
j (t∗ + h)

(p+ q)! ≈ vjk.

(8.19)

By the mean-value theorem, there is an η̃jk ∈ (t∗, t∗ + h) such that

x
(k+p+q+1)
j (η̃jk) =

x
(k+p+q)
j (t∗ + h)− x(k+p+q)

j (t∗)
h

.

Using the approximations (8.19), we write

x
(k+p+q+1)
j (η̃jk) ≈

vjk(p+ q)!− ujk(p+ q)!
h

.

116

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Then we use

ξ̃jk = vjk − ujk
h(p+ q + 1) ≈

x
(k+p+q+1)
j (η̃jk)
(p+ q + 1)! , (8.20)

as an estimation for (8.18).

Theorem 8.1. For a scalar function y ∈ Cp+q+1[a, b] and the polynomial (8.4) obtained from

data (8.1) we have

y(m)(b)− P (m)(b) = O
(
(b− a)p+q+2−m

)
, for m = q + 1, q + 2, . . . , p+ q + 2.

Proof. Using the convergence theorem of Hermite interpolation (see e.g., Theorem 2.1.5.9

in [64]), we can write

y(t)− P (t) = y(p+q+2)(ηt)
(p+ q + 2)!(t− a)p+1(t− b)q+1, for some ηt ∈ [a, b].

with t ∈ [a, b]. Denote

w(t) = (t− a)p+1(t− b)q+1.

Differentiating w(t), and setting t = b, the proof follows from

w(m)(b) = O
(
(b− a)p+q+2−m

)
.

The proof of this, although elementary, is tedious and we omit it.

Here, ujk and vjk are the (p+ q)th derivatives of Hermite interpolating polynomials of

the form (8.4). Computing the (p, q) Hermite-Nordsieck vectors for x(k)
j at t∗ and t∗+h with

accurate data, we obtain approximations (8.19) with the error of orderO(h2) by Theorem 8.1.

However, in practice, we compute Hermite-Nordsieck vectors using the approximate data

with errors depending on the user specified tolerance.

117

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

If approximate data of a function y contain errors of order O(hr), then an mth order

differentiation of an interpolating polynomial of any degree ≥ (r − 1) obtained from this

data yields approximations of y(m) with reduced order of accuracy O(hr−m) [9]. Therefore,

if we apply a (p, q) HO method when p + q and user specified tolerances are large, then

(8.20) is not a good estimation for (8.18).

Let the irregular matrix Ẽ contain the values ξ̃jk for (j, k) ∈ J<0. We compute

epqh
p+q+1Ẽ, (8.21)

where epq is the error constant given by (4.8). We refer to (8.21) as the estimated discretiza-

tion error (EDE).

8.3.1 Implementation

The StiffDAEsolver class maintains a pointer to an object of the HO class.

〈StiffDAEsolver Data Members 192 〉 ≡192

HO ∗ho_;

See also chunks 195, 196, 197, 212, 229, 233, 235, 253, 295, and 361

This code is used in chunk 27.

The constructor and destructor of the StiffDAEsolver class are given in Appendix D.3.

We declare the data members and implement the functions in this chapter and Chapter 9.

The function EstErrHO is implemented to compute the norm of (8.21). In this function,

order is p+ q and weight is used to compute the scaled WRMS norm in (8.21).

〈Definitions of StiffDAEsolver Private Functions 194 〉 ≡194

118

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

double StiffDAEsolver ::EstErrHO(int order,double e_pq,

const IrregularMatrix〈double〉 &weight)

{

〈 compute epqhp+q+1Ẽ 199 〉;

〈 compute ‖epqhp+q+1Ẽ‖ 200 〉;

}

See also chunks 203, 215, 220, 222, 223, 234, 238, 258, 297, and 336

This code is used in chunk 362.

Assume that for all (j, k) ∈ J<0 the (p, q) Hermite-Nordsieck vectors for x(k)
j at t∗ have

been stored in

〈StiffDAEsolver Data Members 192 〉 +≡195

IrregularMatrix〈std ::vector〈double〉〉 nordsieck_cur_;

and at t∗ + h they have been stored in

〈StiffDAEsolver Data Members 192 〉 +≡196

IrregularMatrix〈std ::vector〈double〉〉 nordsieck_trial_;

That is, the nordsieck_trial_(j, k)[p + q] contains vjk, and nordsieck_cur_(j, k)[p + q]

contains ujk. By (8.20),

hξ̃jk = vjk − ujk
p+ q + 1 .

For each (j, k) ∈ J<0 we compute hξ̃jk and store it in

〈StiffDAEsolver Data Members 192 〉 +≡197

119

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

IrregularMatrix〈double〉 ede_;

〈 compute hξ̃jk 198 〉 ≡198

ede_(j, k) = (nordsieck_trial_(j, k)[order]− nordsieck_cur_(j, k)[order])/(order + 1);

This code is used in chunk 199.

Now, we estimate the error as

〈 compute epqhp+q+1Ẽ 199 〉 ≡199

for (int j = 0; j < ede_.num_rows(); j++)

for (int k = 0; k < ede_.num_cols(j); k++)

〈 compute hξ̃jk 198 〉;

ede_ ∗= ho_~ h_pow_[order] ∗ e_pq;

This code is used in chunk 194.

Finally, by calling wrms_norm function from the IrregularMatrix class, we compute

the norm of the error.

〈 compute ‖epqhp+q+1Ẽ‖ 200 〉 ≡200

return ede_.wrms_norm(weight);

This code is used in chunk 194.

8.4 Stepsize and order selection

Suppose that we intend to apply the (p, q) HO method to solve a DAE. Since our interest in

this method is for stiff problems, we choose the parameters p and q such that the method is

120

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

at least A-stable. For given integer κ > 0, by Theorem 3.3, we choose

p =
⌈
κ

2

⌉
and q = κ− p. (8.22)

That is, if κ is odd, then q = p+ 1, and the method is L-stable. When κ is even, then q = p,

and the method is A-stable.

We provide the HO method with a variable-order formulation. After an accepted step,

we consider keeping the same order, κ, or κ− 1 or κ+ 1. We consider the HO parameters p

and q for the next step as in Table 8.1.

last step considered for next step

κ κ− 1 κ κ+ 1

(p, p) (p− 1, p) (p, p) (p, p+ 1)

(p, p+ 1) (p, p) (p, p+ 1) (p+ 1, p+ 1)

Table 8.1: Considered (p, q) for next step.

After applying the method of order κ with stepsize hκ for the last step, we consider

stepsizes ĥi to continue the integration with orders i ∈ {κ− 1, κ, κ+ 1} determined by

ĥi = σihκ,

where

σi =
(

si
‖EDEi‖

)1/(i+1)

. (8.23)

Here si is a safety factor and EDEi is the EDE given by (8.21) at order i.

121

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

In a variable-order formulation, we need to know a priori an estimation of the computa-

tional cost per step for each order that is under consideration for the next step. Ignoring the

cost of computing A0 which is strongly problem dependent, the computational cost of the

(p, q) HO method per step is O
(
n3 + Nn2q + Nq2 + N3

)
(see Table 8.2). We define the

following cost per step function for the (p, q) HO method

C(n,N, q, h) = 1
h

(
n3 +Nn2q +Nq2 +N3

)
. (8.24)

We determine the order i ∈ {κ− 1, κ, κ+ 1} for the next step that minimizes (8.24).

task computational complexity

LU factorization of A0 O(n3)

computing xJs for s = 0, . . . , q − 1 O(n2q + q2)

evaluating fHO(xJ<0) O(N(p+ q))

computing∇xJs for s = 0, . . . , q − 1 O(Nn2q +Nq2)

evaluating JHO O(N2q)

LU factorization of JHO O(N3)

substitutions for solving JHOδ = −fHO(xJ<0) O(N2)

total O(n3 +Nn2q +Nq2 +N3)

Table 8.2: Cost of the (p, q) HO method per step.

8.4.1 Implementation

To determine the order i ∈ {κ− 1, κ, κ+ 1} for the next step that minimizes (8.24), we

122

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

• compute σi (8.23),

• compute

Ci = 1
σi

(
n3 +Nn2qi +Nq2

i +N3
)
, (8.25)

for the (pi, qi) HO method, and

• find i that minimizes (8.25).

We implement the function SelectOrder to select the order for the next step. In this function,

sigma_k is σκ, weight is used to compute the scaled WRMS norm, and the vector epq

contains the constants |epq| in (4.8) for the p and q under consideration. This function returns

an OrderFlag.

〈 enumeration type for order selection 202 〉 ≡202

typedef enum {

DECREASE_ORDER, /∗ if the order for the next step should be κ− 1, ∗/

DONT_CHANGE_ORDER, /∗ if the integration could continue with order κ, ∗/

INCREASE_ORDER /∗ if the order for the next step should be κ+ 1 ∗/

} OrderFlag;

This code is used in chunk 369.

〈Definitions of StiffDAEsolver Private Functions 194 〉 +≡203

OrderFlag StiffDAEsolver ::SelectOrder(int k,double sigma_k, const

IrregularMatrix〈double〉 &weight, const std ::vector〈double〉 &epq)

{

123

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 compute σκ−1 and σκ+1 204 〉;

〈 compute Cκ−1, Cκ and Cκ+1 207 〉;

〈find min{Cκ−1, Cκ, Cκ+1} to determine the possible order change 211 〉;

〈 check not to exceed maximum or fall minimum order 213 〉;

return flag;

}

Calling the function EstErrHO, we estimate ‖EDEκ−1‖ and ‖EDEκ+1‖ and store them in

ede_low and ede_high, respectively. epq[0] contains the |epq| corresponding to order κ− 1

and epq[2] contains this term for order κ+ 1 (see Table 8.1).

〈 compute σκ−1 and σκ+1 204 〉 ≡204

double ede_low = EstErrHO(k − 1, epq[0],weight);

double ede_high = EstErrHO(k + 1, epq[2],weight);

See also chunk 206.

This code is used in chunk 203.

We implement the following auxiliary function to compute (8.23).

〈Auxiliary functions 107 〉 +≡205

double comp_sigma(int order,double lte,double safety)

{

double power = 1.0/(order + 1);

double sigma = std ::pow(safety/lte, power);

return sigma;

124

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

}

Calling this function, we compute σκ−1 and σκ+1 and store them in sigma_low and

sigma_high, respectively.

〈 compute σκ−1 and σκ+1 204 〉 +≡206

double sigma_low = comp_sigma(k − 1, ede_low, 0.1);

double sigma_high = comp_sigma(k + 1, ede_high, 0.05);

To compute Cκ−1 and Cκ+1 we first select the HO parameters (pκ−1, qκ−1) and (pκ+1, qκ+1)

as in Table 8.1.

〈 compute Cκ−1, Cκ and Cκ+1 207 〉 ≡207

int p = ho_~ p_,

q = ho_~ q_,

n = ho_~ n_,

nn = ho_~ num_indep_tcs_,

p_high, p_low, q_high, q_low;

if (p ≡ q)

{

p_high = p;

q_high = p+ 1;

p_low = p− 1;

q_low = p;

}

125

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

else

{

p_high = p+ 1;

q_high = p+ 1;

p_low = p;

q_low = p;

}

See also chunk 209.

This code is used in chunk 203.

We implement the following function to compute (8.25).

〈Auxiliary functions 107 〉 +≡208

double cost_per_step(int n, int nn, int p, int q,double h)

{

int n2 = n ∗ n;

int n3 = n ∗ n2;

int nn3 = nn ∗ nn ∗ nn;

int q2 = q ∗ q;

double cost = (n3 + nn ∗ n2 ∗ q + nn ∗ q2 + nn3)/h;

return cost;

}

126

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Calling the function cost_per_step, we compute Cκ−1, Cκ and Cκ+1 and store them in

cost_low, cost_k, and cost_high, respectively.

〈 compute Cκ−1, Cκ and Cκ+1 207 〉 +≡209

double cost_low = cost_per_step(n, nn, p_low, q_low, sigma_low);

double cost_k = cost_per_step(n, nn, p, q, sigma_k);

double cost_high = cost_per_step(n, nn, p_high, q_high, sigma_high);

The new order is then chosen to minimize {Cκ−1, Cκ, Cκ+1}. This is done by the following

function.

〈Auxiliary functions 107 〉 +≡210

OrderFlag min_cost(double cost1,double cost2,double cost3)

{

if ((cost1 < cost2) ∧ (cost1 < cost3))

return DECREASE_ORDER;

if ((cost3 < cost2) ∧ (cost3 < cost1))

return INCREASE_ORDER;

return DONT_CHANGE_ORDER;

}

〈find min{Cκ−1, Cκ, Cκ+1} to determine the possible order change 211 〉 ≡211

OrderFlag flag = min_cost(cost_low, cost_k, cost_high);

This code is used in chunk 203.

127

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Finally, we check if the new order is in the range of specified minimum and maximum

orders stored in

〈StiffDAEsolver Data Members 192 〉 +≡212

int min_order_, max_order_;

〈 check not to exceed maximum or fall minimum order 213 〉 ≡213

if ((k ≡ max_order_ ∧ flag ≡ INCREASE_ORDER) ∨

(k ≡ min_order_ ∧ flag ≡ DECREASE_ORDER))

return DONT_CHANGE_ORDER;

This code is used in chunk 203.

128

Chapter 9

The integrator function

To start an integration and to obtain the required data for computing the Hermite-Nordsieck

vectors (§8.1), we use the explicit Taylor series method on the first step. This is carried out

by the IntegrateByExplicitTS function, Appendix A. Then, we use our HO method, step by

step, from the found solution by IntegrateByExplicitTS up to a final time.

In this chapter, we first describe the components of our overall algorithm and implement

the function IntegrateByHO for integrating the given problem using the HO method in

§9.1. Then, in §9.2 we implement the function integrate which advances the solution

from the initial time up to the final time by calling the functions IntegrateByExplicitTS and

IntegrateByHO.

129

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

9.1 Integration by HO method

Consider the DAE (1.1) and assume that the following are given

• absolute error tolerance atol, and relative error tolerance rtol,

• current order κ, minimum order κmin and maximum order κmax,

• previous time tprev, current time tcur and final time tend,

• TCs xJ<p+α at tprev and xJ<q+α at tcur with p = dκ/2e, q = κ− p, and α in (8.9), and

• a trial stepsize h.

Our algorithm for integrating (1.1) using the HO method in §4.2 to find a numerical solution

xJ<0 at tend consists of the following steps (see Figure 9.1 for an illustration).

1. Prepare for integration, that is,

• compute p = dκ/2e, q = κ− p, coefficients cpqr in (3.10) for r = 0, . . . , p, and

cqpr in (3.11) for r = 0, . . . , q, and the error constants epq in (4.8) for orders κ−1,

κ and κ+ 1,

• compute the weights (7.6) required for the WRMS norm (7.3),

• construct an irregular matrix HNcur whose (j, k)th entry is the (p, q) Hermite-

Nordsieck vector for x(k)
j , (j, k) ∈ J≤α, at tcur (see §8.1), and

• the minimum allowed stepsize hmin.

130

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

prepare for integration

h too

small?

stop

adjust h, if needed, such that

ttrial = tcur + h ≤ tend

predict xJ≤α
at ttrial

compute x
ho

J≤0

solution

failure?

project xhO

J≤0
onto constraints

projection

failure?

h ← h/2

compute TCs

estimate error

error

within tol?

tcur = ttrial
prepare for next step

ttrial = tend? stop

yes

no

no

yes

yes

no

no

yes

no

yes

Figure 9.1: Algorithm overview.

131

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

2. Check and adjust the stepsize h, that is, if h < hmin terminate the integration and return

the solution at tcur. Otherwise, adjust h, if needed, such that ttrial = tcur + h ≤ tend.

3. Find an initial guess for xJ≤α at ttrial using HNcur (see §8.2).

4. Compute xH O
J≤0

at ttrial, that is, construct and solve the HO system F(xJ<0) = 0 to

obtain a solution xH O
J<0 at ttrial (see §7.3). In addition, compute TCs xH O

J0 at ttrial by

solving (see Chapter 5)

fI0

(
ttrial,xH O

J<0 ,x
H O
J0

)
= 0.

If solving one of the above systems fails, then h← h/2 and go to 2.

5. Solve the constrained optimization problem

min
xJ≤0
‖xJ≤0 − xH O

J≤0
‖2 subject to fI≤0(ttrial,xJ≤0) = 0,

to obtain the projected solution xP R
J≤0

at ttrial. If the projection fails, then h← h/2 and

go to 2.

6. Compute TCs xP R
J<q+α at ttrial by solving (see Chapter 5)

fIs
(
ttrial,xP R

J<s ,x
P R
Js

)
= 0, s = 1, . . . , q + α.

7. Compute EDE, that is,

• use xJ<p+α at tcur and xP R
J<q+α at ttrial to construct an irregular matrix HNtrial

whose (j, k)th entry is the (p, q) Hermite-Nordsieck vector for x(k)
j , (j, k) ∈ J≤α,

at ttrial, and

132

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

• use HNcur and HNtrial to compute EDE (see §8.3).

8. If ‖EDE‖ > 1, then h ← h/2 and go to 2. If ‖EDE‖ ≤ 1 and ttrial = tend, then

terminate the integration with xP R
J<0 as our solution at tend. Otherwise, prepare to

perform the next step, that is,

• tcur ← ttrial,

• HNcur ← HNtrial,

• update the weights using entries of xP R
J<0 ,

• update hmin,

• predict a stepsize h for next step,

• determine an order κ with κmin ≤ κ ≤ κmax for next step (see §8.4). If change in

order, compute p = dκ/2e, q = κ− p, coefficients cpqr for r = 0, . . . , p, and cqpr

for r = 0, . . . , q, and the error constants epq for orders κ− 1, κ and κ+ 1, and

• go to 2.

This algorithm is carried out by the function IntegrateByHO. In this function, x contains

an initial point and will be updated by the solution at tend. If the function cannot reach tend,

the solution at some t < tend is returned.

〈Definitions of StiffDAEsolver Private Functions 194 〉 +≡215

void StiffDAEsolver :: IntegrateByHO(daets ::DAEsolution &x,double

t_end,daets ::SolverExitFlag &state)

{

133

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 declare variables for integration 218 〉;

〈 prepare for integration 216 〉;

while (x.t_ 6= t_end)

{

〈 check and adjust the stepsize h 247 〉;

〈find an initial guess for xJ≤α 250 〉;

〈 compute xH O
J≤0

252 〉;

〈 project xH O
J≤0

onto constraints 260 〉;

〈 compute higher-order TCs 266 〉;

〈 estimate the error 270 〉;

〈 prepare for next step 275 〉;

〈 optional output 292 〉;

}

}

9.1.1 Preparation for integration

The DAEsolver class has the protected member params_ which is a pointer to an object

of the Parameters class. We obtain absolute and relative tolerances by calling getAtol and

getRtol from Parameters class and store them in atol and rtol, respectively.

〈 prepare for integration 216 〉 ≡216

double atol = params_~ getAtol();

double rtol = params_~ getRtol();

134

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

x.stats_~ setTols(atol, rtol);

See also chunks 219, 225, 228, 232, 237, 240, 242, 244, 246, 255, and 268

This code is used in chunk 215.

9.1.1.1 Parameters and coefficients of the method

Given the order, we compute parameters p and q in the (p, q) HO method by (8.22).

〈 declare variables for integration 218 〉 ≡218

int p, q;

See also chunks 224, 227, 231, 236, 239, 241, 243, 249, 251, 259, 267, 269, 277, 283, 287, and 288

This code is used in chunk 215.

〈 prepare for integration 216 〉 +≡219

p = x.order_/2;

q = x.order_ − p;

We implement the function set_pq_comp_coeffs to

• set p and q in the HO object,

• compute coefficients cpqr in (3.10) for r = 0, . . . , p, and cqpr in (3.11) for r = 0, . . . , q,

and

• compute |epq| in (4.8) for all (i, j) HO methods that are under consideration for the

next step.

〈Definitions of StiffDAEsolver Private Functions 194 〉 +≡220

135

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

void StiffDAEsolver ::set_pq_comp_coeffs(int p, int q, std ::vector〈double〉 &ho_epq)

{

ho_~ set_pq(p, q);

ho_~CompCpq();

ho_~CompCqp();

CompEpq(p, q, ho_epq);

}

The function set_pq in the HO class sets the parameters p and q of the (p, q) HO method.

〈Definitions of HO Private Functions 37 〉 +≡221

void HO ::set_pq(int p, int q)

{

p_ = p;

q_ = q;

}

We implement the function CompErrorCanstant to compute |epq| for the (p, q) HO

method.

〈Definitions of StiffDAEsolver Private Functions 194 〉 +≡222

inline double StiffDAEsolver ::CompErrorConstant(int p, int q)

{

return ho_~ factorial_[p] ∗ ho_~ factorial_[q]/ho_~ factorial_[p+ q];

}

136

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Calling this function, the function CompEpq computes eij for all (i, j) HO methods that

are under consideration for the next step as in Table 8.1.

〈Definitions of StiffDAEsolver Private Functions 194 〉 +≡223

void StiffDAEsolver ::CompEpq(int p, int q, std ::vector〈double〉 &e_pq)

{

assert(e_pq.size() ≡ 3);

if (p ≡ q)

{

e_pq[0] = CompErrorConstant(p− 1, p);

e_pq[1] = CompErrorConstant(p, p);

e_pq[2] = CompErrorConstant(p, p+ 1);

}

else

{

e_pq[0] = CompErrorConstant(p, p);

e_pq[1] = CompErrorConstant(p, p+ 1);

e_pq[2] = CompErrorConstant(p+ 1, p+ 1);

}

}

〈 declare variables for integration 218 〉 +≡224

std ::vector〈double〉 epq(3);

137

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 prepare for integration 216 〉 +≡225

set_pq_comp_coeffs(p, q, epq);

9.1.1.2 The weights for WRMS norm

To compute the WRMS norm given by (7.3) for the error estimation (8.21), we precompute

(7.6). The following function performs this task.

〈Auxiliary functions 107 〉 +≡226

void CompWeight(const daets ::DAEpoint &x,double rtol,double

atol, IrregularMatrix〈double〉 &w)

{

for (size t j = 0; j < w.num_rows(); j++)

for (size t k = 0; k < w.num_cols(j); k++)

w(j, k) = 1.0/(atol + std :: fabs(x(j, k)) ∗ rtol);

}

Calling CompWeight, we store (7.6) in

〈 declare variables for integration 218 〉 +≡227

IrregularMatrix〈double〉 weight;

weight = IrregularMatrix〈double〉(ho_~ d_);

〈 prepare for integration 216 〉 +≡228

CompWeight(x, rtol, atol,weight);

138

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

9.1.1.3 Hermite-Nordsieck vectors

x.t_ contains the current time. To construct the (p, q) Hermite-Nordsieck vectors for x(k)
j ,

(j, k) ∈ J≤α, at x.t_ by the function CompNordsieck implemented in §8.1, we need (8.13),

(8.10) and (8.11) , with a = t_prev_ and b = x.t_.

〈StiffDAEsolver Data Members 192 〉 +≡229

double t_prev_;

The following function returns the vector (8.13) through t_vec.

〈Auxiliary functions 107 〉 +≡230

void create_t_vec(double a,double b, int p, int q, std ::vector〈double〉 &t_vec)

{

if (t_vec.size() 6= (p+ q + 2))

t_vec.resize(p+ q + 2);

for (int i = 0; i ≤ q; i++)

t_vec[i] = b;

for (int i = 0; i ≤ p; i++)

t_vec[q + 1 + i] = a;

}

We call the function create_t_vec to create the vector (8.13) and store it in

〈 declare variables for integration 218 〉 +≡231

std ::vector〈double〉 t_vec_cur;

139

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

t_vec_cur.reserve(max_order_ + 2);

〈 prepare for integration 216 〉 +≡232

create_t_vec(t_prev_, x.t_, p, q, t_vec_cur);

Scaled TCs xJ<p at t_prev_ are stored in

〈StiffDAEsolver Data Members 192 〉 +≡233

std ::vector〈std ::vector〈double〉〉 tcs_prev_;

and x.savedTCs_ contains scaled TCs xJ<q at x.t_. However, in (8.10) and (8.11), we need

derivatives x(l)
j at t_prev_ and x.t_, respectively. We implement the function unscale_tcs to

unscale TCs.

〈Definitions of StiffDAEsolver Private Functions 194 〉 +≡234

void StiffDAEsolver ::unscale_tcs(const std ::vector〈double〉 &pow_h,

std ::vector〈std ::vector〈double〉〉 &tcs)

{

for (size t j = 0; j < tcs.size(); j++)

for (size t l = 0; l < tcs[j].size(); l++)

tcs[j][l] /= pow_h[l];

}

In this function, we need the powers of the stepsize. The x.h_saved_tcs_ contains the

current stepsize, and the previous stepsize is stored in

〈StiffDAEsolver Data Members 192 〉 +≡235

140

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

double h_prev_;

We use the function CompPowersH implemented in §7.3.2 to compute the powers of the

previous and current stepsizes and store them in

〈 declare variables for integration 218 〉 +≡236

std ::vector〈double〉 h_prev_pow_, h_cur_pow_;

respectively.

〈 prepare for integration 216 〉 +≡237

int size_h_pow = sadata_~ get_max_d() + x.order_ + 1;

CompPowersH(size_h_pow, h_prev_, h_prev_pow_);

CompPowersH(size_h_pow, x.h_saved_tcs_, h_cur_pow_);

The following function extracts derivatives from TCs.

〈Definitions of StiffDAEsolver Private Functions 194 〉 +≡238

void StiffDAEsolver :: tcs_to_ders(const std ::vector〈std ::vector〈double〉〉

&tcs, std ::vector〈std ::vector〈double〉〉 &ders)

{

ders = tcs;

for (size t j = 0; j < ders.size(); j++)

for (size t l = 0; l < ders[j].size(); l++)

ders[j][l] ∗= ho_~ factorial_[l];

}

141

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Calling the functions unscale_tcs and tcs_to_ders, we store (8.10) in

〈 declare variables for integration 218 〉 +≡239

std ::vector〈std ::vector〈double〉〉 ders_prev;

〈 prepare for integration 216 〉 +≡240

unscale_tcs(h_prev_pow_, tcs_prev_);

tcs_to_ders(tcs_prev_, ders_prev);

Analogously, we store (8.11) in

〈 declare variables for integration 218 〉 +≡241

std ::vector〈std ::vector〈double〉〉 ders_cur;

〈 prepare for integration 216 〉 +≡242

unscale_tcs(h_cur_pow_, x.savedTCs_);

tcs_to_ders(x.savedTCs_, ders_cur);

for (size t j = 0; j < sadata_~ get_size(); j++)

for (size t l = 0; l ≤ sadata_~ get_d(j); l++)

ho_~ ts_~ set_var_coeff (j, l, x.savedTCs_[j][l]);

Now, we can call the function CompNordsieck to obtain the (p, q) Hermite-Nordsieck

vectors for x(k)
j , (j, k) ∈ J≤α, at x.t_ and store them in nordsieck_cur_.

〈 declare variables for integration 218 〉 +≡243

std ::vector〈size t〉 nord_size(sadata_~ get_size());

for (int j = 0; j < sadata_~ get_size(); j++)

142

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

nord_size[j] = x.getNumDerivatives(j);

std ::vector〈double〉 nord_vec(max_order_);

nordsieck_cur_ = IrregularMatrix〈std ::vector〈double〉〉(nord_size, nord_vec);

〈 prepare for integration 216 〉 +≡244

CompNordsieck(p, q, t_vec_cur, ders_prev, ders_cur, nordsieck_cur_);

We call the function compHmin to compute the smallest allowed stepsize.

〈 compute the smallest allowed stepsize 245 〉 ≡245

double h_smallest = daets ::compHmin(x, t_end, params_);

params_~ setHmin(h_smallest);

This code is used in chunks 246 and 275

〈 prepare for integration 216 〉 +≡246

〈 compute the smallest allowed stepsize 245 〉

9.1.2 Checking the stepsize

x.htrial_ contains the trial stepsize. Comparing x.htrial_ with the smallest allowed stepsize,

we decide to terminate the integration if the stepsize is too small.

〈 check and adjust the stepsize h 247 〉 ≡247

if (fabs(x.htrial_) < params_~ getHmin())

{

state = daets ::htoosmall;

x.state_ = daets ::DAEsolution ::EndOfPath;

143

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

x.stats_~ stopTimer();

return;

}

See also chunk 248.

This code is used in chunk 215.

x.ttrial_ contains the trial time, namely, x.ttrial_ = x.t_ + x.htrial_. Calling the function

daets ::checkIfLastStep, we adjust the stepsize x.htrial_ such that x.ttrial_ ≤ t_end .

〈 check and adjust the stepsize h 247 〉 +≡248

daets ::checkIfLastStep(x.ttrial_, x.htrial_, x.t_, t_end);

9.1.3 Finding an initial guess

We have already obtained the (p, q) Hermite-Nordsieck vectors for x(k)
j , (j, k) ∈ J≤α, at

x.t_ and stored them in nordsieck_cur_. Hence, we can call the function PredictSolution

implemented in §8.2 to find an initial guess for xJ≤α and store it in

〈 declare variables for integration 218 〉 +≡249

daets ::DAEpoint ho_solution(∗this);

〈find an initial guess for xJ≤α 250 〉 ≡250

PredictSolution(p, q, t_vec_cur[q + 1], t_vec_cur[0], x.ttrial_, nordsieck_cur_,

ho_solution);

This code is used in chunk 215.

144

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

9.1.4 Applying the HO method

We call the function CompHoSolution implemented in §7.3 to compute the solution of the

HO system (4.20). It returns the computed solution xH O
J≤0

at x.ttrial_ through ho_solution.

〈 declare variables for integration 218 〉 +≡251

HoFlag ho_flag;

〈 compute xH O
J≤0

252 〉 ≡252

ho_flag = ho_~CompHoSolution(x.ttrial_, x.htrial_, x.tol_,weight, x.savedTCs_,

ho_solution);

assert(ho_flag 6= SYS_JAC_SINGULAR);

See also chunk 257.

This code is used in chunk 215.

By default, we disable the computing of the condition number of JHO.

〈StiffDAEsolver Data Members 192 〉 +≡253

bool cond_flag_ = false;

However, a user can activate it by calling the function comp_cond .

〈Definitions of StiffDAEsolver Public Functions 254 〉 ≡254

void StiffDAEsolver ::comp_cond() { cond_flag_ = true; }

See also chunks 294 and 296

This code is used in chunk 362.

〈 prepare for integration 216 〉 +≡255

145

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

ho_~ need_cond_jac(cond_flag_);

If the iteration (7.1) for solving the HO system (4.20) is not convergent, we half the

stepsize and repeat the step.

〈 compute xH O
J≤0

252 〉 +≡257

if (ho_flag 6= HO_CONVERGENT)

{

x.htrial_ /= 2;

x.stats_~ countSteps(false); /∗ counts the number of rejected steps ∗/

SetSavedTCs(x.savedTCs_, q); /∗ see bellow ∗/

continue;

}

We implement the function SetSavedTCs to set the TCs at x.t_ in the TaylorSeries object.

We will use them later as initial guesses for TCs at next point (see §5.1).

〈Definitions of StiffDAEsolver Private Functions 194 〉 +≡258

void StiffDAEsolver ::SetSavedTCs(const std ::vector〈std ::vector〈double〉〉 &tcs, int

q)

{

for (int j = 0; j < sadata_~ get_size(); j++)

for (int l = 0; l < q + sadata_~ get_d(j); l++)

ho_~ ts_~ set_var_coeff (j, l, tcs[j][l]);

146

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

}

9.1.5 Projection

The projection step is done by calling the function daets ::projectTSsolution. It returns the

projected solution xP R
J≤0

at x.ttrial_ through x.xtrial_. Since the matrix A0 = ∂fI0/∂xJ0 is

used for projection, this function computes and returns the updated A0 as well.

〈 declare variables for integration 218 〉 +≡259

bool projected;

〈 project xH O
J≤0

onto constraints 260 〉 ≡260

int exitflag;

daets ::projectTSsolution(x.ttrial_, ho_solution, params_~ get_ts_proj_tol(), jac_,

&x.xtrial_, ho_~ sys_jac_,&exitflag);

projected = ¬exitflag;

See also chunk 261.

This code is used in chunk 215.

If solving this problem fails, we half the stepsize and repeat the step.

〈 project xH O
J≤0

onto constraints 260 〉 +≡261

if (¬projected)

{

x.htrial_ /= 2;

x.stats_~ countSteps(false); /∗ counts the number of rejected steps ∗/

147

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

SetSavedTCs(x.savedTCs_, q);

continue;

}

9.1.6 Computing higher-order TCs

To compute the (p, q) Hermite-Nordsieck vectors for x(k)
j , (j, k) ∈ J≤α, at ttrial, we need

xP R
J<q+α at ttrial. Given xP R

J≤0
and A0, the following function computes xP R

Js , s = 1, 2, . . . , q+α

at ttrial by calling the function CompTCsLinear after finding the LU decomposition of A0

(see §5.1). Here, x contains xP R
J≤0

.

〈Definitions of HO Private Functions 37 〉 +≡262

bool HO ::CompTCs(daets ::DAEpoint &x)

{

〈 set xP R
J≤0

264 〉;

〈find LU decomposition of A0 265 〉;

for (int s = 1; s ≤ q_ − sadata_~ isLinear(); s++)

CompTCsLinear(s);

return true;

}

The x(j, k) contains the projected x(k)
j at ttrial. Hence, x(j, k)/k! gives the projected

TC x
(k)
j /k!. we implement the function SetProjected to compute and set these TCs for

j = 0, 1, . . . , n− 1 and k = 0, 1, . . . , dj .

148

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈Definitions of HO Private Functions 37 〉 +≡263

void HO ::SetProjected(daets ::DAEpoint &x)

{

for (int j = 0; j < n_; j++)

for (int k = 0; k ≤ d_[j]; k++)

{

double tc = x(j, k)/factorial_[k];

ts_~ set_var_coeff (j, k, tc);

}

}

〈 set xP R
J≤0

264 〉 ≡264

SetProjected(x);

This code is used in chunk 262.

The sys_jac_ contains A0. We need its LU decomposition.

〈find LU decomposition of A0 265 〉 ≡265

int sys_info;

daets ::LU(n_, sys_jac_, ipiv_,&sys_info);

if (sys_info 6= 0)

return false;

This code is used in chunk 262.

149

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

Calling the function CompTCs, we compute xJ<q+α .

〈 compute higher-order TCs 266 〉 ≡266

bool computed_tcs = ho_~CompTCs(x.xtrial_);

assert(computed_tcs);

This code is used in chunk 215.

9.1.7 Error estimation

Analogously to §9.1.1.3, we compute Hermite-Nordsieck vectors for x(k)
j , (j, k) ∈ J≤α, at

x.ttrial_ and store them in

〈 declare variables for integration 218 〉 +≡267

nordsieck_trial_ = IrregularMatrix〈std ::vector〈double〉〉(nord_size, nord_vec);

such that

〈 prepare for integration 216 〉 +≡268

nordsieck_trial_ = nordsieck_cur_; /∗ for memory allocation. ∗/

Calling the function create_t_vec, we create and store the vector (8.13) with a = x.t_ and

b = x.ttrial_ in

〈 declare variables for integration 218 〉 +≡269

std ::vector〈double〉 t_vec_trial;

〈 estimate the error 270 〉 ≡270

create_t_vec(x.t_, x.ttrial_, p, q, t_vec_trial);

See also chunks 271, 272, 273, and 274

150

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

This code is used in chunk 215.

We need TCs at x.t_ and x.ttrial_.

〈 estimate the error 270 〉 +≡271

tcs_prev_ = x.savedTCs_; /∗ tcs_prev_ contains TCs at x.t_ ∗/

x.saveTCs(ho_~ ts_); /∗ x.savedTCs_ contains TCs at x.ttrial_ ∗/

We call the function tcs_to_ders to extract derivatives from TCs.

〈 estimate the error 270 〉 +≡272

tcs_to_ders(tcs_prev_, ders_prev);

tcs_to_ders(x.savedTCs_, ders_cur);

Now, we can call the function CompNordsieck which returns the (p, q) Hermite-Nordsieck

vectors for x(k)
j , (j, k) ∈ J≤α, at x.ttrial_ through nordsieck_trial_.

〈 estimate the error 270 〉 +≡273

CompNordsieck(p, q, t_vec_trial, ders_prev, ders_cur, nordsieck_trial_);

Using nordsieck_cur_ and nordsieck_trial_, we compute ‖EDE‖ in (8.21) by calling the

function EstErrHO implemented in §8.3 and store it in x.e_.

〈 estimate the error 270 〉 +≡274

x.e_ = EstErrHO(x.order_, epq[1],weight);

9.1.8 Preparation for next step

If ‖EDE‖ ≤ 1 and ttrial < tend, we prepare to perform the next step. If ‖EDE‖ > 1, we half

the stepsize and repeat the step.

151

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 prepare for next step 275 〉 ≡275

if (x.e_ ≤ 1)

{

〈 compare the taken stepsize and order with previous ones 276 〉;

〈 accept the solution 279 〉;

〈 predict the stepsize for next step 284 〉;

x.tol_ = atol + rtol ∗ x.max_norm();

〈 determine the order for next step 290 〉;

〈 compute the smallest allowed stepsize 245 〉;

CompWeight(x.xtrial_, rtol, atol,weight);

t_vec_cur = t_vec_trial;

nordsieck_cur_ = nordsieck_trial_;

}

else

{

x.htrial_ /= 2;

x.savedTCs_ = tcs_prev_;

SetSavedTCs(x.savedTCs_, q);

x.stats_~ countSteps(false); /∗ counts the number of rejected steps ∗/

continue;

}

152

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

This code is used in chunk 215.

We call the function setHminMax from the Stats class to check if x.htrial_ is the smallest

or largest stepsize.

〈 compare the taken stepsize and order with previous ones 276 〉 ≡276

x.stats_~ setHminMax(fabs(x.htrial_));

See also chunk 278.

This code is used in chunk 275.

In addition, we check if x.order_ is the largest order that has been applied so far.

〈 declare variables for integration 218 〉 +≡277

int largest_order = x.order_;

〈 compare the taken stepsize and order with previous ones 276 〉 +≡278

if (largest_order ≤ x.order_)

{

largest_order = x.order_;

x.stats_~ setOrder(largest_order);

}

If ‖EDE‖ ≤ 1 and ttrial = tend, we terminate the integration and accept xP R
J<0 as our solution

at tend.

〈 accept the solution 279 〉 ≡279

x.t_ = x.ttrial_;

153

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

(daets ::DAEpoint &) x = x.xtrial_;

〈 compute condition number of JHO, if requested 282 〉;

x.printData();

x.state_ = daets ::DAEsolution ::OnPath;

x.stats_~ countSteps(true); /∗ counts the number of accepted steps ∗/

if (x.t_ ≡ t_end)

break;

This code is used in chunk 275.

We implement the function CompCondJac to compute the condition number of JHO. In

this function, RCond computes the reciprocal condition number of a matrix by routines in

the LAPACK software package.

〈Definitions of HO Private Functions 37 〉 +≡280

double HO ::CompCondJac()

{

double rcond = RCond(num_indep_tcs_, ho_jacobian_, norm_jac_);

assert(rcond 6= 0);

return 1/rcond;

}

In the following function, mat is the LU factorized matrix.

〈Auxiliary functions 107 〉 +≡281

double RCond(int n,double ∗mat,double mat_norm)

154

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

{

int lda = n;

char norm = ’I’;

double ∗work = new double[4 ∗ n];

int ∗iwork = new int[n];

double rcond;

int info;

dgecon_(&norm,&n,mat,&lda,&mat_norm,&rcond,work, iwork,&info);

delete[] work;

delete[] iwork;

return rcond;

}

Calling the function CompCondJac, we store the condition number of JHO in x.cond_jac_.

〈 compute condition number of JHO, if requested 282 〉 ≡282

if (cond_flag_)

x.cond_jac_ = ho_~CompCondJac();

This code is used in chunk 279.

9.1.8.1 The stepsize selection

To predict a stepsize for the next step, we first compute σ in (8.23) and store it in

〈 declare variables for integration 218 〉 +≡283

double sigma;

155

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 predict the stepsize for next step 284 〉 ≡284

sigma = comp_sigma(x.order_, x.e_, 0.16);

See also chunk 286.

This code is used in chunk 275.

Then, we call the following function.

〈Auxiliary functions 107 〉 +≡285

double comp_stepsize(double sigma,double max_sigma,double h_old)

{

double h_new;

if (sigma > max_sigma)

h_new = 0.5 ∗ max_sigma ∗ h_old;

else

h_new = 0.5 ∗ sigma ∗ h_old;

return h_new;

}

〈 predict the stepsize for next step 284 〉 +≡286

x.htrial_ = comp_stepsize(sigma, 2.5, x.htrial_);

9.1.8.2 The order selection

We count the number of successful consecutive steps and store it in

〈 declare variables for integration 218 〉 +≡287

156

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

int consecutive_acc_count = 0;

After integrating the problem for at least two successful consecutive steps with the current

order, we call the function SelectOrder which returns

〈 declare variables for integration 218 〉 +≡288

OrderFlag order_flag;

If the order needed to be changed, we would update the parameters p and q by Table 8.1.

This is done by the following function.

〈Auxiliary functions 107 〉 +≡289

void update_pq(OrderFlag flag, int &p, int &q)

{

if (flag ≡ DECREASE_ORDER)

p ≡ q ? p−− : q−−;

if (flag ≡ INCREASE_ORDER)

p ≡ q ? q++ : p++;

assert(p ≤ q);

}

Thus, we

〈 determine the order for next step 290 〉 ≡290

if (consecutive_acc_count ≥ 1)

{

157

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

order_flag = SelectOrder(x.order_, sigma,weight, epq);

if (order_flag 6= DONT_CHANGE_ORDER)

{

update_pq(order_flag, p, q);

x.order_ = p+ q;

set_pq_comp_coeffs(p, q, epq);

consecutive_acc_count = 0;

}

}

else

consecutive_acc_count++;

This code is used in chunk 275.

9.1.9 Optional output

To display the current t, the number of steps, the stepsize, the error, and the order during the

integration, we implement the following function.

〈Auxiliary functions 107 〉 +≡291

void PrintProgress(double t, int no_steps,double h,double err, int order)

{

static char ∗OutputString = (char ∗) "␣␣␣␣t␣=␣%.4e␣␣␣step\

s␣=␣%5d␣␣␣h␣=␣%.2e␣␣␣le␣=␣%.2e␣␣␣order␣=␣%2d";

static char delete_space[80];

158

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

sprintf (delete_space,OutputString, t, no_steps, h, err, order);

fprintf (stderr, "%s", delete_space);

for (unsigned int i = 0; i < strlen(delete_space); i++)

fputc(8, stderr);

}

〈 optional output 292 〉 ≡292

if (x.print_progress_ ≥ 0)

{

PrintProgress(x.t_, x.getNumAccSteps(), x.htrial_, x.e_, x.order_);

sleep(x.print_progress_);

}

See also chunk 293.

This code is used in chunk 215.

To simplify writing output to a file, we can turn on the one-step mode which is an optional

output feature in DAETS. In this mode, we return after each successful step and reuse the

solution as an input for the integrator function in the next call.

〈 optional output 292 〉 +≡293

if (x.onestep_mode_)

{

x.state_ = daets ::DAEsolution ::OnPath;

state = daets ::success;

159

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

x.stats_~ stopTimer();

return;

}

9.2 The function integrate

In this section, we implement the function integrate which advances a numerical solution of

a DAE of the form (1.1) from an initial time up to a final time. In this function, x contains

an initial point and will be updated by the solution at tend. If the function cannot reach tend,

the solution at some t < tend is returned.

〈Definitions of StiffDAEsolver Public Functions 254 〉 +≡294

void StiffDAEsolver :: integrate(daets ::DAEsolution &x,double t_end,

daets ::SolverExitFlag &state) throw(std :: logic_error)

{

〈 set order 298 〉;

〈 integrate by explicit TS method on the first step 300 〉;

〈 integrate by HO method up to the final time 301 〉;

}

A user can specify the minimum and maximum orders for the HO method by calling the

function SetMinMaxOrder. This function stores the orders in

〈StiffDAEsolver Data Members 192 〉 +≡295

160

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

int user_min_order_, user_max_order_;

〈Definitions of StiffDAEsolver Public Functions 254 〉 +≡296

void StiffDAEsolver ::SetMinMaxOrder(int min, int max)

{

user_min_order_ = min;

user_max_order_ = max;

}

To obtain the user specified orders, we implement the function GetMinMaxOrder. If the

user does not call SetMinMaxOrder function, we will consider the default values, 1 and 20.

〈Definitions of StiffDAEsolver Private Functions 194 〉 +≡297

void StiffDAEsolver ::GetMinMaxOrder()

{

if (user_min_order_ ≡ 0)

{

min_order_ = 1;

max_order_ = 20;

}

else

{

min_order_ = user_min_order_;

max_order_ = user_max_order_;

161

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

}

}

〈 set order 298 〉 ≡298

GetMinMaxOrder();

See also chunk 299.

This code is used in chunk 294.

We start the integration with the minimum order.

〈 set order 298 〉 +≡299

x.order_ = min_order_;

We call the function IntegrateByExplicitTS to use the explicit Taylor series method on the

first step.

〈 integrate by explicit TS method on the first step 300 〉 ≡300

IntegrateByExplicitTS(x, t_end, 1, state); /∗ terminate if the stepsize is too small ∗/

if (state ≡ daets ::htoosmall)

return;

if (x.t_ ≡ t_end) /∗ checks if the final time has reached ∗/

{

state = daets ::success;

x.stats_~ stopTimer();

return;

}

162

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

This code is used in chunk 294.

Then, we call the function IntegrateByHO to continue the integration using the HO

method up to the final time.

〈 integrate by HO method up to the final time 301 〉 ≡301

IntegrateByHO(x, t_end, state);

/∗ terminate the integration if the stepsize is too small ∗/

if (state ≡ daets ::htoosmall)

return;

state = daets ::success;

x.stats_~ stopTimer();

This code is used in chunk 294.

163

Chapter 10

Numerical results

In this chapter, we start with an example showing a basic integration with DAETS, §10.1.

Then in §10.2, we show results from solving several test problems.

10.1 Basic usage

To integrate a DAE problem using DAETS, a user should specify the problem and provide a

main program.

10.1.1 Problem definition

A DAE must be specified by a template function. As an example consider the simple

pendulum in Example 2.1. The following function evaluates (2.4). Here, the Diff operator

performs the differentiation of a variable with respect to t. That is, Diff (x[j], l) results in

x
(l)
j . The input x[0], x[1], x[2] store the state variables x, y, λ, respectively, and the output

164

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

f [0], f [1], f [2] store the evaluated f , g, h, respectively.

〈Pendulum 304 〉 ≡304

template〈typename T〉

void fcn(T t, const T ∗x,T ∗f, void ∗param)

{

const double G = 9.8, L = 10.0;

f [0] = Diff (x[0], 2) + x[0] ∗ x[2];

f [1] = Diff (x[1], 2) + x[1] ∗ x[2]−G;

f [2] = sqr(x[0]) + sqr(x[1])− sqr(L);

}

10.1.2 Main program

We implement a main program for this problem and explain its parts.

〈 solve simple pendulum 305 〉 ≡305

int main(int argc, char ∗argv[])

{

〈 set size of DAE and integration interval 306 〉;

〈 create a solver 307 〉;

〈 set order and tolerance 308 〉;

〈 create a DAEsolution object 309 〉;

〈 set initial values 310 〉;

〈 integrate the problem 311 〉;

165

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 output results 312 〉;

return 0;

}

First we set the DAE size and integration interval.

〈 set size of DAE and integration interval 306 〉 ≡306

int n = 3;

double t0 = 0, tend = 100;

This code is used in chunk 305.

Then, we construct an object solver of the class StiffDAEsolver, where we pass the size

of the problem and the function fcn. A predefined macro STIFF_DAE_FCN is used to simplify

a call to the constructor of the class StiffDAEsolver (see Appendix D.3).

〈 create a solver 307 〉 ≡307

sdaets ::StiffDAEsolver solver(n, STIFF_DAE_FCN(fcn));

This code is used in chunks 305, 372, 377, 382, 386, and 390

We intend to investigate the accuracy of the numerical solutions computed by our HO

method with different orders over a range of tolerances. We obtain minimum and maximum

orders, and the exponent r for tolerance 10−r from the command prompt and set them.

〈 set order and tolerance 308 〉 ≡308

int min_order = atoi(argv[1]);

int max_order = atoi(argv[2]);

166

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

int exp = atoi(argv[3]);

double tol = std ::pow(10,−exp);

solver.setTol(tol);

solver.SetMinMaxOrder(min_order,max_order);

This code is used in chunks 305, 372, 377, 382, 386, 390, and 394

Another key object for problem solution is a DAEsolution object which may be viewed

as a point moving along the solution path.

〈 create a DAEsolution object 309 〉 ≡309

daets ::DAEsolution x(solver);

This code is used in chunks 305, 372, 377, 382, 386, 390, and 394

We set the initial values for the problem by calling the functions setT and setX from the

class DAEsolution. The function setT initializes the independent variable, and setX(j, l, a)

initializes x(l)
j = a.

〈 set initial values 310 〉 ≡310

x.setT (t0)

.setX(0, 0,−10.0).setX(1, 0, 0.0) /∗ sets x , y ∗/

.setX(0, 1, 0.0).setX(1, 1, 1.0); /∗ sets x′ , y′ ∗/

This code is used in chunk 305.

The integration is performed by the call to the function integrate implemented in §9.2. If

the SolverExitFlag is success, the DAEsolution object x contains solution values at tend;

otherwise, x contains solution values at the reached t between t0 and tend .

167

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 integrate the problem 311 〉 ≡311

daets ::SolverExitFlag flag;

solver.integrate(x, tend, flag);

if (flag 6= daets ::success)

daets ::printSolverExitFlag(flag);

This code is used in chunks 305, 372, 377, 382, 386, 390, and 394

Denote the ith component of a reference solution at tend by ri and the ith component of a

computed solution at tend by xi. We first estimate the relative error in xi by|xi − ri| /|ri|.

Then, the minimum number of correct digits in a numerical solution at tend , denoted by

significant correct digits (SCD), is

SCD = − log10‖relative error at the end of integration interval‖∞.

We also need the CPU time, and the number of accepted and rejected steps. These values

are obtained by calling the functions getCPUtime, getNumAccSteps and getNumRejSteps,

respectively. For all examples, we output the above results in table.dat which is in a format

suitable for gnuplot to produce plots.

〈 output results 312 〉 ≡312

ofstream plot_out("table.dat", ios ::app);

plot_out � exp � "\t" � min_order � "\t" � max_order �

"\t" � CompSCD(x) � "\t" � x.getCPUtime() � "\t" �

x.getNumAccSteps() + x.getNumRejSteps()� endl;

plot_out.close();

168

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

This code is used in chunks 305, 372, 377, 382, 386, 390, and 394

10.2 Numerical experiments

In §10.2.1, we consider several test problems to examine the capacity of our code for solving

stiff ODEs and DAEs. We perform experiments in which the code is run repeatedly on each

of the problems with tolerances

atol = rtol = 10−r, r = 1, . . . , 13. (10.1)

First, we study the accuracy of the computed solutions on test problems in §10.2.2. Then,

we examine the efficiency of our code on these problems in §10.2.3. Finally, we compare

the performance of the variable-order version of the code against the fixed-order version in

§10.2.4.

All numerical results are produced on an Intel(R) Core(TM) i7-6700HQ, CPU 2.60GHz

with Ubuntu 18.04.1 LTS, 16 GB RAM, and 64KB L1, 256 KB L2, and 6144 KB L3 cache.

10.2.1 Test problems

In this section, we describe 4 stiff problems from the Test Set for IVP Solvers [37], namely,

Van der Pol oscillator, Oregonator, Chemical Akzo Nobel, and Car Axis. In addition, we

describe an artificial stiff index-2 DAE and a Multi Pendula problem. We present template

functions for evaluating these ODEs or DAEs. The main programs for integrating these

problems are in Appendix D.7.

169

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500 2000

x

t

-1500

-1000

-500

 0

 500

 1000

 1500

 0 500 1000 1500 2000

x
’

t

Figure 10.1: Van der Pol, plots of x and x′ versus t.

10.2.1.1 Van der Pol oscillator

To illustrate how our solver performs on a problem which repeatedly changes character

during the integration interval, we consider the well-known Van der Pol oscillator [37],

x′′ − µ(1− x2)x′ + x = 0, x(0) = 2, x′(0) = 0, (10.2)

with parameter µ = 1000 over the interval [0, 2000]. Plots of the solution components to this

problem are shown in Figure 10.4.

The following template function evaluates (10.2).

〈Van der Pol 316 〉 ≡316

template〈typename T〉

void fcn(T t, const T ∗x,T ∗f, void ∗param)

{

double mu = 1 · 103;

f [0] = Diff (x[0], 2)− mu ∗ (1− sqr(x[0])) ∗ Diff (x[0], 1) + x[0];

170

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

}

This code is used in chunk 375.

10.2.1.2 Oregonator

The Oregonator system [37] is a chemical model with a periodic solution describing the

Belousov–Zhabotinskii reaction. It is presented in the form of the following ODEs

x′ = 77.27
(
y + x(1− 8.375 · 10−6x− y)

)
,

y′ =
(
z − y(1 + x)

)
/77.27,

z′ = 0.161(x− z),

(10.3)

over the interval [0, 360]. Plots of the solution components to this problem are shown in

Figure 10.4.

The following template function evaluates (10.3).

〈Oregonator 319 〉 ≡319

template〈typename T〉

void fcn(T t, const T ∗x,T ∗f, void ∗param)

{

double s = 77.27, w = 0.161, q = 8.375 · 10−6;

f [0] = Diff (x[0], 1)− s ∗ (x[1]− x[0] ∗ x[1] + x[0]− q ∗ sqr(x[0]));

f [1] = Diff (x[1], 1)− (1/s) ∗ (−x[1]− x[0] ∗ x[1] + x[2]);

f [2] = Diff (x[2], 1)− w ∗ (x[0]− x[2]);

}

This code is used in chunk 380.

171

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 0 50 100 150 200 250 300 350 400

x

t

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350 400

y

t

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400

z

t

Figure 10.2: Oregonator, plots of x, y and z versus t.

172

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

10.2.1.3 Chemical Akzo Nobel

This is a non-quasilinear DAE of index 1 of the form

Kx′ = g(x), (10.4)

with x ∈ R6 over the interval [0, 180]. It describes a chemical process, in which two

species are mixed, while carbon dioxide is continuously added, to produce a product. The

defining equations are in [37]. Plots of the solution components to this problem are shown

in Figure 10.3. The following template function defines (10.4).

〈Chemical Akzo Nobel 320 〉 ≡320

template〈typename T〉

void fcn(T t, const T ∗x,T ∗f, void ∗param)

{

double k1 = 18.7, k2 = 0.58, k3 = 0.09, k4 = 0.42, kbig = 34.4, kla = 3.3,

ks = 115.83, po2 = 0.9, hen = 737;

T r1 = k1 ∗ (pow(x[0], 4)) ∗ sqrt(x[1]),

r2 = k2 ∗ x[2] ∗ x[3],

r3 = k2/kbig ∗ x[0] ∗ x[4],

r4 = k3 ∗ x[0] ∗ (sqr(x[3])),

r5 = k4 ∗ (sqr(x[5])) ∗ sqrt(x[1]),

fin = kla ∗ (po2/hen − x[1]);

f [0] = −Diff (x[0], 1)− 2 ∗ r1 + r2 − r3 − r4;

f [1] = −Diff (x[1], 1)− 0.5 ∗ r1 − r4 − 0.5 ∗ r5 + fin;

173

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20 40 60 80 100 120 140 160 180

x
1

t

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 20 40 60 80 100 120 140 160 180

x
2

t

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 20 40 60 80 100 120 140 160 180

x
3

t

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 20 40 60 80 100 120 140 160 180

x
4

t

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 20 40 60 80 100 120 140 160 180

x
5

t

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140 160 180

x
6

t

Figure 10.3: Chemical Akzo Nobel, plots of x1, . . . , x6 versus t.

174

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

f [2] = −Diff (x[2], 1) + r1 − r2 + r3;

f [3] = −Diff (x[3], 1)− r2 + r3 − 2 ∗ r4;

f [4] = −Diff (x[4], 1) + r2 − r3 + r5;

f [5] = ks ∗ x[0] ∗ x[3]− x[5];

}

This code is used in chunk 385.

10.2.1.4 A highly stiff index-2 DAE

From the Van der Pol problem (10.2), we construct an artificial stiff index-2 DAE,

x′′ − µ(1− x2)x′ + x = 0,

xy′ − z = 0,

x2 − y2 + 5 = 0,

(10.5)

where µ = 1000 and t ∈ [0, 2000]. Plots of the solution components to this problem are

shown in Figure 10.4.

The following template function evaluates (10.5).

〈Stiff index-2 322 〉 ≡322

template〈typename T〉

void fcn(T t, const T ∗x,T ∗f, void ∗param)

{

double mu = 1 · 103;

f [0] = Diff (x[0], 2)− mu ∗ (1 + (−sqr(x[0]))) ∗ Diff (x[0], 1) + x[0];

175

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500 2000

x

t

-1500

-1000

-500

 0

 500

 1000

 1500

 0 500 1000 1500 2000

x
’

t

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 0 500 1000 1500 2000

y

t

Figure 10.4: Index-2 from Van der Pol, plots of x, x′ and y versus t.

176

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

f [1] = Diff (x[1], 1) ∗ x[0]− x[2];

f [2] = sqr(x[0])− sqr(x[1]) + 5;

}

This code is used in chunk 389.

10.2.1.5 Car Axis

A simple model of a car axis going over a bumpy road is [37]

Kp′′ = g(t,p,λ),

0 = φ(t,p),

with p,g of dimension 4, and λ,φ of dimension 2. Here, p = (xl, yl, xr, yr)T , and (xl, xr)

and (yl, yr) are the coordinates of the left and right wheels, respectively; λ = (λ1, λ2)T are

Lagrange multipliers. This problem is a moderately stiff DAE of index 3. Figure 10.5 shows

the solutions xl, yl, xr, and yr.

The following template function defines the Car Axis DAE.

〈Car Axis 323 〉 ≡323

#define xl x[0]

#define yl x[1]

#define xr x[2]

#define yr x[3]

#define lam1 x[4]

#define lam2 x[5]

177

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

template〈typename T〉

void fcn(T t, const T ∗x,T ∗f, void ∗param)

{

double eps = 1 · 10−2, M = 10.0, epsM = sqr(eps) ∗M/2, L = 1.0, L0 = 0.5,

W = 10.0, R = 0.1;

T yb = R ∗ sin(W ∗ t),

xb = sqrt(sqr(L)− sqr(yb)),

Ll = sqrt(sqr(xl) + sqr(yl)),

Lr = sqrt(sqr(xr − xb) + sqr(yr − yb));

f [0] = −epsM ∗Diff (xl, 2) + (L0 − Ll) ∗ xl/Ll + lam1 ∗ xb + 2.0 ∗ lam2 ∗ (xl − xr);

f [1] = −epsM∗Diff (yl, 2)+(L0−Ll)∗yl/Ll+lam1∗yb+2.0∗lam2∗(yl−yr)−epsM ;

f [2] = −epsM ∗ Diff (xr, 2) + (L0 − Lr) ∗ (xr − xb)/Lr − 2.0 ∗ lam2 ∗ (xl − xr);

f [3] = −epsM ∗Diff (yr, 2)+(L0−Lr)∗(yr−yb)/Lr−2.0∗ lam2 ∗(yl−yr)−epsM ;

f [4] = xl ∗ xb + yl ∗ yb;

f [5] = sqr(xl − xr) + sqr(yl − yr)− sqr(L);

}

This code is used in chunk 393.

178

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 0.5 1 1.5 2 2.5 3

x
l

t

 0.4965

 0.497

 0.4975

 0.498

 0.4985

 0.499

 0.4995

 0.5

 0 0.5 1 1.5 2 2.5 3

y
l

t

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 0 0.5 1 1.5 2 2.5 3

x
r

t

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 0.5 1 1.5 2 2.5 3

y
r

t

Figure 10.5: Car axis, plots of xl, yl, xr and yr versus t.

179

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

10.2.1.6 Multi Pendula

To illustrate how our code can handle higher index DAEs, we consider the DAE problem

consisting of P pendula [47]

0 = x′′1 + λ1x1,

0 = y′′1 + λ1y1 −G,

0 = x2
1 + y2

1 − L2,

0 = x′′i + λixi,

0 = y′′i + λiyi −G, i = 2, 3, . . . , P,

0 = x2
i + y2

i − (L+ cλi−1)2,

(10.6)

where G,L and c are given constants. Here, the first pendulum is undriven, and pendulum

i− 1 exerts a driving effect on pendulum i for i = 2, 3, . . . , P . This DAE is of size 3P and

index 2P + 1 [47].

The following template function evaluates (10.6).

〈Multi Pendula 326 〉 ≡326

template〈typename T〉

void fcn(T t, const T ∗x,T ∗f, void ∗parameters)

{

double ∗constants = (double ∗) parameters,

G = ∗constants,

L = ∗(constants + 1),

c = ∗(constants + 2);

180

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

int P = ∗(constants + 3);

f [0] = Diff (x[0], 2) + x[0] ∗ x[2];

f [1] = Diff (x[1], 2) + x[1] ∗ x[2]−G;

f [2] = sqr(x[0]) + sqr(x[1])− sqr(L);

for (int i = 1; i < P ; i++)

{

f [3 ∗ i] = Diff (x[3 ∗ i], 2) + x[3 ∗ i] ∗ x[3 ∗ i+ 2];

f [3 ∗ i+ 1] = Diff (x[3 ∗ i+ 1], 2) + x[3 ∗ i+ 1] ∗ x[3 ∗ i+ 2]−G;

f [3 ∗ i+ 2] = sqr(x[3 ∗ i]) + sqr(x[3 ∗ i+ 1])− sqr(L+ c ∗ x[3 ∗ i− 1]);

}

}

See also chunk 396.

This code is used in chunk 398.

Here, we consider 8 pendula and set G = 9.8, L = 10 and c = 0.1. The index of the DAE

is 17. Plots of the computed x1, . . . , x8 and y1, . . . , y8 versus t are shown in Figures 10.6

and 10.7.

10.2.2 Accuracy

We have computed the SCD of numerical solutions with tolerances (10.1). For problems

from the Test Set for IVP Solvers, we determine SCD using the reference solutions given in

[37]. For other problems, we determine SCD using the reference solutions computed by our

code with atol = rtol = 10−14. Plots of SCD versus tolerance for the above test problems

181

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

-15

-10

-5

 0

 5

 10

 15

 20

 0 10 20 30 40 50

x

t

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

Figure 10.6: Multi Pendula, index-17, plots of x1, . . . , x8 versus t.

-5

 0

 5

 10

 15

 20

 0 10 20 30 40 50

y

t

y1
y2

y3
y4

y5
y6

y7
y8

Figure 10.7: Multi Pendula, index-17, plots of y1, . . . , y8 versus t.

182

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12 14

S
C
D

-log(tol)

Van der Pol

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 2 4 6 8 10 12

S
C
D

-log(tol)

Oregonator

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12

S
C
D

-log(tol)

Chemical Akzo Nobel

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14

S
C
D

-log(tol)

Index-2 from Van der Pol

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12

S
C
D

-log(tol)

Car Axis

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9

S
C
D

-log(tol)

Multi Pendula, index-17

Figure 10.8: Accuracy diagrams.

are displayed in Figure 10.8. The output data confirm the success of the HO method for the

accurate numerical solutions of these test problems. Also, our experiments show that the

projection (4.21) maintains the accuracy of the HO method.

183

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

 0

 0.05

 0.1

 0.15

 0.2

 2 3 4 5 6 7 8 9 10 11 12

C
P
U

t
i
m
e

SCD

Van der Pol

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10 11

C
P
U

t
i
m
e

SCD

Oregonator

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P
U

t
i
m
e

SCD

Chemical Akzo Nobel

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5 6 7 8 9 10 11 12

C
P
U

t
i
m
e

SCD

Index-2 from Van der Pol

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5 6 7 8 9 10

C
P
U

t
i
m
e

SCD

Car Axis

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9

C
P
U

t
i
m
e

SCD

Multi Pendula, index-17

Figure 10.9: Work precision diagrams.

10.2.3 Efficiency

We plot CPU time versus SCD for each problem in Figure 10.9.

184

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

10.2.4 Variable-order versus fixed-order

Plots in Figure 10.10 show how p+ q in the (p, q) HO method changes during the integration

interval for the test problems running the code with atol = rtol = 10−8, min_order = 1

and max_order = 20. We also show the work-precision diagrams for the above problems

using variable-order and fixed-order strategies in Figures 10.11 to 10.15.

In Figure 10.10 for Van der Pol, Oregonator, and the DAE (10.5), we see that during the

times when the solution is changing rapidly, the order is increased, and when it is changing

more slowly, the code selects low orders. From the Figures 10.11, 10.12 and 10.14, we

observe that the variable-order scheme gives the best performance for these problems.

In Figure 10.10 for Chemical Akzo Nobel and Car Axis, we see that the order is increased

up to a high-order and is barely changed after that. Figures 10.13 and 10.15 show that our

order selection scheme works reasonably robustly for these problems. A fixed-order strategy

is useful when we know in advance a good order for a particular problem and precision, but

the variable-order strategy works for all problems.

185

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

 0

 5

 10

 15

 20

 0 500 1000 1500 2000

p
+
q

t

Van der Pol

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400

p
+
q

t

Oregonator

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180

p
+
q

t

Chemical Akzo Nobel

 0

 5

 10

 15

 20

 0 500 1000 1500 2000

p
+
q

t

Index-2 from Van der Pol

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5 3

p
+
q

t

Car Axis

 0

 5

 10

 15

 20

 0 10 20 30 40 50

p
+
q

t

Multi Pendula, index-17

Figure 10.10: p+ q during the integration interval with tol = 10−8.

186

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

 0.01

 0.1

 1

 10

 0 2 4 6 8 10 12 14

C
P
U

t
i
m
e

SCD

variable order

order 2

order 6

order 10

Figure 10.11: Van der Pol, variable-order versus fixed-order.

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12

C
P
U

t
i
m
e

SCD

variable order

order 2

order 6

order 10

Figure 10.12: Oregonator, variable-order versus fixed-order.

187

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16

C
P
U

t
i
m
e

SCD

variable order

order 5

order 10

order 20

Figure 10.13: Chemical Akzo Nobel, variable-order versus fixed-order.

 0.1

 1

 10

-2 0 2 4 6 8 10 12 14

C
P
U

t
i
m
e

SCD

variable order

order 2

order 6

order 10

Figure 10.14: Index-2 from Van der Pol, variable-order versus fixed-order.

188

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10

C
P
U

t
i
m
e

SCD

variable order

order 4

order 12

order 16

order 20

Figure 10.15: Car Axis, variable-order versus fixed-order.

189

Chapter 11

Conclusions

In this thesis, we have developed and implemented an implicit Hermite-Obreschkoff (HO)

method for numerical solution of a stiff DAE. We employ Pryce’s structural analysis to

determine the constraints of the problem and to organize the computations of required Taylor

coefficients (TCs) and their gradients. Then, we use automatic differentiation to compute

these TCs and gradients and form the residual vector and Jacobian matrix required for

Newton’s iteration.

Given a general DAE described by a computer program, the structural analysis data are

obtained via operator overloading. Hence, a simulation software that automatically converts

a model to a DAE need not to produce it in a particular (first-order or lower-index) form.

The relation between Taylor coefficients of the kth derivative of a sufficiently differ-

entiable function at two points can be determined by the HO formula. We developed our

HO method using this formula for some derivatives of state variables of the DAE, deter-

190

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

mined from the structural analysis data. The method can be A- or L- stable and can handle

high-index DAEs.

We defined the Hermite-Nordsieck vector for a sufficiently differentiable function at

a point. Constructing Hermite-Nordsieck vectors for solution components at each step,

we find an initial guess for the solution, required for Newton’s iteration, and estimate the

discretization error of the HO method with different orders. As a result, we designed an

adaptive variable-stepsize and variable-order algorithm for integrating a DAE problem. We

have implemented our algorithm in C++ using literate programming.

We considered several test problems to examine the ability of our code to solve stiff

ODEs and DAEs. We performed experiments in which the code was run repeatedly on each

of the problems with different tolerances. The output data confirm the success of the HO

method for the accurate numerical solutions of the test problems. Also, we compared the

performance of the variable-order version of the code against the fixed-order version. We

observed that the variable-order scheme gives better performance.

It is clear that our numerical method is expensive in that it requires repeated evaluations of

TCs and their gradients. Generally, on problems for which a solver based on a Runge-Kutta

or a multistep method is already very efficient, our code may not be competitive. However, it

will be competitive on problems that current methods cannot handle because of high index,

or if high accuracy is required.

Several related investigations follow naturally from this thesis. A scheme can be devel-

oped for automatically determining whether a DAE can be solved more efficiently using

191

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

the explicit Taylor series method or the HO method. Switching between these methods can

be more efficient than using one of the methods alone for problems which are non-stiff in

some regions of the integration interval and stiff in other regions. The stiffness detection and

switching strategies will be addressed in a future work.

The Jacobian matrix for Newton’s iterations is usually dense, and we perform the

LU factorization to compute the solution of the corresponding linear systems. Hence,

our code is not efficient for large DAE problems. Alternatively, we can use an iterative

(Krylov) method to solve the linear systems. Since the Jacobian matrix is ill-conditioned

in stiff problems, the convergence of any Krylov-based algorithm is slow. Developing an

efficient preconditioner is essential to making the convergence of Newton-Krylov iterations

sufficiently fast. Construction of such preconditioner is left for future research.

192

Appendix A

The integrator function in DAETS

As explained in Chapter 9, we first integrate a given DAE using the explicit Taylor series

method on the first step. The following function is an adapted version of the function

integrate in DAETS implemented by Nedialkov and Pryce. The algorithm of this function is

described in [47].

〈Definitions of StiffDAEsolver Private Functions 194 〉 +≡336

void StiffDAEsolver :: IntegrateByExplicitTS(daets ::DAEsolution &x,double

t_end,unsigned int num_steps,daets ::SolverExitFlag &state)

{

daets ::DAEpoint ts(∗this);

daets ::DAEpoint ts_saved(ts);

double errorTS, errorPRJ ;

bool projected, accepted, computed_tcs;

193

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

unsigned int step_count = 0;

int exitflag;

double direction = (t_end ≥ x.t_) ? 1 : −1;

double atol = params_~ getAtol();

double rtol = params_~ getRtol();

x.stats_~ setTols(atol, rtol);

if (x.state_ ≡ daets ::DAEsolution :: Initial)

{

x.stats_~ reset();

x.stats_~ startTimer();

state = checkInput(x);

if (state 6= daets ::success)

{

x.stats_~ stopTimer();

return;

}

daets ::DAETS_H_SCALE = 1.0;

x.xtrial_ = x;

daets ::projectInitPoint(x, params_~ get_ipopt_proj_tol(), jac_, ipopt_funcs_,

&x.xtrial_, x.sysJac_,&exitflag);

if (exitflag 6= 0)

194

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

{

if (exitflag ≡ 5)

state = daets :: toofewdof ;

else

state = daets ::nonconsistentpt;

x.stats_~ stopTimer();

return;

}

x.setFirstEntry();

x.updatePoint(x.xtrial_);

x.state_ = daets ::DAEsolution :: InitialConsistent;

x.htrial_ = 1.0;

x.htrial_ = fabs(x.htrial_) ∗ direction;

bool computed_tcs = tcs_ad_~ compTCsX(x);

assert(computed_tcs);

x.setDerivatives(tcs_ad_);

x.printData();

x.e_ = estError(tcs_ad_, x.order_, x.htrial_);

x.tol_ = atol + rtol ∗ std ::min(x.max_norm(), x.xtrial_.max_norm());

x.htrial_ = daets ::compInitialStepSize(x.htrial_, x.tol_, x.e_, x.order_);

x.htrial_ = daets ::restrictStepsize(x.htrial_, params_~ getHmin(),

195

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

params_~ getHmax());

}

if (x.t_ ≡ t_end)

{

x.stats_~ stopTimer();

return;

}

x.htrial_ = fabs(x.htrial_) ∗ direction;

x.saveTCs(tcs_ad_); /∗ for tcs_prev_ needed later for HO method ∗/

while (step_count < num_steps)

{

double h_smallest = daets ::compHmin(x, t_end, params_);

params_~ setHmin(h_smallest);

do

{

do

{

if (fabs(x.htrial_) < params_~ getHmin())

{

state = daets ::htoosmall;

x.state_ = daets ::DAEsolution ::EndOfPath;

196

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

x.stats_~ stopTimer();

return;

}

daets ::checkIfLastStep(x.ttrial_, x.htrial_, x.t_, t_end);

tcs_ad_~ compTSsolution(x.order_, x.htrial_,&ts);

errorTS = estError(tcs_ad_, x.order_, x.htrial_);

tcs_ad_~ getX(&ts_saved);

projectTSsolution(x.ttrial_, ts, params_~ get_ts_proj_tol(), jac_,&x.xtrial_,

x.sysJac_,&exitflag);

projected = ¬exitflag;

if (¬projected)

{

x.htrial_ ∗= .5;

x.stats_~ countSteps(false);

tcs_ad_~ setX(ts_saved);

}

} while (¬projected);

errorPRJ = (ts−x.xtrial_).max_norm()/std ::max(x.xtrial_.max_norm(), 1.0);

x.e_ = errorTS + errorPRJ ;

x.tol_ = atol + rtol ∗ std ::min(x.xtrial_.max_norm(), x.max_norm());

accepted = (x.e_ ≤ x.tol_);

197

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

if (accepted)

{

t_prev_ = x.t_;

tcs_prev_ = x.savedTCs_;

h_prev_ = x.h_saved_tcs_;

x.t_ = x.ttrial_;

(daets ::DAEpoint &) x = x.xtrial_;

x.state_ = daets ::DAEsolution ::OnPath;

computed_tcs = tcs_ad_~ compTCsX(x);

assert(computed_tcs);

x.printData();

x.saveTCs(tcs_ad_);

x.e_ = daets ::estError(tcs_ad_, x.order_, x.htrial_);

x.htrial_ = daets ::compStepSize(x.htrial_, x.tol_, x.e_, x.order_);

step_count++;

}

else

{

x.htrial_ = daets ::compStepSizeRej(x.htrial_, x.tol_, x.e_, x.order_);

tcs_ad_~ setX(ts_saved);

}

198

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

x.htrial_ = daets ::restrictStepsize(x.htrial_, params_~ getHmin(),

params_~ getHmax());

x.stats_~ countSteps(accepted);

} while (¬accepted);

x.stats_~ setHminMax(fabs(x.htrial_));

if (x.t_ ≡ t_end ∨ x.state_ ≡ daets ::DAEsolution ::EndOfPath)

{

state = daets ::success;

x.stats_~ stopTimer();

return;

}

if (x.print_progress_ ≥ 0)

{

PrintProgress(x.t_, x.getNumAccSteps(), x.htrial_, x.e_, x.order_);

sleep(x.print_progress_);

}

}

}

199

Appendix B

The IrregularMatrix class

We store the definition of this class in the file irregularmatrix.h.

〈 irregularmatrix.h 338 〉 ≡338

#ifndef SRC_IRREGULARMATRIX_H_

#define SRC_IRREGULARMATRIX_H_

#include <assert.h>

#include <cmath>

#include <iostream>

#include <stdexcept>

#include <vector>

#include "daepoint.h"

namespace sdaets

{

200

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

template〈class T〉

class IrregularMatrix {

public:

explicit IrregularMatrix(const std ::vector〈size t〉 &d) { resize(d); }

explicit IrregularMatrix(const std ::vector〈size t〉 &d, const T &M);

explicit IrregularMatrix() { }

T &operator()(int i, int j) { return x_[i][j]; }

T operator()(int i, int j) const { return x_[i][j]; }

size t num_rows() const { return x_.size(); }

size t num_cols(int i) const { return x_[i].size(); }

size t num_entries() const;

void set(const std ::vector〈T〉 &v);

void set(const double ∗v);

void set(const daets ::DAEpoint &x);

void set(double a);

void set_to_zero();

void to_vector(double ∗v);

IrregularMatrix〈T〉 &operator+=(const IrregularMatrix〈T〉 &x);

IrregularMatrix〈T〉 &operator−=(const IrregularMatrix〈T〉 &x);

IrregularMatrix〈T〉 &operator∗=(const std ::vector〈double〉 &v);

IrregularMatrix〈T〉 &operator/=(const std ::vector〈double〉 &v);

201

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

IrregularMatrix〈T〉 &operator∗=(double v);

double wrms_norm(const IrregularMatrix〈double〉 &weight);

private:

void resize(const std ::vector〈size t〉 &d);

std ::vector〈std ::vector〈T〉〉 x_;

};

template〈class T〉

size t IrregularMatrix〈T〉 ::num_entries() const

{

size t num = 0;

for (size t i = 0; i < num_rows(); i++)

num += num_cols(i);

return num;

}

template〈class T〉

void IrregularMatrix〈T〉 ::resize(const std ::vector〈size t〉 &d)

{

x_.resize(d.size());

for (size t i = 0; i < d.size(); i++)

x_[i].resize(d[i]);

}

202

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

template〈class T〉

IrregularMatrix〈T〉 ::IrregularMatrix(const std ::vector〈size t〉 &d, const T

&M)

{

resize(d);

for (size t i = 0; i < num_rows(); i++)

for (size t j = 0; j < num_cols(i); j++)

(∗this)(i, j) = M ;

}

template〈class T〉

void IrregularMatrix〈T〉 ::set(const std ::vector〈T〉 &v)

{

assert(num_entries() ≤ v.size());

size t k = 0;

for (size t i = 0; i < num_rows(); i++)

for (size t j = 0; j < num_cols(i); j++)

(∗this)(i, j) = v[k++];

}

template〈class T〉

void IrregularMatrix〈T〉 ::set(const double ∗v)

{

203

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

size t k = 0;

for (size t i = 0; i < num_rows(); i++)

for (size t j = 0; j < num_cols(i); j++)

(∗this)(i, j) = v[k++];

}

template〈class T〉

void IrregularMatrix〈T〉 ::set(const daets ::DAEpoint &x)

{

assert(this~ num_rows() ≤ x.getNumVariables());

for (size t i = 0; i < this~ num_rows(); i++)

{

assert(this~ num_cols(i) ≤ x.getNumDerivatives(i));

for (size t j = 0; j < this~ num_cols(i); j++)

(∗this)(i, j) = x.getX(i, j);

}

}

template〈class T〉

void IrregularMatrix〈T〉 ::set(double a)

{

for (size t i = 0; i < num_rows(); i++)

for (size t j = 0; j < num_cols(i); j++)

204

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

(∗this)(i, j) = a;

}

template〈class T〉

IrregularMatrix〈T〉 &IrregularMatrix〈T〉 ::operator+=(const

IrregularMatrix〈T〉 &x)

{

assert(x.num_rows() ≡ num_rows());

for (size t i = 0; i < x.num_rows(); i++)

{

assert(x.num_cols(i) ≡ num_cols(i));

for (size t j = 0; j < x.num_cols(i); j++)

(∗this)(i, j) += x(i, j);

}

return ∗this;

}

template〈class T〉

IrregularMatrix〈T〉 &IrregularMatrix〈T〉 ::operator−=(const

IrregularMatrix〈T〉 &x)

{

assert(x.num_rows() ≡ num_rows());

for (size t i = 0; i < x.num_rows(); i++)

205

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

{

assert(x.num_cols(i) ≡ num_cols(i));

for (size t j = 0; j < x.num_cols(i); j++)

(∗this)(i, j) −= x(i, j);

}

return ∗this;

}

template〈class T〉

IrregularMatrix〈T〉 &IrregularMatrix〈T〉 ::operator∗=(const

std ::vector〈double〉 &v)

{

for (size t i = 0; i < num_rows(); i++)

{

assert(v.size() ≥ this~ num_cols(i));

for (size t j = 0; j < num_cols(i); j++)

(∗this)(i, j) ∗= v[j];

}

return ∗this;

}

template〈class T〉

IrregularMatrix〈T〉 &IrregularMatrix〈T〉 ::operator∗=(double v)

206

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

{

for (size t i = 0; i < num_rows(); i++)

{

for (size t j = 0; j < num_cols(i); j++)

(∗this)(i, j) ∗= v;

}

return ∗this;

}

template〈class T〉

IrregularMatrix〈T〉&IrregularMatrix〈T〉 ::operator/=(const std ::vector〈double〉

&v)

{

for (size t i = 0; i < this~ num_rows(); i++)

for (size t j = 0; j < this~ num_cols(i); j++)

(∗this)(i, j) /= v[j];

return ∗this;

}

IrregularMatrix〈double〉 operator∗(double v, const IrregularMatrix〈double〉

&M);

void multiply_add(const std ::vector〈double〉 &u,double z, std ::vector〈double〉

&v);

207

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

void multiply_add(const IrregularMatrix〈double〉 &A, const std ::vector〈double〉

&z, IrregularMatrix〈double〉 &B);

void multiply_add(const IrregularMatrix〈std ::vector〈double〉〉 &A, const

std ::vector〈double〉 &z, IrregularMatrix〈std ::vector〈double〉〉 &B);

template〈class T〉

IrregularMatrix〈T〉 operator−(const IrregularMatrix〈T〉 &A, const

IrregularMatrix〈T〉 &B)

{

IrregularMatrix〈T〉 C = A;

C −= B;

return C;

}

}

#endif

We store the definition of all functions of the IrregularMatrix class in the file irregularmatrix.cc:

〈 irregularmatrix.cc 339 〉 ≡339

#include "irregularmatrix.h"

#include "daepoint.h"

namespace sdaets

{

template〈 〉

208

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

void IrregularMatrix〈double〉 :: to_vector(double ∗v)

{

size t k = 0;

for (size t i = 0; i < num_rows(); i++)

for (size t j = 0; j < num_cols(i); j++)

v[k++] = (∗this)(i, j);

}

template〈 〉

void IrregularMatrix〈std ::vector〈double〉〉 :: to_vector(double ∗v)

{

size t count = 0;

for (size t k = 0; k < num_entries(); k++)

for (size t i = 0; i < num_rows(); i++)

for (size t j = 0; j < num_cols(i); j++)

v[count++] = (∗this)(i, j)[k];

}

template〈 〉

double IrregularMatrix〈double〉 ::wrms_norm(const IrregularMatrix〈double〉

&w)

{

size t n = this~ num_entries();

209

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

assert(w.num_entries() ≡ n);

assert(w.num_rows() ≡ this~ num_rows());

double s = 0;

for (size t i = 0; i < this~ num_rows(); i++)

for (size t j = 0; j < this~ num_cols(i); j++)

{

double ew_ij = (∗this)(i, j) ∗ w(i, j);

s += (ew_ij ∗ ew_ij);

}

s /= n;

return std ::sqrt(s);

}

template〈 〉

void IrregularMatrix〈double〉 ::set_to_zero()

{

for (size t i = 0; i < num_rows(); i++)

for (size t j = 0; j < num_cols(i); j++)

(∗this)(i, j) = 0;

}

template〈 〉

void IrregularMatrix〈std ::vector〈double〉〉 ::set_to_zero()

210

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

{

for (size t i = 0; i < num_rows(); i++)

for (size t j = 0; j < num_cols(i); j++)

for (size t k = 0; k < (∗this)(i, j).size(); k++)

(∗this)(i, j)[k] = 0;

}

IrregularMatrix〈double〉 operator∗(double v, const IrregularMatrix〈double〉

&M)

{

IrregularMatrix〈double〉 C = M ;

C ∗= v;

return C;

}

void multiply_add(const std ::vector〈double〉 &u,double z, std ::vector〈double〉

&v)

{

assert(v.size() ≡ u.size());

for (size t i = 0; i < u.size(); i++)

v[i] += u[i] ∗ z;

}

void multiply_add(const IrregularMatrix〈double〉 &A, const std ::vector〈double〉

211

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

&z, IrregularMatrix〈double〉 &B)

{

for (size t i = 0; i < A.num_rows(); i++)

for (size t j = 0; j < A.num_cols(i); j++)

B(i, j) += A(i, j) ∗ z[j];

}

void multiply_add(const IrregularMatrix〈std ::vector〈double〉〉 &A, const

std ::vector〈double〉 &z, IrregularMatrix〈std ::vector〈double〉〉 &B)

{

for (size t i = 0; i < A.num_rows(); i++)

for (size t j = 0; j < A.num_cols(i); j++)

multiply_add(A(i, j), z[j], B(i, j));

}

}

212

Appendix C

KINSOL

〈Nonlinear Solver Functions 59 〉 +≡340

HoFlag NSolveKin(int n,double tol, int max_it,double ∗x0,KINSysFn

fcn,KINLsJacFn jac, void ∗user_data)

{

N Vector x, s;

x = N_VMake_Serial(n, x0);

s = N_VNew_Serial(n);

N_VConst_Serial(ONE, s);

/∗ instantiate a KINSOL solver object ∗/

void ∗kmem = KINCreate();

assert(kmem);

/∗ specify the pointer to user-defined memory ∗/

213

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

int flag = KINSetUserData(kmem, user_data);

assert(flag ≡ KIN_SUCCESS);

flag = KINSetFuncNormTol(kmem, tol);

flag = KINSetScaledStepTol(kmem, tol);

flag = KINSetNumMaxIters(kmem,max_it);

/∗ disable all future error message output ∗/

flag = KINSetErrFile(kmem,Λ);

assert(flag ≡ KIN_SUCCESS);

/∗ specify the problem defining function fcn, ∗/

/∗ allocate internal memory for kinsol, and initialize kinsol. ∗/

flag = KINInit(kmem, fcn, x);

assert(flag ≡ KIN_SUCCESS);

/∗ create dense SUNMatrix ∗/

SUNMatrix J = SUNDenseMatrix(n, n);

/∗ create dense SUNLinearSolver object ∗/

SUNLinearSolver LS = SUNLinSol_Dense(x, J);

/∗ attach the matrix and linear solver to KINSOL ∗/

flag = KINSetLinearSolver(kmem, LS, J);

assert(flag ≡ KINLS_SUCCESS);

/∗ Set the Jacobian function ∗/

if (jac)

214

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

{

flag = KINSetJacFn(kmem, jac);

assert(flag ≡ KINLS_SUCCESS);

}

/∗ maximum number of iterations between computing the Jacobian ∗/

flag = KINSetMaxSetupCalls(kmem, 1);

assert(flag ≡ KIN_SUCCESS);

/∗ solve the nonlinear system ∗/

int strategy = KIN_NONE; /∗ basic Newton iteration ∗/

flag = KINSol(kmem, x, strategy, s, s);

HoFlag ho_flag;

if (flag < 0)

ho_flag = HO_SUCCESS;

else

{

ho_flag = HO_CONVERGENT;

x0 = N_VGetArrayPointer_Serial(x);

}

N_VDestroy_Serial(x);

N_VDestroy_Serial(s);

KINFree(&kmem);

215

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

SUNLinSolFree(LS);

SUNMatDestroy(J);

return ho_flag;

}

216

Appendix D

Files

D.1 The HO class

We store the definition of this class in the file ho.h:

〈 ho.h 343 〉 ≡343

#ifndef SRC_HO_H_

#define SRC_HO_H_

#include <vector>

#include "constants.h"

#include "daepoint.h"

#include "fadbadts.h"

#include "fadiff.h"

#include "taylorseries.h"

217

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

#include "gradients.h"

#include "ho_enumtypes.h"

#include "irregularmatrix.h"

#include "sadata.h"

#include "sysjac.h"

#include "tadiff.h"

namespace sdaets

{

〈HO Declarations 23 〉

}

#endif

D.1.1 Constructor

〈HO Public Functions 344 〉 ≡344

HO(daets ::TaylorSeries ∗ts,daets ::Jacobian ∗jac,Gradients ∗grad)

: ts_(ts), jac_(jac), grads_(grad) {

sadata_ = ts_~ get_sadata();

n_ = sadata_~ get_size();

num_indep_tcs_ = 0;

for (int j = 0; j < n_; j++)

num_indep_tcs_ += sadata_~ get_d(j);

d_.resize(n_);

218

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

c_.resize(n_);

for (int i = 0; i < n_; i++)

{

d_[i] = sadata_~ get_d(i);

c_[i] = sadata_~ get_c(i);

}

sys_jac_ = new double[n_ ∗ n_];

rhs_ = new double[n_];

ipiv_ = new int[n_];

tcs_stage0_ = new double[n_];

h_pow_.resize(sadata_~ get_max_d() + daets ::Constants ::kMaxOrder_);

indep_tcs_ = IrregularMatrix〈double〉(d_);

psi_ = IrregularMatrix〈double〉(d_);

phi_ = IrregularMatrix〈double〉(d_);

f_ = IrregularMatrix〈double〉(d_);

tc_grad_.resize(num_indep_tcs_);

fr_prime_ = IrregularMatrix〈std ::vector〈double〉〉(d_, tc_grad_);

f_prime_ = IrregularMatrix〈std ::vector〈double〉〉(d_, tc_grad_);

coef_.resize(sadata_~ get_max_d());

factorial_.resize(daets ::Constants ::kMaxOrder_);

daets ::compFactorial(daets ::Constants ::kMaxOrder_, factorial_.data());

219

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

residual_flat_ = new double[num_indep_tcs_];

indep_tcs_flat_ = new double[num_indep_tcs_];

ho_jacobian_ = new double[num_indep_tcs_ ∗ num_indep_tcs_];

ho_ipiv_ = new int[num_indep_tcs_];

}

See also chunks 345 and 346

This code is used in chunk 23.

D.1.2 Destructor

〈HO Public Functions 344 〉 +≡345

∼HO()

{

delete[] sys_jac_;

delete[] rhs_;

delete[] ipiv_;

delete[] tcs_stage0_;

delete[] residual_flat_;

delete[] indep_tcs_flat_;

delete[] ho_jacobian_;

delete[] ho_ipiv_;

}

The class HO has the following public member functions

220

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈HO Public Functions 344 〉 +≡346

HoFlag CompF(const double ∗x,double ∗f);

void CompHoJac(double ∗ho_jac);

void EvalEqnsStageZero(const double ∗x,double ∗f);

void SetStageZeroTCsJac(const double ∗tc);

void CompA0(double ∗jac);

The private member functions are listed bellow

〈HO Private Functions 35 〉 +≡347

void set_t(double t);

void set_h(double h);

void form_grad(int i, int j, int k, std ::vector〈double〉 &tc_grad);

void FormFrPrime(int r);

void comp_a(int r);

void comp_b(int r);

void FormFr(int r, const std ::vector〈vector〈double〉〉 &tcs);

void FormFr(int r);

void CompPsi(const std ::vector〈std ::vector〈double〉〉 &tcs);

void set_pq(int p, int q);

void CompCpq();

void CompCqp();

HoFlag CompHoSolution(double t,double h,double tol,

221

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

const IrregularMatrix〈double〉 &weight, const std ::vector〈vector〈double〉〉

&tcs_prev,daets ::DAEpoint &x);

void SetIndepTCs();

void SetProjected(daets ::DAEpoint &x);

void SetIndepTCsJac();

HoFlag CompPhi(const double ∗x);

void CompGradients(int q);

HoFlag CompTCsNonlinear(double ∗tc);

void SetStageZeroTCs(const double ∗tc);

void CompTCsLinear(int k);

void need_cond_jac(bool flag) { need_cond_jac_ = flag; }

bool CompTCs(daets ::DAEpoint &x);

double CompCondJac();

We store the definition of all functions of the HO class in the file ho.cc:

〈 ho.cc 348 〉 ≡348

#include <assert.h>

#include "ho.h"

#include "daepoint.h"

#include "ho_auxiliary.h"

#include "irregularmatrix.h"

#include "nsolve_functions.h"

222

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

#include "taylorseries.h"

namespace sdaets {

〈Definitions of HO Private Functions 37 〉

〈Definitions of HO Public Functions 61 〉

}

D.2 The Gradients class

We store the definition of this class in the file gradients.h.

〈 gradients.h 350 〉 ≡350

#ifndef GRADIENTS_H_

#define GRADIENTS_H_

#include "constants.h"

#include "fadiff.h"

#include "tadiff.h"

#include "sadata.h"

namespace sdaets

{

typedef fadbad ::T〈fadbad ::F〈double〉〉 TFdouble;

typedef void(∗TFadiff)(TFdouble t, const TFdouble ∗y,TFdouble ∗f, void ∗p);

〈Gradients Declarations 25 〉

}

223

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

#endif

D.2.1 Constructor

In the constructor, we allocate the necessary memory, and generate the computational graph

by calling daefun.

〈Gradients Data Members 80 〉 +≡352

TFadiff daefun_;

〈Gradients Public Functions 82 〉 +≡353

Gradients(TFadiff daefun,daets ::SAdata ∗sadata, void ∗dae_params)

: sadata_(sadata), daefun_(daefun) {

int n = sadata_~ get_size();

t_tfdouble_ = 0.0;

grad_in_ = new TFdouble[2 ∗ n];

grad_out_ = grad_in_ + n;

assert(grad_in_ ∧ grad_out_ ∧ daefun_);

daefun_(t_tfdouble_, grad_in_, grad_out_, dae_params);

}

D.2.2 Destructor

〈Gradients Public Functions 82 〉 +≡354

∼Gradients()

{

224

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

delete[] grad_in_;

}

D.3 The StiffDAEsolver class

We store the definition of this class in the file stiff_daesolver.h:

〈 stiff_daesolver.h 356 〉 ≡356

#ifndef INCLUDED_STIFF_DAESOLVER_H

#define INCLUDED_STIFF_DAESOLVER_H

#include "DAEsolver.h"

#include "ho.h"

#include "gradients.h"

#include "irregularmatrix.h"

#include "nsolve_functions.h"

#include "ho_enumtypes.h"

#define STIFF_DAE_FCN(f)(daets ::TdoubleOrgFun)f, (daets ::TFadiff)

f, (daets ::TFadiff) f, f , f

namespace daets {

void projectInitPoint(const DAEsolution &x_approx,double ipopt_proj_tol,

Jacobian ∗jac, IpoptFuncs ∗ ipopt_funcs,DAEpoint ∗x_projected,double

∗system_jac, int ∗exitflag);

void projectTSsolution(double t, const DAEpoint &X,double ts_proj_tol, Jacobian

225

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

∗jac_,DAEpoint ∗Xproj,double ∗sysJac, int ∗exitflag);

double estError(daets ::TaylorSeries ∗auto_diff , int p,double h);

}

namespace sdaets {

〈StiffDAEsolver Declarations 27 〉

}

#endif

D.3.1 Constructor

〈StiffDAEsolver Public Functions 357 〉 ≡357

template〈typename TSFun, typename JacFun, typename GradFun〉

StiffDAEsolver(int n,TSFun ts_fun, JacFun jac_fun,

GradFun grads_fun,daets ::SigmaMatrixFcn fcn3,daets ::FCN NONL

fcn4, void ∗dae_params = Λ) throw(std :: logic_error) :

daets ::DAEsolver(n, ts_fun, jac_fun, fcn3, fcn4, dae_params)

{

fadbad_grads_ = new Gradients((TFadiff) grads_fun, sadata_, dae_params);

assert(fadbad_grads_);

ho_ = new HO(tcs_ad_, jac_, fadbad_grads_);

assert(ho_);

user_min_order_ = 0;

user_max_order_ = 0;

226

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

ede_ = IrregularMatrix〈double〉(ho_~ d_);

}

See also chunks 358 and 359

This code is used in chunk 27.

D.3.2 Destructor

〈StiffDAEsolver Public Functions 357 〉 +≡358

∼StiffDAEsolver()

{

if (¬isIllPosed())

{

delete ho_;

delete fadbad_grads_;

}

}

The StiffDAEsolver class has the following public member functions

〈StiffDAEsolver Public Functions 357 〉 +≡359

void integrate(daets ::DAEsolution &x,double tend,daets ::SolverExitFlag &state)

throw(std :: logic_error);

void SetMinMaxOrder(int, int);

void comp_cond();

227

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈StiffDAEsolver Private Functions 360 〉 ≡360

void GetMinMaxOrder();

void IntegrateByExplicitTS(daets ::DAEsolution &x,double t_end,unsigned int

num_steps,daets ::SolverExitFlag &state);

void IntegrateByHO(daets ::DAEsolution &x,double t_end,daets ::SolverExitFlag

&state);

void SetSavedTCs(const std ::vector〈std ::vector〈double〉〉 &tcs, int q);

double EstErrHO(int order,double epq, const IrregularMatrix〈double〉 &weight);

void tcs_to_ders(const std ::vector〈std ::vector〈double〉〉 &tcs,

std ::vector〈std ::vector〈double〉〉 &ders);

void unscale_tcs(const std ::vector〈double〉 &pow_h,

std ::vector〈std ::vector〈double〉〉 &tcs);

double CompErrorConstant(int p, int q);

void CompEpq(int p, int q, std ::vector〈double〉 &epq);

void set_pq_comp_coeffs(int p, int q, std ::vector〈double〉 &ho_epq);

OrderFlag SelectOrder(int m,double sigma_m, const IrregularMatrix〈double〉

&weight, const std ::vector〈double〉 &epq);

This code is used in chunk 27.

〈StiffDAEsolver Data Members 192 〉 +≡361

Gradients ∗fadbad_grads_;

We store the definition of all functions of the StiffDAEsolver class in the file stiff_daesolver.cc:

228

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 stiff_daesolver.cc 362 〉 ≡362

#include "stiff_daesolver.h"

namespace sdaets

{

〈Definitions of StiffDAEsolver Private Functions 194 〉

〈Definitions of StiffDAEsolver Public Functions 254 〉

}

D.4 Nonlinear Solver

〈 nsolve_functions.h 363 〉 ≡363

#ifndef NSOLVE_FUNCTIONS_H

#define NSOLVE_FUNCTIONS_H

#include <kinsol/kinsol.h>

#include <nvector/nvector_serial.h>

#include <stdio.h>

#include <stdlib.h>

#include <sundials/sundials_math.h>

#include <sundials/sundials_types.h>

#include <sunlinsol/sunlinsol_dense.h>

#include <sunlinsol/sunlinsol_spgmr.h>

#include <sunmatrix/sunmatrix_dense.h>

229

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

#include "ho.h"

#include "ho_auxiliary.h"

#include "ho_enumtypes.h"

#include "norms.h"

#define ONERCONST (1.0)

namespace sdaets {

typedef HoFlag(∗EvalF)(int,double ∗,double ∗, void ∗);

typedef void(∗EvalJ)(int,double ∗,double ∗, void ∗);

HoFlag Fcn(int n,double ∗x,double ∗f, void ∗user_data);

void Jac(int n,double ∗x,double ∗jac, void ∗user_data);

HoFlag NSolve(int n, const IrregularMatrix〈double〉 &weight,double ∗x0,EvalF

fcn,EvalJ jac,double ∗residual,double ∗jacobian, int ∗ipiv, void ∗user_data);

int FcnKinsol(N Vector x,N Vector f, void ∗user_data);

int JacKinsol(N Vector x,N Vector f,SUNMatrix J, void ∗user_data,N Vector

tmp1,N Vector tmp2);

HoFlag NSolveKin(int n,double tol, int max_it,double ∗x0,KINSysFn

fcn,KINLsJacFn jac, void ∗user_data);

}

#endif

These functions are defined in the file

〈 nsolve_functions.cc 364 〉 ≡364

230

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

#include "nsolve_functions.h"

namespace sdaets {

〈Nonlinear Solver Functions 59 〉;

}

D.5 Auxiliary functions

We create the header file ho_auxiliary.h to declare all auxiliary functions.

〈 ho_auxiliary.h 365 〉 ≡365

#ifndef INCLUDED_HO_AUXILIARY_H_

#define INCLUDED_HO_AUXILIARY_H_

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/select.h>

#include <unistd.h>

#include <vector>

#include <cstddef>

#include "daepoint.h"

#include "ho.h"

#include "ho_enumtypes.h"

#include "irregularmatrix.h"

231

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

#include "norms.h"

namespace daets {

extern double DAETS_H_SCALE;

extern void LSolve(int n,double ∗Jac, int ∗ipiv,double ∗Fcn);

extern void LU(int n,double ∗Jac, int ∗ipiv, int ∗info);

extern void compFactorial(int n,double ∗factorial);

}

namespace sdaets {

extern "C"

{

double dlange_(char ∗norm, int ∗m, int ∗n,double ∗a, int ∗lda,double ∗work);

void dgecon_(char ∗norm, int ∗n,double ∗a, int ∗lda,double ∗anorm,double

∗rcond,double ∗work, int ∗iwork, int ∗info);

}

void comp_gen_divdif (const std ::vector〈double〉 &x, const std ::vector〈double〉

&f, std ::vector〈double〉 &c);

void CompWeight(const daets ::DAEpoint &y,double rtol,double

atol, IrregularMatrix〈double〉 &w);

double CompWRMSnorm(const double ∗v, const IrregularMatrix〈double〉 &w);

void PrintProgress (double t, int no_steps,double h, double error , int order) ;

void update_pq(OrderFlag flag, int &p, int &q);

232

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

double comp_stepsize(double sigma,double max_sigma,double h_old);

double comp_sigma(int order,double ede_m,double safty);

void create_t_vec(double t_prev,double t_curr, int p, int q, std ::vector〈double〉

&t_vec);

void merge_ders(int k, int p, int q, const std ::vector〈double〉 &v_a, const

std ::vector〈double〉 &v_b, std ::vector〈double〉 &y);

void CompNordsieck(size t p, size t q,

const std ::vector〈double〉 &t_vec, const std ::vector〈std ::vector〈double〉〉

&der_older, const std ::vector〈std ::vector〈double〉〉 &der_old,

IrregularMatrix〈std ::vector〈double〉〉 &c);

double eval_hermite(int p, int q,double a,double b,double t, std ::vector〈double〉 v);

void PredictSolution(int p, int q,double a,double b,double t, const

IrregularMatrix〈std ::vector〈double〉〉 &nordsieck,daets ::DAEpoint

&prediction);

void subtract(int n, const double ∗x,double ∗y);

double cost_per_step(int n, int nn, int p, int q,double h);

OrderFlag min_cost(double cost1,double cost2,double cost3);

void CompPowersH(int size,double h, std ::vector〈double〉 &h_pow);

void scalar_times_vector(double a, int n,double ∗u,double ∗v);

double RCond(int n,double ∗mat,double mat_norm);

double MNorm(int n,double ∗mat);

233

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

}

#endif

These functions are defined in the file ho_auxiliary.cc.

〈 ho_auxiliary.cc 366 〉 ≡366

#include "ho_auxiliary.h"

namespace sdaets {

〈Auxiliary functions 107 〉;

}

D.5.1 Generalized divided differences

Given two vectors

x = [x0, x1, . . . , xn−1] and

y = [y0, y1, . . . , yn−1],

we implement the function comp_gen_divdif to compute the generalized divided differences

cj = y[x0, . . . , xj], for j = 0, . . . , n− 1.

〈Auxiliary functions 107 〉 +≡367

void comp_gen_divdif (const std ::vector〈double〉 &x, const std ::vector〈double〉

&y, std ::vector〈double〉 &c)

{

size t n = y.size();

234

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

assert(n ≡ x.size());

c = y;

n−−;

double clast, temp;

for (size t j = 0; j < n; j++)

{

clast = c[j];

for (size t i = j + 1; i ≤ n; i++)

{

if (x[i] ≡ x[i− j − 1])

c[i] /= (j + 1);

else

{

temp = c[i];

c[i] = (c[i]− clast)/(x[i]− x[i− j − 1]);

clast = temp;

}

}

}

}

235

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

D.6 Enumerations

We create the header file ho_enumtypes.h to define all required enumerations.

〈 ho_enumtypes.h 369 〉 ≡369

#ifndef HO_ENUMTYPES_H_

#define HO_ENUMTYPES_H_

namespace sdaets {

〈 enumeration type for order selection 202 〉;

〈 enumeration type for HO method 24 〉;

}

#endif

D.7 Examples

The interface to DAETS is in the file stiff_daesolver.h.

D.7.1 Van der Pol oscillator

The following program integrates (10.2).

〈 solve Van der Pol 372 〉 ≡372

int main(int argc, char ∗argv[])

{

〈 set size of Van der Pol and integration interval 373 〉;

〈 create a solver 307 〉;

236

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 create a DAEsolution object 309 〉;

〈 set order and tolerance 308 〉;

〈 set Van der Pol initial values 374 〉;

〈 integrate the problem 311 〉;

〈 output results 312 〉;

return 0;

}

This code is used in chunk 375.

〈 set size of Van der Pol and integration interval 373 〉 ≡373

const int n = 1;

double t0 = 0.0, tend = 2000;

This code is used in chunk 372.

〈 set Van der Pol initial values 374 〉 ≡374

x.setT (t0)

.setX(0, 0, 2)

.setX(0, 1, 0.0);

This code is used in chunk 372.

〈 vdpol.cc 375 〉 ≡375

#include "stiff_daesolver.h"

#include <fstream>

double CompSCD(daets ::DAEsolution &x);

237

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈Van der Pol 316 〉;

〈 solve Van der Pol 372 〉;

double CompSCD(daets ::DAEsolution &x)

{

double y[2];

y[0] = 1.706167732170469;

y[1] = −0.8928097010248125 · 10−3;

double error_norm = 0;

for (int i = 0; i < 2; i++)

{

double r = fabs((x.getX(0, i)− y[i])/y[i]);

if (r > error_norm)

error_norm = r;

}

return −log10(error_norm);

}

D.7.2 Oregonator

The following program integrates (10.3).

〈 solve Oregonator 377 〉 ≡377

int main(int argc, char ∗argv[])

238

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

{

〈 size of Oregonator and the integration interval 378 〉;

〈 create a solver 307 〉;

〈 create a DAEsolution object 309 〉;

〈 set order and tolerance 308 〉;

〈 set Oregonator initial values 379 〉;

〈 integrate the problem 311 〉;

〈 output results 312 〉;

return 0;

}

This code is used in chunk 380.

〈 size of Oregonator and the integration interval 378 〉 ≡378

const int n = 3;

double t0 = 0.0, tend = 360;

This code is used in chunk 377.

〈 set Oregonator initial values 379 〉 ≡379

x.setT (t0)

.setX(0, 0, 1)

.setX(1, 0, 2)

.setX(2, 0, 3);

This code is used in chunk 377.

239

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 orego.cc 380 〉 ≡380

#include "stiff_daesolver.h"

#include <fstream>

double CompSCD(daets ::DAEsolution &x);

〈Oregonator 319 〉;

〈 solve Oregonator 377 〉;

double CompSCD(daets ::DAEsolution &x)

{

double y[3];

y[0] = 0.1000814870318523 · 101;

y[1] = 0.1228178521549917 · 104;

y[2] = 0.1320554942846706 · 103;

double error_norm = 0;

for (int i = 0; i < 3; i++)

{

double r = fabs((x.getX(i, 0)− y[i])/y[i]);

if (r > error_norm)

error_norm = r;

}

return −log10(error_norm);

}

240

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

D.7.3 Chemical Akzo Nobel

The main program is

〈 solve Chemical Akzo Nobel 382 〉 ≡382

int main(int argc, char ∗argv[])

{

〈 set size of Chemical Akzo Nobel and integration interval 383 〉;

〈 create a solver 307 〉;

〈 create a DAEsolution object 309 〉;

〈 set order and tolerance 308 〉;

〈 set Chemical Akzo Nobel initial values 384 〉;

〈 integrate the problem 311 〉;

〈 output results 312 〉;

return 0;

}

This code is used in chunk 385.

〈 set size of Chemical Akzo Nobel and integration interval 383 〉 ≡383

int n = 6;

double t0 = 0, tend = 180;

This code is used in chunk 382.

〈 set Chemical Akzo Nobel initial values 384 〉 ≡384

x.setT (t0)

241

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

.setX(0, 0, 0.444).setX(0, 1, 0)

.setX(1, 0, 0.00123).setX(1, 1, 0)

.setX(2, 0, 0.0).setX(2, 1, 0)

.setX(3, 0, 0.007).setX(3, 1, 0)

.setX(4, 0, 0.0).setX(4, 1, 0)

.setX(5, 0, 0);

This code is used in chunk 382.

〈 chemakzo.cc 385 〉 ≡385

#include "stiff_daesolver.h"

#include <fstream>

double CompSCD(daets ::DAEsolution &x);

〈Chemical Akzo Nobel 320 〉;

〈 solve Chemical Akzo Nobel 382 〉;

double CompSCD(daets ::DAEsolution &x)

{

double y[6];

y[0] = 0.1150794920661702;

y[1] = 0.1203831471567715 · 10−2;

y[2] = 0.1611562887407974;

y[3] = 0.3656156421249283 · 10−3;

y[4] = 0.1708010885264404 · 10−1;

242

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

y[5] = 0.4873531310307455 · 10−2;

double error_norm = 0;

for (int i = 0; i < 6; i++)

{

double r = fabs((x.getX(i, 0)− y[i])/y[i]);

if (r > error_norm)

error_norm = r;

}

return −log10(error_norm);

}

D.7.4 A highly stiff index-2 DAE

The main program integrating (10.5) is

〈 solve Stiff index-2 386 〉 ≡386

int main(int argc, char ∗argv[])

{

〈 set size of Stiff index-2 and integration interval 387 〉;

〈 create a solver 307 〉;

〈 create a DAEsolution object 309 〉;

〈 set order and tolerance 308 〉;

〈 set Stiff index-2 initial values 388 〉;

〈 integrate the problem 311 〉;

243

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 output results 312 〉;

return 0;

}

This code is used in chunk 389.

〈 set size of Stiff index-2 and integration interval 387 〉 ≡387

const int n = 3;

double t0 = 0.0, tend = 2000;

This code is used in chunk 386.

〈 set Stiff index-2 initial values 388 〉 ≡388

x.setT (t0)

.setX(0, 0, 2).setX(0, 1, 0)

.setX(1, 0, 3);

This code is used in chunk 386.

〈 vdpol_index2.cc 389 〉 ≡389

#include "stiff_daesolver.h"

#include <fstream>

double CompSCD(daets ::DAEsolution &x);

〈Stiff index-2 322 〉;

〈 solve Stiff index-2 386 〉;

double CompSCD(daets ::DAEsolution &x)

{

244

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

double y[3];

y[0] = 1.706167732170469;

y[1] = −0.8928097010248125 · 10−3;

y[2] = sqrt(y[0] ∗ y[0] + 5);

double r, error_norm = 0;

for (int i = 0; i < 2; i++)

{

r = fabs((x.getX(0, i)− y[i])/y[i]);

if (r > error_norm)

error_norm = r;

}

r = fabs((x.getX(1, 0)− y[2])/y[2]);

if (r > error_norm)

error_norm = r;

return −log10(error_norm);

}

D.7.5 Car Axis

The main program for integrating this problem is

〈 solve Car Axis 390 〉 ≡390

int main(int argc, char ∗argv[])

{

245

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 size of Car Axis and the integration interval 391 〉;

〈 create a solver 307 〉;

〈 create a DAEsolution object 309 〉;

〈 set order and tolerance 308 〉;

〈 set Car Axis initial values 392 〉;

〈 integrate the problem 311 〉;

〈 output results 312 〉;

return 0;

}

This code is used in chunk 393.

〈 size of Car Axis and the integration interval 391 〉 ≡391

const int n = 6;

double t0 = 0.0, tend = 3.0;

This code is used in chunk 390.

The initial condition given in [37] is as follows.

〈 set Car Axis initial values 392 〉 ≡392

x.setT (t0)

.setX(0, 0, 0.0).setX(0, 1,−0.5)

.setX(1, 0, 0.5).setX(1, 1, 0.0)

.setX(2, 0, 1.0).setX(2, 1,−0.5)

.setX(3, 0, 0.5).setX(3, 1, 0.0);

246

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

This code is used in chunk 390.

〈 caraxis.cc 393 〉 ≡393

#include "stiff_daesolver.h"

#include <fstream>

double CompSCD(daets ::DAEsolution &x);

〈Car Axis 323 〉;

〈 solve Car Axis 390 〉;

double CompSCD(daets ::DAEsolution &x)

{

double y[6], yp[4];

y[0] = 0.493455784275402809122 · 10−1;

yp[0] = −0.770583684040972357970 · 10−1;

y[1] = 0.496989460230171153861;

yp[1] = 0.744686658723778553466 · 10−2;

y[2] = 0.104174252488542151681 · 101;

yp[2] = 0.175568157537232222276 · 10−1;

y[3] = 0.373911027265361256927;

yp[3] = 0.770341043779251976443;

y[4] = −0.473688659084893324729 · 10−2;

y[5] = −0.110468033125734368808 · 10−2;

double error_norm = 0;

247

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

for (int i = 0; i < 6; i++)

{

double r = fabs((x.getX(i, 0)− y[i])/y[i]);

if (r > error_norm)

error_norm = r;

}

for (int i = 0; i < 4; i++)

{

double r = fabs((x.getX(i, 1)− yp[i])/yp[i]);

if (r > error_norm)

error_norm = r;

}

return −log10(error_norm);

}

D.7.6 Multi Pendula

Our main program is

〈 solve Multi Pendula 394 〉 ≡394

int main(int argc, char ∗argv[])

{

〈 set size of Multi Pendula and integration interval 395 〉;

sdaets ::StiffDAEsolver solver(n, STIFF_DAE_FCN(fcn), parameters);

248

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 create a DAEsolution object 309 〉;

〈 set order and tolerance 308 〉;

〈 set Multi Pendula initial values 397 〉;

〈 integrate the problem 311 〉;

〈 output results 312 〉;

return 0;

}

This code is used in chunk 398.

〈 set size of Multi Pendula and integration interval 395 〉 ≡395

double t0 = 0.0, tend = 50;

int P = 8;

int n = 3 ∗ P ;

double G = 9.8, L = 10, c = 0.1;

double parameters[] = {G,L, c, (double) P};

This code is used in chunk 394.

We set initial conditions as follows.

〈Multi Pendula 326 〉 +≡396

void SetInitialConditions(double t0,daets ::DAEsolution &x, int P)

{

x.setT (t0);

for (int i = 1; i ≤ P ; i++)

249

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

{

x.setX(3 ∗ i− 3, 0, 1).setX(3 ∗ i− 3, 1, 0)

.setX(3 ∗ i− 2, 0, 0).setX(3 ∗ i− 2, 1, 1);

for (int k = 2; k < 2 ∗ (P − i+ 1); k++)

x.setX(3 ∗ i− 3, k, 0)

.setX(3 ∗ i− 2, k, 0)

.setX(3 ∗ i− 1, k − 2, 0);

}

}

〈 set Multi Pendula initial values 397 〉 ≡397

SetInitialConditions(t0, x, P);

This code is used in chunk 394.

〈 multipend.cc 398 〉 ≡398

#include "stiff_daesolver.h"

#include <fstream>

double CompSCD(daets ::DAEsolution &x);

void SetInitialConditions(double t0,daets ::DAEsolution &x, int P);

〈Multi Pendula 326 〉;

〈 solve Multi Pendula 394 〉;

double CompSCD(daets ::DAEsolution &x)

{

250

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

double y[24];

y[0] = −6.4831571036071827;

y[1] = 7.6137161734561474;

y[2] = 2.2484325549960991;

y[3] = −4.0364902310106219;

y[4] = 9.3943688566338341;

y[5] = 3.0461516420251065;

y[6] = −3.6572225101397066 · 10−1;

y[7] = 1.0298123174512218 · 101;

y[8] = 2.7030793890008225;

y[9] = −9.9545920353178730;

y[10] = −2.5269195812728182;

y[11] = −1.8563855044649777 · 10−1;

y[12] = −9.3676724491232601;

y[13] = 3.4461254187504720;

y[14] = 7.5958908054680752 · 10−1;

y[15] = −9.9849301250615969;

y[16] = 1.3513394519675139;

y[17] = 4.0315262620453329 · 10−1;

y[18] = −9.9383198467905878;

y[19] = 1.4274905238555882;

251

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

y[20] = 4.0229079570012122 · 10−1;

y[21] = −9.9318259110677296;

y[22] = 1.4714054650187212;

y[23] = 4.1054226578576264 · 10−1;

double error_norm = 0;

for (int i = 0; i < 24; i++)

{

double r = fabs((x.getX(i, 0)− y[i])/y[i]);

if (r > error_norm)

error_norm = r;

}

return −log10(error_norm);

}

252

Bibliography

[1] R . C . A I K E N, Stiff computation, vol. 169, Oxford University Press New York, 1985.

[2] U . M . A S C H E R , H . C H I N , A N D S . R E I C H, Stabilization of DAEs and invariant

manifolds, Numerische Mathematik, 67 (1994), pp. 131–149.

[3] U . M . A S C H E R A N D L . R . P E T Z O L D, Projected implicit Runge-Kutta methods

for differential-algebraic equations, SIAM Journal on Numerical Analysis, 28 (1991),

pp. 1097–1120.

[4] U . M . A S C H E R A N D L . R . P E T Z O L D, Computer Methods for Ordinary Differ-

ential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, 1998.

[5] K . AT K I N S O N , W. H A N , A N D D . E . S T E WA R T , Numerical solution of

ordinary differential equations, vol. 108, John Wiley & Sons, 2011.

[6] R . B A R R I O, Performance of the Taylor series method for ODEs/DAEs, Appl. Math.

Comp., 163 (2005), pp. 525–545.

253

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

[7] K . E . B R E N A N , S . L . C A M P B E L L , A N D L . R . P E T Z O L D, Numerical Solu-

tion of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia,

second ed., 1996.

[8] L . B R U G N A N O A N D C . M A G H E R I N I, The BiM code for the numerical solution of

ODEs, Journal of Computational and Applied Mathematics, 164 (2004), pp. 145–158.

[9] O . B R U N O A N D D . H O C H, Numerical differentiation of approximated functions

with limited order-of-accuracy deterioration, SIAM Journal on Numerical Analysis,

50 (2012), pp. 1581–1603.

[10] M . C A LV O , F. L I S B O N A , A N D J . M O N T I J A N O , On the stability of variable-

stepsize Nordsieck BDF methods, SIAM journal on numerical analysis, 24 (1987),

pp. 844–854.

[11] S . C A M P B E L L A N D C . G E A R, The index of general nonlinear DAEs, Numerische

Mathematik, 72 (1995), pp. 173–196.

[12] S . L . C A M P B E L L A N D E . G R I E P E N T R O G , Solvability of general differential-

algebraic equations, SIAM Journal on Scientific Computing, 16 (1995), pp. 257–270.

[13] J . C A S H, Efficient numerical methods for the solution of stiff initial-value problems

and differential algebraic equations, in Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, vol. 459, The Royal Society, 2003,

pp. 797–815.

254

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

[14] G . F. C O R L I S S , A . G R I E WA N K , P. H E N N E B E R G E R , G . K I R L I N G E R ,

F. A . P O T R A , A N D H . J . S T E T T E R , High-order stiff ODE solvers via auto-

matic differentiation and rational prediction, in International Workshop on Numerical

Analysis and Its Applications, Springer, 1996, pp. 114–125.

[15] G . D A H L Q U I S T E T A L . , Problems related to the numerical treatment of stiff

differential equations, in International Computing Symposium, 1973, pp. 307–314.

[16] G . G . D A H L Q U I S T, A special stability problem for linear multistep methods, BIT

Numerical Mathematics, 3 (1963), pp. 27–43.

[17] I . D U F F A N D C . G E A R , Computing the structural index, SIAM Journal on Alge-

braic and Discrete Methods, 7 (1986), pp. 594–603.

[18] B . L . E H L E , On Padé approximations to the exponential function and A-stable

methods for the numerical solution of initial value problems, PhD thesis, University of

Waterloo, Waterloo, Ontario, 1969.

[19] E . E I C H - S O E L L N E R A N D C . F Ü H R E R , Numerical methods in multibody dy-

namics, vol. 45, Springer, 1998.

[20] E . G A D , M . N A K H L A , R . A C H A R , A N D Y. Z H O U, A-stable and L-stable high-

order integration methods for solving stiff differential equations, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 28 (2009), pp. 1359–1372.

255

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

[21] C . G E A R, Simultaneous numerical solution of differential-algebraic equations, IEEE

transactions on circuit theory, 18 (1971), pp. 89–95.

[22] C . W. G E A R, Differential-algebraic equation index transformations, SIAM Journal

on Scientific and Statistical Computing, 9 (1988), pp. 39–47.

[23] , Differential algebraic equations, indices, and integral algebraic equations, SIAM

Journal on Numerical Analysis, 27 (1990), pp. 1527–1534.

[24] E . G R I E P E N T R O G A N D R . M A R Z , Differential-algebraic equations and their

numerical treatment, in Teubner-Texte zur Mathematik [Teubner Texts in Mathematics],

88., BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1986. With German, French and

Russian summaries.

[25] A . G R I E WA N K, ODE solving via automatic differentiation and rational prediction,

Pitman Research Notes in Mathematics Series, (1996), pp. 36–56.

[26] , Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation,

Frontiers in applied mathematics, SIAM, Philadelphia, PA, 2000.

[27] A . G R I E WA N K , D . J U E D E S , A N D J . U T K E , ADOL-C, a package for the

automatic differentiation of algorithms written in C/C++, ACM Trans. Math. Software,

22 (1996), pp. 131–167.

[28] E . H A I R E R A N D G . WA N N E R, Solving Ordinary Differential Equations II. Stiff

and Differential–Algebraic Problems, Springer Verlag, Berlin, second ed., 1991.

256

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

[29] A . H A R O, Automatic differentiation tools in computational dynamical systems, Univ.

of Barcelona Preprint, (2008).

[30] C . H E R M I T E, Oeuvres de Charles Hermite (Gautheir–Villar, Paris), vol, 1912.

[31] A . H I N D M A R S H , P. B R O W N , K . G R A N T , S . L E E , R . S E R B A N , D . S H U -

M A K E R , A N D C . W O O D WA R D, SUNDIALS: Suite of nonlinear and differential/al-

gebraic equation solvers, ACM TOMS, 31 (2005), pp. 363–396.

[32] D . E . K N U T H , Literate Programming, Center for the Study of Language and

Information, Stanford, CA, USA, 1992.

[33] D . E . K N U T H A N D S . L E V Y , The CWEB System of Structured Documentation,

Addison-Wesley, Reading, Massachusetts, 1993.

[34] P. K U N K E L A N D V. M E H R M A N N , Index reduction for differential-algebraic

equations by minimal extension, ZAMM-Journal of Applied Mathematics and Mechan-

ics/Zeitschrift für Angewandte Mathematik und Mechanik, 84 (2004), pp. 579–597.

[35] P. K U N K E L A N D V. L . M E H R M A N N, Differential-algebraic equations: analysis

and numerical solution, European Mathematical Society, Zürich, Switzerland, 2006.

[36] J . L A M B E R T , Computational Methods in Ordinary Differential Equations, Wiley,

1977.

257

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

[37] F. M A Z Z I A A N D F. I AV E R N A R O , Test set for initial value problem solvers,

Tech. Rep. 40, Department of Mathematics, University of Bari, Italy, 2003. http:

//pitagora.dm.uniba.it/~testset/.

[38] R . M C K E N Z I E A N D J . P RY C E , Structural analysis based dummy derivative

selection for differential algebraic equations, BIT Numerical Mathematics, 57 (2017),

pp. 433–462.

[39] V. M E H R M A N N, Index concepts for differential-algebraic equations, Encyclopedia

of Applied and Computational Mathematics, (2015), pp. 676–681.

[40] P. M I L E N K O V I C, Numerical solution of stiff multibody dynamic systems based on

kinematic derivatives, Journal of Dynamic Systems, Measurement, and Control, 136

(2014), p. 061001.

[41] W. E . M I L N E, A note on the numerical integration of differential equations, Journal

of Research of the National Bureau of Standards, 43 (1949), pp. 537–542.

[42] R . M O O R E, Interval Analysis, Prentice-Hall, Englewood, N.J., 1966.

[43] N . N E D I A L K O V A N D J . P RY C E , DAETS user guide, Tech. Rep. CAS 08-08-

NN, Department of Computing and Software, McMaster University, Hamilton, ON,

Canada, June 2013. 68 pages, DAETS is available at http://www.cas.mcmaster.

ca/~nedialk/daets.

258

http://pitagora.dm.uniba.it/~testset/
http://pitagora.dm.uniba.it/~testset/
http://www.cas.mcmaster.ca/~nedialk/daets
http://www.cas.mcmaster.ca/~nedialk/daets

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

[44] N . S . N E D I A L K O V, Implementing a rigorous ODE solver through literate program-

ming, in Modeling, Design, and Simulation of Systems with Uncertainties, A. Rauh

and E. Auer, eds., Springer, 2011, pp. 3–19.

[45] N . S . N E D I A L K O V A N D J . D . P RY C E, Solving differential-algebraic equations

by Taylor series (I): Computing Taylor coefficients, BIT Numerical Mathematics, 45

(2005), pp. 561–591.

[46] , Solving differential-algebraic equations by Taylor series (II): Computing the

system Jacobian, BIT Numerical Mathematics, 47 (2007), pp. 121–135.

[47] , Solving differential-algebraic equations by Taylor series (III): the DAETS code,

JNAIAM J. Numer. Anal. Indust. Appl. Math, 3 (2008), pp. 61–80.

[48] T. N G U Y E N - B A , H . YA G O U B , H . H A O , A N D R . VA I L L A N C O U R T, Pryce

pre-analysis adapted to some DAE solvers, Applied Mathematics and Computation,

217 (2011), pp. 8403–8418.

[49] N . O B R E C H K O F F, Sur les quadrature mecaniques, Spisanic Bulgar Akad Nauk, 65

(1942), pp. 191–289.

[50] N . O B R E S H K O V, Neue quadraturformeln, Verlag der Akademie der Wissenschaften,

in Kommission bei W. de Gruyter, 1940.

[51] C . C . PA N T E L I D E S, The consistent initialization of differential-algebraic systems,

SIAM J. Sci. Stat. Comput., 9 (1988), pp. 213–231.

259

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

[52] M . P H A R R A N D G . H U M P H R E Y S, Physically Based Rendering: From Theory to

Implementation, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[53] F. A . P O T R A A N D W. C . R H E I N B O L D , On the numerical solution of Euler-

Lagrange equations, Journal of Structural Mechanics, 19 (1991), pp. 1–18.

[54] J . D . P RY C E , A simple structural analysis method for DAEs, BIT Numerical

Mathematics, 41 (2001), pp. 364–394.

[55] G . R E I S S I G , W. S . M A RT I N S O N , A N D P. I . B A RT O N, Differential–algebraic

equations of index 1 may have an arbitrarily high structural index, SIAM J. Sci.

Comput., 21 (1999), pp. 1987–1990.

[56] W. C . R H E I N B O L D T, Differential-algebraic systems as differential equations on

manifolds, Mathematics of computation, 43 (1984), pp. 473–482.

[57] L . S C H O L Z A N D A . S T E I N B R E C H E R , Regularization of DAEs based on the

Signature method, BIT Numerical Mathematics, 56 (2016), pp. 319–340.

[58] , Structural-algebraic regularization for coupled systems of DAEs, BIT Numerical

Mathematics, 56 (2016), pp. 777–804.

[59] L . F. S H A M P I N E , Implementation of implicit formulas for the solution of ODEs,

SIAM Journal on Scientific and Statistical Computing, 1 (1980), pp. 103–118.

[60] , Efficient use of implicit formulas with predictor-corrector error estimate, Journal

of computational and applied mathematics, 7 (1981), pp. 33–35.

260

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

[61] B . S I M E O N, MBSPACK-Numerical integration software for constrained mechanical

motion, Surveys on Mathematics for Industry, 5 (1995), pp. 169–201.

[62] M . S M I T H , Towards modern literature programming, University of Canterbury.

Department of Computer Science, (2001).

[63] O . S TA U N I N G A N D C . B E N D T S E N , FADBAD++ web page, May 2003. http:

//www.imm.dtu.dk/fadbad.html.

[64] J . S T O E R A N D R . B U L I R S C H , Introduction to numerical analysis, vol. 12,

Springer Science & Business Media, 2013.

[65] P. VA N D E R H O U W E N A N D J . D E S WA R T , Parallel linear system solvers for

Runge-Kutta methods, Advances in Computational Mathematics, 7 (1997), pp. 157–

181.

[66] O . B . W I D L U N D, A note on unconditionally stable linear multistep methods, BIT

Numerical Mathematics, 7 (1967), pp. 65–70.

[67] Y. Z H O U , Stable high order methods for circuit simulation, PhD thesis, Carleton

University, 2011.

[68] R . Z O L F A G H A R I A N D N . S . N E D I A L K O V, Structural analysis of linear integral-

algebraic equations, Journal of Computational and Applied Mathematics, 353 (2019),

pp. 243–252.

261

http://www.imm.dtu.dk/fadbad.html
http://www.imm.dtu.dk/fadbad.html

List of Refinements

〈Auxiliary functions 107 111 125 160 172 184 185 188 189 205 208 210 226 230 281 285 289

291 367 〉 Used in chunk 366.

〈Car Axis 323 〉 Used in chunk 393.

〈Chemical Akzo Nobel 320 〉 Used in chunk 385.

〈Definitions of HO Private Functions 37 49 51 57 62 69 79 121 124 127 130 135 137 145 146

147 151 154 156 161 168 170 221 262 263 280 〉 Used in chunk 348.

〈Definitions of HO Public Functions 61 148 〉 Used in chunk 348.

〈Definitions of StiffDAEsolver Private Functions 194 203 215 220 222 223 234 238 258 297

336 〉 Used in chunk 362.

〈Definitions of StiffDAEsolver Public Functions 254 294 296 〉 Used in chunk 362.

〈Gradients Data Members 80 81 89 164 352 〉 Used in chunk 25.

〈Gradients Declarations 25 〉 Used in chunk 350.

〈Gradients Public Functions 82 84 87 90 92 95 165 353 354 〉 Used in chunk 25.

〈HO Data Members 28 34 38 39 41 42 43 46 47 50 52 53 74 78 85 119 120 123 126 128 129

132 133 139 144 150 153 155 157 158 167 174 〉 Used in chunk 23.

262

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈HO Declarations 23 〉 Used in chunk 343.

〈HO Private Functions 35 347 〉 Used in chunk 23.

〈HO Public Functions 344 345 346 〉 Used in chunk 23.

〈Multi Pendula 326 396 〉 Used in chunk 398.

〈Nonlinear Solver Functions 59 65 101 177 178 340 〉 Used in chunk 364.

〈Oregonator 319 〉 Used in chunk 380.

〈Pendulum 304 〉

〈Stiff index-2 322 〉 Used in chunk 389.

〈StiffDAEsolver Data Members 192 195 196 197 212 229 233 235 253 295 361 〉 Used in

chunk 27.

〈StiffDAEsolver Declarations 27 〉 Used in chunk 356.

〈StiffDAEsolver Private Functions 360 〉 Used in chunk 27.

〈StiffDAEsolver Public Functions 357 358 359 〉 Used in chunk 27.

〈Van der Pol 316 〉 Used in chunk 375.

〈 accept the solution 279 〉 Used in chunk 275.

〈 caraxis.cc 393 〉

〈 check and adjust the stepsize h 247 248 〉 Used in chunk 215.

〈 check not to exceed maximum or fall minimum order 213 〉 Used in chunk 203.

〈 chemakzo.cc 385 〉

〈 compare the taken stepsize and order with previous ones 276 278 〉 Used in chunk 275.

〈 compute [Bs]k = Cs[Bs]k 93 〉 Used in chunk 79.

263

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 compute βs = Csbs 44 〉 Used in chunk 37.

〈 compute
∂fI0

∂xJ0

71 72 〉 Used in chunk 65.

〈 compute fHO(xmJ<0) 109 〉 Used in chunk 101.

〈 compute fHO(x0
J<0) 102 〉 Used in chunk 101.

〈 compute JHO 103 〉 Used in chunk 101.

〈 compute Bs 91 〉 Used in chunk 79.

〈 compute bs 40 〉 Used in chunk 37.

〈 compute xmJ<0 = xm−1
J<0 − δ

m 108 〉 Used in chunk 101.

〈 compute xJs , for s = 0, 1, . . . , q − 1 141 143 〉 Used in chunk 135.

〈 compute Cκ−1, Cκ and Cκ+1 207 209 〉 Used in chunk 203.

〈 compute ‖JHO‖∞, if requested 159 〉 Used in chunk 151.

〈 compute ‖epqhp+q+1Ẽ‖ 200 〉 Used in chunk 194.

〈 compute σκ−1 and σκ+1 204 206 〉 Used in chunk 203.

〈 compute xH O
J≤0

252 257 〉 Used in chunk 215.

〈 compute epqhp+q+1Ẽ 199 〉 Used in chunk 194.

〈 compute hξ̃jk 198 〉 Used in chunk 199.

〈 compute and set [∇xJs]k = [∇̃xJs]k −D−1
s [Ys]k 96 〉 Used in chunk 79.

〈 compute and set xJs = x̃Js −D−1
s ys 56 〉 Used in chunk 37.

〈 compute condition number of JHO, if requested 282 〉 Used in chunk 279.

〈 compute higher-order TCs 266 〉 Used in chunk 215.

〈 compute powers of h 173 〉 Used in chunk 161.

264

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 compute the smallest allowed stepsize 245 〉 Used in chunks 246 and 275.

〈 compute iteration_error = ρ

1− ρ‖δ
m‖ 115 〉 Used in chunk 101.

〈 create a solver 307 〉 Used in chunks 305, 372, 377, 382, 386, and 390.

〈 create a DAEsolution object 309 〉 Used in chunks 305, 372, 377, 382, 386, 390, and 394.

〈 declare variables for integration 218 224 227 231 236 239 241 243 249 251 259 267 269 277

283 287 288 〉 Used in chunk 215.

〈 declare variables for nonlinear solver 113 114 〉 Used in chunk 101.

〈 determine the order for next step 290 〉 Used in chunk 275.

〈 enumeration type for HO method 24 〉 Used in chunk 369.

〈 enumeration type for order selection 202 〉 Used in chunk 369.

〈 estimate the error 270 271 272 273 274 〉 Used in chunk 215.

〈 evaluate ‖δm‖ 112 〉 Used in chunk 101.

〈 evaluate fI0 64 〉 Used in chunk 59.

〈find min{Cκ−1, Cκ, Cκ+1} to determine the possible order change 211 〉 Used in chunk 203.

〈find LU decomposition of A0 265 〉 Used in chunk 262.

〈find LU factorization of JHO 104 105 〉 Used in chunk 101.

〈find LU factorization of A0 142 〉 Used in chunk 141.

〈find an initial guess for xJ≤α 250 〉 Used in chunk 215.

〈 get x0
J≤α

from x 175 176 〉 Used in chunk 179.

〈 gradients.h 350 〉

〈 ho.cc 348 〉

265

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 ho.h 343 〉

〈 ho_auxiliary.cc 366 〉

〈 ho_auxiliary.h 365 〉

〈 ho_enumtypes.h 369 〉

〈 initialize ∇xJ<q 86 〉 Used in chunk 79.

〈 integrate by HO method up to the final time 301 〉 Used in chunk 294.

〈 integrate by explicit TS method on the first step 300 〉 Used in chunk 294.

〈 integrate the problem 311 〉 Used in chunks 305, 372, 377, 382, 386, 390, and 394.

〈 irregularmatrix.cc 339 〉

〈 irregularmatrix.h 338 〉

〈 multipend.cc 398 〉

〈 nsolve_functions.cc 364 〉

〈 nsolve_functions.h 363 〉

〈 optional output 292 293 〉 Used in chunk 215.

〈 orego.cc 380 〉

〈 output results 312 〉 Used in chunks 305, 372, 377, 382, 386, 390, and 394.

〈 predict the stepsize for next step 284 286 〉 Used in chunk 275.

〈 prepare for integration 216 219 225 228 232 237 240 242 244 246 255 268 〉 Used in

chunk 215.

〈 prepare for next step 275 〉 Used in chunk 215.

〈 project xH O
J≤0

onto constraints 260 261 〉 Used in chunk 215.

266

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 reset parameters 181 〉 Used in chunk 161.

〈 save ‖δm‖ for computing ρ in next iteration 116 〉 Used in chunk 101.

〈 set xJ<0 136 138 〉 Used in chunk 135.

〈 set xJ<q 88 〉 Used in chunk 79.

〈 set xP R
J≤0

264 〉 Used in chunk 262.

〈 set order 298 299 〉 Used in chunk 294.

〈 set Car Axis initial values 392 〉 Used in chunk 390.

〈 set Chemical Akzo Nobel initial values 384 〉 Used in chunk 382.

〈 set Multi Pendula initial values 397 〉 Used in chunk 394.

〈 set Oregonator initial values 379 〉 Used in chunk 377.

〈 set Stiff index-2 initial values 388 〉 Used in chunk 386.

〈 set Van der Pol initial values 374 〉 Used in chunk 372.

〈 set initial values 310 〉 Used in chunk 305.

〈 set order and tolerance 308 〉 Used in chunks 305, 372, 377, 382, 386, 390, and 394.

〈 set parameters to evaluate
∂fI0

∂xJ0

66 67 68 70 〉 Used in chunk 65.

〈 set parameters to evaluate fI0 60 63 〉 Used in chunk 59.

〈 set parameters to form the HO system 163 166 169 171 〉 Used in chunk 161.

〈 set size of Chemical Akzo Nobel and integration interval 383 〉 Used in chunk 382.

〈 set size of DAE and integration interval 306 〉 Used in chunk 305.

〈 set size of Multi Pendula and integration interval 395 〉 Used in chunk 394.

〈 set size of Stiff index-2 and integration interval 387 〉 Used in chunk 386.

267

Ph.D. Thesis – Reza Zolfaghari McMaster University – CSE

〈 set size of Van der Pol and integration interval 373 〉 Used in chunk 372.

〈 size of Car Axis and the integration interval 391 〉 Used in chunk 390.

〈 size of Oregonator and the integration interval 378 〉 Used in chunk 377.

〈 solve JHO δ
m = fHO(xm−1

J<0) 106 〉 Used in chunk 101.

〈 solve fI0 = 0 75 〉 Used in chunk 57.

〈 solve A0[Ys]k = [Bs]k 94 〉 Used in chunk 79.

〈 solve A0ys = βs 54 〉 Used in chunk 37.

〈 solve Car Axis 390 〉 Used in chunk 393.

〈 solve Chemical Akzo Nobel 382 〉 Used in chunk 385.

〈 solve Multi Pendula 394 〉 Used in chunk 398.

〈 solve Oregonator 377 〉 Used in chunk 380.

〈 solve Stiff index-2 386 〉 Used in chunk 389.

〈 solve Van der Pol 372 〉 Used in chunk 375.

〈 solve simple pendulum 305 〉

〈 solve the HO system 179 〉 Used in chunk 161.

〈 stiff_daesolver.cc 362 〉

〈 stiff_daesolver.h 356 〉

〈 store the computed
∂fI0

∂xJ0

at sun_jac 73 〉 Used in chunk 65.

〈 update x 180 〉 Used in chunk 161.

〈 vdpol.cc 375 〉

〈 vdpol_index2.cc 389 〉

268

	Introduction
	Motivation
	Contributions
	Thesis organization

	Background
	Stability and stiffness
	Pryce's structural analysis
	Automatic differentiation
	Forward mode
	Reverse mode
	Taylor coefficients
	The FADBAD++ package

	Literate programming
	The DAETS solver

	An Hermite-Obreschkoff method for ODEs
	Hermite-Obreschkoff formula
	Proposed method

	An Hermite-Obreschkoff method for DAEs
	Computational scheme for Taylor coefficients
	Proposed method
	Implementation
	Classes in DAETS
	The HO class
	The Gradients class
	The StiffDAEsolver class
	The IrregularMatrix class

	Computing Taylor coefficients
	Solving linear systems
	Forming the matrix
	Implementation

	Solving nonlinear systems
	Solving fI0=0 by KINSOL

	Computing gradients of Taylor coefficients
	Computational scheme for gradients
	Implementation
	Initializing gradients
	Computing Bs
	Computing [Bs]k
	Solving A0[Ys]k=[Bs]k
	Correcting initial guess

	Solving the Hermite-Obreschkoff system
	Convergence of the iteration
	Implementation
	Evaluating residual
	Computing Jacobian

	Implementation of HO method for one step
	Setting parameters
	Powers of the stepsize
	Solving the system

	Integration strategies
	Hermite-Nordsieck vector
	Implementation

	Prediction
	Implementation

	Error estimation
	Implementation

	Stepsize and order selection
	Implementation

	The integrator function
	Integration by HO method
	Preparation for integration
	Checking the stepsize
	Finding an initial guess
	Applying the HO method
	Projection
	Computing higher-order TCs
	Error estimation
	Preparation for next step
	Optional output

	The function integrate

	Numerical results
	Basic usage
	Problem definition
	Main program

	Numerical experiments
	Test problems
	Accuracy
	Efficiency
	Variable-order versus fixed-order

	Conclusions
	The integrator function in DAETS
	The IrregularMatrix class
	KINSOL
	Files
	The HO class
	Constructor
	Destructor

	The Gradients class
	Constructor
	Destructor

	The StiffDAEsolver class
	Constructor
	Destructor

	Nonlinear Solver
	Auxiliary functions
	Generalized divided differences

	Enumerations
	Examples
	Van der Pol oscillator
	Oregonator
	Chemical Akzo Nobel
	A highly stiff index-2 DAE
	Car Axis
	Multi Pendula

