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Abstract

The work presented in this thesis focuses on the study of viscous and elastic

polymer thin films in initially unstable configurations. The systems are driven to flow

viscously or deform elastically to minimize their free energy. Since these experiments

take place on length scales at which gravity does not play a role, the physics is

governed purely by surface tension and viscosity in the case of fluid films, or elasticity

in the case of rigid films. It is also possible to combine hydrodynamics and elasticity,

for example, a viscous film that flows in response to the bending energy of an elastic

perturbation, or an elastic film deformed by the capillarity or flow of a fluid.

Viscous flow in thin polymer films is studied in a system which is free-standing

in air, meaning it has two fluid-air interfaces. Cylindrical holes are formed part way

through a nano-scale polymer film, creating an unstable geometry with dissimilar sur-

face areas at the two interfaces. When heated above its glass transition temperature,

surface tension drives the film to flow to minimize its total excess surface area. The

evolution is first dominated by fast vertical flow, which equilibrates Laplace pressure

through the film by forming symmetric holes at each interface. Slow horizontal flow

then becomes dominant, which continually reduces excess surface area by filling in

the holes. A novel atomic force microscopy method is developed to monitor the two

interfaces of a film as they flow, allowing the total free energy evolution of the system

to be measured. The results agree with a hydrodynamic model developed to describe

both stages of flow.

Elastic instabilities, where a rigid film deforms in response to geometrical con-

finement, are studied in a free-standing bilayer system consisting of a thin film on a

pre-strained elastic substrate. These instabilities include sinusoidal wrinkling of the

capping film, or, since the entire bilayer is free-standing, global buckling, where the

entire system deforms out-of-plane. The transition between wrinkling and buckling

is found to depend on the thickness and moduli ratios of the films, as well as the

pre-strain in the substrate. A simple model shows good agreement with experiments.

Finally, the interaction between elasticity and viscosity is studied by measuring the

flow of a viscous fluid perturbation driven by the bending energy of a rigid capping

film. The experimental scaling of the perturbation size is in agreement with the

theoretical prediction in the large perturbation limit.
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Chapter 1

Introduction

Thin polymer films, with thicknesses ranging from tens of nanometers to microme-

ters, are of scientific interest because of their prevalence in many areas of modern

life, including lubricating coatings, adhesives, and electronic devices. Polymers are

advantageous for many for these applications because of their highly tuneable chem-

istry and solution processability [1]. Also, interesting phenomena of fundamental

scientific importance can occur when the sample dimensions become comparable to

the equilibrium size of the polymer molecules [2], including deviations in glass tran-

sition temperature [3, 4], viscosity [5], surface chain mobility [6, 7], and mechanical

properties [8] from their bulk values. Since technological applications continue to

push for thinner films and coatings, deviations from bulk physical properties could

significantly impact the performance of thin polymer films.

Viscous polymer thin films are a useful system for studying flow on length scales

at which surface tension dominates gravity, since the viscosity of a polymer melt

depends strongly on both the length of the polymer chains and temperature. Well

controlled unstable configurations can be created using polymer films in the glassy

state, which, when heated above their glassy transition temperature to become a

viscous fluid, then flow and evolve to minimize their free energy. Using polymer films

allows the flow rate of experiments to be controlled, and even stopped by quenching

the film into the glassy state. Fluid polymer films are also non-volatile, and can be

viscous enough that they remain stable while free-standing in air for days at a time,

allowing experiments to be performed without the influence of a substrate [9].
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Elastic instabilities can occur when a thin polymer film is compressed while ad-

hered to a soft substrate. These instabilities create a variety of novel surface topogra-

phies, including sinusoidal wrinkling, folding, and ridging, and allow for reversible

and tuneable surface patterning. These systems have inspired a variety of potential

applications, from optical devices [10, 11], to stretchable solar panels [12], and ad-

hesive films [13]. Elastic instabilities also impact flexible and stretchable electronic

devices such as displays and sensors, whose ability to buckle and wrinkle allow them

to be better integrated into everyday life [14, 15, 16, 17].

Polymer films are also useful as elastic membranes on length scales at which

bending and stretching forces dominate gravity, and where the surface tension or

viscous flow pressures of a fluid can cause deformations of the membrane. This

interaction between capillarity, viscous forces, and elasticity is relevant to research

areas ranging from biological [18] to geophysical [19]. These interactions can also

be exploited for applications such as capillary origami [20, 21], lithography [22], and

surface patterning [23].

The focus of the work discussed in this thesis is systems involving thin polymer

films, both glassy and in the melt, that are in unstable configurations. The systems

discussed include unstable fluid films, where the film is driven to flow by surface

tension, or mechanical instabilities, where a rigid film deforms in response to geometric

confinement. It is also possible to have unstable systems involving both elasticity and

viscous flow, such as a fluid perturbation which is driven to flow by the bending energy

of a capping elastic sheet. These instabilities are important to understand for thin

film applications because they are either to be avoided, or to be exploited to assist in

fabrication or improve physical properties.

This is a “sandwich” thesis containing the papers that have been published or

submitted during my Ph. D. Each paper is presented with a brief summary in Chapter

3. The introductory chapter presents an overview of the physics of linear polymers

and polymeric liquids in Section 1.1. Section 1.2 introduces the basic concepts of

surface tension, which are relevant for Paper I. Section 1.3 gives an overview of the

hydrodynamics of thin films, with an emphasis on polymeric fluids, relevant for Papers

I and II. The impact of hydrodynamic boundary conditions on thin film flow is also

discussed. Finally, elasticity is discussed in Section 1.5 in the context of mechanical

2
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instabilities that occur in thin films, relevant for Paper III. The details of the sample

preparation and characterization techniques used in each experiment are described in

Chapter 2, and general conclusions are discussed in Chapter 4.

1.1 Polymers

Polymers are large molecules consisting of hundreds to thousands of covalently bonded

repeating structural units, called monomers. Humans have used naturally occurring

biopolymers such as natural rubbers for centuries, and synthetic polymers (plastics)

are ubiquitous throughout modern life. Many biological materials are also polymeric,

including proteins and DNA. Despite the chemical differences between the monomers

of different polymers, many polymers have universal physical properties that are

characteristic of long, overlapping and interacting chain-like molecules which differ

from the properties of simple monomeric liquids and solids. Many of these differences

result from the fact that polymer chains cannot pass through themselves or other

chains, which limits their motion and causes the chains to become entangled. For

sufficiently long chains, these entanglements mean that polymeric liquids, known as

polymer melts, are viscoelastic when perturbed, behaving as elastic solids at short

times and as viscous liquids at longer times.

By covalently bonding monomers it is also possible to create complex, non-linear

polymer architectures, and the type of structure can greatly impact the resulting

physical properties of the bulk polymer system. For example, potential polymer archi-

tectures include dendritic, where chains split into multiple branches, or ring polymers,

where the chain forms a complete loop. It is also possible to bond together chemi-

cally distinct monomers or chain segments, creating chains known as heteropolymers,

which take on many structural forms. Heteropolymers can show interesting micro-

phase separation behaviour, and have a variety of potential applications [24].

The work presented in this thesis focuses on linear homopolymers, meaning that

the monomers are attached in a chain with a linear backbone, and that each monomer

is chemically equivalent. These chains are characterized by the chemical structure of

the monomer and the number of monomers in the chain, known as the degree of

polymerization, n. For homopolymers, since each monomer is chemically identical,

3
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a chain can be described by its molecular weight, M = m0n, where m0 is the molar

mass of a constituent monomer.

For synthetic polymers, polymerization techniques produce collections of polymer

chains with a distribution of molecular weights, or equivalently, a distribution in chain

lengths. Since chain length greatly affects some physical properties of polymers, such

as viscosity, it is important to quantify the molecular weight distribution, referred

to as the polydispersity, in a given sample. The most common ways to quantify the

polydispersity are the number- and weight-average molecular weights, Mn and Mw,

two moments of the chain length distribution:

Mn =

∑
i niMi∑
i ni

, (1.1)

Mw =

∑
i niM

2
i∑

i niMi

; (1.2)

where ni is the number of chains in the distribution with mass Mi. The weight-

average molar mass is most relevant for quantifying the viscosity of a polymer melt

since it emphasizes longer chains [25]. The polydispersity index, or PDI, is defined as

the ratio of these two averages: PDI = Mw/Mn. Monodisperse samples have a PDI

of 1, whereas real samples of synthetic polymers have PDI > 1, with larger values

of PDI corresponding to broader chain length distributions. In the samples studied

in this thesis, all polymers had PDI < 1.06, which are experimentally considered

“monodisperse” or “narrow distribution”.

For polymers in a bulk melt, it is important to know what conformations the

chains are most likely to take. The first length scale to define for a linear polymer

chain is the total contour length along its backbone: Rmax = nl cos (θ/2), where n is

the number of subunits, l is the bond length, and θ is the angle between neighbouring

bonds, shown schematically in Fig. 1.1(a). For linear polymers with carbon-based

backbones, the values of l = 1.54 Å and θ = 68 ◦ are nearly constant [25].

Consider four neighbouring monomers along the backbone of a carbon-based poly-

mer chain, labeled m1 to m4 in Fig. 1.1(a), which are connected by three bonds.

The two bonds between first three monomers form a plane, however the final bond

can rotate out of the plane by an amount φ, known as the torsion angle. Varying

φ changes the intermonomeric spacing between monomers along the chain, which

4
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therefore changes energy and makes certain values of φ more probable than others.

The lowest energy state, and hence the most probable, is φ = 0 ◦, known as the trans

state, meaning that the bond between m3 and m4 remains in the plane of the other

bonds. Segments with bonds only in the trans state are therefore straight and rigid.

The second most probable torsion angles are φ = ±120 ◦, called the gauche states,

which result in the third bond being out-of-plane of the others, and causes the chain

to effectively be more flexible. The two possible gauche configurations are shown in

red with dashed bonds in Fig. 1.1(a). In chains of polystyrene (PS) it has been shown

that 68 % of bonds are in the trans state [26], meaning that the most likely configu-

ration of bonds along the chain is consecutive trans bonds, forming a rigid segment,

followed by a gauche bond which breaks the short-ranged correlation and increases

flexibility. For most synthetic polymers there are fewer than 10 trans segments in

a row, meaning short-ranged correlations die away quickly along the backbone, and

overall the chain behaves as an uncorrelated random walk. Now consider a chain in

a melt of identical chains. There will be short ranged repulsive interactions between

nearby monomers, however a monomer cannot tell if it is interacting with another

monomer of the same chain or on a different chain, meaning that a chain in the melt

also behaves as a random walk.

For real polymer chains, there are short-ranged correlations between the bond

angles of near-by monomers because of restricted bond angles and steric hindrance.

Chains with large side groups, such as the benzene side groups of PS, sterically hinder

bond rotations and therefore result in longer chains than predicted by the ideal chain

model. However, flexible linear polymers have many universal physical properties

that are independent of the chemical structure of their monomers. This universality

allows the monomeric structure of a real chain to be renormalized as an equivalent

chain with N “effective monomers” of length b, known as the Kuhn length. This

renormalization is possible because, as discussed above, short-ranged correlations

along the backbone do not change the random walk nature of the overall chain. The

Kuhn length can be thought of as the length at which local correlations die away in

real polymer chains. This renormalization allows any linear chain to be described as

an effective ideal chain, since the chemical specifics of the monomers, such as steric

hindrance and local stiffness, are contained within the Kuhn length.

5
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θ

Ree

Rg

m1

m2

m3

m4,t�
m4,g+

m4,g-

(a) (b)

Figure 1.1: (a) Four successive monomers, m1 to m4, in a linear polymer chain with
bond angle θ and torsion angle φ. The first three monomers are in the same plane,
but m4 has three possible positions: the lowest energy trans state with φ = 0 ◦, or
one of the two gauche states (shown in red) with φ = ±120 ◦. (b) Schematic of a
polystyrene chain in a melt of identical chains, showing the end-to-end distance, Ree,
and the radius of gyration, Rg.

The equilibrium size of a linear polymer chain can be described by the root mean-

square end-to-end distance, defined as the ensemble average distance between the two

ends of the chain, which can be written in terms of the Kuhn length as: 〈R2
ee〉 = Nb2,

where 〈〉 denotes the ensemble average [25]. Polystyrene, for example, has a Kuhn

length of 18 Å [25].

An alternative length scale used to quantify the size of a polymer molecule of any

architecture is its radius of gyration, Rg, defined as the root-mean-square distance

between each monomer and the centre of mass of the chain. For an ideal linear

polymer, the radius of gyration is related to the mean square end-to-end distance by:

〈R2
g〉 =

Nb2

6
=
〈R2

ee〉
6

. (1.3)

Neutron scattering can be used to measure Rg for various molecular weights, and for

PS it was found that [27]:

Rg =
(
2.75× 10−2 nm ·mol/g

)
·M1/2

w . (1.4)

6
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For typical samples used in this work Mw ≈ 100 × 103 g/mol, meaning the chains

have Rg ≈ 9 nm and Ree ≈ 22 nm. If the chain length is increased to Mw ≈ 1× 106

g/mol, Rg ≈ 28 nm, which can be comparable to the thickness of a polymer film,

meaning the chains are perturbed relative to their equilibrium size in the bulk. This

perturbation is referred to as confinement, which, in thin polymer films, has been

shown to cause a reduced glass transition temperature [3, 4, 28], decreased viscosity

[5], and decreased elastic modulus [8], relative to their bulk values.

For an ideal chain it can be shown that in the limit of long chains the probability

distribution of end-to-end vectors is Gaussian [25]:

P (~Ree, N) =

(
3

2πNb2

)3/2

exp

(
− 3~R2

ee

2Nb2

)
. (1.5)

This equation can be used to calculate the multiplicity of an ideal chain, Ω, which

then allows the configurational entropy, S, of a chain to be calculated as a function

of its elongation distance, ~R:

S(~R) = kB ln Ω = −3kB ~R
2

2Nb2
+ C , (1.6)

where kB is Boltzmann’s constant and C is a constant. This result shows that stretch-

ing a polymer chain lowers its entropy, since it now has fewer configurational degrees

of freedom than in its unperturbed state, thus increasing the free energy by:

FS(~R) = −TS(~R) =
3kBT ~R

2

2Nb2
+ C . (1.7)

This means that when a polymer chain is stretched there is an entropic restoring force

which resists elongation. Since FS(~R) is quadratic, the chain behaves like a Hookean

spring with restoring force proportional to its elongation. This spring-like response

of polymers plays a significant role in the mechanical properties of both viscoelastic

melts and elastomeric materials, discussed in Section 1.4.2.

7



Ph.D Thesis - J.F. Niven McMaster University - Physics and Astronomy

1.1.1 Polymer viscosity

Most polymers are glass formers when cooled from the melt because of the high en-

tropic and enthalpic costs of forming crystalline regions. Polymer glasses have an

identical level of order as in the melt, meaning that there is no long-range order, how-

ever the two phases differ significantly in that the glass has a finite shear modulus

and an effectively infinite viscosity. This means that as a polymer melt is cooled, it

eventually undergoes a glass transition, where the molecular motion and relaxation of

the chains are slowed, and eventually become longer than experimental time scales.

The glass transition is a universal phenomenon observed for a range of glass forming

systems, however there is still no universal microscopic theory [7]. The glass tran-

sition occurs as a material is cooled below its glass transition temperature, Tg, the

temperature at which the reorientations of molecules cannot equilibrate on the time

scale at which the material is being cooled. This is a kinetic phase transition, since

the measured value of Tg depends on the experimental cooling rate [29]. The glass

transition temperature is most commonly measured from either the change in volume

at Tg, measured using dilatometry for bulk samples or ellipsometry for thin films, or

from the change in heat capacity, measured using calorimetry.

Consider a glass forming material with a characteristic structural relaxation time,

τ , at a given temperature. For time scales less than τ there is not sufficient time

for structural relaxation to occur, resulting in solid-like behaviour, whereas for t >

τ relaxation can occur and the material is liquid-like. For all glass formers, the

relaxation time increases with decreasing temperature, and the universal properties

of the glass transition have inspired several theories. One simple model is based on

the amount of free volume available for a particle to move in order to reorient and

equilibrate [29]. As temperature is lowered, density increases, the amount of available

free volume decreases, and the relaxation time increases. However, relaxation is still

possible at low free volume if multiple particles move together, known as cooperative

rearrangement. Theory and simulations have shown that cooperative rearrangement

in glassy materials takes place through string-like motion [7, 30].

Since monomers in an ideal polymer melt are assumed to not interact with other

near-by monomers, neighbouring chains are free to pass through one another. In

real melts and solutions of long polymers, neighbouring chains impose topological

8
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constraints due to the fact that chains do interact, and therefore cannot cross one

another. These constraints, known as entanglements, limit chain motion and signif-

icantly increase relaxation times. Entanglements greatly affect the viscosity of high

Mw polymers and also give rise to the viscoelastic properties of entangled polymer

melts at early times, since shortly after shearing a melt, chains will remain entangled,

making further shear more difficult [25]. However, at later times the entanglements

release and the melt can flow. The Doi-Edwards tube model of entanglements treats

a given chain’s motion as being restricted to a tube-shaped region formed by the

topological constraints imposed by neighbouring chains [31]. Chain motion is un-

hindered parallel to the contour of the tube, but is restricted perpendicular to the

tube because of the entanglements which form the tube. The size of the tube can

be described by the number of Kuhn monomers in a strand equal to the tube diam-

eter, Ne, or equivalently, the average molecular weight of the strand, Me, known as

the entanglement molecular weight. For PS, Me = 18.1 kg/mol, and Ne ≈ 23 [25],

meaning that a polymer with Mw = 183 kg/mol, such as that used in Paper I has,

on average, 11 entanglements per chain in the melt. The reptation model, developed

by de Gennes, assumes the chain motion is diffusive along the contour of the tube

[32]. The time it takes a chain to diffuse out of its original tube is known as the

reptation time, τrep. Reptation time is predicted to scale with molecular weight as

τrep ∼ M3, which deviates from the experimentally observed scaling of τrep ∼ M3.4.

This difference is mostly attributed to fluctuations in the length of the confining tube

[33]. The value of τrep can range from milliseconds to hours depending on molecular

weight and temperature while in the melt, and becomes infinite as the temperature

approaches Tg.

If a melt of long chains is sheared, for t < τrep entanglements act as topologi-

cal constraints, or temporary physical cross-links between chains, and the melt will

behave as an elastic solid with a non-zero modulus. For t > τrep the initial entan-

glements are relaxed, and the melt will flow with viscosity η. Viscosity is a measure

of friction between molecules in a liquid, and for polymer melts η depends strongly

on both molecular weight and temperature. The scaling of viscosity with molecular

weight changes depending on if the chains are long enough to be entangled, which is

determined by a critical molecular weight, Mc ≈ 2Me [25]. For unentangled chains

9
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Figure 1.2: (a) The viscosity of polystyrene as a function of molecular weight (Eq.
1.8), showing an increase in viscosity scaling above the critical molecular weight Mc.
(b) Polystyrene viscosity as a function of temperature (Eq. 1.9).

below this critical molar weight, η ∼ M , and for entangled chains with Mw > Mc,

reptation theory predicts that η ∼ M3
w. As with reptation time, experimentally it is

found that η ∼ M3.4
w [34], with the deviation again attributed to fluctuations in the

contour length of the confining tube [33]. An empirical relationship describing the

molecular weight dependence of viscosity for linear polymers is given by [34]:

η ∝M

[
1 +

(
M

Mc

)2.4
]
. (1.8)

A plot of Eq. 1.8 for PS is shown in Fig. 1.2(a), with Mc = 31.2 kg/mol [35] and

reference viscosity η0 = 9.1×106 Pa·s at T0 = 413 K for Mw = 192 kg/mol [36].

For polymer melts, upon cooling, the glass transition results in a transformation

from a viscous liquid to a rigid solid, and therefore the viscosity of a melt of linear

polymer chains diverges sharply as the temperature approaches Tg. One of the most

used models to describe the divergent temperature dependence of the viscosity of

glass formers is the empirical Vogel-Fulcher-Tammann (VFT) equation:

η(T ) = η0 exp

(
TA

T − Tv

)
, (1.9)

where η0 is the reference viscosity at T0, TA is an activation temperature for chain

motion, and Tv is the temperature at which η diverges to infinity. The VFT equation

10
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is mathematically equivalent to another viscosity model, the Williams-Landel-Ferry

(WLF) equation. A plot of Eq. 1.9 for PS is shown in Fig. 1.2(b), with TA = 1250

K, Tv = 320 K [37] and η0 = 9.1×106 Pa·s at T0 = 413 K for Mw = 192 kg/mol [36].

This plot shows that the viscosity of PS decreases by 6 orders of magnitude within an

experimentally accessible temperature range, allowing for flow rate to be controlled

in experiments, and completely stopped by quenching below Tg.

1.2 Surface tension

We are familiar with examples of surface tension in our every day lives: small insects

can walk on the surface of water without sinking; oil droplets in water appear perfectly

spherical; and a liquid climbs up the side of a glass to form a meniscus [38]. Surface

tension can act as a driving force for fluid flow, and also governs the behaviour

of liquids at small length scales, such as the flows discussed in Paper I. All of these

examples of surface tension have microscopic origins in the intermolecular interactions

between liquid molecules. This section will focus on fluid-fluid surface tension, such

as that between a liquid and air, although interfacial tension exists between any two

distinct phases.

The amount of work required to increase the surface area of a liquid by an in-

finitesimal amount dA is δW = γdA, where γ is the liquid-vapour surface tension [39].

Surface tension can therefore be viewed as the energetic cost per unit area required

to increase the area of a liquid interface, with typical units of mJ/m2. Alternatively,

surface tension can be viewed as a force per unit length acting parallel to the inter-

face in the direction that tends to decrease the interfacial area, typically expressed in

mN/m. The energy and force descriptions of surface tension are equally valid, and

their use depends entirely on which is most convenient for a given problem.

The origins of surface tension are molecular in nature. In the liquid phase,

molecules are disordered and experience short-range interactions with their neigh-

bours. For non-polar molecules this interaction arises from van der Waals forces,

whereas for water this interaction is primarily from hydrogen bonding. If we consider

a liquid of non-polar molecules, short-range interactions occur because the molecules

are polarizable, and the instantaneous dipole moments of neighbouring molecules can

11
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(a) (b) (c) 
P- P+ 

Figure 1.3: Schematic of a fluid film with non-constant curvature. (a) A molecule at
the interface has fewer interactions with other molecules, and is therefore at a higher
energy state than a liquid molecule in the bulk. The Laplace pressure in a liquid
depends on the local curvature at the interface: (b) a region with negative curvature
and negative Laplace pressure, and (c) a region of positive curvature and positive
Laplace pressure.

attract [40]. This attractive interaction potential varies with the distance between

molecules, r, as UA(r) ∼ −1/r6. There is also a separation distance at which the elec-

tron clouds of neighbouring molecules begin to overlap, causing electrostatic repulsion.

This repulsive interaction potential is often described empirically as UR(r) ∼ 1/r12.

The combined potential from these attractive and repulsive interactions results in a

potential well of depth U0, with the typical separation distance between two molecules

in the liquid, r0, at the minimum of the well. This means that molecules in a bulk liq-

uid have, on average, U0 potential energy per molecule binding them to neighbouring

liquid molecules. Contrast this to a molecule at the liquid-vapour interface, shown

schematically in Fig. 1.3(a), which has roughly half as many interactions with other

liquid molecules on average in comparison with a molecule in the bulk, meaning that

it is in a state with ∼ U0/2 higher energy. This excess free energy for molecules at the

interface relative to the bulk is the origin of surface tension, and what drives a liquid

to flow in order to minimize its excess surface area, thereby minimizing its excess

surface energy, such as a spherical liquid droplet in air. This same argument holds

for creating interface between two immiscible liquids, such as oil in water.

12
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Molecular organic liquids like ethanol and acetone have liquid-vapour surface ten-

sions of ∼20 mJ/m2, whereas for water, with its strong hydrogen bonds, γ = 72

mJ/m2. For polymeric liquids, surface tension depends on the chemical nature of the

monomers, temperature, and molecular weight [41]. For most polymers the depen-

dence of surface tension on temperature is well described empirically for experimen-

tally relevant temperatures as [42]:

γ(T ) = γ0 +
dγ

dT
· T , (1.10)

where γ0 = γ(T = 0 ◦C) and dγ/dT are constant for a given polymer [43]. For PS,

γ(T = 0 ◦C) = 41.5 mJ/m2 and dγ/dT = -0.068 mJ/(m2·◦C) [43]. This reduction

in surface tension with increasing temperature results from weaker cohesion between

molecules at higher temperatures. As will be shown in Section 1.3.3, the rate of

viscous flow on small length scales is often quantified by the ratio of a liquid’s surface

tension and viscosity, γ/η, known as the capillary velocity. Using Eq. 1.10 for PS, an

increase in temperature from 110 ◦C to 150 ◦C will decrease γ by 10 %. This change

has negligible affect on the capillary velocity in comparison to the change in viscosity

over the same temperature range (Eq. 1.9), which decreases by a factor of ∼3×104.

For polymeric liquids there is also an entropic contribution to surface tension that

is dependent on molecular weight [41, 42]. This entropic contribution is dominated

by the available free volume for chain segments. For the high molecular weight chains

used in this thesis, the free volume changes with molecular weight because the density

of chain ends changes. The molecular weight dependence of surface tension is well

described by the functional form:

γ(Mn) = γ∞

(
1− K

Mα
n

)
, (1.11)

where K is a constant for a given polymer, γ∞ is the surface tension for infinite Mn,

and α = 1 for high molecular weights, or α = 2/3 for low molecular weights [44]. For

the molecular weight range typically used in experiments, 15 < Mn < 1000 kg/mol, γ

changes by ∼3 %, while viscosity changes as M3.4
w , which again will clearly dominate

the change in γ.

13
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The surface tension of a thin liquid film, either supported or free-standing in air,

is modified from its bulk value when the film’s thickness becomes comparable to the

length scale of molecular interactions. The amount by which γ is modified is called

the effective interface potential, Φ, and its value depends on the type of fluid, the

surface it is interacting with, and the thickness of the film. Consider two parallel

infinite planar surfaces that are brought together to a separation distance d. If the

materials only interact through van der Waals forces, there is a net attraction between

the molecules of the two surfaces. The effective interface potential is the free energy

of this interaction per unit area, given by [40]:

Φ =
−A

12πd2
, (1.12)

where A is the Hamaker constant, which depends on the refractive indices of the

two materials. For PS and silicon, A = −2.2 × 1019 J [45], whereas for PS and air,

A = 6.5 × 10−20 J [40]. A negative value of A means a thin film will remain stable,

whereas a positive value of A means the film is unstable [45]. The sign of A changes

for silicon if there is an oxide layer present, meaning that films on oxidized silicon

are unstable. It can be shown that the presence of the effective interface potential

causes a pressure within the liquid, P (x, y) = Φ′(h(x, y)), known as the disjoining

pressure. As will be discussed in Section 1.3, the value and shape of Φ(h) are critical

for determining the stability of thin fluid films against rupture.

For any curved liquid interface there is a pressure difference between the inside

and outside of the liquid, known as the Laplace pressure. Consider the work, δW ,

required for an infinitesimal change in the radius, dR, of a spherical drop of liquid

with volume V and surface tension γ [39]:

δW = −PodVo − PidVi + γdA , (1.13)

where subscripts ‘i’ and ‘o’ denote the inside and outside of the drop, respectively. The

last term represents the energetic cost to increase the surface area of the drop. Since

volume is conserved dVo = −dVi, and for a sphere dV = 4πR2dR and dA = 8πRdR,

the Laplace pressure change across the interface is found when δW = 0:

14



Ph.D Thesis - J.F. Niven McMaster University - Physics and Astronomy

∆P = Pi − Po =
2γ

R
. (1.14)

This increased pressure in the droplet relative to its surroundings occurs to balance

the net internal force of surface tension. The value of R can be interpreted as the

radius of curvature of the interface. For a generalized interface between two fluids, A

and B, with two principal radii of curvature, R1 and R2, the Laplace pressure is:

∆P = γAB

(
R−11 +R−12

)
= 2γABC , (1.15)

where γAB is the interfacial tension between the two fluids and C is the mean curvature

of the interface. For an interface whose topography is only dependent on x, such as

that shown schematically in Fig. 1.3, and for the capillary levelling of a step discussed

in Section 1.3.3, the mean curvature is given by [39]:

R−1 =

∣∣∣∣∣
∂2xh[

1 + (∂xh)2
]3/2

∣∣∣∣∣ . (1.16)

Since the denominator is always positive, regions that are concave up, such as Fig.

1.3(b), have lower pressure than regions that are concave down, such as Fig. 1.3(c).

This means that an interface with a curvature gradient will also have a pressure

gradient, which drives the fluid to flow from regions of positive pressure (positive

curvature) to regions of negative pressure (negative curvature), with flow directions

represented schematically by white arrows in Fig. 1.3. The net result is that surface

tension will drive a fluid film with a non-uniform topography to evolve toward a flat

film, thus reducing its excess surface energy with time.

1.3 Thin film hydrodynamics

This section builds on the previous to briefly describe how viscous fluids flow at small

length scales, including the equations and physical assumptions required to derive

the velocity profiles for thin viscous fluid films with initially non-uniform surface

topographies. The focus will be on polymeric films with thickness on the order of

hundreds of nanometers, although the results are applicable to any thin viscous film.
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The derivation will be done for both films on solid substrates (Fig. 1.4(a)) or films

that are “free-standing” in air, with two fluid-air interfaces (Fig. 1.4(b)) by changing

the hydrodynamic boundary conditions. For a more detailed derivation see Refs.

[39, 46, 47].

x

z(b)(a)
x

z

h(x,t)
h(x,t)

Figure 1.4: (a) A fluid film with a non-uniform surface topography on a solid sub-
strate. (b) A free-standing film with interfaces that are symmetric about the mid-
plane to equilibrate Laplace pressure through the film.

The dynamics of a rigid body, in which the entire object moves as a whole, are

described by Newton’s second law, which states that the vector sum of all forces acting

on the object is equal to its mass multiplied by its acceleration, ~F = m~a. Liquids

are inherently not rigid bodies, since the small volume elements of a liquid are free

to move independently of each other. The fundamental equation for the dynamics of

a liquid is therefore:

~F = ρ
d~v

dt
, (1.17)

where ρ is the fluid density, ~v is the velocity vector of a volume element, and ~F is the

net force acting on the volume element [39]. Assuming the fluid is incompressible,

there is the added constraint ∇ ·~v = 0. Equation 1.17 essentially describes a balance

between the forces that drive flow, such as gravity and surface tension, and the force

that opposes flow, viscosity. These driving forces manifest as pressure gradients in the

fluid, either hydrostatic pressure or Laplace pressure, which drive flow from regions

of high pressure towards regions of low pressure. The full form of Eq. 1.17 in three
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dimensions is known as the Navier-Stokes equation [39, 46]:

ρ

(
∂~v

∂t
+ ~v · ~∇~v

)
= −~∇P + η∇2~v + ρg , (1.18)

where P is the fluid pressure, ~v = (vx, vy, vz) is the flow velocity and vx, vy, and vz are

the components of the velocity field in the x−, y−, and z−directions, respectively.

This equation represents the conservation of momentum per unit volume of a liquid

volume element. The left hand side is the temporal derivative of momentum per

unit volume (the inertial component) and the right hand side is the sum of driving

and mediating forces per unit volume. Solutions to this equation fully describe the

flow field at any time and place within the fluid, however multiple assumptions and

simplifications are required to produce analytical solutions.

First, it is necessary to understand which driving and mediating forces dominate

at a given length scale in order to simplify the Navier-Stokes equations. The Bond

number, Bo, gives the relative magnitude (per unit volume) of gravity and surface

tension forces:

Bo =
gravity

surface tension
=

ρg

γl/V
=
ρgl2

γ
. (1.19)

The gravitational force is equal to the force of surface tension at a characteristic

length scale, lc, known as the capillary length:

lc =

√
γ

ρg
. (1.20)

On length scales well below the capillary length gravity can be neglected relative to

surface tension. For pure water, with γ = 72 mN/m and ρ = 1 g/cm3, lc ≈ 3 mm,

comparable to the size of raindrops on a window, since gravity causes larger drops to

slide down the glass. For a polymeric fluid such as PS, with γ = 35 mN/m and ρ =

1 g/cm3, lc ≈ 2 mm. This result shows that for experiments involving films of fluid

polymer with thickness less than a micrometer, surface tension is the dominant driving

force and gravity can be safely neglected. This simplification applies to experiments

discussed in Paper I and Paper II, since the samples have vertical length scales between

100s of nanometers to micrometers.

17



Ph.D Thesis - J.F. Niven McMaster University - Physics and Astronomy

The next simplification that can be made for viscous liquids involves the iner-

tial term, the left side of Eq. 1.26. The Reynolds number, Re, gives the relative

contribution (per unit volume) of inertial and viscous forces:

Re =
inertial

viscous
=
ρlv

η
=
ρlγ

η2
, (1.21)

where l is a typical length scale of the flow, and v = γ/η is the capillary velocity. For

Re � 1, flow is dominated by inertia, whereas for Re � 1, flow will be dominated

by viscosity. If Re = 1, lRe = η2/ργ is the length scale below which viscous forces

dominate inertia, and for flow on length scales well below lRe, the inertial component

of Eq. 1.18 can be safely neglected, greatly simplifying the equations. For PS, with

η ≈ 1 MPa/s, lRe ≈ 2 × 1010 m, a length greater than the diameter of the sun,

meaning that inertia can always be safely neglected for experiments involving high

Mw polymeric liquids. Therefore, for thin films of liquid polymer, flow is driven by

surface tension and mediated by the film’s viscosity. This allows Eq. 1.18 to be

simplified by removing the inertial term and the force of gravity, resulting in:

∇P + η∇2~v = 0 . (1.22)

These are known as Stokes equations, and describe slow, viscous flow in thin films.

Stokes equations are the basis of the hydrodynamic theory presented in Paper I.

The goal is now to use these equations to calculate the flow profile in the film,

~v, however further simplifications are still required. We will assume the geometry of

the film is invariant in y (see Fig. 1.4), meaning that vy = 0, and all derivatives in y

equal 0. We will also use the lubrication approximation, which assumes the horizontal

length scales of the film (x-direction) are much larger than the thickness (z-direction),

meaning that vertical flows are negligible in comparison to horizontal flows: vx � vy.

Using these assumptions, Stokes equations simplify to:

− ∂P

∂x
+ η

(
∂2vx
∂z2

)
= 0 . (1.23)
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We now need to consider the relevant hydrodynamic boundary conditions. For a

film on a solid substrate, Fig. 1.4(a), there is a fluid-air interface at z = h and a

fluid-solid interface at z = 0. For a viscous fluid in air there is a no-shear bound-

ary condition at the fluid-air interface: ∂zvx|z=h = 0. This is because air, with its

extremely low viscosity, cannot support a shear stress, η∂zvx, at the interface. There-

fore, in order for shear stress to be continuous across the interface it is required that

for the fluid ∂zvx|z=h = 0, meaning that the velocity profile is maximal at the fluid-air

interface. If there is a strong attraction between the fluid and substrate, the fluid

will remain stationary at the fluid-solid interface: vx(z = 0) = 0. This is called a

no-slip boundary, shown in Fig. 1.5(a). This no-slip condition applies to polymer

fluids on bare silicon substrates, for example. Weaker attraction between the fluid

and solid may allow the fluid to “slip” across the fluid-solid interface, shown in Fig.

1.5(b). The degree of slip is characterized by the slip length, b, defined as the length

below the fluid-solid interface at which the tangent of vx(z = 0) extrapolates to zero:

b = [vx/∂zvx]z=0. Interfaces with a slip length less than the film thickness are referred

to as “weak-slip”, for example PS on Teflon flouropolymer coated silicon which has

b ≈ 100 nm [48]. The limit of b → ∞ is known as “full-slip”, shown in Fig. 1.5(c).

Full-slip applies to flow in free-standing films, which have two fluid-air interfaces [9],

such as the samples discussed in experiment in Paper I.

x
z vx(z)

no-slip

vx(z)

b
weak-slip

vx(z)

strong-slip

z = h

z = 0

Figure 1.5: Fluid-solid hydrodynamic boundary conditions for flow on a solid sub-
strate with a no-shear boundary condition at the fluid-air interface (z = h). From
left to right: no-slip, resulting in Poiseuille flow; weak slip, where fluid can slip along
the interface with slip length b; and strong slip (b→∞), resulting in Plug flow.
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First consider a thin fluid film on a solid substrate with a no-slip boundary at

the fluid-solid interface and a no-shear boundary at the fluid-air interface, shown

schematically in Fig. 1.4(a). Integrating Eq. 1.23 once with respect to z and using

the relevant boundary conditions gives the horizontal velocity profile:

vx(z) =
1

2η

∂P

∂x

(
z2 − 2zh

)
. (1.24)

The velocity profile is parabolic in z because of the boundary conditions imposed by

the interfaces, and is referred to as Poiseuille flow.

The pressure driving flow is the Laplace pressure, which comes from curvature

gradients at the interface, as discussed in Section 1.2. For thin polymer films, we can

simplify further by assuming small gradients in height at the interface (∂xh � 1),

meaning that the curvature (Eq. 1.16) simplifies to R−1 ≈ −∂2xh, and the resulting

Laplace pressure is P = −γ∂2xh. We can now define the flow rate, Q, as the amount of

fluid flowing through a cross-section of the film per unit time: Q =
∫ h
0
v(z)dz. Using

conservation of volume:
∂h

∂t
= −∂Q

∂x
. (1.25)

By integrating the flow rate through the thickness of the film we obtain the thin film

equation for a 2-dimensional (2D) film on a supported substrate:

∂h

∂t
+

γ

3η

(
∂

∂x

(
h3
∂3h

∂x3

))
= 0 . (1.26)

This equation describes the flow of a thin viscous fluid film driven by surface tension

and mediated by viscosity. This result is only valid for thin films with small height

gradients because of the lubrication approximation. The 2D thin film equation has

solutions h(x, t) which are self-similar in x/t1/4. Self-similarity means that the surface

profile at time t1 can be stretched horizontally to match the profile at a later time

t2: h
(
x/t

1/4
1 , t1

)
= h

(
x/t

1/4
2 , t2

)
. This means that comparisons between numerical

solutions to Eq. 1.26 and experimental profiles allow the capillary velocity of the

fluid, γ/η, to be extracted, as discussed further in Section 1.3.3.
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Now if we consider flow in a 2D free-standing film of thickness 2h which has two

fluid-air interfaces, shown schematically in Fig. 1.4(b), the hydrodynamic boundary

conditions of the problem change and so does the resulting flow profile. The film is

assumed to be thick enough such that disjoining pressure can be neglected, but thin

enough that the lubrication approximation is valid. Returning to Eq. 1.23, we now

have no-shear boundary conditions at the two fluid-air interfaces:

∂vx
∂z

= 0 , at z = ±h(x, t) . (1.27)

Integrating Eq. 1.23 with respect to x gives

η
∂~v

∂x
= −γ ∂

2h

∂x2
, (1.28)

and integrating again gives the horizontal velocity profile:

vx = −γ
η

∂h

∂x
. (1.29)

As was done in the supported case, this velocity can be integrated to find the fluid

flux, and with conservation of volume yields the free-standing thin film equation:

∂h

∂t
=
γ

η

∂

∂x

(
h
∂h

∂x

)
. (1.30)

This equation also has self-similar solutions, this time in the variable x/t1/2. This

self-similar behaviour was confirmed experimentally by studying flow in thin free-

standing polymer films, discussed further in Section 1.3.3 [9]. For free-standing films,

there is the added requirement that the Laplace pressure is balanced at the two

fluid-air interfaces. This means that a free-standing film with significantly different

curvatures at its two interface will flow vertically to equilibrate pressures, resulting

in a film which is symmetric about its mid-plane, as shown in Fig. 1.4(b). This effect

was observed experimentally for free-standing liquid polymer films with an initially

sharp step at one interface [9].
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1.3.1 Stability of liquid films: wetting and dewetting

When a liquid droplet is placed on a solid surface, it can either take the form of a

spherical cap-shaped droplet, such as water on plastic, or spread horizontally and

“wet” the surface, such as water on glass [39]. Alternatively, a thin liquid film on a

surface can either retain a uniform thickness or “dewet” from the surface and break

up into droplets. Wetting and dewetting are of significant importance to a variety

of applications such as paints, inks, waterproof textiles, thin film surface coatings,

as well as in biological systems [39]. The stability of a thin film is governed by the

interaction between the fluid and substrate and the thickness of the film. Having an

understanding of the parameters that control wetting allows a surface to be physically

or chemically modified to tailor wetting properties. The following section will briefly

discuss the stability of thin viscous liquid films, for which gravity and inertia can be

ignored, either on solid substrates or free-standing, and the dynamics of a viscous

liquid spreading on a solid surface. For more information the reader is referred to

Refs. [39, 49, 50].

Wetting refers to the way in which a liquid spreads or recedes when placed on a

solid surface or an immiscible liquid [39, 49]. Wetting behaviour can be separated

into two main categories: total wetting, where the liquid spreads across the solid to

maximize the amount of solid-liquid interface; or partial wetting, where the liquid

forms a spherical cap, characterized by the equilibrium contact angle θe at the liquid-

solid-vapour triple line, referred to as the contact line. These two types of wetting

are shown schematically in Fig. 1.6. As discussed previously, surface tension can be

considered a force per unit length, so for a droplet in mechanical equilibrium with a

rigid solid, the static contact angle can be calculated using a horizontal force balance

at the contact line. Since there are three phases present, three surface tensions need

to be considered, resulting in [39]:

γ cos θe = γsv − γsl , (1.31)

where γsv, γsl, and γ are the solid-vapour, solid-liquid, and liquid-vapour interfacial

tensions, respectively. This equation is known as the Young-Dupré law, and is only

valid when the solid is undeformed by the vertical component of γ. In the case of a

22



Ph.D Thesis - J.F. Niven McMaster University - Physics and Astronomy

soft solid, such as the elastomers discussed in Section 1.4.2, this assumption no longer

holds, and the vertical force balance between capillarity and the elasticity of the solid

must also considered. This is known as elastocapillarity, and the capillary force can

be large enough to deform the solid, creating a “capillary ridge”. Elastocapillarity is

discussed further in Section 1.4.3.

(b)

total wetting 
(S > 0)

partial wetting 
(S < 0)

γslγsv

γ

θe

(a)

h

solid

liquidvapour

Figure 1.6: Wetting of a liquid on a rigid solid substrate: (a) total wetting, in which
the liquid spreads across the substrate and retains an equilibrium height h, and (b)
partial wetting, where the liquid forms a droplet with the shape of a spherical cap,
characterized by the equilibrium contact angle θe.

To distinguish between these two forms of wetting we define the spreading pa-

rameter, S, which is the difference between the surface energy per unit area of the

substrate before and after it is wet by the liquid [39]:

S = Edry − Ewet = γsv − (γsl + γ) . (1.32)

If S > 0, the surface energy of the dry solid is greater than that of the wetted solid,

meaning that the liquid will spontaneously spread to cover the surface, leading to

total wetting (Fig. 1.6(a)). This results in a thin liquid film, meaning that there is

no solid-liquid contact line, and therefore the equilibrium contact angle, θe, is zero.

Alternatively, when S < 0, it is energetically favourable for the liquid to dewet from

the surface, eventually forming droplets with equilibrium contact angle θe > 0, (Fig.

1.6(b)), known as partial wetting. These droplets have the shape of a spherical cap in

order to maintain constant curvature, and therefore constant Laplace pressure, at the

liquid-vapour interface. In the partial wetting regime the droplet is also surrounded
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by a nanoscopically thin film, known as a precursor film, which is discussed further

in Section 1.3.4.

If a fluid film of uniform thickness is formed on a solid surface for which S < 0,

below a critical thickness, hc, the film will break up and form droplets and expose dry

solid-vapour interface in order to minimize surface energy. The critical film thickness

is governed by the fluid’s capillary length and its equilibrium contact angle. This pro-

cess is known as dewetting, and is a special case of fluid film rupture. Although often

avoided in applications, dewetting can be a useful tool for removing dust particles

while drying a surface, or for measuring various flow properties on small length scales

[39]. Thin fluid films can be either metastable or unstable depending on their initial

thickness, the thickness dependence of their effective interface potential (Eq. 1.12),

Φ(h), and the presence of defect sites. For an ultra-thin (h . 10 nm) PS film on

a silicon oxide substrate, for example, long-range interactions between the film and

substrate become significant. It can be shown that a film with an initially uniform

thickness can lower its free energy by creating thin and thick regions, thus causing the

film to spontaneously dewet, even in the absence of defects [51]. This process is called

spinodal dewetting, and results in droplets which form on a characteristic time scale

and length scale throughout the film. Thicker PS films are metastable, and spinodal

dewetting does not occur. However, since it is still energetically favourable to form

thinner regions, dewetting of thick films can still occur by nucleation and growth of

dry regions on impurities such as dust particles or surface defects, or through thermal

fluctuations in the film’s thickness [51]. These nucleation sites allow the free energy

barrier set by the effective interface potential to be overcome.

γslγsv

γ
θd θd

γ
γ

γslγsl

h

R(t)
l(t)

Figure 1.7: Schematic side-view snapshot of the dewetting of a thin viscous liquid on
a rigid solid surface at an intermediate time point.
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A schematic side profile of a thin viscous film during nucleated dewetting is shown

in Fig. 1.7, where R(t) is the radius of the dewet hole at time t, l(t) is the width

of the dewetting ridge, and θd is the dynamic contact angle. The dewetting ridge

forms surrounding the hole in order to collect excess fluid from the now dry region.

The rim has a circular cross-section because Laplace pressure requires that the rim

has constant curvature, meaning that the two dynamic contact angles of the ridge

are roughly equal. The dynamics of dewetting can be modelled by considering the

driving and mediating forces acting on the rim, and are discussed in detail in Refs.

[49] and [50]. The driving force for dewetting is given by the sum of the interfacial

tensions acting on the rim, which are constant with time, and points radially outward

from the centre of the hole. In order for the hole to grow there must be a non-zero

driving force, and therefore it is required that θd < θe. For viscous dewetting this

driving force is balanced by viscous dissipation in the region of the contact line, which

is proportional to the rim velocity. Balancing the driving and mediating forces and

assuming conservation of volume gives a hole growth speed, v, of:

v ∝ γθ3e
η

. (1.33)

This result is well supported by experiments [52], and shows that for viscous dewetting

on a solid surface the radius of a hole growths linearly with time.

1.3.2 Rupture of free-standing viscous films

Analogous to the dewetting of liquid films on solid surfaces, free-standing viscous

liquid films with two liquid-air interfaces are prone to form holes throughout the

thickness of the film, and subsequently rupture. However, the addition of a second

no-shear boundary means that the physics of free-standing rupture differs from that

of supported dewetting. For high Reynold’s number films such as soap bubbles, the

rate of change in surface energy is balanced by the rate of change in inertial kinetic

energy, resulting in a linear growth of the hole’s radius, R, with time: R(t) ∼ t

[53, 54]. For low Reynold’s number hole growth, such as the polymer films discussed

in Paper I, the rate of change of surface energy is balanced by viscous dissipation. This

results in exponential growth: R(t) = R0 exp(t/τ), where τ is a characteristic growth
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time. This exponential behaviour has been confirmed by a variety of experiments

[55, 56, 57].

As with supported dewetting, there are two possible mechanisms for creating holes

in a free-standing viscous thin film: spontaneously, in a process analogous to spinodal

dewetting, or by nucleation on impurities in the film [57]. In the case of spontaneous

rupture, thermal fluctuations at the interface can be amplified by attractive dispersion

interactions through the film [58]. For defect-free films there is a critical length scale,

λc, corresponding to the fastest growing amplitude, meaning that all of the holes form

on a similar time scale and with the same average spacing throughout the film. The

growth rate and length scale of spontaneous hole formation can be calculated for a

free-standing film with initially sinusoidal surface undulations using Stokes equations

and by balancing the Laplace pressure and disjoining pressure at the surface [40].

The critical length scale is [59]:

qc =
2π

λc
>

√
A

πγh40
, (1.34)

where A is the Hamaker constant of the fluid in air. For PS in air A = 6.5× 10−20 J

[40]. Perturbations with length scales larger than λc are unstable, and will grow with

time, with the time scale of the fastest growing mode given by:

τmin ≈
ηh30
A

, (1.35)

where η is the fluid viscosity. For the material parameters of the polymer used in

Paper I: Mw = 183 kg/mol, T = 130 ◦C, η ∼ 109 Pa·s, h0 = 80 nm, which gives

τmin = 108 s, orders of magnitude larger than the experimentally observed time scale

of hole nucleation, which is typically on the order of seconds to minutes (see Paper

I, for example). This result shows that experimental hole formation in these films

is driven by nucleation on defects instead of spontaneous formation due to thermal

fluctuations.

For the nucleation and growth mechanism there is an energy barrier due to the

creation of excess surface area upon the formation of a hole. Consider a hole of

radius R nucleated in a film of thickness h with liquid-air surface tension γ, shown
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schematically in Fig. 1.8. The total liquid-air surface area lost at the two interfaces

(top and bottom) is Alost = 2 × πR2 (Fig. 1.8(a)), and the liquid-air surface area

created is Agained = 2πRh (Fig. 1.8(b)). The change in surface energy by nucleating

a hole is therefore:

∆E = γ (Agained − Alost) = γ
(
2πRh− 2πR2

)
. (1.36)

This is the energy barrier required to nucleate a hole in a free-standing film. There is

a critical hole size, Rc, required to be nucleated in order for growth to occur, which

can be found by minimizing the nucleation energy with respect to R:

∂∆E

∂R
= 2πγ (h− 2R) = 0 , (1.37)

⇒ Rc = h/2 . (1.38)

2⇡Rh

h ⇡R2

⇡R2

(a) (b) 

Figure 1.8: The change in surface area (and therefore surface energy) by nucleating a
hole in a thin film: (a) in red is the initial surface area before nucleating a hole, and
(b) in red is the surface area after nucleating a hole. Adapted from Ref. [60].

The energy required to overcome the nucleation barrier comes from defect sites

such as small dust particles or solvent impurities (∼ 0.2µm) [56, 57]. It has also been

suggested that air pockets in films could cause density inhomogeneities which could

nucleate holes [45].

After a hole is nucleated, it will continue to grow because surface tension creates

a force acting radially outward at the contact line around the rim of the hole at both

interfaces. The net force acting on the edge of the hole is therefore 2 · γ2πR, which

acts on the inside of the hole with an area of 2πR ·h. This results in a constant stress

of σ = 2γ/h acting on the hole. By considering a fluid element near the edge of the
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hole it can be shown that the shear strain rate is γ̇ = 2Ṙ/R, where Ṙ = dR/dt. The

fluid-air interfaces cannot support a shear stress, and therefore there is full slip of

the fluid at the surfaces, leading to a constant velocity profile across the thickness of

the film as the hole grows (plug flow, Fig. 1.5(c)). This results in radial flow whose

magnitude depends only on the radial distance from the centre of the hole, r:

v(r) =
ṘR

r
. (1.39)

The growth rate of a hole in a low Reynolds number film can be calculated by

balancing the viscous dissipation rate with the rate at which surface energy is gained.

For a film with viscosity η and thickness h, the viscous dissipation rate for plug flow

is [55]:

Ėη(r) = 2η

∫ ∞

R

2πrh

[(
∂v

∂r

)2

+
(v
r

)2
]
dr = 4πηhṘ2 . (1.40)

The surface energy gained as the hole grows is Eγ = 2γ · πR2, and therefore the

surface energy gained per unit time is:

Ėγ = 2γ · 2πRṘ . (1.41)

Balancing Eqs. 1.40 and 1.41 gives:

Ṙ

R
=

γ

ηh
, (1.42)

and therefore the radius of the hole grows exponentially with time:

R(t) = R0 exp

(
t

τ

)
, (1.43)

where the characteristic growth time τ = ηh/γ contains material parameters. For

free-standing films it is found that the rim of the film thickens uniformly because

of long-range contraction of the film, unlike in supported dewetting where a ridge

forms around the hole [50]. Th absence of a rim during rupture has been confirmed

by atomic force microscopy measurements [61, 62]. Since h and γ can be measured

independently, the growth rate of holes in thin polymer films allows for the viscosity
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of the film to be calculated [56]. However, the edges of the holes have very high strain

rates, and the film can be strongly shear thinning in the region of a hole. Initially,

films are highly entangled, and the high shear strain rate at edge of hole results in

a decrease in entanglements and therefore a reduced viscosity. In order to obtain an

accurate measurement of η, R(t) must be measured at later times when shear-thinning

is not significant [56, 57].

1.3.3 Capillary levelling

Studying viscous behaviour in bulk systems is fairly straightforward thanks to rheom-

etry, however measuring flow on small length scales is much more challenging. Mea-

suring dewetting speed is one option, but the film is inherently out of equilibrium

and is therefore highly dependent on the model used in order to extract accurate

information. Spreading of a fluid on a surface can also be used, but often has the

added complication of a contact line [50].

Alternatively, a polymer film with thickness on the order of hundreds of nanome-

ters can be prepared in the glassy state such that its surface has a well controlled

initial geometry with significant excess surface area relative to a flat film. Since the

thickness is well below the capillary length, flow is driven by surface tension and

mediated by viscosity. When heated above Tg, gradients in Laplace pressure at the

surface drive the film to flow to lower its excess surface area, and therefore reduces

its excess surface energy. One such geometry is a sharp vertical step on the surface,

created by stacking two films, shown schematically in Fig. 1.9(a) [36, 63]. As the step

is annealed it can be monitored optically or using atomic force microscopy [63], and

is found to flow and broaden with time, shown schematically in Fig. 1.9(b). If the

step is on a no-slip solid substrate, such as PS on silicon, late time surface profiles

broaden as t1/4, and are self-similar in x/t1/4, as discussed in Section 1.3. By com-

paring these self-similar profiles to numerical results of the thin film equation (Eq.

1.26), the capillary velocity, γ/η, can be extracted, providing a robust measurement

of flow in thin polymer films [64].

Other initial geometries can be used, including trenches [65], or micrometer di-

ameter cylindrical holes with depths part way through the film [62]. In the case of

capillary levelling of cylindrical holes, two self-similar regimes are found: a t−1/4 scal-
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glassy polymer 
< 500 nm 

liquid polymer 
step levels 

T > Tg 

(a) (b) 

Figure 1.9: (a) A nano-scale polymer film with a stepped polymer-air interface on a
solid substrate. (b) When the film is heated above Tg gradients in Laplace pressure
drive flow, causing the step to level and broaden with time.

ing at early times when the edges of the hole flow independently, and a t−1 scaling

regime at late times as the hole fills in. The late time scaling is significantly faster

than that of supported steps because the film is able to flow azimuthally to fill in the

hole. Capillary levelling can be used as a tool to study more exotic systems such as

two films with inhomogeneous molecular weight [66]. Levelling experiments have also

been used to show enhanced surface mobility below the glass transition temperature

[67]. The hydrodynamic boundary conditions of the system can be changed, for ex-

ample by using a strong-slip substrate [48], a soft substrate [68], or a film which is

free-standing in air [9].

Laplace pressure will drive the curvature of a free-standing fluid film to become

symmetric with respect to its midplane. Capillary levelling experiments with free-

standing steps were performed with films prepared in a similar way to steps on sup-

ported substrate, but were instead held on metallic washers [9]. The films were only

held around the edge of the washer, like a drumhead, meaning that the film had two

fluid-air interfaces. Initially there are large curvature gradients in the region of the

step, while the underside of the film is flat. This means there is a large driving force to

balance the Laplace pressures at the two interfaces, which causes the film to rapidly

symmetrize, however, it was found that this symmetrization occurred on a time scale

which was not accessible experimentally. The free-standing step profiles showed self-

similarity at late times in x/t1/2, as predicted by Eq. 1.30. Again, comparing these

self-similar profiles to numerical solutions of Eq. 1.30 allowed the capillary velocity

of the polymer to be extracted, which showed good agreement with values measured

for supported steps [9].
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Figure 1.10: (a) A free-standing polymer step with two polymer-air interfaces at
T < Tg. (b) When the step is heated above Tg, Laplace pressure drives vertical flow
and the formation of symmetric interfaces. (c) Upon continued annealing the film
flows and the step broadens with self-similar scaling in x/t1/2.

Paper I discusses the dynamics of the symmetrization of cylindrical holes in free-

standing films. The hole geometry allows for the use of higher Mw films, because

the nucleation of holes is not limited by molecular weight, whereas sharp steps are

difficult to create for films with Mw > 50 kg/mol. By using higher molecular weights,

symmetrization in this geometry is significantly slower than for free-standing steps,

making the dynamics experimentally accessible.

1.3.4 Fluid spreading on a solid surface

If a droplet of a non-volatile viscous liquid is placed on a clean solid surface such that

its contact angle greater than its equilibrium contact angle, the droplet will spread

on the surface and flow towards its equilibrium state. We can define the capillary

number, Ca, as the ratio between viscous and surface tension force: Ca = ηv/γ, where

v is the speed of the wetting front. For 3-dimensional flow, the shape of the droplet

during spreading can be approximated as a spherical cap if the capillary number is
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low. For typical wetting experiments Ca ∼ 10−5 – 10−3, meaning that surface tension

dominates viscosity and that the spherical cap approximation is valid. If the liquid

fully wets the solid (S > 0, θe = 0) and the size of the droplet is below the capillary

length (meaning gravity plays no role), the dynamics of the spreading are universally

described by Tanner’s law [69], which describes the dynamic contact angle of a droplet

of volume V0 as a function of time:

θd ∝ (t/τ)−3/10 , (1.44)

where τ = V
1/3
0 η/γ is the relaxation time. Alternatively, this equation can be

rewritten to describe the dynamics of the droplet radius, R(t) ∝ t1/10, or height,

h(t) ∝ t−1/5. This result is only dependent on properties of the fluid and is indepen-

dent of S as long as S > 0. The derivation of this spreading rate is based on viscous

wedge dissipation at the contact line, and uses the lubrication approximation, volume

conservation, and the assumption that the droplet profiles are self-similar with time

[39]. This result is in agreement with many experiments performed using a variety of

liquids and solid substrates [70, 71].

The universality of Tanner’s law is somewhat surprising given that it appears

intuitively that for any increase in the radius of the droplet should decrease the

surface energy by πSR2, meaning that the spreading rate would be dependent on the

magnitude of the wettability parameter, S. In practice, spreading takes place in two

stages, beginning with the formation of a microscopic precursor film which spreads

ahead of the macroscopic contact line [49]. This precursor film has a macroscopic

lateral extent and a thickness ranging from a few molecules to ∼100 Å [50]. The

existence of a precursor film means that S = 0 on the time scale of the macroscopic

spreading. The surface energy of the spherical cap relative to the dry substrate is:

Fs =
4V 2

0 γ

πR4
− πSR2 , (1.45)

where the first term is the liquid-air interfacial energy and the second is the liquid-solid

interfacial energy. If S = 0 and R is large, there is little reduction in surface energy by

increasingR, meaning that for a droplet of any liquid that completely wets a substrate,

spreading occurs slowly and the spreading rate is independent of S. For total wetting
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the droplet continues to spread until it reaches a final thickness determined by the

effective interface potential. Tanner’s law breaks down as h becomes comparable to

the range of the effective interaction between the solid surface and the liquid-vapour

interface.

In real fluids there is a stochastic contribution to the velocity field because of ther-

mal fluctuations in the distribution of molecular velocities [72]. Thermal fluctuations

can become significant in spreading experiments because of the small length scales

of the wetting edge and the precursor film. The addition of thermal fluctuations

at the wetting edge to hydrodynamic theories of fluid spreading increases the rate of

spreading in comparison to Tanner’s law [72]. For example, Tanner’s law for a droplet

spreading purely due to capillarity in 2D predicts the radius of the droplet scales as

t1/7, whereas the addition of thermal fluctuations increases the spreading rate to t1/5

[73]. Thermal fluctuations also decrease the equilibrium contact angle and increase

the precursor film thickness, meaning that the droplet height decreases due to con-

servation of volume [73]. The influence of thermal fluctuations on the spreading of a

liquid driven by the deformation of a rigid film is discussed in Paper II.

1.4 Elasticity of solid films

We now move from fluids to a brief discussion of the theory of linear elasticity of solids,

relevant for Paper II and Paper III. This section will focus on scalar deformations of

compliant solids, either soft solids or slender rigid structures such as thin films. For

a full tensor treatment of elasticity the reader is referred to Refs. [74] and [75].

A material is said to behave elastically if it maintains its original shape after the

application and removal of any small deformation. If the shape changes permanently

the material has undergone plastic deformation. When a stress σ is applied to a cube

with sides of length li, the deformation of an elastic solid is described by its strain,

ε = (lf − li)/li, where lf is the resulting length parallel to the applied stress. The

relationship between stress and strain for an elastic solid is known as Hooke’s law:

σ = Eε, where E is the Youngs modulus, which quantifies the stiffness of the material.

When an elastic material is stretched (or compressed) in one direction it contracts

(or expands) in the two perpendicular directions. This effect is quantified by the

33



Ph.D Thesis - J.F. Niven McMaster University - Physics and Astronomy

material’s Poisson’s ratio, ν. Most materials have 0 < ν < 0.5, with ν ≈ 0.3 for

glassy polymers [37], and the upper limit of ν = 0.5 being a perfectly incompressible

material which conserves volume upon deformation, such as the elastomeric materials

described in Section 1.4.2.

The solid materials discussed in this thesis take the form of thin plates or films,

where the lateral dimensions are orders of magnitude larger than the thickness. These

slender films allow for simplifications of the elastic equations. One important simpli-

fication is “plane stress”: if the film is in xy-plane all elastic stresses occur within the

plane of the film, with no stress components in z.

1.4.1 Bending versus compression

When a rigid slender film with elastic modulus Ef and thickness h is compressed

laterally, it can undergo two possible deformation modes: in-plane compression or

out-of-plane bending, shown schematically in Fig. 1.11(b) and (c). These modes

can both be present in a given system, although one generally dominates over the

other. For small lateral loads pure compression occurs, where the in-plane strain

has no gradient across the film’s thickness. At higher strain the film becomes more

geometrically confined, and eventually will spontaneously deform into a buckle of

amplitude w in order to accommodate its excess length, as shown in Fig. 1.11(c).

This buckle occurs with a length scale comparable to the total sample length, and

disappears when the applied strain is removed. The length along the mid-plane of

the film is preserved, meaning that the side of the film with the concave surface is

under compression, while the other side is stretched and therefore under tension.

The relative importance of bending and compression for a particular sample can

be found by considering how their energies scale with the sample’s geometrical pa-

rameters. The elastic energy of a film of length L is the sum of the compressive

energy, Uc, and bending energy, Ub, and scales as [74]:

U = Uc + Ub ∼ Eh
(w
L

)4
+ Eh3

( w
L2

)2
. (1.46)

The ratio of bending and compressive energies scales as Ub/Uc ∼ h2/w2, meaning

that for thin films with h � w, Uc � Ub, and the film will prefer to buckle upon
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compression. The fact that bending dominates compression for thin films becomes

immediately clear when trying to compress a sheet of paper.

(a)

pure bending

(b)

(c)

pure compression

Figure 1.11: Schematics showing (a) an undeformed elastic film, (b) pure compression,
and (c) pure bending.

The Föppl–von Kármán (FvK) equation gives a quantitative description of the

deformation of a film subject to a compressive load, P , and includes both bending

and stretching [74]. Analytic solutions to the FvK equation often only exist in limiting

cases where either bending or stretching dominate. For a thin film where bending is

dominant, the differential equation governing the deflection of the film is:

B

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
= P , (1.47)

where B = Eh3/12(1 − ν2) is the bending rigidity of the film. If the deformation is

invariant in y, the equation is simplified further to:

B
∂4w

∂x4
= P . (1.48)
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A modified version of the bending dominant FvK is used again is Section 1.5.1 to

calculate the wrinkling wavelength of a rigid film on a soft substrate.

1.4.2 Elastomeric materials

Many applications require materials that can remain elastic under large tensile strains.

Glassy polymer materials typically have moduli on the order of 1 GPa, and only re-

main elastic when strained up to ∼10 % [37]. When strained further, glassy materials

begin to deform plastically before eventually failing. For example, a thin entangled

polymer film strained just before the point of failure can undergo a strain localization

process called crazing, in which regions of the film thin significantly while other re-

gions retain their original thickness [76]. On the molecular level crazes occur because

individual polymer chains become stretched, which causes the film to thin.

Polymeric solids can be made more elastic by creating a macroscopic network of

polymer chains in the melt which are bonded together at fixed points called cross-

links. These materials are known as elastomers, and the nature of the cross-links can

be either chemical or physical [29]. Chain segments in the regions between cross-links

remain locally liquid-like when above their respective Tg, but the cross-links mean

that the network is not free to flow on long length scales, resulting in a macroscopic

material that behaves mechanically as a solid. As discussed earlier, there is an entropic

restoring force that acts to return a chain to its equilibrium size when it is deformed.

Therefore, if a bulk elastomeric material is strained and then released, each of the

soft liquid-like regions is entropically driven to relax back to the equilibrium size of

the chains, meaning that the elastomer is restored to its initial size, and thus behaves

elastically. Because of these soft regions, elastomers can be strained to much higher

values than typical glassy materials, however, the stress-strain behaviour becomes

non-linear with increasing strains [29].

Chemical cross-linking creates permanent covalent bonds between chains, as is

the case for rubbers. Elastomers can also be made by forming physical cross-links,

which create a network consisting of “hard” and “soft” regions. If the chains are

capable of forming microcrystalline regions upon cooling, multiple chains can become

physically bonded, shown is Fig. 1.12(a). An example of this is Elastollan (used in

Paper III), which is a polyurathane multiblock copolymer [77]. Each chain consists of
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(a) (b)

Figure 1.12: Thermoplastic elastomer materials with hard chain segments (T < Tg)
shown in red and soft segments (T > Tg) shown in blue. (a) A multiblock copoly-
mer, such as Elastollan, with alternating hard and soft segments, in which the hard
segments form crystalline regions (red boxes) which act as physical cross-links. (b)
A triblock copolymer, such as styrene-isoprene-styrene, which micro-phase separates
to form glassy regions (red circles) which act as physical cross-links, while the soft
segments remain locally liquid-like.

alternating hard and soft segments. When cooled, the hard segments from multiple

chains form microcrystalline regions which act as physical cross-links and create a

network of soft chains. Similarly, elastomers can be formed using a triblock copolymer

of two chemically distinct polymers, A and B, of the form A-B-A, such as styrene-

isoprene-styrene (SIS) copolymer. When cooled to room temperature, the PS sections

of the copolymer micro-phase separate to form spherical domains which are glassy

below 100 ◦C, while the polyisoprene segments remain locally liquid-like, since Tg

= −60 ◦C for polyisoprene. These micro-phase separated regions tether the liquid

chains together, creating physical cross-links and a macroscopic elastomer network.

Elastomers with physical cross-links are known as “thermoplastic” elastomers because

the cross-links break up at high temperatures, allowing the elastomer to be reshaped

and then reformed upon cooling.
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1.4.3 Elastocapillarity and elastohydrodynamics

Fluids and soft or slender solids can interact with one another, coupling elasticity and

capillarity or elasticity and hydrodynamics. These interactions can be used as a form

of self-assembly, or for creating complex microstructures [78]. The capillary force of

a liquid can produce deformations in a highly compliant elastic material, known as

elastocapillarity [79]. High compliance can mean either soft solids, such as elastomers,

or slender structures such as thin films or fibres. For liquid droplets on a soft surface

this causes a deformation at the contact line, where the solid-liquid surface tensions

pulls the substrate upward to balance vertical forces, resulting in a wetting ridge

[80]. This ridge dissipates elastic energy, affecting the shape of the rim during the

dewetting of a liquid off of a soft solid, and also changing the dewetting rate from

that on a rigid solid [81, 82]. Also, anisotropic tension in the film alters the shape

of dewetting holes [82] or sessile droplets [83, 84], which could have micropatterning

applications. Capillarity can also deform slender rods, causing them to wrap around

droplets or coagulate like wet hair [85], and has self-assembly applications by bundling

micropillars [22, 86]. Similarly, thin films are subject to elastocapillarity, wrapping

around liquids to create capillary origami [20, 21, 87], or deforming due to the surface

tension of a droplet [83], which allows the mechanical tension in thin membranes to be

measured [88]. A characteristic length scale arises from a balance of surface tension

and elasticity, known as the elastocapillary length:

LEC =
E

γ
, (1.49)

where E is the elastic modulus of the solid. Below this length capillary forces become

significant and are likely to deform the solid. For rigid solids with E ∼ GPa, LEC ∼
10−12 m, meaning that the solid does not deform and no wetting ridge is formed.

However, for soft solids with E ∼ kPa – MPa, LEC can be on the order of ∼100 nm

for elastomers or ∼100 µm for soft gels, meaning the elastocapillary deformation of

the solid at the wetting ridge is easily observable with optical microscopy or atomic

force microscopy [82, 89].
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The coupling of an elastic force, fluid flow pressure, and gravity is known as

elastohydrodynamics. The bending or stretching energy of an elastic film with non-

spontaneous curvature can drive flow in a viscous fluid, or alternatively, fluid flow

pressure can deform an elastic film. Examples of elastohydrodynamics exist on length

scales ranging from geophysical, such as magma intrusion under rock [19], to phys-

iological, such as the formation and growth of blisters [90] and arterial pumping

[18, 91]. Analogous to the capillary length, Eq. 1.20, a characteristic length scale

can be defined at which bending stress and gravity contribute equally, known as the

elastogravity length:

LEG =

(
B

ρg

)1/4

, (1.50)

where B is the bending rigidity of the film and ρ is the density of the fluid. For

experimental lengths below LEG gravity can be neglected.

Building on the discussion of capillary-driven spreading of a fluid in Section 1.3.4,

one could imagine a situation in which a fluid perturbation is capped by a thin elastic

sheet. The bending energy of the sheet can drive flow, causing the fluid to spread

and the height of the perturbation to decrease. Most experiments done to study

elastohydrodynamic spreading involve the pumping of a fluid under an initially flat

elastic film, creating a “blister”. For perturbations with vertical length scales below

the elastogravity length gravity can be safely neglected. Analogous to the contact

line in Tanner’s law, the dynamics of the spreading of a fluid under an elastic film is

dominated by a balance of viscous and elastic forces at the edge of the fluid, known as

the peeling front. Paper II discusses the elastohydrodyanmic spreading of a viscous

fluid capped by a rigid thin film.
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1.5 Elastic instabilities

Elastic instabilities at surfaces and interfaces can form under compressive loading,

and are ubiquitous in nature on a variety of length scales ranging from the wrinkles

on human skin (l ∼ µm) [92], to the growth patterns formed on many fruits and

vegetables [93], to geological structures (l ∼ m – km) [94]. Evolution has also taken

advantage of mechanical instabilities, such as wrinkling and folding in the human

brain, which triples the effective surface area and allows for significantly increased in-

formation storage and mental functioning [95], or wrinkles on shark skin (l ∼ 100µm)

which prevent the growth of microbes and create a boundary layer that reduces drag

while swimming [96, 97]. Many of these examples of elastic instabilities can be ide-

alized as a bilayer system in which a relatively thin, stiff film is compressed while

adhered to a relatively thick, soft substrate. Compression of the bilayer can occur

as a result of differential growth, drying of the soft layer, or mechanical confinement

[98]. As discussed in Section 1.4.1, it is energetically favourable for a thin film to bend

rather than stretching or compressing, however, in this case bending of the capping

film causes elastic deformation of the substrate since the two layers are adhered. It

is the competition between these two mechanisms, the bending of the film and the

stretching of the substrate, discussed in detail in Section 1.5.1, that determines the

resulting behaviour of the system in response to compression.

Early research of surface wrinkling and buckling was done to understand the

critical buckling stresses for aerospace panels so that mechanical instabilities could

be avoided, not utilized [99]. More recently, bilayer stiff film/soft substrate systems

have been seen as potentially useful for a variety of applications, including as a facile

method for fabricating tuneable and scalable ordered surface structures [23, 100],

flexible and stretchable electronics [14, 15, 16], or flexible biomedical sensors [101].

Surface wrinkling can also be used as a metrology to extrapolate the mechanical

properties of nano-scale thin films, such as the modulus, which can be difficult to

measure accurately using more traditional techniques [102, 103, 104].

The majority of wrinkling experiments done to date involve a thick planar sub-

strate (H ∼ mm – cm), often a soft elastomer such as polydimethylsiloxane or a

viscous fluid, capped by a relatively thin rigid layer, such as a metallic or polymeric

film (h ∼ nm – µm). The thickness ratio of the two layers is usually such that the

40



Ph.D Thesis - J.F. Niven McMaster University - Physics and Astronomy

thickness of the substrate is assumed to be semi-infinite relative to the capping film.

This assumption greatly simplifies the derivation of wrinkling wavelength.

There are a variety of mechanisms used to generate a compressive strain in

the bilayer. Chemical swelling can be used to create differential expansion at the

film/substrate interface, which can cause wrinkling [10, 105, 106, 107]. Differential

thermal expansion between the film and substrate can also be used to generate strain

in the capping film [108]. These two methods are of narrow research interest be-

cause they are impractical for many applications and are limited to generating small,

isotropic strains, and therefore isotropic wrinkling patterns. The magnitude of strains

created is also difficult to control or quantify.

A more versatile wrinkling methodology is to mechanically compress the capping

film, either by applying a force to the sides of the bilayer, or by pre-straining a soft,

stretchable substrate using a strain stage, and then capping it with a rigid film. Upon

release of the pre-strain the rigid film is compressed and can wrinkle. This method

gives more control over the magnitude of applied strain and allows for anisotropic

stains to be generated, which can generate more complex morphologies [109]. A

strain stage was used in Paper III to compress bilayer films, with the experimental

details discussed in Section 2.2.2. An overview of some theories and experimental

results for the finite substrate regime are discussed in Section 1.5.3.

1.5.1 Wrinkling

Consider a thin rigid film with thickness h and modulus Ef ∼ GPa that is well

adhered to a much softer, thicker, elastic substrate with thickness H and modulus

Es ∼MPa, shown schematically in Fig. 1.13. These bilayers are created, for example,

by capping the substrate with a rigid polymeric or metallic film, either by transferring

a pre-prepared film [110], depositing a film from vapour [102, 111, 112], or by oxidizing

the surface of an elastomeric substrate to create a thin rigid crust [113, 114].

When the bilayer is subjected to an applied compressive force, F , either by pushing

on the sides of the bilayer or by relaxing the pre-strained substrate, there is a force

balance between the bending of the rigid film and the deformation of the substrate.

Above a critical force this results in the sinusoidal wrinkling of the top surface, with a

characteristic wavelength λ and amplitude A [23]. If the substrate thickness is taken
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Soft substrate, Es ~ MPa

Rigid film, Ef ~ GPa h
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Figure 1.13: (a) A soft planar substrate of thickness H that is capped by a rigid film
of thickness h, with H � h. (b) Compression of the rigid film causes wrinkling with
a characteristic wavelength λ because of the trade-off between the bending energy of
the film and stretching energy of the substrate.

to be semi-infinite with respect to the thickness of the capping film, the deformation of

the bilayer can be calculated quantitatively [74, 115]. Taking the coordinate system to

be such that the bilayer is compressed in the x-direction and the deformation occurs

in the z-direction, and assuming perfect adhesion between the layers, the system can

be described by [74, 112]:

ĒfI
d4z

dx4
+ kz + F

d2z

dx2
= 0 , (1.51)

where Ēf = Ef/(1 − ν2f ) is the plane strain modulus of the capping film, νf is the

Poisson’s ratio, I is the inertial moment of the film, and k is the Winkler modulus of

the substrate. In the case of a film of thickness h and width w, I = wh3/12, and for

a semi-infinite substrate k = Ēswπ/λ [115], where Ēs is the plane strain modulus of

the substrate.
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The first term of Eq. 1.51 comes from the bending dominated FvK equation, Eq.

1.48, and the second term describes the elastic response of the substrate by treating

it as a series of equivalent springs [115]. Bending favours longer wavelengths, whereas

stretching favours shorter wavelengths, and the balance between these two forces

determines the resulting characteristic wavelength of the system. Since wrinkling

causes a sinusoidal deflection of the surface,

z = A sin

(
2πx

λ

)
, (1.52)

and substituting this into Eq. 1.51, it follows that:

F =
h3π2wĒf

3λ2
+
λwĒs

4π
. (1.53)

This equation describes how the applied force affects the resulting wrinkling pattern.

Minimizing Eq. 1.53 with respect to λ gives the critical force required to cause

wrinkling:

Fc = Ē
1/3
f

(
3Ēs

)2/3
hw/4 . (1.54)

Substituting this critical force back into Eq. 1.53, the corresponding characteristic

wrinkling wavelength is therefore:

λ = 2πh

(
Ēf
3Ēs

)1/3

. (1.55)

This equation suggests that for a relatively stiff capping film (Ef � Es) the

buckling force dominates, favouring a long wavelength, whereas for a relatively stiff

substrate (Ef ≈ Es) the stretching force dominates, favouring a small wavelength. It is

also important to note that this equation does not depend of the substrate thickness,

H, which was taken to be semi-infinite. Experimental results for a variety of systems

show excellent agreement with Eq. 1.55, meaning that surface wrinkling can be used

as a metrology to measure Ef, Es, or h, if two of the other parameters are known

[102, 103, 104].

The force applied to a sample is often not well known experimentally, whereas the

applied strain is easily observable by measuring the change in the lateral dimensions
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of the sample upon compression. The applied strain is related to the compressive

force by:

ε =
σc
Ēf

=
Fc

hwĒf

. (1.56)

The critical applied strain required for wrinkling, or equivalently the critical pre-strain

in the substrate, can then be found by substituting this into Eq. 1.54:

εc =
1

4

(
3Ēs

Ēf

)2/3

. (1.57)

This result shows that for stiffer films or soft substrates, the bending term dominates,

causing the onset of wrinkling to occur at lower applied strains. For typical experi-

mental systems, such as that discussed in Paper III with Ef ≈ GPa and Es ≈ MPa,

the critical strain is on the order of 0.5 % [110, 116].

A similar result can be derived for the wrinkling of stiff thin films on viscous

substrates [98]. The substrate modulus, Es, is replaced by an effective substrate

stiffness ρg, where ρ is the density of the fluid. The resulting equation for the critical

wrinkling wavelength is:

λ = 2π

(
B

ρg

)1/4

. (1.58)

where B is the bending stiffness of the film. Wrinkling on a viscous substrate can

be used to measure dynamic properties of the fluid by observing how the wrinkling

wavelength and amplitude change with time. For example, wrinkling caused by dif-

ferential thermal expansion between a thin rigid film and a viscous polymer substrate

has been used to measure viscoelastic properties of thin polymer films, such as the

rubbery plateau modulus [117].
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1.5.2 High strain instabilities

At strains beyond the critical wrinkling strain, the capping film becomes more me-

chanically confined, and strain localization modes and surface failures can occur which

break the symmetry of the sinusoidally wrinkled surface. High strain localization

modes of soft solids are found in many biological tissues and organs [118], and these

instabilities have also been suggested as potentially useful for applications such as

surface patterning [119]. The various possible localization modes are shown schemat-

ically in Fig. 1.14 and discussed further below. Figure 1.15 shows a phase diagram

of mechanical instabilities for a rigid film on a semi-infinite soft substrate as a func-

tion of modulus ratio, strain mismatch, and adhesion, calculated using finite element

simulations [119]. This phase diagram suggests that the type of instability observed

in a given system is most strongly dependent on the modulus ratio of the two films.

The adhesion between the layers is also an important factor, but is generally more

difficult to control in experiments. This information allows particular instabilities to

be either selected or avoided for a given application by tuning the parameters of the

sample.

(a) Wrinkles (b) Period-doubles (c) Folds  

(d) Ridges (e) Delamination (f) Buckle 

Figure 1.14: Schematic of high strain mechanical instabilities observed in thin film
bilayers: (a) wrinkles (b) period-doubling (c) folds (d) ridges (e) delamination (f)
buckling.
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Localization modes are discontinuities in the surface structure associated with

non-linear contributions to the elastic response of the substrate [120]. Essentially,

localization of strain on the wrinkled surface causes a bifurcation of the wrinkle am-

plitude: one wrinkle grows in height at the cost of its neighbours. The bifurcation

of wrinkling amplitude can result in period doubling (Fig. 1.14(b)) [121], where the

surface transitions from sinusoidal wrinkling to a pattern with twice the period. Upon

further compression of relatively soft films and substrates with low pre-strain, folding

(Fig. 1.14(c)) can occur, where the film bends into the substrate, creating regions

of self-contact [120]. For stiffer substrates ridging can occur (Fig. 1.14(d)), creating

high aspect-ratio, non-sinusoidal surface patterns [122]. Surface failures can occur

at higher strains, including delamination (Fig. 1.14(e)), where adhesion between the

layers is lost and a void is formed [123, 124]. At very high compression plastic failure

of the capping film are also possible, including crazing and cracking [110].

Figure 1.15: A phase diagram of surface instabilities of a bilayer film. The axes
represent the strain mismatch between the layers, εM, the modulus ratio of the film and
substrate, µf/µs, and the adhesion energy between the layers, Γ/µsHf. Reproduced
with permission from Ref. [119].
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1.5.3 Instabilities in free-standing bilayers

The above discussion of mechanical instabilities focused on the regime where the soft

substrate was assumed to have semi-infinite thickness relative to that of the capping

film. This assumption means the deformation of the capping film only affects the

stress in the substrate to a depth on the order of the size of the surface structure,

while the bottom of the substrate remains flat and stress free. The semi-infinite

substrate assumption greatly simplifies the mathematics used to describe mechanical

instabilities, but is expected to eventually break down as the relative thickness of the

substrate is decreased, or the bending stiffness of the capping film is increased.

Several theories [125, 126, 127] and some experimental results [128] have suggested

that in the finite-substrate regime the observed wrinkling wavelength and critical pre-

strain for wrinkling deviate from the semi-infinite predictions, Eqs. 1.55 and 1.57.

The semi-infinite theory also cannot account for the possibility of the entire bilayer

undergoing global out-of-plane buckling on a length scale comparable to the total

sample length, shown schematically in Fig. 1.14(f), since the bottom of the sub-

strate is assumed to remain flat. Technology continues to push for thinner bilayer

structures, and many applications, such as flexible electronics and biomedical de-

vices, require bilayers that can buckle globally. Understanding the critical material

and geometrical parameters which govern global buckling is therefore important for

designing new technology. Some global buckling experiments have been performed in

the context of flexible electronics, but these have used macroscopic samples (H ∼ cm)

and there is limited experimental data [126, 129]. Models of wrinkling and buckling

in the finite substrate regime are also typically more mathematically complex than

the semi-infinite case derived above [99]. Paper III discusses experiments studying

the transition between local wrinkling and global buckling in thin free-standing bi-

layers, and presents a basic model based on modifications to the semi-infinite theory

presented in Section 1.5.1.
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Chapter 2

Experimental techniques

The experimental techniques used in each paper discussed in Chapter 3 are summa-

rized concisely in the paper’s text. This chapter provides supplemental information

on the main sample preparation and characterization methods used in this work. The

materials and techniques involved in creating thin polymeric films, both free-standing

or on solid substrates, are discussed in Section 2.1. Section 2.2 discusses specific sam-

ple preparation techniques using for each project: the creation of cylindrical holes in

free-standing films for Paper I is discussed in Section 2.2.1; the free-standing poly-

mer/elastomer bilayer films from Paper III are discussed in Section 2.2.2; and the

creation of cylindrical polymer fibres for Paper II are discussed in Section 2.2.3.

Sample characterization techniques used include ellipsometry (Section 2.3.1), optical

microscopy (Section 2.3.2), and atomic force microscopy (Section 2.3.3).

2.1 Creating thin polymer films

2.1.1 Materials

Paper I and Paper III used atactic polystyrene (PS) with Mw = 183 kg/mol (Polymer

Source, Inc), PDI = 1.06, and Tg, PS = 100 ◦C [37]. Thin PS films were prepared

by spin coating from dilute toluene solutions with concentrations between 2 % and

10 % (Fisher Scientific, Optima grade), discussed below in Section 2.1.2, resulting in

films with thickness between 80 nm and 900 nm. This molecular weight was chosen

for Paper I because the viscosity of the film was low enough for significant flow to
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occur on an experimentally accessible time scale, while being high enough that the

fluid film remained stable against rupture on the time scale of the experiment. The

mechanical properties of PS were taken from literature to be Ef = 3.3 GPa and νf =

0.33 [130]. It is noted that previous work has suggested the elastic modulus of a PS

film begins to decrease from its bulk value as the thickness becomes comparable to

the size of the polymer molecules [104], however not all experiments have measured

this effect [131]. For Paper III the thinnest film used was 83 nm, or about 7Rg (see

Eq. 1.4), meaning that the moduli of the PS films used are assumed to remain at

their bulk value.

Paper II used PS fibres and thin films with Mw = 15.8 kg/mol (Polymer Source

Inc., Canada), PDI = 1.05, index of refraction nPS = 1.53 [37], and film thicknesses

ranging from 25 nm to 380 nm. The method used to create PS fibres is discussed

in Section 2.2.3. Polysulfone (PSU) thin films with Mn = 22.0 kg/mol (Aldrich),

and index of refraction nPSU = 1.61 [37], were prepared by spin coating from dilute

cyclohexanone solutions (Sigma-Aldrich, puriss p.a. > 99.5%). PSU was chosen for

its high glass transition temperature of Tg, PSU = 180 ◦C [37], allowing experiments

to be performed at Tg, PS < T < Tg, PSU, such that the PS was a viscous fluid while

the PSU remained an elastic solid.

Paper III used two different elastomeric films: pre-prepared Elastosil films (Wacker

Chemie AG) with thicknesses of H = {20.9 ± 0.4 (measured here), 51 ± 1, 104 ± 2,

213 ± 7, or 258 ± 2} µm [132], and Elastollan TPU 1185A (BASF). Elastollan films

were prepared by spin coating from dilute cyclohexanone solutions to create films

with thickness between 100 nm and 1 µm.

Two different substrates were used during the sample preparation process. Freshly

cleaved mica sheets (Ted Pella, Inc.) were used to spin coat 3×3 cm thin films. Mica

was chosen because it provides a clean, flat surface, and allows films of relatively

large area to be easily floated onto water surfaces and subsequently transferred to a

metal washer (Paper I), another substrate (Paper II), or to a straining stage (Paper

III), discussed further below. Silicon wafers (University Wafer) were cleaved into

1×1 cm substrates and used as a rigid substrate. These silicon wafers are reflective,

allowing for ellipsometry to be used to measure film thickness, and for an optical

interferometric technique to be used to measure the surface profiles for thin polymer
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films in Paper III. Stainless steel washers (0.1 mm thick, Accugroup, UK) were used

in Paper I to create free-standing PS films which were supported only at the edges of

the washer.

2.1.2 Spin coating thin films

Creating films with uniform thickness below 10 µm has been of importance for decades

in both research and industry. The most common techniques include dip coating [133],

flow coating [134], and spin coating [135]. All of the nano-scale polymer films used in

this thesis were all created using spin coating.

Spin coating is used to create polymer films with thickness ranging between 10s of

nm to 10s of µm on solid substrates. During the spin coating process, the substrate,

in this case mica or silicon, is first attached to a motor via a spin coating chuck. The

substrate is then coated with a few drops of a dilute solution of the polymer in a

volatile solvent. The motor then accelerates the substrate at ∼5000 rpm/s to angular

speeds between 2000 rpm and 5000 rpm. As the substrate is accelerated, solvent is

quickly ejected radially from the droplet, causing the solution to spread and flatten,

creating a uniform film of concentrated solution with a thickness of 10s of µm. As

the film continues to spin, solvent evaporates and the polymer chains become less

mobile, eventually resulting in a vitrified film of uniform thickness for glassy polymers

such as PS and PSU, or an elastomeric film for Elastollan. The film thickness can

be controlled by changing the spin speed, and thus the amount of solution that

gets ejected, or the concentration of the solution used, with higher concentrations

resulting in thicker films [135]. All spin coating done in this thesis was performed

with a commercial spin coater (Headway Research Inc., Model PWM32). Solutions

in toluene were spun for 20 seconds, whereas solutions made with cyclohexanone were

spun for 60 seconds because cyclohexanone is less volatile than toluene.

The polymer chains in films created by spin coating are initially far from equilib-

rium, and thus need to be annealed above Tg prior to use. Annealing also removes

residual solvent that may be remaining from the spin coating process. The glassy

polymer films used in this work were annealed for multiple hours in a vacuum oven

at 10−5 mbar and tens of degrees above their respective Tg. The ovens consisted of a

heating pad in a stainless steel and aluminum chamber with a thermocouple to mea-
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sure the temperature of the pad. Samples were covered with an aluminum hood and

clamped tightly to maintain uniform heat, and the oven was closed with an aluminum

lid on a rubber o-ring. Elastollan films were annealed at 150 ◦C, a temperature at

which the film remains physically crosslinked and does not deteriorate.

As done previously by many experiments in the Dalnoki-Veress lab [9, 62, 63], all

projects in this work used a “water transfer” method to create freely floating thin

films which could then be transferred to other substrates or apparatuses. Films were

spun on freshly cleaved mica substrates in order to be floated onto a bath of ultrapure

water (18.2 MΩ·cm, Pall, Cascada, LS) in a crystallization dish. All glassware was

cleaned thoroughly with Sparkleen 1 (Fisherbrand) and rinsed multiple times with

ultrapure water prior to use. Before floating, the films were cut with a scalpel blade

∼1 mm from the edges. Very little pressure was used to avoid creating excess mica

dust, which greatly impacts the stability of thin liquid films in Paper I. For the thin

Elastollan films used in Paper III, the edges were removed with a cotton swab dipped

in acetone. This was done because cutting Elastollan films with a scalpel often caused

the films to remain pinned to the mica substrate while attempting to float the film off

of the substrate. Glassy thin films can also be cut into smaller pieces using a scalpel

blade depending on their intended use. The mica substrate and film were then slowly

dipped into the water bath at a ∼45◦ angle. Since the polymer film is hydrophobic

and mica is hydrophilic, water easily penetrates between the film and substrate, and

the film is eventually released from the mica, and remains floating freely on the water

surface. Small pieces of film or dust were cleaned from the water surface using a

suction pump. The pieces of film could then be floated onto a metal washer to create

a free-standing film, onto a sample on a silicon wafer, or re-floated back onto the mica

substrate. After floating back onto mica, a layer of water remains between the mica

and film, which allows the film to be transferred to a straining stage, discussed in

Section 2.2.2. Thicker films of PS up to 2 µm were made for Paper III by floating a

full PS film onto another film on mica, annealing above Tg, PS to heal the interface

between the two films, and then floating off of the mica substrate as usual.
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2.2 Sample preparation

2.2.1 Creating free-standing holes

Paper I discusses the capillary levelling of a free-standing PS film which initially has

micrometer diameter cylindrical holes part way through the film, shown schematically

in Fig. 2.1. The film was made using Mw = 183 kg/mol PS, with hole depths of h1 =

80 nm and a total film thickness h1 + h2 = 610 nm. After the two films were floated

onto the water bath they were picked up from below onto stainless steel washers in

order to create free-standing films. The thinner film (h1) was floated onto a washer

with an inner diameter of 5 mm, and the thicker film (h2) was floated onto a washer

with an inner diameter of 3 mm. After floating onto the washers the films were left to

dry in a laminar flow hood and then inspected using optical microscopy to check for

dust particles, tears in the film, or other visible defects. The free-standing films on

washers were initially wrinkled after the floating process. To relax the wrinkles the

films were placed on a hot stage (Linkam, UK) and heated at 100 ◦C/min to slightly

above Tg, PS. When the temperature passes above Tg, PS, surface tension pulls the film

taut and removes the wrinkles. The film remains taut and wrinkle free when quenched

back to room temperature. Small pieces of silicon wafer were used to separate the

washer and film from the surface of the hot stage in order to prevent impurities from

contacting the film surface.

Holes were nucleated in the 80 nm film by rapidly heating further to T ≈ Tg + 20
◦C on a hot stage while under an optical microscope. Imaging was done in either

bright field or dark field mode using a 20× or 50× objective in order to observe

nucleation and growth of holes in the film. As discussed in Section 1.3.2, holes were

nucleated on randomly distributed defects in the film, and generally formed in less

than a minute. The holes were monitored as they grew, and when they reached the

desired size of 1 – 10 µm diameter, the washer was removed from the hot stage using

self-closing tweezers and the film was quenched to room temperature in air. It was

found that holes could only be nucleated with this technique in films with h < 100

nm. The final sample was made by carefully placing the two films on washers in

direct contact, transferring the thinner film with holes onto the thicker film on a 3

mm, shown schematically in Fig. 2.1. The smaller washer is used for the final sample

53



Ph.D Thesis - J.F. Niven McMaster University - Physics and Astronomy

because the reduced area decreases the likelihood of defects causing the bilayer film

rupturing at later times.

h1

h2

Top:

Side:

airhole

air

h1

h2

+

Figure 2.1: Schematic of the sample preparation of a free-standing film with cylindri-
cal holes in the top layer. Holes are nucleated in a film of thickness h1 on a washer,
and combined with a second film of thickness h2 to create a free-standing film of total
thickness h1 + h2.

The initial sample geometry has cylindrical holes at the “top” polymer-air in-

terface while the “bottom” interface remains flat. The surface profiles of the two

polymer-air interfaces were measured using atomic force microscopy, discussed in de-

tail in Section 2.3.3, after various annealing times as the film flowed and evolved. The

film was annealed at 130 ◦C on a hot stage with the washer placed inside a metal ring

while supported on small pieces of silicon wafer, and covered with a glass cover slip

to ensure uniform heating of the film.

2.2.2 Controlling tension in thin films

Applying a well controlled tension to thin films is a challenging experimental problem.

Two home-made strain stages were used in this thesis, shown schematically in Figure
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2.2(a), to strain elastomeric films (Paper III) and to create free-standing glassy films

with no in-plane tension (Paper II). Both stages were based on a substrate of 250 µm

thick Elastosil elastic sheet, which was cut into a rounded plus-shape with a circular

hole in the middle. Each leg of the plus shape was clamped to a post on a transla-

tion stage, which allowed a film covering the hole to be strained either uniaxially or

biaxially by moving the posts independently. A portable strain stage with a 1 cm

diameter hole was used in Paper III for bilayer wrinkling experiments, while a second

was a larger strain stage with a 2 cm diameter hole, used in Paper II to relax the

tension in full mica sheets of PSU.
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Figure 2.2: (a) A strain stage consisting of a 250 µm thick Elastosil sheet cut into a
round plus-shape with a hole in the middle. Each leg of the plus-shape is attached
to a post on an optics rail and can be moved independently. The hole is covered
with a second film, in this case another Elastosil film. (b) By moving the posts the
pre-strain, εpre, in the central Elastosil film can be adjusted, and the Elasosil can then
be capped with a thin PS film to create a bilayer. (c) When the pre-strain is released
the bilayer is compressed and can undergo a range of mechanical instabilities.
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For the bilayer wrinkling experiments discussed in Paper 3, a variety of Elastosil

films with thickness between 20 µm and 250 µm were used to cover the hole in

the straining stage and act as the substrate. Approximately 3 cm × 3 cm pieces of

Elastosil were cut from larger rolls of material, and carefully transferred by hand using

tweezers to cover the hole in the strain stage. The zero-tension state of the substrate

was found by adjusting the posts of the strain stage just to the point before wrinkles

began to appear in the substrate. Other substrate thicknesses could be produced

by repeating this process and attaching a second sheet of Elastosil. These double-

layer substrates were found to always remain in good contact for the strains used.

The substrate was then placed under an optical microscope and strained biaxially by

moving two of the posts outward while leaving the other posts fixed in place. The

value of pre-strain was measured optically using εpre = (df − di)/di, where di and df

are the distances between two defects in the substrate aligned parallel to the high

strain direction measured before and after straining, respectively. This technique was

used to strain Elastosil films by up to 25 %.

A ∼3 mm × 3 mm piece of polystyrene with thickness between 80 nm and 1900

nm was then transferred on top of the pre-strained Elastosil substrate, creating a

free-standing bilayer sample such as that shown in Fig. 2.2(c). As discussed in detail

in Section 1.5, when the pre-strain was released by moving slowly the two posts back

together, a compressive force is applied to the thin capping film, which can then

undergo a mechanical instability such as wrinkling or buckling. By observing the

surface using optical microscopy, the type of instability could be observed and imaged.

By changing the relative thickness of the film and substrate and the applied pre-

strain, wrinkling/buckling phase diagrams were produced. The wrinkling wavelength

was measured using ImageJ and averaged across the wrinkled region.

2.2.3 Creating polymer fibres

Paper II discusses the bending-driven spreading dynamics of a viscous PS fibre on a

silicon substrate pre-wet by a PS thin film of the same Mw and capped by a sheet of

rigid PSU, shown schematically in Fig. 2.3. Polymeric fibres with diameters of ∼5

µm can be pulled directly from the melt. Small amounts of polystyrene were placed

on a silicon wafer on a hot stage and heated to between 150 ◦C and 180 ◦C, well above
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Tg, PS. Glass micropipettes were pulled using a commercial pipette puller (Narishige

PN-30), to create a pipette that had a ∼5 µm diameter at the tip. This pipette was

then dipped into the viscous PS melt and pulled by hand quickly upward. Because of

its high viscosity, the melt is entrained and gets pulled along with the pipette, quickly

cooling below Tg to form a cylindrical glassy fibre. This technique can be used to

produce ∼1 m of fibre at a time.

Capped fibre samples were produced by spin coating PS films on silicon wafers,

then placing a PS fibre across the width of the film and annealing for a short pe-

riod of time above Tg, PS to allow the fibre to spread to its initial approximately

hemi-cylindrical profile. PSU thin films were then created by spin coating on mica

substrates and transferred to the 2 cm diameter strain stage, discussed in Section

2.2.2. The zero-tension state was found by moving the posts just to the point before

wrinkles began to appear in the film. The silicon substrate with the PS fibre was

brought up from below the PSU film until the two films came in contact and adhered.

The edges of the PSU film were then removed using a scalpel blade to allow the PSU

film to freely slide at the boundaries, creating the sample shown schematically in Fig.

2.3. The freely sliding boundaries mean that the bending of the film will dominate

tension.

PSU

PS

silicon

R (t)

h (t)dx

z

Figure 2.3: Schematic of a viscous PS perturbation of height h(t) and radius R(t) on
a pre-wet PS thin film of thickness ε on a silicon wafer, capped by a rigid PSU sheet
of thickness d. The surface profile is a bump that is invariant in the y-direction. Far
away from the region of the bump the elastic film is free to slide on the viscous thin
film. As the sample is annealed, the bending energy of the sheet will drive the fluid
to flow, and the bump will level and spread with time.

The sample was then heated on a hot stage to Tg, PS < 130 ◦C < Tg, PSU, meaning

that the PS was a viscous liquid while the PSU remained an elastic solid. The bending
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energy of the elastic sheet drives the fluid to spread and broaden with time, causing

the height to decrease and the width to increase. The fibre profile was measured as

a function of time during annealing using an optical microscopy technique discussed

in detail in Section 2.3.2.

2.3 Sample characterization

2.3.1 Ellipsometry

Accurate film thickness measurements were vital for all projects presented in this

thesis. After annealing, the thicknesses of films on silicon substrates were measured

using nulling ellipsometry (Accurion, EP3). Ellipsometry is an optical technique used

the measure the thickness, h, and index of refraction, n, of thin transparent films

[136]. Thickness values can be measured with a precision of ∼0.1 nm. In this work

ellipsometry was only done for films on reflective substrates, however ellipsometry

can also be performed with free-standing films [4].

Ellipsometry measurements are based on the fact that the polarization of light

changes as is passes through a film and is reflected off the substrate. Measuring

the change in polarization after reflection can provide information about the sample

by comparing the results to models for a given sample geometry [136]. In the case

of nulling ellipsometry, monochromatic laser light passes through a variable linear

polarizer to create linearly polarized light with angle P . The light then passes through

a variable quarter wave plate, known as the compensator, which creates elliptically

polarized light. The polarizer and compensator are adjusted such that the light

reflected from the sample is linearly polarized. The reflected light passes through a

second polarizer, called the analyzer, which only passes light with polarization angle

A, and the intensity is measured by a CCD detector. In nulling ellipsometry the

analyzer angle is typically held fixed while the polarizer and compensator combination

are adjusted to give a minimum in intensity (a null) at the detector, meaning that

the light is 90◦ out of phase with the analyzer. The angles of the polarizer and

compensator at the null intensity are unique for a given combination of h and n,

allowing the values to be calculated using the ellipsometry equations with initial

guesses for h and n.
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2.3.2 Optical microscopy

Optical microscopy (OM) was used in each experiment for sample preparation, and

also for sample characterization in Papers II and III. In each case the optical micro-

scope used was an Olympus BX51 with 5×, 10×, 20×, and 50× objectives. Images

were acquired with a QIMAGING 16 bit CCD camera with capture settings controlled

using Image Pro Plus.

In Paper II, the sample surface profile, shown schematically in Fig. 2.3, was

measured using an optical interferometric technique. When a transparent thin film

on a reflective substrate (such as PS on silicon) is viewed from above using OM with

monochromatic light of wavelength λ, the observed intensity is proportional to the

reflectance, which changes with the film thickness, h, as [137]:

R(h) =
A−B + C cos (4πnph/λ)

A+B + C cos (4πnph/λ)
, (2.1)

where np is the index of refraction of the film and A, B, and C are constants which

depend on np and the index of refraction of the substrate. This equation is periodic

because of the interference of light reflected off of the top surface and that reflected

off of the substrate, repeating every λ/2np. Therefore, a change from one intensity

extrema to the next opposite extrema corresponds to a change in film height of λ/4np

[63]. If the surface height profile is known to change monotonically in a certain region,

the locations of the extrema can be used to recreate the profile. This technique is

useful if the symmetry of the sample is well understood, such as a spherical cap [138]

or the 2D fibres discussed in Paper II, since it is known that h decreases monotonically

from the centre of the fibre toward the two edges.

Figure 2.4 shows typical optical microscopy images of a fibre spreading experiment

at three different times, taken with a red laser line filter (λ = 632.8 nm, Newport,

USA). The interferences fringes parallel to the length of the fibre are clearly visible.

Analysis of these images was performed using MATLAB. A section of the fibre was

selected (the dashed red box) and the intensity profile was averaged along the length

of the section, shown in Fig. 2.4(b). The intensity extrema are marked with red

dots in Fig. 2.4(b), with the height difference between successive maxima/minima

equal to ∆h = λ/4n = 100 nm, where n = 1.57 is the average index of refraction of
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Figure 2.4: (a) Optical microscopy images of a fluid fibre capped by a rigid sheet as
the bending energy of the sheet drives the fibre to flow. Imaging with a red filter
creates interference fringes in the intensity. (b) The location of the interference fringes
can be used to recreate the fibre profile. (c) Imaging as a function of time shows the
evolution of the fibre profile.

PS and PSU. Since the fibre is symmetric about the middle and the height increases

monotonically from the edge, the averaged height profile could be recreated, shown

in Fig. 2.4(c). Atomic force microscopy was used for some samples to confirm the

accuracy of the optical technique, and the two methods were shown to be in good

agreement. This optical interference technique is somewhat limited in the length

scales and height gradients at which it can be used. For films with h < λ/2n, no

fringes will be observed, and for regions with high curvature, such as at early times
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for the fibre spreading experiment, fringes are so close together that they cannot be

resolved accurately.

2.3.3 Atomic force microscopy

Atomic force microscopy (AFM) was used to some degree in each project in this

thesis, but most significantly in Paper I to study the surface profiles of cylindrical

holes in free-standing polymer films as they underwent capillary levelling. The basics

of AFM will be discussed in this Section, with more detail available in Ref. [139].

AFM is a scanning probe microscopy technique used to produce 3-dimensional

topographies of samples with vertical length scales under 5 µm. Vertical resolution is

on the order of 0.1 nm, far below the resolution attainable with optical microscopy.

A sharp tip, typically made of silicon or silicon nitride, with an end diameter of ∼5

nm and a height of a few micrometers is placed on the end of a ∼100 µm long flexible

cantilever, which is raster scanned relative to the sample surface using a piezoelec-

tric scanner [139]. Modern AFM scanners typically consist of multiple piezoelectric

elements combined into a tube-shaped scanner which can expand or contract indepen-

dently in x−, y−, and z−directions proportional to an applied voltage. A laser shines

off of the reflectively coated back of the cantilever and onto a position-sensitive photo-

detector. As the tip is scanned across the surface, if it reaches a change in height the

cantilever will be deflected and the position of the laser on the photo-detector will

change. This change in the position of the laser can be converted into height data,

allowing the topography of the surface to be mapped as the tip is scanned across the

sample.

The two most common forms of AFM are contact mode and tapping mode. In

contact mode the tip remains in continual contact as it is scanned across the surface,

with the amount of deflection of the tip kept constant. Because of this continual

contact there can be large lateral forces which can damage both the sample and

tip. With tapping mode AFM the tip is oscillated by a piezoelectric element near

the resonant frequency of the cantilever (∼100 kHz), meaning that contact between

the tip and surface is intermittent and wear on the tip is reduced. The driving

signal is a sine wave with constant frequency and an amplitude of ∼100 nm. When

the tip interacts with the surface, the amplitude of the oscillation of the reflected
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beam measured by the photo-detector is damped relative to the driving signal, which

provides information on the sample height and modulus.

The AFM used in this work was a Bruker Multimode 8, which uses PeakForce

Tapping® mode with ScanAsyst®. PeakForce Tapping mode is similar to tapping

mode, however the cantilever is driven at ∼2 kHz, well below its resonant frequency.

With this AFM, the sample is placed at the top of a tube-shaped 3-axis piezoelectric

scanner which moves the sample, while the horizontal position of the tip and can-

tilever remain fixed. Position-force curves are measured at each pixel and are used

as feedback to control the maximal interaction force between the tip and sample,

typically on the order of pN, below that of normal tapping mode. The sample and

cantilever are viewed from above using a 10x objective and colour CCD camera to

find the specific region of interest on the sample surface.

To measure the surface profiles of a free-standing thin film on a washer with AFM

in Paper I, the washer was first attached to a magnetic AFM puck using double-sided

tape in order to reduce vibration and to make it easier to find a specific location

on the film. The region of interest was found using the optical microscope, and the

sample was moved by hand using tweezers. Small adjustments to the sample position

were then made by moving the piezoelectric scanner manually using micrometers.

The centre of the scan was then adjusted electronically by moving the scanner until

the hole was in the centre of the scan area. This process was repeated for three holes

in the same film, with scan sizes ranging from 20 µm to 40 µm and scan rates of ∼30

µm/s.

Extra care was taken for free-standing AFM measurements. At early times, the

sides of the hole are steep, as shown in Fig. 2.5(b), which can be challenging given

the relatively large size of the AFM tip. This can result in tip convolution artifacts,

where the edges of the hole in the AFM scan appear less sharp than in reality. When

the tip moves from the flat region to the edge of the hole, the ScanAsyst feedback loop

compensates for the steep edge by increasing the tapping force in order to better track

the surface. During experiments, the tapping force was allowed to increased until the

trace and retrace scans looked similar, suggesting no tip artifacts were present, and

then the peak force value was locked to prevent possible feedback or damage to the

sample and tip. After the “top” surface (with the initial holes) was scanned, a novel
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Top “Bottom” 
AFM probe 

Figure 2.5: (a) Schematic of an AFM measurement of the “top” and “bottom”
polymer-air interfaces of a free-standing film. (b) A reconstructed side view of the
angularly averaged profiles of a free-standing hole showing both interfaces.

technique was used: the washer was carefully removed from the AFM puck, flipped,

and reattached to the double-sided tape. This technique of flipping a free-standing

sample to make AFM measurements of both interfaces was only made possible by

using 0.1 mm thick washers, because thicker washers interfered with the cantilever.

The undersides of the same holes were then found by comparing to images of the top

surface, with dust particles and other defects were used as landmarks. By angularly

averaging these two profiles, they can be combined to give a side-view of the film

after each annealing step, as shown schematically in Figure 2.5. This process was

repeated for each hole after various annealing times up to 2000 minutes. As the film

evolved, a symmetrization process occurred to equilibrate the Laplace pressures at

the two interfaces. The depth of the initial hole was decreased while a second hole

was formed on the bottom interface, with this process continuing until the two holes

were symmetric about the mid-plane of the film.
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The first step of the analysis of the AFM scans was done using Gwyddion. The

hole was masked with a circle, and the area outside of the hole was levelled using a 3rd

order polynomial to remove the scan parabola. This was then saved as a matrix and

opened in MATLAB. The upper profile was angularly averaged about the middle of

the hole using code written in MATLAB to give the average profile h(r) as a function

of the distance from the centre of the hole, r. The excess surface area, S, of the two

surfaces with respect to a flat film was calculated after each time step using:

S = 2π

∫ ∞

0

rdr

(√
1 + (∂rh(r))2 − 1

)
, (2.2)

where r is the distance from the centre of the hole.
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Chapter 3

Papers

This chapter contains the main papers discussed within this thesis. Each paper is

prefaced by a brief summary of the project, the results, and main conclusions. My

contribution to each paper is also stated. A paper for which I was not the primary

contributor is included in Appendix A.
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3.1 Paper I

Symmetrization of Thin Free-Standing Liquid Films via Capillary-Driven

Flow

Vincent Bertin*, John F. Niven*, Howard A. Stone, Thomas Salez, Elie Raphaël,

and Kari Dalnoki-Veress (*shared first authorship). Submitted to Physical Review

Letters, December 2019. Manuscript ID: LM16839.

In this project we continued the use of capillary levelling to study flow in thin polymer

films with varying initial geometries. This work was motivated in part by a previous

project done in the Dalnoki-Veress lab studying the capillary levelling of sharp steps

in polystyrene films which were free-standing in air [9]. It was found that the steps

flowed vertically at early times to equilibrate the Laplace pressures at the two fluid-

air interfaces, resulting in a film that was symmetric about its mid-plane. However,

this symmetrization was found to occur on a time scale that was not accessible ex-

perimentally, meaning that the dynamics of the symmetrization process could not be

studied.

In this paper, we studied the capillary levelling of cylindrical holes part way

through polystyrene films which were free-standing in air. The sample geometry

and preparation were similar to that used to study capillary levelling of cylindri-

cal holes on a solid substrate [62], however special care was required because of the

free-standing geometry in order to prevent contamination or rupture. As with the

free-standing step, the initial geometry of a free-standing hole creates two fluid-air

interfaces with significantly dissimilar excess surface areas. Since flow in this system

is driven purely by surface tension, the excess surface area is proportional to the

total free energy. By monitoring the two interfaces during flow using atomic force

microscopy, the free energy evolution of the system could be measured. A novel AFM

technique was developed in order to measure both of the interfaces of a free-standing

film on the same sample.

It was found that the film underwent a vertical symmetrization process similar

to that found for free-standing steps, however in this case the dynamics were slow

enough that they could be well resolved on an experimental time scale. This allowed
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the free energy of the system to be monitored throughout the symmetrization process,

as well as at later times when the film flowed horizontally to fill in the holes, with

the t1/2 scaling predicted for plug flow. The experimental results are in agreement

with a full-Stokes hydrodynamic model developed by Vincent Bertin. The model

shows that the symmetrization time depends only on the capillary velocity and the

total film thickness while it is independent of the hole size. The comparison between

theory and experiment allows for an estimate of the capillary velocity to be extracted,

which compares well to values measured using capillary levelling of supported films

of comparable Mw [36].

I developed preliminary versions of the sample preparation process with the help

of Paul Fowler and under the supervision of Dr. Kari Dalnoki-Veress. I developed

the final version of the experiment, including the ability to make AFM measurements

of both interfaces of the same film, and performed all data collection and analysis.

Data analysis was done using Gwyddion and MATLAB. Vincent Bertin developed

the theory and performed numerical calculations. I wrote the original version of

the manuscript in collaboration with Vincent Bertin and contributed to subsequent

versions.

67



Symmetrization of Thin Free-Standing Liquid Films via Capillary-Driven Flow

Vincent Bertin,1, 2, ∗ John F. Niven,3, ∗ Howard A. Stone,4

Thomas Salez,1, 5 Elie Raphaël,2 and Kari Dalnoki-Veress2, 3, †

1Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33405 Talence, France.
2UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France.

3Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
4Department of Mechanical and Aerospace Engineering,

Princeton University, Princeton, New Jersey 08544, USA
5Global Station for Soft Matter, Global Institution for Collaborative Research and Education,

Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.

We present experiments to study the relaxation of a nano-scale cylindrical perturbation at one of
the two interfaces of a thin viscous free-standing polymeric film. Driven by capillarity, the film flows
and evolves towards equilibrium by first symmetrizing the perturbation between the two interfaces,
and eventually broadening the perturbation. A full-Stokes hydrodynamic model is presented which
accounts for both the vertical and lateral flows, and which highlights the symmetry in the system.
The symmetrization time is found to depend on the membrane thickness, surface tension, and
viscosity.

Surface tension will smooth out small interfacial per-
turbations on a thin liquid film, as the curvature of
the perturbation profile induces a Laplace pressure that
drives a viscous flow. This capillary-driven levelling
causes the brush strokes on paint to flatten, or the spray
of small droplets to result in a uniform film. Such flows
have been studied in great detail and much of the the-
oretical framework is provided by the lubrication ap-
proximation, whereby one can assume that the flow in
the plane of the film dominates, and that the velocity
vanishes at the solid-liquid interface [1, 2]. In contrast,
for a free-standing liquid film there is no shear-stress at
both liquid-air interfaces which modifies the boundary
conditions and results in a different phenomenology [1].
These boundary conditions can arise in a variety of situ-
ations such as biological membranes [3], soap films [4–9],
liquid-crystal films [10–12], fragmentation processes [13],
or energy-harvesting technologies [14].

The dynamics of liquid sheets has been studied in great
detail in the past decades [15, 16], and shows similarities
with the mechanics of elastic plates. The evolution can
be described with two dominant modes, which are the
stretching and bending modes associated with momen-
tum and torque balances. At macroscopic scales, a vis-
cous sheet experiences bending instabilities such as wrin-
kling [17–20], and folding [21] when submitted to com-
pressive forces. Such viscous buckling phenomena occur
in various contexts, like tectonic-plate dynamics [22, 23]
and industrial float-glass processes [24–26].

In thin free-standing films, surface tension is domi-
nant and stabilizes the interfaces against buckling [15].
Most theoretical models in this context assume that the
interfaces are mirror-symmetric, and thus focus on the
stretching mode, also called the symmetric mode. This
approach is employed to study the rupture dynamics

∗ These two authors contributed equally
† dalnoki@mcmaster.ca

of films in the presence of disjoining forces that desta-
bilize long waves in thin film [27–34]. Recently, using
nanometric free-standing polystyrene (PS) films, Ilton et
al. observed that a film with initially asymmetric inter-
faces symmetrized over short time scales [35]. This sym-
metrization was attributed to flow perpendicular to the
film, but the dynamics was not accessible experimentally.

In this Letter we study the viscocapillary relaxation
dynamics of a nanoscale cylindrical perturbation initially
present on one of the two interfaces of a thin free-standing
PS film. Both the symmetric (viscous stretching) and
antisymmetric (viscous bending) modes are probed with
experiments (see Fig. 1a-b). Atomic force microscopy
(AFM) is used to obtain the profiles of the top and bot-
tom interfaces. A full-Stokes flow linear hydrodynamic
model is developed to characterize the relaxation dynam-
ics of the two modes. To provide an intuitive understand-
ing of the energy dissipation as the film relaxes, we turn
to the schematic plot of the excess surface energy as a
function of time, shown in Fig. 1(c). Initially, the top
interfacial profile, denoted h+, has a high excess energy
due to the additional interface that forms the hole, while
the bottom interfacial profile h− is flat and hence has no
excess surface energy. The excess free energy resulting
from the perturbation drives a flow that is mediated by
viscosity, η. As the film evolves, the total energy dissi-
pates as the excess interface decreases. Apart from that
global energy dissipation, the symmetrization process re-
quires some energy transfer from the top interface to the
bottom one – a coupling that is dominated by vertical
flow. Once both interfaces are mirror-symmetric, they
relax in tandem dominated by lateral flow. Remarkably,
the temporal evolution of the interfacial profiles, when
appropriately decomposed into their symmetric and anti-
symmetric components is found to obey power laws.

Thin films of PS are prepared using a method similar
to that previously described [35, 36]. PS with molecular
weight Mw = 183 kg/mol (Polymer Source Inc., poly-
dispersity index = 1.06) is dissolved in toluene (Fisher
Scientific, Optima grade) with concentrations of 2 % and
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Figure 1. (a) Schematic of an initial cylindrical hole of depth h2 and radius r0, on one side of a polystyrene free-standing film,
which evolves towards symmetric. (b) Symmetric-asymmetric decomposition of the interfacial profiles. A symmetric profile
leads to lateral flow, while an antisymmetric one leads to vertical flow. (c) Schematic of the evolution of the excess surface
energy. The top and bottom surface energies equalize rapidly before vanishing in tandem on larger time scales.

7.5 % by weight. Thin films are prepared by spin coat-
ing from solution onto freshly cleaved mica sheets (Ted
Pella), and annealed at 130 ◦C in vacuum (1×10−5 mbar)
for 24 hours. The films have thicknesses h1 = 530 nm and
h2 = 80 nm, as measured using ellipsometry (Accurion,
EP3). The free-standing films are then prepared in a
two-step process inspired by the work of Backholm et al.
[36]. Films are floated from the mica substrates, onto the
surface of ultrapure water (18.2 MΩ·cm) and picked up
on a thin circular stainless steel washer (thickness = 0.1
mm, AccuGroup, UK), creating a free-standing thin film
supported only at the edges of the washer. The thicker
film, with h1 = 530 nm, is picked up on a washer with an
internal diameter of 3 mm, and heated above the glass-
transition temperature of PS, Tg ≈ 100 ◦C, on a hot stage
(Linkam, UK). Similarly, the thinner film with h2 = 80
nm, is transferred from the water to a washer with an
internal diameter of 5 mm. This film is rapidly heated
(100 ◦C/min) on a hot stage to 125 ◦C for several seconds
under the view of an optical microscope. During the heat-
ing, cylindrical holes are nucleated in the film, and their
radii grow exponentially with time [33, 37–39]. When
the holes become visible, the film is quenched to room
temperature, resulting in a free-standing film with holes
of diameter 1 – 10 µm randomly distributed through-
out. The two films are then placed in direct contact and
adhere through van der Waals forces, and the larger di-
ameter washer can be removed. This process results in a
free-standing film of thickness h0 = h1 + h2, with cylin-
drical holes of depth h2 [see Fig. 1(a, top)].

The free-standing films are annealed on a hot stage at
T = 130 ◦C and covered with a glass coverslip to ensure a
uniform temperature. After a given amount of annealing
time the film is temporarily quenched to room temper-
ature, thus returning to the glassy state where flow be-
comes arrested. The surface profiles of three holes in the
same film are then measured after each annealing step
using AFM (Bruker Multimode). Since the film is free-
standing and has two polymer-air interfaces, both the
top and bottom profiles can be measured. The angular-
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Figure 2. AFM profiles of the top and bottom interfaces of
a free-standing hole with h2 = 80 nm, h0 = 610 nm, and
r0 = 4.2 µm (see Fig. 1), at various annealing times texp as
indicated. An “elastic bump” is seen at texp = 1 min due to the
residual stresses in the film from the sample preparation. The
viscous model takes the profiles at 5 min as initial profiles, in
order to ignore any prior elastic effect.

averaged profiles of the top and bottom interfaces are
extracted at each time step to provide a cross-section of
the film as it evolves, as shown in Fig. 2.

Initially, in the region of the hole, the film has sig-
nificantly different curvature gradients at the top and
bottom interfaces, resulting in pressure gradients in both
the vertical and lateral directions throughout the film.
The initial response of the film in the region of the hole
is for the bottom interface to buckle downward, form-
ing a small (∼ 10 nm) “elastic bump”. This feature is
not a result of the simple polymeric viscoelastic response
to interfacial forces [40], as this response would rather
generate an opposite inward motion. Instead, while still
being related to a viscoelastic process, it is likely a short-
term experimental artifact due to the residual stresses
associated with sample preparation [38, 39]. As the film
is annealed further, the elastic bump relaxes on a time
scale ∼ 5 min, which is on the order of the macromolec-
ular relaxation time scale for PS (the reptation time for
the PS at the given temperature is ∼ 13 min [41]).
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After relaxation of the elastic bump, the flow results
from capillarity and viscosity only. First, there is verti-
cal flow to equilibrate the Laplace pressures of the two
interfaces, which results in the symmetrization process.
Indeed, two symmetric interfacial profiles at the top and
bottom of the film are observed at times larger than
∼ 200 min. Subsequently, the symmetrized interfacial
profiles evolve jointly through lateral uniform flow in or-
der to dissipate the excess surface energy [29]. The film
is annealed for ∼ 2000 min before rupturing.

We now turn to a theoretical description. The poly-
mer is assumed to be a Newtonian fluid with vis-
cosity η. Given the axial symmetry of the prob-
lem, we introduce cylindrical coordinates (r, z), as
well as the Hankel transforms [42] of the velocity
field ~u(r, z, t) = (ur, uz), and of the interfacial pro-
files h±(r, t): ũr(k, z, t) =

∫∞
0

dr r ur(r, z, t) J1(kr) ,
ũz(k, z, t) =

∫∞
0

dr r uz(r, z, t) J0(kr), and h̃±(k, t) =∫∞
0

dr r h±(r, t) J0(kr), where t is time, and the Ji are
the Bessel functions of the first kind with indices i =
0, 1. Injecting these forms into the steady Stokes equa-
tions, we find: ∂3z ũr + k∂2z ũz − k2∂zũr − k3ũz = 0 and
∂zũz + kũr = 0, which result in the general solution:

ũr =− 1

k

(
kA+ kzC +D

)
sinh(kz)

− 1

k

(
kB + kzD + C

)
cosh(kz) ,

(1a)

ũz =

(
A+ zC

)
cosh(kz) +

(
B + zD

)
sinh(kz) , (1b)

where A(t), B(t), C(t) and D(t) are integration con-
stants. The depth of the hole is assumed to be small
in comparison with the total thickness of the film, which
is valid for the experiments, so that we can linearize the
problem by writing the profiles as h± = ±h0/2 + δh±,
where the perturbations δh± are small compared to the
film thickness h0 at rest. We assume no-shear-stress
boundary conditions at both fluid-air interfaces, and ne-
glect the nonlinearities from the scalar projections of the
normal and tangential vectors to the interface, which
gives:

(±kA+ C
kh0
2

) sinh(
kh0
2

)

+(kB ±Dkh0
2

) cosh(
kh0
2

) = ±γk
2

2η
δ̃h±,

(2a)

(
kA± C kh0

2
+D

)
cosh

(
kh0
2

)

+

(
±kB +D

kh0
2
± C

)
sinh

(
kh0
2

)
= 0 ,

(2b)

where γ is the fluid-air interfacial tension. Finally,
we invoke the linearized kinematic conditions, ∂th̃± =
ũz(k, z = ±h0/2, t), and obtain a set of coupled linear

0.01 0.1 1 10 100
10�6

10�3

1

103

106

a

s

Figure 3 

kh0

-2
1

1
2

1
1

symmetric
antisymmetric

�⌘h0

�

Figure 3. Dimensionless decay rates of the symmetric and
antisymmetric modes (Eqs. (3a) and (3b)) as a function of
the dimensionless wave number. The slope-triangles indicate
power-law exponents.

differential equations. The symmetric-antisymmetric de-
composition, through h̃sym = ˜δh+ − ˜δh− and h̃anti =

δ̃h+ + ˜δh− [see Fig. 1(b)], appears as the natural modal
decomposition for this system. These two modes relax
independently to equilibrium, with distinct decay rates
λsym and λanti, since:

∂th̃sym = −γk
η

sinh2(kh0

2 )

sinh(kh0) + kh0
h̃sym = −λsymh̃sym ,

(3a)

∂th̃anti = −γk
η

cosh2(kh0

2 )

sinh(kh0)− kh0
h̃anti = −λantih̃anti .

(3b)

The dimensionless decay rates are plotted in Fig. 3
as a function of the dimensionless wave number kh0.
For each rate, two asymptotic behaviors can be distin-
guished. At large kh0, both rates exhibit the same limit:
limk→∞ λ(k) = γk

η . At small kh0, the symmetric rate
becomes identical to the one in the symmetric long-wave
free-standing film model: limk→0 λsym = γh0k

2

8η [29, 35],
and thus Eq. (3a) reduces to a heat-like equation in Han-
kel space, with a diffusion coefficient γh0

8η . In the same
limit, the antisymmetric rate has a different scaling law:
limk→0 λanti = 6γ

ηh3
0k

2 . Therefore, long waves are quickly
damped for the antisymmetric mode. We note that λanti
has a minimum at k ' 3.28/h0, corresponding to a slow-
est mode, which sets the relaxation dynamics.

The model relies on the assumption of a Newtonian
fluid. As such, it must be compared to experimental pro-
files corresponding to annealing times longer than the
polymeric relaxation time. Thus, we take the experi-
mental profiles at texp = 5 min as the initial conditions
for the model (see Fig. 2). Equations (3a) and (3b) are
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Figure 4. Symmetric (a) and antisymmetric (b) modes of
the experimental (angular averaged) profiles for various times.
The colors correspond to the same times as in Fig 2. Sym-
metric (c) and antisymmetric (d) modes of the theoretical
profiles, according to Eq. (4), for various times, and with the
experimental profiles at texp = 5 min as the initial conditions
(t = 0).

then solved, yielding:

h̃sym/anti(k, t) = h̃sym/anti(k, 0) exp

[
− λsym/anti(k)t

]
,

(4)
where t = texp−5 min. The symmetric and antisymmet-
ric modes for the experimental and theoretical profiles
are shown in Fig. 4. There is a qualitative agreement
between theory and experiments. Notably, the symmet-
ric mode exhibits a self-similar behavior when plotted
(not shown) as a function of the variable (r − r0)/t1/2.
This result for free-standing films is to be compared to
the capillary levelling of a cylindrical hole in a film sup-
ported on a substrate, that shows a self-similar behaviour
in (r − r0)/t1/4 [36]. In contrast, the antisymmetric
mode vanishes rapidly, on a time scale on the order of
∼ 200 min, meaning that the top and bottom interfacial
profiles become perfectly mirror-symmetric, as observed
in Fig. 2. The long waves appeared to be damped more
quickly than the short ones, in agreement with the lim-
iting scaling behaviors of λanti(k) (see Fig. 3).

A measure of the distance to equilibrium lies in the
excess capillary energy, which is proportional to the
excess surface area with respect to a flat film, Si =
2π
∫∞
0

dr r(
√

1 + (∂rhi)2 − 1), where the index i can
refer to +, −, sym, or anti, depending on the pro-
file/mode in question. The excess surface area reduces
to Si ' π

∫∞
0

dr r(∂rhi)2 in the small-slope limit (valid
at texp > 5 min). Figure 5(a) shows the excess surface
areas of the top and bottom profiles, normalized by the
initial excess surface area, as a function of dimensionless
time, γt/(h0η), for three holes of different initial radii,
r0 = 2.3µm, 4.2µm, and 6.2µm on the same film. The
trends are consistent with the intuitive expectations il-
lustrated in Fig. 1(c), and the theoretical curves are in
excellent agreement with the experimental data, which
validates the hydrodynamic model. We further see that
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dimensionless time. The experimental data for three different
holes are shown with different marker symbols, as indicated.
The corresponding theoretical data are shown with different
line styles, as indicated. (a) The top and bottom interfacial
profiles. (b) The symmetric and antisymmetric modes. The
slope-triangles indicate power-law exponents.

the top interface, which has an initially high excess sur-
face area, exchanges energy with the bottom one, caus-
ing the excess surface area of the latter to initially in-
crease. This happens through viscous vertical flow, a
process that continues until the formation of a mirror-
symmetric interfacial profile on the bottom of the film,
at γt/(h0η) ∼ 0.5, after which the excess surface areas of
both interfaces are equal. At later times, the surface ar-
eas decrease following a power law S ∼ t−1/2 because of
the self-similar properties of the heat-like equation that
governs the symmetric mode.

With the modal decomposition above, one can also de-
fine and plot the symmetric and antisymmetric surface
areas, Ssym and Santi respectively, as functions of the di-
mensionless time (see Fig. 5(b)). The two modes relax
with different dynamics. The symmetric mode exhibits
a longterm Ssym ∼ t−1/2 scaling, as a result of lateral
flow. In contrast, the vertical flow in the antisymmetric
mode dissipates energy much more quickly, with a typ-
ical time scale ∼ ηh0/γ, that is identified as being the
symmetrization time scale. The experiments reveal that
this symmetrization time scale does not depend on the
initial radius of the hole, and is set solely by the dynam-
ics of the slowest relaxation mode, i.e. the Fourier-Bessel
mode k at which λanti(k) is minimal (see Fig. 3).

It is interesting to note that in real space the governing
equation of the antisymmetric mode is 1

6ηh
3
0∂t∇2hanti =

γhanti, in the long-wave limit. Upon taking the Lapla-
cian of this expression, we recover on the right-hand-side
the Laplace pressure difference δP = γ∇2hanti across the
film. Then, the mid-plane line H = hanti/2 follows the
equation 1

3ηh
3
0∇4∂tH = δP . This equation corresponds

to the torque balance in the liquid film [15, 25, 26], and is
the viscous analogue of the Föppl-von Kármán equation
for an incompressible elastic membrane in pure bending,
where the bending modulus is replaced by ηh30/3, and the
deflection field is replaced by the deflection rate ∂tH.

In conclusion, we have reported on the symmetriza-
tion dynamics of cylindrical holes in free-standing thin
viscous polymer films. The topographies of both inter-
faces of the films were measured using AFM at various
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times, to track the evolution of the films while they were
annealed above their glass-transition temperature. The
films were found to undergo a rapid symmetrization pro-
cess in order to equilibrate the Laplace pressures of the
two liquid-air interfaces. This process transfers excess
surface energy between the two interfaces, and eventu-
ally results in mirror-symmetric profiles on both sides of
the film. A full-Stokes flow linear hydrodynamic model
was developed to rationalize the observations. The model
revealed the important roles of two modes, that differ
by their symmetry with respect to the mid-plane of the
film. The antisymmetric mode is associated with verti-
cal flow, driven by the pressure gradient across the film,
and exhibits faster dynamics than the symmetric mode,

associated with lateral flow. The vertical symmetriza-
tion was found to occur on a universal time scale ηh0/γ,
while the symmetric mode dominates at later times. Sur-
prisingly, the evolutions of the interfacial profiles, when
decomposed into the symmetric and anti-symmetric com-
ponents are found to obey power laws, with the decrease
in surface area of the symmetric mode scaling as t−1/2,
analogous to the heat equation.
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3.2 Paper II

Asymptotic regimes in elastohydrodynamic and stochastic leveling on a

viscous film

Christian Pedersen, John F. Niven, Thomas Salez, Kari Dalnoki-Veress, and An-

dreas Carlson, Physical Review Fluids, 4:123003, 2019.

This paper was motivated by theoretical work and numerical simulations done by

our collaborators Dr. Andreas Carlson and Christian Pedersen. The project studied

the bending-dominated spreading of a viscous liquid perturbation on a film of the

same liquid, that is then capped by a rigid thin film. The perturbation was made by

placing a micrometer diameter polystyrene fibre onto a thin film of the same poly-

mer, and then capping it with a film of rigid polysulfone (PSU). When the sample is

annealed above Tg, PS but below Tg, PSU, the bending energy of the PSU film drives

the fluid perturbation to spread and level with time, thus causing the rigid sheet to

flatten. The bending-driven flow in this system differs from the flows discussed in

Paper I, which were entirely driven by surface tension.

Theoretical predictions suggested that the scaling of perturbation size depends

on the the ratio of the perturbation height to the thickness of the prewet fluid layer,

with scaling changing from t2/17 for relatively large perturbations, to t1/6 for small

perturbations. Since the perturbation height changes with time, the theory predicts

a sample initially in the large perturbation regime will eventually crossover to the

other scaling regime as it flattens. The experiments described above show agreement

with the t2/17 scaling predicted for large perturbations, but were unable to access the

small perturbation regime.

The theory was developed by Christian Pedersen and Dr. Andreas Carlson with

input from Dr. Thomas Salez, and numerical simulations were done by Christian Ped-

ersen. I designed the experiment in collaboration with Dr. Dalnoki-Veress, performed

all experiments, wrote the MATLAB code to perform image analysis, wrote the ex-

perimental section of the manuscript, and assisted with editing subsequent versions

of the manuscript.
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An elastic sheet that deforms near a solid substrate in a viscous fluid is a situation
relevant to various dynamical processes in biology, geophysics, and engineering. Here,
we study the relaxation dynamics of an elastic plate resting on a thin viscous film that
is supported by a solid substrate. By combining scaling analysis, numerical simulations,
and experiments, we identify asymptotic regimes for the elastohydrodynamic leveling
of a surface perturbation of the form of a bump, when the flow is driven by either the
elastic bending of the plate or thermal fluctuations. In both cases, two distinct regimes are
identified when the bump height is either much larger or much smaller than the thickness of
the prewetted viscous film. Our analysis reveals a distinct crossover between the similarity
exponents with the ratio of the perturbation height to the film height.

DOI: 10.1103/PhysRevFluids.4.124003

I. INTRODUCTION

The motion of an elastic sheet supported by a thin layer of viscous fluid is a phenomenon that
manifests itself in processes spanning wide ranges of time and length scales, from, e.g., magmatic
intrusion in the Earth’s crust [1,2], to fracturing and crack formation in glaciers [3], to pumping in
the digestive and arterial systems [4–6], or the construction of two-dimensional (2D) crystals for
electronic engineering [7]. Elastohydrodynamic flows have been studied in model geometries in
order to understand their generic features and the inherent coupling between the driving force from
the elastic deformations of the material and the viscous friction force resisting motion [8–16].

The investigation of an initially flat elastic membrane that is subsequently subjected to an applied
deformation has helped disclose how system size, magnitude, and direction of elastic deformations
[17] and spatial confinement [18,19] affect the membrane dynamics. When a membrane, resting on a
fluid, is either compressed or stretched it can generate wrinkles, where the spatiotemporal dynamics
of these folds couple to the fluid flow [18–21]. Wrinkles can be avoided by a slow out-of-plane
deformation of an elastic plate by means of injecting additional fluid into the thin prewetted film,
which leads to a peeling front driven by bending [22,23]. As the fluid blister grows in size, stretching
of the plate generates a tension that starts to dominate over bending. Once the blister is larger
than the elasto-gravity length [8], the peeling dynamics again alter character as gravity starts to
dominate, giving three distinct regimes for the propagating front [22]. If the supporting film is
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FIG. 1. Schematic of the system we are studying, where an elastic plate is supported by a viscous film on a
solid substrate, surrounded by ambient air. The elastic plate has a thickness d and a width b. Initially, the overall
profile presents a localized bump, whose profile is invariant in the y direction, i.e., quasi two dimensional. Far
away from the perturbation, the viscous film has a constant thickness ε. In the bump region, the height profiles
ĥ(x, t ) and h(x, t ) = ĥ(x, t ) − ε of the viscous film and the bump, respectively, vary with the horizontal position
x and time t , and remain symmetric about x = 0. At x = 0, we define the characteristic height h(x = 0, t ) =
h0(t ) of the bump and its typical radius R(t ), with initial values given as h0(t = 0) = hi and R(t = 0) = Ri.

instead of nanoscopic thickness, elastic bending generates a restoring force trying to oppose the
van der Waals force that pulls the plate towards the wall and can lead to an elastohydrodynamic
touchdown [24] similar to the dewetting of a liquid film [25]. One way to approach a theoretical
description of elastohydrodynamics is to solve the Navier-Stokes equations for the fluid flow using
boundary conditions at the elastic interface given by the solution of the Föppl-von Kármán equation
[26], using, e.g., the immersed-boundary method [27]. Viscous flow in thin films can be described
by the lubrication theory [28] that has been widely used to study different elastohydrodynamic flow
phenomena [8,22–24,26,29]. However, not much is known about how elastohydrodynamic flows are
affected by the ratio between the geometric parameters that characterize the system as it undergoes
large changes while the driving force remain the same.

For instance, when an elastic sheet deforms onto a wall prewetted by a thin viscous film, the
dynamics of the advancing front is dictated by the local curvature of the interface [16,22]. This
elastohydrodynamic relaxation is reminiscent of capillary spreading of a viscous drop onto a solid
substrate [30–33]. Similar to capillary flows, elastohydrodynamic relaxation processes are not only
limited to very thin prewetted films. In fact, an elastic sheet with zero spontaneous curvature but with
an initial shape of a bump (Fig. 1) with a height much larger than the prewetted viscous film will
relax towards a flat equilibrium state. Inevitably, the system must then crossover from a situation
where the bump height is larger than the prewetted film height to a situation where instead the
prewetted film becomes thicker than the bump. Here we investigate how the elastohydrodynamic
leveling changes with the ratio between the bump height and the prewetted film thickness. In
particular, are there different asymptotic regimes, and how does the system transition from one to
another? At the nanoscale, thermal fluctuations are expected to contribute and may even dominate
the dynamics [29,34–37], which we quantify in the leveling dynamics. To answer these questions,
we combine numerical solutions of a mathematical model based on the lubrication theory [28] with
scaling analysis and experiments.
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II. MATHEMATICAL MODEL AND NUMERICAL PROCEDURE

We consider the system depicted in Fig. 1, where we focus on a system where any influence
of gravity can be neglected, i.e., the bump height is smaller than the elasto-gravity length [8]. The
film height is defined as ĥ(x, t ) = h(x, t ) + ε, where h(x, t ) is the bump height measured from the
height ε of the pre-wetted layer. Only situations where the bump height h(x, t ) is small compared
with its horizontal extent and where the film slopes are small, i.e., ∂ ĥ(x, t )/∂x � 1, are considered.
We describe the viscous flow between the plate and the solid substrate using lubrication theory
[28]. When the initial deflection hi of the elastic plate is small compared with its thickness d ,
we can neglect stretching and the pressure reduces to p(x, t ) = B∂4ĥ(x, t )/∂x4, where B = Ed3/

[12(1 − ν2)] is the bending rigidity of the plate, E is the Young’s modulus, and ν is Poisson’s ratio
[38]. In addition, the system is a spatially unconfined elastic sheet with the two lateral boundaries
being free to move relative to the underlying fluid. Thus, the in-plane compression is suppressed,
and bending stresses dominate the relaxation process regardless of the ratio d/hi. By assuming
incompressible flow and imposing no-slip conditions at the two solid substrates, and considering a
one-dimensional geometry as there are no variations along the y direction, one obtains the governing
equation for the evolution of the height profile (see, e.g., Ref. [8]),

∂ ĥ(x, t )

∂t
= ∂

∂x

[
B

12μ
ĥ3(x, t )

∂5ĥ(x, t )

∂x5
+ �ĥ3/2(x, t )η(x, t )

]
, (1)

where μ is the fluid’s dynamic viscosity. At small scales, thermal fluctuations can also influence
the dynamics, which is described by the last term of Eq. (1). This term mimics the stress
generated by thermal fluctuations, originates from an additional symmetric random stress term in
the Navier-Stokes equations, and is obtained by an integration in the z direction (for details see
Refs. [29,39–41]). The noise term η(x, t ) is multiplied by a prefactor � = √

kBTA/(6μb) where kB

is the Boltzmann constant, TA is the ambient temperature, b is the width of the plate along the y
direction, and η(x, t ) is modeled as a spatiotemporal Gaussian white noise such that 〈η(x, t )〉 = 0
and 〈η(x, t )η(x′, t ′)〉 = δ(x − x′)δ(t − t ′), where the 〈 〉 symbols indicate average quantities. We
nondimensionalize Eq. (1) by using X = x/Ri, Ĥ (X, T ) = ĥ(x, t )/hi, T = tBh3

i /(12μR6
i ), and

�(X, T ) = η(x, t )[12μR7
i /(Bh3

i )]1/2. When � = 0, this nondimensionalization procedure gives us a
parameter-free partial differential equation for Ĥ (X, T ). When � > 0, the nondimensional number
N = [2kBTAR3

i /(Bh2
i b)]1/2 appears as a prefactor in front of the stochastic term, and N2 measures the

ratio between thermal and bending energies. For the macroscopic system provided in our experiment
and described in detail below, i.e., TA = 300 K, hi = 2.5 μm, Ri = 20 μm, μ = 104 Pa s, and
B = 1.3 × 10−12 N m we get the noise prefactor � = 2.5 × 10−13 m s−1/2 and the energy ratio
N = 1.75 × 10−6 which is well within the elastic-bending-dominated regime. However, a transition
from a dominant elastohydrodynamic leveling to a dominant stochastic leveling would occur for
a system with temperature TA = 300 K, membrane perturbation height hi = 10 nm, and radius
Ri = 5 μm for a bending modulus B in the range of 10–100 kBTA where kBTA = 4 × 10−21 N m,
which corresponds to N in the range 0–8 [29].

We solve the dimensionless version of Eq. (1) numerically by using a finite element method,
and we split it into three coupled equations for the bump profile H (X, T ) = Ĥ (X, T ) − ε/hi, the
linearized curvature ∂2H (X, T )/∂X 2, and the bending pressure ∂4H (X, T )/∂X 4. These fields are
discretized with linear elements and solved by using Newton’s method from the FEniCS library
[42]. For the deterministic case N = 0, an adaptive time-stepping routine has been used with an
upper time-step limit of 	T = 0.001 and a discretization in space 	X ∈ [0.001; 0.01]. For the
stochastic case N > 0, we have used a constant time step 	T = 0.001, together with a discretization
in space 	X = 0.0025. At T = 0 we impose the initial condition H (X, T = 0) = 1 − tanh(50X 2).
We further impose the following boundary conditions at the boundary ∂
 of the numerical domain:
H (X ∈ ∂
, T ) = H (X ∈ ∂
, 0), ∂2H (X ∈ ∂
, T )/∂X 2 = 0, and ∂4H (X ∈ ∂
, T )/∂X 4 = 0. The
noise �(X, T ) is introduced independently at each discrete position and time step by using the
“random” class with the “randn” Gaussian subclass from the NUMPY library [43], with zero mean
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and a variance 1/(	X	T ). We avoid negative values of Ĥ (X, T ) (that might occur in the stochastic
case due to the fluctuations), by imposing that, when Ĥ (X, T ) < 10−6, it is put back to 10−6 as
in Refs. [34,36]. To verify the predictions of Eq. (1), we construct an experimental setup which is
described in the following section.

III. EXPERIMENTAL PROCEDURE

The experimental setup is composed of a fiber of polystyrene (PS) with a glass-transition
temperature Tg, PS ≈ 100 ◦C deposited on a film of the same polymer supported on a silicon (Si)
substrate. These samples are capped by a thin sheet of polysulfone (PSU) with Tg, PSU ≈ 180 ◦C.
Sample preparation is carried out as follows: PS fibers (with number-averaged molecular weight
Mn = 15.8 kg/mol and polydispersity index PDI = 1.05, Polymer Source Inc., Canada) are pulled
from the melt at 175 ◦C by using a glass rod. Thin PS films are spin casted from a toluene
solution onto 10 × 10 mm2 Si substrates, leading to a thickness of 25 to 380 nm, as measured
by using ellipsometry (Accurion, EP3). The films are annealed at 110 ◦C for at least 12 hours in
vacuum to remove residual solvent and relax residual stresses. The PS fibers are then transferred
onto the PS films and the ensemble is heated briefly above Tg, PS. The heating allows the PS to
flow, thereby resulting in a bump. Thin PSU films (Mn ≈ 22 kg/mol, Sigma-Aldrich) are prepared
by spin casting from a cyclohexanone solution onto freshly cleaved mica substrates (Ted Pella,
USA). The PSU films have a thickness of ≈160 nm, as measured by using ellipsometry, and are
annealed in vacuum at 200 ◦C for at least 12 hours. The PSU films are floated on water and then
transferred onto a supporting apparatus (described previously [44]), held only by the film edges.
These freestanding films can be relaxed to an unstrained state, ensuring no in-plane tension. The
PSU films are finally transferred onto the PS sample. The part of the PSU film at the edges of the
Si wafer was then removed by using a scalpel blade prior to annealing. This was done to ensure
slippage at the boundary between the PSU film and liquid PS layer, thus rendering the relaxation
bending-dominated, as discussed above.

After preparation, the samples were annealed on a hotstage (Linkam, UK) at 130 ◦C, which is
above Tg, PS but below Tg, PSU. Hence, the PS becomes a viscous liquid while the capping PSU
film remains an elastic solid, thus realizing the system illustrated in Fig. 1. The height profile is
imaged during annealing by using optical microscopy with a red laser line filter (λ = 632.8 nm,
Newport, USA), which creates interference fringes in the region of the bump, as shown in Fig. 2(a),
due to the light that is reflected from the Si substrate. It is clear from these fringes that the initial
fiber and resulting flow are one dimensional over length scales that are many times the width of
the perturbation itself. Each interference fringe corresponds to a change in height of λ/(4n), where
n ≈ 1.57 is the average index of refraction of the two polymers that make up the sample (nPS = 1.53
and nPSU = 1.61). This allows the bump profile h(x, t ) to be reconstructed by fitting a polynomial to
the fringe data, as shown in Fig. 2(b). Such profiles can then be used to track the leveling dynamics,
and to extract in particular the evolution of the height h0(t ) of the bump with time for various initial
geometries.

IV. RESULTS

A. Elastohydrodynamic leveling

We first start by investigating the elastohydrodynamic leveling in the absence of thermal fluctua-
tions (N = 0). In Fig. 3 we show the numerical solutions of the dimensionless version of Eq. (1) for
N = 0 and we can see that the aspect ratio hi/ε controls both the timescale for leveling and the de-
tailed features of the height profile. The smaller hi/ε, the faster the dimensionless leveling process.
Also, the dip created near the advancing front of the perturbation is enhanced both in magnitude
and lateral extent for smaller hi/ε. We remark that, for each initial aspect ratio, there is a transition
period of a few numerical time steps preceding the onset of the leveling process. This part of the
data is not included in Fig. 4 because it is considered to depend on the initial condition, but does not
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FIG. 2. (a) Typical optical microscopy images showing the temporal evolution of the interference fringes
due to the liquid bump capped by the elastic plate (20 μm scale bar). The image at 20 minutes is uncropped,
showing the invariance in the y direction, while the later images are cropped at the red box. (b) Intensity profile
(averaged along the y direction) of the bump at a given time t , and corresponding reconstructed bump profile
at 400 minutes. (c) Temporal evolution of the bump profile.

influence the later dynamics. For hi/ε = 43, the numerical height profiles are further compared with
our experiments, which are found to be in good agreement. We recall here that the elastic plate is
floating on the liquid film and has edges that are free to move. Therefore, the pressure contribution
from bending still largely dominates any contribution from stretching and Eq. (1) is still valid.

We now turn to a scaling analysis of Eq. (1) for N = 0. When h0(t )/ε � 1, the equation
can be linearized and reduces to 12μ∂h/∂t = Bε3∂6h/∂x6 as ĥ(x, t ) = h(x, t ) + ε and we deduce
the long-term scaling for the temporal evolution of the horizontal length of the bump: R(t ) ∼
[Bε3t/(12μ)]1/6. Since there is area conservation in the (x, z) plane, we assume R(t )h0(t ) to
be constant, that is evaluated to Rihi at t = 0. By combining these scaling relations we get for
h0(t )/ε � 1,

h0(t )

ε
∼

(
τ

t

)1/6

, (2)

where τ = 12μh6
i R6

i /(Bε9) is the characteristic timescale for the bending-driven leveling dynamics.
Because we operate within the regime where bending dominates over stretching, a similar result
is obtained by considering the force balance between the viscous and bending forces [18]. Also,
if we include isotropic stretching due to clamped boundaries, a similar scaling law appears, but
now with an additional logarithmic term, R(t ) ∼ [t/ln(t )]1/6 [19]. However, when h0(t )/ε � 1 we
must match the curvature of a traveling-wave solution localized near the advancing front with the
quasistatic solution to obtain the correct scaling [22], i.e., constant pressure in the bump, leading
to [29]

h0(t )

ε
∼

(
τ

t

)2/17

. (3)
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(a) (b)

(c) (d)

FIG. 3. (a), (b) Bump-height profiles for an initial aspect ratio hi/ε = 43, from a numerical solution of
Eq. (1) and an experiment at two dimensionless times T as indicated, which correspond respectively to
t = 37 min and t = 416 min. The geometrical parameters are hi = 2.9 μm, Ri = 16.5 μm, and ε = 67 nm. To
account for the experimental uncertainties in the geometrical parameters, the experimental time t is divided by
a free-fitting factor α = 0.13. Note that, specifically for these figures, the initial condition for the numerical
solution was fixed by a curve fitting of the actual experimental profile at t = 13 min. (c), (d) Bump-height
profiles for an initial aspect ratio hi/ε = 0.1 from a numerical solution of Eq. (1) at two dimensionless times
T , as indicated, chosen so that the central heights H (X = 0, T ) match those in the top row.

By balancing the two asymptotic predictions above, we expect the crossover between them to occur
around t/τ ≈ 1. In addition, these asymptotic regimes suggest that h0(t )/ε is essentially a function
of t/τ only, independent of the value of hi/ε.

To test our scaling predictions, we compute numerical solutions of the dimensionless version
of Eq. (1) for N = 0, with hi/ε ∈ [10−2, 103], and extract h0(t )/ε as a function of t/τ . These
numerical results are plotted in Fig. 4 and compared with the experimental data. For each sample,
the experimental data are matched to the numerical data through one fitting parameter α in front of
the timescale τ . The values of the fluid viscosity and elastic Young’s modulus are highly sensitive
to the temperature in the experiments, and we estimate them to be μ ≈ 104 Pa s [45,46] and
E ≈ 2.6 GPa [47], respectively. Since all experiments were carried out at the same temperature
and with the same polymer, sample-to-sample variations in τ result only from uncertainties in
the geometrical parameters hi, Ri, d , and ε. The α values obtained are 0.13, 0.7, and 1.3 for
the three samples and each of these values are reasonably close to unity. More importantly, the
sample-to-sample variations in α do not exceed a factor of ten, which is well within the expected
relative error arising from the high sensitivity of τ to the geometrical parameters. The general
agreement between the experimental data and the numerical predictions is good, over about five
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FIG. 4. Nondimensional bump height as a function of dimensionless time in the bending case, for various
initial values of hi/ε ∈ [10−2; 103]. The colored diamond-shaped markers are rescaled data points from the
numerical solutions of the dimensionless version of Eq. (1) with N = 0, and the black circle-shaped markers
are scaled experimental data points. The exponents of the two asymptotic regimes of Eqs. (2) and (3) are
indicated with triangles. The inset provides a zoom in the region containing the experimental data for the
three samples, with initial aspect ratios hi/ε = 30, 43, 56, corresponding respectively to ε = 50, 67, 26 nm;
hi = 1.52, 2.9, 1.48 μm; and Ri = 9.6, 16.5, 9.9 μm. The uncertainties in all experimental length scales are
about 5%. To compensate for those, the characteristic time τ for each sample is multiplied by a free-fitting
factor α = 0.7, 0.13, and 1.3, respectively.

orders of magnitude in t/τ . The systematic early time tail in the experimental data might be
attributed to the initial compressive thermal stresses in the elastic layer, which arise due to the
rapid heating of the samples from room temperature to T = 130 ◦C, which relax prior to leveling
and the time needed for the initial shape to enter the asymptotic regime.

The master curve in Fig. 4 confirms that h0(t )/ε is a function of t/τ . Furthermore, the two
scaling regimes predicted above are indeed present, with prefactors close to unity, and the crossover
between the two being located near t/τ ≈ 1 as predicted. Any bump that initially starts in a thin
prewetted film regime h0(t )/ε � 1 will eventually cross over to a thick-film regime h0(t )/ε � 1,
with the corresponding power laws in time. As a final remark, a similar combination (not included
here) of numerical simulations and scaling analysis can be performed for an axisymmetric geometry,
leading to h0(t ) ∼ t−2/11 for hi/ε � 1, and h0(t ) ∼ t−1/3 for hi/ε � 1.

B. Stochastic leveling

Next we investigate the leveling process when it is dominated by thermal fluctuations (N > 0).
As shown in Fig. 5, the numerical solutions suggest that the aspect ratio hi/ε is again essential,
because it sets the timescale for leveling where the smaller hi/ε, the faster the dimensionless leveling
process. Moreover, by comparison with the deterministic (N = 0) case in Fig. 3, the stochastic
(N > 0) profiles exhibit spatiotemporal fluctuations and adopt different average shapes and leveling
dynamics.

To go further, we propose a scaling analysis of Eq. (1), inspired by Ref. [32]. We consider
specifically the N � 1 limit, for which the thermal fluctuations are the dominant driving contri-
bution to the dynamics and we assume that we can neglect the bending term so that Eq. (1) reduces
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FIG. 5. Contour plot of the dimensionless bump-height profile 〈H (X, T )〉 as a function of both the
dimensionless position X and time T , as obtained from numerical solutions of the dimensionless version (see
text) of Eq. (1), with N = 5, and for hi/ε = 10 (left) or hi/ε = 0.2 (right). The thick solid lines indicate
〈H (X, T )〉 = 0.03 as an arbitrary reference.

to ∂h/∂t = �∂[(ε + h)3/2η]/∂x. We consider the average quantities 〈h0(t )〉 and 〈R(t )〉, where we
invoke the ∼(tx)−1/2 scaling [34] for the root mean square value of the averaged noise over a space
interval x and a time interval t . By assuming that the average area conservation in the (x, z) plane
can be expressed as 〈h0(t )〉〈R(t )〉 ∼ hiRi, we get

〈h0(t )〉
ε

[
1 + 〈h0(t )〉

ε

]3

∼ τ�

t
, (4)

where τ� = 6μh3
i R3

i b/(kBTAε4) is the characteristic timescale for the stochastic leveling dynamics.
Interestingly, Eq. (4) describes a complete crossover between two asymptotic regimes in the
stochastic leveling dynamics: for 〈h0(t )〉/ε � 1, we obtain 〈h0(t )〉/ε ∼ (τ�/t )1/4, and thus we
recover 〈h0(t )〉 ∼ t−1/4 [34], while for 〈h0(t )〉/ε � 1, we get 〈h0(t )〉/ε ∼ τ�/t . We expect the
crossover between the two asymptotic regimes to occur around 〈h0(t )〉/ε ≈ 1, i.e., around t/τ ≈
1/8.

To test the prediction in Eq. (4), we compute the numerical solution of the dimensionless version
of Eq. (1) for 5 � N � 8, with hi/ε ∈ [10−1, 102]. By averaging over a minimum of 30 realizations,
we can extract 〈h0(t )〉/ε as a function of t/τ� , and the results are plotted in Fig. 6. The data from
the numerical solutions are in good agreement with Eq. (4) for all 〈h0(t )〉/ε and with no adjustable
parameters. Our results highlight that Eq. (4) gives an accurate prediction of the stochastic leveling
dynamics and show that the missing prefactor is close to unity. Finally, in order to further highlight
the underlying self-similarity associated with each of the two asymptotic regimes, the insets of Fig. 6
show the corresponding bump-height profiles rescaled according to Eq. (4). In each asymptotic
regime the height profiles collapse onto a universal shape which confirms the overall self-similarity
in the leveling dynamics.
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FIG. 6. Nondimensional bump height as a function of dimensionless time in the stochastic leveling
dynamics, for different initial values of hi/ε ∈ [10−1, 102]. The colored diamond-shaped markers are rescaled
data points from the numerical solutions of Eq. (1) with 5 � N � 8. Each data set is an average from a
minimum of 30 numerical solutions. The solid red line corresponds to Eq. (4) with a prefactor of order unity.
The insets show rescaled bump-height profiles for hi/ε = 100 with T ∈ [1, 10] × 10−3 (lower left) and for
hi/ε = 0.1 with T ∈ [4, 4.6] × 10−3 (upper right).

V. CONCLUSION

We have described the elastohydrodynamic and stochastic leveling of an elastic plate placed atop
a viscous film. By combining numerical solutions, scaling analysis, and experiments, we identified
various canonical regimes. Our results highlight the importance of the driving mechanism, either
by elastic bending of the plate or by thermal fluctuations, and the influence of the aspect ratio
of bump height to film height. For each of these two driving mechanisms, a crossover between two
distinct asymptotic regimes is controlled by the aspect ratio. These findings can be helpful to explain
elastohydrodynamic leveling dynamics found in biological, engineering, or geological processes.
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Abstract Periodic wrinkling of a rigid capping layer on a deformable substrate provides a useful method for
templating surface topography for a variety of novel applications. Many experiments have studied wrinkle
formation during the compression of a rigid film on a relatively soft pre-strained elastic substrate, and
most have focused on the regime where the substrate thickness can be considered semi-infinite relative to
that of the film. As the relative thickness of the substrate is decreased, the bending stiffness of the film
dominates, causing the bilayer to transition from local wrinkling to a global buckling instability. In this
work optical microscopy was used to study the critical parameters that determine the transition between
local wrinkling and global buckling of free-standing bilayer films consisting of a thin rigid polymer capping
layer on a pre-strained elastomeric substrate. The thickness ratio of the film and substrate as well as the
pre-strain were controlled and used to create a buckling phase diagram which describes the behaviour
of the system as the ratio of the thickness of the substrate is decreased. A simple force balance model
was developed to understand the thickness and strain dependences of the wrinkling and buckling modes,
with excellent quantitative agreement being obtained with experiments using only independently measured
material parameters.

1 Introduction

Wrinkling and buckling of thin films have been thoroughly
investigated for a variety of applications such as small-
scale surface patterning [1–3], biomedical devices [4], and
flexible electronics [5]. One way to achieve surface pat-
terns is by capping a soft, stretchable substrate, such as
an elastomer (elastic modulus Es ∼MPa) with a relatively
thin rigid layer, such as a metallic or polymeric film (Ef ∼
GPa). If the rigid layer becomes sufficiently compressed it
can buckle locally out of plane with a sinusoidal wrinkling
pattern in order to accommodate its excess surface area
relative to the compressed substrate. Compression can be
achieved through either differential thermal expansion [6],
chemical swelling [7–9], or by mechanically pre-straining
the substrate prior to capping with the rigid film [10–13].

Mechanically induced buckling, shown schematically
in fig. 1, is most relevant for biomedical devices and flexi-
ble and wearable electronics applications, where the use of
high temperatures or chemical swelling should be avoided
[5,14,15]. In these systems it is critical to understand how
mechanical instabilities and failure modes depend on the
geometry of the bilayer and the material properties of the
individual layers. Most experiments to date have focused
on macroscopic samples, where the thickness of the sub-

a e-mail: dalnoki@mcmaster.ca

strate, H, is taken to be infinite relative to the thickness
of the capping film, h. Following release of the pre-strain,
these systems can form either 1D or 2D wrinkling pat-
terns [13]. At higher strains, localization features such as
folds and creases [3, 16–18], period doubling [19], or de-
laminations can occur. In the latter case, voids have been
shown to form between the film and substrate [20–22]. In
this semi-infinite regime, the wavelength of wrinkling, λ,
can be calculated using a force balance between the bend-
ing of the capping film and the deformation of the sub-
strate [10]. This force balance results in a wrinkle wave-
length:

λ = 2πh

(
Ēf

3Ēs

)1/3

, (1)

where Ēi = Ei/(1 − ν2
i ) is the plane strain modulus of

layer i, with Ei the Young’s modulus and νi the Poisson’s
ratio, where subscript i = f or s refers to the capping
film or substrate, respectively. This wavelength is linearly
dependent on the thickness of the capping film, while be-
ing independent of the substrate thickness. This relation-
ship has been proven exhaustively by experiments [1, 10]
and allows wrinkling in the semi-infinite regime to be
used as a method for measuring the moduli of thin rigid
films [11, 23–25]. There is also a critical pre-strain, εc,∞,
required for wrinkling in the semi-infinite regime, which is
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dependent only on the ratio of the moduli of the materials:

εc,∞ =
1

4

(
3Ēs

Ēf

)2/3

. (2)

Below this critical pre-strain the capping film remains flat
upon compression. For typical elastomer/polymer mate-
rial pairs this critical pre-strain is on the order of 0.5
% [3,21].

When considering applications such as flexible elec-
tronics or biomedical applications, technology continues
to push for ever smaller structures and feature sizes, re-
quiring bilayer films in which the thickness of the sub-
strate can no longer be considered semi-infinite. In this
finite-substrate regime it has been suggested both the-
oretically [26–28] and experimentally [29] that wrinkling
wavelengths can deviate from those predicted by eq. 1, and
that this could affect device performance. Crucially, when
the bending stiffness of the capping film becomes domi-
nant, the entire bilayer film could undergo global buckling
on a length scale similar to the total sample length, as
shown schematically in fig. 1(b), similar to observations
in refs. [30] and [31]. The critical conditions that sepa-

Figure 1. (a) Side view schematic of an elastomeric film pre-
strained by an amount εpre and capped by a thin polystyrene
film. (b) Below a critical pre-strain the bilayer will undergo
buckling. (c) Above the critical pre-strain the rigid film will
wrinkle.

rate local wrinkling and global buckling in bilayer films
have been studied both theoretically and experimentally
in the context of flexible electronics using macroscopic
samples [26, 27, 32]. These works have developed theories
to predict the type of instability observed, and have pre-
dicted that the critical pre-strain required for wrinkling
increases as the relative thickness of the substrate is de-
creased, although experimental results are limited.

In this work we present a novel experiment to study
the critical geometrical parameters which separate local
wrinkling and global buckling in thin free-standing bilayer
films. The use of a free-standing geometry means that the
entire bilayer sample is able to deform out of plane, al-
lowing for global buckling to occur. By varying the thick-
ness ratio of the capping film and substrate, h/H, and the

substrate pre-strain, εpre, the wrinkling to global-buckling
phase-space can be mapped out. We also present a model
that has been adapted from the semi-infinite theory in
order to produce a simple description of the transition
between wrinkling and global buckling which is in good
quantitative agreement with experiments.

2 Experimental Methods

Bilayer films were prepared on a biaxial straining appa-
ratus shown schematically in fig. 2 and described previ-
ously [33, 34]. The apparatus consisted of a 258 ± 2 µm
thick Elastosil R© sheet (Wacker Chemie AG, Poisson’s ra-
tio for the substrate is taken to be νs = 0.5 making the
reasonable assumption that the elastomer is incompress-
ible, Es = 1.11 ± 0.06 MPa [35]) cut into a rounded
“plus” shape, with a 1 cm diameter hole in the middle.
This shape was chosen to ensure nearly uniform biaxial
strain at the centre of the hole where the bilayer sam-
ple is placed. Each arm of the film was clamped to a
post and attached to crossed optical rails using transla-
tion stages. The hole was covered with a second Elastosil
film (the “substrate” of the bilayer) with thicknesses of H
= {20.9 ± 0.4 (measured here), 51 ± 1, 104 ± 2, 213 ±
7, or 258 ± 2} µm [35]. Samples with intermediate sub-
strate thickness were made by stacking Elastosil sheets
with good adhesion between the films – sufficient that the
films remained in good contact when strained. The 0 %
strain value was calibrated before each experiment by ad-
justing each post until the point just before the Elastosil
sheet begins to wrinkle. The substrate was then strained
biaxially by moving two of the translation stages in op-
posite directions (the high-strain direction) while leaving
the perpendicular direction fixed. The applied pre-strain
was measured optically using εpre = (df − di)/di, where
di and df are the initial and final distances between two
defects in the film surface aligned parallel to the strain
direction, respectively. The posts perpendicular to the ap-
plied strain were not adjusted, meaning that the strain
in the perpendicular direction is zero. We note that while
there is no strain in the perpendicular direction, there is
a tensile stress induced through Poisson’s ratio which is
smaller than that induced in the high-strain direction.

Films of polystyrene (PS, with weight average molec-
ular weight Mw = 183 kg mol−1 and polydispersity in-
dex, PDI = 1.06, Polymer Source Canada, Poisson’s ra-
tio νf = 0.33 [36] and modulus Ef = 3.3 GPa [36]) with
thickness values ranging from h ≈ 80 – 1900 nm were pre-
pared by spin coating from dilute toluene solution onto
freshly cleaved mica substrates and their thickness mea-
sured using ellipsometry (Accurion, EP3). We note that
the modulus of PS at these thicknesses should remain at
the bulk value [24]. All films were annealed in vacuum at
140 ◦C for a minimum of several hours to relax the poly-
mer chains and remove any residual solvent. The films
were then cut into ∼3 mm × 3 mm pieces using a scalpel
and floated off the mica and onto the surface of an ul-
trapure water bath (18.2 MΩ·cm, Pall, Cascada, LS). A
piece of the PS film was then floated back onto the mica
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Figure 2. (a) Top view schematic of the experimental strain-
ing setup showing the rounded plus sign 250 µm Elastosil film
with a hole in the middle. The hole is covered with a second
free-standing Elastosil film of varying thickness, which acts
as the substrate. (b) The substrate is strained biaxially and
capped with a thin PS film, forming a bilayer. (c) As strain is
released and the bilayer is compressed, it can either wrinkle or
buckle.

substrate, and brought into contact with the Elastosil sub-
strate. The strong adhesion between the PS and Elastosil
means that the mica substrate can be removed, resulting
in a free-standing PS/Elastosil bilayer. Any remaining wa-
ter is gently wicked away at the edge of the sample. The
pre-strain is then slowly released by moving the transla-
tion stages, and the bilayer film can be observed using
optical microscopy as the capping film is compressed by
the relaxing substrate. An important feature to note with
this setup is that the bilayer film is free-standing in the
region of the hole, so the entire film is free to deform out
of plane of the compression.

3 Results and Discussion

Wrinkling was observed in this system with wavelengths
ranging between 1 µm and 100 µm (as shown in fig. 3(a)),
as measured using optical microscopy. Figure 4 shows the
measured wavelengths as a function of the rigid capping
film thickness, h, for substrate thicknesses ranging from
H = 20 µm to 250 µm for strains up to 25 %, as well as
a line corresponding to the semi-infinite model, eq. 1. We
can see that, even with different substrate film thicknesses,
the data is in excellent agreement with the semi-infinite
model with no fitting parameters in the value of the slope,
only independently measured moduli and Poisson’s ratios
of the capping film and elastic substrate. This result indi-
cates that, provided that wrinkling is observed, for these
materials at pre-strains between 1 – 25 %, the semi-infinite
model is valid for 3.4×10−4 < h/H < 8.7× 10−3.

For a given pair of materials, the semi-infinite wrin-
kling regime exists for low thickness ratios, h/H ≈ 1 ×
10−3, and above the critical strain. At a fixed pre-stain, as
h/H is increased there is a critical value at which the ob-
served instability upon release of the strain changes from

Figure 3. (a) Optical microscopy image of wrinkles in a
PS/Elastosil bilayer. The wrinkling wavelength varies between
1 - 100 µm depending on the capping film thickness. (b) Opti-
cal image of a buckled bilayer film with a length scale ∼mm.
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Figure 4. Wrinkling wavelength, λ, as a function of the cap-
ping film thickness, h, for a range of substrate thicknesses, H,
for pre-strains up to 25 % and 3.4×10−4 < h/H < 8.7× 10−3.
The solid line corresponds to the semi-infinite theory, eq. 1,
with no fitting parameters.

local wrinkling, as seen in fig. 3(a), to global buckling in-
stability (shown in fig. 3(b)), with a length scale on the
order of the total sample length.

In order to obtain a quantitative understanding of the
critical conditions that separate local wrinkling and global
buckling in this system, we develop a simple model begin-
ning with a force balance between the bending of the rigid
capping film and the deformation of the substrate [37].
Similar derivations have been shown in the literature pre-
viously, but here we present the derivation alongside that
for buckling for completeness [10,38,39]. The force balance
in the bilayer can be written in the form:

ĒfIfz
′′′′ + Ēs

wq

2
z + Fwz

′′ = 0, (3)

where the first term considers the bending of the PS film,
the second describes the forces in the substrate and the
final term deals with the in-plane forces in the PS film
that are generated by the release of the pre-strain in the
substrate.

The deformation of the top surface of the bilayer is
given by:

z(x) = A sin qx, (4)
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Figure 5. Plot of eq. 6 showing the non-dimensional force,
F̃w, required for wrinkling as a function of the non-dimensional
wavenumber q̃ = qh, shown in black. The dashed red line and
the blue line represent the first and second term on the RHS
of eq. 6. The black circle shows the minimum’s force required
for wrinkling, F̃w, c.

where q = 2π/λ is the wavenumber. Primes in eq. 3 de-
note derivatives with respect to the in-plane direction x,
If = wh3/12 is the inertial moment of the capping film of
thickness h and width w, and Fw is the force applied to
the capping film which causes wrinkling. Differentiating
eq. 4 and substituting into eq. 3 gives:

Fw

w
=
Ēfh

3q2

12
+
Ēs

2q
. (5)

This equation can be simplified by non-dimensionalizing

as follows: F̃w ≡ Fw

whĒs
, λ̃ ≡ λ

h , q̃ ≡ qh, H̃ ≡ H
h , γ ≡ Ēf

Ēs
,

which results in the following condition for wrinkling:

F̃w =
γq̃2

12
+

1

2q̃
. (6)

Equation 6 can be minimized to get the relevant critical
values for wrinkling:

q̃c =

(
3

γ

)1/3

, (7)

λ̃c = 2π
(γ

3

)1/3

, (8)

and F̃w,c =
3

4

(γ
3

)1/3

. (9)

Figure 5 shows a plot of the critical force required for
wrinkling, eq. 6, including the two terms, as a function of
q̃. The critical force for wrinkling is shown as a circle.

The criterion for wrinkling is simply that the pre-strain
in the substrate is such that the force applied to the cap-
ping film, Fpre, is enough to overcome the critical force
Fw,c. If there is not sufficient force on the capping film then
the bilayer can only buckle or remain flat. As the strain
is relaxed, the force due to the pre-strain increases slowly

and reaches a maximum when the substrate pre-strain in
the region outside of the capping film is a minimum. Thus
the wrinkling criterion now becomes Fpre = Fw,c. The
maximum force resulting from the initial pre-strain (i.e.
when there is full relaxation of the uncapped region of the
substrate) is given by Fpre = εprewHĒs, since ε = σ

Ēs
=

F
HwĒs

. Therefore: Fpre = εprewHĒs = Fw,c = F̃w,cwhĒs,

which results in:

h =
4

3
·
(

3Ēs

Ēf

)1/3

εpreH. (10)

Instead of taking the maximum force as resulting from
the applied pre-strain alone, we recognize that even with
zero applied pre-strain the act of transferring the PS cap-
ping film onto the free-standing substrate membrane causes
it to deform, which induces an additional pre-strain that
remains after the bilayer is formed. To test this, a bi-
layer was made with “0 %” applied strain using the same
calibration technique as all other experiments. When com-
pressed, the sample had regions of clear wrinkling through-
out, which is only possible if there was indeed a small
pre-strain induced from the sample preparation process.
Additionally, there is some uncertainty in the true “0 %”
pre-strain value because the boundary between a tensile
strain and compressive strain was determined by the ap-
pearance of small wrinkles in the substrate by eye. If we
assume that this induced deformation is consistent be-
tween experiments, the total strain in the substrate is
then: εtotal = εpre + ε0, where ε0 is a small additional
pre-strain resulting from the transfer of the PS film. It
then follows that Fpre = (εpre + ε0)wHEs. Balancing this
with the force required for wrinkling gives the following
criterion for wrinkling:

h =
4

3
·
(

3Ēs

Ēf

)1/3

(εpre + ε0)H. (11)

Experiments were carried out for various substrate and
capping film thickness and at various pre-strain values.
The experimental strain offset was measured to be ε0 =
2.3 %. Figure 6 shows the phase diagram of wrinkling and
buckling at a fixed applied pre-strain value of 3 % (total
pre-strain of 5.3 %) for various capping film and substrate
thicknesses. Wrinkles dominate at low values of h/H (the
semi-infinite regime), and buckles become dominant for
higher values of h/H. There is a clear linear transition
between wrinkling and buckling, with the straight line cor-
responding to eq. 11. This plot shows excellent agreement
between the data and theory given that there are no fitting
parameters, only material properties.

Equation 11 can be rewritten instead as the critical
pre-strain required for wrinkling:

εpre + ε0 =
3

4
·
(
Ēf

3Ēs

)1/3

· h
H
, (12)

which deviates from the critical value in the semi-infinite
regime, eq. 2, in that the finite regime value depends in-
versely on the substrate thickness. We note the slope of
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Figure 6. Phase diagram of wrinkling (red circles) and buck-
ling (blue squares) for various substrate and cap thickness at a
fixed value of εpre = 3 % (total pre-strain of εpre + ε0 = 5.3 %).
The solid line corresponds to the theoretical transition between
wrinkling and buckling, eq. 11, with no fitting parameters.

eq. 12 is similar to the theory presented in ref. [32], which
uses a more complex energy balance to find the transi-
tion between pure local wrinkling and a mixed local/global
buckling mode, however the slope predicted in that work
is higher and does not agree well with the experimental
slope measured here.

Figure 7 shows the wrinkling and buckling phase di-
agram now with total pre-strain on the vertical axis and
film thickness ratio h/H on the horizontal axis. It is clear
from this plot that for larger values of h/H the system
can be made to transition from buckling to wrinkling by
increasing the pre-strain in the substrate, which increases
the compressive force applied to the capping films. The
solid line corresponds to eq. 12 and contains no fitting pa-
rameters. As this equation describes the transition from
wrinkling to buckling in the bilayer samples, all data points
below the line should correspond to samples that have
buckled and those above the line to wrinkled samples.
As the figure shows, there is excellent agreement between
the theory and the experimental data for a wide range of
thickness ratios and pre-strain values. There is significant
uncertainty at low strains near the transition because sam-
ples would often show partial wrinkling, where only some
of the area had wrinkled, which made distinguishing be-
tween the two regimes difficult. At pre-strains above 20
% delaminations were found to become dominant as the
buckling energy of the capping film overcame the adhesion
energy between the films. This regime was not the focus
of this study.

4 Observed Delamination Morphologies

While the delamination regime is beyond the scope of
this manuscript, it is worth noting some of the morpholo-
gies that were observed, even if the results presented are
merely observational. It was found that interesting mor-
phologies could be observed for high pre-strains in the
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Figure 7. Phase diagram of wrinkling (red circles) and buck-
ling (blue squares) for various film thickness ratios, h/H, as a
function of the full applied pre-strain εpre + ε0. The solid line
corresponds to the theoretical transition between wrinkling and
buckling, eq. 12, with no fitting parameters.

semi-infinite regime, which included creases, folds, period
doubling, and delamination. Novel post-delamination buck-
ling morphologies have also been found under certain con-
ditions, including “varicose” or “bubble” blisters [40, 41],
and “telephone cord” blisters [42–44]. To study the effect
of high strain in the finite substrate regime, bilayers with
thickness ratios of order 1 were made using a different elas-
tomeric film, Elastollan TPU 1185A (BASF). Elastollan
films were prepared by spin coating from dilute cyclohex-
anone solution with thicknesses of ∼1 µm. An Elastollan
film was transferred onto the straining setup and strained
biaxially by 15 %. The film was then capped with a 500
nm thick PS film as before. Upon compression, large scale
global buckling of the entire bilayer was observed first (fig.
1a). On further compression the PS film delaminated from
the substrate, with delaminations forming across the en-
tire width of the sample perpendicular to the compression
axis. The delaminations were observed both optically and
using atomic force microscopy (AFM) to scan the PS/air
and Elastollan/air interfaces. Prior to taking AFM scans,
the sample was transferred to a thin stainless steel washer.
Elastollan is adhesive enough that the film remained in
good contact with the washer without losing strain, and
the washer is thin enough that the sample can simply be
flipped in order to image both interfaces. A scan of the
two interfaces shows that the delamination ridge is only
present at the PS/air interface, meaning there is a void
between the two films.

Due to the Poisson’s ratio of the pre-strained elastomer
there is also an initial tension in the elastic film orthogonal
to the pre-strain direction, which cannot be relaxed while
the film and substrate remain in good contact [34]. How-
ever, as the delaminations grow, contact is lost between
the two films, and the substrate is now free to relax its ex-
cess length along the delaminated regime while remaining
in contact along the edges. This geometry results in an in-
stability with a periodic structure along the length of the
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Figure 8. (a) Optical microscopy image showing “zipper” de-
laminations in a bilayer consisting of a 1 µm Elastollan film
capped with a 500 nm PS film. (b) Zoomed in optical mi-
croscopy image in reflection mode showing the periodic struc-
ture of a zipper delamination. (c) AFM image of the Elastol-
lan/air interface of a “zipper” delamination showing the peri-
odic structure

delamination, seen optically in fig. 8(a) and (b). The struc-
ture was studied in more detail using AFM (fig. 8(c)) and
showed that the periodic pattern is caused by wrinkling
in the elastomer layer, while the PS film remains in its
one-dimensional delaminated structure without buckling
significantly in the perpendicular direction. The observed
pattern is reminiscent of the “bubble” delaminations seen
previously [40,41], and provides a novel technique for tem-
plating free-standing films.

5 Conclusions

In conclusion, we have observed the transition between
wrinkling and buckling in free-standing rigid/elastic bi-
layer films for which the substrate thickness cannot be
taken as semi-infinite. We have shown that the critical
pre-strain for wrinkling depends on film/substrate thick-
ness ratio, h/H. A simple force balance model was used to
predict the critical criteria required for wrinkling, which
matches well with the experimental data using only in-
dependently measured material parameters. This model
deviates from semi-infinite theory in that it has a depen-
dence on the substrate thickness. These results provide
experimental insights into design considerations for flex-
ible electronics and other applications with thin elastic
substrates.
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Chapter 4

Conclusions

The work presented in this thesis focused on viscous and elastic thin polymer films

in unstable configurations. The systems studied involved the vertical symmetriza-

tion and viscous flow of a thin free-standing polymer film with initially asymmetric

interfaces, fluid perturbations driven to flow by the bending energy of a rigid mem-

brane, and mechanical instabilities in free-standing bilayers of a thin rigid film and

soft elastomeric substrate.

In Paper I, a novel atomic force microscopy technique was developed to study

flow in free-standing films. A nano-scale film was prepared with micrometer diame-

ter holes partially through the film, meaning that the top interface had high excess

surface area while the bottom interface had zero excess surface area. Since flow in

this system is driven purely by surface tension, the system flowed to decrease its ex-

cess surface area, thus decreasing its excess surface energy. By tracking the surface

profiles it was therefore possible to track the total free energy of the system as it

evolved. It was shown that at early times the film flowed vertically to symmetrize

the Laplace pressure at the two interfaces. This result is unique, because typically in

thin film flow experiments it is assumed that flow horizontal to the plane of the film

dominates vertical flows (the lubrication approximation), which is clearly untrue at

early times in this system. During the symmetrization process there is an exchange of

free energy between the two interfaces, with the excess surface energy of the bottom

actually increasing while it forms a second, symmetric hole. However, throughout the

symmetrization process the total excess surface energy of the system decreased. A hy-
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drodynamic model was developed by collaborators which showed excellent agreement

the experiments.

In Paper II, the viscous flow of a 2D perturbation on thin polymer film was coupled

with the bending energy of a rigid capping layer. In this system flow was no longer

driven by reducing the excess surface area of the perturbation, but by minimizing the

bending energy of the capping film. In order to reduce the bending energy, the fluid

perturbation spread and flattened with time. The surface profiles were measured as

a function of time using an optical interferometry technique, which allowed for the

height and width of the profile to be tracked as a function of time. It was found

that the height and width evolved with self-similar t2/17 behaviour, which matched

theoretical predictions.

In Paper III, a free-standing bilayer system consisting of a rigid polymer film

and soft pre-strained elastomeric substrate was used to study the transition between

local wrinkling and global buckling. It was shown that the type of instability ob-

served in the system depended strongly on the relative thickness of the two films, the

modulus ratio, and the pre-strain in the substrate. A simple theory based on the crit-

ical compressive force required for wrinkling was developed, and showed quantitative

agreement with the experimental results. This work provides important insights for

the design of applications based on rigid film/elastomeric substrate bilayers.

There are various extensions to this work, some of which are currently undergoing

preliminary investigations. Following Paper I, the ability to using atomic force mi-

croscopy to simultaneously study the two interfaces of the same free-standing polymer

film provides an opportunity to perform several unique experiments. For example,

a follow-up study could be done to confirm the viscosity and thickness dependence

of the symmetrization time predicted by the theory. It would also be of interest to

study the evolution of holes in free-standing films for which the polymer molecules

were confined. Despite significant effort to do this, the thin films required were found

to be extremely prone to rupture, and the surface profile becomes difficult to resolve

using AFM as the hole depth decreases, making measurements difficult. With the

addition of a full theory of the symmetrization process, it is now possible that enough

information could be extracted at early times to show confinement effects, such as

through a significant change in the rate of symmetrization with decreasing film thick-
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ness, which would suggest a change in the capillary velocity of the film, and thus a

change in viscosity, upon confinement.

A logical follow-up to Paper II would be studying the scaling regime in which the

height of the perturbation was small in comparison with the pre-wet film thickness.

On the opposite length scale, the experimental contribution of thermal fluctuations

could be studied. Also, continuing the study of interactions between fluids and thin

polymer films, a thin rigid film on a viscous substrate can wrinkle when the system is

heated due to a compressive strain generated in the film due to differences in thermal

expansion coefficients of the film and fluid. An interesting result occurs if a sample is

prepared in a similar way to that presented in Paper II, in which a fluid hemicylinder

on a silicon substrate is capped by a rigid thin film, but without the presence of a

prewet fluid layer. In this case, the capping film is pinned at the edges of the cylinder,

and if compression of the rigid film becomes sufficient, buckling instabilities can occur

in the capping layer. The curvature in the region of the cylinder means that sinusoidal

wrinkling is not necessarily the lowest energy state. Preliminary experiments have

shown a range of possible patterns, including wrinkling, with the wavevector aligned

parallel to the fibre axis, a dimpled pattern, and a “zig-zag” pattern. The type of

patter observed depends strongly on the thickness of the capping film and the cur-

vature of the cylinder. Finite element modelling and molecular dynamics simulations

of this system are currently being preformed by Dr. Teng Zhang at the University of

Syracuse, and preliminary results show good qualitative agreement with experiments.

As shown with the “zipper” delaminations in Paper III, there is the potential

for further study of high strain elastic instabilities in bilayer systems for which the

capping film thickness and substrate thickness become comparable. These novel struc-

tures could be of interesting for applications such as flexible electronic devices and

surface patterning.

As has been shown through this thesis, thin polymer films, either glassy or in

the melt, are an excellent experimental tool to study the physics of surface tension,

viscosity, and elasticity, or their interplay.
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Other Contributions

Paper AI

Liquid dewetting under a thin elastic film

Rafael D. Schulman, John F. Niven, Michiel A. Hack, Christian DiMaria and Kari

Dalnoki-Veress, Soft Matter, 14 3557–3562 (2018).

This project investigated the dewetting of thin polystyrene films that were capped

by strained elastomer sheets. The tension in the elastomer caused the dewing ridge

to flatten and widen relative to that of an uncapped film, resulting in a decreasing

dewetting speed with increasing tension. Anisotropic tension in the elastomer was

found to lead to non-circular dewetting regions. Dewetting was also studied in a free-

standing geometry, where a PS film was capped at each surface by strained elastomer

films. When the films were strained at 90◦ relative to one another, it was found that

square dewetting regions formed.

These experiments were developed by Christian DiMaria and Dr. Rafael Schulman

under the supervision of Dr. Kari Dalnoki-Veress, with preliminary data collected by

Michiel Hack. The majority of data collection and analysis was done by Dr. Rafael

Schulman. I was involved with performing atomic force microscopy measurements of

the dewetted holes throughout the project. Special care was required to use AFM with

these samples because of the strong adhesion between the elastomeric film and AFM

tip in comparison with a glassy surface, and because the freestanding elastomeric

samples were sensitive to vibrations. I also provided input and editorial assistance

throughout the manuscript preparation process.
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