INVESTIGATING THE INFLUENCE OF CANNABINOIDS ON MYOBLAST GROWTH AND DIFFERENTIATION

THE EFFECTS OF CANNABIDIOL AND CANNABINOL ON C2C12 MYOBLAST PROLIFERATION AND DIFFERENTIATION

By SEAN LAU, BSc.

A thesis submitted to McMaster University

in fulfillment of the thesis requirement

for the degree of Master of Science in Kinesiology

McMaster University © Copyright by Sean W. Lau, December 2019

MASTER OF SCIENCE (20 Kinesiology	19) McMaster University Hamilton, Ontario
TITLE:	The effects of cannabidiol and cannabinol on C2C12 myoblast proliferation and differentiation
AUTHOR:	Sean W. Lau Hon. B.Sc. Kin. (McMaster University)
SUPERVISOR:	Gianni Parise, Ph. D.
NUMBER OF PAGES:	xi, 138

LAY ABSTRACT

Nutrition impacts the regulation of skeletal muscle mass, with many individuals turning to supplements as a means to improve overall health. Cannabidiol – a constituent of the cannabis plant – has been used over the past several decades for its anti-inflammatory, neuroprotective, and anxiolytic properties; however, recent evidence has revealed its potential effectiveness in promoting muscle growth. If true, there is a possibility that it can be used to target the age-related loss of muscle mass, sarcopenia, or even improve athletic performance. Other derivatives, such as cannabinol, have seldom been studied but also demonstrate anti-inflammatory effects. Therefore, this thesis further elucidates the effects of cannabidiol and cannabinol on the myogenic signaling pathway. As a model, we used the murine C2C12 cell line that recapitulates the behaviour of human myoblasts. Interestingly, the data presented herein supports the notion that cannabidiol and cannabinol only promote cell growth and have no effect on myoblast maturation and myotube formation. These findings provide a better understanding of the potential for cannabidiol and cannabinol as a nutritional supplement targeting skeletal muscle.

ABSTRACT

Increasing interest has emerged in the field of nutrition and its role in promoting skeletal muscle growth. Recently, studies using both in vitro and in vivo models have suggested that cannabidiol - a constituent of Cannabis Sativa - can increase the growth and regenerative capacity of skeletal muscle stem cells. Other isolated compounds, such as cannabinol, have demonstrated anti-inflammatory effects in vivo. Due to the potential benefits of both compounds, our primary objective was to further elucidate the effects of cannabidiol and cannabinol on murine C2C12 myoblast proliferation and differentiation. We hypothesized that supplementation of cannabidiol and cannabinol would augment gene expression of myogenin, leading to enhanced myotube formation; as well as, induce greater gene expression of Myf5 and MyoD, accompanied by increased cell proliferation. In relation to skeletal muscle growth, myostatin and follistatin can substantially impact the regulation of hypertrophy; with down-regulation of myostatin being a potent stimulus for muscle growth, and follistatin being the antagonist to myostatin, we therefore examined if cannabidiol or cannabinol influenced these two proteins, as a possible rationale for increased myogenesis. In this study, cells were treated with either: (1) cannabidiol, (2) cannabinol, (3) or vehicle control (methanol). Cells were grown for 48 hrs in their respective media, the MTT assay was used to assess proliferation. Muscle differentiation experiments required cells to grow for seven days with media supplemented with the respective compound. The media was changed every 48 hrs. The extent of muscle differentiation was assessed via immunocytochemical and qPCR analysis. In preliminary experiments, cell proliferation was influenced by the duration of

which cells were exposed to the compound and concentration of the compound within the media. It was noted that changing growth media and compound every 24 hrs augmented the proliferative response compared to leaving it on for 48 hrs for both cannabidiol and cannabinol (p<0.05). Furthermore, supplementing cells with cannabidiol at a 1 or 5 uM concentration resulted in considerable cell growth compared to vehicle control (p<0.001). Cannabinol at 5 uM showed the same effect (p<0.0001). We also quantified the mRNA expression of genes involved in the myogenic regulatory pathway in proliferating and differentiating cells. Herein we report that using a 5 uM concentration of cannabidiol or cannabinol did not increase the expression of any of these genes in proliferating or differentiating cells. These findings help further characterize the effects of cannabidiol and cannabinol on the myogenic response.

ACKNOWLEDGEMENTS

To Dr. Gianni Parise – I would first like to thank you for allowing me the opportunity to continue my education in grad school and guiding me throughout my thesis project. After working in cell culture research, it has shaped my interest in the field and has given me a new perspective of potential careers, for which I am grateful for. This study was exciting and extremely interesting to me from the start and I appreciate your trust in me undertaking it. Looking back at the past few years, it has been an incredible learning experience and most rewarding as well.

To my supervisory committee – Dr. Vladimir Ljubicic and Dr. Josh Nederveen, thank you for providing your expertise and guidance throughout this project. I was fortunate enough to have such a respected and friendly group of individuals on my committee that I could learn from and ask advice.

To my mentors – Josh, Jeff, and Sophie thank you for taking the time and patience out of your busy schedules to teach me how to run experiments, use research equipment, analyse data, and apply for scholarships and grad school. The list goes on, but I will always appreciate the effort you put into helping me out, and I hope that I can one day repay the favour.

To Todd, thank you for all the assistance you provided me when equipment seemed to be breaking down or had changed settings. It was incredible to see the effort and focus you put into all of these problems, which helped make this project run a lot more smoothly.

To my research group, I will miss working in the lab with such a smart and talented group of people that made grad school an enjoyable experience with many lasting memories.

To my Mom, Dad, and Sister, thank you for working so hard to put me through school and the support that you have given me. I will always be grateful for having such caring parents that would do their best to help me do well.

TABLE OF CONTENTS

TITLE PAGE	II
DESCRIPTIVE NOTES	III
LAY ABSTRACT	IV
ABSTRACT	V
ACKNOWLEDGEMENTS	VII
TABLE OF CONTENTS	VIII
LIST OF FIGURES AND TABLES	IX
LIST OF ABBREVIATIONS	Х
DECLARATION OF ACADEMIC ACHIEVEMENT	XI

LITERATURE REVIEW

i.	THE IMPORTANCE OF SKELETAL MUSCLE	1
ii.	ROLE OF SATELLITE CELLS	2
iii.	MYOSTATIN AND MUSCLE GROWTH	5
iv.	FOLLISTATIN AND MUSCLE GROWTH	7
v.	THE VARIABILITY IN SUPPLEMENTS	8
vi.	OVERVIEW OF CANNABINOIDS	9
vii.	CELL CULTURE RESEARCH	12
viii.	C2C12 MURINE MYOBLASTS	16
ix.	STUDY OBJECTIVES	18

METHODS

CELL CULTURE AND REAGENTS	19
GENERAL CELL CULTURE METHODS	19
CELL PROLIFERATION ASSAY	20
CELL DIFFERENTIATION ASSAY	22
IMMUNOFLUORESCENCE ASSAY AND ANALYSIS	23
RNA EXTRACTION & QPCR	24
RESULTS	28
DISCUSSION	42
APPENDICES	
SUPPLEMENTARY IMAGES, RAW DATA AND STATISTICS	50

REFERENCES	110

LIST OF FIGURES AND TABLES

DIAGRAM 1:	PROLIFERATION EXPERIMENT TIMELINE	21
DIAGRAM 2:	TIME COURSE EXPERIMENT	22
DIAGRAM 3:	DIFFERENTIATION EXPERIMENT TIMELINE	22
DIAGRAM 4:	6 WELL PLATE DIAGRAM	23
TABLE 1:	VOLUME OF REAGENTS FOR RT-PCR	25
TABLE 2:	SETTINGS FOR THERMOCYCLER	26
TABLE 3:	PRIMER SEQUENCES	27
FIGURE 1:	PROLIFERATION OF C2C12 TIME COURSE	29
FIGURE 2:	PROLIFERATION OF C2C12 CONCENTRATIONS	31
FIGURE 3:	GENE EXPRESSION FOR PROLIFERATION 5UM	33
FIGURE 4:	GENE EXPRESSION FOR DIFFERENTIATION 5UM	35
FIGURE 5:	MYOTUBE FORMATION 5UM	37
FIGURE 6:	MYOTUBE FORMATION 1UM	38
FIGURE 7:	GENE EXPRESSION FOR DIFFERENTIATION 1UM	40

LIST OF ABBREVIATIONS

SC	Satellite cells
CSA	Cross sectional area
MRF	Myogenic regulatory factors
n16	Cyclin-dependent kinase inhibitor
MSTN	Myostatin
GDF8	Growth and differentiation factor 8
TGF-R	Transforming growth factor beta
та	Tibialis anterior
DI3K	Phosphoinositide 3-kinases
	Protein Kingse B
mTOP	Mammalian target of ranamycin
TSC2	Tubarous Salarosis Complex 2
1502	Pibesomal Drotain S6
	Eukomotic translation initiation factor <i>I</i> E binding protain 1
4E-DF1	Eukaryouc translation initiation factor 4E-binding protein 1 Musele protein sumthesis
IVIT S ESTNI	Fallistatin
	Follistaun
ACI KIIB	Activity receptor type IIB
GDF-II	Growin differentiation factor 11
THU	
CBD	
CBN	
MS	Multiple sclerosis
IFN-y	Interferon Gamma
IL-17	Interleukin 17
PPARy	Peroxisome proliferator-activated receptor gamma
DMD	Duchenne muscular dystrophy
GCPR	G protein coupled receptors
CB1	Cannabinoid receptor 1
GPCR	G protein coupled receptors
cDNA	Complementary deoxyribonucleic acid
ADMETox	Absorption, distribution, metabolism, excretion, transport
Caco-2	Human colon carcinoma cell
TRPV1	transient receptor potential cation channel
RSV	Resveratrol
ERK	Extracellular signal regulated kinase
AMPK	AMP-activated protein kinase

DECLARATION OF ACADEMIC ACHIEVEMENT

For the contents of this thesis, it is prepared in the format outlined by the school of graduate studies, which includes an introduction, detailed methods, results and discussion section. During the project, Sean W. Lau was the principal contributor to completing experiments, data collection, data analysis and interpretation. Dr. Gianni Parise formed the vision of this project, and assisted with interpreting results. Finally, Dr. Sophie Joanisse and Dr. Jeff Baker helped with designing experimental methods and assay validation.

INTRODUCTION

i. The Importance of Skeletal Muscle

In adults, skeletal muscle accounts for ~40% of total body mass and is essential for physical movement, posture, and breathing^{1, 2}. Its other roles, though less obvious, include regulating energy and protein metabolism throughout the body². Undoubtedly, muscle has a critical influence on our self-preservation, yet a growing concern has been the age-related decline in muscle mass, otherwise known as sarcopenia^{1, 2}. The consequences of sarcopenia can be severe, with many older adults facing a higher risk of physical disability, poor quality of life, and even death. Although the importance of muscle function is understood, the rate at which muscle quality declines with aging can be severely underestimated. It has been shown that by the seventh and eighth-decade of life lean muscle mass can decrease to 25% of total bodyweight¹¹⁹, with further evidence revealing that in the lower body, such as the vastus lateralis, muscle mass can decrease by 40% between the ages of 20 and 80 years¹²⁰. Even with the benefit of 'healthy aging', individuals still suffer from declining muscle quality due to deterioration of fibre structure, mechanics, and function¹⁶. When comparing muscle biopsies from healthy active men between 15-83 years of age, it was apparent that there was a greater reduction in overall number of muscle fibres and cross-sectional area (CSA) of older men, type II fibers were particularly affected and were accompanied with more fat and connective tissue³. Multiple groups have examined the impact of age on muscle strength. There is a decline in isometric and isokinetic contractions of 20-40% in the knee extensors for those in the seventh and eighth decade of life, while those in the ninth decade experienced an

1

even greater loss of 50% or more^{4, 5}. The impact of declining muscle mass in the elderly should not be underestimated. In Canada alone, the economic cost from complications of seniors falling due to a lack of muscle function is two billion dollars annually⁶. Therefore, it is crucial that interventions are identified for ameliorating muscle wasting with advancing age. An area of growing interest is the effectiveness of supplements on improving the myogenic pathway, which can be applied to the progressive onset of age-related muscle loss.

ii. Role of Satellite Cells

Since their discovery in 1961, satellite cells (SC) have been shown to be indispensable for muscle regeneration and remodelling, especially after exercise, trauma, or disease. SC function is dependent on the expression of Pax 7, Myf5, MyoD, Mrf4, and Myogenin, collectively known as the myogenic regulatory factors (MRFs)^{22, 23, 24}. Typically, within postnatal muscle, SCs reside in a 'quiescent' state in which they are dormant and express the genetic marker Pax7+²⁵. In the event of exercise or traumatic injury, it has been shown that an up-regulation of transcription factors Myf5 and MyoD initiates the progression of SC through the myogenic program. Subsequently, SCs divide and proliferate, either to self-renew or fuse onto existing myofibers or each other to form nascent myotubes. Differentiation requires the expressions of Myogenin and Mrf4^{26, 27}. With differentiation, myoblasts fuse to existing myofibers and contribute to the repair and regeneration of muscle. Collectively, the up- and down-regulation of the MRFs are essential for the proper function of SCs. Therefore, myogenic regulators should be investigated when exploring pathways for improving muscle growth and regeneration.

It has been hypothesized that the decreased activity of SCs observed with aging contributes to the onset and progression of sarcopenia¹⁷. Other identified factors include a reduction in the rate of protein synthesis^{7, 8}, decreased innervation of muscle fibers^{9, 10}, loss of mitochondrial function^{11, 12, 13}, and nuclear apoptosis^{14, 15}. The reality is that sarcopenia occurs due to a multitude of factors including a failure of the SC population. SCs present an interesting case in that they are the precursors to muscle fibers and considered to be the primary (or only) contributor of new myonuclei to skeletal muscle fibres¹⁶, making them an ideal target for therapeutic solutions to mitigate muscle loss. Mounting evidence suggests that SC content decreases in skeletal muscle with advancing age. In a study by Verdijk and colleagues (2014), it was reported that with advancing age, not only were type II muscle fibers substantially smaller but aging was also accompanied by a reduction in type II SC content¹⁷. In addition, it should be noted that from birth to adulthood, there are no considerable changes to the muscle fibre type and SC content¹⁷ suggesting the decline occurs with advancing age. Others have also found a link between SCs and muscle wasting. Brack and colleagues (2005) revealed that a decrease in SC content led to muscle fibre atrophy¹⁸. This was determined by the initial understanding that muscle fibres are composed of myonuclei, which govern a predetermined area of cytoplasm, referred to as the myonuclear domain¹⁵⁰. Based on this theory, they noticed that the nuclei/unit length in aging muscles decreases in larger fibers. In parallel, SC content also declines with age, causing a decrease in fibre size to

compensate for the standard myonuclear domain range¹⁸. In relation to SC content and strength, Verdijk and colleagues (2010) examined muscle biopsies, as well as leg strength from older men (<65 yrs), and demonstrated a strong correlation between muscle mass and strength with overall SC content and fibre CSA¹⁹.

Besides overall SC number, deficiencies in SC function are also believed to strongly impact the onset of sarcopenia. It is well established that older adults have an impaired recovery of muscle mass and strength after an acute bout of immobilisation compared to young adults^{121, 140}. However, the underlying cellular mechanisms that lead to impaired recovery with aging remain unknown. Suetta and colleagues (2013) were able to further elucidate the dysfunction by analysing the expression of MRFs in healthy young and old males following leg immobilization for two weeks and retraining for four weeks. It was reported that even with re-training, older males had no detectable gains in myofiber area (MFA) or SCs, whereas younger males increased their MFA and had more SC per type II fibre. The impaired muscular recovery in seniors noted by Suettta and colleagues may be attributed to an impaired response in SC proliferation²⁰. A study done by Sousa-Victor and colleagues (2014) compared SC function of young, old and geriatric mice. It was apparent that SCs from geriatric mice lost the ability to transition out of quiescence and entered an irreversible senescent state, caused by the de-repression of p16INK4a, ultimately reducing regenerative and self-renewal capacities. Remarkably, even with injury, these cells were unable to activate and expand, while further accelerating towards full senescence²¹. Overall, these studies provide evidence that either

4

SC content or function can have an impact on the age-related decline in muscle mass and strength.

iii. Myostatin and Muscle Growth

Myostatin (MSTN) – also known as growth/differentiation factor 8 – is a protein found within the transforming growth factor beta (TGF- β) superfamily that has the ability to highly regulate muscle mass in animals and humans. For this reason, it has garnered considerable interest as a target for pharmacological interventions. A wealth of literature has shown that the decreased expression of MSTN can promote significant muscle growth, while overexpression can lead to muscle atrophy^{28, 29}. To determine the regulatory effects of MSTN on cellular pathways, the application of cell culture techniques have been commonly used in studies as physiologically accurate and reliable models. In 2000, Thomas and colleagues presented early evidence that MSTN functions by controlling the proliferation of muscle precursor cells¹⁴¹. In their findings, incubation of MSTN led to decreased proliferation of murine myoblast cells, which stemmed from cell cycle arrest in the G1 phase¹⁴¹. Further analysis indicated that MSTN specifically upregulated p21 – a cyclin-dependent kinase inhibitor – and decreased the level and activity of Cdk2 protein in myoblasts¹⁴¹. A few years later, the same cell model was used to further examine MSTNs influence on the regulation of MRFs¹⁴². It was discovered that increasing concentrations of recombinant MSTN repressed protein levels of MyoD, Myf5, myogenin, and p21, which was mediated by the protein Smad-3, leading to the inhibition of myogenic differentiation¹⁴². On the other hand, the inhibition of MSTN in cultured SCs results in an in increase myotube formation, indicating its vast influence on

myogenesis¹⁴³. Indeed, MSTN has a powerful impact on regulating skeletal muscle mass, which is apparent in gene knockout models of numerous animals. Specifically, Welle and colleagues (2007) demonstrated that reducing MSTN mRNA expression by less than 1% in mice resulted in ~25% increased skeletal muscle mass within 3 months³⁰. Remarkably, this genetic mutation can also occur naturally and has produced hyper-muscular phenotypes in mice, sheep, dogs, humans, and some cattle breed^{32, 33, 34, 35, 36}.

It has been suggested that endogenous levels of MSTN may influence the prevalence of sarcopenia^{37, 38}, however, the method of measuring MSTN concentration is complex, and there are various studies showing mixed results on the topic^{39, 40, 41}. Research in support of this theory demonstrates that older adults exhibiting a decline in muscle mass have an up-regulation of MSTN protein in blood when compared to younger subjects^{42, 43, 44}. Indeed, further examination was merited on the pathways linked to this negative-regulator of muscle mass. McKay and colleagues (2012) reported a link between MSTN and SCs after a bout of resistance exercise. Specifically, at baseline the number of SCs colocalized with MSTN was not different between old and young men, however, 24 hrs after a single bout of unilateral loading the proportion of type II fibre-associated SC colocalized with MSTN was 67% higher in older men. This was accompanied by a severely blunted progression of SCs through the myogenic program, suggesting that the increased colocalization of MSTN in SCs induced impairment in myogenic capacity of aged muscle⁴⁴. It has also been suggested that the inhibition of MSTN may have protective qualities in aging animals experiencing muscle wasting. In 2006, Siriett and colleagues were able to show that old MSTN-null mice had reduced age-related muscle

loss than their wild-type counterparts. These mice expressed little to no fibre type shifting and minimal atrophy, whereas old wild-type mice showed a greater transition to oxidative fibre types, as well as more atrophy⁴⁵. Taken together, the above findings illustrate MSTN as a critical regulator of the myogenic process and can be a beneficial target for increasing muscle mass.

iv. Follistatin and Muscle Growth

Follistatin (FSTN) is a protein that has emerged as an active antagonist to the upregulation of MSTN. Its expression can be found in nearly all tissues within the body where it binds and neutralizes numerous members of the TGF- β superfamily^{47, 48}. Likewise, FSTN has a strong affinity for MSTN and is capable of binding and preventing downstream MSTN signalling¹²¹. The functional significance of this protein was determined using transgenic mice that expressed high levels of MSTN, compared to ones injected with FSTN cDNA⁴⁹. After analysing protein regulation, it was concluded that FSTN binds onto the C-terminal dimer of MSTN and inhibits its ability to bind to receptors, resulting in a dramatic increase of muscle mass even compared to MSTN-null mice⁴⁹. Furthermore, when FSTN over-expressers were crossed with MSTN knock out animals there was an additive effect on muscle mass with a quadrupling of muscle mass. Together, the results demonstrate that FSTN inhibits MSTN, but also influences other pathways regulating muscle mass. In summary, FSTN possesses potent myostatin inhibiting characteristics that can have a powerful influence on muscle regeneration and growth.

v. The variability in response to supplements

Nutritional supplements are an efficient and easy dietary additive for individuals looking to improve overall health. Supplements are sold in seemingly endless forms and compositions with the added factor that they can be specific for age, gender, and athletes⁵⁸. For many, it can be challenging to determine the extent of which these products are beneficial, primarily because of the potentially small effect supplements may give off ⁶². There are supplements in the market, such as whey protein, that have shown to be effective in improving the rate of growth of skeletal muscle following feeding and exercise^{128, 129, 130, 131}. Yet, other compounds commercialized for the same purpose, like BCAAs or testosterone, show insufficient data or have no myogenic effect at all^{125, 126, 127}. It is understandable that such discrepancy exists in over the counter supplements. Within Canada, the requirements for monitoring and evaluating natural health products are loosely regulated and considered by the natural health regulations as low-risk products⁶³, without a priority on efficacy. In comparison to pharmaceutical products, these guidelines require minimal evidence to support their statements and can often have little to no experimental research to support their claims⁶³. There is a significant number of individuals taking supplements, with estimates that $\sim 45\%$ of the population in Canada use at least one supplement a year⁵⁷, which has been a growing trend during the past few decades¹²⁴. This progressive rise in the use of supplements can be attributed to a number of factors including an aging population of 'baby boomers' concerned over their wellness and health, as well as a growing cohort of older adults experiencing chronic illness⁵⁸. Be

it as it may, there are a considerable number of individuals consuming supplements to better their health, but may not be receiving any benefits at all from these supplements.

vi. Overview of Cannabinoids

In the past decade, cannabinoid chemistry and pharmacology have become increasingly prevalent in research and have been the focus of thousands of publications. To this day, researchers determined there are over 110 different phytocannabinoids isolated from the plant *Cannabis Sativa*⁶⁵; most of them, are similar in chemical structure but exhibit various physiological responses when consumed¹³². Out of its many constituents, Δ 9-tetrahydrocannabinol (THC) is the most recognized due to its popularity in eliciting euphoric effects, leading many to believe it is the only factor responsible for the effects of cannabis. However, mounting evidence has proven other isolated components of the plant can provide therapeutic effects, such as anti-inflammatory ^{66, 67}, neuroprotective⁶⁸, and anxiolytic properties^{69, 70, 71}. Indeed, cannabidiol (CBD) – a nonpsychoactive compound – has gained considerable interest for its ability to regulate muscle regeneration and growth. Specifically, it was shown by Giacoppo and colleagues (2016) that CBD has a positive effect on the Akt/mTOR pathway in mice with experimental multiple sclerosis (MS). In their study, CBD (10mg/kg) was administered for 14 days after the symptoms of MS started to appear⁷². Evidently, mice that had symptoms of MS and were treated with CBD showed significant up-regulation of PI3K/Akt/mTOR proteins compared to their wild-type counterparts⁷². Further evidence also revealed that the administration of the compound caused a greater potential for

muscular recovery by reducing pro-inflammatory cytokines, such as IFN-y, IL-17, and increasing PPARy⁷². With the current understanding that the mTOR complex plays a pivotal role in promoting muscle protein synthesis (MPS), it can be hypothesized that through its increased activation there may also be an enhanced myogenic response. In addition, other studies have found a significant effect of CBD on muscle regulation using murine C2C12 myoblasts, primary SCs, as well as myoblasts from healthy and duchenne muscular dystrophic (DMD) patients⁷³. Their comprehensive investigation revealed CBD as a promoting factor for differentiation in C2C12s and myoblasts isolated from healthy and DMD donors⁷³. It was discovered that the underlying mechanisms centralized around an increase in calcium uptake through the transient receptor potential channels, providing further evidence of the potential structures that CBD targets⁷³. In dystrophic mice, the administration of CBD (60mg/kg) helped prevent the loss of locomotor activity, reduced inflammation, and restored autophagy, commonly associated with the disorder⁷³. In contrast to the wealth of knowledge surrounding CBD, cannabinol (CBN) - a mildly psychoactive cannabinoid found in trace amounts 147 – has been seldom studied. Although little is known about CBN, one study demonstrated its physiologically therapeutic capabilities that could potentially enhance regeneration of muscle. Using the carrageenan induced paw edema model – a popular test used for screening anti-inflammatory activity - it was reported that CBN was effectively able to reduce collagen-induced arthritis in rat models¹⁴⁸. While more research is still needed on the functional relevance of CBN, it would be interesting to examine its influence on myogenic regulation.

10

It was revealed recently that the biochemical reactions involved around cannabinoids are primarily through receptors found on cell membranes^{74, 75}, which are known as G Protein Coupled Receptors (GCPRs). These are classified as either CB1 or CB_2 and can be found in various concentrations throughout the body⁷⁵. CB_1 has proven to be the most widely expressed receptor protein and is present in several regions of the brain, such as the cerebellum, hippocampus, basal ganglia, amygdala, hypothalamus, and brainstem¹⁴⁴. In addition to the brain, CB₁ is also highly expressed in the peripheral nervous system and in most mammalian tissues and organs (i.e. heart, liver, adipose tissue, lungs, skeletal muscle) 144 . The activation of CB₁, either by natural or synthetic ligands, has been reported to influence a host of homeostatic functions, some of which include: regulating the psychoactive potential from exogenous cannabinoids^{76, 130}, modulating the mobility of the GI tract¹⁴⁴, or increasing permeability of the intestinal epithelium¹⁴⁴. In contrast to the abundant expression of CB₁, CB₂ receptors are reported to have a lower quantity by up to 100-fold¹⁴⁵, due to its rarity, on-going research is continuously finding new locations of the receptor. Currently, literature has proposed that CB₂ is predominantly expressed in cells associated with the immune system, and in other peripheral tissues, including the cardiovascular system, GI tract, liver, and adipose tissue. Because no CB₂ receptors are found in the CNS, it is referred to as "the peripheral cannabinoid receptor"¹⁴⁴. Their reaction to binding endocannabinoids under various pathological conditions or disease states appears to give off immunosuppressive properties such as anti-inflammatory signals⁷⁷. Interestingly, exogenous CBD has little affinity for either of the cannabinoid receptors but acts through various receptor-

11

independent pathways such as TRPV1 and serotonin receptors^{73, 133, 134}. On the other hand, CBN has been noted to act as a partial agonist at the CB₁ receptors with even higher affinity to CB₂ receptors¹⁴⁹. Naturally, scientists have found endogenous cannabinoids that activate both CB₁ and CB₂ receptors via paracrine signalling and serve as intercellular 'lipid messengers'⁷⁸. A unique feature of these endogenous cannabinoids is their ability to exist as precursors on cell membranes, which can be cleaved by specific enzymes when needed^{79, 80, 81}. Compared to other neuromodulators, this form of synthesis allows for signalling to occur on demand rather than made and stored for later use^{79, 80, 81}. Their production involves a variety of physiological functions, including appetite, pain sensation, mood, and memory⁸², making this system valuable for drug and therapeutic research. Overall, cannabinoid receptors can influence cells in a variety of ways, and CBD has demonstrated its unique potential to limit muscle degeneration that may truly benefit human health.

vii. The Significance of Cell Culture Research

Since the advancement of cell culture techniques in the 1950s, it has become increasingly prevalent in biological experiments, especially as it is applied to human health. Through its application, there have been ground-breaking discoveries for viral vaccines, monoclonal antibodies, and recombinant therapeutic proteins⁸³. Indeed, cell culture is a physiologically reliable model that can be used for investigating the biophysical and biomolecular mechanisms in cell and drug therapy. Its significance has been shown in determining the effectiveness of drug absorption, distribution, metabolism,

excretion, and toxicity (ADMETox)¹³⁵. Countless studies have used various cell types grown in a 2D model to investigate the different aspects of ADMETox. For instance, the human colon carcinoma cell (Caco-2) has been commonly used to predict intestinal drug permeability and absorption in humans⁸⁴. Cultured Caco-2 cells express distinct characteristics of intestinal epithelium, such as brush border microvilli, dome formation, and tight bonds amongst each other^{84, 85}. Furthermore, these cells produce proteins capable of transporting chemical substances, making them also well suited for testing drug transport⁸⁶. In relation, Alhamoruni and colleagues (2010) were able to determine the intestinal permeability of CBD using the caco-2 cell model. Permeability was measured using transpithelial electrical resistance, with potential target sites such as the CB_1 and CB_2 receptor, TRPV1, PPAR γ , PPAR α , and other proposed cannabinoid receptors. By using ethylenediaminetetraacetic acid to increase abnormal levels of permeability, CBD was able to provide relief to the high rate of permeability, suggesting that it may have therapeutic potential for highly permeable intestinal epithelium⁸⁷. Other cells, such as the Madin-Darby Canine Kidney, have an interesting capacity of releasing P-glycoprotein, a plasma membrane protein that acts as a drug transport mechanism by exporting drugs out of cells, which decreases the intracellular concentration and provides faster results in drug transport assays⁸⁸. In similar cases, many researchers have found that the immortalized cell line HepG2 – derived from primary hepatocytes – can accurately test drug metabolism and toxicology before beginning clinical trials⁸⁹. Its application has been crucial for detecting drug-induced liver injuries while also being termed the gold standard for xenobiotic metabolism and cytotoxicity

studies¹³⁶. In a revision of toxicity testing done by the U.S National Research Council, it has been calculated that out of the 51 drugs taken out of distribution, 29 were withdrawn due to hepatotoxicity and cardiotoxicity in HepG2 cell models¹³⁷, demonstrating its applicability for identifying risk assessment. Overall, these cellular assays are examples of the significant impact cell culture may have on drug screening and development, as well as its vast experimental capabilities.

Most mammalian cell culture uses either primary or established cell lines grown in a suitable culture vessel with media. The origin of primary cells are directly isolated from either tissue or cell suspension and have limited growth before reaching senescence⁸³. This 'biological clock' is attributed to chromosomal length, which was noted by Cooke & Smith in 1986; their study reports unequal caps, also known as telomeres, at the end of chromosomes in human germline cells compared to somatic cells. These were later determined to be repeats of the nucleotide sequences that became shortened after each stage of proliferation⁹⁰. In light of this, scientists were able to find a solution by transforming primary cells into a continuous cell line; whereby, cells would proliferate indefinitely. Currently, there are various techniques that can be used to develop an immortalized cell line, including mutagens, viruses, or oncogenes⁹¹. As a result, numerous established cell lines exist today using different cell types (i.e. fibroblasts, myoblasts, epithelial cells), with the additional benefit that they can be grown in twodimensional (2D) or three-dimensional (3D) models. Cells in 2D, are plated as a monolayer, primarily using a petri dish or culture flask¹¹³. Advancements in biotechnology have produced 3D models that can grow cells in multiple ways, including:

forced floating⁹², hanging drop⁹³, agitation-based approach⁹⁴, matrices⁹⁵, scaffolds⁹⁶, and microfluidic platforms⁹⁵. Comparing the two, there is a debate on which provides greater physiological relevance, albeit more literature has supported 3D models⁹⁷. Karlson and colleagues (2012) were able to further examine the differences, by using colon cancer cells (HCT-116) either grown as 3D spheroids or in monolayer. Their application of six standard anti-cancer drugs showed that cells in 2D had an extremely high response, which was unfeasible if used in vivo. Meanwhile, cells in 3D spheroids had a blunted response from the treatment, which was comparable to its administration in humans⁹⁸. There are several explanations why this model may better predict results in *vivo*. It has been shown that a limited diffusion of compounds through the spheroid can better imitate features of solid tissue, while also fluctuating the availability of oxygen, nutrients, metabolites, and signaling molecules⁹⁸. Additionally, the 3D model can provide cell-cell and cellenvironment interactions responsible for cellular decision-making⁹⁸. These characteristics of a 3D model give results more validity, although, others have also proposed that 2D cell culture can be more relevant than its counterpart. It was Ikeda and colleagues (2017) that studied the contractile force generation of tissue-engineered skeletal muscle using C2C12 myotube differentiation in 2D and 3D models. They found the levels of contractile force within cells grown in 3D were not correlated with levels from skeletal muscle constructs¹⁰⁰. On the other hand, sarcomere function and contractile activity of those in 2D cell culture showed significant resemblance¹⁰⁰. Therefore, careful consideration should be made into the specific cell model used during experimental application.

Assays have been developed to determine the effectiveness of nutritional compounds in both 2D and 3D models. These methods are evident in a study by Monesano and colleagues (2013), with the evaluation of resveratrol (RSV) on proliferation and differentiation of murine myoblasts. Using immunoblotting analysis, they determined that RSV promotes myogenesis and hypertrophy by influencing protein synthesis and MRFs protein expression. Specifically, RSV was shown to stimulate the IGF-1 signalling pathway, by increasing AKT and ERK 1/2 protein activation, as well as AMPK protein abundance, and decreased the gene expression of myogenic markers Myf-5 and MyoD¹⁰¹. RSV a natural polyphenol found in grapes and other fruit is believed to provide immune regulation, DNA repair, cancer chemoprevention, cardio, and neuroprotection¹⁰¹; however, it has not been known to increase myogenesis until this investigation. Therefore, cell culture has its role in laying the foundation for in vivo experiments and is one of the major tools used in cellular and molecular biology. These examples provide a small glimpse at the capability of testing nutritional compounds, which can further be elucidated in animal and human trials.

viii. Physiological Relevance of Murine C2C12 Myoblasts

A common model used for exploring myogenesis and the expression of target proteins is the immortalized C2C12 cell line. As a subclone of mouse myoblasts, they are capable of rapid proliferation and maturation into functional skeletal muscle, making them ideal for investigating the effects of CBD on myogenesis¹¹³. Yaffe and Saxel (1977) reported that within four days of differentiation, multinucleated myotube networks formed, and a few days later, sarcomeres and z-lines could be seen¹⁰². These physiological structures formed by C2C12s help provide an accurate representation of skeletal muscle found in humans. Other studies have noted that C2C12s express myofilament proteins important for muscle contractions, these include: slow-twitch skeletal muscle, embryonic and perinatal myosin heavy chain isozymes¹⁰³, slow and fasttwitch troponin I isoforms ¹⁰⁴, cardiac muscle troponin C isoforms^{105, 106, 107}, and striated muscle tropomyosin¹¹⁰. Altogether, these findings imply that C2C12s are reliable for assessing the biomolecular and biophysical effects of CBD and CBN. Modifications can also be made to C2C12s for experimental purposes. To identify hypertrophy-inducing agents for the treatment of sarcopenia, Cross-Doersen & Isfort (2003) refined the cell model by fusing β -myosin heavy chain gene regions to a luciferase reporter gene. This resulted in a cell capable of expressing hypertrophic agents seen in skeletal muscle, including insulin, IGF-1, and testosterone, for both proliferative and differentiated states¹¹¹. These abilities to modify the cell line help to better understand the hypertrophy inducing process, while also demonstrating the various applications of C2C12s.

There are advantages and disadvantages when using an established cell line instead of primary cells. Careful consideration should be made when selecting cell types (C2C12 or primary myotubes) for the experiment in question. Myotubes derived from primary cells show a higher assembly of sarcomeres and contractile activity¹¹². In addition, they express higher levels of structural components within muscle tissue such as myosin heavy chain, cytochrome C oxidase IV, and myoglobin¹¹², suggesting its enhanced genetic integrity, and ability to exhibit normal physiological structure and

17

function. However, primary cells can produce greater variability in experiments due to differences in donors, as well as the added difficulty of harvesting cells¹¹³. They are also hard to maintain with the need to optimize specific culture conditions and slower cell growth, making large-scale experiments unlikely¹¹³. Moreover, as mentioned earlier, primary cells have a limited lifespan and will reach senescence after a certain number of cell divisions. On the other hand, C2C12s are capable of proliferating indefinitely with a high rate of consistency and have well-established conditions for growth. Other advantages include their fast proliferation rate and relatively low cost, allowing for higher data throughput¹¹³.

ix. Study Objective and Hypotheses

The purpose of this investigation was to evaluate the effects of CBD and CBN on proliferation and differentiation using the murine myoblast C2C12 immortalized cell line. In doing so, we aimed to determine whether CBD or CBN could impact skeletal muscle growth in hopes of translating these results to *in vivo* models for improving athletic performance or prevent age-related muscular diseases such as sarcopenia. Based upon previous literature^{72, 73, 146}, we hypothesized that CBD and CBN can augment the expression of Myogenin, leading to significant myotube formation; as well as, increase gene expression of Myf5 and MyoD, accompanied by significant cell proliferation. In relation to skeletal muscle growth, MSTN and FSTN have a substantial impact on the regulation of hypertrophy ^{30, 33, 34, 49, 50}, we therefore sought to determine if CBD or CBN can influence these two proteins, as a possible rationale for increased myogenesis.

METHODS

Cell Culture and Reagents

Murine C2C12 myoblasts (cat. n. CRL-1772; ATCC: The Global Bioresource Centre) were cultured in a growth medium (GM) composed of Dulbeco's Modified Eagle Medium (DMEM) High Glucose 1x (cat. n. 11995093; Invitrogen) supplemented with 10% Fetal Bovine Serum (FBS) Gibco (cat. n. 12383020; Invitrogen), and 1% penicillin/ streptomycin (cat. n. 15140122; Invitrogen). Proliferating C2C12s were induced into differentiation by exposure to differentiation medium (DM), DMEM containing 2% Horse Serum (cat. n. 16050122; Invitrogen), and 1% penicillin/streptomycin. Depending on the experiment, CBN solution (cat. n. C-045-1ML; Sigma-Aldrich), CBD solution (cat. n. C-045-1ML; Sigma-Aldrich), or Methanol (cat. N. CABDH1135-4LP; VWR) were supplemented into the media. With all media listed above being filtered using Corning Disposable Vacuum Filter/Storage (cat. n. 28199-784; VWR).

General cell culture methods

C2C12 myoblasts were thawed and placed in a falcon tube containing 10ml of GM, then centrifuged at 1500 rpm for 5 min at 20°C¹⁵⁸. Next, supernatant was aspirated and the cells were resuspended in GM and pipetted onto a cell culture plate¹⁵⁸. All cells grew in an incubator at 37°C and 5% CO2¹⁵⁸. In the event that cells needed to be passaged, trypsin 10x solution (cat. n. 15090046; Invitrogen) diluted to 1X with PBS was pre-warmed to 37°C, then GM was removed from the plate and cells washed twice in PBS and 1X trypsin was added (0.5 ml/10cm²)¹⁵⁹. Afterwards, the cells were incubated at

37°C for 5 minutes and GM was re-added to deactivate trypsin¹⁵⁹. The cell suspension was transferred to a tube and centrifuged at 1500 rpm for 5 minutes¹⁵⁹. After removal of the supernatant, the cell pellet was resuspended in GM and plated onto a dish at the desired cell density¹⁵⁹. Cell counting involved using the Invitrogen Countess I automated cell counter machine, as well as cell counting slides (cat. n. 10027-446; VWR) and Trypan blue dye (cat. n. 15250061. Fisher Scientific); to perform this test, 10ul of cells combined with 10ul of Trypan blue were mixed together then placed into the well of the slide and placed into the counter¹⁶⁰. For differentiation experiments, cells needed to grow until 80% confluent then differentiation media (DM) was added and/or changed every 48 hours for 7 days¹⁵⁸.

Cell Proliferation Assay

To assess myoblast proliferation, cells for the MTT assay were plated on a 96 well plate at a density of 1500 cells/well. Quantification of cell growth was determined using an immunofluorescence proliferation assay with a tetrazolium dye known as MTT 3-(4,5-dimethlythiazol-2-yl)-2,5-diphenyltetrazolium bromide¹⁵⁷. Usage of Yellow MTT theoretically assesses the increase in the number of cells via mitochondrial quantity– i.e. a greater number of cells can convert more yellow MTT to purple formazan through the mitochondria – which has been analysed using the MTT stock solution, 1mL of sterile phosphate buffered saline (PBS) was added to a 5mg vial of MTT, and then dissolved by vortexing¹⁵⁷. The timeline for the proliferation assay is as follows: cells were added onto a 96 well plate. 24 hours later the media was changed to GM + compound (CBD, CBN or

methanol). On the third day 20ul of 5mg/ml MTT was pipetted into each well – one row of wells having MTT but no cells (control) ¹⁵⁷. The plate was incubated for 3 hours at 37°C in a culture hood, media was removed and 150ul of MTT solvent was added¹⁵⁷. The culture plate was covered with tin foil and placed on an orbital shaker for 15min¹⁵⁷. Finally; absorbance was measured on the SynergyTM Mx (serial n. 267174; Biotek) at 590nm with a reference filter of 620nm. To determine if incubation time using GM + compound influenced cell growth, a time course experiment was run whereby three separate groups were incubated for 48 hrs as follows: (1) GM + compound for 8 hrs, then replaced with regular GM (2) GM + compound changed every 24 hrs (3) GM + compound remained on for 48 hrs (*see diagram 2*). For qPCR experiments, cells were added onto 6 well plates at 50 000 cells/well with a replicate for each sample. When ~40% confluent, media was changed to GM + compound (CBD, CBN or methanol) for each well at a 5 uM concentration (*see diagram 1*).

Diagram 1: diagram of the concentration experiments for proliferating cells

Diagram 2: diagram of the time course experiments for proliferating cells

Cell differentiation assay

For differentiation, cells were plated onto 6 well plates at 100 000 cells/well with a replicate for each sample. C2C12 differentiation required cells to grow at a minimum confluence of 80% on the culture dish before switching to DM. 24 hours later after changing GM to DM (Day 1), DM + compound (CBD, CBN or methanol) was added and changed every 48 hours for a total of 7 days. On the final day immunocytochemical protocols or RNA isolation was completed *(see diagram 3)*.

80% cor	% cell Ifluence							
Day	0 Da	ay 1 Da	ay 2 Da	y 3 Day	y 4 Da	iy 5 Da	ay 6 Day	7
,		, ,		, ,		, ,		,
	DM	DM + MTH 1, 5 uM		DM + MTH 1, 5 uM		DM + MTH 1, 5 uM		Collect RNA/Stain
	DM	DM + CBD 1, 5 uM		DM + CBD 1, 5 uM		DM + CBD 1, 5 uM		Collect RNA/Stain
	DM	DM + CBN 1, 5 uM		DM + CBN 1, 5 uM		DM + CBN 1, 5 uM		Collect RNA/Stain

Diagram 3: diagram of differentiation timeline using different concentrations and compounds

Diagram 4: diagram of a 6 well plate used for both proliferation and differentiation qPCR/immunocytochemistry experiments

Immunofluorescence assay and analysis

With immunofluorescent analysis, MHCI (cat. n. BA-F8-s; University of Iowa) was used to detect myotubes and DAPI (cat. n. D9542-10MG; Sigma Aldrich) to detect nuclei. The staining protocol was as follows: myotubes were fixed on a culture plate with 4% PFA for 30 minutes, then washed with PBS for 3 x 5 minutes. The PBS was removed and 0.1% Triton X in 1% BSA was added for 15 minutes. After, PBS was applied for 5 minutes. PBS was aspirated and cells were blocked in PBS with 5% GS for 1 hour. Block was removed, 1°Ab MHCI (DSHB; clone 5.8, mouse) was added undiluted (neat) and incubated overnight at 4°C. Next day, 2°Ab 488 goat anti-mouse (cat. n. A-21141, Thermo Fisher Scientific) diluted to 1:250 in PBS was placed on the dish and incubated for 2 hours at room temperature (RT). The plate was then washed with PBS for 3 x 5 minutes, after which, DAPI was added for 10min and finally washed again with PBS for 2 x 5 minutes.

Images were captured using the NIKON Eclipse Ti microscope at 10x magnification on the FITC and DAPI channel, taking 4 randomized images per well. Analysis of each image consisted of three different measurements using the NIKON elements application. First, myotube diameter required measuring 5 sections along the width of each myotube. Second, myotube surface area used binary thresholding of overall MHCI (FITC) coverage in the entire image. Finally, myonuclear index used the binary thresholding setting for nuclei, which was then calculated by:

> nuclei in myotubes total number of myonuclei x 100 = myonuclear index %

RNA extraction and Quantitative Polymerase Chain Reaction

RNA isolation began with aspirating media and washing with PBS. Trizol reagent (cat. n. 15596018; Invitrogen) was added at a ratio of 0.3-0.4ml per 1 x 10⁵-10⁷ cells then scraped and pipetted into tubes¹⁵⁴. Samples were either frozen at -80°C or continued onto the next step¹⁵⁴. Chloroform was added at 200 uL/mL of Trizol reagent. Tubes were shaken for 15 seconds and incubated at RT for 5 minutes¹⁵⁴. They were then placed in a centrifuge and spun at 12 000g in 4°C for 10 minutes¹⁵⁴. The upper aqueous layer was pipetted to a new tube and an equal volume of 100% ethanol was added¹⁵⁴. Samples were transferred into RNA spin columns placed on top of 2 mL tubes, both acquired from the E.Z.N.A.® Total RNA Kit I (cat. n. R6834-02; VWR)¹⁵⁵. Tubes were centrifuged at 10 000g for 60 seconds in RT¹⁵⁵. Flow through was removed and 250uL of wash buffer I was added on the spin column membrane; centrifuged at 10 000g for 60 seconds in RT¹⁵⁵.

Repeated previous step again, but with 500 uL wash buffer I¹⁵⁵. Flow through was discarded and 500uL wash buffer II was added onto spin column membrane¹⁵⁵. Tubes were centrifuged at 10 000g for 60 seconds in RT¹⁵⁵. Repeated previous step again. Discarded flow through then centrifuged spin column at max speed to completely dry the matrix¹⁵⁵. The RNA spin column was transferred to a clean 1.5ml collection tube and pipetted 40uL of DEPC-treated water directly onto centre of tubes, incubating for 1min in RT¹⁵⁵. Centrifuged for 2 minutes at 10 000g. Once complete, RNA content was quantified using the Nano Drop Spectrophotometer¹⁵⁵.

The high-capacity cDNA reverse transcription kit (cat. n. 4368814; Fisher Scientific) was used to perform RT-qPCR. Kit components *(shown in table 1)* were thawed on ice then master mix was made ¹⁵⁶. 10ul of master mix was pipetted into each individual tube mixed with 10ul of RNA sample¹⁵⁶. Tubes were placed into the thermal cycler and run with parameters described in table 2¹⁵⁶.

Component	Volume for 1 reaction
10X RT Buffer	2.0 uL
25X dNTP mix (100mM)	0.8 uL
10X RT Random Primers	2.0 uL
MultiScribe Reverse	1.0 uL
Transcriptase	
Nuclease free H ₂ 0	4.2 uL

Table 1. volume of reagents for cDNA reverse transcription

25
Total per reaction	10.0 uL
--------------------	---------

Table 2. Settings for cDNA reverse transcription thermal cycler

Settings	Step 1	Step 2	Step 3	Step 4
Temperature	25 °C	37 °C	85 °C	4 °C
Time	10 minutes	120 minutes	5 minutes	œ

SYBR green assay (cat. n. 330500; Qiagen) was used for quantifying gene expression. Myf5, MyoD, Myogenin, MSTN and FSTN were the genes of interest, while RPS11 was used as a housekeeping gene, all primer sequences are included in table 3. All experiments were run on 384 and 96 well plates with sample duplicates and quantified using the QuantStudio5 real-time (serial n. 272530039; Thermofisher) and Mastercycler Realplex 4 (serial n. A242225G; Eppendorf) PCR machine.

The Livak method was used to analyze the expression of genes. The following of which was calculated by:

CT target gene – CT reference gene = normalized CT Δ CT test sample – Δ CT calibrator sample = $\Delta\Delta$ CT Fold change = $2^{-(\Delta\Delta CT)}$

Table 3. Primer sequences for qPCR using SYBR green assay

Gene	Forward Primer	Reverse Primer
Products		
RPS11	CGTGACGAACATGAAGATGC	GCACATTGAATCGCACAGTC
Myf5	TGAAGGATGGACATGACGGAG	TTGTGTGCTCCGAAGGCTGCTA
MyoD	TACCAAGGTGGAGATCCTG	CATCATGCCATCAGAGCAGT
Myogenin	CTACAGGCCTTGCTCAGCTC	AGATTGTGGGCGTCTGTAGG
Follistatin	AAAACCTACCGCAACGAATG	GGTCTGATCCACCACAAG
Myostatin	AATCCCGGTGCTGCCGCTAC	GTCGGAGTGCAGCAAGGGCC

Data Analysis

All data are presented as mean \pm standard error means. Data was analysed on GraphPad Prism program version 8.0. A two-way ANOVA was used to assess the effect of time course and compound for the MTT assay, all other experiments were analysed using a one-way ANOVA. Both analyses were followed by Tukey *post hoc* analysis to detect statistical significance between three or more independent groups. Statistically significant differences were accepted when *P* was < 0.05.

RESULTS

Proliferation rate increases after changing media and compound every 24 hours.

It was determined that replenishing GM + CBD (5uM) every 24 hrs resulted in greater proliferation rates compared to leaving GM + CBD on for 48hrs (p<0.05) assessed via an MTT assay (n=8) (Figure 1A).

Results indicate that replenishing GM + CBN (5uM) every 24 hours produced greater proliferation of myoblasts compared to leaving GM + CBN on for 48 hrs (p<0.05). CBN at 5uM also increased proliferation rates significantly when added for only 8 hours, versus 48 hrs (p<0.05) (n=8) (Figure 1B).

is represented by means with SEM (n = 8). * indicates significantly different than 5uM at 48hr within the same group.

CBD and CBN can increase the proliferation of myoblasts

Analysis using an MTT assay revealed supplementation with CBD at 1uM increased the proliferation of C2C12s in comparison to MTH (vehicle control) 1uM (p < 0.0001). In addition, CBD at 5uM showed the same effect by significantly increasing proliferation compared to MTH at 5uM (p < 0.0001). No significant differences were shown between CBD at 0.1uM and the vehicle control MTH at 0.1uM (p > 0.05) (n=12) (Figure 2A).

CBN at 1uM increased the proliferative ability of myoblasts compared to CBN at 0.1uM. (p < 0.0005). Similarly, CBN at 5uM was able to increase proliferation compared to both CBN at 0.1uM and 1uM (p<0.0001, p < 0.05), as well as MTH at 5uM (p<0.0001). At 0.1uM concentration, CBN and MTH showed no significant differences. Similarly, CBN at 1uM and MTH at 1uM showed no differences (p>0.05) (n=12) (Figure 2B).

Figure 2. Proliferation of C2C12 myoblasts supplemented with their respective compounds (CBD, CBN, MTH) and concentrations (0.1, 1, 5uM) for 48hours. To quantify this experiment the MTT solution was applied to cells on a 96 well plate and measured using a spectrophotometer at 590nM. All graphs represented as a mean with SEM, data was considered significantly different when P was < 0.05 (n=12). 'a' indicates significantly different than MTH 1, 'b' indicates significantly different than MTH 5, 'c' indicates

significantly different than CBN 5, 'd' indicates significantly different than CBN 1 and CBN 5

No effect of compound supplementation on gene expression in myoblasts.

After 48 hrs of cell proliferation, mRNA expression of genes associated with the

hypertrophic response were measured. No significant changes in Myf5, MyoD,

Myogenin, FSTN and MSTN gene expression in C2C12 myoblasts were observed when

supplemented with CBD, CBN or MTH at 5uM (p>0.05) (n=6) (Figure 3A, B, C, D, E).

Figure 3. Fold change from MTH of gene expression during proliferation. GM + compound was administered at 40% cell confluence; with media being changed every 24hrs. RNA isolation and reverse transcription-PCR techniques were applied after the 2nd day. To quantify the amplification signal of gene expression, SYBR green assay was used in

combination with specific primers. Fold change was calculated by $2^{-(\Delta\Delta CT)}$. All graphs are shown as means with SEM (n=6).

No effect of compound supplementation on gene expression in myotubes.

Genes involved with signaling muscle growth were measured using qPCR in C2C12 myotubes that were differentiating for 7 days. DM was supplemented with CBD, CBN or MTH at 5uM. We report no increases to Myf5, MyoD, Myogenin, Follistatin and Myostatin gene expression after supplementation with CBD or CBN at 5uM (p>0.05) (n=6) (Figure 4 A, B, C, D, E).

D

Figure 4. Fold change compared to MTH of gene expression during differentiation. Media was changed to DM when cells reached 80% confluency, then, DM + compound was added 24 hrs after at 5uM concentration. Media was changed every 48 hrs until the day 7 (A) Myf5 gene expression (B) MyoD gene expression (C) Myogenin gene expression (D) FSTN gene expression (E) MSTN gene expressions (F) Light microscopy image at 4x magnification of myotubes day 7 of differentiation. All graphs are shown in means with SEM (n=6).

CBD and CBN supplementation do not affect myotube diameter, surface area, or

myonuclear index

Using myotube diameter, surface area and myonuclear index as indicators of myotube

differentiation, it was determined that no significant increases were seen after

supplementation with compounds at a concentration of 5 uM in any of the groups

compared to the MTH group (p>0.05) (n=4) (Figure 5 A, B, C). Similarly, no significant

increases were indicated after supplementation with a 1 uM concentration compared to

the MTH group (p>0.05) (n=3) (Figure 6 A, B, C)

Figure 5. Data represents quantification of C2C12 differentiation after supplementation with CBD, CBN or MTH at 5uM in DM. Immunofluorescent protocols were used to stain for MHC I (green) and nuclei (blue). The analysis of each image was done on the Nikon Elements application. (A) Calculation of myotube diameter measured in micrometers (B) Myonuclear Index values are expressed in percentages. (C) Myotube surface area was quantified using the binary thresholding application for overall MHCI in uM². (D) Immunofluorescent images acquired from the NIKON Eclipse Ti microscope at 10x

magnification on the FITC and DAPI channel. All data represented as means with SEM (n=4).

Figure 6. Quantification of C2C12 differentiation after supplementation of CBD, CBN or MTH at 1uM with DM. Immunofluorescent protocols were used to stain for MHC I and nuclei. The analysis of each image was done on the Nikon Elements application. (A) Calculation of myotube diameter measured in micrometers (B) Myonuclear Index values are expressed in percentages and are calculated by dividing number of nuclei in myotubes by the total nuclei in image then multiplying by 100. (C) Myotube surface area was quantified using the binary thresholding application for overall MHCI in uM². All data represented as means with SEM (n=3).

Significant decrease in follistatin gene expression following differentiation of myoblasts treated with CBD at 1 uM.

In comparison to CBN and MTH, CBD was able to decrease the gene expression of FSTN (p<0.001). Other analyses of gene expression showed no differences in Myf5, MyoD, Myogenin and MSTN in differentiated C2C12s (p>0.05) (n=6) (Figure 7 A, B, C, D, E).

Figure 7. Fold change from MTH of gene expression during differentiation. DM was administered after 80% cell confluence, then, DM + compound was added 24 hrs after at 1uM concentration. Media was changed every 48 hrs until day 7. All graphs are shown in means with standard error means (n=6). * Indicates significantly different than CBN and MTH.

DISCUSSION

In the current investigation, we report enhanced proliferation of C2C12 cells following 48 hours of supplementation with CBD or CBN. It was also determined that replenishing growth media (GM) and compound every 24 hrs resulted in a greater proliferation of cells compared to not replenishing GM and compound for 48 hrs. Furthermore, since cell proliferation was augmented, it was hypothesized that gene expression of Myf5 and MyoD – the transcription factors known to initiate the myogenic regulatory response^{22, 23, 24} – would be significantly higher in the presence of CBD and CBN. However, no notable changes in Myf5 or MyoD gene expression was observed, as was true for myogenin, FSTN and MSTN after supplementation with CBD or CBN at 5 uM. Likewise, no change was observed in gene expression of Myf5, MyoD, Myogenin, FSTN and MSTN in differentiating cells treated with either CBD or CBN at 5 uM. Using immunocytochemical analysis, we quantified the myotube surface area, diameter, and myonuclear index following differentiation, and report no notable differences between cells treated with CBD or CBN as compared to vehicle control-treated cells. To further evaluate the differentiation response to these compounds, a 1uM concentration was used in relation to the significant findings reported by Iannotti and colleagues (2018). Our results indicated that there were no considerable changes in myotube size, diameter, or myonuclear index. The gene expression of Myf5, MyoD, Myogenin, and MSTN were also unchanged, however, supplementation of CBD resulted in significantly lower gene expression of FSTN compared to CBN and MTH (1uM). Overall, our findings were not consistent with our hypothesis stated at the outset.

Based on previous literature^{72,73, 146}, we predicted that the supplementation of CBD and CBN would augment myotube formation and the transcription of myogenin, in addition to enhancing cell proliferation with a concomitant up-regulation of Myf5 and MyoD. Iannotti and colleagues (2018) found that CBD at a 1 uM concentration induced greater myotube formation and mRNA expression of myogenin in C2C12 myoblasts⁷³. Notably, they also reported that a 3 uM concentration resulted in decreased myogenin transcription⁷³. Results in the current study do no align with those previously published. We found no significant increase in myogenin expression or myotube formation at both 1 and 5 uM concentrations. The disparate findings are likely accounted for by the incubation time of CBD on cells. Iannotti and colleagues (2018) added cannabinoids to the DM for 5, 15 mins or 3 hrs, and then replaced it with regular DM for 72 hrs⁷³. In comparison, we incubated differentiating cells with CBD for seven days, with media being changed every 48 hrs. The exposure time of CBD was significantly different, which resulted in examining changes in myotubes at different periods of growth. Moreover, it is unknown whether the same CBD compound was used between the two investigations. In the present study, the chemical structure and molecular weight of the compound are clear¹³⁹, whereas this information was not provided in the published study by Iannotti and colleagues (2018). Using the same compound is an important consideration since the agent can be derived synthetically or isolated from plants.

To determine the influence of CBD and CBN on the myogenic response, we investigated the gene expression of critical regulators of SC proliferation and differentiation^{29, 49, 114, 138}. It has been well documented that MRFs orchestrate the

myogenic program, and ultimately contribute to the growth, repair, and regeneration of muscle¹³⁸. In the resting state, SCs are quiescent and can be identified by the expression of Pax7²⁰. Up-regulation of Myf5 and MyoD, usually by exercise or injury, results in the activation of SC and subsequent entry into the cell cycle. SCs proliferate – referred to as myoblasts – and either self-renew or fuse with existing myofibers *in vivo*, or with other myoblasts *in vitro*. The expression of Mrf4 and myogenin commits myoblasts to differentiation^{22, 23, 24}, resulting in the repair and regeneration of muscle. Collectively, these transcription factors are important measures to determine whether CBD or CBN might influence myogenesis or growth of skeletal muscle

Other proteins implicated in the hypertrophic response include MSTN and FSTN. MSTN is a member of the TGB-β superfamily and is well known to negatively regulate muscle growth^{29, 49, 114, 120}. MSTN is likely the most potent known regulator of muscle growth, whereby reducing the mRNA expression of MSTN by less than 1% in mice resulted in a 25% increase in muscle mass within three months³⁰. Other studies have reported a similar phenomenon in humans, cattle, mice, sheep, and dogs through random mutations in the MSTN gene^{32, 33, 34, 35, 36}. This has led to the hypothesis that inhibiting MSTN gene expression could potentially improve human performance or serve as a pharmaceutical target for treating muscle-related diseases, by increasing muscle mass^{38, 121}. Indeed, the association between MSTN and sarcopenia has been shown in numerous studies, with results indicating the endogenous levels of MSTN may influence the prevalence of sarcopenia^{37, 38}. McKay and colleagues (2012) demonstrated that MSTN protein is localized to SCs⁴⁴. Based on their findings, it was determined that increased colocalization of MSTN in SC induced impairments in the myogenic capacity of aged muscle⁴⁴. In another study, it was noted that inhibiting MSTN gene expression resulted in enhanced muscle growth in mice experiencing an age-related decline of muscle mass⁴⁹. Given the unfavorable effect of increasing MSTN in old age, the delivery of FSTN presents a promising approach for increasing skeletal muscle mass. Specifically, FSTN is a robust antagonist of MSTN that has the primary function of binding and neutralizing members of the TGF- β superfamily¹²¹. The experimental overexpression of FSTN in mice significantly increases muscle mass while decreasing fat accumulation, compared to their wild type counterparts⁴⁹. Therefore, it would be beneficial if a nutritional supplement was capable of inhibiting the expression of MSTN while increasing FSTN. In search of a novel compound that could target both proteins, Gutierrez-Salmean and colleagues (2014) investigated the influence of epicatechin – a polyphenol found in plants – in mice and humans¹⁵³. It was determined that epicatechin decreased MSTN and β -galactosidase expression, as well as increased levels of genetic markers associated with myogenesis in mice¹⁵³. As a proof of principle, it was also demonstrated in humans that treatment for seven days with epicatechin improved handgrip strength and increased the plasma levels of FSTN and decreases MSTN levels¹⁵³. This evidence reveals a promising strategy for the role of nutrition in regulating the hypertrophic response. To determine if cannabinoids influenced the regulation of MSTN and FSTN, the current investigation measured the gene expression of MSTN and FSTN in C2C12 myotubes after supplementation with CBD or CBN for seven days. The evidence in our study suggests that both CBD and CBN did not affect the regulation of MSTN and FSTN.

Limitations and Future Directions

In the current study, it was noted that CBD and CBN were able to increase the growth rate of cells using immunofluorescent quantification via MTT. However, the gene expression data does not support this finding. It was unusual that Myf5 and MyoD gene expression were not up-regulated following treatment with CBD or CBN. The MTT assay measures mitochondrial quantity as an indicator of cell growth, whereby the expression of purple formazan metabolized from yellow MTT suggests an increase in cell growth, however, it is possible that CBD or CBN improved the metabolic capacity of these cells instead. It would be beneficial to examine other mechanisms involved in the cell cycle that can further elucidate the proliferation of myoblasts supplemented with CBD or CBN. To further examine cell proliferation, numerous enzymes known as cyclin-dependent kinases (Cdk) actively regulate the cell cycle when bound to cyclins¹⁵¹. In eukaryotic cells, these involve complex combinations through different phases of the cell cycle, which in turn provide additional control to the cell-cycle machinery¹⁵¹. In addition to Myf5 and MyoD, these regulatory proteins can also influence the initiation of the cell through the $G_{1/S/G_{2/and}}$ M phase, which can provide a clear picture of the events during cell growth. In consideration to our experimental timeline during cell exposure to CBD or CBN, the analysis of gene expression and myotube formation was performed after 48 hrs and seven days in proliferation and differentiation, respectively. In doing so, the possible impacts on myoblasts and myotubes may have been realized earlier on and the effects of the supplement may have diminished thereafter. Another unexpected outcome was the decreased expression of FSTN after supplementation with CBD at 1 uM, although carefully controlled for, this anomaly could stem from the usage of cells that were in a different passage or level of cell viability.

Evidence using a 2D culture model in drug discovery has identified limitations of in vitro cell responses to guide pharmaceutical interventions. The nature of cells grown in a monolayer does not resemble the complete structure of skeletal muscle¹¹⁸. Notably, the absence of an extracellular matrix (ECM) is a significant limitation to in vitro models. It was thought that the ECM simply provided structural support; however, it is now appreciated that the ECM is capable of influencing most aspects of cell behaviour¹¹⁸. Components of the ECM, include factors such as matrix proteins, glycoproteins, proteoglycans, and ECM sequestered growth factors¹¹⁸. In the absence of factors such as those listed above, a 2D in vitro approach is inherently limiting since many factors can influence cell differentiation and proliferation¹¹⁸. It has been suggested that an ideal culture model should incorporate tissue-specific stiffness, oxygen, nutrient and metabolic waste gradients, a combination of tissue-specific scaffolding and cell-to-cell and cell-to-ECM interactions¹¹⁷. However, to our knowledge, no current 3D culture method meets all of the criteria mentioned above. Rather each 3D culture model has its advantages, but also limitations. A feasible option for future investigations is to use a 2.5D model in which cells are plated on top of a thick layer of ECM. The method allows for a better representation of the complex microenvironment seen *in vivo*, while also being suitable for the current objectives in this project – providing high throughput screening, and tissue-specific differentiation in cells¹¹⁷. In conjunction with the proposed method, primary muscle cells could also be added as a means to better represent the physiological

47

structures in muscle tissue. Furthermore, the cell-based assays used in the current investigation – such as MTT, immunocytochemistry, and qPCR – are still applicable in a 2.5D culture approach.

Conclusion

In summary, the primary objective of this investigation was to evaluate the effect of CBD and CBN supplementation on murine myoblast proliferation and differentiation, to determine whether these compounds might enhance the myogenic response. Based on our results, it was evident that following supplementation, both CBD and CBN improved cell proliferation after 48 hrs in culture but did not impact differentiation after seven days of incubation. Studies have shown the effectiveness of CBD and CBN as an antiinflammatory and antioxidative medicine^{123, 124, 125}. However, recent evidence from Giacoppo et al. 2016 and Iannotti et al. 2018 has suggested a potential for CBD as effective therapeutic interventions for muscular dystrophies. The fact that CBD and CBN might serve an as effective strategy for muscle-related pathology is not a trivial matter, given that the proportion of older adults in society is rapidly growing. Future directions for this research should aim to focus on evaluating the absorption, distribution, metabolism, and excretion of CBD and CBN in vitro. As previously mentioned, cell culture techniques involving HepG2 are an effective and commonly used method when measuring the cytotoxicity of new drugs and compounds¹³⁷; because of the high degree of morphological and functional resemblance to the liver, they are a suitable model to study the metabolism of CBD and CBN supplementation, which would provide a basis for the safety and feasibility of consuming cannabinoids. To identify improvements in

mitochondrial function from CBD or CBN, the Agilent Seahorse XF analyzer can be utilized to measure glycolysis and oxidative phosphorylation in cells, which will expand upon the findings shown here. Other future experiments should also evaluate the gene expression of cyclin-dependent kinases such as CDK1, which has been shown to be essential for cell proliferation¹⁵², and will provide a complete picture of possible cell growth. Finally, with respect to our timeline for analysis of gene expression late into differentiation (day 7), it would be of interest to look at the acute response from exposure to supplements for both proliferating and differentiating cells (i.e. day 1, 5 and 7), potentially presenting a significant effect earlier on in the incubation period.

APPENDIX: SUPPLEMENTARY PICS, RAW DATA AND STATISTICS

RAW DATA Proliferation Time Course Experiment (8+40hrs, 24+24hrs, 48hrs)

CBD

						NTT 🧧	proliferation ti	me course cb	d cbn mth N	lov 10							
File Sheet Undo	Clipbo	ard	Analy	ysis	Change	Import	Draw Writ	2		Text		Export Pr	int	Send LA	Help		
ि 🖪 🧟 🧷 🕷 🖈 🖒 अ	f 🖪			E =	∎ ∋∎ <u>\$</u> ↓ + ⊘	- 🦛	- i i	χ 12 Υ	Helvetica		<u>A</u>		} ▼	Ô• 👝			Prism8
🔒 🖶 🗙 🕂 New 🔹 💍 📋	Ċ	•	E Analyze	10 /# 🖻	[#] π.π ¹ 2 ³ €29	0*	T	Г А А	BIU3	x ^s X ^s μή μί	• ≣• ∰•	1 37 e		<u>4</u> - 1	0-		THOMIC
Qr Search		Table	e format:		Group A			Group B			Group C				Group D		
▼ Data Tables >>		Gr	ouped	MTH				CBD 0.1			CBD 1				CBD 5		
🗮 CBD Time course MTT test			0	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N		Mean	SEM	N	Mean
E CBN Time course MTT test		1 8	+ 40	0.553800000	0.024823745	8	0.5707500	0.0252868	8	0.627750000	0.035371540		8 0	.700562500	0.037066154	8	
① New Data Table		2 2	4 + 24	0.530333333	0.021314054	8	0.5802000	0.0242604	8	0.661866667	0.021146881		8 0	.755466667	0.022023069	8	
▼ Info »		3 4	8 hours	0.473937500	0.031033378	8	0.5235625	0.0294507	8	0.600062500	0.028915605		8 0	.662428571	0.021828635	8	
Project into 1		\$ T	10e														
T Results >>		5 T	10e														
2 2way ANOVA of CBD Time cour	1	3 Т	10e														
= 2way ANOVA of CBD Time cour	1	7 Т	1tie														
a 2way ANOVA of CBN Time cours		3 Т	100														
New Analysis		ат	itie .														
▼ Graphs >>		0 7	itia										-				
CBD Time course MTT test		1 7	Tio .										-				
CBN Time course MTT test		2 7	26.0														
New Graph	E	2 7															
Tayouts »		4 T	itie														
e Family	v 1	5 T															
CBD Time course MTT test	1	6 T	itie .														
2way ANOVA	1	7 T	itie														
= 2way ANOVA	1	8 T	1tie														
🗠 CBD Time course MTT test		9 T	The last														
🔐 Layout 1	2	0 1	10e														
	2	1 1	11ie														
	-	2 1	life														
	2	3 1	The second														
	2	4 T	The later														
	-	7 1 6 7											+				
	-	a 1											-				
	-	7 7	TURE .														
	2	7 1	108														
	2	0 1	100														
	2	a 1	100										1				
	D	88	H	0 = 2 5	CBD T	ime course MT	T test	يى 🗸	- 📑 Row	5, A: MTH						Q -0	
	_				-								_			-	

CBN

E• <u>}</u> <u>∠</u> • ⊗ ☆• C %	r.	8 <u>12 18</u> 1		• → <u>2</u> ↓- 4	× 🚛		CX 12 ✓	Helvetica				• •••			Prisma
		(=) Analyz			0.0		I A A	BIU	X. X ⁵ III, 1	[]* ≡ • ↓≣*		· ≪•	Crewe D		
tr Search	Ta	able format:		Group A			Group B			Group C			Group D		
Data Tables >>		Grouped	MTH				CBN 0.1			CBN 1			CBN 5		
CBD Time course MTT test		0	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N	Mean
Maw Data Table	1	8 + 40	0.570333333	0.016942960	8	0.5648000	0.0110865	8	0.649666667	0.022264446	1	0.7488125	0.0297840	8	
Info »	2	24 + 24	0.610800000	0.008040108	8	0.5731875	0.0247918	8	0.620687500	0.027339489	1	0.7550000	0.0233083	8	
Project info 1	3	48 hours	0.595562500	0.032619520	8	0.5262500	0.0407370	8	0.654133333	0.017796972	1	0.6305625	0.0402656	8	
New Info	4	Title													
Results >>	5	Title													
2way ANOVA of CBD Time cours	6	Title													
2way ANOVA of CBD Time cours	7	Title													
2way ANOVA of CBN Time cour	8	Title													
New Analysis	9	Title													
Graphs »	10	Title													
CBD Time course MTT test	11	Title													
New Graph	12	Title													
Layouts »	13	Title													
🛣 Layout 1	14	Title													
mily	15	Title													
CBN Time course MTT test	16	Title													
= 2way ANOVA	17	Title													
CBN Time course MTT test	18	Title													
🔐 Layout 1	19	Title													
	20	Title													
	21	Title													
	22	Title													
	23	Title													
	24	Title													
	24														
	20	Title													
	20	701.													
	27	108													
	28	1108													
	29	1100	1												

TWO-WAY ANOVA Analysis of Proliferation Time Course Results

CBD

Tota Tables	 Climit Line 	ANOVA results X	v lul				
	jer	CHOVA results × () Multiple comparisons					
CBD Time course MTT test		2way ANOVA					
EBN Time course MTT test		ANOVA results					
① New Data Table							
▼ Info >>>	1	Table Analyzed	CBD Time course MTT test				
 Project info 1 	2						
New Info	3	Two-way ANOVA	Ordinary				
* Results >>	4	Alpha	0.05				
2way ANOVA of CBD Time course	5						
New Analysis	6	Source of Variation	% of total variation	P value	P value summary	Significant?	
▼ Graphs >>	7	Interaction	1.441	0.8540	ns	No	
CBD Time course MTT test	8	Row Factor	7.042	0.0027		Yes	
CBN Time course MTT test	9	Column Factor	45.06	< 0.0001	••••	Yes	
① New Graph	10						
▼ Layouts >>	11	ANOVA table	SS	DF	MS	F (DFn, DFd)	
Layout 1	12	Interaction	0.01563	6	0.002606	F (6, 84) = 0.4343	
New Layout	13	Row Factor	0.07639	2	0.03819	F (2, 84) = 6.367	
Family >>	14	Column Factor	0.4889	3	0,1630	F (3, 84) = 27,16	
EBD Time course MTT test	15	Residual	0.5039	84	0.005999		
= 2way ANOVA	16						
	17	Data summary					
	18	Number of columns (Column Factor)	4				
	19	Number of rows (Bow Factor)	3	-			
	20	Number of values	96		-		
	21			1			
	22						

		MTT prolife	ration time co	urse cbd cbn mth	Nov 10				
File Sheet Undo Clip	board	Analysis Interpret Change Draw Write		Text		Export Print	Send LA Help		
📑 • 💁 🖉 • 🛞 🛠 • 🖒 😽 !	B 8	🗠 🗄 🚃 🛛 💑 🗸 🚺 🗸 🚺 🗸 🚺	 Helveti 	ca .	✓ <u>A</u>	_ ⊷ ⊖•	₫ • _ 😡	Dr	icm 8
🖬 🖬 🗙 🕂 New 🔹 💍 📋	† •	EAnalyze 🐚 🎢 🎽 👘 📾 🖵 T T A	A* B <i>I</i>	∐ x² x₂ lin iñ	• ≣• ‡≣•	🍱 😸	<u>م</u> - ۳۰ @-	FI	151110
Q v Search		ANOVA results × 🗐 Multiple comparisons × v							
▼ Data Tables >>		0							
EBD Time course MTT test		2way ANOVA Multiple comparisons							
CBN Time course MTT test									
New Data Table		Methods and and and an annual following with the second							
♥ Info >>>	1	within each column, compare rows (simple effects within columns)							
Project into 1	2								
New Into Paculte	3	Number of families	4						
Results Way ANOVA of CBD Time course	4	Number of comparisons per family	3						
a 2way ANOVA of CBN Time course I	5	Alpha	0.05						
New Analysis	6								
▼ Graphs >>	7	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value		
CBD Time course MTT test	8								
CBN Time course MTT test	9	MTH							
New Graph	10	8 + 40 vs. 24 + 24	0.02347	-0.06893 to 0.1159	No	ns	0.8173		
▼ Layouts >>>	11	8 + 40 vs. 48 hours	0.07986	-0.01254 to 0.1723	No	ns	0.1040		
all Layout 1	12	24 + 24 vs. 48 hours	0.05640	-0.03601 to 0.1488	No	ns	0.3172		
New Layout	13								
Family >>	14	CBD 0.1							
EBD Time course MTT test	15	8 + 40 vs. 24 + 24	-0.009450	-0.1019 to 0.08295	No	ns	0.9677		
= 2way ANOVA	16	8 + 40 vs. 48 hours	0.04719	-0.04521 to 0.1396	No	ns	0.4457		
	17	24 + 24 vs. 48 hours	0.05664	-0.03576 to 0.1490	No	ns	0.3141		
	18								
	19	CBD 1							
	20	8 + 40 vs. 24 + 24	-0.03412	-0.1265 to 0.05828	No	ns	0.6538		
	21	8 + 40 vs. 48 hours	0.02769	-0.06471 to 0.1201	No	ns	0.7554		
	22	24 + 24 vs. 48 hours	0.06180	-0.03060 to 0.1542	No	ns	0.2530		
	23								
	24	CBD 5							
	25	8 + 40 vs. 24 + 24	-0.05490	-0.1473 to 0.03750	No	ns	0.3365		
	26	8 + 40 vs. 48 hours	0.03813	-0.05427 to 0.1305	No	ns	0.5885		
	27	24 + 24 vs 48 hours	0.09304	0.0006367 to 0.185	Yes		0.0481		
	28	27 · 27 · 10 · 10 · 10 · 10	0.00004	0.0000007100.100	100		0.0401		
	20			R- 0- 0.0				8	
		2way ANOVA of CBD Time cour	se Mili test	Row 6, Co	umn G			 ~	

·····································		12 → Helvetica A* A* B I U >	ζ² Χ₂ ∱	►▲ ₽≣•≣•	📑 🗧 🔥	0	-		P	riŝm 8
Q• Search)	ANOVA results × = Multiple comparisons × ~									
Data Tables >> CBD Time course MTT test CBN Time course MTT test	2way ANOVA Multiple comparisons									
New Data Table	24 CBD 5								-	
Into »	25 8+40 x 24+24	-0.1473 to 0.03750	No		0.2265					
New Info	26 8 + 40 vs. 48 hours	-0.05427 to 0.1305	No	ne	0.5885					
Results »	27 24 + 24 vs 48 hours	0.0006367 to 0.185	Yes	*	0.0481					
= 2way ANOVA of CBD Time course	21 24 + 24 VS. 40 Hours	0.0000307 10 0.185	105		0.0401					
2way ANOVA of CBN Time course N	20									
New Analysis	20 Test details	Maran 2	Maan Diff	2E -4 -14	14	N/2	-	DE		
Graphs »	30 Test details	mean z	mean bin.	ac of ulli.	NI	NZ	4	DF		
CBD Time course MTT test	31									
OBN TIME COURSE MITTLESL ONew Graph	32 MIH	0.5303	0.00047	0.03073			0.0500	04.00		
Lavouts »	33 8+40 vs. 24+24	0.5303	0.02347	0.03873	8	8	0.8569	84.00		
Lavout 1	34 8 + 40 vs. 48 hours	0.4739	0.07986	0.03873	8	8	2.916	84.00		
New Layout	35 24 + 24 vs. 48 hours	0.4739	0.05640	0.03873	8	8	2.059	84.00		
0	36									
CRD Time course MTT test	37 CBD 0.1									
- 2way ANOVA	38 8 + 40 vs. 24 + 24	0.5802	-0.009450	0.03873	8	8	0.3451	84.00		
- Ling Alto IA	39 8 + 40 vs. 48 hours	0.5236	0.04719	0.03873	8	8	1.723	84.00		
	40 24 + 24 vs. 48 hours	0.5236	0.05664	0.03873	8	8	2.068	84.00		
	41									
	42 CBD 1									
	43 8 + 40 vs. 24 + 24	0.6619	-0.03412	0.03873	8	8	1.246	84.00		
	44 8 + 40 vs. 48 hours	0.6001	0.02769	0.03873	8	8	1.011	84.00		
	45 24 + 24 vs. 48 hours	0.6001	0.06180	0.03873	8	8	2.257	84.00		
	46									
	47 CBD 5									
	48 8 + 40 vs. 24 + 24	0.7555	-0.05490	0.03873	8	8	2.005	84.00		
	49 8 + 40 vs. 48 hours	0.6624	0.03813	0.03873	8	8	1.393	84.00		
	50 24 + 24 vs. 48 hours	0.6624	0.09304	0.03873	8	8	3.398	84.00		
	51									

CBN

●●● Sheet Undo Clip ●●● ▲ ※ ✓ <	iboard	Analysis Interpret Change Draw Analyze P / 200 - 100	MTT proliferation time cours Write i→ Q 12 → Helvetica T T A* A* B I U	Text	th Nov 10 ► ▲ Expo ↓ ■ ★ ↓ ■ ★	t Print Send LA	Heb O		Prism8
Qr Search		ANOVA results × E Multiple comparisons ×	~						
Data Tables Data Tables CBD Time course MTT test CBN Time course MTT test		2way ANOVA ANOVA results							
① New Data Table									
▼ Info >>>	1	Table Analyzed	CBN Time course MTT test						
Project info 1 Alaw lafa	2								
Results	3	Iwo-way ANOVA	Ordinary		-				
E 2way ANOVA of CBD Time course I	- 5	Apia	0.00						
2way ANOVA of CBN Time course	6	Source of Variation	% of total variation	P value	P value summary	Significant?			
New Analysis	7	Interaction	8 177	0.0518	ns.	No			
▼ Graphs >>>	8	Row Factor	2 976	0.0977	ns	No			
CBN Time course MTT test	9	Column Factor	36.58	<0.0001	****	Yes			
New Graph	10								
▼ Layouts >>>	11	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value		
Layout 1	12	Interaction	0.07380	6	0.01230	F (6, 84) = 2.190	P=0.0518		
New Layout	13	Row Factor	0.02686	2	0.01343	F (2, 84) = 2.392	P=0.0977		
Family >>	14	Column Factor	0.3302	3	0.1101	F (3, 84) = 19.60	P<0.0001		
CBN Time course MTT test	15	Residual	0.4718	84	0.005616				
E ZWAY ANOVA	16								
	17	Data summary							
	18	Number of columns (Column Factor)	4						
	19	Number of rows (Row Factor)	3						
	20	Number of values	96						
	21								
	22								
	23								
	24								
	25								
	26								
	27								
<	20	2way ANOVA of 0	BN Time course MTT test	er war Row 1,	Column A		1 1	Q	

File Sheet Undo C Image:	lpboard Analysis Interpret Change Draw Wite □ Analyse 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	12 H A A B	Text alvetica I U X ² X ₂	Nov 10 <u> 小 IP 王</u> ・	Export	Print Send LA	Help O-	Pri	i sm 8
Q v Search	ANOVA results × = Multiple comparisons × ~								
Data Tables Set Time course MTT test CBN Time course MTT test	2way ANOVA Multiple comparisons								
New Data Table	1 Within each column, compare rows (simple effects within columns)								
Project info 1	2								
New Info	3 Number of families	4							
Results >>	4 Number of comparisons per family	3							
2way ANOVA of CBD Time cours	5 Alpha	0.05							
2way ANOVA of CBD Time cours	6								
E 2way ANOVA of CBN Time cour	7 Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value			
Granhs 22	8			-					
CBD Time course MTT test	9 MTH								
CBN Time course MTT test	10 8 + 40 vs. 24 + 24	-0.04047	-0.1299 to 0.04894	No	ns	0.5291			
New Graph	11 8 + 40 vs. 48 hours	-0.02523	-0.1146 to 0.06417	No	ns	0.7796			
/ Layouts >>	12 24 + 24 vs. 48 hours	0.01524	-0.07417 to 0.1046	No	ns	0.9130			
👷 Layout 1	13								
amily »	14 CBN 0.1								
CBN Time course MTT test	15 8 + 40 vs. 24 + 24	-0.008387	-0.09779 to 0.0810	No	ns	0.9728			
= 2way ANOVA	16 8 + 40 vs. 48 hours	0.03855	-0.05085 to 0.1280	No	ns	0.5609			
	17 24 + 24 vs. 48 hours	0.04694	-0.04247 to 0.1363	No	ns	0.4259			
	18								
	19 CBN 1								
	20 8 + 40 vs. 24 + 24	0.02898	-0.06042 to 0.1184	No	ns	0.7203			
	21 8 + 40 vs. 48 hours	-0.004467	-0.09387 to 0.0849	No	ns	0.9922			
	22 24 + 24 vs. 48 hours	-0.03345	-0.1228 to 0.05596	No	ns	0.6465			
	23								
	24 CBN 5								
	25 8 + 40 vs. 24 + 24	-0.006188	-0.09559 to 0.0832	No	ns	0.9851			
	26 8 + 40 vs. 48 hours	0.1183	0.02885 to 0.2077	Yes	••	0.0062			
	27 24 + 24 vs. 48 hours	0.1244	0.03503 to 0.2138	Yes		0.0038			
	N R E C Way ANOVA of CBN Time of	ourse MTT test		Column A				Q -0	

		NTT prolife	ration time cou	irse cbd cbn mth	Nov 10 - Ed	lited							
File Sheet Undo Cl	ipboard	Analysis Interpret Change Draw	Write	Text		E	xport Print	Send	LA	Help			
📑 • 💁 🖉 • 🏶 🖈 • C 😽	6	li 12 12 🖩 🚽 🐅 🦾 🔺 🔤 6	OX 12	Helvetica		A	.ttf 🖯 •	đ۳	÷-				Prism8
🖥 🔂 🕈 🗙 🕂 New 🕤 🍈	Ô.	🖹 Analyze 🎦 🎢 🎽 📑 🔂 😂 🦵 🦷	Т Д А	B I ∐ x² x	<2 m ¹ m ² ∎	e• (=• ⁰	چ ک	₫	0.	0-			THOMIC
Qr Search		ANOVA results × 🗐 Multiple comparisons × V											
▼ Data Tables >>													
CBD Time course MTT test		Multiple comparisons											
New Data Table													
▼ Info »	24												
 Project info 1 	25	48 hours											
New Info	26	MTH vs. CBN 0.1	0.06931	-0.02891 to 0.1675	No	ns	0.2577						
▼ Results >>	27	MTH vs. CBN 1	-0.05857	-0.1568 to 0.03965	No	ns	0.4051						
⊒ 2way ANOVA of CBD Time course №	28	MTH vs. CBN 5	-0.03500	-0.1332 to 0.06322	No	ns	0.7867						
2way ANOVA of CBN Time course Manu Apply in	29	CBN 0.1 vs. CBN 1	-0.1279	-0.2261 to -0.02966	Yes		0.0054						
▼ Graphs »	30	CBN 0.1 vs. CBN 5	-0.1043	-0.2025 to -0.00609	Yes	•	0.0330						
CBD Time course MTT test	31	CBN 1 vs. CBN 5	0.02357	-0.07465 to 0.1218	No	ns	0.9224						
CBN Time course MTT test	32												
New Graph	33												
▼ Layouts »	34	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	N1		N2		q	DF	
Layout 1	35												
New Layout	36	8 + 40											
Family »	37	MTH vs. CBN 0.1	0.5703	0.5648	0.005533	0.03747	8		8		0.2088	84.00	
CBN Time course MTT test	38	MTH vs. CBN 1	0.5703	0.6497	-0.07933	0.03747	8		8		2.994	84.00	
E ZWAY ANOVA	39	MTH vs. CBN 5	0.5703	0.7488	-0.1785	0.03747	8		8		6.736	84.00	
	40	CBN 0.1 vs. CBN 1	0.5648	0.6497	-0.08487	0.03747	8		8		3.203	84.00	
	41	CBN 0.1 vs. CBN 5	0.5648	0.7488	-0.1840	0.03747	8		8		6.945	84.00	
	42	CBN 1 vs. CBN 5	0.6497	0.7488	-0.09915	0.03747	8		8		3.742	84.00	
	43												
	44	24 + 24											
	45	MTH vs. CBN 0.1	0.6108	0.5732	0.03761	0.03747	8		8		1.420	84.00	
	46	MTH vs. CBN 1	0.6108	0.6207	-0.009887	0.03747	8		8		0.3732	84.00	
	47	MTH vs. CBN 5	0.6108	0.7550	-0.1442	0.03747	8		8		5.442	84.00	
	48	CBN 0.1 vs. CBN 1	0.5732	0.6207	-0.04750	0.03747	8		8		1.793	84.00	
	49	CBN 0.1 vs. CBN 5	0.5732	0.7550	-0.1818	0.03747	8		8		6.862	84.00	
	50	CBN 1 vs. CBN 5	0.6207	0.7550	-0.1343	0.03747	8		8		5.069	84.00	
	51												
I < ▶ ≤	D 88	2way ANOVA of CBN Ti	me course MTT t	est 🔽 🛷 🕶 Rov	v 43, Column F	RT						Q -0	
	_												

File Sheet Undo Cil • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	pboard Analysis Interpret Change Dra C	Write Write T T A A	Helvetica	Text <^2 X ₂ ∰ ∭ ≣		oport Print Send	LA Help			Prism8
Q ~ Search	ANOVA results × A Multiple comparisons ×	~								
Data Tables Sep Time course MTT test CBN Time course MTT test	2way ANOVA Multiple comparisons									
New Data Table	24 Test details	Moon 1	Moon 2	Moon Diff	SE of diff	N1	N2		DE	
Decise tinfe 1	34 Test details	mean i	mean z	mean Diff.	ac or ann.	NI	NZ	9	Dr	
Project Into 1 New Info	35									
Results »	37 MTH vs CBN 0.1	0.5703	0.5648	0.005533	0.03747	8	8	0.2088	84.00	
2way ANOVA of CBD Time course N	38 MTH vs. CBN 1	0.5703	0.6497	-0.07933	0.03747	8	8	2 994	84.00	
a 2way ANOVA of CBN Time course	39 MTH vs. CBN 5	0.5703	0.7488	-0.1785	0.03747	8	8	6.736	84.00	
New Analysis	40 CBN 01 vs CBN 1	0.5648	0.6497	-0.08487	0.03747	8	8	3 203	84.00	_
Graphs >>	41 CBN 01 vs CBN 5	0.5648	0.7488	-0 1840	0.03747	8	8	6.945	84.00	_
CBD Time course MTT test	42 CBN 1 vs. CBN 5	0.6497	0.7488	-0.09915	0.03747	8	8	3.742	84.00	
New Graph	43						-			
Layouts »	44 24+24									
🟦 Layout 1	45 MTH vs. CBN 0.1	0.6108	0.5732	0.03761	0.03747	8	8	1.420	84.00	
New Layout	46 MTH vs. CBN 1	0.6108	0.6207	-0.009887	0.03747	8	8	0.3732	84.00	
amily »	47 MTH vs. CBN 5	0.6108	0.7550	-0.1442	0.03747	8	8	5.442	84.00	
CBN Time course MTT test	48 CBN 0.1 vs. CBN 1	0.5732	0.6207	-0.04750	0.03747	8	8	1.793	84.00	
= 2way ANOVA	49 CBN 0.1 vs. CBN 5	0.5732	0.7550	-0.1818	0.03747	8	8	6.862	84.00	_
	50 CBN 1 vs. CBN 5	0.6207	0.7550	-0.1343	0.03747	8	8	5.069	84.00	_
	51									
	52 48 hours									
	53 MTH vs. CBN 0.1	0.5956	0.5263	0.06931	0.03747	8	8	2.616	84.00	
	54 MTH vs. CBN 1	0.5956	0.6541	-0.05857	0.03747	8	8	2.211	84.00	
	55 MTH vs. CBN 5	0.5956	0.6306	-0.03500	0.03747	8	8	1.321	84.00	
	56 CBN 0.1 vs. CBN 1	0.5263	0.6541	-0.1279	0.03747	8	8	4.827	84.00	
	57 CBN 0.1 vs. CBN 5	0.5263	0.6306	-0.1043	0.03747	8	8	3.937	84.00	
	58 CBN 1 vs. CBN 5	0.6541	0.6306	0.02357	0.03747	8	8	0.8896	84.00	
	59									
	60									
	61									

RAW DATA 48 hours Proliferation Concentration Experiment (0.1uM, 1uM, 5uM) CBD

					📔 48 hr	MTT prolifer	ation cbd cb m	th Nov 10							
File Sheet Undo C	lipboard	Analysis		Change	Import Dra	w Write		Text		Expo	ort Print S	end LA H	lelp		
📑 • 🚱 🖉 • 🛞 🛠 • 🖒 😽	6	li 🗠 🗄 🚍 👘	÷0 ⇒	2↓ - ⊘ı -	1	_ 🚯 α	12 Y Helv	etica		<u>A</u>	g 🖯 🕇) 🔔 🛛		P	rism8
× + New - 5 □	Ô-	🖃 Analyze 👖	1 🎢 📑 🚅	153 459 🔍 🗠		ТТ	A* A* B	[∐ x² x	⊊ nîn ni≥ ≣	e • 18 • 🗳		4- Mile	9-		Iomo
Q- Search		Table format:		Group A			Group B			Group C			Group D		
▼ Data Tables >> ■		Grouped		CBD 0.1			CBD 1			CBD 5		MTH 0.1			MTH 1
Effect of Cannabidiol on prolife		0	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N	Mean
Effect of Cannabinol on proliferal	1	Title	0.152166667	0.005457596	12	0.206416667	0.017355227	12	0.202416667	0.011015456	12	0.151583333	0.012492700	12	0.1220833
① New Data Table	2	Title													
▼ Info >>	3	Title													
Project info 1	4	Title													
New Info	5	Title													
Results S Ordinary and way ANOVA of Ef	6	Title													
Ordinary one-way ANOVA of Effe	7	Title													
New Analysis	-	704-													
▼ Graphs »	0	1108													
Effect of Cannabidiol on prolife	9	TIDe													
Effect of Cannabinol on proliferat	10	Title													
New Graph	11	Title													
▼ Layouts >>	12	Title													
🔐 Layout 1	13	Title													
New Layout	- 14	Title													
Family >>	15	Title													
Effect of Cannabidiol on prolifera	16	Title													
Ordinary one-way ANOVA	17	Title													
Effect of Cannabidiol on prolifera	18	Title													
🚅 Layout 1	19	Title													
	20	Title													
	21	Title													
	22	Title													
	23														
	2.0														
	29														
	25	1100													
	26	1108													
	27	100													
	28	Title													
	29	Title													
	L 88			Effect of Car	nabidiol on pr	oliferation (48h	r) 💟 🖉 🕶	📑 Row 4, A:	CBD 0.1					Q. — . —	®
															and the second se

					48 1	nr MTT prolifer	ation cbd cb m	th Nov 10							
File Sheet Undo Cli	pboard	Analysis		Change	Import D	Iraw Write		Text		Exp	ort Print S	Send LA H	leip		
ि • 💁 🖉 • 🛞 🖈 🖒 🐇		12 14 🖩	÷I →	ĝ↓• <u>&</u> •	1	1 🚯 🔿	12 Y Heh	retica		<u>A</u>	s 🕀 🛛	5• 🔔 🛛		Pr	rism8
□ □• × + New • 5 □	Ô.	🖹 Analyze 🏌] ≁ 📑 🗳	123 <u>129</u> 🝼 🗸	ami	ТТ	A* A* B .	Į <u>U</u> x²≯	Հոիս⊳≣	e• (e• 🖽	8	^- ^{₩*} (9-		ionne
Qr Search		Table format:		Group C			Group D			Group E			Group F		
▼ Data Tables >>		Grouped		CBD 5		MTH 0.1			MTH 1				MTH 5		
📰 Effect of Cannabidiol on prolifera		G	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N	Mean
Effect of Cannabinol on proliferation	1	Title	0.202416667	0.011015456	1:	2 0.151583333	0.012492700	12	0.122083333	0.003869967	12	0.118583333	0.007140854	12	
① New Data Table	2	Title													
'Info »	3	Title													
(i) Project info 1	4	Title													
New Info	5	Title													
Results >>	6	Title													
Ordinary one-way ANOVA of Effect	7														
New Analysis	,	700													
Graphs »	0	1100													
Effect of Cannabidiol on prolifera	9	TIDe													
Effect of Cannabinol on proliferation	10	Title													
New Graph	11	Title													
# Layouts >>	12	Title													
🔐 Layout 1	13	Title													
New Layout	14	Title													
amily »	15	Title													
Effect of Cannabidiol on prolifera	16	Title													
Ordinary one-way ANOVA	17	Title													
Effect of Cannabidiol on prolifera	18	Title													
🔐 Layout 1	19	Title													
	20	Title													
	21	Title													
	22	Title										-			
	22	TIDE													
	23	100													
	24	Title	-			-									
	25	Title													
	26	Title													
	27	Title													
	28	Title													
	29	Title													
	00			Effect of Car	nabidiol on r	I Voliferation (48)	e) 🖾 🖉 💌	Prov A A	CBD 0.1			1			
	- 88			Enect of Car	macroiol on p	nomeration (46)	0.00		. 000 0.1	_					

CBN

					48	hr MTT prolif	eration cbd	cb mth Nov 10							
File Sheet Undo C	lipboard	Analy	sis	Change	Import	Draw Write		Ti	axt	E	xport Print	Send LA I	lelp		
📑 • 🛃 🖉 • 🐡 🛠 • 🖒 😽	1.	h 🗠 🗄 🖬	E	i 🗐 ĝi 🕶 🙆	- न	0	12 ~	Helvetica		<u>A</u>	<u>B</u>	Ů▼ (PI	rism
🖬 🖬 🕶 🗙 🕂 New 🔹 💍 📋	•	E Analyze	10 🥕 📑	# ⁷²³ €29	7 •	ТТ	A A I	B I U x ²	X2 10 10 1	=• (=• C	ی ک	<u>م</u> - (۲۰)	9-		
Q v Search			Group A			Group B			Group C			Group D			Group
🖉 Data Tables 🛛 🔅 🖉		CBN 0.1			CBN 1			CBN 5			MTH 0.1			MTH 1	
Effect of Cannabidiol on prolifera		Mean	SEM	N	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N	Mean	SEM
🔠 Effect of Cannabinol on prolife	1	0.098083333	0.005814635	5 12	0.15225	0.00944	12	0.190083333	0.010921523	12	0.115916667	0.008814982	13	0.120666667	0.00857
① New Data Table	2														
' Info »	3														
 Project info 1 	-														
New Info	- 4														
Results »	0														
Ordinary one-way ANOVA of Effe	6														
= Ordinary one-way ANOVA of Ef	7														
New Analysis	8														
Graphs »	9														
Effect of Cannabidiol on prolifera	10														
Effect of Cannabinol on prolife	11														
+ new Graph	12														
TR Levent 1	12														
New Lavout	14														
0	19														
amily »	15														
Effect of Cannabinol on proliferat	16														
Ordinary one-way ANOVA	17														
Effect of Cannabinol on proliferat	18														
1 Layout 1	19														
	20														
	21														
	22														
	23														
	24														
	29														
	25														
	26														
	27														
	28														
	29														
								-							
⊴ ◄ ▶ ♥	Li 88			Effect of	of Cannabinol on	proliferation (4	8hr) 🔛 ලංච	 Row 1, 	F: MTH 5					a	

000					4	8 hr MTT prolit	eration cbd cb	mth Nov 10							
File Sheet Undo Cl	ipboard	Anal	ysis	Change	Import	Draw Write		Tex	d	Exp	ort Print S	Send LA H	elp		
📑 • 🔮 🖉 • 🎯 🛪 • C 🐇		E E B	£ +	• ∋• 2↓• ⊘	تە خ	- 🌼 O	12 Y H	elvetica		A	a 🗧 i	5• 🚓 🛛	J.,	Pr	ism8
🖬 🖬 🕶 🗙 🕂 New 🔹 💍 📋	Ô	analyze	1 * 🗖	±± 123 €29	or → mi	ТТ	A A B	I ∐ x²	X ⁵ III III	e • 19 • 🗳	6	<u>*-</u> ** (•		
Qr Search	_			Group C			Group D			Group E			Group F		
▼ Data Tables >>>			CBN 5			MTH 0.1			MTH 1				MTH 5		
Effect of Cannabidiol on proliferatio		N	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N	Mean
Effect of Cannabinol on proliferat	1	12	0.190083333	0.010921523	12	0.115916667	0.008814982	12	0.120666667	0.008578809	12	0.123833333	0.007293452	12	
New Data Table	2														
▼ Info »	3														
Project into 1 Alave lafa	4														
New Info Posults	5														
Ordinary one-way ANOVA of Effect	6														
Ordinary one-way ANOVA of Effe	7														
New Analysis	8														
▼ Graphs >>>	0														
Effect of Cannabidiol on proliferatio	10														
Effect of Cannabinol on proliferat	44														
New Graph	10														
▼ Layouts >>	12														
Layout 1	13														
Hew Layout	14														
Family »	15														
Effect of Cannabinol on proliferat	16														
= Ordinary one-way ANOVA	17														
Effect of Camabilior of promerat	18														
m cayour i	19														
	20														
	21														
	22														
	23														
	24														
	25														
	26														
	27														
	28														
	29														
	-	_					-	-							<u> </u>
	88		0 = 14 5	Effect	of Cannabinol o	n proliferation (4	Bhr) 🔽 🛷 🕶	m Row 6,	Column G				6	a —o—	— •

CBD

			📙 48 hr MTT proliferation cb	d cb mth No	v 10						
File Sheet Undo Clip	pboard	Analysis Interpret Char	ge Draw Write	Text		Export F	rint Send	LA	Help		
E - 🚱 🖉 - 🐡 🛠 - C 😽			Ar 0 (X 12	ca	<u> </u>	tet	- ∆-				Prism
□ □ × + New • ○ □	-	🗈 Analyze 怕 🥕 🎽 🚛	129 T T A A B I	∐ x² x₂	n∿ ≣•	ter 🖾 🕹	ð 🐥-	4	0-		1 Hom
Q~ Search		NOVA results × 🗐 Multiple comparise	ons × v								
Data Tables >											
Effect of Cannabidiol on prolifera		ANOVA results									
Effect of Cannabinol on proliferation											
New Data Table	1	Table Analyzed	Effect of Cannabidiol on proliferation (48hr)								
Project info 1	2	Data sets analyzed	A-F								
⊕ New Info	3	bala oolo analyzoo									
Results >>	4	ANOVA summary									
Ordinary one-way ANOVA of Effer	5	F	12.87								
Ordinary one-way ANOVA of Effect	6	Pivalue	<0.0001								
New Analysis	7	P value summary	****								
Graphs >>	8	Significant diff, among means (P < 0.05)?	Ves								
Effect of Cannabidio on proliferation	9	R squared	0.4936								
New Graph	10	it squares	0.4000								
/ Layouts >>>	11	Brown-Forsythe test									
🔐 Layout 1	12	F (DEn DEd)									
New Layout	13	P value									
amily »	14	P value summary									
📰 Effect of Cannabidiol on prolifera	15	Are SDs significantly different (P < 0.05)?									
Ordinary one-way ANOVA	16										
	17	Bartlett's test									
	18	Bartlett's statistic (corrected)	29.15								
	19	P value	<0.0001								
	20	P value summary	****								
	21	Are SDs significantly different (P < 0.05)?	Yes								
	22										
	23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value				
	24	Treatment (between columns)	0.08678	5	0.01736	F (5, 66) = 12.87	P<0.0001				
	25	Residual (within columns)	0.08902	66	0.001349						
	26	Total	0.1758	71							
	27										
	28	Data summary									
I < ▶ < []	1 88) 🗐 🛛 🗁 🗁 🗍 Ordin	ary one-way ANOVA of Effect of Canna		Column RT					e	·

File Sheet Undo City □ •	pboard Analysis Interpret Change Dr Change Dr	$\begin{array}{c c} \mathbf{x} & \mathbf{W} \\ \mathbf{x} & \mathbf{W} \\ \mathbf{x} & \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} & \mathbf{x} \\ $	Text Helvetica IUX ² X ₂	▲ 前 ⊪ Ξ• (Export Print Sen	id LA Hel	P		Prism8
Qr Search	ANOVA results × 🗐 Multiple comparisons ×	~							
Data Tables Beffect of Cannabidiol on prolife Effect of Cannabinol on proliferal	Ordinary one-way ANOVA Multiple comparisons								
(• New Data Table	1 Number of families								
Project info 1	2 Number of comparisons per family	_							
New Info	3 Alpha						-		
▼ Results >>	4						-	-	
Ordinary one-way ANOVA of Ef	5 Tukey's multiple comparisons test	95.00% CI of diff.	Significant?	Summary	Adjusted P Value				
Ordinary one-way ANOVA of Effe	6 CBD 0.1 vs. CBD 1	-0.09826 to -0.01024	Yes		0.0073	A-B			
(+) New Analysis	7 CBD 0.1 vs. CBD 5	-0.09426 to -0.006244	Yes		0.0161	A-C			
Effect of Cannabidiol on prolifera	8 CBD 0.1 vs. MTH 0.1	-0.04342 to 0.04459	No	ns	>0.9999	A-D			
Effect of Cannabinol on proliferat	9 CBD 0.1 vs. MTH 1	-0.01392 to 0.07409	No	ns	0.3498	A-E			
New Graph	10 CBD 0.1 vs. MTH 5	-0.01042 to 0.07759	No	ns	0.2339	A-F			
▼ Layouts >>	11 CBD 1 vs. CBD 5	-0.04001 to 0.04801	No	ns	0.9998	B-C			
Layout 1	12 CBD 1 vs. MTH 0.1	0.01083 to 0.09884	Yes		0.0065	B-D			
Wew Layout	13 CBD 1 vs. MTH 1	0.04033 to 0.1283	Yes	****	<0.0001	B-E			
Family >>	14 CBD 1 vs. MTH 5	0.04383 to 0.1318	Yes	****	<0.0001	B-F			
Effect of Cannabidiol on prolifera	15 CBD 5 vs. MTH 0.1	0.006828 to 0.09484	Yes	•	0.0144	C-D			
Ordinary one-way ANOVA	16 CBD 5 vs. MTH 1	0.03633 to 0.1243	Yes		<0.0001	C-E			
	17 CBD 5 vs. MTH 5	0.03983 to 0.1278	Yes		<0.0001	C-F			
	18 MTH 0.1 vs. MTH 1	-0.01451 to 0.07351	No	ns	0.3718	D-E			
	19 MTH 0.1 vs. MTH 5	-0.01101 to 0.07701	No	ns	0.2513	D-F			
	20 MTH 1 vs. MTH 5	-0.04051 to 0.04751	No	ns	>0.9999	E-F			
	21								
	22 Test details	Mean 2	Mean Diff.	SE of diff.	n1	n2	q	DF	
	23 CBD 0.1 vs. CBD 1	0.2064	-0.05425	0.01499	12	12	5.117	66	
	24 CBD 0.1 vs. CBD 5	0.2024	-0.05025	0.01499	12	12	4.740	66	
	25 CBD 0.1 vs. MTH 0.1	0.1516	0.0005833	0.01499	12	12	0.05502	66	
	26 CBD 0.1 vs. MTH 1	0.1221	0.03008	0.01499	12	12	2.838	66	
	27 CBD 0.1 vs. MTH 5	0.1186	0.03358	0.01499	12	12	3.168	66	

			🧧 48 hr MT	T proliferation cbd cb mth	n Nov 10									
File Sheet Undo Clip	pboard	Analysis Interpret Change Dr	aw Write	Tex	đ	Export F	Print	Send	LA	Help				
📑 • 🚱 🖉 • 🏶 🛠 • 🖒 🐇	6.9	h 🗄 🗟 📰 🛛 👝 🐘 💁 –	🔥 O(12 Y Helvetica	<u>~</u>		9-	đ۰					Prich	å8
🖬 🖬 🗙 🕂 New 🖷 💍 📋	•	🔚 Analyze 🎦 🥕 🏪 📰 📰 👘	ТТ	A A B I ∐ x²	x, ∰ ⊮ ≣•	ter 🍱 🧯		₫. -	.	0-			1 Hon	
Qr Search			~											_
▼ Data Tables >>) (
Effect of Cannabidiol on prolifera		Multiple comparisons												
Effect of Cannabinol on proliferation		manple companionia	-											
New Data Table	44	CRD 1 CRD 5	0.004000	0.04001 to 0.04901	Ne		0.0	000			8.0			-
▼ Info >>	40	CBD 1 vs. CBD 5	0.004000	-0.04001 t0 0.04801	No	**	0.8	1990			8.0			+
Project into i	12	CBD I VS. MIH 0.1	0.03463	0.01083 10 0.09884	165		0.0	005			8-0			+
W Results	13	CBD 1 VS. MIH 1	0.08433	0.04033 to 0.1283	Yes		<0	.0001			B-E			_
Ordinary one-way ANOVA of Effe	14	GBD I VS. MIH 5	0.08783	0.04383 to 0.1318	res		<0	.0001			D-P			-
Ordinary one-way ANOVA of Effect	15	GBD 5 vs. MTH 0.1	0.05083	0.006828 to 0.09484	Yes		0.0	144			C-D			_
New Analysis	16	CBD 5 vs. MTH 1	0.08033	0.03633 to 0.1243	Yes		<0	.0001			C-E			_
▼ Graphs >>	17	CBD 5 vs. MTH 5	0.08383	0.03983 to 0.1278	Yes		<0	.0001			C-F			
Effect of Cannabidiol on proliferatio	18	MTH 0.1 vs. MTH 1	0.02950	-0.01451 to 0.07351	No	ns	0.3	3718			D-E			
Effect of Cannabinol on proliferation	19	MTH 0.1 vs. MTH 5	0.03300	-0.01101 to 0.07701	No	ns	0.2	2513			D-F			
New Graph	20	MTH 1 vs. MTH 5	0.003500	-0.04051 to 0.04751	No	ns	>0	.9999			E-F			
* Layouts »	21													
New Lavout	22	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1				n2	q	DF	
0	23	CBD 0.1 vs. CBD 1	0.1522	0.2064	-0.05425	0.01499	12				12	5.117	66	
Family >>	24	CBD 0.1 vs. CBD 5	0.1522	0.2024	-0.05025	0.01499	12				12	4.740	66	
Effect of Cannabidiol on prolifera	25	CBD 0.1 vs. MTH 0.1	0.1522	0.1516	0.0005833	0.01499	12				12	0.05502	66	
- Ordinary one-way AROVA	26	CBD 0.1 vs. MTH 1	0.1522	0.1221	0.03008	0.01499	12				12	2.838	66	
	27	CBD 0.1 vs. MTH 5	0.1522	0.1186	0.03358	0.01499	12				12	3.168	66	
	28	CBD 1 vs. CBD 5	0.2064	0.2024	0.004000	0.01499	12				12	0.3773	66	
	29	CBD 1 vs. MTH 0.1	0.2064	0.1516	0.05483	0.01499	12				12	5.172	66	
	30	CBD 1 vs. MTH 1	0.2064	0.1221	0.08433	0.01499	12				12	7.955	66	
	31	CBD 1 vs. MTH 5	0.2064	0.1186	0.08783	0.01499	12				12	8.285	66	
	32	CBD 5 vs. MTH 0.1	0.2024	0.1516	0.05083	0.01499	12				12	4.795	66	
	33	CBD 5 vs. MTH 1	0.2024	0.1221	0.08033	0.01499	12				12	7.577	66	
	34	CBD 5 vs. MTH 5	0.2024	0.1186	0.08383	0.01499	12				12	7.908	66	+
	35	MTH 0.1 vs. MTH 1	0.1516	0.1221	0.02950	0.01499	12				12	2.783	66	+
	36	MTH 0.1 vs. MTH 5	0.1516	0.1186	0.03300	0.01499	12				12	3.113	66	+
	37	MTH 1 vs. MTH 5	0.1221	0.1186	0.003500	0.01499	12				12	0.3301	66	+
	38													+
	20		1		17.0.1	1						0		-
	85	Urdinary one-w	ay ANOVA OF ET	Rect of Carmana de Re	w n, coudmin e		_	_	_	_				

CBN

File Sheet Undo Clip	oboard Analysis Interpret Char	a 48 hr MTT proliferation ct nge Draw Write	od cb mth No Text	v 10	Export	Print Send	LA Help		
Image: white the second sec	Image: Analyze Im	Oh ← G C 12 ← Helvet 129 T T A* ∧* B I	ica ∐ x² x₂	∿ ⊪ ≣•	(ir 💕	1 ₽ (4	0- 0-	Pris	šm 8
Qr Search	ANOVA results × Aultiple comparis	ons × V							
Data Tables Section 2	Ordinary one-way ANOVA ANOVA results								
New Data Table									
▼ Info »	1 Table Analyzed	Effect of Cannabinol on proliferation (48hr)							
Project into 1 Maw lafa	2 Data sets analyzed	A-F							
▼ Results >>									
E Ordinary one-way ANOVA of Effect	5 E	14.44							
Ordinary one-way ANOVA of Efference	6 Puelue	<0.0001							
New Analysis	7 Pivalue summary	40.0001							
 Graphs >> Effect of Cannabidial on proliferation 	8 Significant diff. among means (P < 0.05)?	Yes							
Effect of Cannabinol on proliferation	9 R squared	0.5225							
New Graph	10								
▼ Layouts >>	11 Brown-Forsythe test								
Layout 1	12 F (DFn, DFd)								
New Layout	13 P value								
amily »	14 P value summary								
Effect of Cannabinol on proliferat	15 Are SDs significantly different (P < 0.05)?								
Ordinary one-way ANOVA	16								
	17 Bartlett's test								
	18 Bartlett's statistic (corrected)	4.707							
	19 P value	0.4527							
	20 P value summary	ns							
	21 Are SDs significantly different (P < 0.05)?	No							
	22								
	23 ANOVA table	SS	DF	MS	F (DFn, DFd)	P value			
	24 Treatment (between columns)	0.06450	5	0.01290	F (5, 66) = 14.44	P<0.0001			
	25 Residual (within columns)	0.05896	66	0.0008933			_		
	26 Total	0.1235	71				_		
	27						_	 	
	28 Data summary								

The Church Hards C	trand technic laternal Channel	48 nr Mi	T proliferation cbd cb mth	Nov 10	Const 1		a la		
	Polard Polarysis interpret Change	Draw Write	12 V Heluetica	A (v	Export	Print Sena LA H	mp .		- Oraphi's
						- 1 V 🖓 🖓			Prism
			A A B I U X. 3	K ⁵ WJ Ws ≡ .		s 🗛 • 🛛 🖉			
🖉 Search	ANOVA results X B Multiple comparisons								
Data Tables »									
Effect of Cannabidiol on prolifera	Ordinary one-way ANOVA								
Effect of Cannabinol on prolife	Multiple comparisons								
New Data Table	1 Number of femilies	4							
nfo »	1 Number of families	1							
Project into 1 Advantation	2 Number of comparisons per family	15							
Pacults 20	3 Alpha	0.05							
Ordinary one-way ANOVA of Effe	4				-				
Ordinary one-way ANOVA of Ef	5 Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value			
New Analysis	6 CBN 0.1 vs. CBN 1	-0.05417	-0.08998 to -0.01835	Yes		0.0005	A-B		
Graphs »	7 CBN 0.1 vs. CBN 5	-0.09200	-0.1278 to -0.05619	Yes		<0.0001	A-C		
Effect of Cannabidiol on prolifera	8 CBN 0.1 vs. MTH 0.1	-0.01783	-0.05365 to 0.01798	No	ns	0.6895	A-D		
Effect of Cannabinol on proliferat	9 CBN 0.1 vs. MTH 1	-0.02258	-0.05840 to 0.01323	No	ns	0.4412	A-E		
+ New Graph	10 CBN 0.1 vs. MTH 5	-0.02575	-0.06156 to 0.01006	No	ns	0.2948	A-F		
P Lavout 1	11 CBN 1 vs. CBN 5	-0.03783	-0.07365 to -0.002021	Yes		0.0324	B-C		
New Layout	12 CBN 1 vs. MTH 0.1	0.03633	0.0005207 to 0.07215	Yes	•	0.0448	B-D		
•	13 CBN 1 vs. MTH 1	0.03158	-0.004229 to 0.06740	No	ns	0.1146	B-E		
Effect of Cannabinol on proliferat	14 CBN 1 vs. MTH 5	0.02842	-0.007396 to 0.06423	No	ns	0.1974	B-F		
= Ordinary one-way ANOVA	15 CBN 5 vs. MTH 0.1	0.07417	0.03835 to 0.1100	Yes		<0.0001	C-D		
	16 CBN 5 vs. MTH 1	0.06942	0.03360 to 0.1052	Yes		<0.0001	C-E		
	17 CBN 5 vs. MTH 5	0.06625	0.03044 to 0.1021	Yes		<0.0001	C-F		
	18 MTH 0.1 vs. MTH 1	-0.004750	-0.04056 to 0.03106	No	ns	0.9988	D-E		
	19 MTH 0.1 vs. MTH 5	-0.007917	-0.04373 to 0.02790	No	ns	0.9867	D-F		
	20 MTH 1 vs. MTH 5	-0.003167	-0.03898 to 0.03265	No	ns	0.9998	E-F		
	21								
	22 Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	q	DF
	23 CBN 0.1 vs. CBN 1	0.09808	0.1523	-0.05417	0.01220	12	12	6.278	66
	24 CBN 0.1 vs. CBN 5	0.09808	0.1901	-0.09200	0.01220	12	12	10.66	66
	25 CBN 0.1 vs. MTH 0.1	0.09808	0.1159	-0.01783	0.01220	12	12	2.067	66
	26 CBN 0.1 vs. MTH 1	0.09808	0.1207	-0.02258	0.01220	12	12	2.618	66
	27 CBN 0.1 vs. MTH 5	0.09808	0.1238	-0.02575	0.01220	12	12	2.985	66

File Sheet Undo Clip ▼	board Analysis Inter Analysis Analyze Analyze Analyze	Change Draw Write	Text 12 ∨ Helvetica A* A* B I U x ² :	: ✓ <u>A</u> X₂ ∰ ⊮ ≡•	Export P	rint Send LA Help			Prisma
Q~ Search		le comparisons ×							
Data Tables Data Tables Effect of Cannabidiol on proliferatio Effect of Cannabinol on proliferat May Data Table	Ordinary one-way Al Multiple comparis	NOVA							
Info »	12 CBN 1 vs. MTH 0.1	0.03633	0.0005207 to 0.07215	Yes	•	0.0448	B-D		
Project info 1	13 CBN 1 vs. MTH 1	0.03158	-0.004229 to 0.06740	No	ns	0.1146	8-E		
New Info	14 CBN 1 vs. MTH 5	0.02842	-0.007396 to 0.06423	No	ns	0.1974	B-F		
Results >>	15 CBN 5 vs. MTH 0.1	0.07417	0.03835 to 0.1100	Yes	••••	<0.0001	C-D		
Ordinary one-way ANOVA of Effect	16 CBN 5 vs. MTH 1	0.06942	0.03360 to 0.1052	Yes		<0.0001	C-E		
Ordinary one-way ANOVA of Efference	17 CBN 5 vs. MTH 5	0.06625	0.03044 to 0.1021	Yes		<0.0001	C-F		
New Analysis Cranka	18 MTH 0.1 vs. MTH 1	-0.004750	-0.04056 to 0.03106	No	ns	0.9988	D-E		
Effect of Cannabidiol on proliferation	19 MTH 0.1 vs. MTH 5	-0.007917	-0.04373 to 0.02790	No	ns	0.9867	D-F		
Effect of Cannabinol on proliferation	20 MTH 1 vs. MTH 5	-0.003167	-0.03898 to 0.03265	No	ns	0.9998	E-F		
New Graph	21								_
Layouts >>	22 Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	a	DF
Layout 1	23 CBN 0.1 vs. CBN 1	0.09808	0.1523	-0.05417	0.01220	12	12	6.278	66
New Layout	24 CBN 0.1 vs. CBN 5	0.09808	0.1901	-0.09200	0.01220	12	12	10.66	66
mily »	25 CBN 0.1 vs. MTH 0.1	0.09808	0,1159	-0.01783	0.01220	12	12	2.067	66
Effect of Cannabinol on proliferat	26 CBN 0.1 vs. MTH 1	0.09808	0.1207	-0.02258	0.01220	12	12	2.618	66
Ordinary one-way ANOVA	27 CBN 0.1 vs. MTH 5	0.09808	0.1238	-0.02575	0.01220	12	12	2.985	66
	28 CBN 1 vs. CBN 5	0.1523	0.1901	-0.03783	0.01220	12	12	4.385	66
	29 CBN 1 vs. MTH 0.1	0.1523	0.1159	0.03633	0.01220	12	12	4.211	66
	30 CBN 1 vs. MTH 1	0.1523	0.1207	0.03158	0.01220	12	12	3.661	66
	31 CBN 1 vs. MTH 5	0.1523	0.1238	0.02842	0.01220	12	12	3.294	66
	32 CBN 5 vs. MTH 0.1	0.1901	0.1159	0.07417	0.01220	12	12	8.596	66
	33 CBN 5 vs. MTH 1	0.1901	0.1207	0.06942	0.01220	12	12	8.046	66
	34 CBN 5 vs. MTH 5	0.1901	0.1238	0.06625	0.01220	12	12	7.679	66
	35 MTH 0.1 vs. MTH 1	0.1159	0.1207	-0.004750	0.01220	12	12	0.5505	66
	36 MTH 0.1 vs. MTH 5	0.1159	0.1238	-0.007917	0.01220	12	12	0.9176	66
	37 MTH 1 vs. MTH 5	0.1207	0.1238	-0.003167	0.01220	12	12	0.3670	66
	38					1	-		
	20						-		

PLATE LAYOUT Real Time-PCR (5uM)

TRIAL 3

TRIAL 4 & 5

Image: Control Layout		Ð							Te Te	est 4 & 5 qP0	CR cbd cbn	mth July 1	6 .xlsx									
No. Depart Tables Owners Normal Normal Control Depart Normal Control Depart Normal Control Depart Depart<	91 🌆		X Ba	n 🛷 i		Σ · Δ.	· 7.	fx 🛅 🗗	100%	. 0								Q.	Search in !	Sheet		
Normality Normality <t< th=""><th>A He</th><th>ome Lavo</th><th>at Tables</th><th>Charts</th><th>SmartAr</th><th>t Form</th><th>ulas Da</th><th>ta Rev</th><th>iew</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>A 81</th></t<>	A He	ome Lavo	at Tables	Charts	SmartAr	t Form	ulas Da	ta Rev	iew													A 81
Normal Called Houry 12 A Image Image <t< th=""><th></th><th>Fdit</th><th>at Tubles</th><th>Font</th><th>Uniter Ori</th><th></th><th>Alion</th><th>ment</th><th></th><th>Nut</th><th>nber</th><th></th><th></th><th></th><th>Format</th><th></th><th></th><th></th><th>Cells</th><th></th><th>The</th><th>Tes :</th></t<>		Fdit	at Tubles	Font	Uniter Ori		Alion	ment		Nut	nber				Format				Cells		The	Tes :
No. No. <th>ê</th> <th>E FIL Y</th> <th>Calibri (Body)</th> <th>+ 12</th> <th>- A- A-</th> <th></th> <th>abc</th> <th>🔻 🎇 wra</th> <th>o Text v</th> <th>General</th> <th></th> <th>-</th> <th>No</th> <th>rmal</th> <th>Rad</th> <th>Good</th> <th></th> <th></th> <th>-</th> <th>1.000</th> <th>Anh</th> <th></th>	ê	E FIL Y	Calibri (Body)	+ 12	- A- A-		abc	🔻 🎇 wra	o Text v	General		-	No	rmal	Rad	Good			-	1.000	Anh	
Particip Carter D F C Hards Particip	<u>_</u> `				4 4					0/	- 0.0				Contraction of the			D 📺	· 🖷 ·		****** *	
N O P Q R S Y U 2 0	Paste	Clear *	BIU			' E B			Merge *	* %0	° 00. ≎	.0 Formatti	ng Net	utrai	Calculation	uneax	Cell	Insert	Delete	Format	Themes	Aa
A B C F F C H I J K L M N D P Q R S T U 3 Image: State st	c	C16 ‡	00(fx																		
Image: state Image: state<	1	A B	: C	D	E	F	G	н	1	1	K	L	M	N	0	Р	Q	R	S	-	т	U
Image: state state Image: state<	2			RPS 11																		
1 2 3 4 5 6 7 8 9 10 12 12 13 14 15 16 17 18 19 7 8 000111 00012 40012 </td <td>3</td> <td></td>	3																					
6 Λ 60 Colora 1 60 61 Λ 60 61 60 <th< td=""><td>5</td><td></td><td></td><td>1</td><td>2 3</td><td></td><td>•</td><td>5 6</td><td>5</td><td>7 8</td><td>8 9</td><td>10</td><td>1</td><td>1 13</td><td>13</td><td>14</td><td></td><td>15</td><td>16</td><td>17</td><td>18</td><td>19</td></th<>	5			1	2 3		•	5 6	5	7 8	8 9	10	1	1 13	13	14		15	16	17	18	19
β ΦΟ 00111 ΦΟ 00112 ΦΟ 00112 <thφο 00112<="" th=""> ΦΟ 00112 ΦΟ</thφο>	6	A	4D CBD 1.1	4D CBD 1.1	4D CBD 1.2	4D CBD 1.2	4D CBD 2.1	4D CBD 2.1	4D CBD 2.	2 4D CBD 2.2	4D CBD 3.1	4D CBD 3.1	4D CBD 3.2	4D CBD 3.2						_	_	_
S C Nonlini I Overalization of the second secon	7	8	4D CBN 1.1	4D CBN 1.1	4D CBN 1.2	4D CBN 1.2	4D CBN 2.1	4D CBN 2.1	4D CBN 2.	2 4D CBN 2.2	4D CBN 3.1	4D CBN 3.1	4D CBN 3.2	4D CBN 3.2								
Unit Unit <th< td=""><td>8</td><td>c</td><td>4D MTH 1.</td><td>1 4D MTH 1.</td><td>40 MTH 1.2</td><td>4D MTH 1.2</td><td>4D MTH 2.1</td><td>40 MTH 2.1</td><td>4D MTH 2</td><td>.2 40 MTH 2.2</td><td>4D MTH 3.1</td><td>4D MTH 3.1</td><td>4D MTH 3.2</td><td>4D MTH 3.2</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	8	c	4D MTH 1.	1 4D MTH 1.	40 MTH 1.2	4D MTH 1.2	4D MTH 2.1	40 MTH 2.1	4D MTH 2	.2 40 MTH 2.2	4D MTH 3.1	4D MTH 3.1	4D MTH 3.2	4D MTH 3.2	-							
11 F 20 MTH 1 0 MTH 1<	10	E	5D CBN 1.1	5D CBN 1.1	5D CBO 1.2	5D CBN 1.2	5D CBN 2.1	5D CBN 2.1	5D CBN 2.	2 5D CBN 2.2	5D CBN 3.1	5D CBN 3.1	5D CBN 3.2	5D CBN 3.2								
21 G PF C011 PF C012 SF C013 SF C013<	11	F	5D MTH 1.	1 5D MTH 1	5D MTH 1.2	5D MTH 1.2	5D MTH 2.1	5D MTH 2.1	5D MTH 2	2 5D MTH 2.2	5D MTH 3.1	5D MTH 3.1	5D MTH 3.2	5D MTH 3.2								
III PPC den11 So den12 So den12 <th< td=""><td>12</td><td>G</td><td>5P CBD 1.1</td><td>5P CBD 1.1</td><td>5P CBD 1.2</td><td>5P CBD 1.2</td><td>5P CBD 2.1</td><td>5P CBD 2.1</td><td>5P CBD 2.2</td><td>2 SP CBD 2.2</td><td>5P CBD 3.1</td><td>5P CBD 3.1</td><td>5P CBD 3.2</td><td>5P CBD 3.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	12	G	5P CBD 1.1	5P CBD 1.1	5P CBD 1.2	5P CBD 1.2	5P CBD 2.1	5P CBD 2.1	5P CBD 2.2	2 SP CBD 2.2	5P CBD 3.1	5P CBD 3.1	5P CBD 3.2	5P CBD 3.2								
1 1 201111	13	н	5P CBN 1.1	5P CBN 1.1	SP CBN 1.2	5P CBN 1.2	SP CBN 2.1	5P CBN 2.1	SP CBN 2.3	2 5P CBN 2.2	5P CBN 3.1	5P CBN 3.1	SP CBN 3.2	5P CBN 3.2								
K Mono K Mono Main 13 M <td< td=""><td>19</td><td><u> </u></td><td>CDNA POO</td><td>CDNA POO</td><td>CDNA POOL</td><td>SP MTH 1.2</td><td>SP MIN 2.1</td><td>SP MTH 2.1</td><td>SPMINZ.</td><td>2 38 1111 2.2</td><td>SP MIH 3.1</td><td>SPMIN 3.1</td><td>SP MTH 3.2</td><td>5P MTH 3.2</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	19	<u> </u>	CDNA POO	CDNA POO	CDNA POOL	SP MTH 1.2	SP MIN 2.1	SP MTH 2.1	SPMINZ.	2 38 1111 2.2	SP MIH 3.1	SPMIN 3.1	SP MTH 3.2	5P MTH 3.2	-							
UT U	16	ĸ		1																		
M M	17	L																				
0 0	18	M																				
p p	20	N	_																			
22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	21	P																				
33 1 1574 1574 1575 1953 M75 M000 Mr00 Mr00IN POLISIAIN Mr00SIAIN M	22																					
32 1574 1757 5 1923 Mr 5 M00 Mr000 Mr003NN Mr0	23																					
26 DPF 6 CB0 PRO 6 CB Description Description <thdescription< th=""> De</thdescription<>	24			TEST 4			TEST 5				805.11	MYE 5	MYOD	MYOGENIN	FOLLISTATIN	MYOSTATIN						
VIC 6 CRN 7 Star grave 7 St	26			DIFF	6 CBD		PRO	6 CBD			10 0 11			mootinit	1 Occorran							_
28 6 MM 6 MM 6 MM 6 MM 1 ± R0N 125 ± R0N charge to 220 ± R0N charge to 220 ± R0N 31 32 9 9 9 793 gram 6 25 ± 00 783 32 ± 0 29 ± 125 ± 00 783 32 ± 0 29 ± 125 ± 00 92 ± 0 125 ± 00 92 ± 0 125 ± 00 92 ± 0 125 ± 00 92 ± 0 125 ± 00 92 ± 0 125 ± 00 92 ± 0 125 ± 00 92 ± 0 125 ± 00 92 ± 0 125 ± 00 92 ± 0 125 ± 00 92 ± 0 125 ± 00 92 ± 0 125 ± 0	27				6 CBN			6 CBN														
29 Component C 100 125 μ01 Datage to 120 ± R01 22 OFF 6 CB0 Pprimer 1 4 μ 155 μ 22 OFF 6 CB0 Pprimer 1 4 μ 155 μ 23 OFF 6 CB0 Pprimer 1 4 μ 155 μ 23 OFF 6 CB0 Pprimer 1 4 μ 155 μ 24 OFF 6 CM1 1 4 μ 1 3 μ 48.52 μ 25 OFF 6 CM1 1 4 μ 1 3 μ 48.52 μ 48.52 μ 25 OFF OFF 6 CM1 1 4 μ 1 3 μ 48.52 μ 26 OFF OFF 6 CM1 1 μ 1 3 μ 48.52 μ 26 OFF OFF C CM2 2 μ 1 μ 1 μ 1 μ 27 OFF OFF C CM2 A CCM2 2 μ 1 μ 4 μ 1 μ 28 OFF OFF D FF Find Results (2) Texti Lupoet Text 4 lupoet	28				6 MTH			6 MTH			-			_								_
101 PDFF 6 CB0 PDFF 6 CB0 PDFF 10 10 Sd 30 Sd 33 33 - <t< td=""><td>29</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Components</td><td>5</td><td>1 X 100N</td><td>-</td><td>125X RXN</td><td></td><td>cnange to</td><td>120 X KXN</td><td></td><td></td><td></td><td></td></t<>	29										Components	5	1 X 100N	-	125X RXN		cnange to	120 X KXN				
22 Diff 6 CB0 Fprime 1 u 155 ul 350 ul 33 6 CMN 4 μ 1 35 ul 450	31										SYBR green		6.25 ul		781.25 ul							_
33 6 CN R primer 1 d 155 d 34 -	32						DIFF	6 CBD			Fprimer		1 ul		125 ul	250 ul						_
10 0 100	33							6 CBN			R primer		1 ul		125 ul							
27 TOTAL VOL 100UL COMA 14 15 15 2000 COMA 14 15 15 2000 COMA 14 15 15 2000 COMA 15 15 15 2000 COMA 15 15 15 2000 COMA 15 15 15 15 15 15 15 15 15 15 15 15 15	34							6 MIH			HZU	-	3.25 ul		406.25 ul							
373 *CRA concentration at 22 eg/d 373 *CRA concentration at 22 eg/d 373 *CRA concentration at 22 eg/d 374 *CRA concentration at 22 eg/d 375 *CRA concentration at 22 eg/d	36				TOTAL VOL	100UL CDNA					cDNA		11.5	1								
38 39 40 41 42 42 42 42 42 42 42 42 42 42	37										*cDNA cono	entration at 2	Sng/ul									_
22 24 25 25 26 26 26 26 26 26 26 26 26 26	38																					
an or control of the second s	39																					
22 23 35 35 35 35 35 35 35 35 35 3	41																					
32. I to the series of the se	42																					_
Head Section 2 - Monopoint Followerk S Monostain Results () ACCT () ACCT () Final results () Head Results	43																					
Normal View Ready Sum=0	B		Myogenin Fol	listatin Result	s Myostati	in Results	AA CT AA	CT (2) 🖌 🛆	CT (3) / Fi	nal results 🖌 I	Final Results (2) Test1 L	ayout Tes	t 2 Layout	Test 3 Layou	t Test 4 la	yout pra	tice run 1	practice ru	in 6 pra	cticerun 4	
		Normal View	Ready								Sum=0		•									

RAW DATA Real Time-PCR Results (5uM) TRIAL 3

	1 G	6.	5 =		Francisco					TE	ST 3 Fina	I Version	qPCR								Search SI	neet	Li Chara
ome	Insert	Draw	Page L	ayout	Formulas	s Data	a Revi	ew Vi	ew												5		i≓ Snare
- <u>-</u>	Cut	Calibri	(Body) -	12 .	A* A*		= =	30 -	E W	ap Text 🔻	G	eneral			÷	- N	- 1	•	• • • • •	- III	Z Autos	ž,	7- Q
ste	S Format	в	<i>I</i> <u>∪</u> •		\land - 🔼 -	•	8 8	•1 •1	😐 Me	erge & Cent	er * \$	* %) ^{•,0} ,00	.00 0.¢	Conditional Formatting	Format as Table	Cell Styles	Insert	Delete	Format	Clear	Sort Filt	t& Find er Sele
	\$ × ~	fx																					
A	8	С	D	E	F	G	н		J	к	L	M	N	0	Р	Q	R	s	т	U	v	W	х
	RPS 11																						
	Pos A1	Name	Ct SYBR 18.01	Amount St	YB Target SYBR																		
	A2		18.83																				
	A3		18.56																				
	M		18.38			PROLIFERA	TION		CBD		CBN		MTH										
	A5 46		17.95	-					18.01	18.42	18.26	18.11	17.84	17.71									
	A7		17.68						18.56		17.71		18.50										
	A8		17.34						18.38	18.47	17.75	17.73	18.48	18.49									
	A9		17.05						17.95		17.76		17.53										
	A10		17.01						17.95	17.95	17.98	1/.8/	17.58	17.56									
	A12		16.53						17.34	17.51	18.53	18.53	16.32	16.37		CDNA POOL		NTC					
	81		18.26						17.09		17.31		17.12			19.06	5		0				
	82		17.96						17.01	17.05	16.48	16.90	17.19	17.16		18.90	0		0				
	83		17.71						16.82		16.95		16.45			18.97							
	84		17.75	-					10.53	10.08	10.07	16.81	10.09	10.57		19.24	1						
	86		17.98					Average		17.68		17.66		17.31		19.04	1						
	87		18.53					ST DEV		0.732178		0.680601		0.783279									
	88		18.53					SEM		0.29891		0.277854		0.319772									
	89		17.31			DIFFERENT	ATION		C20				Letter L										
	811		16.95			DIFFERENTI	ATTON		20.88		20.78		20.90										
	812		16.67						20.64	20.76	20.95	20.87	21.20	21.05									
	C1		17.84						20.51		20.04		19.83										
	C2		17.58						20.34	20.43	20.07	20.06	19.97	19.90									
	C3		18.50	-							19.72	19.82	19.93	19.86									
	cs		17.53						19.92		19.03		19.53										
	C6		17.58						19.77	19.85	19.28	19.16	19.56	19.55									
	C7		16.42						19.96		18.72		19.72										
	C8		16.32						19.79	19.88	18.85	18.79	19.54	19.63									
	C10		17.15						18.90	18.73	18.45	18.50	18.92	18.70									
	C11		16.45																				
	C12		16.69					Average		19.93		19.53		19.78									
	D1		20.88					ST DEV		0.772031		0.883006		0.758659									
	02		20.64					as M		0.345263		0.300486		0.909/21									
	D4		20.34																				
	D5																						
	D6																						
	Plate Javor	e F	3PS 11	My/f5	Mu	nD	Myogenin	Folli	statin	Myostatin	0.01	CT	AA CT (2)	00.0	CT (3)	FINAL R	SUITS	AA C	T validate	results	-		
	- mus sayor	-		.nyio	my	~~		1 Oili	0.000001	,	1.11.1		(a) 1 v and	1111	· · 1/4/	Ph. 11		Line O	······	100010			

RAW DATA Real Time-PCR Results (5uM) TRIAL 4 & 5

	A D ←	ວະປິະ			Data			Manu		Test 4 & 5	qPCR ct	od cbi	n mth J	uly 16								Search St	neet	*+ Char	0
	K Cut Ca	libri (Body)	11 v 4		=		WIEW	VIEW	- Wra	o Taxt z	Custo	m				ma.					Σ	AutoSum +	A0		0
Paste	Copy *	I <u>U</u> •		A .	-	8 3		•1	i Mer	ge & Center *	\$ *	%	,	00,00 00.0	Conditiona Formatting	I Format	Cell	Insert	Delete	Format	•	Fill * Clear *	Z T Sort &	Find &	
29	* * × <i>∨ 1</i>	ż													Tormatting	1 43 140/0	orginea						1 inver	Sener	
A 8 In Nav Siau (1051) reated (Josh Nede 1965 D	C D E July 30 (PS 11 pod arosen	/ 6	н	1	x i		N 0 19511	P Q	8 5	T U V	w x	Y	2 A	A8 A	C AD AE	N 45	AH N	U AK	a, AM	NN AO AP	jan jan	A8 A5 A3	Al	AN AN	
5er 07/90/20 8er 07/90/20 ple 13 Fam 05 ccc dias pylor a Ser Defisión Pri Ser Defisión Pri Ser Citta 17/9 fam Citta 17/9 fam Citta 17/9 fam Citta 17/9	119 17:53:27 UIC 119 20:27:13 UIC geen protocol_MPS11_july 23 p cmaPCR_384_punficplid 8 90	d					23.50 24.38 24.09 23.67 23.69 23.68 23.49 23.68 23.49 23.15 23.49 23.15	25.3 25.6 25.8 25.7 24.0 23.5 23.5	0 2 * 25.46 4 7 * 25.81 7 2 * 23.81	23.60 21.33 23.46 25.38 24.37 24.43 23.38 23.35 23.35 23.31 23.33 23.35 23.31 23.33															
II gro All Wells grifs 3 II sing 6 II Sing 7 Digit 1	Fagal Contant Sample	Cq Starting Quantity	fail Temper Past Page	i hagin Tampo Bo	(Temperature 14.00		23.39 23.34 23.32 23.36 23.48 23.80 23.80 23.71 23.75 23.53	23.3 23.1 23.2 23.4 23.4 25.4 22.8 8V6	* 11.59 * 11.47 * 11.16 * 14.21	23.55 ° 24.57 24.33 25.85 ° 24.09 27.86 27.86 27.86 27.86 27.86 27.85 27.85															
0 5464 1 2464 4 5494 5 5464 5 5464 6 2464 6 2464 9 5494 1 2464 1 2464	Union Union Union Union Union Union Union Union Union Union Union Union	24.28 21.437 23.69 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.70 23.70 23.70 23.70 23.70 23.70 23.70 23.70 24.70	43.00 443.9 44.00 443.9 42.00 443.9 42.00 166.7 43.00 443.4 42.00 443.4 42.00 443.4 42.00 443.4 42.00 5327.5 42.00 5327.5 42.50 537.9 40.00 400.4 40.00 400.4 40.00 5327.5 42.50 537.9 40.00 400.4 40.00 500.7 40.00 500.7 40	11 78.00 14 78.00 17 77.50 16 77.50 16 77.00 15 77.00 11 75.50 11 75.50 14 78.00 15 77.50 10 78.00 11 75.50 10 75.	87 00 95 30 90 30 87 90 87 90 92 30 87 90 92 30 88 90 88 90 89 90 80 80 80 80 80 80 80 80 80 80 80 80 80		21.60 21.10 21.10 21.111	25.77 25.8 25.4 25.9 24.29 24.29 24.29 24.20 24.	1 15 76 1 16 23 1 16 23 1 16 23	24.83 24.83 24.87 24.87 24.87 24.87 24.87 24.89															
5 5498 5 5498 9 5498 9 5498 9 5498 9 5498 5 5498 5 5498 2 5498	Unien Unien Unien Unien Unien Unien Unien		tone None tone None tone None tone None tone None tone None tone None	None No None No None No None No None No None No None No	NA		25.85 * 20.09 27.86 27.64 * 27.15 MS * 26.05	24.0 22.4 23.2 AVG CAN P	0 7 34.00 0 1 7 32.91 7 36.42	23.83 * 24.32 24.24 23.46 * 23.82 Aug * 24.85															
5498 2008 5498 5498 5498 5498 5498 5498 5498	Union Union Union Union Union Union Union	25.30 23.42 25.84 25.77 24.07 23.55	None None 60me None #3.00 342.8 #3.00 378.2 #3.00 378.2 #3.00 375.2 #3.00 375.2 #3.00 485.2	None No None No 8 77.50 18 78.50 18 77.00 18 77.00 18 77.00 18 77.00 16 77.50	ne 87.00 87.00 88.50 87.00 92.00 88.50		23.59 23.39 * 23.44 22.55 23.45 * 22.49 23.54 * 23.49 23.54 * 23.41 23.39 * 23.44 23.39 * 23.44	22.8 22.8 21.9 22.9 22.9 22.7 23.0 22.4	1 22.84 2 22.84 2 22.88 4 22.88 4 1 22.73	22.35 22.34 22.31 21.99 22.32 22.35 23.95 23.62 24.53 24.53 24.53 24.55 23.62															
0 0000 1 0498 2 0498 2 0498 3 0498 2 0498 3 0498 4 0498	Union Union Union Union Union Union Union	23.30 23.35 23.75 23.75 23.43 22.80 5	81.00 372.1 82.50 444.8 82.50 434.1 81.50 208.3 82.50 287.2 82.00 518.5 fone None	79 77.50 19 77.50 12 77.50 19 76.00 14 77.50 15 76.50 None No None No	88.00 87.00 94.00 87.00 91.50 91.50 91.00 me	,	22.54 22.39 [*] 22.48 23.10 24.66 ^{**} 23.88	22.7 22.7 25.5 21.9 8VG	9 7 22.78 3 0 7 34.11 7 22.89	22.40 22.34 * 22.32 22.45 22.25 * 22.44 Aug * 22.36															
2498 5498 2498 5498 5498 5498 5498 5498 5498	Urien Urien Urien Urien Urien Urien Urien		Kone None Kone None Kone None Kone None Kone None Kone None	None No None No None No None No None No None No None No	NA		P181 23.45 23.58 23.58																		
5/58 5/58 5/58 5/58 2/58	Union Union Union Union Union	36.98 27.29 27.72 5	tone None tene None 83.00 284.8 83.00 373.7 tone None	None No None No 11 77.50 78.50 None No	88.00 87.00																				
•	RPS11 Results	Myf5 Myol	D Results	Myo	genin Fo	ollistatin	Results	N	lyostatin	Results	ΔΔ CT	1	A CT (2) <u></u>	2 CT (3)	Final re:	sults	Final Res	sults (2)	Test1	Layout	Test :	2 Layout	+	

		n c	1.0.	0.								lest	400	аьск сра (con mtr	July 1	6									Searc	n Sneet		
lome	In	nsert	Draw	Page	Layout	Formula	is Dat	a Rev	iew \	liew																		++	Shar
•	X ⊂ ∩o	opv *	Calibri	(Body)	• 11	• A• A	-	= _	***		📑 Ə Wrap	Text *		General			•	• •	.	_	•	•	× -	•	Σ	AutoSu Fill *	m * As	P. C	2 .
ste	≪ P	ormat	В	I <u>U</u>	• 🖽 •	\land - 🔼	•		• •		🕂 Mergi	e & Cent	ier *	\$ • %)	*.0 .00	0	Conditional Formatting	Format as Table	Cell Styles	Inse	rt D	elete	Format	1	Clear *	Sor Filt	& Fin ar Se	ind & elect
	÷	× v	fx																										
A	8	С	D	E	F	6	н		1	К	L	м	N	0 P	Q,	R	s	T U	v	W	X Y	Z	AA	AB	AC	AD	AE A	AG	A
Name	ilan_TEST	Aug 1_My	5 MyoD perd										Myf5																
ated 81	osh Ned	erveen																											
tes													1514																
	9.01.00	10 17.17.6	s um										(80. N.F.		CONDIC		-	MTH DUP											
Endel	18/01/20 18/01/20	19 17:17:5	S UTC										000 011		CONDIT		-	MIN UN											
ole V	12												24.99		26.21			27.76											
enp	95												25.06	25.03	26.27	26.24		28.28 28	02										
col :	in sybr	green proto	col_july 18.pr	rel									24.65		25.99			27.00											
Sets I	Default_P	rinePCI(3)	4_runfile.pitd										25.04	24.84	27.72	26.86		26.68 26.	84										
Seria	T01377												24.60		24.78			25.36											
sal H	1868R28	90											24.70	24.65	25.02	24.90		25.30 25.	33										
Maer	1,2493	1219.											24.24	24.41	25.33	25.37		27.43	58										
groui	VI Wels												24.59		24.82			25.08											
ifica	3												25.03	24.81	25.72	25.27		24.89 24	99										
step	- 6												24.86	24.90	24.55	24.44		25.07	20										
	1607	Target	Unkn	Sanpre	24.99	starting quantity	Met lengers 82.50	482.45	28.00 78.00	End seng	7.50		MG .	24.774	AW6	25.518		100 163	15										
	198		Unkn		25.06		82.50	489.63	78.00	8	8.00		TEST 5																
	YBR		Unkn		25.04		82.50	465.28	78.00	9	2.50		C80 D/FF		CONDIFF		_	MTH DIFF											
-	5610		Unkn		24.60		81.00	619.33 508.04	71.00	8	2.00		26.04		29.25			28.36											
	284		Unkn		24.24		81.50	598.12	71.50	8	8.50		25.90	25.97	29.39	29.32		28.03 28	20		_	_							
	2938 2938		Unkn		24.58		82.00	520.09	77.50	- 5	7.00		25.63	27.04	29.27	29.29		27.75	50			-							
	Sec.		Unkn		25.03		82.00	631.25	77.50	9	1.50		25.99		28.73			27.98											
	798		Unkn		24.94		82.50	608.13	77.50	8	8.00		27.01	10.79	25.88	27.36		27.84	8/										
	2002		Unkn		21.19		89.00	417.19	83.00	2	1.50		27.19	27.10	25.73	25.81		27.74 27	79										
-	202		Unkn		20.90		89.00	456.38	\$2.00	9.	2.00		27.03	27.00	27.11	27.20		27.69 27	70										
	2/88		Unkn		20.99		89.00	430.04	82.50	- 2	2.00		28.81	28.64	26.85	26.84		25.88 26	97										
	PIBR.		Unkn		20.30		89.00	416.97	81.50	2	150																		
	208		Unkn		20.75		None B9.00	472.31	None #2.00	Nose	1.50		ANG .	26.922	AVG	27.74		AV5 27.7	38										
	202		Unkn		21.16		None 93.00	None 451 Th	None 93.00	None	2.00		CBD PRO		CBN PRO			MTH PRO											
-	Prax		Unkn		21.55		89.00	512.11	81.00	2	2.00		25.75		24.79			24.33											
-	881		Unkn		21.54		89.00	498.26	80.00	9	2.00		25.68	25.71	25.25	25.02		24.28 24	31										
	NBR		Unkn		26.27		82.50	473.07	78.00	8	7.00		24.66	24.58	24.90	24.85		24.55 24	46										
	PIBR.		Unkn		25.99		82.50 None	491.30 None	78.00 None	None	100		27.16	26.39	25.50	25.30		25.36 26.	03										
	198		Unkn		24.78		82.50	588.84	78.00	8	7.50		26.01		25.18	15.10		26.56											
	NBR		Unkn		25.33		82.50	453.06	17.50	8	7.00		24.23		24.34			24.49											
	5610		Unkn		25.40		82.00	467.55	77.50	8	5.50		24.19	24.21	24.16	24.25		23.71 24	10										
	188		Unkn		25.72		81.50	386.38	76.50	8	5.50		25.26	25.17	24.01	23.99		24.02 24	08										
	2008 2008		Unkn		24.55		82.00	607.04 563.99	77.50	9	1.50		ANG	25.316	AWS	24.751		AVG 24.9	34										
	SEN		Unkn		23.00		89.00	347.93	82.00	9	5.00																		
	198		Unkn		22.99		89.00	406.84	82.50		5.00		MvoD																
	DD	1911 Do	re alter	Multi M	AvoD Ros	dte b	tuononin E	ollictatio	Roculto	N	luoetatia E	Posulte		AA CT	AA CT	(2)		T (2)	Einal ros	ulte	Eigel B	onulte	(2)	Tort1	avout	T	ort 21 nov		1
r -	- 11	011110	ronto	any is it	.,	n n		ontoracilli		IV	, Jonandi P	.cours			au 01	0.0		· · 107	. men 703	10/10	r a red P	~ours	(m)	Teach	agout		out a adju		1 1

Home	In	n en	Draw	Page	Lavout I	Formulas	Data	Re	view	View	1631	a or o qr	PCR CDU CD	n mtn Ju	IY 16							Searci	n Sneet		are
٩.	X 0	ut	Calibri	(Body)	• 11 •	A- A-	=	= =	sty -	📑 Ə Wrap	Text *		General			.		2.	400 x	. ×	(++) 	∑ AutoSur	" * <mark>4</mark> 9	Q	
Paste	- G- G - 62 Fe	ormat	в	<u>ب</u> ۲	• 💷 • 🖄	• <u>A</u> •	5			🔲 😐 Merge	& Cent	er •	\$*%)	.00 •.0	Conditiona	al Format g as Table	Cell Styles	Insert	Delete	Format	Fill * Ø Clear *	Sort & Filter	Find & Select	ł
231	* *	× v	fx																						
A			D	t	r 6	н			x	L M	N	0	P Q		5		U V	w	х		Z AA	AB	AC AD	AL	
File Name	Slav_TEST	(Aug 2, Myog	enin Follistatir	.pord						140	rogenin														
Created By U Notes	Josh Neder	rveen								10															
D																									
Run Started	08,02/202	19 15:12:37 UT								000	0.55		CIIN DIFF			MTH DIFF.									
Sample Vol	04000	12									38.88		20	18		21.34									
Lid Temp		95									29.04	18.96	20	23 20.2	1	21.37	21.36								
Hate Setup P	Default Pr	rimePCR 384	unite pitd	opagini Panista							29.07	18.78	21	59 20.8	5	21.06	21.05								
Base Serial N	CT013778										17.93		25	.04		19.28									
Optical Head OFX Maedina	/16688289C	0									28.41	18.17	21	18.9		29.32	19.30								
											38.23	18.40	2	15 19.0	2	21.69	21.62								
Well group	All Wells										38.86	10.03	38	151		18.69	14.63								
Ampinisation Meltideo		-									29.20	19.00	20	141	3	19.00	18.67								
											38.85	18.85	58	154 18.4		18.78	18.89								
Ale II	filmer.	Tanan	Contract	famile	(a. (b. 1))	One Mails Tremer	Real Height	Bania Taman	Ford Terroritor	- 4147			4147		_	4445	0.14335683								
A05	STRR	in the	Ukkn	22100	18.88	87.00	453.06	82.50	92.00				114	10/10/11		ATS 2									
402	5188		Urkn		19.04	87.00	464.53	83.00	\$3.00	165	15														
403	5198		Urkn		18.45	86.00	638.39	81.00	94.50		794.6		(INDIA)			MTH DEE									
8.05	SYBR		Ukkn		17.93	86.50	656.63	82.50	\$8.00		-														
4.06	5784		Urkn		18.43	86.50	274.63	83.00	95.00		21.82		21	21	_	21.07									
ADE	SYBR		Utikn		18.23	86.50	539.83	81.00	93.00		22.59	4.51	21	.18 22.3	,	20.94	2035								
AD9	SYBR		UNKIN		18.86	85.50	206.42	80.50	\$4.00		21.99	22.29	21	13 22.0	2	20.86	20.88								
A30	5138		Ukkn		19.30	87.00	522.83	82.50	95.00		20.75	20.67	21	199	-	20.70	10.68								
A12	SYBR		Utikn		18.85	86.50	634.85	82.00	98.00		20.14	10.00	20	101		20.54	20.00				-				
A18	SYBR		Ukkn		21.80	81.50	543.80	76.50	92.00		20.97	20.56	2	46 20.4	5	20.74	20.64								
434	5186		Urkn		21.18	81.50	508.05	77.00	87.50		22.45	22.42	2	07 20.1		21.01	20.96								
A35	SYBR		Ukkn		21.01	#1.50	523.56	76.50	89.50		23.75		25	41		20.37									
A37	STRR		Ukkn		20.44	81.50	651.00	76.50	88.00		23.76	23.76	×	101 19.9	5	21.44	20.90								
A22	SHOR		Utkn		20.90	81.50	557.43	77.00	88.00	AVG	s *1	1.8990591	AVG	20.82142	5	AVG 2	0.8367106								
820	SYBR		Ultikn		20.16	81.50	584.46	77.00	91.00		_					_									
AJ1 AZ2	1786		Shin		21.00	81.50	561.16	76.50	91.50		140		CEVPRO			MTH PRO									
423	SHOR		Unkn		21.41	81.50	675.34	76.50	89.00		28.03		21	.67		26.30									
424	SYBR		Utkn		21.41	81.50	650.99	76.00	91.50		27.54	27.78	21	.50 25.9	2	26.22	26.26								
802	5195		Ukkn		20.23	87.00	453.70	82.50	95.00		25.75	25.62	21	79 25.0	5	26.19	26.24								
803	SHOR		Ultkn		20.14	87.00	496.65	83.00	94.00		27.44		20	.95		27.26									
101	3786		Shiko		21.59	None 85.50	None 663.46	None 82.00	92.00		27.31	10.32	20	59 26.9		27.31	17.28								
106	5185		Urikn		18.86	86.50	369.95	82.50	95.00		26.10	26.21	21	19 26.3	,	28.41	28.25								
107	SHER		Ukkn		18.87	87.00	445.04	82.50	\$3.00 54.50		24.99	25.30	21	43		26.46	16.00								
109	SYBR		Ukin		18.51	\$6.50	590.32	82.00	94.00		25.88		21	.84		26.41	28.00								
810	5198		Urkn		19.48	85.50	414.57	81.50	92.50		26.19	26.03	21	.05 24.9	5	26.49	26.45								
112	STRE		Utkn		18.41	86.50	582.98	82.50	15.00	AV5		5.3693088	AVG	25.842134	5	AVG 2	5 7981251								
813	SYBR		Shikin		22.54	81.50	435.64	76.50	87.00						_										
814	5198		Ukkn		22.27	81.50	470.98	76.50	86.50																
815	5785		Ukko		22.15	81.50	416.73	76.50	88.00	Fo	uneith														
< ▶	RP	S11 Res	ults	Myf5 M	lyoD Results	Myo	genin F	ollistatin	Results	Myostatin I	Results	۵	LA CT	ΔΔ CT (2)	Δ	△ CT (3)	Final resu	ilts	Final Resu	ilts (2)	Test1 L	ayout 1	est 2 Layou	t -	+

Home	Insert Cut	Draw	Page L	Layout	F	ormula	s Da	ata	Review	vie vie	w																	24.05	here
م م ب	Cut																											W. 21	nare
iste	Copy *	Calibri	(Body) -	- 11	•	A- A-		=	=	»· •	📑 🥥 Wrap	Text *		General			•	÷	.	~ ·	4	×	-	1 .	∑ Au	toSum *	A _Z ♥・	Q	
	Format	В.	I <u>U</u> ∗	•	<u>^</u>	• <u>A</u>	•			•	😁 Merg	a & Center	• []	\$ • 9	6)	0.¢ 00.	.00	Conditional Formatting	Format as Table	Cell Styles	Insert	Delete	For	mat	🥖 Cle	ar *	Sort & Filter	Find Selec	& ct
1	‡ × √	fx																											
0	C 0		P 0	1	1000	1 8	L	v.	N		0 8	5 T					1	AA	ĸ	0 <i>N</i>	N 10	.81	A	N		89	AL RO	N	
210R	Ote Ote		10.40	81.00 84.90	414.57	01.50 1 82.50 1	85.90 86-90		26.19	26:00	21.05 24.25	2.4	2.84																
5190	Urie Urie		15.54	81.00	425.04	A2.81 1	06-30	^	v3 ***	0000	AVS SHEEK	AVG	24 TREUE																
2159	Chie .		20.27	81.00	471.98	75.80	K. 10																						
5100	Ute		22.5	81.00	443.15	75.91	15.50		CD 2 LAS																				
2109	Ote		20.82	e1.00	541.40	77.85	6.30		601.4																				
5199	Uter		25.63	81.90	663.71	75.50	14.00	2	10.077		ON OPF.	ACH GPP																	
0101	CHAR.		20.22	81.00	481.47	77.88	n 30		27.30		22.54	24.9																	
5100	Crise.		20.26	81.00	604.11	75.60	46.100 (4.50)		21.14	21.24	20.37 20.45	24.3	24.1																
5109	UHP.		13.81	81.00	101.40	79.51	1.50		in m."	21.02	12.51 22.03	23.9	- me																
\$199	Grie		2.37	87.00	673.12	10.55	1.00		20.68	26.93	25.66 20.97	21.0	2.4																
2100	Urie Urie		2.0	87.00	481.54	02.51	e 10 10 00		20.95	20.32	22 25	21.0	219																
2159	Urben (Date		13.28	87.00	587.63	82.50	16.00		21.87		20.20	21.0																	
5100	Ute		17.55	M .90	501.41	02.00	H 20		2.4		19.57	21.9																	
2104	CHM CHM		18.48	86.00	408.12	62.50	8.30		2.4	21.4	10.007 10.00	2.5	- 83																
5100	Use .		15.65	87.00	#13.15 #83.95	42.51	10.50	^	vs *xxx	20194	AVS PARADON	AVG	22.4440																
2159	Crise .		18.79	87.00	818.12	62.80	06.90		697.6																				
5100	Union .		24.14	81.00	518.67	77.88	16.50 16.50		0.077		004077	NO1077																	
0109	Chie Chie		22.87	#1.50	427.68	77.80 s	NC 30				34.11	24.0																	
5199	Ute		25.66	81.00	541.12	75.51	6-30		26.06	26.16	23.60 24.00	21.6	23.8																
2101	010		214	P1.00	171.40	7.0	10.00		2127	27.00	218 218	24	2.14																
12/04/3	Grie .		23.48	81.60	373.01	75.00	NC NO		2.4		22.18	23.4																	
0109	UHP.		21.09	e1.00	545.71	71.51	10.50		10.00		2.12	23.5																	
5199	Grie		2.4	81.90	535.68	75.50	16.90		27.11	1.0	20.31	21.0																	
0100	Use		2.52	87.00	419.20	02.51	6.50		22.10	17.00	22.57 22.44	21.5	2.00																
2599	Cale.		22.53	87.00	311.00	10.10	10 KO		26.66	26.00	21.86 21.88	22.4	2.4																
5100	Une.		20.73	87.00	543.00	02.51	6.20		va * m	1935	AVG ZO STITES	AVD	10.0410																
2109	Ote .		20.40	87.00	543.60	82.50	00.30		0.000		200.002	1000																	
5100	Urie .		20.67	Acre Her	ne Ner	w Nere																							
2158	Geo.		20.37	86.00	546.44	62.50	E-30		22.85	27.27	27.22 27.20	21.0	2.8																
5100	Union .		23.5	87.00	488.50	82.51	4.50		10.00	27.18	20 22	24.5																	
0109	Chie Chie		2.2	81.00	494.38	71.51	10.00		27.58	17.46	2.3	28.1																	
51895	Uter		2.0	81.50	488.74	75.58	6-X)		21.67		25.56	28.7																	
0101	Ote		25.4	RT.SO	43.65	10.50 Nore	17.30		20.00	27.60	27.82	26.7																	
5100	Urier.		25.44	81.00	525.64	77.88	00.00		25.85	26.80	26.66 27.25	24.7	213																
0101	UNE		22.00	e1.00	548.57	77.88	10.00		27.30	27.30	8.0 8.8	8.3	2.88																
5199	Union Union		27.88	81.90	513.57	75.51	8- X0		us *273	00545	AVG DEFENSES	AVG	27.339538																
5100	Urie Urie		21.11	#1.50 #1.50	401.00	77.88	M-30																						
2158	Griev.		20.31	87.00	674.06	10.10	10.00		AN POOL		NTC																		
5100	Ute		22.51	87.00	398.40	02.51	0.50		vogenin																				
5199	Ode Ode		13.85	87.00	40.50	10.10 N	8.30 85.30		20.53	20.10	20.15																		
5150	Union		22.44	87.00	521.47	42.81	8-30 M-70		-																				
2168	Gite		23.46	87.00	40.61	60.00	15.10	- 1	23.80		6.17																		
5100	Unio		25	87.00	500.15	02.51	6-XX		10.00																				
2109	Ole Ole		13.81	85.50 87.00	581.62	82.50	E 20		21.28																				
5199	Unio		24.11	81.90	454.75	77.68	6 X		21.0	4.8																			
2101	Ole		20.72	81.00	488.00	75.80	8-00																						
5100	Urie Urie		23.66	81.00	67.6.05	75.50	ME-90																						
0101	Ote		23.11	£1.00	281.04	7.00	10.00																						
1000	(bite		2.0	#1.60	10.00 M	and a																							
•	RPS11 Res	sults	Myf5 My	yoD Res	sults	M	yogenin	Follista	atin Res	ults	Myostatin	Results	Δ	Δ CT	001	CT (2)		CT (3)	Final re	sults	Final Re:	ults (2)	1	fest1 La	yout	Test	2 Layout		1
		_		_	_	-				_		_		_		-	-		_	_	_			-	_	_			-

	10	í 🖾	2.6								-	lest 4 &	5 deck	cbd cb	on mth	July 16							3	earch Sh	ieet		6
lome	Inse	ert D	raw P	Page Layou	ut For	mulas	Data	Revi	iew Vi	iew																_+ Sh	hare
۰,	Cut	0	alibri (Bo	dy) + 11	• A	• A•	=	= _	***	E.	Wrap 1	fext =	Cust	om					-		.		Σ AL	itoSum *	A ₹₹	Q	
aste	S Form	mat	BI	<u>u</u> • 🖽	• 🔺 •	<u>A</u> •	5	8 8	•1 •1		Merge	& Center 🔹	\$.	%	,	00, 00 0.0 00,	Condition	al Format g as Table	Cell Styles	Insert	Delete	Format	CI	ear *	Sort & Filter	Find & Selec	& ct
9	‡ >	\sim	fx 31.2	466661203	3416																						
6 A		D	ε	r 6	н			х	L M	N 0	P	R D	5 T	U	v	w x	Y Z	AA AB	AC AD	AE AF	AG AI	AI AI	AK	AL AM	AN AG	AP.	AQ.
NamSlau_1	151_July 31	Myostatin.po	d							Myostatin																	
63										TEST 4																	
										_		_															
Star 07/81	2018 15:22	an unc								CHD 299		CRN DOIN	MTH	29													
npie 1 3	12									28.17		27.96	28	70													
Temp 1	15									27.64 27.1	90	28.17 28.06	28	94 28.8													
tocol dau_e	der graan pn	otocsi_Myosta XM, coolia oli	tin_july 22.prd							27.56		27.84	28	56													
Ser CT013	778	- Country								26.52	-	28.01	27.	47													
cal F 7860R	2890									27.14 26.1	13	27.60 27.81	28	26 27.8													
444.1.26	18.1219.									27.62	60	25.787 27.06	28	00 02 7 29.0													
pro All We	ila .									27.37		27.18	26	45													
fici de	3									27.21 27.2	29	28.41 27.79 25.69	26	36° 26.6 39													
										27.71 27.1	64	26.69 26.69	36	967 26.9													
flue	Target	Content 5	mpie Ca	Starting Q	uantit Melt Terra	or Peak Height	Begin Temp	End Temperate	re	ANG 27.44	48	AVG 7 27.66	AVG	27.92													
SYBR		Linko		27.64	82	50 283.35	68.00	85.50		T857 5																	
SYBR		Unkn		27.56	82	50 263.97 30 294.29	68.50	85.00		080 0181		Can Dill	MTH														
5788		Unico		26.52	Sone 82	None	68.50	84.50 None		29.54		29.40	25	86													
5138		Unkin		27.32	82	50 314.85 50 317.82	68.50	85.00		29.43 29.4	49	29.91 29.65	25	34 29.50 M													
SYBR		Linko		27.87	81	50 253.28	67.50	84.50		81.25 81.2	12	29.72 29.83	28	95 29.00													
SYBR		Unkn		27.96	81	50 234.40	67.50	84.50		2.447 21	17	267 22	2	47 23.5													
3786		Chikin		17.71	None	None None	None	None		29.48 29.3	57	29.20 29.65	23	11 29.5													
519R		Unko			None	None	None	None		30.69	19	23.67	23	57 23													
5128		Unko			None	None	None	None		20.50	10	29.95	28	12 447 78 80													
5188		Unkin			None	None	None	None				4147 F 30 470	4147														
STER		Christon			None	None	None	None																			
SYBR		Unkn			None	None	None	None				Control/															
SYBR		Unko			None	None	None	None		29.72 29.17 29.1	66	28.11 28.44 28.37	22.	44 28.5													
5188		Unko		27.96	None	None 00 229-21	None	None 93.50		30.85	17	28.50	31	83 88 1 31 80													
STRR		Cirkin Linkin		27.84	82	233.29	70.00	94.00		28.79		29.21	28	18 08 7 18 1													
SYBR		Unkn		28.01	82	50 294.08	68.50	84.50		29.64		28.60	25	43													
SYBR		Linko		27.85	None	None	None	None		28.60		30.33	28	60													
519R		Unkn		25.78	N. 66.	00 243.64 50 251.48	- 83.5C 64.0C	92.50		29.45	50	28.71 29.52	28	30, 28.9													
5788		Unko		28.41 25.69	None 86.	None 80 831.46	None 83.50	None 92.00		29.13* 29.2	29	28.11 28.19	28	20 28.2													
SYBR SYBR		Unkin		25.69	None 85.	50 362.33 None	83.00	92.00 None		AVG 29.1	99	AVG 28.733	AVS	29.8													
STRE		Union			None	None	None	None		1000 BOOK		100															
SYBR		Unkin			None	None	None	None																			
SYBR		Christon			None	None	None	None		27.41		82.98															
519R		Unkn			None	None	None	None		0.0 10	*	35.07															
3788		Unico			None	None	None	None		23.45																	
SYBR		Unko			None	None	None	None		23.36* 23.3	52																
SYBR		Links Links		28.70	None	None	None	None																			
SYBR		Unkn		28.56	81	274.08	63.50	93.00																			
SYBR		Christon		27.47	81	50 278.56	68.50	92.50																			
519R		Unkin		23.00	81.	50 245.67 50 274.37	7100	95.00																			
5188	-	Linko Linko	_	29.02	None	None 90 233.75	None 84.00	None 91.00		_	-		_	-	-	_	_	_	_				-				
	RPS1	1 Result	s M	d5 MyoD B	tosults	Myoa	enin Eo	Ilistatin B	esulte	Myos	tatin B	esults	AA CT		AA CT	(2) /	A CT (3)	Final re	eulte	Final Res	ults (2)	Tost1 I	tuove	Tost :	2 Lavout		-
7				,,001	0000108	.nyog		ino calun 14	ooand		and the		and OI			(*) h	aa o (0)		00110	1 11.40 1903	(6)	.0011 1	ayout	2031	- engout		P
																								_			

Real-Time PCR Analysis Fold Change (5uM) TRIAL 3

Real-Time PCR Analysis Fold Change (5uM) TRIAL 4 & 5

	In the	Draw	Danalau	aut Farm	eulee.	Data	Deview	Manu	Iest 4	& 5 QPCR	cba con mtn J	uly 16								Search	Sneet	#+ Char
lome	You	Diaw	Page Lay	out Form	iulas	Data	Review	VIEW					-							T. Lutatum		m. Juai
٩.	on cut	Calibri	Body) - 1	2 • A*	A-	= _	= 🌮	•	Wrap Text *	Gen	eral	*		• 📝•	1.	4.000	- 🗰	× - 🎁	<u>.</u>	Z Autosum	Č Agγ	Q.
ste	S Format	BI	<u>U</u> •	· 🔺 · .	Α.		-	•	Merge & Cente	• \$	• % • *	00, 0. • 0	Condition	nal Format	Cell	Insert	Dele	rte Fo	rmat	Fill * Clear *	Sort &	Find &
	A X V	fr											T OT MACC	ing as raose	orgines					•	1 mon	Jenect
A	8 C	D	£ F	G	н	1	1	к	L	M		P	q	8		т	U	×.	W	х	Y	. AA
	y6	CEN DIFF	P\$11																			
29.35		25.70																				
29.39	831	25.82	15.16		1.5545	1483/2400050		1.4790303430575	0.3585	1575400345	51 0.4305252109483											
29.31	29.39	25.97	26.23		3.6673	306526485050		0.9928485470783	4 0.5024	465786326												
27.33	27.98	24.41	24.85		1.6766	669716088900		0.7183505571148	6 0.6077	1193709683	11 1003030041130											
25.73	25.85	23.47	23.34		2.4646	603819782800		(0.4987153392911	1.4080	637133846	1 100 110 110											
27.39	27.30	24.01	24.00		1.000	124493404130		0.1283965339946	1.0852	038643249												
24.85		22.60									53 0.87072171347235											
26.84	20.84	0.0	22.91		(3.3785	10100100		0.6300741306765		00000421												
66 M	y6	ALCON.	P\$11																			
28.36		24.81																				
28.03	28.30	29.93	27.57		0.8292	228621996048	2.07645797340663	(1.1452293520006	2,305	237136988	51 1.8962036030428											
28.04	27.90	24.48	24.58		3.3196	687325417300		1.2452293520006	0.4218	083073484												
27.35	27.87	24.68	24.68		3.1816	600006007000		0.2232905470930	0.8566	1518269017												
27.84	27.78	24.49	75.04		1 100		2.95831915897398	10 22220064270320	1100	53235556	52 1.0120002536713											
27.71		24.41																				
27.67	27.10	25.85	34.13		13402	712282379900	3.31892202739878	0.1647912549771	0.8828	913511034	53 1.01689067563222											
26.88	26.97	23.60	23.92		3.0541	129772421650		0.2647912549771	1.2004	219615411												
10 M	y6	C60 MIQ	P\$11																			
25.75		23.54																				
25.68	25.71	23.29	23.44		2.2765	535374171700		0.1276858540238	5 0.9152	845211679												
24.50	24.58	22.45	22.49		2.000	971656493150		0.0618778636547	1.0438	355538283	51 C379563003649E											
27.16	M 14	22.04	22.44							4438834673												
26.05	20.33	23.59	20.11		1.1/1	11100401100		0.011004011001	0.074		52 0.9308342874017											
25.45	25.83	23.45	23.44		1.3334	468720405600		(0.2719086840985	1,20%	M16598690												
24.18	24.35	22.89	22.48		1.3236	622888595650		0.0308694799237	R 0.9924	H16129630												
25.36	25.17	23.10	23.88		1 2104	483821608050		0.4222596870598	1.3400	407537179	53 13962941112942											
		24H 340																				
	40	CONT PRO			_				_													
24.79	21.02	22.81	22.84		2 1822	241979784800		0.0333924596369	0.9771	1992208252												
24.79		21.93	11.00					0.0000000000000000000000000000000000000			51 0.7961972454703											
25.50	24.85	22.08	22.00		2.6495	-ounde		0.1000113/0258	0.6153													
25.10	25.30	22.79	22.66		2.4245	535117131350		(0.2408422873727	1.1816	1236064667	57 1 2016657649304											
25.02	25.10	22.41	22.73		1.3614	445255283800		(0.3029321492203	5 1.2336	914921429												
24.34	24.35	22.79	22.78		1.4642	752443408450		10.2480020652592	11875	136633041												
23.96		26.32									53 2.3795881083573											
24.05		21.90	24.11		10.171	manna		1.4397/01240009		nasone and												
	40	11.04	10011		_																	
24.38	24.35	22.36	22.81		1.0020	\$45149718700		(0.1559043704291	51 1.1341	1979853153												
24.36	24.45	21.98	22.15		1,940	753890577058	2.14884953014788	0.1559043704291	0.8975	1954642247	51 1.0058446734770											
	DDS11 Dog	rulte	Mod6 MucD	Populte	Muogo	nin Follie	tatio Results	Muon	tatio Regulte	AA CT	AA CT (2)	0.0	CT (2)	Einal me	ulte	Einal Ror	ulte (2)		forett Lawa	ut Tor	t 2 Laugust	
P	nr off mea	PUILO	myio WyoD	mound	myoge		cause riesuits	myos	cault results	100		20	(0) (0)	1 1130 163	MILO	1 mol 1965	nund (6)		toour Layo	103	a s nelyout	

	Home	Inse	t Dr	aw	Page	e Lavoi	nt F	ormula	s Da	ata	Review	,	View																		å+ Sh	are
No. Port Port <th< th=""><th>۹.</th><th>X Cut</th><th>Ci</th><th>alibri (</th><th>Body)</th><th>• 12</th><th>•</th><th>A- A</th><th>• [=</th><th>= =</th><th></th><th>89</th><th></th><th>📑 🖉 Wrap</th><th>Text -</th><th>Genera</th><th>al</th><th></th><th>•</th><th></th><th>ļ.</th><th></th><th>2</th><th></th><th></th><th>×.</th><th></th><th>Σ.</th><th>utoSum *</th><th>₽₽.</th><th>Q</th><th></th></th<>	۹.	X Cut	Ci	alibri (Body)	• 12	•	A- A	• [=	= =		89		📑 🖉 Wrap	Text -	Genera	al		•		ļ.		2			×.		Σ.	utoSum *	₽ ₽.	Q	
	aste	🙄 Copy 🎸 Form	at E	3 I	U	• 🖽	•	• A	•	-			•1	🕶 Merge	a & Center 🔹	\$ -	%)	.00 0.¢	Condi	tional atting a	Format is Table	Cell Styles	Inse	rt D	Selete	Format	🔹 F 🥖 (ill * Jear *	Sort & Filter	Find & Select	t
		\$ ×	~ .	fx																												
D D	A			D	£		6	н					×	L	м	N		0	P	Q	R	2 MeeM		1	U	1112	W	х	ΥΥ		AA	
Normal and a second s	00		825	11																				D.411		CIN 6		MTH diff	-			
Image: problem Image:			101	4																		51		7 58821021	T.	2.83	01884	1.094400	107			
Note Note <th< td=""><td>977 M</td><td>60</td><td>683</td><td>a#</td><td>Pi11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>52</td><td></td><td>4.33706222</td><td>σ</td><td>5.1</td><td>44455</td><td>1.301591</td><td>54</td><td></td><td></td><td></td></th<>	977 M	60	683	a#	Pi11																	52		4.33706222	σ	5.1	44455	1.301591	54			
m m	21.19	21.34		25.90	24.09				0.146323556	0053501			(2.928798937	2021000	7.614762954262	*						53		0.05043866	0	0.30	42724	1.122685	82			
N N	23.90	20.94		23.67	23.68				2.728033058	100000			(2.920609339	6356500	7.572658479747	3	13 7	59321021700534				MeaD				11551		_	-			
n m n m <td>20.15</td> <td>20.22</td> <td></td> <td>22.80</td> <td>23.15</td> <td></td> <td></td> <td></td> <td>12.022133488</td> <td>711200</td> <td></td> <td></td> <td></td> <td>5801000</td> <td>4.851759875917</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>D átt</td> <td></td> <td>CRN d</td> <td>"</td> <td>MTH diff</td> <td>-</td> <td></td> <td></td> <td></td>	20.15	20.22		22.80	23.15				12.022133488	711200				5801000	4.851759875917									D átt		CRN d	"	MTH diff	-			
n 1	20.75	20.67		23.50	23.24				0.535728098	220150			0.933725426	8383500	3.820606378378	s. 5	12 4	33708222724573				81		0.12572200		0.541	12982	1.883434	87			
····································	21.16	21.03		23.22	23.49				0.46238251	\$332560			4.192545923	729150	0.054693258736	2						12		1.38721383	σ	0.717	56806	1.097724	23			
···· ···· </td <td>21.55</td> <td>21.54</td> <td></td> <td>21.80</td> <td>13.26</td> <td></td> <td></td> <td></td> <td>D 1985AUST</td> <td>*****</td> <td></td> <td></td> <td>4.436402338</td> <td>602350</td> <td>0.046285044850</td> <td>5</td> <td>8 0</td> <td>0.05043860160425</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 22006262</td> <td></td> <td>1.264</td> <td>12858</td> <td>1 116201</td> <td></td> <td></td> <td></td> <td></td>	21.55	21.54		21.80	13.26				D 1985AUST	*****			4.436402338	602350	0.046285044850	5	8 0	0.05043860160425						1 22006262		1.264	12858	1 116201				
N N		-			1011																			D.mo		(10)		MTH OCO				
1 1 1 1 1 0	23.00		_	25.80						_		-		_		-						51		0.82886493	5	0.10	10006	1.000020				
1 1	22.99	22.99		25.62	15.46				0.4644603233	259350)			2.643056584	456100)	6.263880043104	12	1 7	120168899(12112				12		1.00711000		1.881	41012	1.02681	**			
$ \begin{array}{ $	22.68	22.91		25.77	25.81				0.001144148	#32060)			(2.083745430	028800)	8.479096749137	12								100400800		110	10000	100017				
	20.72	23.86		23.55	23.81				0.454162236	2065001			(2.311709604	934900)	4.964710536212	n ,		14448800001411														
1 0	20.60	20.54		23.99	23.59				0.055635170	3880001			(2.412582505	236400)	5.324265465656	15																
m m	20.21	20.17		23.29	23.47				0.101245272	2361501			3.353683309	436750	0.097822944190	5		10077240001167														
Control <	22.46	19.68		22.89	23.56				0.4799405103	3803501			3.174988065	292550	0.110723855831	14																
Total Total <t< td=""><td>No.</td><td>60</td><td>9614</td><td>0#</td><td>Pi11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	No.	60	9614	0#	Pi11																											
No. No. <td>25.40</td> <td></td> <td></td> <td>23.60</td> <td>12.44</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- [</td> <td>1414700480</td> <td>100400</td> <td>0.336766670383</td> <td></td>	25.40			23.60	12.44							- [1414700480	100400	0.336766670383																	
1 1	23.56	23.14		25.28	14.83					******	0.38259628115	6750	0.614595689	1924000	3.067253685712		1 1	1.69443706804725														
Normality <	21.53	11.44		23.35	13.22								0.222206700	7794000	2 224900011041																	
1 1 </td <td>25.14</td> <td>10.10</td> <td></td> <td>15.19</td> <td>14.17</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.64305267117</td> <td>2599)</td> <td>1 1122001200</td> <td>179400</td> <td>0.019192964511</td> <td>5</td> <td>12 1</td> <td>1.38159193778149</td> <td></td>	25.14	10.10		15.19	14.17						0.64305267117	2599)	1 1122001200	179400	0.019192964511	5	12 1	1.38159193778149														
1 1	20.06	20.15		16.33	14.57								0.707518603	110000	0.61106070687																	
No. No. Restauration	20.23	20.04		27.86	11.19						1.65492857563	2900)	0.000336607	114400	1433334400000	5	8 1	12268982294254														
Normalization Norm	24	10.00		10.44	47.72				().141411111				94.100-2288000		1000100000	~																
1 1 </td <td>99<i>6</i></td> <td>60</td> <td>100</td> <td>2.6</td> <td>Pi11</td> <td></td>	99 <i>6</i>	60	100	2.6	Pi11																											
μμε μμε <td>25.97</td> <td></td> <td></td> <td>23.60</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>-</td> <td></td>	25.97			23.60					_	_				_		-																
And	25.67	25.82		23.33	23.46				2.356623823-	480900			2.829138226	899790	0.140716340365	5	13 0	17572206504383														
And And And Parameters Parameters <th< td=""><td>25.53</td><td>26.60</td><td></td><td>24.32</td><td>24.83</td><td></td><td></td><td></td><td>1.7734333200</td><td>332150</td><td></td><td></td><td>2.246547512</td><td>811090</td><td>0.210727789722</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	25.53	26.60		24.32	24.83				1.7734333200	332150			2.246547512	811090	0.210727789722																	
α = 0 α = 0 <t< td=""><td>25.81</td><td>25.82</td><td></td><td>23.31</td><td>23.33</td><td></td><td></td><td></td><td>1.586897728</td><td>342150</td><td></td><td></td><td>1.972857938</td><td>778250</td><td>0.254747882773</td><td>5</td><td>2 1</td><td>38721383725978</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	25.81	25.82		23.31	23.33				1.586897728	342150			1.972857938	778250	0.254747882773	5	2 1	38721383725978														
n.π" n.m" fail fail <thfail< th=""> fail fail <th< td=""><td>25.58</td><td>23.25</td><td></td><td>25.95</td><td>24.57</td><td></td><td></td><td></td><td>0.3192006389</td><td>9180001</td><td></td><td></td><td>(1.333240409</td><td>481900)</td><td>2.519679791745</td><td>19</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thfail<>	25.58	23.25		25.95	24.57				0.3192006389	9180001			(1.333240409	481900)	2.519679791745	19																
ane ne μe	26.35	26.56		25.85	26.09				0.266383536	340351			0.470683398	590075)	1.385763823004	10	8 1	22006761755344														
P RPS11 Results Myd5 MyoD Results Myogenin Follistatin Results Myostatin Results ΔΔ CT ΔΔ CT (2) ΔΔ CT (3) Final results Final Results (2) Test1 Layout Test 2 Layout	28.09	28.41		27.64	17.75				0.000081835	327904		L	0.076383159	2083225	1.054373412100	18																
	•	RPS1	Results		My15 I	MyoD R	lesults	M	lyogenin	Follist	atin Resu	ilts	M	yostatin R	lesults /	LA CT		ΔΔ CT (2)	Δ	1 CT (3)	8	inal result	ts	Final R	esults	(2)	Test1	ayout	Test :	2 Layout		+

ste	Copy *	Calibri (E B I fx	3ody) + 12	2 - /	а- а- - <u>а</u> -		*	•	Wrap Te														
A 10 26.36 26.49 26.38 26.34 26.34 26.34 26.34 26.34		fx 0	6 E				•	•1	• Merge &	k Center *	General	% > %	• 0 40 0.0	Condition Formatti	• 🧾	* w at Cell le Styles	4 Insert	- E	te Fo	rmat	∑ AutoSum Fill * Clear *	Z Sort & Filter	Find & Select
A 440	0 C	D (6N 0/7 N	6 6																				
26.36 26.49 26.38 26.38 26.34 26.34 26.34		CEN DATE: M		G	н			к	L	M	N	0	. P.	Q.	8	5		U	¥.	W	х у		AA
26.36 26.49 26.38 26.34 26.34 26.34	74.48		511																				
26.38 26.34 26.34	14.44	25.70									1												
26.34		25.83	25.76			0.718199710681293		1.18635415455	0190	0.4394240832333	51	0.54712982040665											
	26.36	25.97	26.23			0.137681829168000		0.63079543258	6876	0.6548355575803	,												
24.57	24.39	24.41	24.31			0.083431903799301		0.06939213923	5402	0.9530394642267	8												
24.53	24.45	23.47	23.34			1.066645427366800		1.05260566340	2900	0.4820966589335	a	0.71756800158055											
24.02	24.17	24.01	14.00			A 3558554999994703		10 47109849536	57711	1 3051645196719													
23.52		22.60									53	1.26412857979655											
23.39	23.45	38.31	22.01			0.345385316445455		0.1916/96/868	KY764	1.1420926399211													
AVV0		ALCON.	511																				
25.07		24.81									1												
25.12	25.30	28.93	27.87			3.371965274734400)	0.47111440343857	(1.79885087131	\$520	8.4794297301100	8 51	1 88341657446835											
26.43	25.90	24.48	24.58			1.325736467896650		1.79885087131	5520	0.2874084388264	8												
25.50	25.33	24.68	24.68			6.646772039707297		0.63273227534	3399	0.6449538000605													
24.34	21.44	24.46	21.04				0.01403976456389	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1100	1.0004040000000000000000000000000000000	52	1.09772622789388											
26.19		24.41						(ALL MANY ALL MANY AL		1.0000000000000000000000000000000000000	1												
24.90	25.55	23.83	24.12			1.427463723662300	0.71206099093042	0.69039772773	1876	0.6196829898227	6 53	1.11620166289993											
23.60	23.66	22.60	23.93			0.046667267198551		10.69039772773	1876	1.6127282259771	a												
NO MyiO		C80 740 8	\$11																				
26.32		23.59			_				_		-												
26.06	26.54	23.20	23.44			1 699223012384200		0.34323054944	7778	0.7882740301525	9												
24.79	24.89	22.53	22.49			3.400745135543750		0.06475297200	7323	0.9694557994965	51	0.87886491481455											
25.88		22.94																					
24.10	26.03	23.39	20.0			2.516651472515050		0.55612454727	55971	1.51/7555400465	52	1.36711086296876											
26.40	26.15	23.49	23.44			2.814728966926600		(0.50225765326	805.0	1.4364283778893	4												
24.00	24.22	22.39	22.48			1.730797280893400		0.14079394131	9346	0.9070298684365	7												
25.09	25.30	24.66	23.88			1.324570857283650		(0.26543238229	06021	1.2009962293097	1 33	105450805386334											
-		7491010	\$11																				
		-							_														
24.36	31.29	22.81	22.84			8.445814563716450		6.09382280018	0020	0.0346411958099	6												
24.85	34.65	21.92	11.00					0.54800843656	1125	0.6829589159644	51	0.34990005588720											
25.33		22.97																					
25.68	28.85	23.79	22.88		- 1	3.829323083647300		(0.68766453654	73496	1.6336340256955	52	1.88341052318210											
25.01	24.95	22.41	22.73			2.211209976706400		(1.10577564349	4250	2.1521470906686													
23.67	23.74	22.76	22.76			0.957191689235401		(0.63281165033	8851)	1.5505839644834	6												
23.42	23.46	26.83	24.11			e estattes soonen		0 14243599107	2000	4 7319534096005	53	3.54126888708700											
		11.00																					
MycD		VERPHD B	955																				
24.69	24.68	22.86						0.00003338245		0.0004200220000													
24.42	19.00	21.98	**.**				2.35599216353642	0		0.0004200235050	51	1.00001053219852											
24.58	DOCULE	22.32	22.15	Description		1.349370783080550	table Day 11	1 10.00662138245	sanca	1 1.0046001408920	A CT	AA 07		OTIO	Elm. 1	and the second	Final P	and the state				01	
P 1	HP511 Res	uits	MY15 MyoD F	Hesults	My	yogenin Follis	itatin Results	Myc	ostatin Re	suits Δ	A.C.	дд CT (2)	Δ.	2 GT (3)	Final	esuns	Final Res	suits (2)	1	esti Layo	ut Test	2 Layout	

Norm Cale Cale <th< th=""><th>Home</th><th>Ins</th><th>ert</th><th>Draw</th><th>Page I</th><th>_ayout</th><th>For</th><th>mulas</th><th>Data</th><th>Rev</th><th>riew</th><th>View</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>#+ Sh</th><th>are</th></th<>	Home	Ins	ert	Draw	Page I	_ayout	For	mulas	Data	Rev	riew	View																			#+ Sh	are
Normal B I <th>•</th> <th>X cu</th> <th>t py *</th> <th>Calibri (I</th> <th>Body)</th> <th>12</th> <th>• A</th> <th>▲ A▼</th> <th>=</th> <th></th> <th>*</th> <th>•</th> <th>📑 🖓 Wr</th> <th>ap Text 🔻</th> <th>· [</th> <th>General</th> <th></th> <th></th> <th>•</th> <th>÷</th> <th></th> <th><u>ا</u> ، ا</th> <th><i>.</i></th> <th>•</th> <th>•</th> <th>× - 🕴</th> <th>÷.</th> <th>∑ Auti</th> <th>oSum ∗ ∗</th> <th><mark>A</mark>₹</th> <th>Q,</th> <th></th>	•	X cu	t py *	Calibri (I	Body)	12	• A	▲ A ▼	=		*	•	📑 🖓 Wr	ap Text 🔻	· [General			•	÷		<u>ا</u> ، ا	<i>.</i>	•	•	× - 🕴	÷.	∑ Auti	oSum ∗ ∗	<mark>A</mark> ₹	Q,	
	aste	🥩 For	rmat	BI	<u>U</u> *	•	<u>-</u> •	A -	5	5 3	* E	•1	e Me	irge & Cei	nter *	\$ • 9	6)	.00	0.0	Conditiona Formatting	al Form g as Ta	hat ble S	Cell tyles	Inser	t Del	ete Fo	rmat	🥖 Clea	ar +	Sort & Filter	Find & Select	k t
A A B C B C B C B C B C B C		÷ :	x v	fx																												
N N	A		c	D	6	£	G	н				×		1	M	N	0		P	Q	8	5			U	v.	W	х	¥	I	AA	
N N	ogenin			RPS 11																	504	agenin				TEST 4						
m m				197.4																			CRD di			CBN diff		MTH diff				
1 1		rigeria		C60.077	511																51			4.363449262		4.4265528		1.18025902				
m m	18.88			23.90												1					52			2.676816602		2.3554930		1.07037605				
100 0 0	18.49	18.96		24.28	24.09			- P	1301792236713	-		(2.1694863	78214850	4	49863143168067	51	4.3634492629	689			53			0.092033417		0.0649243		1.12660398				
Normal	19.07	18.78		23.65	23.68			- P	#973845383786	-		(1.9366914	\$79216008	3.1	83836709223312						My	agenin				115115						
10 10 10 10 10 10 10 10 10 10 10 10 10 10 100	18.41	18.17		23.49	23.15			-	9774823698246	e .		(1.4871766	17479730	21	80335607449638	52	2.6768166026	928					CHD d	"		CIIN diff		MTH dff				
100 1	18.33	18.40		23.39	23.24			14	8409362212992	e)		(1.3506303	68954320	2.5	55023513036218						51			0.138004279		0.4457647		1.47634633				
No. No. <td>19.30</td> <td>19.03</td> <td></td> <td>23.76</td> <td>23.49</td> <td></td> <td></td> <td>14</td> <td>4590456232129</td> <td>-</td> <td></td> <td>1.6787594</td> <td>29550700</td> <td>0.</td> <td>07808777796162</td> <td></td> <td>0.0903334179</td> <td>345</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000000484</td> <td></td> <td>0.6684449</td> <td></td> <td>1 00013034</td> <td></td> <td></td> <td></td> <td></td>	19.30	19.03		23.76	23.49			14	4590456232129	-		1.6787594	29550700	0.	07808777796162		0.0903334179	345						0.000000484		0.6684449		1 00013034				
Nort Nort <th< td=""><td>18.85</td><td>18.85</td><td></td><td>23.75</td><td>23.76</td><td></td><td></td><td>14</td><td>#996016969900</td><td>4)</td><td></td><td>3.2382083</td><td>\$5772200</td><td>0.</td><td>10597505675127</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.000,000</td><td></td><td></td><td></td><td></td></th<>	18.85	18.85		23.75	23.76			14	#996016969900	4)		3.2382083	\$5772200	0.	10597505675127													1.000,000				
Mark Mark <th< td=""><td></td><td>riperia</td><td></td><td>CAN DATE</td><td>511</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>23</td><td></td><td></td><td>16001004</td><td></td><td>1.3311395</td><td></td><td>100124509</td><td></td><td></td><td></td><td></td></th<>		riperia		CAN DATE	511																23			16001004		1.3311395		100124509				
and and and Andersonant Andersonant <td>20.18</td> <td></td> <td></td> <td>25.30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>CBD pr</td> <td>re</td> <td></td> <td>CBN pro</td> <td></td> <td>Mitk pro</td> <td></td> <td></td> <td></td> <td></td>	20.18			25.30						1													CBD pr	re		CBN pro		Mitk pro				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20.33	20.31		25.63	25.46			^	3534044478804	-		(2.291711)	17423450	4.1	89636598268243	51	4.42655285212	674			51			1.326742763		1.8713689	1	1.00113742				
Martine	21.59	20.86		25.77	25.85			54	\$450052169250	0		(1.9843323	6468050	3.2	95673972159105						52			1718589276		1.5933390		1.00572894				
1 1	18.85	18.95		23.55	23.81			54	8617107111936	0		(1.3714045	58847970	2.5	58722398550033		3 2554933934	201			53			3.00674696		5.6380838		1.00004533				
1 1	19.16	19.02		23.39	23.59			14	5769252696689	0		(1.0866295	17324020	2.	12375819932728																	
0 0	19.48	19.00		23.76	23.47			74	4715420683528	-		3.6662525	84410850	0.1	07876732245464																	
Mode Mode <th< td=""><td>18.54</td><td>18.48</td><td></td><td>22.89</td><td>23.16</td><td></td><td></td><td>14</td><td>4815072332154</td><td>e1</td><td></td><td>3.4566979</td><td>19552250</td><td>0.</td><td>09108152014847</td><td>55</td><td>0.0845243113</td><td>0.76</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	18.54	18.48		22.89	23.16			14	4815072332154	e1		3.4566979	19552250	0.	09108152014847	55	0.0845243113	0.76														
All		riperia		VENDO	511																											
1 1	21.34			23.60						1			_																			
1 1	21.37	21.36		23.33	23.46			- C	5069646638169	(2.96069	3050457000	0.8527282	E7640048	0.1	55335284500911	51	1.3802590181-	797														
No. No. <td>21.06</td> <td>21.05</td> <td></td> <td>24.87</td> <td>24.83</td> <td></td> <td></td> <td>14</td> <td>#144214380970</td> <td>0</td> <td></td> <td>(0.8587283</td> <td>876400481</td> <td>11</td> <td>80716519128682</td> <td></td>	21.06	21.05		24.87	24.83			14	#144214380970	0		(0.8587283	876400481	11	80716519128682																	
And And <td>19.32</td> <td>19.30</td> <td></td> <td>23.51</td> <td>23.53</td> <td></td> <td></td> <td>54</td> <td>8284357678887</td> <td>0 49030</td> <td>CTC214493W</td> <td>(0.5381300</td> <td>155438251</td> <td>1.</td> <td>45208913634625</td> <td></td> <td>1/202260471</td> <td>952</td> <td></td>	19.32	19.30		23.51	23.53			54	8284357678887	0 49030	CTC214493W	(0.5381300	155438251	1.	45208913634625		1/202260471	952														
And A	21.69	21.62		23.95	24.57				\$521757368011	-		0.5381300	15543825	0.	68866295815279																	
1 1	18.65	18.67		25.45	26.09				4192930022282			0.7385320	50535450	0.	60772390605967																	
Image: Provide the state of	18.78	18.89		27.86	27.75			54	#563171032981	ga 13780	avas (48650)	(0.7185120	50525450	1.	64548405950286		1.12980398077															
Mark Mark <th< td=""><td>-</td><td></td><td></td><td>137.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	-			137.6																												
And Mark Answerstein Jammanne		rigeria		0007	511								_	_																		
All All All All Concentration Concentratin	21.82	21.71		23.60	23.46			1	3576445242668	0		3.2984884	73434400	0.	10063798054963																	
n n n n n n n n n n n n n n n n n n n	22.59	22.39		25.28	24.83			54	5363615131064	0		2.5287714	84564750	0.	17432052550414	51	0.1380042782	588														
AR A	20.73	20.62		23.35	23.53				6612133242400			1.541803	99582250		34344017315247																	
ARE	20.14	20.54		25.18	24.57				#168845222****			0.190234	15435562		83546079536747	52	0.6099504841	269														
No. No. No. No. Ana No. No. No. No. No. No. No. No. My55 My60 Results Myoganin Folistatin Results ΔΔ CT ΔΔ CT ΔΔ CT (Δ) Final results Final Results (2) Tost Layout Tost 2 Jayout	22.47	10.35		24.33	20.07							10 1000																				
Am Am Diff Diff Diff Diff p RPS11 Results MytS MytO Results Mytogenin Follistatin Results Mytogenin Follistatin Results ΔΔ CT (2) ΔΔ CT (3) Final results (2) Test1 Layout Test1 Layout -	23.75	22.42		25.85	26.09			P4	8084399465585	1		0.5603655	1/1/28	D D	*3011800903999	53	1.6829182937	597														
RPS11 Results Myd5 MyoD Results Myogenin Follistatin Results Myostatin Results ΔΔ CT ΔΔ CT (2) ΔΔ CT (3) Final results Final Results (2) Test1 Layout Test 2 Layout	23.36	23.76		27.64	27.75			14	**16012262264			10.9025073	220635721	11	8.7560807757236																	
	•	RPS	11 Resu	ults	My15 My	/oD Resi	ilts	Myc	genin Fol	istatin F	Results	1	Ayostatir	n Results	Δ.	7 CT	AA CT	2)	ΔΔC	T (3)	Final	results		Final Re	sults (2)	1	fest1 La	yout	Test 21	Layout		+

lome	Insert	Draw Pagelavout F	ormulas Data	Review V	iew	Test 4 & 5 c	PCR cbd	cbn mth July	y 16							Search S	neet	å+ Sha
ste	Cut Copy *	Calibri (Body) + 12 + . B I U +			🗊 Wra	np Text * rge & Center *	General \$ * %)	• •00,	Conditional Formatting	Format C as Table Sty	y- 4	nsert De	× -	srmat	∑ AutoSum × ● Fill × ∲ Clear *	AZ Z Sort & Filter	Q - Find & Select
	\$ × ~	fx																
A	0 C	D E F G	H I	1	X.	L M	N	0	. P.	Q	5		U	- ¥	W	X Y		AA
5		1157.5																
50 M	operin	(60.077 M/511																
21.82		23.60																
22.59	21.75	25.55 23.46	TL 3576445242668003	5	56488475454400	0.1006379809499	51	0.13800427822588										
21.99	22.39	24.37 24.83	2.536361513106458	2.5	29771484564750	0.134330575504	14											
20.60	20.67	23.31 23.33	1.665253768240900	15	41869289582250	0.343440173352	52	0.60993068416269										
20.97	20.56	23.95 24.57	4.016884522387200)	0.1	90238535435549	0.875460795352	12											
22.32	23.43	25.85 26.09	1.6684503465522223	(0.5	8036559827272281	1.495228509939												
23.76	23.76	27.86 27.86	1 991601284286450	j0.9	08507322463578	1.870608077572	53	1962182075597										
	reperin	CAN DATE MPS11																
22.31		25.26					-											
22.18	23.30	25.82 25.76	1.5552075281140583	14	90925369557250	0.855784269510	16											
22.13	22.07	25.97 26.23	54.1557788105883000	0.5	00354387082899	0.5357553852995	18											
20.44	20.31	24.20	4.0000536500705580	0.1	36270406752601	0.922569557687												
20.35	20.41	23.21 23.47 23.34	L 9359413288899581	11	71181728916300	0.434320259346	52	0.66864490841702										
20.30		24.01				1 711010010711												
19.81		22.60					53	1.33113957365487										
20.05	19.91	38.217 22.91	12.000728072028890g	0.0	BX170891794022	0.940584358576	10											
~ ~	reperin	V2+3-9 19511			_	_												
21.07	20.95	24.81 23.93 27.87	5 413510019330000		57517972259200	2.562429552790	12											
20.90		24.67		(5.056132997671200)			51	2.47634633048516										
20.70	~**	24.69	0.00010000		37517972259700	0.590255208180	~											
20.67	20.69	24.68 24.68	\$1.997¥7664541#50E	(4.207123057823150)	09346432454649	0.864968937801	52	1.01053654387027										
20.74	20.64	25.63 25.06	(4.416369470227808)	(0.3	09246432434649	1.1560841489388	13											
20.51	20.96	23.43 24.12	1.560079526848350	0.0	01985563026475)	1.0511623903385	10 55	1.00124509313585										
21.44	20.90	23.46 23.93	11.016308.400796.4007	0.0	01985563026475	0.9518277961714	17											
o w	reports	CAD FAD MISSIS																
28.03		23.59																
25.51	27.78	22.53	4.342765816608400	0.1	23901278648151	0.7989065824990	51	1.32674276250911										
25.75	25.63	22.45 22.49	1.127772858657150	10.1	810916799033306	1.854578942518	н											
27.35	27.37	23.28 23.15	4.251144141514500	0.1	54995627887601	0.8981350946938	8	1 21353827550062										
26.10	26.31	23.49 23.44	1.3676(1732339350	(1.3	38534780687650	2.538943456307	11											
25.45	25.30	22.39 22.48	2.715406584545400	(1.3	80223471385550	2.4287659516680	99											
25.88	26.03	25.10 23.88	1.153856413026150	(1.4	118536427048000	3.584727969282	53	3.00674696047547										
	centra	CAN PAG 87511																
21.67		22.81		_			-											
h	BPS11 Bes	sults Myd5 MyoD Results	Myogenin Follis	tatin Besults	Myostatin	Besults A	A CT	ΔΔ CT (2)	001	CT (3)	Final results	Fina	Results (2		Test1 Lavos	It Test	2 Layout	
		, injob nooano			, ootaan											10011		

	谷日	5.0	÷							I Tes	t 4 & 5 ql	CR cbd	cbn mth	luly 16								Se	Jarch She	et		6
Home	Insert	Draw P	age Layout	Form	nulas	Data	Review	vie Vie	w																_+ Sha	are
aste	K Cut	Calibri (Boo	ly) - 12 U	• A•	A- A-			» •		Wrap Text	nter *	General \$ • 9	6)	•	Conditie	• 📝	- 🧊 at Ce	- 4	ert De	slete F	ormat	∑ Aut	oSum ™	AZ♥・ Sort &	Q Find &	
	Format														Format	ting as Tal	ole Styl	es				Cie	ar *	Filter	Select	
1	$\varphi \times \vee$	fx																								
A	8 C	D E	- F	G	н				x	L	м	N	0	P	q	8	5	тт	U	¥.	W	x	Y	I	AA	
PRO My	operin	CON PRO RPS11			_			_																		
25.50	25.59	22.66	22.84		1.19	0135412971500		(1.268)	729124568750	2	40949219029785															
25.79	25.60	22.06	22.00		3.60	1921347597200		(0.4345	942590363051)	1	33324562175521		1.87195890003													
24.54	26.97	22.76	22.88		4.00	6799556554300		(0.0293	3493634726999	1	01350230047205		1 10111004.000													
26.10	24.39	22.41	22.78		1.45	3473140494350		(0.452)	675373132948)	1	36857582945063															
25.45	25.56	22.78	22.78		1.77	9473514267400		(1.2363	2465414635503	2	32345447711333		5.63808387853	40												
25.05	24.95	21.90	24.11		0.83	3389270965554		(3.1622	330754355400	8	95274938196205															
740 MV	operin	WTEPRO RPS11																								
26.30	26.36	22.36	22.31		3.89	0051403309550		(0.0688	803134650601)		.04884619575882															
26.39	26.14	22.52	22.15		4.00	7667572510850	4.01886453796	0.0688	803134650601		95342863832124	51	1.00113341693	20												
27.36	27.38	23.10	23.03		4.39	05030862235600		0.1543	154572504599		89853426581168															
28.10	28.36	24.13	24.20		1.85	17939411232400	4.10614851362	(0.1543	154572594599)	1	11292361131785	52	1.00572893856	18												
26.46	24.30	22.49	22.83		1.88	1883543823700		(0.0187	796511907251]	1	00956689746938															
26.45	26.45	22.63	22.44		4.00	9456567538200	3.9957200557	0.0131	796511907251		9905237507400	53	1.00004532910	70												
listatin		RPS 11														Falls	tatin			TEST 4						
4		1974																CRD diff		CBN diff		MTH diff				
9.07 Not	late in the second s	C60.077 MPS11														51		5.31974	991	7.967212	42	1.25877224				
21.30		23.90										1				52		2.364838	562	2.785477	36	1.04640707				
21.18	21.34	22.67	14.09		0.85	08568875142003		(2.5053	1149843006509		6775393344283	51	5.31974990969	12		sa		0.085793	m	0.170923	23	1.32942637				
20.44	21.02	23.65	13.68		1.45	65762864555550		(2.53/5	9683836403009		96210044496228					Falls	tatin			TEST S	-					
20.90	20.25	23.10	10.12					(1.200)				52	2.96483856213	10				CRD diff		CBN diff		MTH diff				
21.07	21.13	23.22	12.46			*****		3 5310	100067866330		ALLEST CALLSON					51		0.051316	733	0.945442	74	1.35638312				
21.45	31.41	23.60	11.74					2 55.07	15222001650		05120036414	53	0.08579377061	15		52		1.110694	\$73	0.583545	07	1.02070487				
	in the second se	(An (2)) (2001)														53		0.2076	891	1.037364	22	1.00933342				
22.54		25.10																CBD pro		CBN pro		MTH pro				
22.37	23.40	25.63	25.46		1.05	5124244514458)		(2.7095	5023417989003		54095977270815	51	7.96721241421	*		51		1.253088	307	0.997787	72	1.00008277				
22.35	22.33	25.77	25.85		0.57	7279343421850		(8.2316	6574396063003		39946507572191					52		1.353339	912	1.30089	64	1.00277935				
20.90	20.91	23.55	23.81		0.90	3192914061550)		(1.4723	725450094300	2	77353485030768	52	2.78847736064	16		53		1.451559	911	2.853435	94	1.00000425				
20.72	20.67	23.39	23.59		1.91	8675594795858)		(1.487)	1981268284009	2	80343987107463															
20.36	20.35	23.79	23.47		14.31	9501840953600)		2.6865	558683090200	°	15533254411021	53	0.17032312589	19												
19.80	19.48	22.89	13.16		11.47	42042456978523		2.4315	966278344950	0	18531272768696															
877 Aut	DDD111	WIELEN MISTL	10.11 D.C.																				W			
	DUNTI DAR	MA MA	AD MOUD Res	10.000					and the second sec	and the second states of the s					100 F 1 1 1 20	Final	coguilte.	Ninal F	consulte r					CONCINT		1.00

		- 5 · 5 =					📴 Test 4 & 5 q	PCR cb	d cbn mth Ju	ly 16								Se	arch Sheet	t .		© •
Home	Insert	Draw Page Layout	Formulas	Data	Review	View															+ Share	^
R .	🔏 Cut	Calibri (Body) + 12	- A- A-	= _		- E	Wrap Text +	Genera	I			• 💷		400	- 🗰	e - 🗄	<u>.</u>	∑ Auto	Sum * 🗛	9 .	Ω.	
Parte	🕒 Copy *		Δ.Α.				Marga & Cantor a	e	0/ 10 0.0	.00	Conditio	unal Eorm	at Cell	lorert	Dala	to E		🗧 Fill י	. <u>∠</u>	ort B	Find &	
Funce	💞 Format	B I Q					Weiße a Center .	\$.	/0 / .00	•.0	Formatt	ing as Tal	ble Styles	maure	Den			🥏 Clez	r* F	ilter	Select	
L31	. ‡ × ⊸	fx																				
A A	0 C	D E F	G H			к	L	N	0	P	Q	8	\$		U	¥.	W	х		Z	AA.	A
458 MT4 0//	folliatatie	MTKD/F RPS11																				
660 24.36 953 24.32	24.19	23.46 23.33 23.46		725969615271648		1.07159153808	0.4757958344518	,														
963 23.87 963 23.95	23.45	25.28 24.83		417213420902750)	(0.845631902815550)	(1.07159151808	2.1017506482656	5	1.28877224185874													
054 21.66 055 21.36	21.46	23.35		869318254703150)		(0.43784078673	1.1545754806803															
055 23.47 057 23.48	23.58	25.19		893636681231748)	(3.435477487987450)	0.43784078673	0.7282286690554	a S	1.04640307487291													
059 20.69 (20) 21.16	20.85	25.85 24.09		337150980957154)	5 906067536042800	0.66890954368	0.6289819215583		1 10542536408182													
(7) 21.58 (72	21.17	27.64 27.75	6	5749700677284583		0.66890954368	1.5898208346052															
673 1875 674		TEXT S																				
675 <mark>643 317 - 1</mark> 8 676	foliatatie	CEO D /// RPS11						_														
677 26.36 678 26.66	28.16	23.46 23.33 23.46		497057955415450		5.00294887595	0.0311861900782															
679 26.80 680 28.32	27.51	25.28 24.37 24.83		685030246985400		4.99092116352	0.0314472753825	5	0.08181678278041													
031 25.48 032 25.44	25.46	25.55		100604345738250		3.69640891165	0.0771382960652	· .														
684 23.66	21.65	28.05 24.57		466188393873350)		(1.10047382696	2.1442510897183		1.11007401007110													
085 27.08 987 29.10	27.09	25.85 26.09	- n	003256720798450		2.22900408235	0.2133059209466	5	0.20758909990131													
458 28.54 689	28.83	27.64 27.75	b	.001319313184650		2.30705667430	0.2020722788555	5														
930 <mark>CSN 0.//</mark>	followin .	CON DIFF RPS11						_														
092 24.11 093 23.92	24.01	25.76 25.83 25.76		3489220080101000		0.55696890852	0.6797287696077	5														
094 23.73 925 23.56	23.64	25.97 26.23		582276464799550)		(0.27538554825	1.2111967122731	5	0.94544274094047													
096 23.18 097 23.11	22.64	34.20 34.41 24.31		661314684072300)		(0.09560011816	1.0685097838583															
476 25.12 695 25.12	25.12	23.47 23.34		776815217426450		3.34252978333	0.0985821472365	· ``	0.383349903397/94													
501 22.87 502 22.62	22,44	24.00 24.00		565913263211654)		(0.84017590149	1.2659309315406	5	1.03736422379205													
503 21.96 [*]	21.99	23.21 22.91	te la	\$19623507734997)		0.30611385338	0.8088175360435	1														
505 MT+0//	followin .	MENDOR RESIL						_														
507 24.08 508 23.68	23.88	24.81 29.93 27.37		4903461560979583		(1.18445523956	2.2727755862664															
509 23.47 510 23.44	23.46	24.67 24.58	-	121435676976058)	(2.305890936537000)	1.18445523956	0.4399906466976	5	1 35638311648205													
512 23.40	23.45	24.68 24.68		272639198796100)	C 14571414141011500	0.29907536711	0.8351604084064		1.00000487314084													
514 23.18	23.30	21.63 21.06		#58789933226900)	(1.5657745855971564)	(0.29807536711	1.2253493378753	· ``	10000487314084													
516 23.32 517 22.40	23.18	21.81 24.12		842502532396346)	0.225737363529570	0.28323482912	0.8217464197996	5	1.01933342092443													
518 22.42 519	22.45	23.60 23.93	h	5389721905488003		0.18323482912	1.2369004220890															
520 (63-740 521	olisten.	C60.7.ND 8P511																				
22 27.19		22.59		*******		-	1.612180189587															
- • •	RPS11 Re:	sults Myf5 MyoD Re	sults My	ogenin Follis	statin Results	Myc	statin Results ∆	∆ CT	ΔΔ CT (2)	Δ.8	1 CT (3)	Final	results	Final Res	ults (2)		Test1 La	yout	Test 2 La	yout	+	
																=						

	111 6	1			-	lest 4 & 5 d	PURCOC	i con mun Ju	IY 16							Search S	neet		
Home	Insert	Draw Page Layout	Formulas Data F	Review View														≗+ Sha	are
•	🗶 Cut	Calibri (Body) * 12 *	A* A* = =	= 🗞 .	📑 Ə Wrap T	'ext =	General	1	•	÷.	🎻 · 🍃	- +	•	< - 🛗	1. Z	AutoSum •	<mark>A</mark> ₹	Q,	
aste	💞 Format	B I U •	• <u>A</u> • <u>E</u> = =		Merge	& Center *	\$ * 9	6) %	.00 •.0	conditional cormatting	Format Cel as Table Style	l Inser Is	t Dek	te For	mat 🤞	Clear *	Sort & Filter	Find & Select	1
1	\$ × \	/ fx																	
A	a c	D E F G	. н		L	м	N	0		Q R	5		U	V	w	Х	2	AA	
NG N	lusen	(60740 #PSI1																	
27.19	27.27	11.59	1.814420778344440	11.689916	08227897	14131908806976													
27.16	11.14	22.53		0.167707	10000000	0.0000000000000000000000000000000000000	51	1.25308800673049											
27.56	17.64	12.54		0.3674		1 1783200181473													
27.57	17.00	21.00		0.1.0144		1.110300311413	52	1.85889991222525											
26.93	17.63	11.49 11.44	4.191328056331750	61611977	33381744(15/8949063031													
27.31	26.89	13.10	4.4080908-41450900	d.dzbie.k	99172150	0.9859130350731	53	1.45155591142546											
27.85	27.88	24.66 23.88	8.448633057470400	(0.938999	22908352[1.9171987828278	2												
6 P4	loistin	CAN PAG RPS11																	
27.19	27.21	22.81	A 368460671851650	0.155885	950221975	1.1141054587864													
26.80	34.70	21.92	C 10000011110000	0.183036	17146952	0.8814689645140	51	0.99778772415024											
27.36		22.87																	
26.56	17.55	21.06	4,6,7(3,7(3,76)3)6400	0.15255	131860779()	10965196099954	52	1.80189140161222											
27.34	26.95	12.41 12.75	4.111370632096150	0.592931	57488349(1.5072631932290													
26.56	27.21	22.78 22.78 26.32	4.427606873778050	0.039982	23399301	0.9726657862048	53	2.85343934050057											
26.25	26.26	21.80 24.11	2.144488365691800	(7.243136	84686950()	4.7342128947962													
O Pel	liutatin	6/14 FAQ 8/111																	
25.99	36.93	22.36	A CUMERIALISING	0.015578	ANC318980	1.0081282284553													
26.74		21.98	453	24346480973850			51	1.00003275753324											
28.11	28.69	23.50	1.51003627605750	0013879		0.9919073138111													
28.00	28.06	22.457 23.42 24.13	5.033782042477900 4.80	0.2302989584500	52892499	0.8523984926976	52	1.01277925445955											
28.99	28.68	24.48 24.30	4.572901936092000	(0.230400	52892499()	1.1731602162214													
26.70	26.70	22.54 22.32	4.383417208236600	(0.004205 87622950878250	42142151)	1.0029154536306		1.00000426929360											
26.72	26.83	22.25 22.44	4.391828682520900	0.004205	42142151	0.9970890467565													
tatin		895.11									Myostatin			TEST 4					
-		127.4										CBD diff		CIN dft	MTH	diff			
	odatio	CHO 0.// #2111									51	1.717200298		1.69027636	1.15	M1111			
28.17		23.90				_					12	1.420182427		1.68326466	1.00	201688			
27.64	27.90	14.28 24.29	3.813803956334400	(0.741290	70536948)	1.6717862156463		1 1111000000000000000000000000000000000				0.053323001		0.000748434	1.00				
27.27	37.43	11.60 11.68	8.797641155068850	(0.817553	71802402)	17634142802279	51	1.				0.055012901		0.00745425	1.08				
25.53	26.83	23.49 23.55	1.484039344324650	(3.776035	84836750)	1.7134192211064					Myssatin			1013					
27.32	27.40	23.50 23.24	4.162865409911000	(0.297209	70631800)	1.2287656323418	52	1.47059242672411				CBO diff		CBN dft	MTH	diff			
27.21	27.29	nn nn n49	3.603274932240600	4.050345	45489020	0.0603565667754					\$1	0.136320231		0.72565845	1.83	387147			
27.06	27.84	11.40	A OTHER DESIGNATION	4 320508	68017720	0.0500432351434	53	0.05530290095798			52	0.549487633		0.55582897	1.00	683877			
		100 000 0000 0000		-							\$3	3.895189589		0.92652264	1.04	596333			
	DDC11 D-	author Att of Attach Danuality	Manageria Collistati	in Desuite	Acceptable De	an dan A	A CT	AA CT (0)	44.0	T. (22)	Figure 1 and a state	Final Da			and I as soon	Test	A Louise		ī,
P	nPott He	wyro wyob Results	wyogenin rollistat	an redsults	nyostaun He	resurts A	101	AA CT (2)	C	(0)	+ mail results	Final He	orius (S)	16	rent Layou	rust	- sayout		1

lome In	nsert	ఈర్≑ Draw PageLavo	ut Formula	s Data	Review	View	📴 Test 4 &	qPCR cb	od cbn mth Ju	uly 16								Searc	h Sheet	Sha
N C aste ≪ F	Cut Copy * Format	Calibri (Body) + 12 B I U +	2 • A* A • <u>\$</u> • <u>A</u>	• = =		•	Wrap Text * Merge & Center *	Genera \$ *	al %) %	•	Conditiona Formattin	al Format g as Table	Cell Styles	e insert	Dela	te Fo	*1 * rmat	∑ AutoSur ● Fill *	m * Arr Z ♥ Sort & Filter	Pind & Select
L \$	$\times \checkmark$	fx																		
A B	C	D E F	G H			K	L M	N 10544	0	. P.	q	R 5			U	Υ	W	х		AA 3
10.0 Montation		474 3 H MPS11																		
20.86		24.81						_												
29.14 29.3	50	29.93 27.37		2.133902383978050	3,277336386665650	(1.143434000685600	2.209062138	4356	1 1 33087146559805											
28.65 26.0	.00	24.48 24.58		4.420770385348250		1.143434000685600	0.452680793	12254												
28.47 28.7	.50	24.68 24.68		4.815828401511800		0.162353972271474	0.892565894	10407												
29.11 29.7		25.63 25.06		4.491120457068850	4.653474429340330	(0.162353972271474	1.11911164	15978	51 100633877678251											
29.53 29.5	96	24.41 23.43 24.12		3.83720955434750		0.435748754828870	0.739309990	4355												
28.13		23.60 23.92		4.965229425779000	5.400978190607880	0.435748764828870	1.352612961	17960	53 1.04596130631158											
0 Mestala		40400 BEST1																		
							_	_												
29.17 29.	.44	23.29 23.44		6.005160043064750		(1.963459661682420	3.899960904	15670												
28.70 29.7	n	22.63		7.281288468783390		(0.687331225963783	1.633301960	12096	\$1 2.75513142758883											
28.79 28.84 28.1		22.94 23.11		\$.772283834414050		0.000429426368353	0.999702388	15730												
29.64 28.82 29.2		23.59		A 201042242209710		0.023458872793853	0.988868751	10000	52 0.99177307319865											
28.60		22.58				0.0011100000000000000000000000000000000	10000000													
28.45	34	23.10		6.020101414003700		0.013124555595527	1.00053666	1	53 127607574345365											
a.u. a.		24.04.2.2.38		3.410003313003030		0.624440454515575	1541612798	8672												
Mycetation		GN PAD RPS11																		
28.11 28.44 28.1	17	22.81 22.84		3.435451895956550		(2.533167808790620	5.788412790	4905												
28.50	.4)	22.08 22.00		6.436618223117950		(1.532001481629220	2.091067555	1 10070	51 4.34004057472488											
29.31		22.97				0.0000000000000000000000000000000000000														
28.60		23.06				0.194041420049401		1	52 0.75474783953586											
28.86 28.	.76	22.79		A DALART DORRESPEC		0.171622900686253	0.828887161	12549												
28.75 29.7	.12	22.78 22.78		6.737530541283400		0.702224570886175	0.636628753	13136	53 2.25187290333685											
28.11 28.1		21.90 24.11		4.075462300346200		(1.999443770001020	3.889120053	14235												
Mycetatin		ALCOLOGY REST																		
27.64	54	22.36		6.310121641148810		11 73605061198330	1.11/00/01/01	10122												
31.83	**	21.98			7.968619704747180	1 738008061108330	0.10070400	1	\$1 1.81785775916782											
29.18		23.10				1.1.000001598330	0.19976460													
29.43	.34	24.13		6.1152#104/9##000	5.771864408245900	0.343435629042303	0.7817252	1	52 1.02846513854875											
28.60 28.	-n	24.48 24.30		5.428447768503800		(0.141456639742333	1 1268757754	15300												
28.56 28.1	.58	22.14 22.83		4.366328594851700	6.035305970397230	0.230922624454479	0.852089793	17558	53 1.01283751389661											
28.10 28.1	.34	22.25 22.44		5.804383345942750		10.230922624454479	1.179585234	11768												
RP	PS11 Resu	Its My15 MyoD	Results M	lyogenin Follis	tatin Results	Myost	atin Results	ΔΔ CT	ΔΔ CT (2)	۵۵	CT (3)	Final result	ts	Final Res	ults (2)	T	est1 Layo	ut Ti	est 2 Layout	
	_			_	_					_	_				_					

			0 -									1621 4 61 5 1	IPCR CD	a co	in mth Ju	ly 16									269	rch Shee	et		
ome	Insert	Draw	Page	Layout	: F	ormula	s Data	Rev	iew	View																		å+ Sha	re
•	Cut	Calibri (Body)	• 12	•	A- A-			3 <u>%</u>		📑 Ə Wrap	Text *	Genera	1			ŧ	ŀ	<i>/</i> ·	<i>.</i>	•	• 🖷	× - 📜	.	Auto:	Sum *	2 9 -	Q.	
ste	💞 Format	BI	<u>U</u> •		• 2	• A	•	8 8	•	*1	+ Merg	e & Center *	\$ -	%) 00	•.0	Conditi	ional Fi tting as	ormat Table	Cell Styles	Insert	Del	te For	mat	🥟 Clear		Sort & Filter	Find & Select	
	$ \times \vee$	fx																											
	a c	D	1	- F	G	н			1	×		M	N		0	P	Q	8	5 50		T A MODEROUP	U	¥ 132632294	W	X 104099111	Y	Z	AA	
	Volutia	C6N (347	9511					_			_		_							CHD	pro		CBN pro		MTH pro				
28.17	28.06	25.63	25.46				3.606459833122	200		(1.94873449)	0189250	3.860357593550		1 3.65	071030305439				\$1		2.755131428		4.34054057		1.81785775				
29.35	28.55	25.77	25.81				2.739534923128	950		(1.81565542	743000	3.520195134365	18						52		0.991773073		0.75474784		1.02846534				
7.60	27.85	23.55	23.81				3.993826933779	700		(0.46634834	353099	1.381512146620	12	1 1 64	PERMANANA				53		1.270075743		2.2518719		1.00283751				
8.78	27.66	23.36	23.59				3.468048756030	200		(0.99202642	512901)	1.988975757253	10		5200091291														
28.45	27.79	23.76	22.47				4.326707915533	800		4.57377842	081270	0.041990930587	15																
26.65	26.69	23.43	23.16				1.520333372456			3.77640288	305180	0.072977579664	12	5 440	5748425512809														
	youten	ALCON.	0511																										
28.70		23.60								0.000000000		0.0000000000000000000000000000000000000																	
28.56		25.28	23.48					4.555194	325871350	0.19922296		0.174018011004	5	1 1.22	341110515691														
12.42	28.58	23.35	24.83				1.755971585452	100		0.79922294	410.00	1.743163396649																	
9.15	27.85	23.51	23.53				4.479948732598	4.460075	180542800	0.02987355	055900	0.986339148654	5	2 1.00	009488089823														
29.62	29.01	23.95	24.57				4.440201628486	100		(0.02987355	0559000	1.013830613141	17																
26.89	26.42	25.85	26.09				6.330503503253	81.247070	533248474	0.57757365	502175	0.670089834663	5	3 1.08	\$121353884718														
N.86	24.92	27.64	27.75				0.824644128768	1413		0.57757363	502175	1.492337253030																	
		192.4																											
	VINUER	C60 D //	0511										_																
29.54	29.49	23.60	23.46				4.023309433489	550		2.74597304	125900	0.149066393847	12																
10.99 11.35	51.12	25.28	24.83				6.233888451977	100		8.03655206	334250	0.123574068163	2 8	1 0.11	632023300555														
29.46	29.67	23.35	23.33				6.340528119547	500		1.68705369	007350	0.332560512633	25																
29.44	29.57	25.19	24.57				4.996447752243			0.34297332	903577	0.788434752620	5	2 0.54	1948753262664														
10.69	20.89	25.85	26.09				4.201003561274	750		10.60108462	03331260	1.536856522453																	
00.50	20.52	27.86	12.15					-		17 64977576	A CODEN	6 172571655349	5	3 3.85	9518958890063														
		11.70						_			_		-																
29.85	29.45	25.83	25.76				1 887721621103	600		0.63338523	529952	0.655021770982		1 0.77	5656654112**														
9.72	29.83	25.97	26.23				1.605961233053	800		0.82862484	389549	0.796295137240																	
29.63	29.29	24.45	24.51				4.587096362972	500		0.33362193	632175	0.799541768099	15																
10.10	29.45	23.47	23.34				6.310436570963	450		1.65696214	623120	0.317106171040	19	. 635															
29.14	28.90	24.00	24.00				4.901217347896	200		(0.49976084	711876	1.413979145924																	
29.04	29.50	22.60	22.91				** \$28468227786	260		1.18748984	778170	0.429066121205	5	s 0.93	1004263861478														
	youlation	VENDER	09511																										
8.45		24.81		_					_						_														
20.24	RPS11 Res	23.93 ^a	27.17 Myd5 M	NOD Res	sults	M	vogenin Ec	llistatin B	osults	T II TEH MOD	vostatio P	2 20002738482 Rosults /	A CT	1	A CT (2)	0.0	CT (3)	Fit	nal resu	ilte	Final Res	ults (2)	Te	est1 Lar	tuos	Test 21	avout		į
	10 011 1103			you 110		m	,	ino cadim re	oudita		, couldn'r i	Loosing E		<u> </u>		2.00	(.)				1 1100 1903	ron eð (6)	14	L0		root & L	ayout		ſ
																							H	101		-		+ (

	9.0	u.				IESI	3_4_5 QPCR F	inal Analysis						Search She	et	6
Home Inser	t Draw Pag	e Layout F	ormulas	Data Re	view View	v									÷	+ Share
🚔 🕺 Cut	Calibri (Body)	- 12 -	A- A-	=	· *	Wrap Text *	General		•	. .		400 -	🗰 x . 🔛	∑ AutoSum	' A	0.
Copy	•									¥ 🍏	L_ <u>0</u> 0			🗧 Fill *	ZT	~
Paste 💞 Forma	nt B I U	• = • 2	· A ·	5 5 3	• •	Merge & Center	\$. 5	6 3 .00	◆.0 Cond Form	litional Format latting as Table	Cell Styles	insert	Delete Forma	t 🥔 Clear +	Sort & Filter	Find & Select
13 🌲 🗙	√ f _x ΔΔ CT															
A	B C	D	E	F	G	н	1	к	L	М	N	0	Р	Q	R	S
		PROLIFERAT	ION & CT					DIFFERENTI	ATION Δ CT							
		chd	chn	mth				chd	cho	mth						
		coa	CON	man				000	COIT	inter						
5	Myf5	2.2806663	2.6569696	2.0892119			Myf5	2.0844672	2.3135663	2.1563462						
7	MyoD	2.0350648	1.9348414	1.1820945			MyoD	-0.9925288	-1.3185879	-1.3159092						
3	Myogeni	n 4.9843604	5.5471939	5.8165547			Myogenin	-3.890201	-3.9078247	-3.9249495						
9	Follistatin	4.5412987	4.6963525	4.3445054			Follistatin	-1.7840028	-1.4776009	-1.4501306						
0	Myostati	n 8.4442298	8.2750651	8.8820876			Myostatin	4.6129659	5.1916882	5.0666244						
1																
2		AA 67		_				AA (77								
4		aa ci						aaci								
5		cbd	chn	mth				cbd	chn	mth						
6																
7	Myf5	0.1914544	0.5677578	0			Myf5	-0.0718789	0.1572202	0						
8	MyoD	0.8529703	0.7527469	0			MyoD	0.3233804	-0.0026787	0						
9	Myogeni	n -0.8321942	-0.2693607	0			Myogenin	0.0347485	0.0171248	0						
0	Follistatin	0.1967933	0.3518471	. 0			Follistatin	-0.3338722	-0.0274703	0						
1	Myostati	n -0.4378578	-0.6070225	0			Myostatin	-0.4536585	0.1250638	0						
2																
3		FOLD CHAN	ce.	-				FOLD CHAN	2E							
5		FOLD CHAR	3L					FOLD CHIEF	JE							
6		cbd	chn	mth				cbd	cbn	mth						
7																
8	Myf5	0.8757224	0.6746645	1			Myf5	1.0510847	0.8967513	1						
9	MyoD	0.5536437	0.5934725	1			MyoD	0.7991951	1.0018585	1						
0	Myogeni	n 1.7803911	1.2052736	1			Myogenin	0.9762019	0.9882001	. 1						
1	Follistatir	0.8724877	0.7835802	1			Follistatin	1.2603917	1.0192234	1						
2	Myostati	n 1.3545915	1.5231125	1			Myostatin	1.3695088	0.9169635	1						
3																
5																
6																
	Delete al Mala an	A OT OUN	aban and	TERTO												
	Jinginai values	A CT Outliers	changed	16513_4	JO ALL CT	+			_							
														μη -		

Real-Time PCR Analysis on PRSIM (5uM)

File Sheet Undo Clipbe	oard		Analysis		Cł	Final Final	Graphs (Import	3) Te Draw	est 3/4/5 qPCF Write	results Levak	: Method — E Text	dited	Export	Print	Send	LA	Help			
📑 • 🚱 🖉 • 🔅 🛠 • 🖒 📌 🖡		12	tt 🔤	£0	э 4	2↓- △ -	1		6 OK 12	 ✓ Arial 		✓ <u>A</u>	ter	- -	Ô•	÷.,			Pris	m 8
🖶 🗟 • 🗙 + New • 💍 📋 🛱	•		Analyze 🛅	* 🗖	<u>2,2</u> 1	²³ ↔ 🎧 ▲	xmi		TTA	∧• B I	<u>U</u> X ² X ₂	∱⊪≣•	te• 🍱	8	¢		6-			
Q~ Search		Table	e format:			Group A				Group B			Group C					Group D		
▼ Data Tables >>>		Gr	ouped			CBD				CBN			MTH					Title		
🛄 Myf5 diff			0	Mear		SEM	N		Mean	SEM	N	Mean	SEM		N	N	/ean	SEM	N	h
🖽 Myf 5 pro		1 T	itie	1.05108	4703	0.280832496		9	0.896751296	0.207077967	9	1.000000000	0.338705838		8					
I MyoD diff		2 T	itle																	
MyoD pro		3 T	itie																	
Myogenin diff		4 T	110																	
Myogenin pro		5 1																		
E Follistatin diff		0 1	ille.																	
E Pollistatin pro		0 1	100																	
Hivestatia are		/ 1	100																	
Mayostatin pro		8 T	itie																	
Tinfo		9 T	itie																	
Revised info 1	11	10 T	itie																	
New Infa		11 T	itte																	
▼ Results >>		12 T	itle																	
= one-way ANOVA of Myf5 diff		13 T	itle																	
a one-way ANOVA of Myf 5 pro		14 T	itie																	
one-way ANOVA of MyoD diff		15 T	itie																	
one-way ANOVA of MyoD pro		16 T	itie																	
one-way ANOVA of Myogenin diff		17 1																		
one-way ANOVA of Myogenin pro		40 7																		-
one-way ANOVA of Follistatin diff		10 1	108																	-
one-way ANOVA of Follistatin pro		19 1	TDe .																	
= one-way ANOVA of Myostatin diff		20 1	TUE																	
one-way ANOVA of Myostatin pro		21 T	itle																	
New Analysis		22 T	itie																	
Family	»> ;	23 T	itie																	
Myf5 diff		24 T	itie																	
= one-way ANOVA		25 T	ltie																	
Myt5 diff		26 T	itle																	
T SUM Differentiation		27 1	itle																	
af Layout 4		28	Itie																	
		20 1																		
		e.a. 11	10.0		_															
I I I I I I I I I I I I I I I I I I I	88		⊞ © =	8 MZ 🛅		Myf5 diff				g 🖉 🖬 🚮	Row 1, C: MT	н						Ξ.	-0	- •
	-		_																	

File Sheet Undo Clipbos	ard	Analysis	0	hange	Graphs (3) Import Drar	Test 3/4/5 qPCI w Write	R results Levak	Method — Ed Text	lited	Export	Print \$	Send L	A Help			
ि • 🚱 🖉 • 🛠 🧶 • 🕑 📌 🖺	B	E 🗄 🖩 👘	EL 31	ź↓• <u>⊘ı</u> •	A	🔥 CX 12	 Arial 		<u> </u>	tet	8• (h• 👝			Pris	Sm 8
🖥 🔂 🗙 🕂 New 🔹 💍 📋 📋	- (🖹 Analyze 🏻 🎦	1 📑 👘	123 129 🝼 🗸	and the	ТТА	A B I	<u>U</u> x² x₂ ⊯) ⊪≣ •	18- 19	8	*- *	0-			
Q . Search	т	able format:		Group A			Group B			Group C				Group D		
Data Tables >>		Grouped		CBD			CBN			MTH				Title		
Myf5 diff		0	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N		Mean	SEM	N	M
🔠 Myf 5 pro	1	Title	0.875722437	0.156992853		6 0.674664530	0.067593226	6	1	4e-001		6				
MyoD diff	2	Title														
MyoD pro	3	Title														-
Myogenin diff	4	Title														-
Myogenin pro	-					_										
E Follistatin diff	0															
E Follistatin pro	6	1100														-
Myostatin diff	7	Title														
Myostatin pro	8	Title														
New Data Table	9	Title														
Droject info 1	10	Title														
Maw Infa	11	Title														
Results	12	Title														
appe-way ANOVA of Myf5 diff	13	Title														
one-way ANOVA of Myf 5 pro	14	Title														
ane-way ANOVA of MyoD diff	15															-
ane-way ANOVA of MyoD pro	10	1100														-
a one-way ANOVA of Myogenin diff	16	Tibe														
e one-way ANOVA of Myogenin pro	17	Title														
one-way ANOVA of Follistatin diff	18	Title														
e one-way ANOVA of Follistatin pro	19	Title														
😑 one-way ANOVA of Myostatin diff	20	Title														
one-way ANOVA of Myostatin pro	21	Title														
New Analysis	22	Title														
mily	23	Title														
Myf 5 pro	24	Title														-
one-way ANOVA	28															+
Myf 5 pro	20	7.86				-										+
5um Proliferation	26	1100														+
	27	Title				1										
	28	Title														
	29					1										

					📔 Final	Graphs (3) 1	est 3/4/5 qPCF	R results Levak	Method — Ec	lited							
File Sheet Undo Cl	ipboard	1	Analysis	0	Change	Import Drav	/ Write		Text		Export	Print	Send I	LA Hel	>		
🖺 🕑 📌 🕾 🖉 🖌 📋		ā l	🗄 🛃 🔜	€0 → 0	ź↓• <u>⊘</u> ••	A	6 OX 12	 Arial 		~ <u>A</u>		8-	ů• ,			Pr	ism
🖥 🔂 🕈 🗙 🕂 New 🔹 🍮 📋	Ô-	6	Analyze 🎦	* 📑 🏥	123 😖 🝼 -	ani - ·	ТТА	A B I	<u>U</u> x² x₂ ⊯	•≣ •∭	(E* 🗐	8	<u>م</u> - ۱	" O	•		IOIIII
λ ≁ Search		Та	able format:		Group A			Group B			Group C				Group D		
Data Tables	»		Grouped		CBD			CBN			MTH				Title		
III Myf5 diff			0	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N	4	Mean	SEM	N	
Myf 5 pro		1	Title	0.553643675	0.823509856	6	0.593472506	0.435602103	6	1	2e-001		6				
MyoD diff	_ []	2	Title														
MyoD pro	_ []	3	Title														
Myogenin diff		4	Title														
Myogenin pro		5	Title														_
E Follistatin pro		6	Title														
Mvostatin diff		7	Title														-
Myostatin pro		8	Title														-
New Data Table		0	Title														_
Info	>>	40	704-														
 Project info 1 		10	Tibe														_
New Info		11	Title														_
Results	»	12	Title														
one-way ANOVA of Myf5 diff		13	Title														
one-way ANOVA of Myf 5 pro		14	Title														
= one-way ANOVA of MyoD diff		15	Title														
= one-way ANOVA of Mucconin diff		16	Title														
= one-way ANOVA of Myogenin on		17	Title														
one-way ANOVA of Enlistatin diff		18	Title														
one-way ANOVA of Follistatin pro		19	Title														
one-way ANOVA of Myostatin diff		20	Title														
one-way ANOVA of Myostatin pro		21	Title														
New Analysis		22	Title														
mily	>>	23	Title														
MyoD pro		24	Title														
one-way ANOVA		25	Title				1										-
MyoD pro		26	Title														-
5um Proliferation		27	Title														-
		28	Title														-
		20	Title														
		29	11100	1			1						1				- 1

Note Description					
Image: Second	Print Send LA	port Print	Print Send LA	P	
Image:	8- ô	tel 🖯 -	8- 0- L	Drič	mphild C
Oracle bit is any and set of the set of th	8 🗛 🦉	3	8 🔺 🍟	• FIIS	MIC
Plan bols Plan CBD CBD CBD CBD MTH MTH MEM SEM N Mem <				up D	
Image: market in the second				itle	
Image: market in the second of the	Mean	N	Mean	EM N Mear	n
Mod Diff 2 100 Mode Dire 3 100 More Dire 3 100 More Dire 5 100 Follisatin off 5 100 Polisatin off 5 100 Most Table 7 100 Work Inform 9 0 Polisatin off 7 100 New Info 9 0 Polisatin off 10 0 Or New Info 11 100 Or New Info 12 100 Or new yANOVA of My5 diff 10 0 Or new yANOVA of My5 diff 10 <t< td=""><td>8</td><td>8</td><td>8</td><td></td><td></td></t<>	8	8	8		
Model of the second	_				
Mogenine drift A Totalization drift A					
Model and production productin production production production product					
Follatian diff 5 70 Image: Status diff 5 70 Mystatin diff 7 7 1 Image: Status diff 1 Mystatin opo 9 70 Image: Status diff 1 Image: Status diff Mystatin opo 9 70 Image: Status diff 1 Image: Status diff Mystatin opo 9 70 Image: Status diff 1 Image: Status diff Mystatin opo 11 70 Image: Status diff 1 Image: Status diff One-way ANOXA di MyStaff 15 70 Image: Status diff 1 Image: Status diff One-way ANOXA di MyStaff 10 1 1 1 Image: Status diff One-way ANOXA di MyStaff 10 1 1 1 One-way ANOXA di Mystaff 2 1 1 1 One-way ANOXA di Mystaff 2 1 1 1 One-way ANOXA di Mystaff 2					
Importation pro Importation pro Importation pro Importation pro Importation pro Monstrain pro Importation pro Importation pro Importation pro Importation pro Project Info Importation pro Importation pro Importation pro Importation pro Project Info Importation pro Importation pro Importation pro Importation pro Importation pro Importation pro Importation pro					
Mostati addr 7 No Mostati addr 8 70 Mostati Addr 9 70 Or locat Table 9 70 If to a Table 9 70 Or locat Table 9 70 If to a Table 9 70 Or locat Table 10 70 If to a Table 11 70 Or newsy ANOX of MyS dft 12 70 Or onewsy ANOX of MyS dft 15 70 Or onewsy ANOX of MyS dft 16 70 Or onewsy ANOX of MyS dft 17 70 Or onewsy ANOX of MyS dft 18 70 Or onewsy ANOX of MyS dft 19 70 Or onewsy ANOX of MyS dft 19 70 Or onewsy ANOX of MyS dft 19 70 Or onewsy ANOX of MyStath off 13 70 Or onewsy ANOX of MyStath off					
Modulation Image: Second Sec					
Or Vorder Table					
Info Projecti nd Porticit Portic					
Order (Info 1) 11 10 Results 12 10 One-way ANOXA of Myfs dift 12 10 One-way ANOXA of Myfs dift 10 10 One-way ANOXA of Myfstaltin pro 10 10 One-way ANOXA of Myfstaltin pro 20 10 One-way ANOXA of Myfstaltin pro 21 10 One-way ANOXA of Myfstaltin pro 23 10 One-way ANOXA of Myfstaltin pro 23 10 One-way ANOXA of Myfstaltin pro 23 10 One-way ANOXA of Myfstaltin pro 25 10 One-way ANOXA of Myfstaltin pro 25 10 One-way ANOXA of Myfstaltin pro 26					
New Infa 1 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Results Over VA III IIII one-way ANOXA of Myfs dft 13 Tria IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					
one-way ANOVA O Myf S pro 13 16 one-way ANOVA O Myf S pro 15 16 one-way ANOVA O Myf D pro 15 16 one-way ANOVA O Myf D pro 15 16 one-way ANOVA O Myf D pro 17 16 one-way ANOVA O Myf D pro 17 16 one-way ANOVA O Myf D pro 17 16 one-way ANOVA O Falitating the pro- 18 16 one-way ANOVA O Falitating the pro- 20 176 one-way ANOVA O Myf D proto falitating the pro- 22 176 one-way ANOVA O Myf Myf The pro- 22 176 one-way ANOVA O Myf Myf The pro- 23 176 Magenin diff 24 176 one-way ANOVA 25 176 Magenin diff <td></td> <td></td> <td></td> <td></td> <td></td>					
on-way ANOVA thy for big 14 100 on-way ANOVA thy Odd off 15 100 on-way ANOVA thy Odd off 16 100 on-way ANOVA thy Odd off 18 100 on-way ANOVA of Foliatian druft 18 100 on-way ANOVA of Soliatian druft 18 100 on-way ANOVA of Myschin druft 21 100 on-way ANOVA of Myschin druft 22 100 Mogenin diff 23 100 Mogenin diff 25 100 Mogenin diff 25 100 SM Mittremiation 27 100 if Layout 6 28 100					
on-way ANOVA to MyoG and on-way ANOVA of MyoG and on-way ANOVA of MyoG and on-way ANOVA of MyoG and on-way ANOVA of Foliatating the on-way ANOVA of Foliatating the on-way ANOVA of MyoIIII and on-way ANOVA of MyoIIIII and on-way ANOVA of MyoIIIII and on-way ANOVA of MyoIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					
Other WA AND/X ON MyODE 10 100 Other WA AND/X ON MyODE 100 100 Other WA AND/X ON MyODE 100 100 Other WA AND/X ON Schultur profile 100 100 Other WA AND/X ON Schultur profile 100 100 Other WA AND/X ON Schultur profile 100 100 Other WA AND/X ON MyODE 100 100 Other WA AND/X ON MyODE 100 100 Other WA AND/X ON MyODE 210 100 Other WA AND/X ON MYODE 220 100 MyODE 230 100 Other WA AND/X ON MYODE 250 100 MyODE 270 100 Other WA AND/X ON MYODE 250 100 MyODE 270 100 Other WA AND/X ON MYODE 250 100 MyODE 270 100 Other WA AND/X OND 250 100 MyODE 270 100 MyODE 270 100 MyODE 270 100					
Image: Market And Variation and Tool on merry ANOVA of foliatiant off 17 176 Image:					
One-way AND/A Chaptering of the second of the sec					
0 mb way AVX04 of billitatin off o mb way AVX04 of billitatin off o mb way AVX04 of billitatin off o mb way AVX04 billitatin off o mb way AVX04 billitatin off 0 mb way AVX04 20 The 20 The 20 The 21 The 20 The 22 The 20 The 23 The 20 The 24 The 20 The 25 The 20 The 26 The 20 The 27 The 20 The 28 The 20 20 28 The 20 20					
Otherway ANDXA CM Substituti pro 20 Tele Image: Control of					
Bit Home ya Kuto K of Mysiatati and O mereway AND K of Mysiatati and O Mere Advaptis Zi Tite 20 Mere Advaptis Zi Tite any Zi Tite Differentiation (a mereway AND K) Zi Tite El Myogenin diff Zi Tite Differentiation (a mereway AND K) Zi Tite Conserved yAND K Zi Tite Differentiation (a mereway AND K) Zi Tite 20 Myogenin diff Zi Tite Differentiation (a mereway AND K) Zi Tite 21 Tite Differentiation (a mereway AND K) Zi Tite Differentiation (a mereway AND K) Zi Tite 23 Tite Differentiation (a mereway AND K) Zi Tite Differentiation (a mereway AND K) Zi Differentiation (a mereway AND K) <td></td> <td></td> <td></td> <td></td> <td></td>					
Arter, Adaption 41 and Arter, Adaption 22 Tail mBy 23 Tail Brogenia diff 24 Tail Charles, Adaption 25 Tail Charles, Adaption 26 Tail Charles, Adaption 27 Tail Za Tail Tail					
Imply 22 Top Imply 23 Top Imply 24 Top Imply 24 Top Imply 24 Top Imply 25 Top Imply 26 Top Imply 27 Top Imply 27 Top Imply 27 Top					
Jack Za Tay Hogenin diff 24 Tay On on-way ANOVA 25 Tay Mogenin diff 26 Tay If SubM Differentiation 27 Tay If Layout 6 28 Tay					
It Mogenin diff 24 Top Comevay NAVVA 25 Top Mogenin diff 26 Top Sub Differentiation 27 Top 24 Layout 6 27 Top					
10 0 25 100 26 Mogani diff 26 100 16 50M Differentiation 27 100 16 28 100 100 28 100 28 100					
Myogenhaft Soft Differentiation [26] [27] To [28] [29] To [29] To [29] To					
Life bow unreventation 27 Title 28 Title 28 29 Title 1					
28 The 29 The					
29 Ttie					
23 11001					
1 • • • • • • • • • • • • • • • • • • •				Q	

					📔 Final Gra	ohs (3) Test 3/	4/5 qPCR result	s Levak Meth	od — Edited	ł						
File Sheet Undo Clipboz	ird	A	nalysis	Change	Imp	ort Draw W	rite		Text		Export	Print	Send LA	Help		
"• 🔄 🖉 • 🕾 🛪 • 🕐 👘	21	e le	H12	₩ 3 2↓▼	🍳 🖌 🍝	·	0(<u>12</u> ~	Arial		<u>×</u> <u>A</u>	teri	8•	Ö• 🊓			Prism
🗟 🔂 🕶 🗙 🕂 New 🔹 🍮 📋 📋	- 1	= Anah	720 🛅 🎢	[™] ± [±] ¹²³ ±2	9 🕜 - 📶	- ⁻ T	T A A I	B I ∐ x	°x₂ nh ni	▶ ≣• ∰•	1	8	*- *	0-		
2 ∼ Search				Group A			Group B			Group C				Group D		
Data Tables >>	1 4			CBD			CBN			MTH				Title		
Myf5 diff		0	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N		Mean	SEM	N	Mean
Myf 5 pro	1	Title	1.780391147	0.624675977	6	1.205273639	0.773882243	6	1	1		6				
MyoD diff	2															
MyoD pro	3															
Myogenin diff	4															
Myogenin pro	-											_				
E Follistatin diff	5															
Follistatin pro	6	Title														
Myostatin diff	7	Title														
Myostatin pro	8	Title														
New Data Table	9															
Info »	10															
 Project info 1 	44															
New Info												_				
Results >>	12															
one-way ANOVA of Myf5 diff	13															
one-way ANOVA of Myf 5 pro	- 14	Title														
one-way ANOVA of MyoD diff	15	Title														
one-way ANOVA of MyoD pro	16															
one-way ANOVA of Myogenin diff	17															
one-way ANOVA of Myogenin pro	18															
one-way ANOVA of Follistatin diff	10											-				
one-way ANOVA of Follistatin pro	19											_				
= one-way ANOVA of Myostatin diff	20															
= one-way ANOVA of Myostatin pro	21	Title														
(+) New Analysis	22	Title														
imily »	23	Title														
Myogenin pro	24															
one-way ANOVA	25															
🗠 Myogenin pro	26															
5um Proliferation	20															
	27											_				
	28											_				
	29	Title										_				
		-		-												

The Ethen Unit Opposite •	Analy Analyze Analyze		Change 2↓• ⊘₁• 123 £29 ♂•	Import Draw	Write i CX 12 T T A*	~ Arial	Text	✓ <u>A</u>	Export	Print	Send L	A Help			
	Table formation		2↓• <u>⊘</u> •• 123 wa ♂ •	<u>_</u>	12 T T Λ	 Arial 		~ <u>A</u>			dh y				
Ber X + New Data Tables Myf5 drff Myf0 drff My00 drff My00 drff My00 pro My00 pro My00 pro	Table format	10 / 11 11	123 😖 🕜 -	and .	TTA				Ect .		- · ·			Pris	sm
ter Search Data Tables Myf5 diff Myf5 pro Myf0 diff My00 diff My00 pro My00 pro My00 pro My00 pro My00 pro	Table format				I I I U	A B I	U x² x₂ ⊯) ⊪ ≣•	t=• 🖾	8	<u>م</u> - ۱	0			
Data Tables >> Imyf 6 diff Imyf 5 pro Imyf 5 pro			Group A			Group B			Group C				Group D		
Myf5 diff Myf 5 pro Myg0 diff Myg0 pro Myg0gnin diff Mygognin diff Mygognin co	Grouped		CBD			CBN			MTH				Title		
Myr5 pro Myr0D diff Myr0D diff Myr0D pro Myr0p pro Myr0penin diff Myr0enin pro		Mean	SEM	N	Mean	SEM	N	Mean	SEM	N		Mean	SEM	N	N
MyoD diff MyoD pro Myogenin diff Myogenin pro	1 Title	0.872487712	0.119756880	6	0.783580216	0.091602383	6	1	3e-001		6				
MyoD pro Myogenin diff Myogenin pro	2 Title														
Myogenin diff	3 Title														
Myogenin pro	4 Title														-
in a second se	5 Title														
E Follistatin diff	0 1100														-
Follistatin pro	0 1100														-
Myostatin diff	7 Title														
Myostatin pro	8 Title														
New Data Table	9 Title														
Into » 1	10 Title														
Movulata	11 Title														
Deculte 1	12 Title														-
ope-way ANOVA of Myf5 diff	13 Title														-
ane-way ANOVA of Myf 5 pro	14 THe														-
ane-way ANOVA of MyoD diff	14 1100														
a one-way ANOVA of MyoD pro	15 Tibe														
ane-way ANOVA of Myogenin diff	16 Tibe														
a one-way ANOVA of Myogenin pro	17 Title														
one-way ANOVA of Follistatin diff	18 Title														
one-way ANOVA of Follistatin pro	19 Title														
one-way ANOVA of Myostatin diff	20 Title														
one-way ANOVA of Myostatin pro 2	21 Title														
New Analysis	22 Title														
mily » 2	23 Title														
Follistatin pro	24 1080														-
i one-way ANOVA	0.4 1100														-
Follistatin pro	20 1100														+
🛣 5um Proliferation 2	26 Title														1
2	27 Title														
2	28 Title														
2	29 Title														
			(= m + m												

File Sheet Undo Clipboard	d															
1 💽 💁 🖌 🐨 🗶 🗸 🖉 🖓 👘 1		Analysis	C	hange	Import Draw	Write		Text		Export	Print :	Send I	LA Help			
		. L <u>t</u> 📅	+0 →0	21- 01-	🥭 🗔	, to the	 Arial 		<u> </u>	tet stat	8• I	() •			Pris	sma
🗟 🗟 • 🗙 🕂 New • 💍 📋 🗇 •		Analyze 🛅	× 🕈 📰	23 😖 🖓 -	and	TTA	A B I	U X ² X ₂ 1	n ⊪ ≣•	18× 🕬	8	<u>م</u> - ا	· 0-			
λ• Search	Ta	ible format:		Group A			Group B			Group C				Group D		
Data Tables >>		Grouped		CBD			CBN			MTH				Title		
Myf5 diff		0	Mean	SEM	N	Mean	SEM	N	Mean	SEM	N		Mean	SEM	N	M
E Myf 5 pro	1	Title	1.369508788	0.439189729	9	0.916963473	0.369532306	9	1	4e-001		8				
E MyoD diff	2	Title														
MyoD pro	3	Title														-
E Myogenin diff	4															-
Myogenin pro		Tibe														
E Follistatin diff	5	Title														
E Follistatin pro	6	Title														
🔛 Myostatin diff	7	Title														
Myostatin pro	8	Title														
New Data Table	9	Title														
Info >> =	10															
Project info 1	10															
New Info	11	TIDE														
Results >>	12	Title														
one-way ANOVA of Myf5 diff	13	Title														
one-way ANOVA of Myf 5 pro	14	Title														
one-way ANOVA of MyoD diff	15	Title														
one-way ANOVA of MyoD pro	16	Title														
one-way ANOVA of Myogenin diff	17															-
one-way ANOVA of Myogenin pro	10															
one-way ANOVA of Follistatin diff	18	Title														
one-way ANOVA of Follistatin pro	19	Title														
one-way ANOVA of Myostatin diff	20	Title														
one-way ANOVA of Myostatin pro	21	Title														
New Analysis	22	Title														
amily »	23	Title														
Myostatin diff	24															-
one-way ANOVA		1100														-
N Myostatin diff	25	1100				-										
5uM Differentiation	26	Title														
The Layout 6	27	Title														
	28	Title														
	29	Title														

File Sheet Undo Clipbo ■ • • • • • • • • • • • • • • • • • • •	ard -	Analysis Interpret Change	Draw W	T A A	→ Arial	Text X ² X ₂ in ii ii ≣	- 12- D	t Print	Send LA	Help	Prisma
Qr Search				1							
Data Tables >>>	10,	CHOVA results × (E) Multiple compariso	10 01 -								
🖽 Myf5 diff		Ordinary one-way ANOVA									
🖽 Myf 5 pro		ANOVA results									
I MyoD diff											
MyoD pro	1	Table Analyzed	Myf5 diff								
III Myogenin diff	2	Data sets analyzed	A-C								
Myogenin pro	3										
E Follistatin diff	- 4	ANOVA summary									
Follistatin pro	5	F	0.08400								
Myostatin diff	6	P value	0.9197								
Myostatin pro	7	P value summany									
New Data Table	-	Circlineard diff. among manage (D = 0.05)2	hia								
Info »	0	Significant diff. among means (P < 0.05)?	INO								
(i) Project info 1	9	R squared	0.007251								
(+) New Info	10										
Results »	- 11	Brown-Forsythe test									
one-way ANOVA of Myrs diff	12	F (DFn, DFd)									
one-way ANOVA of Myr 5 pro	13	P value									
ane-way ANOVA of MyoD and ane-way ANOVA of MyoD are	14	P value summary									
I one-way ANOVA of Myod pro	15	Are SDs significantly different (P < 0.05)?									
ane-way ANOVA of Myogenin and	16	vice obs digrationally different (i = 0.00).									
ana-way ANOVA of Follistatio diff	10										
one-way ANOVA of Follistatin pro	17	Bartlett's test									
one-way ANOVA of Myostatin diff	18	Bartiett's statistic (corrected)	1.340								
one-way ANOVA of Myostatin pro	19	P value	0.5117								
New Analysis	20	P value summary	ns								
	21	Are SDs significantly different (P < 0.05)?	No								
amily ×	22										
	23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value				
I One-way ANOVA	24	Treatment (between columns)	0.1110	2	0.05548	F (2, 23) = 0.08400	P=0.9197				
	25	Residual (within columns)	15.19	23	0.6604	. (2, 20) - 0.00400					
	20	Tetel	15.10	25	0.0004						
	20	rotan	10.30	20							
	27										

File Sheet Undo Clipbo □ • • •	ard	Analysis Interpret Change Draw	Write i OX 12 T T A [*] /	Text ✓ Arial ✓ B I U X ² X ₂ M	- <u>▼</u> - • ■• = • •	Export Print	Send LA Help		F	Prisma
Q v Search										
Data Tables W Myf5 diff		Ordinary one-way ANOVA Multiple comparisons								
Myn o pro										
MvoD pro	1	Number of families	1							
Myogenin diff	2	Number of comparisons per family	3							
Myogenin pro	3	Alpha	0.05					-		
Follistatin diff	4	• •								-
Follistatin pro	5	Tukey's multiple comparisons test	Mean Diff	95.00% CLof diff	Significant?	Summany	Adjusted P Value	-		
🖽 Myostatin diff	6	CBD vs. CBN	0.1543	-0.8051 to 1.114	No	ne	0.9148	A.B		
Myostatin pro	7	CRD va. NTH	0.05109	0.00370 to 1.114	Ne		0.0008	1.0		
New Data Table	-	CDD VS. MTH	0.03108	-0.9379101.040	140	115	0.9906	A-0		-
Info »	8	GBN VS. MTH	-0.1032	-1.092 to 0.8857	NO	ns	0.9631	B-C		
Project info 1	9									
New Info	10	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	q	DF
Results »	11	CBD vs. CBN	1.051	0.8968	0.1543	0.3831	9	9	0.5697	23
ana-way ANOVA of Myf 5 pro	12	CBD vs. MTH	1.051	1.000	0.05108	0.3949	9	8	0.1829	23
one-way ANOVA of MynD diff	13	CBN vs. MTH	0.8968	1.000	-0.1032	0.3949	9	8	0.3698	23
one-way ANOVA of MyoD pro	14									
ane-way ANOVA of Myogenin diff	15									
a one-way ANOVA of Myogenin pro	16							-		
e one-way ANOVA of Follistatin diff	17									
one-way ANOVA of Follistatin pro	18									
one-way ANOVA of Myostatin diff	10									
one-way ANOVA of Myostatin pro	20									
New Analysis	20							_		
mily	> 21							_		
Myf5 diff	22									
one-way ANOVA	23									
	24									
	25									
	26									
	27									

●●● Sheet Undo Clipbox ●●● ▲ ● ★ ● C E ●●● ▲ ● ★ + C E E ●	ard B T	Analysis Interpret Change Draw	s (3) Test 3/4/ Write	5 qPCR results Levak Met Text Arial	thod — Edited	Export	Print	Send LA	Help		I	Prism [®] 8
Qr Search												
▼ Data Tables >>		Ordinary one-way ANOVA Multiple comparisons										
Myr 5 pro		blumber of femilies	4									
III MyoD pro		Number of families	1									
Myogenin diff	2	Number of comparisons per family	3									
E Follistatin diff	3	Alpha	0.05									-
E Follistatin pro	5	Tukey's multiple comparisons test	Mean Diff	95.00% CLof diff	Significant?	Summa	n/	Adjusted P	Value			
🖽 Myostatin diff	-	CRD up CRN	0.2011	0.6061 to 1.008	Ne	- Cummu	.,	0.0216	Turbe	A D		
Myostatin pro	7	CRO VIL ODA	0.4049	1.031 to 0.7730	Ne	113		0.0314		1.0		
New Data Table	-	CBD VS. MTH	-0.1243	-1.021 to 0.7729	NO	ns		0.9314		A-C		
♥ Info ≫	8	CBN vs. MTH	-0.3253	-1.222 to 0.5718	No	ns		0.6232		B-C		
(i) Project info 1	9											
New Info	10	Test details	Mean 1	Mean 2	Mean Diff.	SE of di	iff.	n1		n2	q	DF
▼ Results >>	11	CBD vs. CBN	0.8757	0.6747	0.2011	0.3454		6		6	0.8232	15
one-way ANOVA of Myf5 diff	12	CBD vs. MTH	0.8757	1.000	-0.1243	0.3454		6		6	0.5089	15
E one-way ANOVA of Myr 5 pro	13	CBN vs. MTH	0.6747	1.000	-0.3253	0.3454		6		6	1.332	15
E one-way ANOVA of MyoD on	14											
one-way ANOVA of Muogenin diff	15											
a one-way ANOVA of Myogenin oro	16											
one-way ANOVA of Follistatin diff	17											
ane-way ANOVA of Follistatin pro	10											
= one-way ANOVA of Myostatin diff	18											
a one-way ANOVA of Myostatin pro	19											
New Analysis	20											
amily	21											
Mvf 5 pro	22											
a one-way ANOVA	23											
	24											
	25											
	26											
	27											
			-									

File Sheet Undo Clipbo	ard	Analysis Interpret Change	Draw	Write		Text		Export	Print	Send	LA	Help	
		i là 🖩 🔰 🎢 🥙 🖉		OX 12	Y Arial	¥	<u>a</u>	tet	÷.	₫•	ð -		Prism
🖥 🗟 🕈 🗙 🕂 New 🔹 🍮 📋 📋	- 1	🗏 Analyze 🎦 🎢 🎬 📑 🔂 😂		TA	• B <i>I</i> <u>∪</u>	X ₅ X ⁵ № ≣	• 💷		8	<u>م</u> -		6-	
Qr Search		ANOVA results	me xlu	d.									
Data Tables pro >	10	another and a Company											
E Follistatin diff		Ordinary one-way ANOVA											
E Follistatin pro		ANOVA results											
Myostatin diff													
Myostatin pro	1	Table Analyzed	MyoD diff										
New Data Table	2	Data sets analyzed	A-C										
r Info »	3												
Project info 1	- 4	ANOVA summary											
New Info	5	F	0.04981										
Results »	6	P value	0.9515										
E one-way ANOVA of Myf 5 pro	7	P value summary	ns										
E one-way ANOVA of MyoD diff	8	Significant diff, among means (P < 0.05)?	No										
one-way ANOVA of MyoD pro	9	R squared	0.004313										
a one-way ANOVA of Myogenin diff	10												 -
i one-way ANOVA of Myogenin pro	44	Provin Formithe test											
one-way ANOVA of Follistatin diff	40	5 (DE- DE4)								_		_	
one-way ANOVA of Follistatin pro	12	F (DFR, DFd)								_		_	
one-way ANOVA of Myostatin diff	13	P value										_	
one-way ANOVA of Myostatin pro	14	P value summary											
New Analysis	15	Are SDs significantly different (P < 0.05)?											
Graphs »	16												
Myf5 diff	17	Bartlett's test											
Myf 5 pro	18	Bartlett's statistic (corrected)	0.2069										
MyoD am	19	P value	0.9017										
N Myoo pro	20	P value summary	ns										
e e	21	Are SDs significantly different (P < 0.05)?	No										
amily >:	22												
MyoD diff	23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value						
a one-way ANOVA	24	Treatment (between columns)	0.2396	2	0.1198	F (2, 23) = 0.04981	P=0.9515	5					
	25	Residual (within columns)	55.33	23	2 405	. (a, 20) - 0.04001	0.0010						
	26	Total	55.57	25	2		-			-			
	27		00.07							_			
	21												

File Sheet Undo Clipbo ▼ ♀ ♀ ♀ ♀ € ■ ■ × + New ♡ □	ard -	Analysis Interpret Change Draw Analysis Street Change Draw Analyze The Street S	(3) Test 3/4/9 Write (3) Test 3/4/9 (4) (3) Test 3/4/9 (4) (4) (5) Test 3/4/9 (4) (5) Test 3/4/9 (5) Test 3/4/9 (6) Test 3/4/9 (7)	o qPCR results Levak Meth Text ✓ Arial		Export Print	Send LA Help		F	Prism8
Q- Search		ANOVA results × 🔳 Multiple comparisons ×	~							
Data Tables pro		Ordinary one-way ANOVA Multiple comparisons								
Myostatin diff	1	Number of families	1							
New Data Table	2	Number of comparisons per family	3							
▼ Info »	3	Alpha	0.05							
(i) Project info 1	4	7 op m	0.00							
New Info	5	Tukey's multiple comparisons test	Mean Diff	95.00% CLof diff	Significant?	Summany	Adjusted P Value			
▼ Results >>	6	CBD ve CBN	-0.2027	-2.034 to 1.628	No	oe.	0.9586	A.B		
one-way ANOVA of Myf5 diff	7	CRD va. MTH	0.2009	2.004 to 1.020	Ne		0.0017	4.0		
one-way ANOVA of Myf 5 pro	-	CODU VS. MITH	-0.2006	-2.000 t0 1.007	No	ns	0.9017	R.C.		
E one-way ANOVA of MyoD diff	0	CBN VS. MTH	0.001000	-1.003 10 1.009	NO	ris	>0.9999	B-0		
one-way ANOVA of Myodenin diff	9									
one-way ANOVA of Myogenin drift	10	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	nz	9	DF
one-way ANOVA of Follistatin diff	11	CBD vs. CBN	0.7992	1.002	-0.2027	0.7311	9	9	0.3920	23
a one-way ANOVA of Follistatin pro	12	CBD vs. MTH	0.7992	1.000	-0.2008	0.7536	9	8	0.3768	23
one-way ANOVA of Myostatin diff	13	CBN vs. MTH	1.002	1.000	0.001858	0.7536	9	8	0.003487	23
one-way ANOVA of Myostatin pro	14									
New Analysis	15									
▼ Graphs >>	16									
Myf5 diff	17									
Myr b pro	18									
MyoD oro	19									
Myogenin diff	20									
e Eamily	21									
MyoD diff	22									
one-way ANOVA	23									
	24									
	25									
	26									
	27									
	-	1								
	88	De-way ANOVA of My	nD diff	Row 1. Co	alumn A				Q	

File Sheet Undo Clipboz	urd I	Analysis Interpret Change	Draw \	Write		Text	Δ	Export	Print	Send	LA H	elp	Onchit
					- Ana		<u> </u>	- and			0- U		Prism
	• 0	= Analyze 🎦 🎢 👘 🖽 🖽		TA	A. R I D	X, X ⁵ IIJ II ₂ ≡	±• ‡≡•			~	G	-	
Q v Search		ANOVA results × E Multiple comparise	ns × v										
Data Tables pro »													
E Follistatin diff		ANOVA results											
Myostatin diff	1	Table Analyzed	MyoD pro										
New Data Table	2	Data sets analyzed	A-C										
Info »	3												
 Project info 1 	4	ANOVA summary											
New Info	5	F	0.2003										
Results >>	6	P value	0.8206										
= one-way ANOVA of Myf5 on	7	P value summary	ns										
one-way ANOVA of MyoD diff	8	Significant diff. among means (P < 0.05)?	No										
one-way ANOVA of MyoD pro	9	R squared	0.02601										
one-way ANOVA of Myogenin diff	10												
one-way ANOVA of Myogenin pro	11	Brown-Forsythe test											
one-way ANOVA of Follistatin diff	12	F (DFn, DFd)											
one-way ANOVA of Myostatin diff	13	P value											
= one-way ANOVA of Myostatin pro	14	P value summary											
New Analysis	15	Are SDs significantly different (P < 0.05)?											
Graphs »	16												
Myf5 diff	17	Bartlett's test											
Myf 5 pro	18	Bartlett's statistic (corrected)	7.186										
MyaD am	19	P value	0.0275										
Myogenin diff	20	P value summary	•										
e milu	21	Are SDs significantly different (P < 0.05)?	Yes										
MyoD pro	22												
one-way ANOVA	23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value						
	24	Treatment (between columns)	0.7322	2	0.3661	F (2, 15) = 0.2003	P=0.8206						
	25	Residual (within columns)	27.42	15	1.828								
	26	Total	28.15	17									
	27												
	_	1											

File Sheet Undo Clipboar ▼ ● ● ●	rd H	Analysis Interpret Change	Draw Write	Test 3/4/5 q χ 12 ~ Γ Α [*] Α [*]	Arial	wak Method — Edite Text ² X₂ m̂ mੇ ≣ •	d Export	Print	Send	LA	Help		Prism8
Q• Search	6			1							-		
▼ Data Tables pro >>	10	ANOVA results × () Multiple comparisi	ans × •										
E Follistatin diff		Ordinary one-way ANOVA											
E Follistatin pro		ANOVATESUIS											
Myostatin diff	1	Table Apply red	Muogenin diff										
Myostatin pro		Table Analyzed	Myogenin all										
Info	2	Data sets analyzed	A-0										
Project info 1	3	41014											
New Info	4	ANOVA summary	0.000045										
▼ Results >>	5	P	0.002015										
i one-way ANOVA of Myf5 diff	6	P value	0.9980										
one-way ANOVA of Myf 5 pro	7	P value summary	ns										
one-way ANOVA of MyoD diff	8	Significant diff. among means (P < 0.05)?	No										
Image:	9	R squared	0.0001752										
one-way ANOVA of Myogenin diff	10												
one-way ANOVA of Kiljistatin diff	11	Brown-Forsythe test											
one-way ANOVA of Follistatin pro	12	F (DFn, DFd)											
= one-way ANOVA of Myostatin diff	13	P value											
one-way ANOVA of Myostatin pro	- 14	P value summary											
New Analysis	15	Are SDs significantly different (P < 0.05)?											
▼ Graphs >>	16												
Myf5 diff	17	Bartlett's test											
Myf 5 pro	18	Bartlett's statistic (corrected)	3.089										
MydD din	19	P value	0.2134										
Myogenin diff	20	P value summary	ns										
Constitution of the second sec	21	Are SDs significantly different (P < 0.05)?	No										
Family >>	22												
DODE-WAY ANOVA	23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value						
	24	Treatment (between columns)	0.002402	2	0.001201	F (2, 23) = 0.002015	P=0.9980						
	25	Residual (within columns)	13.71	23	0.5962								
	26	Total	13.72	25									
	27												
								1					
	88	I O E 🗠 🔚 One-way A	NOVA of Myoger	iin diff	S 8 -	Row 1, Column A						9, -	· @

File Sheet Undo Cilpbor □ • • • • • • • □ • • • • • • • • □ • • • • • • • •	ard The second	Analysis Interpret Change Draw Analysis Interpret Change Draw and analysis The second secon	Write	Text → Arial A* B I U X ² X ₂	-> <u>Λ</u> 1 p ≡ • t≣ •	Export	Print	Send LA	Help		I	Prisma
Q- Search	le	ANOVA results × 🔲 Multiple comparisons ×	~									
Data Tables 1 pro		Ordinary one-way ANOVA Multiple comparisons										
Myostatin diri	1	Number of families	1									
New Data Table	2	Number of comparisons per family	3									
♥ Info >>>	3	Alpha	0.05									
Project info 1	4											
New Info	5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summa	irv	Adjusted	P Value			
▼ Results >>	6	CBD vs. CBN	-0.03983	-2.067 to 1.988	No	ns	.,	0.9986		A-B		
E one-way ANOVA of Myf5 diff	7	CBD vs. MTH	-0.4464	-2.474 to 1.581	No	ns		0.8369		A-C		
one-way ANOVA of MyoD diff	8	CBN vs. MTH	-0.4065	-2.434 to 1.621	No	ns		0.8624		B-C		
E one-way ANOVA of MyoD pro	9											
i one-way ANOVA of Myogenin diff	10	Test details	Mean 1	Mean 2	Mean Diff.	SE of d	iff.	n1		n2	a	DF
one-way ANOVA of Myogenin pro	11	CBD vs. CBN	0.5536	0.5935	-0.03983	0.7805		6		6	0.07216	15
one-way ANOVA of Follistatin diff	12	CBD vs. MTH	0.5536	1.000	-0.4464	0.7805		6		6	0.8087	15
= one-way ANOVA of Follistatin pro	13	CBN vs. MTH	0.5935	1.000	-0.4065	0.7805		6		6	0.7366	15
one-way ANOVA of Myostatin diff one-way ANOVA of Myostatin pro	14											
New Analysis	15											
▼ Graphs >>	16											
🗠 Myf5 diff	17											
🗠 Myf 5 pro	18											
MyoD diff	19											
Myou pro	20											
e and a second s	21											
-amily >>	22											
Dope-way ANOVA	23											
	24											
	25											
	26											
	27											
	88	me-way ANOVA of N	tyoD pro	Row 1.	Column A						Q -0-	

File Sheet Undo Clipbos •	ard -	Analysis Interpret Change Draw analysis E Change Draw analyze To the change Draw analyze to the change Draw analyze to the change Draw	(3) Test 3/4/ Write () OX 12 T T A [*]	5 gPCR results Levak Meti Text ✓ Arial ∧ B [∐ x ² x ₂ hi	hod — Edited ▼ <u>A</u> h µP ≣ • ‡≣ •	Export Pri	int Send LA Help		I	Prišm8
Qr Search		ANOVA results × 🔲 Multiple comparisons ×	~							
Data Tables pro		Ordinary one-way ANOVA Multiple comparisons								
Myostatin diff	1	Number of families	1							
New Data Table	2	Number of comparisons per family	3							
r Info »	3	Alpha	0.05					_		
(i) Project info 1	4							_		-
New Info	5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value			
Results >	6	CBD vs. CBN	-0.01200	-0.9236 to 0.8996	No	ns	0.9994	A-B		
= one-way ANOVA of Myf5 diff	7	CBD vs. MTH	-0.02380	-0.9634 to 0.9158	No	ns	0.9978	A-C		
= one-way ANOVA of MyoD diff	8	CBN vs. MTH	-0.01180	-0.9514 to 0.9278	No	ns	0.9995	B-C		
one-way ANOVA of MyoD pro	9									
one-way ANOVA of Myogenin diff	10	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	a	DF
one-way ANOVA of Myogenin pro	11	CBD vs. CBN	0.9762	0.9882	-0.01200	0.3640	9	9	0.04662	23
one-way ANOVA of Follistatin diff	12	CBD vs. MTH	0.9762	1.000	-0.02380	0.3752	9	8	0.08970	23
= one-way ANOVA of Follistatin pro	13	CBN vs. MTH	0.9882	1.000	-0.01180	0.3752	9	8	0.04448	23
one-way ANOVA of Myostatin oro	14									
New Analysis	15									
Graphs >>	16									
Myf5 diff	17									
Myf 5 pro	18									
MyoD diff	19									
Myde pro	20									
e anyogona an	21									
mily >>	22									
= one-way ANOVA	23									
	24									
	25									
	26									
	27									
a 🛛 🖌 🔍 🖸	88	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ogenin diff	🐷 🖉 🕶 Row 1, Ci	olumn A				Q	

		📔 Fi	nal Graphs (3	8) Test 3/4	/5 qPCR results	Levak Method — Ed	lited						
File Sheet Undo Clipboz	ird	Analysis Interpret Change	Draw Wi	ite		Text	E	xport Prin	t Send	LA	Help		
Ĩ• 💁 🖉 • 🛠 🕸 🖍 • C 🐇 🖡		S 🗄 📰 💫 💩 •		OX 12	 Arial 	V 1	A	tet 🖯	• 🗇 •				Prism
🖥 🖬 • 🗙 🕂 New • 5 📋 📋	- (🖹 Analyze 🎦 🎢 🎽 📑 🔂 129	T	T A	A B I U	x² x₂ m m ≣	- 12- [3	۵	0.	0-		- Hantic
0													
Q# Search		ANOVA results × 🔳 Multiple comparis	ons × v										
♥ Data Tables in pro >>		Ordinary one-way ANOVA											
E collistatio pro		ANOVA results											
Musetatin diff													
Myostatin on	1	Table Analyzed	Myogenin pro	2									
New Data Table	2	Data sets analyzed	A.C	-									
▼ Info >>>	2	bala oos anayzoo											
Project info 1		4101/4											
• New Info	4	ANOVA summary											
▼ Results >>	5	F	0.1651										
one-way ANOVA of Myf5 diff	6	P value	0.8493										
one-way ANOVA of Myf 5 pro	7	P value summary	ns										
one-way ANOVA of MyoD diff	8	Significant diff. among means (P < 0.05)?	No										
one-way ANOVA of MyoD pro	9	R squared	0.02155										
i one-way ANOVA of Myogenin diff	10												
😑 one-way ANOVA of Myogenin pro	11	Brown-Forsythe test											
one-way ANOVA of Follistatin diff	12	E (DEn, DEd)											
one-way ANOVA of Follistatin pro	13	P value											
one-way ANOVA of Myostatin diff	10	Duralus summers											
one-way ANOVA of Myostatin pro	14	P value summary											
(+) New Analysis	15	Are SDs significantly different (P < 0.05)?											
♥ Graphs >>>	16												
Myts diff	17	Bartlett's test											
MunD diff	18	Bartlett's statistic (corrected)	3.405										
MydD din	19	P value	0.1823										
Myonenin diff	20	P value summary	ns										
0	21	Are SDs significantly different (P < 0.05)?	No										
Family »	22												
Myogenin pro	23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value						
- one-way ANOVA	24	Treatment (between columns)	1 964	2	0.9819	F (2, 15) = 0 1851	P=0.8493						
	25	Residual (within columns)	89.18	15	5.946	. (a, 10) - 0.1001	0.0483						
	20	Total	01.15	17	5.540						_		
	20	TURN .	01.10				-						
	27												
			_										
I I I I I I I I I I I I I I I I I I I	88	💷 🕜 🔤 🗠 🛅 🛛 one-way A	NOVA of Myog	enin pro	• ھن 🔽	Row 1, Column A						Q	@

File Sheet Undo Clipboar Image: Imag		Analysis Interpret Change Draw Analysis Interpret Change Draw Analyze P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(3) Test 3/4/ Write () OX 12 T T A [*]	5 gPCR results Levak Me Text ✓ Arial A* B [∐ X ² X ₂	thod — Edited → <u>A</u> か m→ ■ • ≎≣ •	Export Print	Send LA Help		F	Priŝm8
Qr Search		NOVA results × 🔳 Multiple comparisons ×	~							
Data Tables in pro >> E Follistatin diff Follistatin pro		Ordinary one-way ANOVA Multiple comparisons	-							
Myostatin diff	1	Number of families	1							
New Data Table	2	Number of comparisons per family	3							
♥ Info >>	3	Alpha	0.05							
Project info 1	4									
New Info	5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value			
# Results >>	6	CBD vs. CBN	0.5751	-3.082 to 4.232	No	ns	0.9126	A-B		
= one-way ANOVA of Myf5 diff	7	CBD vs. MTH	0.7804	-2.876 to 4.437	No	ns	0.8458	A-C		
= one-way ANOVA of MyoD diff	8	CBN vs. MTH	0.2053	-3.451 to 3.862	No	ns	0.9884	B-C	_	
ane-way ANOVA of MyoD pro	9									
= one-way ANOVA of Myogenin diff	10	Test details	Mean 1	Mean 2	Mean Diff	SE of diff	n1	n2		DE
one-way ANOVA of Myogenin pro	11	CBD vs. CBN	1.780	1.205	0.5751	1.408	6	6	0.5777	15
one-way ANOVA of Follistatin diff	12	CBD vs. MTH	1 780	1,000	0 7804	1.408	6	6	0.7840	15
one-way ANOVA of Follistatin pro	13	CBN vs. MTH	1 205	1,000	0.2053	1.408	6	6	0.2062	15
one-way ANOVA of Myostatin diff	14	ODIT VA. MITT	1.200	1.000	0.2030	1.400	0	•	0.2002	10
one-way ANOVA of Myostatin pro	16									
Granhs 22	16									
Wyf5 diff	17									
Myf 5 pro	10								_	
NyoD diff	10									
MyoD pro	19									
Myogenin diff	20								_	
Family >>	21									
🖽 Myogenin pro	22									
= one-way ANOVA	23									
	24									
	25									
	26									
	27							_		

Search Follistatin diff Follistatin pro		■Analyze 🎦 🥕 👘 🕫											
y Search Data Tablesh DFG >> Follistatin diff Follistatin pro				Τ Λ [*] .		v2 v .5 .5 =	. 1		ã l		Û-	õ.	Prism
ry Search Data Tables pro >> ☐ Follistatin diff ☐ Follistatin pro					D I <u>D</u>	A A2 II' II' =			0	· · ·		0 .	
Data Tables pro » Follistatin diff Follistatin pro		ANOVA results × E Multiple comparis	ons × ~										
Follistatin diff		Ordinany one-way ANOVA											
E Follistatin pro		ANOVA results											
Myostatin dirr	1	Table Analyzed	Follistatio diff										
May Data Table	2	Data sate analyzed	AC										
Info		Data sets analyzeu	A-0					-		-			
Project info 1								_		_			
New Info	-	ANOVA summary						_		_			
Results >>	5	F	0.1686										
e one-way ANOVA of Myf5 diff	6	P value	0.8459										
= one-way ANOVA of Myf 5 pro	7	P value summary	ns										
one-way ANOVA of MyoD diff	8	Significant diff. among means (P < 0.05)?	No										
one-way ANOVA of MyoD pro	9	R squared	0.01445										
one-way ANOVA of Myogenin diff	10												
one-way ANOVA of Myogenin pro	11	Brown-Forsythe test											
one-way ANOVA of Follistatin diff	12	F (DFn, DFd)											
= one-way ANOVA of Huestatin pro	13	P value											
one-way ANOVA of Myostatin on	14	P value summary											
New Analysis	15	Are SDs significantly different (P < 0.05)?											
Graphs »	16									-			
Nvf5 diff	17	Partiatt's test						-		-			
Myf 5 pro	10	Partiett's statistic (corrected)	0.7206					-					
MyoD diff	18	Barbett's stabsoc (corrected)	0.7306					_					
MyoD pro	19	P value	0.6940					_		_			
Myogenin diff	20	P value summary	ns										
mily »	21	Are SDs significantly different (P < 0.05)?	No							_			
Follistatin diff	22												
one-way ANOVA	23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value						
	24	Treatment (between columns)	0.3700	2	0.1850	F (2, 23) = 0.1686	P=0.8459						
	25	Residual (within columns)	25.24	23	1.097								
	26	Total	25.61	25									
	27												
		1				1							

Qr-Starth Image: ADOXA result	Aerpret Change Draw White S Change Draw White S C Change Draw White S C C 12 T T A	Text Arial Ar B I U X ² X ₂		Export Print	Send LA Help		I	Priŝm8
Vata Tables	Multiple comparisons ×							
I Myostalin diff I Number of families Myostalin pio I Number of compariso Montalin pio I I I One-way ANOX of Myf5 diff I I I One-way ANOX of Mystalint pro I I I One-way ANOX of Mystalint pro I I I Montalint I	te-way ANOVA comparisons							
Own Water Tools Table 2 Ambetred comparise Projects in 0 1 3 Apbra 4 OWN Water Moder 3 Apbra 6 Based and table and	1							
Import info 3 Apa ○ Project info 3 Apa ○ New MinLa. 4 5 Naty's multiple cor ○ mere my ANOVA of Myf 5 min 6 G.Do v. Can 6 ○ mere my ANOVA of Myf 5 min 7 CB v. v. MTH 6 ○ mere my ANOVA of My6 prin 6 CB v. v. MTH 7 ○ mere my ANOVA of My6 prin 7 CB v. v. MTH 7 ○ mere my ANOVA of My6 prin 10 Text details 12 ○ mere my ANOVA of My6 prin 12 CB v. v. MTH 12 ○ mere my ANOVA of My6 prin 13 CB v. v. GNN 14 ○ mere my ANOVA of My6 print metric 15 CB v. mtH 14 ○ metric my ANOVA of My6 print metric 16 17 17 18 18 19 19 19 19 19 19 19 19 19 12 14 14 14 14 16 15 16 15 16 15 16 16 17 17 16	ns per family 3							
Projectino 1 4 0 New Indu- to One-way ANDVA of Myl5 dift 5 Adey's multiple con- to one-way ANDVA of Myl5 dift 0 one-way ANDVA of Myl5 dift 7 CBD vs. CMH 0 one-way ANDVA of Myl5 dift 7 CBD vs. MHH 0 one-way ANDVA of Myl5 dift 9 9 0 one-way ANDVA of Myl5 dift 9 9 0 one-way ANDVA of Myl5 dift 10 Tet Adewise 0 one-way ANDVA of Myl5 dift 11 CBD vs. MHH 0 one-way ANDVA of Myl5 dift 12 CBD vs. MHH 0 one-way ANDVA of Myl5 dift in the maximum of the maxim	0.05							
Own Wind								-
Preducts p c C CBD vs. CBN one-way ANDVA of Myf 5 dft 7 C BD vs. MTH one-way ANDVA of Myf 5 dft 7 C BD vs. MTH one-way ANDVA of Myf 5 dft 9 6 C BD vs. MTH one-way ANDVA of Myf 5 dft 9 9 9 one-way ANDVA of Myf 5 dft 10 Text details 11 C BD vs. CMH one-way ANDVA of Myfogeth of the 12 C BD vs. CMH 12 C BD vs. CMH one-way ANDVA of Foliatisht profonore-way ANDVA of Nysothth from 15 15 15 one-way ANDVA of Mysothth profonore-way ANDVA of Mysoththematication profonore-way ANDVA of Mysoththematicati	nparisons test Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value			
on-ency ANOVA of My5 dig on-ency ANOVA of My5 pro- on-ency ANOVA of My5 pro- on-ency ANOVA of My5 dig on-ency ANOVA of Anopania pro- on-ency ANOVA of Anopania pro- settion Anopania pro- ency ANOPAN of Anopania pro- tection and anopania pro- ency ANOPAN of Anopania pro- tection and anopania pro- ency ANOPAN of Anopania pro- tection and anopania pro- ency ANOPAN of Anopania pro- pro- ency ANOPAN of Anopania pro- ency ANOPAN of A	0.2412	-0.9954 to 1.478	No	ns	0.8775	A-B		
	0.2604	-1 014 to 1 535	No		0.8665	A-C		
□ Ore-may AND/A of Myogin of Control □ ■	0.01922	-1 255 to 1 294	No	05	0.9992	B-C		-
000-000-0000 110 Tet details 000-0000-0000 0000000 111 112 280 vs. CBN 000-0000-0000 0000000 111 112 280 vs. CBN 000-0000-0000 00000000 111 112 280 vs. CBN 000-0000-00000 00000000 111 112 280 vs. CBN 000-0000-00000 00000000 111 112 280 vs. CBN 000-0000-00000 0000000 111 112 280 vs. MTH 000-00000 0000000 11	0.01044	11200 00 11201	110	110	0.0002	00		
©memory ANDVA of Myogene processing of the second secon	Moon 1	Mean 2	Mean Diff	SE of diff	at			DE
One-way ANOVA of Foliatian part of one-way ANOVA of Foliatian part of one-way ANOVA of Netatian part of one-way ANOVA of Myostain part of Way Anoya of Myostain part of MyoS diff 13 CBu vs. MTH 13 CBu vs. MTH 13 CBu vs. MTH 14 14 15 CBu vs. MTH 15 One-way ANOVA of Myostain part of MyoS diff 16 17 16 MyoS diff 19 19 19 17 Moganin diff 20 20 10 18 Foliatian diff 22 22 12 19 Interview ANOVA 22 24 24 24 25 24 25 25	1 260	1.010	0.2412	0.4038	0	0	9	22
ora-easy ANOVA of Foliatanty 12 2.00 vs. MrH ora-easy ANOVA of Mysistant gro 13 CBA vs. MrH ora-easy ANOVA of Mysistant gro 16 15 CRM vs. Anglint 16 16 V Mork of Mysistant gro 16 16 V Mork of Mysistant gro 16 17 V Mork of Mysistant gro 16 18 V Mork Of More 19 18 V Morgoni df 20 18 annly 22 22 If Galaxiand off 22 24 25 24 25	1.260	1.019	0.2412	0.4530	0	0	0.0307	23
© one-way NADVA of Myastiatin por go one-way NADVA of Myastiatin por @ New Andysita	1.260	1.000	0.2004	0.5050	9	0	0.7235	23
© one-way ANOVA of Myostatin pro Nerwir Adaptizer Craphs Nerwir Adaptizer Mindho dtr Mindho dtr Mindho dtr Erellisatatio dtf © one-way ANOVA ■ net-way ANOVA ■ 22 ■ 24	1.019	1.000	0.01922	0.5090	9	8	0.05341	23
(2) New Advance								
Cutopes >> 16 MyR5 diff 17 18 MyAD diff 19 19 MyAoyo pro 20 The Follisation diff 22 Image: Inclusion of the state of the								
Myd dir 17 Mydd dir 18 Mydd dir 90 Mydgenin diff 20 Implementation diff 20 Implementation diff 22 Implementation diff 23 24 24								
MynD pro 16 MynD pro 19 Z 21 Fillisatia diff 22 one-way ANOVA 23 24 24								
™Modpin 19 ZModpini and 20 amiy 21 Pallistatin diff 22 One-way ANOVA 23 25								
Myogenii dff 20 21 22 E Folitatin dff 22 2 0								
amily >>> 21 El Pollistatin diff 22 one-way ANOVA 23 24 25								
E Folistatin diff 22 Done-way ANOVA 23 24 25 25								
one-way ANOVA 23 24 25								
24 25								
25								
26								
27								

		📔 Fi	nal Graphs (3) Test 3/4	4/5 qPCR results I	Levak Method — E	dited							
File Sheet Undo Clipboa	rd	Analysis Interpret Change	Draw V	irite		Text		Export	Print	Send	LA	Help		
📑 😼 🖉 = 🛠 🏶 = 🕑 🥪 🖡		- Li 🔤 🛛 👞 💩 •		OX 12	 Arial 	× .	A	tet		đ۰				Driem
🖶 🖬 • 🗙 + New • 5 🗈 💼 •	- 6	🗉 Analyze 🎦 🥕 🎽 📑 🖬 😆	T	т А	A B I U	x² x₂ 🖞 🕪 🗏	- 11-	3	8	<u>a</u> -	0.	0-		rnamo
Or Search														
W Date Tables on a		ANOVA results × E Multiple comparis	ons ×∣ ∽											
Eollistatin diff		Ordinary one-way ANOVA												
E Follistatin pro		ANOVA results												
Mvostatin diff														
Mvostatin pro	1	Table Analyzed	Follistatin pr	0										
New Data Table	2	Data sets analyzed	A-C											
▼ Info >>>	3													
Project info 1	4	ANOVA summary					-			-		-		
New Info	5	E	0.3831											
▼ Results >>	-	- Bushus	0.6992											
one-way ANOVA of Myf5 diff	0	P value	0.0002							_		_		
one-way ANOVA of Myf 5 pro	/	P value summary	ns				-			_		_		
one-way ANOVA of MyoD diff	8	Significant diff. among means (P < 0.05)?	No									_		
= one-way ANOVA of MyoD pro	9	R squared	0.04860											
one-way ANOVA of Myogenin diff	10													
one-way ANOVA of Myogenin pro	- 11	Brown-Forsythe test												
E one-way ANOVA of Follistatio pro	12	F (DFn, DFd)												
one-way ANOVA of Muostatin diff	13	P value												
one-way ANOVA of Myostatin pro	14	P value summary												
New Analysis	15	Are SDs significantly different (P < 0.05)?												
▼ Graphs »	16													
Myf5 diff	17	Bartlett's test								-		-		
Myf 5 pro	18	Bartlatt's statistic (corrected)	5 755											
MyoD diff	10	Durbles	0.0562							-				
MyoD pro	19	P value	0.0303							_		_		
Myogenin diff	20	P value summary	ns							_		_		
Family >>	21	Are SDs significantly different (P < 0.05)?	No							_				
Follistatin pro	22													
one-way ANOVA	23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value							
	24	Treatment (between columns)	0.1420	2	0.07100	F (2, 15) = 0.3831	P=0.688	2						
	25	Residual (within columns)	2.780	15	0.1853									
	26	Total	2.922	17										
	27													
	_	1	1											
	88	m one-way A	NOVA of Folli	statin pro	- A.	Row 1, Column A								9 6
				<i>p.</i>									_	1

File Sheet Undo Clipbo □ •	ard	Analysis Interpret Change Draw Analysis Interpret Change Draw Analyze Analyze Analyze Change Draw	(3) Test 3/4/ Write C(12 T T A*	5 gPCR results Levak Met Text ✓ Arial A* B <i>I</i> <u>U</u> x ² x ₂ µ	thod — Edited → <u>A</u> ↑ IIP <u>E</u> • ‡≣ •	Export Print	Send LA Help		F	riŝm 8
Q ∽ Search		ANOVA results × 🔳 Multiple comparisons ×	~							
Data Tables Dro		Ordinary one-way ANOVA Multiple comparisons								
Myostatin diff Myostatin pro	1	Number of families	1							
New Data Table	2	Number of comparisons per family	3							
r Info »	3	Alpha	0.05							
Project info 1	4									+
New Info	5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value			
Results »	6	CBD vs. CBN	0.08891	-0.5567 to 0.7345	No	ns	0.9322	A-B		
one-way ANOVA of Myf5 diff	7	CBD vs. MTH	-0.1275	-0.7731 to 0.5181	No	05	0.8662	A-C		
I one-way ANOVA of Myr 5 pro one-way ANOVA of MyrD diff	8	CBN vs. MTH	-0.2164	-0.8620 to 0.4292	No	05	0.6662	B ₂ C		+
a one-way ANOVA of MyoD on	9	00110.1111	-0.2101	0.002010 0.1202	110	110	0.0002	00		
one-way ANOVA of Myogenin diff	10	Tost details	Mean 1	Maan 2	Mean Diff	SE of diff	nt			DE
a one-way ANOVA of Myogenin pro	10	CRD vs. CRM	0.9725	0.7936	0.08901	0.2495	e	6	9	16
ne-way ANOVA of Follistatin diff	12	CBD vs. CBN	0.0725	1,000	0.1075	0.2465	e	6	0.3035	16
😑 one-way ANOVA of Follistatin pro	12	CBD VS. MTH	0.0720	1.000	-0.1275	0.2465	0	0	0.7200	10
one-way ANOVA of Myostatin diff	13	CBN VS. MTH	0.7836	1.000	-0.2164	0.2485	0	0	1.231	15
one-way ANOVA of Myostatin pro	14									
New Analysis	15									
Shorts diff	16									
Myro din	17									
Myn o pio	18									
MyoD pro	19									
Myogenin diff	20									
o amily	21									
Follistatin pro	22									
one-way ANOVA	23									
	24									
	25									
	26									
	27									
		1								
	99	DIE O DE VIET ODE-WAY ANOVA of Ex	llistatin pro	Row 1.0	olumn A				Q	6

		Change Anterpret Change	Draw with	(Y 12	✓ Arial	- V		Export		ch.	LA	mep (· Oraphite
					DILL						Û-	0-		Prism
			1		, DI O	A A2 III III =	*		0	· · ·		0.		
Qr Search		ANOVA results × E Multiple comparise	ons × ~											
Data Tables i pro »		0.1												
E Follistatin diff		ANOVA results												
E Follistatin pro		Pero Villadita												
Myostatin diff		Table Assessed	11					_						
🔛 Myostatin pro	1	Table Analyzed	Myostatin diff					_		_				
New Data Table	2	Data sets analyzed	A-C											
Info »	3													
Project into 1	- 4	ANOVA summary												
+ New Info	5	F	0.3751											
Results »	6	P value	0.6914											
ana-way ANOVA of Myt5 dill	7	P value summary	ns											
= one-way ANOVA of MucD diff	8	Significant diff, among means (P < 0.05)?	No											
= one-way ANOVA of MyoD pro	0	Required	0.02158					-						
= one-way ANOVA of Myogenin diff	- 40	it aqualeu	0.03130					-						
one-way ANOVA of Myogenin pro	10							_						
= one-way ANOVA of Follistatin diff	11	Brown-Forsythe test						_						
ane-way ANOVA of Follistatin pro	12	F (DFn, DFd)												
😑 one-way ANOVA of Myostatin diff	13	P value												
one-way ANOVA of Myostatin pro	14	P value summary												
New Analysis	15	Are SDs significantly different (P < 0.05)?												
Graphs »	16													
Myf5 diff	17	Bartlett's test												
Myf 5 pro	18	Bartlett's statistic (corrected)	0.3716											
MyoD diff	19	P value	0.8304											
MyoD pro	20	P value summany												
Myogenin diff	20	Are CDs simplificable different (D < 0.05)2	hie .					-						
mily »	21	Are SDs significantly different (P < 0.05)?	NO					_		_				
Myostatin diff	22							_						
one-way ANOVA	23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value							
	24	Treatment (between columns)	1.035	2	0.5176	F (2, 23) = 0.3751	P=0.6914							
	25	Residual (within columns)	31.74	23	1.380									
	26	Total	32.78	25										
	27													
	_	1												
	00												6	a

File Sheet Undo Clipboar • • • • • • • • • • • • • • • • • • •	rd	Analysis Interpret Change	Draw Write	Test 3/4/5 qF	Arial	rvak Method — Edito Text ² x, sh mir ≡ •	Export	t Print	Send	LA Q-	Help		Prism8
Qr Search				XX N			v	w.			•		
▼ Data Tables pro >>		ANOVA results × () Multiple compariso	ons × ∨										
Follistatin diff		Ordinary one-way ANOVA ANOVA results											
Myostatin diff	1	Table Analyzed	Mvostatin pro										
Myostatin pro New Data Table	2	Data sets analyzed	A.C.										
▼ Info »	3	bala oolo anayzoo											
Project info 1	4	ANOVA summary						1					
New Info	5	F	0.05629										
▼ Results >>	6	Pivalue	0.9455										
one-way ANOVA of Myf5 diff	7	P value summary	ns										
= one-way ANOVA of Myrb pro	8	Significant diff, among means (P < 0.05)?	No										
one-way ANOVA of MyoD pro	9	R squared	0.007450										
a one-way ANOVA of Myogenin diff	10												
i one-way ANOVA of Myogenin pro	11	Brown-Forsythe test											
one-way ANOVA of Follistatin diff	12	F (DEn, DEd)											
one-way ANOVA of Follistatin pro	13	P value											
one-way ANOVA of Myostatin diff one-way ANOVA of Myostatin pro	14	P value summary											
New Analysis	15	Are SDs significantly different (P < 0.05)?											
▼ Graphs »	16												
Myf5 diff	17	Bartlett's test											
🖂 Myf 5 pro	18	Bartlett's statistic (corrected)	1.469										
MyoD diff	19	P value	0.4796										
Myou pro	20	P value summary	ns										
e e e e e e e e e e e e e e e e e e e	21	Are SDs significantly different (P < 0.05)?	No										
Family >>	22												
ope-way ANOVA	23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value						
	24	Treatment (between columns)	0.8556	2	0.4278	F (2, 15) = 0.05629	P=0.9455						
	25	Residual (within columns)	114.0	15	7.599								
	26	Total	114.8	17									
	27												
	-												
	88)	One-way A	NOVA of Myostat	in pro	e 🖉	Row 1, Column A						Ξ.	®

File Sheet Undo Clipboa □ • • • • • □ • • • • • • □ • • • • • •	rd 	Analysis Interpret Change Draw Analysis 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Write CX 12 T T A ⁴	Text ✓ Arial A* B <u>I</u> <u>U</u> X ² X ₂	► Δ	Export	Print	Send LA	Help			Prism8
Q+ Search		ANOVA results × 🔲 Multiple comparisons ×	~									
Data Tables pro Second Statin diff Follistatin pro Follistatin pro		Ordinary one-way ANOVA Multiple comparisons										
Myostatin ditr	1	Number of families	1									
New Data Table	2	Number of comparisons per family	3									
♥ Info >>>	3	Alpha	0.05									
(i) Project info 1	4											_
New Info	5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summa	rv	Adjusted	P Value			
▼ Results >>>	6	CBD vs. CBN	0.4525	-0.9343 to 1.839	No	ns		0.6964		A-B		
= one-way ANOVA of Myf5 diff	7	CBD vs. MTH	0.3695	-1.060 to 1.799	No	ns		0.7957		A-C		
one-way ANOVA of MypD diff	8	CBN vs. MTH	-0.08304	-1.513 to 1.347	No	ns		0.9884		B-C		-
ane-way ANOVA of MyoD pro	9											
i one-way ANOVA of Myogenin diff	10	Test details	Mean 1	Mean 2	Mean Diff.	SE of di	iff.	n1		n2	a	DF
i one-way ANOVA of Myogenin pro	11	CBD vs. CBN	1.370	0.9170	0.4525	0.5538		9		9	1.156	23
one-way ANOVA of Follistatin diff	12	CBD vs. MTH	1.370	1.000	0.3695	0.5708		9		8	0.9154	23
one-way ANOVA of Follistatin pro	13	CBN vs. MTH	0.9170	1.000	-0.08304	0.5708		9		8	0.2057	23
= one-way ANOVA of Myostatin dirf	14											
New Analysis	15											
▼ Graphs >>>	16											
🗠 Myf5 diff	17											
🗠 Myf 5 pro	18											
MyoD diff	19											
Myou pro	20											
e e	21											
Family >>	22											
Dec-way ANOVA	23											
	24											
	25											
	26											
	27											
	_	1										
	00	THE OPEN ANOVA of N	evostatin diff	Row 1.	Column A						Q	

Coarding Control Control Contro Control Control Control Control Control Co	ADVA results × Multiple comparisons Coffmary one-way ANOVA Appla Appla Coffmary one-way ANOVA Coffmary one-way	× v v 1 1 3 0.05 Mean Diff. 0.3546 0.5231 Mean 1 1.355	95.00%, Ci of diff. 4.303 to 3.965 4.379 to 4.489 3.811 to 4.657 Mean 2 1523	Significant? No No Mean Diff.	Summary ns ns sE of diff.	Adjusted P Value 0.9938 0.9731 0.9424 n1	A-B A-C B-C n2	9	DF
Data Tables >> Tollisation drif >> Tollisation pro >> Mystatin pro >> Mystatin pro >> O'New Data Table >> Montania >> O'New Data Table >> O'New Data Table >> O'new ration ANXA of MyS diff >> O'new ration ANXA of MyS diff >> O'new ration ANXA of MyS diff >> O'new ration ANXA of MyS diff or O'new ration ANXA of MyS diff or O'new ration ANXA of MyS diff or O'new ration ANXA of MyS diff diff or O'new ration ANXA of MyS diff diff or O'new ration ANXA of MyS diff diff diff or O'new ration ANXA of MyS diff diff diff diff diff diff diff dif	Ordinary one-way ANOVA Multiple comparisons Number of families Number of comparisons per family Alpha Tukey's multiple comparisons test CBD vs. CBN CBD vs. NFH CBD vs. NFH D Test details CBD vs. RMTH	1 3 0.05 Mean Diff. -0.1685 0.3546 0.5231 Mean 1 1.355	95.00% Ci of diff. 4.303 to 3.965 -3.779 to 4.469 -3.611 to 4.657 Mean 2 1.523	Significant? No No Mean Diff.	Summary ns ns SE of diff.	Adjusted P Value 0.9938 0.9731 0.9424 n1	A-B A-C B-C n2	9	DF
Myostatin off Myostatin off Mostatin off Mostatin off One of the Table Info Or Reise (Info 1 Or New Info One over NANOXA of Myf5 diff One-way ANOXA of Myf0 diff	Number of families Number of comparisons per family Appa Appa Tubery smultiple comparisons test CBD vs. CBN CBD vs. MTH CBD vs. CBN CBD vs. CBN CBD vs. MTH CBD vs. CBN	1 3 0.05 Mean Diff. -0.1685 0.3546 0.3546 0.3546 0.3546 0.355	95.00% Cl of diff. 4.303 to 3.965 -3.779 to 4.489 -3.611 to 4.657 Mean 2 1.523	Significant? No No No Mean Diff.	Summary ns ns SE of diff.	Adjusted P Value 0.9938 0.9731 0.9424 n1	A-B A-C B-C n2	9	DF
Myostati pro 2 New Data Table 2 Info 2 Project Info 2 One-way ANDXA of Myf Saft 2	Number of tamiles Number of anniles Appa Tukay's multiple comparisons test CBD vs. CBN CBD vs. NTH CBD vs. NTH CBD vs. CBN CBD vs. NTH CBD vs. CBN CBD vs. NTH CBD vs. NTH CBD vs. NTH	1 3 0.05 Mean Diff. -0.1685 0.3546 0.5231 Mean 1 1.355	95.00% C1 of diff. 4.303 to 3.965 -3.779 to 4.489 -3.611 to 4.657 Mean 2 1.523	Significant? No No No Mean Diff.	Summary ns ns SE of diff.	Adjusted P Value 0.9938 0.9731 0.9424 n1	A-B A-C B-C n2	9	DF
Owner Data Table	2 Number of comparisons per family 3 Apha 4 5 104597 smultiple comparisons test 6 CBD vs. CBN CBD vs. CBN CBD vs. MTH 7 10 Test details 10 CBD vs. CBN 20 CBD vs. MTH	3 0.05 Mean Diff. -0.1685 0.3546 0.5231 Mean 1 1.355	95.00% Cl of diff. 4.303 to 3.965 -3.779 to 4.489 -3.611 to 4.657 Mean 2 1.523	Significant? No No No Mean Diff.	Summary ns ns ns SE of diff.	Adjusted P Value 0.9938 0.9731 0.9424 n1	A-B A-C B-C n2	9	DF
min project Info 1 project Info 1 © New Info project Info 1 © new Info 1 project Info 1	Alpha Subsystem CBD vs. SBN CBD vs. SBN CBD vs. SMTH CBD vs. SMTH Test details 10 Test details 10 CBD vs. SMTH 200 vs. SMTH	0.05 Mean Diff. -0.1685 0.3546 0.5231 Mean 1 1.355	95.00% Cl of diff. 4.303 to 3.965 -3.779 to 4.489 -3.611 to 4.657 Mean 2 1.523	Significant? No No No Mean Diff.	Summary ns ns ns SE of diff.	Adjusted P Value 0.9938 0.9731 0.9424 n1	A-B A-C B-C n2	9	DF
Virget and a	4 5 Takey's multiple comparisons test 6 CBD vs. CBN 7 7 CBD vs. NTH 7 8 CBN vs. MTH 7 9 Test details 7 10 Test details 7 12 CBD vs. CBN 7	Mean Diff. -0.1685 0.3546 0.5231 Mean 1 1.355	95.00% CI of diff. -4.303 to 3.965 -3.779 to 4.489 -3.611 to 4.657 Mean 2 1.523	Significant? No No No Mean Diff.	Summary ns ns ns SE of diff.	Adjusted P Value 0.9938 0.9731 0.9424 n1	A-B A-C B-C n2	q	DF
Results 2014 Cone-way ANOVA of Myf5 diff cone-way ANOVA of Myf5 diff cone-way ANOVA of Myf5 diff cone-way ANOVA of Myc0 pro cone-way ANOVA of Myc0 pro cone-way ANOVA of Myc0 pro cone-way ANOVA of Myc0 prime cone-way ANOVA of Myc0 prime cone-way ANOVA of Pollistatin diff cone-way ANOVA of Pollistatin pro cone-way ANOVA of Pollistatin pro	Tukey multiple comparisons test CRD vs. GMV CRD vs. MTH CRD vs. MTH Test details CRD vs. CRN CRD vs. CRN	Mean Diff. -0.1685 0.3546 0.5231 Mean 1 1.355	95.00% Cl of diff. -4.303 to 3.965 -3.779 to 4.489 -3.611 to 4.657 Mean 2 1.523	Significant? No No No Mean Diff.	Summary ns ns ns SE of diff.	Adjusted P Value 0.9938 0.9731 0.9424 n1	A-B A-C B-C n2	q	DF
	6 CED vs. CRN 7 CED vs. MTH 8 CRN vs. MTH 9 Test details 11 CED vs. CRN 12 CED vs. CRN 12 CED vs. CRN	-0.1685 0.3546 0.5231 Mean 1 1.355	-4.303 to 3.965 -3.779 to 4.489 -3.611 to 4.657 Mean 2 1.523	No No No Mean Diff.	ns ns ns SE of diff.	0.9938 0.9731 0.9424 n1	A-B A-C B-C n2	q	DF
one-way ANOVA of Myrb 5 pro one-way ANOVA of Myrb 0 pro one-way ANOVA of Myrb pro one-way ANOVA of Pollistatin pro one-way ANOVA of Myrb pro	7 CBD vs. MTH 8 CBN vs. MTH 9 The details 10 Test details 11 CBD vs. CBN 2 CBD vs. MTH	0.3546 0.5231 Mean 1 1.355	-3.779 to 4.489 -3.611 to 4.657 Mean 2 1.523	No No Mean Diff.	ns ns SE of diff.	0.9731 0.9424 n1	A-C B-C n2	q	DF
one-way ANOVA of MyoD diff one-way ANOVA of MyoD pro one-way ANOVA of Myogenin diff one-way ANOVA of Myogenin pro one-way ANOVA of Myogenin pro one-way ANOVA of Follistatin diff one-way ANOVA of Follistatin diff	8 CBN vs. MTH 9	0.5231 Mean 1 1.355	-3.611 to 4.657 Mean 2 1.523	No Mean Diff.	ns SE of diff.	0.9424 n1	B-C n2	q	DF
	9 10 Test details 11 CED vs. CBN 12 CBD vs. MTH	Mean 1 1.355	Mean 2 1.523	Mean Diff.	SE of diff.	n1	n2	q	DF
one-way ANOVA of Myogenin diff one-way ANOVA of Myogenin pro one-way ANOVA of Myogenin pro one-way ANOVA of Follistatin diff one-way ANOVA of Follistatin pro one-way ANOVA of Myostatin diff	Test details 11 CBD vs. CBN 12 CBD vs. MTH	Mean 1 1.355	Mean 2 1.523	Mean Diff.	SE of diff.	n1	n2	q	DF
one-way ANOVA of Myogenin pro one-way ANOVA of Follistatin diff one-way ANOVA of Follistatin pro one-way ANOVA of Follistatin pro one-way ANOVA of Myostatin diff	11 CBD vs. CBN 12 CBD vs. MTH	1.355	1.523	0.1695					
one-way ANOVA of Follistatin diff one-way ANOVA of Follistatin pro one-way ANOVA of Myostatin diff	12 CBD vs. MTH			°U. 1003	1.592	6	6	0.1497	15
one-way ANOVA of Pollistatin pro one-way ANOVA of Myostatin diff		1.355	1.000	0.3546	1.592	6	6	0.3151	15
i = one-way AndovA or Myostatin uni	13 CBN vs. MTH	1.523	1.000	0.5231	1.592	6	6	0.4648	15
E ope-way ANOVA of Myostatia pro	14								
New Analysis	15								
Graphs » 1	16							_	
Myf5 diff	17								
Myf 5 pro	18								
MyoD diff	10								
MyoD pro	19								_
Myogenin diff	20								
mily »	21								
Myostatin pro 2	22								
one-way ANOVA	23								
2	24								
2	25								
2	26								
2	27								

Quantification of Myotube Surface Area (5uM)

		00	-	u 👁 i	E.		4	ZQ ·	n. (d		an 1/6	2 10	•												a	565		Sneet		
A Home	Layout	Tat	les	Charts	: 3	SmartAr	t Fe	ormulas	Dat	ta R	eview																			^
Edit				Font					Aligon	ient			Nu	umber						Format							Cells		: P	hemes
۹. 🖬	Fill + C	alibri (B	ody)	× 11		A- A-		-	abc		rap Text	* Gen	eral			B .		Normal		Bad		Good	d I		-	. 9	8	HTT-	Aah	
	-	D T	11	(m)	A	- 4							- 0/-	•	.00	115 - C	-1	Mandard	_			10000		- 0		- B				
aste 🧭	Clear *	DI	2	100.	0	• 🛆		2 2	2) 2 2		Merge	•	* 70	2 0	0.0	Formattin	9	rveutral		Calculati	on	Chick	K COII		Inse	ert E	Delete	Format	Them	es Aa
G261	\$	0 3	(= f	=G26	i0/SQF	RT(4)																								
A	8 C	bes		ε	F		н		J	ĸ	L	M	N	0	Ρ	Q	R	5	Ť	U	1		w	X	Ŷ	2		u .	AS	AC
l lenopes per we	l' at 30x mognificot	ion													CEO	CBN	MTH													
										CBD	CIN	MTH		Plate 5	384029	159442.6	160834.5													
Myotube Si	utace Area								ST DEV	181771.2	161435.4	172509		Plate 6 Plate 7	209516.2	160410.9	168809.5													
Get bloary threa	hold SA number as	vell as avera	I picture or	80					SEM	11239.88	7214.168	10447.18		Place /	110023.2		100101													
ovan 24, smoot	N ZA, Separate CPP	soe one sol	n ug, ava	auty Ic1)																										
	Name	ROLAN	a 801	Mean Int ROL	Min Inter R	DI Max Inte I	ICI Sum Inter	RCI StDev In	ROI Signal/B	Binary Area	Binary Mean	Binary Min In	Binary Max In	Binary Sum In	Binary StDev	Binary Signal,	Area Fractio	e Unit	Channel											
CBD 4.1																														
Pic 4	CBD_4.1	_pic 602	117.4 5	25.4275	415	1288	7.615+08	28.53951	1454141	155847.8	552.7782	454	1298	2.075-08	28.15541	1.655602	0.35875	μn	FILE											
Pic S	C80_4.3	pic 602	117.4 5	32.1745	421	1504	7.72+08	32.11464	1,740659	133679.8	562.9339	463	1504	1.810-08	37.62896	1.9182	0.221971	um .	FITC											
Pic 7	CRD_4.1	602 مار	117.4 5	61.0136	440	2926	8.125+08	48.93747	1.82563	191457.6	599.184	463	2926	2.766-08	65.16227	4.488327	0.817921	μm	FITC											
Pic B	CB0_4.1	pic 602	117.4 5	55.2187	436	1471	8.055+08	31.83277	1.565762	179035.4	582.3374	473	1471	2.510+08	33.26635	2.013807	0.297294	um.	FITC											
8042																														
Re 1	(80.4)	nic 602	174 5	46 5195	417	6436	7.915-09	105 2228	2 136882	181755	583 1422	475	6416	2 535-118	184 (1472	10.4507	0 299381		677											
					-		7.911708					673			201.0001	20.4800	0.19938	par.	-											
nes	00,43	jpc 002	117.4 3	28.6060	401	1338	7.656108	20.000	153/445	119636.3	563.4095	459	1336	1.500-08	31.37356	1046217	0.194011	un .	PIC.											
Pic6	CRD_4.	jeic 602	117.4 5	82.8709	404	1291	7.718+08	28.10402	1.46087	341111.8	560 D891	464	1295	1.96+08	27.67083	1.425358	0.23433	μm	FIEC											
Pic 7	CBD_4.2	pic 602	117.4 5	24.2514	408	1230	7.556+08	28.11267	1.472406	139306.3	552.3748	455	1230	1.850-08	29.0021	1.661123	0.231455	μn	FITC											
CBD 5.1																														
Pic 1	CBD_5.	pic 602	117.4 5	22.7027	413	1373	7.575+08	29.73468	1.613839	157567.9	548.7959	451	1038	2.085-08	28.54125	1.626305	0.261646	μn	FITC											
Pic 3	CB0_5.2	pic 602	117.4 5	00.9806	390	1813	7.258+08	26.40482	1.483796	154581.1	523.5784	434	1813	1.950-08	27.54127	1.521834	0.256687	pm .	FIEC											
Pic 4	CR0_5.2	602 اس	127.4 5	23.0964	411	1690	7.57€+08	29.52631	1.510022	145085.8	551.3592	445	1630	1.940-08	31.1262	1.931393	0.24258	ym.	FITC											
Pic 6	CR0 5.	pic 602	117.4 5	45.4287	430	1541	7.95+08	33,48384	1.621277	159504.3	577.4136	459	1541	2.215-08	35.15151	1.728956	0.264862	um.	FITC											
(8013																														
	(40.1			20.0073	410	1470	a 107-04	17 41410		-		480	1478	4.14.00	43.447344	1.0000	0.000000		0.00											
-	cite_s.	من من	ur.a 3	ra.ausi	-18	1479	a.s+8+08	4.7.83873	1,75417	201085.9	0.28595	489	34.79	~.11+08	49.95761	**8000J	0.485011	par.	rec											
Pic 2	CB0_5.2	pic 602	117.4 5	85.7368	459	1576	8.45E+08	40.16443	1.687375	224872.7	638.9481	499	1576	3.350+08	37.8966	1.68097	0.373438	μm	FIDC											
Pic S	C80_5.	jik 602	117.4 5	73.9709	445	1507	8.31E+08	39.39075	1.6893	160123.7	615 2603	501	1507	2.376-08	41.05401	2.086629	0.26585	pm.	RITC											
Pic 7	CBD_5.	pic 602	117.4 5	61.9393	438	1296	8.145+08	38.94075	1.72327	177410.5	597.6301	485	1296	2.556+08	29.32994	1.715953	0.294593	μm	FITC											
CBD 6.1																														
Pic 2	CRD_6.	602 عنو	117.4 4	97.6896	385	1309	7.25+08	33.03207	1.702128	236420.5	522.5525	427	1309	2.976-08	32.23642	1.827051	0.392583	μn	RITC											
Pic 3	CB0_6.3	pic 602	117.4 5	12.3445	298	968	7.425+08	34.12728	1.586605	226830.3	541.1714	427	968	2.950=08	30.51063	1.616702	0.376655	µm.	FITC											
4.5	CRD 6.1	pie 602	17.4 5	03.7256	390	1253	7.296+08	33.81747	1.692488	203013.8	532.5474	429	1253	2.68+08	33.51258	1.745098	0.33711	um.	RITC											
		-																1	1						_	_				_
HH	L C P P P P	RD_I_N	ay_27_	KD_ILJ	uly_1_	ノナノ																								

Quantification of Myotube Diameter (5uM)

1 🎁 🗊		a 🗈 🖌	2 10	• 🖾 •	∑ • 4 0 • ∑	R . 0	6	🚮 75	% -	0										Q+	Search ¹	in Sheet		
Home	Layout Table	s Ch	arts	SmartArt	Formulas	Dat	ta	leview													-			
Fdit	Luyout Tubh	For		Sinarchit	: .	Alicon	terd .	cevien		Nor	nber				Form	at .					Cells			Themes
	EII * Calibri (Bod	(v) v	11 .	A. A.		abc		Wrap Text	+ Ger	eral				Normal	Ba	d	6	hoo		-	-	1999	An	
<u> </u>		**) [0/		.00	<u>- 56</u>						•	. <u></u>	· 📺 -	· 🛄 ·		
aste 🥥 🤇	Clear * B I	<u>v</u>	<u> </u>	• <u>A</u> •	E 2 3	•	20	Merge	* 🔮	* %	2 500	\$.0	Formatting	Neutral	G		6	heck Cell		Insert	Delete	Format	t Then	nes Aa
G261	: 🛛 🔿 🤇	fx =	G260/S	QRT(4)																				
A	8 C D	E	F	6	н	J	K	L	M	N	0	Ρ	Q	R S	Ť	U	v	W	X	Ŷ	Z	AA	AS	AC
								CRD	CIN	MTH	_									_	_	_	_	_
Myotube Dia	ameter			TOTAL DIAMETE	ER AVERAGE		Plate 4	21.98786	23.73106	24.0074														
5 short-axis measu All'myctubes in im	weenents taken along length of m tage that are identified through th	yatube end aver weuholding	ogea'	25.31473 2	N MTH 25.82905 23.92745		Plate 5 Plate 6	28.36326 29.51153	25.45603	22.61022 24.24947														
			st dev sem	3.365582 1	0.796353 0.472833		Plate 7	25.39625	26.97379	24.8427														
CBD 4.1	AVG Diameter																							
Pic 4	20.798				35,348	36 74	20.0	42.55	25.64	17.57	11.04	14,06	20.01	28.55 14.53	12.54	17,37	34.14	31,34	29.138	24.5	25.75	25.13	29.36	30.148
Pic S	24.27923				25.688	22.08	10.0	20.23	18.44	26.314	17.16	24.00	22.5	10.87	6.18	12.09	15.06	12.15	36.352	10.00	10.66	11.62		18.27
Pic 7	23.41176				23.27					11.12		14.00	35.5	15.62	6.18	13.97	15.99	13.55	24.94					24.648
Pic 8	18.38583				27.842	21.80			20.55	6.892	13.82	10.81	11.57	35,858	14.15	15.13	34.06	1.54	25.09	2.4	25.15	11.59	200	14 308
	21.71871				17.89	18.36	25.3	38.33	39.28	8.76	10.29	6.84	4.04	4.53 9.5	12.75	20.55	22.34	16.65	28.19	25.45	25.59	25.67	20.55	28.45
CBD 6.2	AVG Diameter																							
Pic 1	22.71371				28.176	21.56	19.2	21.92	46.14	32.232	14.15	24.26	42.45	32.016	11.97	14.06	11.69		23.448	17.61	54.02	14.24	11.15	38.618
PicS	22.06529				33.994	10.03	0.0	13.63	11.14	21.02	30.61	10.10	12.44	38.708	10.04	11.11	(1.4)	60.13	17.072	10.00	30.31	11.67	11.03	21 548
Pic G	22.0075				18.236					18.71			11.40	20.648	20.00		4.74	0.51	18.958				1000	15.274
Pic 7	22.24156				23.09	24.03	34.4	34.86	6.94	25.44	30.03	13.98	29.55	34.51 16.37	26.53	12.95	20.83	20.86	21.07	18.71	29.58	19.72	15.80	33.845
	22.25392				37.03	30.23	13.1	13.3	21.74	25.2	13.94	15.45	42.08	24.54 22.95	15.13		17.19	13.16	9.13	13.92	20.58	36.55	25.17	36.05
CBD 5.1	AVG Diameter																							
Pic 1	91.922				21.742	25.18	25.4	18.82	30.62	36.272	25.5	14.98	31.23	21,744	16.68	18.81	23.52	25.03	41.645	33.96	63.34	49.62	29.67	26.76
Pic 3	27.76178				24.178			20.11		17.754		10.00	17.30	17.858	17.66				28.974	20.1				67.002
Pic 4	23.90957				38.418					32.685				26.236	27.748				23.574					\$2.126
Pic G	32.62467				21.312	14.00	20.4	34.13		23.798	39.66	10.6	20.73	29.726	2.00	<u>M.U</u>		2.44	34.302	21.54	23.48	11.5	15.00	28.7
	28.9065				25.02	27.13	25.6	25.24	18.9	26.31	19.36	17.78	22.48	88.11 23.92	23.6	16.23	29.24	15.64	18.63	21.45	28.19	43.24	62	20.12
CBD 5.2	AVG Diameter																							
Pic 1	27,93271				55,202	28.87	36.9	68.12	117.95	15.474	10.23	9.67	25.84	23.994	29.11	26.72	23.13	22.24	11.846	14.03	11.71	2.54	10.87	22.28
Pic 2	81.04925				30.172	44.10	34.9	18.29	15.54	14.522	20.17	12.99	18.55	88.964 15.08 69.4	91.74	100.29	103.85	79.54	54.606	42.78	35.94	65.42	89.14	40.304
Pic S	24,49553				26.33	92				30.046				37.172	10.00	100.09			26,762				10.07	20.05
Pic 7	27.8306				41.842		21.0			26.572	26.71	- 10.1	39.11	26.55	28.09	17.06	74.15		33.934	26.2	~~~	16.00		81.126
	27,82282				36.21	34.18	54.4	40.15	44.21	37.52	24.76	17.72	32.83	81.23 36.11	30.62	34.95	28.62	22.45	27.35	19.93	25.3	45.41	50.64	26.34
CBD 6.1	AVG Diameter																							
Pic 2	31.64693				29,734	27.44	41.0	36.13	24.55	23.178	24.16	23.91	24.72	18.18 21.02	22.26	25.24	34.66	9.78	37.498	41.22	37.44	31.67	26.88	25.208
Pic 3	\$3.87267				42.368	13.26	30.	54.72	5.63	30.392	22.6	27.33	12.86	28.65	27.51	33.1	MIS	26.72	22.242	10.29	20.6	22.45	15.14	44 006
Pic S	26.804				22.754					42.046			41.00	26.35	20.04	22.1			22.642		20.0			23.608
	A P PI RD_I_May	_27_ RD	ULJuly_	1,+/																				

Quantification of Myonuclei (5uM)

					_		- Pi	5uM Myo	tube qu	Janitifi	cation.xls:	X												
🋅 🗊 🗄	۹ 😹 📾 ا	à 🛍 💉 I	🔊 • 🕅 • 🔰	E • 🏡 • 🌾 •	F	7	5% *	0											9	. (Sei	arch in	Sheet		
Home L	ayout Tabl	es Charts	SmartArt	Formulas	Data	Review																		1
Edit		Font			lignment			Nur	nber						Format						Cells		The	omes
🗸 💽 Fill	* Calibri (Bo	dy) = 11	• A• A•		abc * 🔢	Wrap Text	* Gen	eral		٣	1217		Normal		Bad		Good	6	Ç.	••	800 -	-	Aa .	- 55
ste 🥢 Clea	• B I	U BB ·	3 · A ·	E = 3	2	Merge	- 19	- %	,		Conditiona	d	Neutral		Calculatio	n	Check Cel	<u> </u>		ert I	Delete	Format	Theme	A
0261	.000	fx =C260	SORT(4)			_					Formatting	9						_						
A 8	C 0	E F	5,50,11(4)	N I I	K	1	M	N	0	Ρ	Q	R	5	T	0	V	W	X	Y	2	1.7	AA .	US A	ic
yonuclei					TOTAL	MONUCLEI AV	RAGE																	
nber of suclei in myo an de, amosth de, are	tube / overall number of n wrate 2x Eathemater: 111	uclei in each image x 300 20 - 58.28 Circularity: 0.8	10-1.00		26.21	CBN 131 27.2681	MTH 24.47132																	
				stdev	1.947	224 1.72557 612 0.86478	2.432536																	
	Nuclei in Myotube	Total Nuclei	Myceuslear Index	AVERASE																				
941																								
4	148	717	20.64156																					
5	204	546	37.36264		Hate d	CBD 27 4744	CBN 25.6000M	MTH 24 31508																
7	231	718	32.1727	10.1010	Plate 5	25.6486	27.31787	21.04965																
8	123	655	26.41221		Plate 7	28.0146	26.39177	26.35213																
1	114																							
	114																							
,	132	310	25.88235	25.80165																				
·	143	380	25.1/241																					
D 5.1																								
1	153	663	23.11178																					
3	196	734	26.703																					
4	154	670	22.98507	20.000																				
6	164	613	26.75367																					
15.2																								
	197	591	33.33333																					
2	153	749	20.42724	26.40858																				
>	139	728	19.09341																					
,	238		30.7635																					
6.1																								
2	214	775	27.6129																					
3	213	774	27.51938																					
4	197	615	31.02362	27,80907																				
	RD_I_Ma	y_27 RD_II_Ju	ily_1_/+/																					
Normal	View Ready								Sum=	2.95197	7106	-				_				_	_			_

Quantification of Myotube Surface Area (1uM)

	IT IS		0 -											TUM	Myoti	no oar	anitific	ation \$	Sept 2	9										arch Shee	t -	
Home	Insert	Draw	Page	Layout	F	ormulas	; (Data	Rev	view	View	N																				Share
۰ ۲	Cut	Liberati	on S	- 11	•	A- A-			-	39	•	E	🔉 Wrap	Text	•	Ge	neral					٠E	7.		-		×	· .	Σ	AutoSum *	₹ ₽ .	Q
iste	S Format	BI	<u>U</u> •			• <u>A</u> •		5 8	-11	•	•1	÷	Merg	e & Ci	enter *	\$	* %)	* .0 .00	00. 0.¢	Condition	nal F ng as	ormat s Table	Cell Styles	Ins	sert	Delete	Format	/	Clear *	Sort & Filter	Find & Select
10	\$ × ~	fx																														
netificati	an of Myotubes	E /	6					v	×			0					v v				- AA - A	-0	A0	AD AE	N	AQ.	An	AI AJ	AK.	L AH	AN AO	AP.
n per end a	10x magnification																															
ube Surf ay Inschol b, Smach	Inco Anno 1954 number as end as over In, Reperate OFF, site one	d petro per netat lat, sinularly d 14 dar	TOTAL 6 CBD	CBN M 159792	198917																											
	BANKY AREA		2000.2408	1985,2029,59	11.1214																											
	12000-01																															
	200205.176																															
	113007.715																															
	124952.20																															
		36.027.06																														
	228440.320																															
	14000 313																															
	10754.800																															
	153952 203																															
	10000.011																															
	120015-506 MEMORY OF																															
	20254 394																															
	1466en rus	107348-01																														
-																																
	120774-025																															
	125205 712																															
	100113.225																															
	133306-68																															
	140004.507 140006.1																															
	10001.000																															
		UNDER TRO																														
	101145.447																															
	19642-60	•																														
	210465 717																															
			_		-		-	-	-	-		-	-	-	-	-			-	-		-	-	_		-	-				_	-
	-																															
	100700.720																															
	Sheet1	-																														
P L	3110011	т	_																		_									_		
																											- m	191		_		+ 50

Quantification of Myotube Diameter

			- U								yotube Quar	nitification :	sept 29							30	earch Shee	:t	
lome	Insert	Draw	Page Lavo	ut Forn	nulas	Data	Review	Viev	v													20	Share
	¥ cut																		14441	~	AutoCum .		-
, - ·	n cut	Liberatio	on S 🔻 11	- A-	A-	= =	= 8	°• •	📑 🖓 V	Vrap Text 🔻	Gene	ral	*		•	•	- 480 -		• 👘 •	. 4	AutoSum ·	A P −	Q
1	G Copy *	D T	Lu L m	A	Δ -							0/ 9	* .0 .00	Conditio	nal Formal	Coll	lacert	Delete	Format	•	Fill *	E art e	Find
ce 📢	🖇 Format	BI	<u>U</u> *	· · ·	<u> </u>		· = •	e •=		terge & Centi	N Y Y Y	%)	.00 00.	Formatt	ing as Tabl	e Styles	insert	Delete	Format	1	Clear *	Filter	Sele
	A	- £.													0								
	▼ ^ ×	Jx																					
8	C D	- E - F	G H	- I I	К	L N	N C	. Р	Q /	8 1	U V	W X	Y	. M	A8 AC	AD AE	NF AG	AH	A AJ	AK	A. All	AN AO	AP.
is measured	Cor write taken along length of	mychibe and average	CBD CBN	AVERAGE (UM)																			
hes in image	that are identified through	ST DE	35.6719 36.028 V 1.31303411 2.347240	\$ 33.4647 1.98514847																			
_	AVG .	GN	4.79839478 1.2074471	\$ 1.1466807																			
	32.6965			30.038		26.47 20.0	31.054		71.44	15 334	N. 55 15 AP 16	N		51.5 21.1	27.60							_	_
	31.620			32.196			25.170		200	26.234	7.15 93.00 77		40 No. 11	01.00 N.07	410	51.78 50.40	4111 311	41.834					—
	38.7771423			23.890	21.30	41.82 21.4	27.2	23.09	25.51	21.004	13.0H 19.32 Z	26 21.48	0 01.58	20.75 21.21	18.10 115.12	75.07 54.00	4.30 30.5	31.010	21.90 12	2 17.01	31.01 23.40	54.45 25	
	25.172			20.10 19.0	8 20.00	9.0 9.0	10.52	11.N 120.21	73.77	47.97 20.11	22.18 17.61 16	N Z1.7 4	90 50 41.05	27.10 26.04	24.00 41.39	01.55 61.97	51.49 34.3	21.97	16.04 17.61	17.00	41.000	38.53 25	
	37 000100 AVG	0																					
	20.5000714			20.802			24.10			17.95			15		19.9			21.372			41,290		_
	42.4034444			27.762	9 15.30	NH 25	10,300	1.42 19.62	31.36	22.14 45.45	M.54 M.M 55	D 2.24 9	15 91.03	57.66 22.22	41.836	967 19,85	24.11 18.4	2 31.90	31.09 54.09	12.27	42.035	21.94 2	<u>38</u> 4
	39.4714545			40.602	17 17.30	2014 31.0	13.7	12.00 12.11	10.04	40,500	12 80.8 A	N 202	n 90.0	13.50 83.81	316	40.00 50.05	4677 363	21754	20.00 10.00	21.50	44,712	31.07 21	
	34 7243333			42.998		40.00 00.0	16.622	11.00	10.17	3428	NO 110 11	40	8	10 TH 14 TH	4156	AN 0.5	20 20	1.65	24.87 20.69		10.10		
	495									6.0 M.					11.4						-		_
	21.0084			14416			16.272			16 262		- 13	84		37.346			30.17			23,906		-
	48.6291111			20.56 6.0 27.548	8 20.33	20.64 16.6	3 73.30	17.29 12.30	11.14	14.22 20.42	18.66 17.54 15	17 21.6° U	21 16.72	11.16 14.62	13.75 27.27	21.42 38.11	46.72 57.3	2 64.73	33.68 13.1	21.86	30.48 23.78	20.4 30	120 2
	35.7528671			47.50 36.1 MEQ	17 13.00	16.22 17.8	23.47	18.16 17.65	22.09	21.40 27.60	51.61 65.86 #1	34 48.15 4	14 28.05 26	26.68 82.17	74.80 79.58	42.00 55.00	83.37 933.2	7 11.44 43.19	13.1 20.9	55.55	38.46 126.27	133.7 86	4.00 1
-	32.0588888			20.964	3 31.4	2.0 3	40.820	21.74 71.32	25.56	28.95	2.0 3.0 4.	7 815 2	0 163 62	32.56 31.75	31.3 21.10	21 42	413 27.4	54.152	47.63 41.64	4.12	21.130	24.5 25	154 2
-	34.402700	e		13.17 18.3	1 2.24	36.19 12.0	22.60	12.53 42.06	4.12	c.a. <u>5.</u>	21.54 22.3 15	4 2(1) 2	77 22.08	21.22 22.6	22.35 16.21	14.27 13.19	11.29 13.1	2 94.9	26.74 60.34	8.0	2.4 2.8	1/7 10	1.04 19
	11.100			17.50														PA 11			1.00		
	31.19			27.57 25.2	B 33.00	21.82 21.7	en 30 25,250	93.51 93.11	14.15	31.20 15.40	15.57 12.97 13	22 47.2 21	10 18.3H	11 22.03	27.90 54.00	21.07 20.54	37.36 30.0	51.402	54.13 50.00	2 76.90	91.5 24.11	21.14 20	100 2
	32.53425			214 214	8 32.15	32.62 37.7	40.10	23.99	25.20	53.07 20.10 19.700	41.08 20.02 2	20 15.11 21	N H.S	29.52 31.34	33.27 27.56	28.40 32.31	25.44 53.0	1 55.21 35.756	64.1 50.1	c 46.13	21.40 10.77	34.24 29	120 2
-	37.1397779			01.50 N.	9 1457	17.77 01.0	30,692	16.9 23.67	22.04	10.40 17.55	2.36 23.55 25	08 12.0° 40	99 24 21	24.11 22.65	12.00 10.15	32.24 44.25	23.44 13.0	79.486	21.77 27.94	47.65	41,236	15.46 19	192
	31.0717948			9446 11.1	e 19.11	12.41 14.8	4 59.5	14.90	14.91	53.78 82.15	2.40 17.12 3	15 31.16 4	8.8.9	17.98 16.57	14.55 12.47	12.68 10.62	11.21 12.5	90.2	67.53 61.6	, 16.5	94.74 74.97	54.20 20	170 9
	APp .														1.000								
	30.1775			83 25 17.	12 13.38	24.85 19.7	40.11	23-09 27-99	37.56	48.08 43.47	st. 1a 29.11 26	44 33 93 14	00 18.16 48	9.59 22.87	12.40 20.40	28.03 14.66	16.15 12	5 46.14	84.67 87.55	5 46.27	77.4 23.54	28.5 29	2.81 Z
	23.3581162			26.44 64.0	0 25.60	31.36 23.0	1 24.5 30.302	18.19 20.77	17.37	20-5 23-54	12.53 30.45 32	64 27.30 %	40 53.58 M	23.45 34.54	53.22			45.132			21.196	-	-
	31.42			47.56 36.6 36.836	10 21.02	16.22 29.1	46.12 26.000	25.03 28.63	19.85	22.40 24.40	13.13 13.60 16	an 14.30 21 37	36 23.33 66	13.67 10.68	23.33 23.50	\$7.40 \$3.16	32.47 63.4	24.30 43.46	27.52 48.19	54.92	73.65 20.27	14.71 19	140 1
	31.0130437	7		32.36 40	\$ 16.05	34.32 31.8	5 33.37	27.76 20.68	20.22	28.68 13.6	17.57 15.40 13	46 17.13 83	12 46.21	32.29 36.43	17.03 43.12	46.12 30.1	22.41 37.5	9 38.1	4.0 40.3	37.64	94.43 25.88	37.40 21	
	2010									N PM													
				21.2 15.0	8.27	14.00 28.0	21.00	15.40 21.52	11.70	22.5 14.24	1.32 9.32 32	40 07.11 40 10	00 11.00	20.40 24.20	27.07 11.44	17.21 12.94	16.72 28.1	21.61	22.90 28.5	1 21.04	88.40 23.54 99.500	16.00 20	2.54 3
	26.407			27.57 56	4 42.04	41.71 31.0	29.20	+4.82 22.56	23.82	31.20 20.27	8.41 19.21 28	8 2.2	26 31.32	317 31.24	11.02 23.62	21.45 19.22	55.30 41.0	10 10	18.30 13.01	16.63	23.70 23.00	31.51 40	1.32 4
	40.3996			24.24 26.3 52.55	0 20.79	25.4 01.9	2 20.00 \$1.004	18.92 21.00	41.54	98.00 22.01	4.08 29.54 26	15 <u>22.99</u> 21 44	00 21.49 00	20.35 22.33	41.20 9.17	14.07 19.2	0.9 12.4	2, 24,00	41.05 15.91	25.51	20.20 17.90	14.02 10	109 5
	20.0700.000			0.5 93	H 01.67	21.37 34.8	2 42.49	78.72 29.3	53.30	52.15 39.09	41.2 20.90 2	1.5 19.25 4	30 48.39	47.79 40.66	31.30 40.54	71.43 20	15.04 20.3	22.28	30.1 20.50	6 22.17	22.00 66.10	71.94 101	
	AV0			_			_			-					_			_					
	AL 0121300			12.1 33.5	2 54.75	62.75 61.0	42.75	9.44 29.24	31.52	13.39 17.55	16.79 8.60 8	40 11.73 40	M 72.1	94.31 77.55	12.67 10.41	21.24 28.13	21.87 9.5	27.566	23.5 13.51	22.36	42.52 67.77	41.02 26	5.75 8
	36 7864			55.8 22.1	H 16.32	36.97 48	32.53		28.56	19.4 92.05	0.77 75,25 66	45 51.46 17	41.80	35.90 33.95	211 1414	12.87 11.38	14.45 30.0	8 10.20	16.56 17.8	9.11	4.79 35.82	22.84 22	2.87
	34.083			55.61 S1.0 41.236	48.38	52.46 53.7	2 34.47	32.44 31.58	25.79	21.26 44.08	6.78 58.55 48	23 36.07 25	75 33.52 68	32.99 34.3	34.04 22.20	22.43 52.75	38.95 23.4	27.81	23.31 29.55	2 43.94	34.00 25.20	22.12 19	3.36 3
	Choott	4																					

Quantification of Myonuclear Index

	合日		5 =					1uM Myotub	e Quanitific	ation S	ept 29							Search Shee	rt	
Home	Insert	Draw	Page Layout	Formulas	Data	Review	View												+	Share
🖌 🖌	Cut	Liborati	on 6 - 11					(The little start a	General		-		(111)e	Ba			1000 L	∑ AutoSum	A	\circ
<u> </u>	Copy *	Liberati	0113	· A- A+				wrap text *	General			Ξ.	- M	` *	- TE - 1		· ·	🔹 Fill *	ZT.	9
aste 🚽	Format	BI	<u>U</u> -	• 💁 • 🗛 •		+	•	Merge & Center *	\$ * %)	00,00	Conditional	Format as Table	Cell Styles	Insert	Delete	Format	🥔 Clear *	Sort & Filter	Find 8 Select
-	۱. v. I	2 E.																		
		JA .	H					0 0 0 0		N N	Y 7	44 40	A0 A1	47	M ² AO	41	A1	AV 10 101	AN AO	42
vacial of mobile cost	te / next series a	Countries in succession in	CBD 0	20N WTH 20.5255 21.0531																
0, amouth di, and	ande 21, EuDanstar	11.02 - 28 18 Chude	Hy O ST CRY C 70118289 1 SEM C-KHEN13 0	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-																
	Nubel in Byotube	Total Nuclea	Mycroclear Index A	NEXAGE																
	100		20.95389																	
		982	10.3040335	8.211MH08																
	14	795	10 500756																	
-				23. F 9080*																
		219	15.9879829																	
	18	40	a 19929	0.7149089																
	367	200	26.89+652																	
		-40	14 100000	-																
	90	304	25.48002.4																	
	322	300	21,700110	0,118749																
	16		20 100000																	
-			_	23.0619631																
	10	- 65	23.04																	
	- 18		12 7550360																	
	110	967	10.003/004																	
	-	56	JR 19635	-																
	- 18	577	25.60000																	
	121	10	20.304598	0.2040082																
	ж		25 20000																	
-			_	21.6304(5)																
	320	324	24.3338062																	
	19		17 100002																	
	381	650	21.45408																	
	192		21 1509-65							_										-
	38	-60	23.50000e																	
	100		17.4600.5	CARDIN																

ONE-WAY ANOVA Myotube Formation Analysis on PRISM (5uM)

			5 uM Myotube Qu	antification A	ug 7 — Edited	d							
File Sheet Undo Clipboard		Analysis Interpret Change Dr	aw Write		Text		Export	Print	Send	LA	Help		
		5 👘 🖉 🖉	🔥 CX 12	 Helvetica 		✓ <u>A</u>	bd	8-	Ô۳		En l	D	Control C
🖬 🗗 🗙 🕂 New 🔹 🍮 📋 🗖 🔹	🔳 An	alyze 🎦 🎢 🎽 🛒 🔽 129	ТТА А	B <i>I</i> <u>U</u>	x² x₂ ⊯ ।	•≣•∎•	3	8	,⊷	0-	0-	FI	ISIIIC
Q• Search		NOVA results × = Multiple compariso	ons × ~										
▼ Data Tables »		Ordinana and units ANOMA											
New Data Table		ANOVA results											
▼ Info >>													
Project info 1	4	Table Analyzed	Mustube surface area										
New Info	-	Data asta asabasad	A C									_	
▼ Results >>	2	Data sets analyzed	A-0										
one-way ANOVA of Myotube surface are	3												
one-way ANOVA of Myotube Diameter	4	ANOVA summary											
= one-way ANOVA of Mynuclear index	5	F	1.082										
New Analysis	6	P value	0.3794										
Mustube surface area	7	P value summary	ns										
Myotube Diameter	8	Significant diff. among means (P < 0.05)?	No										
Mynuclear index	9	R squared	0.1938										
New Graph	10												
▼ Layouts >>	11	Brown-Forsythe test											
🔐 Layout 1	12	F (DFn, DFd)											
1 Timeline	13	P value											
값한 Layout 3	14	P value summary											
요한 Layout 4	15	Are SDs significantly different (P < 0.05)?											
IT Layout 5	16												
IT Layout 6	17	Bartlett's test											
16 Layout P	10	Batlett's statistic (corrected)	0.6340										
In Layour o	10	Rushie	0.7657										
Family >>	10	P value	0.1031										
Myotube surface area	20	P value summary	ns										
one-way ANOVA	21	Are SDs significantly different (P < 0.05)?	NO									_	
	22												
	23	ANOVA table	55	DF	MS	F (DFn, DFd)	P valu	0					
	24	Treatment (between columns)	829278217	2	414639109	F (2, 9) = 1.082	P=0.37	794					
	25	Residual (within columns)	3450274258	9	383363806								
	26	Total	4279552476	11									
	27												
	_												
🖪 🎇 Saving 🖪 🕨 🚺 🔛		III @ E 🗠 🗁 one-way ANOV	A of Myotube surface are	• هن 🔽 ه	Row 1, Colur	mn A						Q -0-	

●●● Sheet Undo Cipboar ●● ▲ ★ ★ C ∞ E ● ● ▲ ★ ★ C ∞ E E ● ● ★ + New ▼ 5 □ <th□< th=""> □ □ <th□< th=""></th□<></th□<>		Analysis Interpret Change Draw With Second Second	Ayotube Quan A 12 V T A A I	tification Aug 7 — Edited Text Helvetica B I U x ² x ₂ ش الآ	· <u>A</u> E • (= •	oort Print Send	LA Help		Pr	i šm 8
Qr Search			- 1							
Pata Tables >>>>>>>>>>>>>>>>>>>>>>	1	Ordinary one-way ANOVA Multiple comparisons Number of families Number of comparisons per family Nume	1 3							
one-way ANOVA of Myotube Surface ar one-way ANOVA of Myotube Diameter E one-way ANOVA of Mynuclear index O New Analysis Graphs >>>	4 5 6 7	Tukey's multiple comparisons test CBD vs. CBN CBD vs. MTH CBD vs. MTH	Mean Diff. 20336 9262	95.00% CI of diff. -18319 to 58991 -29393 to 47917	Significant? No No	Summary ns	Adjusted P Value 0.3494 0.7867	A-8 A-C		
Myotube surface area Myotube Diameter Myouclear index Wnynuclear index	8 9 10	CBN vs. MTH Test details CBN vs. CBN	-11074 Mean 1	-49729 to 27581	No Mean Diff.	ns SE of diff.	0.7124	B-C	q 2.077	DF
Layouts Solution Timeline Layout 3 Cf Layout 4	112 13 14	CBD vs. MTH CBN vs. MTH	181771 161435	172509 172509	9262 -11074	13845 13845	4	4	0.9461	9
Layout 5 Layout 6 Layout 7 Layout 8	15 16 17 18									
Family Myotube surface area	» 19 » 20 21									
C VIC-WAY AND VA	22 23 24									
	25 26 27									
		One-way ANOVA of Myotub	e surface area	Row 1, Column	A				a.—o—	

File Sheet Undo Clipboard 		Analysis Interpret Change		trite C(12 ⊻ H T A* A* B	Text alvetica	 Cuited V K. III III 	Export	Print Send	LA	Help			Prisma
Search			-							U I			
Data Tables »	-												
Mau Data Tabla		Ordinary one-way ANOVA											
New Data Table		Multiple comparisons											
Project info 1													
New Info	1	Number of families	1										
Results	2	Number of comparisons per family	3										
one-way ANOVA of Myotube surface area	3	Alpha	0.05										
one-way ANOVA of Myotube Diameter	4												
one-way ANOVA of Mynuclear index	5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value						
① New Analysis	6	CBD vs. CBN	0.4857	-3.893 to 4.864	No	ns	0.9488	A-B					
Graphs >>	7	CBD vs MTH	2 387	-1 992 to 6 766	No	ns	0.3263	A-C					
Myotube surface area	8	CBN vs MTH	1 902	-2 477 to 6 280	No	ne	0.4755	B-C					
🗠 Myotube Diameter	0	001110.11111	1.002	2.411 10 0.200	110	115	0.4700	5.0					
🗠 Mynuclear index	- 40	To at data lie		Mar	Marca 1944	05 -4 -84		- 0					
New Graph	10	lest details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	nz	q		DF		
Layouts »	- 11	CBD vs. CBN	26.31	25.83	0.4857	1.568	4	4	0.437	9	9		
Layout 1	12	CBD vs. MTH	26.31	23.93	2.387	1.568	4	4	2.153		9		
Timeline	13	CBN vs. MTH	25.83	23.93	1.902	1.568	4	4	1.715		9		
The Layout 5	14												
T Layout 5	15												
Layout 6	16												
C? Lavout 7	17												
Layout 8	18												
	19												
imily :	» 20												
Myotube Diameter	21												
one-way ANOVA	22												
	22											-	
	23												
	24												
	25												
	26												
	27												
	_												

			5 uM Myotub	e Quantificat	ion Aug 7 — E	Edited							
File Sheet Undo Clipboard		Analysis Interpret Change Dr	aw Write		Text		Export	Print	Send	LA Help			
📑 • 🚱 🖉 • 🛠 🏶 + 🖉 - 🐇 🖷		5 💼 🖉 🖉 🗸	🔥 C(12	 Helve 	tica	✓ <u>A</u>	txt	8-	Ô• .				Dricm 8
🖬 🗟 • 🗙 🕂 New • 5 📋 🗇 •	🗐 An	alyze 🛅 🎢 🎽 👬 🙀 🖅 129	TTA	A B I	U x² x₂	nh n⊫ ≡•1	=-	8	₼- '	0-			rnamo
Q v Search		NOVA results ×	ons × v										
▼ Data Tables >>>		Ordinani ana unu ANOM											
New Data Table		ANOVA results											
▼ Info >>													
 Project info 1 	1	Table Analyzed	Mynuclear index										
New Info	2	Data sate applyzed	A C								_		
▼ Results >>		Data sets analyzes	A-0										
one-way ANOVA of Myotube surface area	3	1101/1											
= one-way ANOVA of Myotube Diameter	4	ANOVA summary											
E one-way ANOVA of Mynuclear Index	5	F	1.885								_		
Thew Analysis	6	P value	0.2071										
Myotube surface area	7	P value summary	ns										
Myotube Diameter	8	Significant diff. among means (P < 0.05)?	No										
Mynuclear index	9	R squared	0.2952										
New Graph	10												
▼ Layouts >>	11	Brown-Forsythe test											
🛣 Layout 1	12	F (DFn, DFd)											
🛣 Timeline	13	P value											
Layout 3	14	P value summary											
Layout 4	15	Are SDs significantly different (P < 0.05)?											
TE Laurent 6	16												
Layout 7	17	Bartlett's test											
22 Lavout 8	18	Bartlett's statistic (corrected)	0.3204										
	19	P value	0.8520										
Family >>	20	P value summary	05								-		
Mynuclear index	21	Are SDe significantly different (P < 0.05)?	No										
one-way ANOVA	22												
	- 22			DE	Me		Duralua				_		
	20	Traditional (hotores and more)	45.00	DF 0	7.084	F (DFR, DFd)	P value				-		
	24	Deside al Auffala asharas)	10.00	4	1.001	1 (2, 0) = 1.003	r=0.2071						
	25	residual (within columns)	30.10	9	9.233								
	26	10081	54.05	11									
	27												
				_									
		One-way ANOV	A of Mynuclear inde	ax 🗸	& ▼ Row 1,	Column A						Q -0	

Charles Under Clabard	testate Isternat Change	5 uM Myo	tube Quantification	n Aug 7 — Edited	- Const	Dates Grand	1.6		
File Sheet Undo Cipboard	Analysis Interpret Change	- Oraw Write	12 × Holustic	lext	Export	Print Send	LA Help		· Oraphitd ,
			A A B I	Ux²x. mi	- TE+ 💕		0		Prisma
				II I I I I I		e 11	Ŭ	1	
Dete Tebles	ANOVA results × E Multiple con	nparisons × v							
Data Tables //	Ordinary one-way ANOVA								
New Data Table	Multiple comparisons								
r Info »									
(1) Project into 1	1 Number of families	1							
(+) New Info	2 Number of comparisons per family	3							
Results >>	3 Alpha	0.05							
ane-way ANOVA of Myotube Surface area	4								
one-way ANOVA of Mynuclear index	5 Tukey's multiple comparisons test	Maan Diff 95.0	0% Cl of diff Sign	ificant2 Summan	Adjusted B Value				
New Analysis	6 CRD up CRN	-1.054 -5.11	6 to 3 008 No		0.7558	A.B			
r Graphs »	CBD VS. CBN	-1.034 -3.11	10 10 3.008	115	0.7558	A-D			
Myotube surface area	7 CBD VS. MTH	1.743 -2.31	19 to 5.805 No	ns	0.4834	A-C			
Myotube Diameter	8 CBN VS. MTH	2.797 -1.28	5 10 6.859 NO	ns	0.18/9	B-C			
Nynuclear index	9								
① New Graph	10 Test details	Mean 1 Mean	n 2 Mea	n Diff. SE of dif	. n1	n2	q	DF	
" Layouts >>>	11 CBD vs. CBN	26.21 27.2	7 -1.05	1.455	4	4	1.024	9	
🔐 Layout 1	12 CBD vs. MTH	26.21 24.4	7 1.74	3 1.455	4	4	1.694	9	
🔐 Timeline	13 CBN vs. MTH	27.27 24.4	7 2.79	7 1.455	4	4	2.719	9	
Layout 3	14								
Layout 4	15								
all Layout 6	16								
Layout 6	17								
Te Layout 9	19								
in cayour o	10								
amily	0								
Mynuclear index	20								
= one-way ANOVA	21								
	22								
	23								
	24								
	25								
	26								
	27								
	-								
a a b 🖉 🖪 😣		ANOVA of Mumucloor	index III	P Dow 1 Column				0	

RAW DATA qPCR Results (1uM)

	n e	0.	U	Ŧ								📮 🛛 🖾	M DIFF	qPCR re	sults 8	k platel	ayout									S	earch Sh	et	
Home	Insert	Draw	Page	e Layou	it F	ormulas	Dat	ta R	eview	Viev	/																	1	🗄 + Share
🄁 - 👗	Cut	Calibri	(Body)	* 12	•	A- A-		=	- 39	• •	=> v	Vrap Tex	t *	Gen	eral				ġ.	.	~ ~	4		× .	••••	Σ	AutoSum Fill *	` <mark>A</mark> ₹	- Q -
Paste 💞	Format	В	ΙU	• 🖽	• 🖄	• <u>A</u> •		= -	a 🔹	•	•••	Aerge &	Center *	\$	* %)	00. 0.	Con	ditional matting	Format as Table	Cell Styles	Inse	rt (Delete	Format	1	Clear *	Sort 8 Filter	Find & Select
138 🍦	× v	f_X	FALSE																										
A 8	c	D	8	5	6	ж			к		м	N	0	P	Q		5		U	v	w	х	¥	z	44	A8	AC	AD	AS A
Plate File Norse: N	ov 1 myostatin pla	ate 1 DIFF SL	ads																										
Description:																													
Last Modified Date	/Time: 2019-11-01	04:11:10 PM	GNT																										
Date Greated: 2004	602 25 06 84 38 A	IM GMT																											
Barcode:	unititudial (51	Sustem																											
Block Type: 384-Wi	el Bock	-																											
Instrument Name:	appletini																												
Instrument Serial #	lumber: 27253124	11																											
Plate Run End Date	/Time: 2019-11-0	1 06:26:02 PM	GMT																										
Run Duration: 134	minutes 41 second	si																											
Sample Volume: 20	1.0																												
Lover remperature DCB Strang / Curla y	t: 10510 ebere écoloris is s	nerformed St	nee 2 Step 2																										
Melt Stage where	Analysis is perform	ned 3																											
Pre-read Stage/Ste	p:																												
Post-read Stage/St	ep:																												
Passive Reference: Duartification Curl	NOX Method: CT																												
will Well Po	ution Sample	Target	Task	Reporter	Quencher	Amp Status	Cq	Co Mean	Cq Confidenc	Cq 50	Auto Thresh	Threshold	Auto Reselin	Raceline Star B	aseline End	Timá	Tm2	Tmà	Ini	Onit									
3.A3	Sample 1	Target 1	UNIONOWIN	SYBR	None	Anp	27.2504594	26.3024186	0.99004426	1.04721934	FAISE	23336.904	1846	3	21	67.2987675	82.4734802	80.6200861		FAISE									
2 A2	Sample 1	Target 1	UNIONOWIN	SYDR	None	Amp	26.0850533	26.3024186	0.97294549	1.04721934	FALSE	23336.904	1800	3	28	67.0670853	80.6200867			FALSE									
4.44	Sample 1	Target 1 Target 1	UNICACIÓN	SYBE	None	Anp	25.59915377	26.8324186	0.96697926	1.06721934	FAUM	23336.904	1826		20	80.7259160	67.2670853			FAIM									
5 A5	Sample 1	Target 1	UNINOWN	SYDR	None	Amp	25.9964958	26.3024186	0.98009298	1.04721934	FALSE	23336.904	TRUE	3	29	80.6370697	67.3045297			FALSE									
6.46	Sample 1	Target 1	UNIONOWIN	SYBR	None	Anp	25.7242061	26.3024186	0.9757283	1.04721934	FAISE	22226.904	1826	3	29	67.3045197	82.4920349			FALSE									
7.47	Sample 1	Target 1	UNIONOWN	SYBR	None	Anp	25.1483864	26.3024186	0.98348388	1.04721934	FAISE	23336.904	18,4	3	26	80.6370697	67.3045297			FAISE									
2 42	Sample 1	Target 1	UNINGWN	SYBR	None	Anp	25.94423.95	26.3024286	0.97987218	1.04721934	FALSE	23336.904	1845	3	29	66.8479996	80.8098907	82.1667023	-	FALSE									
10,A30	Sample 1	Target 1	UNIONOWN	SYBR	None	Anp	26.1538529	26.3024186	0.9820255	1.04721934	FAISE	23336.904	1946	3	20	66.9640503	80.5419922			FAISE									
11 A11	Sample 1	Target 1	UNIONOWIN	SYDR	None	Amp	30.5434612	26.3024186	0.99356758	1.04721934	FALSE	23336.904	TRUE	3	23	86.1124344				FALSE									
12 A12	Sample 1	Target 1	UNIONOWIN	SYBR	None	Anp	26.2990481	26.3024186	0.98328375	1.04721934	FAISE	22226.904	1826	3	20	82.5148631	67.4282532			FAISE									
14 A14	Sample 1	Tanget 1	UNIONOWN	SYDR	None	Ano	25.6181276	26.3024186	0.98783555	1.04721934	FALSE	23336.904	TRUE	2	28	67.5155182	67.59991			FAISE									
15 A15	Sample 1	Target 1	UNIONOWN	SYBR	None	Anp	25.7642182	26.3024186	0.96584328	1.04721934	FAISE	22226.904	1846	3	29	80.5792236	67.39991			FAISE									
16 A35	Sample 1	Target 1	UNINGWN	SYBR	None	Anp	25.5149971	26.3024186	0.97998694	1.04721934	FAISE	23336.904	1846	3	17	80.6948338	67.39991			FAISE									
17 A17	Sample 1	Tanget 1	UNKNOWN	SYBR	None	Amp	29.2989245	25.3024186	0.9/48964	1.04721934	FALSE	22226.904	1806	3	29	67.0155463	83.8639374	80.5389633		FAISE									
19 A 29	Sample 1	Target 1	UNINGWIN	SYBR	None	No Arrep	Undetermine	d	0		FAISE	23336.904	1846	3	39	78.9052734	75.4259415	91.4308701	85.74796	a FAISE									
20 A 20	Sample 1	Target 1	UNINOWN	SYDR	None	No Amp	Undetermine	d	0		FALSE	23336.904	TRUE	3	29	81.1088486	77.6295366	73.6862793	92.010753	4 FAISE									
21 A21	Sample 1	Target 1	UNIONOWN	SYBR	None	No Amp	Undetermine	d	0		FAISE	222286.904	1815	3	39	65.2236949	91.6737061	82.9723893	85.568983	6 FAISE									
22 A22 23 A23	Sample 1 Sample 1	Tanget 1	UNKNOWN	SYDR	None	Amp	25.7654054	26.3024186	0.98011294	1.04721934	FALSE	23336.904	18/6	3	39	67.4260254	80.6520385	82,508310	78.333680	FALSE									
24 A24	Sample 1	Target 1	UNIONOWN	SYBR	None	Anp	25.4161236	26.3024186	0.96959459	1.04721934	FAISE	23336.904	1846	3	17	67.3100128	82.508316			FAISE									
25 81	Sample 1	Target 1	UNKNOWN	SYBR	None	Amp	25.2405897	26.3024186	0.97688337	1.04721934	FAISE	23336.904	TRUE	3	38	80.6200867	67.2987571			FAISE									
26 82	Sample 1	Target 1	UNIONOWN	SYBR	None	Amp	25.7211035	25.3024186	0.96980609	1.04721934	FAISE	23336.904 22236.904	TRUE	3	20	80.6200867	67.2987571	36 21825.42		FAISE									
28 84	Sample 1	Target 1	UNINGWN	SYBR	None	Ano	23.6968061	26.3024186	0.98953735	1.04721934	FAISE	23336.904	18,5	3	25	67.5829224	76.5657654			FAISE									
29 85	Sample 1	Target 1	UNKNOWN	SYBR	None	Amp	25.813684	26.3024186	0.9907413	1.04721934	FALSE	23336.904	1846	3	17	80.6370697	67.1885834	76.2315293		FALSE									
30.86	Sample 1	Target 1	UNIONOWN	SYBR	None	Anp	26.5034651	26.3024186	0.98599534	1.04721934	FAISE	23336.904	1806	3	21	80.6370697	67.8045297			FAISE									
33 87	Sample 1	Target 1	UNINGWN	SYDR	None	Amp	25.4960099 36.1634637	25.3024186	0.98/28981	1.04721934	EAISE	23336.904	1976	3	21	01.0370697	67.1885834			FAISE									
33.89	Sample 1	Target 1	UNIONOWN	SYBR	None	Anp	25.7456865	26.3024186	0.98078446	1.04721934	FAISE	23336.904	18,4	3	18	67.4282532	80.6580429			FAISE									
34 810	Sample 1	Target 1	UNINOWN	SYBR	None	Amp	25.5883257	26.3024186	0.98260781	1.04721934	FALSE	23336.904	1846	3	17	82.0506592	66.9640503			FAISE									
35 811	Sample 1	Target 1	UNKNOWN	SYBR	None	Amp	25.9729931	26.3024186	0.98695189	1.04721934	FALSE	22226.904	1826	3	17	82.1667023	67.5443039			FALSE									
37 812	Sample 1	Target 1	UNINGWN	SYDE	None	Arm	25 5236333	26.3024186	0.97536134	1.04721934	FAISE	23336.904	1928	1	17	82.2677606	67 2543018			FAISE									
	DOLL INCOM		1. from a local data	le leuro			D Mar	mania P	1.1		000.44				Description		14.45.14	D M		Fall search		A. 07							
P	ronayo	ut	myöstat	in iayou	n -	my/5 M	уор Муо	geniñ Fi	Ji layou		nro 11	results	M	yosiatin	nesults	•	myl5 M	YOU MY	ogenin	FOIL (6SUI		in CI	+						
														_												_			

	1																										T total			_
. d	Copy T	Calib	ri (Body) - 1	12 *	A-	A-		=	3 <mark>9</mark> , .		📑 🖉 Wra	ip Text	*	Gen	eral				1	- 💕	- 🏹	•	• • • •		•	Autosu Fill *	" Żī	?- C	2
ste 🔺	🖇 Format	В	IL		<u> </u>	<u>- </u>	•	5 3	-1	• 1		e Me	rge & C	enter *	\$	* %	,	00, 0, 00, 00,	Con	ditional matting	Format as Table	Cell Styles	Insert	Delete	Format	:	🥖 Clear 🔻	Sort	& Fin or Se	nd &
	• × ·	/ fx																												
A	8 C	D	E		6	н	1		к		м	N	0	- P	Q		5	T	U	v	W	×	Y 3	AA	AB	AC	AD	AE A	A	40
te File Name scription	Nev 6 MyB Mys	0 Myogenin	ollistatin pla	e 1d#SLed	5																									
or Name:																														
Modified Di e Created 3	nte/Time: 2019-11 006-02-25-06-84-3	06 11 23 11 1 8 AM GMT	MONT																											
ode:																														
ment Type Tupe: 884	CluentStudiol.,C	5 System																												
ment Nam	e: appletini																													
ment Seria	I Number: 27253	1241																												
Run Start	pata/Time: 2019-	07/01/25/58	M GMT																											
uration: 1	12 minutes 37 sec	ndb																												
le Volume	20.0																													
temperation (Cvrl	une: 205.0 In where Analysis	a performed	Stare 2 Sten																											
itage whe	re Analysis is per	ormed 3		1																										
ad Stage/	Step:																													
and Stage	Step:																													
ification C	de Method CT																													
Well	Positio Sample	Target	Task	Reporter	Quencher	Amp Statu	Cq	Co Mean	Co Confidenc	Cq 50	Auto Threal	h Threshold	Auto Base	ir Baseline St	ta Baseline Er	cTm1	Tm2	Tm3	Tm4	Omit										
1 41	Savgle 1	Target 1	UNKNOWN	5786	Nove	Ave	28.915445	20,898694	0.9887034	3.4805535	TRUE	36894.237	190.0		1 1	7 81.63668				FALSE										
3 A3	Sample 1	Target 1	UNKNOWN	5198	None	Ang	23.57484	20.856654	0.9866486	3.4825531	TRUE	36894.237	TRUE		3 1	7 81.86563	2			FALSE										
4 A4	Sample 1	Target 1	UNKNOWN	5788	None	Δπρ	23.382564	20.898694	0.9808831	3.4825531	TRUE	36894.237	TRUE		3 1	81.75116	7			FAISE										
5 A5	Sample 1	Target 1	UNKNOWN	SYBR	None	Amp	23.922118	20.898654	0.9896805	2.4825531	TRUE	36894.237	TRUE		3 1	7 #1.64524 3 #1.8763#	1			FALSE										
7 A7	Sample 1	Target 1	UNKNOWN	5186	None	Ano	24.275838	20.898694	0.9842193	3.4825531	TRUE	36894.237	TRUE		3 3	\$ 81.64524	1			FALSE										
8 A8	Sample 1	Target 1	UNKNOWN	SYBR	None	Amp	24.229139	20.898654	0.9843429	2.4825531	TRUE	36894.237	TRUE		3 1	81.75976	6			FALSE										
9 A9	Sample 1	Target 1	UNKNOWN	5198	None	Amp	23.686829	20.898654	0.9876426	3.4825531	TRUE	36894.237	TRUE		3 3	5 81.66040 81.000533	5			FAISE										
11 A11	Sample 1	Target 1	UNKNOWN	5788	None	Ang	23.643746	20.898654	0.990681	3.4825531	TRUE	36894.237	18.6		1 1	5 80.97280	1			FALSE										
12 A12	Sample 1	Target 1	UNKNOWN	SHOR	None	Атр	23.751584	20.898654	0.9900413	3.4825531	TRUE	36894.237	TRUE		3 3	5 81.77500	3			FALSE										
13 A13	Sample 1	Target 1	UNKNOWN	5786	Nove	Ang	23.942944	20.858654	0.9845435	3.4825535	TRUE	36894.237	19.8		3 3	8 81.83229	3			PALSE										
15 A15	Sample 1	Target 1	UNKNOWN	SHER	None	Ang	23.638653	20.898654	0.9836256	3.4825531	TRUE	36894.237	TRUE		3 1	7 81.37508	4			FALSE										
35 A16	Sample 1	Target 1	UNKNOWN	5188	None	Amp	23.559429	20.858654	0.9840508	3.4825531	TRUE	36894.237	TRUE		3 3	8 81.71798	7			FAISE										
17 A17	Sample 1	Target 1	UNKNOWN	SYBR	None	Amp	23.809539	20.898654	0.9889683	3.4825531	TRUE	36894.237	TRUE		3 3	5 81.76364				FALSE										
29 A19	Sample 1	Target 1	UNKNOWN	5188	None	NyAng	Undetermine	d	0	1.441.000	TRUE	36894.237	TRUE		3 3	67.90415	2 72.8712	2 63.78066	\$ 85.4289	7 FAISE										
20 A20	Sample 1	Target 1	UNKNOWN	SYBR	None	No Amp	Undetermine	d	0		TRUE	36894.237	TRUE		3 3	81.99278	92.6450	13 86.00067	8 26.95291	1 FALSE										
21 A21 22 A2*	Sample 1	Target 1	UNKNOWN	STRE	None	No Amp No Amp	Undetermine	e d	0		TRUE	36894.237	TRUE		3 3	71.80220 68.M/200	90.9363	67.67755	a 81.54117	FALSE										
28 A28	Sample 1	Target 1	UNKNOWN	SYBR	None	Ang	23.653659	20.898654	0.9853498	3.4825531	TRUE	36894.237	TRUE		3 1	81.42660	5			FALSE										
24 A24	Sample 1	Target 1	UNKNOWN	SHIR	None	Атр	23.362992	20.898654	0.9838729	3.4825531	TRUE	36894.237	TRUE		3 1	81.54117	5			FALSE										
25 81	Sample 1	Target 1	UNKNOWN	5785	None	Amp	23.756236	20.858654	0.9874854	3.4825533	TRUE	36894.237	TRUE		3 1	81.52221				FAISE										
27 03	Sample 1	Target 1	UNKNOWN	SYBR	None	Amp	24.211927	20.898654	0.9882389	3.4825531	TRUE	36894.237	TRUE		3 1	81.52221	2			FALSE										
28.84	Sample 1	Target 1	UNKNOWN	5188	None	Amp	24.265437	20.858654	0.9874653	3.4825531	TRUE	36894.237	TRUE		3 3	\$ 81.40774	5			FAISE										
29.85	Sample 1 Sample 1	Target 1 Target 1	UNKNOWN	5786	None	Amp	25.288289 24.9655559	20.898654	0.9936865	3.4825531	TRUE	36894.237	TRUE		3 1	8 81.87428 7 81.43419				FALSE										
31 87	Sample 1	Target 1	UNKNOWN	5198	None	Amp	25.200112	20.898694	0.9858845	3.4825531	TRUE	36894.237	TRUE		3 1	81.87428	3			FAISE										
32 88	Savgle 1	Target 1	UNKNOWN	SYBR	None	Amp	25.29785	20.898694	0.9863663	8.4825531	TRUE	36894.237	TRUE		8 3	81.87428	8			FALSE										
AJ 107 34 800	Sample 1	-arget 1 Target 1	UNINOWN	5186	None	Amp	24.022415	20,855054	0.995021	1.4825533	TRUE	30894.237 36894.237	TRUE		3 1	81.66040 7 81.31660				FAISE										
85 811	Savgle 1	Target 1	UNKNOWN	SYBR	None	Amp	23.92629	20.898694	0.9936405	8.4825531	TRUE	36894.237	TRUE		8 3	\$ 82.00421	3			FALSE										
36 812	Sample 1	Target 1	UNKNOWN	SYBR	None	Amp	24.001375	20.898654	0.9883175	3.4825531	TRUE	36894.237	TRUE		3 1	7 82.1188	2			FALSE										
38 854	Sample 1 Sample 1	-arget 1 Target 1	UNKNOWN	5788	None	Amp	24.349487	20.898694	0.9873084	3.46/3533	TRUE	36894,237	190.0		3 1	81.71798	2			FALSE										
29 815	Sample 1	Target 1	UNKNOWN	SYBR	None	Amp	24.429751	20.898654	0.9907037	3.4825531	TRUE	36894.237	TRUE		3 1	81.83229	1			FALSE										
40 805	Sample 1	Target 1	UNKNOWN	5198	None	Amp	24.483031	20.858654	0.9868395	3.4825531	TRUE	36894.237	TRUE		3 1	5 81.71798	7			FAISE										
42 938	Sample 1	Tanget 1	UNKNOWN	SYBR	None	Ang	24.659639	20,898654	0.9877134	2.4825531	TRUS	36894.217	18,8		· · ·	5 81.87818				FALSE										
43 829	Sample 1	Target 1	UNKNOWN	5198	None	Атр	24.725012	20.898654	0.9883237	3.4825531	TRUE	36894.237	TRUE		3 3	8 81.87818	3			FALSE										
	BPS11 Ia	out	Myos	tatin lav	out	Myf	MyoD N	tyogen	n Fol la	rout	BP	S 11 res	ults	Mv	ostatin	Results		My15 M	voD My	ogenin	Foll resu	t i	AA CT	+						
1						. ny n											_		, mg	- 9 - 1111		-				_				-

ome Inse	r⊟ ∽ ° ⊖ ∓ ert Draw Page La	vout Formulas	Data	Review V	ew	UM DIFI	+ qPCR res	ults & plate	layout							Search Sh	eet	+ Share
Cut	Calibri (Body) *	12 • A• A•	=	- **	=> v	frap Text +	Gener	ral	•	.			+			AutoSum	' <mark>,</mark> ,	Q
ite 💞 Form	nat B I <u>U</u> ∗	· \land · 🔺 ·	5 B	• •	• N	ierge & Center	• \$ •	%)	00. 0.• 0.• 00.	Conditional	Format as Table	Cell Styles	Insert	Delete	Format	Fill * Ø Clear *	Sort & Filter	Find & Select
• ‡ ×	$\checkmark f_x$ =Q66/SQRT	6)																
	0 6 F 6	H 1 1	x MCT	L M N	0 P	Q R	5	Y U	v w			AA AB	AC.	AD AS	N	AG AN AI	N	AK.
1844 23.88577	CR0 18.27451 18.82274	CRD 5.165005	CR0	C80	M	680	CAN .	M24										
0581 7484 23.4787	10.83003 10.84188 10.84840	4.190215	0.339235	1.265086	-	0.941701	1.155518	1.007628										
8216	19.35514	4 845 786	0.045333	0.040141		0.978495	0.682861	1.011657										
0425	19.43346					1.173878	1.028214	1.00852										
1914	19.49223		0.017637			0.742284	0.769231	1.001069										
1923	19.43127 19.9929	4.420117	40.167774	1.123324	AVS	0.918539	0.949742	1.007126										
1375 23.69765	16.77309 18.47327 20.17344	5.224397	0.636506	0.643269	ST DEV	0.153473 0.062655	0.290094	0.005328										
1294 23.77493	20.41565 19.79999	3.575349	40.233368	1.580426	N-40	600	644	M84										
865 23.58904	19.43292 19.5976	3.591445	4.223212	1.567329														
954 23.87992	19.33547 19.33043	4.549495	0.337299	0.291522	9	1.225304	0.856565	1.002233										
4533	19.32539	0			55	0.566992	1.457843	1.058342 1.033997										
	NA NA				55	1.12192 0.797155	0.971838	1.005524										
	NA DECEMBER 18 DECEMPT	410711	0.438984	0.111114	-	1.013947	1.331734	1.011078										
219	19.27433				ST DRV	0.299127	0.310994	0.038111										
	CBN	CBN	CBN	CBN		0.122118	0.126718	0.015559										
1622 23.81395	19.45725 19.33506	4.578884	0.109434	0.926953	Myrer	sin CBO	CBN	MER										
193 24 23868	20.47224 20.33816	4.00052	-0.468931	1.384083	51	0.659615	1.227124	1.000351										
1824 25.1019	20.09293 19.89929	5 20261	0.402544	0.756523		0.575405	1.347923	1.035373										
111 25.19946	20.47146 19.68438	5.515041	0.715016	0.609198		0.780243	0.725697	1.00095										
241 23 59799	20.4855 13.8506	4.136783	-0.451108	1.54709	*	0.553047	0.237895	1.00005										
216	19,21571	4.121936	0.445995	1.381232	AVS ST DEV	0.76669	0.273682	1.012225										
0138	19.75656	4 100110	0.081878		SIM	0.085313	0.111732	0.005455										
491	NA	• • • • • •	0.070071	10000	Pellish	6n CBO	CBN	M24										
1975 24.45639	20.13997 20.40282 20.63567	4.053572	-0.161085	1.114128	51	0.739796	1.121922	1.020155										
227 24.66095 9964	20.13485 20.00139 19.87293	4.659566	0.44737	0.733378	9	0.761215	1.058321 3.172999	1.015218										
1601 24.30132	19.9507 19.68209	5.619228	0.807032	0.571557	54	0.758226	5.234772	1.022543										
4396 24.32741	19.76108 19.70597	4.624045	0.50535	0.704538		0.489378	0.83619	1.010648										
216 24 56518	20.01044 20.18237	4.380805	0.262011	0.833925	AVS	0.650024	1.023475	1.021305										
339	10.090				STORY	0.048904	0.062652	0.007817										
013 24.66158	MTH 20.40211 20.37022	4.291353	40.178087	1.121383	Mycoh	64 (80)	CON	MIN										
1303	20.27832	4.46945	0.1280#2	0.001874		0.512343	0.96607	1.0051**										
1182	20.74127	4,647538			9	1.115288	0.945819	1.019849										
264 24.8.0564	20.22933	2 4,80005	5 0.270066	0.858526	59 54	0.518843	2.04664	1.005396										
1818 * 25.46352 1524	20.81294 20.88352 20.95611	4.579999	40.2200646	1.064787	55 56	0.430403 0.480911	0.741665 0.756784	1.000885										
1251 25.18405	20.7115 20.36059	4.823454	0.235563	0.849354	ANS	0.73368	1.105340	1.030632										
932 24.00098	19.3764 19.65865	4.352329	40.235563	1.177366	ST DEV	0.511905	0.519995	0.058951										
1072 23.09292	19.16657 19.29067	4.422849	0.188192	0.877705	304	0.000.004	C.1.(199)											
1512	19.41357 20.54571 20.51292	4 4.21455	-0.188192	1.139335														
9382 9975 25.28454	20.44212 21.02586	4.258629	0.046483	0.054204														
DDCL	d laurent Africantatio In	An off Advert		- Fallenad	000.44	and the second	Acceptable De		11.45 14.4	DMunnah	Fall man		1.07					
P RPS1	Myostatin la	your Myts Myol	2 myögeni	n Foi layout	nP5 11 r	esuits /	nyostátin He	rsuits	my15 My	n wyogenin	Foil resu		a 01	+				
																-		

ONE-WAY ANOVA qPCR (1uM)

File Sheet Undo Clipb	pboard Analysis Interpret Change Draw	Write	Text		le de				
📑 • 🛃 🖉 • 🏶 🛠 • 🖒 😽 🖡	■ 14 15 III ■ A+				Export PI	nint Send LA Help			
		12 CK	Helvetica	✓ <u>A</u>	_ nr (3• d• 🔔 🕟			Driem 8
× + New - 5 ∩ 1	🛉 🗕 Analyze 🎦 🎢 🛄 💒 🖬 129	ТТА	B <i>I</i> U x ² x,	10 P E - 1	= 🐺 ど	A 📍 🛛			FIISITIO
Q* Search	ANOVA results × E Multiple comparisons ×								
▼ Data Tables >>	Ordinary one-way ANOVA								
III Myf5	Multiple comparisons								
MyoD									
E collicitatio	1 Number of families 1								
Munistatin	2 Number of comparisons per family 3								
New Data Table	3 Alpha 0	0.05							++
▼ Info >>>	4 V V V V V V V V V V V V V V V V V V V								
Project info 1	5 Tukey's multiple comparisons test	lean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value		-	++
New Info	6 CBD vs. CBN	0.02521	-0.3094 to 0.2589	No	08	0.9712	A-B		++
Results Source Alloy/A of Mulfs	7 CBD vs. MTH -4	0.08860	-0.3727 to 0.1955	No	ns	0.7028	A-C		
one-way ANOVA of Myrb	8 CBN vs. MTH 4	0.06338	-0.3475 to 0.2208	No	ns	0.8330	B-C		
one-way ANOVA of Myogenin	9								
one-way ANOVA of Follistatin	10 Test details N	llean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	q	DF
one-way ANOVA of Myostatin	11 CBD vs. CBN 0	0.9185	0.9437	-0.02521	0.1094	6	6	0.3259	15
Granbs	12 CBD vs. MTH 0	0.9185	1.007	-0.08860	0.1094	6	6	1.145	15
Myf5	13 CBN vs. MTH 0).9437	1.007	-0.06338	0.1094	6	6	0.8194	15
[≥ MyoD	14								
🗠 Myogenin	15								
Follistatin	16								
New Graph	17								
▼ Layouts >>	18								
🔛 Layout 1	20								
New Layout	21								
	22								
	23								
© Samily >>	24								
Myf5	25								
e one-way ANOVA	26								
	27								
	1 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Myf5	💟 🖉 🔻 Row 1	l, Column A				Q —	@

Image Desk Weige Desk Weige Desk				📔 1uM i	qPCR diff graphs — Edite	d						
• • • • • • • • • • • • • • • • • • •	File Sheet Undo	Clipboa	rd Analysis Interpret Change Dra	w Write	Text		Export F	Print Send L	A Help			
Image:	ा • 💁 🖉 • 🏶 🖈 • 🖒 🧧	f 📭	🚡 🗠 🗟 📰 🛛 🥐 🔄 💁 •	_ 🔖 CX 🛽	2 Y Helvetica	✓ <u>A</u>	_ 10	∋• ₫• 🖕				Prism8
Q. Sarchi North Arselfs	🖶 🗗 🗙 + New - 5 [Ô 🗘	- 🕒 Analyze 🎦 🥕 🏪 📰 📰 🖬	TT	$A^* A^* \mathbf{B} I \sqsubseteq x^* x$	2 🖞 🖓 📰 •	E- 🍱 e	2 🔺 🎽	· 0-			THOMIC
V bit Direction of the comparisons Direcomparisons Direcomparisons Di	Qr Search			~								
Image: bit is a second of the secon	▼ Data Tables	>>										
Image: constraints Image:	Myf5		Ordinary one-way ANOVA									
Image Image <th< td=""><td>III MyoD</td><td></td><td>Multiple comparisons</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	III MyoD		Multiple comparisons									
Image: matrix and	Myogenin		Museline of fee line									
Bit Mystellam Z Name of companions per sensity P Mark D D No	E Follistatin	-	Number of families	1								
Control Column	Myostatin New Data Tabla	2	Number of comparisons per family	3							_	
Image: second	Thew Data fable	» .	Alpha	0.05				_				
O Wate Draw Source of the second sec	Project info 1	4					-					
No No<	New Info	5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P V	alue			
Other way ANOVA of MypSi 7 C BD vs. MTH 0.01813 0.328 to 0.3568 No ns 0.8913 AC Image: Control of MysSime (Control of MysSime (Con	▼ Results	» 6	CBD vs. CBN	-0.1928	-0.5675 to 0.1819	No	ns	0.3977		A-B	_	
Other ADVA of Myogen 6 CH CH COMe to 543 no no no def82 B-C Image: Come to 34000 © met-way ADVA of Myogen 9 0 Man 1 Man 2 Man 10 Se of dif. n1 a2 q D <td< td=""><td>one-way ANOVA of Myf5</td><td>7</td><td>CBD vs. MTH</td><td>-0.01813</td><td>-0.3928 to 0.3566</td><td>No</td><td>ns</td><td>0.9913</td><td></td><td>A-C</td><td>_</td><td></td></td<>	one-way ANOVA of Myf5	7	CBD vs. MTH	-0.01813	-0.3928 to 0.3566	No	ns	0.9913		A-C	_	
Image: marrier Image: marrier Image: marrier Man 1 Man 2 Man 1 Man 2 Man 1 Man 2 Man 1	e one-way ANOVA of MyoD	8	CBN vs. MTH	0.1747	-0.2000 to 0.5493	No	ns	0.4652		B-C	_	
Def of way AND/A of Foldiality 10 Tet defails Men 1 Men 2 Men 2 Ref of mail nt n2 q DF 0 for marky AND/A of Foldiality 10 1206 0.1433 6.0 6.0 150 15 0 for marky AND/A of Poldiality 10 10.3 10.31 0.0143 6.0 6.0 10.0 15 0 for marky AND/A of Poldiality 10 10.31 10.31 0.0143 6.0 6.0 10.0 15 0 for marky AND/A of Poldiality 10 10.31 0.0143 0.1433 6.0 6.0 10.0 15 0 for marky AND/A of Poldiality 10 10.31 0.0143 0.1433 6.0 6.0 10.0 15 0 for marky AND/A 16 10.0 10.01 0.1747 0.1433 6.0 6.0 1772 15 0 for marky AND/A 16 10.0 10.01 0.1747 0.1433 6.0 1772 15 0 for marky AND/A 16 10.0 10.01 1772 16 1772 16 1772 16 0 for marky AND/A 16 10.0 10.01	one-way ANOVA of Myogenin	9									_	
Color Alexa Addition servicality 11 CBD vs. CBN 1013 1208 0.1483 6 6 0.177 15 V apple 13 CBD vs. CBN 1013 1031 0.0183 0.1483 6 6 0.177 15 V apple 13 CBD vs. CBN 1206 1031 0.1142 0.1483 6 6 0.177 15 C Mord 13 CBN vs. MTH 1206 1031 0.1747 0.1483 6 6 0.177 15 C Mord 15 CBN vs. MTH 1206 1031 0.1747 0.1483 6 6 0.177 15 C Mord 15 CBN vs. MTH 1206 1031 0.1747 0.1483 6 6 0.177 15 C Mord of mycality 15 CBN vs. MTH 1206 1031 0.1747 0.1483 6 6 0.172 15 C Mord of mycality 15 CBN vs. MTH 1206 1031 0.1747 0.1483 6 6 172 15 C Mord of mycality 17 CBN vs. MTH 1206 1041 CBN vs. MTH 1206 1041 1041 1041 1041 1041	= one-way ANOVA of Hupstatin	10	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1		n2	q	DF
Open State State <ths< td=""><td>blaw doalwrie</td><td>11</td><td>CBD vs. CBN</td><td>1.013</td><td>1.206</td><td>-0.1928</td><td>0.1443</td><td>6</td><td></td><td>6</td><td>1.890</td><td>15</td></ths<>	blaw doalwrie	11	CBD vs. CBN	1.013	1.206	-0.1928	0.1443	6		6	1.890	15
Owder 13 CBW w.MTH 1206 1.031 0.1747 0.143 6 6 1.712 15 CMMpdefini 15 15 15 15 15 16	▼ Graphs	>> 12	CBD vs. MTH	1.013	1.031	-0.01813	0.1443	6		6	0.1777	15
Import 14	Myf5	13	CBN vs. MTH	1.206	1.031	0.1747	0.1443	6		6	1.712	15
Image of the second	MyoD	14	6									
Image: Second	🖂 Myogenin	15	5									
L: Mordathin 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	🗠 Follistatin	16	6									
(b) Merror Graph 18 (c) Merror Graph 19 (c) Merror Layout 19 (c) Merror Layout 20 (c) Merror Layout 20 (c) Merror Layout 21 (c) Merror Layout 23 (c) Merror Layout 23 (c) Merror Layout 24 (c) Merror Layout 25 (c) Merror Layout 26	🗠 Myostatin	17	r									
Image: Second	New Graph	18	3									
20 cmo-way ANOVA of MyroD 21 cmo-way ANOVA of MyroD 22 cmo-way ANOVA of MyroD 23 cmo-way ANOVA of MyroD 24 cmo-way ANOVA of MyroD 27 cmo-way ANOVA of MyroD 27 cmo-way ANOVA of MyroD 27 cmo-way ANOVA of MyroD 28 cmo-way ANOVA of MyroD 29 cmo-way ANOVA of MyroD 20 cmo-way ANOVA of MyroD 2	* Layouts	²⁰ 19	2									
21 22 23 Panhy ≫ 24 1088-may ANOXA 11/ynO 0 ² 8 mst, Column A 10 108 mst, Max 11/ynO 0 ² 8 mst, Column A	New Lavout	20	2									
22 Family 32 Family 32 C dee-way ANOVA d MynO 27 10 C me-way ANOVA d MynO 20 C me-way A		21										
700 70		22	2									
Family 24 Import 25 Import 26 Import 27 Import 28 Import 28 Import 29 Import 29 Import 29 Import 29		23	3									
Impo 25 □ One-way ANOVA 26 27 27	Family	» 24	\$ ·									
□ one-way ANOVA 28 277 27 □ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MyoD	25	5									
	e one-way ANOVA	26	5 · · · · · · · · · · · · · · · · · · ·									
Image:		27										
Id Image: Contract of the second secon												
		D	88 🖽 @ 🚍 🗠 🔚 🛛 one-way ANOVA	of MyoD	🐷 🧬 🔻 Row	1, Column A					Θ, -	

			📔 1uM d	qPCR diff graphs — Edite	d						
File Sheet Undo C	lipboard	Analysis Interpret Change Drav	w Write	Text		Export P	vint Send LA Help				
📑 • 🛃 🖉 • 🏶 🛠 • 🖒 😽	P	1 12 12 📾 👷 💁 🖕	_ 🔥 CX 🔟	2 Y Helvetica	✓ <u>A</u>		B• A• 🔔 🕥			Prism	18
× + New - 5 🗈	۰.	🖹 Analyze 🎦 🎢 🎽 🛒 📅 129	TT	A A B I U x ² x	, in in E+	1=- 🍱 🗧	a 🗛 🎽 🕜			1 Hon	
Or Search	-										
T Data Tables		ANOVA results × (=) Multiple comparisons ×	21								
Myf5		Ordinary one-way ANOVA									
MvoD		Multiple comparisons									
Myogenin											
Follistatin	1	Number of families	1								
Myostatin	2	Number of comparisons per family	3								
① New Data Table	3	Alpha	0.05								
▼ Info >>>	4										t
 Project info 1 	5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value				tt
New Info	6	CBD vs. CBN	-0.2684	-0.5668 to 0.03007	No	ns	0.0812	A-B			tt
▼ Results >>	7	CBD vs. MTH	-0.2455	-0.5440 to 0.05292	No	ns	0.1158	A-C			tΠ
ane-way ANOVA of MyoD	8	CBN vs. MTH	0.02286	-0.2756 to 0.3213	No	ns	0.9785	B-C			ti
E one-way ANOVA of Myogenin	9										tl
= one-way ANOVA of Follistatin	10	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	a	DF	Ηľ
i one-way ANOVA of Myostatin	11	CBD vs. CBN	0.7667	1.035	-0.2684	0.1149	6	6	3.303	15	
① New Analysis	12	CBD vs. MTH	0.7667	1.012	-0.2455	0.1149	6	6	3.022	15	
▼ Graphs >>	13	CBN vs. MTH	1.035	1.012	0.02286	0 1149	6	6	0.2813	15	
Myf5	14	0011011111	11000	none	CIGELOO	0.1110	•	•	0.2010	10	
MyoD	15										
Mydgenin Sellistatio	10										
Myostatin	17										
New Graph	10										
▼ Layouts >>>	10										
🔐 Layout 1	19										
New Layout	20										
	21										
	22										
0	23										
Family >>	24								_		
Myogenin	25										
= one-way ANOVA	26										
	27										
											0
	b 88	One-way ANOVA	of Myogenin	Bow Row	1, Column A					0	a

				📔 1uM qPi	CR diff graph	s — Edited						
File Sheet Undo Cl	lipboard	Analysis Interpret	Change D	Iraw Write		Text		Export Print	t Send LA	Help		
📑 😼 🖉 🕷 🛠 🖯 🐇	6		<u>ð</u> ı -	🔥 O(12	 Helvetic 	28	✓ <u>A</u>	🖯	• 🗇 🖕			Prism8
■ 🖬 × + New • 5 🗅	• 🗅	🖬 Analyze 🎦 🥕 🏪 🖉	f 🔽 120	TTA	A B I	<u>U</u> x² x₂	nh n⊳ ≣• t≣•	- S	۵- ۲	0-		THOMIC
Qr Search		ANOVA results × 🗐 Multiple con	nparisons \times	~								
▼ Data Tables >>												
III Myf5		Multiple comparisons										
Myogenin Myogenin												
🖽 Follistatin	1	Number of families	1									
Myostatin	2	Number of comparisons per family	3									
New Data Table	3	Alpha	0.05									
▼ Info »	4											
Project Info 1 O New Jafa	5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value					
Results	6	CBD vs. CBN	-0.3735	-0.5778 to -0.1691	Yes	***	0.0007	A-B				
appe-way ANOVA of My/5	7	CBD vs. MTH	-0.3713	-0.5756 to -0.1669	Yes	***	0.0008	A-C				
= one-way ANOVA of MyoD	8	CBN vs. MTH	0.002169	-0.2022 to 0.2065	No	ns	0.9996	B-C				
= one-way ANOVA of Myogenin	9											
one-way ANOVA of Follistatin	10	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	q	DF		
one-way ANOVA of Myostatin	11	CBD vs. CBN	0.6500	1.023	-0.3735	0.07867	6	6	6.713	15		
New Analysis	12	CBD vs. MTH	0.6500	1.021	-0.3713	0.07867	6	6	6.674	15		
♥ Graphs >>	13	CBN vs. MTH	1.023	1.021	0.002169	0.07867	6	6	0.03899	15		
Myrb Myrb	14											
Myogenin	15											
N Follistatin	16											
🗠 Myostatin	17											
New Graph	18											
▼ Layouts >>	19											
🔐 Layout 1	20											
(+) New Layout	21											
	22											
	22											
	24											
Family >>	24											
	20											
- One-way ANOVA	20											
	21			1								
				A of Follistatio		0- n-	0.1				0	®
			one-way ANO	A or Foilistatin	≥ c	Row 1,	Column A				9	

File Sheet Undo ▼ Q Sheet C ○ ■ ■ × + New > 5 6	Clipbos	ard Analysis Interpret Change Dra	Write • Write • CX T T	qPCR diff graphs — Edite Text 12 ♥ Helvetica A* A* B I <u>U</u> x ² x	₂∰IP≣▼	Export	Print S	and LA	Help			Prism8
Qr Search		ANOVA results × 🗐 Multiple comparisons ×	~									
Data Tables Myf5 MyoD	>>	Ordinary one-way ANOVA Multiple comparisons										
Myogenin		Number of females										
E Follistatin	2	Number of comparisons per family	3									
New Data Table	3	Alpha	0.05				_					
r Info	» 4											
 Project info 1 	5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adju	sted P Valu	•			
New Info	. 6	CBD vs. CBN	-0.3723	-1.006 to 0.2614	No	ns	0.30	3		A-B		
e one-way ANOVA of My15	" 7	CBD vs. MTH	-0.2370	-0.8706 to 0.3967	No	ns	0.60	54		A-C		
e one-way ANOVA of MyoD	8	CBN vs. MTH	0.1353	-0.4983 to 0.7690	No	ns	0.84	57		B-C		
e one-way ANOVA of Myogenin	9											
e one-way ANOVA of Follistatin	10	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1			n2	q	DF
one-way ANOVA of Myostatin	11	CBD vs. CBN	0.7937	1.166	-0.3723	0.2440	6			6	2.158	15
rew Analysis Granbs	12	2 CBD vs. MTH	0.7937	1.031	-0.2370	0.2440	6			6	1.374	15
Myf5	13	GBN vs. MTH	1.166	1.031	0.1353	0.2440	6			6	0.7845	15
MyoD	14	4										
🗠 Myogenin	15	5										
Follistatin	16	3										
Myostatin	17											
Lavouts	» 18	3										
🔛 Layout 1	18	3										
New Layout	20											
	21						_					
	24											_
	20											
amily TT Musetatin	>> 24						-					+
myostatin one-way ANOVA	25					-	-				-	++
	27	7										
	-											

REFERENCES

- Mcleod, M., Breen, L., Hamilton, D. L., & Philp, A. (2016). Live strong and prosper: the importance of skeletal muscle strength for healthy ageing. *Biogerontology*, *17*(3), 497–510. doi: 10.1007/s10522-015-9631-7
- Argilés, J. M., Campos, N., Lopez-Pedrosa, J. M., Rueda, R., & Rodriguez-Mañas, L. (2016). Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease. *Journal of the American Medical Directors Association*, 17(9), 789–796. doi: 10.1016/j.jamda.2016.04.019
- Lexell, J. (1993). What is the Cause of the Ageing Atrophy? Assessment of the Fiber Type Composition in Whole Human Muscles. *Sensorimotor Impairment in the Elderly*, 143–153. doi: 10.1007/978-94-011-1976-4 10
- Murray, M. P., Duthie, E. H., Gambert, S. R., Sepic, S. B., & Mollinger, L. A. (1985). Age-Related Differences in Knee Muscle Strength in Normal Women. *Journal of Gerontology*, 40(3), 275–280. doi: 10.1093/geronj/40.3.275
- Murray, M. P., Gardner, G. M., Mollinger, L. A., & Sepic, S. B. (1980). Strength of Isometric and Isokinetic Contractions. *Physical Therapy*, 60(4), 412–419. doi: 10.1093/ptj/60.4.412
- Caldwell, T., & Levac, J. (2017, February 13). The high cost of falling down: Why falls are an overlooked health crisis. Retrieved from https://ottawacitizen.com/news/local-news/the-high-cost-of-falling-down-whyfalls-are-an-overlooked-health-crisis.

- Dickinson, J. M., Volpi, E., & Rasmussen, B. B. (2013). Exercise and Nutrition to Target Protein Synthesis Impairments in Aging Skeletal Muscle. *Exercise and Sport Sciences Reviews*, 41(4), 216–223. doi: 10.1097/jes.0b013e3182a4e699
- Churchward-Venne, T. A., Breen, L., Donato, D. M. D., Hector, A. J., Mitchell, C. J., Moore, D. R., ... Phillips, S. M. (2013). Leucine supplementation of a lowprotein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. *The American Journal of Clinical Nutrition*, 99(2), 276–286. doi: 10.3945/ajcn.113.068775
- Drey, M., Grösch, C., Neuwirth, C., Bauer, J., & Sieber, C. (2013). The Motor Unit Number Index (MUNIX) in sarcopenic patients. *Experimental Gerontology*, 48(4), 381–384. doi: 10.1016/j.exger.2013.01.011
- Kwan, P. (2014). Erratum to "Sarcopenia, A Neurogenic Syndrome?" Journal of Aging Research, 2014, 1–2. doi: 10.1155/2014/751469
- Chabi, B., Ljubicic, V., Menzies, K. J., Huang, J. H., Saleem, A., & Hood, D. A. (2008). Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. *Aging Cell*, 7(1), 2–12. doi: 10.1111/j.1474-9726.2007.00347.x
- Ljubicic, V., Joseph, A.-M., Adhihetty, P. J., Huang, J. H., Saleem, A., Uguccioni, G., & Hood, D. A. (2009). Molecular basis for an attenuated mitochondrial adaptive plasticity in aged skeletal muscle. *Aging*, *1*(9), 818–830. doi: 10.18632/aging.100083
- Calvani, R., Joseph, A.M., Adhihetty, P. J., Miccheli, A., Bossola, M., Leeuwenburgh, C., ... Marzetti, E. (2013). Mitochondrial pathways in sarcopenia

of aging and disuse muscle atrophy. *Biological Chemistry*, *394*(3), 393–414. doi: 10.1515/hsz-2012-0247

- 14. Alway, S. E., Degens, H., Krishnamurthy, G., & Smith, C. A. (2002). Potential role for myogenic repressors in apoptosis and attenuation of hypertrophy in muscles of aged rats. *American Journal of Physiology-Cell Physiology*, 283(1). doi: 10.1152/ajpcell.00598.2001
- Alway, S. E., Morissette, M. R., & Siu, P. M. (2011). Aging and Apoptosis in Muscle. *Handbook of the Biology of Aging*, 63–118. doi: 10.1016/b978-0-12-378638-8.00004-x
- Snijders, T., Nederveen, J. P., Mckay, B. R., Joanisse, S., Verdijk, L. B., Loon, L. J. C. V., & Parise, G. (2015). Satellite cells in human skeletal muscle plasticity. *Frontiers in Physiology*, 6. doi: 10.3389/fphys.2015.00283
- Verdijk, L. B., Snijders, T., Drost, M., Delhaas, T., Kadi, F., & Loon, L. J. C. V.
 (2014). Satellite cells in human skeletal muscle; from birth to old age. *Age*, *36*(2), 545–557. doi: 10.1007/s11357-013-9583-2
- Brack, A. S. (2005). Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. *Journal of Cell Science*, *118*(20), 4813–4821. doi: 10.1242/jcs.02602
- Verdijk, L. B., Snijders, T., Beelen, M., Savelberg, H. H., Meijer, K., Kuipers, H.,
 & Loon, L. J. V. (2010). Characteristics of Muscle Fiber Type Are Predictive of

Skeletal Muscle Mass and Strength in Elderly Men. *Journal of the American Geriatrics Society*, *58*(11), 2069–2075. doi: 10.1111/j.1532-5415.2010.03150.x

- 20. Suetta, C., Frandsen, U., Mackey, A. L., Jensen, L., Hvid, L. G., Bayer, M. L., ... Kjaer, M. (2013). Ageing is associated with diminished muscle re-growth and myogenic precursor cell expansion early after immobility-induced atrophy in human skeletal muscle. *The Journal of Physiology*, *591*(15), 3789–3804. doi: 10.1113/jphysiol.2013.257121
- Sousa-Victor, P., Gutarra, S., García-Prat, L., Rodriguez-Ubreva, J., Ortet, L., Ruiz-Bonilla, V., ... Muñoz-Cánoves, P. (2014). Geriatric muscle stem cells switch reversible quiescence into senescence. *Nature*, *506*(7488), 316–321. doi: 10.1038/nature13013
- 22. Broek, R. W. T., Grefte, S., & Hoff, J. W. V. D. (2010). Regulatory factors and cell populations involved in skeletal muscle regeneration. *Journal of Cellular Physiology*. doi: 10.1002/jcp.22127
- 23. Holterman, C. E., & Rudnicki, M. A. (2005). Molecular regulation of satellite cell function. *Seminars in Cell & Developmental Biology*, *16*(4-5), 575–584. doi: 10.1016/j.semcdb.2005.07.004
- 24. Tajbakhsh, S. (2003). Stem cells to tissue: molecular, cellular and anatomical heterogeneity in skeletal muscle. *Current Opinion in Genetics & Development*, 13(4), 413–422. doi: 10.1016/s0959-437x(03)00090-x

- 25. Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., &
 Rudnicki, M. A. (2000). Pax7 Is Required for the Specification of Myogenic
 Satellite Cells. *Cell*, *102*(6), 777–786. doi: 10.1016/s0092-8674(00)00066-0
- 26. Holliday, R., & Pugh, J. (1975). DNA modification mechanisms and gene activity during development. *Science*, *187*(4173), 226–232. doi: 10.1126/science.1111098
- 27. Riggs, A. D. (1984). X Inactivation, DNA Methylation, and Differentiation Revisited. *DNA Methylation Springer Series in Molecular Biology*, 269–278. doi: 10.1007/978-1-4613-8519-6_13
- Mcpherron, A. C., & Lee, S.-J. (2002). Suppression of body fat accumulation in myostatin-deficient mice. *Journal of Clinical Investigation*, *109*(5), 595–601. doi: 10.1172/jci200213562
- Mcpherron, A. C., Lawler, A. M., & Lee, S.-J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. *Nature*, 387(6628), 83–90. doi: 10.1038/387083a0
- 30. Welle, S., Bhatt, K., Pinkert, C. A., Tawil, R., & Thornton, C. A. (2007). Muscle growth after postdevelopmental myostatin gene knockout. *American Journal of Physiology-Endocrinology and Metabolism*, 292(4). doi:

10.1152/ajpendo.00531.2006

31. Grobet, L., Martin, L. J. R., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., ...
Georges, M. (1997). A deletion in the bovine myostatin gene causes the double–
muscled phenotype in cattle. *Nature Genetics*, *17*(1), 71–74. doi: 10.1038/ng099771

- 32. Kambadur, R., Sharma, M., Smith, T. P., & Bass, J. J. (1997). Mutations in myostatin(GDF8) in Double-Muscled Belgian Blue and Piedmontese Cattle. *Genome Research*, 7(9), 910–915. doi: 10.1101/gr.7.9.910
- Mcpherron, A. C., Lawler, A. M., & Lee, S.-J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. *Nature*, 387(6628), 83–90. doi: 10.1038/387083a0
- 34. Mosher, D. S., Quignon, P., Bustamante, C. D., Sutter, N. B., Mellersh, C. S., Parker, H. G., & Ostrander, E. A. (2005). A Mutation in the Myostatin Gene Increases Muscle Mass and Enhances Racing Performance in Heterozygote Dogs. *PLoS Genetics*, *preprint*(2007). doi: 10.1371/journal.pgen.0030079.eor
- 35. Seibert, M. J., Xue, Q.-L., Fried, L. P., & Walston, J. D. (2001). Polymorphic Variation in the Human Myostatin (GDF-8) Gene and Association with Strength Measures in the Womens Health and Aging Study II Cohort. *Journal of the American Geriatrics Society*, 49(8), 1093–1096. doi: 10.1046/j.1532-5415.2001.49214.x
- 36. Jeanplong, F., Bass, J., Smith, H., Kirk, S., Kambadur, R., Sharma, M., & Oldham, J. (2003). Prolonged underfeeding of sheep increases myostatin and myogenic regulatory factor Myf-5 in skeletal muscle while IGF-I and myogenin are repressed. *Journal of Endocrinology*, *176*(3), 425–437. doi: 10.1677/joe.0.1760425
- 37. Yarasheski, K. E., Bhasin, S., Sinha-Hikim, I., Pak-Loduca, J., & Gonzalez-David, N. F. (2002). Serum Myostatin-Immunoreactive Protein Is Increased in

60–92 Year Old Women and Men with Muscle Wasting. *The Journal of Nutrition Health and Aging*, 6(5), 8-343.

- 38. Bergen, H. R., Farr, J. N., Vanderboom, P. M., Atkinson, E. J., White, T. A., Singh, R. J., ... Lebrasseur, N. K. (2015). Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay. *Skeletal Muscle*, 5(1). doi: 10.1186/s13395-015-0047-5
- Ratkevicius, A., Joyson, A., Selmer, I., Dhanani, T., Grierson, C., Tommasi, A. M., ... Wackerhage, H. (2011). Serum Concentrations of Myostatin and Myostatin-Interacting Proteins Do Not Differ Between Young and Sarcopenic Elderly Men. *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, 66A(6), 620–626. doi: 10.1093/gerona/glr025
- 40. Szulc, P., Schoppet, M., Goettsch, C., Rauner, M., Dschietzig, T., Chapurlat, R., & Hofbauer, L. C. (2012). Endocrine and Clinical Correlates of Myostatin Serum Concentration in Men—the STRAMBO Study. *The Journal of Clinical Endocrinology & Metabolism*, 97(10), 3700–3708. doi: 10.1210/jc.2012-1273
- 41. Lakshman, K. M., Bhasin, S., Corcoran, C., Collins-Racie, L. A., Tchistiakova, L., Forlow, S. B., ... Lavallie, E. R. (2009). Measurement of myostatin concentrations in human serum: Circulating concentrations in young and older men and effects of testosterone administration. *Molecular and Cellular Endocrinology*, 302(1), 26–32. doi: 10.1016/j.mce.2008.12.019

- 42. Hill, J. J., Davies, M. V., Pearson, A. A., Wang, J. H., Hewick, R. M., Wolfman, N. M., & Qiu, Y. (2002). The Myostatin Propeptide and the Follistatin-related Gene Are Inhibitory Binding Proteins of Myostatin in Normal Serum. *Journal of Biological Chemistry*, 277(43), 40735–40741. doi: 10.1074/jbc.m206379200
- 43. Hill, J. J., Qiu, Y., Hewick, R. M., & Wolfman, N. M. (2003). Regulation of Myostatin in Vivo by Growth and Differentiation Factor-Associated Serum Protein-1: A Novel Protein with Protease Inhibitor and Follistatin Domains. *Molecular Endocrinology*, 17(6), 1144–1154. doi: 10.1210/me.2002-0366
- 44. Mckay, B. R., Ogborn, D. I., Bellamy, L. M., Tarnopolsky, M. A., & Parise, G. (2012). Myostatin is associated with age-related human muscle stem cell dysfunction. *The FASEB Journal*, *26*(6), 2509–2521. doi: 10.1096/fj.11-198663
- 45. Siriett, V., Platt, L., Salerno, M. S., Ling, N., Kambadur, R., & Sharma, M.
 (2006). Prolonged absence of myostatin reduces sarcopenia. *Journal of Cellular Physiology*, 209(3), 866–873. doi: 10.1002/jcp.20778
- 46. Amirouche, A., Durieux, A.-C., Banzet, S., Koulmann, N., Bonnefoy, R., Mouret, C., ... Freyssenet, D. (2009). Down-Regulation of Akt/Mammalian Target of Rapamycin Signaling Pathway in Response to Myostatin Overexpression in Skeletal Muscle. *Endocrinology*, *150*(1), 286–294. doi: 10.1210/en.2008-0959
- 47. Winter, J. P. D., Dijke, P. T., Vries, C. J. D., Achterberg, T. A. V., Sugino, H.,Waele, P. D., ... Adriana J.m. Van Den Eijnden-Van Raaij. (1996). Follistatin

neutralize activin bioactivity by inhibition of activin binding to its type II receptors. *Molecular and Cellular Endocrinology*, *116*(1), 105–114. doi: 10.1016/0303-7207(95)03705-5

- 48. Lin, S., Phillips, D., & Kretser, D. D. (2003). Regulation of ovarian function by the TGF-beta superfamily and follistatin. *Reproduction*, 133–148. doi: 10.1530/rep.0.1260133
- 49. Lee, S.J., & Mcpherron, A. C. (2001). Regulation of myostatin activity and muscle growth. *Proceedings of the National Academy of Sciences*, 98(16), 9306– 9311. doi: 10.1073/pnas.151270098
- 50. Lee, S.J. (2007). Quadrupling Muscle Mass in Mice by Targeting TGF-β Signaling Pathways. *PLoS ONE*, *2*(8). doi: 10.1371/journal.pone.0000789
- 51. Evans, L., Muttukrishna, S., & Groome, N. (1998). Development, validation and application of an ultra-sensitive two-site enzyme immunoassay for human follistatin. *Journal of Endocrinology*, *156*(2), 275–282. doi: 10.1677/joe.0.1560275
- 52. Gilfillan, C. P., & Robertson, D. M. (1994). Development and validation of a radioimmunoassay for follistatin in human serum. *Clinical Endocrinology*, *41*(4), 453–461. doi: 10.1111/j.1365-2265.1994.tb02576.x

- 53. Khoury, R. H. (1995). Serum follistatin levels in women: evidence against an endocrine function of ovarian follistatin. *Journal of Clinical Endocrinology & Metabolism*, 80(4), 1361–1368. doi: 10.1210/jc.80.4.1361
- 54. Wakatsuki, M. (1996). Immunoradiometric assay for follistatin: serum immunoreactive follistatin levels in normal adults and pregnant women. *Journal of Clinical Endocrinology & Metabolism*, 81(2), 630–634. doi: 10.1210/jc.81.2.630
- 55. Woodruff, T. K., Sluss, P., Wang, E., Janssen, I., & Mersol-Barg, M. S. (1997). Activin A and follistatin are dynamically regulated during human pregnancy. *Journal of Endocrinology*, 152(2), 167–174. doi: 10.1677/joe.0.1520167
- 56. Rodino-Klapac, L. R., Haidet, A. M., Kota, J., Handy, C., Kaspar, B. K., & Mendell, J. R. (2009). Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. *Muscle & Nerve*, *39*(3), 283–296. doi: 10.1002/mus.21244
- 57. Statistics Canada. (2017). Health Fact Sheets Use of nutritional supplements. Retrieved from https://www150.statcan.gc.ca/n1/pub/82-625x/2017001/article/14831-eng.htm.
- Binns, C. W., Lee, M. K., & Lee, A. H. (2018). Problems and Prospects: Public Health Regulation of Dietary Supplements. *Annual Review of Public Health*, 39(1), 403–420. doi: 10.1146/annurev-publhealth-040617-013638

- 59. Natural Science Regulations (2018). Retrieved from https://www.naturalscireg.ca/blog/2018/08/can-you-make-money-canada.
- 60. Vitamins & Minerals Canada: Statista Market Forecast. (2019). Retrieved from https://www.statista.com/outlook/18050000/108/vitamins-minerals/canada.
- Andrews, K. W., Roseland, J. M., Gusev, P. A., Palachuvattil, J., Dang, P. T., Savarala, S., ... Bailey, R. L. (2016). Analytical ingredient content and variability of adult multivitamin/mineral products: national estimates for the Dietary Supplement Ingredient Database. *The American Journal of Clinical Nutrition*, *105*(2), 526–539. doi: 10.3945/ajcn.116.134544
- 62. Use of Dietary Supplements by Military Personnel. (2008). *Institue of Medicine* .doi: 10.17226/12095
- 63. Government of Canada (2012). Pathway for Licensing Natural Health Products Making Modern Health Claims. Retrieved from https://www.canada.ca/en/healthcanada/services/drugs-health-products/natural-non-prescription/legislationguidelines/guidance-documents/pathway-licensing-making-modern-healthclaims.html.
- 64. Alway, S. E., Degens, H., Krishnamurthy, G., & Smith, C. A. (2002). Potential role for myogenic repressors in apoptosis and attenuation of hypertrophy in muscles of aged rats. *American Journal of Physiology-Cell Physiology*, 283(1). doi: 10.1152/ajpcell.00598.2001

- 65. Aizpurua-Olaizola, O., Soydaner, U., Öztürk, E., Schibano, D., Simsir, Y.,
 Navarro, P., ... Usobiaga, A. (2016). Evolution of the Cannabinoid and Terpene
 Content during the Growth of Cannabis sativa Plants from Different Chemotypes. *Journal of Natural Products*, 79(2), 324–331. doi: 10.1021/acs.jnatprod.5b00949
- 66. Nagarkatti, P., Pandey, R., Rieder, S. A., Hegde, V. L., & Nagarkatti, M. (2009).
 Cannabinoids as novel anti-inflammatory drugs. *Future Medicinal Chemistry*, *1*(7), 1333–1349. doi: 10.4155/fmc.09.93
- 67. Klein, T. W. (2005). Cannabinoid-based drugs as anti-inflammatory therapeutics. *Nature Reviews Immunology*, *5*(5), 400–411. doi: 10.1038/nri1602
- 68. Hampson, A. J., Grimaldi, M., Axelrod, J., & Wink, D. (1998). Cannabidiol and (-) 9-tetrahydrocannabinol are neuroprotective antioxidants. *Proceedings of the National Academy of Sciences*, 95(14), 8268–8273. doi: 10.1073/pnas.95.14.8268
- Zuardi, A. W., Cosme, R. A., Graeff, F. G., & Guimarães, F. S. (1993). Effects of ipsapirone and cannabidiol on human experimental anxiety. *Journal of Psychopharmacology*, 7(1), 82–88. doi: 10.1177/026988119300700112
- 70. Musty, R. E. (1984). Possible Anxiolytic Effects Of Cannabidiol. *The Cannabinoids: Chemical, Pharmacologic, and Therapeutic Aspects*, 795–813. doi: 10.1016/b978-0-12-044620-9.50057-9

- Zuwardi, A. W., & Karniol, I. G. (1983). Changes in the conditioned emotional response of rats induced by 9-THC, CBD and mixture of the two cannabinoids. *Arquivos de Biologia e Tecnologia 26*, 391–397.
- 72. Giacoppo, S., Pollastro, F., Grassi, G., Bramanti, P., & Mazzon, E. (2017). Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis. *Fitoterapia*, *116*, 77–84. doi: 10.1016/j.fitote.2016.11.010
- 73. Iannotti, F. A., Pagano, E., Moriello, A. S., Alvino, F. G., Sorrentino, N. C., Dorsi, L., ... Marzo, V. D. (2018). Effects of non-euphoric plant cannabinoids on muscle quality and performance of dystrophic mdx mice. *British Journal of Pharmacology*, *176*(10), 1568–1584. doi: 10.1111/bph.14460
- 74. Elphick, M. R., & Egertova, M. (2001). The neurobiology and evolution of cannabinoid signalling. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, 356(1407), 381–408. doi: 10.1098/rstb.2000.0787
- 75. Pertwee, R. G. (2009). Cannabinoid pharmacology: the first 66 years. *British Journal of Pharmacology*, 147(S1). doi: 10.1038/sj.bjp.0706406
- 76. Mackie, K. (2008). Cannabinoid Receptors: Where They are and What They do. *Journal of Neuroendocrinology*, 20(s1), 10–14. doi: 10.1111/j.1365-2826.2008.01671.x

- 77. Pacher, P., & Mechoulam, R. (2011). Is lipid signaling through cannabinoid 2 receptors part of a protective system? *Progress in Lipid Research*, 50(2), 193–211. doi: 10.1016/j.plipres.2011.01.001
- 78. Marzo, V. D. (2008). Targeting the endocannabinoid system: to enhance or reduce? *Nature Reviews Drug Discovery*, 7(5), 438–455. doi: 10.1038/nrd2553
- 79. Basavarajappa, B. (2007). Critical Enzymes Involved in Endocannabinoid Metabolism. *Protein & Peptide Letters*, 14(3), 237–246. doi: 10.2174/092986607780090829
- 80. Okamoto, Y., Wang, J., Morishita, J., & Ueda, N. (2007). Biosynthetic Pathways of the Endocannabinoid Anandamide. *ChemInform*, 38(47). doi: 10.1002/chin.200747259
- 81. Simon, G. M., & Cravatt, B. F. (2006). Endocannabinoid Biosynthesis Proceeding through Glycerophospho-N-acyl Ethanolamine and a Role for α/β-Hydrolase 4 in This Pathway. *Journal of Biological Chemistry*, 281(36), 26465–26472. doi: 10.1074/jbc.m604660200
- 82. Freund, T. F., Katona, I., & Piomelli, D. (2003). Role of Endogenous
 Cannabinoids in Synaptic Signaling. *Physiological Reviews*, *83*(3), 1017–1066.
 doi: 10.1152/physrev.00004.2003

- 83. Eibl, D., Eibl, R., & Pörtner, R. (2009). Mammalian Cell Culture Technology: An Emerging Field. *Cell and Tissue Reaction Engineering Principles and Practice*, 3–11. doi: 10.1007/978-3-540-68182-3
- 84. Simon-Assmann, P., Maffen, K., Fogh, J., and Zweibaum, A. (1983) Enterocytelike differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. *Biol. Cell* 47:323–330.
- Breemen, R. B. V., & Li, Y. (2005). Caco-2 cell permeability assays to measure drug absorption. *Expert Opinion on Drug Metabolism & Toxicology*, 1(2), 175– 185. doi: 10.1517/17425255.1.2.175
- 86. Cai, Y., Xu, C., Chen, P., Hu, J., Hu, R., Huang, M., & Bi, H. (2014).
 Development, validation, and application of a novel 7-day Caco-2 cell culture system. *Journal of Pharmacological and Toxicological Methods*, *70*(2), 175–181.
 doi: 10.1016/j.vascn.2014.07.001
- 87. Alhamoruni, A., Lee, A. C., Wright, K. L., Larvin, M., & Osullivan, S. E. (2010).
 Pharmacological Effects of Cannabinoids on the Caco-2 Cell Culture Model of
 Intestinal Permeability. *Journal of Pharmacology and Experimental Therapeutics*, 335(1), 92–102. doi: 10.1124/jpet.110.168237
- 88. Jin, X., Luong, T.-L., Reese, N., Gaona, H., Collazo-Velez, V., Vuong, C., ... Pybus, B. S. (2014). Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations.

Journal of Pharmacological and Toxicological Methods, 70(2), 188–194. doi: 10.1016/j.vascn.2014.08.002

- Berry, M. N., Grivell, A. R., Grivell, M. B., & Phillips, J. W. (1997). Isolated hepatocytes - past, present and future. *Cell Biology and Toxicology*, 13(4-5), 223-233.
- 90. Cooke, H., & Smith, B. (1986). Variability at the Telomeres of the Human X/Y
 Pseudoautosomal Region. *Cold Spring Harbor Symposia on Quantitative Biology*, 51(0), 213–219. doi: 10.1101/sqb.1986.051.01.026
- 91. Cagubore, P., Agostini, E., Alemà, S., Falcone, G., & Tatò, F. (1987). The v-myc oncogene is sufficient to induce growth transformation of chick neuroretina cells. *Nature*, 326(6109), 188–190. doi: 10.1038/326188a0
- 92. Ivascu, A., & Kubbies, M. (2006). Rapid Generation of Single-Tumor Spheroids for High-Throughput Cell Function and Toxicity Analysis. *Journal of Biomolecular Screening*, *11*(8), 922–932. doi: 10.1177/1087057106292763
- 93. Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M., & Nielsen, L. K. (2003). Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. *Biotechnology and Bioengineering*, *83*(2), 173–180. doi: 10.1002/bit.10655

- 94. Lin, R.Z., & Chang, H.Y. (2008). Recent advances in three-dimensional multicellular spheroid culture for biomedical research. *Biotechnology Journal*, 3(9-10), 1285–1285. doi: 10.1002/biot.1285
- 95. Tan, W., Krishnaraj, R., & Desai, T. A. (2001). Evaluation of Nanostructured Composite Collagen–Chitosan Matrices for Tissue Engineering. *Tissue Engineering*, 7(2), 203–210. doi: 10.1089/107632701300062831
- 96. Koutsilieris, M., Sourla, A., Pelletier, G., & Doillon, C. (2009). Threedimensional type I collagen gel system for the study of osteoblastic metastases produced by metastatic prostate cancer. *Journal of Bone and Mineral Research*, 9(11), 1823–1832. doi: 10.1002/jbmr.5650091120
- 97. Edmondson, R., Broglie, J. J., Adcock, A. F., & Yang, L. (2014). Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. *ASSAY and Drug Development Technologies*, *12*(4), 207– 218. doi: 10.1089/adt.2014.573
- 98. Karlsson, H., Fryknäs, M., Larsson, R., & Nygren, P. (2012). Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system. *Experimental Cell Research*, *318*(13), 1577–1585. doi: 10.1016/j.yexcr.2012.03.026
- 99. Sodek, K. L., Ringuette, M. J., & Brown, T. J. (2009). Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an

invasive phenotype. *International Journal of Cancer*, *124*(9), 2060–2070. doi: 10.1002/ijc.24188

- 100. Ikeda, K., Ito, A., Imada, R., Sato, M., Kawabe, Y., & Kamihira, M.
 (2017). In vitro drug testing based on contractile activity of C2C12 cells in an epigenetic drug model. *Scientific Reports*, 7(1). doi: 10.1038/srep44570
- Montesano, A., Luzi, L., Senesi, P., Mazzocchi, N., & Terruzzi, I. (2013).
 Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. *Journal* of *Translational Medicine*, *11*(1), 310. doi: 10.1186/1479-5876-11-310
- Yaffe, D., & Saxel, O. (1977). Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. *Nature*, 270(5639), 725– 727. doi: 10.1038/270725a0
- 103. Miller, J. B. (1990). Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoD1, and myogenin. *The Journal* of Cell Biology, 111(3), 1149–1159. doi: 10.1083/jcb.111.3.1149
- 104. Koppe, R. I., Hallauer, P. L., Karpati, G., & Hastings, K. E. (1989). cDNA clone and expression analysis of rodent fast and slow skeletal muscle troponin I mRNAs. *Journal of Biological Chemistry*, 264(24), 14327–14333.

- 105. Gahlmann, R., & Kedes, L. (1990). Cloning, structural analysis, and expression of the human fast twitch skeletal muscle troponin C gene. *Journal of Biological Chemistry*, 265(34):21247-53
- 106. Parmacek, M. S., & Leiden, J. M. (1989). Structure and expression of the murine slow/cardiac troponin C gene. *Biol. Chem.*, 13217–13225.
- 107. Parmacek, M. S., & Leiden, J. M. (1990). The structure and regulation of expression of the murine fast skeletal troponin C gene. *Biol. Chem*, 15980–15976.
- 108. Bains, W., Ponte, P., Blau, H., & Kedes, L. (1984). Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro. *Molecular* and Cellular Biology, 4(8), 1449–1453. doi: 10.1128/mcb.4.8.1449
- 109. Olson, E. N., & Capatanaki. (1989). Developmental regulation of intermediate filament and actin mRNAs during myogenesis is disrupted by oncogenic ras genes. *Oncogene*, 907–913.
- Wang, Y. C., & Rubenstein, P. A. (1992). Choice of 3' cleavage/
 polyadenylation site in B-tropomyosin RNA processing is differentiationdependent in mouse BC3H muscle cells. *The Journal of Biological Chemistry*, 267(4) 2728-2736.

- 111. Cross-Doersen, D., & Isfort, R. (2003). A Novel Cell Based System for Evaluating Skeletal Muscle Cell Hypertrophy-Inducing Agents. *In Vitro Cellular* and Developmental Biology--Animal. doi: 10.1290/0304024
- Manabe, Y., & Fujii, N. L. (2016). Experimental research models for skeletal muscle contraction. *The Journal of Physical Fitness and Sports Medicine*, 5(5), 373–377. doi: 10.7600/jpfsm.5.373
- 113. Primary Cell Culture Basics. Retrieved from <u>https://www.sigmaaldrich.com/technical-documents/articles/biology/primary-cell-</u> <u>culture.html</u>.
- 114. Dasarathy, S., Dodig, M., Muc, S. M., Kalhan, S. C., & Mccullough, A. J. (2004). Skeletal muscle atrophy is associated with an increased expression of myostatin and impaired satellite cell function in the portacaval anastamosis rat. *American Journal of Physiology-Gastrointestinal and Liver Physiology*, 287(6). doi: 10.1152/ajpgi.00202.2004
- 115. Pampaloni, F., Reynaud, E. G., & Stelzer, E. H. K. (2007). The third dimension bridges the gap between cell culture and live tissue. *Nature Reviews Molecular Cell Biology*, 8(10), 839–845. doi: 10.1038/nrm2236
- 116. Kapałczyńska, M., Kolenda, T., Przybyła, W., Zajączkowska, M.,
 Teresiak, A., Filas, V., ... Lamperska, K. (2016). 2D and 3D cell cultures a

comparison of different types of cancer cell cultures. *Archives of Medical Science*. doi: 10.5114/aoms.2016.63743

- 117. Griffith, L. G., & Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. *Nature Reviews Molecular Cell Biology*, 7(3), 211–224. doi: 10.1038/nrm1858
- Langhans, S. A. (2018). Three-Dimensional in Vitro Cell Culture Models
 in Drug Discovery and Drug Repositioning. *Frontiers in Pharmacology*, 9. doi:
 10.3389/fphar.2018.00006
- Argilés, J. M., Campos, N., Lopez-Pedrosa, J. M., Rueda, R., &
 Rodriguez-Mañas, L. (2016). Skeletal Muscle Regulates Metabolism via
 Interorgan Crosstalk: Roles in Health and Disease. *Journal of the American Medical Directors Association*, 17(9), 789–796. doi: 10.1016/j.jamda.2016.04.019
- 120. Lexell, J. (1995). Human aging, muscle mass, and fiber type composition. *The Journal of Gerontology*, *50*, 11–16.
- 121. English, K. L., & Paddon-Jones, D. (2010). Protecting muscle mass and function in older adults during bed rest. *Current Opinion in Clinical Nutrition and Metabolic Care*, 13(1), 34–39. doi: 10.1097/mco.0b013e328333aa66
- 122. Zheng, H., Qiao, C., Tang, R., Li, J., Bulaklak, K., Huang, Z., ... Xiao, X.
 (2017). Follistatin N terminus differentially regulates muscle size and fat in vivo. *Experimental & Molecular Medicine*, 49(9). doi: 10.1038/emm.2017.135

- 123. Turcotte, L. M., Defor, T. E., Newell, L. F., Cutler, C. S., Verneris, M. R., Wu, J., ... Holtan, S. G. (2017). Donor and recipient plasma follistatin levels are associated with acute GvHD in Blood and Marrow Transplant Clinical Trials Network 0402. *Bone Marrow Transplant Clinical Trials Network*, *53*(1), 64–68. doi: 10.1038/bmt.2017.236
- 124. Dietary Supplement Use Reaches All Time High Available-for-purchase consumer survey reaffirms the vital role supplementation plays in the lives of most Americans. (2018). Retrieved from https://www.crnusa.org/newsroom/dietary-supplement-use-reaches-all-time-highavailable-purchase-consumer-survey-reaffirms.
- 125. Wolfe, R. R. (2017). Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? *Journal of the International Society of Sports Nutrition*, 14(1). doi: 10.1186/s12970-017-0184-9
- 126. Clemesha, C. G., Thaker, H., & Samplaski, M. K. (2019). 'Testosterone Boosting' Supplements Composition and Claims Are not Supported by the Academic Literature. *The World Journal of Mens Health*, 37. doi: 10.5534/wjmh.190043
- Uojima, H., Sakurai, S., Hidaka, H., Kinbara, T., Sung, J. H., Ichita, C., ...
 Kobayashi, S. (2017). Effect of branched-chain amino acid supplements on muscle strength and muscle mass in patients with liver cirrhosis. *European Journal of Gastroenterology & Hepatology*, 29(12), 1402–1407. doi: 10.1097/meg.000000000000968

- 128. Yang, Y., Breen, L., Burd, N. A., Hector, A. J., Churchward-Venne, T. A., Josse, A. R., ... Phillips, S. M. (2012). Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. *British Journal of Nutrition*, *108*(10), 1780–1788. doi: 10.1017/s0007114511007422
- 129. Andersen, L. L., Tufekovic, G., Zebis, M. K., Crameri, R. M., Verlaan, G., Kjær, M., ... Aagaard, P. (2005). The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. *Metabolism*, 54(2), 151–156. doi: 10.1016/j.metabol.2004.07.012
- Candow, D. G., Burke, N. C., Smith-Palmer, T., & Burke, D. G. (2006).
 Effect of Whey and Soy Protein Supplementation Combined with Resistance
 Training in Young Adults. *International Journal of Sport Nutrition and Exercise Metabolism*, 16(3), 233–244. doi: 10.1123/ijsnem.16.3.233
- Hulmi, J. J., Tannerstedt, J., Selänne, H., Kainulainen, H., Kovanen, V., & Mero, A. A. (2009). Resistance exercise with whey protein ingestion affects
 mTOR signaling pathway and myostatin in men. *Journal of Applied Physiology*, *106*(5), 1720–1729. doi: 10.1152/japplphysiol.00087.2009
- Amar, M. B. (2006). Cannabinoids in medicine: A review of their therapeutic potential. *Journal of Ethnopharmacology*, *105*(1-2), 1–25. doi: 10.1016/j.jep.2006.02.001
- 133. Pertwee, R. G. (2008). The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: $\Delta 9$ -tetrahydrocannabinol, cannabidiol and $\Delta 9$ -
tetrahydrocannabivarin. *British Journal of Pharmacology*, *153*(2), 199–215. doi: 10.1038/sj.bjp.0707442

Schier, A., Ribeiro, N., Coutinho, D., Machado, S., Arias-Carrion, O.,
Crippa, J., ... Silva, A. (2014). Antidepressant-Like and Anxiolytic-Like Effects of Cannabidiol: A Chemical Compound of Cannabis sativa. *CNS & Neurological Disorders - Drug Targets*, *13*(6), 953–960. doi:

10.2174/1871527313666140612114838

- Joseph, J. S., Malindisa, S. T., & Ntwasa, M. (2019). Two-Dimensional
 (2D) and Three-Dimensional (3D) Cell Culturing in Drug Discovery. *Cell Culture*. doi: 10.5772/intechopen.81552
- 136. Guillouzo, A., Corlu, A., Aninat, C., Glaise, D., Morel, F., & Guguen-Guillouzo, C. (2007). The human hepatoma HepaRG cells: A highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. *Chemico-Biological Interactions*, 168(1), 66–73. doi: 10.1016/j.cbi.2006.12.003
- Macdonald, J. S., & Robertson, R. T. (2009). Toxicity Testing in the 21st
 Century: A View from the Pharmaceutical Industry. *Toxicological Sciences*, *110*(1), 40–46. doi: 10.1093/toxsci/kfp088
- Asfour, H. A., Allouh, M. Z., & Said, R. S. (2018). Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. *Experimental Biology and Medicine*, *243*(2), 118–128. doi: 10.1177/1535370217749494
- 139.Cannabidiol solution C045. Retrieved from

https://www.sigmaaldrich.com/catalog/product/cerillian/c045?lang=en®ion.

- I40. Jankowski, C. (2010). Effects of aging on human skeletal muscle after
 immobilization and retraining. *Yearbook of Sports Medicine*, 2010, 360–361. doi:
 10.1016/s0162-0908(10)79691-4
- Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J., & Kambadur, R. (2000). Myostatin, a Negative Regulator of Muscle Growth, Functions by Inhibiting Myoblast Proliferation. *Journal of Biological Chemistry*, 275(51), 40235–40243. doi: 10.1074/jbc.m004356200
- Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S., &
 Kambadur, R. (2002). Myostatin Inhibits Myoblast Differentiation by Downregulating MyoD Expression. *Journal of Biological Chemistry*, 277(51), 49831–
 49840. doi: 10.1074/jbc.m204291200
- 143. Rodriguez, J., Vernus, B., Toubiana, M., Jublanc, E., Tintignac, L., Leibovitch, S., & Bonnieu, A. (2011). Myostatin inactivation increases myotube size through regulation of translational initiation machinery. *Journal of Cellular Biochemistry*, *112*(12), 3531–3542. doi: 10.1002/jcb.23280
- Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. (2018). *International Journal of Molecular Sciences*, 19(3), 833. doi: 10.3390/ijms19030833
- 145. Amberznectarz. (2016, December 11). Cannabinoid Receptors and Cells. Retrieved from https://hempedification.wordpress.com/2016/12/11/cannabinoidreceptors-and-cells/

- 146. Zurier, R. B., & Burstein, S. H. (2016). Cannabinoids, inflammation, and fibrosis. *FASEB Journal*, *30*(11).
- 147. Andre, C. M., Hausman, J.-F., & Guerriero, G. (2016). Cannabis sativa:
 The Plant of the Thousand and One Molecules. *Frontiers in Plant Science*, 7. doi: 10.3389/fpls.2016.00019
- 148. Sofia, R. D., Knobloch, L. C., & Vassar, H. B. (1973). The anti-edema activity of various naturally occurring cannabinoids. *Research Communications in Chemical Pathology and Pharmacology*, 6(3).
- Mahadevan, A., Siegel, C., Martin, B. R., Abood, M. E., Beletskaya, I., & Razdan, R. K. (2000). Novel Cannabinol Probes for CB1 and CB2 Cannabinoid Receptors. *Journal of Medicinal Chemistry*, *43*(20), 3778–3785. doi: 10.1021/jm0001572
- 150. Allen, D. L., Roy, R. R., & Edgerton, V. R. (1999). Myonuclear domains in muscle adaptation and disease. *Muscle & Nerve*, 22(10), 1350–1360. doi: 10.1002/(sici)1097-4598(199910)22:10<1350::aid-mus3>3.0.co;2-8
- 151. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms
- Satyanarayana, A., & Kaldis, P. (2009). Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. *Oncogene*, 28(33), 2925–2939. doi: 10.1038/onc.2009.170
- Gutiérrez-Salmeán, G., Ortiz-Vilchis, P., Vacaseydel, C. M., Rubio-Gayosso, I., Meaney, E., Villarreal, F., ... Ceballos, G. (2014). Acute effects of an

oral supplement of (–)-epicatechin on postprandial fat and carbohydrate metabolism in normal and overweight subjects. *Food & Function*, 5(3), 521. doi: 10.1039/c3fo60416k

- 154. TRIzol Reagent User Guide Pub. no. MAN0001271 Rev. A. Retrieved from https://assets.thermofisher.com/TFS-Assets/LSG/manuals/trizol reagent.pdf
- 155. E.Z.N.A.® Tissue DNA Kit. Retrieved from

https://www.omegabiotek.com/product/e-z-n-a-tissue-dna-kit/

- 156. High-Capacity cDNA Reverse Transcription Kit. Retrieved from https://www.thermofisher.com/order/catalog/product/4368814?ICID=searchproduct#/4368814?ICID=search-product
- 157. MTT Assay Kit (Cell Proliferation) (ab211091). Retrieved from https://www.abcam.com/mtt-assay-kit-cell-proliferation-ab211091.html
- 158. C2C12 (ATCC® CRL-1772TM). Retrieved from

https://www.atcc.org/Products/All/CRL-1772.aspx#generalinformation

- 159. Trypsin-EDTA Solution 10X 59418C. Retrieved from https://www.sigmaaldrich.com/catalog/product/sigma/59418c?lang=en®ion
- 160. Trypan Blue Solution, 0.4%. Retrieved from

https://www.thermofisher.com/order/catalog/product/15250061#/15250061

Master's Thesis - Sean Lau; McMaster University - Kinesiology