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Abstract

‘ Country risk is an important concern in international business. Country 

risk classification refers to determining the risk level at which a country will not 

repay its international debt. Traditionally, country risk classification resorts

to statistics methods such as discriminant analysis. In the past two decades, 

the so-called multicriteria decision aid (MCDA) methods have been proved to 

enjoy better performance than the standard statistics methods. Nevertheless,

the performance of the MCDA methods is still far away from satisfactory and

can be improved significantly.

The better performance of several MCDA methods, such as UTADIS 

(UTilités Additives Discriminantes) and MHDIS (Multigroup Hierarchical 

Discrimination), is achieved by exploiting the rater’s background knowledge. 

In the standard MCDA model, we assume that the criterion function for every

factor is monotone and all the factors are independent. Then, we approximate

the impact of every factor and use the sum of the corresponding criterion

functions to determine the risk level of a country. By discretizing the feasible

domain of the factor, the MCDA method solves a linear program to find a

classifier for country risk classification.

This thesis tries to enhance the capability of MCDA methods by al­

lowing a class of non-monotone criteria: the unimodal ones. For this purpose,
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we developed an integer quadratic (non-convex) program for general unimodal 

criteria. Further, if we restrict ourselves to convex or concave unimodal cri­

teria, then we can still use a linear program to find a classifier. For the case

where all the factors are correlated, a simple quadratic form of aggregation 

is proposed to deal with it. Compared with the original UTADIS model, our

generalized model is more flexible and can deal with more complex scenarios.

Finally, our generalized model is tested based on cross-validation and

our experiment is carried out under the AMPL+sovers environment. Promis­

ing numeric results indicate that except for its theoretical advantages, our

generalized model exhibits practical efficiency and robustness as well.
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Chapter 1

Introduction

In this chapter, we first give a brief introduction to country risk and country 

risk analysis. Then, we describe the motivation that sparks this thesis and 

outline the organization of the thesis.

1.1 Country Risk

Country risk refers to uncertainties or potential risk related to investing in

or loaning to different countries in international business. There are various

reasons that might change the capability and willingness of a country to repay 

its international debt. For example, higher taxes or tariffs, limited currency 

conversion, inflation and currency depreciation, economic recession, workers

striking, war etc. These potential risks make investment in the country less
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profitable even losing money, as investors may not get their repayments on

time.

Many institutions have been providing country risk rating services for a

long time. Euromoney, Institutional Investor and International Country Risk

Guide, for example, started publishing their country risk ratings periodically 

as early as 1980’s. Among those rating providers, Standard & Poor’s and

Moody’s are the most prominent ones and both of them have a history over

100 years.

The profusion of country risk providers is a direct consequence of the

trend of globalization and internationalization. As more and more countries

involve in international business, more and more country risks arise. For exam­

ple, the total amount of cross-border interbank lending increased from 174.4 

billion US dollars in 1971 [IMF, 1971] to 6262.7 billion US dollars in 1994 [IMF, 

1995], which shows a dramatic increase of international loan. The total Net 

Foreign Direct Investment around the world increased from 6 billion US dol­

lars in 1970 to 400 billion in 2000 [The World Bank, 2002]. The number of 

transnational corporations across the globe has increased from 15,000 in 1980

to 64,000 in 2003, with their total foreign affiliates increased from 35,000 to 

850,000 during the same period [UNCTAD, 2002]. These corporations have 

to take care of their transnational assets, depend on country risk ratings to

Master Thesis - Xijun Wang - Computing and Software - McMaster
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make their management decisions. Thus, a vast demand of reliable country

risk ratings exists among bankers and investors who are usually unfamiliar

with foreign countries and have to look for help from intermediate agencies.

The ability to manage country risk may be different for different banks,

which makes no external rating perfectly suitable for every bank. Thus, many

banks have to build an internal country risk evaluation system by themselves, 

not simply referring to an external risk rating provider. This diversity of 

requirement of different users is another strong motivation for country risk

research besides the vast amount of users.

Country risk ratings impact both sides of the interested bankers (in­

vestors) and the rated countries. Investors and bankers make their decisions 

on whether to invest in or loan to a country according to its risk rating. For

the rated countries, their ratings influence the interest rates that investors

and bankers expect from them, i.e., a country with lower risk will usually be 

charged a lower interest rate.

1.2 Country Risk Evaluation

Usually, the country risk of one country is represented by a single index, which 

shows the degree of the overall risk to invest in or loan to this country. There 

are two types of indices used to represent the degree of country risk, discrete

3



Master Thesis - Xijun Wang - Computing and Software - McMaster

and continuous. For the discrete type, several risk levels are predefined and

every country is in one level. The number of risk levels may vary from two, 

simply high or low, to twenty, from 1 to 20. Table 1.1 lists the levels used

in Standard & Poor’s and Moody’s. Table 1.2 lists the ratings provided by 

Standard & Poor’s [Alexe et al., 2003] in December 1998. For the continuous 

type, a number between 0 and 1 is used to indicate the magnitude of risk to 

loan to or invest in a country. The rating provided by International Country 

Risk Guide is an example of using continuous type of representation for country

risk.

The single index representing the degree of country risk is a composition

of various factors about the country. The main interested factors are political 

and economic-financial ones, and the total number of factors used may vary

from less than ten to more than twenty. Some providers publish separate

ratings on the risks associated with political, economic and financial aspects

of each country. Political risk is often regarded as unwillingness to pay while 

economic and financial risk are thought of as inability to pay. Table 1.2 lists

some possible factors and values of some countries on these factors. It should 

be noticed that there is no agreement about whether political factors have 

significant impact on country risk evaluation [Brewer and Rivoli, 1990; Haque 

et al., 1998].

4
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Table 1.1: Country Risk Levels Used by Standard Poor’s and Moody’s

Risk Level Group S&P’s Moody’s Description

AAA Aaa

AA+ Aal

AA Aa2 Capability to meet financial

AA- Aa3 commitments ranges from

Investment A+ Al extremely strong to strong.

Levels A A2

A- A3

BBB+ Baal Default is unlikely due to adequate

BBB Baa2 protection parameters, while it

BBB- Baa3 lack of certain protective elements.

BB+ Bal Payment capability is a little

BB Ba2 vulnerable due to more

Speculative BB- Ba3 uncertainty and less protection.

Levels B+ BI Payment capability is more

B B2 vulnerable, but it’s currently still

B- B3 able to meet commitments.

CCC+ Caal

CCC Caa2 Payment vulnerability is currently

CCC- Caa3 evident, and default becomes
Non-Investment

CC Ca likely.
Levels

C C

SD Default already occurred, either

D partially or entirely.

5
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Table 1.2: An Example of Country Risk Rating and Related Factors (1998)

Level Country (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

BB Argentina 0.605 7.37 202.7 0.4 4.0 0.844 8.0 52.2 3.9 0.9 23.3 57.7 5.7

AA+ Canada 0.467 3.18 637.8 1.7 5.6 0.940 5.9 33.1 3.3 1.0 82.3 0.0 1.0

BBB- Egypt, Arab Rep. 0.676 4.74 64.6 2.0 4.7 0.642 10.2 34.4 5.6 4.2 42.6 9.8 10.0

AAA Prance 0.526 5.07 583.9 2.2 5.9 0.928 6.0 32.7 3.4 0.7 49.6 0.0 2.2

AAA Germany 0.458 5.47 567.1 2.3 4.6 0.925 4.8 28.3 2.1 0.9 56.2 0.0 1.9

BB India 0.645 4.37 21.9 0.6 3.2 0.577 15.9 32.5 6.0 13.2 25.6 20.6 5.7

BB+ Korea, Rep. 0.399 4.00 432.6 2.7 4.1 0.882 12.8 31.6 -6.7 7.5 86.0 12.9 5.1

BB Mexico 0.627 5.18 103.5 0.4 4.2 0.796 3.8 54.6 5.0 15.9 63.5 20.0 2.4

BBB- Poland 0.479 3.19 227.6 0.7 5.4 0.833 5.7 31.6 4.8 11.7 61.6 9.8 6.1

CCC- Russian Federation 0.461 1.75 198.5 1.0 3.5 0.781 17.9 45.6 -4.9 27.7 57.3 12.4 1.7

BB+ South Africa 0.617 3.34 120.4 0.6 6.1 0.695 5.2 59.3 0.7 6.9 50.6 12.2 1.8

AAA United Kingdom 0.535 5.47 554.1 1.8 4.7 0.928 7.2 36.0 2.6 3.4 53.9 0.0 0.9

AAA United States 0.518 3.82 665.3 2.5 5.0 0.939 15.8 40.8 4.4 1.6 23.9 0.0 1.3

(1) Age dependency ratio (dependents to working-age population); (2) GDP per unit of energy use (PPP $ per 

kg of oil equivalent); (3) Telephone mainlines (per 1,000 people); (4) Research and development expenditure 

(% of GNI); (5) Public spending on education, total (% of GDP); (6) Human Development Index; (7) Military 

expenditure (% of central government expenditure); (8) GINI index (%); (9) GDP growth (annual %); (10) 

Inflation, consumer prices (annual %); (11) Trade (% of GDP); (12) Total debt service (% of exports of goods 

and services); (13) Gross international reserves in months of imports.
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There are two typical ways to composite a single index representing

the country risk. The first is based on a rating survey of country risk experts,

purely qualitative. For example, a group of experts are asked to evaluate every

factor of a country on a scale from 0 to 100, then the scores on every factor 

are averaged. The weighted sum of these averaged scores is consequently used 

to construct the country risk index. In this way, the weight on each factor is 

predetermined and will be used for a long time. The second way is based on 

classification techniques using a mixture of quantitative and qualitative factors. 

The rater chooses a classification model, compiles data on various factors and

on risk levels of each country, then uses the data to determine the parameters 

in the model and possibly to point out the most relevant factors. The data

on qualitative factors can be collected in the same manner as in the first way.

Once the parameters of the model is determined, the rater can compute the 

risk index for each country. Table 1.2 is an example of quantitative factors.

Country risk classification in the literature refers to the problem of 

determining in which risk level a given country will not repay its international 

debt. For example, the risk levels of countries listed in Table 1.3 have to be 

determined according to available information on the listed factors.
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Table 1.3: An Example of Country Risk Classification

level country (1) (2) (3) (4) (5) (6) (?) (8) (9) (10) (H) (12) (13)

? Brazil 0.538 6.58 120.5 0.8 4.6 0.757 5.2 58.5 0.2 3.2 17.3 74.8 5.3

? China 0.479 3.81 69.6 0.1 2.2 0.726 25.1 44.7 7.8 -0.8 39.2 8.6 9.9

? Indonesia 0.566 4.34 27.0 0.1 1.4 0.684 4.8 34.3 -13.1 57.6 96.2 31.7 5.2

? Israel 0.609 5.84 471.0 3.4 7.7 0.896 19.7 35.5 2.6 5.4 72.3 0.0 6.4

? Japan 0.455 6.15 534.0 2.8 3.5 0.933 4.1 24.9 -1.1 0.7 19.5 0.0 5.2

? Malaysia 0.634 3.90 201.5 0.4 5.2 0.782 7.4 49.2 -7.4 5.3 209.5 7.2 4.3

? Netherlands 0.467 4.89 592.4 2.0 4.9 0.935 6.3 32.6 3.7 2.0 116.3 0.0 1.4

? New Zealand 0.523 3.96 492.5 1.2 7.2 0.917 3.7 36.2 0.0 1.3 60.7 0.0 2.6

? Philippines 0.692 6.87 34.1 0.2 3.2 0.754 7.9 46.1 -0.6 9.7 110.9 10.8 3.1

? Singapore 0.409 3.49 459.9 1.1 3.1 0.885 20.0 42.5 0.1 -0.3 293.8 0.0 7.4

? Spain 0.460 6.00 413.7 0.8 4.5 0.913 6.1 32.5 4.3 1.8 54.6 0.0 4.0

? Turkey 0.538 5.87 265.2 0.5 3.0 0.742 13.4 40.0 3.1 84.6 52.2 24.0 4.1

? Venezuela, RB 0.643 2.47 111.5 0.4 5.0 0.770 6.3 49.1 0.2 35.8 41.0 28.2 7.2

The name of the factors are the same as that in Table 1.2.



1.3 Country Risk Analysis

The research on country risk analysis dates back to as early as 1950’s. After 

the second oil price shock of 1979-1980, country risk has caught more and 

more attention. Various models have been proposed to predict the potential

risk related to countries that investors and bankers are interested in.

Before 1980’s, most researchers considered only two risk levels, and mul­

tivariate statistical techniques were the main tools. For example, discriminant 

analysis [Anderson and Bahadur, 1962; Frank and Cline, 1971; Somerville and 

Taffler, 1995], logit analysis [Feder and Just, 1977], regression analysis [Alexe 

et a!., 2003] have all been applied in country risk classification. The early 

research provided us many important factors for country risk classification. In 

Chapter 2, we will give a brief review on classical discriminant analysis tech­

niques. A comprehensive survey of the statistical techniques used in country 

risk classification can be found in Saini and Bates [1984].

However, since most statistical techniques use explicitly or implicitly as­

sumptions on the distribution of the factor values, which is typically unknown

in practice, no bank exclusively rely on statistical methods to determine the 

country risk levels. Another limitation of statistical techniques is that, quali­

tative factors are difficult to use, e.g., in discriminant analysis.

Master Thesis - Xijun Wang - Computing and Software - McMaster
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Since 1980’s, multicriteria decision aid methods (MCDA1) for country 

risk classification have been proposed and proved to be more reliable than sta­

tistical methods [Doumpos and Zopounidis, 2001; Doumpos et al., 2001b]. For 

example, UTADIS (UTilités Additives DIScriminantes) methods [Doumpos et 

ah, 2001b; Spathis et ah, 2002; Zopounidis and Doumpos, 1999] and MHDIS 

(Multigroup Hierarchical Discrimination) method [Doumpos and Zopounidis, 

2002; Doumpos et al., 2001a,b] are typical MCDA methods. Comparing with 

statistical methods, they are not restricted by statistical assumptions and can

easily deal with qualitative factors. These methods incorporate the back­

ground knowledge of the rater by using criterion functions that characterize

the relation between values on a single factor and the country risk. Chapter 2

will also give the details in UTADIS and MHDIS classification methods.

For the country risk classification methods mentioned above, it is nec­

essary to predefine the possible risk levels. This is usually done by experience. 

Alternatively, Smet and Gilbart [2001] suggested an approach to help bankers 

decide how many risk levels are suitable to them.

Master Thesis - Xijun Wang - Computing and Software - McMaster

1The MCDA model can also provide solutions for the other two types of multicriteria 
decision problems: choice and ranking problems. See Vincke [1992] and Zopounidis and 
Doumpos [2002] for more about general MCDA methods.
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1.4 Motivation and Organization

Many aspects of the existing country risk rating systems still have to be im­

proved, as suggested in Alexe et al. [2003]. One of them is the comprehensi­

bility of the rating results. A well-known example is described in Alexe et al. 

[2003]: Japan, as the second largest economic body in the world, was rated by 

some “big rating agencies” in the same risk level in 2001 as an African country 

(Botswana) to which Japan was providing assistance. Such uncomprehensible 

ratings make it clear that more attention should be paid on the reliability of

country risk rating system.

We note that, MCDA methods [Doumpos and Zopounidis, 2002; Doumpos 

et al., 2001b; Spathis et al., 2002; Vincke, 1992; Zopounidis and Doumpos, 

1999] require each criterion function to be monotone. Take for example, the 

criterion function of financial reserve: the more financial reserve a country 

holds, the larger the criterion function value is. This definitely restricts the

application of the MCDA models as the criteria on some factors related to

country risk might not be monotone. The main purpose of this thesis is to ex­

tend MCDA methods so that the extended MCDA can deal with non-monotone

criteria. In particular, we discuss how the MCDA methods can be extended

to deal with unimodal criteria, a typical kind of non-monotone criteria.

The rest of this thesis is organized as follows. In Chapter 2, a review

Master Thesis - Xijun Wang - Computing and Software - McMaster
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of statistical methods and MCDA methods for country risk classification are

provided. Then, the MCDA methods are extended to deal with unimodal

criteria in Chapter 3. Chapter 4 extends one class of MCDA methods by

considering the dependency among various factors. Chapter 5 describes the

testing data and reports out experiments. Chapter 6 gives conclusions and

some suggestions for further work.

12



Chapter 2

Prom Statistical to MCDA

Methods

In this chapter, we review the typical statistical methods for country risk

classification and introduce the multicriteria decision-aid methods UTADIS

and MHDIS.

2.1 Multivariate Statistical Methods

In country risk literatures, most statistical methods consider only two-level 

classification. In this section, we first give a brief introduction of statistical 

methods for country risk classification based on discriminant analysis and logit 

analysis.

13
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Let be the population of countries reaching the limit of their debt 

servicing capacity, and %2 be the contrary. Let x be an observation over n 

indicators of the country risk of one country. Z = f(x) e R stands for a 

composite index of these n indicators, and Z* G R represents a critical value. 

For the given observation x, if Z > Z* the country will be classified as coming 

from 7Ti, while if Z < Z* the country will be thought of as coming from 

7T2- To build such a classification model, our task is to find an appropriate 

function f(x) and a suitable threshold Z* such that the model will have a 

good performance.

2.1.1 Bayesian Discriminant Analysis

Define type I error of classification as misclassifying a country from 7Ti as from

7T2, and type II error as misclassifying a country from it2 as from 7Ti. For a 

given discriminant function /(x) and threshold Z*, denote p(I) and p(II) the 

probability of making type I and type II error respectively, i.e.

p(I) = Pr{/(x) < Z* \ x e 7Ti} (2.1a)

p(II) = Pr{/(x) > Z* | x G 7t2}. (2.1b)

Roughly speaking, Bayesian discriminant analysis method tries to min­

imize probabilities of both types of errors. Some specific objectives that we 

might want to minimize are

14
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(1) the probability of one error when the other is given;

(2) the maximum probability of the two type of errors;

(3) the total probability of misclassification when a priori probability of each 

population is given.

Definition 2.1 One classifier (/i(x),Zi) is better than another 

if the corresponding classification errors satisfy the following condition

Pi(I) <P2^I) andpi(II) <P2(II),

and at least one of these inequalities is strict, where pfil) and pfill) are the 

two types of errors for classifier i = 1,2. A classifier is admissible if no other

classifier is better than it.

It can be easily seen that the solution to minimizing each of the ob­

jective mentioned must be admissible. Because of this, we first discuss the

properties of the admissible classifiers.

Admissible Classifiers

Suppose x is normally distributed on both populations. Denote the mean vec­

tors and covariance matrices of 7Ti and %2 as (/xx, Si) and (jjq, S2) respectively, 

where pi / /12 and both Si and S2 are nonsingular, i.e., positive definite.

15



Consider linear discrimination function /(x) = bTx and threshold c. 

When x is coming from 717, bTx will be a normal distributed univariate random 

variable with mean bTpi and variance

E[(bTx - bTpi)2} = E[bT(x - p,i)(x - pi)J f>] = bJ T,ib.

p(I) and p(II) becomes

p(I) = Pr{fcTX < C | X 6 7Ti}

f bTx — bT pi c — bTpi . 1
= Pr 1 (bTXiby/2 < (JFZib)1/2 1 x G J

= ^(V(&cT~SbT
i&)̂V2  J

= l-^(bT^~c} (2.2a){(b^iby/2)

p(II) = Pr{bTx > c | x G 7r2}

= Pr | bTx — bTP2 c — bTp2 , }
(&TS26)V2 - (fcTS2fc)l/2 I x e %2

1-tfc-^ (2.2b)

where <£(•) is the cumulative distribution function of standardized normal dis­

tribution

$(z) = (27r)_1/2 f e~*2/2 dt.
J —oo

Let us define

bT pi — c 
9(1) = (2.3a)(&TEi6)V2

16
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= (5^' (2'3b)

Sincd 4>(z) is an increasing function of z, smaller errors p(I) and p(II) cor­

respond to larger arguments of $(•) in (2.2a,b), i.e., larger value of y(I) and 

y(II). Solving c from (2.3b) and substituting it into (2.3a), we get

VS - ¡<(II)(i,JS2i,)V2
(FEid)'/! ’ k '

where 6 = px — p2- The right hand side of (2.4) is homogeneous in b with 

degree 0, thus we can restrict b to be on an ellipse. This proves that y(J) has 

a finite maximum value with respect to b for any given y(II).

Since y(I) is a decreasing function of y(II) for any given b,

y*(I) = maxy(I) (2.5)
b

is also decreasing in y(II). It can be easily verified that the classifier (5*,c*) 

corresponding to (y*(I),y(II)) is admissible. It’s also obvious that the set 

of classifiers corresponding to {(y*(I),y(II)) | Vy(II)} contains all possible

admissible classifiers.

We should also notice that y*(I) is a convex function of y(II) while the 

corresponding p*(I) is not convex in p(II). This is the reason to work with y(I) 

and y(II) rather than p(I) and p(II).

The following lemma characterizes the admissible classifiers in general 

case. The lemma and its proof are attributed to Anderson and Bahadur [1962].
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Lemma 2.1 If (b*. c*) is an admissible classifier corresponding to (y*(7), y(I/)) 

with y* (T) > O,y(II) > 0, then there exist ti > 0, ¿2 > 0 such that

b* = (i1S1+i2S2)-1<5, (2.6a)

c* = b*Tp! - tfif^b* = b*Tp2 + i2fe*TL26*. (2.6b)

Proof (y*(I),y(II)) is on the following line in yi-y2 plane defined by b*

b*Tfii — c ~ c — b*Tp,2
= (i>«’’E16>)‘/2 S"d ~ (b-T^.y/2’ (2.7)

where c is parameter. It can be easily seen that there exists an ellipse

(2-8)
il t2

where ii, are all positive, such that it is tangent to the line defined above 

at point (y*(I),y(II)).

Now consider the line defined by an arbitrary b. This line is tangent to

some ellipse with the same ii and f2 as (2.8) but a different k. Note that the

slope of the tangent line of ellipse (2.8) at point (yi,y2) is — By equating

it to the slope of the line defined by b, we get the tangent point

= t^b^by/ws = t2(bTx2by/2bTô 
yi + i26TS26 ’ 2/2 t1bT'Z1b + t2bT'Z2b’ { ’

and the corresponding c is

_ t^bbT^ + b^bbTpr 
C fifcTEi& + f2&TE2& ' 1 J
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The ellipse tangent to the line defined by b is then 

yl + tâ = (fer5)2 (2.11)
¿1 ¿2 + ¿2^2)^

The right hand side of (2.11) is homogeneous in b of degree 0, and its maximum 

in b is achieved when b is equal to the right hand side of (2.6a).

However, k in (2.8) must be equal to this maximum; otherwise, the line 

defined by b = (tiSj +t2^2)~1b will be on the upright of (y*(I), 2/(11)) and there 

will be a point on this line which corresponds to a better classifier. Hence, 

(2.6a) has to hold. Substituting b* into (2.10), we get the corresponding c* as 

in (2.6b). I

Substituting b* into (2.9), we get

ÎZ*(I) = ix^Sxô*)1/2, (2.12a)

2/(11) = î2(&*tS26*)1/2. (2.12b)

We see that (y*(I), 2/(11)) is homogeneous in (ii, ¿2) of degree 0. We can then 

normalize it by restricting

ti + Î2 = 1 for ii > 0, Î2 > 0;

< ii — f2 = 1 for ti > 0,f2 < 0; (2-13)

¿2 — = 1 for ti < 0, ¿2 > 0.

For the first case, it can also be verified that y*(I) is increasing in ti (for 

0 < ii < 1) while 2/(11) is decreasing in t\.
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The following theorem [Anderson and Bahadur, 1962] is the converse

of Lemma 1.

Theorem 2.2 For any ti and ¿2 such that tjEi +£2^2 is positive definite, the 

classifier defined by (2.6) is admissible.

Interested readers are referred to Anderson and Bahadur [1962] for the proof.

This theorem establishes a one-to-one correspondence between the ad­

missible classifiers (6*,c*) and the normalized (<1,^2) pairs. Thus, the task 

of searching for an optimal classifier can be accomplished by searching the

normalized (il5 i2) pairs.

We next describe several different measurements used in the statistics

methods for country risk analysis.

(1) Minimizing the probability of one error when the other is given. 

Suppose p(II) or equivalently ¡/(II) is given. If ¡/(II) > 0, ¡/*(I) > 0, 

then the corresponding (¿1, tf) can be easily determined since ¡/(II) is 

decreasing in ¿1 and ¿1 + ^2 = 1- If ¡/(II) > 0, ¡/*(I) < 0, ¡/(II) is a 

decreasing function of <2 so the corresponding (tx, tf} can be determined.1 

The case of ¡/(II) < 0, ¡/*(I) > 0 can be similarly handled.

(2) Minimizing the maximum probability of the two types of errors.

Because ¡/*(I) is strictly decreasing with respect to ¡/(II), it has to be

1See Anderson and Bahadur [1962] for an exceptional case.
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y*(I) = y(II) > 0 in this case, or equivalently,

y\l)2-y(ll)2 = 0^b*T(t21Z1-(l-tl)2L2)b*=0. (2.14)

Since y*(I) is increasing in ij and ?/(II) is decreasing in ii, a solution to 

(2.14) can be easily found, from which b* and c* can be computed.

(3) Minimizing the probability of misclassification given a priori 

probability of each population. Let qi and </2 are the a priori prob­

ability of population 7Ti and 7T2, respectively. The probability of misclas­

sification is then

9iP*(I) + <72P(H) = l - (gi$(y*(I)) + ®$WI))).

Minimizing this probability, as a function of ti, is a non-convex opti­

mization problem.

2.1.2 Logit Analysis

Logit analysis probably is the most widely used statistical method for two-class 

classification problems. Unlike discriminant analysis approaches which usually 

need normal distribution assumption on risk indicators, logit analysis assumes 

that for a given observation x the probability of coming from population 7Ti

has the form

e^x
1 + e^’
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where (3 is a vector of parameters to be determined. If we use y = 1 to indicate 

that a country comes from tti and y = 0 from 7T2, the previous probability 

assumption can also be described as

Pr(y = 0|x) = 1 + ,

ePTx
Pr(y = l|x) =

Thus, for a set of observations (xi, yi), • • • , (xm, ym), the likelihood function L 

that the observations happened is

. nr. i
roi+e'3’'»)'

The parameters f3 can then be determined by maximizing this likelihood func­

tion.

Once f3 is determined, the probability function will be used as a discrim­

inant function during the classification procedure, the same as in discriminant 

analysis. The user can classify a country into the two classes by choosing a 

critical value of P(x) according to his/her preference.

While logit analysis use different assumptions from discriminant analy­

sis, experimental results showed that there is no significant difference between 

these two approaches [Somerville and Taffler, 1995].
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2.2 Multicriteria Decision Aid Methods

2.2.1 Risk Levels as Preferences

Multicriteria decision-aid methods for country risk classification were first in­

troduced by researchers in decision science [Doumpos et al., 2001b]. Prom the 

point view of decision making, the risk level of a country can be regarded as

the loan preference of a banker.

Suppose that every country has to be in some risk level and the banker

is indifferent between countries in the same level. Then the risk level defines

an ordering relation on countries.

Definition 2.2 For any pair of countries a and b, a >- b if and only if the

country risk of a is lower than the country risk of b; a = b if and only if they

are in the same risk level; a>b if and only if ay b or a = b.

The risk levels are denoted by Ci, C2, • • • ,Cq where q is the number of 

levels and a smaller subscript indicates a lower risk.

2.2.2 Preference on A Factor

Similar to the global preference on countries, the rater may prefer one value to 

another for a given factor. This preference often comes from the background
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knowledge of a rater that might be different for different raters. It will be

helpful to build a classification model which is more consistent with the rater’s

preference on every factor.

The preference of the rater on a factor can be mathematically repre­

sented by three binary relations between any two values of the factor. We use

xPy to represent that the rater prefers x to y, and use xly to represent that

the rater is indifferent between x and y. Sometimes, two values of a factor 

might not be comparable in term of preference, which we denote it by xJy.

The traditional method to model the preference of a rater is utilizing a

function g defined on the value set A of the factor such that

I
xP?/ g(x) > g(y)

(2-15)

xly & g(x) = g(y).

While more complex methods were introduced by researchers [Vincke, 1992], 

we only use the above conventional method to model the rater’s preference 

in this thesis. A function g which satisfies condition 2.15 is called a criterion 

which corresponds to true criterion in Vincke [1992]. By using this preference 

modelling method, we actually made the following implicit assumptions on the 

binary relations,

(1) P is transitive, i.e., Vx, y,z G A, xPy and yPz => xPz;24
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(2) I is transitive, i.e., Vx, j/, z (E A, xly and ylz => xlz',

(3) J is empty,

which are simple deductions of relation among numbers. The first two as­

sumptions ensure that the preference of the rater on all values of the factor 

are not contradictive, and the last assumption ensures that any two values of

the factor are comparable. For the country risk case, these are mild assump­

tions that allow us to analyze the country risk level based on both quantitative

and qualitative factors of a country.

In the current literature, most researchers assume that each criterion is

monotone with respect to its corresponding numerical factors. In other words,

the rater prefers a larger or smaller value for each numerical factor. For many 

factors, this is true. Since g(x) is decreasing if and only if <?(—x) is increasing, 

we can assume without loss of generality that the monotone factors used are

increasing.

When we have multiple factors to be considered and model each factor 

using the above method, we get n criteria gi,g2,--- ,gn for a country. This 

is where the term multicriteria comes. For factor value ar¿, the ith criterion 

value is denoted by For a country c with value on factor i, the ith

criterion value can be abbreviated as g¿(c).

In MCDA methods, we also assume the independence between criteria.
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Suppose F = {gi, • • • , gn} is a family of criteria, G and G are a pair of comple­

mentary nonempty subsets of F. The following definition of the independence 

of criteria G was first introduced in Vincke [1992],

Definition 2.3 G is preferentially independent in F if, for any four countries

a, b, c, d such that

9i(a) = gi(b)yi e G (2.16a)

ft(c) = 9i(d)yi e G (2.16b)

9i(a) = gi(c)yi E G (2.16c)

9i(f>) = gi(d)yi e G, (2.16d)

we will also have

a>-b&cyd. (2.16e)

2.2.3 UTADIS Method

Utility Function

The term utility function first appeared in the utility theory [Fishburn, 1970; 

Keeney and Raiffa, 1993] of decision science on which one class of MCDA 

methods including UTADIS is based. One fundamental axiom of the utility 

theory is that, when making the best choice from a list of choices (countries to
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be loaned in our case), any decision-maker (rater in our case) unconsciously

uses some function

17(c) = U(pi(c),p2(c),-- • ,Pn(c)),

which aggregates his preferences in different aspects (criteria of different factors 

in our case) of an choice, to rank all of these optional choices. This function is 

called utility function. Using such a utility function, one can model the global

preference of a rater on countries.

To use utility function for classification, UTADIS introduces a sequence 

of strictly decreasing critical values and classifies the risk level of a

country c by the following rule

if U(c) > /q, then c G Ci

< if Hk < U(c) < pk-i for some 2 < k < q — 1, then c G C*, (2-17)

if 17(c) < Pq-i, then c G Cq,

where the utility function is usually confined to be normalized without loss of

generality, i:e., with minimal value 0 and maximal value 1. This classification

model is demonstrated in Figure 2.1.

In other words, we use the utility function and a set of critical values to 

model the global preference relation This is different from the way we model 

the preference on a single factor. The main task of UTADIS classification
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model is to estimate the utility function and its critical values for different

risk levels.

In order for the global preference on countries to be consistent with the 

preference on every factor, an additional constraint on the utility function is 

imposed, i.e., for any two countries a and b and for any factor i,

9i(a) > gi(b)
>=> a b. (2.18)

9j(a) = 9j(b)yj / i

The Additive Form of Utility Function

To estimate the utility function, we have to define a function space where

the approximation utility function will be searched for. The simplest and

commonly used utility function takes the following additive form

n
,9n) = ^2Ui(gi),

¿=1

where each U^gf) is a strictly increasing function.

By using this additive form of utility function, we impose another im­

plicit assumption, i.e., any subset of the criteria used is preferentially indepen­

dent. This is due to the fact that, for any subset G of the whole criteria set F 

and for any four countries a, b, c, d which satisfy the left hand side of (2.16),

C/(O) - U(b) = ^K(a(a)) - Ufa,(6))] (2.19a)
j€G
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= £WteW) - (2.19b)

= [/(c) - U(d) (2.19c)

implies the right hand side of (2.16).

For a factor i, the composition function Ui(gi(xi)) is called a marginal

utility function, abbreviated as U^xf) or [/¿(c) for country c. It’s obvious that 

Ui(xi) is an increasing function. When the utility function is normalized, the 

maximal value of each marginal utility function is a percentage that indicates 

the relative importance of that factor in the country risk classification model. 

We call these maximal values of marginal utility functions weights of the fac­

tors.

Estimating the Utility Function

With this additive form, UTADIS method estimates the utility function by

estimating every marginal utility function using a piecewise linear function.

Note that the criterion function on each factor will not be estimated. We will

directly estimate the composition function [/¿(^(xj)), i.e., the marginal utility

functions.

Denote Xj* and x* the smallest and largest possible value of quantitative 

factor i, and choose a set of increasing values xj, j = 1, • • • , r» between Xj* = xj
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and x* — where rj is the number of gridding points. The marginal utility 

function values at these points are denoted by U3 respectively. The piecewise 

linear function defined by the sequence Uf,--- , Ufi is the estimation of the zth 

marginal utility function. If the factor value x? of a country c falls in interval 

[xi,Xi+1), then its zth marginal utility will be calculated by

x?+1 — xÇ C _ rj
X,

Ui(c) = U^ + -r.
xi+1 - x3- 1 x^+1 - x3

Estimation of utility function is now to determine the value of and pi for

i = 1, • • • ,n,j = 1, ••• ,n.

For given {U3} and {^¿}, the two types of classification error are illus­

trated in Figure 2.1. If country c actually comes from level Ck while U(c) < pk 

(or [/(c) > Pk-i), we say the classification error is cr+(c) = Pk — U(c) (or 

<t_(c) = [/(c) - Pk-i)- To find the best utility function that represents the 

rater’s preference, we solve the following linear program, which aims to mini­

mizing the total classification errors:

min CT+(C) + 52 a (c) (2.20a)
c£Ck:k<q cECk:k>l

n
subject to 52 ^¿(c) ~ hk + v+(c) >0, VI < k < q - 1, Vc 6 Ck, (2.20b) 

j=i 
n

52i/<(c)-Mfc-i-a-(c) <-J, V2 < k <Ck, (2.20c)
¿=1

Pk-1 - Pk>s, Vk = 2,--- ,q-l, (2.20d)
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Figure 2.1: Illustration of Classification Errors on Country c

c, . . ck .C,
! i ! !
I i i / i
!_______ ! ■ lw) !

»n »k ^k-i tu

iy/+1 - c/f > 0, = ,n,Vj = l,-.. ,ri-l, (2.20e)

¿71 = 0, Vi = 1, •••,«, (2.20f)
n
ZX< = 1> (2.20g)
i=l

cr+(c) > 0, cr_(c) > 0, Vc. (2.20h)

In the above LP model, (2.20b,c,h) define the classification errors for each 

training country, (2.20e) is the monotonically increasing assumption, (2.20f,g) 

normalize the utility function and (2.20d) is used to keep the increasing be­

havior of the utility thresholds, s and 8 are small positive constants used to 

ensure the strict inequality. These two parameters are usually chosen such
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that - > s > 5 > 0.

Postoptimality Analysis

The solution to (2.20) may be sensitive to the data, i.e., a little change on the 

data may cause a big change on the solution. Spathis et al. [2002]; Zopounidis 

and Doumpos [1999] proposed a procedure to produce a classifier which is 

hopefully less sensitive to the data. This procedure is called postoptimality

analysis in MCDA literature.

Suppose E* is the optimal total classification error given by the solution 

to (2.20). In the postoptimality analysis, we allow the objective function to 

be near-optimal and change the objective function to the following constraint

52 a+(c)+ 52 <*"(<0 < (1+ *)#*> (2.21) 
c£Ck:k<q c€Ck'.k>l

where z > 0 is a parameter indicating how much disturbance is allowed. To 

obtain a less sensitive classifier, Zopounidis and Doumpos [1999] proposed to 

solve the following sequence of linear programs

Q-l
maxt/p + 52/^fc, Vi = l,---,n (2.22a)
u'ti'a fc=i

9-1

minCZp + Vi = l,---,n (2.22b)
’M’CT fc=i

subject to the same constraints as in (2.20) with the additional one (2.21). 

Then the average of these solutions is proposed to be used as the final solution
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which is hopefully less sensitive to the data than the one obtained by (2.20). 

Note that, because of the increasingness of each marginal utility func­

tion, the average of the marginal utility functions on the same factor is also an 

increasing function and the average utility function of those obtained from the 

above linear programs, together with the solution to (2.20), is also normalized. 

This means that the average of solutions to (2.20) and (2.22) corresponds to

a normalized classifier.

2.2.4 MHDIS Method

Another useful approach for country risk classification is MHDIS. While UTADIS 

determines the risk level of a country in one stage according to its utility as

defined in the last section, MHDIS uses a sequential and hierarchical process 

to decide it. We still use Ci, C^, • • • ,Cq to denote the q risk levels, from the 

lowest to the highest. Given a country c, MHDIS decides in the fist stage 

whether it’s in level C\. If so, c is classified as in Ci, and the classification 

process is done. If not, MHDIS continues to decide whether it’s in level C2, 

and so on. The maximum number of these repeated stages is q — 1. If a 

country is decided not in level C9_i, it will be classified as in level Cq, and the 

classification process is done.

To determine whether a country c is in level Ck or C'-.fe = Ck+i U ‘ " U
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MHDIS uses a similarity function Uk(c) = £4(<7i(c), • • * , <7n(c)) and a dissim­

ilarity function f7-,fc(c) = {/-,*; (^i(c), • • • ,^„(c)): if U/c) > U-,k(c)i then c is in 

Ck', otherwise c is in C-,k- As indicated by the names, function Uk represents 

the degree of similarity between a given country and the countries at risk level

Cfc, while function U-& represents the degree of similarity between a given

country and the countries at risk level Ck+i or higher. The estimation of these

two functions can be done via using the additive form as in UTADIS, e.g.,

m
Ukkîh-i ,9n) = Ckifgi), 

¿=i

where gi,i = 1 • • • ,n are criterion values on n factors. Each composition of 

Uki(gi)/U^ki(.gi) and abbreviated as Uki(xi)/U^Xi) or i/fct(c)/CAfci(c)

for country c, is called a marginal similarity/dissimilarity function. Each 

marginal similarity/dissimilarity function indicates the similarity aforemen­

tioned from the point of view of the zth factor. MHDIS assumes that Uk/xf) 

is monotonically increasing with respect to the ith factor value, and contrarily 

U^ki(xf) is monotonically decreasing. Piecewise linear functions are again used 

to estimate marginal similarity/dissimilarity functions.

To understand better MHDIS, let’s first look at an alternative model 

to estimate £/&(•) and £/-,&(•). In this model (2.23), the number of misclassified
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training countries is to be minimized:

1 minI,UkiU^ E m
CECfc (JCnfc

n n

(2.23a)

subject to VceC*’
2=1 2=1
n n

(2.23b)

52 CZ^(c) - 52 Uki(c) + /(c) >5, Vc G a,k,
2=1 2=1

(2.23c)

U3ki,j = 1, • • • ,rj is a increasing sequence, Vic,Vi (2.23d)

U^ki, j = 1, • • • , ri is a decreasing sequence, Vk, Vi (2.23e)

Uk, U-,k are normalized, (2.23f)

/(c) e {0,1}, Vc, (2.23g)

where s is a small positive constant to ensure the strict inequalities and /(c) 

indicates whether c is misclassified or not. Minimizing the number of misclas- 

sified countries actually has been used in UTADIS(II) method [Doumpos et al., 

2001b]. However, the number of training countries might be large . Because 

we use one binary variable /(c) for every training country c, the large number 

of training countries results in a large number of integer variables, thus a big

MIP has to be solved.

MHDIS also tries to minimize the number of misclassifications. To re­

duce the computation effort and improve the performance, MHDIS first uses 

an LP to recognize those countries that can be easily classified. Usually, many
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training countries belong to this category. Then MHDIS requires these coun­

tries to be classified correctly and tries to decrease the number of misclassifi­

cations in the rest countries. In this way, the number of integer variables are

decreased significantly.

We now describe the details in MHDIS. As mentioned above, MHDIS

first recognizes those countries which can be easily classified by minimizing 

the sum of classification error e(c) as shown in linear program (2.24):

min e(c) (2.24a)
e,Uk,U-k

n n

subject to y Uki(c) - 52 £Afct(c) + e(c) > s, Vc G Ck, (2.24b)
i=l i=l

52
n 

 
n

u^ki(c) - e(c) > s, 
i=l 

 
¿=1
52 uki(c) + Vc G C_fc, (2.24c)

U3ki, j' = 1, •• • , ri is a increasing sequence, Vfc, Vi (2.24d)

U3_ki,j = 1, • • • , is a decreasing sequence, X/k,Vi (2.24e)

Uk, U^k are normalized, (2.24f)

e(c) > 0, Vc, (2.24g)

where a small positive constant s is again used to ensure the strict inequalities 

and (2.24b,c) defines e(c). The set of countries classified correctly after (2.24) 

is denoted by COR, and the set of countries misclassified is denoted by MIS.

To decrease the number of misclassified countries in MIS, MHDIS

36



Master Thesis - Xijun Wang - Computing and Software - McMaster

directly minimizes it as shown in mixed integer program (2.25):

t min I,UklU^
E 'M

' ceMis
(2.25a)

subject to
TV TV

^Uki(c)-^U^i(c)>s, ^ceCkOCOR, 
i=l i=l

(2.25b)

n n
52 t/.w(c) - 52 uki(c) > s, Vc € c^k n COR,
i=l i=l

(2.25c)

n n
52 Uki(c) - 52 ^fei(c) + /(c) >s, VceCkH MIS, 
i=l i=l

(2.25d)

52 u-*i^ - E +z(c) s’ Vc e c-* n MIS>
i=l ¿=1

(2.25e)

f/^, j = 1, - ■ • , rj is a increasing sequence, V/c, Vi (2.25f)

U^, j = 1, • • • , ri is a decreasing sequence, Vk, Vi (2.25g)

Uk, U-,k are normalized, (2.25h)

/(c) G {0,1}, Vc G MIS, (2.25i)

where s is the same constant as in (2.24) and /(c) indicates whether c is 

misclassified or not. If we denote COR' the set of countries classified correctly 

and MIS' misclassified after (2.25), then MIS' surely might not contain the 

minimum number of misclassified countries as obtained in (2.23), while this 

two-step method significantly reduces computation effort.

MHDIS does not stop here. There might exist many different Uk and 

U^k pairs that can result in the same number of misclassifications. However, 

these different pairs might enjoy different generalization ability. Remember
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that Uk(c} and t/-,fc(c) represent the similarity of country c to countries in Ck 

and <7-nfc respectively. Similarity to C-,k actually measures dissimilarity to Ck, 

and vice versa. Thus, we might expect that a similarity/dissimilarity function 

pair which has larger differences for those correctly classified countries can 

achieve better generalization performance2. This is what MHDIS does in its 

last step, as shown in the following linear program:

maxd,UkiU^ d
z

(2.26a)

subject to
n 7i
E Uki(c) - 52 t/^(c) - d > s, VceCkn COR!, 
i=l i=l

(2.26b)

E U-,ki(c) - E Uki(c) -d>s, COR!,
i=l ¿=1

(2.26c)

VceCkCMis',
i=l i=l

(2.26d)

VczC^OMIS1,
¿=1 i=l

(2.26e)

U^j = 1, • • • , Tj is a increasing sequence, \fk,Vi (2.26f)

U^,j = 1, • • • ,ri is a decreasing sequence, \/k,\/i (2.26g)

Uk, U^k are normalized, (2.26h)

d> 0, (2.26i)

where s is the same small constant as in (2.24) and d is the minimum difference

between the similarity to Ck and C^k of countries in COR!. The countries in
2Such an idea was also used in methods UTADIS(I) and UTADIS(III) [Doumpos et al., 

2001b],
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MIS remains misclassified in program (2.26).

Using these three steps (2.24,2.25,2.26), MHDIS gets a classifier to clas­

sify Ck and C-,*;. In total, there are q—1 two-class classifiers that constitute one 

multiple-class country risk classifier. Each step in MHDIS has actually con­

sidered in UTADIS family methods. However, MHDIS takes a more efficient 

way to derive a classifier.

We point out here that it is reasonable to expect that a pair of similar­

ity and dissimilarity functions that has less differences for those misclassified 

countries can achieve better generalization performance. This can be done by 

introducing another variable d! similar to d in (2.26) to measure the maximum 

difference of similarities to Ck and C-,k of countries in COR'. By minimizing 

a weighted sum of d and d', a classifier with better generalization performance 

can be obtained. Such an idea is used in UTADIS (III) [Doumpos et al., 

2001b], but not in MHDIS.
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Chapter 3

Dealing with Complex Criteria

We extend the UTADIS method to GUTADIS that allows more complex cri­

teria to be incorporated into the model by using integer programming and 

nonlinear programming technique.

3.1 Unimodal Criteria

As we described in Section 2.2.2, most MCDA methods assume that each

criterion function is monotone with respect to the corresponding factor and 

decision makers are able to choose factors that satisfy this assumption. How­

ever, criteria on some important factors might fail to satisfy this assumption.

Take the ratio of trade to GDP for example. A very high trade ratio makes

a country more vulnerable to international demand changes, hence a higher 

country risk, while a low ratio provides a country little capability to pay for­

eign debts. Another example is value added in industry as a percentage of
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Risk Level

GDP, on which most countries at low risk level take a value in the middle of 

the two extremes. These two cases are confirmed by Figure 3.1 and Figure 3.2,

where the countries at lower risk level have values more adjacent to the av-

Figure 3.1: A Non-Monotone Criterion on Trade (% of GDP)
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erage values. The above figures show that these factors are non-monotone, or 

in other words, the monotonicity assumption is unrealistic for these factors.

In order to use non-monotone criteria for country risk classification, we

need to relax the monotone constraints on the criterion functions such that

more complex and practical criteria can be used in MCDA models. It’s not 

a good idea to simply drop the monotonicity assumptions, because nobody 

in practice have a preference that corresponds to a highly vibrating criterion 

function. For example, perhaps nobody would have a complex preference g(x)
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Figure 3.2: A Non-Monotone Criterion on Industry (Value Added, % of GDP)

on the trade ratio like this

0(0.46) > 0(0.49) > 0(0.42) > 0(0.44) > 0(0.48).

Besides monotone functions, another class of functions representing the 

trend of a banker’s preference on a single factor is the class of unimodal func­

tions.

Definition 3.1 (See Stout [2000]) A unimodal function is a univariate func­

tion which is monotonically increasing before a point reaching the maximal 

function value and monotonically decreasing after that point. A point where 

the unimodal function reaches its maximal function value is called a mode of 

the unimodal function.
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Note that the set of unimodal functions is a superset of monotone

functions and include monotone functions as special cases. When a criterion

is thought of as a unimodal one, the solution to a MCDA model that can deal

with unimodal criteria may claim that it’s simply increasing or decreasing.

This may be used by decision-makers to verify their monotone preferences on

factors.

3.2 The Generalized UTADIS Method

In this section, we generalize the UTADIS method so that it can use unimodal

criteria. This generalized UTADIS method is called GUTADIS in this thesis.

Denote the set of factors with monotonically increasing criteria and 

unimodal criteria by Im and Iu respectively. GUTADIS model can then be

formulated as follows:

E <t+(c)+ E a~(c) (3-la)
cQCk'.k<q cECfc:fc>l

n
subject to 5? U»(c) - pk + <r+(c) > 0, VI < k < q - 1, Vc G Ck, (3.1b) 

2=1 
n

5?U»(c) - pk-i - (c) < -5, V2 < k < q,Vc e Ck, (3.1c)
2=1

Vk-1 ~ f-ik > S, VA: = 2, ••• ,q — 1,

Uf,j = 1, • • • , Tj is a increasing sequence, Vi G I„

(3.1d)

(3.le)
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U?,j = ,ri is a unimodal sequence, Vi € Iu (3.If)

U is normalized, (3.1g)

cr+(c) > 0, <7_(c) > 0, Vc. (3.1h)

It is unclear whether the new formulation is an LP program. In this 

formulation, that t/f ,j = 1, • • • , n is a unimodal sequence means, there exists

a I between 1 and such that

Ul < U? < ■ ■ ■ < U! > U[+1 > • ■ ■ > U?. (3.2)

For general unimodal functions, the model (3.1) is much harder to solve than 

(2.20).

3.2.1 The Normalization Constraints

The most difficult constraints in (3.1) are (3. If) and (3.1g). Let’s first consider 

the normalization constraints (3.1g). Using strict inequalities, the model can

be rewritten as follows.

mi?7 52 <t+(c)+ 52 a (c) (3.3a)
cr,H,U

ceCk'.k<q ceCk:k>l
n

subject to 57 ^»(c) - Mfe + cr+(c) > 0, VI < k < q — 1, Vc G Ck, (3.3b)
¿=i 
n

52 ^«(c) - Mfc-i - <7_(c) < 0, V2 < k < qfic G Ck, (3.3c)
i=l
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—/LZfe > 0, Vfc = 2, ••• ,q — 1, (3.3d)

• , ri is a increasing sequence, Vz E Jm, (3.3e)

• , ri is a unimodal sequence, Vz E Ju, (3.3f)

min = 0, Vi
j

> (Normalization) (3-3g)
= 1,

i >

<r+(c) > 0, a (c) > 0, Vc, (3.3h)

where Im is the set of monotonically increasing criteria, and Iu is the set of

unimodal criteria.

When all criteria are monotone, we know where the minimum and max­

imum marginal utility function values are achieved, and the normalization 

constraints can be easily formulated as linear constraints (2.20f,g). However, 

when unimodal criteria are used, we don’t know both the minimum and the

maximum of the corresponding marginal utility functions. This makes nor­

malization constraints in (3.3g) difficult to be realized.

Consider relaxing the normalization constraints as in (3.4g).

min CT+(C) + 52 a_(c) (3-4a)

n

subject to Ui{c) — p,k + cr+ (c) >0, VI < k < q — 1, Vc e C*, (3.4b)
t=i
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n
J2i7i(c)-Mfc-i-(T-(c)<0, V2 < fc < g,Vc G Cjt, (3.4c)
i=l

Mfc-i ~Pk>0, Vk = 2, ■ • ■ ,q — 1, (3.4d)

U?, j = 1, • • • , ri is a increasing sequence, Vi G Im, (3.4e)

t/f = 1, • • • , rj is a unimodal sequence, Vi G Iu, (3.4f)

0 < U? < 1, Vi = 1, • • • ,n,Vj = 1, • • • ,rj, (3.4g)

<7+(c) > 0, <7_(c) > 0, Vc. (3.4h)

While the optimal solution of (3.3) might not be the optimal solution of

(3.4), the optimal solution of (3.3) can be recovered from the optimal solution 

of (3.4), as shown in our next discussion.

Suppose (U, p) is feasible for (3.4), and a is its corresponding classifi­

cation error vector. Let

Oi = minf7/, Vi = l,---,n, (3.5a)
j

U-^Ul-ai, Vi = l,---,n,Vj = I,---,rf, (3.5b)
n

p!k = pk - VA: = 1, •••,</ —1. (3.5c)
t=i

Note that mm, f/f = 0 for all i. In this thesis, we call a utility function semi­

normalized if its minimum value is 0. System of equations (3.5) provides a 

procedure to transform a general utility function into a semi-normalized one. 

It can be easily verified that is also feasible for (3.4) with the same
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classification error vector o' — cr. Thus, we can confine the optimal utility 

function of (3.4) to be semi-normalized.

We next introduce the following normalization procedure

(3i = msutU), Vi = 1, • ,n, (3.6a)
3

■ji'_ V’ Vi = 1, î * IXi/V ^3 1|” ' i^iy (3.6b)

r'ku!  -~~ /□ 5 Vfc = 1 ■ ,Q- 1. (3.6c)

Theorem 3.1 Suppose (U,pi) is non-constant and semi-normalized. If (U, pi) 

is optimal for (3.f), then (U',pi), provided by the procedure (3.6), is optimal 

for (3.3).

Proof Since (U, pi) is non-constant and feasible for (3.4), we claim that 52 A > 

0. Consider the following program (3.7) which is different from (3.3) only in

the normalization constraints:

c)min V <r+(c) + o
c€Ck'.k<q c€Cfe:fc>l

n
subject to ^2 Ui{c) - pk + <r+(c) >0, VI < k < q — 1, Vc G Ck, (3.7b) 

¿=1 
n

Ui{c) - Pk-i - <r_(c) <0, V2 < k < q, Vc G Ck, (3.7c)
i=l

Pk-1 -pik>0, \/k = 2,--- ,q-l, (3.7d)

U(, j1 = 1, • • • , ri is a increasing sequence, Vi G Im, (3.7e)

(3.7a)
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= ,ri is a unimodal sequence, Vi G Iu, (3.7f)

mint/f = 0, Vi 
i

(normalization) (3.7g)
=y,

i

<r+(c) > 0, a (c) > 0, Vc, (3.7h)

where 7 is a positive constant. Obviously, if (f/7l,/z71) is the optimal solution 

for (3.7) with 7 = 71, then ^(I77l,ju71) is the optimal solution for (3.7) with 

7 = 72, since their classification error vectors are proportional.

Let 73 = 2^=1^» where $ is defined in (3.6a). If (U, fi) is optimal for

(3.4) , then (U,fi) is also the optimal solution of (3.7) with 7 = 73. Thus, as

discussed above, —({/,//) is the optimal solution for (3.7) with 7 = 1, which 

provides a solution to (3.3). I

According to Theorem 3.1, we can first solve (3.4), then use procedure

(3.5) and (3.6) to transform the solution into an equivalent but normalized 

one. In this way, we avoid dealing with the nonlinear constraint (3.3g).

In actual computation, we again introduce parameter 5 and s to strengthen 

the strict inequalities to non-strict ones as shown in the following

min Z ct+(c)+ z a"(c) (3.8a)
cC:Ck.k<q ceCk:k>l

n
subject to 57 ^(c) ~ Mfc + ^(c) >0, VI < k < q - 1, Vc G Ck, (3.8b)

¿=1
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n
[/¿(c) - pfc_i - cr-(c) <-6, Y2<k< q, Vc e Ck, (3.8c)

i=l

Pk-l - Pk> s, V/c = 2, • • • ,ç — 1, (3.8d)

,r, is a increasing sequence, Vi € Im, (3.8e)

, ri is a unimodal sequence, Vi € (3.8f)

0<U(<l, Vi = 1, • • • ,n, V) = 1, • • • ,ri5 (3-8g)

cr+(c) > 0, a"(c) > 0, Vc. (3.8h)

The relation between (3.8) and (3.1) is characterized by the following theorem,

which is similar to Theorem 3.1.

Theorem 3.2 Suppose (U, p) is non-constant and semi-normalized. If (U, p) 

is optimal for (3.8), then (U',p') provided by procedure (3.6) is optimal for 

(3.1) with parameter setting

6S'= (3-9)
IXi/V

The theorem can be proved by introducing an auxiliary model the same as 

(3.7) except with strict inequalities changed. Note that procedure (3.5) won’t 

change the optimality of (U,p) for both (3.1) and (3.8). Thus, we are still 

guaranteed to get an optimal solution that is also semi-normalized.

However, if the scale of the solution to (3.8) is small, we will get a small 

53"=i & that makes equation (3.9) correspond to large tolerances. Thus, to
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obtain the solution to (3.1) under a certain tolerance setting, we need to know 

the scale of the solution to (3.8) if we want to use procedure (3.6) to construct 

the solution to (3.1). This is impractical because knowing the scale of the 

solution is a problem the same as our ultimate problem (3.1).

Our strategy to attack this difficulty is using two stages. Given the tol­

erance setting, we first solve (3.8) under this setting and get its scale. Second, 

we use the obtained scale to adjust the tolerance parameters and solve (3.8) 

again. The normalized solution of the second stage is used as an approximate 

solution to (3.1) with given tolerance parameters.

3.2.2 Concave Marginal Utility Functions

Starting from this section, we will focus on solving model (3.8).

Concave marginal utility functions are among the unimodal ones that 

can be relatively easily handled. If we assume that Ui(x) is concave, the cor­

responding constraint (3.8f) can be relaxed to the following linear inequalities

u? - ur1. ui+l - ui
-1 > Vj = 2,--- ,n-i. (3.10)

¿+1 - xi ’

It can be verified that (3.10) is a sufficient and necessary condition for 

a piece-wise linear function with nodes (xj, U-), j = 1, • • • , r, to be a concave 

function. Thus, concave marginal utility functions do not bring extra difficulty
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into model (3.8) and it’s again a linear program. Convex marginal utility 

functions can be handled in a similar manner as in (3.10).

Convex/concave constraints may also be used to produce smooth marginal 

utility functions of monotone criteria. For example, a marginal utility func­

tion obtained by (2.20) might alike the one shown in Figure 3.3. One might

Figure 3.3: An Example of Steep Marginal Utility Function

believe that the impact of financial reserve changes should not be so unevenly, 

or in other words, the corresponding marginal utility function should not be 

so steep. A classical methods to deal with this situation is using the following 

constrains for increasing marginal utility function

0<t//+1-U/<Tt/p, VJ = 1,... (3.11)

where r > 0 is a parameter.

However, if we confine the marginal utility functions to be convex or 

concave, then the constraint (3.10) will ensure that the resulting utility func­
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tion will not be very steep. We shall provide a numerical test of using concave 

or convex constraints smoothing the marginal utility function in Chapter 5, 

which verify our conclusion.

3.2.3 General Unimodal Criteria

If the mode of each criterion function is known in prior, the unimodality can be 

represented by two monotone segments separated by the mode, one increasing 

and the other decreasing, and consequently, the unimodal constraints can be 

expressed by linear inequality constraints. This situation was briefly discussed 

in Zopounidis and Doumpos [1999].

In case that the modes are unknown, one way to solve (3.8) is enu­

merating all possible mode combinations of the unimodal criteria to find the 

optimal solution. It involves solving n»e/„ r» number of linear programs (3.8) 

where (3.8f) is alternatively changed to linear constraints (3.2) with different 

modes. However, even if only 3 criteria are unimodal, this procedure, pro­

grammed using MATLAB 6.5, takes more than an hour on an IBM RS6000

workstation, which makes the generalized model impractical.

Our approach to deal with the unimodal constraints is reformulating 

(3.8) into an integer program and exploiting the power of existing integer- 

program solvers. We will show that the number of integer variables introduced
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to tackle the unimodal constraints is about the same as the number of grid

points of unimodal criteria.

We introduce an integer variable Y^ = 1 or — 1 to indicate whether

Uf > Up1 (3.12)

or

Ui < Up1 (3.13)

holds for every i G Iu and for every j between 2 to In other words, G 

{—1,1} is confined to qualify the following inequality constraint

~ Uf'1) > 0- (3.14)

Using variables Y^, the unimodality of criterion g^ for i G Iu can be 

expressed as

iij — 1 => Yij-f-i — 1, Vj — 2, • • • , Tj — 1, (3.15)

which can be further expressed as inequality

Yij>YiJ+1yj = 2,-- - (3.16)

Variables Y^ together with constraints (3.14) and (3.16) exactly ensure 

the {U-,j = 1, • • • , Tj} to be a unimodal sequence for each i G Iu. Therefore
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we can reformulate (3.8) as the following

min 22 a+(c)+ 22 ° (3.17a)
’ c&3k:k<q c&Ck:k>l

n
subject to t/j(c) — /ifc + <r+(c) > 0, VI < k < q — 1, Vc G Ck, (3.17b)

i=l
n

pk.i-a-Çc) <-S, V2 < k < q,Vc E Ck, (3.17c)
¿=1

fj-k-i - Hk>s, Vfc = 2, • • • ,q-l, (3.17d)

Ui-Ui-'yQ, VieIm,Vj = 2,--- ,n, (3.17e)

-^-X)>0, Vi G 4,V> = 2, ••• ,n, (3.17f)

Yij > Vtj+1, ViG/„,.? = 2,-•• ,n-l, (3.17g)

0 < c/f < 1, Vi = l,---,n,y? = i,... ,n, (3.17h)

yoe{-i,i}, Vie/U,j = 2,---,ri; (3.i7i)

cr+(c) > 0, cr_(c) > 0, Vc, (3.17j)

which is an integer nonlinear program.

Like linearly constrained integer programs, the solution to nonlinearly 

constrained program (3.17) mainly resorts to branch and bound or cutting 

plane algorithms.
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3.2.4 Postoptimality Analysis

As mentioned in Section 2.2.3 (page 32), a postoptimality analysis can be done 

to produce a hopefully less sensitive solution when all criteria are monotone.

This traditional postoptimality analysis is done by the following way.

First we relax the problem by allowing the classification error to be in an 

interval [E* — e, 2?*], where E* is obtained by solving the model (2.20). Then 

we compute the extreme points of the polyhedron P defined by (2.20) and 

(2.21) and use the average of these extreme points as the final classifier.

Note that the average of these extreme points can be viewed as a sort of 

center of the polyhedron P and there are various methods for computing such 

a center in the optimization community, particularly in the area of interior- 

point methods [Ye, 1997]. For example, suppose the linear inequalities defined 

by (2.20) and (2.21) are rewritten into the following form

Master Thesis - Xijun Wang - Computing and Software - McMaster

Ax > b, (3.18)

where x is the vector of variables. Then one of its analytic center can be 

obtained by solving the following optimization problem

max ln(afx - 6i) (3.19a)

s.t. Ax > b, (3.19b)
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where a? is the zth row of matrix A and bi is the zth component of vector 

b. It has been shown that the above optimization problem can be solved in

polynomial time.

So we can perform the postoptimality analysis by solving one convex 

nonlinear program (3.19) instead of tens of linear programs.

It will be helpful to explore how to apply these powerful optimization

techniques in the postoptimality analysis. Due to the time limitation, we leave

this as one topics of the future works.
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Chapter 4

Using Quadratic Utility

Function

4.1 Quadratic Utility Functions

When we choose to use additive form of utility functions in MCDA methods 

such as UTADIS and MHDIS, we are assuming that the preferences of raters on

countries can be disaggregated into independent preferences on various factors. 

Since many practically used factors are closely correlated, this assumption is 

definitely not true. Table 4.1 shows the correlation coefficient matrix of the 

factors listed in Table 1.2. From this table, we can see that many factors have 

strong correlation with each other.
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Table 4.1: The Correlation Coefficients Matrix of Factors in Table 1.2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (H) (12) (13)

(1) 1.00 0.88 0.60 0.48 0.75 -0.02 -0.22 -0.11 0.15 0.11 -0.33 -0.53 0.10

(2) 0.88 1.00 0.74 0.54 0.87 0.00 -0.27 -0.23 0.05 -0.08 -0.37 -0.66 0.24

(3) 0.60 0.74 1.00 0.54 0.56 0.30 -0.28 -0.06 -0.13 -0.02 -0.26 -0.50 0.31

(4) 0.48 0.54 0.54 1.00 0.60 0.10 -0.35 -0.12 -0.05 -0.07 -0.08 -0.37 -0.18

(5) 0.75 0.87 0.56 0.60 1.00 -0.11 -0.41 -0.31 0.09 -0.04 -0.30 -0.52 0.19

(6) -0.02 0.00 0.30 0.10 -0.11 1.00 -0.05 -0.21 0.18 0.31 0.14 0.09 -0.14

(Î) -0.22 -0.27 -0.28 -0.35 -0.41 -0.05 1.00 0.14 -0.10 0.10 0.17 0.32 -0.22

(8) -0.11 -0.23 -0.06 -0.12 -0.31 -0.21 0.14 1.00 -0.18 0.24 -0.20 0.04 0.08

(9) 0.15 0.05 -0.13 -0.05 0.09 0.18 -0.10 -0.18 1.00 -0.02 -0.37 0.02 -0.11

(10) 0.11 -0.08 -0.02 -0.07 -0.04 0.31 0.10 0.24 -0.02 1.00 0.04 0.21 -0.04

(H) -0.33 -0.37 -0.26 -0.08 -0.30 0.14 0.17 -0.20 -0.37 0.04 1.00 0.60 -0.30

(12) -0.53 -0.66 -0.50 -0.37 -0.52 0.09 0.32 0.04 0.02 0.21 0.60 1.00 -0.36

(13) 0.10 0.24 0.31 -0.18 0.19 -0.14 -0.22 0.08 -0.11 -0.04 -0.30 -0.36 1.00

The name of the factors are the same as in Table 1.2.



It is more appropriate to take the correlation into consideration in the 

model when many factors are densely correlated. One possible scheme is to 

introduce new terms into the additive form of utility function to reflect the 

correlation among various factors. This kind of more complex utility function 

may enhance the capability of UTADIS methods.

The simplest extension of the additive form of utility function is the

quadratic one as shown in the following general form

n n n

t/(c) = + E E (4.1)
i=l i=l j=l

where Ui is strictly increasing with respect to ^¿(c) for every i = 1, • • • ,n 

and coefficients ctij,i,j = 1, • •• ,n are parameters. The composition function 

£/j(<7i(c)) are also called marginal utility functions for the zth factor. In this

form, the effect of the ith factor consists of two parts

n

j=i

where the first part is contributed by the ith factor itself and the second part 

is contributed by the correlation between the ith factor and the other factors. 

Strictly speaking, an should be zero, while a positive an can be regarded as a 

quadratic term of the first part.

We assume as in UTADIS methods that every criterion, and hence ev­

ery marginal utility function, is monotonically increasing to its corresponding
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factor value. We can see that, if > 0 for all i,j = 1, • • • ,n, the global 

preference defined by the quadratic utility function (4.1) and a set of critical 

values will be guaranteed to be consistent to the individual criterion on each 

factor, i.e., (2.18) will still hold.

Similarly to (2.20), we can now formulate the training process as the 

following nonlinear program

mm
cGCfc:fe<

52 
ç 

<t+(c)+ 
cGC

52
fc:fc>l
 ° (4-2a)

subject to 17(c) — pk + <7+(c) >0, VI < k < q — 1, Vc € Ck, (4.2b)

17(c) - pk-i - c-(c) < -Ô, V2 < A: < q,Vc € Ck, (4.2c)

P'k—i Pk > s, VA: — 2, • • • , q 1, (4-2d)

17/+1 — 17/> 0, Vi = l,-..,n,Vj = l,-- • - 1, (4-2e)

Uf' i  = 0, Vi = 1, ••• ,n, (4-2f)
n

(4-2g)
1=1 i—1 j=l

T+ (c) > o, <7 (c) > 0, Vc, (4-2h)

where 6 and s are small positive constants to ensure the strict inequalities, 

17(c) is defined as in (4.1) and «¿j > 0 are parameters. This formulation is 

again reduced to a nonlinear quadratic constrained linear program.

We call this model with quadratic utility functions QUDIS.
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4.2 A Special Quadratic Utility Function

The quadratic utility function (4.1) is generally neither convex nor concave if 

we simply have nonnegative coefficients cty. If there exists a series of otj,j = 

1, • • • , n such that

CCjj = Oi^CXj, Vi,j = 1,• • • ,71, (4-3)

the utility function is then convex. Actually, the left hand sides of constraints 

(4.2b,c,d) will be all parabolic: the constraints with cr_(c) are convex, and the 

ones with cr+(c) concave.

Let’s first check a special case of a^s satisfying condition (4.3):

«¿J = 1, for all i, j = 1, • • • ,n. (4.4)

In this case, the utility function becomes

n n n

U(c) = £ ¡7,(9,W) + L E
¿=1 ¿=1 j=l

= ^¿£¡,(9,(9)) + ^ -J, (4.5)

which is an ellipsoidal function.

For general which satisfies condition (4.3), we can assume that cxfc

0 for some k without loss of generality. The utility function then becomes

n n n

¿=1 i=l J=1
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lb / lb \
= + (^2aiUi(9i(cy))

i=l \i=l /

= (ib )

¿=1 \»=i ak /

= + (4.6)
i^k \ t—1 z

which is a parabolic function if not all «¿s are equal, or an ellipsoidal function

otherwise.

4.3 The Normalization Constraint

Under condition (4.3), the quadratic constraint (4.2h) can be transformed into 

a similar form to (4.6):

1=E l_rL)t/r + Q2 Oti V.x
(4-7)

ak < ̂ ■i=l +^1 4*r

where k is chosen such that afc 0. When at = 1 for all i — 1, • • • , n, it

becomes

5
4'

Since every Ui(^p) is nonnegative, this constraint can be further simplified as

a linear one
n y/5- 1 

(4-8)2i=l
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4.4 Optimizing

In the previous sections, we use a^ as predetermined parameters to determine 

the optimal utility function, while different a would give different solution. 

By forcing these a^ to be also non-negative decision variables, the degree of 

dependence between factors can also be optimized by (4.2). We should also 

add upper bound constraints and symmetry constraints on a^s:

0 < Oiij < 1 and = aji for all i,j = 1, • • • , n.

When are also variables, (4.2b,c,d,h) become cubic constraints and the 

problem is hard to be solved. The inclusion of the model optimizing a^ is 

only intended to show that, by forcing a^ to the special case a^ = 1, we will 

not lose much performance (See Chapter 5 for the performance comparison).
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Chapter 5

Data and Result

5.1 Data and Sources

5.1.1 Rating Sources

The country risk ratings used by numerical experiments in this thesis are 

provided by Standard &; Poor’s in 1998, 1999 and 2001 [Afonso, 2003; Alexe 

et al., 2003; Chambers and Beers, 1998]. Standard & Poor’s produces its 

ratings based on information provided by debtor countries themselves and 

other sources considered to be reliable [Alexe et al., 2003].

As shown in Table 1.1, the total number of risk levels is as large as 23. 

However, the number of countries rated by Standard & Poor’s was only 70 

around by December 1998, and only few countries fell into levels with higher
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Table 5.1: 1 Distri >ution of Sample Country-Years

Data Set AAA AA A BBB BB B CCC CC-D

No.l 20 22 17 28 33 12 3 3

No.2 11 11 13 15 14 16

risk. The reason is that most of developing and poor countries obviously have

no payment capability and no commercial banks are interested in them.

In this thesis, we use two set of ratings as training samples. One consists 

of 69 countries in year 1998 and 1999, totally 138 country-years. Another one

consists of 80 countries in 2001. Also, we note that countries at positive levels 

(such as AA+, A+, etc.) and negative levels (such as AA-, A-, etc.) have 

a little stronger or weaker repayment ability than the corresponding neutral 

ones. So we combine the positive and negative levels into the corresponding 

neutral ones. Level CC, C, SD and D, if present, are also combined as one 

due to the limited number of sample for them. After these combinations, the 

number of classes of these two data sets are reduced to 8 and 6 respectively.

Finally, the distribution of the sample country-years over the classes 

is listed in Table 5.1. According to Hu et al. [2002], the number of countries 

rated as CCC and below shown in this table is all the cases during 1981 and

1999.
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5.1.2 Sources of Related Factors

Most of the data on related factors are retrieved from the World Develop­

ment Indicators database created by The World Bank [2002]. This commer­

cial database recorded information of 207 countries on 575 factors. The online

version of this database provides data for years after 2000 and it is another

important data sources of this thesis.

Human Development Report1 created by United Nations Development 

Programme provides a bunch of statistical information on different aspects

of human development. Many of these are overlayed with those provided by 

The World Bank [2002]. The only one used in this thesis is the factor Human 

Development Index that is explained in the appendix.

The Polity IV Project polity series database developed by University 

of Maryland recorded the government status of about 200 countries in the last 

200 years. Several factors indicates the property of the political system running 

in a country. They mainly indicate the degree of autocracy or democracy of a

country. The one used in this thesis is named POLITY which is coded as an

integer ranging from -10 to 10.

Master Thesis - Xijun Wang - Computing and Software - McMaster

1See http://hdr.undp.org/statistics/data/.

69

http://hdr.undp.org/statistics/data/


5.1.3 Selected Factors

The selected factors are supposed to cover the environment and infrastructure,

health and education, political and social status, economy and finance aspects

of countries. These factors can be organized into five groups as listed in the

appendix. Except Human Development Index provided by United Nations and

POLITY provided by Polity IV Project, all other factors are extracted from

the World Development Indicators database or calculated according to data

extracted from that database. A detailed description of the factors is given in

the appendix. Six of the forty factors takes a unimodal criterion in this thesis.

Because of the availability of factors in the two main databases, two

factors used in the two data sets are slightly different. ’Research and develop­

ment expenditure (% of GNI)’ in the first data set corresponds to ’Research 

and development expenditure (% of GDP)’ in the second. ’Military expendi­

ture (% of GNI) ’ in the first data set corresponds to ’Military expenditure (% 

of GDP)’ in the second.

5.2 Computation Environment
5.2.1 Solvers

The linear programs (2.20), (2.22), (3.8) with concave constraints (3.10) are 

solved using solver PCx [Czyzyk et al., 1997] which is an interior-point predictor-
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corrector linear programming package. It’s developed at the Optimization 

Technology Center collaborated by Argonne National Laboratory and North­

western University.

Mix-integer nonlinear program (3.17) is solved by MINLP [Leyffer, 

1999] which implements a branch-and-bound algorithm for nonlinearly con­

strained mix-integer programs. The continuous relaxation subproblems are 

solved using filterSQP [Fletcher and Leyffer, 1998], a Sequential Quadratic 

Programming solver which is suitable for solving large nonlinearly constrained

problems. MINLP was developed by Roger Fletcher and Sven Leyffer at the

University of Dundee.

5.2.2 AMPL and NEOS

We design our numerical experiments using the modelling language AMPL [Fourer 

et al., 1993] and run them on NEOS [Czyzyk et al., 1998; Dolan, 2001; Gropp 

and More, 1997]. Using AMPL developed at Bell Laboratories, we can im­

plement the numerical experiments with familiar mathematical notations and 

concepts. NEOS provides us accesses to powerful computation hardware and 

accesses to the solvers mentioned in the last section using AMPL as their 

interfaces, which facilitates the solution of our models.
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5.3 Experiments and Numerical Results
5.3.1 A:-fold Cross Validation

fc-fold cross validation [Kohavi, 1995] is a widely used method to evaluate 

the prediction ability of the obtained classification model. In this validation 

method, the data set is randomly partitioned into k subsets, with the samples 

at each risk level evenly distributed in the k sets. The training procedure 

is then repeated k times. Each time, one of the k subsets is left out as a 

validation set and the others are used as a training set. After running the

training procedure on the training set, the obtained classifier is validated on

the validation set and the validation error rates are recorded. When all the k

training-validation procedures axe finished, the average validation error rates

is used as the approximation of the predication error rates of the classification

model.

We can see that each training-validation procedure takes of the 

data set as a training set. On the one hand, the smaller k is chosen, the less 

the proportion of the training set is, hence most probably a underestimated 

classifier with poorer generalization ability are produced. On the other hand, 

a larger k means running the training-validation procedure more times and 

consumes more computational power. In this thesis, we take k as 10, a widely 

used trade-off, which means 90 percent of sample is used as training set and
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10 percent is used as validation set each time.

5.3.2 Performance of Unimodal Criteria

The first experiment is desired to check whether the obtained classifiers will

enjoy a better performance if we relax some criteria to be unimodal. Table 5.2 

and Table 5.3 show the validation accuracy of each level on the two data sets

Table 5.2: 10-fold Cross-validation Accuracy of UTADIS and GUTADIS(l)
S&P’s UTADIS (40C, No Perturbation, 57.0%)

AAA AA A BBB BB B CCC CC-D
AAA 80.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0
AA 13.6 63.6 18.2 4.5 0.0 0.0 0.0 0.0
A 0.0 29.4 52.9 17.6 0.0 0.0 0.0 0.0

BBB 0.0 0.0 10.7 50.0 39.3 0.0 0.0 0.0
BB 0.0 0.0 0.0 27.3 51.5 12.1 6.1 3.0
B 0.0 0.0 0.0 0.0 50.0 41.7 8.3 0.0

CCC 0.0 0.0 0.0 0.0 33.3 0.0 33.3 33.3
CC-D 0.0 0.0 0.0 0.0 33.3 0.0 0.0 66.7

GUTADIS (40/6C, No Perturbation, 80.6%)
AAA 80.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0
AA 0.0 95.5 4.5 0.0 0.0 0.0 0.0 0.0
A 0.0 5.9 76.5 11.8 5.9 0.0 0.0 0.0

BBB 0.0 0.0 0.0 71.4 28.6 0.0 0.0 0.0
BB 0.0 0.0 0.0 12.1 72.7 15.2 0.0 0.0
B 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0

CCC 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
CC-D 0.0 0.0 0.0 0.0 0.0 0.0 33.3 66.7

respectively. Take for an example, the numbers at row AAA in UTADIS part 

means that 80 percent of country-years at AAA level are correctly classified 

by UTADIS model, while 20 percent are classified as AA level, and so on. 40C
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Table 5.3: 10-fold Cross-validation Accuracy of UTADIS and GUTADIS(2)
S&P’s UTADIS (40C, No Perturbation, 51.8%)

AAA AA A BBB BB B
AAA 81.8 9.1 9.1 0.0 0.0 0.0
AA 18.2 45.5 36.4 0.0 0.0 0.0
A 0.0 15.4 46.2 30.8 7.7 0.0

BBB 0.0 13.3 20.0 40.0 20.0 6.7
BB 0.0 0.0 0.0 35.7 28.6 35.7
B 0.0 0.0 0.0 6.3 18.8 75.0

GUTADIS (40/6C, No Pei•turbation, 86.9%)
AAA 81.8 18.2 0.0 0.0 0.0 0.0
AA 9.1 81.8 9.1 0.0 0.0 0.0
A 0.0 0.0 84.6 15.4 0.0 0.0

BBB 0.0 0.0 0.0 93.3 6.7 0.0
BB 0.0 0.0 0.0 0.0 100.0 0.0
B 0.0 0.0 0.0 6.3 12.5 81.3

or 40/6C in the table means how many criteria are used and how many are 

unimodal. ‘No Perturbation’ indicates that no postoptimality analysis is done.

We can see from Table 5.2 and Table 5.3 that the predication accuracy 

of GUTADIS is much better than that of UTADIS especially for those at 

higher risk levels. The overall validation accuracy of these two methods are 

at the level of 80% and 50% respectively. The accuracy of UTADIS is also 

tested using other linear solvers in NEOS and there is no much difference with 

PCx, all of which are roughly the same as the result shown in Doumpos et al. 

[2001b], i.e., with an overall accuracy 57.7%.

We also present in Table 5.4 an result where the risk levels of sample are 

relabelled as Investment(l), Speculative(2) or Non-Investment(3) according to
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Table 1.1. The accuracy is much better due to the increasing number of sample

in each risk level.

Table 5.4: 10-fold Cross-Validation Accuracy of UTADIS and GUTADIS(3)
S&;P’s UTADIS GUTADIS

1 2 3 1 2 3
1 94.9 5.1 0.0 96.6 3.4 0.0
2 3.3 88.5 8.2 0.0 91.8 8.2
3 0.0 33.3 66.7 0.0 5.6 94.4

Overall 88.3 94.2
1 90.0 10.0 88.0 12.0
2 23.3 76.7 0.0 100.0

Overall 85.0 92.5

5.3.3 Performance of Concave Utility Functions

The next experiment shows that, GUTADIS achieves a better performance

than UTADIS even if we restrict some of the unimodal and monotone criteria

to be concave. Ten of the marginal functions are confined to be concave or 

convex in this experiment. Note that, by imposing a convexity constraint 

we reduced the feasible regions of (3.8), hence possibly a larger training and

validation error rate.

The validation accuracy of this experiment is shown in Table 5.5 and 

Table 5.6. The overall validation accuracy is at the level of 70%, lower than 

GUTADIS but still much better than UTADIS as shown in Table 5.2.
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Table 5.5: 10-fold Cross-Validation Accuracy of GUTADIS With Concave and 
Convex Constraints(l)__________________________________________

S&P’s GUTADIS (40/6/10C, 73.8%)
AAA AA A BBB BB B CCC CC-D

AAA 70.0 25.0 5.0 0.0 0.0 0.0 0.0 0.0
AA 9.1 86.4 4.5 0.0 0.0 0.0 0.0 0.0
A 0.0 11.8 76.5 11.8 0.0 0.0 0.0 0.0

BBB 0.0 0.0 3.6 71.4 25.0 0.0 0.0 0.0
BB 0.0 0.0 0.0 12.1 69.7 18.2 0.0 0.0
B 0.0 0.0 0.0 0.0 16.7 75.0 8.3 0.0

CCC 0.0 0.0 0.0 0.0 0.0 0.0 66.7 33.3
CC-D 0.0 0.0 0.0 0.0 0.0 0.0 66.7 33.3

Table 5.6: 10-fold Cross-Validation Accuracy of GUTADIS With Concave and 
Convex Constraints(2)

S&P’s GUTADIS (40/6/100,75.4%)
AAA AA A BBB BB B

AAA 72.7 27.3 0.0 0.0 0.0 0.0
AA 9.1 81.8 9.1 0.0 0.0 0.0
A 0.0 7.7 61.5 30.8 0.0 0.0

BBB 0.0 0.0 0.0 73.3 26.7 0.0
BB 0.0 0.0 0.0 0.0 92.9 7.1
B 0.0 0.0 0.0 0.0 25.0 75.0

5.3.4 Performance of QUDIS

The performance of QUDIS is tested using nonlinear solver filter [Fletcher and 

Leyffer, 1998]. The cross-validation accuracy is shown in Table 5.7 and Table 

5.8. From these tables, we can see that the overall accuracy of QUDIS is at 

the level of 70% in the special case of = 1.

Comparing to the case that are variables, QUDIS doesn’t lose much 

performance by restricting all to be equal to 1. The computation time
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for the first two cases are all very small, less than 5 minutes for the 10-fold 

cross-validation process, while the third takes about ten minutes. This shows 

that QUDIS(ojj = 1) enjoys a better performance than UTADIS without a 

significant increase in computational cost.

Table 5.7: 10-fold Cross-Validation Accuracy of QUDIS(l)
S&P’s QUDIS(a0 = 1, 78.6%)

AAA AA A BBB BB B CCC CC-D
AAA 95.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0
AA 0.0 86.4 13.6 0.0 0.0 0.0 0.0 0.0
A 0.0 5.9 76.5 11.8 5.9 0.0 0.0 0.0
BBB 0.0 0.0 3.6 71.4 21.4 3.6 0.0 0.0
BB 0.0 0.0 0.0 9.1 78.8 12.1 0.0 0.0
B 0.0 0.0 0.0 0.0 25.0 66.7 0.0 8.3
CCC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
CC-D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

QUDIS(ay =- OiiQtj are variables, 80.5%)
AAA AA A BBB BB B CCC CC-D

AAA 90.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0
AA 4.5 86.4 9.1 0.0 0.0 0.0 0.0 0.0
A 0.0 5.9 82.4 5.9 5.9 0.0 0.0 0.0
BBB 0.0 0.0 0.0 67.9 32.1 0.0 0.0 0.0
BB 0.0 0.0 0.0 12.1 81.8 6.1 0.0 0.0
B 0.0 0.0 0.0 0.0 8.3 75.0 16.7 0.0
CCC 0.0 0.0 0.0 0.0 0.0 33.3 66.7 0.0
CC-D 0.0 0.0 0.0 0.0 0.0 0.0 33.3 66.7

QUDIS(o!y are variables, 78.4%)
AAA AA A BBB BB B CCC CC-D

AAA 90.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0
AA 4.5 77.3 18.2 0.0 0.0 0.0 0.0 0.0
A 0.0 5.9 82.4 5.9 5.9 0.0 0.0 0.0
BBB 0.0 0.0 0.0 64.3 35.7 0.0 0.0 0.0
BB 0.0 0.0 0.0 9.1 78.8 12.1 0.0 0.0
B 0.0 0.0 0.0 0.0 16.7 75.0 8.3 0.0
CCC 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
CC-D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
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Table 5.8: 10-fold Cross-Validation Accuracy of QUDIS(2)
S&P’s QUDIS(o0 = 1, 81.4%)

AAA AA A BBB BB B
AAA 72.7 27.3 0.0 0.0 0.0 0.0
AA 0.0 90.9 9.1 0.0 0.0 0.0
A 0.0 7.7 69.2 23.1 0.0 0.0

BBB 0.0 0.0 0.0 80.0 20.0 0.0
BB 0.0 0.0 0.0 0.0 85.7 14.3
B 0.0 0.0 0.0 6.3 6.3 87.5

S&P’s QUDIS(av = are variables, 83.3%)
AAA AA A BBB BB B

AAA 81.8 18.2 0.0 0.0 0.0 0.0
AA 9.1 81.8 9.1 0.0 0.0 0.0
A 0.0 7.7 69.2 23.1 0.0 0.0

BBB 0.0 0.0 0.0 80.0 20.0 0.0
BB 0.0 0.0 0.0 0.0 92.9 7.1
B 0.0 0.0 0.0 0.0 6.3 93.8

S&P’s QUDIS(aij are variables, 83.3%)
AAA AA A BBB BB B

AAA 81.8 18.2 0.0 0.0 0.0 0.0
AA 9.1 81.8 9.1 0.0 0.0 0.0
A 0.0 7.7 69.2 23.1 0.0 0.0

BBB 0.0 0.0 0.0 80.0 20.0 0.0
BB 0.0 0.0 0.0 0.0 92.9 7.1
B 0.0 0.0 0.0 0.0 6.3 93.8
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Chapter 6

Conclusion and Future Works

In this thesis, we have generalized the UTADIS method for country risk clas­

sification in two different ways. First, by utilizing the mix-integer nonlinear 

optimization technique, we extend the UTADIS model such that it can deal 

with unimodal criteria. In particular, we show that in case that the unimodal

criteria is concave, we can still use a linear program to find a classifier. Sec­

ondly, by introducing a quadratic utility function we relaxed the assumption 

in UTADIS model that the factors used are preferentially independent. This 

again produces a nonconvex quadratic constrained program.

Numerical results shows that the introduction of unimodality on criteria 

can improve significantly the performance of UTADIS. Imposing the concavity 

and unimodality on the marginal utility function can make the resulting classi­

fier more consistent with a rater’s background knowledge. Compared with the 

original UTADIS model, as shown by our numerical result, our new LP model
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can achieve higher accuracy without sacrificing the computational efficiency.

There are a few issues that need further study for the UTADIS and 

GUTADIS models. First, the traditional postoptimality analysis for UTADIS 

model should be improved as we already mentioned in Section 3.2.4 (page 56).

Secondly, we point out that the traditional postoptimality analysis is 

not the correct way to find a robust classifier, as it did not address the issue of 

how to find a robust classifier when the input data contains noise. Regarding to 

country risk classification, the input data such as the values of numeric factors

can hardly be accurate since the collection of data involves huge amount of

humane work.

We note that in the optimization community, there are a lot of works

dealing with optimization problems for which the input data is inaccurate.

This is typically referred to robust optimization. In principle, finding a robust 

classifier at the presence of noisy data can be modelled as a robust optimization 

problem. However, it remains an issue how to select a suitable robust opti­

mization model for our task and test the performance of the selected robust

optimization model.

Finally, our model can also be applied to other multi-class classification 

problems. It will be interesting to test and compare our model with other

classification models in various scenarios.
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Appendix

1) Population, energy, environment and infrastructure. These group of fac­

tors indicate the general development status of a country which is sup­

posed to have the ability to classify the rated countries in some degree.

(i) Birth rate, crude (per 1,000 people) indicates the number of live 

births per 1000 population occurring during the year.

(ii) Population growth (annual %) indicates the annual population growth 

rate. For some countries, there is a big difference between popula­

tion growth rate and birth rate. We include both of them to find

the one more related.

(iii) i4ije dependency ratio (dependents to working-age population) is the 

ratio of dependents-people younger than 15 and older than 64-

to the working-age population-those ages 15-64. For example, 0.7

means there are 7 dependents for every 10 working-age people.

(iv) Employment in agriculture (% of total employment) is the propor-
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tion of total employment recorded as working in the agricultural

sector.

(v) GDP per unit of energy use (PPP $ per kg of oil equivalent) is 

the PPP GDP per kilogram of oil equivalent of commercial energy

use. PPP GDP is gross domestic product converted to international

dollars using purchasing power parity rates. An international dollar

has the same purchasing power over GDP as a U.S. dollar has in

the United States.

(vi) Commercial energy use (kg of oil equivalent per capita) refers to 

apparent consumption, which is equal to indigenous production plus

imports and stock changes, minus exports and fuels supplied to

ships and aircraft engaged in international transport.

(vii) Energy imports, net (% of commercial energy use) are calculated 

as energy use less production, both measured in oil equivalents. A 

negative value indicates that the country is a net exporter.

(viii) CO2 emissions (kg per 1995 US$ of GDP) are those stemming from 

the burning of fossil fuels and the manufacture of cement. They 

include contributions to the carbon dioxide produced during con­

sumption of solid, liquid, and gas fuels and gas flaring.

(ix) Telephone mainlines (per 1,000 people) are telephone lines connect-
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ing a customer’s equipment to the public switched telephone net­

work. Data are presented per 1,000 people for the entire country.

(x) Mobile phones (per 1,000 people) refers to users of portable tele­

phones subscribing to an automatic public mobile telephone service 

using cellular technology that provides access to the public switched

telephone network, per 1,000 people.

(xi) Internet users (per 1,000 people) are people with access to the

worldwide network.

2) Science, education and health. This group of factors are believed to be 

important for a country to develop further, thus important for determin­

ing country risk.

(i) Research and development expenditure (% of GNI) are current and 

capital expenditures (including overhead) on creative, systematic 

activity intended to increase the stock of knowledge. Included are 

fundamental and applied research and experimental development 

work leading to new devices, products, or processes.

(ii) High-technology exports (% of manufactured exports) are exports of 

products with high R&D intensity. They include high-technology 

products such as in aerospace, computers, pharmaceuticals, scien-
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tific instruments, and electrical machinery.

(iii) Patent applications, total are the number of applications filed with 

a national patent office for exclusive rights for an invention, includ­

ing both residents’and nonresidents’. A patent provides protection

for the invention to the owner of the patent for a limited period,

generally 20 years.

(iv) Mortality rate, infant (per 1,000 live births) is the number of infants 

dying before reaching one year of age, per 1,000 live births in a given

year.

(v) Public spending on education, total (% of GDP) consists of public 

spending on public education plus subsidies to private education at

the primary, secondary, and tertiary levels.

(vi) Human Development Index is a summary measure of human devel­

opment. It measures the average achievements in a country in three 

basic dimensions of human development: life expectancy at birth, 

adult literacy rate and GDP per capita (PPP US$).

3) Political and social status. These factors characterize the stability, safety 

and equality in a country.

(i) POLITY is a composition index indicating the autocracy and democ
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racy of a country, taking value from -10 to 10.

(ii) Military expenditure (% of central government expenditure) is the 

ratio of military expenses over total government expense.

(iii) Military expenditure (% of GNI) is the ratio of military expenses 

over gross national income.

(iv) GINI index (%) measures the extent to which the distribution of 

income (or, in some cases, consumption expenditure) among indi­

viduals or households within an economy deviates from a perfectly

equal distribution. A Gini index of zero represents perfect equality,

while an index of 100 implies perfect inequality.

(v) Unemployment, total (% of total labor force) refers to the share of 

the labor force that is without work but available for and seeking 

employment. Definitions of labor force and unemployment differ by

country.

4) Economy. These factors are among the most important ones contributing 

to country risk classification.

(i) goverment surplus (% of GDP) is the difference between current 

revenue, including all revenue to the central government from taxes 

and nonrepayable receipts, and total expenditure of central govern-
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ment measured as a share of GDP.

. (ii) Final consumption expenditure, etc. (% of GDP) is the sum of 

household final consumption expenditure (private consumption) and 

general government final consumption expenditure (general govern­

ment consumption).

(iii) GDP (constant 1995 US$) is the sum of gross value added by all 

resident producers in the economy plus any product taxes and minus

any subsidies not included in the value of the products.

(iv) GDP growth (annual %) is annual percentage growth rate of GDP 

at market prices based on constant local currency.

(v) Inflation, consumer prices (annual %) measured by the consumer 

price index reflects the annual percentage change in the cost to the 

average consumer of acquiring a fixed basket of goods and services 

that may be fixed or changed at specified intervals, such as yearly.

(vi) Current account balance (% of GDP) is the sum of net exports of 

goods, services, net income, and net current transfers.

(vii) Agriculture, value added (% of GDP) is the net output of agricul­

ture sector after adding up all outputs and subtracting intermediate 

inputs.
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(viii) Industry, value added (% of GDP) comprises value added in mining, 

manufacturing (also reported as a separate subgroup), construction, 

electricity, water, and gas.

(ix) Services, etc., value added (% of GDP) includes value added in 

wholesale and retail trade (including hotels and restaurants), trans­

port, and government, financial, professional, and personal services 

such as education, health care, and real estate services. Also in­

cluded are imputed bank service charges, import duties, and any

statistical discrepancies noted by national compilers as well as dis­

crepancies arising from rescaling.

(x) Trade (% of GDP) Trade is the sum of exports and imports of goods 

and services measured as a share of gross domestic product.

5) Finance.

(i) Total external debt (% of exports of goods and services) is the ratio 

of debt owed to nonresidents repayable in foreign currency, goods, 

or services to exports. Total external debt is the sum of public, 

publicly guaranteed, and private nonguaranteed long-term debt, use 

of IMF credit, and short-term debt.

(ii) Total external debt (% of GNI) is the ratio of total external debt to
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GNI. GNI (formerly GNP) is the sum of value added by all resident 

producers plus any product taxes (less subsidies) not included in 

the valuation of output plus net receipts of primary income (com­

pensation of employees and property income) from abroad.

(iii) Total debt service (% of exports of goods and services) is the sum of 

principal repayments and interest actually paid in foreign currency,

goods, or services on long-term debt, interest paid on short-term 

debt, and repayments (repurchases and charges) to the IMF.

(iv) Gross international reserves in months of imports comprise hold­

ings of monetary gold, special drawing rights (SDRs), the reserve 

position of members in the International Monetary Fund (IMF), and 

holdings of foreign exchange under the control of monetary author­

ities. The gold component of these reserves is valued at year-end 

(December 31) London prices.

(v) Short-term debt (% of total external debt) Short-term debt includes 

all debt having an original maturity of one year or less and interest 

in arrears on long-term debt.

(vi) Gross international reserves (includes gold, current US$) comprise 

holdings of monetary gold, special drawing rights, reserves of IMF 

members held by the IMF, and holdings of foreign exchange under

88



Master Thesis - Xijun Wang - Computing and Software - McMaster

the control of monetary authorities.

(vii) Short-term debt (% of Gross international reserves including gold) 

includes all debt having an original maturity of one year or less and

interest in arrears on long-term debt.

(viii) Gross national savings, including NCTR (% of GNI) is equal to 

gross domestic savings plus net income and net current transfers

from abroad.
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