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Lay Abstract  

Obesity and diabetes are major public health issues that are connected in many 

ways, including how diet changes glucose metabolism. Diabetics have a higher risk 

of contracting infections and also have worse outcomes from infections. It was 

unknown what factors of obesity or diabetes influence how the immune system 

combats bacterial infections. The gut is an important site as it is where diet, the 

immune system, and metabolism all directly interact. We discovered that high 

blood sugar was associated with death related to dehydration in diabetic, but not 

necessarily obese mice infected with a diarrhea causing bacteria. Diet-induced 

obesity in mice infected with bacteria associated with Crohn's disease, showed an 

overgrowth of bacteria and worse intestinal damage. We isolated the key dietary 

factor responsible, which was low fibre rather than high fat or sugar. Even one day 

of lower dietary fibre promoted overgrowth of infectious bacteria in the gut. 
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Abstract  

Obesity is a major predictor for type 2 diabetes. The etiology and comorbidities of 

these two diseases are associated. Diabetics are twice as likely to contract any 

type of infection and at greater risk of worse clinical outcomes to infection. 

However, the individual effects of diet, glycemia and obesity on risk and severity 

of enteric infection has not been elucidated. Here we show that high blood 

glucose (i.e. hyperglycemia), independent of obesity, is sufficient to promote 

mortality during infection with Citrobacter rodentium, a diarrhea-causing 

pathogen in mice. Mortality was caused by dehydration as a result of excessive 

Wnt/β-catenin signalling. Our findings highlight the importance of glucose 

lowering and fluid therapy as opposed to immunological dysfunction, gut barrier 

defects or bacteraemia as modifiers of outcomes from enteric infection during 

diabetes. Future work should develop a more comprehensive understanding of 

the molecular changes that connect hyperglycemia, Wnt/β-catenin pathway and 

fluid balance during infection. We used the most common model to cause diet-

induced obesity in mice to study another enteric pathogen. We showed that long- 

and short-term high-fat diet (HFD) feeding promoted the colonization and 

expansion of adherent-invasive Escherichia coli. Higher pathogen burdens in the 

intestinal tissues and feces were detected in diet-induced obese mice, which 

coincided with increased distal gut pathology. Initiating the diet one day prior or 

after infection was sufficient to promote the expansion of adherent-invasive E. coli 

in the absence of robust weight gain implicating components of diet as a major 

determinant of pathogen burden. We isolated the dietary factor and found that 

low fibre content of the high-fat diet was partially responsible for the increased 

intestinal pathogen burden. Future work should determine how lower fibre alters 

host and bacterial metabolism in order to promote overgrowth of adherent-

invasive E. coli in the gut. 
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1.1 Obesity 

Obesity is a disease that can be considered a global health epidemic.  In 

2016, nearly 2 billion adults were overweight and 650 million people were obese 

worldwide1. Body mass index is often used to define obesity and is an indirect 

measure of body fat, calculated by dividing an individual’s weight by the square 

of their height (kg/m2)2,3. Overweight is defined by a body mass index (BMI) 

greater than 30. According to the Public Health Agency of Canada, 64% of adults 

over the age of 18 are overweight or obese. Obesity and its comorbidities have 

placed a huge economic burden on the healthcare system with direct and 

indirect costs of over $6 billion every year in Canada alone4–6. Obesity is 

associated with a lower quality of life and can reduce life expectancy by up to 14 

years7,8. Obesity is also associated with many comorbidities including an 

increased risk of Type 2 Diabetes (T2D), cardiovascular disease, non-alcoholic 

liver disease, and cancer. The rising prevalence of this disease has fostered 

interest in discerning the molecular causes and potential therapeutic targets to 

reduce obesity and to directly target its comorbidities. 

 

1.1.1 Etiology of Obesity 

Obesity is a multifactorial disease influenced by a combination of 

biological, environmental, and behavioural factors. In the simplest of terms, 
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obesity is an energy disbalance with a higher energy intake than energy 

expenditure. The mechanisms underpinning a skewing of the energy balance 

towards increased energy storage are very complicated at both the individual 

and population levels. The prevalence of obesity has risen in countries along with 

shifts towards more sedentary lifestyles and “Western” diets that are higher in 

fat and high refined sugar. With technological advances in automation and 

transportation, there has been a drastic decrease in manual labour and physical 

activity in recent decades resulting in a decrease in average energy expenditure 

in daily life9,10. Increases in television viewing, and computer and smartphone 

usage has positively correlated with the incidence of obesity11–14.  

In regard to energy intake, the rapid industrialization of agriculture has 

resulted in an environmental shift in terms of food availability and content. The 

advent of ultra-processed foods, including refined sugars, is associated with the 

precipitous rise in metabolic disease15,16. The typical North American or 

“Western” diet is calorie dense, high in fat and sugar, and low in fibre. In 

addition, larger portion sizes and easy accessibility to these foods has 

exacerbated their health impact15,17.  

Genetics play a role in predisposing individuals to obesity. A study in 

monozygotic twins showed significant similarity for obesity within a twin pair, 

but significant variability across different sets of twins18. Although uncommon, 
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single gene mutations involved in the leptin-melanocortin pathway, including the 

melanocortin-4 receptor (MC4R) and leptin, have been known to cause 

obesity19,20. However, genetic predisposition cannot fully account for the 

variability and onset of obesity. Host genetics interact with environmental 

factors to modify risk of obesity. 

One of the biggest environmental factors driving obesity is diet. 

Currently, dairy products, cereals, refined sugars, refined vegetable oils, and 

alcohol makeup 72.1% of daily energy intake in the United States whereas these 

food sources would not have been readily available to our pre-industrialized 

agricultural ancestors21. In the past 40 years, refined sugar consumption has 

increased by over 30% (specifically sucrose and fructose)22. Animal models have 

been developed to mimic diet-induced obesity using energy dense high fat, high 

sugar diets. Mice who consume these diets display many characteristics of 

metabolic syndrome including hyperglycemia, hyperinsulinemia, increased 

adiposity, and impaired blood glucose control23,24. Feeding mice obesogenic diets 

provides a reductionist model of diet-induced obesity compared to the human 

population that often eats a varied diet. Diet-induced obesity models can be 

combined with experiments in monogenic or polygenic mouse models of obesity 

resulting from hyperphagia. An example of a genetic mouse model of obesity is 

the leptin-deficient ob/ob (OB) mouse (B6.Cg-Lepob/J) that exhibits hyperphagia 

and develops obesity independent of changing the diet.  This can provide 
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important proof-of-concept results in mice, since the influence of a single gene 

in human obesity is relatively small and only can account for a small percentage 

of obese patients25,26. 

Certain environmental factors have been found to promote obesity, 

independent of host genetics. For example, a study in monozygotic twins 

discordant for obesity found that the microbiota was capable of transmitting 

features of obesity27. The microbiota is essential for nutrient extraction and 

energy harvest from the ingested diet as germ-free mice are protected from 

obesity when fed a high fat diet28. Conversely, acquisition of commensal 

microbes (i.e. conventionalization) in germ-free mice resulted in an increase in 

fat mass and features of prediabetes (i.e. glucose intolerance) despite reductions 

in food intake29. Changes in the microbial composition (dysbiosis) have been 

reported in obesity29–32. In fact, in mouse models, one day of high fat feeding 

was sufficient to induce alterations in microbial populations33. This dysbiosis has 

been suggested as a potential contributor to obesity and the characteristic 

underlying inflammation that coincides with obesity. 

 

1.1.2 Molecular consequences of obesity 

Obesity is associated with chronic low-level inflammation, including an 

elevated inflammatory tone in metabolic tissues such as the liver and adipose 
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tissue, which are key tissues that help control blood glucose. At the onset of 

obesity, high caloric intake promotes energy storage in adipose tissue and causes 

hypertrophy of adipocytes. Adipose tissue hypertrophy is associated with 

adipocyte stress and immune-endocrine alterations that include changes in 

endocrine signals derived from adipocytes (i.e. adipokines) coincident with the 

recruitment and expansion of immune cells in adipose tissue. Accumulation of 

macrophages in adipose tissue has been associated with increased body mass 

and positively correlated with the development and progression of insulin 

resistance in mice and humans34–36. This macrophage infiltrate can be observed 

as early as one week after the initiation of a high fat diet in mice36. Polarization 

of these macrophages towards an M1 or pro-inflammatory phenotype have been 

reported in diet-induced obese mice, marked by elevated production of 

inflammatory signals, such as interleukin-6 (IL-6) and tumour necrosis factor 

(TNF), in the local adipose tissue environment37. These inflammatory mediators 

can activate stress kinases (ERK, JNK) that will increase serine phosphorylation of 

insulin receptor substrate 1 and 2, inhibiting downstream signals of insulin 

action20,38,39. Thus, adipose tissue inflammation lowers the ability of insulin to 

supress lipolysis, thereby increasing the lipid load on other tissues. This adipose 

tissue inflammation and insulin resistance is part of a cascade leading to 

inflammatory and lipid overload on other tissues, such as liver and skeletal 

muscle that are major contributors to blood glucose control. In addition to 
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macrophages, B and T cells have also been implicated in obesity and insulin 

resistance40–42. Proinflammatory CD4+ (primarily Th1 and Th17) and CD8+ T cells 

have been found to accumulate in the adipose tissue of mice as early as two 

weeks after the initiation of a high fat diet42,43. T-cell accumulation is associated 

with an increase in interferon (IFN)-γ, which promotes the polarization of 

macrophages towards the M1 subtype and further promotes the secretion of IL-

6 and TNF44. Treatment of  diet-induced obese mice with an anti-CD3 T cell 

depleting antibody reduced glucose levels and adipose tissue inflammation44. B 

cell infiltration of adipose tissue in diet-induced obese mice precedes T cell 

infiltration40,45. In both obese mice and humans, B cells have been reported to be 

potent producers of proinflammatory cytokines which play a role in T cell and 

macrophage activation46,47. In fact, high fat fed B cell-deficient mice showed a 

reduction in T cell proinflammatory cytokine secretion and insulin resistance41. 

Obesity is also characterized by weakened gut epithelial integrity and 

poor mucosal host defence. This is often referred to as a “leaky gut”. There 

appears to be a strong correlation between metabolic disorders and impaired 

mucosal immunity48. As outlined above, obesity has been associated with 

dysbiosis of the intestinal microbiome that results in increased energy 

extraction, altered short chain fatty acid (SCFA) production, and the loss of 

microbial diversity30,49–51. These obesity-related changes in the intestinal 

microbiome composition may also be related to impaired mucosal defence. 
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However, it is often very difficult to disentangle diet, obesity, and changes to the 

microbiota or host immunity. 

The order of events during obesity and intestinal homeostasis of 

microbes and immunity is still unclear as it is unknown if dysbiosis or the loss of 

intestinal barrier integrity occurs first. Nevertheless, these early changes are 

hypothesized to contribute towards the elevated levels of circulating endotoxin 

(i.e. metabolic endotoxemia) observed during obesity and high fat feeding, 

where mouse models clearly show that intestinal microbes are a key source of 

metabolic endotoxemia52–54. Metabolic endotoxemia is one way that the 

intestinal microbiota can contribute to obesity-induced inflammation by 

providing a chronic or cyclical load of immune receptor ligands in the form of live 

or dead bacterial components. Metabolic endotoxemia can promote systemic 

low-grade inflammation and affect the endocrine and metabolic status of 

metabolic tissues involved in blood glucose control thereby contributing to 

insulin resistance during obesity55–57.  

Specific immune responses associated with obesity-related inflammation 

can impair insulin action and the resultant insulin resistance precedes and 

predicts T2D. Inflammation has emerged as a key factor in obesity-driven co-

morbidities beyond T2D, including fatty liver disease and cardiovascular disease. 
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One underlying mechanism for these metabolic diseases is the development of 

insulin resistance and hyperglycemia.  

 

 

1.2 Diabetes 

Diabetes mellitus (DM) currently affects over 300 million people 

worldwide and is expected to almost double by 203058,59. DM is a leading cause 

of death in North America and has placed considerable economic strain on 

health care systems with estimates of over 245 billion dollars in 201258. There 

are two main types of DM: insulin-dependent (Type 1 DM) and noninsulin-

dependent (T2D). Type 1 DM is usually an auto-immune disorder in which the 

immune system targets and destroys the pancreatic β-cells. In most cases the 

etiology of the auto-immune β-cells destruction is not known. Type 1 DM 

patients are unable to produce enough insulin, but often can effectively respond 

to it. In contrast, T2D is often preceded and characterized by a state of insulin 

resistance coupled with relative insulin insufficiency and relative β-cell deficiency 

or failure. The underlying feature of both types of DM is an inability to properly 

regulate blood glucose, which can result in cyclical or chronically elevated levels 

of glucose (i.e. hyperglycemia and high glucose variability). T2D is the most 

common form, accounting for approximately 90% of DM patients. DM has been 
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associated with many co-morbidities including cardiovascular disease, 

neuropathy, retinopathy and elevated risk and severity of infection60–62.  

 

1.2.1 Diabetes and Infection 

Cohort studies in Canada, Australia and Denmark have found that people 

with diabetes are at a two-fold greater risk of being hospitalized for infection 

than non-diabetic patients. People with diabetes have an overall greater risk for 

contracting most types of infections although the most common are skin and 

soft tissue, lower respiratory tract, urinary tract, and gastrointestinal58,63–65. Even 

more concerning is that once infected, diabetic patients also have increased 

severity of infection, including higher risk of mortality60,61,64,66,67.  Recently, a 

retrospective study in the UK, found that diabetic patients had elevated risk of 

contracting and being hospitalized for all types of infection compared to healthy 

individuals, with bone and joint infections, sepsis, and meningitis amongst the 

highest. They also found that both Type 2 DM and Type 1 DM patients had 

approximately 2-fold increased incidence of gastrointestinal infections (incidence 

rate ratio of 1.70 and 2.04, respectively). This study looked at 361 family 

practices and tracked the hospital admission of patients from January 2008 to 

December 2015 and is one of the first clinical studies to separate patients by 

diabetic type when assessing infection risk68. The similar findings for both Type 1 
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and Type 2 DM groups highlights the possibility of a common underlying feature 

of DM that modifies risk and/or severity of bacterial infection. Elevated blood 

glucose or high glucose variability are intriguing possibilities as a common 

mechanism for infectious risk and outcomes. More recently, admission 

hyperglycemia, irrespective of diabetic status, has been linked with worsened 

clinical outcomes including morbidity, mortality, and increased duration of 

hospital or intensive care unit stays58,63,69.  For every 1 mmol increase in blood 

glucose, infection risk is increased by 6-10% and mortality is increased by 

33%66,70.   

One of the earliest cases to identify diabetes as a risk factor for severity 

of infection was during an enteric infection via a foodborne nosocomial outbreak 

of Salmonella enteritidis71.  However, since then, most studies have looked at 

how diabetes impact lower respiratory tract, kidney, and soft tissue infections, 

but little is known about enteric infections.  

Separating the specific physiological factors that cause an increased risk 

or severity of infection has been difficult. DM is often characterized by immune 

dysfunction, microvascular alterations and tissue damage63. In addition, T2D is 

strongly linked with obesity, and obesity-induced inflammation is difficult to 

separate from changes in glycemia, insulin resistance, and other endocrine or 

immune features inherent to the diabetes-obesity connection. It is also difficult 
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to discern the effect of diet, which may be particularly relevant to enteric 

infections given that food can directly interact with enteric pathogens and 

mucosal defence mechanisms in the gut.   

Many of the underlying factors and mechanisms that underpin the 

relationship between infection, metabolism, and immunity are still poorly 

defined. Therefore, we aimed to determine how obesity, nutrient excess, 

different macronutrients or dietary components, and regulation of blood glucose 

alter the severity, kinetics, and resolution of enteric infection. A primary goal of 

this thesis is to elucidate the impact of hyperglycemia on enteric infections and 

to segregate its effects from obesity, a commonly associated confounding 

variable. Another key goal is to determine if specific dietary components alter 

the host response to enteric infection. This thesis aims to define these host and 

dietary factors across multiple models of bacterial infection, including acute 

diarrhea-causing bacteria and pathogens that can promote chronic infectious 

colitis in mice. 

 

1.3 Intestinal health and maintenance 

The gastrointestinal tract is an integral metabolic site where microbes, 

immunity, and dietary factors directly interact. The etiology and consequences of 

impaired intestinal barrier function that is associated with obesity remains 
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poorly characterized. It is not clear what aspect of the molecular consequences 

of obesity, if any, contribute to the specific mechanisms of a “leaky gut”. The 

intestine has a plethora of homeostatic and defence mechanisms to maintain a 

commensal relationship between the gut-resident microbes and the host. The 

gastrointestinal tract provides protection from invasive microbes, but it must 

balance this task with nutrient absorption, and excretion of waste. The intestinal 

tract is divided into two major compartments, the small (duodenum, jejunum, 

and ileum) and large (cecum and colon) intestine. The epithelium is arranged 

into invaginations, known as crypts, and protrusions, known as villi, to increase 

surface area for nutrient absorption72–74. The villi structures are absent in the 

colon and are replaced by flat sheets of epithelial cells. The primary function of 

the small intestine is nutrient absorption while the large intestine is responsible 

for a majority of water absorption from fecal matter. Perturbations in the large 

intestine, such as those that occur during infectious colitis, can lead to diarrhea. 

Rodent models are increasingly used for the study of intestinal function and the 

gut microbiota due to similarities in anatomy and physiology. A major difference 

between the gastrointestinal tract of humans and mice is the relative size of the 

cecum, which relative to body mass/size is much larger in mice. A large 

proportion of fermentation occurs in the cecum and proximal colon of mice 

whereas the cecum of humans is relatively small and has no known function75,76.  

The murine colon is relatively smooth and lacks any segmentation whereas the 
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human colon is compartmentalized into haustra with transverse folds present 

throughout the whole tissue75. There are also differences in intestinal cell 

distribution with goblet cells between humans and mice since goblet cells are 

abundant from the cecum to rectum in humans but only abundant in the 

proximal colon of mice75. 

The intestinal lining is renewed every 3-5 days where tightly regulated, 

compartmentalized canonical Wnt/β-catenin signalling directs proliferation of 

intestinal crypt progenitor cells and cellular differntiation73,77,78. The intestinal 

epithelium is composed of absorptive (enterocyte) and secretory (goblet, 

enteroendocrine, and Paneth cells) cell lineages which originate from a pool of 

intestinal stem cells (ISCs) at the base of the crypts. Secretory cells, especially 

goblet and Paneth cells, are important for protection against pathogen invasion. 

Paneth cells secrete antimicrobial peptides while goblet cells secrete mucins79,80. 

These mucins form the mucous layers on the surface of the epithelium that acts 

as the primary physical barrier between the luminal bacterial populations and 

the intestinal epithelium. In the colon, there is an inner and outer mucous layer 

while the small intestine only contains a single layer. The initial mucous layer is 

densely packed and adherent to the surface epithelium. It contains a variety of 

antimicrobial peptides and secreted immune factors, such as REGIIIβ and 

immunoglobulin (Ig) A. The outer layer is more loosely arranged and provides a 

habitat for endogenous bacterial populations80,81.  
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All intestinal epithelial cell populations are maintained through a dynamic 

balance of cell proliferation (Wnt-signalling) and differentiation (Notch) signals. 

The ISCs give rise to highly proliferative progenitors known as transit-amplifying 

(TA) cells. As the TA cells rise through the crypt, they receive differentiation 

signals. Fully mature intestinal epithelium cells (IECs) are found at the villus tip 

and are eventually shed to counterbalance the continual renewal and 

proliferation of crypt cells78,82. Paneth cells are an exception to this process as 

during differentiation, they migrate to the base of the crypt79,83.  

Wnt-signalling is imperative for the initiation and sustainment of this 

process. There are currently 19 Wnt ligand genes identified in human and 

murine genomes84. The Wnt ligands initiate the Wnt-signalling cascade by 

binding to two specific co-receptors: the frizzled (Fzd) and low-density 

lipoprotein-related receptors (LRP)73,85,86. This will lead to the nuclear 

translocation of β-catenin from the cytoplasm and the transcription of 

developmental and proliferative genes87. In the absence of Wnt ligands, 

cytoplasmic β-catenin is recruited to a destruction complex composed of several 

components including Axin, adenomatous polyposis coli (APC) and two kinases, 

casein kinase-1 (CK1) and glycogen synthase kinase-3 (GSK-3). These kinases 

phosphorylate β-catenin, which targets it for ubiquitination and degradation77,88.  

When Wnt ligands are present, they bind with Fzd and LRP causing 

phosphorylation of LRP. This induces a conformational change that recruits the 
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destruction complex to the membrane. Subsequent newly synthesized β-catenin 

are no longer ubiquitinated and translocate to the nucleus to bind with T-cell 

factor (TCF)/lymphoid enhancer factor (LEF). One agonist of Wnt-signalling is the 

roof plate-specific spondin (R-spondin or Rspos) family which binds to leucine 

rich repeat containing G protein-coupled receptors (LGRs) and stabilizes the 

Wnt/Fzd/LRP complex by inactivating Wnt antagonists89–92. 

Notch signalling is another important component in maintaining 

intestinal homeostasis. It plays a critical role in the binary intestinal cell fate 

decision between secretory and absorptive lineages. A downstream Notch target 

gene, Hes1, skews differentiation towards the absorptive cell lineage and is a 

known repressor of Math1, a transcription factor for secretory cell lineage genes. 

Deletion of Hes1 results in suppressed proliferation and complete differentiation 

of intestinal stem cells into secretory cells93–96. It has also been reported to be 

essential for stem cell maintenance, as inhibition of Notch signalling results in 

the depletion of ISCs and upregulated Wnt signalling95,97. In fact, Wnt and Notch 

signalling are both indispensable for maintaining the stemness of the 

multipotent cells in the intestinal crypt base, as deletion or blockade of either 

pathway results in the loss of Lgr5+ (a specific intestinal stem cell marker) 

expressing cells (Figure 1) 78,98,99. 

Bacteria can influence the proliferation and differentiation of intestinal 

cells. Secretory cell lineage differentiation has been reported to be influenced by 
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bacterial detection through Myd88-signalling, an adaptor protein of toll-like 

receptor responses100,101. This is one example of how bacterial components can 

engage host immune receptors in the gut to modify response involved in 

intestinal health and function. 

 

Paneth Cell

Goblet Cell

Stem Cell

Enterocyte

Wnt

Transit 
Amplifying
Cells

Notch

Figure 1: Simplified schematic of the crosstalk between Wnt and Notch signaling in intestinal 
epithelial cell differentiation. 

 

 

 

 

 

 

 



Ph.D. Thesis – T. C. Lau; McMaster University – Biochemistry and Biomedical Sciences 
 

18 
 

1.3.1 The Intestinal Microbiota  

In addition to its role in nutrient absorption, the intestinal tract is also 

home to an intricate bacterial ecosystem. Recent estimates place the number of 

bacteria to host cells at a 1:1 ratio in humans102. These bacteria are commonly 

found on the intestinal lumen and a majority of the bacteria are referred to as 

commensals due to their ability to reside on the lumen without damaging the 

host. Many of these bacteria can process macro- and micro-nutrients and 

produce metabolites that host cannot synthesize alone. SCFAs are important 

metabolic signalling molecules produced through microbial digestion of dietary 

fibres. Certain SCFAs can mitigate the metabolic effects of diet-induced obesity, 

protect from pathogens, and regulate intestinal barrier integrity31,103–105. The 

primary SCFAs produced by the microbiota are acetate, butyrate, and 

propionate, which are all absorbable by the host. Microbially derived butyrate is 

a major nutrient and energy source for colonocytes. 

The microbiota plays a role in energy balance that is relevant to 

metabolic disease evidenced by the fact that germ-free mice are protected from 

diet-induced obesity. Colonization of germ-free mice confers weight gain and 

increased adiposity, despite reduced food intake implicating a role for intestinal 

nutrient extraction facilitated by microbes29. In addition, aspects of metabolic 

disease including adiposity and glucose tolerance, are transmissible via the 

microbiota29,33,106. The intestinal microbiota is also important for protection from 
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pathogens and immune system development. Commensal bacteria offer 

colonization resistance through a variety of indirect and direct methods in the 

gut. Commensal bacteria can colonize specific environmental niches and provide 

a physical barrier against pathogen colonization. Commensal bacteria can also 

compete with pathogens for nutrients. For example, the commensal Bacteroides 

thetaiotaomicron is known to compete with pathogenic Citrobacter rodentium in 

the colon by consuming plant-derived monosaccharides that are required for 

growth107. Many bacterial species can also directly inhibit bacterial growth and 

colonization from other bacterial species (including pathogens) through the 

secretion of antimicrobials. Bacillus thuringiensis from human feces was found to 

produce a bacteriocin which targets Clostridium difficile while some 

Bifidobacterium species can inhibit bacterial growth by secreting antimicrobial 

acids and peptides, such as defensins, calthelicidins108–110. The microbiota can 

also confer colonization resistance indirectly by stimulating the immune system. 

B. thetaiotaomicron colonization has been shown to promote the expression of 

host antimicrobial peptides, RegIIIγ and RegIIIβ, which disrupt the cell membrane 

by forming a membrane-penetrating pore111,112. 

The close interaction of the microbiota and intestinal immune system 

helps control the location, amount, and composition of bacterial populations 

thereby promoting immune tolerance. It is clear that the microbiota (as a whole) 

plays an important role in intestinal immune development. Germ-free mice are 
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known to have deficiencies in gut-associated lymphoid tissue development, 

reduced antibody production, fewer mesenteric lymph nodes and Peyer’s 

patches, and altered intestinal morphology and cell turnover. However, all these 

features are reversible within a few weeks of exposure to specific pathogen-free, 

environmental microbes (i.e. conventionalization)113–115.  It is clear that the 

microbiota are essential symbionts for metabolism and immunity. Intestinal 

dysbiosis during obesity is positioned to alter the susceptibility and outcomes of 

enteric infections. Despite recent interest in the immunometabolism of 

microbiota and metabolic disease, it is not clear how specific components of 

diets that promote metabolic disease or specific metabolic disease 

characteristics influence risk or severity of enteric infection. 

 

1.3.2 Obesity and Intestinal Health 

Concurrent with the dysbiosis that occurs in obesity, there is also a 

change in the intestinal immune response. In contrast to the elevation in 

systemic inflammation, certain immune responses in specific segments of the 

intestine can be lower during obesity. In murine models of obesity, Th17 

responses were suppressed in the ileum and colon after as little as 30 days of 

high fat feeding116,117. This reduction was related to decreases in specific 

bacterial species including Porphyromonas gingivalis, which is known to induce 

IL-17 production117,118. High fat feeding has also been reported to reduce IL-22 
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levels in the colon119,120. Diet-induced obese mice exhibited lower percentages of 

IL-22-producing innate lymphoid cells compared to lean mice, which correlated 

with impaired intestinal barrier integrity and consequent increases in circulating 

microbial-derived endotoxin120. This raises an interesting concept where diet or 

obesity can suppress immune responses in the intestine, compromise gut barrier 

function, which then promotes penetration of microbial products that can 

increase systemic or host tissue inflammation. The timing and causality of 

intestinal microbes with these compartmentalized immunometabolism 

responses is important to understand and may alter the risk or severity of enteric 

infection of the host116,121. 

IL-22 is an important cytokine for maintaining intestinal barrier integrity 

by regulating tissue repair and promoting antimicrobial release during acute 

inflammation. IL-22 is predominantly expressed by TH17 and TH22 cells and is 

regulated by the cytokines, IL-23 and IL-12. IL-22 is a unique cytokine as its 

principal actions are exerted on epithelial cells, as these are the main cell types 

that express the IL-22 receptor122–125. In conjunction with its pro-inflammatory 

role, IL-22 has also been directly implicated in metabolic regulation125–127. 

Numerous studies have emerged regarding the potential for exogenous IL-22 as 

a treatment for obesity. IL-22 has been shown to lower blood glucose, improve 

glycemic control, reduce liver lipogenic expression, and reduce oxidative and ER 
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stress, all metabolic improvements that have been associated with improved 

intestinal barrier function119,125,128,129. 

Obesity has also been associated with alterations to intestinal structure. 

Along with the characteristic increase in intestinal permeability, obese humans 

have been reported to have increased enterocyte mass, which may be the result 

of increased cellular proliferation rates130–132. This process appears to be 

influenced by diet or nutrient source as caloric restriction is sufficient to 

decrease the colonic epithelial proliferation rate in obese humans independent 

of weight loss133. Studies in diet-induced obese mice have shown site specific 

downregulation of Lgr5 in the proximal colon and decreased number of goblet 

cells compared to mice fed a normal chow diet134,135.  

 

1.3.3 Diabetes and Wnt Signalling 

 Diabetic enteropathy is a common symptom that has been receiving 

renewed interest as diabetes has recently been linked with an increased risk of 

colon cancer136–138. A connection between diabetes and Wnt signalling has been 

identified, but it is not yet clear which aspect of diabetes is the potential 

mechanism linking diabetes, Wnt, and intestinal cancer136,139. Studies in diabetic 

rats have reported increased intestinal proliferation of epithelial cells of the 

small intestine140–142. Streptozotocin-induced diabetic mice have been shown to 
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have an increase in Lgr5+ cells and increased proliferative rate, which was 

mitigated with exogenous insulin treatment143. This result is interesting since 

either lowering of glucose mitigated crypt progenitor proliferation or simply 

provision of insulin suppressed crypt progenitor proliferation. In either case high 

blood glucose or lack of insulin was the probable causative factor for excessive 

proliferation of crypt progenitor cells143. Glucose has been proposed to influence 

Wnt signalling through multiple pathways, including cAMP/PKA and increased β-

catenin acetylation144,145. In an in vitro model, high glucose levels were shown to 

promote Wnt signalling by suppressing the expression of Wnt antagonist, 

DKK4146.  Diabetic mouse models have also implicated hyperglycemia with 

modulating Notch signalling. Diabetic mice have a bias towards Paneth cell 

differentiation and this was correlated with a downregulation of Hes1 

expression147. A recent study comparing a ketogenic diet (that is very low in 

carbohydrates such as glucose) with a glucose-supplemented diet found that a 

diet higher in glucose suppressed Notch signalling and skewed differentiation 

towards secretory cell lines148.  These data position blood glucose as a key 

modifier of intestinal cell proliferation and warrant investigation of this 

relationship in enteric infection during diabetes. Understanding the altered 

intestinal environment such as changes in the balance of Wnt and Notch 

signalling as a result of diabetes and metabolic and microbial interactions may be 
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key to identifying risk factors for enteric infection and identifying potential 

therapeutic targets. 

 

1.4 Citrobacter rodentium: A non-invasive murine model of enteric infection 

 Citrobacter rodentium is a mouse pathogen related to enteropathogenic 

and enterohaemorrhagic Escherichia coli, which are common diarrhea-causing 

enteric infections in humans.  C. rodentium infections are characterized by 

intestinal crypt hyperplasia, goblet cell depletion and enterocyte shedding. It is a 

self-limiting infection that primarily localizes in the colon, causes acute diarrhea 

and is cleared within 2-3 weeks149–151. These pathogenic bacteria adhere to the 

epithelial surface and cause attaching and effacing (A/E) lesions. Citrobacter 

rodentium and these types of pathogens bind to the host enterocyte through an 

outer cell membrane protein, intimin, which can bind to certain host receptors 

or the bacterially derived translocated intimin receptor, which are both 

embedded in the host cell surface150–153.  C. rodentium is a suitable model for 

studying host-pathogen interactions in vivo under physiological conditions, while 

still allowing for the manipulation of the pathogenic bacteria and/or the host (i.e. 

mouse). Combined these features of the model allows for investigation of the 

mechanisms of action of enteric infection149. C. rodentium infection causes 

diarrhea but is not fatal in most mouse strains. Only FVB/N and C3H/HeJ mice 

are susceptible to increased levels of mortality during C. rodentium infection 
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154,155. Studies have shown that these “susceptible” mouse strains succumb to C. 

rodentium infection due to excessive diarrhea rooted in severe dehydration and 

impaired water reabsorption. It was later discovered that this is the result of 

abhorrent Wnt-signalling154–156.  These mouse strains that are susceptible to fatal 

diarrhea have a genetic difference in the Cri1 locus, which causes abundant and 

continuous expression of Rspondin-2. Rspodin-2 is a co-activator of canonical 

Wnt-signalling and promotes β-catenin activity. This excessive activity causes 

over proliferation and migration of immature enterocytes in the colonic crypts 

that do not receive the proper differentiation signals. This results in 

malabsorptive enterocytes or defects in secretory Paneth cells. Ultimately, in the 

context of C. rodentium infection, this culminates as increased mortality due to 

poor water retention156. 

Interestingly, a recent study found that leptin-deficient C57BL/6 (ob/ob-/-, 

OB) mice have increased mortality during C. rodentium infection157. Leptin is an 

endocrine hormone that signals for satiety among other immunological 

functions158–160. OB mice lack function leptin and hence are hyperphagic (i.e. 

overeat) and develop sere obesity. It is known that OB mice have reduced IL-22 

expression in the colon and exogenous IL-22 supplementation rescued these 

mice from mortality during C. rodentium infection157. It is also known that IL-22 

deficient mice have increased mortality during C. rodentium infection. However, 

a study by Aychek et al. showed that mice deficient in il-23 but not il-12(p40) 
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were susceptible to infection, with complete mortality of  il-23 deficient mice by 

day 12 post infection, despite similarly reduced levels of IL-22161. This result 

implies that IL-22 deficiency may not be sufficient to promote mortality during C. 

rodentium infection in OB mice, but perhaps the metabolic effects of exogenous 

IL-22 treatment (i.e. blood glucose reduction) may prevent infection-induced 

mortality in these OB mice. Another outstanding question is the role of Wnt 

signalling, which has been implicated in C. rodentium-induced mortality, but it is 

not yet clear how Wnt signals could connect changes in diet and/or aspects of 

obesity or diabetes to outcomes from enteric infection. It is possible that C. 

rodentium-induced mortality of OB mice or other models of diabetes is 

associated with Wnt signalling and whether exogenous IL-22 treatment can 

directly or indirectly impact this pathway through its blood glucose lowering 

effects. These are key questions addressed in this thesis. 

 

1.5 Adherent-invasive Escherichia coli: a model of enteric infection 

 Adherent-invasive E. coli (AIEC) is associated with ileal lesions of Crohn’s 

disease (CD) patients. E. coli have been shown to be enriched in CD patients162–

164. Culturing of E. coli isolates from CD patients found that many isolates had 

unusual adherent and invasive phenotypes. Interestingly, these isolates did not 

possess toxins or adhesins typically found in pathogenic E. coli and lacked a 

distinctive genetic signature. Thus, these isolates were collectively called 
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adherent-invasive E. coli (AIEC) due to their ability to penetrate the mucosa, 

adhere and invade epithelial cells, invade macrophages, and stimulate 

inflammation163,165–168. AIEC is considered a pathobiont, a usually benign 

pathogen that is present in healthy people and CD patients that will rapidly 

expand during a perturbation, such as those caused by changes in diet or 

antibiotic treatment162,168. Research has focused on the factors promoting 

colonization and triggers of AIEC pathogenicity. Antibiotic use can potentiate 

AIEC colonization through dysbiosis and the stimulation of inflammation in the 

local gut envirnment169,170. A recent study by Oberc et al. found that vancomycin 

use induced mild cecal inflammation and upregulation of Nos2170. This resulted 

in the increase of inflammation-derived metabolites (such as nitrates, glucarate, 

and galactarate) AIEC could selectively use as substrates to expand within the 

gut. AIEC mutants deficient in metabolic genes for these alternative carbon 

sources demonstrating similar in vitro fitness in nutrient rich media, but impaired 

competitiveness in antibiotic pretreated mice compared to wild-type AIEC 

NRG857c strain170.  These results support the idea that antibiotic treatment is a 

perturbation that promotes AIEC expansion through the metabolism of alternate 

carbon sources. This is further supported by the findings of Spees et al. showing 

that streptomycin treatment resulted in inflammation and an upregulation of 

nitrate metabolites, that supported E. coli growth in vivo, in the colon169. AIEC 

can also use acetate as an alternative carbon source, which was demonstrated to 
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be a common host adaption of many AIEC strains isolated from both chronic 

long-term murine infection models and human CD patients171.  In addition to its 

ability to thrive in an inflammatory environment, AIEC can successfully evade 

host antimicrobial responses and stimulate further inflammation through 

invasion of host cells. A study by McPhee et al. showed that AIEC contained 

multiple antimicrobial peptide resistance genes and that loss of these genes 

impaired colonization and fitness172. Due to the lack of a distinct genetic 

signature and the breadth of AIEC strains, the triggers and mechanism of 

pathogenicity along with host resolution, have not been well-defined.   

 

1.6 Purpose and Goals of the Dissertation 

Obesity and T2D are highly prevalent, interlinked diseases that share 

many serious comorbidities. Both obesity and T2D have been characterized by 

altered immune responses, poor intestinal barrier integrity, and intestinal 

dysbiosis of commensal bacteria. These features play a role in the etiology of 

metabolic disease, but their impact on enteric infection has not been well-

defined. The gut is a key modulator of metabolic health and a large site of 

immunologic activity. The association between features of diabetes and obesity 

makes it difficult to segregate the individual effects of each disease on outcomes 

of enteric infection. A further confounder is diet, where aspects of obesogenic 

diets can promote diabetes progression. In particular, obesogenic diets are a 
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commonly used model to study obesity and prediabetes in rodents, but the 

impact of changes in the macronutrient balance of the diet or specific 

components of diet on outcomes of enteric infection is poorly understood. The 

effects should be studied since aspects of the “Western” diet (high fat and sugar, 

low fibre) can independently impact microbial composition and intestinal 

health15,22,30,54,173,174. The purpose of this study is to elucidate the impact that 

hyperglycemia, obesity, and diet have on the outcomes of enteric infection. 

The hypotheses of this thesis are: 

1. High blood glucose worsens the outcomes of enteric infection, independent 

of obesity in mice 

2. High fat content in the diet worsens the outcomes of enteric infection in 

mice. 

3. Host metabolic disease factors (high glucose) and diet (high fat ingestion) will 

increase intestinal burden of intestinal pathogens in mice 

The specific aims of this thesis are: 

1. Determine if hyperglycemia, independent of obesity, worsens outcomes of 

enteric infection during C. rodentium infection in mice 

2. Determine if IL-22 immunity or Wnt-mediated intestinal homeostasis is 

involved in the link between hyperglycemia and outcomes of C. rodentium 

infection in mice 
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3. Determine if obesity promotes adherent-invasive Escherichia coli expansion 

in the intestine of mice 

4. Determine which components of an obesogenic diet promote adherent-

invasive Escherichia coli expansion in the intestine of mice 
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Chapter 2 – Materials and Methods 
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2.1 Animal models 

Breeding and experimental procedures were carried out in accordance with the 

Canadian Council on Animal Care and approved by the Animal Review Ethics 

Board (AREB) at McMaster University under Animal Use Protocol #16-06-02. For 

all studies, mice were 8-10 weeks old before dietary intervention or experiment 

initiation. Animals were maintained on a 12-hour light/dark cycle, and 

experiments were performed on multiple cohorts of mice born from different 

parents at different times of the year. Except where indicated, male mice were 

used for experiments. Wild-type (WT) C57BL/6J, Akita+/-(B6.Ins2 <Akita>/J), and 

ob/ob-/- (B6.Cg-Lepob/J) mice were obtained from The Jackson Laboratory (Bar 

Harbor, ME, USA ; strain 000664, 003548, and 000632, respectively) or from our 

in-house colony established from C57BL/6J or Akita+/- mice received from The 

Jackson Laboratory. All animals were maintained in a specific pathogen-free 

facility at McMaster University. Animals were fed a control diet (17% kcal from 

fat, 29% kcal from protein, 54% kcal from carbohydrate; cat# 8640 Teklad 22/5, 

Envigo) unless otherwise specified. 

 

2.2 Diet studies  

For the long-term feeding model, 8-10-week-old C57BL/6J mice were fed 60% 

high fat, sucrose-matched control, or low fibre control diet (D12492 D12450J, 

D12450K, respectively; Research Diets) for 16 weeks prior to enteric infection.  
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For the short-term model, C57BL/6J mice were fed 60% high fat diet, a sucrose-

matched control diet, or low fibre control diet (D12492 D12450J, D12450K, 

respectively; Research Diets) one day prior to infection. For intervention study, 

8-10-week-old mice were fed 60% high fat diet (D12492; Research Diets) for 16 

weeks prior to initiating a custom diet containing 60% calories from fat that is 

supplemented with 200 g cellulose (Research Diets) one day prior to infection. 

For prevention study, 8-10-week-old mice were fed 60% high fat diet (D12492; 

Research Diets) or custom diet containing 60% calories from fat that is 

supplemented with 200 g cellulose for 16 weeks prior to infection. 

 

2.3 Intraperitoneal glucose tolerance test 

Intraperitoneal glucose tolerance test was performed in 6-hour fasted, conscious 

mice. D-glucose (0.75 g/kg; Sigma-Aldrich) used is indicated in each figure 

caption. Blood glucose was measured by tail vein blood sampling using a 

handheld glucometer (Roche Accu-Check Performa). Area under the curve of 

blood glucose versus time (with baseline Y set to 0) was calculated using 

GraphPad Prism 6 software. 
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2.4 In vivo Citrobacter rodentium infection 

C. rodentium strain DBS100 was grown overnight in Luria-Bertani (LB) medium 

shaking at 37°C. Mice were infected by oral gavage of 0.1 ml of phosphate 

buffered saline solution containing ~2.5×108 colony forming units (CFUs) of C. 

rodentium. The infectious dose was verified by plating of serial dilutions on 

brilliant green agar. Body mass and random fed blood glucose levels were 

measured regularly throughout infection. Fecal pellets were weighed, 

homogenised in 1 mL PBS (Retsch), serially diluted, and plated onto brilliant agar 

plates. Plates were incubated overnight at 37°C and colonies were counted to 

determine colony-forming units (cfu) per gram of feces.  

For survival analysis, animals were monitored daily and moribund animals 

were euthanized by cervical dislocation when clinical endpoints were achieved, 

according to the AREB standard operating procedures. Upon euthanization, 

colons were isolated and processed for histological examination, 

immunostaining, snap-frozen for RNA/protein isolation or plated for bacterial 

burden. Liver and spleen segments were isolated and plated on brilliant green 

agar for bacterial burdens. Blood was taken through cardiac puncture or facial 

bleeding. Blood samples were centrifuged at 7500 rpm at 4ᵒC for 5 minutes to 

obtain serum for cytokine analysis or were sent to IDEXX Canada for analysis of 
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dehydration markers on an AU5800 Series Clinical Chemistry Analyzer (Beckman 

Coulter). 

In some experiments, mice were given daily subcutaneous injected with 

Ringer's Solution (1ml, Fisher Life Sciences) from D3 to D14 after infection. For 

treatment with LGK-974 (AdooQ Bioscience), mice were orally gavaged with LGK-

974 (3 mg/kg) suspended in 0.5% Tween-80, 0.5% methylcellulose from D3 to 

D14 post infection. For mice treated with empagliflozin, mice were orally 

gavaged twice daily with Empagliflozin (150 mg/kg).  

 

2.5 Insulin pellet insertion 

Mice were anesthetized with isofluorane, a small subcutaneous incision was 

made with an 18.5-gauge needle and two insulin pellets (LinShin Inc., Toronto, 

Canada) were inserted. Sham surgery animals were prepared similarly, but pellet 

was inserted. After surgery, mice were individually housed and monitored daily.  

 

2.6 IL-22 treatment 

Mice were injected intraperitoneally with IL-22Fc or IgG control (150 mg; 

Genentech, San Francisco, USA) three times a week beginning one week prior to 

infection and throughout the course of infection.  
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2.7 In vivo adherent-invasive Escherichia coli infection  

AIEC strain NRG857c (serotype O83:H1) was grown overnight in Luria-Bertani 

(LB) medium shaking at 37°C. Mice were pretreated with streptomycin (2 mg/kg) 

by oral gavage one day prior to infection. Mice were infected by oral gavage of 

0.1 ml of phosphate buffered saline solution containing ~2×109 colony forming 

units (CFUs) of AIEC. The infectious dose was verified by plating of serial dilutions 

on LB agar supplemented with ampicillin and chloramphenicol. Body mass was 

measured throughout infection. Fecal pellets were weighed, homogenised 

(Retsch) in 1 mL PBS, serially diluted, and plated onto LB agar plates 

supplemented with ampicillin (100 µg/ml) and chloramphenicol (34 µg/ml). 

Intestinal tissues were harvested into cold PBS at necropsy and were flushed 

with PBS to remove luminal contents, homogenised with a sterile metal bead, 

and plated in the same manner as feces. Plates were incubated overnight at 37°C 

and colonies were counted to determine colony-forming units (cfu) per gram of 

feces or tissue.  

 

2.8 Gene expression analyses  

Total ribonucleic acid (RNA) was obtained from approximately 50 mg of 

indicated mouse tissues via mechanical homogenization in TRIzol reagent (Cat# 

15596018, Thermo Fisher Scientific) at 4.5 meters/second for 30 seconds using a 
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FastPrep-24 tissue homogenizer (MP Biomedicals) and glass beads, followed by 

phenol-chloroform extraction. Tissue homogenate was centrifuged at 12 000 x g 

for 10 minutes at 4°C, the supernatant was added to a new tube containing 

chloroform at half the volume of supernatant, and the solution was mixed and 

centrifuged at 12 000 x g for 10 minutes at 4°C. The aqueous upper phase was 

then added to an equal volume of isopropanol, mixed, incubated at room 

temperature for 20 minutes, and centrifuged at 12 000 x g for 10 minutes at 4°C. 

Precipitated RNA pellets were washed twice with a 75% ethanol/ultrapure water 

solution. RNA pellets were suspended in ultrapure water and incubated at 55°C 

for 15 minutes. Subsequently, cDNA was prepared using 1000 ng total RNA. 

Briefly, RNA was treated with DNAse I (Cat# 18068015, Thermo Fisher Scientific) 

and incubated at room temperature for 15 minutes. Random hexamer primers 

and dNTPs were added to RNA. Solutions were incubated at 95°C for 10 minutes 

to inactivate DNAse, followed by incubation at 55°C for 10 minutes to allow 

primers to anneal RNA strands. cDNA was prepared by adding SuperScript III 

Reverse Transcriptase (Cat# 18080044, Thermo Fisher Scientific) to RNA-primer 

solutions, followed by incubation at 55°C for 50 minutes, and 70°C for 15 

minutes. cDNA was diluted 1/25 with ultrapure water. Transcript expression was 

measured using TaqMan Gene Expression Assays (Thermo Fisher Scientific) with 

AmpliTaq Gold DNA polymerase (Cat# 4311818, Thermo Fisher Scientific). 

Briefly, cDNA was incubated with polymerase and TaqMan assays and placed in a 
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Rotor-Gene Q real-time PCR cycler (QIAGEN). Samples completed 45 cycles of: 

incubation at 95°C for 5 seconds, and incubation at 58°C for 10 seconds. Target 

genes were compared to Rplp0 housekeeping gene using the ΔΔCT method. A list 

of all probes used in this thesis are provided in Table 1. 

 

2.9 Cytokine quantification 

Tissues removed at necropsy on day 4 and 10 following infection C. rodentium 

and were washed with cRPMI (10% fetal bovine serum,1% L-glutamine and 50 

μg/mL gentamicin), cut into pieces, placed in 1 mL of cRPMI and incubated 

overnight at 37°C, 5% CO2. Supernatants were removed after incubation and 

levels of cytokines and chemokines were determined using the Mouse 32-Plex 

Discovery Assay by Eve Technologies (Calgary, AB). 

 

2.10 Immunoblotting 

For protein analysis, colon tissues were lysed in ice-cold lysis buffer containing 

250 mM NaCl, 5 mM EDTA, 0.5% deoxycholate, 0.1% SDS, 1% NP40, and 50 mM 

Tris-HCl (pH 8.0). Protein concentration was measured using a bicinchoninic acid 

(BCA) assay kit (Pierce, Rockford, IL, USA). Western blotting was performed as 

described previously175. Briefly, lysates were denatured, separated by SDS-PAGE, 

transferred to polyvinylidene fluoride (PVDF) membranes. Membranes were 
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blocked and immunoblotted with β-actin (1∶5000) and non-phosphorylated β-

catenin (1∶2000) antibodies.  

Table 1: List of TaqMan probes used for gene expression analysis. 

Probe Target Assay ID 

Rplp0 Ribosomal protein, large, P0 Mm00725448_s1 

Il17a Interleukin 17a Mm00439618_m1 

Il22 Interleukin 22 Mm01226722_g1 

Il23a Interleukin 23, alpha subunit p19 Mm00518984_m1 

Rspo1 R-spondin 1 Mm00507077_m1 

Rspo2 R-spondin 2 Mm00555790_m1 

Rspo3 R-spondin 3 Mm01188251_m1 

*All probes were ordered from ThermoFisher Scientific. 

 

2.11 FITC-dextran assay 

 On the day of the assay, 4 kDa fluorescein isothiocyanate (FITC)-dextran was 

dissolved in phosphate buffered saline (PBS) to a concentration of 80 mg/ml. 

Mice were fasted for 4 hours prior to gavage with 150 μl FITC-dextran. Tail vein 
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blood was collected 4 hours after injection, centrifuged at 1,000 x g for 10 min at 

4°C. Serum was collected and fluorescence was quantified at an excitation 

wavelength of 485 nm and emission wavelength of 535 nm.  

 

2.12 TLR4 assay  

HEK-Blue™ mTLR4 (InvivoGen, San Diego, CA) cells were cultured in DMEM 

medium supplemented with 10% FBS and HEK-Blue™ Selection (InvivoGen) at 37 

°C according to the supplier's instructions. To determine TLR4 activation, 2×104 

HEK-Blue™ mTLR4 cells were suspended in 200 μL/well HEK-Blue™ detection 

medium adding 4 μL/well testing blood serum (2% v/v), and plated in a 96-well 

plate for 8 h at 37 °C. The production of secreted SEAP was assessed by reading 

the absorbance at 620 nm (Molecular Devices, San Jose, CA). 

 

2.13 Histological evaluation and immunohistochemical (IHC) analysis  

At day 7 and 10 post infection, the distal colon was collected and fixed in 

buffered 10% formalin for 96 hours, paraffin-embedded, sectioned into 5-μm 

slices and then stained with haematoxylin and eosin (H&E) by Histology Services 

(McMaster University, Hamilton, ON).  A minimum of 5 views per section were 

analyzed for each sample and scored according to previously defined criteria176. 

Crypt length measurements and goblet cell quantification were done using 
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ImageJ software on a Nikon microscope with at least five well-oriented crypts 

measured per field.  Pathology scoring was scored according to the following 

criteria (scores are given in parentheses after each category): 

i) Lumen. Necrotic epithelial cells (empty, 0; scant, 1; moderate, 2; dense, 3), 

polymorphonuclear (PMN) leukocytes (empty, 0; scant, 1; moderate, 2; dense, 

3), and lymphocytes (empty, 0; scant, 1; moderate, 2; dense, 3). 

ii) Surface epithelium. Epithelial sloughing (yes, 1), desquamation (patchy, 1; 

diffuse, 2), presence of PMN leukocytes (yes, 1), ulceration (yes, 1), and 

lymphocyte infiltration (scant, 0; moderate, 1; severe, 2). 

iii) Mucosa. Loss of crypts (rare, <15%, 1; moderate, 15-20%, 2; abundant, >50%, 

3), monocytic infiltration (1 small aggregate, 0; >1 aggregate, 1; large aggregates 

plus single cells, 2), crypt hyperplasia (yes, 1), loss of goblet cells (yes, 1), 

presence of granulation tissue (yes, 1), and lymphocytic infiltration (scant, <10 

cells, 0; moderate, 50-100 cells, 1; dense, >100 cells, 2). 

iv) Submucosa. Mononuclear cell infiltrate (1 small aggregate, 0; >1 aggregate, 1; 

large aggregates plus single cells, 2), PMN leukocyte infiltrate (no extravascular 

PMNs, 0; single PMNs, 1; PMN aggregates, 2), lymphocyte infiltrate (scant, <10 

aggregates, 0; moderate, <50 aggregates, 1; severe, >50 aggregates, 2), and 

edema (mild, 1; moderate, 2; severe, 3). 
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2.14 Immunofluorescence staining 

Colon samples were extensively washed and fixed and 4% paraformaldehyde. 

Samples were washed, paraffin-embedded and sectioned. Paraffin sections were 

de-paraffinized and antigen-retrieved in 10 mM sodium citrate, pH 6. Samples 

were incubated in PBS containing 20% (v/v) normal horse serum and 0.2% (v/v) 

Triton X-100 for 1 h; and then incubated over-night with mouse anti-Ki-67 (Cell 

Signaling 9449) and Alexa fluor-350 phalloidin (Invitrogen A22281) primary 

antibodies. Sections were washed and incubated for 1 hour with Alexa 488-

conjugated donkey anti-mouse antibody and imaged on a Nikon A1+ confocal 

system attached to a TiEclipse inverted microscope. 

 

2.15 Statistical analysis 

Data was assessed for normal distribution using the D'Agostino-Pearson 

normality test. For normally distributed data sets, statistical significance was 

determined by unpaired two-tailed t-test, one-way ANOVA with Tukey post hoc 

multiple comparison analyses, or two-way ANOVA with Sidak post hoc multiple 

comparison analyses. For non-normally distributed data sets, statistical 

significance was determined by Mann-Whitney U test or Kruskal-Wallis test. 

One-way ANOVA with Tukey post-test was performed using a 95% confidence 

interval to determine difference among infection groups. Kaplan-Meier survival 

curves were analyzed with the log-rank test. All analyses were performed using 
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Graph Prism 6.0 (GraphPad Software Inc. San Diego, CA). A P-value of 0.05 or less 

was considered significant. 
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3.1 Hyperglycemia, independent of obesity, worsens outcomes of enteric 

infections 

3.1.1. Hyperglycemia predicts mortality during C. rodentium infection 

Data on the infectious risk in people with diabetes has been documented, 

with numerous studies reporting a two-fold or greater risk of contracting 

infection compared to people without diabetes69,177,178. However, the data 

linking obesity or increased adiposity and risk of enteric infection is not yet clear. 

As diabetes and obesity are positively correlated, the initial aim of this thesis was 

to parse out the effects of obesity and hyperglycemia on infectious colitis. To do 

so, we first tested obese mice that were discordant for blood glucose using 

leptin deficient C57BL/6J OB mice of different ages. OB mice have a mutation in 

the leptin gene. Leptin is an endocrine hormone responsible for neural (i.e. 

hypothalamic) control of appetite and energy expenditure. OB mice are leptin 

deficient, hyperphagic, hyperlipidemic, and hyperinsulinemic179,180. During the 

first 3-5 months of life, OB mice are hyperglycemic, but after this period, the 

blood glucose levels gradually drop with increasing age due to the expansion of 

insulin-producing pancreatic β-cells, which is thought to be a temporary 

compensatory increase in insulin secretion to compensate for obesity-induced 

insulin resistance179–182. It is important to note that although OB mice are insulin 

resistant, metabolic syndrome in these mice does not progress to complete β-

cell destruction and unregulated diabetes in the time frame and ages of mice 

tested in this thesis179. An initial pilot experiment using 12- and 15-week-old OB 
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mice was conducted with former lab member Dr. Joseph McPhee to assess the 

kinetics of C. rodentium infection during obesity. Interestingly, after 14 days of 

infection we observed 100% mortality only in the 12-week-old OB group but no 

mortality in the 15-week-old OB group or WT control mice (p<0.05; Fig. 2A). In 

this initial experiment we tested OB mice that had similar body masses (data not 

shown), but only differed in age at the time of the infection. Blood glucose 

measurements were not taken during this experiment, however, based on their 

age discrepancy we hypothesized that an age-related difference in blood glucose 

may have been responsible for the mortality observed. Younger OB mice have 

higher blood glucose and we hypothesized that the relative hyperglycemia was 

the factor responsible for increased mortality in only this group of OB mice. To 

assess the role of hyperglycemia, independent of diet and obesity status in the 

context of obesity during C. rodentium infection, we infected 10-week and 22-

week-old OB mice with C. rodentium as these mice have different blood glucose 

levels, with the 10-week-old OB mice having relative hyperglycemia, whereas the 

22-week-old mice are within the age range of mice that have β-cell 

compensation and lower blood glucose despite profound obesity. Age-matched 

wild-type C57Bl/6J (WT) mice were used as controls while high fat fed C57Bl/6J 

(HFD) mice (that do not develop overt hyperglycemia) were used to control for 

body mass. These mice were all infected with C. rodentium and their body mass, 

random-fed blood glucose, and fecal burdens were regularly collected, and we 
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only tested until 10 days post infection which is in the midst of infection-induced 

mortality in hyperglycemic OB mice. The results show that only 40% of the 10-

week-old OB group survive C. rodentium infection while 80% of the 22-week-old 

OB group survive up to 10 days after infection (Figure 2B). There was no 

mortality observed in all other groups of WT mice, despite the body mass of 

HFD-fed WT mice being similar to that of the 10-week-old OB mice. It is 

noteworthy that there was ~20% mortality observed in the older (22-week-old) 

cohort of OB mice infected with C. rodentium, which may be attributed to leptin-

deficiency rather than changes in blood glucose. In addition to its role in feeding 

behaviour, leptin has also been implicated in immune regulation and OB mice 

have shown resistance to dextran sulfate sodium (DSS)-induced (i.e. chemical-

induced) intestinal colitis with reduced proinflammatory cytokine secretion and 

lower immune cell infiltration183. These immunological effects were reversible 

with leptin supplementation. Leptin levels have also been reported to rise in 

human and rodent models of infection184–186. OB mice are known to have an 

attenuated immune response during Klebsiella pneumoniae infection187.  

At the onset of infection, as expected, the 22-week-old OB mice had the 

highest body mass (average, 58.9 grams, p<0.05), while the 10-week-old OB mice 

and the HFD-fed WT mice had similar body masses (44.7 vs. 47.1 grams, 

respectively) indicating that body mass was unlikely to be the cause of mortality 

(Fig. 2C). Both age-matched WT control diet-fed groups of mice had significantly 
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lower body masses compared to all other groups but were not different from 

each other (31.7 vs. 30.8 grams, 10- and 22-week-old WT mice, respectively). In 

terms of blood glucose, the 10-week-old OB mice had significantly higher blood 

glucose levels compared to all other groups at the onset of infection (23.6 vs. 8.6 

vs. 9.0 vs. 8.7 vs. 10.7 mmol glucose/litre for OB [10 w], WT [10 w], WT [22 w], 

HFD [22 w], and OB [22 w], respectively, p<0.05; Fig. 2D). Increased blood 

glucose was evident in 10-week-old OB mice until day 6 post-C. rodentium 

infection, after this point of enteric infection a survivorship effect confounded 

blood glucose measurement during enteric infection. Stratifying all of the obese 

mice (inclusive of the 10-week and 22-week-old OB mice, and HFD) into groups 

by survivorship, we observed that blood glucose, but not body mass prior to 

infection was a strong predictor for mortality from infectious colitis during C. 

rodentium infection (Fig. 2E-F).  Both 10- and 22-week-old cohorts of OB mice 

had higher burdens of C. rodentium in the colon (day 7: 8.3 vs. 7.9 vs. 5.8 vs. 5.2 

vs. 6.2 log cfu/g; day 10: 8.2 vs. 8.9 vs. 6.2 vs. 7.0 vs. 6.9 log cfu/g, OB [10 w], OB 

[22 w], HFD [22 w], WT [10 w], and WT [22 w], respectively; p<0.05), liver (day 7: 

6.8 vs. 6.8 vs. 4.3 vs. 5.1 vs. 5.9 log cfu/g; day 10: 7.2 vs. 6.6 vs. 4.3 vs. 5.5 vs. 5.2 

log cfu/g, OB [10 w], OB [22 w], HFD [22 w], WT [10 w], and WT [22 w], 

respectively; p<0.05), and spleen (day 7: 6.3 vs. 6.0 vs. 4.1 vs. 3.8 vs. 5.0 log 

cfu/g; day 10: 5.5 vs. 6.1 vs. 4.1 vs. 4.2 vs. 4.2 log cfu/g, OB [10 w], OB [22 w], 

HFD [22 w], WT [10 w], and WT [22 w],  respectively; p<0.05) compared to all 
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other groups of WT mice (Fig. 3A-D). However, it is critical that there was no 

difference in bacterial burdens between 10- and 22-week-old OB mice OB mice. 

This is important because only the 10-week-old OB mice showed a profound 

increase in mortality, indicating that neither bacterial burden nor bacterial 

dissemination was associated with hyperglycemia and increased mortality during 

C. rodentium infection (Fig. 3A-D).   
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Figure 2: Hyperglycemia, independent of obesity, promotes mortality during C. rodentium 
infection. Initial pilot experiment with Dr. Joseph McPhee in which 12-week-old ob/ob-/- mice 
and WT controls were infected with Citrobacter rodentium (n=10/group). A, Survival curve of 
genetically induced obese mice and WT C57Bl/6 mice during C. rodentium infection. A follow-
up experiment in which 10- and 22-week-old ob/ob-/- mice, long-term high fat diet (HFD)-fed, 
and age-matched chow-fed mice were infected with C. rodentium (n=8-12/group). B, Survival 
curve of diet-induced and genetically induced obesity mouse models during C. rodentium 
infection. Log-rank test was conducted to determine significance. C, D Initial body mass and 
blood glucose measurement. One-way ANOVA was conducted to determine significance. E, F, 
Correlation of body mass and blood glucose to mortality, respectively. Student’s unpaired t-
test was conducted to determine significance. Values are presented as mean ± SEM. *p<0.05. 
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Figure 3: Mortality during C. rodentium infection is not dependent on bacterial burden or 
dissemination. 10- and 22-week-old ob/ob-/- mice, long-term high fat diet (HFD)-fed, and age-
matched chow-fed mice were infected with Citrobacter rodentium. A, Fecal burdens of diet-
induced and genetically induced obesity mouse models during Citrobacter rodentium infection 
(n=8-10/group). One-way ANOVA was conducted to determine significance. B, C, D tissue 
burdens at day 7 and 10 post infection of colon, liver and spleen, respectively (n=6-
8/tissue/group). One-way ANOVA was conducted to determine significance. Values are 
presented as mean ± SEM. *p<0.05; # indicates the lack of significant difference. 
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3.1.2. Hyperglycemia, independent of obesity, promotes mortality during 

C. rodentium infection 

The results in OB mice show that higher blood glucose was associated 

with an increased risk of mortality during C. rodentium infection in obese mice. 

We next questioned if obesity was required for these outcomes from enteric 

infection. Also, while the OB mice provide some insight into high blood glucose 

and increased adiposity, their leptin deficiency is a considerable confounding 

factor. To focus on the sole impact of hyperglycemia, we applied our C. 

rodentium infection model to a murine model of Type I diabetes. Akita+/- mice 

are lean, diabetic mice in a C57Bl/6J background188. They have a mutation that 

alters the conformation of insulin 2 rendering it non-functional; this ultimately 

results in early loss of pancreatic β-cells, as an accumulation of misfolded 

proinsulin induces apoptosis188,189. Male Akita+/- mice develop hyperglycemia 

shortly after weaning, when a 71% decrease of β-cell mass can be observed. 

Consequently, insulin levels drop and the Akita+/- mice develop a persistent state 

of hypoinsulinemia and hyperglycemia188. Akita+/- mice develop other diabetes-

related health complications with age (~20 weeks old) such as retinopathy, 

nephropathy, and neuropathy63. 

Concordant with our earlier results, 100% mortality was observed in 

Akita+/- mice during C. rodentium infection compared to 0% mortality in 

littermate WT mice (p<0.05; Fig. 4A). Remarkably, mortality during C. rodentium 
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infection in Akita+/- mice was completely prevented with insulin pellet 

implantation (p<0.05; Fig. 4A). At the onset of infection, Akita+/- mice with or 

without insulin had a lower body mass compared to littermate WT mice (23.1 vs. 

22.5 vs. 25.5 grams, Akita+/- with and without insulin versus WT mice, 

respectively; p<0.05). Akita+/-  mice had higher random-fed blood glucose 

compared to WT littermate mice (31.7 vs. 10.2 mmol glucose/litre, Akita+/- and 

WT mice, respectively) and insulin pellet implantation lowered blood glucose 

levels in Akita+/- mice to a similar level to WT mice (10 mmol glucose/litre, 

p<0.05; Fig. 4B-C). Akita+/- mice that did not receive insulin pellets had slightly 

higher fecal burden at 3 days post infection than all other groups (6.6 vs. 5.8 vs. 

5.8 log cfu/gram feces, Akita+/- with and without insulin and WT mice, 

respectively; p<0.05), but no differences in fecal pathogen burden were 

observed 6 days post infection (7.2 vs. 7.2 vs. 6.6 log cfu/gram feces, Akita+/- with 

and without insulin and WT mice, respectively; Fig. 5A). Our results suggest that 

mortality during C. rodentium infection was not dependent on intestinal 

bacterial burden or dissemination to host tissues as only insulin-treated mice 

had higher splenic burdens (4.8 vs. 4.3 vs. 4.2  log cfu/gram tissue, Akita+/- with 

and without insulin and WT mice, respectively),  but there were no differences in 

pathogen burden in the colon (3.8-4.2 log cfu/gram tissue) or liver (4.8-5.0 log 

cfu/gram tissue; Fig. 5B). No differences in tissue pathology were observed 

between groups (Fig. 5C). This result indicates that susceptibility of diabetic mice 
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to mortality during C. rodentium infection cannot be traced to typical 

measurements of intestinal pathogen burden or pathology. 
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We next wanted to observe whether mortality during C. rodentium 

infection was dependent on the sex of the mice. We infected 10-week-old 

female Akita+/- mice and WT littermate mice with C. rodentium. No mortality was 

observed over the course of infection in 10-week-old female Akita+/- mice (Fig. 

6A). No differences in body mass were observed over the course of infection, 

and similar to male Akita+/- mice, female Akita+/- had significantly higher blood 

glucose levels throughout the course of infection (Fig. 6B-C). However, the 

magnitude of hyperglycemia is lower in female Akita+/- mice compared to the 

male Akita+/- mice (~12-17 mmol/L vs. ~27-33 mmol/L, respectively). These data 

on blood glucose demonstrate the potential for a threshold glucose 

concentration to promote mortality from C. rodentium infection. Also, sex-

specific regulation immunity and intestinal homeostasis should be considered as 

a modifier of the severity of C. rodentium infection. Again, similar to male mice, 

no overt differences in fecal burden were observed between female Akita+/- and 

littermate WT mice (Fig. 6D). 

To determine if mortality was dependent on the virulence of C. 

rodentium or was just the result of an oral gavage of a bacterial bolus, we 

infected Akita+/- mice with an avirulent, Type 3 secretion system knock-out strain 

of C. rodentium (Δescn). The Type 3 secretion system is essential for C. 

rodentium virulence as it is required for the translocation of bacterial effector 

proteins into the host cell151,190–192. The Δescn strain did not promote mortality in 
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Akita+/- mice (Fig. 7A), despite the Akita+/- mice having expectedly higher blood 

glucose levels (Fig. 7B) and lower body mass (Fig. 7C) compared to littermate WT 

control mice throughout the course of infection. The Δescn strain was unable to 

successfully infect and persist in the gastrointestinal tract of mice the Δescn 

strain was only detectable in the feces at day 3 post infection, but not day 7 or 9 

(Fig. 7D).  
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Figure 6: C. rodentium-induced mortality is gender-specific. 10-week-old female WT and 
Akita+/- mice were infected with Citrobacter rodentium (n=8-9/group). A, survival curve of 
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3.1.3. Impaired intestinal barrier function is not responsible for 

hyperglycemia-induced mortality during C. rodentium infection 

We next assessed if hyperglycemia in Akita+/- compromised intestinal 

barrier function. We assessed intestinal permeability by gavaging FITC-dextran 

and found no differences between naïve (uninfected) Akita+/- and WT mice (2207 

vs. 3362 absorbance units (AU); Fig. 8A). As an additional indirect measure of 

intestinal permeability during infection, we used a TLR4-HEK reporter cell line to 

quantify any differences in circulating endotoxin. It is known that TLR4 ligands 

such as LPS are derived from the intestinal microbiota during metabolic 

endotoxemia, which equates to chronic, low level increases in endotoxin load 

during diet-induced obesity and diabetes in mice53,185,193. However, very little is 

known about hyperglycemia and metabolic endotoxemia during enteric 

infection. Our results show that at day 9 post C. rodentium infection, no 

differences in circulating/serum TLR4 ligands were observed between Akita+/- 

mice with or without insulin and WT mice (Fig. 8B). To determine whether C. 

rodentium infection promoted dissemination of other bacteria to cause 

mortality, we cultured bacteria from the blood, liver and spleen of Akita+/- mice 

with or without insulin and WT mice at day 9 post infection on four different 

agar mediums/conditions. We detected no bacterial growth in the blood from 

many mice (data not shown). We found no statistical differences in total 

dissemination between Akita+/- mice and Akita+/- mice treated with insulin, 

indicating that hypoglycemia and mortality from infection was not associated 



Ph.D. Thesis – T. C. Lau; McMaster University – Biochemistry and Biomedical Sciences 
 

61 
 

with bacterial dissemination. We consistently found higher bacterial burdens in 

the liver and spleen between Akita+/- mice treated with insulin compared to WT 

mice in all plating conditions (p<0.05; Fig. 8C-F). Given that insulin promoted 

survival during enteric infection in Akita+/- mice, our results showed no evidence 

of impaired intestinal barrier function as an underlying cause for hyperglycemia-

induced mortality from enteric infection. Rather, these results indicate that 

hyperglycemia, independent of obesity, is sufficient for C. rodentium-induced 

mortality. The increased risk of mortality from enteric infection in diabetic mice 

was not associated with overt intestinal pathology or bacteremia. 
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 3.1.4. IL-22 lowers blood glucose and mitigates severity of enteric 

infection in obese and diabetic mice 

In support of our results, a recent study conducted by Wang et al. found 

that OB mice and db/db-/- mice that lack the leptin receptor are both obese 

mouse strains that have increased mortality after C. rodentium infection119. The 

OB and db/db-/- mice used in this study were infected at an age that would be 

hyperglycemic119. Intriguingly, this study also found that HFD-fed, obese mice did 

not have increased mortality from C. rodentium infection, but the authors could 

not explain this effect as the premise of testing appeared to be on age or obesity 

status, rather than blood glucose. However, this study made a fascinating 

connection to IL-22-realted immunity. OB mice were found to have reduced IL-

22 expression in the colon, during C. rodentium infection which correlated with 

increased mortality infection. They detected similar numbers of IL-22+ innate 

lymphoid cells and T cells but found that during infection, induction of IL-22 was 

impaired in OB mice compared to wild-type (WT) controls. As IL-23 is known to 

regulate IL-22 expression, this study used a hydrodynamic tail vein injection of an 

IL-23 containing plasmid, three days prior to infection, which improved survival 

of OB mice and rescued IL-22 expression at day 4 post infection. The researchers 

then gave OB mice exogenous IL-22 supplementation, using an IL-22-Fc antibody, 

and rescued OB mice from C. rodentium-induced mortality. In their HFD-induced 

obesity model, these authors also found reduced levels of IL-22 without any 

mortality, which they suggested was a result of the older age in mice. To assess 



Ph.D. Thesis – T. C. Lau; McMaster University – Biochemistry and Biomedical Sciences 
 

64 
 

the metabolic effects of IL-22, the authors treated HFD-fed WT mice with 

exogenous IL-22. IL-22 supplementation reduced weight gain, improved glucose 

tolerance and insulin sensitivity, and lowered blood glucose levels; however, 

these metabolic parameters were never measured in IL-22 treated OB mice 

before or during C. rodentium infection157. In summary, this seminal paper 

suggested a link between obesity, and IL-22-mediated intestinal mucosal barrier 

function during obesity, but the cause of mortality during enteric infection was 

not well-defined. It remained possible that exogenous IL-22 treatment lowered 

blood glucose, which was a key factor for mortality risk during C. rodentium 

infection. 

IL-22 is an important cytokine for maintaining intestinal barrier integrity 

by regulating tissue repair and promoting antimicrobial release during acute 

inflammation. IL-22 is predominantly expressed by TH17 and TH22 cells and is 

regulated by the cytokines, IL-23 and IL-12. IL-22 is a unique cytokine as its main 

actions are exerted primarily on epithelial cells, as these are the main cell types 

that express the IL-22 receptor122–125. In conjunction with its inflammatory role, 

IL-22 has also been recently implicated in metabolic regulation, including 

lowering blood glucose125–127. Numerous studies have shown that exogenous IL-

22 can improve metabolic status during obesity. IL-22 has been shown to lower 

blood glucose, body mass, and adiposity; improve glycemic control, intestinal 
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barrier function, reduce liver lipogenic expression, and reduce oxidative and ER 

stress119,125,128,129. 

While it is well-known that IL-22 deficient mice have increased mortality 

during C. rodentium infection, a study by Aychek et al. showed that mice 

deficient in il-23 but not il-12(p40) succumbed to C. rodentium infection by day 

15 post infection, despite similarly reduced levels of IL-22161. Critically, the OB 

mice used in the study by Wang et al. were 5-6 weeks of age, which is known to 

be within the hyperglycemic stage of OB mouse development. We hypothesized 

that IL-22 supplementation promoted survival of obese, hyperglycemic mice 

infected with C. rodentium through the glucose lowering and metabolic actions 

of IL-22. To assess this, we treated both OB and Akita+/- mice with the same IL-

22-Fc antibody and tracked survival, body mass, and blood glucose. 

We first tested if Akita+/- mice (which all die from C. rodentium infection) 

had different levels of IL-22 or related cytokines in the colon during infection. We 

found that C. rodentium infection increased IL-22 transcript levels in the colons 

of both WT and Akita+/-  mice, but no differences in IL-22 expression were 

observed between WT and Akita+/-  mice at days 0, 5, and 9 post infection (Fig. 

9A). We assessed other intestinal inflammatory markers in the IL-22 pathway (IL-

17 and IL-23) but found no differences between Akita+/- and WT mice at days 0, 

5, or 9 post infection (Fig. 9A). Importantly, while IL-22Fc injection reduced 
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mortality of Akita+/- mice from C. rodentium-induced mortality (p=0.0019), IL-

22Fc injection coincidently reduced body mass (p<0.05) and blood glucose levels 

(p<0.05; Fig. 9B-C). 

We were able to repeat the findings of Wang et al. by showing complete 

rescue of OB mice from C. rodentium-induced mortality (p=0.0019) by injecting 

the IL-22Fc compound, but we also observed significantly reduced body mass 

(p<0.05) and blood glucose levels (p<0.05; Fig. 10A-C). We were also able to 

reproduce the results of Wang et al, showing lower IL-22 transcript levels in the 

colon during C. rodentium infection in OB mice (Fig. 10). However, we also tested 

OB mice discordant for hyperglycemia at 2 different ages. Quantifying IL-22 gene 

expression in the colons from OB mice discordant for hyperglycemia (which are 

discordant for risk of mortality) showed that 10-week and 22-week-old OB mice 

had similarly reduced levels of IL-22 compared to WT controls at days 6 and 10 

post infection (Fig. 10D). Since both OB mice had similarly reduced levels of IL-22 

and our Akita+/- mice showed no changes in IL-22 levels from WT, our results 

suggest that blood glucose lowering rather than the immunological actions of IL-

22 promote survival from enteric infection. In order to further probe the 

relationship of inflammation/immunity and mortality from infection, we next 

assessed a panel of circulating markers of inflammation in OB mice that may 

indicate or predict mortality. We found no indicators of overt inflammation or 

predictors of mortality in serum/circulating inflammatory factors. Compared to 
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WT mice at day 4 and 10 post infection, 10-week-old OB mice had significantly 

lower il-9 (16.32 vs. 60.88 pg/ml) at day 4 and significantly higher IL-6 (123.40 vs. 

54.98 pg/ml), IL-15 (89.55 vs. 60.93 pg/ml), IL-17 (16.94 vs. 5.52 pg/ml), and 

TNFα (35.54 vs. 8.28 pg/ml) at day 10 post infection (all p<0.05; Fig. 11A-B). 

Overall, these data result support our hypothesis that hyperglycemia, not IL-22 

deficiency, nor overt systemic inflammation promotes mortality during C. 

rodentium infection. IL-22Fc was a potent glucose lowering agent in models of 

diabetes and obesity. 
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Figure 11: Inflammation does not correlate with C. rodentium-induced mortality in ob/ob-/- 
mice. Quantification of serum cytokines using ELISA-immunoabsorbant assay at A, day 4 and B, 
day 10 post infection (n=5-8/group). Student’s unpaired t-test was conducted to determine 
significance. Values are presented as mean ± SEM. *p<0.05. 
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3.1.5. Fluid balance regulates mortality during C. rodentium infection in 

diabetic mice 

Despite the sufficiency for hyperglycemia, the underlying cause of 

mortality remained unclear in our enteric infection model during diabetes. As 

previously mentioned, of the known mouse strains susceptible to C. rodentium-

related mortality, fluid imbalance due to dysregulated Wnt-signalling was 

primarily responsible for the risk of mortality during enteric infection. 

First, to determine if dehydration was responsible for mortality, we 

provided fluid replenishment with Ringer’s solution, an isotonic solution 

consisting of sodium chloride, potassium chloride, and sodium bicarbonate, 

throughout C. rodentium infection. Mice were given a daily subcutaneous 

injection of 1 ml of Ringer’s solution at the onset and throughout the course of 

infection. Fluid replacement completely prevented Akita+/- mice from C. 

rodentium-induced mortality (Fig. 12A). There were no differences between the 

treated and untreated groups in initial body mass (23.2 vs. 24.2 grams, 

respectively) or blood glucose (31.4 vs. 32.6 mmol glucose/litre, respectively), a 

trend that continued throughout the course of infection (Fig. 12B-C). It was 

striking that hyperglycemic Akita+/- mice all survived the enteric infection, if mice 

were given fluid therapy. There were also no differences in fecal burden at days 

3 or 6 of infection and no differences in organ burdens at day 9 between fluid 

treated and untreated Akita+/- mice and WT control (Fig. 12D).  To assess the 
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level and nature of dehydration in mice, we quantified serum osmolality but 

found no differences in protein or ion levels between groups (Fig. 13). This may 

be the result of physiological adaptations to chronic dehydration, as studies have 

shown that acute water deprivation, but not prolonged water restriction, show 

alterations in osmolality194,195. In response to this deprivation, intracellular 

volume is decreased to maintain body fluid volume while ion reabsorption in the 

kidneys is reduced194. In our model, diarrhea onset was observed as early as 3 

days post infection and coupled with the polyuric behaviour of Akita+/- mice, may 

have induced a state of chronic dehydration.  Additionally, as water consumption 

was not monitored during infection, osmolality differences may also be masked 

by polydipsia of Akita+/- mice188,196.  
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Figure 12: Fluid replenishment rescues hyperglycemia-induced mortality during C. rodentium 
infection. A, survival curve of non-obese, diabetic Akita+/- mouse with daily subcutaneous 
injections of Ringer’s solution (1 ml) during Citrobacter rodentium infection. Log-rank test was 
conducted to determine significance. B, C, Initial body mass and blood glucose measurement 
(n=7-15/group). D, Fecal burdens at days 3 and 6 post-infection (n=6-12/group). One-way 
ANOVA was conducted to determine significance. Values are presented as mean ± SEM. 
*p<0.05. 
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While these studies were conducted in mice, the results indicate the 

potential for diabetics to be at an increased susceptibility to dehydration during 

diarrhea-causing acute gastrointestinal colitis which is of concern when current 

clinical trials are looking to sodium-glucose transport inhibitors (SGLTs) as 

treatment for diabetes. This drug class works by selectively inhibiting SGLT-2, a 

glucose transporter in the kidney that is responsible for 90% of glucose 

reabsorption from urine197–199. As a result of this inhibition, glucose is constantly 

excreted through urination, which promotes lowering of blood glucose levels but 

increases the risk of dehydration. Hence, we tested Empagliflozin, an SGLT-2 

inhibitor that is currently used in humans. We found that Empagliflozin-treated 

Akita+/- mice had an increased mortality rate during C. rodentium infection, 

despite marginally improved glucose levels before infection (31 vs. 21.5 mmol 

glucose/litre, untreated vs. treated, p<0.05), but no differences in fecal pathogen 

burden (Fig. 14A-C).  

Our data showing that Akita+/- mice given fluid replenishment had lower 

mortality despite similarly high blood glucose levels indicates that hyperglycemia 

is necessary, but not sufficient to promote mortality during C. rodentium 

infection in mice. Fluid balance is a key factor in risk of mortality during enteric 

infection in diabetic mice. 
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Figure 14: Empagliflozin, a diabetic drug, promotes mortality during C. rodentium infection 
of Akita+/- mice. A, Survival curve of non-obese, diabetic Akita+/- mouse with daily oral gavage 
of empagliflozin (150 mg/kg) during Citrobacter rodentium infection. Log-rank test was 
conducted to determine significance. B, Blood glucose during the course of infection (n=6-
8/group). C, Fecal burden during the course of infection (n=5/group). Student’s unpaired t-test 
was conducted to determine significance. Values are presented as mean ± SEM. 
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3.1.6. Wnt-inhibition reduces mortality during C. rodentium infection in 

diabetic mice 

Next, we inhibited Wnt-signalling with LGK-974 during enteric infection. 

LGK-974 is a newly developed, orally available compound that is currently being 

tested as an anti-tumour drug. It impairs Wnt-signalling by inhibiting porcupine, 

whose post-translational modification of Wnt is necessary for secretion90,97,200. 

LGK-974 (3 mg/kg) or 1% methylcellulose vehicle control was gavaged three 

times a week into Akita+/- mice beginning one week prior and throughout the 

course of infection. To verify our hypothesis that Wnt-signalling is involved in C. 

rodentium-induced mortality, we attempted to determine if LGK treatment 

inhibited markers of Wnt-signalling in the colon. We quantified the amount of 

active β-catenin in the colon using Western blotting (Fig. 15A). There was a 

significant increase in active β-catenin (i.e. de-phosphorylated β-catenin) in the 

colons of untreated Akita+/- group compared to littermate WT mice (Fig. 15B).  

LGK-974 treatment and insulin pellets prevented the increase in active β-catenin 

in the colons of Akita+/- mice (Fig. 15B).  Importantly, LGK-974 treatment also 

lowered mortality in Akita+/- mice during C. rodentium infection. These data 

implicate Wnt-signalling involvement in hyperglycemia-induced mortality (Fig. 

15C). There were no differences in initial body mass [23.1 (LGK) vs. 23.3 

(untreated) grams] or blood glucose [26.8 (LGK) vs. 29.4 (untreated) mmol 

glucose/litre] between treated and untreated groups, a trend that continued 

throughout the course of infection (Fig. 15D-E). There were also no differences in 
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fecal burden at days 3 or 6 of infection and no differences in organ burdens at 

day 9 (Fig. 15F).   

 We next measured regulators of Wnt activity known to be involved in C. 

rodentium responses. We quantified the expression levels of R-spondins (rspos) 

1-3 prior to infection and at day 7 post infection in the colons of mice (Fig. 16A-

C). R-spondins are important regulators of the canonical Wnt-signalling pathway 

and have been shown to be differentially regulated during C. rodentium 

infection, with Rspos2 being significantly elevated in susceptible mouse 

strains87,201,202. We did not measure rspos4, as expression levels were 

consistently below the limit of detection during C. rodentium infection, levels202. 

Expression of rspos1 was significantly higher in the colons of Akita+/- mice 

supplemented with insulin compared to untreated Akita+/- mice; however, no 

difference was observed compared to WT littermate mice. No differences in 

rspos2 and rspos3 were observed between groups at baseline or day 7 post 

infection. Therefore, we find that transcript levels of R-spondins do not biomark 

or correlate with Wnt-activity or risk of mortality in our model of enteric 

infection during diabetes in mice.  

 Next to assess the level of proliferation in the intestinal crypts, we stained 

for Ki-67 and active β-catenin in paraffin-embedded colon sections collected at 

day 9 post infection (Fig. 16D-E).  Distance of Ki-67 detection from the up the 



Ph.D. Thesis – T. C. Lau; McMaster University – Biochemistry and Biomedical Sciences 
 

79 
 

base of crypt to the villi was used as a measurement of proliferation and taken as 

a ratio of total crypt length. Overall, no significant difference was observed in 

Ki67 (a marker of cellular proliferation) or total crypt length (Fig 16F). Overall, 

from these results we show that hyperglycemia worsens the outcome of enteric 

infection with C. rodentium by promoting mortality via fluid imbalance and 

increased Wnt signalling in the distal gut, but it was unclear if this effect extends 

to other types of enteric infections.  
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Figure 15: Wnt-inhibition rescues hyperglycemia-induced mortality during C. rodentium 
infection. A, Representative Western blot of β-catenin and β-actin levels. Representative 
image is of 10 samples for each group. B, Quantification of Western blot images for colonic 
protein concentrations of active, non-phosphorylated β-catenin, normalized to β-actin levels 
(n=8-12/group). C, survival curve of non-obese, diabetic Akita+/- mouse with daily oral gavage 
of LGK-974 (3 mg/kg) during Citrobacter rodentium infection. Log-rank test was conducted to 
determine significance. D, E, Initial body mass and blood glucose measurement (n=11-
13/group). F, Fecal burdens at days 3 and 6 post infection (n=9-11/group). Student’s unpaired 
t-test was conducted to determine significance. Values are presented as mean ± SEM.  
*p<0.05. 
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Figure 16: Hyperglycemia does not elevate Rpondin expression or colonic crypt proliferation. 

Gene expression of uninfected and at day 7 post infection of A, rspos1, B, rspos2, and C, rspos3 

(n=6-8/group). D, Measurement of Ki-67 as a ratio of crypt length. E, Total crypt length. F, 

representative immunofluorescent images taken at 10x objective using a Nikon A1+ confocal 

system attached to a TiEclipse inverted microscope (n=8-11/group). One-way ANOVA was 

conducted to determine significance. Values are presented as mean ± SEM. *p<0.05. 
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3.1.7. Hyperglycemia worsens outcomes during a different model of enteric 

infection 

 Next, we used another model of enteric infection, adherent-invasive 

Escherichia coli (AIEC), to assess whether hyperglycemia would impact outcomes 

of AIEC infection. AIEC has gained recent interest for its association with Crohn’s 

disease (CD). E. coli  have specifically been shown to be enriched in CD 

patients162–164. Culturing of E. coli isolates from Crohn’s disease patients found 

that many isolates had unusual adherent and invasive phenotypes. Interestingly, 

these isolates did not possess toxins or adhesins typically found in pathogenic E. 

coli; thus, they were collectively called adherent-invasive E. coli for their ability 

to penetrate the mucosa, adhere and invade epithelial cells, and stimulate 

inflammation163,165–168. AIEC is considered a pathobiont, a usually benign 

pathogen that will rapidly expand during a perturbation, as it is found in CD 

patients and healthy individuals162,168.  

 No mortality was observed when male Akita+/- mice were infected with 

AIEC (Fig. 17A). Compared to WT littermate mice, Akita+/- mice had significantly 

lower body mass (p<0.05; Fig. 17B) and higher blood glucose levels (p<0.05; Fig. 

17C) at the onset of infection. Compared to WT littermate mice, Akita+/- mice 

had significantly higher fecal AIEC burdens at Day 7-17 post AIEC infection (Fig. 

17D).  Compared to WT littermate mice, Akita+/- mice had higher bacterial 
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burdens of AIEC in all segments of the lower intestinal tract (p<0.05), but no 

differences in dissemination were observed since tissue burdens were similar to 

WT littermate mice (Fig. 17E). We next questioned if blood glucose was the key 

factor regulating outcomes from AIEC function and focused on bacterial burdens 

of AIEC in diet-induced obesity and metabolic disease models in mice. 
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Figure 17: Akita+/- mice have elevated fecal and tissue burdens during adherent-invasive E. coli 
infection. A, Survival curve of non-obese, diabetic Akita+/- mice during infection. Log-rank test was 
conducted to determine significance. B, C, Initial body mass and blood glucose measurement. D, Fecal 
burdens during the course of infection. E, Tissue burdens at day 17 post infection (n=7-9/group). 
Student’s unpaired t-test was conducted to determine significance. Values are presented as mean ± 
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3.2. Obesity impairs resolution of adherent-invasive Escherichia coli infection 

3.2.1. Obesity promotes AIEC expansion and pathology 

Susceptibility to AIEC and subsequent expansion have been linked with 

dysbiosis and inflammation, both characteristics associated with 

obesity52,53,116,170,174,203–206. HFD has also been implicated in altering the 

composition of the microbiome, possibly potentiating an immune response or 

enabling a specific pathogen, such as adherent and invasive E. coli (AIEC) to 

flourish in mice52,207. In fact, a recent study by Agus et al., found that a high 

fat/high sugar diet perturbed the microbiota of mice which lead to increased 

susceptibility to AIEC infection and that this phenotype was microbiota-

dependent as fecal transfers from high fat/high sugar fed mice to germ-free mice 

conferred the same susceptibility174. A study by Small et al. looked at the impact 

of secondary infections with S. typhimurium and C. rodentium after a primary 

infection with AIEC and found that following secondary infections, AIEC 

expansion occurred only in the presence of intestinal inflammation203. Obesity 

has many characteristics that make it a good candidate as a potentiator of AIEC 

infection, including low-grade chronic inflammation, altered mucosal immunity, 

and impaired intestinal barrier integrity208–211. However, the impact of diet 

components versus obesity on AIEC infection outcomes has not been clearly 

defined.  
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To assess the impact of obesity on AIEC infection, we subjected male 

C57Bl/6J mice to long-term 60% HFD (for 16-18 weeks) before and throughout 

AIEC infection. We pre-treated with 2 mg/g streptomycin one day prior to 

infection with ~2x109 colony forming units (CFU) of AIEC. Feces were collected 

throughout the course of infection to track bacterial burden and the small and 

large intestine and spleen were collected and plated on day of sacrifice to 

observe dissemination.  

We characterized the metabolic status of these long-term HFD-fed mice 

to confirm obesity. Compared to chow fed mice, HFD mice were glucose 

intolerant (Fig. 18A) and had higher fasting blood glucose (p<0.05; Fig. 18B). The 

HFD group also had significantly larger body mass (p<0.05; Fig. 18C) and higher 

levels of adiposity (Fig. 18D) prior to infection. During AIEC infection, minimal 

weight loss was observed, and the HFD-fed mice maintained their higher body 

mass compared to chow-fed mice (Fig. 19A). Starting from day 1 until day 30 

post infection, there were significantly higher fecal burdens of AIEC in the HFD-

fed mice (Fig. 19B). The elevated fecal burdens corresponded with elevated 

tissue burdens when tested at day 17 post infection. Higher AIEC CFUs were 

observed in the ileum, cecum, and colon but no difference in dissemination was 

observed, evidenced by the lack of countable AIEC colonies from spleen 

homogenates in either the chow- or HFD-fed groups of mice (Fig. 19C).  At day 9 

post AIEC infection, worsened pathology and crypt elongation was observed in 
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the cecum of HFD mice compared to chow-fed mice (Fig. 20A-C). Tissues were 

scored on the severity of crypt hyperplasia, immune cell infiltration, epithelial 

cell loss, and edema. By day 17 post AIEC infection, crypt elongation was 

observed in the ileum, cecum, and colon but overall pathology was only 

significantly elevated in the colon of HFD mice compared to chow-fed mice (Fig. 

20D-F).  

Antibiotics are known potentiators of AIEC infection and it was not clear 

if they were required for the exacerbated AIEC outgrowth observed in our HFD-

feeding model170. We infected long-term HFD mice with AIEC without 

streptomycin pre-treatment and did not observe any differences in AIEC 

colonization between HFD- and chow-fed mice, despite differences in body mass 

(Fig. 21A-B). Hence, we conclude that antibiotics interact with obesity and/or 

HFD-feeding to exacerbate AIEC infection characteristics. 

 

 

 

 

 

 



Ph.D. Thesis – T. C. Lau; McMaster University – Biochemistry and Biomedical Sciences 
 

88 
 

 

 

 

 

 

 

 

 

 

0 5 0 1 0 0 1 5 0

0

1 0

2 0

3 0
C h ow

H F D

T im e  (m in )

B
lo

o
d

  
G

lu
c

o
s

e

(m
m

o
l/

L
)

*

C h o w H F D

0

5

1 0

1 5

2 0

B
lo

o
d

  
G

lu
c

o
s

e

(m
m

o
l/

L
)

*

C h o w H F D

0

2 0

4 0

6 0

B
o

d
y

 M
a

s
s

 (
g

)

*

A
U

C

(a
rb

it
ra

ry
 u

n
it

s
)

C h o w H F D  

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

*

B
o

d
y

  
C

o
m

p
o

s
it

io
n

(%
  

F
a

t)

C h o w H F D

0

2 0

4 0

6 0

8 0

*

A B

C D

Figure 18: Long-term high fat feeding induces glucose intolerance and increased adiposity. 
C57BL/6 mice (8-10 weeks old) were fed a 60% high fat diet (HFD) for 16 weeks (n=18-
22/group). A, Intraperitoneal glucose (0.75 g/kg) tolerance test and area under the curve 
(AUC) quantification. B, Fast blood glucose measurement. C, D, Body mass and adiposity 
measurement. Student’s unpaired t-test was conducted to determine significance. Values are 
presented as mean ± SEM. *p<0.05. 
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Figure 19: Diet-induced obesity promotes adherent-invasive Escherichia coli expansion and 
colonization in the lower intestinal tract. C57BL/6 mice (8-10 weeks old) were fed a 60% high 
fat diet (HFD) for 16 weeks and pretreated with streptomycin (2 mg/mouse) one day prior to 
infection with adherent-invasive Escherichia coli (AIEC). A, Fecal burdens during the course of 
infection (n=16-19/group). B, Body mass during the course of infection. C, Tissue burdens at 
day 17 post infection (n=10-12/group). Student’s unpaired t-test was conducted to determine 
significance. Values are presented as mean ± SEM. *p<0.05. 
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Figure 20: Diet-induced obesity promotes worsened pathology during adherent-invasive 
Escherichia coli infection. C57BL/6 mice (8-10 weeks old) were fed a 60% high fat diet (HFD) 
for 16 weeks and pretreated with streptomycin (2 mg/mouse) one day prior to infection with 
adherent-invasive Escherichia coli (AIEC). Overall pathology, crypt length measurements, and 
representative images of the ileum, cecum, and colon of AIEC-infected mice at A, B, C, day 9; 
and D, E, F, day 17 post infection, respectively (n=5 mice/group; 5 images/mouse). Student’s 
unpaired t-test was conducted to determine significance. Values are presented as mean ± 
SEM. *p<0.05. 
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Figure 21: Streptomycin pretreatment is required for expansion of adherent-invasive 
Escherichia coli in diet-induced obese mice. C57BL/6 mice (8-10 weeks old) were fed a 60% 
high fat diet (HFD) for 16 weeks prior to infection with adherent-invasive Escherichia coli (n=8-
10/group). A, Fecal burdens during the course of infection. B, Body mass during the course of 
infection. Student’s unpaired t-test was conducted to determine significance. Values are 
presented as mean ± SEM. *p<0.05. 
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3.2.2. IL-22 promotes AIEC expansion in a diet-induced obesity mouse  

Our lab has previously showed that during long-term HFD, Il-17 and IL-22 

are lowered in the ileum and colon, respectively212. These cytokines are 

important for maintaining intestinal barrier integrity and mucosal immunity and 

have been implicated in the resolution of AIEC-mediated inflammation213–217. 

Since AIEC was found in elevated levels in the proximal and distal ileum, cecum 

and colon, we hypothesized that this may be the result of impaired intestinal 

immune response212. Furthermore, we found that IL-22Fc administration lower 

body mass and blood glucose and improved outcomes from C. Rodentium 

infection in OB and Akita+/- mice. Hence, we treated long-term HFD mice with an 

IL-22Fc compound. Interestingly, our findings showed that IL-22Fc exacerbated 

AIEC expansion compared to HFD mice treated with control IgG, an effect that 

began at day 2 post infection and persisted until day 17 post AIEC infection (Fig. 

22A). IL-22 treated HFD mice had significant weight loss but marginal reductions 

in blood glucose levels (Fig. 22B-C). The small effect on blood glucose is likely 

rooted in the fact that HFD-feeding does not promote overt hyperglycemia in 

C57Bl/6J mice. The elevated fecal burdens after IL-22Fc treatment also 

correlated with large increase in tissue burdens at day 17 post infection, but no 

differences in dissemination (Fig. 22D). We assessed IL-22 expression at day 8 

post infection, which is when the largest separation in fecal AIEC burden occurs 

between chow- and HFD-fed mice. There was a significant reduction in the ileum 
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of HFD mice, but no appreciable/measurable levels of IL-22 transcript in the 

colon (Fig. 22E). Our data showing that IL-22 supplementation increased AIEC 

expansion may be the result of IL-22’s role in promoting antimicrobial peptide 

secretion. A recent study by McPhee et al. showed that AIEC strain NRG857c 

contained a plasmid-encoded genomic island that conferred resistance to α-  and  

β-defensins218. The ability of AIEC to induce and flourish under host 

inflammation and antimicrobial responses may allow this strain to expand as 

bacteria competing for similar resources are eliminated.  
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Figure 22: IL-22 exacerbates expansion of adherent-invasive Escherichia coli in diet-induced 
obese mice. C57BL/6 mice (8-10 weeks old) were fed a 60% high fat diet (HFD) for 16 weeks 
and pretreated with streptomycin (2 mg/mouse) one day prior to infection with adherent-
invasive Escherichia coli (AIEC). Mice were given IL-22Fc or control IgG (150 ug/mouse) three 
times a week starting one week prior to infection and continuing throughout (n=12-15/group). 
A, Fecal burdens during the course of infection. B, C, Body mass and blood glucose during the 
course of infection. D, Tissue burdens at day 17 post infection. E, il22 gene expression in the 
ileum and colon at day 8 post infection (n=7-8/group). Student’s unpaired t-test was 
conducted to determine significance. Values are presented as mean ± SEM. *p<0.05. 
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3.2.3. Diet and obesity potentiate AIEC expansion in mouse models of 

obesity  

To determine if the impaired resolution of AIEC was specific to the 60% 

HFD or shared with other diets that are widely used to model diet-induced 

obesity, we tested a long-term 45% HFD (feeding for 16 weeks) in the same AIEC 

colitis model over the course of 30 days. As expected, mice fed a 45% HFD for 16 

weeks had significantly higher body mass compared than their chow-fed control 

mice (Fig. 23A). In agreement with our other results using a 60% HFD, mice fed a 

45% HFD had elevated fecal burdens from day 1 until day 17 post infection with 

AIEC (Fig. 23B).  

We next compared fecal burdens of mice fed either a 60% or a 45% HFD 

at days 8, 13, 17, and 24 days post infection to determine what relation, if any, 

body mass may have to fecal burden during diet-induced obesity (Fig. 24A-D) . 

This provides some scope to find if the level of obesity influences infectious 

colitis since 45% HFD mice were approximately 10 grams lighter than 60% HFD 

mice. We found no correlation at days 8, 13, 17 and 24 between body mass and 

fecal burden between either HFD group (Fig. 24A-D). The 45% HFD mice had 

significantly lower fecal burdens of AIEC at day 17 and 24 (3.3*106 vs. 2.0*105 

cfu/g feces; 2.0*106 vs. 1.2*105 cfu/g feces, respectively; p<0.05). As some mice 

in both HFD groups had similar body masses, it appears that body mass or 
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obesity status is not the key factor, but rather these data indicate that diet 

composition may be a driving factor promoting AIEC burden. However, it was 

unclear if the high fat content or another dietary component of these 

obesogenic diets was contributing to the expansion of AIEC. Overall, these 

findings reveal that diet-induced obesity potentiates AIEC expansion in the gut, 

but within an obese state, body mass is not a major predictor of AIEC burden. 

These data position diet components as drivers of AIEC burden in the gut. 
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Figure 23: An alternative diet-induced obesity model promotes promotes adherent-invasive 
Escherichia coli expansion. C57BL/6 mice (8-10 weeks old) were fed a 45% high fat diet (HFD) 
for 16 weeks and pretreated with streptomycin (2 mg/mouse) one day prior to infection with 
adherent-invasive Escherichia coli (n=8-10/group). A, Body mass during the course of infection. 
B, Fecal burdens during the course of infection. Student’s unpaired t-test was conducted to 
determine significance. Values are presented as mean ± SEM. *p<0.05. 
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Figure 24: Body mass dose not correlate with bacterial burden during adherent-invasive 
Escherichia coli infection of murine models of diet-induced obesity. Comparison of fecal 
burden data from 45% and 60% high fat diet (HFD)-fed mice infected with adherent-invasive 
Escherichia coli at A, 8; B, 13; C, 17; and D, 24 post infection.  

D 8 D 1 3

D 1 7 D 2 4

 

 

 

 

 

 

 



Ph.D. Thesis – T. C. Lau; McMaster University – Biochemistry and Biomedical Sciences 
 

99 
 

3.2.4. Diet, independent of obesity and aging, can promote AIEC 

expansion 

To parse out the effects of obesity from diet, we implemented a short-

term HFD protocol in which mice are switched to 60% HFD one day prior to AIEC 

infection and remain on either the HFD or chow diet throughout the course of 

infection. There were no initial differences in body weight at the onset of diet, 

but body mass was slightly higher in HFD-fed mice during infection (Fig. 25A). 

Fecal burdens were significantly higher in the HFD-fed group from days 3-9 (Fig. 

25B). At day 9, differences in organ burdens were only observed in the cecum 

and the proximal colon, where HFD-mice had higher AIEC burdens (Fig. 25C). 

These results indicate that the constituents of the HFD may be a major factor 

responsible for AIEC outgrowth, independent of overt obesity. However, our 

data does not completely rule out a role for obesity, since even short term HFD 

fed mice had higher body mass and adiposity compared to chow-fed mice. 

Further, by comparing the data we collected on long-term and short-term HFD, 

we observed that long-term HFD had significantly higher fecal AIEC burdens 

compared to short-term HFD and chow controls from day 1 to 9 post infection 

while short-term HFD had significantly higher burdens than chow-fed control 

mice from day 3 to 9 post infection. Critically, while the short-term HFD group 

had elevated AIEC burdens, the body mass of short term HFD-fed mice was 

significantly lower than the long-term chow-fed control group of mice. This is 
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very important because despite lower body mass, short-term-HFD fed mice, still 

had significantly higher burdens compared to chow-fed (long-term, control) mice 

that were older indicating that diet, independent of body mass, may play an 

important role in the regulation of AIEC infection. It is interesting to speculate 

that long-term HFD feeding and the physiological adaptions associated with 

obesity may be required for augmented colonization in the ileum and medial and 

distal colon. 

As a major difference between the short- and long-term experiments is 

the age of mice, we conducted another short-term HFD experiment with mice 

age-matched to the long-term cohorts to assess the impact that age may have 

on the observed phenotype of increased AIEC burdens. Similar to obesity, aging 

has been associated with a chronic low-grade inflammatory state and a recent 

study by Thevaranjan et al. implicated age-related dysbiosis with increased 

intestinal permeability impaired intestinal barrier integrity and circulating pro-

inflammatory cytokines219–223. Similar to our short-term HFD experiment, we 

observed a delayed onset of AIEC expansion occurring at day 3 post infection, 

lasting until day 15 (Fig. 26A), concurrently with an increase in body mass (Fig. 

26B). Comparing the short- and long-term feeding experiments, we observed 

that the level of bacterial burden in the short-term HFD cohort, while 

significantly different from chow-fed controls starting at day 3 post infection, still 

did not reach the high levels of AIEC burden seen in long-term HFD-fed mice (Fig. 
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27A) indicating that while diet can promote AIEC expansion, there may be some 

underlying physiologic changes that occur in long-term feeding that may further 

exacerbate AIEC colonization or resolution. Further confirming diet as a major 

component in promoting AIEC expansion was our finding that the short-term 

HFD mice did not differ in body mass from long-term chow-fed controls after 3 

days post infection, despite significantly higher fecal burdens (Fig. 27B). As 

expected, the long-term HFD cohort had significantly higher adiposity compared 

to all other groups (Fig. 27C). 
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Figure 25: Short-term high fat feeding promotes adherent-invasive Escherichia coli 
expansion. C57BL/6 mice (8-10 weeks old) were pretreated with streptomycin (2 mg/mouse) 
and started on a 60% high fat diet (HFD) one day prior to infection with adherent-invasive 
Escherichia coli (n=8-10/group). A, Fecal burdens during the course of infection. B, Body mass 
during the course of infection. C, Tissue burdens at day 9 post infection. Student’s unpaired t-
test was conducted to determine significance. Values are presented as mean ± SEM. *p<0.05. 
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Figure 26: High fat feeding, independent of obesity and age, can promote adherent-invasive 
Escherichia coli expansion. C57BL/6 mice (24 weeks old) were pretreated with streptomycin (2 
mg/mouse) and started on a 60% high fat diet (HFD) one day prior to infection with adherent-
invasive Escherichia coli (n=9-12/group). A, Fecal burdens during the course of infection. B, 
Body mass during the course of infection. Student’s unpaired t-test was conducted to 
determine significance. Values are presented as mean ± SEM. *p<0.05. 
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Figure 27: Comparison of short-term and long-term high fat feeding models during adherent-
invasive Escherichia coli infection. Comparison of fecal burden and body mass from mice fed a 
long-term or short-term 60% high fat diet (HFD) and age-matched chow-fed controls. A, Fecal 
burdens during the course of infection. B, Body mass during the course of infection. C, 
Adiposity measurements prior to infection. One-way ANOVA was conducted to determine 
significance. Values are presented as mean ± SEM. Significance was set at p<0.05. *denotes 
difference from all groups. δ denotes difference from chow-fed controls. Φ denotes difference 
from short-term HFD- and chow-fed mice. 

 

 

 

 

 

 

 



Ph.D. Thesis – T. C. Lau; McMaster University – Biochemistry and Biomedical Sciences 
 

105 
 

3.3. Components of an obesogenic diet promote adherent-invasive Escherichia 

coli expansion 

3.3.1. HFD after infection impacts AIEC colonization 

We next tested the impact of changing the timing of dietary changes on 

AIEC colonization. We infected C57Bl/6J mice with AIEC and started HFD feeding 

one day after infection. We observed statistically higher fecal burdens at day 3, 

8, 10, and 17 post infection when HFD was initiated after AIEC infection (Fig. 

28A) and differences in body mass starting at day 13 post infection (Fig. 28B).   
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Figure 28: Initiation of high fat feeding during adherent-invasive Escherichia coli infection 
promotes bacterial expansion. C57BL/6 mice (8-10 weeks old) were pretreated with 
streptomycin (2 mg/mouse) one day prior to infection with adherent-invasive Escherichia coli 
(AIEC) and started on a 60% high fat diet (HFD) one day after (n=8-10/group). A, Fecal burdens 
during the course of infection. B, Body mass during the course of infection. Student’s unpaired 
t-test was conducted to determine significance. Values are presented as mean ± SEM. *p<0.05. 
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3.3.2. Low fibre promotes AIEC expansion  

Next, we wanted to determine what component of the diet may be 

responsible for AIEC expansion. In conjunction with the high fat content of the 

60% HFD, the diet formula is also comprised of higher sucrose content and lower 

fibre content. As many studies look at the impact of Western diet on metabolic 

syndrome and other diseases, a major confounding variable is the fact that in 

comparison with typical (and highly variable) “chow” diets the HFD diets used 

are typically also comprised of higher levels of sugars (in our case, sucrose) and 

lower levels of fibre in conjunction with the high fat content. Each of these 

components have been individually associated with intestinal health. A study 

looking at the impact of high fat (without high sugar) diet in mice showed that 

high fat feeding exacerbated DSS-induced colitis with elevated colonic levels of 

TNF-α and interferon-γ224. Another study looking at high sugar diets in mice saw 

a similar exacerbation of DSS-induced colitis as a result of reduced short chain 

fatty acids (SCFAs) and increased intestinal permeability225. Fibre content has 

been a major area of interest because of their influence on microbiota 

composition and SCFA production. Diets low in fibre have been associated with 

decreased levels of butyrate as well as loss of mucosal barrier integrity226,227. 

Conversely, diets high in fibre have shown to be protective from DSS-induced 

colitis and development of metabolic disease213,228–230.  So, it is unclear whether 
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there is a specific component or combination of components of the diet that 

promotes AIEC expansion during high fat feeding.  

We utilized defined control diets as comparators for the 60% HFD. There 

are two main control diets for the 60% HFD: a sucrose-matched diet which has 

the same sucrose and fibre content as the 60% HFD but with reduced fat level; a 

fibre-matched diet that has the same amount of fibre but has a reduced fat level 

and no sucrose. These diets contain the same ingredients in similar proportions 

except a majority of the fat and sucrose content has been substituted with corn 

starch and maltodextrin. To test the impact that fat content has on the AIEC 

infection, we used the high sucrose, low fibre-matched diet (HSLF). We used 

both the short-term and long-term feeding models with this control diet.  

 From short-term experiments, we first made the important observation 

that fat content was not the key factor driving AIEC burden. Our data show that 

AIEC burden were similar in HFD-fed mice and mice fed a HSLF (low in fat but 

matched to the HFD in sucrose and fibre content). The fecal burdens of AIEC 

were the same in HFD and the HSLF fed mice (Fig. 29A). There was a significant 

difference in body mass starting at day 8 post infection, with the HFD mice 

expectedly more obese (Fig. 29B). Interestingly, the HFD mice have significantly 

higher adiposity then the HSLF-fed mice (16.6% vs. 8.5%, respectively; Fig. 29C), 

with the HSLF mice having similar adiposity to age-matched chow-fed mice (8.5% 
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vs. 9.3%).  This finding supports the idea that differences in adiposity or body 

mass do not solely account for differences in AIEC colonization. We also did not 

observe any differences in tissue burdens at day 17 post infection in HFD-fed 

mice and HSLF-fed mice (Fig. 29D). Similar to the short-term study, we saw no 

significant differences in fecal burden (Fig. 30A), despite the HFD group being 

significantly heavier throughout infection (Fig. 30B). Again, no differences in 

tissue burden or dissemination were observed at day 17 post infection in long-

term (16 week) HFD-fed mice and HSLF-fed mice (Fig. 30C).  

To assess the influence of low fibre, we used the low fat, no sucrose, low 

fibre control diet (NSLF) in our short-term feeding model. We compared this to 

the regular chow diet as a comparison of high vs. low fibre. We observed 

elevated fecal burdens from day 1-15 post infection in the NSLF mice compared 

to chow-fed mice (Fig. 31A) despite no differences in body mass (Fig. 31B). We 

also observed higher tissue burdens in the distal ileum, cecum, and proximal 

colon at day 17 post infection (Fig. 31C). This finding would suggest that the low 

fibre content in the diet may play a role in promoting AIEC expansion. However, 

one confounding variable in all three diets is the presence of maltodextrin. A 

recent in vitro study showed that maltodextrin, irrespective of chain length, 

promoted AIEC growth and biofilm formation205. This study also found that 

sucrose did not confer a growth advantage to AIEC, which supports our 

hypothesis that the low fibre content, not high sucrose in the diet can promote 
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AIEC growth. However, it is currently unclear if the phenotype we observe is the 

result of maltodextrin in the diet and it is recommended that future experiments 

control for maltodextrin quantity.  
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Figure 29: Short-term feeding with a high fat diet or sucrose and fibre-matched control diet 
confers similar adherent-invasive Escherichia coli infection kinetics. C57BL/6 mice (8-10 
weeks old) were pretreated with streptomycin (2 mg/mouse) and started on a 60% high fat 
diet (HFD; n=9) or control diet (low fat, high sucrose, low fibre; n=13) one day prior to 
infection with adherent-invasive Escherichia coli. A, Fecal burdens during the course of 
infection. B, Body mass during the course of infection (n=8-10/group). C, Tissue burdens at day 
17 post infection (n=9-13/group). Student’s unpaired t-test was conducted to determine 
significance. Values are presented as mean ± SEM. *p<0.05. 
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Figure 30: Long-term feeding with a high fat diet or sucrose and fibre-matched control diet 
confers similar adherent-invasive Escherichia coli infection kinetics. C57BL/6 mice (8-10 
weeks old) were fed a 60% high fat diet (HFD; n=8) or control diet (low fat, high sucrose, low 
fibre; n=9) for 16 weeks and pretreated with streptomycin (2 mg/mouse) one day prior to 
infection with adherent-invasive Escherichia coli (AIEC). A, Fecal burdens during the course of 
infection (n=6-9/group). B, Body mass during the course of infection. C, Tissue burdens at day 
17 post infection (n=8-9/group). Student’s unpaired t-test was conducted to determine 
significance. Values are presented as mean ± SEM. *p<0.05. 
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Figure 31: Short-term feeding with a low fibre diet promotes adherent-invasive Escherichia 
coli expansion and colonization. C57BL/6 mice (8-10 weeks old) were pretreated with 
streptomycin (2 mg/mouse) and started on a low fibre control diet one day prior to infection 
with adherent-invasive Escherichia coli (n=7-13/group). A, Fecal burdens during the course of 
infection. B, Body mass during the course of infection. C, Tissue burdens at day 17 post 
infection. Student’s unpaired t-test was conducted to determine significance. Values are 
presented as mean ± SEM. *p<0.05. 
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3.3.3. Short-term diet modification reduces tissue but not fecal burden 

Next, we wanted to assess whether intervention with dietary fibre could 

rescue the HFD-promoted expansion of AIEC. We hybridized our long- and short-

term feeding models for the intervention study and started long-term HFD mice 

on regular chow diet one day prior to infection. As expected, the long-term HFD -

> chow mice were significantly heavier than chow-fed controls but underwent 

relatively rapid weight loss over the course of infection (Fig. 32A). The long-term 

HFD -> chow-fed mice still had significantly higher fecal burdens from day 3 to 9 

post infection (Fig. 32B) but at day 9, only the medial colon showed a significant 

elevation in the long-term HFD -> chow-fed mice (Fig. 32C). The elevated fecal 

burdens, in this case, may not correlate with increased colonization but may be 

the result of increased AIEC shedding. 
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Figure 32: Intervention with regular chow diet rescues tissue colonization of adherent-
invasive Escherichia coli in a diet-induced obese mouse model. C57BL/6 mice (8-10 weeks 
old) were fed a 60% high fat diet (HFD) for 16 weeks and pretreated with streptomycin (2 
mg/mouse) and started on a regular chow diet one day prior to infection with adherent-
invasive Escherichia coli (n=8-9/group). A, Body mass during the course of infection. B, Fecal 
burdens during the course of infection(n=7-9/group). C, Tissue burdens at day 9 post infection 
(n=8-9/group). Student’s unpaired t-test was conducted to determine significance. Values are 
presented as mean ± SEM. *p<0.05. 
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3.3.4. Cellulose supplementation does not rescue HFD-promoted AIEC 

expansion 

While the switch from HFD to chow was able to mitigate aspects of worse 

AIEC colonization, it was a dramatic change in diet composition. To more directly 

assess the impact of fibre, we tested the effectiveness of cellulose (the fibre 

component of HFD) in intervention and prevention feeding models. 

 We provided long-term HFD-fed mice with HFD supplemented with 200 

grams of cellulose one day prior to infection. There were no differences in fecal 

burden (Fig. 33A) but we observed significant weight loss in the HFD 

supplemented with cellulose group (Fig. 33B). For our prevention model, mice 

were fed a chow diet, HFD, or HFD supplemented with 200 grams of cellulose for 

16 weeks prior to infection.  We observed that cellulose transiently increased 

AIEC fecal burden at 9 days post infection but saw no major differences at later 

time points (Fig. 34A). Long-term HFD-fed mice were significantly heavier than 

all other groups, while mice fed HFD supplemented with cellulose were 

significantly heavier than chow-fed controls (Fig. 34B). Mice fed HFD 

supplemented with cellulose had significantly higher AIEC colonization in the 

distal ileum, but no other differences were observed at day 17 post infection 

(4.2*107 vs. 28579 vs. 4960 log cfu/g tissue, HFD supplemented with cellulose, 

HFD, and chow-fed control, respectively; p<0.05; Fig. 34C). A confounder in this 



Ph.D. Thesis – T. C. Lau; McMaster University – Biochemistry and Biomedical Sciences 
 

115 
 

long-term prevention study was the barbering activity of the mice. Multiple mice 

had skin lesions prior to infection.  
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Figure 33: Intervention with a high fat diet supplemented with cellulose does not impact 
adherent-invasive Escherichia coli colonization C57BL/6 mice (8-10 weeks old) were fed a 60% 
high fat diet (HFD) for 16 weeks and pretreated with streptomycin (2 mg/mouse) and started 
on a high fat diet supplemented with cellulose (200 grams) one day prior to infection with 
adherent-invasive Escherichia coli (n=8-9/group). A, Body mass during the course of infection. 
B, Fecal burdens during the course of infection. Student’s unpaired t-test was conducted to 
determine significance. Values are presented as mean ± SEM. *p<0.05. 
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Figure 34: Long-term feeding with high fat diet supplemented with cellulose does not 
prevent obesity-induced expansion of adherent-invasive Escherichia coli. C57BL/6 mice (8-10 
weeks old) were fed a 60% high fat diet (HFD) or 60% HFD supplemented with cellulose (200 
grams) for 16 weeks and pretreated with streptomycin (2 mg/mouse) one day prior to 
infection with adherent-invasive Escherichia coli (n=8-10/group). A, Body mass during the 
course of infection. B, Fecal burdens during the course of infection. C, Tissue burdens at day 17 
post infection. One-way ANOVA was conducted to determine significance. Values are 
presented as mean ± SEM. Significance was set at p<0.05. *denotes difference from all groups. 
Φ denotes difference chow-fed controls. 
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Obesity is a rapidly growing global health concern that affects tens of 

millions of people worldwide. It is a major predictor of T2D in addition to a wide 

range of other co-morbidities such as cardiovascular disease and non-alcoholic 

liver disease. Obesity has been associated with numerous physiological changes 

including insulin resistance, low-grade inflammation in metabolic tissues, 

impairment of the intestinal barrier, and changes in intestinal microbial 

composition. Importantly, insulin resistance and the low-grade metabolic 

inflammation contribute towards the gradual development of T2D. People with 

diabetes share many of the comorbidities of obese patients but have also been 

shown to be at an increased risk of contracting multiple types of bacterial 

infections and suffering worsened outcomes.  

 

4.1 Hyperglycemia, independent of obesity, worsens outcomes of enteric 

infections 

 

This is one of the first reports to parse out the independent effects of obesity 

and hyperglycemia on enteric infection in mice. We have shown that 

hyperglycemia, independent of obesity, promotes mortality during enteric 

infection with C. rodentium. This effect is caused by dehydration and can be 

rescued with insulin treatment or Wnt-inhibition. This study further strengthens 

the burgeoning connections between glucose concentration and Wnt signalling.   
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 Similar to other reports, our experiments using OB mice demonstrated 

that OB mice can have increased mortality during C. rodentium infection. 

Previous studies suggested that IL-22 deficiency and increased pathogen 

dissemination are responsible for mortality, this was not consistent with our 

findings. By infecting 10- and 22-week-old OB mice, we showed that 10-week-old 

hyperglycemic mice succumb to infection, whereas 22-weekold OB mice do not 

show profound hyperglycemia or mortality. Both groups of OB mice had similar 

levels of bacterial pathogen dissemination, indicating that loss of intestinal 

barrier integrity was not responsible for mortality. By using a HFD mouse model, 

we were able to control for body mass as these mice were of similar weight to 

the 10-week-old OB mice but did not succumb to infection and did not have 

elevated fecal or tissue burdens of C. rodentium. The mortality rate of 60% by 10 

days post infection of the 10-week-old OB mouse group in this experiment 

differed from those we observed in our initial pilot experiment and those 

previously reported157,231. This was most likely due to the fact that the infection 

was terminated at day 10 rather than tracked for a longer period where 

complete mortality was observed at day 14 post infection in our pilot 

experiment. In the study by Wang et al., 5- to 8-week-old female OB and leptin 

receptor-deficient (db/db-/-) mice were used157. The majority of the mortality 

observed in OB mice occurred between days 10-13 post infection. These mice 

would have been within the hyperglycemic age range, but blood glucose 
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measurements were not taken or reported for these infection studies. Also, 

db/db-/- mice are known to have more severe hyperglycemia and diabetic 

complications than OB counterparts180,232. As mentioned previously, leptin has 

numerous physiological roles in addition to its regulation of satiety. This may 

partially account for the mortality observed in the older OB mouse group. 

To address the confounding factor of leptin-deficiency and understand if 

obesity plus hyperglycemia was required for increased mortality during enteric 

infection, we utilized the Akita+/- mouse model of T1D. Our findings using Akita+/- 

mice showed that hyperglycemia was sufficient for mortality during C. rodentium 

infection, which was caused by dehydration, but not related to increased 

pathogen dissemination. Similar to the study by Thaiss et al., we showed that 

insulin supplementation rescued diabetic mice from succumbing to C. rodentium 

infection; in addition, however, we found that fluid replenishment and Wnt 

inhibition could also rescue these diabetic mice from dying during C. rodentium 

infection231. These findings indicate that dehydration was responsible for 

hyperglycemia-mediated mortality. We did not find any overt differences in fecal 

or tissue burdens between treated (insulin, fluid therapy, LGK-974) and 

untreated Akita+/- or WT mice. Thaiss et al. primarily used a streptozotocin-

induced diabetic mouse model, which may account for some of the 

differences233. Streptozotocin is a broad spectrum antibiotic that was first 

isolated from Streptomyces acromogenes234,235. It is one of the most widely used 
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chemicals for the induction of diabetes in experimental animal models due to its 

β-cell toxicity234–237. However, it has also been shown to cause non-organ specific 

toxicity and dose-dependent mortality in mice and rats238,239. Streptozotocin is a 

cytotoxic glucose analogue and DNA alkylating agent that is able to enter cells 

through the GLUT2 transporter and inhibit DNA synthesis240–242. While GLUT2 is 

abundantly expressed in pancreatic β cells, it is also expressed by other tissues 

such as the liver, kidney, and intestinal epithelium235,240,243–246. Therefore, it is 

possible that the elevated levels of dissemination may be the result of 

streptozotocin toxicity on the intestinal epithelium, causing the loss of barrier 

integrity. Gender specific responses have also been observed with streptozotocin 

treatment, with males displaying a larger response247. Multiple low dose (≤45 

mg/kg) treatments have been recommended over the commonly used single 

high dose (≥100 mg/kg) treatment for faster induction of hyperglycemia and 

reduction in toxicity234,235,239. In the study by Thaiss et al., diabetes was induced 

through a daily intraperitoneal injection of streptozotocin (100 mg/kg) over two 

days231. Mice were used within 2-3 weeks of injection, but no comment was 

made regarding the gender of mice used or any off-target complications caused 

by streptozotocin. While Akita+/- mice were used in this study, only elevated 

tissue burdens were presented with no mention on survival rate233.  

Similar to Wang et al., we showed that exogenous IL-22 was able to 

rescue both OB and Akita+/- mice from C. rodentium-induced mortality248. 
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However, we found no differences in IL-22 expression in Akita+/- mice during 

infection. We also showed that exogenous IL-22 drastically reduced body mass 

and lowered blood glucose levels. We hypothesize that it is the metabolic 

effects, specifically the glucose-lowering capability, of IL-22 that confer 

protection from C. rodentium-induced mortality. 

While C. rodentium is primarily considered a self-limiting model of 

intestinal colitis, it has been shown to cause mortality in three strains of mice 

(C3H, C3O, FVB)154,156,249. It was determined that these mice succumbed to C. 

rodentium infection as a result of dehydration155,249. Work by the Gruenheid lab 

determined this process to be the result of a genetic predisposition towards 

excessive Rspondin expression during C. rodentium infection156,202. Rspondins are 

Wnt-mediators that the stabilize Wnt-receptor complexes to facilitate 

signalling90. Our finding that Wnt inhibition was able to rescue diabetic mice 

from C. rodentium-induced mortality implicates the involvement of the Wnt 

signalling cascade in the susceptibility of diabetic mice to outcomes from enteric 

infection. However, we were unable to observe any differences in gene 

expression of Rspondins at day 7 post infection or differences in intestinal cell 

proliferation at day 9 post infection. It is possible that there is a cell-specific 

dysregulation in Rspondin production or that the timing of tissue collection was 

not appropriate. Future studies should further verify Rspondin involvement 

through time course studies and cell-specific secretion assays.  In conjunction 
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with our finding that fluid replenishment can also rescue from mortality and the 

lack of differences in crypt hyperplasia and Wnt mediators implies a potential 

defect in differentiation of intestinal cells responsible for water reabsorption or 

fluid balance rather than simply unregulated cell proliferation. Our data also 

strengthens the growing connection between high glucose levels and Wnt 

activation. However, there has been some controversy into the exact mechanism 

through which hyperglycemia and canonical Wnt signalling interact. 

Hyperglycemia has been associated with an increased risk of colon cancer 

through the priming of Wnt/β-catenin signalling136-144. Recently, a study 

conducted by Min et al., looked at the impact of hyperglycemia on the 

proliferation and differentiation of intestinal crypt cells in streptozotocin-

induced diabetic mice.  They found that the efficacy of Notch signalling was 

impaired in diabetic mice. Transcript analysis of the small intestine showed 

elevated levels of Msi1, an upstream transcription factor of Notch that is also 

Wnt-regulated.  However, Notch, itself, and other downstream effectors such as 

Hes1, were lower in diabetic mice compared to the controls indicating that 

Notch activity is impaired147.  Notch signalling is essential for intestinal stem cell 

maintenance as well as differentiation towards absorptive cell lineage250–253.  

Deletions of Notch or Hes1 have resulted in the loss of Lgr5+ intestinal stem cells 

as well as skewing intestinal cell fate towards a secretory cell lineage93,96,251,252. A 

study by Tian et al. investigating the roles of Wnt and Notch signalling in 
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intestinal homeostasis found that Notch inhibition increased the number of 

lysozyme (a Paneth cell marker)-expressing cells, indicating a biased 

differentiation towards Paneth cells, but Wnt inhibition was able to rescue this 

phenotype95. This study also found that in the presence of Notch blockade, there 

was an increase in Wnt signalling, evidenced by increases in downstream Wnt 

targets, Axin2 and Sox9, and Wnt expression95. A study by Cheng et al. found 

that 3-hydroxy-3-methylglutaryl-Coa synthase 2, a key enzyme in ketosis, was a 

key regulator of intestinal stem cell differentiation through the production of  β-

hydroxybutyrate148. Mice given a low-carbohydrate, ketogenic diet had improved 

intestinal stem cell function and post-injury regeneration but those given 

glucose-supplemented drinking water for 2-4 weeks had markedly reduced Lgr5+ 

stem cell population and increased populations of Paneth and goblet cells. The 

glucose-mediated response could be rescued with a single bolus of β-

hydroxybutyrate. In our model, hyperglycemia may be facilitating Wnt-signalling 

while concurrently, impairing proper Notch function. This could allow for 

elevated Wnt levels and the resulting initial rapid proliferation of the crypts with 

a bias towards secretory cell differentiation. With impaired Notch signalling, the 

initial proliferative burst during C. rodentium-induced colitis, could deplete the 

stem cell reservoir potentially explaining the lack of difference in crypt lengths at 

the time points measured. As the turnover of intestinal crypts is 3-5 days, this 

may explain why mortality is observed after 9-10 days post infection. Therefore, 
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in our system, hyperglycemia may be suppressing Notch signalling and causing a 

defect in differentiation resulting in impaired absorption and through Wnt 

inhibition, we were able to rescue the diabetic mice. To confirm this, future 

studies must assess the level of Notch signalling in Akita+/- mice prior to and 

during infection. 

It may be interesting to test either β-hydroxybutyrate or a ketogenic diet 

in our Akita+/- mouse model to assess whether this mechanism of Notch-

inhibition plays a role in the observed C. rodentium-induced mortality in diabetic 

mice. The ketogenic diet is especially interesting, as our experiments with insulin 

have shown that internal regulation of glucose levels could rescue from 

mortality, but it is unclear if intestinal luminal regulation or concentrations of 

glucose also have an impact on outcomes from enteric infection. This can also be 

tested by giving glucose-supplemented drinking water to WT mice to see if it can 

promote mortality or worsen pathology during C. rodentium infection. 

 

4.2. Obesity and diet impair the resolution of adherent-invasive Escherichia coli 

infection 

Our study is one of the first to look at the individual contributions of diet 

versus obesity on enteric infection with a pathobiont such as AIEC. We showed 

that long-term HFD feeding promotes AIEC colonization and worsened pathology 
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in mice. Short-term HFD initiated just before or just after AIEC infection can also 

promote pathogen colonization, but to a lesser extent. 

Since diet-induced obesity showed sustained fecal levels of AIEC 30 days post 

infection, future experiments should track the infection over a longer period to 

determine if these higher levels correlate with chronic infection and continued 

worsened pathology. Small et al. showed that chronic infection with AIEC 

induced chronic inflammation, sustained pathology, and fibrosis176. We only 

evaluated pathology and intestinal burdens at day 17 post infection, so it may be 

interesting to determine whether later time points show similar tissue burdens 

and pathology.   

Many physiological changes occur as the result of HFD feeding, including 

weight gain, metabolic inflammation, glucose intolerance, and insulin 

resistance30,185,254,255. HFD feeding also changes in the composition of the 

intestinal microbiota24,29. In fact, as early as one day after the initiation of a high 

fat diet has been reported to transiently alter microbial populations with long-

term feeding associated with a new sustained microbial composition33,256,257. The 

finding that exacerbated AIEC expansion induced by HFD-feeding only occurs 

when combined with the use antibiotics would imply a role for the microbiota in 

this process. The microbiota is a link between diet and host physiology. The 

microbiota modifies (and promotes) energy harvest from food and is at the 

crossroads of diet and intestinal immunity. The microbiota can ferment dietary 
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components, specifically non-digestible fibres, that escape digestion in the upper 

gastrointestinal tract into SCFAs (most commonly acetate, propionate, and 

butyrate). Butyrate is a primary energy source for colonocytes and is the most 

widely studied of the SCFAs for its beneficial effects on dysbiosis, weight gain, 

and inflammation258–260. During obesity, there is a bias towards acetate 

production in multiple body sites, including the intestine261. A study by Perry et 

al. determined that intestinal acetate levels were elevated in a HFD-fed rodent 

model and the elevated intestinal acetate levels were transmissible through fecal 

transplantation and ablated with antibiotics261. As AIEC is known to use acetate 

as alternative carbon source, we hypothesize that elevations in intestinal acetate 

in our long-term HFD model promote the colonization of AIEC. A pilot 

experiment was conducted using a mutant strain of AIEC (ΔascΔack-pta::Gm) 

attained from the laboratory of Dr. Coombes lab. We tested an AIEC strain 

(ΔascΔack-pta::Gm) that has attenuated growth in acetate-rich media. It was 

hypothesized that if acetate levels were elevated in our HFD model, impaired 

colonization of this mutant strain would be observed because it could not 

capitalize on augmented acetate levels to promote AIEC colonization. However, 

no difference in colonization was observed between WT AIEC and ΔascΔack-

pta::Gm AIEC  in long-term HFD mice (Fig. 35). It is recommended that future 

studies quantify the levels of SCFAs in the cecum to assess the level of 

fermentation. It has been reported that bacterial fermentation is another 
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process that confers pathogen resistance as the production of SCFAs lowers the 

pH of cecum and colon262. It may be that there is a decrease in fermentation that 

produces a more favourable environment for AIEC expansion. 
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Obesity and HFD-feeding are often intertwined in mice. Our findings 

show that the exacerbation of AIEC infection is partially diet-regulated while the 

role of obesity is not yet clear. To further evaluate the impact of obesity, genetic 

murine models should be used to avoid the confounder of diet. While OB mice 

are commonly used for this purpose, the immunodeficiencies associated with 

leptin-deficiency may mask the effects of obesity. Leptin is a known mediator of 

metabolism for the activation and proliferation of T cells160,263. OB mice are 

known to have reduced thymic cellularity and reduced CD8+ T cell populations, 

which have been reported to be important in C57BL/6 mice for controlling AIEC 

infection176,264. Mice depleted of CD8+ T cells showed higher fecal burdens and 

worsened pathology during persistent AIEC infection176. OB mice may show an 

elevated AIEC burden which would be confounded by T cell deficiency and 

obesity. Therefore, an alternative model of genetically induced obesity, the 

melanocortin-4-receptor (MC4R) knock out mouse model, should be used in 

future experiments to segregate the impact of obesity and diet on AIEC infection. 

Melanocortin receptors are primarily expressed in the central nervous system 

and are important for regulating food intake and body weight265–267. Specifically, 

the melanocortin-4 receptor has been found to regulate leptin signalling in the 

hypothalamus268. Therefore, this model can induce hyperphagia in mice fed a 

“chow” diet without the loss of peripheral leptin function. Using this model, we 
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can determine the impact of obesity and adiposity independent of diet on AIEC 

colonization and pathology.  

A major strength of the series of studies on diet and AIEC was the use of 

multiple defined control diets to assess the impact of specific dietary 

components. A majority of studies using animal models of diet-induced obesity 

compare well-defined and controlled HFDs with a “regular chow” diet269. 

“Regular chow” diets exhibit large inter-batch variability, lack a defined 

composition, and vary in their ingredient sources262,269,270. One of the major 

differences between “regular chow” diet and defined diets is the fibre content, 

with insoluble cellulose as the main source in defined diets while “regular chow” 

is considered a fibre-rich diet262. Fibre type and quantity are known to affect 

intestinal development and microbial populations which may confound 

metabolic research comparing defined diets to ‘regular chow’ diets226,230,271–273. 

In a study by Dalby et al., they found that low- and high-fat refined diets caused 

similar changes to the microbial populations and SCFA concentrations indicating 

that these features were independent of dietary fat content or obesity274. If the 

low-fat refined diet were not used, these differences may have been attributed 

to the high fat percentage and increased weight gain. While our diets were well 

controlled, one confounding variable in all three diets is the presence of 

maltodextrin. Maltodextrin is a resistant starch, which is defined as the portion 

of starch that escapes digestion in the small intestine275. Because of this, 
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resistant starches physiologically act similar to dietary fibre and are commonly 

considered as part of the dietary fibre content of foods275,276. A recent in vitro 

study showed that maltodextrin, irrespective of chain length, promoted AIEC 

growth and biofilm formation205. This study also found that sucrose did not 

confer a growth advantage to AIEC, which supports our hypothesis that the low 

fibre content, not high sucrose in the diet can promote AIEC growth. However, it 

is currently unclear if the phenotype we observed is the result of maltodextrin in 

the diet and it is recommended that future experiments control for maltodextrin 

quantity.  

With regards to the fibre content, there are two main types of fibre: soluble 

(i.e. inulin) and insoluble (i.e. cellulose)273. Soluble fibres can be fermented by 

the microbiota into SCFAs while insoluble fibres provide bulk for waste 

disposal256,270. There have been numerous regarding dietary fibre 

supplementation as a potential therapeutic for obesity and metabolic disease. A 

study by Zou et al. showed that HFD supplemented with inulin had increased 

mucosal immunity and restored microbial diversity compared with a non-

supplemented HFD or one supplemented with cellulose277. Interestingly, while 

HFDs supplemented with inulin or cellulose reduced body mass, only the diet 

supplemented with inulin showed improved glucose and insulin tolerance277. 

Another study found that inulin and oligofructose improved intestinal immunity 

and resistance to Candida albicans, an intestinal pathogen278. They also found 
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that inulin, and to a lesser extent oligofructose, improved survival during a 

systemic Salmonella typhimurium infection278. These findings may explain why 

cellulose supplementation of the HFD had minimal effects. It may be that the 

type of fibre (soluble vs. insoluble) plays a larger role than the amount. To first 

test this, cellulose should be replaced with an equal amount of inulin. Further 

studies regarding the type and amount of fibre in the diet and their impact on 

AIEC colonization is required to further our understanding of this opportunistic 

pathobiont. A comprehensive study conducted by the Faith lab, utilized over 40 

custom diets consisting of different proportions of macronutrients to assess their 

impact on resolution of DSS-induced colitis. Of the macronutrients they tested, 

they found that high protein diets resulted in worsened outcomes while high 

fibre diets were protective. Furthermore, they narrowed it down to casein 

(protein) and psyllium (fibre) as having the strongest effects229. A high casein diet 

exacerbated DSS-induced colitis with much more severe weight loss, higher 

levels of fecal lipocalin-2 and colonic TNF and IL-6, and much more severe 

pathology. A psyllium enriched diet had the opposite effect with minimal weight 

loss during DSS treatment, lower levels of colonic inflammatory markers and no 

observable pathology.  Cellulose and inulin had milder effects but were still able 

to reduce DSS-induced pathology. Casein comprises the largest protein 

component in both the HFD and control diets and it may be interesting to adjust 

the proportions to observe what impact that may have on AIEC colonization. 
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DSS-induced intestinal colitis is commonly used as a model of human 

inflammatory bowel disease279–281. This chemical compound causes the rapid 

onset of epithelial degradation with concomitant weight loss and bloody 

diarrhea, common markers of human inflammatory bowel disease280. However, 

the mechanism through which DSS induces intestinal epithelial damage is 

currently unclear but it is known that variations in molecular weight, dosage, and 

the gender and strain of mice used can vary the severity and duration of 

colitis282. HFD has shown to worsen the severity of DSS-induced colitis marked by 

much greater weight loss and colonic epithelial degradation compared to chow-

fed controls279. Overall, our findings clearly indicate the importance of diet in 

regulating the progression and outcomes of enteric infection.  

 

4.3 Future Directions 

 While we have shown that use of an inhibitor of the Wnt can rescue 

Akita+/- mice from C. rodentium-induced mortality, we have not yet been able to 

define the mechanism linking inhibition of porcupine/Wnt and survival from 

enteric infection during hyperglycemia. We have not identified the cell type 

responsible or a measurable link between Wnt and cells responsible for fluid 

balance. It is possible that Notch signalling links Wnt signalling and 

hyperglycemia. A study by Cheng et al. found that hyperglycemia inhibited Notch 

signalling, resulting in the skewed differentiation of intestinal cells towards a 
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secretory lineage148. Using a ketogenic (low carbohydrate) diet, these authors 

were able to restore intestinal cells differentiation toward normal 

characteristics. Future studies will need to assess Notch signalling by quantifying 

downstream differentiation markers such as Hes1 and Math1 in the colonic 

epithelium or the expression of ion or fluid transporters (i.e. aquaporins, 

slc26a3). It is also unknown whether intestinal (i.e. luminal) glucose 

concentrations play a role in dictating outcomes such as mortality during C. 

rodentium infection in our mouse models. We can assess this by using a 

ketogenic diet to see if a reduction in luminal glucose can impact Wnt or Notch 

signalling in the intestinal tract and rescue Akita+/- mice from C. rodentium-

induced mortality.  

Further studies should be also performed on AIEC infections in Akita+/- 

mice to evaluate the impact that hyperglycemia may play in the course of 

infection. Our current findings show that hyperglycemia promotes the 

overgrowth and tissue colonization of AIEC, but we did not assess any 

inflammatory markers or intestinal pathology. It is important to expand the 

scope of this research to other models of infection, as they will provide more 

insight into the molecular mechanisms that underly diabetes. It is also important 

to understand the relevance of our mouse models to enteric infections in 

humans. We have started this work and a recent re-analysis of the 2007 

Walkerton E. coli outbreak identified hyperglycemia as an independent predictor 
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of worsened infection outcomes (Fig. 36). As millions of people currently live 

with diabetes and that number is expected to continually rise, this research can 

help to develop new therapeutics for this comorbidity of the disease and 

improve patient quality of life.  

In diet-induced obese mice, we showed that both long- and short-term 

feeding of a high fat, high sucrose and low fibre diet were able to promote AIEC 

colonization and expansion. Long-term HFD also worsened pathology compared 

to chow-fed controls, however, it is currently unclear if short-term HFD feeding 

alters intestinal pathology during AIEC infection. We also determined that it was 

the low fibre content of the HFD that was sufficient to promote AIEC expansion, 

but the effects of long and short term feeding of diets lower in fibre on intestinal 

pathology still needs to be assessed. Our initial experiments with cellulose 

supplementation of the HFD showed no impact on the progression of infection, 

but future studies should look at the impact of the type of fibre (soluble vs. 

insoluble) and the type/amount of fibre combinations in the diet on AIEC 

infection outcomes. Our results show that the long-term HFD study had a much 

more profound effect on AIEC pathogen burden compared to short-term 

changes in diet. We do not yet understand the mechanisms underpinning this 

response. Our results imply that obesity has a small role on AIEC burden 

compared to diet, but it is possible that obesity and diet interact to regulate 

pathogen burden.  To further study the impact of obesity independent of diet, a 
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genetically induced model of obesity, such as the MCR4-/- mouse, should be 

used. 
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Figure 36: Blood glucose indicative of type 2 diabetes is an independent risk factor predicting diarrhea during 
an Escherichia coli outbreak. A logistic regression was performed to ascertain the effects of impaired fasting 
glucose, age, number of days fasting blood glucose was taken before the outbreak and gender on the likelihood 

that residents had diarrhea. Forest plot of the odds ratio for: A, Diarrhea incidence and B, severity in Walkerton 
residents (adjusted for age, # days post fasting blood glucose measured and gender; normal/intermediate 
fasting glucose vs. blood glucose indicative of type 2 diabetes). Statistical analysis conducted by Elizabeth 
Gunn at McMaster University. 
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