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ABSTRACT

A system capable of adjusting a computer vision system to
unpredictable ambient lighting has been designed and attached to a
silhouette robot vision system.

Its principle of operation is based on the generation and
analysis of the distribution of light in one T.V. frame.

Designed to be used in robot vision applications, high
speed processing of data is achieved in the system to generate a
histogram of grey levels in one frame time.

An addressable RAM technique for this purpose is explained.
The system obtains two threshold values from the histogram of grey
levels and places them into a threshold logic unit. A silhouette
from a grey level picture is obtained as the result of the process.

Adaptability of the system is performed by using different
integration times in the read out of the visual transducer.

The implementation of the system is based on a video rate
histogram generator, a sensitivity control unit, a DMA circuit, an
86/12A microcomputer and a solid state T.V. camera. A graphics printer
is used to print out results and a CRT terminal to communicate with
the microcomputer. The custom hardware and software implementations

for the system are depicted in detail.
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CHAPTER I

INTRODUCTION

Industrial processes today are becoming increasingly in need
of automation in many of their operations. This requirement has led
to new technologies that attempt to enable man-made machines to perceive
their environments by sensory means as humans and animals do:

Machines that perceive their environments and perform required
tasks have an obvious  usefulness for diverse application areas such as:
planetary space exploration, autcmated medical X~ray screening,
monitoring of earth resources by remote sensors, military applications
and industrial assembly and inspection. They could assist in many tasks
that are routine, tedious and even dangerous for humans to perform,
but are difficult or impossible to automate without some perceptual capability.

The ability to control an industrial or any other process which
requires such a capability, relies heavily on the quality of the sensing
devices that input information into the system. Traditional sensors such
as photocells, temperature transducers, and pressure transducers have been
used satisfactorily . However, there are many applications that would

benefit from the use of visual sensing. In this respect, the industrial
environment today offers many potential applications for image processing.

The most important applications for visual sensing in this area are:

- Inspection of items involved in manufacturing processes for

quality control; the items may be raw materials, partly manufactured

or completed manufactured products.
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- Measurements of the cfitical dimensions of manufactured

items to ensure that they are within required tolerances for
quality control.

- Identification of items involving item type, position and
orientation for flow control of manufactured products, or
controlling a robotic device in automatic packaging and assembly
processes.

~ Visual servoing of robotic devices to allow the control of a

tool along a desired path to achieve a specified task.

Visual sensing requires the use of a vision system comprised of:
a basic sensing device such as a vidicon T.V. camera or an array of
photodiodes in one or two dimensions (solid state T.V. camera), and
a computer to process the raw data from the camera. The design of the
computer program is the most critical part of the construction of a
vision system in a particular application, but other factors such as
lighting and the optical system are very important. There is no point
in producing a highly accurate, sophisticated, intelligent camputer system
when there are no possible means of obtaining dynamic range out of the
image transducer. In this respect, lighting is certainly the major
consideration in any industrial automated system that uses visual sensing.
To ensure successful picture processing, the location of the
objects to be analyzed must be suitably illuminated; any possible
errors which could be caused through accidental formations of shadows,

reflections or outside light must be eliminated. This means that the

scene illumination must be dominant and homogeneous in order to achieve



an even distribution of light within the picture area. Various methods
of illumination can be employed. Among the principal ones are: flash light,
direct illumination, infrared illumination and fluorescent radiation.

The lamps and lights required for this purpose have to be
selected carefully. However, there is still more that can be done to
improve the quality of the image of the objects being analyzed so as to
ensure more accurate and more reliable methods of recognizing and measuring
objects by way of vision systems. Techniques such as back lighting,
reflective lighting, and light patterns of different sorts are schemas
that are being used at the present time for this purpose. Another method
such as filtering or thresholding can also help to improve visual sensing
performance.

Most of the vision systems being used by industry today are for
inspection ( e.g. Octek's Image Analysis Processor , the ORS Multi-element
SCANSYSTEM , System "Q" by ORS , VS-110 Inspection System by Machine
Intelligence Corporation). Applications in robotics are generally still
in evaluative stages [1-1]. To integrate robots with visual capability
into assembly, the problem concerning illumination in the assembly
environment, which is not sufficiently stable for the current systems,
must be solved.

Due to the impossibility of stabilizing the ambient light of the
assembly environment in some way, the vision systems must be adaptable to
unpredictable light conditions. Using such a facility, the user can include
in the development of the algorithm that is suitable for his particular
applications, a first stage for correction of light conditions. One of the

obstacles in achieving this task is the large amount of data that must be



manipulated in a very short period of time; thus, such a facility must
be implemented in hardware. In many cases the user can include an image
enhancement stage to bring out the best possible constrast between the
object of interest and the background, or a noise reduction stage which
will improve the reliability of the image analysis process.

In some applications an image enhancement stage is all that is
required, particuiary when the image is to be presented only for human
vision inspection, as in the case of radiographic examinations. In other
applications the image from the camera is of sufficient quality and
contrast for the enhancement to become unnecessary, or because the
enhancement technique requires additional processing of the image, there
may not be sufficient time for such enhancement to take place. However,
enhancement is not a substitution for inadequate lighting conditions,and
considerable effort should be made to ensure the best method of lighting
the scene to be analyzed in order to present a good high contrast image.

By avoiding uneven lighting conditions on the scene, a substantial
improvement in the reliability of a vision system is achieved.

The system to be described ( Adaptive Lighting System/ALS) ,
provides a silhouette robot vision machine with light ambient changes
adaptability within a certain adaptive range [1-2]. This vision system
essentially works with binary images ( silhouettes ), and its objective
is to identify, locate and inspect the silhouettes of 3-dimensional
workpieces which are to be handled by an industrial robot. The robot/vision
interaction of this system is shown in figure 1.1l. In the figure, a
solid state T.V. camera is viewing a predefined working area for the robot.

The camera takes pictures of the scene being analyzed, and transmits them
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Figure 1.1 Robot/vision interaction.




to the vision system. The vision system processes the acquired image and
extracts the information needed to command the rcbot movements for the
acquisition of the workpieces via the robot controller.

The ALS analyzes the distribution of light on the scene each time
a picture is taken by the camera, and sets the appropriate sensitivity
of the visual transducer as well as the appropriate threshold value. To
achieve this task, the ALS is incorporated in the vision system architecture
to interact with other modules. In chapter III, this modular interaction
is depicted in detail.

In any vision system which processes binary images, the image
processing sequence may be divided into four stages: an image enhancement
and correction of light conditions stage; an object-background separation
stage to produce a binary image; a feature analysis stage on the binary
image and a decision stage. All these subprocesses can be carried out with the
machine vision involved in this report, and to provide a PUMA 600 robot
with vision capability.

The object-background separation stage attempts to reduce the
grey level image coming from the T.V. camera into a silhouette, where the
pixels in the background are set to white and the pixels in the object
are set to black. The most common method for separating the object from
the background is the threshold operator. As mentioned before, the Adaptive
Lighiting System described here ( ALS ), provides such an operator and uses
the distribution of light of one frame ( represented by the histogram of
grey levels) for an automatic adjustment of this operétor, and for the
sensitivity control of the sensor transducer ( integration time ). The

operation is essentially affected in parallel with the image acquisition,



and in the first stage of the image processing sequence of the vision
system. By combining this parallel processing with serial processing to
interact with other modules in the system, the silhouette is created, and
a significant advance over earlier systems is obtained.

In chapter II, digital image and computer vision fundamentals are
described as well as lighting and thresholding schemes being currently
used in most vision systems. The visual perception process and brightness
adaptability in the human eye are explained.

In chapter ITTI, the hardware implementation and operation of the
system is explained in detail. In chapter IV, the software architecture
of the system is depicted as well as the algorithms used by the system.

In chapter V, measurements on the adaptive range of the system
and the T.V. camera are shown. Discussion of the features and speed of the

system is presented in chapter VI.



CHAPTER II

COMPUTER VISION AND DIGITAL IMAGE FUNDAMENTALS

2.1 Elements of visual perception

Tt is important to have a basic understanding of the visual
perception process in the human eye in order to have a better understanding
of the computer vision concept. Figure 2.1 shows an horizontal cross
section of the human eye.

The eye is nearly spherical in form with an average diameter of
aproximately 24 mm. [2-1]. It is enclosed by three membranes: the cornea
and sclera ( outer cover ), and the choroid and the retina middle and
inner membranes respectivaly. The cornea is a transparent tissue that
covers the anterior surface of the eye. The sclera is continous with the
cornea; it is an opaque membrane that encloses the remainder of the optical
globe. The choroid lies directly below the sclera, this membrane contains
a network of blood vessels which serves as the major source of nutrition
to the eye. The choroid, which is heavily pigmented, helps to reduce the
amount of extraneous light entering the eye and the backscatter within the
optical globe. The choroid at its anterior extreme is divided into the
ciliary body and the iris diaphragm. The iris diaphragm contracts or
expands to control the amount of light that is permitted to enter the eye.

The central opening of the iris ( the pupil ) is variable in
diameter from approximately 2 mm. up to 8 mm. [2-3]}. The innermost

membrane of the eye is the retina. When the eye is properly focused,

(8)
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Figure 2.1 Cross section of the human eye.

reproduced from [2-2]
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light from an object outside the eye is imaged on the retina. Pattern
vision is afforded by the distribution of discrete light receptors over
the surface of the retina. There are two classes of receptors: cones and
rods . The cones in each eye number between six and seven million [2-4].
They are located in the central portion of the retina, which is called
Fovea and they are highly sensitive to colour. Humans can resolve fine
details with these cones because each cone is connected to its own

nerve end. Muscles controlling the eye rotate the eyeball until the
image of an object of interest falls on the Fovea . The number of rods
is much larger ,they are in the order of 75 to 150 million [2-4] and
distributed over the retinal surface. The larger area of distribution and
the fact that several rods are connected to a single nerve end, reduce the
amount of detail acquired for this receptor.

Rods are not involved in colour vision and are sensitive to low
levels of illumination.

The lens is made up of concentric layers of fibrous cells. It
measures on the average of 7-10 mm. in length, 8-10 x4 width and 2-5 p
thickness [2-5], and it is suspended by fibers that attach to the

ciliary body. It contains sixty to seventy percent water. It absorbs
approximately eight percent of the visible light spectrum, with
relatively higher absorption at shorter wavelengths. Both infrared and
ultraviolet light are absorbed appreciably by proteins within the lens
structure and, in excessive amounts can cause damage to the eye.

The shape of the lens is controlled by the tension in the fibers
of the ciliary body. To focus on distant objects, the controlling muscles
cause the lens to be relatively flattened. Similarly, these muscles allow

the lens to become thicker in order to focus on objects near the eye.
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The distance between the focal center of the lens and the retina
ranges from 17 mm down to 14 mm. [2-6]. Once the retinal image is
reflected primarily in the area of the Fovea, perception takes place
by the excitation of the light receptors which transform radiant energy
into electrical impulses that are ultimately decoded by the brain.

By copying the biological functions of the human eye, the
concept of vision can be translated into a physical implementation
developed with current known technology to reach the concept of computer

vision.

2.2 Brightness adaptation

The ability of the eye to discriminate between different brightness
levels is an important consideration when a variable adaptable vision
system for industrial control is required, since digital images are
displayed as a discrete set of brightness points.

The range of light intensity levels to which the human visual
system can adapt is enormous, being in the order of lOlO [2=7]. There is
evidence [2-8] which indicates that brightness perceived by the human eye
is a logarithmic function of the light intensity incident in it (subjective
brightness). This characteristic is shown in figure 2.2 , which is a plot
of light intensity (mLb.) versus subjective brightness ( from the scotopic
threshold to the glare limit ). The long solid curve represents the range
of intensities to which the visual system can adapt. In photopic vision

6. The

alone ( vision performed by the cones ), the range is about 10
transition from scotopic to photopic vision is gradual. The eye
accomplishes this variation by changes in its overall sensitivity, this

phenomenon is known as brightness adaptation.
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Figure 2.2 Range of subjective brightness sensations

showing a particular adaptation level ( reproduced from [2-9]).
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The total range of intensity levels that the eye can discriminate
simultaneously is small compared with the total adaptation range. The
current sensitivity level of the visual system is called the brightness-
adaptation level, which may correspond in the figure 2.2 to brightness Ba.
The intersecting curve represents the range of subjective brightness that
the eye can perceive when adapted to this level, which is restricted to
a level Bb at and below which all stimuli are perceived as indistinguishable
blacks. The upper portion of the curve ( dashed portion ) is not restricted,
but if extended too far loses its meaning because higher intensities
would simply raise the adaptation level to a highe; value than Ba.

In a complex image, the visual system does not adapt to a single
intensity level but to an average level which depends on the properties
of the image, and as the eye roams about the scene, the instantaneous
adaptation level changes about this average [2-10]. The result is that
the eye can only detect in the neighborhood of one or two dozens intensity
levels at any one point in a complex image. This does not mean however,
that an image needs only be displayed in one or two dozens of intensity
levels to achieve satisfactory results.

This narrow discrimination range " tracks " the adaptation level
as the latter changes in order to accomodate different intensity levels
following eye movements around the scene. This allows a much larger range
of intensity levels discrimination so that, to obtain displays that will
appear reasonably smooth to thé eye and for a large class of image types,

a range of over 100 intensity levels is required.
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2.3 Computer vision

As mentioned before, the human eye consists of a lens with an
iris which takes in thé image of the object that it is required to see
and by way of receptors in the retina transforms the data received into
signals that send the information to the brain.

A typical computer vision system can be represented in such
a manner as shown in figure 2.3. The lens and the iris are the optics
and diaphragm, and the retina is a photosensor. Braccini and Gambardella [2-11]
suggest the implementation of the photosensor device in the same
geometrical manner as the retina ( which includes the Fovea system ) in
order to detect three dimensional scenes and obtain a wider field of view.

The information is taken via a multiplexor system as the
analogous performance of the neurons, and it is put into a computer
which attempts to achieve the task of the brain. In this way, the object
is imaged through optics and detected by a sensor. It is then interrogated
through the image processing circuitry, to give feedback to an optical
control system to view for parts, or even to make the system adaptable
to unpredictable circumstances, in an attempt to make computer vision
systems work like the human eye.

At each stage of a computer system, some form of decision-
making is required, depending on the visual system constraints which
determine the level of intelligence required. The constraints listed
in figure 2.4 are the requirements for most control systems using visual
sensing [2-12]. Some of the vision systems now on the market reach the
sophisticated level of intelligence in some of their features. This is the
case of SAM ( Senéor System for Automation and Measurement ) developed

by the Fraunhofer Institute for Information and Data Processing which is
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sold commercially by Bosch in Germany [2-13].

A general computer vision process can be divided into five
principal areas: sensing, segmentation, description, recognition and
interpretation, which are suggested by the way computer vision systems
are now generally implemented, not because human vision and reason can be
so subdivided and their processes carried out independently of each
other. In fact, the relationship among these functions in the human vision
is not yet well understood to the point where they can be modelled
analytically, so that most of the state-of-the-art computer vision systems
for industrial purposes are implemented based on practical approaches.

Computer vision has became a part of the larger field of
Artificial Intelligence which aims at building machines that behave
intelligently, in perceptual and other domains. The capabilities of
machines to see are far less than human capabilities, many fundamentals
issues of processing and representation are unresolved, so that the
fantasies of the science fiction writers are far away from becoming reality.

However, the current known techniques are adequate for building
machines with limited, but useful abilities to see for applications
to real problems.

The problems of machine vision perception are analogous to those
of human visual perception that have been studied for a long time by
psychologists [2-14],[2-15], but the psychological research is not
advanced yet to the extent of providing many concrete models that can
be programmed for a machine. The result is that most computer vision
systems today accomplish very particular tasks for very particular

problems, and they are far away from becoming general purpose vision systems.
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2.4 Image model

The term image, refers to a two-dimensional light intensity
function denoted by f(x,y), where the value of f at spatial coordinates
(x,y) gives the intensity ( brightness ) of the image at that particular
point. Light is a form of energy, therefore f(x,y) is bigger than

zero and of a finite value, that is:

0 < £(x,y) < 00

However, in practical problems, light ranges between zero and a finite
value. The nature of £ (x,y) may be considered as being characterized
by two components: the amount of source light incident in the scene
in guestion, and the amount of light reflected by the objects in the
scene.

These components are called illumination and reflectance,
and can be denoted by: i(x,y) , r(x,y) , which combined as a product
form:

fix,y) = i(x,y) rx,y)
where:

0<¢ilx,y) ¢ Q
and

0¢rix,y) 1.

The reflectance is 0 for total absorption and 1 for total
reflectance. The nature of i(x,y) is determined by the light source,
and r(x,y) by the characteristics of the cbjects in the scene. Some

typical values of these components are shown in table 2.5 [2-16].
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TLTLUMINATION::
clear day 9000 foot—-candles
cloudy day 1000 foot—~candles
full moon night —=—————-—— 0.01 foot—candles
commercial office room --- 100 foot-candles

REFLECTANCE:
black 0.01
stainless steel ———————— 0.65

- silver-plated metal —=—m- 0.90

show 0.93

Table 2.5 Typical values of illumination and reflectance.

The brightness value at coordinates (x,y) in an image is
called grey-level (1) and lies in the range:

< z
L . 1 L

In theory, the requirements on IL_. is that it must be positive and

on L that it must be finite. In practice:

L .. =41 . r .
and L = i r ’
so that, for indoors applications one may expect the values:

Ihdn = 0,005 and Lhaxz 100.

The interval [ Loin 7 Loax ] is Qalled the grey~-scale and
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is commonly in practice valued to [ 0,L ] , where 1=0 is considered
black and 1=L is considered white , all intermediate values are
shades of grey.

An image function f(x,y) must be digitized spatially and in
amplitude in order to be used in computer processing.

By uniformly sampling the image and an amplitucde
quantization of the grey-scale, the function f(x,y) can be represented

in the form of an NxM array:

- £(0,0) £(0,1) . £(0,M~1) »
£(1,0) £(1,1) . £(1,M-1)
£x,y)= S
f (N~1,0) f(N-1,1) .o f(N-1,M-1)

which is called a digital image and where each element in the array
is referred to as an image element, picture element or pixel.

Each pixel takes any value G within the discretized grey-scale.
In practical digital image processing, these values are integer

powers of two, that is:

il

M and N = 2" ( array dimension )
c=2" ( number of grey levels ).
The number of bits required to store a digital image is then

given by : b=NxMxm.
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The resolution of an image is the degree of discernible
detail and is directly dependent on the dimensions of the array and
the number of grey-levels. It is obvious that the better resolution,
the more accurate results are obtained in a particular vision
application. However, the better resolution implies a greater quantity
of data to be processed and consequently the more cost and complexity
of a vision system. The more grey-levels and sampling-grid size are
increased, the closer the digitized array will approximate the original
image. Fiqure 2.6 shows the effect of reducing the sampling-grid size
of an image, and keeping in all cases 256 grey-levels. Figure 2.7
illustrates the effects of reducing the number of grey-levels in an

image and keeping in all cases sampling—grid sizes of 512x512 pixels.

2.5 Histogram of grey-levels

The grey-levels in a digital image can be histogrammed.
In . this case, a histogram of grey-levels represents the distribution

of light intensity ( brightness distribution ) in that digital image,
( figure 2.8 shows a typical histogram ).

For a practical purpose, a histogram of grey-levels can be
defined as the plot of the grey-scale versus the frequency of
occurrence of each grey level in a digital image. A grey-level histogram
is useful for automatic threshold adjustments when threshold selection
techniques are used for image segmentation. For image enhancement
techniques, where the distribution of light is a fundamental and important
data when applying spatial transformations ( direct manipulation of

the pixels ), the histogram of grey levels becomes very useful.



Figure 2.6 Effects of reducing sampling-grid size
(reproduced from [2-17]).
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Figure 2.7 Effects of reducing the number of grey-levels
( reproduced from [2-17] ).
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Grey-level histograms are computed generally by way of
specialized hardware when used in real time applications. There
are methods that improve histograms, and they can be modified for
different purposes.

Histogram modification techniques for image enhancement of
digital pictures is a typical example of the usefulness of such
histograms. Figure 2.9 shows an original and modified image after
applying a histogram equalization technique, which is based on the
histogram modification of the original one.

Usually these techniques are used in a preprocessing stage
of digital image processing. They increase the probability of correct
pattern detection and recognition in autonomous applications such‘as:
robotics and military systems. Woods and Gonzales [2-18] have
developed a system which performs image enhancement in real-time by
using histogram techniques.

In this report, such a histogram is used to accomplish

lighting adaptability for the vision system.
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2.6 Thresholding

The use of thresholding as a tool in image segmentation
has been extensively studied, and is by far the most widely used
approach for segmentation in industrial applications of computer
vision.

Wy Eresholding techniques are used in most of
the current vision systems }s/ because they are fast and quite
straightforward to implement in hardware by way of comparators.

The lighting environment is usually an unstable factor in
industrial applications which results in images that are more appropriate
for segmentation with a thresholding approach.

Segmentation of images using thresholding is carried out
by way of a threshold operator ( Ti ) , which in its simplest form
takes a value T , the threshold value , and sets all pixels of an
image of value below T to white‘ ( or black ) and all pixels of value
at or above T to black ( or white ). This operator can not only take
a value T, but a band of grey levels values Tb = Tu - Tl . The main
problem with the threshold operator is to choose the optimal value for
T or Tu and Tl that separates the object and the background into
white and black respectively ( threshold selection technique ).

Different methods for determining the value of T can be
used:

- a constant value for T ,

- a value T dependent upon the average J'ntensity value,

- a value T calculated between two peaks of the intensity
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frequency histogram ,

- a value T calculated to give a particular ratio of black

to white.

Some of these methods, for example constant value and average
intensity value, can be implemented with a‘ single operator. Other
methods, for example ratio value, can be done as a sequence of operators.

The ratio value may be obtained by calculating the intensity
histogram, and by summing the value of successive elements of the histogram
until the ratio of the sum to the total number of points minus the
sum is greater than or equal to the desired ratio. The element
subscript number, whose value was just added to the sum value, is the
value,T, at which the image should be thresholded. These techniques
are derived from methods used early in the SRI Vision Module described
by Gleason and Agin [2-19]. However, it has been generalized for current
vision systems to obtain the value of T from the histogram of grey °
levels of the image.

In a general form, thresholding can be defined by:

glx,y) =k if T - = C(x,y) T

k-1 k
k=1,2 ... m.
where:
(x,y) = pixel coordinates
C(x,y) = characteristic feature function of the pixel

with coordinates (x,y) (e.g. intensity of light).

g(x,y) segmented function

Ti = lth threshold value
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m = number of distinct labels assigned to the
threshold image.
In a general form, the threshold operator Ti can be

viewed as a function of the form:

T, =T, (x5, pxy, Cxy).

i
where:
(x,v) =coordinates of the pixel
Clx,y) = the grey level of the point (x,y) in the image
p(x,y) = some local property (e.g. average intensity ).
- /
If T, depends only on C(x,y) ( the grey level of the point ™| /)/J)f\/
, . e e s i ﬂﬁ#@77@4
(x,y) in the image ), it is called a global threshold; if it , f /

depends on pf{x,y) ( some local property ) and C(x,y) it is called a

local threshold; if it depends on p(x,y) , C(x,y) and the coordinates%

(x,y) it is called a dynamic threshold. L
Global thresholding is used in applications for which the
objects to be extracted exhibit high contrast from the background, as
is the case of backlighted scenes. Local thresholding on the other
hand, is used when the difference between objects and background is
not clearly defined. The dynamic threshold is probably the most
powerful way of thresholding in segmentation although the most difficult
to implement.
In most practical applications that work with silhouettes,
the threshold value is set empirically, but it would be very convenient
to have a method for automatically setting this threshold to its

optimm value.
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Although different schemes.for global, local and dynamic
thresholding can be used, in industrial vision applications the use
of g{omlmthx% values have been generalized by using global
threshold selection techniques-based on the analysis of the image's
grey level histogﬂram.“’In!f,act,, some of theér-earliest techniques for
automatic threshold selection were global methods based on this analysis.

A simple " p—tile " ( based in percents values ) method was
suggested by Doyle [2-20] if the objects in an image are darker than
¢ the background, and+gccupy a-fixed percentage of the picture area.
This method is not applicable if the object area is unknown or varies
ﬁrmn picture to picture. Prewitt and Mendelsohn - [2-21]choose thresholds
at the'valleys (-or antimodes.) on the histogram. Their schema called
the:mode nethod, . involves. some smoothing: of *the histogram data, .
searching-for modes and placing thresholds at the minima between them.

.The Prewitt and Mendelshon method relied heavily on the structure

of the grey level histogram which contains peaks and valleys
corresponding to grey level subpopulations-of the image. Object and
background regions ( represented by histogram peaks ) are assumed to
be of fairly constant grey level, and to differ in average grey }evel.

Edges ( represented by valleys ) are camposed of intermediate
grey levels and are less heavily populated than either bbject or.
background. Other work done by Wall [2-22] , has attempted to model
objects and their edges by deriving the structure of the corresponding
grey level histogram. Local property statistics have been used to-help.

in the selection of global' thresholds by improving the shape of the
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grey-level histogram; for example, making it more bimodal and then
applying the mode method described before.

Mason [2-23] has proposed a method for making histogram
valleys deeper, in order to facilitate the use of the mode method.

He computes a histogram in which not all points are counted equally.
The lower the value of a difference operator at a particular point,
the more weight is given to that point. The overall effect of the
weighting process carried out by this technique makes the histogram
peaks sharper and higher and the valleys deeper, so that , the
bottom of the valley can more easily be selected as a threshold.

For histograms in which the valley is broad and the peaks
are very unequal in size, a technique based on a digital " Laplacian "
operator can be used to produce a strongly bimodal histogram. This
technique was suggested by Weszka, Nagel and Rosenfeld [2-24] . The
" Laplacian " operator is computed by taking absolute differences
between the grey levels at each point in the image and the average of
its eight neighbor grey levels, resulting in a deepened and sharpened
valley bottom separating the two peaks. A camplete evaluation of

the different techniques is presented by Weszka and Rosenfeld in [2-25].
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2.7 Lighting schemes

The output signal of a camera depends much upon the way
in which the objects are presented as an image to the camera. It is
very important to present these cbjects within the field of view
with high contrast in order to obtain accurate signals of information.

Optics and illumination today already represent an area
of research in industrial machine vision techniques [2-26]. The
principal objective in present vision systems is to minimize the
quantity of data processiné complexity and time needed to extract
the necessary information from the image by controlling the
illumination image environment. A wide variety of techniques have
evolved to reduce the computing required in vision machines, but
at the present there is probably less theoretical understanding
and general knowledge of specific techniques of illumination than
other subjects related to machine vision.

Iow image contrast, shifts in brightness, shadows,
reflections , changes in the background or changes in focus can
affect the performance of the pattern recognition technique being
used.

An understanding of the interaction of light with the objects
of interest, programmable illumination, and an adaptability to
lighting for different image conditions having :Lnteraction with
specific processes are needed.

Vision systems today consider the illumination a very

important factor, to the point of affecting the complexity of
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vision algorithms. Several basic schemes are used at the present
time for.illuminating parts to be inspected or manipulated. Figures
2.10,2.11,2.12 and 2.14 [2-27] show these schemes.
The diffuse lighting approach shown in figure 2.10 can
be employed for objects characterized by smooth regular surfaces.
The effectiveness of this technique is illustrated by Shirai and
Tsuji [2-28] who used sequential diffuse lighting from several

directions to obtain line drawings of polyhedral objects.
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Figure 2.10 Diffuse lighting scheme (reproduced from [2-27]).




The backlighting scheme is shown in figure 2.11. This
scheme is ideally suited for applications in which silhouettes of
objects are sufficient for recognition and feature extraction

measurements. Jarvis discusses this technique in [2-29].
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Figure 2.11 Backlighting scheme ( reproduced from [2-27] ).
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The figure 2.12 shows a lighting scheme that uses a
spatially modulated light source. Most times this technique is
used for object classification, and involves projecting points,
stripes and grids on an object. The curvature of the object distorts
the light pattern. This distortion is detected in the digital image
and is used to find the object curvature, or only the presence or

absence of it.
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Figure 2.12 gSpatially modulated scheme ( reproduced from [2-27] ).
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‘The spatial modulated scheme is successfully used in
the Consicht-I system developed at General Motors Research Laboratory
[2-30]. The lighting pattern used is a narrow intensity line projected
across a moving conveyor belt surface perpendicular to the direction
of motion. When objects pass below the source beam, it intercepts the
light before it reaches the belt surface on the conveyor. When this
is viewed from above by a linear array sensor, the line of light
appears deflected and the presence of a part can be detected as

shown in figure 2.13

?\ @ Q{ LIGHT SOURCE

/ \V(’f_‘ & <?<)/
Q__ "\

PROCESSOR v ~

Figure 2.13 Consight-I system using the spatially modulated

scheme
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The directional light approach is shown in figure 2.14.
This scheme is ideally suited for the inspection of rough surfaces.
Imperfections on the surface can be detected by carefully choosing
the projected light. When the surface shows almost no imperfections,
only a little light is scattered up to the camera. When the
imperfection is big enough, the scattered light is of considerable

amount and the defect can be detected by the vision system.

PROCESSOR

2N LIGHT SOURCE

ROUGH SURFACE

Figure 2.14 Directional light scheme (reproduced from [2-27] ).
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In any discussion of vision systems, it is important to
point out that ordinary light sources are not always the appropriate
choice; for example, many inspection applications use laser beams to
improve brightness effectiveness and beam directionality. An
interesting application of laser beams in robotics is the Kawasaki
Vision System Model 79A [2-31] which is used for path corrections in
arc welding.

A laser unit projects a light pattern onto the surface of the
part to be welded. The shape of the surface distorts the light
pattern, and this distortion is used by the vision system to determine
the relative position of the point to be welded.

The system described in this report, does not attempt to
correct the light scheme used for the application described before,
but to adapt the vision system to instabilities in that light scheme

and within an adaptive range.



CHAPTER III

HARDWARE IMPLEMENTATION

3.1 General architecture

The adaptive lighting system ( ALS ) comprises a G.E. T™N2500

solid state T.V. camera, a sensitivity control unit, a video rate
histogram generator ( VRHG ), and an 86/12A microcomputer. It uses a
graphics printer to display results and a CRT terminal to communicate
with the microcomputer.

The system was attached to a silhouette machine vision in
order to make it adaptable to different ambient light. A dual threshold
unit, a binary pixel packer unit and a status register belonging to
this vision system [3-1] are used by the ALS to perform.this task.
In fact, the ALS can be attached to any vision system which requires

lighting adaptability by making minor modifications in the hardware
and software of the user vision system.

Each time that a picture is requested from the camera by the
vision system, the ALS generates a histogram of grey levels of the
current scene and statistical calculations are performed on the
histogram to obtain an adequate threshold value for the " grey-scale
to binary " image conversion. The criteria for setting the sensitivity
of the visual transducer in the camera uses this information, and the
sensitivity changes are achieved by adjusting the integration time in

the read out of the visual transducer ( CID ).

( 39)
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The general architecture of the vision system with the ALS
is shown in figure 3.1 . In the figure, the 3-dimensional blocks are
the actual modules that comprises the ALS . The shaded modules interact
with the ALS but are part of the user's vision system.

Video input to the system is by way of the General Electric
TN2500 digital T.V. camera. As shown in figure 3.1, the internal
architecture of the vision system is designed around three buses:

1.- The multibus supports the:Intel iSBC 501 DMA controller

( Direct Memory Access ) and the iSBC 86/12A microcomputer.

I/0 ports in the microcomputer provide access to the serial

robot interface, a status register, a threshold logic unit,

and the sensitivity control unit.

2.~ The video bus, which is comprised of the digitized video

( 8-bits ), control lines, and associated timing pulses

( element rate clock, end of line, end of frame, etc. ) of the

T.V. camera.

3.- The DMA bus, which deposits the acquired data in the RAM

of the microcomputer board.

The dual threshold unit shown in fiqure 3.2 converts the
8~bit grey-scaled video into a single bit binary by comparing each pixel
value to a pre-calculated lower ( Tl )} and upper ( Tu ) bound. These
values are retained in two registers, and can be altered by the ALS
every time a picture of the scene is requested. For any 8-bit pixel (p),
the output of the threshold unit will be:

1 for Ty = p = T
0 otherwise

and a silhouette is obtainedAfrom the grey-scaled picture.
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Various types of video data can be captured from the video
bus and sent to the iSBC 86/12A for processing. In each case,
acquisition is accomplished in a single T.V. frame ( 33 ms. ).

For each data type, a hardware module is inserted between the video
bus and the DMA bus ( the ALS has its histogram generator situated in
this part of the vision system ). In order to choose a different

data type, a status register is implemented between the video bus and
the multibus. This status register, selects the background colour of
the silhouettes and the control of the scan mode in the camera as well.

The binary pixel packer collects an image of 232x240 single
bit pixels which are packed 8 pixels/byte and transmitted in parallel
to the microcomputer RAM through the DMA bus. The implementation
of the device is shown in figure 3.3. The most significant bit ( MSB )
of a 4-bit counter enables one of two serial in / parallel out shift
registers. The first 8 binary video bits are clocked into the shift
register. The MSB of the counter now toggles and this enables the
second shift register to acquire the next 8 pixels. Simultaneously ,

a one-shot is triggered by the counter, thus issuing a transfer request
to the DMA bus. This alternating process continues until a full frame
has been acquired. The frame detection logic clears the counter at the

beginning of each frame and line.

3.2 TN 2500 G.E. camera

As mentioned before, the video input to the system is by

way of the General Electric TN 2500 solid state T.V. camera. This camera
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Figure 3.3 Binary Pixel Packer ( reproduced from [3-1] ).
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contains a charge injection device ( CID ) imaging sensor array
comprised of over 60 000 light sensing picture elements ( pixels ) in
a 3x4 aspect ratio format. The CID is totally solid state and its
format features 244 rows of 248 pixels each. The camera includes a
self contained camera control unit ( CCU ) which generates all timing
signals, and effectuates the analog to digital conversion of the video
output ( each grey-level coded as an 8-bit word ). Video signals

(e.g. the digitized video output, vertical and horizontal sync. ) are
extracted from the CCU and deposited on the video bus of the vision

system.

3.2.1 CID sensor

Charge injection imaging makes use of a two dimensional
array of coupled metal-oxide-silicon ( MOS ) capacitors to collect and
store the photo generated charge. Coincident X-Y selection is used to
inject the stored charge into the bulk silicon. The time integrals of
the charging currents to the MOS capacitor plates are detected for
read out.

The basic CID is an integrating photon detector [3-2],
consisting of a MOS capacitor biased above threshold. The charge
generated by incoming photons is collected and stored by the device;
as more charge is collected, the capacitance increases. When a pulse
of a lower voltage value is applied to the gate, the collected charge
is injected into the substrate, where it is collected. For read out,

the signal charge is detected by integrating the charging current or




46

measuring the capacitance change. For two dimensional operation of
this device, which constitutes an image cell, two MOS capacitors

at each sensing site are coupled together, so that the stored charge
can be transferred from one capacitor to the other. Thus a two-axis
selection method is used for scanning.

The TN 2500 camera uses a preinjection read out mode whose
principal advantage is high speed performance with no column blooming
due to sensor overloads [3-2]. This preinjection read out is achieved
by sequential connections of the image cells to a reference voltage
to produce current flows generated by the incoming photon charges
stored in each cell. These current flows constitute the actual video
signal.

The image cell selection is accomplished by the presence
of digital pulses that normally integrate and inject the signal charge
in each cell once per frame.

By altering these integration and injecting times by way of
disabling and enabling the driven pulses, it is possible to change the
sensitivity of the whole transducer which constitutes the inject inhibit
mode operation of the camera. This mode is used by the ALS to perform

its adaptive task.

3.2.2 Operating modes

The TN 2500/GE camera can be operated in three modes:
i) .- normal interlaced scan mode
ii) .~ sequential scan mode

iii) .- inject inhibit mode.
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Since the system uses only the sequential and inject inhibit
modes, only these are mentioned. In the sequential mode, a frame is
composed of only one field; consequently the field rate equals the
frame rate of 30 Hz. The ALS uses a 244 sequential format frame
presentation shown in the figure 3.4 . In such a frame presentation,
each CID imagéer line is read and displayed twice.

The inject inhibit mode is used by the ALS to adjust the
integration time of the read out in the CID. These changes in the
integration time permit different sensitivities in the transducer as

explained in section 3.2.1 .

3.2.3 Video synchronization signals

The ALS uses the following video synchronization signals
( Tri-state low power~TTL compatible ) from the CCU to activaﬁe the
VRHG:
i) .- Digital video output ( bl to b8 ); video bits 1 through 8 comprise
an eight bit binary number which represents the radiometric value of
a given pixel. The digital video outputvdata rate is 4.5045 MHz.
ii) .- Synchronization clock output enable ; this signal controls the
output state of the synchronization clock signals. It also is an input
line to the CCU. The synchronization clock signals provide element field
and video blapking information .
iii) .~Element rate clock (ERC) ; a negative transition of the element
rate clock ( 4.5045 MHz. ) denotes the presentation of new digital

video data.
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Figure 3.4 TN2500 244 line sequential mode frame presentation
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iv) .- Synchronized blanking ( SBINK ) ; a " high " TTL level of this
signal coincides with the presence of digital video information. No
video output is presented when this signal has a " low " TTL level.
v}.- Vertical sync. ( VSYNC ) ; a positive transition of the
vertical sync pulse denotes the start of each video frame when the

sequential mode is operated in the camera.

These video synchronization signals are shown in the figure 3.5
and are connected to the video bus in the system . The timing diagram

in the figure shows their interaction.
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Figure 3.5 Video synchronization signals.
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3.3 Video rate histogram generator ( VRHG )

Section 2.4 has described the usefulness of the histogram
of grey-levels for the ALS performance. The generator module of
such a histogram is described below.

The VRHG has been implemented on a 6 x 12 inch Intel SBC
board and with different digital logic technologies in order to
optimize its functions ( standard TTL, low power Schottky , HMOS-IT
high performance MOS technologie adn CMOS ). This module generates
the histogram of grey-levels of 58 528 pixels ( spatial resolution
used with the VRHG ) in one T.V frame time ( 33 ms. ), with
dedicated hardware based on an addressable RAM technique that matches
the speed of the video signals coming from the T.V. camera.

This dedicated hardware is implemented around the video
and DMA buses described in section 3.1 . Its organization is shown
in the figure 3.6 and consists of the following components:

i) .- Histogram buffer.

ii) .~ Function selector.

iii) .- Sequencer.

iv) .- Eraser unit.

v) .~ Incrementer and data bus controller.

vi) .- Speed converter.

vii) .- Timing and control generator.

Three principal functions are accomplished in a normal
operation of the VRHG in the following order and with the following

commands::
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Figure 3.6 Video rate histogram generator .
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CLEAR .- Erases the histogram buffer and enables the

system to generate a histogram.

HISTOGRAM .- Accumulates the frequency of occurrence

of each grey-level for each pixel in the image.

READ .- Dumps the acquired data.

Another two functions are available which do not have to
be performed each time a histogram is to be generated:

SELECT MEMORY PAGE.- Four different histograms can be

stored; this function selects the desired one.

SELECT DATA TRANSFER SPEED .- The speed of the data transfer

into the 86/12A microcamputer can be selected.

The VRHG 1is synchronized with the solid state camera video
signals, and depending on the function to be achieved, the FUNC’i‘ION
SELECTOR component sets the appropriate interconnections in the circuit.
Thus, a 1024 x 16 high speed RAM is erésed via the ERASER and
SEQUENCER camponents and the system is ready for data acquisition.
Once a HISTOGRAM command is executed, a histogram of grey-levels is
generated.

Each grey level is coded as an 8-bit word and the frequency
of occurrence‘ of each one is accumulated in one of 256/16-bit counters
corresponding to the 256 different grey-levels. This function is
achieved by the INCREMENTER and DATA BUS CONTROLLER components.

Once the data have been acquired, they are ready to be dumped

with a READ command.
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3.3.1 Histogram Buffer

The generated histogram is stored in this module. Four sets
of 256/16 — bit counters are implemented with a 1024 x 16 high speed
RAM for this purpose ( Intel 2148-3 ). Three modes of operation are
performed in this memory array: clear , increment and read modes .

Figure 3.7 shows the configuration of this module and its
three modes of interconnection. In the clear and read modes, the
address bus ( lines AO to A7 ) of the histogram buffer is connected
to the output of the sequencer module. In the increment mode the
address bus is connected to the grey scale lines ( digitized video
signals ) in the video bus. With 50 ns. access time , the histogram
buffer matches the high speed video signals to generate a histogram
by addressing the memory array with the 8-bit grey scale coded lines.
Only one mode at a time is allowed to operate. The selection of the
sequence of operation modes is achieved by the function selector
component and under the microcomputer control.

Signals R/W and CS in figure 3.7 are read/write and
chip select lines supplied by the timing and control generator module.

Signals SO ans Sl select one of the four sets of 256/16 - bit
counters ( histogram page ), to give the histogram buffer capability
of storing four histograms. Such a capability permits the ALS to
remember the sensitivity step of the camera and actual distribution of

light when an adaptive process is achieved.

3.3.2 Function selector

The function selector component is implemented by using
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Figure 3.7 Histogram buffer component .
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eight 2 to 1 multiplexers configured as shown in figqure 3.8 .

The basic three functions explained before are selected
here by choosing one of two different sets of eight lines:

- grey scale lines

- sequencer lines
and the appropriate read/write and chip select signals. A detailed
explanation of this operation as well as the timing of the

required signals for each function is shown in section 3.3.7 .

The grey scale lines are latched to compensate delays
introduced by input interface circuits ( schmitt trigger and drivers
circuits ), which isolate the CCU signals from the VRHG .

The select function signal ( SF ) is obtained from the
sequencer module. A low level in this line connects the sequencer
lines with the address bus of the histogram buffer, a high level

connects the grey scale lines.

3.3.3 Sequencer

The confiquration of the sequencer is shown in the figure 3.9.
This module produces a sequence of 256 binary words for addressing the
histogram buffer when a CLEAR or READ function is achieved. It is
implemented with an 8-bit binary counter and two JK flip-flops. In
the figure , when a CLEAR or READ command is executed , FF-1 and the
binary counter are reset, thus the SF signal ( Q of FF~1 ) is set

to a low value to comnect the eight output lines of the counter with
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Figure 3.8 Function selector component .
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Figure 3.9 Sequencer module .
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the address bus in the histogram buffer. A sequence from 00H to FFH
is presented to this bus to clear or extract the 256/16-bit words of
the currently selected page in the memory. When the sequence finishes,
the flip~-flop " 0 " in the figure ( FF-0 ) produces a negative

going pulse to clock FF-1 and set SF to a high value.

This action connects the grey scale lines to the address bus
in the buffer. The process can be repeated as many times és désiréd
and under microcomputer control, although a histogram command is
expected after one sequence finishes. The " CK " and " CLOCK ENABLE "

signals are supplied by the timing and control generator module.

3.3.4 Eraser unit

The function of this module is to provide low TTL values in
the data bus of the histogram buffer in order to erase the currently
selected page when requested.

This function is achieved by implementing an array of 16
pull down resistors and connecting it to the histogram buffer data bus.
Appropriate read/write and chip select signals are given by the

timing and control generator module when a CLEAR command is executed.

3.3.5 Incrementer

The implementation of this component is shown in figure 3.10,
and is by way of a data bus controller, a 16-bit latch and a 16-bit
adder. An increment function by one is achieved on a 16-bit length
word at very high speed , and each time it is requested. The increment
function and the data traffic control on the same electrical lines of

the data bus is accomplished within 220 ns.
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The operation is done by controlling the CS, R/W, DIEN and
HOLD signals shown in the figure 3.10 whose timing is shown in
figure 3.11 . In this timing, ERC is the element rate clock mentioned
in section 3.2.3 , CS H.B. is the chip select pulse for the
histogram buffer . €S D.C. is the chip select pulse for the data
bus controller, R/ is the read/write pulse for the memory array,

and HOID and DIEN pulses control the actual traffic of the 16-bit word.

3.3.6 Speed converter

After a histogram has been accumulated in the histogram
buffer and a READ command is exhibited, the histogram data are
transferred to the microcomputer through the DMA board. Different
data transfer speeds can be selected to achieve this operation. The
speed converter component permits this feature as well as accomplishing
a 16— to two 8«bit word conversion. The configuration of the speed
converter is shown in figure 3.12, where eight 2 to 1 multiplexer
realizes such a conversion, and a set of dividers for the ERC signal
permits the data transfer speed selection.

A tri-state stage is suited at the output to allow the
VRHG to share the DMA bus with other modules in the vision system.

The transfer request signal is generated in this module to indicate to
the DMA circuit the exact amount of transferred data, as explained

in section 3.5 . Five different data transmission speeds can be
selected by way of switches in the VRHG board:

28 microseconds/byte
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14 microseconds / byte
7 microseconds / byte
3.5 microseconds/ byte

1.8 microseconds/byte

3.3.7 Timing and control generator

This component provides the VRHG with timing and control
pulses for its operation. Figure 3.13 shows the control generator
interaction with other VRHG modules. This component performs programmed
sequences of control pulses for each function in the VRHG. Figure 3.14
shows the timing for the sequences of pulses. Each function is activated
by a negative going pulse in either the CLEAR , READ, or FRAME REQUEST
lines of figure 3.13 which are exhibited under microcomputer control.

Referring to figure 3.13, the VRHG function sequences are
accomplished as below:

CLEAR function .- The VRHG is initially erased by way of
this function and each time a histogram is desired. A negative going
pulse is presented in the CLEAR memory line to produce a negative pulse
in the negative output of IC/1 ( Q ). This pulse is applied in one
input of G/2 while the other input is in a high level, because no
negative going pulse has been applied in the READ line yet. Thus o)
of IC/2 is in a high state. IC/1, IC/2 and IC/3 are connected as
one-shot circuits for this purpose. The output of G/2 is applied to the
clock input of IC/3 to produce a negative going pulse in its Q and a
positive going pulse in its Q . These pulses clear the sequencer module
comprised by S1, S2, S3 and G/1 , which performs as explained in section
3.3.3 .
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Q of IC/3 is also applied to the clock input of IC/4 producii:
a high level in its Q which is presented in one input of G/1. In the
other input of G/1 , clock pulses with frequency previously selected
as explained ig section 3.3.6, are always present. After the sequence:

has been erased, a train of pulses is applied in the clock in?ut of

82 and through G/1 for a period of time equal to 256 of these clock pulee::.

After this period of time is completed, Q of S3 resets IC/4
to disable théjoutput pulses in G/1 . At the same time that the
sequencer is éétivated, the histogram buffer is enabled to write data
by way of G/4, G/5 and G/6 and all the lines of the data bus are pulled
down by the eraser unit. During this operation, all other connections
to the data bu; are in tri-state.

HISTOGRAM functlon .~ A negatlve going pulse in the frame
request line activates thlS functlon. An erased histogram buffer, and
grey-scale-to-address bus lines connection are assumed before this
operation is ééne.

When this function is activated, Q of IC/6 goes high for
33 ms.(mdndow;frame) and is synchronized with the VSYNC. This pulse
activates the logic implemented with IC/7,IC/8, G/7, G/8 and G/9 to
produce the master increment clock pulse ( ERCD ) exactly synchronized
with VSYNC by way of G/10 and G/11 . This master increment clock pulse
is generated as shown in figure 3.15 and produces the timing
for the increment function shown in figure 3.11 .

This timing is generated with IC/9 , IC/10, IC/12 , IC/13,
IC/14, G/14 and delay stages D1 through D8 of figure 3.13 . The increment

function timing is repeated as many times as the master increment clock
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is present, aﬁd happens to be the exact number of pixels for one
picture in the 244 sequential mode frame presentation as explained in
section 3.2.2 and shown in figure 3.4 .

READ function .- To perform a read function, the same
sequence of events as in a clear function occurs in the sequencer
component, but data is read instead of written on memory. The operation
is initialized with a negative going pulse generated in the read line
of figure 3.13 . A negative going pulse is produced at Q of IC/2, and
applied to G/2 and IC/11 to activate the sequencer and enable the
histogram buffer. IC/11 activates the speed converter, which generates
the transfer request for the DMA operation and accomplishes the data
transfer. An enable VRHG line is accessed by the microcomputer to select
the VRHG for DMA operation within the vision system. Figure 3.16

shows the I/0 lines for the VRHG.

3.4 iSBC 86/12A microcomputer

The host processor for the vision system is an Intel SBC 86/12A
single board computer. It includes the 16-bit CPU, 32K RAM, 8K EPROM,
an RS232 serial communications interface, 3 programmable I/O ports
and a programmable interrupt controller and timer. Expansion modules
have been added to constitute a total of 64K RAM and 32K EPROM.

The 8087 numerical processor has been attached to the
microcomputer for floating point arithmetic operation. The iSBC 86/12A
enhanced with these modules becomes the Intel iAPX 86/20 microcomputer.

The ALS uses this computer as its host processor. The memory

locations for the different data types acquired ( histogram of grey-
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levels, binary image ) are distributed as shown in figure 3.17 .

3.5 DMA controller

Direct memory access (DMA) of 8~( or 16-~) bit data
between a peripheral device and the system memory is provided by
the Intel SBC 501 DMA controller board in the vision system. Use was
made of this controller by the three data acquisiton modules as shown

in figure 3.1 . Up to 2%

6 bytes can be transferred independently of
the CPU once it initiates the operation.
The iSBC 501 includes 5 I/0 ports through which the CPU can
communicate with external devices. The CPU initiates the transfer
by programming a series of registers on the DMA board. A base address
( chosen as FOH ) is selected for the DMA board by way of selectable
switches, and output to these registers is relative to this base.
The number of bytes to be transferred is first fed into the
16-bit length register ( Base+C and Base+D ). The 8-bit control register ‘

is set as shown:

bit 0 ———- write from device to memory
bit } -=——— 8-bit transfer

bit 2 ———— DMA busy

bit 3 =——=--= inhibit transfer

bit 4 ——--— enable interrupts

bit 5 ——— override CPU access of multibus
bit 6 ————- not used

bit 7 ———-- not used
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The address register ( Base+E and Base+F ) is set to ODEOOH
and through the appropriate jumpers and switches, this address is mapped
into the on-board RAM beginning at location 7EQ0H as shown in the
memory map of figure 3.17. Detailed software to program the DMA board

is shown in the acquisition routines module in chapter IV.

3.6 Sensitivity control unit

The sensitivity control unit permits different sensitivities
in the visual transducer by way of altering the integration time in
the read out of the CID as explained in section 3.2.1 . From empirical

experiments, four steps of sensitivity were chosen as follow:

STEP NUMBER INTEGRATION TIME
1 ( normal operation ) one frame

2 two frames

3 four frames

4 eight frames

The CID sensor is exposed to the light source for 1, 2, 4 or 8
frame times depending of the light conditions. The less the scene is
illuminated, the more time the CID sensor needs to acquire the same
image as if a well illuminated scene is acquired in normal operation
(one frame time of light exposure ).

As mentioned in section 3.2.1 , the alteration of the exposure
time is achieved by disabling the scanning pulses for the sensor by the
desired time in each case, and then enabling them again. It is necessary

to capture the image contained in the first frame after the exposure
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time alteration, otherwise the transduced signal will be only that
of one frame time exposure.

This operation is accomplished by generating different VSYNC
signals for different steps of sensitivity as shown in the timing of
figure 3.18 . The implementation of this sensitivity control unit is
shown is figure 3.19 and is built on the same board of the VRHG.

A digital to analog conversion of the generated histogram is
also achieved with a 12-bit D/A converter circuit built in the same
board in order to provide the system with real time visual feedback
of the ALS operation.

Print~out of the histogram and statistical calculations are

obtained by way of a graphics printer as shown in chapter V. Measurements

on the system and adaptive range are shown in the same chapter.
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CHAPTER IV

' SYSTEM SOFTWARE

Programming for the ALS was written in Intel's PL/M-86
language [4-1] , and developed by using Intel's MCS-86 software
development utilities [4-2] and a MDS-230 microprocessor development

system.

4.1 Software structure

The general structure of the ALS software is shown in figure
4.1 . A top-down design was incorporated. The editing , compiled and
list files are stored on floppy disks and the hexadecimal 8086 code
resides on Intel 2732A EPROM's. The vision system software [3-1] was
modified in some routines to be used exclusively by the ALS. Other routines
are used either by the ALS or the vision system.

For a better understanding of the software design, a sequence
of the overall process achieved by the ALS is explained in the next

section and with reference to figure 3.1 .

4.2 -ALS adaptive process algorithm

Each sequence starts when the user ( vision system or the
robot ) requests an image from the scene. First the VRHG is prepared

for data acquisition and the sensitivity control unit set to the sensitivity

(76 )
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step one ( normal operation of one frame time of light exposure ). A
frame request is issued by the microcomputer, and in parallel, a

binary image is deposited in the on-~board RAM ( of the iAPX 86/20
microcamputer ). Simultaneously,a histogram of grey-levels representing
the distribution of light of the scene from which the silhouette was
created, is generated and stored in the VRHG.

The histogram data is transferred to the microcomputer on-board
RAM . Calculations on the histogram are performed and a decision is
taken to either finish the process, or issue another frame request
with a different sensitivity in the visual transducer.

The above process is repeated until a good image is acquired,
or an insufficient light conditions message is issued to the user. This
algorithm is shown in figure 4.2 , and a sequence of the histograms
used for an adaptive process using all sensitivity steps, as well as

calculated parameters is shown in chapter V .

4.3 Threshold adjustment

A typical bimodal histogram and calculated data are shown
in figure 4.3 . Different parameters are defined in the histogram

assuming a bimodal distribution of light is always obtained :

bw black$width

Max  =—=m—m————— maximum$blacks$value$grey$level
MIN minimum$grey$level

MAX , maximm$grey$Slevel

. .

black$lowerSthreshold
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bu black$upper$threshold

Wh histogram$width

W, white$uppers$threshold

W, white$lowerSthreshold

W, white$width

WV valleySwidth

Max maximum Swhite$value$greySlevel .

These parameters establish the criteria for the automatic
threshold adjustment and the sensitivity step. Although a bimodal
distribution is shown every time, some variations on the shape of the
histogram can occur due to instabilities in the ambient light.

Suppose a histogram like the one below is being analyzed:

Frequency
of

occurrence

grey~level

The two peaks are large enough to select the threshold
midway between them, and the histogram and valley widths are big enough

for easy setting of parameters boundaries.
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A software threshold value ( TH ) is incorporated to
improve the reliability of the calculations for setting the parameters
boundaries.

For a histogram such as the one below, the threshold value

has to be increased in order to obtain all of the parameters.

Frequency
of

occurrence

TH + ATH -

MIN MAX grey-level

WY

Sometimes the ambient light contains different sources of
light, and the histogram shows two peaks in the white region as in
the figure below . The system then can be confused, because parameters
not defined appear in the histogram. These problems are avoided by
using a modal technique, a dynamic software threshold ( TH ) and the
appropriate algorithms. Assuming MIN and MAX are known values,
calculated by scanning from the left to the right for MIN , and

from right to the left for MAX until non-zéro values are encountered,
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Frequency
of

occurrence
TH

L3 1

B | grey level

MAX

the histogram width ( W, ) is then calculated by :
Wh = MAX - MIN .
If W_ is larger than a pre-established value ( chosen as 03CH

h

by experimental results ), the histogram shows a good bimodal shape,
and the following algorithm is applied:
black lower:

set a threshold value TH0 ’

beginning in MIN , scan from left to right until a value

Xn AN THb is found, then make : lower black (bl) = Xn .

Here a dummy parameter Wi is incorporated to ‘adjust the TH
software threshold to a value that guarantees that all parameters will
be represented. The figure below shows this threshold adjustment for

a typical histogram.
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Frequency 1
of

occurrency

1 u 1 u ey-level
| | grey
Vo
"

By iterative calculations of Wl and W_ ,the threshold value
used to find the remaining parameters is obtained as follows:
—calculate Xn ’
- i A .
do while ( W, W /3 );

TH

n+l ~ THn/2 i

n=n+1;
calculate Xn;

end .
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Having obtained this value TH , the next algorithms are applied:
upper black:

- start scanning from b, to the right until a value

1
X, < TH, is found, then upper$black (b ) = X

5 -
lower white:
- start scanning from bu to the right until a value

X, D TH_is found, then lowerSwhite = X

3 3

upper white:

- start scanning from MAX to the left until a value

X, A TH, is found, then upper$white =X, .

These are the basic values needed to calculate all other
parameters with algorithms shown in the software list presented in
subsequent pages. Other routines are presented as well for printing out
the histogram, smoothing of the histogram shape, sensitivity control of
the visual transducer, display of parameters, implementation of the
ALS adaptive algorithm shown in figure 4.3 , data acquisition processes
and control of peripheral and digital devices within the system.

The ALS software calculates two threshold values from the
parameters by establishing relations between the maximm and minimuﬁ
values for the black and white regions as well as the valley width
parameter defined before.

These calculated threshold values represent a band of grey-

levels as shown in the figure below and are set into the threshold unit
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described in section 3.1 to extract an object from its background.

BACKGROUND
Frequency r AN '
OBJECT
of
A
occurrence i ]

grey-level

For convenience in the vision system software, the lower

threshold in the dual threshold unit becomes Wl and the upper threshold Wu‘

4.4 Histogram package

This package was implemented for non-automatic operations
performed with the ALS, as well as for giving the vision system analysis
capability of its T.V. camera performance and lighting schema.

With this package, histograms of grey levels of the scene can
be generated, erased, printed, smoothed , and analog displayed for
different sensitivities of the visual transducer.

The implemented commands that accomplish these operations are:

M ——- change sensitivity step in the visual transducer and

page memory in the histogram buffer.

C == clear function in the VRHG.
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-— histogram function in the VRHG.

-— read function in the VRHG.

——— print out the histogram with scale factor option.

—— smooth the histogram .

—— performs in one step the commands C, F, R, X and P .
-—— display analog histogram ( an oscilloscope is needed ).
—-—— calculate all parameters.

——— return to FORMS ( vision system control ).

The sequence of operations for this commands is as follows:

Memory page

: Clear

Frame

Read

read status register ,
display current memory page and sensitivity step ,

change current status by the desired one .

output a clear pulse for the clear function ,

wait until the histogram buffer has been erased .

request

input desired sensitivity step ,
set sensitivity control unit for desired step ,

output a frame request pulse for the histogram function .

select the VRHG for data acquisition ,
programm the DMA board for histogram acquisition ,
output a read pulse for the read function ,

wait until data transfer has been completed.
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P : Print histogram
- input comments to be printed out ,
— choose scale factor for the histogram graphic ,
- print histogram with desired scalation .
A : Analog histogram
- clear histogram ,

- generate histogram ,

read histogram ( digital/analog conversion ) ,

stop process if desired ,

repeat the whole process .

For this operation ( analog histogram ) an oscilloscope is
needed and two test pins are provided on the board to connect the
oscilloscope probes. These pins are for the analog histogram output and
synchronization pulse for oscilloscope synchronizing purposes . Labels

are provided on the board to identify each one .
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OR {C{3){SHIATO(L+3)) OR (CC43(SHIGTQLL+4)) OR (C(S){SHISTOILSS)) )

150 4 PRINTCODE=0}
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8 THIS ADUTINE CALTULATE ALL PARANETERS DEFINED FOR THE
B HIzTasaan,
@

FREERR RN R R AL R SRR AR R NSRRI NERARE RN AR RNR N/

ARESTATISTICEEDISPLAY ¢ FROCERURE FUBLIC 4

DECLARE
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ALL CRTSREALSOUT(FLOATC(INT(BOY)S9) )

CALL CRTBSTRINGSDUT EHDY;
CALL CRTSREALSQUT(FLOATC(INT(RI)) 40}

Lt CRTESTRINGLOUT(RMGY)
CALL CRTSREALSQUT(FLOATCINT(R2Y) 4033

CALL CRTESTRINGECUTIENDY)
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STRINGSQUT(ANAYS
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Cath CRTSETRINGEQUT(RMDY)
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CALL CRTESTRINGEDUTIBEMY
CA[L CRUSREALLOUTCFLOATCINTCRE)) 40D 3

CALL CRTSSTRINGIOUT(BMLGM

CALL CRTEREALSDUTCFLOATCINT(ETY ) 00
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TRDHAUT (R
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CALL PRINTERTRING(BM13)
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CHAPTER V

MEASUREMENTS

This chapter contains measurements on the ALS and the
TN 2500 G.E. camera . By using the available facilities provided
by the histogram package ( software ) described in chapter IV,
four types of measurements were carried out : the VRHG performance,
dynamic range and uniformity on the sensitivity of the sensor
transducer for different spatial locations, adaptive range of the
ALS, and an adaptive process for a typical operation of the ALS

under poor light conditions.

5.1 VRHG performance

In order to verify the performance of the VRHG, histograms
of grey-levels were taken for different scenes and under equal
light conditions. Diaphragm aperture and sensitivity step in the
camera were set to f=1.8 and normal operation ( step 0 ) respectively.
The histograms were printed without any smoothing software
stage. The total number of pixels analyzed for each picture was
always 58 528 ( spatial resolution used by the VRHG ) as expected.
The number of peaks and the white and black magnitude

relation were obtained as expected as well. The magnitude: for each area

( 124 )
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of grey-level on the scene was established previously by using two
dominant grey-levels:

-~ white backlighted acr lic ( background )

- N number of " blocks " ( object ) .

A " block " is defined to be a constant square area of
grey-level G (- 10 % of the camera's field of view ). In order to
present different magnitudes relations between the white and black peaks
of the histogram; use was made of a different number of blocks for
each scene. Figures 5.1 to 5.4 show these histograms.

A second test was done to verify the VRHG performance by
taking histograms of an 18 % reflectance grey-card [ 5~1 ] covering
the total area of the camera's field of view. The diaphragm aperture
was set all the time to £=4.0 and different illumination was
presented each time by way of a dimmer control in the light source.

The table 5.4a shows the equivalence among the BL/V number,
EV number and foot Lambert units .

Figures 5.5 to 5.7 show these results with only one major
peak of grey level as expected.

The total number of pixels analyzed are now different due

to the smoothing algorithms applied to the histograms.

5.2 TN 2500 G.E. camera measurements

In chapter ITI, the operation of the camera was described.
In this section , measurements on the particular camera used by the
vision system have been done on its dynamic range ( number of grey-

levels used for the grey scale pictures ) and uniformity of sensitivity
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ILLUMINATION SCALE

BL/V number EV nurber
100 7
90 6.8
80 6.5
70 5.6
65 5.2
60 ; 4.6
55 4.1
50 3.7
45 3.0
40 2.3
35 1.6
30 1.4
25 1.3
20 1.0
15 0.9
10 0.7

Foot-Lambert
5.2
4.8
4.2
2.8
2.3
1.7
1.1
0.8
0.5
0.35
0.22
0.185
0.160
0.125
0.100

0.080

Table 5.4a Illumination scale used in the measurements

{ reproduced from [5-2] )
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throughout the matrix array visual sensor.

ihe dynamic range was measured by taking histograms of
grey-levels of the same scene and ambient light for all diaphragm
apertures in the camera. Normal sensitivity operation of the ALS |
was used all the time and ambient light conditions were that of a
conventional office room ( EV= 5.5. ).

Care was taken to keep these light conditions stable
during the time of the measurements. Eight diaphragm apertures
( £ number ) are available in the camera: 1.8, 2.8, 4.0, 5.6, 8.0,
11, 16, and 22 .

Scaled graphs of these results are shown in figures 5.8 to
5.15. The smaller the " f " number the larger the amount of light
entering the camera. From the graphs it can be observed that the less
light, the more narrow the histogram width obtained and the smaller
the number of grey-levels to represent the scene used.

In any case a grey-level greater than 128 was never obtained,
which indicates that only a seven bit grey scale is used by the camera.

| Figures 5.5 to 5.7 illustrate that a constant number

of grey-levels is always present in the most black region of the grey
scale. This is due to a physical failure in the sensor array of the
camera which can also be observed by monitoring the analog video signal.

To test the sensitivity througﬁout the matrix array of the
sensor transducer, a scheme like the one shown in the figure 5.16 was
used.

One hundred histograms of an object ( 1 % of the total

work area ) on a white background were taken and for one hundred
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different locations. For each histogram the parameters defined in
chapter IV were related as:

white width
black width

valley widtél + histogram width

to obtain a merit number of each scene. Results are shown in figure 5.17.

5.3 Adaptive range of the ALS

The AIS can provide the vision system with adaptive lighting
capability within a specified range of illumination. This range is
covered by the four steps of sensitivity ( steps 1, 2 , 3 and 4 ).

Figures 5.18 to 5.33 show the particular range of each
sensitivity step, and the total adaptive range is shown in figure 5.34 .

Bach fiqure shows the illumination conditions and the
description of the analyzed écene. The BL/V= X number indicates:

back-lighted scene and illumination of it as perceived by the camera.

5.4 Adaptive process of the ALS

A complete adaptive process for a low light condition scene
( within the specified range ) was recorded. Figures 5.35 to 5.38 show
the four different distributions of light for the four different
sensitivity steps. In the adaptive process the histogram parameters
were calculated from the histogram of sensitivity step 3, where a
substantial improvement in the histogram shape can be observed in reference

with the histogram of sensitivity step 1.
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CHAPTER VI

DISCUSSION

Vision systems have evolved to the point of being used on
real time industrial applications to achieve particular and limited
tasks. Much work has still to be done to reach the time of using
general purpose vision systems.

Insufficient knowledge of the way the human eye processes
visual information has limited the vision system's designers in
imitating the eye's performance and looking for novel, easy and
more applicable implementation approaches.

Basically the designer seeks methods which reduce the
amount of data to be processed. Digital electronic devices today are
still not fast enough so that sophisticated pattern recognition
techniques can be applied in real time problems.-

Silhouette vision systems solve, to some extent, this
constraint, but the information extracted from a silhouette is very
limited; they do not completely characterize a scene as human eyes do
it. Tt seems that the vision system designer has to direct his
approaches to parallel processing techniques to match the required

speed in such image processing applications.

( 167 )
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This report has attempted to contribute to the 4improvarent
of such systems by implementing the ALS . Lighting adaptability is
certainly a desired problem to be solved, but many othef problems
concerning light have still to be solved as mentioned throughout
this report! To this point, it seems that grey-level processing
for scene analysis is the way to follow for future implementations
that attempt to perform more like thé human eye. In this way, the
VRHG is a powerful tool for grey-level proceésing.

The implementation of the addressable RAM technique described
in chapter III shows the importance of dedicated hardware to achieve
primary tasks in industrial applied image processing.

This technique can be modified and used to capture, at
high speed, primitive features cammonly used in silhouette vision
systems. In this way, the host processor of the system is released

fraom such tasks and freed for other purposes.

(169 )
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