~

INTERACTIVE IMAGE PROCESSING AND PATTERN

RECOGNITION OF DIGITIZED FLOW PATTERNS

by

Pieter J. M. Kerstens

A Thesis

Presented to fhéudféauate Committee .

of Lehigh University
in Candidacy for the Degree
Master of Science
in

Manuficturing Systems Engineering

\Lehigh University

1986

B Thiswthesis féiaqceptéa gnd'apprOVed in“pértial fulfiljﬁent of.
ﬁTthe~feqdirehenfsnfdr th§ degre9 of Master of Science in

RN

Manufacturing Systems Engineeriné.

”/t"a ﬁr

(d8te)

Perg%sor i4 charge *

%W\Ka@@, |

Dlrectqj of MSE Prodram

Chairman of CSEE Department

e : -ii-

SO

" ACKNOWLEDGEMENTS ~ -~ = =~ - e

'Iiwbuld‘llkeﬂfé-fhahk'?rofessor’Do%a!d ﬁockWel] of the
Mechanical Engineering Department for his suppgrt and guidance,

and for carefully reviewing this thesis report. | would also

like to thank JoAnn Casciano for patiently typing this report

and Carlos Gomez, Professor Roger Nagel, and the staff and

.secretaries of the MSE Prodram for their kindness, advice, and

~

“help during this year. In addition, | thank Philips Laboratories
for their support and for lettfng me join this worthwhile program.

Last, but not least, | would like(io thank my wife, Anja, for her

patience and warm support, without which this work would not have

been possible.

“Non

- L

Section

2.1

2.1.1
2.1.2
2.1.3
2.1.4
2.2

2.2.1
2.2.2
2.2.3

2,3

3.1
3.1.10
3.1.2
3.1.3
3.1.4

3.2.

| Acknowledgements

© TABLE-OF"CONTENTS - = .l .

Title

. "Glossary of Notation
"Abstract

" Introduction

Image Processing

| System Setup) - J/< —

Flow visuajizatfon
Preproce;sing

Available hardware and software
Developed graphics software
Analysis Techniques

Fourier descri#tors
Classification techniques
Spatial averaging-~ ...
Method Selection

Data Representation and InteractiQe Routines
Curve Parameterization

Chain codes

Element . length

Program input

Freeman's corner cutter matrix

Display Routines

-'v-

N N A 2 R Y |

O o NN

1
1
14
Ty
14
15
15
17
18

Section

3.3
3.3
30}302

3.3.3

3.4
4
A

4.2

L1
1.2
.1.3
10

b E E — = & F w w w wW.

h.2.2

4,2.3

50]
5.1.1
5.1.2

~ Table of Contents (Con;inued)

+
.

\,—; = Title

Curve Storage Buffer

Bﬁffer pblnters
Stored curve data
Buffer routines
Displéy map
Cursor Routines
Search routine
Display update
Curve Processing

Length Calculations

Normalized versus shortest curve lengths

Length data ~>

Resolution considerations

Binary-search for sections of equal length

Cufve Averaging

Location of averaging point;
Ca]culatioﬁ of the average curve
Results

Curve Filtering and Recognition

Curve Smoothing

Smoothihg in the spatial versus frequency domain

Smoothing algorithm .

-v=

19
19
24
26

27,
28
28

32
33

33

33
34
35
35
37
38
39
'bo

L3
L3
43

Ly

.Paée

-1

-

Section

5.1.3

5.2

5.2.1

5.2.2
5.2.3
5.2.4

Title

‘Results

Similarity Calculations

Similarity calculated over shoftest curve -

versus normalized- length
Cross-correlation measuremepts

Similarity function . o ///

'Results

Conclusions -

Figures

References

Appendix A: SPATAVE, an interactive image
processing and pattern recognition prbgram for
the analysis of fluid flow patterns ’

Appendix B: Author's Biography

-yi-

) Table of Contents (Continued)f',.f“ IR

- Sk

57
63
66

68

110

112

119

e

416,
414y
s(g)

%149

- —

"OF: NOTATION

GLOSSARY

Description

~

Interval limit for lengtﬁ of curve

Element similarity ,

Element similarity for shifted curves

.Fourierrcoefficient
Absolute displacement of original curve
Absolufe displacement of smoothed curve
Absolute displacement of origina! curve

Absolute displacement of smoothed curve

Continuous filter function

discrete filter function

Curve length

Curve length of shortest curve

Curve length of longer curve

Length parameter |

Number of elements in curve

Interval limit for sShift parameter
Cross-correlation’functién
Normalized cross-correlation functlon
Smoothed curve

Similarity function

. o=vii-

'lntérvai.limit forynumbéf of samples: in curve

Lﬁ/k-directibn
in x d}réction
iny direction

in y direction

L]

Sszol

|

¢14’2(

S T)
919,
x(2)

xs(z)'

X,
i,ave

ij.
ax (k)

X

Ax:(k)
ax (k)
y(2)

v (2)
Yi,ave
Yij

By (k)
Ay:(k)

Ays(k)

S ()

Glossar?_of Notation (Continued) =~ -
Y ‘ - i :

Descriptioh

~»

Similarity function for shifted curves

Modified similarity function for shifted curves

. Continuous x coordinate. function.

Smcofhed continuous x éoordinate function

X coordfnate of point i of avérage curve
x‘coord}hate,of p;int i of curve j %//‘
Relative discrete displacemen; in xfdirect}oﬁ
Smoothed Ax (k)

ﬁodified smoothed Ax(k)

Continuous y coordinate function

Smoothed céngg;dédgny éoordinate function

y coordinate of point i of éveragé curve

y coordinate of point i of curve j

Relative discrete displacement in y directlon
Smoothed Ay (k)

Modified smoothed Ay(k)

lnteéval limit for length of filter

Interval limit for nﬁmber of samples in filter

‘Weighting factor for curve j

Direction function for larger semicircle
DIrectiQn function for smaller semicircle

Angle with unit of radians

—_—

viit=-

o)

P Y s

“,.—, PR

 jABSTRACT {.?;’i_fajng;: L .a.;‘ n .‘;“f'i' |
' |n this thesis report, interactive aigorithms to aid Jn the }
anaiysis of fluid flows are presented Speciai functions and
aigorithms to average, smooth, ‘and calculate the similarity
between dlgitized curves were deVeioped The developed routines
process the images in the spatuai domain, thereby eliminating
the need to calculate discrete Fourier and inverse Fourler
transforms. The aigorithms are effective, efficientL/and‘fast.n~“
As an’integral part of the_aigorithms, special data buffer-routines .
for the effective data manipulation of curves, as weli as:cnrsor
routines, were deveioped.v An arbitrary set of frames consisting
of corves, or an arbitrary set of curves; can befaveraged or
smoothed. Curves can be :moothed with a modified, variabie
convolution filter. A special function makes it possible to express
the similarity of two curves in a numerical value. This technique

can be used to study time effects-in fluid flows. Noise reduction

can be obtained by averaging and smoothing a set of curves.

°

| lNTRODUCTlON

Thls report descrlbes the underlying theorles and algorithms :
.for_an_lnteractlve_lmage processlng and pattern recognltlon program'
that can’ be used in" the analysis of dipltlaed flow patterns. .Tb‘:
aid in fluid flow analysls, a televusnon/computer system s set up !
in the fluid mechanics laboratory of -the Mecnanlcal Engnneerlng
,Department of Lehlgh Unlverslty. The actual setup is descrlbed
and explalned in Chapter 2. - ///’

" Noise and disturbance reduction through successlve averaglng
of images is one of the malnhgoals of the program. For this purpose
‘the digitized lmages are stored in a mass storage device and are
processed off-1ine. In the future, it should be posslble to extract
features from the flow patterns that can be used in the generation
of a data base. The setup will facilitate the-analysls.process by
increasing speed and accuracy and by providing the possibility of
new analysis technlques. | |
Currently the hardware and software to generate digitized

curves from the actual flow patterns is in place. Chapter 2
describes the flow visualization technique that ls’used in
conjunction with a televlslon system and synchronlzed lighting.
The television images are digitized, then preprocessed, and
algorithms employed to generate the digitized curves in blnary form.

Once the curves are in this form, it is possible to carry out a

number of operations on them.

Lo

"are‘to: =

-

‘”.Thé<bbj§tt1yeéﬂof thevthesi§,wé;klpresentéd;lﬁfthisiréﬁbrt.;3'v”

=

a) develop theory and algorithms to average a set of curves.

- o o

. b) develop fheory and algorithms which make it possible to V

filter/smooth a curve.

: c) deVe]pp théory'and aigorithﬁs that -are cépableiof expressing" ‘
. the‘similarfty>5étween two.curveé In é humericaliQaiue.‘ |
d) combine the above in a~flexible and interiztive softWarg
program that c%n aid in the analyéis of flow patterns.
A selection from among thé presently évai]able analysis énd’

processing techniques has to be made in order to find the most

suitable one. Additionally; it is necessary to develop new

principles for those functions that cannot be performed by currently

known techniques. Capacity, in terms of the number of frames and
curves that should be processed, as well as efficiency and accuracy

requirements, are important considerations during the selection of

the methods.

Based upon previousqﬁbrk done at Lehigh Unfversity, and the
scopé of this thesis, several assumptions were made. The first
assumption is that the digitized curves are available. This mééns
that there is_é compléfe set of frames available, each containing
weil defined digitized curves. Secondly, it.is assumed that these
curves are stored in a chafncodelrepresen;ation (see Chapter 3).

Finally, a highly interactive program is required for further

et

e

id analytieal worh Chapter 2 describes the system setup, the
presently Known analytical techniques, the more suitable methodS'
for fluid flow analysfs. Chapter 3 deals whth the data |
‘representation and fnteractive routines that were developed to
facilitate the processing, filtering, and recognltion of digitized
curves in an efficient mannert Chapters h and 5 deaj with the
developed processing and recognitlon techniques. Chapter 4
discusses the averaging routines actually used, wh/}e Chapter 5
presents the theorles and algorlthms that were developed so the
digitized curves can be filtered/smoothed and recognized. Future -
work and/conclusions are discussedlin Chapter 6. The actual program

codes can be found in Kerstens (1985).

e

2. IMAGE PROCESSING ' ~ L

2.1 System Setup

2.1,1 Elgw-!1§9§ilzesigu-

The fluid mechanics laboratory of the Mechanical Engineering
Department at Lehigh Universit9 is_edufpped with the getUp of .
 FigureA2.l. The experimental sefup consists .of a channgl thréuéh
which a fluid (water) flqws ?rom~left to right, A jpndqcting wire
is inserted at the beginning of the channel, aﬁd a pulséd~hlgh
voltage is connected to the wire. This causes electro]ysié of the
water passing err the wfre and generates hydrogen bubbles. The
hydrogen bubbles propagate with the fluid and férm the time]ineéi

The t;iangular obstruction in the middle of Figure 2.1 is a
statiénary or oscillatin§ body that distorts the fluid flow and thus
the timelines. The timelines contain information about the fluid -
flow (velocity, both amplitude and direction) and can be used to
characterize and analyze the flow. Light is reflected at the
timelines and regions of high intensity are créated at their position.
A video camera is placed above the channel and records the 11luminated
timelines. The times at which pictures are taken, can be triggefed
in such a way fhat_they are synchronized with a particular po;%g}gp
of the oscillating body. After recordfng_bn the television, the 7~

idage of timelines Is digitized by an analogue/digital convertor

(ADC) with 256 quantizagion levels (8 bits). The resolution per

e

frame .15 211 x 165 pixels. A frame gfabber.gréﬁs'tﬁé]ffaﬁes
which are théﬁ“stdréd on tape.

A good intfoductién and e*planation of‘severa1-iﬁp0Etant
aspects of Jmégegprocessing can be.found-in nglidis (1982). The
digitiiéd imége.mﬁst be‘pfdééggéa'geforg:the actual curves ﬁén‘bé.
retrieved (see Figure 2:]); Sevérai method§ afe furrgntly.in use.
In the first methodc(Gumas 19853 the signal is fi -e%ed and thén
operated upon by a threshold operation, which results in.the
generation of a binary image. The resulting timelines are, however,
still relatively wide. The thickness can be reducea by thinning
algoritﬁms (Pavlidis 1982 and Gumas 1985)." The resulting pi;tures
 have a quantization of 1 bit (2 levels) and contain the timelines.
!ﬁ the second method (Gumas_l985) a curve‘tracking algorithm
processes the original frames with 8 bit quantization levels and
"tracks' the timelines. The output of this algorithm is a set of
curves (tfmelines) in chain code form (see Chapter 3). An interest-
ing method relevant to the foregoing is bresented.in Rao (1980);
Fingerprint patterﬁs are very similar to flow patterns and a
compléte system for the classificétion of fingerprints is.pfesented

in Lerner (1983).

N
w
»
< -
o .
—
o
o
o
=2
o
=
o.
-3
o
3
o
o
3
a.
%]
o
=
ctr
£
o
)
o
il

The preprocessed images are stored in computer files on the

-6~

--L;(Y

VAX i1/730‘compﬁter ofifﬁé;MeéﬁgﬁTEEY'Engjneé}lﬁgiﬁépaéthéht6?:'
'Lghigh Unlyers!%y;‘ESéveral high fgspjufién Eq?or”tefmlnéls.(VSll)
afe conbectéd tb th]éﬁcomputer’and are used in'fhe édvanéeq

" processing o% the flow patte;hs;_ Thé resolutibﬂbqf the'terminalsv
is 5]2:x b80;pixels‘ébd tﬁey ére‘capab\e‘of dis#]ayingll6’colors
(of which one is the background color). ASomeQQraphigs roﬁtines,
for:displéyfng basic entities (lines, cfréles, §plfnes; points,

windows, labels, etc;),aré available and are'wéli.éxplaihed in ‘

0zsoy (lab . 1983). | o ‘ | . J//'

To enhance the interactiveness of the developed program, and to
increase its flexibility, it was netessary to devélop some additional
| graph}ts routines. A set of windows was created (Kerstens 1985)
to displ;y'the CQrves and related information, as well as to display
system messages. Special buffer routinés, that can display and
remove arbitrary curves in an efficient manner, had to be implemented.
Another requirement was a special cursor routine for_pfcking curves.

These routines are explained in Chapter/3..

2.2 Analysis Techniqﬁe§

There are at least three techniqﬁes aQailable that could be
used in the analysis of flow patterns: - Fourier descriptors, °
6iassiflcatiqn techniques, and spatial averaging. The remainder of

this section wiil briefly discuss each of these technlqugs.

------------ - !

2, 2 l Fourier descrlgto_ o o ij ”'7u S u}u}ﬂ
Fourler~descriptors are ofte? used in partern recognition
: eppl?cations because special, modified techqjques using Fourier
j"descrlptors make the descriptors independenr of orlentetion;
positlon, or scale of the object to be descrlbed | They can be‘made
solely a function of the shape of the obJect (Granlund 1972 and
Zahn 1972). To understand how Fourier descriptors .can be used in
tﬁe analysis of flow parterns, Eonsider Figure 2.2. The shape of the .
shown curve is completely described by its Gtengent ano]e function'':
o(2) Le [o,L] | | ' ' (2.1)
where
¢(i) is the tangent angle of the uniform continuous curve
at point 2efo,L].
2 1s the length measured along the curve rrom its starting
point to the point of interest. ‘
L is total length“of;fﬁé”curve measured along the curve.
‘The tangent angle function together with the start coordinates of
the curve uniquely specify the curve. Deflo[ng a function ¢* such

that:.

2efo,L]

n=0,t1,2,... (2.2)

¢*(2 + nL) = ¢(») "%ﬂ¢(L):-'¢(o)} for

‘ * B
The function ¢ 1Is periodic and can be expanded in a comolex Fourier

serlies:

S

4;;.*,(-2')‘ - Eec, e (jﬁY;“) | : _(; 3)

* where, : .
Ly W 2m (2.4)
Yn L ’
and, .
L - o : '
' : % o ' ’ : . , '
c, "“"]C ’Z¢» (2) exp(-jny)de R - (2.5) .

The set of ¢ 's and Y_'s axg called the Fourier descriptors:
. n . n- - . _

(-]

{Cn,yn oo’ In reality, we have ;B work with a trdngﬁfed (finité).

set of Fourier descfiptors}

(2.6)

When fhis truncated set is used in tﬁe reconstruction of the original
curve, the result will be an approximation, ana|the difference
depen@s on the number.of éoefficlents that isllncludeé in the set.
Averaging of curves can be performed b; averaging the Fourier
descriptors. The curves can be filtered by truﬁcating the set of
Fourier descriptors and/or by multiplying them with a weigﬁting
function (Gumas 1985)._ Similarity ;oefficiehts can be derived if

the Fourier descriptors are made independent of the orientation and

position of the curve.

The following discussion Is mainly based upon the works of
Rao (1980) and Lerner (1983). Fluid flows and fingerprints seem

to have a lot In common in terms of their image structure. Both

~ _9_

fluld flow patterns and flngerprlnt patterns conslst of a set offp-
curves ‘or rldges that are to _some extent parallel in ﬁature. :'lf
|mperfectlons can create gaps in the curves of both patterns and
it may he difflcult to track the curves due to some amblgulty in
dlrectlon (Gumas, 1985, Rao, l980) |

In flngerprlnt classlflcatlon systems,‘a preprocessor first
averages over small areas of the lmage to find a mean level and_~
‘then a threshold operatlon divldes the polnts.lnto two’levels:
blackband whlte.‘ After completion of this operatlonf/;lrectlonal'
operators determine the direction of the ridges, and ridge pelnts- :
are linked up to eliminate mlnor breaks caused by poor inking or
skln'pores. In the next step features are extracted. ‘These features
mark the endpoints and the points where the lines that form a ridge
make an angle with each other (see Figure 2.3). Analysis of the
extracted features makes it possible to classlfy the‘prlnts.

The preprocessing techniques used in fingerprint analysis seem
to be dlrectlyvappllcable to fluid flow analysis. However, the
classlficatlon technlques that are used are a syntactic approach to
the ldentlflcatlon'problem; .Therefore, this technique mlght be useful
in identifying certaln fluid flows, but it cannot be used for
detailed analysis of the fluid flows: It is also impossible to

average curves or to calculate slmllarlty coefficlents with this

technique. The preprocessor used in this technlque provides some

means of smoothing or filtering the curves by averaging the direction

of the curves over small areas of the image.

- =10-

12.2.3 Spatial Averaging . .

—

S fZ‘ln.spégigllavefaglng; the cu?Vesvare évefaged dfréétly Ih the

spafial doma?n, By taking specifiq points 6Q'two cu;Ves‘fsee
Chapters 3'énd L) and taking the averages of ;;;;esponding‘polntﬁ
on béth curvés, the aVerage curve is céiculated.. The Jata
repfesehtation‘fhat is used Ih:the averaging process.CanAalsctbe
used:in the developed smoothing aﬁd stmilarity'ca]culat{on
algérithms (see Chabter 5).. fhé technfque is very accuraté,

relatively fast, and can be app]iedhto an arbitrary numBer'of

curves.

2.3 Method Selection

The Fourier descriptor method requires the calculations of

~ discrete Fourier transforms and discrete inverse Fourier transforms.
These computatlons are relatively time consumfng-and costfy.
Furthermore, smoothing or filtering of the.curves'by truncating the
set of Fourier descriptors will not preserve the éndpoints of the
curves (Gumas, 1985). Data storage requirements can be reduced by
stofing only a few of the Fourier-descriptors per curve where one
has to make a tradg-off between the number of descrfptors to be
stored and the accuracy of the representation. However, fhese
savings might not be as large as originally envisioned. Cohs!der the
following examﬁle. Suppose one gets a satisfactory representation
by.only storing 10% of the Fourler coefficients. Since every

coefficient contains both amplitude and phase Information, it is-

-11-

_ represented by two reai numbers (two Fourier descriptors out

T

‘,of the set defined in paragraph 2.2. i) In standard precision.\: ‘

FORTRAN 77, each real number requires four bztes of-memory.' So if,
N Is the number of coefficients, then one needs 0.10 x N X 2 x b =
0.80 N bytes of ‘memory to store 10% of the coefficients. Representing

the curve by a chalncode (see“Chapter 3) is possible with one byte

of memory per element, because each chaincode element is an integer

number between one and eight (see Chapter 3) and thus,the totai
amount of memory needed is N bytes. Similarity ca cuiations are

not easily implemented with Fourier descriptors, since in principle

‘these coefficients are dependent on such factors as scaling, rotation,

v

and transiation. However, the speciai function'¢*, that was defined
in paragraph 2.2.1, is independent of the orientation of the curve
and is a principal candidate function for use in simiiarity
measurements.- |

Classification techniques. are not very accurate and cannot be
used for averaging curves. This method aiso cannot be used to
calculate the similarity between two curves. Spatial averaging on
the other hand seems to overcome all the shortcomings of the other
methods. It is ver* accurate and fast. The data representation‘
that is used in this method is very efficient and preserves the
original curves, inciuding the- start and endpoints. The developed

smoothing algorithm proves that it is possible to smooth/filter

curves in the spatial domain while preserving the start and endpoints

-12-

o\

(s?e Chapter 5);» F§péIly; Efmilér}ty,éélcuiatiéﬁs EénJélso be -
Apérformed dlr¢gflf in fﬁe épatial.ddhajn (sée'CﬁapterTS) aﬁd "? o

‘this méthodlis, therefore, the mOst.suitaBle 9f'fhe thréeAtechnlquesb

for the analysis of fluid flows.

;]3-

3. 'DATA REPRESENTATION AND, INTERACTIVE ROUTI NES -

In this chaptér'Several aspects of the curve data rebr¢Séntation-"~

are explained. Some special routines were developed for the
‘ . :/Dl)

'

efficlént storage of curves, and for the_inteﬁactlve selectfon
“of the curves from a terminal screen. All these foutines;afe
‘presented in this chapter as well. .

-~

o I} . . o .
3.1 Curve parameterization - : A , -

3.1.1 Chain_codes : —y

évery curve consists of sﬂset of pixgls. They lie next to
each other ana together form one particular cufvé. One way to
repfesent each curve could be a recording of the x and y coordinates
of the center of each pixel. The disadvantaée of this technique
is that we have to store two en;ities per pixel (see.Figure 3.1).
Anofher technique uses chain codes (Pavlidis 1982). Figure 3.2 shows
how the éhain code efements are AeriVed. Each pixel in the curve
has at least_one neighbor. The neighbor pixel can be anf one of the
eight-neighbor pixels shown in Figure 3.2. By assigning a different
number fg each of the elight pixels, one can‘ﬁniqhely‘ldentify where
the neighboring pixel is positioned. .Each curve is tracked from its
start point to its end point;“ana*the’positton of . each pixel ‘Is
recorded In the form of a chaln‘code'thaf Is derived frém-the
position of the}pixel with respect to4its breced]ng pixel. The only

exception is the starting pixel. Since this pixel does not have a

.‘_]q-

predecessor,iits x and Y coordinates are'recorded Figure 3 3
shows a curve and the so derived chain code representation.‘

It is obvlous that the chain code representation is a discrete
representation;. However, no information is lost since the
. original cUrve was aiready'oigitized‘by the video processing
equipment.; Since only one element per, puxei is stored (with
exception of the starting point), the data or curve representation
is very efficient. A dlsadvantage is that one canno}/directiy
relate a oixeng,chain code value to a particular position on the

screen. One always has to track the curve from.its starting point

to.find out where a particular pixel is located."

Each cnrxe consists of a number of elements, where an element
fé defined as that part of thescurye;represented'by the connecting
line between the centers of two succeeding pixeis..‘The length of
each element depends on- the configuration of the two pixels.
Consideringifigure 3.4, one can see that the distance between the
two centers of two succeeding pixels is equal to | (after normali-
zatlion) if they have one side in common and equal to Y2 if they

have only one common corner. By adding the length of aii elements

that form a curve, one can caicuiate the total length of the curve.’

The starting polnt'and chain code representation of each curve

'-15;

,aée-iﬁpﬁis_to’the.pfegrae. :Tﬁe end -of a eﬁefne?deffepfegehtatlen:ﬁ
iS«!dentlf[ed\b9 ”6”; For each curve the,pfogfem geheréfes\three
érrays. The first'tﬁb arrays contain the x and y cooreiﬁates of
each piXef The third array étores the lengtﬁ-‘measured along . the je-
curve, of that part of the curve that is- located In between the

"pixel of Interest and the curve's starting point. If one uses array

L for this purpose (see Figure 3.5), then the value of L(l} fs

either 1 or V3 2 depending on nhow" the second pixel [7/1ocated with
respect to the first. The value of L(2) ls efther 2, 1+ ¥2, or

i/f depending on the location of ;he‘second pixel on the eurve with
respect te the first pixel and the location of the third pixel with
respect to the secend one. There is another possibility: L(2) can

also equal 0 if the curve épnsists of’on]y two pixels.

E The so formed arrays are used in the averaging, smdothfng and

correla{ion routines (see Chapters 4 and 5).

However, a different notation is sometimes more useful? In this
notation the chain code values are converted into two arrays contain-
ing the Ax and Ay values of ali the chain codes that form a
particular curve. This is shown in Figure 3.6. Edach chain code
element simultaneously represents a AX and Ay.velue that can be
equal to either -1, 0, or +1. A chain code valde of 9 is }ncluded
to represent those casee where the next EIxel ls‘actua]ly en top of

its predecessor. This can occur during the smoothing and averaging

operations (see Chapters 4 and 5). Since these points do not

-16- ' e — ' w-,f«_;m-

-

[contaln useful Information, they are usually removed from the chain

_code’ represenxation. Figure 3.7 shows how a set consisting of Ax

¢

and Ay valués can be converted to,a chain cooe descriptlon.

Because FQRTRAN does not accept negatTYe or zero squcrfpt values,'

tne‘vafﬁe 2.Is‘addeo'to the An and‘Ay values and tne.cofreeponding
._chain code'yaioejis foundygy'looking_in,an arfay containfng'theSe

vafnesa :TQF flrstfsubscript.of this array js{the Ag + 2 value and

s

The (Ax,Ay) representation is especially usefullin.the

the second subscript is the Ay + 2 value.

.available display routines, because they require the incremental

x and y values as input variables (Oisoy 1983).

3.1.4 Freeman's corner cutter matrix

By using Freeman's corner cutter matrix.(Freeman, 1961; Gumas,
1985), one can remove the jaggedness of a curve. Figure'3}8 shows” N
that certain pixels can be removed (the black pixels in this figure)

withoet significant loss of information. In fact the curves look
much smoother after this routine is appl%ed (see Figure 3.8). After
apolying this routine, the curves never change direction over more
than ihso going from the preceeding two pixels (giving the current
direct!on) to the next pixel in the curve. The method repeatedly
-replaces: two adjacent chain tode elements by the new element(s)
found fn Freeman's matrix (see Figure 3.9). The second (or only)

new element Is used in the next replacement step. In Figure 3.10

the routine is applied to the curve of Figure‘3.8. Sometimes a

fsingie iteration is not enough and the routihe has to be repeated
untii the chain code no longer changes. Although the routine
smooths thc curves, It oniy does s0 on a iocal basis. Freeman
(1961) also shows how the routine can be used to find the shortest
}path between the curve s startpoint and endpoint. This method
provides maximum smoothing of the curve. . However; unlike the
aigorithm'presented in Chapter 5, no means of arbitrary smoothing

2

is provided by Freeman's matrix. _

3.2 Display routines

Although some basic graphic routines are already avalilable
(0zsoy 1983), some twenty-five additionai graphic routines were
developed to aid in the fluid flow analysis process (Kerstens 1985) .
These routines create a very interactive environment, set up and
clear the'screen, aiiow the user to change the center of dispiay
and scaling factors, provide many options, and quickly allow the
user to display/average/smooth/correlate (an) arbitrary frame(s)/
curve(s) etc. Most of these routines are explained in Kerstens
(1985).

However, 'in order to keep track of which curves are dispiayed
where on the screen, in an efficient'manner, and‘to enable the
imoiementatiodef the averaging, smoothing, and correiationiroutines,
special buffer and cursor routines were deveiooed.- Since:these

routlines are falrly complicated and represent a major part of the

total FORTRAN code, the developed algorithms are presented and

- -18-

‘f~i-&gpralnedffq:tHe7rémaln)né.twb barégfébhg of tHPS}chépfer;in o

¢

3.3 Curve storage buffer

-

After a curve s displayed on the screen; it Is often used in

- some further processing. Suppose the displayed curve Is the

output of previous processing routines; then it is necessary to

.store the relevant data of this curve so one can use it in the

fu;ufe without having to recalculate it. ‘To'acéommddate this,
special buffer routines that store all relevant daté/gf‘the curves

displayed on the screen wefe developed. Figure 3.11 shows,ihe

setup of ;he buffer while its gqmponents'are'explained in the

»

remainder of this‘paragraphfw““”ww““"

3;3'1 Buffer pointers

| The stack contains the main curve data. It contains the Ax
and Ay erays, the #urve's startpolnt,.the curve's célér, and a
lot of other informatfon for each curve that]s dfsplayed on the
screen (see Figure 3.11). -Since cﬁrves are continuously re%oved
and added toitﬁe list of dfsplayed curves, the stack continuously
changes. So the stack has to be updated qﬁlte frequently, and one
has to keep tfack of where a particylar curve Is stored. SuppoSé
the current number of displayed cur§es is N..IOne‘way of storing
the curves would be to store them !h'the first N positions of the
buffer (see stack in Figure 3.11), In the ?rder they appeared on the

screen, and .to remembgf the current number of displayed. curves N.

Vo

vAssume, however;\that'dne wants.to remove. one -of the first curves -

\v ' M

in the stack from the screen. Since this CUrve is no ldhger-shown

on the screen, it also has to be removed from the stack (otherwlse

a stack‘overfiow would quickly occur). Thts In turn_ creates a gap

in‘the staek that has to be le§¢QamW$upposevthe thfrd curve stored

In the stack lé removed from the'screen., To. close the created gap, o

.

.the N 3 curves that were placed on the screen,fafter the . thlrd curve

was put on the screen, ‘have to be shifted down one pe/}tlon in the
stack because the third curve was removed. Since each curve can
) t

¢ontain over 200 data points, this algorithm would be very

inefficlient.

An alternative would be to remember where each curve is stored

~in the stack, remember where there are gaps in the stack, and to .

fill?up the gaps with data of the new curves being displayed on the
screen. Basically the new curve data would overwrite the old curve

data. This is a very efficient algorithm in which no data is re-

e

positioned in the stack. Implementation of this algorithm requires

that one keeps track of where the curve data Is positioned. To
understand how this can be done efficiently, one first has to
consider how the buffer is going to be used. B

As mentioned.in Chapter 2, the data is generated In the form
of frames each consisting of several curves. Therefore, it Ia more

than likely that at some time one wants to display simultaneously

S

a complete frame, or a complete set of curves for that matter. |If

. =20-

Aii{ithis is'the Case a seqUence of curves shoufd be stored in the o
:fbuffer. Keeplng track of the sequences would make it posslble to
delete any partlcular sequence from the buffer (and thus the
"‘screen). So every sequence of. curves is stored and removed ln
one shot. However, if this is the case,_the only thing to remember
is the stack addresses .in which the‘curves'of partieular‘sequence
. are stored and the total number of sequences that are currently |
displayed on the screen.’ Figure 3.11 shows how tnissis implemented.
The stack addresses)of the stored curves is stored in a.one-.
dimensional array-in the same order as they appear on the screen.
This is the array labeled "eurve-addresses” ln Figure 3;ll. Every

curve of every displayed sequence is stored in.thisiarray. To keep

track of where a particular sequence starts in the "curve-addresses"

-

-

array, a second one-dimensional array, contalning‘the sequence
positions in the "address-array", was'preated. 'This.array is also
shown in-Figure 3.11 and is labeled “sequenoeeposition". Stored in
this array_is the address of the last curve out of eaeh sequence
in the "cufve-addresses" array. |

Spppose the address of the last curve of sequénce N-1 is stored
in posltion x of the “curvezagdressﬂvarray and the address of the
last curve'of sequence N is stored in position ¥ of‘the "eurve-

address" array. - Then the total number of eurves;in sequence N is

Y - X. So by keeping track of the'las; address of each sequence in

the "'address-array', it is possible to locate the stack-addresses

-21-

T of all %hé‘cﬁrVés ina particular sequence.. The only exception
' is the firét’seqﬁebééJA Oné‘cannot find the number 6f7;ufves in.
this sequence by substractTng the position oﬁ;the_last curve in

the previous sequence from the position of the 1ast curve in this

sequence, since this sequence does not have a predecessor. However,

Tor this sequence the number of‘curvés'Is equal 'to the pointér value

- “and one can usé this value Instead. The pointér value of the current .

éequence Is updatgd each timé one adds a curve té this 3equence.
After completion, the‘seqUence is dfsp]ayed on the sdreén.(note:

a sequence was defined to Ee a set of curves thét are transferred

to the screen simultaneously).l This results in a new sequence being
started and this in turn means that the pointer in the ''sequence-
array" thaf was identifying the last curve of the fhen current
sequence, |s now pointing to the last curve of the jUSt completed
sé;uence, A '""'sequence-counter' is keeping tréck‘of tﬁe number of
sequences and Is pointing to the position of the sequénce-posltlon
pointer of the current sequence in the “sequence4positién“ array
(seefFigure 3.11). As mentioned before, to keep track.of the curve'é
stack-addresses Is not enough. It is also important to keep track
of the gaps in the buffex, because new curves have to be stored in
these positions of the stack. 4To do so eff}clently, the avalilable
stack-addresses are stored in a one;dlmeﬁSIOnal érray.calfedA
”avallgble-addresses” (gee Figure.B.ll). >A pointer k;eps.track,of

. /) . _
how many of the addresses are still avallable. Each time a new

-22-

'}curve is: stored an address Is removed from the top.of the

o Do : SRS P IR e
[S e PR Qe . .
R} * R . B e i

—

~“available-addresses" array, the pointer value (pointlng to thls
'_array) is lowered by one, thereby pointing to the next ayailable,

- stack-addiess, the sequence-oosition pofnter is incremented by

one, therebypolnting to the next position in"the "curveeaddresses"

array, and the address that was just removed from the "avallable-

.addresses" array Is stored in the "curve-addresses" array, thereby

pointing to the gap in the stack"where the data of the new curve

will be stored. . ‘ N To;r‘

kSo, a minimum of data manipulation'takes place each time a new
curve is storéd. All the relevant curve data are now stored in the
staCk.

| f a curve is removed from the stack,'a slmf1ar'routine takes

p!ace. -One cah remove any sequence from the screen and thus the
stack. If a sequence is removed, the staekeaddresses-of all the
curves in that sequence are removed from the ''curve-addresses'' array
and stored in the ''available-addresses' array. ‘The pointer to the
""available-addresses'' array is updated and is thus still pointing to
the first available-address in that array. The gap ln.the “curve-
addresses'' array is removed by shifting up'all'the»curye-addresses

of the curves in the sequences that followed the removed sequence.
Accordingly, the sequence-position polntersvto~these sequences are
adjusted. The gap in the "sequence-position".array (created by the .

removal of the pofnter to 'the removed sequence) is removed in a

-23-

T AU
"Jeiﬁiiarifashlon. Since one sequence was removed, the “seqaence-_
Acounter" value is decremented by i * The data of the curyps\that
’were remOVed is not removed from" the stack | If a new curve Is
stored at this position in the stack its data wiii simpiy be
written'over the old curve oata.A.Aoain.a minimumbamOUnt of data:n
. manioulation_was required to remove:a complete sequence'ot curves
from the stack and thus‘the screen.

The buffer rootines-formian integrai oart of/thefimage
processing algorithms. They provide a means of efficient curve
manipulationband data storage. Without them the fiexubilnty of the
routines would be greatly reduced and the implementation of
sumiiarity measurements (see Chapter 5) wouid become a very:

difficult task.

3.3.2 §£9£§4-99:ys-9§£§

The stack consists of three arrays (see Figore 3.11). When a
" curye is stored, the data of the curve is divided over the three
arrays. ‘The stack-address of the curve is the same for all three
arrays. The first array stores the Ax and Ay vaiues (see sectlon
3.1.3) of the curtes. This Is a three-dimensional Integer array.
The three subscripts of this array are: curve-address (first
subscrlpt) Ax or Ay (second subscrlpt is 1 for Ax and 2 for Ay),
and\pixei number (third subscript).. The second array Is a two-

. dimensional integer array that stores other relevant data of a .
! .

curve. The two subscripts of this‘array are: curve-address (flrst

. -2h- ‘ AU

subscrlpt), and relevant data number (second subscript) The .. \

.

frelevant data ls always stored In the same order (see Figure 3. ll)

—

h'The first data element is reserved for: the x-coordinate of the
startpolnt of the curve. The second data element stores the y-
coordinate*of'thecstartpolnt of the curve. Also stored are the
current color of the curve, the number of Axrelements (or Ay elementﬂ
in the curve (this number is equal to the numbe:r of plxels in the
curve -l), the label-type, label switch, curve number }ﬁrame number,
and, window of display. A curve can be identified by looking at its
curve and frame number. Each frame has a unique number and each
curve‘within'a partlcular frame also has a unique number. The curve
numbers are displayed either above or below the'starting.points of
the curves. Studying Figure 2.1 reveals why this is convenlent.
The general'directionlof the curves in the upper half of the screen
?s always downwards while the generai'direction of the curves in the
bottom half of the screen is a]uayswupwards. So curve labels can
always be put above the startpoint of the curve If the curve Is in
the upper half of the screen and below the startpornt if the curve
Is located in the'bottom half of the screen. The curve Tabels
consist of the curve's number and an optlonal'character telling if A
the curve Is the output of an averaglng (see Chapter h) or smoothlng
(see Chapter 5) operation. This Informatlon_results In a unique -

label code that is stored in the label-type location of the second

stack array. A label can be switched on .or off and Its current

. -25-

" ’ ’ -l')-f-,

*

%

tj status ls stored ln the labe] swltch location of the second stack

array; The.dispiay-wlndow location of the stack array‘keeps track :

" of the window In which the curve Is displayed’ (elther ful]‘screen‘l.

~or not, see Kerstens 1985) .

‘The third stack array Is a two-dlmens!onal real array It

' contalns the scaling factor and center of dlsplay (x and y
coordlnate) for each curve. These values can be changed by the
user which enab!es him to zoom-in on partlcuTar pertlgns'of a
curve»er-to reposition the curves cn the screen. Rather than-
recalculating all the new Ax, Ay,.and. startpolnt coordlnate’values,
these display parameters are store .instead. Again, the first

subscript is the curve address, while the second subscript is

pointing to the data location of interest.

3.3.3 Buffer_routines

There are four buffer routines: BUFINIT, BUhSEND, BUFDISP,
and BUFERASE. The first routine, BUFINIT, initializes the buffer.
It resets all.the pointers and fills up the "available-addresses'

array with all the stack-addresses. This routine is calledlin the

beginning of the maln program and In the clear-screen routine. The

second routine, BUFSEND, stores all the relevant data.of a curve iIn
the buffer. It generates warning'messages when the number of

‘ sequences reaches lts maximum (currently 10) or when the number of
curves reaches lts maxlmum (currently 30). If the capaclity of the

buffer Is exceeded, no curve data Is stored, no additlional curves

-26-

LS

' *>are displayed, .and the user is notifled of the fact that, either

1l

~

ithe stack is full or the number of sequences has reached !ts ‘i’ Lt o

maximum, and that no data was stored. The dlmens1ons of the

‘apprcpriate arrays can be increasedgm$fwnecessary, to facilitate

* the user's storage requirements.’

-

) The third routine BUFDISP, dnsplays ‘the curves tn tne current
sequence and updates the ''sequence- -counter".

The last routine, BUFERASE, will erase a specnfned};equence
(set of curves) after some specufued delay. It also has a refresh
option. Curves are removed from the screen by redisplaying them
in the background color. Therefore, if one of the removed curves

4

crosses a displayed curve, the latter will have a gap after the

.removal process ‘is completed. By refreshing the screen (redrawing

the still displayed curves in their own color),after’the removal

operations, these gaps disappear. Finally, during the refresh

operation, the labels can be either removed or displafed.

3.3.4 Display_map

An exact copy of the displayed curves on the screen is maintained
in a two dihensional byte array. The resolution of thfs "display-
map'' array is the same as that of the screen: 512 x §80 locations.
Each time a pixel of a curve is displayed on'(removed’froﬁ) the
screen, the stack-address of.that curve is stored in (removed from)
the correspondlngllocation,of the "display-map"’array. - By just

-

storkng the stack-address of the curve, it is possible to keep the -

_ .'.27,.. . L S ._A.__‘_, ‘

. P .
. e
LT . b

'_size of the "dlsplay-map" array down to a relat!vely modest value, ’

-_‘whlle one can’ still find all the relevant curve data by looklng

at the stack locatlons that correspond with thls stack-address.
These operations take place in the BUFDISP and BUFERASE routlnes.
The "dispTayfmapW is used In the deVeloped chsor routines Whichfl

are discussed in the next paragraph.

3.4 Cursor routines

.fhe simiiarlty routines require that the curves,,ﬁecheen whlch
a similarity value is calculated, are picked from the screeh by the
user. The reason for this is simple: to givefthe user the -~
flexibility of calculating the similarity betweenharb1trary curves,
originals, averagea, smoothed, or a mix of them. A difrerent tyoe
of implementation would probably be a burden to the user and would
not gfve hih the flexibility of a cursor routine.- However, such a
routing was not available and had co be developed. A routine that
returns the x and y coordinateeiof the picked‘pixel.ls available

(0zsoy 1983) and 1s used in the curve picking routIne.

The search routlne must be fast and efflclent have a high

resolutioh (meaning it must be able to dIfferentlate between two -

\

curves that .are close to each other), and flnd the curve that Is
' closest to the cursor. To find a curve, the cursor is shown on
the screen and the x and y coordinates of the pixel picked by the

user are returned to the search routine.. The search routine uses

- e e

~28-

-

uthese values to look in the display map (see section.3 3 h) to C
:lﬁsee if this pixel belongs to a cu?vei' This is - the black center

b-.i

E pixel of Figure 3.12, If° it finds a stack-address (a number # 0)
in“the disolay map the curve ls,found,‘and'its‘stack-address is
used to find the required'curve data insthe stack. lf no stacke
address is found, the search routine will search~for the nearest
plxel that is part of a curve, lts equivalent moreover, it will
look for the nearest location in the display map array containing
a stack-address. Figure 3.12 shows the order in which the
locations are checked. The locations with the number 1 in them
are the ones closest to the center location and'are checked first.
They are checked in a counterclockwise fashion Starting with the
location in the second quadrantt 1f no stack-address is found,

the locations numbered two and three are checked in‘a similar
fashion (starting with two). If still no address is” found, the
locations numbered four are checked. Figure 3.12 shows that each
quadrant contains two locations that are numbered four (toth
locations are equally far from the center location).. Again these
locations are checked in a counterclockwlse fashion. For each
location in the second quadrant with a number between one and
forty-one (see Figure 3. 12), its relative coordlnates with respect
to the center location are stored in a look up table. Figure 3.13
shows part of this table. The relative coordinates of the.flrst
four numbers (tlve locations) In each quadrant are shown In this

table. From the table one can see that the relative coordinate

- o -29-

il

D e, : ‘
S L - X . .
o ot ‘ ' 3 . - -

:values of - the locations in the third quadrant can be obtained from '

-the relative coordinate values ‘of .the equivalent location in the
second quadrant. The'required transformation.routine is:. invert
the sign of "the relative y coordinate and flip this vaiue with the

‘relative X coordinate. The relative coordlnate values of the

locations in -the fourth quadrant can aiso be obtained from the

ke

d‘values in the second quadrant.' The' transformation'required here is:

invert the sign of both the. relative x and .y coordina/es. Finally,

_to obtain the reiatlve x and vy coordinates of the.locations in the

first quadrant from the values in the second quadrant, one has to
invert the sign of the relative x coordinate and flip this Value
withlthe relative y coordinate.

So only the relative coordihates ofhthe jecond quadrant have to
be stored in the look up table since the other values can'be
obtained with a simple transformation.‘ The first forty-one numbers
in the second quadrant represent.seventyffive locations (see Figure
3.12). So by‘looking at the seventy—five locations in the second
quadrant and the two hundred twenty-five locations in the other
three quadrants, the search routine looks at three hundred‘iocations

(plus the center location) to find a curve. ‘The total screen

consists of Sl2 x 480 = 245,760 oixels so the search routine is 1\
‘checking approximately 1 out oi 800 pixels. ,?or’a thirteen inch
monitor with an aspect ratio of 3:4, the totai'viewing area. is
7.8 x 10.4 = 81.12 square inches. So the total area‘checked by
=30- N e
- ' \ ‘ ' AN

'i‘ﬁl ////Egg;fouflhe;is; [H L - S R
K 308 ¢ -8"1:'12.~01 .i-'h‘l - R
255760 X B1.12 = 0.1 square inches . .

Since the checked area approximates the shape ?f a circle, the
. IR v . : ' ¥ ‘
diameter of this area is approximately:

o oax/2leos6inches T (32)

'ThisApEbvldés mpré thah'enougﬁ-resolution'andfwill make it easy

. for the use}.to pick the des[réa.;urve even If the ¢61Ve5 are very
close to each ofher. | ‘

| The foufvﬁe will find gHe curve that is closest.to the'center
of the éursor. Howevér, if a curve is fufther than approximately
.18 inches from the center of the cursor, thé routine wi]1 not find

the curve. To compenéate,for this, the search Is gxbanded_to check
the'locatiﬁns on the horizontal, vertical, and two aiagonals going
throdgh the center of the cursor (see Figure 3.14). Again, the
routine checks the locations in a counterclockwise fashion. After
completion of the local search, it starts with the relative
coordinates (0, 10) above the cursor, then checks thé location
(-10, 10) on the diagonal, then the location.(-lo, 0) on the
hofizontal, etc. Althbugh the routine skips a lot of'loca;!qhs
(to keep ‘1t efficient), it genggiﬁsiéayﬂstar“'of.checked lécatiqns
and should almoét always find a'c;rve. If still no curve. Is found,
the.user has‘ta'try again. In the worst case’whén no curvé is

found, the cursor is positioned in the center of display, the

. _31_ . ' -

‘ifadditional number of checked positions is equai to i872 and the } T
--totai number of checked iocations is 1872 + 301 = 2]73
approximateiy i out of 113 pixeis is checked.in the worst case

situation (iess than i%) keeping the routine stlii very efficient

3.h.2 D i?YUE.d.éi_“-E
. As soon as a curve is found by the search.foutine,.the routine
is terminated and the curve's stackeaddress‘ic returned. Because
the curve's stack-address is known, aii relevant dgfgrcan be found
in the stack. This data is used to redisplay the curve in‘a
different color immed\ateiy after it is found. The user can accept
or,ieject the curve. |If the curve is rejectedé it is again

redispieyed in its old color. |If the curve is,accepted, its data

is used In the operation described in the foiiowingl

*

_32-

" -b.CURVE PROCESSING e
.'Ohe 6f“the.haiﬁ objectives of this thesis was to develop an
algorithm capable of avékaging a set of curveséﬁ The deyeloped _

algorithm and. the requirgd.support.roufines are presented In

this chapter.

L Length caléulations

| Before‘any'avefages can be calculateé, ;6%6 COﬁsidératidd has
to be given to the relevant 1ength~of fhe curves. lt/{;ralso
important to find the right pdTﬁf§WBH“éath curve that must £e~
used. in the averaging operation. - In the rémafndef of this paragraph
these topics are discussed.

7
!

h.l{l Normalized versus_shortest curve_lengths

Two curves almost never have the same length gseé Figure 2.1).
Therefore, béfére two or more curves aré averaged, some thought has
to be given to how the difference in length is to be handled. One
can+either normalize the curve's lengths or one can averaée the
curves over the léngth of the shortest curve. -

If two or more curves are averaged, a number of points on one

curve are compared with the 'same number of polnts on the other
curves. If the length of the curves is normalized, theSe points
are spread out over the entire curve. The length of a section

between two of the points (measured along the curve) is the‘same

for all sections of one curve. So if one curve is longer than

. -33_

.
LT U . . » \(f\‘

' ”ahofH¢E curve, theése sections are also longer. .AfjuStlf!cétIon,Jj.

for using normalized lengths could be the assumption that the curves =

- started out to have the same 19ggghzwygththe disturbance in the ,'

flow strgtche; some curves more than others. By»normaiiiln; ;Ee
curv;‘s length (spréadlﬁg out thé points ovef the‘entlfe léngth of
the curye).gne*can compensate for ’thiggeffgct. This»iS shown in
Fféure'h,lﬂ Another pbssibiflty Is to ‘assume ghat*the lengthléf

a section between two points.doesbndt ;hange‘from curve to curve.

- So a longer curve jusf‘has more points. Averagin§ requires that

the same number of points on each curve is used. So if the shortest
curve has N points, ohly the first N boints of the othér curves are
used. Since the other poihts are not available for the shortest

curve, one cannot average the remaining points on the longer curves.

This is shown in Figure 4.2,

To find the location of the points on eéch curQe (see paragraph
4.,2), it is important to know fof eaéh pixel what the length of the
curve.section enclOSéd by this plXel'and the startpoint of the curve
fs. Therefore, this value is ca]culatéé for each plgel.ln each
curve and stored in a special array for each curve. If this value

Is known for pixel N, the value for pixel N + 1 is found by adding

the distance between the centers of pixel N and plxel'N + 1 (etther

‘1 or /2, see sections 3.1.2 and 3.1.3) to the value of pixel N.

“ " k1.3 Resolutlon considerations IR)

Siﬁéé.thQAéamernuﬁbér qf‘point5‘0f4eé¢h cere‘fs4Qséd_in the'
“average caiculatlons, ft fﬁ not'Tmmédiatefy‘pbvious'E;;\égny'ﬁéinti
per cUrvé have to be calculated. Too many pé!nts wdhld make the
kalgorithm fnefficient, while résolutldn would sUffgh_if the nuhber)
pf,po!nfs.is notfhigh enéugh.: fheréfore; when norma]izéﬁ lengths-
‘,are'uséd; the.numbér of points js ma&é equal to the number of |
éamples (pixe1s) in the.curQe with the Highést‘humber»of samples.
When lengths equal to the length of the shortest‘curvelqre used, the
number of samples in the part of each curve thaf-is being~ﬁsed jn

the averaging routine, is counted and tﬁe number of points is

made equal to the Higheét number of samples in any one of those

sections.’

g \

When the length of the shortest curve is used as a reference to
determine what part of the longer curves is to bé_gsed'in the
averaging calculations, one has to calculate the number of relevant -
saﬁples (pixels) in those curves. The lengtﬁfof; and the number of
pixels in, the shortest curve are known. For eacﬁ pixel, the
distance (measured along the curvé) to the curve's startpoint i$
known (see section 4.1.2). At some pixel, for.evéry curve, this
length will be approximately equal to the length of the shortest.
curve. - The méxlmum erfor‘lsvi/i'which is_half of ;he ma;lmum

distance between the centers of two pixels (see section 3.1.2).

A

-35- .

&)

This plxel Is found by means of a blnary search (very efflclent)
7JSuppose there are. N+ I'pixels in the shortest curve., Starting’
at the startpoint of the curve, each pixel is assigned a number .
The startpolnt pixe] is pixel 0 and the endpoint pixel is pixel N.:
Then the shortest curve consists of N elements where an. element ¢
is the connecting line between the centers of . two adjacent pixelsp
- The length of each e]ement is elther 1 or /— (see section 3 1. 2)
So the total Iength of the" shortest curve is a value between N
and NVZ. If the shortest curve is a~strafght horizontal or‘vert!cal
line, its length is N. A different curve hawing the same length
has at least N//f'pixels.. (If this qhant?ty is not an integer, the
‘value is rounded to the héarést integer that is sheller than this
- value). The only time this minimum is reached is if the second
~ curve makes an angle of 45° (or lBSoyﬂwith the horizontal. This is
shown invFigure 4.3, - |
On the other hand if the shortest.curve makes an angle of hSo

with the horizontal, its length reaches.the Maxlmum‘value of NVZ
kthe shortest curve consisted of N elements). A different curve
héving the same length has at the most NV2 piXe1s (if this number
‘is not an integer, it is rounded to the nearest integer that is
larger than this value). fhe.only time this maximum‘is.teachedkis
if the second curve Is a horizental or vertical line (see hlgure
L.4), - If the position or shape of the shortest curve 1s different

from the ones described above, the minimum and maximum values will

-36-

R . S : Y S PR I R PR o ra A R [2 R B e

- Pt { oo e o o e e e .
oo et e N o PRI : ... L ~>-_‘ R R
. e o e .o e LN < et

'“,,,not be reached. So lf the number of elements ln the shortest curveffff"

ls N the number of elements ln the other curves belng used ln the

'.
-~,

. averaging calculatlons is wl(hln the range | T _dd‘ ST

'f’[N/JEj 5 elements used‘s [N/El t,. tif "iA] (k l) —

WIthln thls .range. there ls a plxel whose dlstance~to the-curve s

J'—\.._

startpolnt ls equal to the length of the shortest curve L.V Thls

ﬁ‘ Is shown jnjElgure_h,S. The exact location of thls pixel is f”’nd
awlth a blnary'search'routlne. Flgure Ay, é“shows this technlque. The

range - of posslble plxels is divided in two The distance of the
curve's startlng polnt to this plxel is compared wlth‘the“length of

the-shortestvcurvel |f'thls;length(is less than“the length of the
shortest curve; this pixel becohes the new loher Timit of~the range
of-posslble plxels‘ If the length was larger than the length of the
shortest curve, thlS plxel becomes the new upper llmlt of the range

of possnble pixels. By repeatlng thls-technlque,:the rlght pixel:
will be found very qutckly (see Flgure 4, 6), after whlch the number

' of pixels to be lncluded in the averaglng calculatlons is known

b.Z'Curve‘averaging

Averaging of curves is performed by averaglng ‘a large number
- of polnts on each curve The number .of ponnts ls equal to the
maxlmum number of plxels in the curves (see sectl0n h 1.3) and thelr

locatlon ls fouhd by the method that is presented in the next sectlon

4l
'
w
~J3
'

’ 't.‘

The averaglng routlne requlres a number of polnts that are
| spaced equally over the part of the curve that~ls to be lncluded

in the averaglng operatlon. The spacing between the polnts ls ~T

H e s R ‘L L
ISP L B e

'found by dlvldlng the length of the sectlon of: the curve one ls Tiff:t"

interested ln (see sectlon h l l) by the total number of polnts
‘ mlnus one (see sectlon 4 l 3) Slnce both the number of polnts
per curve and fhe spaclng between the polnts ls now kn N, lt'ls i
possible to calculate the absolute x .and y coordlnates oh each

point. Suppose there are N + l polnts numbered 0 through N. The
dustance (measured along the curve) between a certaln polnt and the
startponnt of the curve is equal to the points number multiplied

with the lnterpolnt spacing.._ Tracklng'the cu}ve'over thls distance
-wlll'glve the polnt s positlon and thus coordlnates | For each

polnt and‘each pixel the dlstance to the startpolnt ls known. ‘So

it is possible to find the two plxels‘on‘each»slde of the polnt

- that are.closest to that polnt.‘ Since the x'and'y coordlnates of
each plxel are also known, lt ls now posslble to calculate, by llnear
lnterpolatlon, both the location and coordlnates of each polnt.

This posltlon usually does not colnclde wlth any of the plxel
"centers. As an example conslder f}gure 4, 7 he curve in thls
flgure conslsts of seven plxels or six: elements (only the centers of

‘the plxels are shown). The length of the curve 1s 3 x l + 3 x #F'-

U301 + ¥2). 'If seven points have- to be equally spaced overkthls~

4
’

"ffflzgé;rf

-38-

4;"fﬁ fcurve, the spaclng between them is equal to 3(1 + VF)/(7 1)

nlnterpoint spaclngs are constant over the entire curve and only

' .hthe first and last ponnt coincide with a pixel center (this is

always the case)
- b2 Ealsgalslen_gf-sbe_ayezase curve]
S ' The average curve of a set‘of curves Is found by’aveﬁaging'
: : - : - . < T

the equa]iy‘epaced pofnts'one by one. Te aweraée akga?tlcnlar -
point en all theae curves, thehaveragesrof both the x coorainates and
the y coordinates of this point are calculated. Weighting factors
can be assigned to each~curve. By assigning equal weightlng-...~
factors (# 0) to each curve, an unweighted average is obtalned.

Thus the coordinates of a .point on the average curve are calculated

»

by:
n

xi velg T xi ijW;MWWW";..v
s !:] ’) ’
n L : . C "~
T W]

(4.2)

(4.3)

I -w
j=1

where

x = the x coordinate of point | of the average curve

i,ave

Yy awe = the-y coordinate of point i of the average curve
’ . . -

]

. | o -39-

vél ' The po!nt\locatlons are shown in Figure L, 7 : C!early the } e

(see eectien'h'i"i)‘ Figere b, 9 shows the same. two origfnal

' vcurves, but the curve in the center is now the curve that results
from an unweighted average over the length oﬁ_the shortest curve.

- Note the difference between Figures 4.8 and 4.9. Weighted averages
of‘the ;eme original curves are shown in Figuree 4,10 and 4.11.

The weighting factor for the curve on .the left.is‘i wﬁile the
weighting factor for the cerve og the right is 1/3, 1, and 3. This
results in the average curves that are shown in the)QAddle and that
depend on the weighting factor of the curve on the right. - The
higher the weighting factor for the curve on the right, the more
theaverage curve resembles this curve and the more the average
curve's positioh is shifted towar&e the curve wifh the higher
weighting factor (see Figure 4.10 and h.ll).- The averages shown in
Figure k.10 are obtained from a nqimalized averaging operation and
the averages in Figure h 1lare obtained from averagtng each curve
over the length of the shortest curve. The routine is very efficient
and the resu]ts are shown almost instantaneously on the screen
(averaging of two frames with ten curves each takes less than one
second for a moderately used VAX 11/780 computer). The routine is
capable of averaging each curve on a particuler frahe with the
corresponding curves on many other-frames. fhe whole process can
be pefformed in one operation and is shown in Figure L. 12. It .
enables the user to eliminate disturbances aqd noise (by everaging)

as well as modulation effects that occur over a longer time.

’

o =h1-

N

Figures 4 8 thraugh 4. {1 ahaw averages of curves’ taken from ’

: ’aatual fluid flows.\" Figures b, 13 and l, lh show the top half of

a fluid flow image. As shown in Figure_Z.l the bottom half of ’
such an ‘image is usually very similar to the top half. ln the
actual’analysis, both halves have -to be ihc]Qéed (whiah fs possible
with the current'vefsion of the pragram)., Finally, Fig%rés 4. 15 T
and 4.16 show the top half of an average frame obtained from
averagingvthe frames shown in Fiéure\h.13 and h.fh. Figure 4.15
shows the average frame obtained by a normalized length avefage,
while Figure 4.16 shows the average frame that is obtained by a
shortest length average.

Fof ease of viewing, the scaling factor for the curves in

. Figures 4.8 through b4.11 and 4.13 through 4.16 was sat eqqal to three,.
This resths in displayed curves that contain more pixeis‘fhan

the actual curves which might leave the viewer with ;he thought
‘that further improveéant is possible. However, since all operations

v -
use the original data, this is neither possible nor necessary, and

the ¢cUrves are shown with the highest possible resolution.

e

-42-

~s

.9

5. CﬁRVé'FILTERqu‘AND‘RECbGN[TION

Fllteriﬁg o; smoothing of curves might be required.for a
number of. reasons. Additional noise or disturbance reduction
might be nheeded or one might want to retrieve the basic or -
fundamental shape of the curves. For this reason a special smoothing
algorithm Qas developed and this algorithm is prééented in ‘the next
parégraph.

The second algorithm presented in this chapgyf'calculates
a similarity value to express the similarity between a number of
curves. This enables the user to calculate how much a curve is
changing as a function of time or position. Another application

might be to use these simitarity-values to recognize a frame or

curve.

5.1 Curve smoothing

2
A special smoothing algorithm operating in the spatial domain

was developed and is presented in the remainder of this paragraph.
The differences between smoothing in the spatial or frequency domain

are discussed in the fojlowihg section.

The discussion in paragraph 2.3 remains valid here. The
calculation of Fourier transforms and inverse Fourier transforms is
relatively time consuming and costly. Filtering of the curve in
the'frequency domain is performed by multiplying the curve's

transform with the desired filter function. However, the same |

~43- | | n

operétiéh can be.pérfofmed in the §patial domain bylmeané of a
'cohvolution operation between the curve's éunctioﬁ and the Inverge
transform of the desired fi]fér function (Carlson, 1975). In

. terms of computation and effort, both operations are comparable
(excldding the Fourier transform and inverse Fourier transform
operations). So in terms of speed.-the spatiél domain fs clearly
preferable. The filter operation in the frequency domain will
have a draméfic effect on the location O%Athe endpoints of the

curves (see Gumas, 1985). The endpoint locations depend on the

filtering operation and will be different from the original location.

Due to the interchangeability of the convolution operation in the
spatfal domain and the multfp]ication operation in the frequency
domain, this is also true for the smoothing oberation in the

spatiai domain. However, with a specially developedvmodification
of the convolution operation, it is possible to keep the endpoints
fixed. For these reasons, the spatial domain approach is preéerred.

The developed algorithms are presented in the next section.

As mentioned in section 3.1.3, the Ax and Ay values for each
curve are either -1, 0, or +1. Figure 5.1 shows the Ax and Ay
sequeﬁces for a particular curvé. The curve.itself is shown.in
Figure 5.2. The absolute displacement in the x direction is lx(-1)

42 x 1 = -2, Since there are eight elements-in this curve, the

average displacement per element in the x direction fis -2/8 = -.,25,

Ll

HaY

'Similariy,‘the abgolufe ahd'avéragg displaceménts in tﬁe y’directfon"
afé.+k and .5 respectively. The cumulat ive a;erages'are also shéwn’
in Figure 5.1. The cumulative'average; are rounded to the nearest
integer. (A value that is exactly between two integer values is
rounded to the nearest integer'that is smal]er.than this value.)
These rounded cumulative averages are also shown in ‘Figure 5.1.

From the latter, the newly smoothed ax and Ay’ya]ues are derived

(see Figure 5.1). From these values the smoothed curve is derived;
it is shown in Figdre 5.2. By averaging the aAx and Ay values over
the entire length of theycurve, all resolution is lost (the'éverage
deviation is the same for all elements) and thus no further smoothing
is possible. This method is essentially the same as the Freeman

.{1961) routine that finds the shortest path between the curve's

"startpoint and endpoint. However, both forms of smobthing_produce
the same curve for all those original curves thag have the same start-
point and endpoint (see Figure 5.3) because the cumulative Ax and
ay values are ;he same for all these curves. Tﬁis is nof always
desired. Often one likes to maintain the ''fundamental" shape.éf the
curve. .Besides, since no convolution operation was - involved, it is
not really clear what kind of filtering operation was applied. By
averaging the ax and py values;over»the entire curve, each element
of- the original curve contribqted to the value of each element in
the smoothed curve. It seems logical that if this range js feduced.
the smoothing will also be reduced. This i; accomplished by the

modified and unmodified convolution operations that are described next.

-us_

For a ceontinuous tangent angle function and filtéf function,

the filtering/smoothing operation can be described with a convolution

Integral (Carlson 1975): B ~
. A
s(1) = J¢(x>.f(zj— N . (5.1)
-A
where:
s(2) = the smoothed function (curve); s(g) =0 for w4 - (A+vW),
(A+W)] - /
. ¢ (&) = tangent angle function of curve; ¢ (2) = 0 for 24[-A,A]
f(2) = filtering/smoothing function; f(&) = 0 for 24[-W,W]
A = integration variable

Also f(2) is normalized so that:
W

J f(e) de =1 (5.2)

The second equation is needed to obtain unit gainl If the tangent
angle function is a constant.(gf}éyght line) and the filtering
N .

function is"a constant,'then the smoothed value at % = 0 should
haveighe same/}pngent angle as the original curve. This is true
because equation 5.1 is equivalent to the averaging operation that
was described in the beginning of this section. This result is
obtained by the following constfaint;

W< A ' | (5.3)
If equations 5.1 through 5.3 are valid, the smoothed curve tangent

angle at 2 = 0 will be equal ta the constant tangent angle of the

1'6

orfginal'cufve. To prove this, consider the following tangent .

angle function:

b for 2c [-A,A] . | '_
¢(8)= { (5.4)
o for 2¢ [-A,A] o

-Then with equations 5.1 through 5.3, one géts for the smoothed

curve:
A ' A
(o) = 400 flom) @r = o [F(=3) @
-A - -A e
-A A .
-9 J fu) du = ¢ J f(u) du
A -A

W
qfw>w=¢A=¢ o (5.5)
-W ’

If A=W, the width of the filter and the tangent angle function are

the same. This, in fact, is the averaging operation presented at

the beginn}ng of this section. For W < A equation 5.5 is still

valid, but the width of the filter function {s leés than tﬁe width

of the tangent angle function resulting in a local average. So
“"the convolution operation Is a local averaging opefa?ﬁon.

Figure 5.4 shows the smoothéd,function when the tangent angle
aﬁd filter functions are recténgular pulses. Note that both
equations 5.2 and 5.3 are valid for these functions. Studying the
smoothed function reveals two undesirable gffects. bflrst, the

""length'" of the smoothed curve is longer than that of the original

1’7

e

curve (%A“+'ZW)”and<secondly the ends of the tangent'angie:fdnction
6f thé smoothedlcurQe tépér off. The lafter results.in.errors |
at the end and start of the smoothed curve. This is shown in
Figuré 5.5 for the functions of Figure 5.4 with ¢ = (meanfng that
the original curve Is a horizontal line of length 2A with its |
startpoint at the right). The shape qf the smoothed curve dépends

on the tangent angle of the original line (compare Figures 5.5 and

5.6).

The reason for these errors is the local averaging operation.
The operation averages the original tangent angle function’QQer a
fixed region. At the ends.of the curve, the tangent angle function
is hot available anymgre over the entire region, while it is still
averaged over this fixed region. This causes a gradual drop in
the calculated average. R

Instead of applyfng the smoothing operation.to the tangent
angle function, it is also possible to operate on the x and y
coordinate functions of. the original curve. This would'giVe:

A / A

xs(z)_= :J x(1) f(2-A) d\» and ys(z) = J y(2) f(2-1) dr (5.6)
-A i f'A
where:
xs(l) = the x coordinate function of the smoothed curve
ys(z) = the y coordinate function of the smoothed curve
x(2) = the x coordinate function of the original curve
y(2) = the y coordinate function of the original curve

4

-48-

where:. - -) ‘A:'; : -
Dx new = the absolute displacement of the smoothed curve in:
4 B
the x direction o .

D = the absolute displacement of the smoothed curve in

y,new .
the y direction’

So the absolute displacement‘between the startpoiht.and'endpoint.of
both tﬁe original and smoo;hed curve is the same. Since both curves
have the same startpoiht, tﬁe endpoints are also E?p samé. This is
true in general, as long as equation 5.2 is satisfied.

In the actual implementation, the x and y functions are the
discrete Ax and Ay functions that were defined in section 3.1.%.
THe smoothed X and Y functions will be appréximated by the similar

discrete functions Axs and Ays. The equivalent of equation 5.2

becomes:

W |
I® f(k) =1 | (5.9)

k=-wk

The equivalents of equations 5.6 become:

A

xF(Kk) = £X ax(n) f(k - n) - | (5.10)
P k=mAL :
and,
* Ay | .
ys(k) = £ Ay(n) f(k - n) _ (5.11)
k==-A,

Finally, the equivalent ofméEGQZTbn 5.3 becomes:

W s A (5.12)

k k

_50-

SN

Because |ax|<1, |8y|<1, and equation (5.9) also |Ax§|§] and
x, % * '
]Ay5|<l. The Ax; and AyS values represent the displacement in

. *
number of pixels and thus have to be integer values. Let bx_ an

A
w

Ay: be the nearest integer values to X and y: wherg the difference
between tﬁe rounded and original values is carried over to the next
sample to avoid cumulative errdrs. Then Ax: ana'Ay: ére either

-1, 0 or +1. So the smodthed.curves can be approximated with a
continuous string»of pixels. An example, with wk =5 AL =7, f(k) =
1/11 for éll k, and ax(k) = Iﬂfor ke[-7,7] is shown in‘Figure 5.8.
Correcting for cumulative errors causes gaps in the Ax: funttion in
this particular é;se. This can cause an undesired effect. Consider
the data of Figure 5.9. The Ax and Ay are the séme as the Ax function
in Figure 5.8. So the Ax: and Ay: functions are alsq the same as the
Ax: function of Figure 5.8. Both the original ahd smoothed £Urves
are plotted in Figure 5.10. The gaps cause no probTem here since
they occur at the same samples for both the Ax: and Ay: function.

If the Ay string is shortened by two samples (oﬁe on each side), the
gap; in_Ay: are shifted by one position (either to the right or to
the left depending on which side of the curve they are on. The data
of these curves is shown in Figure 5.11. Both curves are shown in
Figure 5.12. The gaps do cause a prpblem this time. The '"'smoothed"
curve is actually less smooth than the original curve. To avoid

these problems, the smoothing operation is modified. Consider

Figure 5.13The tapered ends of the x(%) and y(&) functions are

-51-

A

e

divide&‘ét L = Avandnl =.-A"respectively. The vaiues ét the ends
of. the taﬁefed ends are mirrored with respect té the dividing
lineé ané added to the corresponding.original function values.
This is shown in Figure 5.13. This process has two advantage;.
First it guarantees that the Axslénd Ays strings have the same
length as the original x and vy string. And sgﬁond]y; the gaps that
were present in Figure 5.8‘are removed. In fact for the,partlcular
Ax of Figure 5.8, Ax and AxS are the séme. ‘The modit};d Axs and Ays
have to be rounded to the nearest integer value. Again the
difference between the actual and. rounded value is carried over to
the next sample to avoid cumulative errors. Significant errors can
result if this is not done. For example, if the values are
continuously rounded to a value that is smallér, the total absolute
displacement will not be the same anymore and a différent endpoint
will result.

Figure 5.14 shows what is established by the modification.
In this example wk'= 2. The arrows show to which displacément values
in the smoothed curve the displacement values of the original curve
contribute. The dashed arrows show the folded back contributions.
The pixels near the end of the original curve contribute more to the
pixels near the end of the smcotﬁed curve. Closer to the end,
fewer pixels of the original curve are contributing to the displace-

ment values of the smoothed curve. This, in fact, results in a

reduction in smoothing at the ends of the curve. This can be

- -52-
Ny

juétifiéd by'notihg that less'information;is'avallabfe for the -
¢ﬁds qf'the orfgfnal curve. In the middle of tﬁe original curve,
the shape of the curve is known on both sides of the blxels oné

is looking at. This is less and less the case for the pixels near

the end.

The minimum filter width is one pixel wide (W, = 0). 'If this

- k
filter Is used, the original curve is left unchangeéf The maximum
filter width is constrained by equation 5.12. Maximum'smoofhing

is obtaingd for wk = Ak' Intermediate values of wk give different
smoothing values. Figures 5.15 through 5.18 show the smoothing of
two curves obtained by differeht values of Wk. The shape of the
filtering function was a rectangular pulse, resulting in a sinc (with
sinc x = sin(wx)/(nx)) filter function in the fréquency domain.

The routing could be modified for other filters. However, as can

be seen from Figures 5.15 thrgugh 5.18, excellent smoothing

characteristics are obtained, giving the user a lot of flexibility

in terms of deciding héw much smoothing should be used.

5.2 Similarity calculations

-

As an aid in the analysis of fluid flows, it would be nice if
one could express the similarity between two curves as a numerical
value. In the remainder of this paragraph such a technique will
be presented.

- =53-

T Al

5.2.1 Similarity calculated over shortest curve versus normalized

——— - > v o o e D G T . T G Y T e S s P e G G e e e e N AR S T e R W e P S A G e D S W G W W e

Basically the discussion in paragraph 4,171 also appfies tq,tﬁis
case. So.agéin the user Is given the option to calculate the
similarity value over either the full lengths of the curves (which
then have to Be hormalized to obtain an equal amounf of measurement.
points per curve) or ov;r the length of the shortest curve. This
choice is decoupled from the choice of either methodJ}h the averaging
algorithm for two reasons. First, one might want to measure -the
similarity value between two of the original curves. Second, if G@n
average curve was obtained from a set of original curves by using
the shortest length method, one might still yant to compare one of

L}
the complete original curves with the average curve.

At first glance, a cross-correlation measurement between two
curves will give the desired similarity value. Suppose we have
two curves with the tangent angle functions ¢l(l) and ¢2(2); The
cross-correlation value (Carlison.1975) between these. two curves

is equal to:
A

R¢1¢2(T) = L

: A
¢](2)‘¢;(2-T) dg = J ¢1(z) ¢2(1-1) dg, - (5.13)
-A

where :
$2*(g) = the complex coﬁjugate 3f ¢2(2)—whlch is equal to

¢2(2) because ¢£(1) (and ¢l(2)) is a real function

-5~

¢](£)’5 0 for g4[-A;A) | : | 5
¢2(z)‘='o for L[-A,A] ~

T = a shift operator

-~

Now sdppose ¢1(2) = - %— and ¢2(2) = - %-for 2e{ -A,A]. Their

) | A=- 2 = -.3" ‘ - » =.
R ¢i¢2(0) An“ /4, |fA§3(£) T for 26[A,A], then R¢]¢3(0)
3Aw /L. S A

o R’ _
¢,9,(0) = 3R¢]¢3

Figure 5.19. This result is undesirable. ‘(0) should equal

"y,
R¢]¢3(0) because in fluid flows the difference betwe??/¢2 and ¢,

Is equal to the difference between ¢3 and ¢]. Also if the-camera
in the set-up of Figure 2.1 is rotated over 180°, the timellines
probagate from right to left and the fluid flow is a mirrored image
of the one shown in Figure 2.1.. This is shoyn fér curves ¢] and ¢2
in Figure 5.20.. The mirrored imaéém;f éurve ¢l(¢;) ?s equal to its
oriéinal while the mirrored image of curve ¢2(¢;)_is equal to curve
¢3 in Figure 5.19. So a simple rotatfon of the camera would give

different similarity value if this method is.used, which is

undesirable.

>

instead of using the horizontal as the line of reference for
measuring the curve angles, one can use a vertical line. This is
' T
shown in Figure 5.21. Now ¢](2) = 0, ¢2(2) = %-and ¢3(2) =- 7
for %e[-A,A]. So both R¢t¢2(0) and Ryjyes

Both result in the same value, but so would any other correlation

(0) are e§ual to zero.

involving curve ¢‘. So no matter what the shape of the other

curve is, If It is correlated with ¢], the result will be zero.

55

(0). The three curves are shown in‘“ .

’

© This is_c!eérly undeslrable. 'The‘solution seems to lie in the
normalizathnAof equation 5.13. To do so,Vequation‘S.IB is

~divided by the norm of both ¢, and ¢,.. Thus -~
A .

© = [0,0) 6,0) @0
-A

R*
¢4,

et Il
A .
=J ¢, () ¢2(2-r)'d9. .
-A -)/’
A A
I‘|¢1(2)|2d2. j l6,(0)] %ds
-A- -A

A

J ¢,() ¢2(z-r) d2
-A
A A . ' (5.14)

J¢f@) dg. J¢§u))

and with Schwarz'gATnequality:A

LONCIEY (5.15)

So with'the same ¢], ¢2, and ¢3 as before, one now obtains
o Il = V2R« w/2, [[o,|| = VZA - «/h, and |[45]] = /2R . 3n/h,

* * ,
And thus R (0) =1 and R (0) = 1. So both values are equal
o142 9143 , |
as desired. However, any two angles that are not equal to zero

would have given the same result. So for the curves in Figure

%

5.22,‘both'R* (0) and R°. (0) are equal to one. Different

values for R are only obtained if the general shape of both curves

_56-

\om

is dffferent} .Sincg bOthM;;;W:;;Qiéht lines of.tﬁé same;léng;h,
‘the‘Qalué'fgr R* is always ohe. Agaih, this‘is.nop a.desifed

characteristic. In terms of fluid flows Ehe,similarity between
' ¢] and QZ of Figure 5.22 should be.differegt from the similarity

between ¢] and.¢3f So a different similarity function had to be

developed. This function is presented in the next section.

5.2.3 similarity_function

Similar to the technique’described in sectLpn'h.Z.l, each.
curve is chopped up in an equal nuhber of elements all of the same
length. Again, either the full length of the curves of only a
. part of the curve with a length equal to the shortest curve is '
used. It is now possible to compare the direction of corresponding
elements on each curve. The difference in angle between one element
of eaéh curve is ¢xpressed as a numerical value. In analogy with
equation 5.15 this value is normalized to a value between -1 and +1.

Figure 5.23 shows two curves consisting of seven elements each.

The element similarity function is defined as:

2 |¢’1(k) - ¢2(k)l

o

(5.16)

A*(k) =1 -
t 180

where

* ' .
A (k) = similarity between elements k of curve 1 and 2. This
function is plotted in ngure 5.24. If the element of curve |

(¢](2)) is used as reference (pointing .straight up in Figure 5.24)

a point of the element of curve 2 (¢2(2)) lies anywhere on the circle.

T~

_57-

. The element sfﬁilarit&Avaiues-are iinéarly'dist;iﬁutéd;éver this
circle and é:few qf them are shown. In particular the value Is
equal to 1 if the elements have the sa%e direction, -1 [f they

are pointing in opposite directions (note each element has a
startpoint and endpoint that depends on the direction of the curve),
and 0 if fhey-are perpendicﬁlar. By summing all tﬁese values for
all elements, one ends up with a value betwesp/ﬁN and +N whefe N

is the number of elements. The normalizéd similiydty value is now

defined as:. N

*
I A (k)
k=1 : .
* ~
5¢ 5 = : (5.17)
172 N
where :
%
S = the normalized similarity value
¢1¢2 p f
and S¢1¢2 has a value between -1 and +1. Consider again the
*
three curves in Figure 5.19 Then S = 0.5 and
o ¢ ¢2 « ¢]¢3
for the curves in Figure S 22 one obtalns S¢ . = 0.75 and
2
*
S¢ b = 0.5. So, as desired, this function expresses the difference
173 :

between curves ¢2 and ¢3 in Figure 5.22, while it also expresses
the similaritx between curves ¢2 and ¢3 in Figure 5.19. Now
consider the two.jagged curves of Figure 5.25. For these curves
(both with ten elements) S¢ ¢2 .0, while thg curves are in fact
very similar. The zero value results from the fact that each
element in curve 1 is perpendicular to the corresponding elements
in curve 2; If one would shift either of the curves oﬁe element up
or down, a value of S¢ ¢2 = .9 would result. The .9 results from
the fact that now one element of each curve Is not contributing to

-58-

L]

N

~

(L].here)fdivldéd by the Qeoﬁétric-mean of thé length of the

two curves (D,Lz here). So the new similarity function is defined

. | e)
$1%2 e LT N Vb -
where

L, = the length of the shortest curve |

L, = the length of the Tonéést curve ,//

2
Note that still

| |s¢1¢2(r)| <1 | - (5.21)
The ecnal sign Is only valid if two curves are'exactly the same
(both in shape and length). |

The‘justificatfdn for this,particular modification is given in
terms of an example. Figure 5.27 shows twé semicircles, one having
twice the radius of the other. The similarity value is now
calculated over the length of the shortest curve. Since fhe length
of the larger semicircle is twice the length of the smaller one,
only half of this semicircle contributgs to th¢ similarity value.
Suppose the first part of each semicircle with fength L is
approximated:WI}h one element (see_Figure 5:28). Use of equation

5.20 and 5.19 with L, = L, = L gives a similarity value of:

1 -2
|- 5% - 0
1 N - . 1800 - 0.5 .
1
-60-

“on

\

Approxlmating.the same parts of the Semfclrcles with. two elements

(see Figure 5.29) gives a va]ue of :

_ ., 67.5 - 45, _ 67 5 ‘
20 (o) = (1 - 2,22355—2) + (1 - 2.2622) _0.75+0.25 _ |
$142 | 2 » 2
which is the same value as before. |If the curves are approximated

with infinitesimal small elements, the following result is obtainedA

'S

(see Figure 5.30). The angle ¢] at a particular point on the larger .

semicircle is equal to (see-Figure 5.30):
o -

¢,(2) = 907 - a(%) ye
where

a(2) = *.90°

L
and 2 = the distance measured along the curve from the point one is
looking at to the startpoint of the curve{ Le{o,L]

Similarly,
B N
4,(2) = 90° - B(2)

where
T L o
B(l) ' '[' 180
and thus | ——
l,(1) = o, ()| = {.90° | (5.22)

If the summation in equation 5.20 is replaced w!th an lIntegral,

is replaced by L/dl,‘L‘ =L, = L 4dnd equation 5.19 is rep}aced with

2
its continuous equivalent, then one gets with equation 5. 22:
L L 90 L

3 1 - 2. - _ L
S¢]¢2(Q) = J 180° L (1 -9 &

L/ de

- =61~

=N\

~ T—B 2 L o 2 o | S :
1 L 1 L I
= t(l‘ it) = I(L - it? = -5 ‘ c - (5.23)
0 .

¢ - £

Note thaf the square root term did not af%ect'the final value. So
again the same result is obtained. Now consider Figufe 5.31. The
similarity value (uﬁing equatigﬁhg.Zb) fof curves 1 and 2 is 0.5.
'(see~equ;tf0n 5.23). If one compares curve 1 wfth itself, the
simflérity value is 1. Finajly, thé simila;fty value for curves 1
and 3 (using equation 5.20 and normalizations)vgivég/éﬁe value

Vi = 4/2 = 0.71. Physically; curve 3 is less similar to cu}ve 1
than curve 1 itself is (because their lengths differ), but is
definitely more similar to clurve 1 than curve 2 is. ‘The obtained
values express this difference (values of 0.71, 1, and 0.5 wefe
obtained respectively) and the additional term in equation 5.20

is thereby justified. Of course, the termbonly'influences the
measurements on normalized curves.

The original flow (see Figure 2.1) shows significant symmetry
between the bottom and top half of the flow. However, equation 5.20
cannot directly be used to measure the symmetry. The general
direction of the cu}ves is oppoéite to each other, but the individual
elements”are not opposite to each 6ther. This is shown in Figure

5.32. |f one of the curves fis mirrored with respect to a vertical

A

-62-
r

- .

liﬁe, perfect symmetry wifh respect.fp a gpriiohﬁal 1Iﬁe’would
yield tha£ the‘individual elgmen;s 6f ¢urve 1 and ihe'corresponding
elements of the mirrored image of the other &urve 1' would always
point in opposite directions (See Figure 5.32). This in turn
results in a similarity valugﬂ?fwzlll.Less than perfect symmetry
would»resﬁit'in a value largef than -1 (but less than +1). This
op&ion is provided to the user, so he can measure the symmetfy'of
the fluid flow. The user also can specify a sgiftfpange over which
S¢ ¢.(T)'is calculated. The algoritﬁm will return the maximum
magnitude value that was found in this range. So finallyithe

similarity between two curves is defined as:

(t)] (5.24)

Similérify between 2 curves = sign{$ (1) }* max
192 T

S¢]¢2
‘where: AN
te[-R,R]
R = shift parameter (integer value equal to the number of
pixels one wants to shift curves over)

S (t) = defined in equation (5.20)
BAALY)

If more than two curves have to be averaged, the algorithm will

return all the individual values (obtained from the combarisons

of two curves), the mean of these values, and the standard deviation

of the set of values. ' <

5.2.4 Resu1ts.

The similarity measurements shown in Figures 5.33 through

. -63-

| S.36‘and,Figufe:5f38 are. obtained by using the ncrmalized length

option while the measurement‘in Figure 5.37 is obtained by using the

2
™y

shortest éurve length option.

The'siﬁilarity value resulting from a comparison between a
curve with itgelf is shown ih'figure 5.33. Figure 5.34 shows
a slmilarfty measurement.befweén two different éurvéﬁ while
?igﬁre 5.35 shows a measurement involving three curves. Shown
are the mean value of thé two -measurements involved and thé
standard deviation. .THe number of curves co&ld be incretg;d to
the maximum number that can be displayed on the screen Which is
constricteduby the size of the buffer (see paragraph 3.3). The
user can pick any curve that is disp]ayed on‘the screen (original
curve, smoothed curve, and averaged curve) with the specfal cursor
routine (see paragraph 3.4) and the similarity routine wil! retrieve
all the required curve data from the stack.

Figure 5.36 shows a similarity measureménf between the same two
curves of Figure 5.34, but this time a shift rénge equal to 20% of
the length of the curve was specified. 'The routine returns the
maximum similarity value it finds in this range.' Figure 5.37, again
shows the similarity betweenwtﬁeucurves of Figure 5.34 (with iero
. shift), but this -ime the shortest curve length option was used
in the calculation. Finally, Figure 5.38 shows the similarity

between a curve and the smoothed curve that was obtained by a

maximum smoothing operation on the same original curve. A similarity

-64-
N

va[ﬁe of 1 should result %fﬁthe cur?és'aré the sémeiiFigqre 5.33),
alvaluepof -1 ;esults if therédrves héQe the same shape and length

but their directions are shifted over 1800, and a value of zero should
resﬁlt If the curves are totally dissimilar (averaging out of

the individuailelementAvaluee’Qill occur in this case). This

is establishéd by the algorithm presented ia‘this ?haptef. It is-
cabable of measuring the simi]érit? between-arbitrary curves

and frames. - ///

_65-

N

6. CcoNCLUSIONS . - L
The féésibili§y §f,image processinénaﬁd péttern'recognition
of flpy patterns has been shown in this Investigation. With the
aid of ;he‘devgloped algorithms and roufines, the Qﬁer can perform
averaging, smoothing and similarity 6pgrations_on.arbitrary curves
and frames. With a specially deVeloped algorithm, it is possible
to express the similarfty between two curves in a nuﬁerical~value;
The degéloped code provide§~a~pigh1y-Interactive’;;ogram.
The program Is very fléxlble.and provides the uéer with many optlons.
He can process complete frames and curves at once to speed up the
process, or.he can perform operations on just a single curve which

gives him maximum flexibility. The program is user friendly,

practically menu driven, and almost '"idiot proof'' in terms of that

E

it rejects inconsistent data inputs.

The algorithm and routines are very efficient in the sense that
max imum attentioﬁ was given to computational efficiency and use of
the mosé effecti;e théofies. Averaging and smoothing of cﬁrves was
established without the use of discrete Fourief transforms. All of
this also results in relatively fast routines where the results
(even if a large number of frames or curves is involved) are availa-
ble almost instantaneously. Thisvin turn increases the interactive '
use of the program.

Efficient data storage and manipulation is achieved by means
of specilly developed buffer and cursor routlges. These routines

form an integral part of the whole program.

- ‘66-

N

~(in terms of the maximum number of frames, the maximum number of

-

Future_wéfkuﬁhbuld‘Include‘theiintegration of -the program

‘with the data acquisition éﬁgbﬁ;gﬁrOéegs{ng equipment and routines.

As a special feature, the user might be previded with an option
in which a set of previously defined manipulations is operating

on the frames automatically. The ;apabllitles of' the program

curves per frame, and the maximum number of points per curve) can

be suited to the user's need by changing the appiﬁpriate dimension

-statements.

0f course, the application of the program in fluid flow

analysis is one of the immediate future goals.

-

-67-

-89-

VAX 11/780 computer

VS1l1 color
terminal

3

- advanced
processing

=

storage of
digitized
curves

1

curvetracking

hi

t

L, fluid flow

~

Ny
Yl

Il

video
camera

preprocessor trigger
¥ N
mass frame PP
‘ —q d t X
storage ¢ grabber rerhe !

Figure 2.1 Fluid flow analysis setup.

RETAKE

The Operator has '
Deter-minedi_that the
Previous Frame s
N Uhacceptable and Has
Refilmed the Page

in the Next Frame.

-89-

el VIENN

VAX 11/780 computer

P fluid flow

<
VS11l coleér

terminal

advanced
processing

storage of
‘digitized
curves

T

curvetracking

.. '

reprocessor .
prep trigger
L
1 =
masz - — frame digitizer le
h } h 4
storage grabber & _

Figure 2.1 Fluid flow analysis setup.

Figure 2.2 Uniform continuous curve ¢ (2).

® cndpoint

O chanpe 1n dircction

Fipure 2.3 Feature extraction in fingerprints.,

y-—-—-p—ur—-————-—i

«
4]
|
|
1
L
. |

"

!

. l
’ I
I

l

I

|

)
J

XX . .

1 2 n
Fipure 3.1 Recording x and y coordinate of ecach pixel.,

69

6 7 ' 8

Figure 3.2 Chain code representation.

start: (X,y) —
- 7 chain codes: 2
3
2 1 1 8 3
7 2
> 2
})
7 -]
3
8
4 5 6 7
3 7
5
2 4
y L 4
i
X

Figure 3.3 Curve representation with chain codes.

f'""'}l

e - ‘ ‘ N
- i

Figure 3.4 Element length.

r

..70..

(1) = 1
L(2) = 2
L(3) =2 + V2
_ . L&) = 2 + 22
) . L(5) = 3 + 2V2
' L(6) = 3 + 3V2
_ L(7) =0
1
rd
Figure 3.5 Length array data.
chain code value AX
1 1
/Z}Ay 2 L
-
eyl Q —1
AX 5 -1
6 -1
7 0
8 1
9 0
0 epd~of

Figure 3.6 Chain code to apXx/py conversion.

3l & 3 2 P

ay + 21 20 s] 9|1

AxX + 2

Figure 3.7 pax/ay to chain code conversion.
)
-71-

AY

OO

Figure 3.8 Rembving rédundantlpixels.

0 —~ o o] ~ 00 o0
o ard o & o o«
—~ o~ i) ~ I~

™~ NS~
D=t s O & & o
™ O~ 0

-

el WV O O O M~
N et & & & & &

[aV] nmwn O~

-72_

of Figure 3.8.

'Figure 3.9 Freeman's corner cutter matrix.
3
3
3
3
v
. new chain code: 3

original chain code:

— N T WO N0

Figure 3.10 Freeman's corner cutter applied to the curve

-¢/-

SEQUENCE-

POSITION . —
- l ’ " STACK 1
: * l . A S
. T | B I T T " T
M — N B T Tt T BT O S e
1Tttt
\ Tttt
o - : : } ; 1 1 [] 1 F o H
CURVE- _ . . ‘ v : T i T —
ADDRESSES ; t ' } ; t t y t .
e o TS B N NP HE S E S
. b] L) L : == 2
SEQUENCE- I : I , 1 I 1 sy
COUNTER I ! ¢
- start X
start y
‘POINTER color —
e # of samples h | e
| NI labeltype :
, _ label switch
- AVAILABLE- curve ;: -
ADDRESSES - . _frame =
display window
3 ¢ ¢ ¢ ¢ ¢t &t & 1t
x0 -
yO
s scale
] ¥ b ¢
x T -~ CURVE-
INFORMATION

Figure 3.11

Buffer setup.

Figure 3.12 Cursor search routine.

I'd
AN
-
41) 40| 38]37] 36
39 |35 33| 313029
(:::) 38 {34 |30] 2726|2423
~ 38 |32 128 |25 222019 |18
39 {34 |28 {24 |21 |17 1514 |13 J14] 15
41 3&;;30 25 121 1613 {12 f10| 9 Jro|12}13
40 |33)27 |22 117 |13f11| 8| 7] 6 8 {1113
38 13126 {20 (15 |12] 8] 5| 4| 34| 5] 8}12|15
37 (3024 |19 f1ajrio} 7) af 2f 1} 24| 701014
L B B
13({9] 6] 31 1] 3] 6} 913
16f1of 7] af 212 a] 7}10]14
1is 12y 8| s | a§ 3] 4l 5| 8]12]15
13{11| 8| 76 "7 8f11{13]
(:::) 13 {12 10§ 9 j10]12 |13
- 15 |14 §13 |14 |15
'_ S

Pixel Quadrant
II ITT IV I
1 0,1 -1,0 0,-1 1,0
2 -1,1 -1,-1 | 1,1 1,1
"3] 0,2 | -2,0 0,-2 | 2,0
4 (a) | -1,2 -2,-1 1,-2 2,1
4 (b) | -2,1 -1,-2 2,-1 | 1,2

Figure 3.13 Search (look-up) table.

Figure 3.14 Expanded search routine.

7

Figure 4.1 Normalizedllength.

..75_

- e e T

Figure 4.2 Shortest curve 1éngth.

shortest curve

length N

N length
pixels N

lpgnger curve

N\

N/V2 pixels
|

[]

Figure 4.3 Minimum number of pixels in second curve.

shortest curve

N N\ /'
pixels -
length
NV2Z <
length
N NY2 k

longer curve

—_— \\':7

>N\E
pixels

/

Figure 4.4 Maximum number of pixels in second curve.

76

)

distance from

IN/V2] startpoint = L ‘L '
: elements ! -~ “ ydistance from
: % - LY
longer = A startpoint = L'
curve (V31 ,
elements

shortest curve

N elements ‘\distance from startpoint =

-~
'

Figure 4.5 Location of last pixel to be included.

N/ V2 | L’ (NY2]
1st 2nd o
guess guess :

3rd

guess
4th
guess

Figure 4.6 Binary search for exact pixel.

~

® pixel center
X point location

Fipgure 4.7 locationr of points that will be averaﬂed.
-717- '

«

T =X

2

<« original

curve ’ \\\;V

<« average
curve

= ‘___f/4{ original

curve

DO YOU IBNT A COPY? (Y/N)

Figure 4.8 Unweighted average of two curves (usinlg normalized lengths).

-6L-

T X

<« average
<« original curve

curve’ ‘ _ \/

« original
curve

00 YOU WANT R COPY? CY/N)

Figure 4.9 Unweigthed average of two curves (using dhortest cﬁrvg length).

*r

08

original -
curve
(weight = 1)

= §
“nI

average curves

=

<« original

curve

3

DO YOU WANT A COPY? C(Y/ND

A

Figure 4.10 Weighted average of two curves (ugipg’normalized~lgngths)?

(

- 18-

M M
2 1, 2
' ! '
original -
curve
(wpight=1) . 1 1
3 A

average curves

>

w3
0

!

% original
’ curve

(WEight = :}3" 1’ 3)

DO YOU WANT A COPY? (Y/ND

Figure 4.11 Weighted average of two curves (using sho)rtest curve length). -

& .

S

frame m

average frame
o~

Figure 4.12 Averaging the curves of a set of frames.

-82-)

0 YOU WANT A COPY? (Y/N)

Figure 4.13 Top half of a fluid flow image.

178

- =

p—en N

DO YOU WANT A COPY? CY/N)

Figure 4.14 Top half of a fluid flew image (not equ?l to Figure 4.13).

...98..

A A A A A A

.

S

DO YOU HWANT A COPY? CY/N)

-

Figure 4.16 Top half of average frame (using shortest curve length),

element absolute average
1 2 3 4 > 6 7 8 displacement | displacement
1
. AX 1 1 0 -1 0 | -1 -1 -1 -2 -2/8 = - 4
»
1
Ay 0 1 1 1 1 1 0 -1 +4 4/8 = 3
cumulative 1 1 3 1 1 3 . 1
average AX " w2 4 -1 -14 13 -12 ~2 -2 . 4
cumulative 1 1 1 1 -1
average Ay 3 1 1-2- 2 2-2' 3 35 4 +4 >
rounded 1
cumulative ax 0 0 ..—1 -1 -1 -1 -2 -2 -27 A
rounded o |1 {1]2 |2]3]31!a4 4 z
cumulative Ay 2
smoothed o o f-x Jo o |of-1]o -2 -z
g4x 4
smoothed 1
0 1 0 1 0 1 0 =
8y 1 Y 2
Figure 5.1 ax and ay sequences a particular curve.

endpoint

original curve

--—-- smoothed curve

startpoint

Figure 5.2 Original curve and smoothed curve.

original curves

=

—— original curves
-—— "smoothed" curve,

int
startpoin shoxtest path

Figure 5.3 Shortest path between startpoint and endpoint
of original curves.

-88-).

| JON
% I W< A — L
¢(2) < oo
' . —— ——
-A A 2 ~W W g
. A .
’ s(l)'
— ¢
,/’//1 ‘r\\\\\
f t t T
—-(A+W) —-(A-W) AW A+W . o
Figure 5.4 Convolution operation.)
-
(A+w)__ smoothed
2W G } .l.‘y_ curve -(A-W)
m
(A-W) uw) D 2W .
T U
-(A+W)
original curve
A -A
Figure 5.5 Smoothed curve. with ¢=7 ,
a
) (A+W) _
A 2W } L1l
] T
(a-w) T+ =
. smoothed curvm
original |
curve
— + F -(a)
i
A ~(A+W)

Figure 5.6 Smoothed curve with ¢='T-2T;.

89 J‘

-06-

x(2) 1

b

~(AHH) =(A-W)

(A-W)

Figure 5.7

il
—_— _L - I
W y(2)
— Y
-W Wy -A D N—rys
¢ = arctan Y/X
\/512) 1_ -
— Y
X | |
N i
| Jp——- 1 1] t et
(A+W) 2 ‘ (A+W) =(A-W) (A-W) (A+H) 2

Smoothed x and y coordinate functions,

)

@ Ax(k)1 _- -
I .
- N S S T LA ———
-7 -5 -3 -1 1 3 5 7 .
£ |
—]_ .
11 ~__
r v - —
-5 =3 -1 1 3 5 .
! . 4‘.&)(*(1()r
\3 continuous case 1 ’ S 1
l e _|_ ——""[‘l 1- ¥ »r-'t L aman aaam ™ 1ﬁ_t. r-l t-l ’_' Tl- ——
-11 -9 =7 -5 =3 -1 1 3 5 % 9 11 .
cumulative error error —m—p
1] -3 5| 1|-4a| 1] 5]-3]|-1 ~1]-3] 5] 1]-4}| 1| 5]-3]1
°| ﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁl °| ° |0 |° l ° ﬁ|ﬁ|ﬁ'|ﬁ|1—1 T ﬁlﬁ 0
-12|-11|—1o| -9| -8| -7| -6 l-sl‘-al -3| -2 |-1 l 0 | 1 | 2| 3 | 4 Ihs | 6 |}7 | 8 l 9 |1o |11 |1z

Figure 5.8 Discrete smoothed curve, -

.

k)-10|-9]-8]-7|-6|-5|-4|-3]-2]-1 Jo |1 }2}3 s |5 |6 |7 ls |9l10
ax o)1] fe |l s 1|11 5
sz 1 11 || 1 1
sy tfifrffr vl

oo | 1| 1] 1 SRR TR B N F ET B} 1|1 1

Figure 5.9 'Original and smoothed curve data.

P

original curve
3

smoothed

Figure 5.10 Original and smoothed curves from data of %igure 5.9.

~

k | -10|-9]-8|-7{-6|-5]-a]-3]-2]-1 Jo |1 12 |34l 5|6 |78
x| IR IR IR AR R IR N A TN B!
nx‘: T 1] 1 jafrfafigrfrfifs 1|1
by | of ifajafafafafr|ufrfrfr]|a]i]o
A'y: 1 11 Jiffryrl|a | 1)1

Figure 5.11 original and smoothed curve data .

original curve

¢

Figure 5.12 Original and smoothed curves from Figure 5.11.

-93- ‘ ;.

xs(z) or ys(Q)I , | -

> Y

/| |

AN ¥y
l% } - { ——
—(AHW) | -(A=-W) (A-T) | a+W) %

-A A

Figure 5.13 Modified smoothed tangent angle function.

3

) o b 1 .
1 -5
| I e
i K
AX OT 3y T
I —‘—1,U,+1
l —
y k K 1
/]
/|
/ L 1/111 \.;Roothing
[2 2\ I\5/ =/ =4{=
V- AN VAL \
. \ \
:--‘TJ. y J y 1 3—1—-1’0’1
i
]] | §—
3 original pi§els :‘ i einal pixel ~\> original pixels
contribute to this orlglna pixe ? contribute to these
contribute to this
value . values

value

Figure 5.14 Weighting of displacement values.

-94-)

-6~

+ smoothed and
--original curve
=39 W =
(Ak 39, W 0)

L I
smoothed and

" original curve
(Ak=31’ Nk=0) |

00 YOU WNAT A COPY? (Y/ND

'Figure 5.15 Smoothed and original curves (wk =0;. }.

——

« smoothed curve

< original curve

(Ak=39,’Wk= 9)

< smoothed
curve

t

original curve’
=31 =7
(a.=31, W)

>

00 YOU WNRT A COPY? <Y/ND

~—_

Figure 5.16 Smoothed and original curves (same as in Figure 5.15; wk=0.25-x Ak).

<« smoothed curve

< original curve
(Ak=39’ wk=19)

]
]

-ry

>

- smoS?heQ/

curve

X

original curve

(A, =31,

=15
wk)

DO YOU WNAT A COPY? C(Y/ND

‘Figure 5.17 Smoothed and original curves (same as in’Figure 5.15; wk=0.5 X Ak)'

g reference

=31 , : B
4 277 4

1
¢1=' 12‘

Figure 5.19 Three different curves all with length 2A.

-

N::

Figure 5.20 Mirrored and original-curves ¢l and,$2.

)
4—— line of reference

>
N Ll n
L1
» A -) __'ﬂ' -
4375 |l - %7
1$,=0
199

Figure 5.21 Curves of Figure 5.19 with different line of reference.

'99" ’]

Figure 5.22

curve 1

¢

Figure 5.23

Figure 5.24

3 different curves all with length 2A.

'

Curve elements to be compared (7 elements here).

1/_¢1(2)

5

B

~—,(2)
0 °

I'lement similarity function.

-100-

-101-)

R 2R

Figure 5.28 Une element approximation of first part with
length L of curves.

-~

-

Figure 5.29 Two element approximation of first part with
length L of curves.

Figure 5.30 Infinitesimal approximation of first part
with length |, of both curves.

-102-)

curve 3

2R -

”~

Fipure 5.31 Three different curves, all part of a circle.

. 7
startpoint
curve 1
. -
curve 1°' * mirrored image of
curve 1'
startpoint J . ¢ startpoint

Figure 5.32 lMirroring of curves.

-103-

-q01-

]

THE SIMILARITY VALUE 1S: 1.00648 -
(HIT ANY KEY TO CONTINUE)

Figure 5.33 Similarity betweer a curve and itself.

-501-

o~

THE SIHILARITY UALUE IS:
(H1T ANY KEY TO CONTINUED

a.5968

Figure 5.34 Similarity between two curves.

-901-

THE MEAN SIMILARITY VALUE FOR THIS CURUE IS: ©.5278
UITH A STANDARD DEVIATION OF: @.8973
C(HIT ANY KEY TO CONTINUED ’ :

Figure 5.35 Mean similarity value (and standard deviation) for a set of 3 curves.

)

-[0l-

THE SIMILARITY UALUE IS: 0.6281%
C(HIT ANY KEY TO CONTINUE)

Flgure 5.36 Similarity between two curves (using a shift range of 20/) applied-to

the curves of Figure 5.34.

).

801

e

THE SIMILARITY VALUE 1S: ©@.58290
(HIT ANY KEY YO CONTINUE)

Figure 5.37 Similarity between two curves (using the s?qrtest curve length)

applied to the curves of Figure 5.34.

Carlson, A. B., Commﬁnication Systems, 2nd ed., McGraw-Hill,

1975. ’ '

REFERENCES

Freeman, H., ""On the Encoding of Arbitrary Geometric
Configprations“,'lRE Trans.:on Electronic Computers; Vol. EC-10,
June 1961, pp. 260-268.

Granlund, G. H., ''Fourier Preprocessing for.Hand Print Ch;racter
Recognition'', 1EEE Trans. 6; Compu;ers, February 1972,

pp. 195-201.

7
Gumas, C. C., A General Pattern Recognition Technique for

Open Curves, Master of Science Thesis, Department of
Computer Science and Electrical Engineering, Lehigh University,
1985.

Kerstens, Pieter J. M., Manual for Spatave: An Image Processing

and Pattern Recognition Program for Fluid Flow Analysis,

Department of Mechanical Engineering, Lehigh University,
September, 1985.

Lerner, E. J., "Sleuthing by Computer', {EEE Spectrum;'July 1963,
pp. Uh-49. >

Ozsoy, T. M., Bhalla, S., Summer, R., VS11 Graphics Package

Reference and Example Manuals, CAD Laboratory, Lehigh University,

1983. : ' ~

Pavlidis, T., Algorithms for Graphics and Image Processing,

Computer Science Press Inc., 1982.

-110- s

10.

t-
Rao, K., Balck, K., "Type Classification‘of‘Fingerprlnts: A
Syntactic Approach', I|EEE Trans. on Pattern Analysis and

Machine Intelligence, Vol. PAMI-2, No. 3, May 1980, pp. 223-231.
: 1

1Zahn, C. T., Roskies, R. Z., "Fourier Descriptors for Plane

Closed Curves', IEEE Trans. on Computers, Vol. C-21, No. 3,

March 1972, pp. 269-281.

-111- ;

\

APPENDfX A: SPATAVE, AN lNTERACTlvg,IMAGE-PROCESSING AND PATTERN
RECOGNITION PROGRAM FOR THE ANALYSIS OF FLUID FLOW
PATTERNS . ‘ '
In this appendix, the main structure of the program ''SPATAVE'
(for SPATial AVEragipg) is presented. For a more detailed
description, see Kerstens (1985). The program is written in
FORTRAN 77 and runs on a VAX 11/780 computer equipped with VSiI
color monitors. For this progﬁgm the display is divided into
three parts (so-called windows). The first window hés a yellow
bor@er and is displayed in the upper right ;;rner. This window
wfl] display all the curves (original, averaged, and smoothed
curves). The second window is positioned at‘the bottom of the
display and has a blue border. In this window all program messages
will be displayed. The third wfndow also has a blue border and is
positfbned at the left of-the first window. This window is for
future use (display of additional data or menus). There is also
an invisible fourth window (with no border). This is used for full
screen displays (in whiéh case the curves are shown on the whole
screen and the othec)windows are removed from the scregn). The

windows are shown in Figure Al.

The set-up of the program is best understood by looking at
Figures A2, A3, and Alk. Although these flow charts are not
exhaustive, they do contain all the necessary information. The flow

chart of the main routine is displayed in Figure A2. The

=112~

-
\ T

— _
initialization block sets a number of variables to their initial

values and calculates some basic parameters tsr each curve that
i; an input. After some scaling (the user can piqk the scalingt
factor and the center of display) the program will ask the user if

. he wants to display complete frémes (a frame is a single image
containfng several curves and is obtained from one video image

taken at a particular boint in time). |If the user decides to u;e
this option, the program will exézute routine A. The program will
"now ask the user if he wants to display justﬁé single curve. Again
the user can decide to do so in which case th:'program will run
routine A'. The next option that is offered is averaging of complete
frames. The following option is averaging of a single curve on
several different frames. The final option makes it possible for
fhe user to average an arbitrary set of curves that can, but do

not have to be, on a single frame. Finally, the user can jump‘back
to the beginning of the program and do some further processing.

The program is set up to give the user maximum flexibility
while still making it possible to get some quick results. In fact,
speed of operation decreases if one goes down in the f1o% chart
while flexibility increases. So if one wants to éverage complete
frames, the results can be obtained quickly. However, if one wants

to pick each of the curves that should be averaged (Tncreased

flexibility), one has to do so by selecting the curves one by one

(decreased speed).

-113-

- 5

Figure A3‘ show§ how the fra\es and curves are displaye&
(routines A and A'). Among other things one can'cleaf the window,
change the color of the ne*t curve/frame (in fact chgnge‘the shade
of green), and do a similarity test. This can be repeatediés ‘
many times as desired.

Figure AL shows how the frames and curves are averaged.

Among other things one can again clear the window, average the
curves/frames, smooth the curves/frames, and calculate similarity
values by picking some of the displayed curves. Again, this can
be repeated as many times as désired. 7

The reader should note that any of the following can be done
with the program SPATAVE in its current state:

- display any frame(s) (with or without clearing the screen) *

- display any curve(s) (with or without clearing the screen) -

- smooth any curve(s) (original or averaged)

- aQerage any of the original curves (on the Same or on

different framsf)

- calculate the‘correlation/similarity value between any of the

displayed curves/frames (original, smoothed, or averaged)

With these capabilities, the program SPATAVE should be a useful

tool in the analysis of fluid flows.

-114-)

!
APPENDIX B: -Author's Biography ' -

Pieter J. M. Kerstens received his Kandidaats degree and his Ir.
degree in Electrical Engineering from Eindhoven University éf ¢
Technology, The Netherlands, in 1981 and 1983 respectively. His

thesis work included digital satellite transmissions in the 11 and

14 GHz bands, with the Orbital Test Satelllte. These transmissions
Y
were the first digital satellite transmiss}ons in The Netherlands.

-~ e

During his graduate studies, the author also worked on fiber

.

optic transmission and a three month project at tﬁs Israel Institute
of Technology, Haifa, lIsrael. 1In 1983 he joined Philips Laboratories
in Briarcliff Manor, New York, where he was engaged in repeaterless
long wavelength and single mode fiber optic transmissions of FM
videq signals. This work resulted in a paper that he presented

at the NCTA Conference, Las Vegast Nevada, in June, 1985. He is

also author or co-author of several technical reports. The author's

current interests are in robotics, flexible automation, communication,

optimal control, and image processing.

-119-

