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LAY ABSTRACT 

 
The immune system is highly dependent on a specialized subset of white blood cells 
known as macrophages that are capable of clearing damaged and dead cells as well as a 
wide range of invading micro-organisms. Specific receptor proteins present on the 
membrane of macrophages are involved in the recognition of particles and subsequent 
signaling to recruit other immune cells or to promote healing and wound repair. To date, 
a variety of fluorescence-based microscopy methods have been used to study the 
dynamics of cell membrane components. The mobility of several membrane receptors in 
macrophages has been studied using microscopy techniques, which have provided 
valuable insights into their function. However, there is still insufficient information about 
the behavior of two key receptors (TLR2 and CD14) that participate in signaling in 
response to bacterial products. This thesis aims to answer three major questions with 
regard to receptor mobility (i.e., diffusion) within macrophage membrane: 1) Which type 
of fluorescence-based microscopy technique is more suitable for measuring the mobility of 
TLR2 and CD14 receptors on macrophage membranes? 2) What is the impact of 
different surface topographies on TLR2 diffusion in adhered macrophages, as well as cell 
shape, and the ability of macrophages to internalize particles? 3) Does aging alter TLR2 
mobility in the membrane of macrophages? The following chapters provide detailed 
answers to these questions. In brief, we have demonstrated that TLR2 and CD14 
diffusion measurements in adhered macrophages highly depend on the membrane section 
chosen. In addition, our results show that micro- and nanostructured surface 
topographies alter the shape of adhered macrophages and yield higher bacteria 
internalization, while the diffusion of TLR2 is not changed. When comparing 
macrophages derived from young and old mice, we find similar diffusion rate of TLR2 in 
macrophages of the two age groups.  
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ABSTRACT 
 
Among the central constituents of the innate immune system are macrophages, which are 
known for phagocytosis or ‘eating’ foreign particles or pathogens. Macrophages express 
several cell-surface proteins including transmembrane and membrane-anchored 
receptors, which play a vital role in their response to pathogenic stimuli. The plasma 
membrane is a highly fluid and dynamic environment, which facilitates the diffusion of 
lipids and proteins within the plane of the membrane. This study aims to measure the 
lateral diffusion of two types of plasma membrane receptors on macrophages, toll-like 
receptor II (TLR2) and cluster of differentiation 14 (CD14), to answer three main 
research questions: 1) Which type of fluorescence-based microscopy techniques is best 
suited for measuring the lateral diffusion of TLR2 and CD14 on macrophage plasma 
membrane? 2) Does culturing macrophages on different surface topographies impact the 
diffusion of TLR2 in the plasma membrane and its pro-inflammatory response, along 
with morphological changes? 3) Does aging alter the lateral diffusion of TLR2 in the 
plasma membrane of macrophages? To date, a variety of fluorescence-based methods 
have been developed to study the dynamics of cell membrane constituents. These 
techniques are based on either ensemble or single particle measurements. We have used 
single particle tracking methods to track the mobility of fluorescently labeled membrane 
receptors on murine bone marrow-derived macrophages. Total internal reflection 
fluorescence microscopy (TIRF) was used to visualize and capture the dynamics in live 
cells. Using a custom routine algorithm we detected, localized, and tracked the particles 
to calculate their diffusion coefficient, extracted from the mean-squared displacement as 
the most common measure of diffusion. We also measured the diffusion coefficient using 
an ensemble-based technique known as Raster Image Correlation Spectroscopy (RICS) 
with a confocal laser-scanning microscope. The use of confocal eliminates the out-of-
focus signal and enables measurements that are confined to a narrow plane in the cell. 
Also, the ability of RICS to separate the slow and immobile fractions of particles makes it 
possible to detect heterogeneities in diffusion. To our knowledge, this is the first study that 
has utilized both SPT and RICS to directly compare receptors’ diffusion in different 
membrane sections. Moreover, this is the first study that has examined the diffusion of 
receptors on macrophages adhered to different surface topographies, and the first that has 
investigated the receptors’ diffusion in young and old macrophages. 
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Chapter 1  
 

 

 

Introduction and Research Aims  
 

This chapter reviews both conventional and recently developed fluorescent-based 

microscopy techniques to study the dynamics of membrane components in live cells. In 

addition, it provides an introduction to macrophages and their plasma membrane 

receptors. Finally, the research questions addressed in the following chapters, and an 

overview of this thesis are introduced.  

The background information provided in this chapter (Section 1.1-1.3) is submitted 

for consideration as a book chapter and is currently under review for the book titled: 

“Handling, Measurement, and Visualization Tools for Single Cell Analysis”, Springer, 

editors: Joseph, M.K. Irudayaraj, and Jose M. Moran-Mirabal.  
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1.1 Biomembranes 

1.1.1 Membranes in Life 

The cell, the fundamental unit of life, is separated from its surrounding environment 

by a membrane envelope known as the plasma membrane; through this barrier it takes 

up nutrients and excretes waste to sustain the essential dynamics of cellular processes. The 

plasma membrane serves as a semi-permeable barrier between two aqueous 

environments, the cell interior (cytosol) and the extracellular environment, and has 

numerous other functions crucial to cellular homeostasis, such as maintaining specific pH 

and ionic conditions inside the cell, mediating transport into and out of the cell, or 

transducing signaling cascades triggered by binding events at the membrane [1]. The 

essential role of the plasma membrane is evident as membrane disruption and influx of 

extracellular materials into the cytosolic environment precedes cell death [1].  

Eukaryotic cells in particular, are highly compartmentalized and have different 

organelles in charge of specific functions. Each organelle is bound within a membrane, 

thus confining the specialized metabolic pathways related to each organelle. Biological 

membranes have a similar structure although they may have major differences in their 

composition, depending on which cell or organelle they originate from.  

 

1.1.2 Structure and Function of the Plasma Membrane  

The basic structure of the plasma membrane is that of a bilayer composed of a 

mixture of phospholipids, where the hydrophilic phosphate-linked head groups face the 

aqueous environment, and the hydrophobic hydrocarbon chains face the lumen of the 

bilayer (Figure 1.1). The membrane bilayer is in principle two molecules thick (~5 nm) 

and spans a continuous surface area of hundreds of square micrometers [2]. The first 

documented description of a bilayer arrangement for lipids in the plasma membrane 

dates back to 1925 when two Dutch physicians, Gorter and Grendel, isolated membrane 

lipids from red blood cells and compared the area occupied by a monolayer of these lipids 

spread on a Langmuir trough with the average surface area of red blood cells [3]. 

Erythrocytes lack internal membranes and consequently they are the easiest source of 

pure plasma membrane. The area from Gorter and Grendel’s lipid extract was found to 
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be twice the predicted value, leading to the conclusion that membranes are formed by 

lipid bilayers rather than monolayers [3].  

Our current understanding of the structure and dynamics of the plasma membrane is 

framed by the well-known “fluid mosaic” model proposed by Singer and Nicholson in 

1972 [4]. This model improved on the earlier “trilamellar” model of Danielli and 

Davson, proposed in 1935 [5], that described a plasma membrane with a central fluid 

layer of disordered lipid-like molecules sandwiched by a bilayer of ordered phospholipids. 

In the “fluid mosaic” model, there is no core layer and the lipid environment is described 

as fluid and homogenous, with proteins that are free to diffuse laterally within the plane of 

the membrane [4]. Subsequent studies showed that the plasma membrane is not 

homogenous and the diffusion of proteins is much slower than predicted by Singer and 

Nicholson. The “fluid mosaic” model was improved upon in 1988 by Meer and Simons 

[6], who proposed the “lipid raft” model in which groups of lipids arranged into 

cholesterol- and sphingolipid-rich areas create semisolid state domains, termed lipid rafts 

[7]. These rafts are formed transiently in the plasma membrane, and their nanoscale sizes 

are below the resolution of traditional optical techniques [7].  

The plasma membrane of eukaryotes consists of four major classes of phospholipids: 

phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. 

The distribution of these phospholipids in the two halves of the plasma membrane is 

asymmetrical (Figure 1.1). The outer leaflet mostly contains phosphatidylcholine and 

sphingomyelin, whereas phosphatidylethanolamine and phosphatidylserine are mainly 

found in the inner leaflet. Phosphatidylinositol is also present in the inner leaflet, but at 

lower abundance. The negatively charged head groups of phosphatidylserine and 

phosphatidylinositol in the inner leaflet result in a negative charge on the inner half of 

membrane which faces the cytosol (Figure 1.1) [8]. During the life of a cell the lipid 

distribution continuously changes as the cell undergoes different activation states [9]. The 

“flip-flop” of a phospholipid happens between the two halves of the membrane when the 

polar part of a phospholipid can pass through the hydrophobic interior of the membrane 

and flips over to the other leaflet [10]. This process is called transverse diffusion and is 

significantly slower than the lateral diffusion of lipids (Section 1.1.3). 
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Phospholipids are synthesized on the surface of the smooth endoplasmic reticulum 

and are rapidly distributed to the membranes throughout the cell [1]. Removal of 

membrane segments in processes such as endocytosis is balanced by fusion of vesicles that 

recover and replenish the lost membrane [1]. Any empty space or hole in the plasma 

membrane is occupied and sealed spontaneously by the neighboring lipids that associate 

with one another to maintain the energetically favored organization of the lipid bilayer. 

This enables the membrane to fuse immediately after vesicle formation, phagocytosis, and 

related processes [1]. An optimal surface pressure of ~30 mN.m-1 is maintained in the cell 

membrane by controling the lipid packing density [2]. Any compression and tension 

above the optimal packing of lipids that may excessively decrease or increase the lipid 

spacing is energetically unfavorable. This mechanism prevents rupture due to osmotic 

swelling and buckling due to compression, making the membrane a highly resilient 

structure to environmental stressors [2]. 

	
Figure 1.1 Major components of plasma membrane and their asymmetrical distribution; top 

layer facing the extracellular matrix, bottom layer facing the cytosol [2]. 	

 
In addition to phospholipids, the plasma membrane contains glycolipids and 

cholesterol. Glycolipids reside in the outer leaflet and constitute approximately 2% of 

lipids of most plasma membranes in eukaryotic cells [8]. Cholesterol, on the other hand, 

is found in abundance with molar concentrations comparable to those of phospholipids. 

It is a major constituent of animal cell membranes and is mostly present in the outer 
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leaflet. Cholesterol is from a family of organic compounds containing multiple fused 

carbon rings known as steroids, and is highly hydrophobic. It plays a pivotal role in the 

structure of plasma membrane, where it modulates its fluidity and permeability by 

controling the lateral mobility and the packing of fatty acid chains [8]. 

Integral and peripheral membrane proteins constitute approximately 50% of the 

cross-sectional area of the plasma membrane [2]. Integral proteins, also known as 

transmembrane proteins, span the full width of the phospholipid bilayer and contain 

domains that protrude from the membrane on both sides, reaching the aqueous 

environments. In contrast, peripheral membrane proteins lack hydrophobic domains and 

do not penetrate the bilayer. Instead, their polar regions interact with the polar heads of 

phospholipids or the protruding domains of integral proteins [1]. These proteins can be 

dissociated from the membrane using polar reagents, extreme pH or high salt 

concentrations that screen electrostatic interactions but do not disrupt the phospholipid 

bilayers, and are soluble in aqueous buffers [8]. The distribution of proteins in the inner 

and outer leaflets is also asymmetrical. Some types of proteins freely diffuse through the 

membrane, while others appear to be anchored to a specific region of the membrane. In 

addition to lipids and proteins, the plasma membrane of many cells contains 

carbohydrates that act as recognition sites for other cells and molecules. These 

carbohydrates are bound (covalently) to the protruding surface of lipids (glycolipids) and 

proteins (glycoproteins) [1]. 

All biological membranes, from different cells or organelles, have a similar structure 

although they may have major differences in their lipid composition. Phospholipids can 

greatly differ in their acyl chain length, degree of unsaturation (double bonds) in their acyl 

chain, and the polar head groups present. Additionally, cholesterol content (up to 25% of 

all lipid content) can vary between different biological membranes [1]. Despite these 

differences in composition, biological membranes share similar diffusive behavior.  

 

1.1.3 Diffusion — the “Dance” in the Plasma Membrane 

Membrane-residing species are highly mobile and have a heterogeneous distribution 

along and across the membrane bilayer. Although phospholipids and proteins do not 

move at an appreciable rate between the two halves of the bilayer, they experience 
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significant lateral diffusion along the plane of the plasma membrane. Frye and Edidin 

reported the first evidence of diffusion in the plasma membrane in 1970 [11], which 

provided support for the “fluid mosaic” model. They analyzed the distribution of 

membrane proteins on a human-mouse cell hybrid after fusing the two cells. 

Fluorescently labeled antibodies specific to proteins of human and mouse origin were 

used to distinguish the source of each protein. After incubation at 37°C, both protein 

types were completely intermixed over the cell surface, indicating that they diffused freely 

within the plasma membrane [11]. 

The diffusion rates of lipids and proteins in reconstituted artificial bilayers are 

typically higher than those observed in biological membranes of comparable lipid 

composition, often by more than an order of magnitude [12]. This discrepancy indicates 

that the diffusion of membrane proteins and lipids is not completely free in the plane of 

the bilayer. Diffusion is not only controled by physical barriers such as the cortical 

cytoskeleton [13,14] and membrane “crowding” with proteins [15], but also by 

electrostatic interactions between charged components [16] and the overall 

heterogeneous nature of membrane composition. These barriers to free diffusion can be 

classified into three main groups: physical obstacles, electrostatic interactions, and 

partitioning phenomena that preferentially retain or exclude certain membrane 

components [17]. In plasma membranes, these barriers are highly dynamic and 

constantly remodeled to allow or limit diffusion as required by the cell. Trimble et al. have 

comprehensively discussed the diffusion barriers in the plasma membrane and interested 

readers are referred to their review for a detailed description of these mechanisms [17].  

Cytoskeleton: The membrane-associated cortical cytoskeleton can alter not only the 

lateral diffusion of transmembrane proteins in the inner leaflet, but can also limit the 

mobility of outer leaflet lipid-anchored proteins [17–19]. The “picket fence” model [20] 

of the plasma membrane describes this type of diffusion barrier by the cytoskeleton-

anchored “fences” and tethered proteins to the actin mesh as “pickets” that create 

confinement zones or “corrals” in the membrane (Figure 1.2-A). These barriers are not 

permanent and are continuously rearranged as the cytoskeleton is remodeled. 

Membrane-membrane junctions: The areas where two separate membranes are in contact 

with each other can restrict the diffusion of proteins and lipids. This can be observed in 
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tight junctions and the sites of contact between membranes of organelles [6,21]. For 

instance, the endoplasmic reticulum generates contact with the plasma membrane and 

the membranes of other organelles, which in turn impacts the free diffusion of membrane 

proteins within each membrane (Figure 1.2-B) [22–24]. 

Extracellular matrix: Interactions of membrane components with the extracellular 

matrix (ECM) can also impede the lateral diffusion in the plasma membrane. This type of 

diffusion barrier is frequently reported for integrins that bind tightly to ECM proteins 

(Figure 1.2-C) [25].  

Protein clusters: Large and relatively immobile clusters of membrane proteins and lipids 

can block the passage of diffusing components (Figure 1.2-D). Molecular aggregates 

trapped in the corrals formed by the picket fences can act as slow moving islands and are 

obstacles to free diffusion of monomeric proteins or lipids.  

 

	
 
Figure 1.2 Illustration of physical barriers to the diffusion of membrane proteins and lipids. A) 
cortical actin cytoskeleton “fences” and transmembrane proteins (purple)  tethered to actin as 
“pickets” can inhibit diffusion; B) contact between plasma membrane and the membrane of 
endoplasmic reticulum (studded purple) can block the diffusion of proteins in either membranes; 
C) extracellular matrix components such as fiber meshes (yellow) can impede diffusion; D) large 
immobile clusters of proteins (purple) or lipids can block the passage of diffusing molecules. Green 
cylinders represent freely mobile transmembrane proteins while the purple ones in A, C, and D 
are relatively immobile [17]. 

	
In addition to physical barriers, electrostatic interactions can also impede free diffusion in 

the membrane. Proteins and lipids of like charges are repelled while opposite charges are 
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attracted [16] (Figure 1.3-A). The presence of a charged immobile protein can deflect or 

slow down the diffusion of mobile molecules. Moreover, hydrophobic interactions can result in 

partitioning of proteins into saturated lipid- or cholesterol-rich domains, known as “rafts”, 

which can hinder diffusion (Figure 1.3-B) Membrane sites with high curvature, such as the 

tip of a filopodia, can also alter the diffusion of proteins and lipids by changing the surface 

potential. The reduced packing of the convex surface in the outer leaflet can expose 

hydrophobic regions, while the inner leaflet is tightly packed [9] (Figure 1.3-C). In 

addition, hydrophobic mismatch in the membrane where the length of acyl chains is 

significantly different from the size of transmembrane proteins can restrict the diffusion of 

certain proteins into specific areas of the membrane (Figure 1.3-D) [9,17].  

 

	
	

Figure 1.3 Schematic illustration of mechanisms that can impede diffusion of membrane 
proteins and lipids. A) attraction (blue) and repulsion (green) of charged proteins, B) partitioning 
of proteins into saturated lipid- or cholesterol-rich (red) domains, C) sharp curvature in the 
membrane causes crowding in the inner leaflet and spacing in the outer layer that can alter 
diffusion, D) membrane sites with short acyl chains (blue) accommodate proteins with shorter 
transmembrane domains (pink) and exclude proteins that are longer. This hydrophobic mismatch 
can restrict access of proteins or lipids into certain areas [17].   

 
1. 2 Methods to Measure Diffusion 

1.2.1 Fluorescence Recovery After Photobleaching  

Fluorescence recovery after photobleaching (FRAP) is conventionally used as an 

ensemble method to measure the diffusion of lipids and proteins in biological and 
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biomimetic membranes. It is a perturbation-based technique that uses a brief intense 

excitation to irreversibly photobleach fluorophores in a designated small area. By 

monitoring the fluorescence recovery over time, the diffusion coefficient and the mobile 

fraction of the fluorescently tagged species can be determined. The recovery rate depends 

on both the diffusion of fluorescent molecules and potential binding and unbinding events 

within the region of interest (ROI). The constant turnover of proteins within a cell allows 

bleached fluorescent proteins to be replaced by newly recruited ones, leading to the 

recovery of fluorescence. FRAP measurements are only reliable for instances where the 

membrane does not exhibit dynamic protrusions and the cell does not undergo significant 

displacement over the length of the experiment. Moreover, the biological system under 

study should be at equilibrium before photobleaching.  

Two important parameters accessible by FRAP measurements are the mobile 

fraction and half-time of recovery. The mobile fraction (FM) is the proportion of bleached 

molecules that are replaced by their fluorescent counterparts during the recovery period. 

As a result, the mobile fraction can be calculated from the ratio of fluorescence intensity 

at the end of the time-lapse (𝐹!) and the initial intensity (𝐹!"#$#%&) before perturbation, 

corrected by the experimental bleaching (𝐹!). Freely diffusing proteins or lipids have 

typical mobile fractions of ~100%. If binding occurs or diffusion is hindered, the 

theoretical value of 100% recovery cannot be achieved in practice and the recovery 

reaches a plateau below this value by the end of the time frame of the experiment (Figure 

1.4-B). Recovery values > 100% are indicative of growth of the membrane under study 

or directed transport into the observation volume. The recovery rate depends on the size 

of the biological system under observation and the stability of the interactions with large 

or fixed proteins [26].  
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Figure 1.4 A) Schematic representation of a FRAP experiment on a focal adhesion of a cell, B) 
plot of fluorescent intensity as a function of time and the important parameters that can be used 
to calculate diffusion, C) FRAP experiment on a focal adhesion of NIH 3T3 cells transiently 
expressing vinculin-mEGFP. Dashed circles denote bleached areas at t = 0. Scale bar = 5 µm 
[27]. 
 
 

The half-time of recovery (t1/2) is defined as the time required for the fluorescence to 

reach half of its maximum recovery intensity and can be used to calculate the diffusion 

coefficient. The experimental data is first fitted using a simple exponential equation: 

𝐹! = 𝐹! 1−  𝑒!! ! .                                  (1.1) 

Substitution of 𝐹!  with ½FM results in the following expression for the half-time of 

recovery:   

𝑡!/! =
!"(!.!)
!!

 .                       (1.2) 

The mathematical model for fitting fluorescence recovery in a uniformly bleached 

circular area has been described by Soumpasis [28], and interested readers are referred to 
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the original manuscript for its complete derivation. For a circular bleached area with 

diffusion-dominated recovery, the change in fluorescence with respect to time is described 

by:   

𝐹 𝑡 = 𝐹 0 +  𝐶 exp − !!!
!

 𝐼! − !!!
!

+  𝐼! − !!!
!

 ,                    (1.3) 

where F(0) is the intensity immediately after bleaching pulse, C is the difference between 

the asymptotic value of the intensity at t = ∞  and F(0), 𝐼! and 𝐼! are modified Bessel 

functions, and 𝜏! is the characteristic diffusion time given by: 

𝜏! =
!!

!!
 ,                                                            (1.4) 

where D is the diffusion coefficient, and 𝜔 is the radius of the bleached area. A similar 

analysis can be performed for two populations of diffusing molecules with two different 

diffusion coefficients [29].  

FRAP has been utilized in various experiments on biological membranes for 

investigation of the diffusive behavior of proteins and lipids. A few examples of these 

studies include the lateral diffusion and exocytosis of membrane proteins in neurons [30] 

and diffusion of GFP-GPI expressed on the membrane of CHO-K1 [29]. Figure 1.4-C 

shows an example of a FRAP experiment on a focal adhesion plaque on NIH 3T3 

murine fibroblast transiently expressing the monomeric enhanced green fluorescence 

protein (mEGFP). The circles indicate the vinculin-mEGFP bleached ROI at the onset of 

bleaching. The images captured at 30 and 60 seconds show that full recovery is not 

achieved within 1 min [27].  

 

1.2.2 Fluorescence Correlation Spectroscopy  

1.2.2-1 Single-Point FCS 

Fluorescence Correlation Spectroscopy (FCS), also known as single-point FCS, 

measures diffusion by monitoring the fluctuations of fluorescence intensity that arise from 

labeled molecules within a fixed illumination volume. This technique measures the 

average duration of fluctuations at a very small point in space, typically corresponding to 

diffraction limited illumination in a two-dimensional plane. The recorded fluctuations can 
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be the result of blinking, changes in orientation or conformation of molecules, and 

translational diffusion in and out of the illumination volume. Single-point FCS provides 

high temporal resolution with data acquisition up to sub-nanosecond sampling from the 

molecular dynamics in a femtoliter volume [31]. However, minimizing the average 

number of molecules in the focal volume is essential so that the passage of molecules in 

and out of the volume creates large enough fluctuations in the intensity to be detectable. 

For a femtoliter observation volume a concentration of ∼10−10 M to ∼10−9 M molecules is 

typically used.  

The theory of FCS is based on Poisson statistics. For random discrete events, the 

number of fluorophores in the observation volume can be described by a Poisson 

distribution, 𝑃 𝑛,𝑁 = !!

!!
𝑒!!, where P (n, N) is the probability of having n fluorescent 

molecules present in the volume, knowing that N is the average number of molecules in 

the volume. The changes in the occupation number of the volume result in fluctuations in 

the fluorescence intensity. The rate of these changes depends on how fast the fluorescent 

molecules diffuse in and out of the volume, which can be determined from the amplitude 

and frequency distribution of the fluctuations. The fluorescence intensity at a given time F 

(t) is compared with the intensity at a slightly later time F (t+τ) for delay times τ (Figure 

1.5-A), typically in the range of 10-2 to 102 ms [31]. The same calculation for a range of 

delay times over the entire time sequence results in the autocorrelation function G (τ) 

(Figure 1.5-B), which contains information on the diffusion coefficient and the average 

number of fluorescent entities present in the observation volume. The derivation of the 

FCS autocorrelation function was originally described by Elson, Magde, and Webb [32], 

[33]. The normalized 2-dimensional autocorrelation function for the fluctuation of 

intensity signal is calculated by: 

𝐺 𝜏 = ! ! .! !!!
! ! ! = !" ! .!" !!!

! ! ! + 1,                                   (1.5) 
 
where 𝜏 is the time lag (delay time relative to earlier time points) and the fluorescence 

fluctuation is calculated from 𝛿𝐹 𝑡 = 𝐹 𝑡 − 𝐹(𝑡) . The angular brackets denote 

averaging intensities over the entire time sequence.  
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Figure 1.5 A) Fluorescence intensity fluctuations over time obtained from photon counts, the 
fluctuation at each time is correlated with the fluctuation at different time lags, B) Autocorrelation 
function G (τ) as a function of time lag is plotted for analysis of intensity fluctuations [34]. 
 

The change in the concentration of diffusing particles as a function of time in 3D is 

described by: 

𝐶 𝑟, 𝑡 =  !
(!!"#)!/!

 𝑒𝑥𝑝 − !!

!!"
 ,                                         (1.6) 

where C (r, t) is the concentration, which is proportional to the probability of finding a 

particle at position r at time t if the particle was at the origin r = 0 at time t = 0, 

propagating with diffusion coefficient D. If the concentration is sampled at one position 

such as in single-point FCS, the autocorrelation function of the fluorescence decays with a 

characteristic time that depends on the diffusion coefficient and the size of the 

illumination volume, as described by: 

𝐺 𝜏 =  𝐺 0 1 +  !
!!

!!
1 + !

0
!

! !
!!

!!/!
,                                    (1.7) 

where G (0) is the amplitude at τ = 0, the beam waist ω0 and half-length u refer to the 

axial distance at which an ellipsoid illumination profile decreases to e-2 of its maximum 

value. The translational motion is characterized by the diffusion coefficient, which can be 

calculated using the known beam waist and the average duration of the fluctuation τ 

according to: τD = ω0
2/4D �, where τD is determined by fitting the analytical autocorrelation 

function to the experimental curve.  

Using FCS it is possible to examine diffusion, chemical reactions, molecular 

rotations, conformational changes, blinking, fluorescence lifetime, and fluorescence 

resonance energy transfer [34]. Since the first FCS experiment by Magde, Elson, and 

Webb in 1972 on the binding of ethidium bromide to double-stranded DNA [32], FCS 

has been utilized in many membrane-related studies such as investigations of membrane 
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potential effect on IL-2 and IL-15 receptor mobility within the plasma membrane of T 

cells [35], diffusion of cell membrane proteins on primary lymphocytes [36], 

oligomerization of the poly(Q) proteins in COS-7 cells [37], and the molecular mobility of 

G protein-coupled receptors [38]. An important limitation of this technique is that it 

cannot provide information on the fluctuations that occur outside the illuminated spot. In 

addition, it provides limited information about processes that involve slower protein 

dynamics within large slowly moving structures, and simultaneous cell imaging cannot be 

performed [39].  

 
1.2.2-2 Fluorescence Cross-Correlation Spectroscopy 

Single-point FCS can be used to acquire and compare fluctuation data from more 

than one channel, a technique referred to as Fluorescence Cross-Correlation 

Spectroscopy  (FCCS). For two independent channels measuring fluorescence signals Fi 

and Fj, equation (1.5) can be modified to account for intensity fluctuations of the two 

channels according to:  

 
𝐺!" 𝜏 = !!! ! .!!! !!!

!! !  . !! !
 .                                                (1.8) 

 

As described in Figure 1.6, only fluctuations that occur simultaneously in both channels 

due to the passage of the complex (containing a fluorescent element for each of the 

channels) in the illumination volume contribute to the cross-correlation.  

 

Figure 1.6 A) and B) fluctuations in the fluorescence intensity recorded by two independent 
detectors for C) a sample that contains fluorophores emitting in two colors, some of them forming 
a complex. Cross-correlation is determined by simultaneous occurrence of fluctuations in both 
channels as a result of the passage of the complex in the illumination volume [34]. 
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FCCS has been applied in several investigations on the interactions of membrane 

components including diffusion properties of peptide-oligonucleotide complexes on the 

plasma membrane of PC12 cells [40], diffusion of membrane proteins and liposomes 

forming proteoliposomes [41], and interactions of B cell CLL/lymphoma 2 (BCL2) 

proteins with truncated BH3-interacting domain death agonist (tBID) on the 

mitochondrial membrane [42]. There are challenges associated with experiments using 

FCCS to evaluate membrane dynamics [43,44]. Long measurement times can lead to 

photobleaching of labeled molecules, and the membrane under study has to be stable 

with respect to the illumination volume to avoid distortions of the correlation curves. 

False positive cross-correlation can occur due to membrane movement, when fluctuations 

of two labeled molecules are correlated in the absence of any complex formation. These 

complications can be circumvented using scanning FCS, as described in the next section.  

 

1.2.2-3 Scanning FCS 

The major limitation of single-point FCS is that it contains only local information 

about fluctuations occurring inside the measured point. Consequently, scanning FCS was 

developed to add the missing spatial scale. In this method the illumination volume is 

moved in a periodic pattern (linear or circular) in the region of interest on the membrane 

with a scanning speed that allows capturing the molecules at almost the same point 

during successive scans. The intensity fluctuations recorded along the path can then 

provide spatial information about the dynamics. If molecules move away from their 

original location in a time frame comparable to the scanning period, then the intensity 

fluctuation for the initially recorded location decays between successive scans. The 

correlation of one point with the same point visited again in subsequent scans is called the 

carpet approach and its temporal resolution depends on the scanning period, which is 

typically on the order of a millisecond. In contrast, the correlation of adjacent points 

along the scanning path yields microsecond resolution and is called raster image 

correlation spectroscopy, described in Section 1.2.3-4.  

The FCS methods described in previous sections can be combined to develop a dual-

color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) [45] that 

incorporates the advantages of the three FCS modalities. The use of two spectral 
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excitation and detection channels for scanning two lines simultaneously makes this 

technique insensitive to slow movements of the sample [45]. In addition, photobleaching 

is minimized using the line scanning approach as the illumination volume does not dwell 

on each spot for a long time and only crosses the membrane briefly (~2 ms) [45]. 2c2f 

lsFCS has been applied to quantify ligand and receptor concentrations and diffusion 

coefficients within cell membrane [45]. In the plasma membrane of living HEK293T 

cells, the interactions of Dickkopf1 (Dkk1) and Dickkopf2 (Dkk2) glycoproteins with 

their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), have 

also been analyzed using 2c2f lsFCS. The autocorrelation and dual-focus cross-

correlation functions obtained from each of the red and green channels (Figure 1.7) 

were used to quantify the diffusion coefficient and concentration of the LRP6-mCherry 

receptor and Dkk1-GFP, respectively. The receptor’s diffusion coefficient was calculated 

to be 0.18 ± 0.06 μm2.s-1 with a concentration of 25 ± 12 μm-2 (i.e., area density in the 

membrane), while the receptor-ligand complex (GFP–LRP6-mCherry) was found to 

have a diffusion coefficient of 0.20 ± 0.02 μm2.s-1 with a concentration of 26 ± 5 μm-2 

in the membrane. This information from unbound and bound proteins can provide 

insight into the binding affinities of ligands and receptors. Moreover, performing this 

experiment on different regions of the plasma membrane can uncover the effect of 

ligand concentration gradients in binding events [45].  
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Figure 1.7 A) Autocorrelation and dual-focus cross-correlation functions and fluorescence image 
obtained from the red channel for the fusion protein of human LRP6 with mCherry (LRP6-
mCherry), the two line scan locations are marked by yellow arrows, B) autocorrelation and dual-
focus cross-correlation functions and fluorescence image obtained from the green channel for 
fusion proteins of human Dkk1 with GFP (Dkk1-GFP), C) dual-color cross-correlation and dual-
color dual-focus cross-correlation functions and dual-color image. Error bars indicate standard 
deviations from multiple data sets. Scale bar = 15 μm [45].  
 

1.2.3 Image Correlation Spectroscopy 

1.2.3-1 Spatial Image Correlation Spectroscopy  

Image correlation spectroscopy (ICS), originally described by Petersen et al. in 1993, 

is the imaging analog of scanning FCS, which can measure the size and number of 

protein aggregates and the oligomerization states in the plasma membrane [46–48]. In 

contrast to FCS, ICS is based on fluctuations of fluorescence as a function of space across 
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an image. Over the past two decades, the original ICS method has been further extended 

to include both the spatial and temporal domains as well as the analysis in k-space and 

time [49]. This section introduces ICS and the mathematical image processing methods 

that have been derived from the original implementation, which all serve as 

complementary tools to analyze changes in the distribution of cluster size and density, as 

well as diffusion and flow of molecules within biological membranes.  

All ICS-based techniques use information of the intensity fluctuations recorded in the 

pixels of fluorescent images. A correlation function is first calculated from the fluorescent 

image series with intensities recorded as a function of space and time i (x, y, t). The 

correlation function is then fit to an analytical model to extract the parameters of interest. 

Most ICS-based methods can be described by the generalized spatio-temporal correlation 

function provided by equation (1.9) [47]. The equations introduced in the following 

sections are derivations of the original function described by:   

 

𝑟!" 𝜉, 𝜂, 𝜏 = !"!(!,!,!)!"!(!!!,!!!,!!!)
!!(!,!,!) ! !!(!,!,!!!) !!!

 ,                             (1.9) 

 

where i (x, y, t) is the intensity at pixel (x, y) in the image recorded at time t. The 

fluorescence intensity fluctuation 𝛿𝑖 𝑥,𝑦, 𝑡  is calculated as: 

𝛿𝑖 𝑥,𝑦, 𝑡 = 𝑖 𝑥,𝑦, 𝑡 − 𝑖(𝑥,𝑦, 𝑡) ! ,                                 (1.10) 

where 𝑖(𝑥,𝑦, 𝑡) ! is the average intensity of the image at time t. The variables 𝜉 and 𝜂 

represent spatial increments in the x and y directions, respectively, and 𝜏 is the time lag. 

The subscripts a and b refer to two different emission wavelength detections. For the 

autocorrelation of a single detection channel, a = b; and therefore, the subscripts can be 

omitted.  

The variance of the signal fluctuation is equal to the value of the correlation function 

at its zero-lag amplitude according to:  

lim!→!,   !→!,   !→! 𝑟 𝜉, 𝜂, 𝜏 = (! !,!,! ! !(!,!,!) !)!

!(!,!,!) !
! = (!")!

! !
= !

!!
 ,              (1.11) 

where 𝑛!  indicates the independent fluorescent particles per beam area that can be 

converted to cluster density (CD) by: 
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𝐶𝐷 = !!
!!!!

  ,                                                         (1.12) 

where 𝜔! is the radius of the point spread function (PSF). If the beam radius is known 

(through calibration measurements), it is possible to calculate the beam area and hence 

the surface density of fluorescent molecules from the zero-lag autocorrelation amplitude. 

Given that the average intensity of an image is proportional to the number of 

fluorophores present in the beam area, the degree of aggregation (DA) is defined as the 

ratio of the average intensity 𝑖  and CD: 

 𝐷𝐴 = !
!"
= 𝑐 !!

!!
 ,                                                 (1.13) 

where c is a proportionality constant that depends on the spectral characteristics of the 

fluorophore and the efficiency of the imaging system to collect light. DA can be also 

calculated as a function of time for an image series to measure changes in the aggregation 

state of proteins.  

In the original implementation of ICS, a spatial autocorrelation function is calculated 

from an image or ROI by correlating it with itself as a function of pixel shifts in the x and 

y directions (Figure 1.8-A). Therefore, the normalized spatial autocorrelation function for 

the intensity fluctuation of an image in a series, recorded at time t with no time lag (𝜏 = 

0), is defined by: 

𝑟 𝜉, 𝜂, 0 ! =
!"(!,!,!)!"(!!!,!!!,!)

!(!,!,!) !
!  ,                                         (1.14) 

 

where the angular brackets denote spatial averaging over the entire image. The two 

dimensional spatial correlation can be computed efficiently using fast Fourier transform 

methods, and interested readers are referred to the original paper for full derivation of the 

relevant equations [47]. The average size and distribution of plasma membrane protein 

aggregates that are larger or comparable in size to the PSF can be determined by the 

spatial correlation operation applied to the intensity values of pixels in the image (Figure 

1.8-B).  
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Figure 1.8 A) Schematic representation of the spatial correlation operation for an image shifted 
by Dx and Dy. The intensity at each pixel in the original frame is multiplied by the intensity of the 
displaced frame, and the summation of all products are calculated and divided by the squared 
average intensity. This value is assigned to pixel (1, 0) in the correlation image. Repeating this 
process for all possible displacements in x and y direction will generate the spatial correlation 
which is 50% of the size of the original image. B) The spatial correlation for smaller image 
features will be smaller compared to large particles or aggregates [34].  
 

ICS has been used to study the aggregation of several membrane receptors including 

the platelet-derived growth factor β2 receptors on the membrane of fibroblasts [47,50], as 

well as the distribution of clathrin associated adaptor protein (AP-2) involved in 

endocytosis on the plasma membrane [51]. In addition, image cross-correlation 

spectroscopy (ICCS) [47,52] has been developed using dual-color fluorescence 

microscopy to investigate co-localization of two different molecules such as the 

distribution of α–actinin and α5-integrin on Chinese hamster ovary (CHO) cells [53]. In 

ICCS the spatial or temporal intensity fluctuations from two different fluorescent 

molecules are analyzed by computing the cross-correlation function between two images. 

A non-zero spatial cross-correlation function indicates that the proteins reside in the same 
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complex, while a non-zero temporal cross-correlation indicates a moving complex. The 

concept of temporal image correlation spectroscopy is explained in Section 1.2.3-2.  

The accuracy and precision of ICS measurements depend on the number of 

sampling points and the background noise [54]. In general, analyzing larger and more 

homogenous ROIs in a sample results in more accurate correlations. Although ICS can 

be performed on regions as small as 16 × 16 px2 (~1.5 μm2, PSF of ~5 pixels), larger 

ROIs are recommended for reliable statistics [54]. Discontinuities in the fluorescence 

intensity, such as the edge of a cell, should be minimized as they can introduce significant 

perturbations in the correlation function. Furthermore, an unbiased estimate of the 

number density can be achieved only if the correct amount of background intensity is 

subtracted from images, both for single measurements [54] and population averages  

[47].  

 
1.2.3-2 Temporal Image Correlation Spectroscopy  

Spatial ICS can provide a measure of density and aggregation state of 

macromolecules in biological membranes; however, information on the dynamics of 

molecules cannot be extracted. Temporal image correlation spectroscopy (TICS) 

correlates the intensity fluctuations in time through the image series to measure the 

dynamics. This is the same concept as the carpet approach in scanning FCS, described in 

Section 1.2.2-3. In TICS, the intensity of each pixel is correlated in time with the 

intensity of the same pixel coordinate in the next frame to analyze the changes in intensity 

at each pixel (Figure 1.9). The rate of decay of the correlation function reflects the 

average decay time of the fluctuations as fluorescent entities move in and out of the area 

defined by the beam focus.  
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Figure 1.9 A) Spatial correlation of a dataset with itself (autocorrelation) at a given time t results 
in perfect correlation, whereas shifting the image relative to the reference image by ξ and η results 
in a spatial correlation, B) temporal correlation of a series of images, by correlating the same pixel 
coordinate through multiple images [55].  
 

The normalized intensity fluctuation temporal autocorrelation function of an image 

series can be obtained from the original equation (1.9), with no shift in space (𝜉=0, 𝜂=0): 

𝑟 0, 0, 𝜏 = !"(!,!,!)!"(!,!,!!!)
!(!,!,!) ! !(!,!,!!!) !!!

  ,                                    (1.15) 

 
where the time lag 𝜏 is determined from the interval between consecutive frames. This 

function is computed using fast Fourier transform methods [47]. A discrete 

approximation of the temporal autocorrelation function for an image series can be 

obtained from: 

 

𝑟 0, 0, 𝑠 = !
!!!

!
!"

!!!
!!!

!" !,!,! !" !,!,!!!
! !,!,! ! ! !,!,!!! !!!

!
!!!

!
!!!   ,                      (1.16) 

 
where X and Y are the number of pixels in the x and y direction of the image frame, 

respectively. N is the total number of frames in the image series, s is the discrete analog of 

𝜏, and c is a dummy variable. The calculated temporal correlation function is then fit to 

the analytical decay model derived for the sample. Three parameters can be determined 

from a time correlation function: amplitude, which is inversely proportional to the number 

of particles; shape of decay, which describes the mode of transport (i.e., diffusion or flow); 

and rate of decay, which determines how fast the dynamic process is occurring.  
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For samples with 2D diffusion, the diffusion coefficient D can be calculated from:  

𝐷 = !!
!!!

  ,                                                          (1.17) 

where 𝜔!  is the mean radius of the excitation beam and 𝜏! is the characteristic diffusion 

time.  

Similarly, the characteristic flow time 𝜏! from the correlation decay model of a sample 

with 2D flow can be used to measure the flow speed |v| according to:  

|𝑣| = !!
!!

  ,                                                       (1.18) 

TICS has been applied to several studies on membrane dynamics, such as the 

analysis of protein flow in the peripheral basal membrane of CHO cell expressing EGFP-

labeled 𝛼-actinin [56], the lateral mobility of GFP-α5 integrin adhesion receptors on the 

basal membrane of CHO fibroblasts [52], and interactions of α–actinin and α5-integrin 

on CHO as part of the formation and disassembly of adhesion complexes during cell 

migration [53]. Cross-correlation has been applied to measure translational diffusion of 

transferrin receptors in the membrane of 3T3 fibroblasts and HEp2 carcinoma cells [57].   

TICS can resolve multiple populations undergoing diffusion and flow simultaneously, 

as well as to detect the fraction of particles that are immobile; however, the ability to 

extract multiple populations is limited by a number of factors including the relative 

concentrations and quantum yields of the different fluorescent species [58]. TICS is better 

suited for the study of slow moving proteins in membranes, as the characteristic 

fluctuation time must be longer than the frame rate. In other words, to correlate the 

intensities of the same molecule in two subsequent frames, the fluorophores captured 

within a focal area must be scanned in almost the same position in the next frame. Using 

standard imaging rates ~0.1-30 Hz, TICS can measure the diffusion of membrane 

proteins but is incapable of capturing the faster diffusion of lipid molecules or cytoplasmic 

components [52]. In Section 1.2.3-4, we will describe Raster Image Correlation 

Spectroscopy (RICS), a related technique that can be used to measure faster transport 

processes.  
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1.2.3-3 Spatio-temporal Image Correlation Spectroscopy  

As discussed in the previous section, TICS can measure diffusion and flow speed of 

moving particles; however, the velocity (i.e., the magnitude and direction of flow) cannot 

be determined from temporal correlations. The spatio-temporal image correlation 

spectroscopy (STICS) is an extension of TICS, which does not separate the spatial 

fluctuation correlation from the temporal one for the analysis of flow direction [56]. The 

STICS correlation function can be derived from the original ICS equation (1.9), and is 

described by: 

 

𝑟 𝜉, 𝜂, 𝜏 = !"(!,!,!)!"(!!!,!!!,!!!)
! ! ! !!!

  ,                                (1.19) 

 

where 𝜉 and 𝜂 represent spatial shifts in the x and y directions, respectively, and 𝜏 is the 

time lag. The angular brackets in the denominator denote averaging intensity over 

images at time 𝑡 and 𝑡 + 𝜏 in the time series, while the numerator is an average over all 

pixel fluctuations in pairs of images separated by 𝜏. 

The spatial correlation at zero-time lag yields a correlation function centered at the 

origin. As τ increases, for fluorescent molecules undergoing diffusion or flow, the peak will 

change shape or position from the center. For a diffusion process, in the absence of flow, 

the peak remains at the center while its width increases, whereas in the presence of flow 

the correlation function moves from the zero-lag center as a function of time lag (Figure 

1.10-A). The velocity of the flow can then be determined by monitoring the center of the 

2D average spatial correlations for every time lag. The x and y components of the velocity 

vector can be obtained from linear regression of the x and y coordinates of the peak 

location of the spatial correlation as a function of time (Figure 1.10-C).  
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Figure 1.10 A) STICS analysis of protein flow in the peripheral basal membrane of CHO cell 
expressing EGFP-labeled 𝛼-actinin. The space-time correlation functions as a function of time i) 
with and ii) without removal of the immobile population show the flow direction is visible after 
filtering the immobile fraction. B) TICS analysis best fit yields two population model of 
flow/diffusion with vICS = (7.7 ± 0.8) ×10-3 μm/s and D = (6 ± 1) ×10-5  μm2/s. C) linear 
regression of the x and y Gaussian center positions as a function of time lag yields the velocity 
vector components vx = (1.8 ± 0.3) ×10-3 μm/s and vy = (5.5 ± 0.2) ×10-3 μm/s, respectively [56].  

 

STICS has been used to extract diffusion parameters of GFP-tagged transmembrane 

transferrin receptor that is transiently confined by the cytoskeleton [59], and to analyze 

protein flow in the peripheral basal membrane of CHO cell expressing EGFP-labeled 𝛼-

actinin (Figure 1.10) [56]. In the STICS approach, it is necessary to remove the immobile 

fraction of particles prior to performing the analysis for flow, as they interfere with the 

accurate tracking of the spatial correlation peak (Figure 1.10-A). The immobile 

population is usually eliminated by subtracting the mean of the image series from each 

image. Using Fourier transform to filter the zero-frequency components in time can 

efficiently remove the contribution of immobile populations and makes detection of flow 

possible, even in the presence of a large fraction (>90%) of immobile species [56].  
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1.2.3-4 Raster Image Correlation Spectroscopy  

Raster Image Correlation Spectroscopy (RICS) measures the fluctuations in the 

intensity –caused by the movement of fluorescent molecules– at the pixel level in an 

image and makes use of this data to calculate diffusion coefficients [60]. By measuring the 

intensity at one pixel for a very brief period of time followed by measuring the intensity of 

adjacent pixels immediately after, there will be a correlation in the intensity fluctuations 

between these pixels with a certain time delay as a fluorescent molecule moves to its 

neighboring pixels [60]. The spatial correlation depends on the rate of diffusion, the pixel 

dwell time, and the size of pixels. For immobile particles, the fluctuations do not extend to 

the neighboring pixels and the correlation shows a distribution that is different to that of 

mobile particles. Similarly, slow and fast diffusing particles can be distinguished by their 

spatial correlations. This concept is demonstrated in Figure 1.11. Since confocal laser-

scanning microscopy (CLSM) is used for RICS, adjacent pixels along the line of scan 

(horizontal) are a few to several hundred microseconds apart (pixel dwell time), while 

pixels over successive lines (vertical) are typically a few milliseconds apart (line scan time 

dependent on the number of pixels), as shown in Figure 1.11. Therefore, there is an 

inherent time structure in each acquired frame and the intensities of pixels contained in 

one frame can be correlated to determine the characteristic correlation decay times 

corresponding to various dynamic processes, such as diffusion or binding of fluorescent 

particles. A series of 50-100 frames that are seconds to minutes apart are usually captured 

with no delay between frames. The stack of images not only provides more reliable 

statistics but also is useful for correction of photobleaching effects and separating the 

immobile fraction for RICS analysis.  
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Figure 1.11 A) Schematic representation of raster scanning of an image frame with a laser beam 
moving pixel by pixel and line by line until the full frame is captured, B) emissions from a fast 
diffusive molecule that is moving in the direction of the laser scan is captured in neighboring 
pixels, C) the intensity gradient seen in adjacent pixels where the fast diffusing fluorescent 
molecule was captured, D) spatial correlation in the x and y direction for fast diffusive molecules, 
E) the intensity gradient does not extend further along the line of scan for slow diffusion, F) 
emissions from a slow molecule that is moving in the direction of the laser scan is captured only in 
a few neighboring pixels in the x direction, but also in the y direction, G) spatial correlation in the 
x and y direction for slow molecules [61].  
 

The RICS theory has been previously described in detail by Digman et al. [39,60,62]. 

Here, we only briefly reiterate the principles of RICS. The scanning function that relates 

time with space, i.e., the spatio-temporal correlation rather than the simple temporal 

correlations of conventional FCS, is defined as:   

𝜏(𝜉,𝜓) = 𝜏!𝜉 +  𝜏!𝜓  ,                                             (1.20) 

where 𝜏! and 𝜏! denote pixel dwell time and line time of scan, respectively. The 𝜉 and 𝜓 

variables are the spatial displacements (in pixels) in the horizontal and vertical direction of 

scan in the image, respectively. The normalized spatial autocorrelation function for the 

fluorescence intensity fluctuation is defined as:  

𝐺! 𝜉,𝜓 = !!" !,! !" !!!,!!! !!,!
!! !,! !!,!!

= 𝐺 𝜉,𝜓 𝑆 𝜉,𝜓   ,                   (1.21) 

where I (x, y) is the detected fluorescence intensity at each pixel and  𝛿𝐼 𝑥,𝑦 = 𝐼 𝑥,𝑦 −

 < 𝐼 𝑥,𝑦 >!,! is the fluorescene intensity fluctuations around the mean intensity. Using 

the characteristic diffusion correlation time τD = 𝜔!! /4𝐷the autocorrelation function for 

3D diffusion is:  
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𝐺 𝜉,𝜓 =  !
!

 1+  !!(!!!!!!!)
!!!

!!
1+  !!(!!!!!!!)

!!!

!!/!
.                 (1.22) 

 

For 2D diffusion, the last factor in the above equation is omitted. In this function, D is the 

diffusion coefficient, N is the average number of molecules in the illumination volume, 

and 𝜔! and 𝜔! are the lateral and axial waists of the laser beam at the point of focus. The 

geometric factor γ accounts for the non-uniform illumination of the excitation volume 

and is equal to 0.3535 for a 3D and 0.5 for a 2D Gaussian point spread function [63].  

𝐺 𝜉,𝜓  is the autocorrelation function as a result of molecular diffusion only. Since 

the PSF spans over several pixels in the imaging plane, the correlation for the 

contribution of the scan itself should be also taken into account, as shown in equation 

(1.21). For square pixels with dimension δr × δr the correlation for the scan is given by:  

 

𝑆 𝜉,𝜓 = exp
!"#
!!

!
! !"#

!!

!

!! 
!!(!!!!!!!)

!!
!

  .                                      (1.23) 

The original RICS approach was based on 2-photon excitation and photon counting 

to measure diffusion in 3D [39,62]. Nowadays, commercial CLSM with one-photon 

excitation and analog detection provides an efficient way to measure molecular diffusion 

in 3D and in 2D [64,65]. The reduction of out-of-focus signal using CLSM enables 

measurements that are confined to a narrow plane in the cell. In addition, the ability of 

RICS to separate the slow and immobile fractions makes it possible to detect 

heterogeneities in diffusion [39,62,65]. Figure 1.12 illustrates an example of a diffusion 

map obtained from RICS for the fluorescent lipid analog DiI-C18(5) (1,1′-dioctadecyl-

3,3,3′,3′-tetramethyl-indodicarbocyanine perchlorate) in the plasma membrane of 

oligodendrocytes, i.e., the myelin-producing cells of the central nervous system [66]. The 

diffusion map provided by RICS analysis of 32 × 32 pixel ROIs reveals that the diffusion 

of DiI-C18(5) varies from 0.4 μm2 s−1 (dark blue) to 26.5 μm2 s−1 (red) in different areas of 

membrane [66]. 
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Figure 1.12 A) Raster-scan image (512 × 512 pixels) of a primary oligodendrocyte labeled with 
DiI- C18(5) with the grid pattern showing the sub-regions (32 × 32 pixels) for RICS analysis, B) 
diffusion map of DiI-C18(5) in the plasma membrane obtained from RICS analysis of 100 frames, 
encompassing a range from 0.4 μm2 s−1 (dark blue) to 26.5 μm2 s−1  (red) due to heterogeneity in 
diffusion. Pixel size of 54.9 nm and pixel dwell time of 1.6 μs was used for 100 frames [66].  

 

RICS is also frequently utilized to measure the diffusion coefficient of proteins in live 

cells [62,65,67-69]. Figure 1.13 shows an example of a diffusion measurement of the 

adhesion protein Paxillin-EGFP in CHOK1 cells, which is seen as bright finger-like 

structures [62]. The RICS measurement was performed on the cytosol area where the 

protein is soluble, yielding a diffusion coefficient of 8.3 μm2 s−1 using a pixel dwell time of 

8 μs and pixel size of 0.09 μm. The 2D and 3D autocorrelation functions are shown in 

Figure 1.13-D and 1.13-E, respectively. Figure 1.13-D was obtained after removing the 

immobile fraction (see also Figure 1.13-C). The immobile features yield a dominant 

correlation pattern in which the fast diffusing particles are difficult to detect. 

Therefore, filtering out the immobile or slowly moving particles is key to achieving 

reliable statistics. Figure 1.13-E shows the 3D autocorrelation function 𝐺 𝜉,𝜓  and the 

residuals after fitting the experimental data [62].  
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Figure 1.13 A) CHOK1 cell expressing paxillin-EGFP, B) 64 × 64 ROI in the cytosolic part free 
of focal adhesion structures, C) 2D spatial autocorrelation before subtraction of immobile 
structures, D) 2D spatial autocorrelation after subtraction of immobile structures, E) fit of the 
spatial correlation function in D [62]. 

 
In addition to measuring diffusion, RICS can also be used to distinguish binding and 

unbinding processes by analyzing changes in the diffusion coefficients [68]. Moreover, 

interactions between biomolecules can be detected through correlation of intensity 

fluctuations measured simultaneously in two channels. This technique is known as cross-

correlation raster image spectroscopy and is based on fluctuations occurring concurrently 

in two separate channels [67]. Furthermore, raster-scan image data can be analyzed using 

statistical methods such as number and brightness [70] to further uncover the aggregation 

state of molecules. All these features make RICS a versatile technique for measuring fast 

as well as slower dynamic processes in biological membranes using standard CLSM. 

 
1.2.3-5 Arbitrary-Region Raster Image Correlation Spectroscopy  

The traditional algorithm used in RICS analysis only accepts n × n ROIs, where n is 

the number of pixels (typically > 64). However, the complex shape of many cells and the 

small size of organelles make it difficult to perform the analysis with square ROIs. While 

decreasing n ameliorates this problem [66,71], it leads to poor statistics and inaccurate 
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spatial correlation of the sample. The recently developed arbitrary-region raster image 

correlation spectroscopy (ARICS) is an adapted version of ICS that can use ROIs of any 

shape. Instead of using the classically defined ROI in the shape of a square or rectangle, it 

uses algorithms for manually drawing an arbitrary ROI. This is particularly useful for 

masking unwanted regions such as background and areas that are not related to the 

experiment (e.g., the nucleus). Figure 1.14 compares the conventional and arbitrary ROI 

approach [72]. For the cell image in Figure 1.14-A, the normal ROI encompasses the full 

image including the whole cell and its extracellular region (Figure 1.14-B). In contrast, the 

arbitrary ROI mask (Figure 1.14-D) generated by intensity thresholds highlights the 

cytosol of the cell and excludes its nucleus and surrounding environment. Figures 1.14-C 

and E show that there are significant differences in the spatial autocorrelation obtained 

from the two methods [72].  

 

 
 

Figure 1.14 A) Schematic image of a cell exhibiting fluorescence intensity in the cytosol, B) 
conventional square ROI encompassing the entire image including the cell and its surrounding 
environment, C) spatial autocorrelation of the square ROI, D) binary image generated from 
arbitrary ROI mask by applying an intensity threshold to include only the cytosolic region of cell, 
E) spatial autocorrelation of the cytosolic region [72].  
 

The ARICS region-specific analysis has been used to measure the diffusion behavior 

in HeLa cells co-expressing cytosolic Venus fluorescent protein and membrane-targeted 
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MyrPalm-YFP (Figure 1.15) [72]. The cytosol and the membrane were analyzed 

separately using ARICS and the spatial autocorrelation function was obtained for each 

region in the cell, yielding diffusion coefficients of D = 0.3 ± 0.1 μm2 s−1 and D = 30 ± 7 

μm2 s−1 in the membrane and cytosol, respectively [72].        

ARICS’s applications are not limited to those mentioned above. For example, 

heterogeneities within the sample, such as aggregates that are too bright or dim, or 

organelles diffusing through the image that are considered to be artifacts in the series of 

frames, can be easily detected and removed to make RICS measurements much more 

reliable. This can be achieved by adding a predetermined threshold (acceptable range for 

pixel intensity, maximum fluctuation from the average intensity, etc.). The principles of 

ARICS can also be applied to cross-correlation analysis of two or more channels as well 

as other fluctuation-based methods such as ICS and STICS that analyze spatial 

fluctuations [72]. 

 

 
 
Figure 1.15 A) Image frame (from series of 100 frames) captured from a HeLa cell coexpressing 
cytosolic Venus fluorescent protein and membrane-targeted MyrPalm-YFP. Scale bar = 1 μm. B) 
Intensity distribution histogram of all pixels in the frame (black) and arbitrary ROI with two 
intensity thresholds to separate the photon counts for membrane (green) and cytosol (red), C) 
Membrane (top) and cytosol (bottom) regions are selected after image processing original frames 
using intensity thresholds, D) Region-specific spatial autocorrelation function for membrane (top) 
and cytosol (bottom), E) Residuals of the fit to the average autocorrelation functions are shown 
with color codes [72].   
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1.2.3-6 Stimulated Emission Depletion-FCS/RICS  

FCS and RICS techniques require fluorophore concentrations in the nanomolar 

range so that the amplitudes of fluorescence fluctuations are sufficiently large to be 

detected; however, these concentrations are too dilute to observe most biological 

processes. Thus, in spite of the very small fL observation volumes created by confocal 

microscopes, the number of molecules under observation in most biological studies 

exceeds the optimum concentration, making the use of these techniques challenging. The 

use of stimulated emission depletion (STED) in combination with FCS [73,74] or RICS 

[75] can decrease the observation volume significantly so that 10-100 times higher 

fluorophore concentrations can be measured. Moreover, the higher spatial resolution of 

STED-FCS and STED-RICS enables the study of smaller subcellular regions.  

Using STED in a confocal setup, the specimen is illuminated by the excitation beam 

overlaid with a second, red-shifted depletion beam inducing stimulated emission of 

electronically excited fluorophores (Figure 1.16-A). Appropriate phase modulation of the 

depletion beam creates a zero node region in the center of the focal volume where 

fluorophores emit fluorescence and their emission is captured by the detector. In contrast, 

the fluorophores outside the zero node are exposed to the STED beam and are 

transferred back to their ground state (non-fluorescent) by means of stimulated emission. 

The size of the observation volume can be adjusted by the intensity of the STED beam. 

Increasing the STED power decreases the observation volume and as a result larger 

fluctuations and correlation amplitudes can be generated (Figure 1.16-B, D). The lateral 

size of the non-depleted region, the effective observation area, with diameter 𝑑!"#$ is 

determined by:  

 
𝑑!"#$ =  !

!!!!!"#$!!

  ,                                               (1.24) 

 
where d is the diameter of the diffraction-limited excitation spot, A is a geometrical 

parameter that takes into account the shape of the STED laser beam, 𝐼!"#$ is the 

STED laser intensity, and the 𝐼! is the saturation intensity which depends on the 

depletion efficiency of the fluorescent label used. Theoretically, the spatial resolution 

can be enhanced without limit; however, in practice a lateral resolution of 20-50 nm 
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has been achieved for studies on cells [76], which is due to photophysical limitations of 

the fluorophores.  

 

 
 
Figure 1.16 A) FCS measurement (left) compared with STED-FCS (right) with a significantly 
decreased observation volume, B) the amplitude of the autocorrelation function increases as 
the STED power increases, C) RICS measurement (left) compared with STED-RICS (right) 
with a significantly decreased observation volume, D) RICS spatial correlation function with 
autocorrelation amplitude increasing as a result of higher STED power [75].  
 

A comparison of STED-RICS and conventional RICS is shown in Figure 1.17 for 

three different biological samples [75]. Figure 1.17-A is the overview of an RBL-2H3 

mast cell with its FcεRI receptors bound to IgE labeled with Atto647N in the plasma 

membrane. The region in the white rectangle is displayed as a close-up STED image 

and a regular confocal image, showing that the bound complex is not homogeneously 

distributed in the membrane. STED-RICS and RICS correlation functions are shown 

for comparison in Figure 1.17-B and 1.17-C showing that the RICS analysis could not 

be performed. In the second sample, the focal adhesions, β1-integrin, of Xenopus 

laevis tissue culture (XTC) cells are immunostained with the monoclonal antibody 8C8 

labeled with Atto647N. STED-RICS resulted in a slow diffusion coefficient of 

0.08±0.04 μm2 s−1 (24°C) which is evident in the wider G (ξ, ψ) along the ψ axis (Figure 

1.17-E). In contrast, G (ξ, ψ) obtained from the confocal RICS is not suitable for 

quantitative analysis (Figure 1.17-F). In the third sample shown in Figure 1.17-G the 
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STED-RICS measurements yield a faster diffusion coefficient of D=1.6±0.4 μm2 s−1 

(24°C) for Atto647N-DPPE-BSA complex in the plasma membrane of XTC cells. In 

contrast, the confocal RICS failed to analyze this region due to high concentration of 

fluorescent markers and the small size of the region of interest. These examples 

demonstrate that the higher spatial resolution of STED-RICS enables dynamic 

measurements in smaller regions of the membrane that would otherwise remain 

uncovered by RICS analysis.  

 

 
 
Figure 1.17 A) Fluorescence image (overview) of an RBL-2H3 mast cell with its plasma 
membrane FcεRI receptors bound to Atto647N-labeled IgE (red channel) and the close-up in 
STED and confocal modes, B) STED-RICS and C) RICS correlation functions from the small 
ROI (62 × 62 pixels) marked by a white square. FcεRI diffusion D = 0.5 ± 0.2 μm2 s−1 (37°C) 
was obtained using STED intensity of 200 mW, pixel size of 16 nm, and dwell time of 10 μs, 
D) fluorescence image (overview) of a Xenopus laevis tissue culture (XTC) cell immunostained 
with monoclonal anti-β1-integrin IgG 8C8 labeled with Atto647N (red channel), E) STED-
RICS and F) RICS correlation functions from the small ROI (38 × 38 pixels) marked by a 
white square. Slower diffusion D = 0.08 ± 0.04 μm2 s−1 (24°C) was obtained for β1-integrin 
using a STED intensity of 100 mW, pixel size of 16 nm, and dwell time of 20 μs. G) 
fluorescence image (overview) of an XTC cell labeled with Atto647N-DPPE-BSA (red 
channel), H) STED-RICS and I) RICS correlation functions from the small ROI (50 × 50 
pixels) marked by a white square. Faster diffusion D = 1.6 ± 0.4 μm2 s−1 (24°C) was obtained 
using a STED intensity of 200 mW, pixel size of 10 nm, and dwell time of 10 μs. Scale bars: 
10 μm (overview) and 2 μm (close-ups) [75]. 
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The correlation analysis in STED-RICS is similar to the RICS approach 

explained in Section 1.2.3-4. The autocorrelation function G (ξ, ψ) is calculated and the 

data is fit with the equation: 

 
𝐺 𝜉,𝜓 = !

!
 𝐺! 𝜉,𝜓  𝐺! 𝜉,𝜓 𝐺! 𝜉,𝜓  ,                             (1.25) 

 
where, N is the average number of particles in the observation volume and γ=0.35 is a 

correction factor for 3D Gaussian intensity profile for the non-uniform illumination of 

the excitation volume [62]. The term GD (ξ, ψ) accounts for free 2D diffusion and is 

determined by: 

 𝐺! 𝜉,𝜓 =  1+  (!!!!!!!)
!!

!!
,                                   (1.26) 

 
where τp and τ1 are the pixel dwell time and line time, and 𝜉 and 𝜓 are the spatial 

displacements (in pixels) in the horizontal and vertical direction of scan, respectively, by 

which the correlations are computed. τD denotes the average transit time of particles as a 

result of diffusion. Knowing τD and the width of the observation volume ω0, the 

diffusion coefficient D can be calculated from τD= ω02/4D. 

The scanning term GS (ξ, ψ) accounts for the displacement of the observation 

volume and is determined by [62]:  

 

 𝐺! 𝜉,𝜓 = exp −
!!"#
!!

!
! !!"#

!!

!

! !! 
(!!!!!!!)

!!

 ,                                 (1.27) 

 
where δp denotes the pixel size. Finally, the kinetic term GK (ξ, ψ) takes into account the 

transitions of the dye to a dark state with a lifetime of 30–150 μs for the lipid-dye 

system [77] 

 
 𝐺! 𝜉,𝜓 = 1+ 𝐾 𝑒𝑥𝑝 − (!!!!!!!)

!!
 ,                                 (1.28) 

 
where K denotes the amplitude of the kinetic term with dark-state lifetime τK.  
 

Similar to STED-RICS, STED-FCS has been applied in several studies on 

biological membranes, including the study of compartmentalization of phospholipid 
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diffusion in the plasma membrane [78] and diffusion measurements of lipids and GPI-

anchored proteins in actin-free plasma membrane [79]. As previously described for 

RICS, STED-RICS data can also be analyzed using number and brightness method [70] 

to determine the aggregation states of diffusing molecules [75]. Moreover, despite being 

technically challenging, dual color cross-correlation STED-RICS can be implemented for 

the study of interactions between two fluorescently labeled molecules [75].  

 

1.2.4 Single Particle Tracking 

The techniques that were discussed in previous sections provide ensemble average 

information on the dynamics of molecules. In contrast, single particle tracking (SPT) 

provides detailed information on the mobility of individual molecules with a spatial 

resolution that is limited by the signal to noise ratio of the particle, but typically falls 

within < 20 nm. SPT is usually performed on images acquired with a total internal 

reflection fluorescence (TIRF) microscope, where multiple images from the field of view 

are captured sequentially. The intensities of all the pixels in each frame are acquired 

simultaneously and isolated particles are captured for relatively long periods of time with 

frame rates up to 40 kHz [18]. The images are then analyzed to precisely locate the 

center of the emission profile of each fluorescent particle in every frame, and the 

trajectories are built by linking the positions of particles in consecutive frames. 

Mathematical analysis of the trajectories can then provide a quantitative estimation of the 

diffusion coefficient and useful insight into the type of motion under observation.  

TIRF microscopy (Figure 1.18), also known as evanescent wave microscopy, enables 

imaging biological samples in an aqueous environment and observation of a thin region 

within a specimen, usually less than 200 nm, above the glass surface [80]. This is achieved 

by exciting only the fluorophores that are near the solid surface, while keeping the 

fluorophores that are far from the region of interest intact. Consequently, TIRF can 

reduce the background fluorescence, and minimize exposure of cells to light for live cell 

imaging [81]. For total internal reflection to occur, light must be traveling from a higher 

to a lower index of refraction media and the angle of incidence should be greater than the 

critical angle, given by 𝜃! = 𝑠𝑖𝑛!! !!
!!

 (where  𝑛! >  𝑛! , Figure 1.18). As light 

illuminates the specimen, it is internally reflected, creating an evanescent field above the 
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substrate surface (Figure 1.18). The exponentially decaying field produced in 𝑛!  can 

excite fluorophores in a thin region near the surface while avoiding excitation of a large 

number of fluorophores farther from the surface. Examples of transparent medium 𝑛!  

are the glass coverslip and tissue culture plastic, while 𝑛! is a liquid medium such as water 

or the cell cytoplasm. The penetration depth created by the evanescent field can be 

calculated from: 

𝑑 =  !!
!!(!! 

! !"#!!!!!!)!/!
  ,                                           (1.29) 

 
where d is the penetration depth, 𝜆!is the laser wavelength, 𝜃 is the incident angle, and 𝑛! 

and 𝑛! are the index of refraction for water and glass, respectively. 

 
 
Figure 1.18 Total internal reflection microscope setup and evanescent field [82]. 
 

The raw data for SPT experiments consists of a time series of diffraction-limited 

images of the emission profile of fluorescent particles. The single particle tracking analysis 

can be then performed in four major steps described below: particle identification, 

particle localization, tracking, and analyzing the trajectories.  

1) Particle Identification. Although recent developments in optics and cameras have 

minimized the noise generated in microscopy imaging, image processing using 

appropriate filters will simplify the computational work needed to distinguish features 
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from noise. Gaussian, Wiener, deconvolution, and top-hat filters are a few examples of 

prefiltering methods applied to images for single particle tracking analysis [83]. The 

particles are then identified from background noise using parameters such as the peak 

intensity, total intensity, radius of gyration, and eccentricity of particles [84]. 

2) Particle Localization. The particles or molecules visualized in SPT are usually smaller 

than the resolution of the microscope and appear as bright spots with intensity 

distributions that depend on the response of the optical system to a point source, known 

as the point-spread function. The emission from even the smallest single fluorophores 

spans over multiple pixels; therefore, a key step in SPT analysis is to localize fluorescent 

particles with sub-diffraction resolution. A rough estimation of the position of each 

particle can be obtained by searching for the pixel with the highest intensity value, which 

was traditionally performed manually or in a computer-assisted fashion [85]. Nowadays, 

image processing algorithms such as cross-correlation, sum-absolute difference (SAD), 

calculation of the center-of-mass (centroid) or Gaussian fitting [86] of the intensity profile 

to an approximation of the PSF can yield an accuracy of ~10 nm for localization of 

particles [87]. The pixel size of images is typically 30-150 nm depending on the 

magnification and the physical size of the pixels in the electron multiplying charge couple 

device (EMCCD) or scientific complementary metal–oxide–semiconductor (sCMOS) 

camera. Therefore, the centroid should be located to 1/3rd or 1/15th of a pixel in order 

to achieve an accuracy of 10 nm [87]. Figure 1.19 demonstrates how the accuracy of 

localization can be determined. Using weighted least-square fit to the data with a 2D 

Gaussian function the estimated centroid position can be found (Figure 1.19-C), along 

with the width of the emitter profile in the imaging plane. The difference between the 

average localization (green cross) and the actual particle position (red cross) gives the 

localization accuracy (Figure 1.19-E). In contrast, the localization precision refers to the 

standard deviation of the estimation of the particle’s actual position around its mean, and 

can be commonly referred to as the localization “resolution” or uncertainty. 
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Figure 1.19 A) Simulated diffraction-limited image of an isotropic fluorescent emitter with 
Poisson noise and detector pixelation, the red cross represents the actual position of the emitter, 
B) photon count histogram of image A), C) and D) result of a weighted least-square fit to the data 
using a 2D Gaussian function with the blue dot denoting the estimated centroid position, E) 
estimate positions (blue dots) obtained from different images of the same emitter, the green cross 
in the center and the green circle denote the average of localizations and the standard deviation 
respectively, F) probability distribution of individual localizations [88].  
 

3) Tracking. Once the particles’ coordinates are found, an algorithm is needed to 

determine which particle in an image can be linked to a particle in a subsequent frame. 

When the particles are sparse enough, this can be achieved by linking the localizations 

based on the “nearest-neighbor distance” criterion. In this case, for each particle found in 

a given frame, its distance to all the localizations in the next frame are calculated and the 

pair with the minimum distance is selected as the most likely occurrence of the same 

particle in the following frame. The trajectories are reconstructed by performing this 

process for all the particles in each frame. However, the linking process is not 

straightforward as the particles may permanently or temporarily disappear due to 

blinking or photobleaching. The algorithm must take into account the possibility of these 

events and should stop generating linkages when no localizations are found within a given 

search radius.  

At high densities, the complexity is further increased by the possibility of particles’ 

trajectories crossing each other. As a result, the more advanced algorithms are based on 

multi-particle tracking, meaning that all the trajectories are simultaneously reconstructed 

and an optimization strategy is used to resolve the conflicts between competing linkages. 

In addition, information from multiple frames can be used to improve linking. In this 
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approach, building trajectories can be treated as a combinatorial optimization problem 

with a factorial complexity [89]. This requires a cost function or metric, including all 

linking possibilities, which must be minimized. In addition to particle coordinates, 

information about emitter intensity, PSF shape, and the type of motion can be 

incorporated in the linking algorithm to further increase tracking reliability [90,91]. To 

date, several tracking algorithms have been developed based on these approaches [89], 

[90,92–94]. Although most SPT algorithms have two separate steps for localization and 

tracking, recently developed programs are based on simultaneous detection and tracking 

of particles where the information from localizations in each frame are constantly used to 

update the detection and tracking of particles in successive frames [95].  

4) Analysis. Once tracks of suitable lengths are generated, they must be analyzed to 

extract meaningful observables, such as particle speed or diffusion coefficient. The most 

common approach to analyze the trajectories, interpret, and classify the type of motion is 

the mean-squared displacement (MSD) analysis, which describes the average distance 

explored by a particle as a function of the time lag 𝑡!"#. For a particle j diffusing in 3D, if 

the position coordinates 𝑥! = 𝑥! ,𝑦! , 𝑧!  are sampled at N discrete times, the MSD for a 

single trajectory is calculated as:  

𝑀𝑆𝐷 𝑡!"# = 𝑚Δ𝑡 =  !
!!!

𝑥! 𝑡! +𝑚Δ𝑡 − 𝑥!(𝑡!)
!!!!

!!! .                 (1.30) 

For Brownian motion, the MSD can be related to the diffusion coefficient through the 

relation: 

𝑀𝑆𝐷 𝑡!"# = 2𝑑𝐷𝑡!"# ,                                           (1.31) 

where D is the translational diffusion coefficient and d represents the dimensionality of the 

space in which the motion takes place.  

For an SPT algorithm with random error in localization and tracking, the 

equation of the plot for Brownian motion in two dimensions is given by: 

𝑀𝑆𝐷 𝑡!"# = 4𝐷𝑡!"# + 2𝜎! ,                                       (1.32) 

where 𝜎! is the variance of the experimental noise. The diffusion coefficient D can be 

determined from the slope of the plot (Figure 1.20-B). The MSD at large 𝑡!"# has poor 
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statistics and deviates from linearity. Estimation of the diffusion coefficient can be 

obtained from fitting to the short 𝑡!"# region of the MSD plot [96].  

Other types of motion, such as anomalous diffusion and directed motion, are also 

commonly observed in biological systems and can be described by: 

𝑀𝑆𝐷 𝑡!"# = 2𝑑𝐾𝑡!"#!                                             (1.33) 

𝑀𝑆𝐷 𝑡!"# = 2𝑑𝐷𝑡!"# + (𝑣𝑡!"#)! ,                                 (1.34) 

where K is a generalized diffusion constant, α is the anomalous exponent (α >1 super-

diffusion, α <1 sub-diffusion), and v is the speed in an active transport such as molecular 

motors.  

For restricted motion, the MSD cannot be defined without information of the exact 

shape of the confining region; however, confinements generally result in a plateau in the 

MSD curve at large 𝑡!"#, which can be mathematically described by: 

𝑀𝑆𝐷 𝑡!"# = !!

!
 1− 𝑒𝑥𝑝 − !!"#

!
 ,                               (1.35) 

where L is the linear dimension of the confined region and 𝜏 represents a characteristic 

equilibrium time after which the effect of boundaries appears for diffusion in 2D.   

 

 

Figure 1.20 A) Calculation of the squared displacement of a 2D trajectory for a given initial time 
𝑡! and lag time, B) time averaged MSD for a single particle trajectory in 2D, C) MSD plot 
showing different types of diffusion, D) MSD plot in log-scale [88]. 
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SPT has been utilized in numerous studies probing the dynamics of biological 

membranes. A few examples of these studies include the detection and tracking of 

phagocytic Fc𝛾 receptors (Fc𝛾R) on plasma membrane of macrophages [97,98], the 

transmembrane integrin mobility in monocytes [99,100], and the diffusion of lipids in 

epithelial cells [101]. In addition, SPT with multi-color imaging has been used in various 

experiments to study the interaction of two or more membrane components [98,100,102–

104]. As demonstrated in the following examples, both single- and multi-color SPT not 

only uncover the trajectories of molecules in the plasma membrane but can also extract 

information about different populations of molecules undergoing different types of motion 

with dissimilar diffusion coefficients. Single molecule detection has been used to track the 

mobility of immunoreceptors to differentiate the immobile, slow, and fast diffusing 

receptors. As shown in Figure 1.21, the lateral mobility of the transmembrane integrin 

nanoclusters lymphocyte function-associated antigen 1 (LFA-1) was tracked on the plasma 

membrane of resting monocytes [99]. Trajectories of LFA-1 nanoclusters labeled with the 

neutral mAb TS2/4 (Figure 1.21-A) were generated from a series of movies through 

single molecule detection on an epifluorescence microscope. The individual trajectories 

revealed a large heterogeneity in lateral mobility of the nanoclusters, with a combination 

of highly mobile, slow, and restricted diffusive behavior (Figure 1.21-D). Diffusion 

coefficients of 10−3 to 10−1 μm2⁄s and ~5% immobile fraction (Figure 1.21-E) were 

obtained from the analysis of individual trajectories using mean-squared displacement 

(MSD). The type of diffusion (Brownian, hindered, anomalous) was determined using 

applied cumulative probability distribution (CPD) and it was found that slow and fast 

diffusive nanoclusters (Figure 1.21-F) presented Brownian motion with diffusion 

coefficients of D=1.4±0.1×10−2 μm2 s−1 and D=5.6±0.2 ×10−2 μm2 s−1, respectively. 

This result indicates that the LFA-1 nanoclusters that are formed on resting monocytes 

prior to ligand binding are primarily mobile [99], in contrast to earlier reports of 

immobile LFA-1 in resting T cells [105,106].  
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Figure 1.21 A) Schematic representation of LFA-1 nanoclusters diffusing randomly on resting 
monocytes, B) an image captured from a series of frames (100 ms per frame) showing the bright 
TS2/4-LFA-1 nanoclusters (scale bar= 5um), C) selected time lapse images of LFA-1 nanoclusters 
for a fast (top), immobile (middle), and slow (bottom) diffusive behavior, D) selected trajectories of 
LFA-1 nanoclusters showing fast (orange), slow (blue), and immobile (black), E) normalized 
frequency distribution of diffusion calculated for 370 trajectories from 128 cells in multiple 
experiments, F) squared displacement of the mobile nanoclusters (157 trajectories) at different 
time lags calculated using cumulative probability distribution [99].  
 

Multi-color single particle detection in TIRF mode has enabled visualization of the 

dynamics of multiple receptors simultaneously on the plasma membrane, as shown in 

Figure 1.22 for Jurkat, an immortalized human T-cell line. The dynamics of CD3ε, a 

subunit of T cell receptor (TCR) microcluster, and CD45 were visualized on T cells 

expressing CD3ζ-EGFP (a marker protein for TCR). The cells were immobilized onto 

a glass surface using biotinylated anti-CD3ε antibodies, streptavidin, and lipid bilayer 
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in order to preserve the intrinsic mobility of membrane proteins [107]. CD3ζ-EGFP 

(green), quantum dot (Qdot) 655-labeled CD3ε (red), and Qdot 585-labeled CD45 

(blue) were visualized in the fluorescence images (Figure 1.22-B). Qdots were chosen 

for fluorescent labeling as they enable clear visualization of single molecules as well as 

tracking for extended period of time [108]. The diffusion was measured at different 

regions of TCR microclusters (i.e., inside, outside, and boundary), and the distributions 

of diffusion coefficients of CD3ε and CD45 were fitted by the dual-normal distribution 

corresponding to the two-state diffusion model (Figure 1.23) [109]. The multi-color 

single molecule tracking revealed that the mobility of CD3ε and CD45 molecules were 

faster outside and at the boundary of the microclusters than inside these domains. 

  

 

Figure 1.22 A) Schematic representation of a T cell expressing CD3ζ-EGFP immobilized onto 
a glass surface using biotinylated anti-CD3ε antibodies and planar lipid bilayers, B) TIRF 
image of three-color single molecule tracking of CD3ζ-EGFP (green), Qdot 655-labeled CD3ε 
(red), and Qdot 585-labeled CD45 (blue) in live Jurkat T cells. Scale bar: 5 μm [109]. 
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Figure 1.23 A) CD3ε, and B) CD45 mobility states are shown using logarithmic scale 
distributions of the diffusion coefficients obtained from inside, at the boundary, and outside of the 
microclusters on immobilized T cells, using moving sub-trajectory analysis [109]. Three types of 
diffusion were present: simple (green), directional (cyan), and confined (magenta). The histograms 
of the three diffusion types were fitted by the dual normal distribution  (black line), which consist 
the slow (dashed line, red) and fast (dashed line, blue) diffusion [109].  
 

Multi-color SPT can also reveal correlations between diffusing molecules such as 

protein-protein interactions within the plasma membrane. Co-localization, as the name of 

the technique implies, is based on localization of molecules moving together since co-

diffusion is indicative of a physical link or indirect interaction between two molecules. 

Information about the duration of the interaction can be extracted from the length of 

time in which the trajectories of two molecules exhibit correlated motion. Dual-color SPT 

has been applied in several investigations to visualize the dynamic interactions of 

membrane receptors [100,102,110,111]. The real-time dynamic observation of CD9 co-

localization on the plasma membrane of PC3, human prostatic carcinoma cell line, is 

illustrated in Figure 1.24 [112]. Two molecules were considered to have co-diffusion 

when there was an overlap of their fluorescence signal for at least one pixel during seven 

frames (700 ms). The co-localization results of CD9 were classified as Brownian diffusion, 

similar to the motion of isolated CD9 molecules, with no significant change in diffusion 

coefficient of CD9-CD9 complex [112].  
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SPT studies described in this chapter demonstrate the importance of deciphering 

single molecule behavior to understand the interactions of membrane constituents. The 

main limitation of using TIRF microscopy for SPT experiments is that only the basal 

membrane of cells adhered to the surface can be excited within the narrow evanescent 

field, and the apical membrane and cytoplasm cannot be examined. To overcome this 

limitation, highly inclined and laminated optical (HILO) sheet illumination is 

implemented [113], which makes use of a large refraction to create a highly inclined 

incident beam that is laminated as a thin optical section at the specimen. This results in 

the reduction of background fluorescence since only a thin layer of the cell is illuminated; 

however, it can be applied only in the center of the object field with a limited depth 

range. Additionally, SPT requires sparse labeling for particle localization as the molecular 

separations have to be larger than the particle’s diffraction-limited size. However, SPT is 

continuously going through tremendous expansion, benefiting from development of 

advanced optical techniques and enhanced labeling strategies to facilitate more precise 

tracking of individual molecules at the nanoscale.  

 

Figure 1.24 A) Time lapse showing a simultaneous single-molecule tracking of two spectrally 
distinct labeled CD9 molecules using a Fab fragment conjugated with Atto647N (red) or with 
Cy3B (green), B) Representative trajectories of CD9 co-localization where the fluorescence signal 
of two particles overlap at least for one pixel (160 nm), C) Different combinations of proteins were 
tested: CD9/CD9 on cells with/without treatment with MβCD, CD9plm/CD9plm, and irrelevant 
pairs such as CD9/CD55, CD55/CD55, and CD46/CD46 [112]. 



48	
	

1.3 New Developments and Perspectives 

In this chapter, four major families of fluorescence-based microscopy techniques 

(i.e., FRAP, FCS, ICS, and SPT) were discussed with focus on their applications to the 

characterization of biological membranes. These techniques along with their extended 

modalities provide a versatile toolbox for analyzing the distribution and dynamics of 

membrane components. Each technique has its advantages and limitations, and is 

suitable for studies of different parameters including molecular densities and 

quantification of diffusion, flow, and biomolecular interactions. A summary of four 

techniques is included in Table 1.1 for comparison of the range of molecular densities 

that can be analyzed and the diffusion coefficients that can be extracted. These 

techniques are all capable of measuring the translational diffusion of lipids and proteins 

(typically 0.01-0.5 μm2/s) in the membranes of live cells [114]. 

 

Table 1.1 Comparison of four fluorescence-based techniques (molecular densities and 

diffusion coefficients).  

Method Concentration 

(molecules μm-2 ) 

Diffusion (μm2/s) 
Reference 

10-3 10-2 10-1 1 10 102 103 

FRAP > 100  [115,116] 

FCS 0.1-100 [73,115] 

RICS 1-100 nM* [60,75] 

SPT ~1 [88,116] 

 
*Molecular densities acceptable for RICS are typically reported in molar concentrations.  
 

To integrate the advantages of these complementary methods, several of these 

techniques can be applied simultaneously in one experiment. The combination of SPT 

and ICS, called particle image correlation spectroscopy (PICS), has been used to 

extract nanometer scale correlations at high molecular densities [117,118]. Similarly, 

single particle raster image analysis (SPRIA) has been developed by integration of SPT 

and RICS to analyze lower molecular densities of samples with heterogeneous 

diffusion [119]. On the other hand, SPT combined with imaging total internal 

reflection fluorescence correlation spectroscopy (SPT/ITIR-FCS) [120] can provide 
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information on diffusion behavior, spatial distribution, and type of confinement, all in 

one experiment. In addition, point-FRAP coupled with FCS has been performed for 

precise quantification of diffusion and binding [121], while single molecule 

illumination combined with single molecule fluorescence recovery after photobleaching 

(smFRAP) has been used to determine diffusion coefficients with a spatial resolution of 

<10 nm [122]. Non-optical techniques such as atomic force microscopy (AFM) can 

also be combined with fluorescence microscopy techniques to examine the integration 

of lipid membranes upon contact, using AFM-FCS [123] and AFM-SPT [124]. These 

combined techniques not only can provide simultaneous access to a wealth of 

information on transport and binding in the membrane, but can also enable ensemble 

averaging and single particle measurements to be performed on a given sample in one 

experiment; therefore, they can serve as complementary tools to describe the behavior 

of membrane components.  

With the advent of super-resolution optical microscopy methods such as single-

molecule localization methods, stimulated emission depletion (STED), and near-field 

scanning optical microscopy (NSOM), new combinations of fluorescence-based 

techniques are expected to emerge. As described in Section 1.2.3-6, STED-FCS and 

STED-RICS have been developed to improve the spatial resolution down to ~ 40 nm 

[75]. Similarly, NSOM has been combined with FCS to detect anomalous diffusion on 

cell membranes with spatial resolution of 120 nm [125]. On the other hand, structured 

illumination microscopy (SIM) [126,127] increases the resolution by exploiting 

interference patterns from a series of excitation light illuminated through two grids 

overlaid at an angle. This technique doubles the resolution of traditional light 

microscopy and is rapidly gaining in popularity. In addition, photonic nanostructures 

have been developed that can confine illumination on a sub-wavelength scale to reach 

sub-diffraction volumes, using nanometric apertures with radii of 50 nm to 250 nm 

milled in a metallic film, known as zero mode waveguides (ZMWs) [128]. This method 

has been combined with FCS to probe model lipid membranes [129,130] and cell 

membranes [131,132]. All these approaches can overcome the diffraction limit and 

enable visualization with a higher resolution compared with conventional light 

microscopy techniques.  
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A number of comparative studies have been conducted to determine the accuracy 

and differences in diffusion measurements obtained from different techniques, which 

helps inform on the advantages and limitations for each technique. FCS and FRAP have 

been compared on the same lipid membrane section by simultaneous measurements 

acquired from both techniques [29]. This direct comparison enabled the detection of 

transient changes in molecular diffusion induced by the FRAP bleaching pulse. The 

discrepancies in the diffusion coefficient obtained from these two methods were attributed 

to the bleach correction and fitting, which introduce large uncertainties in FRAP results 

[29]. Similarly, a comparison of diffusion measurements by line-scanning FCS and SPT 

on a supported lipid bilayer has shown statistically significant difference (DFCS = 3.4 ± 0.4 

μm2 s−1 vs. DSPT = 2.4 ±0.3 μm2 s−1) that result from the limited dynamic range of each 

technique, i.e., FCS range > actual diffusion > SPT range, yielding an underestimated 

DSPT and an overestimated DFCS [133]. In contrast, in a different study on SPT and ITIR-

FCS, comparable results were obtained from these techniques with respect to the 

diffusion coefficients extracted from different types of motions [120]. On the other hand, 

it is reported that FCS yields higher diffusion coefficients compared with RICS (DFCS = 

10.0 ± 0.7 μm2 s−1 vs. DRICS = 8 ± 2 μm2 s−1), with both measurements taken from the 

membrane of giant unilamellar vesicles [134]. This discrepancy was attributed to 

membrane curvature in vesicles, which can cause the scanning illumination volume to 

cross irregular portions of the membrane. An earlier comparative study on FCS, FRAP, 

SPT, and ITIR-FCS applied to supported lipid bilayer showed that diffusion 

measurements obtained from these techniques were within the same range [115]. Direct 

comparison of different methods for measuring diffusion is not trivial, as several factors 

such as concentration of molecules, detection of immobile particles, and the accessible 

dynamic ranges for each technique must be taken into account. For example, the 

required molecular concentration for SPT is much lower than FCS, i.e., N<<1 vs. 

1≤N≤10, respectively [133,135]. Consequently, SPT and FCS can be compared only if 

the chosen concentration is in the higher range of what SPT can measure, and in the 

lower range of FCS detection limit [133]. Each technique has their specific strengths, and 

the choice of method depends on the particular application. The results of these 
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comparative studies can help with the selection of appropriate techniques for specific 

measurements on the membranes. 

Despite rapid advances in fluorescence microscopy, a number of challenges still 

remain that can impact measurements of biological membranes. To date, analysis of 

biological membrane components using fluorescence microscopy techniques has been 

limited to a very small number of fluorophores. Only two or three molecular targets can 

be distinguished and analyzed simultaneously in a given sample due to spectral overlap 

between different fluorophores and fluorescent proteins. However, the cell is crowded 

with multiple types of macromolecules and their spatial relations and interactions should 

be determined in order to fully understand the underlying mechanisms of various 

biological events. To reduce the spectral crosstalk in fluorescence imaging, alternating the 

lasers with different excitation wavelengths can be a feasible solution for dual-color 

imaging [136]; however, the complexity of the set-up increases when adding more colors. 

Qdots are more frequently used to label three or more target molecules because of their 

narrow emission spectra [88], although spectrally separated cameras are required [137]. 

A limitation of Qdots is their relatively large size (typically ~15-20 nm in diameter) 

compared with organic dyes, which lead to steric hindrance and reduced mobility of 

receptor-label complex [138]. Moreover, the blinking of Qdots makes single particle 

tracking more challenging as their abrupt dark state can terminate the tracking. Further 

advancements in fluorescence probes are envisioned to overcome these challenges in the 

near future, through development of fluorophores of different colors and emission spectra 

that can be excited with similar wavelength. 

Over the past few decades, fluorescence microscopy techniques have received 

much attention in areas of medical sciences such as proteomic, immunofluorescence, 

and genomic sequencing. These techniques have led to significant discoveries related 

to the function, structure, and binding interactions [68] of proteins and molecular 

motors [139], the clustering of immunoreceptors and their signaling cascades 

[98,140,141], and chromosome segregation [142,143], transcription [144], translation 

[145], replication [146], and DNA repair [144,147], just to name a few. It must be 

highlighted that the fluorescence microscopy techniques discussed in this chapter are 

not limited to the characterization of mammalian cells and have been frequently 
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utilized in studies on bacterial membrane proteins [148–151] and plant cells [152,153]. 

Thus, advanced fluorescence microscopy techniques enable visualization of real-time 

dynamics in all biological membranes at the molecular level and provide quantitative 

information that can enhance our understanding of these subcellular observations.  

 

1.4 Macrophages  

1.4.1 Origins and Phenotypes 

The immune response to microbial pathogens relies on both the innate and adaptive 

mechanisms. The immediate, innate response is predominantly dependent on leukocytes 

(white blood cells), such as neutrophils and macrophages that have the ability to 

phagocytose (see Section 1.4.2) and kill pathogens. Macrophages are specialized in the 

detection, engulfment, and destroying target cells and are evolutionary conserved 

phagocytes that evolved more than 500 million years ago [154].  

Based on their origin, macrophages are classified into two general groups of tissue-

resident and monocyte-derived macrophages [155]. Each tissue has its own composition 

of resident macrophages, originated from the early gestation period during embryonic 

development. In contrast, monocytes are a heterogeneous population of mononuclear 

phagocytes that arise from hematopoetic stem cells (HSCs) in the bone marrow and are 

constantly released into the bloodstream to patrol the vasculature throughout the body. 

Monocytes constitute 1-6% of total leukocytes in healthy peripheral blood with a half-life 

of approximately 70 hours [156]. These cells differentiate into macrophages or dendritic 

cells after migrating into tissues and to the sites of damage or infection in response to 

chemotactic signals.   

Macrophages are also classified based on their phenotypic roles in pro- or anti-

inflammatory responses. M1 macrophages, also known as classically activated phenotype, 

and M2 macrophages known as alternatively activated are the two ends of a wide 

spectrum of phenotypic variations [157]. Upon stimulation with pathogens, macrophages 

polarize toward M1 phenotype and secrete pro-inflammatory cytokines to recruit other 

immune cells. In response to wound healing cytokines, macrophages polarize toward M2 

phenotype to alleviate inflammation, and to promote angiogenesis, cell proliferation, and 

ECM remodelling for tissue repair. The in vitro polarization of M1 macrophages is 
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typically induced by exposure to interferon-gamma (IFN-γ) and lipopolysaccharide (LPS), 

whereas M2 macrophages can be activated upon stimulation with interleukin-4 (IL-4) or 

IL-13 [158]. To identify their activation state, macrophages are commonly characterized 

based on the expression of cellular markers (M1 marker: CD86; M2 marker: CD163), 

cytokine profile (M1 releases IL1β and tumor necrosis factor alpha (TNFα); M2 releases 

IL-10 and C-C motif chemokine ligand 18 (CCL18) [159].  

 

1.4.2 Phagocytosis  

The complex and versatile phagocytic process is central to elimination of pathogens 

as well as tissue homeostasis and remodelling. Phagocytosis is the ingestion of particles 

larger than 0.5 µm into membrane-bound vacuoles known as phagosomes. The 

phagocytic process begins with the engagement of receptor(s) with their cognate ligand(s) 

followed by clustering of receptors at the site of ligand. This process is accompanied by 

the disruption of cortical cytoskeleton and F-actin remodelling to create a specialized 

membrane structure known as phagocytic cup [160]. The cup will then wrap around the 

particle, fuse, and seal into a completely internalized phagosome. The phagosome 

experiences a process of maturation and acidification (the pH drops from 7.4 to ~6.5) 

[161], which results in the degradation of its contents as well as generation of peptides 

that can be presented to the cells of the adaptive arm of immunity [162]. Opsonic 

phagocytosis is referred to conditions where the ligand is coated with complement or 

immunoglobulin G (IgG) that involve the complement receptor 3 or Fcγ receptors. 

Phagocytosis is performed by both “professional” and “non-professional” phagocytes 

[163]; a classification that is based on the efficiency of the phagocytic function in a wide 

range of cells capable of engulfing particles. Professional phagocytes include neutrophils, 

monocytes, macrophages, dendritic cells, osteoclasts, and eosinophils [164]. Non-

professional phagocytes are cells that normally do not phagocytose large particles but can 

develop the ability to internalize targets under certain conditions, such as engulfing 

proximal apoptotic and necrotic cells [165,166] as seen in epithelial, endothelial, 

fibroblast, and mesenchymal cells [164]. Professional phagocytes such as macrophages 

can be distinguished by their versatile repertoire of membrane-bound receptors that can 

recognize, engage, and initiate phagocytosis.  
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1.4.3 Plasma Membrane Receptors 

Macrophages express a diverse range of plasma membrane receptors that regulate a 

variety of functions, including migration, adhesion, recognition of pathogens, 

phagocytosis, and activation of inflammatory responses [167]. Recognition is an essential 

component in generating the appropriate immune response against invading pathogens 

as well as in the elimination of altered host components such as damaged or apoptotic 

cells. Pattern recognition receptors (PRRs) are proteins that can identify two classes of 

invariant molecular patterns: pathogen associated molecular patterns (PAMPs) and 

damage associated molecular patterns (DAMPs). Upon activation, PRRs can signal 

danger to initiate early host defense by the innate immune system and can induce antigen 

presenting cells (APCs) to present antigens to the cells recruited for the adaptive immune 

response. Pattern recognition receptors in phagocytes are categorized into two main 

classes based on their role in phagocytic function or the activation of pro-inflammatory 

pathways [168,169]. In a comprehensive review by Taylor et al., the receptor families in 

macrophages and their functions are explained in detail [167]. Here, we reiterate the 

structure and function of a transmembrane and a membrane-anchored receptor, which 

have been the main focus of the studies described in this thesis.  

1.4.3-1 Toll-Like Receptors – TLR2 
 

Toll-like receptors (TLR) are pattern recognition receptors that play a key role in the 

innate immune system by participating in the inflammatory responses accompanied by 

detection of pathogens and microbial internalization [170]. The receptor’s name 

originated from its similarity to “Toll”, a gene first identified in the fruit fly Drosophila 

melanogaster. The gene received this name after Dr. Christiane Nusslein-Volhard 

exclaimed, “Toll!” (translated as “amazing” in German), when Eric Wieschaus showed 

her the abnormal ventral portion of the mutant fruit fly larva [171].  

TLRs are type I transmembrane glycoproteins composed of extracellular, 

transmembrane, and intracellular signaling domains [172]. These receptors are able to 

distinguish between self and non-self molecules, and their ligands include LPS, 

lipopeptides, DNA, RNA, and other components of viruses, fungi, bacteria, and 

protozoa. To date, 13 TLRs (10 in human) have been identified that can activate a 

signaling cascade in response to structurally distinct stimuli: bacterial lipoproteins are 
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recognized by either TLR1/2 or TLR2/6 heterodimer complexes, viral double-stranded 

RNA is recognized by TLR3, the endotoxin LPS from Gram-negative bacteria is 

recognized by TLR4, TLR5 recognizes flagellin proteins from bacteria, and TLRs 7–9 

detect nucleic acids of bacterial or viral origin [173]. In the absence of TLRs, other 

receptors cannot adequately cope with most infections [174]. 

Among TLR family, TLR2 is the main innate immune receptor responsible for 

detecting the anchor motif of bacterial lipoproteins, present on the surface of all bacteria 

[175]. TLR2 responds to lipid-containing PAMPs such as lipoteichoic acid from Gram-

positive bacteria and di- and tri-acylated cysteine-containing lipopeptides [176]. TLR2 

receptor forms a TLR-ligand complex and initiates signaling through dimerization with 

TLR1 and TLR6 [172]. Agonist-TLR2 interaction is also influenced by coreceptors such 

as the cluster of differentiation 14 (CD14), CD36, and integrins [177].  

 

1.4.3-2 CD14 Receptor  

Cluster of differentiation 14 (CD14), expressed primarily on the surface of myeloid 

cells, exhibits many characteristics of PRRs and binds components of both gram-negative 

and gram-positive bacterial membranes [178]. It is a member of the family of leucine-rich 

repeat proteins with three sites for N-glycosylation that are occupied by oligosaccharides 

essential for protein secretion. CD14 is expressed as glycosylphosphatidylinositol (GPI)-

linked membrane or soluble glycoprotein.  

CD14 is a coreceptor for TLR4, TLR2 and other TLRs. Both its soluble and 

membrane bound forms bind LPS and present it to TLR, although membrane-bound 

CD14 is more potent [179]. CD14 also activates other TLRs that are involved in the 

innate immune response to different microbial products [177]. For example, CD14 

binding to triacylated lipopeptides enhances signaling through the TLR1/2 complex by 

reducing the physical proximity of the ligand to the heterodimers for more efficient 

delivery of the microbial component to the TLRs, without binding directly to the TLRs 

[180]. The membrane-bound CD14 has only a few amino acids in its GPI tail (C-

terminal sequence 28-32 amino acids) and until recently was not believed to facilitate 

TLR signaling [181]. More recently it has been shown to facilitate internalization of TLR 

ligands [182].  
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1.5 Research Objectives 

This thesis aims to answer three major research questions with regard to the lateral 

diffusion of TLR2 and CD14 on the plasma membrane of macrophages, in the context of 

fluorescence microscopy techniques, the interactions of cells with surface structures, and 

age-related changes in macrophages. These questions are: 

1) What is the most appropriate technique to measure the lateral diffusion of TLR2 

and CD14 on macrophage plasma membrane? Do these receptors have 

significantly different diffusion coefficients? Is there significant difference in their 

diffusion in the apical and basal membrane sections for adhered macrophages? 

 

2) Does culturing macrophages on micro- and nanostructured surfaces impact the 

diffusion of TLR2 in the plasma membrane and their pro-inflammatory response? 

How does morphology and phagocytic capacity change when cells are cultured on 

different glassy surface topographies? 

 

3) Does aging alter the lateral diffusion of TLR2 in the plasma membrane of 

macrophages? Is there any significant difference in the phagocytic capacity of 

young and aged macrophages?  

 

1.6 Overview 

The following chapters provide answers to the research questions listed in Section 1.5: 

 

Chapter 2 addresses research question 1) through comparison of diffusion 

measurements obtained from two well-established microscopy techniques, single particle 

tracking and raster image correlation spectroscopy.   

 

Chapter 3 focuses on the interactions of macrophages with glassy surface 

topographies and provides answers to research question 2) through complex analysis of 

cell morphology, phagocytic capacity, inflammatory responses, and plasma membrane 

receptor diffusion for macrophages cultured on micro- and nanostructured silica surfaces.  
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Chapter  4 answers research question 3) through focusing on age-associated changes 

in the diffusion of TLR2 and phagocytic ability of macrophages with regard to 

internalization of the bacteria Streptococcus pneumoniae.  

 

Chapter 5 provides a summary of the key findings and the conclusions of this work, 

the contributions to the field, and future directions.  
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Chapter 2  
 

 

 

Lateral Diffusion of CD14 and TLR2 
 

The aim of the study presented in this chapter was to obtain accurate diffusion 

coefficients of CD14 and TLR2 on the apical and basal membranes of macrophages 

using two common fluorescence-based methods: raster image correlation spectroscopy 

(RICS) and single-particle tracking (SPT). Our findings highlight the importance of 

selecting the appropriate membrane when measuring receptor diffusion in live cells. 

While RICS enables the study of the diffusion in different regions of membranes and 

cross sections through the cell body, SPT is suitable for tracking the motions of individual 

membrane-inserted proteins only in the basal membrane.  

 
The content of this chapter is part of a manuscript prepared for submission to the 

journal Communications Biology.  
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2.1 Introduction 

The plasma membrane is a highly fluid and dynamic environment, where lipids and 

proteins laterally diffuse within the lipid bilayer –a feature that enables key cellular 

processes involving the transport of biological species [1]. Several powerful fluorescence-

based methods have been used to study the dynamics of membrane components, such as 

the diffusion and association of immunoreceptors [2–5]. These techniques are based on 

either ensemble measurements, where the diffusion coefficient is obtained from the 

average motion of groups of molecules, or single particle tracking where the mobility of 

individual particles is analyzed. Ensemble techniques include fluorescence recovery after 

photobleaching (FRAP), which irreversibly bleaches a small area of the fluorescently 

labeled membrane with a brief intense illumination pulse. The diffusion coefficient is then 

determined by monitoring the fluorescence recovery that results as bleached molecules 

migrate out of the illuminated area and are replaced by fluorescent ones [6,7]. A second 

ensemble method is fluorescence correlation spectroscopy (FCS) [8,9] which determines 

the diffusion by monitoring the fluctuations of the fluorescence signal in a fixed 

observation volume. FCS is used to measure fast (micro- to millisecond timescale) 

dynamics, binding and association kinetics, in a single fixed spot on the membrane [4].  

Raster image correlation spectroscopy (RICS) [10,11] is in principle an extended 

version of FCS, with the addition of a spatial component using confocal laser-scanning 

microscope (CLSM), which uses raster scan to capture the fluctuations in the intensity 

caused by the movement of fluorescent molecules. By measuring the intensity at one pixel 

for a very brief period of time followed by measuring the intensity of adjacent pixels 

immediately after, the intensities of pixels in each frame can be correlated pair-wise to 

identify characteristic decay times corresponding to dynamic processes, such as the 

diffusion of fluorescent particles through the detection volume [12]. The spatial 

correlation depends on the rate of diffusion, the pixel dwell time, and the size of pixels. 

Since RICS is typically implemented using CLSM, the reduction of out-of-focus signal 

enables measurements that are confined to a narrow plane in the cell. Additionally, the 

ability of the RICS analysis routine to separate the slow and immobile fractions of 

particles makes it possible to monitor the diffusion of heterogeneous particles. Thus, this 

technique is frequently used to measure the diffusion coefficient of proteins in live cells 



76	
	

[13–16]. 

Single particle tracking (SPT) is commonly used to measure the diffusion of 

membrane components in live cells [2,17,18]. SPT provides information on the 

trajectories of individual particles with a spatial resolutions < 20 nm. SPT is typically 

performed on images acquired with a total internal reflection fluorescence (TIRF) 

microscope, where the acquisition of the intensities of all the pixels in each frame is done 

simultaneously and isolated particles are captured for relatively long periods of time 

(seconds to minutes), with frame rates of up to 40 kHz. The images are then analyzed to 

precisely locate each fluorescent particle within the image and the trajectories are built by 

linking the positions of particles in consecutive frames.  

The aim of the present study was to measure and compare the lateral diffusion of two 

key receptors involved in the recognition of pathogenic stimuli on the plasma membrane 

of macrophages, using two different fluorescence-based techniques for comparison: RICS 

and SPT. Transmembrane toll-like receptor 2 (TLR2) and 

glycosylphosphatidylinositol (GPI)-linked cluster of differentiation 14 (CD14) are two 

receptors expressed by macrophages, which are key in binding bacterial products and 

initiating inflammatory responses. TLRs are type I glycoproteins composed of 

extracellular, transmembrane, and intracellular signaling domains [19]. TLR2 binds the 

anchor motif of lipoproteins found on the surface of bacteria and responds to lipid-

containing pathogen associated molecular patterns (PAMPs) such as lipoteichoic acid 

(LTA) from Gram-positive bacteria [20]. CD14, on the other hand, is a pattern-

recognition receptor (PRR) that binds lipopolysaccharide (LPS) in Gram-negative and 

LTA in Gram-positive bacterial membranes [21].  

The spatial distribution of immunoreceptors and their lateral mobility in the plasma 

membrane impact receptor-mediated signaling [22]. Lateral clustering of receptors is 

essential for their activation since an increased local density of receptors enhances the 

efficiency of signal transduction whenever cooperation between multiple molecular 

players is required [22]. For example, TLR2 forms TLR-ligand complexes and initiates 

signaling through dimerization with other TLRs [19]. CD14 serves as a coreceptor of 

many TLRs, including TLR2 [23], and activates the intracellular signaling cascade and 

the innate immune response with the help of transmembrane receptors. Extracting the 
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rates of diffusion of these and other related immunoreceptors can be invaluable in 

understanding their signaling mechanisms in response to bacterial products.  

To our knowledge, this is the first study that measures the lateral diffusion of TLR2 

and CD14 in the apical and basal plasma membranes of macrophages and directly 

compares the diffusion measurements with the aid of two fluorescence-based methods, 

SPT and RICS. Studying the dynamics of these receptors using two different techniques 

provides complementary insights into their diffusion behavior as well as a true 

comparison of the precision, advantages, and disadvantages of these techniques.  

 

2.2 Experimental Section 

2.2.1 Cell Culture  

Macrophage cell line RAW 264.7 [24] from American Type Culture Collection 

(ATCC) was cultured using RPMI-1640 supplemented with 10% fetal bovine serum 

(FBS), 1% L-glutamine, and 1% penicillin/streptomycin. Twenty four hours before 

imaging, the cells were incubated with Trypsin/EDTA (GibcoTM) for 5 min, then gently 

lifted using a cell lifter and plated at a density of 100,000 per Glass Bottom dish (35 mm 

dish, 20 mm Microwell, No. 1.5 coverglass, 0.16-0.19 mm thickness, MatTek, Ashland, 

MA). Fluorescent microspheres (FluoSpheres®, carboxylate-modified, 0.17 μm, 

excitation: 505 nm; emission: 515 nm, Life Technologies, Invitrogen Molecular Probes®, 

Eugene, OR) were mixed in 50% isopropanol in water and added to the imaging dishes 

at a density that guaranteed 1–3 microspheres per field of view to serve as the fiducial 

markers for drift correction. Prior to seeding the cells, the microspheres were fused to the 

coverglass by heating the dish containing microspheres in solution at 65°C for 10 min.  
 

2.2.2 Fluorescence Staining  

All imaging was performed in RPMI-1640 medium without phenol red (Life 

Technologies- GibcoTM). TLR2 and CD14 were visualized in separate experiments using 

mouse anti-TLR2/CD282 antibody labeled with Alexa Fluor 647 (0.2 mg/mL, BD 

Biosciences) and mouse anti-CD14 antibody labeled with APC (excitation: 633-647 nm, 

emission: 660 nm, 0.2 mg/mL, eBioscience), at a 1:1000 dilution in imaging media. 

Antibody staining was performed at 4°C for 1 hr to prevent receptor internalization, after 
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which the samples were washed with PBS 3× and the media was replaced with RPMI 

including 5 mM ascorbic acid to minimize photobleaching during imaging.  

 

2.2.3 Single Particle Tracking (SPT) 

Total Internal Reflection Fluorescence Microscopy (TIRF) 

SPT imaging was performed on an objective-based TIRF setup built on a Leica 

inverted microscope stand (Leica DMI6000 B, Germany) and outfitted with an oil-

immersion objective of 100×/1.47NA (HCX PL APO, Leica Germany CORR TIRF). 

The excitation light source was a LMM5 solid state laser launch (Spectral Applied 

Research Inc., Richmond Hill, ON, Canada) with 488 and 647 nm emission lines. Single 

particle images were captured by an Andor iXon Ultra EMCCD camera (Andor 

Technology Ltd., Belfast, U.K). Time-lapse movies of 300 frames were acquired using 

Micro-Manager software (MMStudio Version 1.4.22) at a frame rate of ∼16.7 fps 

(acquisition time of τa = 60 ms per frame), with a field of view of 512 × 512 pixels and 

pixel sizes of 97 nm × 97 nm. Live cell imaging was performed at 37°C using an objective 

heater (FCS2, Bioptechs Inc., Butler, PA).  

 

Particle Detection & Tracking  

The series of frames captured for each cell were analyzed using an in-house program 

written in Python, under the use of the packages numpy, scipy, pandas, tkinter, and scikit-

images, using a single-particle detection and tracking algorithm [25–27]. Each raw image 

was first processed with a Gaussian and a top-hat filter. The local maxima, i.e., 

approximate particle positions were determined and a threshold was applied to generate 

a binary map of the estimated positions for each particle, which were used as starting 

values in the particle fitting algorithm. All particles within the raw images were then fitted 

to a 2D Gaussian model function via least squares optimization. The width and 

eccentricity of the detections were analyzed from the fitted functions and were excluded if 

they exceeded predefined thresholds (4 standard deviations of the background). The 

fitting algorithm determined the particle (fluorescent antibodies) positions with an 

accuracy of ∼20 nm [26]. Individual positions in consecutive frames were then linked to 

generate tracks for each particle using an appropriate search radius determined from 
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simulations (Supporting Information for Chapter 2 Figures S2.1-S2.5). Every link was 

associated with a cost, representing the travelled distance of the particle in a frame 

interval. The tracks of individual particles were generated by minimizing the global cost 

for all links.  

To obtain the number of immobile particles, the step-size distribution of the shortest 

lag time was used from which the standard deviation was extracted. A threshold of three 

standard deviations (3σ) was used to determine the immobile fraction (stationary particle 

if end-to-end tracks < threshold).  

 

Measuring Diffusion Coefficient  

Diffusion coefficients were calculated using three different methods from the 

generated tracks. We first used each individual track to calculate the mean-squared 

displacement (MSD) and the diffusion coefficient D from:  

< (∆𝑟)! > 𝜏 = 4𝐷𝜏.                                             (2.1) 

In the second approach, all tracks generated within a single cell were concatenated to 

create a master trajectory and the combined-MSD (c-MSD) was used to determine D 

from Equation (2.1).  

In the final approach, the distribution of displacements was analyzed using Equation 

(2.2) for all tracks. For a simple diffusion process, the probability density function for a 

particle in one dimension is Gaussian and its widths is time dependent according to:  

 𝑃 ∆𝑥, 𝜏 =  !
!!"#

exp − ∆!!

!!"
 ,                                        (2.2) 

where ∆𝑥 is the displacement after a lag time 𝜏. The diffusion coefficients were obtained 

for different lag times, by fitting to the distributions of displacements.  

 

2.2.4 Raster Image Correlation Spectroscopy (RICS) 

Confocal Imaging  

Raster-scan images were collected using confocal laser-scanning microscopy (CLSM, 

Olympus FluoView FV1000, Central Valley, PA) on an inverted microscope stand 

outfitted with a 60×/1.20NA UPLSAPO water-immersion objective. Excitation was from 

647-nm laser line attenuated to 0.5-1.0% nominal power. For scanning the basal 
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membrane, the plane of focus was set as close as possible to the bottom membrane plane, 

where the cell was making contact with glass. The apical membrane was found by 

focusing on the highest observable plane through the cell.  

For raster image correlation spectroscopy (RICS), 256 × 256 pixel images were 

collected using FluoView imaging software (Olympus FluoView 1.7a) at 16.4x zoom, 

corresponding to a pixel size of 50 nm. For raster-scanning live cells, the pixel dwell time 

was set to 40 μs/pixel (line time 11.264 ms). Stacks of 50 images were captured with no 

delay between frames. Imaging of live cells was performed at 37°C using a stage-top 

incubator (Tokai Hit, Shizuoka, Japan).  

 

RICS Diffusion Measurements 

Diffusion data was obtained using the SimFCS software [12] (The Laboratory for 

Fluorescence Dynamics, University of California, Irvine; available at www.lfd.uci.edu).  

Regions of interest (ROI) were selected with sizes of 64 × 64 pixels (3.2 × 3.2 μm2) within 

each cell. The diffusion coefficient was measured using the known parameters of pixel 

dwell time, line time, size of each pixel, and the beam waist. A focal volume waist (𝜔!) of 

0.24 μm was measured according to the previously established methods [12]. For each 

stack of images, the RICS function was calculated as the average of all images of the 

stack. Data was obtained from 15 cells for each receptor, using a minimum of three 

separate ROIs measured in each of the apical and basal membranes.  

 

Principles of RICS  

The principles of RICS are explained in detail in the seminal papers by Gratton and 

Digman [10,11]. Here we briefly reiterate the autocorrelation functions for reference 

purposes. The scanning function that relates time with space, i.e. the spatio-temporal 

correlation is defined as:   

𝜏(𝜉,𝜓) = 𝜏!𝜉 +  𝜏!𝜓 ,                                             (2.3) 

where 𝜏! and 𝜏! denote pixel dwell time and line scan time, respectively. 𝜉 and 𝜓 are the 

spatial displacements (in pixels) in the horizontal and vertical direction of scan in the 

raster image, respectively. The normalized spatial correlation function of the pixel 

fluorescence intensity fluctuations is defined as:  
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𝐺! 𝜉,𝜓 = !!" !,! !" !!!,!!! !!,!
!! !,! !!,!!

= 𝐺 𝜉,𝜓 𝑆 𝜉,𝜓  ,                        (2.4) 

 

where 𝐼(𝑥,𝑦) is the detected fluorescence intensity at each pixel and 𝛿𝐼 𝑥,𝑦 = 𝐼 𝑥,𝑦 −

 < 𝐼 𝑥,𝑦 >!,! are the fluorescene intensity fluctuations around the mean intensity. The 

autocorrelation function for 3D diffusion is:  

 

𝐺 𝜉,𝜓 =  !
!

 1+  !!(!!!!!!!)
!!!

!!
1+  !!(!!!!!!!)

!!!

!!/!
,                    (2.5) 

 

where D is the diffusion coefficient, N is the average number of molecules in the 

observation volume, and 𝜔! and 𝜔! are the lateral and axial waists of the laser beam at 

the point of focus. The γ factor accounts for the non-uniform illumination of the 

excitation volume and is equal to 0.3535 for 3D and 0.5 for 2D Gaussian point spread 

functions (PSF) [28]. For 2D diffusion, the last factor in equation (2.5) is omitted. 

𝐺 𝜉,𝜓  is the autocorrelation function that results from molecular diffusion only. 

Since the PSF spans over several pixels in the imaging plane, the correlation for the 

contribution of the scan itself should be also taken into account. For square pixels with 

dimension δr × δr the correlation for the scan is given by:  

 

𝑆 𝜉,𝜓 = exp
!"#
!!

!
! !"#

!!

!

!! 
!!(!!!!!!!)

!!
!

.                                        (2.6) 

 
Statistical Analysis   

Statistical analysis and plotting was performed using SPSS software (IBM SPSS 

Statistics 21) and Prism 7.0a (GraphPad Software Inc.), respectively. Differences were 

considered statistically significant at P values of < 0.05.  

 

2.3 Results  

2.3.1 Single Particle Tracking 

To measure the diffusion of membrane receptors using single particle tracking, time-

lapse movies were acquired using total internal reflection fluorescence microscopy. Figure 
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2.1A shows the tracks obtained from a series of 300 frames capturing TLR2 diffusion on 

the basal membrane of a RAW 264.7 cell (full movie included in Supporting 

Information). SPT (cf. Experimental Section 2.2.3) was used to generate the tracks for 

each individual particle. First, the diffusion coefficient of each track was obtained from 

the mean-squared displacement data and the fit to Equation 2.1 (tracks ≥ 10 steps were 

analyzed). The mean diffusion coefficients calculated from this analysis for TLR2 and 

CD14 in 15 RAW 264.7 cells were DTLR2-Basal = 0.08 ± 0.02 μm2/s and DCD14-Basal= 0.13 

± 0.02 μm2/s, respectively. A comparison of the diffusion coefficients versus track length 

did not reveal any correlation (Supporting Information for Chapter 2 Figure S2.6). This 

verified that the diffusion measurements were not skewed by the number of steps 

recorded for each particle. For a global diffusion analysis, we then created a combined 

track by concatenating the individual tracks randomly (Figure 2.1B), which did not reveal 

any overall drift or directed motion. The diffusion coefficient was then calculated by 

fitting Equation 2.1 to the MSD data for lag time τ ≤ 0.5 s (the mean single-track length 

for the data set), as shown in Figure 2.1C. The average diffusion coefficients calculated 

using this approach were DTLR2-Basal= 0.07 ± 0.02 μm2/s and DCD14-Basal= 0.11 ± 0.02 

μm2/s for TLR2 and CD14, respectively. As shown in Figure 2.2, both MSD 

measurements (i.e., individual and combined tracks) reveal that the mean diffusion 

coefficient of CD14 is higher than TLR2 in the basal membrane. Similarly, fitting 

Equation 2.2 to the step-size distribution data (Figure 2.1D) yielded average diffusion 

coefficients of DTLR2-Basal= 0.07 ± 0.01 μm2/s and DCD14-Basal= 0.11 ± 0.02 μm2/s for 

TLR2 and CD14, respectively, measured from the first lag time τ = 0.06 s. In addition, 

the immobile fraction was not significantly different between receptors (19% in TLR2 vs. 

20% in CD14). 
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Figure 2.1 Single particle tracking analysis of diffusion in the plasma membrane of RAW 264.7 
macrophages. (A) TIRF microscopy image of TLR2 on the basal membrane with tracks of 
individual particles generated from 300 frames (frame interval 60 ms). (B) Combined track 
generated from appending 134 individual trajectories. (C) Mean-squared displacement obtained 
from the combined track and the linear fit to equation < (∆𝑟)! > 𝜏 = 4𝐷𝜏  to determine 
diffusion coefficient. (D) Distribution of displacements for all trajectories at different lag times (red: 
𝜏=0.06 sec, blue: 𝜏=0.30 sec, yellow: 𝜏=0.54 sec, green: 𝜏=1.01 sec). Normal distribution is fitted 
(solid lines) using equation 2.2. 

 
 

Figure 2.2 Diffusion measurements in the plasma membrane of RAW 264.7 macrophages 
obtained from single particle tracking and the mean-squared displacement analysis for individual 
(i-MSD) and combined (c-MSD) tracks and the step-size distribution (SSD). Data is from basal 
membranes of 15 cells for each type of receptor. Boxes show 25th-75th percentiles with whiskers 
extending to minimum and maximum values measured (*P ≤ 0.05, ***P ≤ 0.001). Statistical 
significance was analyzed using two-way ANOVA with P values adjusted using Holm-Sidak 
correction method. 
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2.3.2 Raster Image Correlation Spectroscopy 

We also measured the lateral diffusion of TLR2 and CD14 in the plasma membrane 

of RAW 264.7 macrophages using raster image correlation spectroscopy. Receptor 

diffusion was measured in the apical and basal membranes for comparison (Figure 2.3A-

B). The basal membrane was defined as the bottom membrane plane, where the cell was 

making contact with glass, whereas the apical membrane was defined by focusing on the 

highest observable plane through the cell. A minimum of three measurements in the 

regions of interest (ROI), in each of the two membrane sections, was acquired for 15 

individual cells to determine the diffusion coefficient. Diffusion was obtained from fitting 

to the autocorrelation function (Figure 2.3C-E). Similar RICS analysis was performed to 

measure CD14 diffusion.  

 

Figure 2.3 Diffusion measurement of TLR2 using RICS on a macrophage plasma membrane. 
(A) Apical and (B) basal membranes of RAW 264.7 macrophage expressing TLR2 receptor; two 
64 × 64 frames (3.2 × 3.2 μm2) in each membrane show the regions of interest (ROI) and the 
diffusion coefficient calculated corresponding to each region. (C) 2D representation of RICS 
autocorrelation function, (D) Plot of the data (upper surface) and 3D representation of the fit to 
the function (lower surface), (E) Plot of the residues (upper surface) and the fit (lower surface). 
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Both TLR2 and CD14 receptors were found to have faster diffusion in the apical 

membrane (DTLR2-Apical = 0.12 ± 0.03 μm2/s; DCD14-Apical= 0.18 ± 0.03 μm2/s) than in the 

basal membrane (DTLR2-Basal= 0.04 ± 0.02 μm2/s; DCD14-Basal = 0.10 ± 0.03 μm2/s), as 

shown in Figure 2.4A-B. The paired comparison t-test confirmed the statistical 

significance of this difference for both CD14 (P ≤ 0.001) and TLR2 (P ≤ 0.001). 

Moreover, CD14 diffusion was faster than TLR2 (P ≤ 0.001) when similar membrane 

sections were compared for mobility of these receptors. Figure 2.4C-D demonstrates the 

relative frequencies of diffusion coefficients for TLR2 and CD14 in the apical and basal 

membranes. Approximately 33% of measured ROIs for TLR2 and ~3.5% for CD14 had 

very slow diffusion (D ≤ 0.02 μm2/s) in the basal membrane. In contrast, similar range of 

diffusion coefficients was found in only ~1.7% and 0% of the ROIs analyzed in the apical 

membranes for TLR2 and CD14, respectively.  

 

Figure 2.4 Diffusion coefficients of TLR2 and CD14 in the plasma membranes of RAW 264.7 
macrophages obtained through raster image correlation spectroscopy. Diffusion D of (A) TLR2 
and (B) CD14 in the apical and basal membranes measured from a minimum of three separate 
ROIs in each membrane section; mean ± SD for a sample of 10 individual cells is presented. 
Relative frequency of diffusion coefficients measured for (C) TLR2 and (D) CD14 from a total of 
15 cells for each receptor; bin centers shown in the x-axis. (E) Boxes show 25th-75th percentiles 
with whiskers extending to minimum and maximum values measured. Statistical analysis was 
performed using paired t-test for comparison of apical and basal diffusion, and independent t-test 
between the two receptors (***P ≤ 0.001). Data is from 15 cells with at least 3 independent ROI 
measurements in each of the apical and basal membranes. 
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Table 2.1 Diffusion coefficients of TLR2 and CD14 in the plasma membrane of RAW 
264.7 measured by RICS and SPT.  
 
Experimental/Analysis 
Technique 

Membrane 
Section  

Receptor D (Mean ± SD) μm2/s 
 

RICS Apical  
Basal 
Apical  
Basal 

TLR2 
TLR2 
CD14 
CD14 

0.12 ± 0.03 
0.04 ± 0.02 
0.18 ± 0.03 
0.10 ± 0.03 

    
SPT/ MSD of individual tracks 
SPT/ MSD of combined tracks 
SPT/ Step-size distribution 
SPT/ MSD of individual tracks 
SPT/ MSD of combined tracks 
SPT/ Step-size distribution 

Basal 
Basal 
Basal  
Basal 
Basal 
Basal 

TLR2 
TLR2 
TLR2 
CD14 
CD14 
CD14 

0.08 ± 0.02 
0.07 ± 0.02 
0.07 ± 0.01 
0.13 ± 0.02 
0.11 ± 0.02 
0.11 ± 0.02 

 

2.4 Discussion 

Among the broad repertoire of receptors on the plasma membrane of 

macrophages, TLRs and their coreceptors play significant roles in recognition of 

invading pathogens and initiation of inflammatory responses. TLR2 and CD14 are 

specifically involved in the detection of bacterial lipopeptides and lipoproteins [29]. 

The important role of TLR2 and CD14 is evident in the increased susceptibility to 

infections as a result of dysregulation of these receptors [30]. Consequently, diffusion 

measurements of these membrane receptors can provide fundamental insights into their 

behavior and uncover the underlying mechanisms leading to changes in TLR signaling.  

Four major families of fluorescence-based microscopy techniques (i.e., FRAP, FCS, 

ICS, and SPT) along with their extended modalities provide a versatile toolbox for 

analyzing the dynamics of membrane components. Each technique has their specific 

advantages, and the choice of method depends on the particular application. A number 

of comparative studies have been conducted to determine the accuracy and differences in 

diffusion measurements obtained from FCS and FRAP [31], FCS and SPT [32], FCS 

and RICS [33]. The results of these comparative studies can help with the selection of 

appropriate techniques for specific measurements on the membranes. The aim of this 

study was to obtain accurate diffusion coefficients for two types of plasma membrane 

receptors in macrophages, TLR2 and CD14, using two different fluorescence-based 
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imaging techniques. To our knowledge, this is the first study that has directly compared 

diffusion measurements from SPT and RICS.  

Our experimental data shows similar results using SPT and RICS for the diffusion 

coefficients of CD14 in the basal membranes (Table 2.1). TLR2 diffusion obtained from 

RICS in the basal membrane was lower compared with SPT results, which could be 

associated with the ability of RICS to detect confinement within shorter timescales not 

accessible by SPT. The apical membrane cannot be analyzed using TIRF microscopy, as 

TIRF-SPT is limited to monitoring species close to the glass surface; therefore, only the 

basal membranes could be directly compared. To date, there are no previous reports of 

TLR2 diffusion in RAW 264.7. The diffusion coefficients we measured using RICS and 

SPT in the basal membrane are slightly lower than the reported value of 0.17 ± 0.03 

μm2/s measured by FRAP in Chinese Hamster Ovary cells (CHO) transfected with 

TLR2 [34]. Whether this inconsistency is due to different types of cells, or the 

fluorescence imaging technique utilized is not clear and could be the subject of further 

comparative studies. However, similar to FRAP measurements, our MSD data shows 

simple Brownian diffusion for unstimulated TLR2. Our results are also in agreement with 

previous SPT measurements of CD14 on RAW 264.7. The diffusion coefficient we 

obtained from SPT and RICS (Table 2.1) is comparable to the reported value 0.14 ± 

0.02 μm2/s with MSD plot showing no deviation from Brownian motion [35]. This data 

further confirms the compatibility of RICS with SPT, which is widely applied in diffusion 

measurements.  

The GPI-anchored receptor CD14 had faster diffusion than the transmembrane 

receptor TLR2 in RAW 264.7 macrophages. This finding is in agreement with reported 

data on several chimeras of the two groups of membrane proteins (i.e., transmembrane 

proteins that were converted to GPI-linked proteins, and the GPI-linked proteins that 

were transformed to membrane-spanning proteins) [36]. Early FRAP experiments 

performed on chimeric proteins, including the GPI-linked Thy-1, human placental 

alkaline phosphatase, and murine surface antigen Ly6E, resulted in diffusion coefficients 

∼2 to 5-fold faster than transmembrane proteins such as vesicular stomatitis virus G 

(VSV-G) [36]. However, not all GPI-linked proteins exhibit fast lateral mobility, such as 

PH-20, a GPI-linked surface antigen with highly restricted diffusion on testicular sperm 
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before maturation [37]. Whether CD14 diffuses faster than TLR2 to quickly occupy the 

transmembrane receptor-depleted regions or to compensate for the slow arrival of 

antigen-bound TLRs would require further investigation of the kinetics of receptor-ligand 

binding events.  

SPT studies are typically performed using TIRF and therefore the reported diffusion 

coefficients are based on data acquired from the basal membrane in contact with glass. 

While these measurements can provide valuable insight into the dynamics of certain 

plasma membrane proteins that mostly reside in the basal membrane, such as those 

involved in adhesion to substrates or the extracellular matrix, many others have to be 

analyzed on the apical or lateral membrane to capture their true dynamic behavior. As 

an example, epithelial cells are polarized, with different parts of the cell responsible for 

performing distinct functions. Consequently, their plasma membranes are divided into 

distinct apical and basolateral domains that differ in protein composition, with specific 

proteins that are restricted to diffuse within only the apical or basolateral sections [38]. 

Although diffusion has been previously compared in the lateral and basal membranes of 

Madin-Darby Canine Kidney epithelial cells using combination of micropatterning and 

K-space image correlation spectroscopy [39], most diffusion measurements reported in 

the literature are from one membrane section; typically the basal membrane in SPT and 

only one of the apical or basal membranes in FRAP experiments, depending on the 

imaging apparatus.  

Accurate diffusion measurements of key immunoreceptors such as TLR2 and CD14 

can elucidate their binding and signaling mechanisms, which can in turn lead to rational 

development of potential therapeutic strategies to tune or amplify their response in cells 

that are impaired due to aging or disease. 

 

2.5 Conclusion 

In summary, we have obtained comparable diffusion measurements using RICS and 

SPT for the lateral movement of a GPI-anchored and a transmembrane receptor in the 

plasma membrane of RAW 264.7 macrophages. Both techniques revealed higher 

diffusion of CD14 compared with TLR2. While RICS allows measuring the diffusion in 

different planes through the cell body, SPT shows the trajectories of individual particles in 
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the nearest planar section of the membrane in contact with glass. Consequently, RICS 

and SPT can be used as complementary methods for studying membrane dynamics.  
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Chapter 3  
 

 

 

Macrophages on Silica Films 
 

Macrophages are major contributors to the rejection of foreign materials introduced 

to living tissues. Given that cell-surface interactions can have important effects on 

phagocytic capacity and cytokine production, changes in macrophage morphology have 

been reported for different materials and surface patterns. However, the details of how 

surface topography impacts morphology and function remain unclear. The study 

presented in this chapter investigates whether changes in surface topography of glassy 

substrates alter macrophage shape, phagocytic function, and pro-inflammatory response. 

The content of this chapter is published in Advanced Materials Interfaces, 6 (21) 2019, 

1900677. © Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 
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3.1 Introduction 

Macrophages are sentinel cells of the innate immune system that have diverse 

functions including the initiation of inflammatory responses, phagocytosis of pathogens 

and foreign entities, maintaining homeostasis, and wound healing [1]. Macrophages often 

contribute to the rejection of implants as these cells adhere to foreign materials and 

initiate immune responses by producing pro-inflammatory cytokines [2]. Consequently, 

understanding how a material’s properties alter the adherence, inflammatory responses, 

and phagocytic function of macrophages is essential for the development of appropriate 

materials for biomedical applications such as those for hip replacements [3] and cochlear 

implants [4].  

Macrophages can sense topographical features at the submicron scale, which 

determines whether they will spread across the surface or initiate phagocytosis [5,6]. 

Adherent macrophages exhibit a wide range of cell shapes including amoeboid, elongated 

spindle-like, or round depending on their lamellipodial extensions [7]. Macrophages with 

spindle-like morphology are more likely to have a pro-healing phenotype, which 

contributes to tissue repair and wound healing, whereas the rounded "fried-egg" 

morphology shows pro-inflammatory behavior [8].  

Surface topography has been proposed as a way to regulate the morphology and 

function of macrophages [9]. Surface patterns such as microgrooves [10–13], wrinkles 

[14], and concave/convex microstructures [15] have been reported to alter inflammatory 

responses of macrophages. For example, it has been observed that 2 and 10 μm-width 

grooves in fused silica result in the elongation of macrophages and improved phagocytosis 

of microbeads compared with flat surfaces [16]. In contrast, convex and concave patterns 

on poly(dimethylsiloxane) (PDMS) do not impact the expression of surface markers 

despite inducing significant changes in cell morphology [15]. Modification of surface 

chemistry such as charge and hydrophobicity can also impact macrophage phenotype 

[17–19]; however, topographical effects are believed to override the influence of surface 

chemistry [9]. The effect of a wide range of materials including titanium [11,17,20,21], 

polyvinylidene fluoride [22], perfluoropolyether [23], PDMS [10,14,15], fused silica [16], 

poly(e-caprolactone) (PCL) and poly(lactic acid) (PLA) [10] with micro- and 

nanostructures have been investigated on macrophage morphology and inflammatory 
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responses with conflicting results. Consequently, the mechanisms by which topography 

alters macrophage phenotype and function remain unclear.  

In this work, we investigated the morphology and function of murine bone marrow-

derived macrophages cultured on glassy silica films with topographical features of 

different sizes. SiO2 is a biocompatible, nontoxic, and inexpensive material that is used to 

coat implant surfaces to improve corrosion resistance [24,25]. To evaluate the impact of 

topography on macrophage morphology and function, micro- and nanostructured SiO2 

surfaces were fabricated using a previously established thermal shrinking technique [26]. 

We hypothesized that surface topography could impact macrophage morphology, 

phagocytic capacity, inflammatory responses, and plasma membrane receptor mobility. 

Thus, we investigated whether surface topography impacted phagocytosis of Streptococcus 

pneumoniae, pro-inflammatory cytokine IL-6 production, and lateral diffusion of toll like 

receptor 2 (TLR2). Our data indicates that structured SiO2 films alter macrophage 

morphology and increase their phagocytic capacity; however, they do not change the 

production of pro-inflammatory cytokine IL-6 or the diffusion of the membrane receptor 

TLR2.  

3.2 Experimental Section 

3.2.1 Substrate Preparation  

Micro- and nanostructured glassy SiO2 substrates were fabricated using a method 

previously described [26]. Pre-stressed polystyrene (PS) sheets (Graphix Shrink Film, 

Graphix, Maple Heights, OH) were cut into 2×2 cm substrates with a Robo Pro 

CE5000-40-CRP cutter and CB15UB blade (Graphtec America Inc., Irvine, CA). The 

PS substrates were cleaned for 5 minutes in sequential isopropanol, ethanol, and water 

baths, under orbital agitation (70 rpm), and dried using a nitrogen stream. Thin SiO2 

films (2 and 50 nm-thick) were deposited onto clean PS substrates from a high purity silica 

target (LTS Chemical Inc., Chestnut Ridge, New York) using a Torr Compact Research 

Coater CRC-600 manual planar magnetron sputtering system (New Windsor, New 

York). The coated substrates were then thermally shrunken to produce micro- or 

nanostructured films using an Isotemp vacuum oven (Fisher Scientific, Ottawa, ON, 

Canada) at 160°C for 3 minutes. To investigate the effect of plasma oxidation, the SiO2 

substrates were treated in a plasma chamber (Harrick, Ithaca, NY) for 60 s at high power 
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(30 W) with a partial air pressure of 600 mTorr, 30-45 minutes before seeding the cells.  

 

3.2.2 White Light Interferometry  

The roughness of structured substrates was assessed through white light 

interferometry microscopy (WLIM) using a Zygo NewView5000 (Zygo Corporation, 

Middlefield, CT, USA). Measurements were taken with a CCD camera, with 50× 

objectives and additional 2× optical magnification, resulting in fields of view of 70 × 50 

µm to obtain the root mean square (RMS) and peak-to-valley (P-V) values, respectively. A 

Fast Fourier Transform (FFT) band pass filter was applied for all measurements, using 

cut-off frequencies of 180.35 and 558.79 mm-1. RMS and P-V values were obtained from 

MetroPro software for 3-5 areas on each sample and across triplicate substrates 

(Supporting Information Figure S3.1).  

 

3.2.3 Water Contact Angle Measurements 

The wettability was measured for all substrates using an OCA 35 video-based contact 

angle instrument (Future Digital Scientific, Garden City, NY, USA). Using the sessile 

drop method, 3 µL of water was dropped onto dry surfaces and a static image was 

captured immediately after contact. The contact angle was measured with the SCA 20 

software (Future Digital Scientific) and was obtained for three replicate substrates. 

 

3.2.4 Macrophage Culture  

Bone marrow progenitors from 10-14 wk C57BL/6 mice (The Jackson Laboratory, 

Maine, USA) were isolated from spines according to previously published methods [27]. 

Progenitor cells were cultured for 7 days in RPMI-1640 supplemented with 10% fetal 

bovine serum (FBS), 1% L-glutamine, 1% penicillin/streptomycin, and 15% L929 

fibroblast cell conditioned medium on 150 mm Petri dishes (Fisherbrand) as per standard 

protocols [27,28]. Differentiated macrophages were incubated with Accutase for 5 

minutes and gently lifted using a cell lifter. Cells were then plated at a density of 50,000 

cells/cm2 on each SiO2 substrate, 24 hrs before imaging. For each type of substrate, three 

technical replicates were performed. All animal manipulations were done according to 

protocols approved by McMaster’s Animal Research Ethics Board. 
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3.2.5 Scanning Electron Microscopy  

Substrates with adhered cells were fixed overnight using 2% (v/v) glutaraldehyde in 

0.1 M phosphate buffer pH 7.4. The samples were rinsed two times in buffer solution, 

and the membranes were fixed using 1% osmium tetroxide in 0.1 M phosphate buffer for 

1 hr, and dehydrated in a graded ethanol series increasing in concentration: 50, 70 (2×), 

95 (2×), and 100% (2×). The samples were then dried using a Leica EM CPD300 critical 

point dryer (Leica Mikrosysteme GmbH, Wien, Austria) and coated with ~20 nm of gold 

using a Polaron Model E5100 sputter coater (Polaron Equipment Ltd., Watford, 

Hertfordshire). Images were captured using a Tescan Vega II LSU scanning electron 

microscope (Tescan USA, PA), operating at an accelerating voltage of 20kV. 

 

3.2.6 Epifluorescence Imaging 

Cell samples were washed 3× with PBS and fixed with 0.4% w/v p-formaldehyde 

and 0.1% v/v glutaraldehyde (Sigma Aldrich, Oakville, ON, Canada) in PBS for 15 min. 

After 3× washes with PBS, the fixation was quenched by incubation with a 25 mM 

glycine (Sigma Aldrich, Oakville, ON, Canada) solution in PBS for 10 min. The glycine 

solution was replaced by a 0.2% w/v fish gelatin and 0.2% w/v bovine serum albumin 

(BSA) (Sigma Aldrich, Oakville, ON, Canada) solution in PBS, and the samples were 

incubated for 15 min to block the surface from non-specific binding. All fixatives were 

added at room temperature. The fixed cells were stored in PBS at 4°C until imaging. For 

staining, the cell membrane was permeabilized using a 0.2% v/v Triton-X solution 

(Sigma Aldrich, Oakville, ON, Canada), according to the manufacturers’ directions. The 

cell nuclei were stained with a 600 nM 4,6-diamidino-2-phenylindole dihydrochloride 

(DAPI) (Invitrogen, Burlington, ON, Canada), and the actin filaments were labeled with 

Alexa Fluor 488-phalloidin (Invitrogen, Burlington, ON, Canada). The fluorescent 

samples were then imaged in PBS with a Nikon Eclipse LV100N POL epifluorescence 

microscope (Nikon Instruments, Mississauga, ON, Canada) equipped with a 60×/0.9NA 

physiological objective and a Retiga 2000R camera (QImaging, Surrey, BC, Canada). 

Fluorescence images were captured using NIS Elements software (Nikon Instruments, 

Mississauga, ON, Canada).  
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3.2.7 Fractal Analysis  

Fractal analysis based on the box counting method was used to quantitatively assess 

cellular morphology. This method determines the complexity of a geometrical figure by 

counting how many boxes of a given size are required to cover an area or perimeter, and 

doing this process for a range of box sizes [29]. Epifluorescence images of macrophages 

were converted into binary maps where the cell surface and background area were 

represented by ones and zeros, respectively (Supporting Information, Figure S3.7), and 

were cropped to contain mostly the cell. Each binary image was then introduced to our 

box counting algorithm written in MATLAB (MathWorks) and was placed on grids of 

box sizes from s = 1 to s = maximum width/2, where the width was defined as the 

smallest of the two dimensions of the image. The number of boxes contained in each cell 

(ones in the binary map) was counted. This method generated two graphs with the x-axis 

as log (N) and the y-axis as log (1/s2), where N and s represent the number and size of the 

boxes, respectively. The slope of the graphs represents the fractal dimension FDA for the 

area and FDP for the perimeter. A sample of 10 cells was imaged and analyzed per 

substrate with three substrate replicates, yielding a total of 30 cells per treatment.  

 

3.2.8 Streptococcus pneumoniae Internalization Assay  

S. pneumoniae strain P1121 (clinical isolate, serotype 23F, provided by Dr. J. N. 

Weiser, University of Pennsylvania, PA, USA) with OD600 = 0.5 was heated for 10 min at 

65°C to kill the bacteria, which was then digested with lysozyme and labeled with 20 

ng/mL of TRITC (Invitrogen, Burlington, ON) for 30 min at 37°C. The fluorescent 

bacteria were then incubated with macrophages for 1.5 hr at a multiplicity of infection of 

50 bacteria per cell (MOI 50) and washed with PBS subsequently. The internalized 

bacteria were measured on a SpectraMax i3 plate reader (Molecular Devices, San Jose, 

CA, USA) at 555 nm excitation and 580 nm emission wavelengths. Relative fluorescence 

values (rfu) were corrected for autofluorescence and nonspecific bacterial adsorption onto 

the substrates. All experiments were performed in triplicate. Macrophages were then 

fixed and stained for fluorescent imaging as previously described. 
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3.2.9 Interleukin-6 (IL-6) Enzyme-linked Immunosorbent Assay (ELISA) 

BMDMs were seeded at a density of 1×105

 
cells/cm2 and stimulated with 500 

ng/mL of Pam3Csk4 (Invivogen, San Diego, CA, USA) for 24 hr. Supernatants were 

collected and frozen at -80°C until quantification of IL-6 secretion by ELISA 

(eBioscience, CA, USA), which was performed as per the manufacturer’s directions.  

 

3.2.10 Diffusion Measurements 

All imaging was performed in RPMI-1640 Medium, without phenol red (Life 

Technologies- GibcoTM). TLR2 was visualized using Alexa Fluor 647-conjugated anti-

TLR2/CD282, by adding 1 μL of the staining monoclonal antibody (0.2 mg/mL stock 

concentration) to 2 mL of the imaging media. Antibody staining was performed at 4°C 

for 1 hr to prevent receptor internalization, after which the samples were washed 3× with 

PBS and the media was replaced with RPMI containing 5 mM ascorbic acid to minimize 

photobleaching during imaging. The substrates were inverted on glass bottom dishes and 

imaging was performed on a heated stage set to 37°C.  

Raster-scan images were collected using confocal laser-scanning microscopy (CLSM) 

(Nikon Microscope ECLIPSE LV100ND) on an inverted microscope fitted with a 

60x/1.40NA Plan Apo λ oil-immersion objective. Excitation was from 647-nm laser line 

attenuated to 0.30-0.70% of the nominal laser power (20 mW). A pinhole size of 1.2 AU 

(47.3 μm) was chosen for imaging. For scanning the basal membrane, the plane of focus 

was set as close as possible to the bottom membrane plane, where the cell was making 

contact with the substrate. The apical membrane was found by focusing on the highest 

observable plane through the cell.  

For raster image correlation spectroscopy (RICS), 256×256-pixel images were 

collected using NIS imaging software (NIS-Elements AR 4.30.02) at 16.66x zoom, 

corresponding to a pixel size of 50 nm. The pixel dwell time was set to 23.8 μs/pixel, and 

the line time to 7.858 ms for raster-scanning live cells. Stacks of 50 images were captured 

with no delay between frames. Imaging of live cells was performed at 37°C using a stage 

top incubator (TOKAI HIT, INUBG2ATW-TIZW) in combination with a heated collar 

around the objective.  
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Diffusion data were extracted from the images using SimFCS software (Laboratory of 

Fluorescence Dynamics, University of California, Irvine) [30]. Regions of interest were 

selected with frame sizes of 64×64 pixels (3.2×3.2 μm2) for each cell (Supporting 

Information Figure S3.8). Diffusion was measured using the known parameters of pixel 

dwell time, line time, size of each pixel, and the beam waist. For each stack of images, the 

RICS function was calculated as the average of all images of the stack (Supporting 

Information Figure S3.9). Data were obtained from 20-25 cells for each of the SiO2 

conditions, using a minimum of three replicate samples per condition. A focal volume 

waist (ωο) of 0.264 μm was estimated for the excitation beam by measuring the 

autocorrelation curve of a freely diffusing dUTP (SIGMA/19475, Aminoallyl-dUTP-

Cy®5 triethylammonium salt solution, ≥95.0% HPLC). Further details on the calibration 

method are provided in the Supporting Information. 

 

3.2.11 Cell Viability Test  

Cell viability was measured for all SiO2 conditions with Zombie Red™ (BioLegend, 

excitation: 600 nm, emission: 624 nm) added at 1:1000 dilution 30 min prior to imaging. 

Similar to the protocol used for the RICS experiments, the samples were incubated at 

4°C for 1hr in RPMI-1640 without phenol red, followed by 120 min at 37°C on the stage 

top incubator of the microscope, in the imaging media containing 5 mM ascorbic acid. 

The samples were then washed with PBS and fixed with 2% paraformaldehyde in PBS 

(15 min incubation). The nuclei were then labeled with DAPI and the samples were 

imaged using the confocal microscope to count the viable cells. To verify the accuracy of 

the Zombie Red, the fixed samples were also stained. 100% of paraformaldehyde fixed 

cells stained positive with Zombie Red. Less than 5% of viable cells stained positive for all 

SiO2 substrate conditions.   

 

3.2.12 Statistical Analysis   

Statistical analysis and plotting was performed using SPSS software (IBM SPSS 

Statistics 21) and Prism 7.0a (GraphPad Software Inc.), respectively. Differences were 

considered statistically significant at P values of < 0.05.  
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3.3 Results 

3.3.1 Surface Characterization  

Thermal shrinking of a shape-memory polymer substrate coated with thin SiO2 films 

produced topographies that were dependent on the initial film thickness (Figure 3.1). The 

substrates coated with 2 nm-thick films (labeled as 2S) displayed nanoscale wrinkles after 

shrinking, while the 50 nm-thick (50S) substrates formed micrometer ones. The wrinkles 

were randomly distributed on both substrates. Quantitative information on the 

height/depth of the topographic features was acquired using white light interferometry 

microscopy – WLIM (Supporting Information Figure S1). Roughness measurements 

showed P-V values of 2.0 ± 0.2 μm and 9 ± 1 μm for 2S and 50S substrates, respectively, 

and RMS values of 250 ± 10 nm and 860 ± 90 nm for 2S and 50S substrates, 

respectively. The topographies of the structured materials were much larger than those of 

the flat SiO2 films, which had RMS roughness values of 0.657 ± 0.008 nm, as calculated 

from AFM images (Supporting Information Figure S3.2). The surface wrinkles on 2S 

substrates were shown by WLIM to be on the order of hundredths of nanometers and 

were seen by SEM to be decorated with small corrugations (Figure 3.1B). In contrast, film 

cracking on the order of microns was observed for 50S substrates (Figure 3.1C).  

 

Figure 3.1 Characterization of fabricated substrates. SEM images of (A) flat, (B) 2 nm, and (C) 
50 nm SiO2 films after thermal shrinking. (D) WCA measurements of untreated and plasma 
treated polystyrene (PS), 2 nm flat SiO2 (2F), 50 nm flat SiO2 (50F), 2 nm structured SiO2 films 
(2S), and 50 nm structured SiO2 films (50S). Bars represent the mean of three independent 
experiments ± SEM. Unmeasurable: plasma treated films were super-hydrophilic.  
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The wettability of all substrates and the impact of plasma treatment on hydrophilicity 

were assessed using water contact angle (WCA) (Figure 3.1D). Untreated PS was 

hydrophobic (WCA > 90°) whereas the flat 2 and 50 nm SiO2 substrates (labeled as 2F 

and 50F) were hydrophilic and had similar contact angles (~20°- 30°). Upon shrinking 

the substrates, a significant decrease in the WCA of 2S (from 22° to 8°) and a significant 

increase in the WCA of 50S (from 25° to 92°) were observed. In an effort to render the 

test surfaces hydrophilic, all substrates were oxidized with air plasma. PS became more 

hydrophilic (WCA of 69° vs. 88°), and SiO2 substrates became super-hydrophilic with 

WCAs that could not be measured. 

 

3.3.2 Cell Morphology 

The adhesion and morphology of cells cultured on the SiO2 substrates with different 

topographies were qualitatively evaluated through SEM imaging. In general, 

macrophages exhibited heterogeneous morphologies; nevertheless, certain morphologies 

were more predominant on specific structured substrates. While no significant difference 

was observed in the number of cells adhered to the different surface topographies (as 

assessed through cell staining and counting, Supporting Information Figure S3.3), SEM 

images (Figure 3.2) revealed differences in cell morphology in response to changes in the 

surface topography from flat to rougher SiO2. Macrophages on the flat SiO2 and 2 nm 

SiO2 structured surfaces displayed either elongated or “fried egg” shapes (as typically seen 

in cell culture dishes) with numerous filopodial extensions, although a more uniform 

spreading of the basal cell membrane between filopodia was seen in the flat substrate. On 

the rougher substrate (50S), macrophages were more frequently star-shaped with several 

anchor points on the ridges of the wrinkles, and very few filopodia. Moreover, the surface 

of most cells appeared smoother with less prominent membrane ruffling. Similarly, 

plasma treatment did not result in any obvious changes in the attachment and 

morphology of the cells compared to untreated samples (Supporting Information Figure 

S3.4). 

Cell morphology changes were quantitatively assessed by calculating the area and 

perimeter fractal dimensions as measures of the complexity of the cell shape. A fractal 

dimension analysis in general reports on the complexity of the object across length scales. 
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The fractal dimension for the perimeter (FDP) reports on the complexity of the cell 

boundary, regardless of whether this is for filipodia, lamellipodia or any other cellular 

extension. Similarly, the fractal dimension for the area (FDA) reports on the complexity of 

the area covered by a 2-dimensional object. As illustrative examples, one can consider 

circle, rectangle, and star shapes and calculate their FDA and FDP (Supporting 

Information, Figure S3.5). Since 2D images are analyzed, the fractal dimension values 

expected would lie between 1 and 2, representing the dimensions of a line and square, 

respectively. The reader will see that the FDA of these sample figures increases as the 

area becomes less isotropic (in increasing order: star, rectangle, circle), while, the FDP 

increases as the perimeter deviates from a straight line (in increasing order: rectangle, 

circle, star). A similar approach was used to determine the FDP and FDA for cells 

incubated on all surface conditions using the box-counting method (10 cells per substrate, 

with three replicates for a total of 30 cells per condition). Macrophages cultured on 50S 

substrates exhibited significantly lower FDA and FDP values compared to those cultured 

on 2S substrates, for both plasma-treated and untreated substrates (Figure 3.3). The FDP 

value was significantly higher for cells on 2S substrates compared with flat surfaces while 

their FDA values did not show any significant difference. Additionally, when looking at 

individual conditions, the plasma treatment did not significantly change the FDA and 

FDP of the adherent macrophages, consistent with the qualitative observation that 

plasma treatment does not significantly change cell morphology.  
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Figure 3.2 Representative SEM images of macrophages adhered to SiO2 substrates, showing 
differences in cell morphology in response to rougher topography. (A) 50F control, (B) 2S, (C) 
50S. All scale bars represent 10 µm.  
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Figure 3.3 Quantitative assessment of cell morphology using fractal dimension. (A) Fractal 
dimension area (FDA) and (B) Fractal dimension perimeter (FDP) values for BMDMs on different 
substrates: plasma treated vs. untreated 50 nm flat SiO2 (50F), 2 nm structured SiO2 (2S), and 50 
nm structured SiO2 (50S). Bars represent the mean ± SEM, for n = 30 cells evaluated (from three 
substrate replicates with 10 cells per substrate). One-way ANOVA with Tukey’s post hoc test for 
comparison between substrates, and multiple t-tests between untreated and plasma-treated 
substrates with P values adjusted using Holm-Sidak correction method (*P ≤ 0.05, **P ≤ 0.01, 
***P ≤ 0.001).  

  

3.3.3 Streptococcus pneumoniae Internalization Assay  

As the substrates fabricated in this study were shown to change macrophage 

morphology, we further evaluated their impact on phagocytosis. Specifically, we assessed 

the internalization of heat-killed TRITC-labeled S. pneumoniae by BMDMs on the flat and 

structured substrates. Fluorescence images (Figure 3.4A-C) were used to qualitatively 

assess the phagocytic function of macrophages, which revealed higher bacteria uptake on 

2S and 50S compared with flat surfaces. This observation was verified by quantitative 

measurements (Figure 3.4D), where the relative fluorescence unit (RFU) value is 

proportional to the number of bacteria internalized by the cells on each substrate. 
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Macrophages on the structured SiO2 substrates internalized more bacteria compared 

with those on flat surfaces. This difference was more pronounced when comparing 50F 

with 50S, suggesting that topography significantly alters phagocytic function, particularly 

on larger microstructures. Moreover, it was observed that plasma treatment did not 

significantly change phagocytic function in this experiment.  

 

Figure 3.4 Phagocytosis of heat-killed, TRITC-labeled S. pneumoniae by BMDMs. Representative 
fluorescence images of BMDMs (green) and the internalized bacteria (red) on (A) 50 nm flat SiO2 
(50F), (B) 2 nm structured SiO2 (2S), and (C) 50 nm structured SiO2 (50S). (D) Relative 
fluorescence (RFU) values for BMDMs on plasma treated vs. untreated substrates. Bars represent 
the mean ± SEM from n = 3 independently prepared samples. The RFU values have been 
normalized to the relative adhered cell density observed for each condition. Statistical analysis 
was done using one-way ANOVA with Tukey’s post hoc test for comparison between substrates, 
and multiple t-tests between untreated and plasma-treated substrates with P value adjusted using 
Holm-Sidak correction method (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). The measured fluorescence 
is proportional to the amount of TRITC-labeled bacteria internalized. The scale bar is the same 
in A, B, and C.  
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3.3.4 IL-6 Cytokine Secretion 

We next investigated whether substrates with micro- and nanostructured surfaces 

altered IL-6 cytokine secretion. Macrophages cultured on different substrates were 

stimulated with the TLR2 agonist Pam3Csk4, and the secretion of IL-6 was measured by 

ELISA. No significant difference in IL-6 secretion was observed for macrophages 

cultured on untreated substrates (Figure 3.5). In contrast, among plasma-treated surfaces, 

stimulation of cells on 50F resulted in significantly higher IL-6 secretion compared with 

plasma-treated 2S. Plasma-treatment also significantly decreased cytokine secretion by 

macrophages cultured on the 2S surfaces. In the absence of stimulation, IL-6 secretion 

was below the level of detection for all substrates. 

 

 

Figure 3.5 IL-6 secretion by BMDMs in response to stimulation with Pam3Csk4 on different 
substrates. Plasma treated vs. untreated comparison for substrates: 50 nm flat SiO2 (50F), 2 nm 
structured SiO2 (2S), and 50 nm structured SiO2 (50S). Bars represent mean ± SEM of n = 3 
independently prepared samples. The IL-6 values have been normalized to the relative adhered 
cell density observed for each condition. Statistical analysis was done using one-way ANOVA 
with Tukey’s post hoc test for comparison between substrates, and multiple t-tests between 
untreated and plasma-treated substrates with P values adjusted using Holm-Sidak correction 
method (*P ≤ 0.05).  

 

3.3.5 Membrane Diffusion – TLR2 

We measured the lateral diffusion of TLR2 in the plasma membrane of macrophages 

using raster image correlation spectroscopy (RICS) to investigate whether surface 

topographies could impact membrane fluidity and receptor diffusion. The average TLR2 

diffusion was higher in the apical membrane than the basal membrane for macrophages 

cultured on all substrate conditions (Supporting Information Figure S3.6). Among the six 
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substrate conditions, the average TLR2 diffusion was highest (0.15 ± 0.03 μm2. s-1, mean 

± SD) on the apical membranes of macrophages on untreated 50F, and lowest on the 

basal membranes of cells on 2S (0.10 ± 0.04 μm2. s-1). Figure 3.6 shows the comparison of 

TLR2 receptor diffusion for plasma membranes of cells on all structured substrates. 

Differences in TLR2 diffusion on the apical and basal membranes were determined by 

one-way ANOVA with 95% confidence interval. No significant difference was observed 

for the mean TLR2 diffusions obtained from apical (F5,123=1.547, P=0.18) and basal 

(F5,123=1.887, P=0.101) membranes on the six different substrate conditions.  

 

 
Figure 3.6 Lateral diffusion of TLR2 obtained from raster image correlation spectroscopy. (A) 
apical and (B) basal membranes of BMDMs cultured on different substrates. Plasma treated vs. 
untreated comparison for substrates: 50 nm flat SiO2 (50F), 2 nm structured SiO2 (2S), and 50 nm 
structured SiO2 (50S). Data is from a minimum of 20 cells from at least 3 independent replicate 
experiments. Boxes show 25th-75th percentiles with whiskers extending to minimum and 
maximum values measured. Statistical analysis was done using one-way ANOVA with 95% 
confidence interval for apical and basal membranes in separate groups, which did not show any 
statistically significant differences. 
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3.4 Discussion  

Despite differences in topographical features, materials used, and the source of 

macrophages, most studies report that macrophage shape is altered on structured surfaces 

[11,12,14,15]; however, the mechanisms by which surface topographies impact 

macrophage function are not yet fully understood. In this work, we investigated how 

surface topography and wettability alter macrophage shape, phagocytosis of Streptococcus 

pneumoniae, production of pro-inflammatory IL-6 cytokine, and TLR2 receptor mobility 

within the membrane.   

The structured substrates fabricated in this study had significantly larger 

topographical features for 50 nm-thick sputtered SiO2 film (50S) compared to the 2 nm-

thick films (2S). This is in line with previous reports that have shown that the wrinkle size 

is dependent on the thickness and modulus of the deposited film [26,31], and follows from 

the wavelength of the buckling instability induced upon compression of a stack of films 

with mismatched elastic moduli [32,33]. We observed film cracking for 50S substrate that 

results from the low fracture toughness (0.8 ± 0.2 MPa m1/2) [34] of the SiO2 film. The 

roughness measurements obtained for film thicknesses > 50 nm showed a plateau for 

RMS roughness values, indicating that film fracture places an upper limit to the sizes of 

the topographical structures that this structuring method can produce. The WCA 

measurements for the 2S substrate are consistent with the Wenzel model [35], where the 

surface appeared homogeneously hydrophilic and water filled the voids between the 

wrinkles. In contrast, the 50S substrate with topographical features in the micron range 

followed the Cassie-Baxter model [36], where the surface appeared heterogeneous and 

air pockets filled the voids between the wrinkles such that water could not reach the 

whole surface, resulting in a higher contact angle [37]. The observed differences in 

wettability disappeared when the substrates were plasma oxidized, which rendered the 

surfaces superhydrophilic. 

Macrophage morphology is typically quantified by measuring the long axis of the cell 

divided by the width across the nucleus, a ratio known as the “elongation factor” [10], 

[11,14]. Although this is instructive for measuring the elongation that occurs on 

unidirectional patterns, it is less useful for evaluating changes in membrane complexity 

such as those observed on random micro- and nanostructured surfaces, where, in 
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addition to changes in the overall shape and elongation of the cell, changes in the 

complexity of the cell boundary also occur (cf. Figure 3.2B). In contrast, fractal analysis 

can yield more information about cell geometry, beyond description of cell size and gross 

morphology [38]. To our knowledge, this is the first study on macrophage morphology 

that applies the fractal dimension to quantitatively assess morphological changes for the 

cell boundary and area.  

Macrophages cultured on 50S substrates adopted a flattened star-shaped 

morphology, which was not observed on the flat and 2S surfaces and was independent of 

plasma treatment. These findings are consistent with previous studies that demonstrated 

morphological changes become more pronounced when the size of surface features 

reaches a certain scale. For example, it has been reported that macrophages are relatively 

insensitive to topographical features < 500 nm for substrates made of PCL, PLA, and 

PDMS [10], while macrophages adhered to polyethylene substrates presenting wrinkles 

with heights of a few microns do not display morphological changes compared with those 

on flat surfaces [14], although morphology was not quantified in these prior studies. In 

our work, macrophages did not align along or conform to the topographical features of 

2S and 50S substrates, as previously observed for 3T3 fibroblasts in wrinkled polymer 

films [39], which was attributed to the relatively small spaces between surface features 

compared to the size of the cell bodies. There were no gross differences in macrophage 

morphology between the flat and 2S surfaces as seen in SEM images (Figure 3.2) and the 

FDA values (Figure 3.3A) that were not statistically different. However, we observed an 

increase in the number of filopodia, i.e., finger-like membrane protrusions, which 

translated into higher FDP values (Figure 3.3B).   

The increased phagocytic capacity of macrophages on the 2S and 50S substrates 

indicates that both micro- and nanostructured SiO2 films impact macrophage function. 

Our findings are consistent with the general trend of increased phagocytosis reported for 

structured surfaces with parallel grooves. For example, P388D1 macrophages cultured on 

2 and 10 μm fused silica microgrooves had more “microspikes” and phagocytosed more 

microbeads on the grooves than on plain surfaces [16]. Similarly, macrophages on 

GelMA hydrogel micropillars were found to phagocytose significantly less (∼50%) 

zymosan particles than macrophages cultured on microgrooves/ridges, where the cells 
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adopted an elongated morphology [13]. In contrast, the macrophages on our 50S 

substrates did not develop elongated morphology or increased number of microspikes; yet 

their higher phagocytic capacity is evident as shown in Figure 3.4, suggesting that a 

different mechanism is at play for the enhanced phagocytosis. In our experiments, plasma 

treatment did not alter the phagocytic function of macrophages on flat, 2S, and 50S SiO2 

films. In contrast, it has been reported that human monocyte-derived macrophages 

cultured on flat hydrophilic O2 plasma-etched polystyrene surfaces engulf significantly 

more zymosan particles compared with untreated polystyrene [18]. Whether these 

inconsistencies are due to differences in the species phagocytosed, the source of 

macrophages (bone marrow vs. monocyte-derived), substrate material, or methodological 

differences is not clear and could be the subject of further comparative studies.  

Although the interaction of macrophages with the structured surfaces resulted in 

increased phagocytosis, it had no effect on the pro-inflammatory IL-6 secretion in the 

absence of stimulation. IL-6 secretion in response to Pam3Csk4 did not change for 

macrophages on untreated surfaces with different topographies, suggesting that 

topography of SiO2 materials alone might not induce a pro-inflammatory response. In 

contrast, it has been reported that human monocyte-derived macrophages cultured on 

fibrous expanded polyfluoroethylene (PTFE) substrates, without additional stimulation, 

secrete pro-inflammatory cytokines, including the IL-6, that increases as the micron-scale 

distance between the PTFE fibers is increased [40]. While in our experiments IL-6 

provides a first indication that flat and structured SiO2 substrates do not induce a pro-

inflammatory response, a full evaluation of the impact of these substrates on the overall 

inflammatory response of macrophages requires further investigation with a broader 

range of receptors and cytokines.  

We hypothesized that since the incubation on structured surfaces led to significant 

changes in macrophage morphology and function, it could also lead to changes in 

transport within the plasma membrane. To test this hypothesis, lateral diffusion of TLR2 

was measured quantitatively using RICS for macrophages on all substrate conditions. 

Our RICS measurements yielded diffusion coefficients of 0.12 ± 0.04 and 0.15 ± 0.03 

μm2.s-1 for TLR2 receptors on the basal and apical membranes, respectively, of 

macrophages adhered to flat SiO2 substrates. To our knowledge, there are no previous 
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reports of diffusion measurements of TLR2 on the plasma membrane of macrophages; 

however, these numbers are comparable to those reported for the diffusion coefficient 

measured by FRAP of TLR2 receptors in Chinese hamster ovary cells (0.17 ± 0.03 μm2.s-

1) [41]. In our experiments, the lower diffusion observed for the basal membrane is likely 

due to membrane-substrate interactions. Although significant differences in TLR2 lateral 

diffusion were observed between the apical and basal membranes on all surface 

conditions, there was no statistically significant difference in TLR2 diffusion in the basal 

membrane of macrophages attached to different substrates. Therefore, in spite of 

significant morphological changes in macrophages bound to the rougher surface 

topographies, no association was found between TLR2 diffusion and the surface 

conditions used, i.e., structure size and plasma treatment. This finding suggests that the 

increased phagocytic ability shown by macrophages cultured on 2S and 50S substrates 

(Figure 3.4) does not correlate with any changes in IL-6 secretion or the membrane 

mobility as reported by TLR2 diffusion.  

 

3.5 Conclusion 

In summary, the present study shows that nano- and microstructured surfaces of 

SiO2 alter the morphology of macrophages, by increasing filopodia generation or 

modifying the overall cell shape, and increase their phagocytic capacity. In contrast, these 

morphological changes do not alter the pro-inflammatory IL-6 cytokine secretion and the 

lateral diffusion of the transmembrane receptor TLR2; although plasma treatment 

changes cytokine secretion for some conditions. Further research is needed to identify the 

molecular mechanisms underlying the effect of surface treatment on IL-6 secretion. 

Understanding the biological outcome of this type of structured thin films with tunable 

interfacial properties can aid in the rational development of appropriate implant 

materials and interfaces, as well as in novel cell culture devices for the diagnosis of 

impaired phagocytic capacity in macrophages.  

 

Supporting Information  

Supporting Information is available from the Wiley Online Library or from the author. 
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Chapter 4  
 

 

 

Age-Related Changes in Macrophages  
 

The prevalence of chronic illnesses increases with age and elderly are more 

susceptible to infectious diseases due to impaired immune system. To date, several age-

related changes in the innate immune cells have been identified; however, the reported 

data related to changes in macrophage phenotypes are inconclusive.  

This chapter presents a preliminary comparison of macrophages derived from the 

bone marrow of young and old mice, with focus on their phagocytic capacity to 

internalize the bacteria Streptococcus pneumoniae and the lateral diffusion of TLR2 in the 

apical plasma membrane.  
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4.1 Introduction  

The innate and adaptive immune systems decline with age, leading to increased 

susceptibility to infections and inflammatory diseases [1,2,3]. Age-related changes in 

innate immunity include variations in the number of specific leukocytes present in 

circulation, receptor expression and signaling pathways, cytokine production, and 

phagocytic function, among others [4]. Studies on macrophage function in age-related 

inflammatory diseases have revealed impaired phagocytosis in older individuals [5], as 

well as reduced chemotaxis, reduced expression of MHC class II, lower capacity for 

antigen presentation [6,7], higher production of reactive oxygen species [8], and 

alterations in M1/M2 activation and polarization [9] that are associated with aging. 

Furthermore, previous investigations in aged mice have revealed an increase in the 

number of bone marrow-derived macrophages that have impaired ability to produce or 

release cytokines, suggesting that higher number of macrophages may compensate for 

their reduced function [10].  

Macrophages are professional phagocytes and their phagocytic function is central to 

the clearance of apoptotic cells and invading pathogens. Reports on age-associated 

changes in macrophage function indicate reduced phagocytic capacity in macrophages of 

different tissue origins. Peritoneal macrophages [11], alveolar macrophages [12], Kupffer 

cells (specialized liver macrophages) [13], and microglia (specialized macrophages in the 

central nervous system) [14], all exhibit an age-related decline in phagocytosis. However, 

comparison of young and old bone marrow-derived macrophages (BMDMs) have shown 

inconsistent results with regard to their phagocytic capacity. While there are reports that 

BMDMs derived from old mice take up fewer apoptotic granulocytes [15], others have 

shown no age-related changes [16]. However, it is unclear if these inconsistencies are due 

to differences in the type of particles phagocytosed by macrophages or in the 

experimental methodologies applied.  

Macrophages express transmembrane toll-like receptors (TLRs), which bind 

bacterial products and initiate inflammatory responses. TLR2, for example, binds the 

anchor motif of bacterial lipoproteins found on the surface of bacteria, and responds to 

lipid-containing pathogen associated molecular patterns (PAMPs) such as lipoteichoic 

acid (LTA) from Gram-positive bacteria [17]. Changes in TLR signaling not only 
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increase susceptibility to infections but can also trigger other conditions such as 

atherosclerosis and autoimmune diseases [18]. Although the existing reports on TLR 

changes are not conclusive, most investigations have shown TLR2-mediated pro-

inflammatory signaling pathways in macrophages are impaired with age, while cell-

surface expression of this receptor is not changed [19].  

Deficiencies in TLR function contribute to susceptibility to infectious diseases in the 

elderly [20], as in the case of infection caused by Streptococcus pneumoniae (the 

pneumococcus) [21]. Pneumococcal cell wall and the toxin pneumolysin cause 

inflammation by binding to TLR1/TLR2 [22] and TLR4 [23] on the macrophage cell 

surface, respectively, which in turn initiates a cell-signaling cascade that activates the 

transcription nuclear factor kappa B. (NF-κB). NF-κB is a major regulator of innate 

immunity, and its activation results in the transcription of pro-inflammatory cytokines. 

However, the mechanisms leading to age-associated dysregulation in TLR2 signaling 

have yet to be elucidated.  

The aim of this chapter is to compare the phagocytic capacity and TLR2 diffusion in 

macrophages derived from young and aged mice. We have assessed the internalization 

capacity of macrophages using polystyrene microspheres and S. pneumoniae. We have also 

investigated whether TLR2 diffusion is different in the plasma membrane of 

macrophages from young and old groups, both in their resting state and after stimulation 

with S. pneumoniae.  

Considering the essential role of macrophages in innate immunity, identifying the 

age-related changes that appear in macrophages can help in the rational development of 

effective therapeutic strategies to fight infections.  

 

4.2 Experimental Section 

4.2.1 Macrophage Culture  

Bone marrow progenitors from 5 young (10-14 wk) and 5 old (19-22 months) 

C57BL/6 male mice (The Jackson Laboratory, Maine, USA) were isolated from spines 

according to previously published methods [24]. Progenitor cells were cultured for 7 days 

in RPMI-1640 supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine, 1% 

penicillin/streptomycin, and 15% L929 fibroblast cell conditioned medium on 150 mm 
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Petri dishes (Fisherbrand, Fisher Scientific, Pittsburgh, PA) per standard protocols 

[24,25]. Differentiated macrophages were incubated with Accutase for 5 minutes and 

gently lifted using a cell lifter. Cells were counted and pooled from 5 mice (20% 

contribution from each mouse) for each young and old group. Cells were plated 24 hrs 

before imaging, at a density of 100,000 per Glass Bottom Microwell dishes (35 mm dish, 

20 mm Microwell, No. 1.5 coverglass, 0.16-0.19 mm thickness, MatTek, Ashland, MA). 

All animal manipulations were done according to protocols approved by McMaster’s 

Animal Research Ethics Board. 

 

4.2.2 Polystyrene Beads/Bacterial Internalization Assay 

Fluorescently conjugated polystyrene beads (Fluoresbrite® YG Microspheres 0.50 

μm, Polysciences Inc., Warrington, PA), and S. pneumoniae strain P1547 (clinical isolate, 

serotype 6A, provided by Dr. Jeff. N. Weiser, New York University, NY, USA) were used 

in separate experiments for the internalization assay. The S. pneumoniae culture (OD600 = 

0.5) was heated for 10 min at 65°C to kill the bacteria, which was then digested with 

lysozyme and labeled using 20 ng/mL of TRITC (Invitrogen, Burlington, ON, Canada) 

for 30 min at 37°C. The fluorescent bacteria or polystyrene beads were then incubated 

with macrophages in suspension on a nutator mixer for 1.5 hr at 37°C with a multiplicity 

of infection (MOI) of 320 beads per cell or 50 bacteria per cell, in separate experiments 

with three replicates for each of the young and old groups. The samples were 

subsequently washed 3× with PBS and centrifugation. The internalized beads and 

bacteria were then measured on a SpectraMax i3 plate reader (Molecular Devices, San 

Jose, CA, USA) at 555 nm excitation and 580 nm emission wavelengths for detection of 

bacteria, and 441 nm excitation and 486 nm emission wavelengths for beads. Relative 

fluorescence values (RFU) were corrected for autofluorescence and nonspecific 

adsorption. Macrophages from young and old mice were then seeded on separate 

MatTek imaging dishes, incubated at 37°C for 1 hr, and finally fixed with 2% 

paraformaldehyde for 15 min at room temperature. The fixed cells were stored in PBS at 

4°C until staining and imaging. 
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4.2.3 Cell Staining and Counting 

For staining, the cell membrane was permeabilized using a 0.2% v/v Triton-X 

solution (Sigma Aldrich, Oakville, ON, Canada), according to the dye manufacturers’ 

directions. The cell nuclei for all samples were stained with a 600 nM solution of 4,6-

diamidino-2-phenylindole dihydrochloride (DAPI, Invitrogen, Burlington, ON, Canada). 

The cells with internalized polystyrene microspheres were stained with Zombie Red™ 

(BioLegend, excitation: 600 nm, emission: 624 nm) added at 1:1000 dilution for 30 min 

and subsequently washed 3× with PBS. The fluorescent samples were then imaged in 

PBS with a Nikon Eclipse LV100N POL epifluorescence microscope (Nikon Instruments, 

Mississauga, ON, Canada) equipped with a 60×/0.9NA physiological objective and a 

Retiga 2000R camera (QImaging, Surrey, BC, Canada). Fluorescence images were 

captured using NIS Elements software (Nikon Instruments, Mississauga, ON, Canada) to 

quantify the number of internalized microspheres and bacteria within each cell for 600 

macrophages from young and old mice (three replicates, 200 cells per dish).  

 

4.2.4 Diffusion Measurements 

All staining and imaging were performed in RPMI-1640 Medium, without phenol 

red (Life Technologies- GibcoTM). TLR2 was labeled using mouse anti-TLR2/CD282 

antibody conjugated with Alexa Fluor 647 using 1:1000 dilution of the monoclonal 

antibody (0.2 mg/mL stock concentration) in the imaging media. Antibody staining was 

performed at 4°C for 1 hr to prevent receptor internalization, after which the samples 

were washed 3× with PBS and the media was replaced with RPMI containing 5 mM 

ascorbic acid to minimize photobleaching during imaging. To investigate the impact of 

stimulation with bacteria, heat-killed S. pneumoniae were labeled with rabbit anti-

Streptococcus pneumoniae (4 mg/mL IgG stock concentration, dilution 1:1500) conjugated 

with FITC (AbD Serotec, Hercules, CA, USA). FITC-labeled bacteria were added to the 

imaging dish at a MOI of 50 per cell together with TLR2 antibody and were incubated 

with macrophages in suspension on a nutator mixer for 1 hr at 4°C. The samples were 

subsequently washed 3× with PBS and live cell imaging was performed immediately after 

at 37°C using a stage top incubator (TOKAI HIT, INUBG2ATW-TIZW).  
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Raster-scan images were collected using confocal laser-scanning microscopy (CLSM, 

Nikon Microscope ECLIPSE LV100ND) on an inverted microscope fitted with a 

60x/1.40NA Plan Apo λ oil-immersion objective. Excitation was from 647-nm laser line 

attenuated to 0.30-0.70% of the nominal laser power (20 mW). A pinhole size of 1.2 AU 

(47.3 μm) was chosen for imaging. The apical membrane was found by focusing on the 

highest observable plane through the cell.  

For raster image correlation spectroscopy (RICS), 256×256-pixel images were 

collected using NIS imaging software (NIS-Elements AR 4.30.02) at 16.66x zoom, 

corresponding to a pixel size of 50 nm. The pixel dwell time was set to 23.8 μs/pixel, and 

the line time to 7.858 ms for raster-scanning live cells. Stacks of 50 images were captured 

with no delay between frames.  

Diffusion data were extracted from the images using SimFCS software (Laboratory of 

Fluorescence Dynamics, University of California, Irvine) [26]. Regions of interest were 

selected with frame sizes of 64×64 pixels (3.2×3.2 μm2) for each cell. Diffusion was 

measured using the known parameters of pixel dwell time, line time, size of each pixel, 

and the beam waist. For each stack of images, the RICS function was calculated as the 

average of all images of the stack. Data were obtained from 60 cells for each of the young 

and old groups (120 cells in total) for unstimulated condition and 30 cells for each group 

(60 cells in total) for the stimulated state. A minimum of three replicate samples per 

condition was used.  

 

4.2.5 Statistical Analysis   

Statistical analysis and plotting were performed using SPSS software (IBM SPSS 

Statistics 21) and Prism 7.0a (GraphPad Software Inc.), respectively. Differences were 

considered statistically significant at P < 0.05.  

 

4.3 Results 

4.3.1 Internalization Assay 

We assessed the internalization of fluorescently conjugated polystyrene beads (0.5 μm 

in diameter) and heat-killed TRITC-labeled S. pneumoniae by young and old BMDMs in 

separate experiments. Figure 4.1A-B shows the relative fluorescence (RFU) 
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measurements, which are proportional to the number of beads or bacteria internalized by 

the cells within each group. The relative fluorescence revealed no significant difference 

between young and old macrophages with regard to internalization of beads (P=0.082) 

and bacteria (P=0.194). This observation was verified by fluorescence images (Figure 

4.1C-F) that were used for quantification of the number of beads and bacteria taken up 

by individual cells for 600 young and 600 old murine BMDMs in three replicate samples 

(200 cells per imaging dish). No significant difference was observed between young and 

old groups with regard to the average number of beads (young: 21 ± 24; old: 18 ± 28) 

and bacteria (young: 8 ± 6; old: 9 ± 7) that were internalized. However, macrophages 

derived from old mice had more variation in their phagocytic capacity. While more than 

50% of old macrophages contained < 20 beads, we found higher number of macrophages 

in the old than young group with over 100 beads inside the cell bodies (Figure 4.1G-H).  

 

4.3.2 TLR2 Diffusion 

The lateral diffusion of TLR2 in the plasma membrane of macrophages derived from 

young and old mice was measured using raster image correlation spectroscopy (RICS) to 

investigate whether aging impacts receptor diffusion. Diffusion was compared between 

young and old groups in the absence of any stimulation and after stimulation with S. 

pneumoniae. Diffusion was measured in the apical membranes rather than basal 

membranes, based on our previous findings on RAW 264.7 macrophage cell line 

(Chapter 2, Section 2.3.2) and primary macrophages cultured on SiO2 surface 

topographies (Chapter 3, Section 3.3.5). Figure 4.2A-B shows the TLR2 visualized on the 

apical membrane (red) and the FITC-labeled bacteria (green) inside the same 

macrophage cell from young group. Diffusion coefficients were averaged from at least 

three ROIs in the apical membranes (Figure 4.2C-E). As shown in Figure 4.3, the average 

TLR2 diffusion was comparable in macrophages derived from young (0.20 ± 0.03 μm2s-1, 

mean ± SD) and old (0.19 ± 0.04 μm2s-1) mice. In macrophages stimulated with S. 

pneumoniae the diffusion of TLR2 was significantly faster both in young (0.23 ± 0.05 μm2s-

1) and old (0.26 ± 0.04 μm2s-1) groups compared with unstimulated resting state. 

However, no significant difference was observed between the young and old groups. 
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Figure 4.1 Internalization of polystyrene microspheres and bacteria by young and old BMDMs. 
Relative fluorescence (RFU) values measured for beads (A) and S. pneumoniae bacteria (B) 
internalized by young and old BMDMs. Bars represent the mean ± SD from n = 3 independently 
prepared samples. Representative fluorescence images of young (C,E) and old (D,F) BMDM cells 
(red) with internalized beads (yellow) and heat-killed TRITC-labeled S. pneumoniae (red), 
respectively. Relative frequency of the number of internalized beads (G) and S. pneumoniae (H) 
found within individual macrophages; n = 600 cells were evaluated for each of the young and old 
groups from three replicate samples (200 cells per dish). Statistical analysis was performed using 
independent samples t-test; n.s = no significance. The scale bar is the same in C-D, and in E-F. 
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Figure 4.2 Lateral diffusion of TLR2 in BMDM plasma membrane obtained from raster image 
correlation spectroscopy. (A) TLR2 (red) visualized in the apical membrane of a macrophage. (B) 
TLR2 (red) and FITC-labeled S. pneumoniae (green) in a cross section image of the cell in (A). (C) 
TLR2 diffusion coefficient measured in the apical membrane shown in (A) with two ROIs of 64 × 
64 frames (3.2 × 3.2 μm2). (D) Plot of the residues (upper surface) and the fit (lower surface). (E) 
2D autocorrelation function from RICS.  
 

 
 

Figure 4.3 TLR2 diffusion coefficients obtained from RICS in the apical membrane of BMDMs 
from young and old mice. Measurements are from a minimum of three separate ROIs per cell, 
for 60 macrophages in each of the young and aged groups (unstimulated) and 30 macrophages 
per age group (stimulated with S. pneumoniae). Boxes show 25th–75th percentiles with whiskers 
extending to minimum and maximum values measured. Statistical analysis was performed using 
two-way ANOVA with 95% confidence interval (n.s = not statistically significant, **P ≤ 0.01, 
***P ≤ 0.001). 
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4.4 Discussion 
	

The pathogenesis and establishment of S. pneumoniae infection is accompanied by 

phagocytosis of the bacteria by macrophages and neutrophils and initiation of the pro-

inflammatory response that is mediated primarily by TLRs [27,28]. Therefore, 

understanding these two complex events can help uncover the age-associated 

susceptibility to S. pneumoniae infection. In this work, we investigated whether the 

phagocytic ability of BMDMs as well as the diffusion of plasma membrane TLR2 differ in 

aged versus young mice.  

The phagocytosis assays did not reveal any significant difference in the 

internalization capacity of macrophages derived from young and old mice. However, the 

variation in the number of beads per cell was higher in macrophages from old mice. 

While 55% of macrophages from aged mice contained 20 or fewer beads (compared to 

45% in young group), there was a small percentage (~3%) that internalized > 100 beads 

in the old group. In a similar study by Linehan et al. on BMDMs, no significant difference 

was observed in the amount of polystyrene beads phagocytosed by macrophages from 

young and old mice [29]. In contrast, phagocytosis of apoptotic Jurkat T cells by BMDMs 

was reported to be significantly lower in macrophages derived from old than young mice 

[30]. This inconsistency could be due to engagement of different group of receptors in the 

internalization of cells versus non-biological particles. While class A scavenger receptors 

including macrophage receptor with collagenous structure (MARCO) recognizes 

polystyrene nanoparticles [31], the recognition and uptake of apoptotic cells are carried 

out via a different repertoire of phagocytic receptors such as lectins and integrins, as well 

as other types of class A and class B scavenger receptors [32]. In contrast to BMDMs, 

comparative studies on tissue-resident macrophages of young and old mice have shown 

more consistent declining trend in their phagocytic capacity due to aging. Our group has 

previously shown that age-associated changes in tissue microenvironments contribute to 

alterations in phenotype for macrophages of multiple tissue origins [33,34]. Although 

there is evidence from other in vivo experiments that age-related changes in tissue specific 

microenvironments can impact macrophage function [29], the details of whether extrinsic 

factors in tissues or cell-intrinsic mechanisms contribute to reduced capacity for 

phagocytosis in macrophages is still not clearly understood.  
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The mobility of a number of plasma membrane receptors on macrophages has been 

studied, including the phagocytic receptor Fcγ [35–38], scavenger receptor CD36 [39], 
protein tyrosine phosphatases CD45 [40], adhesion molecule CD44 [38], and CD14 as a 

coreceptor of TLRs [41]. Measuring the diffusion of these receptors has provided 

valuable insights into the complex mechanisms of receptor-ligand binding, clustering and 

interaction of multiple receptors, and the role of cytoskeleton and lipid rafts in receptor 

diffusion and downstream signaling pathways; however, the diffusion of membrane 

receptors has not been investigated in the context of aging. Our TLR2 diffusion 

measurements in macrophages from aged mice did not reveal any significant difference 

compared with their young counterparts. Stimulation with S. pneumoniae resulted in 

significantly faster diffusion of TLR2, which was similar in both young and old groups. 

While these preliminary results can provide information on how diffusion of TLR2 

changes in the context of infection with S. pneumoniae, a more complete understanding of 

changes in TLR2 mobility and signaling requires time-sensitive examinations of receptor 

diffusion at the site of binding in the plasma membrane and at the onset of bacteria 

internalization. It should be taken into account that our TLR2 diffusion measurements in 

the apical membrane were obtained after bacteria were internalized by macrophages. To 

facilitate diffusion measurements during binding, the stimulated cells need to be 

incubated at 4°C for delayed internalization of bacteria until imaging is performed. 

Furthermore, comparison of TLR2 surface expression and the pro-inflammatory cytokine 

secretions including IL-6 in response to stimulation can help to identify age-related 

changes in TLR2 signaling.  

 

4.5 Conclusion 

In summary, the present study provides preliminary results to identify potential age-

related changes in bone marrow-derived macrophages from young and aged mice. No 

significant difference was observed in macrophages of the two age groups with regard to 

phagocytosis of polystyrene beads and the bacteria S. pneumoniae. Similarly, the diffusion 

rate of TLR2 was comparable in the two age groups, and was significantly faster during 

stimulation with S. pneumoniae.  



129	
	

4.6 References 

 

[1] N. P. Weng, “Aging of the immune system: how much can the adaptive immune 

system adapt?,” Immunity, vol. 24, pp. 495–499, 2006. 

[2] C. R. Gomez, E. D. Boehmer, and E. Kovacs, “The aging innate immune 

system,” Curr. Opin. Immunol., vol. 17, pp. 457–462, 2005. 

[3] L. Ginaldi, M. F. Loreto, M. P. Corsi, M. Modesti, and M. De Martinis, 

“Immunosenescence and infectious diseases,” Microbes. Infect., vol. 3, pp. 851–857, 

2001. 

[4] S. Rafael, T. Raquel, G. Inmaculada, L. Olivier, D. Gilles, and F. Tamas, “Innate 

immunosenescence: Effect of aging on cells and receptors of the innate immune 

system in humans,” Semin. Immunol., vol. 24, pp. 331–341, 2012. 

[5] A. Hearps et al., “Aging is associated with chronic innate immune activation and 

dysregulation of monocyte phenotype and function. Aging Cell,” Aging Cell, vol. 11, 

pp. 867–875, 2012. 

[6] C. Herrero, L. Marques, J. Lloberas, and A. Celada, “IFN-gamma-dependent 

transcrip- tion of MHC class II IA is impaired in macrophages from aged mice,” J. 

Clin. Invest., vol. 107, pp. 485–93, 2001. 

[7] J. Villanueva, R. Solana, M. Alonso, and J. Pena, “Changes in the expression of 

HLA-class II antigens on peripheral blood monocytes from aged humans,” Dis. 

Markers, vol. 8, pp. 85–91, 1990. 

[8] C. Vida, I. M. de Toda, J. Cruces, A. Garrido, M. Gonzalez-Sanchez, and M. De 

la Fuente, “Role of macrophages in age-related oxidative stress and lipofuscin 

accumulation in mice,” Redox Biol., vol. 12, pp. 423–437, 2017. 

[9] S. Mahbub, C. Deburghgraeve, and E. Kovacs, “Advanced age impairs macro- 

phage polarization,” J. Interf. Cytokine Res, vol. 32, pp. 18–26, 2012. 

[10] C. Wang, K. Udupa, H. Xiao, and D. Lipschitz, “Effect of age on marrow 

macrophage number and function.,” Ageing, vol. 7, pp. 379–84, 1995. 

[11] V. Khare, A. Sodhi, and S. Singh, “Effect of aging on the tumoricidal functions of 

murine peritoneal macrophages,” Nat. Immunol., vol. 15, p. 285– 294., 1996. 

[12] Z. Li et al., “Aging-Impaired Filamentous Actin Polymerization Signaling Reduces 



130	
	

Alveolar Macrophage Phagocytosis of Bacteria,” J Immunol, vol. 199, pp. 3176–

3186, 2017. 

[13] L. Videla, G. Tapia, and V. Fernandez, “Influence of aging on Kupffer cell 

respiratory activity in relation to particle phagocytosis and oxidat- ive stress 

parameters in mouse liver.,” Redox Rep., vol. 6, pp. 155–159, 2001. 

[14] C. Bliederhaeuser et al., “Age-dependent defects of alpha-synuclein oligomer 

uptake in microglia and monocytes,” Acta Neuropathol, vol. 131, pp. 379–391, 2016. 

[15] H. . Arnardottir, J. Dalli, R. . Colas, M. Shinohara, and C. . Serhan, “Aging delays 

resolution of acute inflammation in mice: reprogramming the host response with 

novel nano-proresolving medicines,” J Immunol, vol. 193, pp. 4235–4244, 2014. 

[16] D. J. M. Albright, M. R. C. Dunn, D. J. A. Shults, M. D. M. Boe, D. M. Afshar, 

and D. E. Kovacs, “Advanced age alters monocyte and macrophage responses,” 

Antioxid. Redox Signal., vol. 25, no. 15, pp. 805–815, 2016. 

[17] S. Akira and S. Uematsu, “Toll-like receptors (TLRs) and Their Ligands,” Toll-Like 

Recept. Innate Immun., pp. 6–8, 2007. 

[18] D. N. Cook, D. S. Pisetsky, and D. A. Schwartz, “Toll-like receptors in the 

pathogenesis of human disease,” Nat. Immunol., vol. 5, pp. 975–979, 2004. 

[19] E. D. Boehmer, M. J. Meehan, B. T. Cutro, and E. J. Kovacs, “Aging negatively 

skews macrophage TLR2- and TLR4-mediated pro-inflammatory responses 

without affecting the IL-2-stimulated pathway,” Mech. Ageing Dev., vol. 126, no. 12, 

pp. 1305–1313, 2005. 

[20] C. R. Dunston and H. R. Griffiths, “The effect of ageing on macrophage Toll-like 

receptor-mediated responses in the fight against pathogens,” Clin. Exp. Immunol., 

vol. 161, pp. 407–416, 2010. 

[21] E. Hinojosa, A. R. Boyd, and C. J. Orihuela, “Age-Associated Inflammation and 

Toll-Like Receptor Dysfunction Prime the Lungs for Pneumococcal Pneumonia,” 

J. Infect. Dis., vol. 200, pp. 546–554, 2009. 

[22] J. Weber et al., “Recognition of pneumococcal peptidoglycan: an expanded, pivotal 

role for LPS binding protein,” Immunity, vol. 19, pp. 269–279, 2003. 

[23] R. Malley et al., “Recognition of pneumolysin by Toll-like receptor 4 confers 

resistance to pneumococcal infection,” Proc Natl Acad Sci USA, vol. 100, pp. 1966–



131	
	

1971, 2003. 

[24] J.Q. Davies, and S. Gordon, “Isolation and culture of murine macrophages.,” 

Methods Mol. Biol., vol. 290, pp. 91–103, 2005. 

[25] J. Weischenfeldt, and B. Porse, “Bone marrow-derived macrophages (BMM): 

isolation and applications.,” CSH Protoc., vol. 3, pp. 1–7, 2008. 

[26] M. J. Rossow, J. M. Sasaki, M. a Digman, and E. Gratton, “Raster image 

correlation spectroscopy in live cells.,” Nat. Protoc., vol. 5, no. 11, pp. 1761–1774, 

2010. 

[27] S. H. Gillespie and I. Balakrishnan, “Pathogenesis of pneumococcal infection,” J. 

Med. Microbiol, vol. 49, pp. 1057–1067, 2000. 

[28] N. W. J. Schroder et al., “Lipoteichoic Acid (LTA) of Streptococcus pneumoniae 

and Staphylococcus aureus Activates Immune Cells via Toll-like Receptor (TLR)-

2, Lipopolysaccharide-binding Protein (LBP), and CD14, whereas TLR-4 and 

MD-2 Are Not Involved,” J. Biol. Chem., vol. 278, no. 18, pp. 15587–15594, 2003. 

[29] E. Linehan, Y. Dombrowski, R. Snoddy, P. Fallon, A. Kis- senpfennig, and D. 

Fitzgerald, “Aging impairs peritoneal but not bone marrow-derived macrophage 

phagocytosis,” Aging Cell, vol. 13, pp. 699–708, 2014. 

[30] O. Kim et al., “Impaired phagocytosis of apoptotic cells causes accumulation of 

bone marrow-derived macrophages in aged mice,” BMB Rep., vol. 50, no. 1, pp. 

43–48, 2017. 

[31] S. Kanno, A. Furuyama, and S. Hirano, “A murine scavenger receptor MARCO 

recognizes polystyrene nanoparticles,” Toxicol Sci, vol. 97, no. 2, pp. 398–406, 

2007. 

[32] V. A. Fadok, D. L. Bratton, and P. M. Henson, “Phagocyte receptors for apoptotic 

cells: recognition, uptake, and consequences,” J Clin Invest, vol. 108, no. 7, pp. 957–

962, 2001. 

[33] N. Thevaranjan et al., “Age-Associated Microbial Dysbiosis Promotes Intestinal 

Permeability, Systemic Inflammation, and Macrophage Dysfunction,” Cell Host 

Microbe, vol. 21, no. 4, p. 455–466.e4, 2017. 

[34] D. Loukov, A. Naidoo, A. Puchta, J. L. A. Marin, and D. M. E. Bowdish, “Tumor 

necrosis factor drives increased splenic monopoiesis in old mice,” J. Leukoc. Biol., 



132	
	

vol. 100, no. 1, pp. 121–129, 2016. 

[35] R. S. Flannagan, R. E. Harrison, C. M. Yip, K. Jaqaman, and S. Grinstein, 

“Dynamic macrophage ‘probing’ is required for the efficient capture of phagocytic 

targets,” J. Cell Biol., vol. 191, no. 6, pp. 1205–1218, 2010. 

[36] J. Lin et al., “TIRF imaging of Fc gamma receptor microclusters dynamics and 

signaling on macrophages during frustrated phagocytosis.,” BMC Immunol., vol. 17, 

no. 1, p. 5, 2016. 

[37] V. Jaumouillé, Y. Farkash, K. Jaqaman, R. Das, C. . Lowell, and S. Grinstein, 

“Actin cytoskeleton reorganization by Syk regulates Fcγ receptor responsiveness by 

increasing its lateral mobility and clustering,” Dev. Cell, vol. 29, no. 5, pp. 534–546, 

2014. 

[38] S. A. Freeman et al., “Transmembrane pickets connect cyto-and pericellular-

skeletons forming barriers to receptor engagement,” Cell, vol. 172, no. 1–2, p. 305–

317.e10, 2018. 

[39]  et al. Jaqaman K, “Cytoskeletal control of CD36 diffusion promotes its receptor 

and signaling function.,” Cell, vol. 146, p. 593–606., 2011. 

[40] S. A. Freeman et al., “Integrins Form an Expanding Diffusional Barrier that 

Coordinates Phagocytosis,” Cell, vol. 164, no. 0, pp. 128–140, 2016. 

[41] L. Weimann et al., “A Quantitative Comparison of Single-Dye Tracking Analysis 

Tools Using Monte Carlo Simulations,” PLoS One, vol. 8, no. 5, p. e64287, 2013. 

 

 

 

 
 
 



133	
	

 
 
Chapter 5  
 

 

 

Concluding Remarks 
 

In this concluding chapter, the research findings are summarized and the future 

directions and potential avenues to explore the mechanisms of macrophage function and 

receptor mobility are proposed.  
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5.1 Summary and Conclusions 

The aim of this work was to answer three major research questions regarding the 

lateral diffusion of two types of immunoreceptors in the plasma membrane of 

macrophages. The questions listed in Chapter 1, section 1.5 are divided into three main 

research areas: fluorescence microscopy techniques for capturing membrane dynamics, 

interactions of adhered macrophages with surface topographies, and functional changes 

in macrophages due to aging. Here, those questions are reviewed and the major findings 

are summarized:  

1) What is the most appropriate technique to measure the lateral diffusion of 

receptors on macrophage plasma membranes? Do TLR2 and CD14 have significantly 

different diffusion coefficients? Is there significant difference in their diffusion in the apical 

and basal membrane sections for adhered macrophages? 

As described in Chapter 2, we compared the diffusion coefficients of CD14 and 

TLR2 on the apical and basal membranes of macrophages using two common 

fluorescence-based methods: raster image correlation spectroscopy (RICS) and single-

particle tracking (SPT). The diffusion coefficients obtained from SPT and RICS were 

similar for the basal membrane, and revealed significantly faster diffusion of CD14 

compared with TLR2. In addition, RICS showed the diffusion of both receptors was 

significantly higher in the apical membrane than in the basal membrane, suggesting 

diffusion hindrance due to cell adhesion to the substrate. This finding highlights the 

importance of selecting the appropriate membrane when measuring receptor diffusion in 

live cells. While RICS enables the study of the diffusion in different regions of membranes 

and cross sections through the cell body, SPT is suitable for tracking the motions of 

individual membrane-inserted proteins only in the basal membrane.  

2)  How do micro- and nanostructured surfaces impact macrophages? Does diffusion 

of TLR2 in the plasma membrane and pro-inflammatory response change in 

macrophages adhered to surface topographies of different scale? Does surface topography 

alter macrophage morphology and phagocytic capacity? 

 The study presented in Chapter 3 aimed to investigate whether changes in the 

surface topography of glassy substrates alter macrophage shape, phagocytic function, 

inflammatory responses, and diffusion of membrane receptors. The morphology of 
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murine bone marrow derived macrophages cultured on micro- and nanostructured SiO2 

films was quantified through fractal analysis. We observed that membrane protrusions 

increased on nanostructured surfaces and macrophages adapted unique star-shaped 

morphologies on microstructured surfaces. Macrophages on both micro- and 

nanostructured surfaces displayed greater phagocytic capacity compared to those on flat 

controls. In contrast, their pro-inflammatory IL-6 secretion did not increase by substrate 

topographies of differing scale. Finally, the diffusion of TLR2 was measured using RICS, 

which revealed no impact of structuring or plasma treatment on receptor diffusion. These 

results suggest that surface topography does not alter macrophage inflammatory 

responses or membrane mobility but can significantly impact phagocytosis.  

3) How does aging impact macrophage function? Does aging alter the lateral 

diffusion of TLR2 in the macrophage plasma membrane? Is there any significant 

difference in the phagocytic capacity of macrophages derived from young and aged mice?  

The preliminary experiments included in Chapter 4 did not reveal any significant 

difference in macrophages derived from the bone marrow of young and aged mice. 

TLR2 diffusion rate in macrophages was comparable in the two age groups, and was 

significantly faster in both cases when measured after stimulation with Streptococcus 

pneumoniae. In addition, no significant difference was observed between the young and old 

groups with regard to phagocytosis of polystyrene beads and the bacteria S. pneumoniae; 

although, higher variation was evident in the number of beads internalized by 

macrophages from aged mice.  

 

5.2 Future Directions  

The work presented in this thesis has opened up new avenues for future studies on 

macrophages and immunoreceptors. Our findings have shown that accurate diffusion 

measurements of membrane receptors can help to answer different questions with regard 

to interactions of macrophages with biomaterials or bacteria.  

In continuation of the work presented in Chapter 2, the field would benefit from 

simultaneous measurements of TLR2 and CD14 diffusion and their co-localization 

within the membrane using cross-correlation experiments with RICS and SPT, as 

described in Chapter 1 (section 1.2.3-4 and section 1.2.4). The addition of this 
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component could aid in understanding receptor interactions and would serve as a direct 

comparison of the imaging methods for monitoring co-localization events.   

The study in Chapter 3 could be further expanded by investigation of cytoskeleton 

remodeling in macrophages adhered to surface topographies. Phagocytosis requires 

significant deformation in cell shape, and as a result the cytoskeleton plays a vital role in 

this process. To identify the precise molecular mechanisms that may impact the 

phagocytic ability of macrophages on certain surface topographies, direct measurement of 

actin filament and microtubule remodeling and their distribution in macrophages would 

be beneficial. In addition, the type of proteins adsorbed on different surfaces, their 

quantities and conformation all influence cell adhesion and behavior on a biomaterial 

surface which could alter phagocytosis.  

To expand upon the basis established in Chapter 4 pertaining to identification of 

potential age-related changes in macrophage phenotype, future studies could aim to 

examine CD14 diffusion in relation to TLR2 function, given that CD14 is a coreceptor 

that plays a key role in TLR2 signaling in response to binding bacterial ligands. The 

biological context in which macrophages encounter bacteria such as Streptococcus 

pneumoniae is complex and involves pattern recognition receptors, phagocytic receptors, 

coreceptors, and cytokines among others. Therefore, further comparison of receptors’ 

expression in macrophages from young and aged mice could shed light on possible 

mechanisms that may change macrophage inflammatory responses. 
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Supporting Information for Chapter 2 
	
Search Radius Optimization for a Fixed Diffusion Coefficient  

To determine the optimal search radius (SR) for track continuation in subsequent frames, 

different imaging and linking conditions were simulated and compared to the expected 

value of a restricted Gaussian step size distribution. For both simulation and theoretical 

considerations two diffusion coefficients of D = 0.1 μm2 s-1 and D = 0.15 μm2 s-1 was 

assumed. The pixel size of 0.1 μm and frame interval of τ = 60 ms was kept constant.  

To arrive at the expected value, 106 displacements (xi, yi) were sampled from a Gaussian 

distribution with zero mean and a variance of 2Dτ and restricted by a search radius 

𝑟!" ≥ 𝑥!! + 𝑦!!. The accepted displacements were combined into a master track and the 

diffusion coefficient was obtained via a linear mean-squared displacement fit.  

To see the dependence of the measured diffusion coefficient on the search radius, 

simulations for particle concentrations of 0.031 μm-2, 0.092 μm-2 and 0.153 μm-2 were 

created with continuous tracks, as well as emission state switching tracks to emulate 

blinking. Continuous tracks were created for negligible noise (S/N > 700), as well as a 

signal-to-noise ratio of 1.7. When blinking was active, the switching probabilities were 

chosen to be pon = 0.3 and poff = 0.1. All simulated videos had a length of 1000 frames. 

The videos were analyzed with the in-house single-particle-tracking algorithm [1] and the 

search radius was varied from 0.5 px to 10 px.  

Introduction  

When tracking a single particle in time, the algorithm will search for a particle within a 

similar location in subsequent frames. The location is defined as a circle of radius rSR 

(Search Radius) centered on the previous particle localization. The choice of rSR is crucial 

for an unbiased analysis. Confining the search area can be beneficial for analysis time, but 

can lead to premature track termination and lower measured diffusion coefficient values. 

For unreasonably large rSR a particle that has terminated, e.g. due to photobleaching, 

might falsely be linked to another particle and bias the measured diffusion coefficient to 

larger values. Optimizing rSR is therefore a requirement for valid diffusion coefficient 
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measurement.  

 

Theory  

Limiting the linking process with rSR is in effect removing the tail ends of the Gaussian 

step size distribution for each displacement coordinate. To recreate this, 106 

displacements ⃗rj = (∆xj , ∆yj ) are sampled component-wise from a 1D Gaussian 

distribution of shape  

Θ Δ𝑥! = 𝑒𝑥𝑝 −
!!!

!

!!"
 .                                                        (1) 

The introduction of rSRrepresents a restriction of the displacements of 𝑟!"! ≥  ⃗𝑟!! . 

Displacements that follow this restriction are then combined into a master track by 

append�ing displacements (𝑡|𝑟!")!
→ =  ⃗𝑟!!!!.!

!!! . The resulting diffusion coefficient can 

be obtained from a linear MSD fit to the master track data  

∆𝑟!(𝑡) = (⃗𝑟(𝑘𝜏 + 𝑡)− ⃗𝑟(𝑘𝜏))! ! = 4𝐷!"𝑡 .                                (2) 

Simulation  

Videos were simulated by creating particle tracks for N particles with K steps for the 

diffusion coefficient D and step interval τ. The particle position in frame k of the video is 

given by  

𝑟! 𝑘. 𝜏 = 𝑟! 𝑘 − 1 . 𝜏 +  Δ⃗𝑟(D, τ) ,                                        (3) 

with components of Δ⃗𝑟 taken from (1).  

Each image was created by adding the intensities of all visible N particles for each pixel.  

𝐼  𝑟!" = 𝐼! 𝑟! − 𝑟!" + 𝐵!"#$$(𝑟!")!
!!!  ,                                    (4) 

with the diffraction limited spot intensity 

𝐼!(Δ𝑟) = 𝑒𝑥𝑝 − ∆!!

!!!
 ,                                                      (5) 

and a  Gaussian background noise BGauss with a global average background intensity of B, 
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a standard deviation σΒ of and a resulting distribution 

Φ[𝐵!"#$$] =  !

!!!!
!
 𝑒𝑥𝑝 − (!!"#$$!!)!

!!!
!  .                                       (6) 

The resulting images I(⃗rpx) were then converted to 16-bit integer values ix,y and 

modulated with Poisson noise resulting in the output image jx,y with distribution  

Ψ 𝑗!,! =  𝑒!!!,! ( !!,!)
!!,!

!!,!!
  .                                                    (7) 

The signal-to-noise ratio is determined as the ratio of the squared signal and the 

background intensity variance. With the definition of the signal being the difference of 

average particle intensity value and the average background S = I – B 

!
!
= !!

!!
! =  (!!"!!)

!

!!
!                                                             (8) 

To reproduce the blinking behavior observed in fluorescence experiments, particles were 

given the ability to switch ‘on’ and ‘off’ with probabilities pon = 0.3 and poff = 0.1, 

respectively. The implementation sees the particles state described as an additional 

Markov chain of Boolean values sn (t), with sn (t)=1 representing the ‘on’ state. This is a 

simple modification of (4) with the Markov chain 

𝐼 𝑟!" , 𝑡 =  𝐼!(!
!!! 𝑟! 𝑡 − 𝑟!"). 𝑠!(𝑡)+ 𝐵!"#$$(𝑟!").                         (9) 

Simulation Setup and Considered Conditions  

For all further considerations the pixel size of 0.1 μm and the frame interval of τ = 60 ms, 

as well as the assumed diffusion coefficient D = 0.1 μm2/s, were kept constant.  

In total, the simulation was carried out for nine situations. Each scenario of a continuous 

track with negligible noise (Iav = 3000, B = 300, σB = 100), a continuous track with S/N 

≈ 1.7 (Iav = 3000, B = 1000, σB = 1500) and a track with blinking and negligible noise 

was carried out for three particle concentrations of 0.031 μm-2 (N = 20 particles per 256 x 

256 pixel), 0.092 μm-2 (N = 60 particles per 256 x 256 pixel), and 0.153 μm-2 (N = 100 

particles per 256 x 256 pixel).  



140	
	

Detection and Tracking  

The simulated data is detected and tracked using our in-house algorithms (Source: 

https://github.com/MarkusRose/ParticleTracker ).  

Each data set brings 5 observables: Number of Tracks (Num) (figure X) , Length of tracks 

(Len) (figure X), Diffusion coefficient of individual tracks via MSD (Dindiv) (figure X), 

Diffusion coefficient of the combined track via MSD (D) (figure X), and Diffusion 

coefficient of the combined track through Gaussian step size distribution (Dstep) (figure 

X).  [1] https://github.com/MarkusRose/ParticleTracker  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141	
	

Simulation results for D = 0.1 μm2 s-1 

 

Figure S2.1 Simulation results showing the change in the diffusion coefficient obtained from 
MSD of combined tracks for a range of search radii. 

 

Figure S2.2 Simulation results showing the change in the diffusion coefficient obtained from 
MSD of individual tracks for a range of search radii. 
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Figure S2.3 Simulation results showing the change in the diffusion coefficient obtained from 
step-size distribution for a range of search radii. 

	

	
	

Figure S2.4 Simulation results showing the change in the number of generated tracks for a 
range of search radii. 
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Figure S2.5 Simulation results showing the change in the average track length for a range of 
search radii. 

	

	
	

Figure S2.6 Dependence of measured diffusion on track length. The diffusion coefficients and 
track lengths for individual tracks obtained from tracking TLR2 in RAW 264.7 (cell shown in 
Figure 2.1A ) do not show any correlation. 
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Supporting Information for Chapter 3 
 

Atomic Force Microscopy 

Atomic force microscopy (AFM) was used to measure the topography and surface 

roughness of 50 nm flat SiO2 substrates. Measurements were performed using an Asylum 

MFP-3D AFM (Asylum Research, an Oxford Instrument Company, Santa Barbara, CA, 

USA). Images were collected in alternating current (AC) tapping mode under ambient 

conditions using rectangular NCHR cantilevers (NanoWorld, force constant 21-78 N/m, 

resonant frequency 250-390 kHz). Image analysis was performed and root-mean-squared 

(rms) roughness was calculated using Asylum Research AFM software (version 13.17). 

 

Supplemental Figures 

 

 

Figure S3.1 Surface roughness characterization of structured SiO2 substrates with white light 
interferometry microscopy (WLIM). Peak-to-valley (P-V) and root mean square (RMS) roughness 
of structured SiO2 films of varying thicknesses illustrating range of height data. Bars represent 
means and error bars represent the standard deviation of nine measurements on three 
independently prepared replicates.  
 
 

2S 50S
0

5

10

15

0

200

400

600

800

1000

P-
V 

(µ
m

) R
M

S (nm
)

P-V
RMS



145	
	

 
Figure S3.2 Representative atomic force microscopy image of flat 50 nm SiO2 film. RMS 
roughness values calculated from AFM measurements on three replicate samples were 0.657 ± 
0.008 nm 
 

 
 
Figure S3.3 Quantification of cell adhesion to SiO2 substrates. Overlay of brightfield and 
fluorescence (DAPI stained nuclei) for cells cultured on untreated (A) 50 nm flat, (B) 2 nm 
structured and (C) 50 nm structured SiO2 surfaces. (D) Comparison of the density of macrophages 
adhered to untreated and plasma treated 50 nm flat SiO2 (50F), 2 nm structured SiO2 films (2S), 
and 50 nm structured SiO2 films (50S). Images (A), (B), and (C) taken at the same magnification, 
with a field of view 200 μm across.  
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Figure S3.4 Representative SEM images of macrophages on SiO2 substrates with different 
surface topographies, in the absence of surface treatment vs. plasma treated condition.  
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Figure S3.5 Six geometries of different complexities – circle, rectangle, star, “fried-egg” cell, 
“elongated” cell, and “star-shaped” cell – analyzed with box-counting method for fractal analysis, 
yield fractal dimension area (FDA) values of (A) 1.926 (B) 1.898, (C) 1.861, (D) 1.891, (E) 1.816, 
and (F) 1.767; and fractal dimension perimeter (FDP) values of (A) 0.996, (B) 0.999, (C) 1.003, (D) 
1.137, (E) 1.096, and (F) 1.087. 
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Figure S3.6 Lateral diffusion of TLR2 on the apical and basal membranes of macrophages on 
(A) untreated and (B) plasma treated 50 nm flat SiO2 (50F), 2 nm structured SiO2 films (2S), and 
50 nm structured SiO2 films (50S). Statistical significance was determined from paired t-test with 
95% confidence interval (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). 
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Figure S3.7 Representative (A) epifluorescence image of a bone marrow derived macrophage 
cultured on 50 nm structured SiO2 substrate, and (B) binary image used for fractal analysis.   
 

 

Figure S3.8 Confocal microscopy image of the basal and apical membranes of a macrophage 
expressing TLR2 receptors. 64×64 pixel frames show the regions of interest and the diffusion 
coefficient corresponding to each region as calculated through RICS. Images taken with 
conditions used for RICS measurements.  
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Figure S3.9 Diffusion measurement of TLR2 on a macrophage plasma membrane using RICS 
analysis. (A) 2D representation of RICS autocorrelation function, (B) plot of the data (upper 
surface) and 3D representation of the fit to the function (lower surface), (C) plot of the residues 
(upper surface) and the fit (lower surface). 
 
 


