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Lay Abstract 

Musical performers and composers express emotions through the selection 

and use of various musical features, or cues. Studies exploring how listeners 

perceive emotion in music have identified several cues important to this process—

often using tightly controlled (and constrained) tone sequences crafted for 

experimental purposes. More work is needed to examine how listeners decode 

communicated emotion in unaltered passages created by renowned composers—

the kind of music routinely performed and enjoyed by audiences for generations. 

Here in three sets of experiments I apply a novel stimulus set and analysis to 

determine the relative importance of three musical features. Additionally, I 

explore the role of the listener’s level of expertise as well as the importance of 

performers’ interpretative decisions. My work offers a new way to understand the 

relationship between musical features and emotional messages, helping to clarify 

one of music’s most mysterious and powerful capabilities. 
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Abstract 

Previous work on conveyed musical emotion has often focused on 

experimentally composed and manipulated music, or multi-lined music selected to 

express overt emotions. This highly controlled approach may overlook some 

aspects of the complex relationship between composers, performers, and listeners 

in transmitting emotional messages. My PhD research focuses on how listeners 

perceive emotion in music, specifically, how listeners interpret musical features 

such as timing, mode and pitch in complex musical stimuli. I also demonstrate 

how listeners with musical expertise use cues differently to perceive emotion and 

the effect of performer interpretation on this communication process.  

 Throughout this dissertation I use a dimensional approach capturing 

perceived valence and arousal to assess complex musical stimuli. I adapted a 

technique used in other domains to music, affording an opportunity to explore 

nuanced relationships between cues and listener ratings of emotion. In Chapter 1 I 

show that musically untrained adults mainly use cues of timing and mode when 

rating emotional valence, mirroring previously reported. Additionally, I show that 

although pitch information emerges as a significant predictor of listener’s valence 

ratings, listeners use it less than cues such as timing and mode. Further, I 

demonstrate that neither mode nor pitch information help listeners rate perceived 

arousal. Finally, in Chapter 4, I show differences in performer interpretation 

mediate the strength of individual cues, as well as the distribution of emotional 

ratings across each album. In Chapter 3, I demonstrate that listeners with musical 
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training use cues differently than untrained listeners, with more reliance on 

information communicated through mode when making judgements of emotional 

valence. Altogether these findings corroborate previous evidence suggesting 

timing and mode cues are of the greatest importance in conveying /perceiving 

emotion, this process is further mediated by individual differences in both pianist 

(interpretation) and listener (musical training)—underscoring the complex 

relationship between composer, performer, and audience. 
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Chapter 1: General Introduction 

 

1.0 Introduction 

As social species, communicating and perceiving emotional signals is 

crucial for daily interactions. Recognizing and responding appropriately to these 

signals helps us navigate relationships in the social world, promoting survival 

(Ekman, 1992; Izard, 1992). The importance of this ability is evident in human 

development, as sharing emotional information is crucial in infancy, where 

mothers use infant-directed speech to regulate the social relationship and 

emotional state with their children (Trainor, 1996; Trehub & Trainor, 1998). 

Auditory signals are one such medium through which emotions can be 

communicated. For example, humans can use vocal prosody in speech to help 

convey their emotions to each other, using the components, or features that 

comprise this acoustic medium to do so. Music is also one such medium through 

which emotional signals can be communicated to listeners, regardless of any 

verbal comprehension. 

This chapter presents a brief overview of music and emotion research, 

focusing on factors that impact perceived emotion. I discuss the influence of 

features in notated music focusing on three specific cues (attack rate, mode, 

pitch).  Beyond these specific cues, I will discuss influence of individual 

differences that emerge from listener differences in both (a) musical training and 

(b) performer interpretation. Additionally, this chapter discusses challenges with 
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quantifying emotion conveyed through music. Chapters 2-4 explore these topics 

across a series of novel experiments that together shed insight into non-verbal 

emotional communication. These findings help clarify debates on the importance 

of musical cues such as mode and timing within music listening. Further, they 

contribute to the literature investigating which cues are helpful in the listening 

process, and how cues selected by the composer and manipulated by the 

performer influence perceived valence and arousal. 

 

1.1 Expression of Emotion in Music  
 

The ability for music to represent or convey emotions, distinct from 

evoked emotions or felt emotions, is thought to occur because musical structure 

contains characteristics that resemble expression in speech (Davies, 1980). 

Similar to communication in speech, emotion can be conveyed through 

information transmitted by a combination of acoustic cues or features in music. 

However, unlike speech, music can communicate emotion without semantic 

information. With music, whether an emotion is successfully conveyed is 

dependent on a number of elements that interact in complex ways as messages are 

transmitted from composer to performer to listener. This process can differ from 

everyday speech, as a composer who creates the musical composition does not 

always produce the auditory signal. Therefore, music offers a unique avenue to 

explore the complex relationship between structure and interpretation in 

communication of emotion.  
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 Juslin’s (1997) adaptation of Brunswik’s (1956) visual perception Lens 

Model attempts to explain the communicative process of conveyed emotion in 

music. According to this adapted model, composers and performers can encode 

(e.g., express) emotion using a combination of probabilistic features, or cues 

(Figure 1). Upon exposure to this auditory information, listeners can use these 

cues to decode (e.g., perceive or recognize) the emotion that is expressed. 

Although the original adaptation of Lens Model helps unpack how cues can be 

used to transmit information in the auditory signal, it does not consider the impact 

of individual differences introduced by the signal’s encoders (performers) and 

decoders (listeners). More recently, Juslin and Lindström (2010) extended this 

work to encompass this complex interaction that occurs between composer and 

performer. Using a factorial experimental design, the authors composed short 

sequences, varying cues of interest accordingly. They determined that different 

features appeared important for specific emotions; mode was important for 

‘sadness’ and articulation emerged as significant to predictor listener ratings for 

‘fear’. In Chapters 3 and 4 of this dissertation, I expand on these aspects of the 

communication process using precomposed music to expand upon what we know 

of the Lens Model and how cues interact in perceived emotion.    
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Figure 1.1 Juslin’s (1997) adaptation of the Brunswik (1956) Lens Model 
illustrating communication of emotion to listeners using cues.  
 
 

Several features are recognized as important in conveying musical 

emotion, including pitch (Hevner, 1937; Huron, 2008), articulation and dynamics 

(Eerola, Friberg, & Bresin, 2013), mode —major vs minor—(Costa, Fine, Enrico, 

& Bitti, 2004; Hevner, 1935), and timing (Balkwill & Thompson, 1999; Gagnon 

& Peretz, 2003). These features have been studied using a range of stimuli, 

including single lined melodies, composed or experimentally manipulated 

(Hailstone et al., 2009; Lindström, 2006; Quinto, Thompson, & Keating, 2013), 

with a smaller amount of studies using multi-lined excerpts (Eerola, 2011; 

Schubert, 2004). Three features that often emerge as effective features in 

conveyed emotion are cues of timing, mode and pitch (Gagnon & Peretz, 2003; 

Hevner, 1937; Ilie & Thompson, 2006). Cues like mode and timing are frequently 

found to be important predictors of listener assessments of perceived emotion 
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(Eerola et al., 2013). The influence of pitch cues have been found to transmit 

emotional information in a similar fashion to their functioning in speech 

(Bachorowski & Owren, 1995; Breitenstein, Lancker, & Daum, 2001; Hevner, 

1937) however, the lack of consistency in results raises interesting questions. This 

dissertation focuses on these three cues as they function in the context of 

polyphonic, or multi-lined music, to help unpack how cues function to transmit 

emotion.  

 

1.1.1 Timing  
 

Features that convey temporal information are found to be one of the most 

important cues to convey emotion to listeners (Eerola et al., 2013). Timing, often 

considered tempo, reflects the rate at which the information or the music is 

presented. The informative nature of timing appears important for perception 

across modalities, including speech and music. Theories about the importance of 

timing emerge from its connection with biological cues, and behaviours such as 

speech and gait, as an indicator for energy and energy expenditure (Gomez & 

Danuser, 2007). Further, the relationship between temporal cues and energy may 

be related to physiological responses, where faster paced music can increase and 

individual’s measured or perceived level of sympathetic arousal response 

(Dillman Carpentier & Potter, 2007; Husain, Thompson, & Schellenberg, 2002). 

Developmentally, the salience of temporal information in the form of musical 

tempo emerges earlier than cues such as mode. Children as young as four years 
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are able to distinguish emotions in music based on tempo information (Dalla 

Bella, Peretz, Rousseau, & Gosselin, 2001). This early sensitivity to the temporal 

information of unfolding events in music may emerge due to innate and learned 

associations between speed and general behavioural responses (Mote, 2011).  

In music specifically, timing information can be conveyed through a 

number of cues such as tempo, speed, or rhythm (Balkwill & Thompson, 1999; 

Juslin & Madison, 1999; Schellenberg, Krysciak, & Campbell, 2000). Timing is 

often discussed in terms of tempo (Balkwill & Thompson, 1999; Gagnon & 

Peretz, 2003; Scherer & Oshinsky, 1977), however this dissertation focuses on 

attack rate (i.e., note attacks per second) as a timing cue of interest. This measure 

of timing information considers both the number of attacks and the tempo and is 

comparable to articulation rate in speech. The benefit of examining attack rate, is 

the sensitivity to the use of fast tempos with longer attack durations, or slow 

tempos with short attack durations which may capture aspects of conveyed 

information that tempo does not. 

 

1.1.2 Mode 

This dissertation — grounded in music from a renowned composer who 

chose to naturally co-vary these musical cues — can help clarify conflicting 

views.  Music theorists have argued that mode’s role in expressed emotion is 

overly generalized and perhaps its role is misinterpreted as a result of the relation 

with other elements of musical structure (Hatten, 2004). However, some theorists 
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have detailed common emotional qualities associated with each major and minor 

key (Freedberg, 2006). In contrast, perceptual evidence has continuously 

demonstrated a link between music written in major and minor modes and 

emotion. The major-minor distinction is found to be a strong predictor of emotion 

judgements, where major modes are found to associate with positively valenced 

emotions and moods such as happiness, and minor modes are associated with the 

more negatively valenced ones such as sadness (Costa et al., 2004; Hevner, 1935; 

Hunter, Schellenberg, & Schimmack, 2008; Pallesen et al., 2005; Quinto et al., 

2013; Webster & Weir, 2005). Exploring the connection between mode and 

emotion with more complex stimuli sheds light on the cue relationships while 

considering aspects like harmony, the natural co-variation of cues such as 

modality and timing, and performer interpretation.  

 

1.1.3  Pitch  
 

Pitch is an acoustic cue that refers to the perceptual property of sound that 

allows us to identify whether tones are ‘high’ or ‘low’. Pitch communicates 

affective information to listeners in speech where the fundamental frequency 

(primary acoustic correlate of perceived pitch) is one of the acoustic features that 

exerts strong effects on expressed emotion (Banse & Scherer, 1996; Breitenstein, 

Lancker, & Daum, 2001; Scherer, 1995; Scherer & Oshinsky, 1977). In music, 

empirical evidence measuring various pitch-based cues such as pitch height, pitch 

range, pitch variability (Gabrielsson & Lindström, 2010; Ilie & Thompson, 2006) 
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demonstrates the association with expressed emotion; however, the contribution 

of pitch does not appear to behave consistently. In general, higher octaves (higher 

frequencies of the tones) communicate more positive emotions such as happy and 

dreamy (Eitan & Timmers, 2010) and lower octaves, the more negative emotions 

such as sad and somber (Gundlach, 1935; Hevner, 1937; Scherer & Oshinsky, 

1977; Watson, 1942;  Wedin, 1972). Conversely, high and low pitches have also 

been associated with both positive and negative emotions (Ilie & Thompson, 

2006; Scherer & Oshinsky, 1977). Given the probabilistic nature of cues to 

express emotion (Juslin, 1997), this may suggest other cues, aside from pitch, are 

more salient to express emotion. It may also be a result of the different pitch-

based cues measured to examine expressed emotion, or the range in stimuli 

complexity in studies that use single-lined (Balkwill & Thompson, 1999) or 

multi-lined (Ilie & Thompson, 2006) music examples. 

 

1.2. Individual Differences 
  
 A crucial component of the communication process resides in the listener 

(Figure 1.2). Within the perceptual process, individual backgrounds and 

experiences can influence the music listening experience (Juslin & Laukka, 2004), 

and may impact how one interprets the information around them. For example, 

personality traits can drive individual differences in emotional processing 

(Rusting, 1998) and given the subjective nature of music listening, can result in 

the same emotional signals being perceived differently. In fact, evidence suggests 
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that personality traits can moderate mood-congruence with emotion ratings 

(Vuoskoski & Eerola, 2011).When examining expressed emotion, research often 

focuses on the influence of the composer or musician instead of the listener. 

Further, studies discussing individual characteristics including personality and 

musical training, present inconsistent findings that highlight the complicated 

nature of investigating the impact of individual differences on the perception of 

emotion. 

 
 
Figure 1.2. Blom, Bennett, & Stevenson (2016)’s model of communication 
between composer, performer and listener. 
 
 
 
1.2.1. Individual Differences in Musical Training 
 
 Musical training involves acquiring knowledge on how to perform in an 

expressive manner to listeners, providing students with the tools to interpret 

musical compositions and convey intended emotions. Furthermore, individuals 
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who partake in formal music lessons spend concentrated effort listening to and 

perceiving the auditory information of their chosen instrument. In general, 

individuals with musical training are found to process auditory stimuli differently 

(Ladinig & Schellenberg, 2012; Taruffi, Allen, Downing, & Heaton, 2017; 

Vuoskoski & Eerola, 2011). Differences in brain activity both in processing and 

detecting changes within the auditory signal suggest musical training can induce 

changes in the neural circuitry that affect how the brain process sounds. This 

raises questions about whether increased musical knowledge can affect perceptual 

processes regulating conveyed emotion.  

Musical training is found to correlate with emotion recognition, where 

years of training  can relate to recognition accuracy (Akkermans et al., 2018; 

Castro & Lima, 2014). These studies demonstrate that years of musical training 

correlate positively with accuracy, and differences emerge between the abilities of 

those musically trained and non-experts. Furthermore, it appears that with musical 

training, there is better identification accuracy for more complicated/often 

confused emotions, like anger (Castro & Lima, 2014). Investigation on the 

predictive weights of acoustic and musical cues also indicate differences in how 

musically trained listeners use cues. There, models of listener ratings show more 

explained variance for older musicians than non-musicians of the same age. These 

results suggest that musical training can influence how listeners use cues to 

perceive emotion.  
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Evidence suggesting potential advantages of musical training in perceiving 

musical emotions is mixed. Studies using forced choice paradigms for emotion 

recognition often find no difference in recognition accuracy between those with 

and without musical training (Juslin, 1997; Trimmer & Cuddy, 2008). What is 

apparent from these types of studies is that musical expertise is not necessarily a 

pre-requisite to perceiving emotion in music (Castro & Lima, 2014). However, 

this does not mean expertise is irrelevant. Music listeners continuously gain 

musical knowledge from the experience of listening to music, making them 

‘experienced’ listeners (Bigand & Poulin-Charronnat, 2006). Thus, tasks that are 

overtly explicit can be completed with this basic knowledge. It also is possible 

that with experimentally composed or manipulated stimuli, a conveyed emotion is 

salient enough that there is no confusion regardless of musical 

knowledge/training. Investigating the presence of training effects with multi-

lined, pre-composed music allows further insight to how musical knowledge or 

experience shapes the perceptual processing of communicated emotions in 

complex passages, with music frequently experienced in everyday situations.  

Another issue or question that arises is the amount of musical training that 

is sufficient to develop differences within these recognition or identification tasks. 

The operational definition of a ‘musical expert’ varies from study to study on the 

amount of formal musical training required. A large sample of the studies that fail 

to find differences between trained and untrained participants often define experts 

as those having six years of musical training (Bigand, Vieillard, Madurell, 
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Marozeau, & Dacquet, 2005; Trimmer & Cuddy, 2008) . This may suggest that 

benefits emerge after more long-term exposure/training. Additionally, what 

contributes to the distinction musical ‘expert’ is not agreed upon, where some 

argue years of musical training is not enough to define an ‘expert’.  

The Goldsmith Musical Sophistication Index (Müllensiefen, Gingras, 

Musil, & Stewart, 2014) attempts to address challenges with a self-report 

measurement of expertise. Although this inventory does not directly test one’s 

musical ability, it is a valid and reliable instrument that can distinguish different 

aspects of musical sophistication: including self-reported perceptual and singing 

abilities along with active and emotional engagement with music and musical 

training. I use this measure in the methodology within Chapter 3 to confirm our 

selection of participants with musical training encompasses individuals who 

demonstrate a musical expertise above a normal population as compared to data 

norms from Müllensiefen, Gingras, Stewart, & Musil, (2013).  

 

1.2.2 Individual Differences in Performance  
 
 Although composers can embed their emotional intention through musical 

structure, it is the performer who must interpret the notation and create the 

auditory signal. Thus, how a performer creates their performance can shape the 

listener’s experience. This helps explain why we may prefer one performer’s 

version of a piece over another. This interpretation, or performance expression 

often involves small and/or large variations of the expressive cues available 
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(Gabrielsson & Juslin, 1996; Kendall & Carterette, 1990; Palmer, 1997). 

Although some work explores the effects of performer interpretation, a large 

focus has been on measuring differences in expressive cues (Sloboda, 1985) or 

listener ability to identify different renditions (Gingras, Lagrandeur-Ponce, 

Giordano, & McAdams, 2011) and on the features of musical structure involved 

in emotional expression and recognition (Eerola et al., 2013). 

 As mentioned above, listeners use cues that convey timing information 

(tempo, articulation) as well as dynamics when perceiving emotion (Dodson, 

2011; Repp, 1992). Timing is the primary way in which performers are able to 

control the encoding of musical interpretation (Juslin, 1997; Repp, 1992). Music 

research explores how performers vary cues in their renditions of pieces, which 

often occur at the microstructural level for cues like tempo and dynamics 

(Macritchie, Eiholzer, & Italiana, 2012). However, less attention has centered 

around the influence of performer interpretation on perceived emotion for the 

same musical piece. 

Listeners are sensitive to performance differences when rating both 

concurrently and retrospectively (Sloboda & Lehmann, 2001), even between 

similar performances. They can identify performance styles (Gingras et al., 2011) 

including differences in expressive phrasing (Macritchie et al., 2012). In addition, 

perceived emotionality of a performance is found to differ between performer 

interpretations (Sloboda & Lehmann, 2001). Although previous work has 

demonstrated similar associations between cues used by performers and decoded 
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by listeners (Juslin, 2000), the effect of performer differences on cue use and the 

consequences on listener perception requires further understanding. 

 

1.3. Challenges of Quantifying Emotion 

 Investigating emotional perception in music presents several significant 

experimental challenges, and differences in approaches to overcoming these 

challenges likely contribute to occasionally conflicting results. Stimuli selection is 

crucial when considering the reliability and generalizability of results. Further, 

based on the stimuli used, findings may overestimate the effect of cues or 

demonstrate conflicting evidence of their effect. Therefore, experimental results 

should be interpreted with respect to the stimuli used. Additionally, the push to 

incorporate ecologically valid music into experimental practices is important to 

capture the complex nature of how emotion can be communicated to listeners.  

In order to analyze emotional responses, regression modelling of listener 

ratings is commonly used to determine the cues that can significantly predict 

responses. This can help identify which cues are important to the perception of 

specific emotions, or dimensions of emotion such as valence and arousal. 

Researchers employing this analysis find models are best at predicting variance 

associated with ratings of arousal in contrast to valence (Eerola, 2012; Eerola, 

Lartillot, & Toiviainen, 2009; Korhonen, Clausi, & Ed Jernigan, 2006; Vuoskoski 

& Eerola, 2011). Although it is not clear why this pattern emerges frequently in 

the literature, it may be a result of the selected cues used in these models. 
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Therefore, in addition to regression modelling, this dissertation employs 

commonality analysis to better understand the relations between cues which 

predict listener responses. Given the natural correlation between musical cues, 

this is a powerful tool for better understanding the complex ways in which inter-

related cues combine (as well as act independently) in conveying emotional 

messages. 

 
 
1.3.1 Stimuli 
 
 One of the major challenges with investigating emotion in music and the 

most important decision to make is the choice of stimuli. Originally, studies 

exploring the perception of emotion conveyed in music had focused on single-

lined, experimentally designed and/or manipulated stimuli (Hailstone et al., 2009; 

Lindström, 2006; Quinto et al., 2013). These studies have been instrumental in 

identifying important cues listeners use to decode emotion, however they may 

oversimply the complex relationship that occurs between cues and perception 

when listening to multi-lined, and more complex music. Some studies have 

extended on this work using selections of instrumental, classical or pop music 

(Eerola, 2011; Leman, Vermeulen, De Voogdt, Moelants, & Lesafre, 2005; 

Schubert, 2004; Yang & Chen, 2012). Those studies have modelled listener 

responses, adding to the literature on the relative weights of cues for perception, 

and whether these cue patterns can be seen across musical genres (Eerola, 2012). 

Although these speak more to the complexities in music of everyday listening, 
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effects of familiarity, of multi-instrument/timbre highlight the need to continue 

exploration with naturalistic stimuli to best understand the listener experience.  

The stimuli used in experiments designed to examine perceived emotions 

are often selected explicitly for their ability to convey specific basic emotions. 

Thus, what remains less understood is how cues are used with more emotionally 

ambiguous musical examples. This thesis investigates this topic using music from 

Bach’s Well-Tempered Clavier (WTC), which offers numerous features desirable 

for experimental study.  It affords some control over familiarity for untrained, 

non-musicians, as it is largely unfamiliar to this population. In addition, it consists 

of one instrumental timbre and is balanced with regards mode (a musical cues of 

interest) as it has 12 major and minor pieces in every key. Although it represents a 

set of musical compositions within one genre, it can be used to help build on our 

understanding of listener perceptual responses to music frequently heard in 

concert halls, comprised of cues that have been composed to co-vary together.  

 

1.3.2 Measuring Perceptual Processes of Emotion 
  
 Two main methods frequently used to capture listener perception of 

emotion involve discrete or dimensional conceptions of emotion (Zentner & 

Eerola, 2010). Studies using these measures demonstrate listeners’ abilities to 

perceive a range of emotion in music. Both methods appear successful in 

capturing conveyed emotions, however each provides subtle differences in 

capturing listener responses. Discrete methods involve providing specific 
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examples of affective terms, and either ask participants to select the appropriate 

emotion conveyed or to rate the intensity to which each emotion is represented in 

the music (Laukka, Eerola, Thingujam, Yamasaki, & Beller, 2013). This serves to 

measure accuracy rates and emotional intensity differences; however, it also has 

the potential to prime participants to recognize the conveyed emotion and can fail 

to account for more ambiguous or complex emotions.  

 Dimensional models conceptualize emotion into multiple dimensions or 

components. The most widely accepted and used model across research fields 

examining emotion is Russell’s 2D circumplex model of affect (1980), which 

functions under the assumption that emotion can be broken down into two 

components: emotional valence (pleasure-displeasure) and arousal (activation-

deactivation). This model has been used to measure emotional responses across 

fields, due to its reliability in capturing emotion in numerous contexts.  

Nonetheless, critics of dimensional models argue the difficulty in differentiation 

between emotions that fall close in the 2D space. 

Although evidence suggests both models of emotion can capture similar 

amounts of variance in listener responses, the discrete model is found to be less 

reliable for ratings of ambiguous emotional musical examples (Vuoskoski & 

Eerola, 2011). This suggests dimensional models may best capture perception in 

response to more ambiguously expressed emotion given its ability to have a more 

fine-tuned scale of emotion. This is crucial in music listening experiences outside 
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of the laboratory, where emotional messages are not explicitly dictated by a 

researcher and subsequently embedded by a composer.  

 

1.4 Modelling Listener Responses of Perceived Emotion  
 
 
1.4.1 Regression analysis 
 
 Regression analyses are frequently used in studies to assess how well cue 

predictors can explain variance in listener ratings of emotion. These models have 

revealed cues often function in an additive fashion (Eerola et al., 2013; Schubert, 

2004) and can indicate how well cues predict listener ratings of valence and 

arousal, especially across different genres. Ratings of arousal are found to be 

better predicted by cues than valence, where upwards to 43-62% of variance is 

predicted for listener assessments of arousal and 16-43% of the variance of 

valence ratings (Eerola, 2011). The better model fit for ratings of arousal may 

reflect the selection of cues used as predictors in these models. A large portion of 

cues investigated often represent expressive, or performance cues such as tempo, 

loudness or articulation that demonstrate a stronger impact on ratings of emotional 

arousal than valence (Eerola et al., 2009; Schubert, 2004). Structural cues such as 

texture, melodic contour and harmony have been used as predictors and can help 

explain some variance; however, the degree to model fit for valence ratings using 

these cues appears to be piece dependent. This may help explain why modelling 

perceived valence across several pieces or excerpts results in less variance 

predicted (lower R2 values) than for perceived arousal. Our methodology 
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incorporates the cue of mode as a predictor, given its strong association with 

perceived emotion as mentioned above. Although major/minor distinction of 

mode with emotion is Western music specific, using mode as a predictor in 

listener ratings helps unpack the strong learned associations that become 

acculturated through exposure and can help explain how listeners hear emotions 

in music. 

 

1.4.2 Commonality Analysis 

Commonality analysis affords a method of assessing relative importance 

of predictors in a regression model. This technique partitions the explained 

variance accounted for by predictors within the regression model into components 

of unique and shared variance (Figure 1.3). Shared variance represents the 

variance two predictors have in common with the dependent variable and in 

contrast, the unique variance is what is independently predicted by a predictor 

(Ray-Mukherjee et al., 2014). Commonality analysis (or variance partitioning) 

can further identify the relative weight of predictors with respect to unique and 

shared variance. This is particularly important in situations with multicollinearity 

or correlations between the predictors. Correlations are frequently found between 

structural cues in Western tonal music. Therefore, using commonality analysis to 

assess the relative importance of quantified cues could be more beneficial than 

comparing beta value strengths. To the best of our knowledge, this project 

represents the first application of this statistical technique to music, allowing us to 



Ph.D. Thesis — A. E. Battcock; McMaster University — Psychology, Neuroscience 
& Behaviour 
 

 20 

gain more insight into how key variables either uniquely or commonly predict 

responses of perceived emotion. This helps to have a better understanding of the 

relative weights of cues used in ratings of valence or arousal and helps us uncover 

how the relationship between timing and mode affect listener responses. 

 

 

Figure 1.3. Capraro & Capraro’s (2001) illustration of commonality 
analysis.  
 

 Although commonality analysis breaks down the components of unique 

and shared variance predicted, it does not provide a way to assess statistical 

differences between these components. As such, in Chapters 3 and 4 where I 

compare the relative weights of cues between ratings of different groups, we 

employ bootstrapping methods to calculate error bars to help quantify potential 
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differences. These methods involve resampling with replacement to create 

simulated data distributions from an original dataset in order to estimate 

population statistics. Through the process of bootstrapping, we are able to 

simulate datasets of participant responses to determine measures of accuracy. 

With better understanding of the variability of each calculated commonality 

analysis coefficient we are able to make further comparisons between the relative 

weights of predictors in our models. 

 

1.5. Thesis Overview 
 
 This thesis seeks to further explore the role of musical cues as they relate 

to listener perceptions of conveyed emotion in music. In the present work, I use 

an adaptation of Russell’s 2D Circumplex Model of Affect (1980) to explore the 

relation between listener perception and musical structure. Further, I employ 

commonality analysis, a technique not previously used in this research field to 

uncover the relationships between cues of interest. Using this statistical analysis 

helps to untangle the influence of timing information and mode, two cues often 

linked in Western music, and aids in the argument that mode is a strong cue in the 

perception of emotion in music.  

 In Chapter 2, I discuss the importance of the information transmitted by 

select musical cues for the perception of emotions contained with complex, multi-

lined music. Specifically, I demonstrate the importance of the information 

transmitted through cues of timing and mode. Additionally, in experiment 2 of 
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Chapter 2, I show cue importance shifts as a function of presenting musically 

‘resolved’ excerpts to participant, where the cue of modality increases in its 

ability to predict for listener ratings. In Chapter 3, I show that listeners with 

musical training rely on information from cues differently than those without 

musical training, where their experience and intimate knowledge of musical 

structure and expression influence their perceptual processing. In particular, 

musical experts demonstrate a greater sensitivity to mode in experiment 2 

(Chapter 3) than non-experts, as it is found to be more predictive of their ratings 

of emotional valence. In Chapter 4, I show that based on a performer’s 

interpretative decisions on expressive cues, listeners rely on cues differently when 

making their judgements of communicated emotion. Finally, I will discuss how 

these studies advance the field of emotional perception in Chapter 5 and suggest 

some future directions for this research. 
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Chapter 2 

 

Battcock A. & Schutz. M. (2019). Acoustically Expressing Affect. Music  

Perception, 33(1), 66-91. 

 

Preface 

  

Listeners use musical features to decode musical emotions, however the 

roles of these cues in unaltered, multi-lined music are challenging to unravel. In 

particular, the role of mode in perceived emotion is a point of contention between 

psychologists and music theorists. In Chapter 2, university undergraduates are 

asked to rate perceived valence and arousal of excerpts from Bach’s Well-

Tempered Clavier. Attack rate, mode and pitch height emerge as the most 

important cues for ratings of valence, however attack rate appears as the only cue 

important for ratings of arousal. In a follow up experiment that gives more 

consideration to mode, using musically ‘resolved’ excerpts, participants again 

assess perceived valence and arousal of each excerpt. In this study, the cue of 

mode became more important for ratings of valence than other cues including 

attack rate and pitch. No changes are observed for cues used by listeners for 

ratings of arousal. Together, these studies show that although attack rate is 

consistently an important cue amongst dimensions of emotion, mode and pitch 

have a specialized function in communicating an emotion’s valence. Further, 
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these results suggest mode’s effect increases when considering the structural key 

changes of music designed to mix major and minor modes. Finally, to explore 

consequences of varying approaches to dimensional labelling, I had 

undergraduates rate perceived emotion using dimensional labels of valence and 

arousal in a third experiment to compare the effect of labelling on evaluations of 

the ‘energy’ dimension of emotion. Results confirm that the labelling of the 

intensity dimension as arousal leads to similar evaluations of emotion.  
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Chapter 2: Acoustically Expressing Affect 
 

     Abstract 
 
Composers convey emotion through music by co-varying structural cues. 

Although the complex interplay provides a rich listening experience, this creates 

challenges for understanding the contributions of individual cues. Here we 

investigate how three specific cues (attack rate, mode and pitch height) work 

together to convey emotion in Bach’s Well Tempered-Clavier (WTC). In three 

experiments, we explore responses to (1) eight measure excerpts, (2) musically 

‘resolved’ excerpts and (3) investigate the role of different standard dimensional 

scales of emotion. In each experiment, thirty non-musician participants rated 

perceived emotion along scales of valence and intensity (experiments 1 & 2) or 

valence and arousal (experiment 3) for 48 pieces in the WTC.  Responses indicate 

listeners used attack rate, mode and pitch height to make judgements of valence, 

but only attack rate for intensity/arousal. Commonality analyses revealed mode 

predicted the most variance for valence ratings, followed by attack rate, with pitch 

height contributing minimally. In experiment 2 mode increased in predictive 

power compared to experiment 1. For experiment 3, using ‘arousal’ instead of 

‘intensity’ showed similar results to experiment 1. We discuss how these results 

complement and extend previous findings of studies with tightly controlled 

stimuli, providing additional perspective on complex issues of interpersonal 

communication. 

 
Keywords: emotion, perception, applied music cognition, valence, arousal 
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Introduction 
 
"Music can serve as a way of capturing feelings, knowledge of feelings, or 
knowledge about the forms of feeling, communicating them from the performer or 
the creator to the listener" (Gardner, 1993, p. 124). 
 
  Music’s relationship with emotion is one of the central reasons for our 

engagement with it (Juslin & Laukka, 2004) and continues to fascinate 

composers, listeners, psychologists, and neuroscientists alike. Similar to their use 

in vocal expression; listeners attend to and decode specific cues in lawful ways, 

with certain cues unique to music. Emotional communication is complex, 

governed by a multitude of factors both within the acoustic signal itself as well as 

from learned associations and experiences (i.e., national anthems, cultural 

conventions, etc.). The complexity and importance of this issue has generated 

sustained research interest (Hevner, 1936; Koelsch et al., 2004; Wiggins, 1998), 

finding consistent agreement in many aspects of its communicative abilities.  

Although some aspects are difficult to quantify precisely, a growing body of 

research on the relationship between psychophysical cues and their emotional 

associations has proven informative.  

 

Timing as a cue for emotional expression 
 

 Timing is a powerful cue for emotional communication, however 

understanding its effect is complex as timing encompasses several distinct 

musical properties such as tempo and rhythm. (Balkwill & Thompson, 1999; 

Juslin & Madison, 1999; Schellenberg, Krysciak, & Campbell, 2000). Tempo, 
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which describes the number of beats per minute, is of great importance for 

conveyed emotion (Balkwill & Thompson, 1999; Gagnon & Peretz, 2003; Scherer 

& Oshinsky, 1977). The role of musical tempo holds some parallels with 

articulation rate in speech, with fast and slow tempos associated with happiness 

and sadness respectively (Hevner, 1937; Juslin, 1997; Rigg, 1940).  Sensitivity to 

tempo emerges at an early age, with children as young as four making affective 

judgments using tempo rather than familiarity (Mote, 2011). This develops earlier 

than their sensitivity to mode (Dalla Bella, Peretz, Rousseau, & Gosselin, 2001).  

Mote (2011) argues the dependency on tempo suggests children may generalize 

associations between speed and emotion in human behaviour — particularly 

speech — to music. This early sensitivity to timing may help explain why cues 

like tempo are found to have stronger effects than mode (Hevner, 1935, 1937).  

 Rhythm also plays a complex yet powerful role in emotional 

communication. The effect of rhythm is found to vary as a function of melody and 

intended emotion. In an experiment consisting of four measure melodies from 

unknown folksongs or experimentally composed melodies selected to express 

‘happy’, ‘sad’, or ‘scary’, listeners rated melodies higher in the appropriately 

expressed emotion when excerpts contained rhythmic variation. In addition, the 

effect of rhythmic variation interacted with pitch (Schellenberg et al., 2000). The 

authors suggest their selection of emotional exemplars resulted in melodies that 

differed on a number of structural dimensions (number of contour changes, mean 

pitch level, as well as meter), which can explain why the effect of rhythm 
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appeared context specific. Furthermore, the effect of rhythm can be so powerful it 

extends cross-culturally, correlating with emotions like joy, sadness and peace 

within Hindustani ragas presented to Western listeners (Balkwill & Thompson, 

1999). In that study, participants rated pieces expressing joy to contain more 

simple rhythms in contrast to sad pieces, which participants judged to have more 

complex rhythms. In addition, these naïve Western listeners could accurately 

identify the intended emotions conveyed within the ragas. These findings 

demonstrated that despite unfamiliarity with the musical stimuli, the cue of 

rhythm remained a salient indicator of the conveyed emotion. 

 

Mode as a cue for emotional expression 
 

Unlike timing and pitch, the musical cue of mode is specific to music, 

referring to the structure of pitch information. Hevner's (1935) landmark work on 

mood associations with common Western modes (major and minor) illustrates 

that minor modes are associated with negatively valenced emotions such as ‘sad’ 

and ‘melancholy,’ whereas major melodies are described as ‘cheerful’ and ‘gay’. 

In fact, mode is often a significant predictor of valence, with the major mode 

commonly associated with positively valenced emotions (Crowder, 1984; Costa et 

al., 2004).  

The connection between emotion and musical mode is well established 

(Hunter, Schellenberg, & Schimmack, 2008; Pallesen et al., 2005; Quinto, 

Thompson, & Keating, 2013; Webster & Weir, 2005), showing major-minor 
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distinctions are useful predictors of emotions such as happiness and sadness 

(Dalla Bella et al., 2001; Gerardi & Gerken, 1995; Kastner & Crowder, 1990). 

The impact of mode is so strong it can shape emotional responses more so than 

pitch or timing (Hevner, 1935, 1937). However the relative contributes of mode 

and tempo are complex (Gagnon & Peretz, 2003; Juslin & Lindström, 2010). 

Although powerful, mode is a culture-specific cue that requires learning 

(Corrigall & Trainor, 2014). Meyer's (1956) proposed theory of deviations 

highlights the idea that relationships between major and minor keys stem from 

expectations of regular and normative melodic progressions. In this regard, the 

associations and regularities must be internalized in order to form implicit and 

explicit musical expectations. Mode’s power requires exposure: before the age of 

five, children are unable to identify this relationship between short melodies and 

emotional faces (Dalla Bella et al., 2001; Gerardi & Gerken, 1995; Kastner & 

Crowder, 1990).  

 

Pitch as a cue for emotional expression 
 
Emotion can also be conveyed through the perceptual property known as 

pitch — the subjective “highness” or “lowness” of a tone. Despite its clear role in 

speech (Bachorowski & Owren, 1995; Breitenstein, Lancker, & Daum, 2001; 

Scherer, 1995), it’s musical role is less straight-forward. Pieces in higher octaves 

are generally found to be associated with more positive emotional adjectives such 

as happy, glad, and dreamy when assessing pairs of pitches (Eitan & Timmers, 
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2010), scales (Collier & Hubbard, 2001), commercially recorded works 

(Gundlach, 1935; Watson, 1942;  Wedin, 1972),  and transposed compositions 

(Hevner, 1937). Conversely, lower octaves are associated with negative emotions 

such as sad, agitated and somber (Gundlach, 1935; Hevner, 1937; Scherer & 

Oshinsky, 1977; Watson, 1942;  Wedin, 1972).  

However, research on discrete emotions provides a different perspective. 

For example, high pitches are in some cases associated with negative emotions, as 

well as low pitches with positive emotions (Ilie & Thompson, 2006; Scherer & 

Oshinsky, 1977). Secondly, pitch information (specifically pitch range) does not 

emerge as a strong predictor of listeners’ ratings of target emotions across 

different musical cultures—although other cues do seem to translate (Balkwill & 

Thompson, 1999). Those authors suggest this may have occurred given pitch 

range plays an important role in expectancy, which can be generalized to 

emotional arousal, rather than specific emotions. Thus, the pitch information 

contained in Hindustani ragas did not provide useful information for listeners to 

interpret a specific, discrete emotion.  

Research using the dimensional perspective of emotion also raises 

questions about pitch height’s role. High-pitched music has been associated with 

both high and low-arousal emotional terms; listeners are found to associate high 

pitch with anger and fear (Scherer & Oshinsky, 1977; Wedin, 1972) in addition to 

affective adjectives representing low arousal states such as graceful and serene 

(Hevner, 1937). Musical stimuli lower in pitch have been associated with  
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sadness and boredom (Hevner, 1937; Scherer & Oshinsky, 1977), but also with 

affective adjectives such as excitement and agitation (Hevner, 1937; Rigg, 1940).  

 Although a body of research suggest pitch height plays a role in musical 

emotion, its relationship appears less clear than cues such as tempo (Gabrielsson 

& Lindström, 2010) and mode. The varying effects of pitch may emerge in part, 

from the range of stimuli used within experiments. Differences may occur not 

only as a result of the increased complexity of polyphony (Ilie & Thompson, 

2006) over monophony (Balkwill & Thompson, 1999), but also with respect to 

performed versus synthesized and manipulated (Scherer & Oshinsky, 1977) 

musical stimuli. Monophonic and experimental ‘controlled’ stimuli are often used 

for studies of the cue-response relationships, therefore more work on the natural 

use of cues will shed light on the complex relationships between cues and listener 

perceptions of musical emotion. 

 

Measuring Emotional Communication 
 
 Assessments of musical emotion involve both discrete and dimensional 

models. Discrete models function as forced-choice paradigms based on the 

framework of Ekman's (1992) theory of basic emotions. These models assume a 

limited number of fundamental emotions such as anger, joy, sadness, fear, etc., 

derivative of biologically determined emotional responses (Borod, 2000). 

Experimental procedures utilizing discrete emotional models often require 

participants to select which discrete emotion is represented (Laukka et al., 2013). 
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Although discrete models facilitate paradigms involving recognition, they restrict 

the range of more complex, but recognizable emotions (Eerola & Vuoskoski, 

2013).  

In contrast, the dimensional model of emotion can offer more reliable 

measurement with emotionally ambiguous stimuli (Eerola & Vuoskoski, 2010). 

For example, Russell's (1980) popular circumplex model organizes emotional 

responses into two dimensions — valence and arousal. In this framework, valence 

represents the intrinsic positive or negative component of emotion and arousal 

represents the intensity or energy of the emotion. A number of studies have 

harnessed this view’s utility in music (Wedin, 1969, 1972a, 1972b). In these 

studies, factor analyses on the semantic contents of adjectives or words listeners 

associated to musical excerpts indicated arousal and emotional valence emerge as 

the two main dimensions.  

Two dimensional models can account for a large proportion of variance 

(Schubert, 1999), however the standard dimensions of valence and arousal alone 

fail to fully explain responses (Bigand, Vieillard, Madurell, Marozeau, & 

Dacquet, 2005) leading to interest in alternatives. For example, Schimmack and 

Grob (2000) argue that the ambiguous definition of arousal introduces confusion, 

which can be interpreted as either an awake-tired or tense-relaxed state. As such 

many studies explore variations from the standard dimensional model, using 

labels such as tension (Ilie & Thompson, 2006a), activity (Leman, Vermeulen, De 

Voogdt, Moelants, & Lesafre, 2005) and strength (Luck et al., 2008). 
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Consequently, here we assess emotion using different dimensional labels in order 

to contribute to ongoing discussions on this contested topic.  

 

Reflections on stimuli used to explore emotion  
 

Several studies use polyphonic musical examples, such as one drawing upon 

stimuli chosen to represent specific quadrants of the circumplex model (Dibben, 

2004). Others focus on film soundtracks designed to stir up emotion (Vuoskoski 

& Eerola, 2011), offering insight into the processing of highly emotional musical 

experiences. However, the popularity and familiarity of this music introduce 

interesting challenges to interpreting results. Participants may be familiar with 

certain pieces of film music, having formed pre-existing associations with 

moments in the film, influencing their responses to the music. Furthermore, pieces 

from film soundtracks can contain sounds from multiple instruments in an 

orchestra or band, which introduce another layer of complexity (incorporating 

different timbres, pitch information, etc.).        

The growing field of Music Information Retrieval (MIR) also extends the 

literature of perceived emotions in music by extracting features from stimuli to 

determine which predict emotion ratings. This approach has led to useful insight 

on a wide range of stimuli, such as polyphonic ringtones (Friberg, 

Schoonderwaldt, Hedblad, Fabiani, & Elowsson, 2014), film soundtracks (Eerola, 

2011) and pop music (Yang & Chen, 2012). For example, Korhonen, Clausi, and 

Ed Jernigan (2006), used five excerpts of a Western art music styles, collecting 
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the continual emotional appraisals for dimensions of valence and arousal. The 

authors used the overall median emotional appraisal across the response time-

series to represent each piece in their analyses. They then created models of the 

emotional content for each piece as a function of time and musical features 

extracted from excerpts. As music is a time and potentially emotion varying 

stimuli, these time-series approaches can prove powerful tools for exploration. At 

the same time, requiring participants to provide continuous responses affects 

participants’ cognitive load, potentially affecting their emotional responses. 

Additionally, although stimuli used in MIR research on this topic is rooted in 

naturalistic music listening, a large proportion focus on either pop music or 

soundtrack music containing multiple instruments. The sheer complexity of these 

naturalistic examples complicates efforts to draw strong conclusions about 

specific musical cues. Finally, the degree to which automated analyses accurately 

reflect the structural cues recognized as significant by music theorists is in itself 

an open question (Byrd & Crawford, 2002). Consequently, additional work is 

needed explore conveyed emotion in other musically polyphonic styles, and 

assessment of the effectiveness of feature extraction compared to score based cue 

quantification is crucial. 

In order to provide a more focused perspective on the specific cues 

communicating emotional information, researchers often turn to monophonic 

(single-line) melodies affording rigorous quantification (Hailstone et al., 2009; 

Lindström, 2006; Quinto et al., 2013). Others have turned to stimuli designed or 
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composed to depict discrete emotions (Balkwill & Thompson, 1999; Hailstone et 

al., 2009). These approaches avoid the problems inherent with more naturalistic 

approaches such as studies of film music and/or MIR based analyses of large 

corpora of popular music, by offering precise control of multiple parameters. 

However, they are far removed from the types of music that so powerfully evoke 

strong emotions — such as the sounds heard in concert halls, home stereo 

systems, and personal listening devices.  In addition, experimental designs 

independently manipulating cues such as pitch and timing to avoid confounds 

overlooks the powerful cumulative effects of the ways in which great composers 

chose to co-vary certain cues (Schutz, 2017).  

Previous work has offered useful insight into musical emotion utilizing 

naturalistic stimuli with considerable variation on many dimensions, or tightly 

controlled stimuli with controlled manipulations. Here we aim to fill a gap 

between these approaches by exploring perceptual consequences of specific cues 

in unaltered renditions of widely performed and studied music. In order to identify 

the independent contributions of “natural” cues lacking independence, we drew on 

our team’s previous extensive analysis and encoding of cues such as pitch timing 

and mode, as well as the technique of commonality analysis, or variance 

partitioning, on regression modeling. This provides novel insight into the unique 

and shared contributions of co-varying cues as manipulated by a renowned 

composer, offering useful new insight into how they work together to convey 

emotion.  
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The present study  
 
 Here we assess the relationship between musical structure and emotion 

perception of unaltered music written by a historically distinguished composer, 

J.S Bach (1685-1705). Building upon previous approaches manipulating cues 

such as pitch and timing, we explored the degree to which Bach’s choices of 

mode, pitch and timing affect listeners’ emotional responses to complex 

polyphonic music routinely performed and enjoyed in a wide variety of musical 

settings. Specifically, we used J.S Bach’s well known Well-Tempered Clavier 

(WTC) Book 1 as performed by Friedrich Gulda (Bach, 1973). Our approach 

complements and extends previous targeted explorations of manipulations to 

individual cues by exploring the perceptual consequences of the ways in which 

Bach naturally co-varied their use in a set of pieces still widely performed and 

studied. This preserves the musical complexity often experienced by listeners, 

offering on opportunity to assess generalizability of previous research on 

monophonic, or experimentally designed acoustic stimuli, as well as previous 

studies of emotional excerpts that likely came with extra-musical associations (i.e. 

film scores, popular music excerpts, etc.). 

Given the significance of mode (Dalla Bella et al., 2001; Heinlein, 1928; 

Quinto et al., 2013; Juslin & Lindström, 2010), we wanted to base this exploration 

on a “balanced” set of major and minor key pieces. This proved surprisingly 

difficult, as western music is overwhelmingly written in major keys. Classical 

composers such as Haydn and Mozart display a bias towards the major mode 
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(Tan, Pfordresher, & Harré, 2010) which can also be found in both jazz (Broze & 

Shanahan, 2013) and rock (Temperley & de Clercq, 2013).  As such, Bach’s WTC 

is ideally suited for this exploration and offers a naturally balanced set of pieces 

with one Prelude and one Fugue in each major and minor key.  

Emotional responses to the stimuli were encoded using a dimensional 

model in order to account for the complexity and richness of emotional affect 

within this set of pieces. We adapted Russell’s (1980) circumplex model of 

emotion to represent the emotional space with scales of valence and arousal. For 

comparison, we tested two versions — one incorporating dimensions of valence 

and intensity (experiment 1 and 2), and another with dimensions of valence and 

arousal (experiment 3).  In order to generalize our results broadly, we chose to use 

participants with minimal musical training. Although previous research indicates 

non-musicians and musicians may perceive emotional connotations in music 

similarly (Bigand et al., 2005;  Juslin & Laukka, 2003), those of untrained 

participants allowed us to establish a consistent baseline which could be expanded 

upon in future research.  

This study had two primary aims. First to determine the relationship 

between timing, mode, and pitch on the perception of emotion, as they naturally 

vary in an ecologically valid polyphonic stimulus. Second, to determine the 

validity of an alternative affective dimension, intensity, in lieu of Russell’s (1980) 

dimension of arousal. Our hypotheses included predictions that (1) timing, mode 

and pitch cues will predict listener ratings of emotion (2) musical mode will 
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increase in its importance within musically ‘resolved’ excerpts (excerpts cut to 

end in the piece’s starting nominal key) and (3) cues will vary to the extent they 

are important across valence and intensity/arousal.  For our second aim, we 

predicted that listener responses of emotional intensity (experiment 1) for 

perceived emotions would not be significantly different than ratings of perceived 

emotional arousal (experiment 2). 

 

Experiment 1 (Intensity) 
 
Method 
 
 

Participants. We recruited thirty non-musicians (< 1 year of musical 

training) undergraduates (12 males, M= 19.7 years, SD=2.87, 18 females, M= 

19.1 years, SD=3.00) from the McMaster University Psychology participant pool 

who reported normal hearing and normal or corrected-to-normal vision. The 

experiment met ethics standards according to the McMaster University Research 

Ethics Board. Participants received course credit in return for participation. 

 

Musical Stimuli. Experimental stimuli consisted of audio recordings of 

J.S Bach’s WTC (Book 1) as performed by Friedrich Gulda (n=48). Excerpts 

contained the first eight measures of each piece, with a two-second fade out 

starting at the ninth musical measure. Although faster and slower pieces varied in 

duration, this approach provided consistency in terms of musical units (measure 
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length). Stimuli lasted 7-64 seconds in duration (M=30.2 seconds, SD=13.6). We 

prepared all excerpts using Amadeus Pro. 

 

Cue Quantification. Beyond encoding the modality indicated in each 

piece’s key signature, our analysis required quantifying two additional cues —

pitch height and timing. We calculated pitch height using methods based upon 

Huron, Yim, and Chordia (2010), and later extended by Poon and Schutz (2015), 

to weight notes according to their duration (similar to other music, these pieces 

included both long and short notes). In this approach, pitch height is calculated by 

summing duration-weighted pitch values within each measure, then dividing by 

the sum of note durations within that measure. Previously, Poon and Schutz 

(2015) used this method to calculate theoretical averages for the first eight 

measures of each of the 48 pieces using tempi noted in a score. Here we used that 

approach as a point of departure, adjusting the tempi used in the calculations to 

reflect those in the stimuli played for participants. We also re-calculated 

information as needed for experiment 2, which involved excerpts of variable 

lengths rather than the 8 measure excerpts used in experiments 1 and 3. This 

ensured that all attack rate information used for comparison in each experiment 

corresponded to the stimuli heard by participants. Additional technical details on 

pitch and timing quantification methods are available in Poon and Schutz (2015) 

— including a figure annotating the exact pitch and timing values assigned to 

each note in the first measure of the C Major Prelude. We used this approach to 
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calculate musical attack rate in part to allow for parallel comparisons of timing in 

speech, specifically with articulation rate (Johnstone & Scherer, 2000; Scherer, 

2003).  

Pitch height values varied from 33.13-53.00 (M=43.90, SD=4.03) 

corresponding ~F3 to ~ C#5, attack rate information for eight measure excerpts 

range 1.3-10.13 attacks per second (M=4.91, SD=2.18). We operationalized mode 

as the tonal center of the piece, as indicated by the denoted key signature of each 

score, coded dichotomously (0=minor, 1=Major). Admittedly, nominally minor 

excerpts in our experiment contained some major chords and vice-versa, making 

for a less controlled treatment of mode than monophonic excerpts created to be 

either unambiguously major or minor. Nonetheless, this is entirely in keeping with 

normative practice in musical composition, where harmonic progressions 

typically include both major and minor chords. As each of these pieces starts in 

the nominal key, we believe it is a reasonable way to explore mode as it is 

experienced in concert halls and on recordings—rather than the more controlled 

(but uncommon in natural practice) approaches found in psychological 

experiments. 

 

Design and procedure. Participants first completed a consent form and 

musical experience survey (Appendix A), then entered a sound-attenuating booth 

where the research assistant verbally instructed participants on the rating task. 

After each excerpt, participants rated two aspects of perceived emotion, using 
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scales for valence and intensity. Instructions emphasized the full use of each scale 

displayed. Research assistants told participants they would be asked to provide 

ratings of emotion based on what the music conveys on two scales after listening 

to each piano excerpt. They described valence as how positive or negative the 

emotion sounds, ranging on a scale from 1 (negative) to 7 (positive). Intensity 

referred to the ‘energy’ of the emotion where high intensity pieces may sound 

excited or agitated, and low arousal pieces may sound dull or calm. The scale of 

intensity ranged from 1 (low intensity) to 100 (high intensity). We asked 

participants to make ratings based on emotion conveyed, rather than inquiring 

about emotions evoked (Gabrielsson, 2002). After hearing these instructions, 

participants completed 4 practice trials with alternate recordings not used in 

testing trials performed by Rosalyn Tureck (Bach, 1953), where they could ask 

the research assistant for procedural clarifications. We conducted the experiment 

using PsychoPy (Peirce, 2019), a Python-based psychology program and 

presented the experiment on a DELL monitor. Participants listened to the stimuli 

at a consistent and comfortable listening level through two Gateway 2000 

speakers placed on either side of the computer monitor in a sound-attenuating 

booth (IAC Acoustics, Winchester, US). Each participant heard an individually 

randomized order of the 48 excerpts and provided responses via an Apple mouse 

connected to a 13-inch MacBook Pro located outside the booth.  
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Results 
 

Visualizing participant data on Russell’s the two-dimensional circumplex 

provides a useful first step to understanding emotional responses in these stimuli. 

Figure 1a shows ratings for the first experiment, illustrating minor key pieces 

received lower valence ratings than major for both Preludes (left column) and 

Fugues (right column).  In fact, of the 24 Preludes, only one Major piece (B 

Major) fell in the lower half of valence ratings. Of the 24 Fugues, only one (C 

Major) clearly fell in the lower half of valence ratings (B Major and d minor 

Fugues tied for the 12th lowest valence rating). This is consistent with previous 

research indicating mode’s strong effect on emotion and suggests our treatment of 

mode as a binary variable based on the nominal key of each piece provides a 

useful framework for understanding the emotional messages conveyed.  However, 

as shown by Poon and Schutz (2015), composers co-vary cues in normative 

musical practice, making it difficult to understand the ultimate reason for this 

putative effect of mode. To explore this issue further, we turned to three separate 

statistical analyses. These both provide different perspectives on interpreting the 

data, as well as useful points of comparison with a rich literature on emotional 

communication in both speech and music. 
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Figure 1. Mean ratings for all 48 pieces in the WTC (separated by preludes and 
fugues) across the 2D circumplex space for (a) Experiment 1, (b) Experiment 2 & 
(c) Experiment 3. Major key pieces are represented in red, minor key pieces in 
blue. 
 
 
 

In order to clarify cue contributions, we assessed participant ratings from 

three perspectives. First, we examined Pearson product-moment and Pearson 
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point bi-serial correlations between the three acoustic cues (attack rate, mode, 

pitch height) and the mean ratings from the two dimensions of response (valence, 

intensity). Second, we assessed the relationship between acoustic cues (attack 

rate, mode, pitch) and mean values of listener responses, as captured by a two-

dimensional model of valence and intensity, using a least squares standard 

multiple linear regression on the mean ratings. Third, we further assessed relative 

cue contributions with commonality analyses to determine partitioned variance 

within the regression models. We determined Cronbach’s alpha for listener ratings 

across 48 excerpts to be a=0.98 for both valence and intensity ratings, suggesting 

participant ratings are highly consistent. Valence ratings ranged from 1.90 - 6.13 

(M=4.12 SD=1.20) and intensity ratings ranged 21.00 – 82.20 (M=51.52, 

SD=19.69). 

 

Correlations. Within the three acoustic cues, we found a significant correlation 

only between attack rate and mode (r(46)=0.431, p <0.01). Pitch height correlated 

significantly with neither attack rate (r(46)=-0.138, p=0.350) nor mode 

(r(46)=0.142, p=0.334).  Independent-samples t-tests reveal significant 

differences in attack rate (t(46)=-3.2419, p<0.05), but not pitch height (t(45)=-

0.9758, p=0.33) between major and minor key pieces. This is consistent with 

finding a significant correlation between mode and attack rate, but a lack of 

significant correlation between mode and pitch height. Within participant ratings, 

we found a positive correlation between the mean ratings of valence and intensity 
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(r(46)=0.795, p<0.001), indicating the dimensions of the standard two 

dimensional model did not function independently in this context.  

Exploring the relationship between acoustic cues and participant ratings, 

both attack rate (r(46)=0.705, p<0.001) and mode (r(46)=0.762, p<0.001) 

correlated with mean valence ratings. This is consistent with the visualization in 

Figure 1 suggesting mode plays a strong role in explaining valence ratings.  

Similarly, both attack rate (r(46)=0.708, p<0.001) and mode (r(46)=0.442, 

p<0.002) correlated with mean intensity ratings. In contrast pitch height did not 

play a meaningful role, as it correlated with neither valence (r(46)=0.172, 

p=0.243) nor intensity (r(46)=-0.076, p=0.606) ratings. This analysis suggests that 

emotional responses are affected by only by timing and mode, with minimal role 

of pitch height. This outcome is helpful in drawing contrasts between previous 

work on the perceptual consequences of pitch and timing on emotional speech 

(Breitenstein, Van Lancker, & Daum, 2001). However, correlations amongst the 

cues themselves (e.g., timing correlates with mode), which are likely common in 

music written for artistic purposes complicates interpretation of simple 

correlations between cues and ratings. Consequently, we turned to additional 

analyses to better understand what cues predict listener ratings of emotions, as 

well as the specific contributions of individual cues to participant responses.  

 

Linear Regression Analysis. We ran a standard linear multiple regression 

analyses on normalized predictor values using the R Statistical Package to assess 
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predictors of mean ratings of valence and intensity. We chose the Major mode as 

the reference level for mode, where the remaining level of the categorical variable 

(minor mode) is contrasted against it in analysis. The regression analysis revealed 

all three acoustic cues — attack rate, mode, and pitch height — significantly 

predicted ratings of valence (Table 1). In contrast, only attack rate predicted 

ratings of intensity (Table 1). This approach illustrates two important insights 

beyond those available from the correlations alone. First, when examined with 

this more nuanced assessment, mode does not predict intensity ratings. Although 

it correlated with intensity ratings in our first analysis, the linear regression 

suggests its contribution stems from its correlation with attack rate.  Conversely, 

although we did not find a simple correlation between pitch height and valence 

ratings in our first analysis, it did serve as a significant predictor here.   

 Overall, the 3-cue predictor model accounted for 77% of the variance in 

ratings of valence (adjusted R2=0.765) F(3, 44) = 52.13, p<0.001 and 49% of the 

variance in ratings of intensity, (adjusted R2=0.492) F(3, 44) = 16.2, p<0.001. 

Tolerance and variance inflation factor (VIF) values indicate no issue of 

multicollinearity despite moderate correlation (r=0.431, p=0.002) between attack 

rate and mode (Attack rate, Tolerance=0.773, VIF=1.293; mode, Tolerance= .772, 

VIF= 1.295). The inclusion of interaction effects increased overall model 

predictability by a small amount for valence (adjusted R2=0.771) F(7,40)=23.55, 

p<0.001) and intensity (adjusted R2=0.494), F(7,40)= 7.553, p<0.001), suggesting 

cues functioned in an additive manner (See Appendix B).    
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Table 1.  
 
Regression model for normalized attack rate, mode, pitch height and valence and 
intensity ratings (experiment 1). Beta values indicate strength and direction of 
relationship between each predictor variable and valence and intensity ratings. 
Default state for mode is Major. 
 
 
  Valence    Intensity  

Predictor 
Coefficien
ts 

B SE t p  B SE t p 

Attack 
Rate 

0.5031 0.0435 6.264 p<0.001  0.6329 1.0479 5.356 p<0.001 

Mode -0.5212 0.1911 -6.485 p<0.001  -0.1708 4.6064 -1.445 p=0.156 

Pitch 
Height 

0.0215 0.0215 2.277 p<0.01  -0.0134 0. 5171 -0.124 p=0.902 

 
 

Commonality Analysis. Finally, in order to more fully understand the overall 

contributions of each cue, we used commonality analysis to decompose the R2 of 

each model. This technique affords examination of contributions of both unique 

and shared variance for each of our predictors1 (Table 2 & 3). Here, ‘shared’ 

variance between predictors (overlapping regions in Figure 2) represent the 

variance those variables have in common with the dependent variable (Ray-

Mukherjee et al., 2014). The presence of negative commonalities occurs when 

correlations among predictor variables have opposite signs (Pedhazur, 1997), or in 

 
1 Commonality analysis allows for reporting on the multivariate relationships 
between predictors beyond beta values, however does not address potential 
interaction effects within the model 
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the case that a variable confounds the explained variance of another variable in 

the model (Capraro & Capraro, 2001), such as a suppressor variable. Suppressor 

variables remove error variance in other predictors. As a result, the variable 

‘suppresses’ irrelevant variance and increases the predictive ability of the other 

predictor and regression model overall (Cohen & Cohen, 1983; Capraro & 

Capraro, 2001). 

 

 

Figure 2. Visual representation of predictor relationships using commonality 
analysis as used here, adapted from original by Capraro & Capraro (2001). 
 

Cue Contributions. To further explore the relative strengths of each cue, we 

examined their unique and shared contributions to predictions of participant 

response (Figures 3 & 4) using commonality analysis. Uniquely, attack rate 

accounted for the largest amount of variance within both valence (25%) and 

intensity (59%) ratings. Mode uniquely accounted for 27% of variance within 

valence ratings, but only 4% in intensity ratings. Pitch height uniquely accounted 

Figure 2 
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for 3% of variance in valence ratings but did not meaningfully contribute (<1%) 

to the intensity model.  

 Shared variance accounted for a total of 45% of valence and 37% of 

intensity ratings, with the largest contribution from the relationship between 

attack rate and mode (44% contributed to valence model, 36% to intensity model). 

Mode and pitch height contributed 6% of shared variance to the ratings of valence 

(Table 2) but did not to contribute to ratings of intensity (Table 3). Attack rate and 

pitch height accounted for -3% of shared valence variance in contrast to 4% of 

shared intensity variance. Variance common between all three cues explained -3% 

and -3% of variance in the valence and intensity models respectively. Some 

researchers interpret negative commonalities as indicating confounding 

suppression effects (Beaton 1973), whereas others postulate this suggests the 

predictor of interest has no influence (Frederick 1999). Capraro and Capraro 

(2001) caution the interpretation of negative values for variance common to all 

predictors: they argue a negative commonality value for all cues combined 

suggests an inverse relationship to the dependent variable, in contrast to the direct 

relationships found for individual predictors. As this represents the first 

application of commonality analysis to the study of music, for our purposes we 

believe it best to follow the latter approach and focus on cues with positive values.  
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Table 2.  
 
Commonality Analysis for Variance in Listener Ratings of Valence (Experiment 1) 
 
  R2y.123 =   .7655 % Explained 

Variance 
    
Unique to X1 Attack Rate .1958 25.09% 
Unique to X2 Modality .2099 26.89% 
Unique to X3 Pitch Height .0259 3.31% 
    
Common to X1 and X2 C (AR, Mo) .3453 44.25% 
Common to X1 and X3 C (AR, PH) -.0218 -2.79% 
Common to X2 and X3    C (Mo, PH) .0477 6.12% 
Common to X1, X2  
and X3        

C (AR, Mo, 
PH) 

-.0224 -2.87% 

    
 Totals 7655 100% 

  
 
 
 
Table 3.  
 
Commonality Analysis for Variance in Listener Ratings of Intensity (Experiment 
1) 
  R2y.123 =  .4939 % Explained 

Variance 
    
Unique to X1 Attack Rate .3098 59.03% 
Unique to X2 Modality .0225 4.30% 
Unique to X3 Pitch Height .0002 0.02% 
    
Common to X1 and X2 C (AR, Mo) .1867 35.57% 
Common to X1 and X3 C (AR, PH) .0196 3.74% 
Common to X2 and X3    C (Mo, PH) . 0003 0.06% 
Common to X1, X2  
and X3        

C (AR, Mo, 
PH) 

-.0143 -2.72% 

    
 Totals .4939 100% 

 
 



Ph.D. Thesis — A. E. Battcock; McMaster University — Psychology, Neuroscience 
& Behaviour 
 

 58 

 
 
 
Figure 3. Unique and shared variance of valence ratings by musical cue. The 
unique and shared contributions of attack rate, and modality cues explained the 
vast majority of variance across three experiments. The three bars for each cue 
depict ratings made of both (1) 8 measure excerpts (experiment 1) and (2) variable 
length musically resolved excerpts using valence and intensity ratings (experiment 
2), as well as (3) 8 measure excerpts using valence and arousal ratings 
(experiment 3). 
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Figure 4. Unique and shared variance of Intensity/Arousal ratings by musical cue. 
Attack rate’s unique and shared contribution with modality explained the majority 
of variance across perceived ratings of intensity/arousal. The three bars for each 
cue depict ratings made of both (1) 8 measure excerpts (experiment 1) and (2) 
variable length musically resolved excerpts using valence and intensity ratings 
(experiment 2), as well as (3) 8 measure excerpts using valence and arousal 
ratings (experiment 3). 
 

 
Experiment 1 Discussion 

 
Our results are consistent with previous findings in both music and speech 

that faster attack rates lead to higher judgments of valence and intensity, 

suggesting faster delivery of acoustic information may convey more positive 

emotions (Breitenstein et al., 2001; Juslin, 1997). In contrast to work from Ilie and 

Thompson (2006) and Scherer and Oshinsky (1977), we found pitch height did 

not correlate with valence, or intensity ratings, however appeared as a significant 
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predictor within the three-cue regression model of valence ratings. Our analysis of 

the structural properties identified a correlation between mode and timing, 

consistent with previous findings that major key pieces tend to be faster than 

minor — both in these specific excerpts (Poon & Schutz, 2015) as well as more 

generally across a range of musical literature (Post & Huron, 2009). However, our 

results build on those outcomes by exploring perceptual evaluations of pieces 

varied in mode and timing. Additionally, they provide a useful converging 

measure to research using more constrained or systematically manipulated 

stimuli.  

Attack rate significantly predicts listener ratings of both valence and 

intensity, indicating timing cues play an important role in both aspects of emotion. 

Both our linear regression and commonality analyses demonstrate timing as the 

most consistent predictor of emotional ratings. According to commonality 

analysis, attack rate uniquely predicted 25% of the total variance of valence 

ratings, and 59% of total intensity variance. Additionally, its shared contributions 

with mode predicted 44% of valence 35% of intensity variance. In contrast, pitch 

height contributed minimally (3% for valence, <1% for intensity). While attack 

rate remained the most valuable cue for ratings of intensity, mode uniquely 

predicted more variance of valence ratings than attack rate. This holds important 

implications for performer’s interpretation of the musical score, for unlike pitch 

and mode, performers’ decisions regarding tempo directly affect timing cues such 

as attack rate, and a review of well-known recordings of this music demonstrates 
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considerable disagreement in tempo interpretation. For example, Palmer’s (1994) 

review of tempi used in this set of pieces illustrates that Glenn Gould (1965) 

performed the E minor fugue (BWV 855) at twice the rate of Tureck (1953). 

Similarly, Newman (1973) performed the B minor prelude (BWV 869) at three 

times the rate of Gulda (1973). Finding that the cue most under control of 

performer interpretation plays a considerable role in emotion raises intriguing 

questions regarding the complex relationship between compositional structure and 

performer interpretation in shaping listeners’ responses to musical passages. 

Mode is typically regarded as an important cue for the perception of 

emotional valence (Hunter, Schellenberg, & Schimmack, 2008; Pallesen et al., 

2005). Our findings are to some degree consistent with this view, as depicted by 

plotting the mean rating of each piece across the circumplex space (Figure 1). 

Further, our statistical analyses illustrate that mode correlates with valence, with 

major key excerpts rated higher in valence and more intense. This is consistent 

with a large body of previous work, where major keys are commonly associated 

with positive valence in contrast to minor keys (Hevner 1935). Regression 

analyses converge with the correlational results by finding this cue significantly 

predicted valence ratings. However, they also illustrate that it played little role in 

predicting intensity ratings despite a significant correlational trend (likely a 

reflection of Bach’s use of faster attack rates for major key pieces). According to 

our assessment of relative cue strength, mode functioned as the strongest cue for 

valence ratings, and second for intensity ratings. Uniquely, it predicted more 
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variance associated with valence ratings (26.89%) than intensity (4.30%). This 

demonstrates that while mode is important for distinctions of valence, it may not 

be informative in the perception of emotional intensity. Furthermore, our results 

suggest mode’s contribution to listener ratings, specifically for emotional 

intensity, may be a function of its relationship to cues more crucial to this 

emotional dimension, such as attack rate. 

 The selective effect of mode is particularly intriguing given disagreement 

over mode’s significance in emotional evaluation. Although many studies of 

musical emotion have found it plays a powerful role (Dalla Bella et al., 2001; 

Hunter et al., 2008; Webster & Weir, 2005), prominent music theorists suggest its 

role is minimal and may be the result of its correlation with other cues aspects of 

musical structure (Hatten, 2004). Our results help to clarify some of the confusion 

over this important musical parameter by indicating within this corpus of music 

by a renowned composer, mode played an important role in listener perception of 

valence, but not intensity.   

Research on music and speech suggest higher pitches correlate with 

positive valence (Hevner, 1937; Breitenstein et al., 2001). In contrast, here pitch 

height correlated with neither valence nor intensity. Furthermore, it had minimal 

predictive power in the commonality analysis. We suspect this difference may 

reflect the more complex role of pitch height in music with multiple voices and 

harmonic structure. Research on speech tokens often use a single voice for 

obvious reasons, and musical research exploring parallels often uses monophonic, 
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or single-voiced stimuli (Hailstone et al., 2009; Lindström, 2006; Quinto, 

Thompson, & Keating, 2013). Although such simplified monophonic melodies 

provide a compelling parallel to speech, they share a tenuous connection to music 

that typically contains a great deal of pitch information beyond that of a single 

voice (i.e., polyphony, accompaniment, harmonic context, etc.). 

Pitch height predicted valence ratings in the linear regression analysis 

(albeit to a lesser degree than other cues and cue combinations) but did not 

significantly predict intensity ratings. Although this might suggest some role for 

pitch height, our commonality analyses found it contributed minimally. Unique 

contributions of pitch height accounted for <1% (intensity) and 3% (valence) of 

listener ratings. Therefore, we conclude pitch height holds limited predictive 

value within this corpus of complex, polyphonic music created by a renowned 

composer for musical, rather than research, purposes. 

In summary, our regression findings are somewhat consistent with 

previous work indicating the role of timing, mode and pitch in perceived emotion, 

however we found minimal contribution of pitch for both valence and arousal 

ratings. Our findings also suggest cue importance varies as a function of 

emotional dimension. All three cues predicted valence ratings, yet only attack rate 

predicted intensity ratings. Mode and pitch height served as better predictors of 

valence rather than intensity. These results inform previous debates on the 

importance of timing and mode (Gagnon & Peretz, 2003; Juslin & Lindström, 

2010) suggesting timing cues (quantified as attack rate) contribute more to 
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expressed emotion than mode. Finally, the commonality analyses suggest attack 

rate is the strongest contributor to both dimensions, 

Previous research suggests mode and timing cues are of high importance 

for the perception of emotion (Eerola, Friberg, & Bresin, 2013; Gagnon & Peretz, 

2003), where mode strongly predicts emotional valence. Therefore, the 

dominance of timing contributions in both dimensions of Experiment 1 raises an 

important issue: Would better control over musical key changes improve the 

weight of mode in listener judgements of valence? To assess this issue, we 

conducted an additional experiment with musically ‘resolved’ excerpts. 

 

Experiment 2 (Musically resolved excerpts) 
 

Our first experiment used eight measure excerpts for all 48 pieces.  

Although this approach has the benefit of consistency, some pieces modulated to 

different keys by the end of the excerpt (i.e. the eighth measure of the Cm Prelude 

outlines a C Major chord). In order to explore whether this affected mode’s 

strength in experiment 1, we ran a second experiment using excerpts ending in the 

piece’s nominal key (e.g. “C Major”). This required variability across stimuli 

length (in measures) but offers a useful complementary perspective to the strict 

eight measure durations of the first experiment, allowing for better insight into the 

relative strength of mode within this corpus of music. We then compared these 

responses to revised pitch and timing information corresponding to the segment 

evaluated—for excerpts longer than eight measures we calculated the pitch height 
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and timing of the additional measures; for excerpts shorter than eight measures we 

removed the measure in question from the pitch and timing calculations used to 

predict responses. For example, as this experiment used an 11-measure segment 

of the D minor prelude, we calculated pitch and timing information for three 

additional measures beyond the eight calculated previously.  

 
 

Method 
 

We followed the same procedure as in the first experiment but used 

variable length (rather than eight measure) excerpts ending in the piece’s nominal 

key. Participants included 30 non-musicians (<1 year musical training) 

undergraduate students (10 males, M=18.3 years, SD=0.67, 20 females, M=18.8 

years, SD=1.02). They reported normal hearing and normal or corrected-to-

normal vision. Musical stimuli ranged from 7-52 seconds (M=25.4 seconds, 

SD=11.0). Participants received course credit in return for participation.  

 

Cue Quantification. Pitch and timing information corresponded the 

quantification of each cue within the specific number of measures required to 

reach a ‘resolution’ back to the home key for each excerpt. In these excerpts, pitch 

height values varied from 33.13- 53.13—corresponding ~F3 to ~ C#5— 

(M=43.87, SD=4.15), attack rate information ranged 1.30-10.13 attacks/second 

(M=4.87, SD=2.22). We mode the same way as in experiment 1 (0=minor, 

1=Major). 
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Results 
 

Visualizations of ratings on Russell’s circumplex appear in Figure 1b for 

ease of comparison with previous results.  Similar to the first experiment, only 

one Major Prelude (B Major) appeared in the lowest half of valence ratings, and 

only one Major key Fugue (C Major) appeared in the lowest half of valence 

ratings. Additionally, similar to experiment 1, the Cronbach’s alpha for listener 

ratings appeared as a=0.97 for both valence and intensity ratings indicating high 

agreement across participants’ ratings. Participants’ valence rating ranged from 

1.80 – 5.97 (M=4.12, SD=1.20) and intensity ratings ranged from 20.743- 83.93 

(M=52.56, SD=18.20). 

 
Correlations. As we recalculated pitch and timing information for these variable 

length excerpts, we re-ran our original analysis of the acoustic cues.  Despite these 

changes we found a significant correlation between the cue of attack rate and 

mode (r(46)=0.435, p<0.001). Pitch height significantly correlated with neither 

attack rate (r(46)=-0.165, p=0.261) nor mode (r(46)=0.126, p=0.392).  Similar to 

the first experiment, t-tests revealed a significant difference in attack rates 

(t(46)=-3.2749, p<0.05) between the major and minor key pieces, but no 

significant difference in pitch height (t(45)=-0.8638, p=0.39). Mean ratings of 

valence and intensity correlated significantly (r(46)=0.780, p<0.001), which 

suggests these dimensions functioned in a dependent manner. 

 Attack rate (r(46)= 0.685, p<0.001) and mode (r(46)= 0.802 p<0.001) 

significantly correlated with valence ratings.  Attack rate (r(46)=0.721, p<0.001) 
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and mode (r(46)=0.458, p<0.001) also correlated significantly with the mean 

intensity ratings. In contrast, pitch height significantly correlated with neither 

mean ratings of valence (r(46)=0.147, p=0.320) nor intensity (r(46)=-0.088, 

p=0.551).  

 

Regression analysis. All three cues significantly predicted participants’ valence 

ratings. However, only attack rate predicted intensity ratings (Table 4). In contrast 

to the correlational results, mode did not predict intensity ratings. We found no 

significant simple correlation between pitch height and ratings of valence, 

however it significantly predicted listener judgements of valence in our regression 

model. 

 The three–cue predictor model accounted for 80% of the variance in 

valence ratings (adjusted R2 =08029), F(3, 44) = 59.73.9, p<0.001 and 54% of the 

variance in intensity ratings, (adjusted R2 =0.5452), F(3, 44) = 17.58, p<0.001. 

Regression models investigating interaction effects show similar predictability in 

variance prediction for valence (adjusted R2 =0.790), F(7,40)=26.22, p<0.001 and 

intensity (adjusted R2 =0.5127), F(7,40)=8.063 p<0.001 (See Appendix B). 
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Table 4. 
 
 The regression model for normalized attack rate, mode, pitch height and valence 
and intensity ratings (experiment 2). Beta values indicate strength and direction of 
relationship between each predictor variable and valence and intensity ratings. 
. 
  Valence    Intensity  

Predictor 
Coefficien
ts 

B SE t p  B SE t p 

Attack 
Rate 

0.5031 0.0418  5.920 p<0.001  0.4540      0.9521  5.513 p<0.001 

Mode -0.5212 0.1831 -7.688 p<0.001  -0.5863      4.1721   -1.546 p=0.129 

Pitch 
Height 

0.1667 0.0203    2.121 p<0.05  0.1457    0.4633    -0.044 p=0.965 

 

Cue Contributions. As shown in Figures 3 and 4 (stripped bars), attack rate and 

mode accounted for the largest amount of unique variance within valence 20% 

and 33% respectively) ratings. Attack rate remained the only important 

contributor of intensity ratings (58%), and mode uniquely accounted for 5% of the 

model’s variance. Pitch height uniquely accounted for 3% of variance for valence 

ratings, and none for intensity ratings. Shared variance explained 45% of total 

valence rating and 38% of total intensity rating variance. Attack rate and mode 

contributed the largest proportion of shared variance to both models (45% 

contributed to valence and 36% to intensity ratings). Variance shared between 

mode and pitch height contributed 6% to the valence model but contributed less 

than 1% to intensity ratings. In contrast, calculations for the relationship between 

attack rate and pitch height produced a -2% contribution to valence and 4% to 
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intensity ratings. The shared variance common between all three cues accounted 

for approximately -3- -4% of the variance in valence and intensity models. 

 
 
Table 5. 
 
 Commonality Analysis for Variance in Listener Ratings of Valence (experiment 
2) 
  R2y.123 =   

.8029 
% Explained 

Variance 
    
Unique to X1 Attack Rate .1570 19.56% 
Unique to X2 Modality .2648 32.99% 
Unique to X3 Pitch Height .0202 2.51% 
    
Common to X1 and 
X2 

C (AR, Mo) .3595 44.78% 

Common to X1 and 
X3 

C (AR, PH) -.0181 -2.25% 

Common to X2 and 
X3    

C (Mo, PH) . 0493 6.14% 

Common to X1, X2  
and X3        

C (AR, Mo, 
PH) 

-.0299 -3.72% 

    
 Totals .8029 100% 
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Table 6. 
 
 Commonality Analysis for Variance in Listener Ratings of Intensity (Experiment 
2)    
  R2y.123 =  .5452 % Explained 

Variance 
    
Unique to X1 Attack Rate .3141 57.61% 
Unique to X2 Modality .0247 4.53% 
Unique to X3 Pitch Height 0000 0.00% 
    
Common to X1 and X2 C (AR, Mo) .1987 36.44% 
Common to X1 and X3 C (AR, PH) .0217 3.97% 
Common to X2 and X3    C (Mo, PH) .0010 0.18% 
Common to X1, X2  
and X3        

C (AR, Mo, 
PH) 

-.0149 -2.73% 

    
 Totals .5452 100% 

 
 
 

Discussion 
 

Similar to experiment 1, experiment 2 highlights the relationship between 

attack rate (timing) information and mode within listener ratings of emotion. 

Correlation and regression results followed the same trends as reported in 

experiment 1: Attack rate and mode significantly correlated with valence and 

intensity, whereas pitch height significantly correlated with neither. Regression 

analyses indicated all three cues significantly predicted listener ratings of valence; 

however only attack rate predicted arousal ratings. As in experiment 1, this 

finding suggests the salience of cues as emotional indicators differ for the two 

dimensions. 
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Experiment 2 explored whether the influence of mode would increase 

when using excerpts starting and ending in the same nominal key. Although our 

findings here broadly mirrored those of the first experiment for valence ratings, 

the salience of musical mode increases when excerpts ‘resolve’ (i.e., end in the 

same nominal key in which they began), with mode increasing in its predictive 

power and on attack rate decreasing in predictability (see Table 3). This 

manipulation did not affect all cues, as pitch height’s contribution remained small. 

As such, the results of experiment 2 suggest mode’s predictive power is stronger 

when excerpts start and end in a consistent manner.  This helps clarify mode’s 

power in complex passages containing chords outside the target mode (i.e., major 

chords in nominally minor keys and vice-versa)—an approach that is common in 

actual musical practice although complicated to rigorously assess under controlled 

laboratory conditions.  

 

Experiment 3 (Arousal) 
 

The first two experiments quantified emotion employing an adaptation of 

Russell’s (1980) 2D circumplex model of affect, using dimensions of valence and 

intensity. The literature contains some disagreement over the best label for the 

non-valence dimension. For example, Trainor and Schmidt (2001) use ‘intensity’, 

whereas ‘arousal’ is more common in other models (Russell 1980; Schubert, 

2004). As ‘intensity’ is also used to describe the power, or physical characteristic 

of sound, it is possible participants might have confused emotional intensity with 
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sound intensity in our first two experiments. Therefore, for the sake of 

thoroughness we ran a third experiment following the procedure and stimuli used 

in experiment 1 but labeling the ratings scales valence and arousal rather than 

valence and intensity. This afforded exploration of the consequences of different 

approaches to labeling the dimension representative of emotional ‘energy’, and to 

ensure listeners’ understanding of the ‘energy’ dimension in the first experiment 

had not been conflated with sound intensity.  

 
Method 
 

 We used an experimental procedure and cue quantification methods 

identical to the first (matching excerpt length at eight measures); however here 

participants rated perceived emotion on a scale of valence and a scale of arousal 

(rather than valence and intensity). In addition, cue quantification values remained 

identical to values calculated for experiment 1. Although we used the label of 

‘arousal’ for the second dimension, the scale explanation given to participants 

remained identical to that of the ‘intensity’ scale in experiment 1. Participants 

included 30 undergraduate non-musicians (<1 year musical training) students (9 

males, M=20.8 years, SD=2.96, 21 females, M=21.2 years, SD=3.96, with 

reported normal hearing and normal or corrected-to-normal vision. Musical 

stimuli ranged from 7-64 seconds (M=30.2 seconds, SD=13.6).  Participants 

received course credit in return for participation. 
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Results 
 

Visualizations of ratings on Russell’s circumplex appear in Figure 1c for 

ease of comparison with previous results. Similar to the first experiment, only one 

Major Prelude (B Major) appeared in the lowest half of valence ratings, however 

two (C Major, B Major) of the Major key Fugues appeared in the lowest half of 

valence ratings. Cronbach’s alpha for listener ratings demonstrated high internal 

consistency as in experiment 1 & 2 (a=0.97) for both valence and arousal ratings. 

Valence ratings from participants spanned from 1.97-6.30 (M=4.09, SD=1.12) 

and arousal ratings ranged 30.27-82.83 (M=56.99, SD=16.95).  

 

Correlations. As the musical excerpts used in this experiment are identical to 

those of the first experiment, cue quantification analyses (inter-cue correlations 

and t-tests) are identical to those reported in experiment 1. In terms of their 

relationship to perceptual ratings, similar to previous experiments, attack rate 

(r(46)=0.671,p<0.001) and mode (r(46)= 0.758, p<0.001) correlated with mean 

valence ratings, with listeners giving higher rating to faster, major-key pieces. 

Attack rate (r(46)= 0.702, p<0.001) and mode (r(46)= 0.418, p<0.01) also 

correlated with mean intensity ratings, suggesting listeners’ judgement of 

intensity to be higher when pieces had higher attack rates and major key 

structures. As in experiment 1 & 2, pitch height contrasted with the other cues, 

correlating with neither mean valence (r(46)=0.219, p=0.134) nor intensity 

(r(46)=-0.112, p=0.450) ratings. 
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Regression Analysis. Standard linear multiple regression analysis revealed attack 

rate, mode and pitch height contributed significantly towards mean valence 

ratings (Table 7). Analysis of arousal indicated attack rate as the only significant 

predictor (Table 7). Despite the correlation between mode and intensity, mode did 

not significantly predict mean intensity ratings in this regression analysis. 

However, although pitch height did not correlate significantly with valence, it 

significantly predicted valence ratings.   

 The 3-cue predictor model accounted for 48% of the variance in ratings of 

arousal adjusted R2=0.4778, F(3, 44) = 15.33, p<0.001 and 75% of the variance in 

ratings of valence, adjusted R2=0.7458, F(3, 44) = 46.96, p<0.001. Despite a 

moderate correlation between attack rate and mode (r=(46)0.445, p<0.01), 

tolerance and VIF values do not suggest multicollinearity (Attack rate, 

Tolerance=0.773, VIF=1.293; mode, Tolerance= .772,VIF= 1.295). Regression 

models investigating interaction effects show a small increase in variance 

prediction for valence (adjusted R2 =0.7706), F(7,40)= 23.55, p<0.001  and 

arousal (adjusted R2 =0.4847), F(7,40)= 7.317, p<0.001 models, however no 

interactions reached significance (See Appendix B3). 
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Table 7.  
 
The regression model for normalized attack rate, mode, pitch height on valence 
and arousal ratings, as well as mode (Experiment  3). Beta values indicate 
strength and direction of relationship between each predictor variable and valence 
and arousal ratings. 
 
  Valence    Arousal  

Predictor 
Coefficien
ts 

B SE t p  B SE t p 

Attack 
Rate 

0.475 0.042 5.676 p<0.001  0.630 0.915 5.253 p<0.001 

Mode -0.524 0.186 -6.258 p<0.001  -0.585 4.092 -1.276 p=0.272 

Pitch 
Height 

0.210 0.021 2.759 p<0.01  0.156 0.452 -0.426 p=0.672 

 
 

Cue Contributions. Attack rate accounted for the largest amount of unique 

variance within both valence (23%) and arousal (60%) ratings (Figure 3 & 4). 

Mode also contributed, accounting for 28% of unique valence variance, but only 

4% of unique arousal variance. Uniquely, pitch height accounted for 5% of 

valence and less than 1% of arousal variance. The total shared variance across all 

cues accounted for 44 % of valence and 36% of arousal ratings, primarily from 

the variance shared between attack rate and mode (43% for valence ratings, 34% 

for intensity ratings). Mode and pitch height accounted for 8% of shared variance 

within the valence model and less than -1% within the arousal model. The shared 

variance contributed from attack rate and pitch height was -4% for valence ratings 

and 5% for ratings of arousal. Contribution from all three cues in variance 
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contribution remained negative across both models, with -3 % contributed to 

valence and -3% to arousal. 

 

Table 8.  
 
Commonality Analysis for Variance in Listener Ratings of Valence (Experiment 3) 
  R2y.123 =  .7620 % Explained 

Variance 
    
Unique to X1 Attack Rate . 1742 22.87% 
Unique to X2 Modality . 2119 27.80% 
Unique to X3 Pitch Height .0412 5.40% 
    
Common to X1 and X2 C (AR, Mo) .3277 43.01% 
Common to X1 and X3 C (AR, PH) -.0285 -3.74% 
Common to X2 and X3    C (Mo, PH) .0581 7.62% 
Common to X1, X2  
and X3        

C (AR, Mo, 
PH) 

-.0226 -2.96% 

    
 Totals .7620 100% 

 
 
Table 9.  
 
Commonality Analysis for Variance in Listener Ratings of Arousal (Experiment 3) 
  R2y.123 =  .5111 % Explained 

Variance 
    
Unique to X1 Attack Rate .3066 59.98% 
Unique to X2 Modality .0181 3.54% 
Unique to X3 Pitch Height .0279 0.39% 
    
Common to X1 and X2 C (AR, Mo) .1740 34.04% 
Common to X1 and X3 C (AR, PH) .0279 5.45% 
Common to X2 and X3    C (Mo, PH) -.0018 -0.35% 
Common to X1, X2  
and X3        

C (AR, Mo, 
PH) 

-.0156 -3.06% 

    
 Totals .5111 100% 
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Discussion 
  

Our third experiment investigated the consequences of using different 

labels for the ‘energy’ dimension of the circumplex model of emotion. Regression 

(Table 7) and commonality analyses (Table 8 & 9) indicate minimal change from 

participant data collected in experiment 1, where participants rated the valence 

and intensity of perceived emotion. The intensity regression model in experiment 

1 accounted for 49% (Table 3) whereas regression result for arousal ratings in 

experiment 3 accounted for approximately 48% (Table 9) of listener variance. 

This suggests both models similarly captured listener responses of perceived 

emotion within these musical excerpts.  

Although this label change had little consequence, we felt it important to 

report for the sake of comparison with a wide range of existing research as both 

intensity (Trainor & Schmidt, 2001) and arousal (Russell 1980; Schubert, 2004) 

appear in the literature. We believe this is helpful in contextualizing our results, 

for although some studies question the effectiveness of alternative 2D models to 

quantify emotion (Eerola & Vuoskoski, 2013; Schimmack & Grob, 2000), models 

based on valence and arousal are considered standard despite disagreement over 

the specifics of dimensional labels. Therefore, we simply conclude that our 

approach captures similar aspects of the perceived emotional ‘energy’ in 

experiment 1 & 3 regardless of the label used for the non-valence dimension. 
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General Discussion 
 
In this series of experiments, we explore the relationship between musical 

features and conveyed emotion using Bach’s Well Tempered Clavier (WTC) — a 

prominent composition by a well-respected composer. Here we build upon 

previous corpus analysis of Bach’s timing and pitch cues (Poon & Schutz, 2015) 

by empirically assessing their perceptual consequences. Complementing past 

work on highly emotive compositions such as film scores (Vuoskoski & Eerola, 

2011) and familiar popular music (Yang & Chen, 2012), as well as tightly 

controlled manipulations to tone sequences (Hailstone et al., 2009; Lindström, 

2006; Quinto et al., 2013), our results shed new light on the ways in which 

listeners respond to emotional cues when co-varying in a natural musical context. 

Cues such as attack rate and pitch height elicited affective consequences on 

listener judgements within musical stimuli in a manner complementing (though 

not always paralleling) those used in vocal expression. These findings are 

consistent with the view that music’s power to communicate emotion may derive 

from our capacity to process parallel features in speech. 

According to our model, attack rate, mode, and pitch height significantly 

predict ratings of valence, consistent with work documenting the effects of mode 

and articulation on valence (Gabrielsson & Lindström, 2001; Fabian & Schubert, 

2003). Listeners also relied on attack rate (timing) cues to decode emotional 

intensity/arousal, common to results on speech and music (Ilie & Thompson, 

2006; Schubert, 2004) in a manner previous with past findings—higher pitch 



Ph.D. Thesis — A. E. Battcock; McMaster University — Psychology, Neuroscience 
& Behaviour 
 

 79 

heights (Bachorowski, 1999; Hevner 1937) and faster timings (Breitenstein, van 

Lancker, et al., 2001; Juslin, 1997) are linked with positively valenced emotions 

in both speech and music. Our finding that attack rates predict both intensity and 

arousal is also consistent with previous work on music (Vieillard et al., 2008). 

This demonstrates that the relationships between cues and responses within 

unaltered passages of ecologically valid music is in some ways consistent with 

research using composed monophonic and polyphonic music (Schubert 2004; 

Vieillard et al., 2008). Here we document how Bach wove acoustic cues such as 

attack rate (timing) and mode together to shape emotional messages within 

complex polyphonic music.  

A linear model built using only three cues derived from score-based analysis 

accounted for approx. 49-79% of the variance in participants’ ratings. Models 

incorporating more features such as loudness, tempo, melodic contour, texture and 

spectral centroid previously predicted 33-73% of perceived emotion within 

Romantic era music (Schubert, 2004). Our experiments employ music from a 

different era of musical style (Baroque), where relationships between cues such as 

mode and tempo differ from those in the Romantic era (Horn & Huron, 2015; Poon 

& Schutz, 2015). Despite differences in cue use across compositional styles, it is 

evident common cues such as attack rate (timing), and mode are pivotal in 

predicting participants’ perception of emotion within music.  

Our models of emotional valence predicted more variance across 

experiments (approx. 75-79%) than of intensity/arousal (48-51%).  This contrasts 
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with work done on modelling listener’s perceived emotion, which predicts arousal 

better than valence (Eerola, 2012; Eerola, Lartillot, & Toiviainen, 2009; Korhonen 

et al., 2006; Vuoskoski & Eerola, 2011). Cross validation analyses used to compare 

models across various empirically tested datasets including classical, film, pop as 

well as mixed genre stimuli also show higher prediction rates for the perceived 

arousal than perceived valence both across (16% valence, 43% arousal) and within 

(43% valence, 62% arousal) genres (Eerola, 2011). There, systematic feature 

selection and principal components analysis selected nine orthogonal features 

covering dynamic, rhythmic, timbral and tonal aspects of the stimuli. Lower 

predictability for the intensity/arousal model may emerge in our results due to the 

lack of cues or features deemed ‘expressive’. We chose to quantify only three 

specific cues, two of which represent structural features within the music. Previous 

literature has shown a number of cues to be associated with emotional arousal, such 

as tempo (Husain, Thompson, & Schellenberg, 2002), articulation, and loudness 

(Schubert, 2004) or sound intensity (Dean, Bailes, & Schubert, 2011). Perhaps with 

the inclusion of these additional cues, our model of intensity/arousal might be more 

predictive.  

Although Eerola’s (2011) analysis included more features, our models 

surprisingly demonstrated higher predictability — from essentially two cues. As 

mentioned above, the largest contribution occurred from the cue of attack rate, 

expressed as note attacks per second. Unlike that study, we extracted cues through 

score-based analysis, rather via the MIRtoolbox program. Thus, even for 
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theoretically similar features such as event density — determined from the 

detection of onsets from the peaks evident in the amplitude envelope with respect 

to attack time and slope — attack rate may capture something different. 

Additionally, within the datasets used in Eerola (2011), ‘Classical’ stimuli 

encompassed a large mix of orchestral/ensemble recordings as well as range of 

Western musical styles including Baroque, Romantic, etc. Our findings reflect 

perceived emotion from a set of polyphonic musical examples performed on one 

instrument, derived from one style and one composer. Furthermore, it is important 

to point out model comparisons across datasets using polyphonic music indicated a 

genre specificity for how well features predict valence, although less so for arousal. 

This highlights the difference between how valence and arousal can be expressed 

in music, but also importance of exploring how cues function across styles of music, 

as core features of expressed emotion appear more effective for particular musical 

stimuli. 

Our results also indicate the presence of interactions between musical 

features such as pitch height and attack rate made only small contributions (approx. 

1% to models in experiment 1 & 3). Therefore consistent with previous research 

investigating cues in monophonic stimuli (Juslin & Lindström, 2010; Eerola & 

Vuoskoski, 2013), the main driving effect of emotion perception appears driven by 

linear relationship between individual cues. However it is possible that inclusion of 

other features would improve predictive power for intensity/arousal. 
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Strength of Musical Cues  

To assess relative cue strength, we used commonality analysis to calculate 

the unique and shared variance explained by three cues included in our model. 

Commonality analysis offers a powerful tool for picking apart contributions from 

the kinds of inter-related cues found in complex, composer created multi-voice 

stimuli. Variance partitioning of attack rate (timing), mode and pitch height 

ultimately allow us to statistically compare how much each cue contributes and 

gives a sense of their musical importance in this experimental context. 

 

Timing.  Attack rate remained the strongest predictor of explained 

variance across valence, intensity and arousal. This is consistent with research 

suggesting timing to be the most salient cue for emotion in music (Gagnon & 

Peretz, 2003), particularly for arousal (Schubert, 2004; Vieillard et al., 2008). The 

relationship observed between attack rate and arousal may stem from its general 

use in conveying information about energy. Attack rate describes the temporal 

rates of events, similar to rates of other behaviours such as speech, gait, etc. Thus 

as faster speech and walking pace suggests more energy and energy expenditure 

from an individual (Gomez & Danuser, 2007), the rate at which the musical 

structure unfolds can reflect the energy expenditure of a performer giving the 

performance, or the association between event rate with the other biologically 

important rate cues may provide listeners with information about communicated 

energy.    
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Unlike pitch and mode, attack rate represents a cue reflecting contributions 

from both composer and performer. It accounts for the structural decisions of the 

composer in the form of number of note attacks per measure, as well as the 

performer’s choice of tempo for playing these rhythms. This suggests interesting 

future directions aimed at exploring the effect of different interpretation on 

musical communication. To some extent, the strength of timing here might reflect 

our use of musically untrained participants, who may have been less sensitive to 

mode—which requires specific musical knowledge or exposure to this type of 

music (Dalla Bella et al., 2001). Thus, it remains an open question whether cue 

weights would differ substantially amongst musically trained individuals. 

 

Pitch height. In contrast to timing, pitch height played a smaller role 

(Figures 3 & 4), contributing minimally (0%-4.1% uniquely). It is possible that 

when hearing complex stimuli participants rely more on timing cues like attack 

rate than pitch height.  Our use of “natural” stimuli admittedly poses challenges 

given the music complexity of polyphonic music created for artistic, rather than 

scientific purposes. However, this approach arguably assesses the role of mode in 

a more realistic manner, as audiences frequently encounter music with more 

complex uses of mode mixing chord qualities than is found in tone sequences 

artificially constructed to focus on one type of mode.  

Music with high pitch has previously been linked to affective terms of 

both high and low arousal (Scherer & Oshinsky, 1977; Wedin, 1972a). Models of 
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listener responses to Bach’s WTC indicate pitch significantly predicted ratings of 

valence, but not arousal. This is consistent with cross-cultural work using 

monophonic Hindustani ragas, showing pitch information in the form of pitch 

range did not help listeners outside of the musical culture interpret specific, 

discrete emotions (Balkwill & Thompson, 1999), as well as work comparing 

studies using multi-genre polyphonic music, revealing pitch did not fall in the top 

ten features predicting either dimension of affective space (Eerola, 2011).   

 Our results provide an interesting counterpart to a previous study by 

Schellenberg et al. (2000) showing pitch manipulations to be more influential than 

rhythmic manipulations on affect perception. Their results indicate pitch as a 

more influential than timing when using novel, monophonic melodies performed 

by computers without harmonic context. Our contrary outcomes may reflect in 

part a different approach to timing; as our measure of attack rate considers the 

number of note onsets within the stimuli with respect to note durations, whereas 

they focus on manipulations of rhythmic structure. In addition, stimuli complexity 

may be a factor, as we employed the use of multi-voiced, polyphonic musical 

stimuli. Pitch height’s importance is likely greater in the context of single-lined 

melodies, when there are fewer voices and musical features. Therefore, our 

experiment provides insight as to how pitch height functions within a natural 

musical context. It is possible that attack density is an important aspect within 

conveyed musical emotion and as such, this study produces insight into how 
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listeners disentangle communicated emotion within non-manipulated, passages 

containing the natural co-variation of cues.   

 

 Mode. Across all three experiments, the use of musically resolved 

excerpts (experiment 2) led to the most accurate three cue model — perhaps in 

part due to increased predictive power of mode when ensuring excerpts started 

and ended in the same nominal key. Dalla Bella et al. (2001) reported that adults 

weighted mode more strongly than tempo, in contrast to children whose ratings 

seemed more reflective of tempo. Our results are inconsistent with those findings 

as here ratings by adults showed timing had a similar influence as mode in 

valence, and a much more powerful influence on arousal/intensity. However, our 

task differs from theirs in many ways, including the structure of stimuli. Our 

musical excerpts contained the kinds of complex harmonic progressions 

characteristic of classical music, in contrast to short melodies designed to clearly 

signal major vs. minor. Further research clarifying mode’s role in harmonically 

complex passages similar to those written by great composers will help to clarify 

whether past findings on mode’s effect may not generalize to passages of natural 

music with complex harmonic structure.  

Most pieces in this set mixed both major and minor chords, and some 

begin to modulate (i.e. change their home key) within a few measures. Admittedly 

this makes analyses of mode difficult than in excerpts constructed to clearly 

articulate only major or minor keys. These distinctions matter — our resolved 
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excerpts in experiment 2 attempted to control for these key changes, which 

resulted in an increase in mode’s role. There are of course, limitations in our 

method as it is not a perfect example of a singular mode/key — modulations 

and/or shifts may have occurred throughout the excerpt. Additionally, our 

musically resolved excerpts varied in duration from excerpts used in experiment 1 

& 2 (see Appendix C). As such, it is possible that stimuli duration played a role in 

the differences, and our conclusions should be interpreted in that light. 

Nonetheless, this trade-off is inevitable in evaluating music created for artistic, 

rather than scientific purposes. These “problematically complex” passages are 

more representative of the kinds of progressions moving listeners in concert halls 

and home stereos on a regular basis. Consequently, we see our work balancing 

realism and control as a helpful complement to previous research on highly 

controlled tone sequences. For although our findings are to some degree 

consistent with previous demonstrations of manipulations to single line melodies 

lacking harmonic context, they raise interesting questions surrounding mode’s 

role in conveying affect within complex polyphonic compositions.  

 

Measuring Emotion 

 Two-dimensional models are frequently used to quantify emotion in 

research (Rodà et al.,  2014; Gomez & Danuser, 2004; Schubert, 1999, 2004). 

Using this method, emotions are broken down into components of varying 

degrees along the two dimensions, in contrast to discretely distinguishable 
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categories. Russell’s 2D circumplex model of affect (1980) is dominant in the 

field of emotion cognition and considered a standard in emotional quantification. 

Despite general agreement on utilizing valence to evaluate musical affect (Carroll, 

Yik, Russell & Barrett, 1999) researchers disagree over the best practice for 

additional dimension(s) (Schimmack & Grob, 2000; Vieillard et al., 2008). 

Previous studies use labels such as tension (Ilie & Thompson, 2006), activity 

(Leman et al., 2005) and/or strength (Luck et al., 2008).  

 To provide the most connection with the vast literature on musical 

emotion, our third experiment investigated the difference between various 

dimensions (arousal and intensity) as adapted from Russell’s 2D model. Our 

results show each model accounted for similar amounts of variance across both 

dimensions. Small variations occurred between models where the valence/arousal 

model (Table 8 & 9) explained less of the variance within mean arousal and 

valence ratings than the valence/intensity model (Table 2 & 3). Overall these 

small differences suggest our experimental definition and use of ‘intensity’ 

captures the second or ‘energetic’ dimension of the 2D circumplex space, similar 

to ‘arousal’. Given debate over the best measure of assessing emotion we believe 

this direct assessment of dimensional labeling is useful to note. 

 

Concluding thoughts and broader implications 

Together our experiments demonstrate the relative importance of attack 

rate (timing), mode, and pitch on emotional perception within a complex, 
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composed musical corpus. This finding contributes to a growing literature on the 

relationships between cues and affective perception (Eerola, Friberg & Bresin, 

2013, Dalla Bella, Peretz, Rousseau, & Gosselin, 2001), by assessing cue 

contributions in a corpus of renowned musical pieces performed and heard 

frequently in concert halls around the world. The WTC was developed as a 

teaching tool for classical musicians, and is pedagogically in frequent use helping 

to refine a performer’s expressive skills involving aspects like articulation, tempo 

and phrasing (Paggioli de Carvalho 2016). Thus, a selection like the WTC affords 

further opportunity to explore cues expressed in its performance.   

As our study focused on a corpus of music by one particular composer, 

future work using a broader corpus will further explore generalizations of these 

findings. However, this focused exploration of such a prominent set of pieces 

offers a unique opportunity to explore the effects of three structural cues for 

emotion as encountered in a natural musical context. Applying empirical scientific 

methods to assess emotional encoding and decoding of acoustic cues in complex, 

naturalistic music contributes to understanding listener perception in an everyday 

context. Previous literature reinforces careful consideration of mode’s role in 

listener perception.  It’s significance in conveying emotion is frequently reported 

(Gagnon & Peretz, 2003; Hevner, 1935; Hunter, Schellenberg, & Schimmack, 

2010), however our results indicate mode’s role is perhaps less straight-forward in 

excerpts of natural music compared to musical cues such as attack rate. 

Intriguingly, this finding may help explain concerns voiced by music theorists that 
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the view of major-as-happy is overly simplified and is essentially an abstraction 

ignoring actual compositional practice (Hatten, 2004). 

 The results of the present study complement the relationships between 

perceived emotion and musical cues in the context of naturalistic musical stimuli. 

While the current study focused on Bach’s Well-Tempered Clavier, future work 

could address music of other genres and time periods in order to determine 

whether these relationships change over centuries and continents. Insight into 

these changes can inform a deeper understanding between musical teaching 

practices and cognitive outcomes on a listener. In addition, the cues used within 

our models consist of predominantly composer-controlled features. Therefore, 

future studies should also consider performer-controlled cues and performer 

interpretation to further disentangle the connection between encoding and 

decoding within musical performances.  
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 Appendix A 
 

Musical Training Survey 
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Appendix B 
 

Experiment 1 Regression Tables with Interaction Terms 
 

 
Table B1 
 
 
 
 

 Valence    Intensity  

Predictor 
Coefficients 

B SE t p  B SE t p 

Attack Rate 0.4799 0.0459 10.45 p<0.001  0.6678 0.0747 8.94 p<0.001 

Mode -0.3283 0.0438 -7.50 p<0.001  -0.0363 0.0711 -0.5 p=0.613 

Pitch Height 0.1387 0.0553 2.51 p<0.05  0.0201 0.0899 0.22 p=0.824 

AR x Mo 0.0918 0.0460 2.00 p=0.053  0.0751 0.0747 1.01 p=0.321 

AR x PH 0.0679 0.0443 1.53 p=0.133  0.1856 0.0720 2.58 p<0.05 

Mo x PH -
0.0160 

0.0553 -0.29 p=0.774  0.1040 0.0899 1.16 p=0.254 

AR x PH x 
Mo 

0.0096 0.0443 0.22 p=0.830  0.0420 0.072 0.58 P=0.564 

Adjusted R2 0.879     0.693    
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Experiment 2 Regression Table with Interaction Terms 
 
 
Table B2 
 
  Valence    Arousal  

Predictor 
Coefficients 

B SE t p  B SE t p 

Attack Rate 0.4071 0.0742 5.13 p<0.001  0.6341 0.1181 5.37 p<0.001 

Mode 0.7044 0.0988 9.40 p<0.001  0.3029 0.1116 2.71 p<0.01 

Pitch Height 0.0702 0.0988 0.71 p=0.48  0.0272 0.1471 0.185 p=0.854 

AR x Mo 0.0226 0.0802 0.28 p=0.779  0.0998 0.1194 0.836 p=0.408 

AR x PH -0.0457 0.1015 -0.45 p=0.655  -0.0266 0.1152 -0.176 p=0.861 

Mo x PH 0.0901 0.0998 0.90 p=0.372  0.0588 0.1486 0.396 p=0.694 

AR x PH x 
Mo 

0.0575 0.1023 0.56 p=0.578  -0.1161 0.1528 -0.760 p=0.412 

Adjusted R2 0.7715     0.4934    
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Experiment 3 Regression Table with Interaction Terms 
 

Table B3  
 
 
  Valence    Arousal  

Predictor 
Coefficients 

B SE t p  B SE t p 

Attack Rate 0.6440 0.0689 9.36 p<0.001  0.8954 0.0999 8.96 p<0.001 

Mode 0.4399 0.0656 6.70 p<0.001  0.0265 0.0952 0.28 p=0.782 

Pitch Height 0.2536 0.0829 3.06 p<0.01  0.0226 0.1203 0.19 p=0.852 

AR x Mo -0.1050 0.0695 -1.52 p=0.139  -0.1014 0.1009 -1.00 p=0.321 

AR x PH 0.0938 0.0670 1.40 p=0.169  0.1982 0.0973 2.04 p<0.05 

Mo x PH 0.0272 0.0838 0.33 p=0.747  -0.0389 0.0122 -0.32 p=0.750 

AR x PH x 
Mo 

-0.0382 0.0677 -0.56 p=0.576  -0.0673 0.0983 0.684 p=0.498 

Adjusted R2 0.8558     0.6962    
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Appendix C 
 

Experiment Stimuli Durations (in seconds) 
 

Table C1 
 

Piece Exp 1 & 3 Durations Exp 2 Durations 
Fugue 1 00:54 00:35 
Fugue 2 00:34 00:36 
Fugue 3 00:21 00:17 
Fugue 4 00:19 00:19 
Fugue 5 00:36 00:20 
Fugue 6 00:25 00:18 
Fugue 7 00:22 00:21 
Fugue 8 00:34 00:31 
Fugue 9 00:18 00:17 
Fugue 10 00:14 00:32 
Fugue 11 00:10 00:14 
Fugue 12 00:46 00:51 
Fugue 13 00:35 00:28 
Fugue 14 00:52 00:52 
Fugue 15 00:16 00:28 
Fugue 16 00:39 00:29 
Fugue 17 00:41 00:43 
Fugue 18 01:03 00:34 
Fugue 19 00:17 00:17 
Fugue 20 00:25 00:23 
Fugue 21 00:15 00:20 
Fugue 22 00:23 00:26 
Fugue 23 00:49 00:49 
Fugue 24 00:54 00:43 
Prelude 1 00:30 00:14 
Prelude 2 00:33 00:15 
Prelude 3 00:08 00:08 
Prelude 4 00:25 00:30 
Prelude 5 00:17 00:24 
Prelude 6 00:26 00:33 
Prelude 7 00:25 00:30 
Prelude 8 00:52 00:24 
Prelude 9 00:30 00:27 
Prelude 10 00:38 00:17 
Prelude 11 00:27 00:07 
Prelude 12 00:37 00:10 
Prelude 13 00:29 00:29 
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Prelude 14 00:19 00:26 
Prelude 15 00:24 00:30 
Prelude 16 00:40 00:14 
Prelude 17 00:20 00:21 
Prelude 18 00:29 00:12 
Prelude 19 00:19 00:18 
Prelude 20 00:23 00:12 
Prelude 21 00:24 00:28 
Prelude 22 01:05 00:50 
Prelude 23 00:27 00:20 
Prelude 24 00:44 00:22 
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Correlations between Stimuli Durations and Listener Ratings 
 
Table C2 

 
 

 Valence Ratings Intensity/Arousal Ratings 
Experiment r Value p Value r Value p Value 

     
1 -0.64 <0.001 -0.61 <0.001 
2 -0.42 <0.01 -0.38 <0.01 
3 -0.62 <0.001 -0.63 <0.001 
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Chapter 3 

 

Battcock A. & Schutz. M. (in prep). Emotion and expertise: How listeners with 

formal music training use cues to perceived emotion.  

 

Preface 

 In Chapter 2, I found that non-musician listeners use cues of attack rate, 

mode and pitch height to perceive conveyed valence and attack rate when rating 

perceived arousal. In the present chapter, I examine cue use in listeners with 

musical training. In experiment 1, I show mode predicts more variance for ratings 

of perceived valence for listeners with six or more years of formal music lessons. 

In experiment 2, I show the predictive strength of mode increases for musically 

‘resolved’ excerpts for this population, as attack rates predictive power decreases. 

This shift in predictive weights appears stronger for listeners with musical training 

as compared to untrained listeners’ data collected in Chapter 2. These experiments 

show individuals with musical training do use cues differently to perceive 

emotion, specifically with the cue of mode. 
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Abstract 
 
 

Although studies often focus on the role of the composer and performer in 

the communication of musical emotion, the communicative process is also 

influenced by the listener’s musical background or experience. As a result of 

conflicting evidence regarding the effects of musical training, questions 

surrounding the role of listener expertise in understanding conveyed musical 

emotion remain opaque. Here we examine emotional responses of musically 

trained listeners across two experiments using (1) eight measure excerpts and (2) 

musically resolved excerpts and compared them to responses collected from 

untrained listeners in Battcock and Schutz (2019). In each experiment thirty 

participants with six or more years of music training rated perceived emotion for 

48 excerpts from Bach’s WTC using scales of valence and arousal. Models of 

listener ratings predicted more variance for trained vs. untrained listeners (across 

both experiments). Using commonality analysis, Fischer Z score comparisons and 

margin of error calculations, mode explained more variance when listeners had 

music training. We found similar results in experiment 2, where mode contributed 

more to models of valence ratings. Additionally, mode also had a larger increase 

in predictive power compared to experiment 1 for trained listeners. These results 

clarify musical training’s impact on the specific effects of cues in conveying 

musical emotion.  

 
 

Keywords: emotion, perception, training, expertise, individual differences  
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Introduction 

The communication of musical emotion is both powerful and personal. 

Listeners can bring their individual histories to the listening experience (Ladinig 

& Schellenberg, 2012; Taruffi, Allen, Downing, & Heaton, 2017; Vuoskoski & 

Eerola, 2011), responding in different ways to the same musical information due 

to interactions between the musical structure and personality traits, experience and 

expertise. Musical training can influence individual differences in conveyed 

emotion, as musical training can increase sensitivity to musical structure. This can 

be assessed in different ways, such as exploring differences in the perception of 

emotional speech, perceptual responses to musical stimuli, and the neural 

processing of sound. However, there is ongoing debate about whether musical 

training can be advantageous for listeners’ perceptual processing of auditory 

stimuli like music and speech, where some evidence suggests untrained listeners 

perform similarly on certain behavioural tasks (Bigand, Vieillard, Madurell, 

Marozeau, & Dacquet, 2006).  

 
 
Evidence for Training’s Effect on Emotion Perception in Auditory Stimuli 
  
 
 Speech. Exploration on the effects of formal music training has suggested 

that music lessons help promote sensitivity to emotions conveyed in speech 

(Thompson, Schellenberg & Husain 2004). Adult participants who had at least 

eight years of musical training performed better than untrained adults at 

identifying the emotions in tone sequences constructed to mimic prosody of 
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spoken sentences conveying different emotions. A second experiment using 

sentences uttered in familiar and unfamiliar vocal languages as well as tone 

sequences indicated musicians had a superior ability to identify the emotion 

conveyed in sentences presented in an unfamiliar language. For the familiar 

sentences and tone sequences, differences in accuracy occurred only for specific 

emotions including sadness and fear. Their findings support the argument that 

one’s ability to perceive emotion in auditory information, specifically vocal 

prosody, can be facilitated by training in music. 

Musical expertise can even aid performance in vocal prosody emotion 

recognition tasks (Lima & Castro, 2011). In this study, participants heard 

sentences with emotionally neutral statements produced in seven emotional tones 

(anger, disgust, fear, happiness, sadness, surprise and neutrality), and performed a 

forced-choice identification for the emotional tone as well as an intensity 

judgement. Musicians identified the appropriate emotional tone more accurately 

across six different emotions. This effect appeared to be long lasting, as both 

younger and middle-aged musicians performed the recognition more accurately. 

However, the authors report musicians and controls exhibited similar acoustic 

profiles in the musical features that predicted their responses. They argue that lack 

of evidence for an effect of expertise could occur as a result of the discrepancy in 

criteria for level of music training across participants. Studies showing positive 

effects of musical training use participants with more extensive training (13+ 

years of musical training). It is also possible that with a dimensional approach to 
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conveyed emotion, the larger range of rating scales can pick up on more nuanced 

differences between ratings of experts and non-experts. 

 

 Music. In an attempt to replicate findings from Gabrielsson and Juslin 

(1996) on musically expressed emotion and extend on the original study, 

Akkermans et al. (2018) investigated the effect of musicality, emotional 

intelligence, and emotional contagion on how listeners decode emotion. They 

assessed musical expertise using the Goldsmith Musical Sophistication Index, or 

Gold-MSI (Müllensiefen, Gingras, Musil, & Stewart, 2014). As in the original 

study, classically trained musicians recorded each of three different melodies 

according to seven different emotional expressions. Participants heard all seven 

expressions for one melody four times over 28 trials, and rated excerpts on Likert 

scales representing the seven affective adjectives. Using hierarchical models of 

participants’ emotion ratings, the authors found that only the musical training 

predictor made a significant contribution to explaining participants’ decoding 

accuracy. This supports the argument that musical training (as measured using the 

musical training scale from the Gold-MSI) affords some perceptual benefits when 

assessing communicated emotion. It is important to note however, the calculated 

models of listener ratings exhibited a moderate effect size (R2 values ranging 

from .04 - .53) which suggests other factors play an important role in explaining 

individual differences. 
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  Additional evidence exploring the effect of musical training and age on 

perceptual abilities demonstrates that training benefits emerge for older musicians 

than younger ones when compared to matched controls (Castro & Lima, 2014). 

Regardless of age, all participants in this study had acquired at least eight 

consecutive years of formal training on their instrument and played regularly at 

the moment of testing. Participants rated expressed emotion of each short 

polyphonic excerpts on four affective 10-point intensity scales. Years of music 

training correlated with emotion categorization accuracy, where the middle-aged 

(range 40-60 years) musicians performed more accurately than non-musicians. 

The authors also determined participants’ responses for each emotion could be 

predicted by various combinations of measured structural cues including tempo, 

mode, pitch range, dissonance, and rhythmic irregularity. The model better 

predicted responses given by older musicians compared to non-musicians, which 

authors argue may be related to training advantages in recognition accuracy. 

Interestingly, differences emerged in the predictive strengths of some cues for the 

negatively valenced emotions, supporting the hypothesis that musicians may use 

cues differently to decode emotion than nonexperts.  

Furthermore, changes in mode and tempo affect how listeners with 

musical training rate perceived valence and arousal differently than those without 

training (Ramos, Bueno, & Bigand, 2011). In this study authors compared 

participants with at least six years of formal training on least one instrument to 

those with no experience in any study of music in an emotion recognition task. 
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Participants heard excerpts consisting of different modes (seven possible Greek 

modes selected) and tempo (three possible tempos selected) combinations and had 

to select one of four emotion categories representing the excerpt. The effect of 

tempo manipulations on participants’ valence ratings was felt more by musical 

experts and overall, the authors determined the effect of mode had been 

modulated by participants’ musical background for both valence and arousal 

ratings. The authors point out they found only slight differences, where both 

groups exhibited high responsiveness to the experimental manipulations. As 

suggested with speech evidence, it is possible that with more than six years of 

musical training, musicians would become increasingly more sensitive to these 

differences in contrast to those without musical experience.   

 

Musical training and brain processing evidence. Musical training 

affects how individuals process musical information. Evidence using EEG 

(Koelsch, Schmidt, & Kansok, 2002; Sherwin & Sajda, 2013) and MRI (Gaser & 

Schlaug, 2003) techniques suggest neural differences between musical experts 

and nonexperts. Those with musical experience are found to have earlier and 

longer peaks in EEG activity for anomalous music events (AMEs) like key 

changes or out-of-key pitches in an instrumental stimulus. Musical experts also 

appeared more accurate at reporting AMEs than non-experts demonstrating a link 

between brain and behavioural responses. In addition, those with musical training 

demonstrate superior processing of musical syntax, as demonstrated by early right 
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anterior negativity (ERAN) responses to harmonically improper chords. Larger 

ERAN amplitudes occurred for those with musical training when presented with 

Neapolitan chords not in-key. The authors argue this suggests those with musical 

training had more specific representations of the musical regularities, leading to 

greater responses when violations are presented. Differences in processing 

auditory stimuli may further be evident in perceptual processes including 

decoding conveyed emotion in music.  

 

Evidence for Training’s Lack of Effect  
 

However some conflicting evidence regarding the effect of musical 

training suggests trained participants perform similarly to untrained ones in tasks 

assessing accuracy and categorization of examples of musical or prosody (Juslin, 

1997; Bigand, Vieillard, Madurell, Marozeau, & Dacquet, 2005; Trimmer & 

Cuddy, 2008). As listeners gain musical knowledge from basic listening 

experience, it is possible that music listening alone is sufficient to create 

‘experienced’ listeners (Bigand & Poulin-Charronnat, 2006). Although focused on 

induced emotions, work from Bigand et al. (2005) found emotional responses to 

music only weakly influenced by musical expertise. In that study, participants 

grouped excerpts of instrumental Western music inducing similar emotions 

similarly regardless of musical background.  

Interestingly, these findings occurred even though the selected stimuli 

included excerpts of great complexity, suggesting non-musicians are able to 
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process subtle musical structures in Western music to discern emotion. Given the 

relationship between induced and perceived emotion (Hunter, Schellenberg, & 

Schimmack, 2010), these results add to the body of research trying to assess 

potential processing benefits of musical training on behavioural measures. Bigand 

& Poulin-Charronnat's (2006) review highlights several studies covering a range 

of perceptual tasks including perceived tension, abilities to anticipate musical 

events which also fail to find a difference or advantage for those with musical 

training. However, it is unclear if there are additional, more recent studies finding 

a lack of training effect. This may reflect a potential publication bias to publish 

only significant findings (Mlinarić, Horvat, & Šupak Smolčić, 2017).  

Given conflicting evidence regarding musical training’s effect 

(Akkermans et al., 2018; Castro & Lima, 2014; Koelsch, Schmidt, & Kansok, 

2002; Sherwin & Sajda, 2013), or lack thereof (Bigand, Vieillard, Madurell, 

Marozeau, & Dacquet, 2005; Trimmer & Cuddy, 2008), the effect of musical 

expertise remains opaque. Some studies fail to show advantages of musical 

training, which may occur due to the explicit nature of the tasks used. Although 

the current study follows an explicit protcol, asking participants to directly 

evaluate valence and arousal, unlike studies providing the possible discrete affect 

terms, we believe the dimensional measurement of emotion is a more reliable tool 

for rating excerpts that are less overt in their emotional message. This method is 

found to be more sensitive for ambiguous emotional content in music and shows 
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higher inter-rater consistency for listener ratings of emotion (Eerola & Vuoskoski, 

2011) 

 

Present study 
   

The primary aim of this study is to examine the relation between musical 

training perceived emotion extending on past work using polyphonic stimuli 

(Castro & Lima, 2014). Here we employ a dimensional approach to emotion (Di 

Mauro, Toffalini, Grassi, & Petrini, 2018) to investigate differences between 

musically trained and untrained individuals.  Further, our study will help clarify 

ongoing debate surrounding effect of musical expertise on the perception of 

musical structure and emotion.  Here we build off of previous work exploring the 

relationship between mode, pitch and timing and perceived emotion (Battcock & 

Schutz, 2019) by using Bach’s Well-Tempered Clavier (WTC) to explore this 

topic. This polyphonic work contains 48 pieces with equal numbers of major and 

minor modes for each key, which provides an advantage for assessing a cue of 

interest, as it gives us a ‘balanced’ set of pieces to explore the effect of mode. 

Additionally, it allows us to assess the perceptual consequences of a musical work 

that remains widely performed and studied by musicians. Using this stimulus set, 

we found timing information to be of great importance across emotional valence 

and arousal, but mode and pitch height to only play a role in perceived valence. 

Additionally, employing commonality analysis allowed us to further determine 
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the relationship between timing and mode, clarifying how these cues work 

together to convey emotional messages. 

Research exploring the influence of musical training and the perception of 

emotion often use discrete models, where participants rate perceived emotion on 

different affective adjective scales (Akkermans et al. 2018;  Castro & Lima, 2014; 

Gabrielsson & Juslin, 1996). Although that method offers precision for the 

intended affective terms selected, it may exert priming effects for listeners. Unlike 

discrete models of emotion, the dimensional approach affords ability to represent 

more variation in conveyed and perceived emotion (Eerola & Vuoskoski, 2013). 

The ability to measure components of emotion on a fine-grained scale make 

dimensional models better suited for detecting differences between trained and 

untrained listeners. Here we will compare these rating by trained musicians with 

ratings in the same paradigm by ‘non musician’ participants with less than one 

year of musical training (Battcock & Schutz, 2019).  We will assess these 

differences in two separate contexts (1) with excerpts from Bach’s WTC cut to be 

eight musical measures in length (2) using musically ‘resolved’ excerpts where 

each excerpt ends in the same nominal key as it started. Similar to Castro and 

Lima (2014) we use linear regression modelling with three quantified cues as 

predictors. The cues selected — attack rate (timing), mode and pitch height —

represent three musical features empirically proven to have a role in 

communicated musical emotion (Balkwill & Thompson, 1999; Dalla Bella, 

Peretz, Rousseau, & Gosselin, 2001; Hevner, 1935, 1937). Here we investigate 
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the predictive weights of cues across participants with and without musical 

training, to determine how expertise affects how listeners decode emotion in 

music.  

 

Experiment 1 (Eight measure excerpts) 
 
 
Method 
 
 The following procedure and stimuli follow that of Battcock & Schutz 

(2019).  As that paper provides full technical details, here we summarize that 

approach focusing on aspects of greatest relevance.  

  
 
 Participants. We recruited 30 participants with ≥6 years of formal 

musical training from McMaster University and attendees of the Ontario Music 

Educators Association’s General Assembly held in Hamilton, Ontario (25 

females, ages M=27.36, SD= 13.69, years of training M=6.73 SD=0.45). On 

average, participants scored in the 71st percentile of the overall General 

Sophistication score and in 79th percentile on the Musical Training subscale using 

the Goldsmiths Musical Sophistication Index (Gold-MSI) as based on norms 

reported by the Müllensiefen et al. (2013). Participants either received course 

credit, or compensation for their participation or participated as volunteers. The 

experiment met ethics standards according to the McMaster University Research 

Ethics Board. 
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 Musical Stimuli. Our stimuli consisted of excerpts from all 48 pieces of 

Bach’s Well-Tempered Clavier (Book 1) as recorded by Friedrich Gulda (J. S. 

Bach, 1973). Each excerpt contained the first eight musical measures of the pieces 

and featured a two-second fade out starting at the ninth measure. Excerpts lasted 

7-64 seconds in duration (M=30.2 seconds, SD=13.6). All excerpts had been 

prepared using Amadeus Pro. 

 

 Cue Quantification. Pitch height information is calculated using an 

approach used in Huron, Yim, & Chordia (2010) and Poon & Schutz, (2015) by 

summing duration-weighted pitch values within each measure, divided by the sum 

of note durations within that measure. Attack rate calculations are based on the 

tempi chosen by Friedrich Gulda’s in his performance of the WTC — the 

recording used for this experiment. In addition, we re-calculated information as 

needed for Experiment 2 (for excerpts of variable length rather than eight 

measures). Pitch height values varied from 33.13-53.00 (M=43.90, SD=4.03) 

corresponding ~F3 to ~ C#5, attack rate information for eight measure excerpts 

range 1.3-10.13 attacks per second (M=4.91, SD=2.18). We operationalized 

modality as the tonal center of the piece, as indicated by the denoted key signature 

of each score, coded dichotomously (0=minor, 1=Major).   

 

Design and procedure. Experiment occurred in two locations, the Ontario 

Music Educators Association (OMEA) general assembly held at the Sheraton in 
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Hamilton, Ontario and McMaster University. Participants from the OMEA event 

filled out a consent form and completed the experiment in an isolated room. 

Following the consent form, participants from McMaster University completed 

the experiment in a sound-attenuating booth (IAC Acoustics, Winchester, US). 

For both testing locations, the experiment ran on PsychoPy (Peirce et al., 2019), a 

Python-based program on either a 2014 MacBook Air (OS X 10.9.4). Participants 

heard stimuli at a consistent and comfortable listening level through Sennheiser 

HDA 200 headphones and provided responses using the MacBook’s trackpad.  

Research assistants verbally instructed each participant to rate the 

perceived emotion after each excerpt using two scales: valence and arousal. The 

instructions explained valence as referring to how positive or negative the 

expressed emotion sounded, as rated on a scale from 1 (negative) to 7 (positive), 

arousal represented the energy of the emotion which is to be rated on a scale from 

1 (low) to 100 (high). Participants had been encouraged to use to the full range of 

the scales and reminded to rate the emotion they heard and not the emotion they 

felt. Participants completed four practice trials before beginning the experiment, 

using recordings of the same album performed by Angela Hewitt (Bach, 1998). 

Each participant listened to an individually randomized order of the 48 excerpts. 

Following the experiment, participants completed the Goldsmiths Musical 

Sophistication Index (Müllensiefen et al., 2014). 
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Results 
 

Participants’ valence ratings (M=4.20, SD=1.57) ranged from 1 to 7 and 

arousal ratings (M=55.98, SD=25.04) ranged from 1 to 100.  We calculated 

Cronbach’s alpha for listener ratings across all 48 excerpts to be a= 0.84 for 

valence ratings and a=0.87 for arousal ratings, suggesting high internal 

consistency among listener responses. Mean ratings of valence and arousal are 

positively correlated (r=.39, p<.001), indicating our two dimensions did not 

function independently. Furthermore, there is a significant positive correlation 

between attack rate and mode (r(46)=0.431, p<0.01), demonstrating a relationship 

between faster attack rates in major modes. This relationship is also supported 

evidence from t-test analyses (t(46)=-3.2419, p<0.05).2 Pitch height correlated 

significantly with neither attack rate (r(46)=-0.138, p=0.350) nor modality 

(r(46)=0.142, p=0.334). 

 

Regression Analysis. 

 We assessed our cues as potential predictors for mean ratings of valence 

and arousal using standard linear multiple regression analysis from the R 

Statistical Package. The Major mode is chosen as the reference level for mode, 

meaning the remaining level of our categorical variable (minor) is contrasted 

against it in the analysis. For mean ratings of valence, all three cues, attack rate, 

mode and pitch height emerged as significant predictors (Table 1). The regression 

 
2 Correlations previously reported in Battcock & Schutz (in press) 
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model for mean arousal ratings indicated only attack rate as a significant predictor 

(Table 1).  

 The three-cue predictor models accounted for 81.2% of the variance in 

valence ratings (adjusted R2=0.812), F(3,44)=68.68, p <.001 in contrast to 49.8% 

of variance in arousal ratings (adjusted R2=0.498), F(3,44)=16.56, p<.001. 

Participants’ predicted valence rating is equal to 0.549 + 0.248 (attack rate) – 

0.933(mode) + 0.102 (pitch height). Valence ratings increased 0.248 for each note 

attack per second increase in attack rate, decreased 0.933 for the switch from 

major to minor mode and increased 0.102 for each increase in pitch. The predicted 

arousal rating is equal to 0.474 (attack rate), where arousal ratings increase 0.474 

for each note attack per second increase in attack rate.  

 
 
Table 1.  
 
Regression model for normalized attack rate, mode, pitch height on valence and 
arousal ratings. Beta values indicate strength and direction of relationship 
between each predictor variable and valence and arousal ratings. Default state for 
mode is Major. 
 
 
  Valence    Arousal  

Predictor 
Coefficien
ts 

B SE t p  B SE t p 

Attack 
Rate 

0.248 0.049 5.023 p<.001  0.474 0.085 5.570 p<.001 

Modality -0.933 0.099 -9.384 p<.001  -0.235 0.171 -1.372 p=.177 

Pitch 
Height 

0.0102 0.0455 2.243 p<.05  0.050 0.078 0.634 p=.529 
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R2   .812     .498  

F   68.68     16.56  

 

Commonality Analysis.   

We used this technique to partition the R2 of our models to reveal how 

much variance our predictors can explain independently of or in common with the 

other predictors in our model. Commonality analyses allows for a better 

understanding of regression models as it reveals relationships between the total, 

direct and indirect effects of regression predictors (Ray-Mukherjee et al., 2014). 

Negative values are possible using this method, as they can emerge as a 

consequence of correlations between predictors with opposite signs (Pedhazur, 

1997) or due to a ‘suppressor’ variable included in the model that removes some 

amount of error variance of another predictor (Capraro & Capraro, 2001). 

Furthermore, some researchers argue this indicates a predictor has no to little 

influence (Frederick, 1999). We found negative commonality values in our 

application of commonality analysis for ratings of valence and arousal (Battcock 

& Schutz, 2019). 

  For this study we extend our previous approaches involving commonality 

analysis to use bootstrap methods providing confidence intervals for the 

estimations of cue. We then examined the cue contributions to the bootstrapped 

data from the participant response using commonality analysis to decompose the 

R2 value into shared and unique variance of the model (Tables 2 & 3). Similar to 
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findings from Battcock & Schutz (2019), mode accounted for the largest amount 

of explained variance (38.9%) of valence ratings, followed by attack rate (14.8%) 

and pitch height (3.1%). This indicates that even when partialling out any 

common or shared variance, mode remains the strongest predictor of valence 

ratings. The relation between attack rate and mode predicted the most shared 

variance (40.2%) compared to shared contributions of attack rate and pitch height 

(-2.15%) or mode and pitch height (8.21%) or all three cues combined (-2.96%). 

The larger variance amount common to mode and attack rate is reflective of the 

correlation we found between these two cues.  

 For the variance of arousal ratings, attack rate is the strongest predictor, 

accounting for 63.2%, followed by mode (3.5%) and pitch height (0.5%). As in 

our model for valence ratings, the shared contribution of attack rate and mode 

predicted the most variance (33.3%). Contributions of other cue combinations 

predicted less than 1% of the model variance (Table 2).  

 

Table 2.  
 
Commonality Analysis for Variance in Listener Ratings of Valence (experiment 1) 
 
  
  R2y.123 =   

0.8334 
95% CIs % 

Explained 
     
Unique to X1 Attack Rate 0.1233 [0.048, 0.158] 14.80% 
Unique to X2 Modality 0.3239 [0.257, 0.427] 38.86% 
Unique to X3 Pitch Height 0.0254 [0.011, 0.032] 3.05% 
     
Common to X1 
and X2 

C (AR, Mo) 0.3350 [0.275, 0.342] 40.20% 
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Common to X1 
and X3 

C (AR, PH) -0.0179 [-0.02, -0.010] -2.15% 

Common to X2 
and X3    

C (Mo, PH) 0.0684 [0.051, 0.077] 8.21% 

Common to 
X1, X2  and X3        

C (AR, Mo, PH) 0.0247 [-0.026, -0.021] -2.97% 

     
 Totals .8334  100 

*The empirical 95% CIs were computed using the percentile method on 
bootstrapped samples. 
 
 
 
 
 
Table 3.  
 
Commonality Analysis for Variance in Listener Ratings of Arousal (experment 1) 
 
  R2y.123 =   

0.5429 
95% CIs* % 

Explained 
     
Unique to X1 Attack Rate 0.3428 [0.281, 0.371] 63.15% 
Unique to X2 Modality 0.0191 [0.010, 0.036] 3.53% 
Unique to X3 Pitch Height 0.0027 [0.000, 0.012] 0.49% 

 
     
Common to X1 
and X2 

C (AR, Mo) 0.1809 [0.143, 0.213] 33.33% 

Common to X1 
and X3 

C (AR, PH) 0.0029 [-0.012, 0.010] 0.54% 

Common to X2 
and X3    

C (Mo, PH) 0.0050 [0.003, 0.011] 0.93% 

Common to 
X1, X2  and X3        

C (AR, Mo, 
PH) 

-0.0106 [-0.013, -0.005] -1.96% 
 

     
 Totals  .5429  100 

*The empirical 95% CIs were computed using the percentile method on 
bootstrapped samples.  
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Comparison to Non-Expert Data 
 
 Comparing ratings of these musically trained participants with ratings by 

those without training (Battcock & Schutz, 2019) allows for useful insight into 

differences that may emerge in how listeners perceive emotion. Overall, the 

model for valence ratings for listeners with music training accounted for 

proportionally more of the total variance (83.3%) than found for untrained 

listeners (76.2%) (Battcock & Schutz, 2019). We found a similar trend for models 

of arousal ratings where the model for listeners with music training explained 

proportionally more variance (54.3%) than for those with less than one year of 

training (51.1%), indicating our three-cue model to fit the perceptual ratings of 

musically trained listeners better.  

 In order to more directly compare cue weights between the two groups of 

listeners, we performed Fisher’s Z-test to compare beta weights from trained and 

untrained listener models (Clogg, Petkova, & Haritou, 1995; Steiger, 1980). 

Analyses on the regression weights in models for ratings of valence show all cues 

have equivalent weights across the two groups for attack rate (Z=0.794, p=.785), 

mode (Z=-0.989, p=.184) and pitch height (Z=0.069, p=.755). However using this 

method on regression beta weights fails to address any correlations between the 

predictors (Ray-Mukherjee et al., 2014), which we found in both correlation and 

commonality analyses (See Appendix C and Figure 1). Therefore, commonality 

analysis is crucial to break down the relationship between unique and shared 

variance explained by our predictors.  
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 Although commonality analysis is helpful in teasing apart the relative 

strength of different cues, it does not in and of itself provide a straightforward 

way to assess the significance of differences in cue strength. Therefore, we turned 

to bootstrapping in order to explore whether musical training meaningfully 

increased the strength of any particular cues. Bootstrapping involves repeatedly 

resampling from the original data set to create as multiple simulated data sets. 

These simulated data sets afford hypothesis testing and sample statistics in cases 

where these analytic solutions are not available (Mooney & Duval, 1993). For the 

purposes of our study, the bootstrapping method we used a resampling with 

replacement for 1000 runs with a sample of 30 (our actual sample included 30 

participants). Descriptive information for the bootstrapped data can be found in 

Appendix A.  

From the generated data sets we calculated confidence intervals (CIs) for 

each of the coefficients of the commonality analysis. With the bootstrapped CIs, 

we calculated the average margin of error (MOE) estimation for CI overlap for the 

coefficient representing the unique contribution of mode from our commonality 

analysis on the ratings of trained and untrained listeners. Using this estimation, an 

overlap of ‘moderate’ to ‘small’ of the confidence intervals can equate to a p 

value of £ .053 (Cumming, 2012). In this case, moderate overlaps are calculated to 

be half of the average MOE of the two groups. For our data, the criterion value is 

 
3 Although this method is not standard in hypothesis testing, the benefit of using 
confidence intervals instead of p-values has been argued for across different fields 
(Ranstam, 2012; Rigby, 1999). 
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0.08 and the calculated overlap of confidence intervals is 0.02 (See Appendix C 

for details on the calculation), indicating that the coefficients for these two groups 

are likely to be significantly different from each other using an  a level of .05. 

 

 

 

Figure 1. Unique and shared variance of valence ratings by musical cue. 
Individual bars depict cue weights calculated for each group of participants for 
Exp 1 (red=non musicians, blue=musicians). Error bars represent 95% confidence 
intervals. Attack rate uniquely explains more variance for those without musical 
training and modality explains a large majority of variance for those with musical 
training, although specific contributions vary. 
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Figure 2. Unique and shared variance of arousal ratings by musical cue. 
Individual bars depict cue weights calculated for each group of participants for 
Exp 1 (red=non musicians, blue=musicians). Error bars represent 95% confidence 
intervals. Cue weights appear to explain variance similarly across participants 
with and without musical training.  
 
 

 
Experiment 2 (Musically resolved excerpts) 

 
 Our first experiment assessed how listeners use cues of attack rate, mode 

and timing to perceive emotions in musical excerpts cut to be eight musical 

measures in length. One limitation of using precomposed stimuli such as the WTC 

is an inability to control for modulations or musical key changes that occur 
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throughout the excerpts. These modulations result in changes in mode from major 

to minor keys or vice versa as the excerpt unfolds. Therefore, we ran a second 

experiment as in Battcock and Schutz (2019) ensuring excerpts ended to sound 

musically ‘resolved’, often ending in the piece’s nominal key (e.g. the C minor 

excerpt for the experiment is cut at the point it returns to C minor). In many ways 

this offers a clearer assessment of modality’s strength, although it by definition 

results in excerpts varying in duration. For this experiment we hypothesized (1) 

mode would increase in its importance for valence ratings based on ratings from 

those with musical training and (2) would be more important for trained compared 

to untrained listeners. 

 

Method 
 

We used an identical procedure for experiment 2, but with stimuli of 

variable length (in contrast to the eight measure excerpts in experiment 1) cut to 

be musically ‘resolved’, often ending in the piece’s nominal key. As in 

experiment 1, participants included 30 individuals with ≥6 years of formal 

musical training from McMaster University and volunteers from the Ontario 

Music Educator’s Association’s General Assembly (21 females, ages M=25.07, 

SD=11.92, years of training M=6.57 SD=0.50). On average, participants scored in 

the 67th percentile on the General Sophistication scale and within the 79th 

percentile of the Gold-MSI Musical Training subscale. Undergraduate participants 

from McMaster University received course credit, or compensation for their 
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participation. This experiment met McMaster University Research Ethics Board 

ethics standards. Musical stimuli ranged from 7-52 seconds (M=25.4 seconds, 

SD=11.0).  

 

 Cue Quantification. Pitch and timing information corresponded the 

quantification of each cue within the specific number of measures required to 

reach a ‘resolution’ back to the original mode for each excerpt. Pitch height 

values varied from 33.13-53.13 — corresponding ~F3 to ~ C#5 — (M=43.87, 

SD=4.15), attack rate information ranged 1.30-10.13 attacks/second (M=4.87, 

SD=2.22). We coded modality in the same way as in experiment 1 (0=minor, 

1=Major). 

 

Results 
 

Valence ratings (M=3.94, SD=1.58) ranged from 1 to 7 and arousal ratings 

(M=53.78, SD=25.33) ranged from 1 to 100. Mean values of listener ratings of 

valence and arousal are significantly and positively correlated r=0.44, p<.001, 

indicating a lack of independence between our two dimensions as in experiment 1. 

The Cronbach’s alpha values for ratings across our 48 excerpts are a= .79 for 

valence ratings and a=.95 for arousal ratings, suggesting less consistency among 

listener ratings of valence than arousal, however both values fall in the acceptable 

range. As in experiment 1, we calculated a significant positive correlation 
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between the cues of attack rate and modality (r(46)=0.435, p<.001).4  Pitch height 

significantly correlated with neither attack rate (r(46)=-0.165, p=.261) nor 

modality (r(46)=0.126, p=.392).   

 

 Regression analysis.  
 
 As with experiment 1, we ran linear regression analyses to assess 

predictors for listener ratings of emotion. All three cues significantly predicted 

participants’ valence ratings, but only attack rate predicted arousal ratings (Table 

4). The three-cue model for valence ratings accounted for 87% of variance 

(Adjusted R2= 0.874), F(3,44)=110, p<.001). Predicted valence ratings are equal 

to 0.525 + 0.234 (attack rate) – 1.220 (mode) + 0.073 (pitch height), where 

valence ratings increase 0.234 for each increase in note attacks per second, 

decrease 1.220 from the switch to minor mode and increase 0.073 for each 

increase in pitch height. Our arousal rating model accounted for 52% of variance 

(Adjusted R2=0.523), F(3,44)=18.18, p<.001, where predicted arousal ratings are 

equal to 0.534 (attack rate). As such, arousal ratings increased 0.534 for each 

increase in note attacks per second.  

Across the two experiments, our models for valence ratings in experiment 

2 (87.4%) accounted for proportionally more total variance than in experiment 1 

(81.2%). The model for arousal ratings in experiment 2 (52.3%) also accounted 

for proportionally similar amounts of the total variance as seen in experiment 1 

 
4 Correlations reported in Battcock & Schutz (in press) 
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(49.38%).  Comparing regression weights of cues between experiment 1 and 2 

illustrates that mode’s effect is significantly different (Z=-1.745, p <.05). This 

difference in mode’s regression weight suggest mode is more predictive of 

valence ratings when individual pieces begin and end in the same mode. Attack 

rate and pitch height have equivalent regression weights in the two groups 

(Z=.115, p=.544 & Z=.156, p=.564, respectively), indicating no change in how 

listeners use these cues to make their emotion judgements.  

 
 
Table 4.  
 
Regression model for attack rate, mode, pitch height on valence and arousal 
ratings. Beta values indicate strength and direction of relationship between each 
predictor variable and valence and arousal ratings. Default state for mode is 
Major. 
 
 
  Valence    Arousal  

Predictor 
Coefficien
ts 

B SE t p  B SE t p 

Attack 
Rate 

0.234 0.048 4.892 p<.001  0.534 0.091 5.842 p<.001 

Modality -1.220 0.095 -12.802 p<.001  -0.024 0.182 -1.119 p=.269 

Pitch 
Height 

0.073 0.043 1.694 p=.097  -0.006 0.083 -0.070 p=.944 
 

R2   .874     .523  

F   110     18.18  
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 Commonality analysis. Uniquely, mode predicted the largest amount of 

variance associated with valence responses, accounting for 49.1% (Table 5). 

Attack rate and pitch height contributed 8.6% and 1.6% respectively. Together, 

attack rate and mode predicted the largest amount of shared variance in the model 

(37.3%), with a small amount predicted by the relation between mode and pitch 

height (7.7%). Values for the shared contributions between attack rate and pitch 

height and all three predictors remained below 0% (-1.2% and -3.1% 

respectively). 

 As in experiment 1, the R2 breakdown of the model of arousal ratings 

(Table 6) indicates attack rate as the strongest predictor, uniquely accounting for 

65.9% of the model variance. Mode and pitch height uniquely predicted only 

2.6% and 0.5% of the variance from listener responses. With regards to shared 

contributions, only the relation between attack rate and mode predicted more than 

1% of model variance (31.6%). Shared variance predicted by attack rate and pitch 

height accounted for 0.6%, and shared variance predicted by mode and pitch 

height 0.8%. The shared contribution of all three cues in the model predicted -

1.9% of arousal rating variance. 

 

 

 

 

 



Ph.D. Thesis — A. E. Battcock; McMaster University — Psychology, Neuroscience 
& Behaviour 
 

 135 

 
Table 5.  
 
Commonality Analysis for Variance in Listener Ratings of Valence (Experiment 2) 
 
 
  R2y.123 =   

0.8740       
  95% CIs* % 

Explained 
     
Unique to X1 Attack Rate 0.0759 [0.039, 0.100]   8.56% 
Unique to X2 Modality 0.4358 [0.350, 0.500] 49.12% 
Unique to X3 Pitch Height 0.0014 [0.002, 0.016]   1.57% 
     
Common to X1 
and X2 

C (AR, Mo) 0.3310 [0.329, 0.375] 37.31% 

Common to X1 
and X3 

C (AR, PH) -0.0103 [-0.012, -0.002] -1.16% 

Common to X2 
and X3    

C (Mo, PH) 0.0681 [0.038, 0.059] 7.68% 

Common to 
X1, X2  and X3        

C (AR, Mo, 
PH) 

-0.0273 [-0.308, -0.026] -3.08% 
 

     
 Totals  0.8740        100 

*The empirical 95% CIs were computed using the percentile method on 
bootstrapped samples.  
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Table 6.  
 
Commonality Analysis for Variance in Listener Ratings of Arousal (Experiment 2) 
 
 
  R2y.123 =   

0.5393       
95% CI* % 

Explained 
     
Unique to X1 Attack Rate 0.3553 [0.308, 0.380] 65.88% 
Unique to X2 Modality 0.0137 [0.007, 0.020] 2.55% 
Unique to X3 Pitch Height 0.0027 [0.00, 0.001] 0.49% 
     
Common to X1 
and X2 

C (AR, Mo) 0.1703 [0.170, 0.204] 31.57% 

Common to X1 
and X3 

C (AR, PH) 0.0033 [0.013, 0.029] 0.61% 

Common to X2 
and X3    

C (Mo, PH) 0.0041 [-0.001, 0.002] 0.77% 

Common to X1, 
X2  and X3        

C (AR, Mo, 
PH) 

0.0101 [-0.015, -0.012] -1.86% 

     
 Totals  0.5393        100 

 
*The empirical 95% CIs were computed using the percentile method on 1000 
bootstrapped samples.  
 
 
 
Comparison to Non-Expert Data 
 

Further analyses on the regression models for valence ratings between 

trained and untrained listeners indicate our rating model of listeners with music 

training accounted for proportionally more of the total variance (83.3%) than for 

the untrained listeners (76.2%). We found a similar trend for arousal with more 

variance explained in the ratings made by those with music training (53.9%) than 

those with than one year of training (51.1%). We also calculated differences 

between predictors in experiment 1 and 2 for the valence ratings of untrained 
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listeners using regression weights between experiments. This revealed mode has 

significantly different regression weights in experiment 1 and experiment 2 

samples (Z=-1.745, p <.05). 

Comparing beta coefficients from our regression models for trained and 

untrained listeners reveal mode to have a significantly different regression weight 

for the model of listener responses from those with and without musical training 

(Z=-1.854, p<.05). The cues of attack rate and pitch height have equivalent 

weights across the two groups (Z=0.373, p=.705 & Z=0.067, p=.749).  

 

Comparison between experiments 1 and 2. Models of listener ratings for 

valence showed an increase in model fit for both trained (80% to 87%) and 

untrained listeners (76% to 81%) of 6-7% between experiment 1 and 2, where for 

both groups our three-cue model better predicted ratings in experiment 2. 

Regression models for the ratings of arousal demonstrated a different pattern: 

Model fit had a slight increase between experiment 1 and 2 for trained listeners 

(52% to 55%) however decreased in fit for untrained listeners (50% to 46%). 

Results of the commonality analysis on arousal ratings indicates a difference 

between how our listener groups use attack rate: attack rate predicts more variance 

in experiment 2 compared to experiment 1 for trained listeners and predicts less 

for untrained listeners. Overall, the model fit appeared better for ratings from 

musically trained listeners, suggesting listeners with music training may use the 

cues more systematically than untrained listeners.  
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The predictive weight of attack rate and pitch height did not change 

between experiments for neither group of listeners based on the Fisher Z test of 

beta weights. However, for trained listeners, the predictive weight of mode 

increased from experiment 1 to experiment 2 (Z=-1.745, p <.05). For untrained 

listeners the weight of mode did not change (Z=-1.0846, p=0.14). The results from 

this analysis suggests that the salience of mode increased for the excerpts that 

ended in the same nominal key — but only for musically trained listeners. 

Although the Fisher Z score emerges as nonsignificant, commonality analyses on 

the bootstrapped data shows mode’s unique explanatory power increased from 

20.5% to 27.2% (See Appendix B1 & B3) for untrained listeners when shared and 

unique contributions are taken into consideration. For musically trained listeners, 

mode’s predictive weight increased from 32.4% to 43.6% (Tables 2 and 5).  
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Figure 3. Unique and shared variance of valence ratings by musical cue. 
Individual bars depict cue weights calculated for each group of participants for 
experiment 2 (red=non musicians, blue=musicians). Error bars represent 95% 
confidence intervals. Attack rate uniquely explains more variance for those 
without musical training and modality explains a large majority of variance for 
those with musical training, although specific contributions vary. 
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Figure 4. Unique and shared variance of arousal ratings by musical cue. 
Individual bars depict cue weights calculated for each group of participants for 
experiment 2 (red=non musicians, blue=musicians). Error bars represent 95% 
confidence intervals. Cue weights appear to explain variance similarly across 
participants with and without musical training. 
 

Discussion 

 The results from our set of experiments demonstrate differences in how 

listeners with musical training use musical features to perceive emotion compared 

to responses collected from untrained listeners (Battcock & Schutz, 2019). Our 

data is consistent with the broad findings of Battcock & Schutz (2019) indicating 

the relation between mode, timing and pitch with perceived emotion in music. Yet 
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here we complement and extend those results by exploring effect of musical 

training on the relative strength of cues used to communicate musical emotion. 

Our findings also further work done assessing the structural properties of music 

with listener ratings of perceived valence (Gagnon & Peretz, 2003) and arousal 

(Schubert, 2004; Vieillard et al., 2008), as we find mode more important for 

trained listeners in assessments of valence. Additionally, these results further 

illustrate that a model built on three cues derived from a score-based analysis can 

explain more variance for listeners with musical training.  

 Compared to the bootstrapped data from Battcock and Schutz (2019), 

models of ratings from trained listeners explain more variance for both valence 

and arousal ratings. This is consistent with the idea that trained listeners are more 

sensitive to particular cues than untrained listeners. Although Fisher’s Z score 

analysis on predictor beta weights for valence ratings between the two populations 

indicated nonsignificant differences, further analyses using commonality analysis 

(Table 2) and MOE calculations on the bootstrapped CIs (Appendix C) revealed 

appreciable differences of the unique variance explained by mode (34.2% for 

trained listeners, 20.5% for untrained listeners). Mode’s greater role for trained 

listeners is consistent with previous developmental work showing exposure or 

increased experience can change the relative weight given to mode when making 

assessments of emotion (Dalla Bella et al., 2001). This suggests that although 

structural cues generally affect listeners regardless of training, the specific mix of 

their effects is dependent upon the presence of musical training.  
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 The acoustic profile generated from arousal ratings for trained participants 

appeared similar to the one calculated from bootstrapped ratings of untrained 

participants (Appendix B). The three cue models of arousal for each group only 

differed by 3% overall, which is a result of the increase of uniquely explained 

variance by attack rate for the trained listeners. Furthermore, visual inspection of 

the commonality analysis coefficients with confidence intervals do not suggest 

meaningful differences. 

Grounding this study in well regarded music by Bach music offered an 

opportunity to explore naturally co-varying cues such as mode and timing, an 

issue difficult to explore when using more controlled stimuli (Schutz, 2017). 

Although we have used commonality analysis in an exploratory manner in 

previous studies (Battcock & Schutz, 2019), here our additional application of 

bootstrapping allowed us to directly assess differences in cue weights in a new 

way. This provides the novel insight that Bach’s decision to co-vary cues such as 

mode and timing results in multiple pathways for listener detection of emotion to 

“converge”— whether they focused more on modality (experienced musicians) or 

timing (less experienced listeners). It is possible that part of the success of 

compositions such as the WTC lies in composers’ innate ability to convey 

messages in redundant manners. Although future research is needed to explore 

this issue, this outcome is one of the benefits of using the WTC to balance issues 

of musical ecological validity with experimental control.   
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 In experiment 2, we used musically ‘resolved’ stimuli to assess if the 

predictive strength of mode would increase when excerpts are cut to end in the 

same nominal key they began. Again, we see similar overarching trends as found 

in the untrained listeners used by Battcock and Schutz (2019) with respect to the 

relative weights of cues across ratings of valence and arousal. However, this 

exploration using trained listeners illustrates the greater emphasis placed upon 

mode as a result of listener experience. Additionally, further examination of 

emotion ratings between experiment 1 and 2 revealed stronger effects of mode in 

the musically ‘resolved’ excerpts for trained listeners than untrained listeners. 

As in experiment 1, we see our models of listener ratings explained more 

variance in valence ratings for listeners with training (87.4%) than those without 

(81.1%). There did not appear to be any differences between models of arousal 

ratings for each population (54% explained for both). These results indicate the 

influence of individual differences, specifically differences in musical training, on 

the perception of emotional valence. In addition, we hypothesized mode would be 

more important for listeners with music training for valence ratings. Our results 

demonstrated that in contrast to bootstrapped responses from untrained 

participants (27.2%) collected by Battcock & Schutz (2019), mode uniquely 

predicted more variance for ratings of listeners who had formal music training 

(43.6%) (Figure 3). This is based on our MOE calculations of the bootstrapped 

confidence intervals (Appendix C) of the commonality analyses.  
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 The breakdown of cue contributions for arousal ratings for participants 

with musical training showed similar values and trends as in experiment 1. These 

appeared to follow the cue profile for ratings from participants without musical 

training (See Appendix B). As we did not see any difference between listeners for 

cue profiles in experiment 1, we did not predict any differences in the calculated 

cue weights. In addition, the visual inspection of the commonality analysis 

coefficients with confidence intervals confirmed a lack of meaningful differences. 

 

General Discussion 

How does musical training affect the specific ways in which musical 

structure shapes emotional communication? We explored this question with two 

experiments, examining how listeners with musical training use cues of timing, 

mode and pitch height, compared to untrained listeners. Extending on our earlier 

work using Bach’s Well-Tempered Clavier (Battcock & Schutz, 2019) as well as 

studies that employ excerpts recorded to convey basic emotions (Akkermans et 

al., 2018; Castro & Lima, 2014), here we show the effect of mode varies as a 

result of a listener’s musical training. In light of counterevidence suggesting 

listeners with music training perform similarly to untrained listeners on 

behavioural tasks, these results underscore the presence of nuanced differences in 

how listeners process emotion that perhaps can often be difficult to capture based 

on the experimental methods and measures used. 
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Musical ‘Expertise’ and Perception/Perceptual Differences 

Consistent with Lima and Castro (2011), we found similar trends in the 

cue profiles for features predicting listener responses to auditory stimuli for both 

trained and untrained participants. In their study the authors used discrete rating 

methods to gather emotional judgements on samples of vocal prosody and focused 

on regression analyses for each emotion to determine the cue profiles. Unlike their 

study, here we used commonality analyses in addition to regression modeling and 

found a difference in the strength of how mode predicted listener ratings of 

emotion. This novel approach illustrates that mode, a cue unique to music, 

predicted more variance for valence ratings for participants with musical training. 

Further it highlights the usefulness of using commonality analyses to tease apart 

the relationships between predictors and explained variance, demonstrating 

benefits of musical training with respect to specific cues conveying emotional 

information  

 Previous research exploring the effect of musical training and age using 

polyphonic, or single-lined instrumental excerpts demonstrated an influence of 

expertise for older participants, as years of musical training related to recognition 

accuracy (Castro & Lima, 2014). Their study focused on several acoustic cues 

such as tempo, mode and pitch range in their models of listener ratings and 

determined a range of explained variance dependent on the conveyed emotion as 

well as the significant predictors of listener ratings. There, regardless of music 

training participants could identify the intended emotions with high accuracy, 
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however the authors found differences in how well the models of listener ratings 

fit for listeners with and without musical training. As such the authors suggest the 

effect of expertise might be small or difficult to detect. Similarly, our results 

indicated differences in how the models fit for trained (80% and  52% for valence 

and arousal in experiment 1, 87% and 55% for valence and arousal in experiment 

2) and untrained (76% and 50% for experiment 1, 81 % and 54% for experiment 2 

based on bootstrapped values) participants, particularly for ratings of valence. 

This suggests differences in how these groups of listeners are using cues of attack 

rate, mode and pitch height to make assessments of perceived emotion.  

Further, Castro and Lima (2014) found variations in how cues predicted 

rating variance for negative emotions such as sad or scary, across younger and 

older musicians. The pattern of beta weights between trained and untrained 

listeners appeared similar, which the authors argue as suggesting listeners used 

similar inference rules in their perception of emotion. This had been determined 

using a multiple simultaneous regression analyses from collected intensity ratings 

for each of the four potential affect terms given for each excerpt. The results of 

our study, however, demonstrate a difference in the predictive weight of mode 

between trained and untrained listeners. In addition, we found the unique variance 

explained by mode increased more from experiment 1 to 2 for musically trained 

listeners than for untrained listeners, suggesting those with training were more 

sensitive to our resolved excerpts. As mentioned previously, differences may have 

emerged as a result of the stimuli used, as excerpts used in Castro and Lima 
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(2014) represented experimentally composed excerpts conveying specific 

intended emotions. Our stimuli came from a precomposed set by a widely 

recognized composers — crafted for artistic purposes rather than for a specific 

research aim. It is possible that with more ambiguous stimuli, differences in cue 

uses may emerge when emotional signal requires more attention or consideration 

in the decoding process.  

 

Musical training and mode. The relationship between major and minor 

modes and perceived positive or negative emotions respectively, is hypothesized 

to develop through learned associations, or acculturation from exposure and 

experience with Western culture music. Understanding of the major/minor 

distinction with musical emotions emerges through development, as after five 

years of age children are found to use mode to match melodies to emotionally 

valenced faces (Dalla Bella et al., 2001; Gerardi & Gerken, 1995; Kastner & 

Crowder, 1990). Before this age, children predominately use timing information 

to understand expressed emotions (Dalla Bella et al., 2001). This pattern may 

emerge as children use similar performance cues to decode emotion in music as is 

used for nonverbal aspects in speech (Juslin & Laukka, 2003), consistent with 

findings that recognition of emotion in both music and speech develop in parallel 

(Vidas, Dingle, & Nelson, 2018). Given that the relationship between mode and 

perceived emotion becomes internalized through increased knowledge and 

familiarity with musical patterns of that culture, we might expect listeners with 
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formal music training to use mode more than untrained listeners to decode 

conveyed emotion, particularly in more complex musical stimuli.  

Although it has been suggested music listeners are themselves 

‘experienced listeners’ (Bigand & Poulin-Charronnat, 2006), those with formal 

music training are often instructed to use cues to express emotion and therefore 

may use cues differently to decode expressed emotion. Our results demonstrate 

mode has a stronger effect on ratings of trained listeners than those with less than 

one year of musical training across both experiments. This could have occurred as 

a result of the complexity of the musical structure in our excerpts, leaving more 

‘naïve’ listeners to use lower level cues like attack rate to understand what 

emotion is being transmitted, or cues commonly used to perceive emotion in vocal 

prosody such as timing, and loudness (Coutinho & Dibben, 2013). 

 

Studies reporting no effect of musical training 

Although some studies fail to find a training effect or advantage on 

perceptual tasks (Bigand & Poulin-Charronnat, 2006), evidence has shown 

musical training can be a significant predictor of listener ratings of emotion 

(Akkermans et al. 2018). In addition, conflicting findings on the effect of musical 

training and perception (Juslin, 1997; Bigand, Vieillard, Madurell, Marozeau, & 

Dacquet, 2005; Trimmer & Cuddy, 2008) may emerge due to behavioural tasks 

used or the criteria for musical ‘expertise’ or training. Explicit and discrete 

methods often used in experimental tasks may produce ceiling effects in 
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recognition accuracy and wash out any differences between trained and untrained 

listeners. Our study employs a dimensional approach with precomposed 

polyphonic stimuli which allows us to capture the complexity of perceiving 

emotion in music experienced in real world scenarios such as in concert halls, or 

from listening to album recordings.  

 

Measuring musical expertise 

The measured components considered as important in distinguishing a 

‘musician’ or ‘musical expertise’ is an area that requires examination when 

considering conflicting results. The number of years of musical training is 

frequently used as the main qualifier when separating musicians or musical 

experts from non-musicians or nonexperts. Although years of training give a 

measure of how long individuals have spent learning musical theory and or 

musical performance, there may be other aspects that better reflect musicianship 

or expertise as encompassed by subscales included in Gold-MSI (active 

engagement, perceptual abilities, musical training, singing abilities and emotions). 

Regardless, the average criteria often used to qualify a musician has been variable 

across studies ranging from 6-13 years of formal training (Thompson, 

Schellenberg, & Ilie, 2004; Trimmer & Cuddy, 2008). Effects of expertise may be 

more pronounced with extensive training (13+ years) as suggested by Lima & 

Castro (2011), and supported by neural evidence indicating increased grey matter 

in several brain regions in ‘expert’ musicians (based on average daily practice and 
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current profession) compared to non and amateur musicians (Gaser & Schlaug, 

2013). Our study included individuals with six or more years of musical training, 

however on average they scored within the 67th – 72nd percentile on the General 

Sophistication scale and fell at the 79th percentile on the Musical Ability scale of 

the Gold-MSI. It is possible with more training we could see a larger difference in 

the predictive weight of mode between trained and untrained listeners in emotion 

ratings. Future research should consider different aspects of expertise when 

exploring differences, as well as more extensive range of formal training. 

 

Concluding thoughts 

 Our studies demonstrate how individuals with musical training are more 

affected by mode when perceiving conveyed emotion compared to untrained 

listeners. These results complement previous literature examining differences 

between behavioural and perceptual responses among musical experts and 

nonexperts, suggesting training can fine-tune the mechanisms used to decode 

musical emotions (Akkermans et al., 2018; Castro & Lima, 2014; Lima & Castro, 

2011). In addition, our findings speak to literature exploring the role of individual 

differences and the effects of individual factors on emotion perception (Dibben, 

Coutinho, Vilar, & Estévez-Pérez, 2018; Taruffi et al., 2017; Vuoskoski & Eerola, 

2011). Here we assess cue contributions, using regression analyses similar to 

Akkermans et al. (2018) and Eerola (2011) using to model of listener responses 

for valence and arousal, and incorporate commonality analysis to examine the 
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unique and shared predicted variance to better break down cue contributions. 

Further, these experiments speak to conflicting behavioural results on perceptual 

differences between trained and untrained individuals, detecting a difference in 

the predictive weight of mode using a dimensional approach with participants 

who have six years or more of music training. Previous work indicates those with 

musical training respond to mode-emotion associations more reliably (Heinlein, 

1928; Hevner, 1935), however evidence also suggests training is not necessary 

(Dalla Bella et al., 2001). In our studies, we demonstrate the degree mode’s effect 

varies as a function of training, as mode holds more weight for trained listeners 

than those with less than one year of training. Thus, individual differences in 

perceiving emotion do emerge as result of formal music training.   

 The influence of mode in musically expressed emotion is one that faces 

some debate. Although evidence demonstrates it can be effective in conveyed 

positive or negative affect (Hunter, Schellenberg, & Schimmack, 2008; Pallesen 

et al., 2005; Quinto & Thompson, 2013; Webster & Weir, 2005), music theorists 

argue its role is not as significant (Hatten, 2004). The argument is that results 

demonstrating mode’s influence may emerge from its relationship or pairing with 

other structural cues such as timing, and not an inherent binary distinction 

between major equals ‘happy’ and minor equals ‘sad’. Our results suggest mode 

can affect some aspects of emotion, like perceived valence, more than others such 

as perceived arousal. Additionally, it suggests that one potential explanation for 

this disagreement is that psychologists often use systematically varied stimuli 
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offering a high degree of independent control over individual cues such as mode 

and timing. However, composers such as Bach essentially confounded these cues 

so that they co-varied. Consequently, disagreement over the role of modality in 

the communication of emotion could relate in part to different conceptions of how 

modality varies in passages created for scientific vs. artistic purposes. 

The current study focuses on the perceptual responses of musically trained 

and untrained participants to one genre of musical stimuli within Western culture 

music. Even if they are unfamiliar with the WTC specifically (see Appendix D for 

familiarity responses), those with formal musical training can be familiar with the 

classical Western music styles due to training compared to those with minimal to 

no years of music training. Exploring expertise as well as familiarity effects using 

additional genres of music and incorporating commonality analysis can further 

extend our understanding of musical training on emotion perception and more 

broadly, the perceptual consequences of cue use and communicated emotion. 

Additionally, investigating familiarity or training in in non-Western cultures will 

help inform the relationship between cues and conveyed emotion with musical 

expertise in cross-cultural environments.  
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Appendix A 
 
 
Bootstrapped Commonality Analysis Distribution for Listener Ratings of Valence 
(Experiment 1) 
 
Table A1.  
 

Bootstrapped Distribution 
Cue N Coeff SD Min Max 95% CI 

Attack Rate 1000 0.100 0.028 0.026 0.203 [0.048, 0.158] 
Modality 1000 0.342 0.044 0.206 0.471 [0.257, 0.427] 

Pitch Height 1000 0.020 0.005 0.007 0.040 [0.011, 0.032] 
       

C (AR, Mo) 1000 0.313 0.017 0.233 0.354 [0.275, 0.342] 
C (AR, PH) 1000 -0.014 0.003 -0.023 -0.006 [-0.02, -0.010] 
C (Mo, PH) 1000 0.065 0.006 0.042 0.087 [0.051, 0.077] 
C (AR, Mo, 

PH) 
1000 -0.024 0.001 -0.028 -0.019 [-0.026, -0.021] 
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Bootstrapped Commonality Analysis Distribution for Listener Ratings of Arousal 

(Experiment 1) 
 
 
Table A2.  
 
 

Bootstrapped Distribution 
Cue N Coeff SD Min Max 95% CI 

Attack Rate 1000 0.325 0.022 0.251 0.396 [0.281, 0.371] 
Modality 1000 0.021 0.007 0.006 0.052 [0.010, 0.036] 

Pitch Height 1000 0.005 0.003 0.000 0.019 [0.000, 0.012] 
       

C (AR, Mo) 1000 0.177 0.018 0.124 0.236 [0.143, 0.213] 
C (AR, PH) 1000 -0.001 0.005 -0.019 0.015 [-0.012, 0.010] 
C (Mo, PH) 1000 0.006 0.002 0.001 0.015 [0.003, 0.011] 
C (AR, Mo, 

PH) 
1000 -0.009 0.002 -0.015 -0.003 [-0.013, -0.005] 
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Bootstrapped Commonality Analysis Distribution for Listener Ratings of Valence 
(Experiment 2) 
 
 
Table A3.  
 

Bootstrapped Distribution 
Cue N Coeff SD Min   Max 95% CI 

Attack Rate 1000 0.065 0.016 0.022 0.135 [0.039, 0.100] 
Modality 1000 0.431 0.038 0.273 0.551 [0.350, 0.500] 

Pitch Height 1000 0.008 0.003 0.001 0.021 [0.002, 0.016] 
       

C (AR, Mo) 1000 0.353 0.012 0.307 0.385 [0.329, 0.375] 
C (AR, PH) 1000 -0.007 0.002 -0.014 0.000 [-0.012, -0.002] 
C (Mo, PH) 1000 0.0486 0.005 0.029 0.066 [0.038, 0.059] 
C (AR, Mo, 

PH) 
1000 -0.028 0.001 -0.033 -0.024 [-0.308, -0.026] 
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Bootstrapped Commonality Analysis Distribution for Listener Ratings of Arousal 
(Experiment 2) 
 
 
Table A4.  
 

Bootstrapped Distribution 
Cue N Coeff SD Min   Max 95% CI 

Attack Rate 1000 0.341 0.018 0.292 0.415 [0.308, 0.380] 
Modality 1000 0.013 0.003 0.005 0.024 [0.007, 0.020] 

Pitch Height 1000 0.000 0.000 0.000 0.003 [0.00, 0.001] 
       

C (AR, Mo) 1000 0.187 0.009 0.154 0.215 [0.170, 0.204] 
C (AR, PH) 1000 0.021 0.004 0.009 0.033 [0.013, 0.029] 
C (Mo, PH) 1000 0.000 0.001 -0.002 0.003 [-0.001, 0.002] 
C (AR, Mo, 

PH) 
1000 -0.014 0.001 -0.016 -0.010 [-0.015, -0.012] 
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Appendix B 
 
 

Bootstrapped Commonality Analysis Distribution for Untrained Listener Ratings 
of Valence (Experiment 1) 

 
 

Table B1.  
 

Bootstrapped Distribution 
Cue N Coeff SD Min Max 95% CI 

Attack Rate 1000 .179 .031 .081 .306 [.120, .238] 
Modality 1000 .205 .034 .093 .332 [.142, .274] 

Pitch Height 1000 .049 .013 .013 .091 [.027, .077] 
       

C (AR, Mo) 1000 .306 .012 .266 .340 [.280, .328] 
C (AR, PH) 1000 -.036 .006 -.049 -.012 [-.046, -.02,] 
C (Mo, PH) 1000 .067 .009 .040 .096 [.051, .085] 
C (AR, Mo, 

PH) 
1000 -.184 .002 -.026 -.008 [-.023, -.014] 
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Bootstrapped Commonality Analysis Distribution for Untrained Listener Ratings 
of Arousal (Experiment 1) 
 
 
Table B2.  
 

Bootstrapped Distribution 
Cue N Coeff SD Min Max 95% CI 

Attack Rate 1000 0.302 0.024 0.219 0.387 [0.257, 0.349] 
Modality 1000 0.021 0.007 0.036 0.043 [0.008, 0.035] 

Pitch Height 1000 0.016 0.002 0.000 0.009 [0.000, 0.006] 
       

C (AR, Mo) 1000 0.168 0.016 0.108 0.219 [0.135, 0.198] 
C (AR, PH) 1000 0.023 0.005 0.067 0.038 [0.032, 0.010] 
C (Mo, PH) 1000 -0.001 0.001 -0.005 0.004 [0.003, 0.011] 
C (AR, Mo, 

PH) 
1000 -0.016 0.002 -0.021 -0.011 [-0.013, -0.005] 
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Bootstrapped Commonality Analysis Distribution for Untrained Listener Ratings 
of Valence (Experiment 2) 
 

 
Table B3.  
 
 

Bootstrapped Distribution 
Cue N Coeff SD Min Max 95% CI 

Attack Rate 1000 .141 0.026 .065 .214 [.092, .192] 
Modality 1000 .272 0.040 .158 .405 [.201, .354] 

Pitch Height 1000 .027 0.009 .006 .056 [.011, .046] 
       

C (AR, Mo) 1000 .364 0.010 .322 .399 [.343, .384] 
C (AR, PH) 1000 -.020 0.004 -.033 -.006 [-.028, -.011] 
C (Mo, PH) 1000 .054 0.009 .029 .082 [.036, .073] 
C (AR, Mo, 

PH) 
1000 -.027 0.002 -.035 -.019 [-.032, -.023] 
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Bootstrapped Commonality Analysis Distribution for Untrained Listener Ratings 
of Arousal (Experiment 2) 
 
Table B4.  
 

Bootstrapped Distribution 
Cue N Coeff SD Min Max 95% CI 

Attack Rate 1000 0.281 0.022 0.216 0.360 [0.239, 0.326] 
Modality 1000 0.014 0.005 0.002 0.031 [0.006, 0.023] 

Pitch Height 1000 0.073 0.001 0.000 0.008 [0.000, 0.004] 
       

C (AR, Mo) 1000 0.164 0.018 0.106 0.218 [0.131, 0.198] 
C (AR, PH) 1000 0.015 0.006 -0.006 0.036 [0.003, 0.029] 
C (Mo, PH) 1000 0.008 0.002 -0.004 0.006 [-0.002, 0.004] 
C (AR, Mo, 

PH) 
1000 -0.011 0.001 -0.017 -0.006 [-0.014, -0.008] 
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Appendix C  
 

Margin of Error Calculation for Valence Ratings Between Trained and Untrained 
Listeners  (Experiment 1)  

 
Table C1 

 
 Trained Listeners Untrained Listeners    

Cue UCI LCI Length UCI LCI Leng. Avg 
MOE 

Mod. 
Overlap 

LCItrained - 
UCIuntrained 

AR 0.158 
 0.048 0.110 0.238 0.128 0.117 0.114 0.057 -0.189 

MO 0.427 0.257 0.170 0.274 0.104 0.132 0.151 0.075 -0.017 
PH 0.032 0.011 0.021 0.077 0.055 0.049 0.035 0.018 -0.065 

AR + MO 0.342 0.277 0.067 0.328 0.261 0.048 0.057 0.029 -0.053 
AR + PH -0.008 -0.020 0.011 -0.020 -0.032 0.021 0.016 0.008 0.000 
MO + PH 0.077 0.051 0.026 0.085 0.059 0.034 0.030 0.015 -0.034 
AR + MO 

+ PH -0.022 -0.026 0.005 -0.014 -0.018 0.009 0.004 0.003 -0.013 
 

Note: CIs represent the 95% confidence interval arousal the mean; UCI=Upper 
Confidence Interval; ULI= Lower Confidence Interval; Length= length of the CI; 
Avg MOE= Average Margin of Error; Mod. Overlap= Calculated point of 
moderate overlap. LCItrained- UCIuntrained  calculations represent the overlap 
calculation value. 
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Margin of Error Calculation for Valence Ratings Between Trained and Untrained 
Listeners  (Experiment 2)  

 
Table C2 

 
 Trained Listeners Untrained Listeners    

Cue UCI LCI Leng. UCI LCI Leng. Avg 
MOE 

Mod. 
Overlap 

LCItrained 

- 
UCIuntrai

ned 
AR 0.100 0.039 0.061 0.192 0.092 0.100 0.0807 0.040 -0.153 
MO 0.500 0.350 0.150 0.354 0.201 0.153 0.151 0.076 -0.004 
PH 0.016 0.002 0.013 0.046 0.011 0.035 0.024 0.012 -0.044 

AR + MO 0.375 0.329 0.046 0.384 0.343 0.041 0.043 0.022 -0.055 
AR + PH -0.002 -0.012 0.009 -0.011 -0.028 0.017 0.013 0.007 -0.001 
MO + PH 0.059 0.038 0.021 0.073 0.036 0.037 0.029 0.0145 -0.036 
AR + MO 

+ PH -0.026 -0.031 0.005 -0.023 -0.032 0.009 0.007 0.004 -0.008 
 
Note: CIs represent the 95% confidence interval arousal the mean; UCI=Upper 
Confidence Interval; ULI= Lower Confidence Interval; Length= length of the CI; 
Avg MOE= Average Margin of Error; Mod. Overlap= Calculated point of 
moderate overlap. LCItrained- UCIuntrained  calculations represent the overlap 
calculation value. 
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Appendix D 
 

 
Figure D1. Familiarity responses from participants to “did you recognize any of 
the pieces” in debrief survey for experiment 1 and 2. Participants responded either 
yes or no, however there were a few missed responses due to RA error. Across 
both experiments a large majority of participants responded they had recognized 
some of the excerpts presented. 
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Figure D2. Participant responses across experiments 1 and 2 for follow up 
question “have you ever played any of the pieces recognized. Participants 
responded either yes or no, however there were a few missed responses due to RA 
error. Across both experiments the majority of responses is ‘no’, however in 
experiment 1 more participants reported playing some of the pieces than in 
experiment 2.   
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Chapter 4 

 

Battcock., A. & Schutz.,. M. (in prep). Performer differences and conveyed 

emotion: exploring interpretative decisions. 

  

Preface 

 

 In the previous two chapters, I examined the influences of the musical 

structure (composition) and the listener, in the process of communicating emotion 

in music. In Chapter 4, I examined the influence of performer interpretation on 

cue used and conveyed emotion. Comparing listener ratings across seven 

interpretations in all 48 pieces of Bach’s Well-Tempered Clavier, I observed 

notable differences in the emotional responses of different interpretations of the 

same piece. Further, I found greater variation in ratings of arousal for pieces 

compared to ratings of valence. In addition, there was greater variation across 

excerpts in minor modes rather than major modes. Finally, I show that models of 

listener ratings predicted varying amounts of rating variance dependant on 

performer. Together, these sets of experiment illustrate the impact of a 

performer’s interpretative decisions on listener perception of conveyed valence 

and arousal. 
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Chapter 4: Performer Differences and Communicated Emotion 
 

 
Abstract 

 
In this series of exploratory experiments, we investigated differences in 

listeners’ perceived emotion for various interpretations of pieces by JS Bach.  For 

each study, we exposed thirty non-musician participants to 48 excerpts of the 

Well-Tempered Clavier, performed by one of seven pianists. After each excerpt, 

participants rated perceived emotion on scales of valence and arousal. From these 

ratings we (1) explore the degree to which the different interpretations of expert 

pianists affect the communication of emotion based on ratings of perceived 

arousal and valence, and (2) explore cue trade-offs in the between different 

performers.   

Our results indicate notable differences in the emotional responses of 

different interpretations of the same piece. Additionally, building on our past 

approaches we used multiple regression and commonality analysis to examine 

how listeners use select cues (attack rate, pitch height and mode) across various 

musical interpretations. Overall, we found similar trends across interpretation in 

the relationship between cues and perceived valence and arousal, with variation in 

the relative weight of attack rate across performers. Comparing the fit of our 

three-cue model for listener ratings of emotion across performers, we find the 

predictive value (R2 values) of cues ranged from 51-78% for arousal ratings and 

76-82% for valence ratings amongst performers. These results demonstrate that 
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performers’ interpretative decisions lead to differences in listeners’ perceived 

emotional experiences.  

 
 
Keywords: emotion, perception, interpretation, performance, individual 
differences 
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Introduction 

Music’s ability to communicate emotional messages has fascinated 

generations of psychologists, musicologists, philosophers and anthropologists 

alike. Similar to speech, the structural aspects of music’s acoustic signal can 

embody or convey emotional qualities to listeners. However, in the case of music, 

there is an extra layer of complexity in the transmission of emotion, as the person 

who creates the musical notation is not necessarily the person who produces the 

acoustic signal. This is particularly true for classical music, where so much of the 

standard repertoire is played by many different interpreters — who are generally 

trained and recognized for their performances, rather than their compositions. 

Therefore, music is an interesting avenue through which to investigate the process 

of emotional communication. Although this capability is widely recognized, 

as Levinson (1996) argues, a musical performance is not simply the presentation 

of the work’s written sound structure (Macritchie, Eiholzer, & Italiana, 2012, 

p.179), but represents the combination of score and performers’ interpretative 

Performer

Demus
Fischer
Gould
Gulda

Martins
Richter
Tureck

Listener

Musical Performance 
acoustic signal

Interpretive cues
choice of tempo, phrasing, etc.

Musical composition 
notated score

Composer

JS Bach
Well Tempered 
Clavier (1722)

Book 1 
(BWV 846–893)

24 Preludes
24 Fugues

Structural cues
selection of notes and rhythms

Produces:

Defines:

[Figure 1. Communication model between composer, performer and listener as 
applied to this project. Adapted from Blom, Bennett, & Stevenson (2016) and 

Juslin’s Lens Model (1997)] 
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decisions. Although a composer’s intended emotional messages are conveyed in 

the structural cues codified in musical scores, performers shape these 

cues through their interpretation. Therefore, the ultimate listening experience of 

audiences is shaped by an intricate dialogue between composer and 

performer (Figure 1). This complex relationship is of great interest both 

theoretically and practically to a wide community of academics and researchers. 

From a psychological perspective the interplay between structure and 

interpretation helps shed light on the complexities of the communication of coded 

emotional messages from multiple sources. Practically it is of great importance 

for performing musicians who are continually striving to put their unique stamp 

on frequently performed classics. Consequently, several instructional books help 

guide musicians on this important topic (Kramer, 2010; Silverman, 2008; Sinn, 

2013; Thom, 2003). Interpretation is the lifeblood of musical performance — one 

of the most important dimensions along which performers are evaluated in public 

performances, recordings, juries and formal exams. Previous research exploring 

the complex relationships between cues and perceived emotion provides useful 

insight by examining how structural and interpretative aspects of music together 

shape emotional messages (Quinto, Thompson, & Taylor, 2014). Although the 

use of structural and interpretative cue combinations allows listeners to more 

accurately decode conveyed emotion on average, certain emotions are 

successfully transmitted with structural or composition cues alone, particularly in 

monophonic or single-lined melodies. As such, much is still needed to unpack the 
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complex relationships between these two crucial aspects of musical listening. This 

is particularly challenging for the kinds of complex polyphonic music that 

defy easy deconstruction.  

 

 
Performer Interpretation and Individuality  

 
  In the evaluation of the relative contributions of composers and performers 

to musical listening, Repp (1992), argues for a conceptual framework 

containing two basic aspects: normative and individual. The normative aspect is 

expected from performances across different artists, the individual aspect 

represents deviations from a single ideal norm of the musical score. This suggests 

performers can represent not only the written musical composition but include or 

add their interpretative expression.  

Interpretation is considered an individualistic process based on a 

performer’s musical intentions (Palmer, 1997). In a musical performance, 

performers make decisions regarding expressive cues to convey or emphasize 

emotional content. Studies using expert performers captured on commercially 

available recordings have explored these expressive differences across 

performers’ use of timing cues showing variations in their interpretative decisions 

(Repp, 1992; Vines, Krumhansl, Wanderley, & Levitin, 2006; Dodson, 2011). 

These studies provide a useful starting point for empirically exploring differences 

in performer interpretation.  
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A performer’s interpretative use of cues is embedded in a musical 

performance; thus, the auditory signal can transmit specific information regarding 

a performer’s identity. In a study looking at 28 performances of Robert 

Schumann’s “Träumerei” by 24 pianists, Repp (1992) analyzed interonset 

intervals of each performance to examine variations in global tempo choices in 

addition to overall performer timing profiles. Tempo varied across performers, 

however principal component analysis (PCA) on timing profiles revealed only 

a single factor that reflected some conformity in performances as all pianists 

observed the major ritardanadi of the piece. Variability in the PCA increased at 

lower levels of the structural hierarchy; as the analysis focused on fewer bars of 

music (i.e., smaller segments), more independent factors emerged. As 

such, patterns demonstrated performer differences for timing decisions evident at 

local levels of the musical structure. This is consistent with results from Dodson 

(2011) demonstrating heterogeneity in expressive timing within musical 

bars, despite a global similarity across many recordings of the same 

piece. An artist’s individual interpretation can reflect variations of cues within the 

constraints “representing conscious or unconscious transgressions of the 

boundaries established by musical convention” (Repp, 1992). Although that paper 

explores acoustical difference in a signal based on performer interpretation, it 

does not address listeners’ awareness of and sensitivity to these cues. 

The current study builds upon that focus on performer interpretation by 

exploring the perceptual consequences of performer differences in 
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performance. Additional work investigating influences of interpretation 

on performance cues indicate the most distinct differences of tempo and dynamic 

choices occur at a microstructural level, in contrast to a global one. For example, 

over the course of three performances of Chopin’s Prelude in E minor Op.28 and 

the B Flat minor sonata Op.35, pianists produced similar overall tempo variations 

— but varied in the amount of variation as well as their consistency in shaping the 

timing of each bar (Macritchie et al., 2012). Dynamic choices also varied by 

performer, where the tempo and dynamic shaping across bars of the music 

appeared unique to each performer.  

Following the performance analysis, participants notated their 

understanding of the phrasing, showing interpretive decisions by pianists affected 

listeners’ understanding of the music’s structure.  Specifically, listeners identified 

major sectional boundaries differently within Chopin’s Prelude in E minor based 

on performer. The pianists used expressive tempo and dynamic deviations to 

bring attention to specific elements, shaping listeners’ experience of its structure. 

Thus, although interpretative differences of timing and dynamic cues occurred at 

the microstructural level, the placement of even small variations affect a listeners’ 

understanding of the composition. 

 

Listener Perception of Interpretative Decisions  
  

The expressive choices made by a performer not only represent an artist’s 

individuality but have the ability to shape a listener’s perception of the musical 
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experience. Performer interpretation and variation of cues such as dynamics 

(Nakamura, 1987) and ornamentation (Timmers & Ashley, 2007) are salient to 

listeners, and the individual decisions of specific performers play a key role in 

distinguishing performances of historically significant pieces — which have been 

played and recorded repeatedly. Timing information plays a particularly important 

role in such evaluations, as it helps listeners recognize a performer’s expressive 

style. For example, cues such as tempo and articulation help listeners identify 

different performance styles (Gingras, Lagrandeur-Ponce, Giordano, & 

McAdams, 2011). There, authors investigated whether participants could group 

together excerpts from the same performer and further explored the acoustical 

parameters listeners use to discriminate between interpretations. Regardless of the 

level of musical expertise, listeners correctly identified performers’ individual 

style from excerpts as short as 10-14 seconds. Performer expertise appeared 

important as listeners more accurately categorized excerpts performed by those 

who had won prizes in musical competitions. Analysis of the acoustic 

information indicated mean tempo, articulation and onset synchrony varied as a 

function of performer, which presumably provided the acoustic basis on which 

listeners discriminated between different performance styles.  

With respect to the listener’s experience, performer interpretation 

influences how specific emotions are perceived by listeners. In a study from Juslin 

(2000), three professional guitar players recorded renditions of three selected 

songs with the intention of conveying ‘anger’, ‘happiness’, ‘sadness’ or 
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fear. Focusing on three acoustical parameters of sound level, tempo and 

articulation, the authors reported large variability among performers for tempo, 

and differences in the use of articulation cues between interpretations. Listeners 

decoded these variations, which allowed them in many cases to accurately 

recognize the emotional intentions of the performer.  Point biserial correlations of 

performers’ intentions with listeners’ affective ratings represented as achievement 

scores indicated variation based on to emotion and showed 70% of variance in 

listener’s judgements could be accounted for by the performers’ expressive 

intention. Individually, differences emerged for emotional expressions of 

happiness and fear, where performer 3 displayed significantly lower achievement 

scores than performer 1 or 2. Interestingly, other performers also displayed 

success in conveying the same emotions however using different performance 

strategies on cue use. This supports the proposed modified lens model from Juslin 

(1997), which hypothesizes that in the communication of emotion through 

music, cues function in a probabilistic and redundant way. The lens model helps 

to explain why the same emotion can be conveyed with different combinations of 

cues. Despite this general success, investigation and analysis on rating differences 

for varying interpretations needs further exploration to better understand how 

performer variations shape listener experiences. In addition, the use of explicit 

instructions to encode specific emotions into the musical stimuli — a method 

frequently used in the literature — may over represent how cues are frequently 



Ph.D. Thesis — A. E. Battcock; McMaster University — Psychology, Neuroscience 
& Behaviour 
 

 181 

used to communicate emotion. The current study takes a naturalistic approach to 

account for the subtleties in performer’s expressive decisions to convey emotion. 

 

 
The present study 

 
Here we complement and extend previous work exploring the effect of 

performer interpretation on listener perception. Our exploratory study examines 

the relationship between performer’s interpretive decisions and listeners’  

evaluations of emotion — all within the context of performing the same set of 

widely-acclaimed pieces. Similar to the studies from Repp (1992) and Macritchie 

et al. (2012) above, we chose to use commercially available recordings of a 

renowned musical work to examine the natural variations in musical interpretation 

by professional musicians. 

In order to investigate the effect of performer interpretation on listener 

perception, we used well respected recordings of Bach’s Well Tempered-Clavier 

(WTC). We selected interpretations of seven notable pianists — chosen from a 

survey of important performances undertaken by Willard A. Palmer (Bach, 2004), 

a Baroque scholar and musicologist, who analyzed performance interpretation 

including tempo classifications for a particular set of albums. Using these 

landmark recordings, we explore how evaluations of perceived emotion differ 

based on performer, offering unique insight into the relationship between cue 

weights and individual interpretation. Many consider the WTC a teaching tool for 

musicians to gain skill in technique as well as decision making in performance, as 
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Bach did not include tempo markings in this set of works. The significance of this 

work in musical training is perhaps why the Royal Conservatory of Music 

includes many of its pieces in their exam requirements (Royal Conservatory of 

Music, 2015), and further why it may be an important set of pieces to use when 

exploring how musicians are taught to encode individuality and emotion in their 

performances.   

Beyond its critical acceptance by music educators, the WTC is particularly 

well suited for exploration of emotional communication it contains 48 pieces 

balanced in modality across all chroma keys. This is important as it affords a type 

of control over the cue of modality, a cue empirically proven to be important in 

conveyed emotion in music (Dalla Bella, Peretz, Rousseau, & Gosselin, 2001; 

Eerola, Friberg, & Bresin, 2013; Quinto et al., 2014). This study thus builds on 

work of Macritchie et al., (2012), Repp (1992) exploring the effect of performer 

interpretation on the conveyed emotional content, and incorporates the analyses of 

composer and performer controlled quantified cues to break down the importance 

of cues for interpreting each performance.   

Expanding on the analysis of the structural cues alone (Poon and Schutz, 

2015), here we focus on their perceptual consequences — particularly with 

respect to interpretative choices by pianists. Evidence from our previous study on 

the perception of emotion suggested the timing cue of attack rate as an important 

predictor for listener perception. Cues of modality and pitch height information 

followed in importance respectively, for both emotional ratings of valence and 
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arousal (Battcock & Schutz, 2019). One crucial aspect of interpretation exhibiting 

considerable difference of opinion is timing information (Repp 1992; Gingras et 

al., 2011), therefore we are interested in assessing how performers’ choices in 

attack rate (note attacks per second) influence listener experience of the same 

pieces, and how those decision impact cue importance in a model containing both 

expressive and structural cues.  

Given the exploratory nature of this investigation, we do not have specific 

hypotheses. Instead, our goals in undertaking this series of experiments are to (1) 

explore the degree to which the different interpretations of expert pianists affect 

the emotional messages of a highly regarded set of pieces by J.S Bach, (2) 

examine whether arousal or valence systematically differs more across different 

interpretations, and (3) explore trade-offs in the use of different cue for emotion 

between different performers. Together this novel exploration of how natural 

differences in interpretation affect listener responses will help connect previous 

work looking primarily at either (a) natural differences in the acoustic signal alone 

(i.e. Repp, 1992), or (b) whether systematic variations in performance are detected 

by listeners.   

 

General Method   
  
Overview   
  

We used the following experimental design and procedures to test six new 

experiments using recordings from six different pianists. All apparatus, stimuli, 
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and procedures remained identical to those used to assess responses to Friedrich 

Gulda in Battcock & Schutz (2019). Therefore, combining these data yields 

information for all seven pianists reviewed in Palmer’s analyses (Bach, 2004).  

  
Participants.   
 

The sample comprised of a total of 180 (mean age = 18.8, SD=1.77) non-

musician undergrads (n=30 for each experiment) from McMaster University’s 

Psychology undergraduate participant pool. We considered ‘non-musicians’ to 

have <1 year of musical training. In return for their participation, participants 

received course credit. The experiment met ethical standards in accordance to the 

McMaster University Research Ethics Board.  

  

Musical Stimuli.   
 

Stimuli included 48 excerpts of J.S Bach’s WTC’s Book 1 as performed 

by one of six notable performers: Edwin Fischer (Bach, 2007), Glenn Gould 

(Bach, 1993), Sviatoslav Richter (Bach, 1992), Rosalyn Tureck (Bach, 

1953), Joao Carlos Martins (Bach, 1964) and Jöerg Demus (Bach, 1956). Excerpt 

durations ranged from 6 to 104 seconds in duration (M=28.79 seconds, 

SD=12.46), contained the first eight measures of each WTC piece, and included a 

two-second fade out starting at the ninth measure. Descriptive information on 

individual performer excerpts can be found in Appendix A. Although faster and 

slower pieces varied in duration, this provided consistency in terms of musical 
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units (measure length). We used Amadeus Pro to cut and prep the stimuli for 

experimental testing.  

  
 
 
Cue quantification.   
 

As used in Battcock & Schutz (2019) we calculated values of pitch height 

and attack rate for all eight-measure excerpts across each performer. Pitch height 

values represented the average weighted pitch quantified from the eight measures. 

These values are obtained using the method in Poon & Schutz (2015), by 

summing duration-weighted pitch values of each measure, divided by the note 

duration sum of that measure. The calculated pitch height values varied from 

33.13-53.00 (M=43.90, SD=4.03) corresponding ~F3 to ~ C#5. Attack rate 

(average note attacks per second for each eight measure excerpt) quantification 

used tempi values reflecting each performers performance. Overall attack rate 

values ranged from 0.87 to 12.80 note attacks per second (M=4.49, SD=2.46). 

Specific performer attack rate information can be found in Appendix A. In this 

study we defined mode as the tonal center of the piece, indicated by the denoted 

key signature of each score and coded it dichotomously (0= minor, 1= Major). 

Additionally, because we used commercial recordings of multiple performers, we 

quantified the root mean square (RMS) value of each audio file to measure the 

intensity of each excerpt to use as a covariate in our analyses. We obtained RMS 

values using Amadeus Pro software. RMS values of all excerpts ranged from -
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40.6 to -16.6 (M=-27.7, SD=4.8). Details on RMS values for each excerpt can be 

found in Appendix A. 

 
 
 
Design and procedure.   
 

All experiments occurred in a sound-attenuating booth. Participants 

completed a consent and musical experience form (see Appendix B) 

before starting the experiment. Research assistants verbally explained 

the emotion rating tasks emphasizing full use of the scales. Instructions asked 

participants to provide ratings of the emotion conveyed through the music on 

scales of emotional valence (how positive or negative the emotion sounds) and 

arousal (the emotional energy communicated). Participants completed four 

practice trials using alternate recordings as performed by Angela Hewitt (Bach, 

1998) with opportunity to ask procedural or clarification questions before the 

experiment began. Following presentation of each excerpt, participants rated 

perceived emotion on scales valence from 1 (negative) to 7 (positive), and arousal 

from 1 (low) to 100 (high). Each participant listened to an individually 

randomized order of the 48 excerpts.  

The experiment ran on PsychoPy (Peirce et al., 2019), a Python-based 

program on either a 2014 MacBook Air (OS X 10.9.4) or a 2013 iMac (OS X 

10.9.3) connected to a DELL monitor within the booth. Participants heard stimuli 

at a consistent and comfortable listening level through Sennheiser HDA 200 
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headphones and provided responses via either trackpad or Apple mouse connected 

to the iMac located outside the booth.  

 

  
Results  

  
Here we compare participants’ ratings of emotional valence and arousal 

across seven experiments with seven performers — six newly tested and one 

previous from Battcock & Schutz (2019). Overall, mean valence ratings (M=4.07, 

SD=1.14) ranged from 1.41 to 6.3 and mean arousal ratings (M=55.16, 

SD=16.67) ranged from 19.57 to 87.17. Descriptive information on ratings for 

each performer’s stimuli set can be found in Appendix C. 

 

Analysis of Variance. 

We conducted two, two-way between subjects’ ANOVAs to compare the 

effect of excerpt and performer on ratings of valence and arousal with RMS 

values as a covariate. Equal variances cannot be assumed for our outcome 

variables as Levene’s Test of Equality is violated for valence [F(335,9695)=2.11, 

p<0.001] and arousal [F(335,9695)=2.46, p<0.001], therefore all effects will be 

compared at the p=0.001 level. ANOVA results indicate there is a significant 

effect of excerpt [F(47,9694)=121.12 p<.001, 𝜂p2=.370] and performer 

[F(6,9695)= 6.11, p<.001, 𝜂p2=.004]  (Figure 2) as well as an interaction effect 

between excerpt and performer [F(281,9695)=3.08, p<0.001, 𝜂p2=.082] on 

judgements of emotional valence conveyed (Table 1).  
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 For ratings of arousal, there is a significant effect of piece 

[F(47,9695)=57.36, p<0.001, 𝜂p2=218], performer [F(6,9695)=34.21, p<0.001, 

𝜂p2=0.02] (Figure 3) and an interaction effect between excerpt and performer 

[F(281,9695)=3.48, p<0.001, 𝜂p2=.09] on participants emotional judgements 

(Table 2). 

                                                                                                                                                               

       
Figure 2. Mean valence ratings of all 48 pieces in the WTC across seven 
performers/seven experiments broken down into a1) Major preludes, a2) minor 
preludes, b1) Major fugues & b2) minor fugues. Each line represents mean ratings 
for one performer. 
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Figure 3. Mean arousal ratings of all 48 pieces in the WTC across seven 
performers/seven experiments broken down into a1) Major preludes, a2) minor 
preludes, b1) Major fugues & b2) minor fugues. Each line represents mean ratings 
for one performer. 
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Table 1 
 
 
ANOVA results using valence rating as a criterion and RMS as a covariate  

 
R squared= .496 (Adjusted R Squared=.479) 
 
 
Table 2 
 
 
ANOVA results using arousal rating as a criterion and RMS as a covariate  

 
R squared= .433 (Adjusted R Squared=.414) 
 
 
 
Variance of listener response.  

 As used in Quinto & Thompson (2013), we calculated the coefficient of 

variation (CV) to examine the range of valence and arousal ratings. This measure 

    
      

Predictor Sum of 
Squares 

df Mean 
Square 

F p Partial 
	𝜂2 

       
Intercept 6607.23 1 38.65 28.53 .001 .335 

Performer 49.70 6 8.28 6.11 .001 .004 
Piece 7713.81 47 164.12 121.12 .001 .370 

Performer*Piece 1173.00 281 4.174 3.08 .001 .082 
       

    
      

Predictor Sum of 
Squares 

df Mean 
Square 

F p Partial 
	𝜂2 

       
Intercept 1873797.84 1 8328.72 4977.48 .001 .339 

Performer 77272.49 6 12878.74 34.21 .001 .021 
Piece 1014838.40 47 21592.31 57.36 .001 .218 

Performer*Piece 268282.31 281 1310.54 3.481 .001 .092 
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is calculated as the (standard deviation/mean) x 100 and represents a standardized 

measure of dispersion. According to listener ratings of valence and arousal, the 

CV for valence (CV= 39.56%) is lower than what is observed for arousal ratings 

(CV = 46.03%) when calculated across performers (Figure 4). These findings 

suggest that the influence of performer interpretation may have had a stronger 

effect on ratings of arousal, as ratings across performers are more variable for this 

dimension of perceived emotion than for ratings of valence.  

We also calculated CVs for each performer across ratings of valence and 

arousal (Table 3). As with our overall calculation, the CV for arousal ratings 

remained higher than for valence ratings as seen across performers. The range of 

CVs for valence ratings across performers is approx. 4%, suggesting the level of 

consistency in valence ratings across pieces is similar across performers. For 

ratings of arousal, CVs across performers varied 10% from the highest to the 

lowest CV calculated. Using the R package ‘cvequality’ (Version 0.1.3; Marwick 

& Krishnamoorthy, 2019), we used the ‘Modified signed-likelihood ratio test’ 

(Krishnamoorthy & Lee, 2014) for equality of CVs of valence and arousal across 

performers. This test indicated variation in CVs across performers for valence 

(c2(6)=48.49, p<0.001) and arousal (c2(6)=24.54, p<0.001) is not due to chance. 

This indicates more variability in how some performers expressed arousal and 

valence across the pieces in the WTC (Figure 5). 
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Table 3 
 
Coefficients of Variation for each performer across valence and arousal ratings 
of all 48 excerpts.  
 

    
Performer  CV Valence CV Arousal 

    
Demus  29.62 40.85 
Fischer  33.01 43.50 
Gulda  30.27 33.79 
Gould  31.71 39.79 

Martins  29.09 37.78 
Richter  28.70 40.14 
Tureck  30.62 38.91 
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Figure 4. Coefficients of Variation for valence and arousal ratings across all 
performers for each excerpt. Major key excerpts are in red, minor key excerpts in 
blue. Each excerpt is denoted by their chroma key. 
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Figure 5. Coefficients of Variation for valence and arousal ratings across all 
excerpts for each performer. Major key excerpts are in red, minor key excerpts in 
blue. Each excerpt is denoted by their chroma key. 
 
 
 
Linear regression analysis.  
 

We used the R Statistical Package to run standard simultaneous multiple 

linear regression analysis to assess the overall influence of four predictors — 

attack rate, modality, pitch height and RMS — on mean ratings of valence and 

arousal. This helped to evaluate the impact of our selected musical cues and any 

differences in recording intensity in predicting ratings across experiments. 
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Further, we ran individual regression and commonality analyses for each 

experiment with individual performers in order to create a ‘cue profile’, 

displaying relative cue weights for each performer. For the dichotomous cue of 

modality, we chose the Major mode as the reference level for the analysis (thus 

the minor mode level of this factor is contrasted against it in analysis). The 

regression analysis on valence ratings indicated the cues of attack rate, modality, 

pitch height and RMS significantly predicted listener responses (Table 4). 

According to the model for arousal ratings, attack rate, pitch height and RMS 

emerged as significant predictor of listener responses.  

 Across the seven experiments, the three-cue predictor model accounted for 

80.8% of the variance in listener ratings of valence (Table 4). In contrast, the 

same predictor model accounted for 78.8% of variance in ratings of arousal. 

Across individual regression analyses for each performer, three cue models of 

valence predicted 73.5 to 82.0% of rating variance and 50.7 to 78.8 % of variance 

in arousal ratings (See Table 5). 
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Table 4.  
 
Regression model for attack rate, mode, pitch height and RMS on valence and 
arousal ratings across all performers. Beta values indicate strength and direction 
of relationship between each predictor variable and valence and arousal ratings. 
Default state for mode is Major. 
 
 
  Valence    Arousal  

Predictor 
Coefficien
ts 

B SE t p  B SE t p 

Attack 
Rate 

0.388   0.005 72.65 p<0.001  0.674 0.006 120.20 p<0.001 

Modality 0.531    0.005 105.48 p<0.001  0.003 0.005 0.518 p=0.605 

Pitch 
Height 

0.173 0.005 37.61 p<0.001  0.076 0.005 15.73 p<0.005 
 

RMS 0.198 0.005 39.48 p<0.001  0.356 0.005 67.52 p<0.01 

R2   .808     .788  

F   10520     9298  

 
 
 
Commonality Analysis Across Performer-Specific Models.  
 

As used in Battcock & Schutz (2019) we calculated the overall 

contributions of each cue in participant ratings of emotion, using commonality 

analyses to decompose the R2 of each performer’s three cue predictor model 

(Table 5 & 6). Note here, regression models contain only three predictors (attack 

rate, mode and pitch height) as we are looking at the models of listener ratings for 

each individual experiment and are not comparing RMS values across performers. 

Contributions are broken down into shared and unique contributions to predict 
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participant response. We also plotted this cue profile decomposition in Figure 6 

and 7, where we used bootstrapping methods to calculate error bars for each cue. 

To obtain these error bar values we used a resampling with replacement for 1000 

runs with a sample of 30 (our actual sample included 30 participants) for each 

performers’ dataset.  

 
Valence Ratings. Across performers we see similar trends of cue 

strengths (Figure 6), where mode (21-29%) accounted for the largest amount of 

variance uniquely. The effect of mode is evident in the circumplex visualization 

(Figure 8), where major key pieces fall predominately into the upper right 

quadrant. Uniquely, attack rate predicted 14.0-17.2% of variance in the model and 

pitch height uniquely contributed 1.4-4.3%. The largest contribution emerged 

from the relationship between attack rate and mode (33-37%). Attack rate and 

pitch height accounted for -1.4 – -3.3% of shared variance (Table 4), mode and 

pitch height accounted for 4.6-7.8% of variance and variance common between all 

three cues explained -2.2 - -5.3% of variance in valence ratings. 

  
Arousal Ratings. Again, similar trends emerged across performers for cue 

weights predicting variance in arousal ratings (Figure 7). Attack rate uniquely 

predicted the largest amount of variance (30.1-64.1%). Cues of modality and pitch 

height uniquely predicted 0.01-1.8% and 0-2.1 of variance respectively. In terms 

of shared contributions, attack rate and mode remained the biggest predictor of 

shared variance (11.7-21.9%) compared to attack rate and pitch height (predicted -



Ph.D. Thesis — A. E. Battcock; McMaster University — Psychology, Neuroscience 
& Behaviour 
 

 198 

1.9-3.0%) and mode and pitch height (predicted -0.30-0.73%). The shared 

contribution of all three cues predicted -2.26-0.22% of variance in arousal ratings 

(Table 6). 

 
 
Table 5 
 
Commonality Analysis for Variance in Listener Ratings of Valence Across Seven 
Performers  
 

 
 
 
Table 6 
 
Commonality Analysis for Variance in Listener Ratings of Arousal Across Seven 
Performers  
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

         

  Fischer Gulda Gould Richter Tureck Martins Demus 

         
Unique X1 Attack Rate .1504  .1715  .1628  .1397  .1854  .1942  .1938 

Unique X2 Modality .2390  .2114  .2226  .2867  .2579  .2564  .2427 
Unique X3 Pitch Height .0380  .0438  .0225  .0233  .0163  .0139  .0314 

         
Common to X1 & X2 C (AR, Mo) .3523  .3282  .3213  .3559  .3676  .3294  .3494 

Common to X1 & X3 C (AR, PH)  -.0325 -.0312 -.0186 -.0178 -.0159 -.0139 -.0263 
Common to X2 & X3 C (Mo, PH) .0781  .0626  .0463  .0545  .0607  .0466  .0586 

Common to X1, X2 & X3 C (AR, Mo, PH)  -.0491 -.0271 -.0219 -.0241 -.0525 -.0351 -.0306 
         

 R2 
y.123=    .7762  .7593  .7350  .8181  .8195  .7916  .8190 

         

 

         

  Fischer Gulda Gould Richter Tureck Martins Demus 

         
Unique X1 Attack Rate  .5688  .3019  .4794  .6410  .5557  .5508  .5206 

Unique X2 Modality  .0001  .0181  .0168  .0042  .0069  .0096  .0006 
Unique X3 Pitch Height  .0205  .0012  .0000  .0196  .0131  .0019  .0001 

         
Common to X1 & X2 C (AR, Mo)  .1622  .1740  .2342  .1165  .2187  .1982  .1488 

Common to X1 & X3 C (AR, PH) -.0097  .0287  .0230 -.0185  .0091  .0250  .0298 
Common to X2 & X3 C (Mo, PH)  .0010 -.0012  .0012 -.0030  .0073  .0029  .0002 

Common to X1, X2 & X3 C (AR, Mo, PH) -.0096 -.0162 -.0176  .0022 -.0226 -.0197 -.0158 
         

 R2 
y.123=  .7333  .5065  .7371  .7620  .7881   .7687  .6843 
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Figure 6. Unique and shared variance of valence ratings by musical cue. 
Individual bars depict cue weights for each performer. Attack rate and modality 
explain the vast majority of variance, although specific contributions vary. Error 
bars represent 95% confidence intervals on bootstrapped data. 
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Figure 7. Unique and shared variance of arousal ratings, with individual bars 
illustrating cue weights for specific performers.  Attack rate plays a crucial role, 
although the relative strength of its shared contribution with attack rate varies as a 
function of performer interpretation. Error bars represent 95% confidence 
intervals on bootstrapped data. 
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Discussion 

The significant effect of both excerpt and performer in our ANOVA are 

consistent with previous findings that musical emotion reflects a combination of 

structural and interpretive cues (Eerola et al., 2013; Schubert, 2004). Although the 

effect of performer interpretation is small (𝜂p2=.004), the significant interaction 

between performer and piece as well as the performer profiles (Figure 2 & 3) 

illustrate interpretive differences vary by piece (for example, Eb Major Prelude 

and the B Major Prelude). We suspect this reflects a complex interaction between 

structure and interpretation, with the complexity of some pieces leaving little 

room for large variations in interpretation.  Similarly, structural considerations 

might lead to greater or lesser agreement across performers interpretations. 

Although we cannot speak to the direction of the interaction from our results, we 

can see from further visual inspection the effect of interpretation and piece on 
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Figure 8. Mean ratings for all 48 pieces in the WTC (separated by preludes and fugues) plotted 
across the 2D circumplex space for several performers (a) Fischer, (b) Gulda, (c) Gould, (d) Richter, (e) 
Tureck, (f) Martins & (g) Demus. Major key pieces are represented in red, minor key pieces in blue. 
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conveyed emotion is a nuanced relationship involving performer interpretation 

that can be executed with the musical structure given.  

These results raise interesting questions about the complex communicative 

collaboration between composer and performer in conveying emotion — an issue 

previously explored by Quinto, Thompson, & Taylor (2014). The coefficients of 

variation for valence (39.6%) and arousal (46.0%) indicated significantly more 

variation in participants’ rating of arousal than valence. This finding is similar to 

that of Quinto and Thompson (2013) who found higher variation in judgements of 

perceived emotion in excerpts containing only salient performance cues (excerpts 

had been composed to be emotionally ambiguous). There, the authors argue this 

provided evidence performance cues had greater influence on the communication 

of arousal. That study demonstrated when both compositional cues and 

performance cues are available to listeners, the CV for each dimension appeared 

similar (29.94% valence, 25.78% arousal). In contrast, our findings indicate a 

difference in valence and arousal CVs for excerpts containing a combination of 

compositional and performance cues. Unlike Quinto and Thompson (2013) who 

used monophonic, or single lined melodies composed to represent specific 

emotions, we used precomposed music from a renowned composer often used as a 

teaching tool for performers. It’s possible the use of such complex, polyphonic 

music with untrained listeners caused them to have a greater reliance on 

performance cues than structural ones which led to greater sensitivity in 

interpretative choices across pieces. 
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Interestingly, when we visually examine CVs for valence and arousal for 

each of the 48 excerpts (Figure 4 & 5), we see a bifurcation of mode where minor 

key excerpts appear to have more variation across both dimensions (c2(1)=31.69, 

p<0.001 for valence ratings and c2(1)=20.01,  p<0.001 for arousal ratings) than 

those in major keys. From these results, the question emerges as to whether 

performers’ choice of attack rates is more consistent when interpreting major key 

pieces than minor. Here we find minor key excerpts (CV=61.5%) are found to be 

significantly (c2(1)=13.66,  p<0.001) more variable in chosen attack rates than 

major key excerpts (CV=42.8%), which may support the hypothesis of 

consistency in interpreting major key pieces. Furthermore, we see this division 

across all performers to varying degrees, which may reflect an effect of the 

compositional structure of major vs minor key pieces on the expressive choices in 

the WTC (Table 3). Given our results show minor key pieces are indeed rated 

lower in perceived valence than major key pieces (t(10079)=-256, p<0.001), this 

may reflect the complexity and range in expressing or perceiving (Hunter, Glenn 

Schellenberg, & Stalinski, 2011; Laukka & Juslin, 2007) emotions that are low 

arousal, and negatively valenced. This is consistent with previous work on the 

perception of negatively valence emotions like sadness, nostalgia, or longing that 

are often confused or are less accurately identified than positively valenced 

emotions like happiness (Laukka, Eerola, Thingujam, Yamasaki, & Beller, 2013).  

We see this division of mode occur across CVs calculated for ratings of 

each performer’s recordings. This may have occurred as result of stimuli 
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differences, where Quinto and Thompson (2013) used melodic fragments 

consisting of seven to nine notes, each composed to communicate a specific 

emotion. In contrast the excerpts in our study are more reflective of passages in 

actual music with more complex polyphony, emotional ambiguity, and mixture of 

major and minor chords.  Given this complexity, our listeners with little to no 

musical training may have fixated more on performance cues when judging 

emotion.  Additionally, we saw that CVs for arousal varied more across 

performers than for valence, further suggesting effects of expressive choices as a 

stronger influence for perceived arousal than perceived valence.  

 We ran regression and commonality analyses for each performer 

experiment to compare cue weights across interpretations. Generally, cue profiles 

followed similar patterns to Battcock and Schutz (2019), with all three cues 

predicting listener ratings of valence, and only attack rate emerging as a predictor 

of ratings of arousal. However, the fit of each regression model varied across 

experiments, suggesting our three cues are more predictive for some performers 

than others. Models of valence ratings explained from 73.5% to 82.0% and 

models of arousal ratings explained from 50.7% to 78.8% depending on the 

performer recording used. The variation of model fits are greater for arousal 

ratings than valence ratings, supporting the hypothesis that compositional cues 

such as mode and pitch are more important for valence than arousal (Quinto & 

Thompson, 2013).  
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The commonality analyses allowed for a detailed breakdown of the 

relative cue weights with respect to unique and shared variance in our model. This 

is important as there is a relationship between attack rate and mode, where major 

key pieces of this set are faster than minor key pieces (t(46)=-3.2419, p<0.05) as 

presented in Battcock and Schutz (2019). The cue profiles calculated from the 

commonality analyses indicate that for ratings of arousal, performer’s expressive 

choices of attack rate are more salient to listeners for specific performers, where 

the predictive power of attack rate to explain variance uniquely and independently 

of other predictors varies based on the performer recording used (30.2% to 

56.8%), which resulted in the variation of model fit. As a consequence of the 

interpretive choices of attack rate, the shared variance explained by attack rate and 

mode also differed across performer recording (14.9% to 21.9%). It is important 

to note that it is possible that given our limited number of expressive cues in the 

model, performers’ manipulation of other expressive cues like that of dynamics, 

articulation or timing fluctuations at a micro level have additional effects on 

perceived arousal that explain additional variance and might account for the 

variation in attack rate cue strength. 

 In addition, commonality analysis allows us to add insight in the debate 

on the role of mode in perceived emotion between music psychologists and music 

theorists. Empirical evidence using single lined pre-composed or experimentally 

designed excerpts demonstrate listeners perceive more positively valenced 

affective terms with the major mode, and negatively valenced affective terms 
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when presented with minor modes (Dalla Bella et al., 2001; Hunter et al., 2008; 

Webster & Weir, 2005).  Music theorists however reason mode’s apparent 

influence is due largely to its pairing with other structural cues (Hatten, 2004). 

With our analysis we assessed the unique and common variance explained by 

mode and its relationship to timing information across seven difference 

performances. Here we show mode affects perception of valence, but not arousal. 

Further, with commonality analysis we separate out the relationship between 

mode and timing, observing variance commonly predicted by mode and attack 

rate, as well as uniquely predicted by mode. For ratings of valence, we see mode 

uniquely predicts a notable amount (21%-27%) of variance, even when the 

variance commonly predicted with attack rate (32%-37%) is considered.   

 

General Discussion 

The importance of expressive interpretation for a musician’s career is 

paramount. Performers strive to differentiate themselves, often with the goal of 

creating emotionally captivating performances that speak to their audiences. The 

present data sheds light on the complex relationship between performers’ 

interpretative decisions on a musical composition and the expressive outcomes 

judged by listeners. Focus of the perceptual consequences of performer 

differences often centers on the identification of interpretations or expressive 

aspects of a performance. Our work, similar to Juslin (1997), considers how 

performer interpretation leads to variations in the communicated emotional 
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messages. Previous research has focused on the recognition or grouping of 

performer interpretations (Gingras, Lagrandeur-Ponce, Giordano, & McAdams, 

2011), or identifying the expressive phrasing used (Macritchie et al., 2012). Here 

we explore how performer differences influence the perception of emotion using a 

widely performed set of pieces that have been interpreted from many well-known 

and respected musicians. Rather than emotion recognition accuracy, our work 

focuses on how listeners ratings vary on dimensions of valence and arousal. 

Further, we discuss how our results touch on the role composer controlled 

(structural) or performer controlled (performance) cues play in communicating 

emotion through music. 

 

Composer vs performer-controlled cues in conveyed emotion 

Plotting the ratings of each piece across performers, we observed an 

influence of mode on perceived emotion for all interpretations (Figure 8). This 

raises interesting questions about the different contributions of composers and 

performers to emotional communication. Although composers’ emotional 

intentions are encoded through the notation of structural cues — pitches, rhythms, 

notated tempi, etc., performers then study, interpret, and ultimately perform these 

notes and rhythms, adding additional layers to the emotional signal. Therefore, the 

relative weight of composer controlled versus performer-controlled cues is of 

broad interest with respect to emotional expression. 
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Studies that have investigated how listeners perceive emotion in music 

show composer cues are also influential to perceived emotion. In a more recent 

study from Juslin and Lindström (2010),  75-80% of variance associated with 

listener ratings of emotion could be explained from a linear combination of both 

performer and composer cues. Using synthesized musical stimuli composed for 

experimental purposes, the authors varied eight features (pitch, mode, melodic 

progression, rhythm, tempo, sound level, articulation and timbre) according to a 

factorial design. Musically trained participants rated musical stimuli along five 

affective adjective scales (‘Happy’, ‘Sad’, ‘Angry’, ‘Fearful’ and ‘Tender’). Their 

regression analysis indicated composer-controlled cues contributed to perceived 

emotion, however they may be less influential than cues involved in performer 

expression. Our work demonstrates variance associated with valence and arousal 

respectively could be attributed to the combination of both composer-controlled 

and performer manipulated cues, where weights of these cues differed according 

to the dimension of emotion measured. Our findings are therefore consistent with 

Juslin and Lindstrom (2010), even with the use of stimuli that has not been 

systematically manipulated for each cue of interest. However, unlike their study, 

here we see that for ratings of valence the composer-controlled cue of mode 

appears more important than the performer-manipulated cue of attack rate which 

suggests a potential specialized function for each type of cue on perceived 

emotion.  
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In our study all listeners heard the same compositional structure — with 

different performers varying interpretative dimensions such as tempo, articulation, 

and dynamics. From our results, we found these interpretive cues led to more 

variation in perceived arousal than valence across performers and pieces. This is 

consistent with the idea that both composer (structural) and performer controlled 

(performance) features contribute to emotional responses (Quinto and Thompson, 

2014). In that series of studies, listeners rated emotional valence and arousal for 

musician-composed excerpts either performed with a specific intended emotion or 

rendered neutral and expressionless through MIDI software. In order to quantify 

the composer and performer-controlled cues, musical excerpts were subject to 

acoustic analysis using Praat and MIRToolbox software. Overall, regression 

analyses on listener ratings indicated the cues predicted 58-59% of valence and 

arousal variance. The model included compositional cues such as mode, mean 

fundamental frequency, range (number of semitones between the lowest and 

highest frequencies), mean interval size, as well as performance cues of 

articulation, mean intensity level, intensity variability, high-frequency energy and 

tempo. Researchers found cues affected valence and arousal ratings differently; 

compositional cues such as mode had a greater influence on valence ratings 

whereas performance cues more strongly influenced arousal ratings. In addition, 

regardless of the intended emotion use of performance expression enhanced 

listeners’ ratings of emotional valence and arousal. As such, a performer’s 

interpretative decisions on expressive musical cues elicits a strong influence on 
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the communicated emotion with a potentially larger influence over emotional 

arousal in music. We found similar results to those findings in this study as well 

as Battcock and Schutz (2019), as we see attack rate emerges as the only 

significant predictor of arousal ratings, where all three cues appeared significant 

for valence ratings. Our results had been found using polyphonic, or multi-lined 

precomposed music, which helps strengthen the argument that composer or 

performer manipulated cues have varying influences on the dimensions perceived 

emotion in music.  

 

Examining the main goals of our studies 

Although we did not have specific hypotheses, we had three areas of 

primary interest motiving this work. Firstly, we wanted to explore how different 

interpretations of pieces from J.S Bach, as performed by highly trained musicians 

would affect communicated emotions. Using a dimensional approach to conveyed 

emotions, we are able to compare how listeners rated perceived valence and 

arousal for each performer across all 48 excerpts of the WTC.  Our second focus 

involved assessing what aspect of emotion — arousal or valence — is more 

affected by differences in interpretation. We hoped to extend on previous work of 

Quinto and Thompson (2013), which investigated the impact of structural or 

performance cues affected these dimensions of emotion. Finally, we wanted to 

look at the effect of interpretation on the relative weights of cues used by listeners 

to make assessments of emotion. The application of commonality analysis is 
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beneficial to this goal as allows us to tease apart the cue relationships and thus 

compare their importance across each performer. 

 

The interaction between structural and interpretive cues 

Our first research interest focused on the question about how different 

interpretations of expert pianists affect emotion messages.  Here our experiments 

bridged work measuring differences in perceptual expressivity or emotionality 

and work measuring perceived emotion as it compares listener ratings of 

communicated emotion across different performer recordings. Similar to Sloboda 

and Lehman’s (2001) study, we observed differences in how listeners experienced 

performer interpretations. In their study, authors reported that in both post 

performance and continuous intensity judgements of a Chopin piece recorded by 

ten pianists, listeners evaluated the 20 performances differently based on 

expressed emotionality. Although their study did not focus on emotion conveyed 

in a performance, it demonstrated that local divergences between performers 

resulted in variations of how listeners rated the emotionality. Our study focused 

on the consequences of interpretation in the emotional information transmitted to 

listeners, where we saw that with both visual inspection from plotting each 

excerpt on the circumplex (Figure 4) as well as the performer profiles (Figures 2 

& 3) that performances from one performer can express different levels of arousal 

and/or valence than other renditions. This helps shed light on how the same 

musical structure can communicate varying emotional information based on how 
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a performer chooses to manipulate the available expressive cues. We did find that 

any specific performer remaining consistently different in perceptual ratings, 

consistent with the idea that certain compositional structures afford more 

individualized interpretations. The specific compositional features giving rise to 

this greater performance flexibility remains an open question that would benefit 

from future research attention.   

 

The relationship between valence and arousal across different interpretations 

Our second interest was to examine whether arousal or valence 

systematically differed more across performances. We found that more variation 

on average in ratings of arousal than valence. This suggests performer 

interpretations has a stronger influence on perceived arousal than valence. The 

musical features or cues available for performers to manipulate are often found to 

be important to perceived arousal (Quinto et al., 2014). Here we only included 

one cue under the performer’s control, attack rate. Results from our regression 

models of listener’s arousal ratings indicated a large range in how much variance 

each performer model could explain for (50% – 79%). This may suggest there are 

other expressive cues outside of attack rate that vary in importance across 

performers that may help to explain the remaining variance left unexplained. 

Further, the larger amount of variation in arousal ratings across performers speaks 

to work done from Quinto and Thompson (2014) examining composer versus 

performer-controlled cues and their influence on perceived ratings of emotion.  
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Interestingly, our results show a strong effect of the composer dictated cue 

of mode, where regardless of interpretation, minor is more variable in the ratings 

of valence and arousal than major keys (Figure 4). The measure of variation of 

these rating differences varies across performers (Figure 5), which suggests that 

listeners perceived certain performers’ interpretations more consistently. Using 

Bach’s WTC affords us the unique opportunity to assess the influence of mode 

across a balanced set of keys. Often times stimuli in similar perceptual 

experiments consists of either a handful of precomposed pieces from different 

composers, or musical excerpts that have been experimentally composed or 

manipulated for the directives of the study. 

 

Cue trade-offs in interpretation  

Finally, our third goal of the study was to explore any cue trade-off that 

occurred across performances. The use of commonality analysis in our models of 

listener ratings allowed us to tease apart cue contributions based on unique and 

shared variance of our three predictors. However, this analysis does not offer a 

statistical method to directly compare differences of these cue contributions. As 

such, we employed bootstrapping to determine appropriate error bars to give us a 

better idea about any potential significant differences. Using bootstrapping we 

repeatedly resampled from our original data sets to create multiple simulated data 

sets, which provides a distribution from which to calculate our error bars. Based 

on those analyses for bootstrapped valence and arousal ratings, we did see shifts 
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in how much cues could account for variance of that respective model. 

Specifically, for the unique contributions for our cues of attack rate, mode and 

pitch height predicted varying amounts of variance based on performance. It is 

possible performers used expressive cues differently to emphasize the musical 

structure, which led listener responses to rely on cues differently for different 

performances.  

Although we are not able to directly comment further on this relationship 

given this is a comparison across different listener groups, and our limited number 

of predictors—we can observe the relative weights of our measured cues to 

identify how listeners are using cues for each performance to perceive the 

conveyed emotion. This speaks to Juslin’s (1997) Lens Model that explains how 

the redundancy of cues allows for emotions to be successfully communicated with 

different cue combinations. Performers are still able to convey similar emotions 

without having to use or manipulate the same cues across performances. This is 

particularly useful in instances when the cues accessible to musicians are limited, 

such as when performing on instruments with restricted acoustic affordances (i.e., 

harpsichord does not allow for the same dynamic range as the piano).  

 

 

 

Limitations and Future Directions 
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The present exploratory set of studies is subject to some limitations that 

can be addressed with future studies. Firstly, this work compares results across 

seven experiments, where participants are exposed one performer’s set of 

recordings. Although this mitigated the effect of differences in recording quality 

across performers, it did not allow for direct comparisons of specific pieces across 

performers as participants heard performances by only a single pianist. Future 

work should more directly explore this issue, by testing select pieces as performed 

by all performers to compare emotion ratings. In addition, our studies focused 

only on three cues, two of which represent strictly composer controlled musical 

features. Future research should expand this list to include additional performance 

cues to assess how the relative weights of these cues change according to 

interpretation. To that effect it would also be beneficial to further examine the 

relationship between differences in these performance cues and the impact on the 

variation in emotion ratings.  

Our selection of Bach’s WTC as stimuli allowed for us to study 

interpretation effects form highly trained performers. Although this work is not 

known for being overtly emotional, it offers useful insight to how and how 

performers vary emotional expression when given greater flexibility.  

Nonetheless, choosing a more emotionally expressive work in future studies 

would offer useful complementary insight into the range of the potential effect of 

interpretation on perceived emotion. Another interesting aspect not addressed in 

this work is the influence of individual factors or differences added to the 
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communication process from the listener. For example personality traits (Taruffi, 

Allen, Downing, & Heaton, 2017; Vuoskoski & Eerola, 2011), and musical 

experience (Akkermans et al., 2018; MacGregor, & Müllensiefen, 2017; Castro & 

Lima, 2014) affect the emotional messages received by listeners. Therefore, future 

work should also address the interaction of differences in listeners’ backgrounds 

and differences in performers’ interpretations. 

Limitations aside, the results demonstrate regardless of interpretation, 

listeners are more variable in emotion assessments of minor key pieces. Further, 

our results indicate minor key pieces are rated more negatively than major key 

pieces. Taken together these findings highlight the difficulty in communicating 

negatively valenced emotions. In addition, even with the presence of structural 

and performance cues, there is a greater variation in perceived arousal than 

valence. This corroborates findings that suggest structural or composer-controlled 

cues have a greater influence of conveyed valence than variations in performance 

cues (Quinto and Thompson, 2014). 

The present study also contributes to literature exploring expressive 

consequences of interpretation by examining how those choices affect listener 

perception. Although these differences may not necessarily reflect changes in the 

emotional category conveyed (i.e. ‘happiness’, or ‘sadness’), variations for levels 

of conveyed emotional arousal. Thus, the strength or effectiveness of a conveyed 

emotion may vary as a result of these interpretive choices. As written by Daniel 

Leech-Wilkinson (2012) “Performance is not simply a reproduction, a 
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performance of something, but a process, created by performers and mentally 

constructed (uniquely and temporarily by each listener)”. When investigating the 

process of conveyed emotion through musical signals, it is important to consider 

aspects of the composer, performer and listener. This novel exploratory study 

explores two of these vital components, helping to shed light onto the complex 

process of conveying emotions through music.  
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Table A1 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Performer Attack Rate Descriptive Information 
 
Table A2 

 

  
Performer M SD Min Max 

     
Fischer 28.88 11.72 9 65 
Gulda 30.69 13.46 8 65 
Gould 27.71 17.35 6 104 
Richter 28.29 11.64 8 53 
Tureck 31.75 11.57 7 58 
Martins 30.88 13.35 7 64 
Demus 29.63 10.81 7 58 

     

  



Ph.D. Thesis — A. E. Battcock; McMaster University — Psychology, Neuroscience 
& Behaviour 
 

 223 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Performer Excerpt RMS Descriptive Values 

 
 
Table A3 

Performer M SD Min Max 
     

Fischer 4.67 2.57 1.2 12.8 
Gulda 4.9 2.25 1.3 11.13 
Gould 4.75 2.69 .96 11.73 
Richter 4.61 2.57 .94 11.73 
Tureck 3.91 2.09 .87 10.67 
Martins 4.3 2.63 .9 11.2 
Demus 4.28 2.23 1.2 10.13 
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Appendix B 
 
 

Musical Training Survey  

  
Performer M SD Min Max 

     
Fischer -26.4 4.5 -37.5 -18.8 
Gulda -29.6 6.1 -40.6 -20.5 
Gould -22.3 3.9 -36.3 -22.3 
Richter -26.8 4.8 -36.9 -16.8 
Tureck -26.8 5.1 -39.3 -16.6 
Martins -29.4 4.1 -39.9 -22.9 
Demus -27.5 3.49 -35.9 -19.9 
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Appendix C 
 
 

Descriptives on Valence and Arousal Ratings Across Performers 
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Table C1 
 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Author Note 
 

    
  Valence    Arousal  
Performer M SD Min Max  M SD Min Max 

          
Fischer 3.98 1.16 1.47 5.6  55.26 17.49 23.33 85.1 
Gulda 4.09 1.11 1.97 6.3  56.99 16.78 30.27 82.82 
Gould 4.15 1.11 1.93 5.93  57.5 16.24 24.33 85.87 
Richter 4.07 1,17 1,7 6.03  52.57 18.72 19.57 84.57 
Tureck 4.11 1.02 2.23 5.87  53.26 13.5 29.37 82.47 
Martins 4.05 1,26 1,63 6.27  56.56 16.73 28.33 67.17 
Demus 4.03 1.12 1.41 6.06  53.91 16.6 26 86.21 
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5.1 Thesis Findings and Theoretical Contributions   
 

The foundation of work on musically communicated emotions has 

centered around tightly controlled or manipulated stimuli (Hailstone et al., 2009; 

Lindström, 2006; Quinto, Thompson, & Keating, 2013). Therefore, further insight 

into how cues function across genres in precomposed, multi-lined music is 

beneficial to understanding the way music can transmit emotional messages. 

Studies have incorporated more naturalistic methods, using film soundtracks 

(Eerola, 2011;Vuoskoski & Eerola, 2011), pop music (Yang & Chen, 2012) or 

excerpts selected to represent specific emotions (Dibben, 2004) to explore 

emotional perception, however, selection of these stimuli introduces challenges 

due to familiarity effects of such popular works. For example, pre-existing 

associations between film scenes and musical excerpts can impact perceived 

emotion, and the use of multiple timbres included in film music add further 

complexity in understanding the processing of conveyed emotional content. As 

such, this dissertation extends this work by examining pre-composed/recorded 

music unfamiliar to untrained listeners, containing one musical timbre. In 

addition, investigating the transmission of emotional signals through music not 

selected for its overt expression of an emotion can illustrate differences in cue use 

that may emerge when the emotional signal requires more consideration to 

decode. Overall, this dissertation offers three main contributions to the literature: 

(1) Insight into the individual and joint contributions of cues in a set of 

polyphonic pieces by a well-known composer; (2) The influence of musical 
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training on the importance of cues in perceiving emotion; and (3) How performer 

interpretation and cue use interact to impact listener perception. 

In the previous chapters I applied a statistical technique not previously 

used in the music cognition literature — commonality analysis (i.e., variance 

partitioning). I use this method on listener ratings of perceived emotion in 

unaltered music excerpts to investigate the phenomena of communicated emotion. 

Paired with more conventional techniques such as regression and correlation 

analyses, it provides a novel and powerful way to address the importance of 

predictors as it teases apart unique and shared contributions. This is particularly 

useful in contexts such as music, where predictors or cues may be correlated. For 

example, within Western culture music, timing and mode are often correlated, 

where major key pieces are found to be faster than minor key pieces (Poon & 

Schutz, 2015; Post & Huron, 2009). Therefore, commonality analysis allows us to 

extract useful information from perceptual ratings of such musical stimuli, in 

order to uncover how listeners use these cues.  

 
5.1.1 Emotion perception in natural music  
  
 Chapter 2 focused on examining the roles of musical structure on 

perception. In that chapter, I showed that cues of attack rate, mode and pitch 

contribute to the perception of conveyed valence, but only attack rate emerged as 

an important cue for the perception of arousal. Further, I found that when 

applying commonality analysis to models of listener ratings of valence, attack rate 

and mode predicted similar amounts of rating variance. In contrast to studies that 
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focus on the cue of tempo as an important cue to communicate emotion (Balkwill 

& Thompson, 1999a; P.N Juslin, 1997; Vieillard et al., 2008), my research uses 

attack rate to represent conveyed timing information. This cue captures temporal 

information; however, it is also sensitive to the number of note attacks presented 

within the selected musical excerpt. As such, it is a good representation of how 

much musical information is transmitted given the speed or rate at which the notes 

are performed. In Chapter 1, experiment 2, I found that the predictive weight of 

mode increased for listener ratings of emotion using musically ‘resolved’ 

excerpts. Some excerpts used as stimuli in the first experiment contained 

modulations or key changes, therefore we used ‘resolved’ excerpts in experiment 

2 to provide a more representative sample of each mode. There, mode did indeed 

take on greater prominence as a result of this treatment—despite the fact that 

participants in this experiment had less than one year of formal training. This 

finding motivated Chapter 3’s exploration directly assessing the role of musical 

training on cue prominence. 

 
5.1.2 Individual differences (listeners) 
 
 The individual experiences and characteristics of the listener can influence 

how musical cues are decoded (Castro & Lima, 2014; Lima & Castro, 2011; 

Taruffi, Allen, Downing, & Heaton, 2017; Vuoskoski & Eerola, 2011). The level 

of musical training is one such characteristic that can impact how auditory 

information is processed and perceived. In Chapter 3, I compared ratings of 

perceived emotion from listeners with musical training to the data collected and 
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presented in Chapter 2 that involved untrained listeners. From this comparison, I 

demonstrated differences in the relative weights of cues between individuals with 

and without musical training. Specifically, I showed that musical mode is more 

predictive of valence ratings for individuals with more musical training.  

Regardless of training, listeners are found to use similar patterns of cues, 

or cue profiles, implying these populations use similar inference rules in their 

perception of emotion (Castro & Lima, 2014). Although the initial regression 

results in Chapter 2 showed comparable findings between groups, the 

commonality analysis illustrated differences between cue weights of these groups 

when considering the unique contributions of mode. In Chapter 3, experiment 2, 

as found in Chapter 1, the strength of mode’s independent prediction of ratings of 

valence increased for trained listeners. In addition, I showed that the regression 

modelling of listener ratings indicates the three-cue model predicts proportionally 

more variance for listeners with training than untrained listeners. This result 

suggests formally trained listeners use these cues more systematically when 

making assessments of conveyed emotion.  Together with the data presented in 

Chapter 2, this illustrates that the ending tonal area of excerpts affects modality’s 

role in emotional communication—regardless of musical training. 
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5.1.3 Individual differences (performers) 
 
 A performer’s interpretative decisions impact how cues are used to 

communicate intended emotions of a musical piece (Gabrielsson & Juslin, 1996; 

Juslin, 1997). In Chapter 4, I explored the perceptual consequences of performer 

interpretation by comparing listeners’ emotion ratings across seven experiments, 

utilizing seven full recordings from well-established and notable performers. 

Consistent with Quinto and Thompson (2013, 2014), I demonstrated larger 

variations in listener ratings for perceived arousal in contrast to perceived valence. 

This result highlights the influence of performer interpretation and expressive 

cues in conveyed emotion with respect to perceived arousal. Further, these results 

suggest the importance of compositional cues in perceived valence within multi-

lined, precomposed music. Overall, findings in this thesis indicate the specialized 

nature of compositional and expressive cues applies to music beyond short 

excerpts composed for experimental purposes. 

In addition, I found the effects of piece to be stronger than performer 

effects in predicting emotion ratings, however the interaction between piece and 

performer indicated that the effect of performer differed across pieces. From this 

set of experiments, I showed that listener ratings are more variable for minor key 

excerpts across performers, demonstrating performers convey a wider range of 

emotion for pieces expressing more negatively valenced emotions. This result 

supports work hypothesizing difficulty in conveying negatively valenced 

emotions (Laukka, Eerola, Thingujam, Yamasaki, & Beller, 2013). Further, it 
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demonstrates consistency in listener ratings for more positively valenced emotions 

in musical excerpts, not chosen to explicitly express any basic intended emotions. 

Lastly, using commonality analysis, I examined performer differences by 

calculating the ‘cue profiles’ for each performer, indicating the weight of the 

unique and shared contributions of cues for predicted variance. These calculated 

values along with bootstrapped error bars revealed significant differences between 

performers with respect to attack rate’s ability to predict arousal ratings. This 

result highlights the complex relationship between structural and interpretive cues 

in emotional communication. 

 
5.2 Limitations and Implications  
 
5.2.1 Limitations 
 

To the best of my knowledge, this thesis is the first to use regression 

modelling in combination with commonality analyses to explore the relationship 

between musical cues (i.e., attack rate, mode and pitch height) and perceived 

emotion in precomposed music grounded in Western tradition. Although this 

approach offers insight into the complex communicative process of conveyed 

emotion, it brings some inherent limitations.  Overall, the experiments in Chapters 

2-4 focus mainly on three musical cues. Selected for their importance reported 

within the literature (Balkwill & Thompson, 1999; Hunter, Schellenberg, & 

Schimmack, 2008; Ilie & Thompson, 2006; Quinto, Thompson, & Keating, 2013), 

this nonetheless represents a limited set of all features that can transmit musical 

emotion. Work on music and emotion has identified other cues that influence 
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perceived emotion (Bresin & Friberg, 2011; Eerola, Friberg, & Bresin, 2013; 

Schubert, 2004), and therefore future work could quantify additional cues to better 

compare the importance of individual musical features. 

Furthermore, of the cues studied in this thesis, attack rate is the only 

expressive cue explored. Across all experimental chapters, models of listener 

ratings predicted valence better than arousal. This finding is in contrast to research 

using instrumental film musical excerpts (Eerola, 2012; Eerola, Lartillot, & 

Toiviainen, 2009; Vuoskoski & Eerola, 2011). Thus, results from this dissertation 

are limited in explaining whether models of listener ratings of emotion could be 

better predicted by other expressive cues than attack rate. Future studies aiming to 

assess the cues important to conveyed arousal could quantify expressive cues 

known to play a role, such as dynamics (Eerola et al., 2013; Nakamura, 1987) and 

articulation (Bresin & Friberg, 2011; Gingras, Lagrandeur-Ponce, Giordano, & 

McAdams, 2011). In addition, quantification of cues in this thesis used only an 

average value per-piece—yet, music is a dynamic stimulus with events 

continuously unfolding and changing over time. As emotion can fluctuate 

throughout a musical excerpt, a retrospective evaluation might not fully capture 

the dynamic unfolding of emotional experiences. Future studies mapping cue use 

to emotional fluctuations using continuous rating measures (particularly when 

comparing performer interpretations) could prove invaluable to enhancing our 

understanding of how perceived emotion varies on a moment to moment basis.  
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 In Chapter 3, I reported that results across both experiments 1 and 2 

demonstrated the effect of mode is stronger on ratings from listeners with more 

years of musical training. Compared to the findings in Chapter 2, this result 

suggests musical training leads to a greater sensitivity to mode with respect to 

conveyed emotion. This is further supported by the results in the second 

experiment of Chapter 3, where the variance predicted by mode is larger for 

trained listeners than for those with less than one year of musical training. Mode 

is known to be an acculturated cue, as knowledge of the association between 

mode and emotion comes with exposure or experience (Dalla Bella et al., 2001; 

Gerardi & Gerken, 1995; Kastner & Crowder, 1990). Taken with the results of 

Chapter 3, this suggests those with formal years of training have more exposure or 

experience in learning how mode is used to convey emotion. However, these 

results cannot answer whether the effect of mode on the perceptual ratings of 

trained listeners is the result of the assessment of the excerpt as a whole, or if 

knowledge of the starting mode determines their ratings of valence. Listeners with 

musical training are often aware of emotional connotations of major/minor modes 

and have the ability to explicitly identify mode by listening.  This raises the 

possibility of top-down biases in their assessments. Although experiment 2 uses 

musically ‘resolved’ excerpts to ensure they end in the same mode as they began, 

the question about mode’s influence as the excerpt unfolds still remains. As such, 

continuous ratings would be beneficial to determine how mode influences 

perceived emotion moment-by-moment.  
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Chapter 4 examined the influence of performers’ interpretative decisions 

regarding cue use and listener perception. Listeners are successful in grouping 

performances by performer (Gingras et al., 2011) and can identify the use of 

expressive cues (Macritchie, Eiholzer, & Italiana, 2012). Additionally, work from 

Juslin (2000) suggests performers can vary the emotion communicated to 

listeners. The methodology in Chapter 4 does not directly compare renditions of 

the same piece across different performers but evaluated rating differences 

between each experiment containing a performer’s full recording of the Well-

Tempered Clavier. Thus, it remains unclear which cues performers varied that 

may explain differences in listener ratings. Future work directly contrasting 

expressive performances of the same piece can elucidate the relationship between 

cue variations and listener responses of emotion.   

Lastly, findings in all chapters of this dissertation emerged from the use of 

stimuli from a specific musical era in Western tradition. Although the results 

complemented and extended what has been found in the literature using tightly 

controlled or manipulated stimuli (Balkwill & Thompson, 1999; Hailstone et al., 

2009; Lindström, 2006), they do not always generalize across all musical genres 

and eras. Even within music composed within the same genre (e.g. classical 

music), composers can use cues differently to express emotion. For example, the 

relationship between timing and mode cues appear to follow different trends or 

patterns in music from the Romantic era, compared to those works created by 

composers of Baroque music (Horn & Huron, 2015; Poon & Schutz, 2015; Post & 
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Huron, 2009).  As such future experiments should test the generalizability of cue 

effects using this methodology with a wider range of stimuli.  

 
5.2.2 Implications for music theorists 
 
 Some music theorists are skeptical of perceptual evidence demonstrating a 

strong effect of mode (particularly the major/minor distinction) on perceived 

emotion. Although the data presented here suggest mode is a strong cue for 

emotion, some music theorists argue such results speak more to associations 

between mode and structural cues other than mode itself (i.e., as mentioned in 

section 5.2.1, the correlation between mode and timing). My dissertation 

contributes to this debate by showing how mode has a greater influence over 

perceived valence than arousal. Using a dimensional modelling approach, I have 

shown that mode significantly predicts how listeners assess the communicated 

emotion as sounding positive or negative. Contrastingly, mode does not predict 

the conveyed emotional intensity, as evidenced by its minimal influence on 

listener ratings of arousal. This is consistent with other perceptual evidence 

suggesting a difference in how structural versus performance cues influence these 

two dimensions of emotion (Quinto & Thompson, 2013; Quinto, Thompson, & 

Taylor, 2014).  

Additionally, my results illustrate the impact of the relationship between 

cues of mode and timing. Music theorists argue mode’s proposed effect on 

perceived emotion is largely a function of its association with other cues. Using 

commonality analyses I show that a large proportion of variance in our regression 
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models is commonly predicted by mode and attack rate. This shared predicted 

variance is a result of the correlation between mode and attack rate within the 

stimuli, where excerpts in major modes have faster attack rates than excerpts in 

minor modes. However, through the analyses, I identified the effect of this 

relationship on predicted variance and could tease apart the unique effects of each 

cue, revealing their independent effects on listener ratings. This demonstrates that 

for valence ratings, mode and attack rate appeared similar in their predictive 

weight in the first experiment of Chapter 2. In experiment 2 of that same chapter, 

the use of resolved excerpts created a shift in cue weights, as mode predicted 

proportionally more variance than attack rate. Thus, this dissertation adds some 

clarity to the debate on the importance of mode as an emotionally expressive cue. 

 
5.2.3 Implications for developing clinical applications 
 

Although the findings presented in this thesis do not directly lend 

themselves to clinical applications, they help in the understanding of interpersonal 

communication, specifically with non-verbal emotional communication. Musical 

therapeutic strategies are often used to facilitate emotional expression (Clements-

Cortés, 2004; Darrow, 2006). These strategies rely on understanding the 

expressed emotions within performances and are crucial, given the importance for 

therapists to establish a meaningful relationship with their client through shared 

music making, often known as joint clinical improvisation (Alvin & Warwick, 

1991). Recent clinical studies reported benefits of emotional expression in music. 

For example, many reports show music therapy can improve social skills in 
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children with autism spectrum disorder (ASD), promoting non-verbal 

communication through musical improvisation (Novenia, 2019). 

These findings illustrate the relationship between cues and dimensions of 

communicated emotion. Understanding how musical features can express valence 

and/or arousal allows therapists to use cues appropriately in practices where they 

are required to respond musically to clients expressing emotion. In particular, the 

‘iso-principle’ is a technique in music therapy that requires therapists to meet the 

mood of the client with music, and gradually alters the musical expression to 

reach a desired mood state (Davis, Gfeller, & Thaut, 2008). Difficulty in 

recognizing a client’s expressed emotions, and how that is achieved in music, can 

affect the success of this technique. In addition, knowledge of the relationships 

between musical cues and expressed emotion is crucial to respond appropriately 

to continue the musical dialogue and achieve a desired mood state in a client. 

Specifically, relationships between cues and dimensions of emotion can be key to 

communicating appropriate levels of emotional arousal and valence that that will 

eventually lead to effective changes in mood. This technique is applicable to a 

range of clinical populations who have difficulty with verbal expression of 

emotion ranging from those with ASD, to those experiencing depression (Bodner 

et al., 2007), or those unable to communicate verbally. This highlights the 

importance of not only using music to express emotion, but to have the tools to 

understand what is being communicated. 
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5.2.4 Implications for understanding the role of musical training 

Neural evidence suggests musical experts process auditory information 

differently compared to listeners without training (Koelsch, Schmidt, & Kansok, 

2002; Sherwin & Sajda, 2013). However behavioural evidence regarding the 

effect of musical training is more equivocal. In some cases listeners perform 

similarly regardless of levels of training (Bigand & Poulin-Charronnat, 2006), 

however more recent work suggests musical training may fine-tune perceptual 

processes which make trained listeners more accurate in tasks involving emotion 

recognition (Akkermans et al., 2018; Castro & Lima, 2014; Lima & Castro, 

2011). In this thesis, I showed that listeners with six or more years of formal 

music training are more sensitive to the cue of mode than untrained listeners, 

which is consistent with views that training can affect how listeners process cues 

to perceive emotion.     

Differences in performer expression have often been studied, noting 

variations in how expressive cues are used (Gingras et al., 2011; Macritchie et al., 

2012; Repp, 1992). These variations are purposely selected to encode a 

performer’s intended emotion, which as a result can change how the listener 

experiences the music (Sloboda & Lehmann, 2001). Examining the effect of 

interpretative choices on perceived valence and arousal, I showed models 

predicting listener ratings vary in the amount of variance accounted for by attack 

rate, mode and pitch height across both dimensions. The variation however among 

models of perceived arousal is greater than for perceived valence, again 
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demonstrating expressive cues used by the performer have greater influence over 

conveyed arousal than valence. 

 
5.3 Summary 
 

With novel application of this technique in a unique stimulus set, my work 

offers three important contributions to existing research on communicated 

emotion in music: (1) Insight on the individual and joint contributions of 

correlated structural cues on varying dimensions of emotion; (2) The influence of 

individual differences such as musical training on cue weights in perceiving 

emotion; and (3) Interactions between performer interpretations and cue use and 

how this may impact perception.  

The primary goal of this thesis was to determine trade-offs in the 

weighting of cues conveying emotion in widely studied and heard music, taking 

into account a wide variety of naturally and important, but difficult to assess 

factors—such as individual differences in performers’ interpretations as well as 

listeners’ training. Together, these results provide novel insight into issues of 

broad relevance.  Specifically, Chapters 2-4 demonstrate how cues of timing, 

mode and pitch contribute both uniquely and jointly listener perception of 

emotion. This extends previous work using regression modelling to explore the 

importance of timing and mode cues on perceived emotion (Eerola 2011; Eerola 

2012; Gagnon & Peretz, 2003; Schubert, 2004). In addition, this body of work 

emphasizes how cues can impact dimensions of valence and arousal differently, 

where mode and timing were the strongest cues for listener ratings of valence, but 
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only attack rate appeared important for ratings of arousal. These results add to 

debates from music theorists on the utility of mode in perceived emotion, and 

support research indicating cues selected for by the composer (structural cues) 

have greater impact on perceived valence and cues manipulated by the performer 

(expressive cues) are more important for perceived arousal (Quinto & Thompson, 

2013). Further, the present results broaden such findings to unaltered multi-lined 

music, composed of covaried cues. This illustrates the specialized effect of 

structural and expressive cues occurs in more complex music frequently 

experienced in concert halls or with personal listening devices. 

Overall, this work extends research exploring how music can be a tool for 

emotional communication, focusing on the factors that influence the chain of 

communication. Insight into the function of musical features, listener differences 

and variations in performer interpretations helps us unpack how emotional signals 

can be decoded and better understand the emotional power of music. Further it 

provides a new analysis to investigate the relationship between cues and listener 

ratings in polyphonic, or multi-line musical works where cues are co-varied by the 

composer.  
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