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Abstract

Eight decreasing adverse pressure gradient flows, and 

the similar regions of an initially increasing adverse 

pressure gradient flow, are examined in terms of the two 

experimentally observed half-power regions. The existing 

semi-empirical and analytical mean velocity profiles are 

examined and their range of applicability is determined in 

terms of the ratio of outer to inner half-power slopes.

Three variations of the k-e model of turbulence are

evaluated in terms of how well they predict the turbulence 

field in an eight degree conical diffuser. The model of 

Nagano and Tagawa (1990) is seen to be superior to the 

others. It is possible for Nagano and Tagawa’s model to 

yield reasonable prediction of k and e because they 

implemented the Hanjalic and Launder (1980) modification for 

the irrotational strains. However, the k-e models 

prediction of the Reynolds stresses is poor.
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Nomenclature
1 /2inner half-power slope (from 1) = C^y + D^)
1 /2CQ outer half-power slope (from U = C^y ' + D^)

1 /2D.. inner half-power intercept (from U = CQy + DQ) 
1 /2Dq outer half-power intercept (from U = CQy + Dq) 

2 2k kinetic energy (m /s )
£ mixing length (m)
P mean pressure
p fluctuating pressure
R,_ , local radiuslocal
r distance from centreline
U mean axial velocity (m/s)
U+ =U/u#

freestream velocity (or centreline
velocity for fully-developed flows) (m/s)

1 /2u* =(TW/P) ’ friction velocity (m/s)
2 2 2 2 2 u , v , w Reynolds normal stresses (m /s )
— 2 2uv Reynolds shear stress (m/s )
V mean radial velocity (m/s)
y normal distance from wall (m)
y+ =yu#/p

Greek

a =1/p(dP/dx), kinematic pressure gradient 
A =poc/u#
6 boundary layer thickness, gg5 (m)
6 =u^/a, pressure length scale (m)
¿>v =p/u3)c, viscous length scale (m)
6.. Kronecher’s delta• w
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2 3e dissipation rate of k (m /s )
x von K^rmAn’s constant
P density
t shear stress
M viscosity
v =p/p, kinematic viscosity

Subscripts and Superscripts

~ overbar means time-average
t turbulent
w wal 1
+ non-dimensionalized with u# and/or p

All other variables not appearing in this list are either 
empirical constants or functions which are defined in the 
text as necessary.
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Chapter One 
Introduction

A large amount of research by different groups has 

been spent on the development of predictive methods for 

turbulent flow, both semi-empirically and computationally, 

in order to get a good representation of the mean velocity 

field and the Reynolds stresses which appear in the 

governing Navier-Stokes equations when they are 

time-averaged. Semi-empirical methods, for the most part, 

are based on the mixing length hypothesis and/or local 

energy equilibrium (that is, the rate of production of 

turbulence kinetic energy (k) equals the dissipation rate of 

k (e)). With these semi-empirical methods, usually only the 

mean velocity profiles are calculated. With the development 

of faster computers more complex modeling is developing. 

The transport equation for the turbulence kinetic energy or 

similar equations for the Reynolds stresses along with one 

for a characteristic length scale are used to close the 

time-averaged Navier-Stokes equations.

Both types of modeling have had some successes and 

some failures, and most lacked complete universality. That 

is, they worked well in certain classes of flows, but not 

all. With the dawn of super-computers, full numerical
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simulation of simple flows has been performed without 

resorting to the usual Reynolds averaging beforehand. 

However, it seems likely that the solution of the complex 

flows often encountered in engineering applications with 

this method is a long way off. Hence, further refinement of 

existing models is still necessary both for practical 

engineering uses and also for understanding of the physics

of turbulent flows.

With this in mind, the two aspects of the present 

work are approached. In the first part of the thesis, the 

prediction of the mean velocity field in adverse pressure 

gradient flows by semi-empirical means is studied. The

relevant models in the literature are examined and it is

determined which models work best in the various locations

of the flow. This is done in the context of the two

half-power regions which have been experimentally observed 

(Trupp et al, 1986). This also unifies some of the

contradiction in the literature.

In the second part of the work, three variations of 

the two-equation k-e model of turbulence are evaluated for 

use in adverse pressure gradient flows, specifically in the 

eight degree conical diffuser flow of Turan (1988) and Trupp 

et al (1986). The k-e model is not explicitly evaluated in 

terms of how well it reproduces the experimental mean 

velocity field, but rather how well it reproduces the
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turbulence field. The two equations are examined term by 

term with the experimental data to find the possible 

problems with the model. Numerical solution of the two 

equations with a finite-difference method is then performed, 

given the mean velocity field and Reynolds stresses in order 

to further evaluate the model. The Reynolds stresses are 

given because of the documented problems in their usage 

(Nagano and Tagawa, 1990 and Polak and Turan, 1991). If 

acceptable results occur with this method of calculation, 

and a reasonable representation of the Reynolds stresses can

be obtained, it is assumed that the model can be used for

similar complex f1ows i n its full form by solving the

Navier-Stokes equations as wel 1 as the k-e equations. If

poor results occur, it implies that the k-e model will not 

predict the experimental mean velocity and turbulence

fields.

In the following then, chapter 2 deals with 

semi-empirical methods of prediction of the mean velocity 

field in adverse pressure gradient flows while chapter 3 

evaluates the k-e model of turbulence in an eight degree 

conical diffuser flow. Chapter 4 offers a summary of the 

conclusions that were made from this study.
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Chapter Two
Mean Velocity Profiles in Turbulent 

Decreasing Adverse Pressure Gradient Flows

2.1 Introduction

Mean velocity profiles in wall-bounded turbulent 

flows with adverse pressure gradients is a topic which has

generated much research due to the common occurrence of such 

flows in engineering applications. Although there is a 

large volume of literature on the topic, no one theory is 

wholly satisfactory, the reason being the high degree of 

complexity in these types of flows. Developing a better 

understanding of mean velocity behaviour in this class of 

flows will allow engineers to more effectively design plane 

or conical diffusers. In addition, such an understanding 

will also help in practical prediction without having to 

resort to expensive experimentation or complete numerical

simulation.

In a perfect plane or conical diffuser the pressure 

gradient is at its maximum at the diffuser inlet, and from 

there continually decreases in an exponential type manner. 

In an actual plane or conical diffuser the pressure gradient



5

reaches its maximum at some point after the inlet and then

decreases in a manner similar to that of an ideal diffuser.

This is illustrated in Trupp et al’s (1986) Figure 1. Part

of the complexity of this class of flows is due to the

presence of many length scales present. This implies that

the mean velocity depends on different variables at

different distances from the wall (Kader and Yaglom, 1978).

That is, there are composite mean velocity profiles. For

turbulent boundary layers with adverse pressure gradients,

Kader and Yaglom argue from dimensional analysis that there

should be three distinct length scales. These are << 6p

<< 6 where 6 is the viscous length scale, p/u*, 6 is the v p
2pressure length scale, u*/a. These different length scales 

imply that the velocity profile is dependent on only local 

flow parameters and history effects are negligible. Whereas 

according to Perry et al (1966), adverse pressure gradient 

flows contain both a wall region which is dependent on local 

flow parameters such as the pressure gradient and freestream 

velocity, and a historical region which depends on upstream 

conditions (Perry et al, 1966) as the pressure gradient

starts to decrease, the mean velocity in the wall region 

varies with the square root of the distance from the wall. 

Further downstream, a long linear region appears, similar to 

the half-power region. Following this region the velocity
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will start to vary with the 3/2-power of the distance from

the wal1.

With the intention of developing a deeper 

understanding of the mean velocity field, the data from the 

nine flows listed in Table 2.1 are examined here. Although 

this is certainly not all of the experimental data available 

in the literature for this class of flows, it is a 

representative sample. Only unseparated, incompressible 

flows which have no swirling are considered. These nine 

flows include four plane diffuser flows, as well as five 

conical diffuser flows from six, eight, and ten degree 

conical diffusers. One of the plane diffusers has an 

increasing adverse pressure gradient over a long length of 

the flow. The other eight flows have decreasing adverse 

pressure gradients (except for the short region at their 

respective entrances). All of the data came from either the

1968 AFOSR-IFP-Stanford Conference or the 1980-81

AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows, 

except for the eight degree conical diffuser. Hence, the 

geometries are described in the proceedings for the two 

conferences except for the eight degree conical diffuser. 

The mean velocity profiles for this flow were obtained from 

Turan (1988) and by digitizing the respective plots from 

Kassab (1986), Ozimek (1985), and Trupp et al (1986). The
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digitization error is estimated to be small. The mean 

velocity profiles for the remaining flows were obtained from 

the proceedings of the two conferences. All of the 

diffusers have developing flow at their inlet except for the 

eight degree conical diffuser which has fully-developed pipe

flow at its inlet.

Along with the proposed mean velocity profiles of 

Perry et al and Kader and Yaglom, several other profiles are 

examined. Coles (1956) takes an approach different than 

Perry et al but similar to Kader and Yaglom’s flow 

development. Coles’ empirical Law of the Wake takes into 

account the similarities between adverse pressure gradient 

flows and wake flows. Once the flow has developed 

sufficiently and the pressure gradient is small enough, 

there is a universal mean velocity profile: the Law of the 

Wall along with Coles’ Law of the Wake. But this universal 

profile is not valid in the entry region of diffuser flows 

where the pressure gradient is severe and the flow has been 

disturbed by the change in geometry (or when the flow is 

separated or close to it). This, of course, is analogous to 

wake flow where the universal velocity profile occurs quite

far downstream.

Other profiles that are examined here are, those by 

Townsend (1961), Mellor (1966), McDonald (1969), van Driest
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(1956), and Schofield (1981), Nakayama and Koyama (1984), 

and Granville (1989). In all of the flows examined, an 

attempt is made to determine the applicability of the these 

profiles in terms of the two haIf-power regions.

In section 2 of this chapter the applicable theories 

that describe the mean velocity in turbulent adverse 

pressure gradient flows are compared with the experiments 

listed in Table 2.1. In addition, some modifications are 

given to represent the experimental data for the eight 

degree conical diffuser more closely. Section 3 contains an 

examination of the two half-power regions observed by Trupp 

et al with the intention of developing a better 

understanding of this class of flows, and towards the goal 

of more accurate semi-empirical prediction of the mean 

velocity in the entry region. Following this, conclusions 

are given in section 4.

2.2 Comparison of Analytical Mean Velocity Profiles with 

Experimental Data

In this section the analytical and semi-empirical 

mean velocity profiles for the different regions of the nine 

flows examined are compared with the experimental data, both 

in the entry region and in the universal region. Also, some
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modifications to these profiles are examined in order to fit 

the experimental data for the eight degree conical diffuser 

more closely. The data from the eight degree conical 

diffuser will be emphasized for three reasons. First, this 

data i s the most recent and has the most up to date

corrections for high turbulence intensity. Second, it 

contains turbulence data for the Reynolds turbulent shear 

and normal stresses along with values for the dissipation of 

turbulence kinetic energy. Lastly, the experimentally 

determined mean velocity field, in conjunction with the k-e 

model of turbulence, is used to solve for the turbulence 

field in the eight degree conical diffuser (as discussed 

further in chapter 3).

One drawback to the eight degree conical diffuser 

data is that there is some degree of scatter in the mean 

velocity profiles for the three workers (Turan, Kassab, and 

Ozimek). This could be due to differences in the cone 

pressure, inaccuracies in getting the probes to the same 

axial location, and the fact that Kassab’s and Ozimek’s data 

are uncorrected for high turbulence intensity while the data 

of Turan is corrected.
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2.2.1 Moving Equilibrium, Length Scales, and Flow

Development

All of the theories examined for the mean velocity in

this chapter assume that the flow is in some sort of moving

equilibrium. Moving equilibrium is the situation when the

flow depends on only local flow parameters and not on

upstream or downstream values. This means that the

streamwise gradients must be small so that the flow can

adjust its structure and, hence, depend on only local

parameters. All history effects are ignored. Obviously

then, flows which have large streamwise gradients are not in

moving equilibrium and the theories are not entirely valid.

Specifically, Kader and Yaglom (1978) state that the free

stream velocity (or the centreline velocity for

fully-developed flows) and the kinematic pressure gradient,

should vary slowly in the axial direction. The Kader and 
1 /2Yaglom criterion for moving equilibrium is, then, Uw/(aS)

>> 1, where 5 is the boundary layer thickness (or the local 

radius for fully-developed axisymmetric flows). This is a 

necessary, but not sufficient condition for moving 

equilibrium, derived from similarity principles. Kader and 

Yaglom note, however, that Uro/(aS) does not need to be 

much larger than unity for the flow to be in moving
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equi1ibrium.

Schofield (1981) developed a different criterion for 

an unseparated adverse pressure gradient "equilibrium" flow

which has a maximum shear stress at least one and a half

times larger than the wall shear stress. Schofield’s

equilibrium flow is defined as a specific bounded region on

a plot of U^/U^ versus m, where is the velocity that the

(inner) half-power region would have if it were extended to

the wall, that is, the intercept or "slip velocity", and m

is defined by U = a(x-x )m where m < 0 (see Schofield’s u
Figure 4). One drawback to this type of criterion is that 

it is dependent on only the freestream velocity, as opposed 

to the criterion of Kader and Yaglom which is dependent on 

the pressure gradient and boundary layer thickness as well.

Townsend’s (1961) criterion for equilibrium is that 

advection is negligible and the shear layer is thin. In the 

diffuser, advection is significant, even near the wall. The 

flow, also, has both accelerating and decelerating regions: 

in the core region the flow is decelerating, while near the 

wall it is accelerating. This is the cause of the important 

advection terms. Also, conical diffuser flows are more 

complex than equilibrium boundary layers or plane diffuser 

flows because of the added strain terms caused by the 

geometry. Hence, Townsend’s criterion for "equilibrium"
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flow is more stringent then the previous two. This is 

because Townsend’s equilibrium condition is for the

turbulence field while the other two are for the mean field.

In order to examine the Kader and Yaglom criterion

for moving equilibrium, the variation of the local flow

variables must be known. The variation of U /U . , . , ® ®,inlet
u«/u»,inlet’ 6O.995/6inlef a6/u*’ and aP/u* with x/Sinlet
for the eight decreasing adverse pressure gradient diffuser 

flows are shown in Figures 2.1 - 2.5. Table 2.2 shows the 

actual experimental values for Kader and Yaglom’s criterion

for moving equilibrium. Since Kader and Yaglom note that
1 /2Uw/(a<S) does not need to be much larger than unity for 

the flow to be in moving equilibrium, it appears that all of 

the flows examined are in moving equilibrium, except for 

possibly the inlet region of the eight degree conical

diffuser.

Because the flows examined here are, thus, considered 

to be in moving equilibrium, the mean flow should depend on 

local flow variables and historical effects can be ignored. 

As seen from Table 2.2, Kader and Yaglom’s length scales 

each differ by at least one order of magnitude, and hence, 

these three length scales are present in the flows. 

Therefore, one would expect there to be at least three 

different functional forms of the mean velocity at each
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particular axial location. This is indeed the case, as 

shown in the remainder of the chapter.

The difference between Kader and Yaglom’s and Perry 

et al’s flow development theories should be emphasized. 

Kader and Yaglom’s composite mean velocity profile has the 

same form at each axial station. Perry et al’s flow 

development, however, shows that the mean velocity varies in 

the streamwise direction and the forms of the composite 

profiles change. Figures 2.6, 2.7, and 2.8 show Perry et 

al’s flow development for Fraser’s flow B (flow # 5100). 

Figure 2.6 shows the mean axial velocity non-dimensionalized 

with the local freestream velocity versus the square root of 

the distance from wall non-dimensionalized with the local 

boundary layer thickness. One can see that early into the 

flow (station 4) a long half-power region is present, 

represented by the straight line. Figure 2.7 shows, on 

linear coordinates, a long linear region occurs further into 

the flow (station 6). Figure 2.8 shows, on 3/2 power 

coordinates, the long 3/2 power regions near the exit of the 

flow (specifically, station 12). All nine of the flows 

examined show this development.

Of course, the same data can be plotted on other 

coordinates as well, such as U+ versus Log y+ coordinates. 

Although Perry’s flow development provides insight into
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understanding these flows, the idea of a universal mean 

velocity profile is more ideally suited to the composite 

mean velocity profiles of Kader and Yaglom. Therefore, 

Kader and Yaglom’s composite mean velocity profile, along

with the other profiles found in the literature, are

examined in the remainder of this section. Perry’s

half-power velocity profile is also re-■examined in this

context.

2.2.2 Inner Wall Layer

The viscous sublayer is the very thin layer right 

adjacent to a smooth, non-porous wall. This is the region 

of the Law of the Wall. The Law of the Wall, simply stated, 

is U+ = y+ in the region from 0 < y+ < * 5 in zero or small 

pressure gradient flows. Outside of the viscous sublayer is 

the buffer region, which extends to approximately y+= 30 in 

zero or small pressure gradient flows. In the viscous 

sublayer, viscosity dominates the flow; while in the buffer 

region, inertial forces start to play a more important role. 

This Linear Law of the Wall can be derived by dimensional 

analysis, as in Hinze (1975) or Kader and Yaglom (1978).

The first theoretical development for the mean 

velocity profile in the viscous sublayer and buffer region
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was by van Driest (1956). 

pressure gradient flows, 

the total shear stress, t

r „ „ ,2 faiTI2 
T = P 37 + p * [37J

In order to use

He developed this theory for zero

Using the mixing length concept,

is

(1)

the mixing length concept to

calculate the mean velocity, the turbulent shear stress and 

the mixing length must be known. Van Driest used the mixing 

length Z = xy far from the wall, where x is called the 

universal mixing constant, or more commonly, the von Karm&n 

constant. Since near the wall the eddies are damped by the 

presence of the wall, he concluded that

Z = xy [1 - exp(-y/A)] . (2)

where A is a dimensional empirical constant. For a boundary

layer with zero pressure gradient, the shear stress gradient

at the wall equals zero, hence, near the wall r * t . Van w
Driest’s non-dimensional velocity profile is then, from 

equation (1),

+ ry 2dy
Jo {1 + [1 + 4x2y+2(l - exp(-y+/A+))2]1/2} ’

where A+= 26. Near the wall, equation (3) yields U+ = y+, 

up to y+ * 5. Equation (3) also approaches the Logarithmic
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Law of the Wall1 asymptotically for y+ approximately equal 

to 30. The Log Law is given by

u+ = x ln<y+) + b » (4)

with x « 0.41, and b * 5.0, although there is a wide degree

of scatter in these constants. Between the Law of the Wall

and the Log Law is the buffer region. Van Driest’s velocity 

profile provides a smooth blending region between the Law of 

the Wall and the Log Law.

Mellor (1966) and McDonald (1969) have shown 

theoretically that the mean velocity can change drastically 

from the usual Law of the Wall in the presence of an adverse 

pressure gradient, and that the sublayer and buffer region 

can be shortened substantially. To account for this there 

have been many modifications to van Driest’s mixing length 

equation. Granville (1989) summarizes these, and makes his 

own modification as well. In his modification, it is

assumed that near the wal1

+T = 1 + ïAy+ , (5)

where

A=Pa/(u*).
= r/TLJ» V = 0,9 ’’s an empiricalw
This leads to a mixing length

constant, and

The Logarithmic Law of the Wall will be called the 
Log Law throughout the rest of this thesis. The Linear Law 
of the Wall (U+ = y+) will simply be called the Law of the 
Wall in order to differentiate it from the Log Law and the 
other linear region in these flows.
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¿+ = xy+(r+)1/2 {1 - exp[-y+(1 + 7bA/A+)1/2]} , (6)

where b = 14.0 for an adverse pressure gradient while b = 

16.4 for a favourable pressure gradient. Granville’s

non-dimensional velocity profile is then

,y+ 2r+ dy+
u = ---------------vmrr ' (7)J0 {1 + [1 + (2t ) r ] ' }

Kader and Yaglom (1978) take a different approach to

obtain an equation for the mean velocity profile in the 

viscous sublayer and the buffer region. After examining 

many experimental profiles and doing a similarity analysis, 

they determine that a reasonable fit for the mean velocity 

is given by Rannie’s equation (see Hinze, 1975)

U+ = D tanh(y+/D) , (8)

with D=14.0. Kader and Yaglom suggest that D=14.5.

Mel lor (1966) and McDonald (1969), as stated above,

have also developed formulations for the mean velocity 

profile in the viscous sublayer and buffer region for 

adverse pressure gradient flows. Mellor uses a similarity 

analysis with the Boussinesq definition of the eddy 

viscosity along with a linear shear stress distribution, 

(with the stress gradient equal to the pressure gradient)

and obtains
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(9)

U = ( J ifildy - >n<^> ) ♦ |[(u2 ♦ <xy)’/2-u,]
_ x y

u*, f 4 (u* + »y)1/2-u* -,
* L * (u2 + «y)’/2+u. > ’

'* ■ z • -#

where v>(x) is an empirical function obtained from using 

Laufer’s (1954) experimental data and the Law of the Wall. 

Outside of the sublayer and buffer region the first term 

becomes constant, and is called the slip velocity or 

additive constant, which Me11or tabulates.

McDonald objected to Mellor’s assumption of the 

stress gradient and pressure gradient being equal, since 

this equality holds only right at the wall. In actuality, 

they quickly become unequal, with the stress gradient 

becoming smaller than the pressure gradient. McDonald, 

taking this into account, obtained a similar velocity 

profile. He shows that in the sublayer or buffer region, it 

is the pressure gradient which causes the mean velocity to 

deviate from the Law of the Wall, not the actual value of 

the stress gradient. He also showed that the stress 

gradient plays an important role outside of the buffer 

region and in determining the value of the slip velocity.

As A increases, both McDonald and Mellor’s models 

yield mean velocity gradients increasingly larger than the 

usual gradient in the viscous sublayer. This causes the
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velocity gradient dll+/dy+ to become greater than unity as A 

becomes large. Also, as the severity of the adverse 

pressure gradient increases, the end of the buffer region

moves closer and closer to the wall.

The profiles of van Driest, Granville, and Rannie 

(along with the Log Law and the Law of the Wall for 

reference) are compared with representative experimental 

data for the conical diffusers in Figures 2.9 and 2.10, and 

the plane diffusers in Figures 2.11 and 2.12 McDonald’s and 

Mellor’s profiles are not shown here because they are nearly

identical to the Law of the Wall for the values of A in the

nine flows examined. Both the van Driest and Rannie 

profiles do not change with the pressure gradient and are 

similar to each other. Although the Granville profile is a 

function of the pressure gradient, the variation is small 

for this particular range of adverse pressure gradient 

flows. All three models agree with the Law of the Wall to 

y+ * 5, but become different following this.

It is difficult to say which model works the best. 

Both Rannie’s and van Driest’s mean velocity profiles work 

at some stations, but certainly not at all stations. 

Granville’s model shows no agreement with the data, as shown 

in the figures. The Law of the Wall also correlates the 

data better than van Driest or Rannie at some stations,
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notably at those where the logarithmic region extends closer

to the wal1.

For the data sets examined, it is observed that the 

shortening of the buffer region (or the penetration of the 

logarithmic region into the sublayer) is related to A =
3

«p/u* increasing, as suggested by McDonald. Trupp et al 

(1986) shows that the Logarithmic Law might well extend to 

y+ * 3, but hot-wire anemometry is not accurate in this 

region due to the close proximity to the wall (Turan et al, 

1987). Nevertheless, it does appear that the logarithmic 

region moves closer to the wall than in zero pressure 

gradient boundary layers or fully-developed pipe flows.

Schofield (1981) suggests that the usual Law of the 

Wall (U+ = y+) be used for y+ < 10, followed directly by the 

Log Law. This, however, leads to a discontinuous velocity 

profile and gradient. Given the above discussion though 

(and the difficulties with McDonald’s and Mellor’s models in 

the logarithmic region, to be discussed later), this seems 

to be reasonable. Because the experimental data seems to 

indicate that the Log Law penetrates the buffer region, 

approaching quite close to the wall, it seems likely that 

dU+/dy+ is greater than unity. This is precisely what 

McDonald shows. However, because of problems in measuring 

the mean velocity and the turbulent shear stress, uv close
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to the wall, along with the fact that Mellor’s and

McDonald’s models are similar to the Law of the Wall for the

pressure gradients considered here, Schofield’s proposal

seems to be the most reasonable at this time.

The logarithmic layer of a flow is the region just 

outside of the buffer region, as discussed above. The mean 

velocity profile is usually described by equation (4) in 

zero and small pressure gradient flows, but there is wide 

scatter in the experimentally obtained constants. Hinze 

(1975, § 7.6) discusses this in detail and notes that the 

Log Law constants should be universal, and only u* should 

vary with Reynolds number.

The Log Law can be derived from mixing length theory 

(van Driest, 1956) as well as dimensional analysis (Hinze, 

1975 and Kader and Yaglom, 1978). In this region, inertial 

forces dominate the viscous forces, and the shear stress is 

once again assumed to be approximately constant because of 

the assumed small pressure gradient.

In the presence of an adverse pressure gradient, the 

logarithmic region often tends to become shorter or can even 

be destroyed entirely if the pressure gradient is severe 

enough. This is because in a small pressure gradient flow, 

the shear stress is nearly constant; while in an adverse 

pressure gradient flow, the shear stress increases
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monotonically from the wall out to some maximum point. As 

the pressure gradient decreases the shear stress gradient 

decreases as well, until the pressure gradient becomes small 

enough and the Log Law returns or lengthens (although it may 

still be shorter than a zero pressure gradient boundary 

layer). This is verified in the paragraphs that follow.

There are three mean velocity formulations for the 

Log Law region under adverse pressure gradient conditions. 

These are the formulations of Townsend (1961), Nakayama and 

Koyama (1984), and Mellor (1966). There is also two 

modifications to Townsend’s formulation. Townsend (1962) 

makes a modification to his formulation, as does McDonald 

(1969).

All five of these formulations asymptotically 

approach the Log Law under zero pressure gradient 

conditions. In addition, in the presence of a severe 

adverse pressure gradient or when the skin friction is 

small, these mean velocity profiles vary with the square 

root of distance from the wall. In fact for all adverse 

pressure gradients, these models vary with the half-power of 

distance from the wall for large y+. Basically then, these 

models provide a short logarithmic region (or none at all if 

A is large enough), a blending region, and then a half-power 

region.
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Townsend developed a formulation for the mean 

velocity profile in the fully turbulent wall region of flows 

with strong pressure gradients, adverse or favourable. 

Townsend’s theory is for "equilibrium layers". Townsend’s 

equilibrium layers, as discussed earlier, are those where 

the local rates of turbulent production equal the 

dissipation, with negligible advection of turbulence kinetic 

energy. That is, these two terms in the turbulence kinetic 

energy equation are much larger than the others. Hence, the 

shear stress plays an important role. Using the above 

assumptions along with the mixing length concept, his mean 

velocity profile for a linearly varying turbulent shear 

stress and a linearly varying mixing length , is developed.

With the stress distribution approximated by

u* + «y (10)

and the same mixing length as used by van Driest, £ = xy. 

Townsend’s mean velocity is then

U + 2(1 - B sgn(«)) (a + ay)1/2X

(11)+ Us , (11)

2where a = u*. Using the Log Law, the slip velocity or

additive constant, U„ can be obtained, and is s
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Us = x* - 2[1 - B sgn(«)]j + A, (12)

where A 1s the intercept of the Log Law and B * 0.2 is a 

constant representative of the rate of turbulent kinetic 

energy diffusion.

Nakayama and Koyama also start their derivation with 

the turbulence kinetic energy balance. They assume that the 

convection of kinetic energy is negligible near the wall and 

that the flow is in moving equilibrium. The conservation 

equation for the turbulent kinetic energy , k is then

dJ v dU rt£. n ■t— + r -j— - pe = 0 dy dy (13)

where e is the viscous dissipation and J is called the 

diffusional flux of turbulent kinetic energy. The middle 

term in the equation is the production term. The

diffusional flux is given by

J = - -7
a dU/dy

dk 
dy ’ (14)1

where a is the effective Prandtl number for k. They obtain 

an equation for the first derivative of the velocity with 

respect to the shear stress. Upon integration, they obtain 

the velocity profile

u+ = (B,(t - ts) ♦ (15a)t
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where t t * (1 + 0.074A)1/2 s

*_ 0.4 + 0.6A 
1 + A (15b)

and the value of the constant B1 is 3.0, and r is determined 

by equation (10). Since the mean velocity here is only a 

function of the shear stress, Nakayama and Koyama state that 

the velocity profile is valid for any monotonically 

increasing shear stress.

Mellor’s analysis, discussed in the previous section, 

is similar to the other two models. Outside of the viscous

sublayer and buffer region, the first term in equation (9) 

becomes constant. Nakayama and Koyama show that Mellor’s 

model is identical to Townsend’s, when B = 0 in Townsend’s

model.

McDonald objects to the assumption of the stress 

gradient being equal to the pressure gradient, stating that 

the stress gradient should be less than the pressure 

gradient in this region of the flow. Townsend (1962) also 

acknowledges this fact, saying that the average stress 

gradient in the wall region should be about one-third less 

than the pressure gradient. McDonald states in his paper 

that there are difficulties in Townsend’s model, 

specifically that a running calculation of the flow away
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from the wall has to be performed in order to evaluate the 

shear stress gradient, and that this may not work in all 

flows (McDonald, 1969). McDonald assumes a stress

distribution of

r/p = a + ï«y (16a)

where a can be either positive or negative, and n < 1 is

empirically determined. McDonald’s model is then, for 

positive a,

2rz_2 , _..J/2 1/2-, . a1/2U = -[(a + yay) -a
f 4 (a2 + ï«y)1/2-a1/2 > 

'"I * (a2 ♦ ,«y)1/2+a1/2 J] + x

+ Us (16b)

with the slip velocity matched to the velocity at the end of 

the buffer region. The resulting expression is similar to 

equation (11) with B = 0 and the linear shear stress 

gradient empirically or experimentally determined.

Figures 2.13, 2.14, and 2.15 show McDonald, Townsend, 

and the Log Law compared with the eight degree conical 

diffuser data. The models of Mellor and Nakayama and 

Koyama are not shown because they are very similar to 

Townsend’s model (see Nakayama and Koyama’s Figure 2, 

(1984)).

From examining these figures it appears that the 

slope of the Log Law, that is, the inverse of von K6rm&n’s
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constant (x=o.41) is reasonable. However, the Log Law 

intercept decreases as the flow develops. In the flows 

where Clauser’s method is used, the Log Law constants 

(x=0.41, b=5.0) work well at every station that was 

examined. This is expected because Clauser’s method assumes 

the existence of a Log Law with the usual constants (see 

Perry, 1966 for example). In the more recent experiments 

(the six and eight degree conical diffusers) where the 

friction velocity is determined from a Preston Tube, the Log 

Law intercept decreases as the flows develop.

In the literature there is a wide degree of scatter 

in the constants used in the Log Law. This could be 

partially due to experimental inaccuracies, especially those 

in determining the wall shear stress. From the data used at 

the Stanford Conferences however, it seems that if Clauser’s 

Method is used to determine the friction velocity, at least 

some of this scatter disappears. Figures 2.16 and 2.17 

illustrate this. Figure 2.16 shows U+ versus Log y+ for all 

of the stations from the six degree conical diffuser (flow # 

0142) with the friction velocity calculated from Preston 

Tube data along with the Log Law (x = 0.41 and b = 5.0). 

Figure 2.17 shows the same data with the friction velocity 

calculated from Clauser’s method. Most of the scatter is

eliminated because of the definition of Clauser’s friction
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velocity. Although it seems quite likely that Clauser’s 

method does not yield the most accurate wall shear stress, 

it does lead to the velocity scale necessary to correlate 

the experimental data to the Log Law, assuming that the Log 

Law is present. This also eliminates the need to assume a 

variation in the slope of the Log Law (i.e. von Kârmân’s 

constant, such as in Nakayama and Koyama’s model) and 

possibly even the Log Law intercept with pressure gradient. 

Correlation of the Log Law intercept with the pressure 

gradient or stress gradient is not attempted here for this 

reason. Of course, it should be noted that the Preston Tube 

method for determining the wall shear stress also assumes 

the existence of the Log Law.

Townsend’s model, in general, agrees with the 

measured profiles at only the first few axial stations in 

all of the flows (and is quantified in Table 2.3 and 

discussed in section 3). In these locations Townsend’s 

model provides a moderately better approximation to the data 

then the Log Law. After that, however, his model does not 

work, for two reasons. First, the model assumes that the 

slope of the stress curve is equal to the pressure gradient. 

This condition is not fulfilled in the diffuser flows.

Second, there are significant amounts of advection of 

turbulence kinetic energy which were not accounted for in
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the model. The amount of advection increases downstream

from the inlet.

In order to evaluate McDonald’s velocity profile 

outside the sublayer, the experimental turbulent shear 

stress needs to be known. For the eight degree conical 

diffuser the uv distributions of Kassab (1986) and Turan 

(1988) were examined. For the six degree conical diffuser 

the uv distributions were given with the Stanford Conference 

data. Once the most reasonable straight line regions on uv 

versus y plots for the data sets was determined by eye, the 

slope and intercept for equation (16a) were obtained 

graphically. 7 was determined to increase from 0.35 to 0.67 

for the eight degree conical diffuser as the flow developed. 

In flow # 0142 7 was between approximately 0.5 and 0.6 and 

in flow # 0143 7 decreased from approximately 0.8 to 0.15. 

The a and 7 values, plus the slip velocity matched to the 

end of the buffer region, were used with McDonald’s velocity 

profile in Figures 2.13 - 15. Note that the values of the 

slip velocity were matched to the end of the sublayer rather 

than calculated by McDonald’s method. This was done in 

order to more effectively evaluate McDonald’s formulation in 

this region of the flow without the inaccuracies of his 

sublayer formulation coming into play. Specifically the 

slip velocity appears to be too large as shown by the values
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to Townsend’s slip velocity, equation 12). Figures for 

McDonald’s model in the two six degree conical diffuser 

flows are shown in Appendix A. McDonald’s model is not 

evaluated in the remaining five decreasing adverse pressure 

gradient flows because no Uv data is available for them.

McDonald’s formulation is in good agreement with the 

six and eight degree conical diffuser data sets over a 

larger region then the Log Law at all the axial stations in 

the entry region. Basically, McDonald’s model works at the 

beginning and middle regions of the six and eight degree 

diffusers, but not in the exit region. This is a 

substantially larger range of axial stations than the range 

where Townsend’s model worked. Far from the wall, the 

models of McDonald, Townsend, Me11or, and Nakayama and 

Koyama mathematically asymptote to the half-power law, but 

none of the four models predict the half-power region data, 

except for McDonald at a few stations in the entrance 

regions. The range of validity of McDonald’s model is 

quantified in Table 2.3, as discussed in the following

section.

There is, however, a difficulty with using McDonald’s 

mean velocity profile for prediction. His formulation is 

seen to be a function of A as shown in his Figures 2 or 4

for U shown in the captions for Figures 2.13 - 15 (relativeS



31

(McDonald, 1969). Figure 2.5 shows that A increases in the 

eight decreasing adverse pressure gradient flows as they 

develop. However, the Log Law returns as the flow develops 

and the pressure gradient decreases. This directly 

contradicts what happens with McDonald’s velocity profile. 

Therefore, A should not be used as a non-dimensional i zation 

of the pressure gradient. However, McDonald’s model can be 

used in the entry region of these flows. A reasonable 

approximation for the stress gradient in this region is 

two-thirds of the pressure gradient (Townsend, 1962).

Because the models of Townsend, Nakayama and Koyama, 

Mel lor, and McDonald did not work in the half-power regions 

of the flows considered, the principle assumption of these 

models was examined. At all the stations, the experimental 

uv curve exhibits a slight degree of curvature. In order to 

determine if the discrepancy in the predicted mean velocity 

profiles near the diffuser outlet is caused by the curvature 

in the stress distribution, equation (10) was modified to

¿ = a +7«yn (17)

where n, 7, and a are empirical constants, with n in the 

range 0 < n < 2. This new stress distribution was used to 

modify Townsend’s original velocity profile in a manner

similar to McDonald.

To obtain the modified Townsend velocity profile, a
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binomial expansion was used. To a reasonable approximation, 

the mean velocity is

U êé
2b1/2yn/2 ft-)- b-V2y-n/2a

(18)

-3/2 -3n/2 2 b-5/2y-5n/2a3 b -+ B) + u

n 2where y > u#/(ya) is necessary for convergence of the

binomial expansion, b = fa, and U is the slip velocity.s
Assuming several different values for n, including n 

equal to unity, least squares curve-fitting was performed on 

Kassab’s experimental uv distributions to obtain the 

empirical constants of equation (17) to use in equation 

(18). It was determined that although equation (18) is 

sensitive to values of n itself, when the curve-fitted 

constants for equation (17) are used, nearly identical 

velocity profiles to McDonald’s mean velocity are obtained. 

Hence, it can be concluded that the linear shear stress 

approximation is not the cause of the disagreement between

McDonald’s model and the measured mean velocities in the

exit regions of these flows.

One further modification was attempted for this 

region of the flow in order to obtain smoother fitting 

curves to be used in a program code to solve for the k-e 

model of turbulence, as will be discussed in chapter 3.
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This was done by modifying the Nakayama and Koyama model. 

This model was chosen to be modified because it most closely 

approximated the velocity gradients over the entire diffuser

flow.

Using the nomenclature previously given for the 

Nakayama and Koyama equation, was modified to an 

empirical function of the form (b1)t^2\ and t was 

determined empirically. This form of the equation allows 

for an accurate prediction of the mean velocity field in the 

logarithmic and half-power regions, as shown in Figure 2.18, 

although there is no physical basis for this modification.

2.2.3 Outer Layer

The final regions that will be discussed here are the 

half-power and velocity defect regions. As the theories in 

the previous section show, the mean velocity at the end of 

the logarithmic region varies with the half-power of the 

distance from the wall in an adverse pressure gradient flow. 

Schofield (1981) calls the half-power layer the inner 

portion of the velocity defect region. Coles’ (1956) 

empirical Law of the Wake begins at the end of the 

logarithmic region and extends to the edge of the boundary 

layer. Other researchers, such as Perry (1966) and Kader
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and Yaglom (1978), include the half-power layer as a 

distinct region of an adverse pressure gradient flow, 

between the logarithmic region and the velocity defect 

layer. The mean velocity profiles of Townsend and McDonald 

(and the other similar profiles discussed in the previous 

section) show the half-power region as the replacement for 

the logarithmic region under a severe adverse pressure 

gradient, and as the region following the logarithmic region 

when the pressure gradient is smaller. In this thesis, the 

half-power region formulations are included with the defect 

formulations and Coles’ Law of the Wake because together, 

these regions make up the outer portion of the flow for the 

pressure gradients considered here.

Coles shows that the mean velocity profile in this 

region is similar to that for a wake flow. He obtains a 

velocity profile of the form

U+ = f(y+) + g(n,y/8) , (19)

where f(y+) is the Log Law and g(n,y/6) is the departure 

from the Log Law in the outer region. Coles determined that 

g(n,y/6) = fl(x)w(y/6)/x where w(y/6) is called the Law of

the Wake, which was determined empirically. n(x) is then

determined from

U
u*

b + 2 w(1) , (20)
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where w(1)=2. Hinze (1975) approximates w(y/6) with

w(O = 1+sin[(2C-1 )n/2] (21)

where C = y/5. There is a small error in this approximation 

at C * 0.1 and C * 0.8 to 0.9. In the outer region of the 

boundary layer, Coles’ Law of the Wake should be valid if a 

logarithmic velocity profile exists and the adverse pressure 

gradient is not severe.

Figures 2.19, 2.20, and 2.21 compare Coles’ Law of 

the Wake with the velocity profiles from different flows. 

Figure 2.19 shows Coles’ profile applied to three 

representative stations from the plane flows (# 2900, # 

1100, and # 1200). His mean velocity profile fits every 

station of the plane data examined. There are only a few 

exceptions where the agreement is not as good. These minor 

inaccuracies seem to be due to inaccuracies in calculating 

the boundary layer thickness. If small adjustments are made 

to the boundary layer thickness, the Law of the Wake fits

the data well.

Figure 2.20 shows data for the six and ten degree 

conical diffusers. In this figure the Log Law intercept is 

unmodified, so that the Coles profile does not fit the data 

for flows # 0142 and # 0143. Here u* was calculated from 

the Preston Tube method, as opposed to Clauser’s method. 

This figure shows that Coles’ formulation still predicts the
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data reasonably in the outer layer although the fit is much 

better when the Log Law intercept is modified or the Clauser 

friction velocity is used.

In the entry region of these flows Coles’ Law of the 

Wake does not work as shown in Figure 2.21a from the eight 

degree conical diffuser. Eventually though, it works 

reasonably well, after an entry length, if the Log Law 

intercept is modified to fit the data as shown in Figures 

2.21b and 2.21c. Because Coles’ Law of the Wake reasonably 

fits all of the data sets after some sort of an "entry 

length", it is considered here to be a universal mean 

velocity profile.

However, because Coles profile depends on two 

parameters (u* and Il(x)), it does not collapse onto one line 

for all flows. This can be seen on Figure 2.22 which shows 

the data for the eight degree and two six degree conical 

diffuser flows on the usual U+ versus log y+ coordinates. 

For these three flows the outer layer occurs at varying

distances from the wall.

The entry region is defined to end at the point were 

Coles Law of the Wake starts to accurately predict the data. 

The idea of an entry length is consistent with other flows 

such as pipes, wakes, and jets. In the universal region the 

local flow parameters such as the friction velocity,
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freestream velocity, and kinematic pressure gradient do not 

change very rapidly relative to the entry region where the 

gradients are large. The entry length also appears to be 

dependent on initial conditions. At this point it is 

difficult to say whether the entry length is Reynolds number 

dependent, but it seems likely.

Perry (1966) states that in the half-power layer, the

flow is dependent primarily on the kinematic pressure

gradient, and of course, the distance from the wall. Perry

shows that the half-power velocity gradient, obtained from

dimensional analysis, is of the form 
,1/2aay _ i „ ____

9y ~ 2 1 ..1/2 ’ (22)

which upon integration yields the half-power velocity 

profile. Perry also points out that the universal constant, 

K.j, shows reasonable agreement with experimental results 

when the major portion of the velocity profile at a 

particular station varies with the square-root of y. Of 

special interest is the way that Perry defines the constant 

of integration or the "slip velocity". Perry’s half-power 

equation is

+ f «» 11/2 K

where K1 is a universal constant and K2 

The slip velocity is equal to

(23)

is a function of A.
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-2 = i 1n( C/A) + A (24) 
u#

where x and A are the Log Law constants, - 4.16 and C = 

0.19 are universal constants. Because of Perry’s definition 

of the slip velocity, the half-power region is designed to 

follow immediately after the logarithmic region. Perry, 

thus, assumes that there is a logarithmic region in all 

unseparated adverse pressure gradient flows.

Kader and Yaglom’s half-power law, after performing a 

similarity analysis and obtaining the constants empirically, 

is

(25a)

where
K

K = (200u*/«S + 20)1/2 , -£■ - 2.44 ln(r) - | ,
* 37

6u*/ai>
and T = ------- ---  . (25b)

5 + 50u#/«$

Kader and Yaglom’s half-power slope is, thus, seen to 
obe a function of aS/u#, while the intercept is a function of

2 3aS/u# and ap/u*.

Following the half-power region (and possibly a small 

blending region) is the velocity defect region. Kader and 

Yaglom use dimensional analysis and empirical results from a
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(26)

wide range of experiments to obtain their defect law

where C = 9.6 is an empirical constant. Referring to Kader 

and Yaglom’s (1978) Figure 6 it appears that there a is wide 

degree of scatter in the experimental data around C = 9.6.

Shown in Figures 2.23, 2.24, and 2.25 are Perry’s 

half-power law, Kader and Yaglom’s half-power law and defect 

formulation, and the Log Law, along with the experimental 

data for the eight degree conical diffuser (Figures for the 

other flows are included in Appendix B). It is observed 

that Perry’s and Kader and Yaglom’s half-power laws work 

reasonably well in the middle region of this flow. Kader 

and Yaglom’s defect works quite well towards the exit region 

of this flow. These models work moderately well in the in 

the inlet and middle regions of the eight degree conical

diffuser.

What was shown in the eight degree conical diffuser 

is representative of the other flows as well, as shown in 

Appendix B. Kader and Yaglom’s and Perry’s half-power laws 

both appear to work reasonably well over a short axial 

range, usually in the middle stations of the flows. Kader 

and Yaglom’s half-power law was moderately better over a 

wider range of axial stations in most of the flows then
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Perry’s half-power law. It should be noted, however, that 

Perry’s defect law is designed to predict the half-power 

region only when the half-power region is the dominant 

region of the flow, as described in the introduction of this 

chapter. Kader and Yaglom’s defect was reasonable and 

worked much better in the plane diffusers than in the 

conical ones. These results are summarized in Table 2.3, 

and discussed in more detail in the following section.

Part of the difficulty with Kader and Yaglom’s

half-power and defect formulations is shown in Figures 2.4 
oand 2.5. Figure 2.4 shows the variation of aS/u# with 

respect to the axial distance from the inlet, x/^-jniet’
3

while Figure 2.5 shows the variation of ap/u# versus

x/6. , .. It is observed that the different flows behave in inlet
different ways, with respect to these parameters. The 

2 3majority of the flows have a6/u# and ap/u# increasing in an 

exponential manner while a couple of the flows have nearly 

linear variations. The eight degree conical diffuser, 

however, exhibits a concave down curvature on these plots 

(or see Trupp et al’s (1986) Figure 3), with their 

respective maxima occurring near the exit.

Kader and Yaglom’s velocity defect law constant, C 

(from equation 26) was modified to fit the experimental data 

of the eight degree conical diffuser, and a good fit was
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obtained, as shown in Figure 2.18. The constant increased 

continuously from the diffuser inlet as did the velocity 

gradient. The variation of C for this flow is shown in 

Figure 2.26 and tabulated in Appendix D.

Perry et al (1966), Perry (1966), Kader and Yaglom 

(1978), and Trupp et al (1986) all acknowledge that there 

are also other regions in adverse pressure gradient flows, 

specifically long linear and 3/2-power regions. Trupp et al 

experimentally correlate the slopes and intercepts of the 

linear region at each axial location in the conical 

diffuser. There is apparently no correlation in the 

literature of the experimental 3/2-power region for any

f1ows.

Only Perry (1966) has developed a semi-empirical 

correlation for the linear region of the Perry et al (1966) 

flow development theory. He uses a method similar to his 

half-power region to obtain the form of, and the constants 

for, the linear mean velocity profile. However, it is 

assumed that there are historical effects present in the 

flow at this point, which are represented analytically by 

the axial gradient of the kinematic pressure gradient. As 

with his half-power law, the linear region is assumed to 

follow the logarithmic region. Perry’s linear velocity 

profile is not examined further.
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2.3 Examination of the Two Half-Power Regions

It is observed that in adverse pressure gradient 

flows there are two regions at each axial station where the 

mean velocity varies with the square root of the distance 

from the wall. These regions exist in all of the data 

examined, although this phenomenon is mentioned only in 

Trupp et al (1986) with regards to the eight degree conical

diffuser.

Although all of the flows progress as described by 

Perry et al (1966), when the mean velocity is looked at on 

only half-power coordinates there is definitely a 

development of two half-power regions. Early in the entry 

region of these flows the outer half-power slope, CQ is less 

than the inner half-power slope, C^. But as the flows 

develop, the inner slope decreases while the outer slope 

increases until they become approximately the same. This is 

the half-power region discussed by Perry (1966), Samuel and 

Joubert (1974), and is also (approximately) Kader and 

Yaglom’s (1978) half-power law. As the flow continues to 

develop, the inner half-power slope becomes very small 

relative to the outer slope. This progression is exhibited 

in Figure 2.27, for Fraser’s flow A (flow # 5000). This is
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representative of all the data sets examined as shown in 

Appendix C.

In the entry region, where > CQ, there is some 

uncertainty about in some of the plane diffuser data

because there are few data points at each axial station. 

Also, there is no entry length data available for these 

flows. However, in the conical geometries there is no 

problem observing the inner half-power law in the entry 

region since there is a multitude of entry length data for 

these flows, and hence, there is less uncertainty.

The ratio of the inner to outer half-power slopes 

seems to be quite important. The entry length may well be 

related to CQ/C^ becoming large enough. Figure 2.28 shows 

how the ratio of CQ/C^ changes with u^/U^. The degree of 

correlation is high. The flows develop as u^/U^ decreases 

(right to left on this plot), with CQ/C^ increasing in this 

direction. The mean velocity becomes universal for the 

flows examined here in the range 1.1 < CQ/C^ < 1.4 for the 

plane diffusers and 1.2 < co/c-j < 4 for the conical

geometries. This criterion is dependent on initial

conditions as shown by the six degree conical diffuser of 

Pozzorini. Flow # 0142 develops a universal profile at 

CQ/C.j = 3.2 while in flow # 0143, it is universal at CQ/C^ =

1.2.
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It is observed that the inner half-power region

overlaps with the Log Law, especially when the Log Law is

long. It, therefore, seems reasonable to expect C.. to be a

function of the friction velocity, just as the Log Law is.

Figure 2.29 shows the plot of the inner slope versus the

friction velocity. C.. is definitely a function of u# as

seen on this dimensional plot. However, the best

non-dimensional correlation of the inner half-power slope is

shown in Figures 2.30. The correlation with this particular 
1 /2non-dimensional ization (C^/iU^ 6 ) versus x/5-jnlet *

o
a5/u#) may well be fortuitous, but it at least shows the 

trend, and offers a first approximation in prediction of the 

slope. This is most useful in the entry length region where 

Coles’ profile does not work and the Log Law region is 

small. A moderately better correlation for CQ/C^ is shown 

in Figure 2.31. The scatter here is less than in Figure 

2.28, the only exception on this plot is the ten degree 

conical diffuser of Fraser where the shape of the curve is 

the same and it only appears to be "out of phase" with the

other data.

There was great difficulty correlating the intercepts 

(or “slip velocities") of the half-power laws. This is 

probably because of its sensitivity to the half-power slope. 

Another possible cause of this difficulty could be because
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of the data shown in Figure 2.22. This figure shows all of 

the stations in the eight degree and the two six degree 

conical diffuser flows. This figure shows that the Law of

the Wake occurs at different distances from the wall for

different flows, as discussed previously. This causes real 

difficulty in correlating the intercepts of the half-power 

regions, especially the outer region. The best correlation
3

for D.. is D^/U^ versus op/u* as shown on Figure 2.32. The 

agreement is adequate and it does show the trend. Again, 

good correlation occurs for the ratio of intercepts , DQ/D^ 

as a function of u^/U^ as shown in Figure 2.33.

Trupp et al (1986) state that there are linear 

blending regions between the two half-power regions in the 

eight degree conical diffuser. The data examined in that 

paper is only near wall data, so that towards the exit there 

is no data for the outer half-power region. Upon further 

examination of the experimental data of Turan (1988), Kassab 

(1986), and Ozimek (1985) from the same conical diffuser, it 

has been observed that there are two half-power regions 

present throughout the flow, as already mentioned. Early 

into all of the diffusers (when > CQ) the blending region 

is small, indeed almost non-existent on half-power 

coordinates. At this point there are no substantial linear 

regions present in any of the flows examined. As the flows
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develop, the slopes of the two half-power regions become 

equal and one long half-power region is present in the 

flows. This is the half-power region described by Perry 

(1966). As the flows develop further, the two half-power 

regions begin to separate and the blending region becomes 

linear. Further downstream, the blending region becomes 

large and has a 3/2-power velocity distribution. This 

development can be seen in Figures 2.34 - 35. Figure 2.34 

shows the linear blending region at station 5 in flow 40142 

while Figure 2.35 shows the 3/2-power blending region at 

station 11. It is observed that the region of overlap can 

be quite large, especially at the locations where the linear 

and the 3/2-power regions become dominant.

The only exception to the above discussion is flow 4 

0143. This flow has a very long entry length caused by the 

"backward facing step" arrangement just upstream of the 

diffuser entrance (which was used to generate high core 

turbulence). Indeed, Coles’ profile only works at the last

measurement station in this flow. This flow has a much

longer entry length than any of the other flows examined.

In this flow C becomes greater than C. at the last station, O 1
hence the flow flow development is much slower.

Flows 1100 and 1200 developed in much less extreme 

adverse pressure gradients. Hence, flow 1100 never develops
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a 3/2 power region and flow 1200 only barely develops a 3/2 

power region. All of the other flows have more severe 

adverse pressure gradients and the 3/2-power region develops 

read!ly.

The development of the linear regions of this class 

of flows appears to be related to the decreasing adverse 

pressure gradient. Upon examining Samuel and Joubert’s 

(1974) increasing adverse pressure gradient flow (Stanford 

Conference flow # 0141) it appears that the linear regions 

are delayed until the adverse pressure gradient starts to 

decrease. This also appears to be the case in the other 

flows examined where the pressure gradient increases for 

only a short distance from the inlet. Once the pressure 

gradient starts to decrease the ratio of outer half-power 

slope to the inner slope starts to increase and the long 

linear blending region between the two 1/2-power regions

occurs.

The development of the two half-power regions ties 

together the flow development theories of Kader and Yaglom 

(1978) and Perry et al (1966). For the pressure gradients 

of the flows examined here, a logarithmic region exists at 

each station, overlapping at least partially with the inner 

half-power region. Kader and Yaglom’s similarity analysis, 

which shows that there should be a half-power region
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following the logarithmic region, verifies this. Perry’s 

(1966) linear profile supposedly follows the Log Law but the 

experimental data shows that a half-power region precedes 

it. Kader and Yaglom, also, acknowledge that there are 

linear regions in this class of flows but make no attempt to 

correlate them. This of course, does not explain the 

presence of the second (outer) half-power region.

The two half-power regions can also be used to 

examine where exactly the mean velocity formulations from 

the previous section correlate the experimental data. Table 

2.3 compiles these results, showing exactly where the models 

of Townsend, McDonald, Kader and Yaglom’s half-power and 

defect regions, Perry’s half-power region, and Coles’ Law of 

the Wake work. Generally, Townsend’s model works for CQ/C^ 

< 1.2 and McDonald’s when CQ/C^ < 2.5. Kader and Yaglom’s 

half-power law correlates the data over a wider range than 

Perry’s, while Kader and Yaglom’s defect works over an even 

wider range. Coles profile was discussed previously as the 

universal profile.

Many of the theories for the half-power region are 

based on the idea that there is an approximately linear 

turbulent shear stress distribution (Townsend (1961), Mellor 

(1966), and McDonald (1969)). It has been observed for the 

three flows with turbulence measurements (flow #’s 0142,
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0143, and the eight degree conical diffuser) that the second 

half-power region occurs after the peak of uv, when it 

decreases in an approximately linear manner. The outer 

half-power region may be related to this linear stress 

layer, just as the inner half-power law is.

2.4 Conclusions

The criterion for moving equilibrium of Kader and 

Yaglom has been found to be of general use because it shows 

that the flow is dependent on the local flow variables (U^, 

u#, a, and 6). These local flow variables give rise to 

distinct length scales which, in turn, imply that a 

composite velocity profile exists. This is indeed seen to

be the case.

It is apparent from the experimental data that there 

is a universal mean velocity profile in wall-bounded adverse 

pressure gradient flows. This universal profile, the Log 

Law with Coles’ Law of the Wake, occurs after a certain 

entry length and before separation possibly occurs. This 

could be related to the mean field coming to a type of 

moving equilibrium. Indeed, the universal mean velocity 

profile starts to fit the experimental data only after the 

pressure gradient has decreased significantly.
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It is difficult to say whether or not there is a 

universal mean velocity profile in the viscous sublayer and 

buffer region. The mean velocity is dependent on the 

pressure gradient and could vary substantially from the 

usual Law of the Wall as shown by McDonald (1969). It was 

also observed that the Log Law could penetrate the sublayer 

and buffer to distances quite close to the wall, verifying 

the theory of McDonald (1969) and the experimental 

observation of Trupp et al (1986) for the eight degree

conical diffuser.

The Log Law was seen to exist for all of the flows 

examined, although it was severely shortened at some 

stations. The Log Law constants could be used without

modification if Clauser’s method had been used to determine

the friction velocity. Much of the scatter around the Log

Law was eliminated when Clauser’s method was used instead of

a Preston Tube. It is doubtful, however, that Clauser’s 

method is more accurate then the Preston Tube in determining 

the wall shear stress because it assumes a Log Law at a

certain location.

McDonald’s model works reasonably well as a 

replacement for the Log Law in the entry region, but it 

requires the pre-knowledge of the turbulent shear stress uv. 

The shear stress gradient can be approximated by 0.67 times
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the pressure gradient in the entry region.

The existing models for the outer layer in general do 

only an adequate (at best) job in predicting the mean 

velocity profiles, especially as a means for predicting the 

majority of the entry region. Kader and Yaglom’s half-power 

law does a better job than Perry’s half-power law overall.

It was observed that there are two half-power regions 

present in the eight decreasing adverse pressure gradient 

flows examined. The ratios of the inner and outer

half-power slopes and intercepts correlate well with the

ratio of the friction velocity and the freestream velocity.

A reasonable correlation was obtained for the inner 
1 /2half-power slope and intercept in terms of C^/(UW5 )

versus x/5.j ^(aS/u*) and D^/U^ versus «^/u*.

The entry length was seen to be possibly related to 

the ratio of the inner and outer half-power slopes. The 

entry length was observed to be initial conditions 

dependent. The analytical and semi-empirical mean velocity 

profiles in the literature were examined as to where they 

correlate the experimental data in terms of the two 

half-power regions.

The blending region between the two 1/2-power regions 

was small when the inner half-power slope was larger then 

the outer half-power slope. As the flows develop, the outer
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half-power slope grows larger than the inner half-power 

slope and the blending region becomes longer and is linear. 

Further into the flows, the blending region varies with the 

3/2-power of the distance from the wall.
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adverse pressure gradient flows examined.
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2.2 u*/u# inlet versus x/5inlet for the eight decreasing
adverse pressure gradient flows examined.



55

in
le

t

2-3 §/6inlet versus x/5inlet for the eight decreasing 
adverse pressure gradient flows examined (see legend for 
Figure 2.1).
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2.4 «S/u# versus x/6in-|et for the eight decreasing adverse 
pressure gradient flows examined (see legend for Figure 
2.1).
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2.5 ap/u* versus x/^-jn-jet tor the eight decreasing adverse 
pressure gradient flows examined (see legend for Figure 
2.1).
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2.6 The experimental mean velocity profiles in Fraser’s
flow #5100. The solid line shown is through the half-power
region at station 4.
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2.7 The experimental mean velocity profiles in Fraser’s
flow #5100. The solid line shown is through the half-power
region at station 6.
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2.8 The experimental mean velocity profiles in Fraser’s
flow #5100. The solid line shown is through the half-power
region at station 12.
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2.9 The experimental data of Ozimek (1985) and Kassab 
(1986) from the eight degree conical diffuser at x=6cm along 
with the Log Law (x=0.41, b=5.0), and from left to right, U+ 
= y+, Rannie, van Driest, and Granville.
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2.10 The experimental data of Ozimek (1985) and Kassab
(1986) fromi the eight degree conical diffuser at x=18cm
along with the Log Law (x=0.41, b=5.0), and from left to
right, U+ = y+, Rannie, van Driest, and Granville, similar
to Figure 2.9.
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2.11 The experimental data from Perry’s flow #2900 at 
x=3.048m along with the Log Law (x=0.41, b=5.0), and from
left to right, U+ = y+, Rannie, van Driest, and Granville, 
similar to Figure 2.9.
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2.12 The experimental data from Perry’s flow #2900 at 
x=4.267m along with the Log Law (x=o.41, b=5.0), and from 
left to right, U+ = y+, Rannie, van Driest, and Granville, 
similar to Figure 2.9.
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2.13 The experimental data of Ozimek ( 1985) and Kassab
(1986) from the eight degree conical diffuser along with the
Log Law, Townsend, and McDonald at x=18cm. McDonald’s
profile is below Townsend’s: a=0.126, 7=0.40, U =U (T)-0.8.s s
U (T) is Townsend’s slip velocity (equation 12) s
non-dimensionalized with u*.
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2.14 The experimental data of Turan (1988), Ozimek (1985),
and Kassab (1986) from the eight degree conical diffuser
along with the Log Law, Townsend, and McDonald at x=42cm.
McDonald’s profile is below Townsend’s: a=-0.017, 7=0.585,
U =U (T)-3.6. U (T) is Townsend’s slip velocity (equation s s s
12) non-dimensionalized with u*.
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2.15 The experimental data of Turan (1988), Ozimek (1985),
and Kassab (1986) from the eight degree conical diffuser
along with the Log Law, Townsend, and McDonald at x=66cm.
McDonald’s profile is below Townsend’s: a=0.025, 7=0.673,
U =U (T)-7.3. U (T) is Townsend’s slip velocity (equation s s s
12) non-dimensionalized with u*.
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2.16 Data from all of the stations of flow #0142 with u# 

from the Preston Tube method.
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2.17 Data from all of the stations of flow #0142 with u# 
from Clauser’s method.
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2.18 Data from the eight degree conical diffuser at x=42cm 
along with the modified Nakayama and Koyama formulation and 
the modified Kader and Yaglom velocity defect.
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2.19 Coles’ Law of the Wake compared with the experimental 
data, from top to bottom: flow #2900 station 10, flow #1100 
station 8, and flow #1200 station 1.
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2.20 Coles’ Law of the Wake compared with the experimental 
data, from top to bottom: flow #5000 station 7, flow #0142 
x=0.572m, and flow #0143 x=1.813m.
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2.21 Coles’ Law of the Wake compared with the experimental
data of Turan (1988), Ozimek (1985), and Kassab (1986) from
the eight degree conical diffuser: (a) x=18cm, (b) x=42cm,

(c) x=66cm.
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2.22 The experimental data from the following flows; A ,
O , □ , the eight degree conical diffuser; <$> , flow #0142;

X, flow #0143.
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2.23 The experimental data from the eight degree conical
diffuser at x=18cm along with the Log Law, Perry’s and Kader
and Yaglorn’s half-power formulations, and Kader and Yaglorn’s
velocity defect. Perry’s slip velocity is larger than Kader
and Yaglom’s.
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2.24 The experimental data from the eight degree conical
diffuser at x=42cm along with the Log Law, Perry’s and Kader
and Yaglom’s half-power formulations, and Kader and Yaglom’s
velocity defect. Perry’s slip velocity is larger than Kader
and Yaglom’s.
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2.25 The experimental data from the eight degree conical
diffuser at x=66cm along with the Log Law, Perry’s and Kader
and Yaglom’s half-power formulations, and Kader and Yaglom’s
velocity defect. Perry’s slip velocity is larger than Kader
and Yaglom’s.
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2.26 The modified Kader and Yaglom defect constant C in the 
eight degree conical diffuser.
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2.27 The half-power development of Fraser’s flow #5000 at 
stations 3, 6, and 9 (from top to bottom).
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2.28 The ratio of the two half-power slopes for all eight
decreasing adverse pressure gradient flows.
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2.29 The inner half-power slope as a function of the
friction velocity with the data from the eight decreasing
adverse pressure gradient flows.
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2.30 The non-dimensionalized inner half-power slope with 
the data from the eight decreasing adverse pressure gradient 
flows.
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1 eight2.31 The ratio of the two half-power slopes for a
decreasing adverse pressure gradient flows.



85

2.32 The non-dimensionalized inner half-power intercept 
with the data from the eight decreasing adverse pressure 
gradient flows.
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2.33 The ratio of the two half-power intercepts for all
eight decreasing adverse pressure gradient flows.
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2.34 The linear blending region in flow #0142 at x=0.382m.
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2.35 The 3/2-power blending region in flow #0142 at 
x=1.813m.
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Table 2.1 List of Adverse Pressure Gradient Flows Examined

experimenters flow # classification U/p [1/m]

Ludwieg &
TilImann

1100*
1200*

plane, developing 2.2
2.2

E+06
E+06

Perry 2900* plane, developing 2.5 E+06

Samuel & 
Joubert

0141 + plane, developing, 
increasing dP/dx

1.7 E+06

Fraser 5000*
5100*

10 deg. conical, dev. 3.3
3.6

E+06
E+06

Pozzorini 0142+
0143+

6 deg. conical, dev. 2.7
1.2

E+06
E+06

Turan, Ozimek,
& Kassab*

8 degree conical, 
fully developed inlet

1 .4 E+06

*, 1968 Stanford Conference; +9 1980-81 Stanford Conference
see also Trupp et al (1986)
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Table 2.2 Experimental Values of the Length Scales 
and Kader and Yaglom’s Moving Equilibrium Criterion

flow distance 
from inlet

Uæ/(aô)1/2 5
V

5
P

5

ô degree 0.06 3.52 2.49E-05 6.89E-04 0.0550
conical 0.18 4.36 4.21E-05 5.55E-04 0.0634

diffuser 0.30 5.36 5.88E-05 5.74E-04 0.0718
0.42 6.05 7.27E-05 6.07E-04 0.0801
0.54 6.52 8.51E-05 6.40E-04 0.0885
0.66 6.80 9.41E-05 7.15E-04 0.0969

0142 0.000 13.40 9.24E-0Ô 4.79E-03 0.016
0.095 7.43 1.25E-05 1.30E-03 0.023
0.191 7.21 1.46E-05 1.24E-03 0.028
0.286 7.51 1.68E-05 1.20E-03 0.030
0.382 7.22 1.98E-05 1.08E-03 0.035
0.572 7.57 2.56E-05 1.09E-03 0.045
0.763 7.37 3.23E-05 9.68E-04 0.059
1.049 6.62 4.22E-05 8.55E-04 0.090
1.240 6.24 4.56E-05 8.53E-04 0.111
1.526 6.31 5.41E-05 8.76E-04 0.140
1 .813 5.92 5.99E-05 9.25E-04 0.184

0143 0.095 6.89 1.88E-05 2.48E-03 0.025
0.573 4.32 3.08E-05 2.34E-03 0.085
1 .049 4.11 4.61E-05 2.52E-03 0.140
1 .813 4.27 6.95E-05 3.01E-03 0.185

2900 0.762 7.09 1.22E-05 3.94E-03 0.076
1.219 7.68 1.47E-05 3.97E-03 0.076
1.676 7.58 1.75E-05 4.29E-03 0.102
2.134 6.72 2.18E-05 3.53E-03 0.140
2.591 7.22 2.54E-05 4.20E-03 0.178
3.048 6.51 2.84E-05 4.06E-03 0.241
3.353 6.61 3.30E-05 3.80E-03 0.279
3.810 7.11 3.89E-05 3.50E-03 0.292
4.267 6.89 4.90E-05 2.80E-03 0.343
4.572 6.90 5.86E-05 2.17E-03 0.394
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Table 2.3 Range of CQ/C^ where mean velocity models predict the data

Flow Townsend+ KY 1/2 Perry 1/2 KY defect Coles

1100

1200

2900

5000

5100

0142

0143

8 deg. 
conical

r < 1 .0

r < 1.2

r < 1.4

Marginally 
better than 
Log Law at 
all of the 
stations.

r < 1.9 
{ r < 3.2 }

r < 0.6 
{ r < 1.2 }

r < 1.5 
{ r < 2.5 }

1 < r < 2

1.4< r <2.5

1.4< r < 2

not at any

not at any

1.5< r <2.8

r = 0.6

2.3< r <2.6

1.5 < r < 2

1.6 < r < 2.5

1.4 < r < 2

not at any

not at any

1.2 < r < 1.5

not at any

0.7 < r < 2.3

1 < r < 2

1.4 < r < 6

1.6 < r < 3

0.8 < r < 1.5

0.8 < r < 1.6

1.1 < r < 4.1

not at any

2.5 < r < 6

r > 1 .0

r > 1.0

r > 1.4

r > 3.5

r > 3.5

r > 3.2

r > 1.2

r > 4

+ The valid range for McDonald is shown in brackets {}.

In this table, r = CQ/C1.
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Chapter Three
Calculation of the Turbulence Quantities 

in a Conical Diffuser Flow

3.1 Introduction

Almost all engineering flows of practical importance 

are turbulent, hence turbulence modeling is critical for 

efficient design. Turbulence modeling is required because 

in the momentum equations for the mean (time-averaged) flow 

field, the so-called Reynolds stresses appear. For a 

stationary and axisymmetric flow, the mean momentum equation

in the axial direction is

(1)

and the radial momentum equation is

-(fctuv) (V2 - w2)■) (2)r

while the continuity equation is

(3)
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---- 2The turbulent shear stress uv and normal stresses u , 
~2 ~2v , and w require modeling. Transport equations for these 

terms can be derived from the momentum equation for the 

turbulence fluctuations, but this in turn leads to third 

order correlations and the well known closure problem of 

turbulence. Because the turbulence structure of a given 

flow varies greatly with such factors as the pressure 

gradient, geometry, or the streamline curvature (Azad and 

Kassab, 1989) modeling is difficult.

In order to effectively design fluid mechanical

devices an engineer needs to efficiently calculate the 
— ~~2turbulence shear and normal stresses, specifically uv, u ,

~2 ~2 . . — — —v , and w along with the mean velocities U, V, and W. 

Presently, many methods are available, the most common being 

algebraic stress models, one equation (k) models, two 

equation (k-e) models, and multiple equation (Reynolds 

stress) models. There are also integral methods which are

used to evaluate uv.

Boussinesq was the first to state that the turbulence 

stresses should be proportional to the mean velocity 

gradients in a manner similar to the laminar stresses. The 

laminar stresses are described by Newton’s Law of Viscosity

Similarly, the Boussinesq definition of the eddy viscosity
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is
T ______ fdU. dU a
- = -uiUj = "t [37: + âü^j - 3 k (5)

where p*. is the eddy viscosity or turbulence viscosity. The 

eddy viscosity is thus, flow dependent, not fluid dependent 

like the laminar viscosity.

Algebraic stress models are just simple equations for

üv. The first zero equation model was Prandtl’s mixing

length concept, where 
2

-p- = * (6)

for a boundary layer or fully-developed pipe flow. Then 

from Boussinesq, the eddy viscosity is

"t = I? (7)

with the mixing length, -C specified algebraically. This type 

of model is well established in relatively simple flows such 

as boundary layers or fully-developed pipe flow. Because 

advection, diffusion, and history effects are neglected, it 

is unlikely that this type of model would work well in 

complex flows such as conical diffusers.

One equation models have a transport equation for the 

turbulence kinetic energy, k. The exact kinetic energy 

equation for stationary and axisymmetric flows is
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II

3x

III

3..(ig.*.01- (8)
dr
IV

when the pressure transport term is neglected (Turan, 1988). 

Term I is the advection of kinetic energy due to the mean 

flow, term II is the turbulent transport or turbulent 

diffusion, term III is the turbulent production, term IV is 

the viscous diffusion, and term V is the dissipation rate of 

turbulent kinetic energy. The only term that is modeled in 

equation (8) is the turbulent diffusion which is modeled by

where is the Prandtl number for the kinetic energy.

Although the other terms in the exact kinetic energy 

equation are not modeled explicitly, they are modeled 

implicitly because the Reynolds stresses are modeled with 

the Boussinesq approximation. The dissipation is determined

from

e = CD k3/2 L (10)

and the eddy viscosity from the Kolmogorov-Prandtl relation

pt= c//2l (11)

where the mixing length, L is again specified algebraically.
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Thus, the eddy viscosity is related to the kinetic energy of

turbulence.

Thus, the modeled kinetic energy equation is

-H ] ♦ (u2-v2) fU ♦ (w2-v2)3— Ru , 9V 
dr 9x

3k a2k afk
r ar 3r2 3x2

)-

In the two equation models, a transport equation for

the length scale is developed similar to that for the

modeled kinetic energy equation. The most popular two

equation model is the k-e model, and is the only one

discussed here. In the k-e model, the length scale is 
3/2k /e and the transport equation is 

For a stationary and axisymmetric flow the

dissipation rate equation (Nagano and Hishida, 1987) is 

given by

I II

proportional to 

developed for e.

.. 9e , 9e d (, . Ptx 9e^ 1 9 f , Pt» 9e'l , „ _9x dr ~ 9x(/P a ) 9xJ r 9r[r^P a 9rJ )

III

„ r e (— rau 9V1 , 2- ce/l kluvL§? + 3fJ + (u -

IV

v2>|>2 - v2,ï) c f - ue2J2 k

where the /’s are damping functions for near wall effects,
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term I is the advection of the dissipation due to the mean 

flow, term II is the turbulent diffusion, term III is the 

production, and term IV is the destruction. The eddy 

viscosity is again defined by the Kolmogorov-Prandtl

relation

"t = Vm k2/E (14)

where C is a constant and / is a damping function for near 

wall effects. Hence, the eddy viscosity is dependent on 

both the kinetic energy and the dissipation rate.

In Reynolds stress models (RSM) there is a transport 

equation for each of the Reynolds stresses, plus an equation 

for the dissipation rate. Each of the RSM equations is of 

the same form as the exact kinetic energy equation with the 

third order correlations modeled as functions of the

gradients of the second order correlations (or Reynolds 

stresses). An eddy viscosity is not required because the 

Reynolds stresses are modeled in their respective transport 

equation.

The objective of this chapter is to evaluate some of 

the current variations of the basic k-e model in comparison 

with experimental data from Turan (1988) for an eight degree

conical diffuser flow. Full numerical simulation will not

be done. Instead, experimental data will be used with the 

k-e closure in order to see how well the model predicts the
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turbulence quantities. Second, a numerical computation of 

the two partial differential equations in a conical diffuser 

flow, given the mean axial and radial velocities, is 

attempted. Giving the mean velocity and geometry means that 

only two partial differential equations have to be solved, 

rather than five. This allows for the possible breakdowns 

of the model to be evaluated more clearly.

The eight degree conical diffuser of Trupp et al 

(1986) and Turan (1988) will be the geometry and data used 

for evaluating the models. This is the most recent data 

available for this type of flow which includes the 

dissipation rate of turbulence kinetic energy obtained by an 

independent method.

In the remainder of this chapter, the finite 

difference numerical method is described. Following this, 

three variations of the basic k-e model will be evaluated

with respect to the eight degree conical diffuser flow.

3.2 The Finite-Difference Scheme

Patankar (1980) in his book Numerical Heat Transfer

and Fluid Flow describes in detail the control-volume

formulation. The control-volume formulation is a

finite-difference scheme that is obtained by integrating the

particular conservation equation (here the equations for k
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and e) over a small control volume. This leads to an

algebraic equation for the individual control volume. When 

this is done over the entire domain, a set of algebraic 

equations which replace the partial differential equation is 

obtained. These equations are then solved simultaneously to 

yield the solution.

Referring to Figure 3.1, which shows the control

volumes and nodes of the discretized one-dimensional

axisymmetric domain, the difference scheme is of the form:

a = a<t> + a + b (15)p p n n s s

where the a’s and b are the difference scheme coefficients

and the <f>’s represent either k or £. In order to more 

simply evaluate the turbulence model in the complex diffuser 

flow the two-dimensional, axisymmetric conical diffuser flow 

is modeled one-dimensional 1 y at each axial station. The

rational for this is discussed in more detail in the

following section.

Because there are convection terms present in the 

equations, special precautions have to be taken so that 

there will not be significant amounts of false diffusion. 

Patankar (1980) derives what he calls the power law scheme. 

The power law scheme uses upwinding for highly convective 

flows and central differencing for low convection flows and

a combination of both for intermediate amounts of
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convection. The partial differential equations are

re-written in the form

1 3jr _ a*
- ôp- 3 S, where Jp= rpV4> - rl^p (16)

where the diffusion coefficient is r, <f> represents either k 

or e, and S is the source term. Since the axisymmetric 

conical diffuser flow is being modeled one-dimensionally, 

the axial convection is included with the source term.

Integrating equation (16) over the control volume 

shown in Figure 3.1 one obtains:

Jn " Js = (SC + Mp* rpAr (17)

where r’ - 0.5*(r -r ) and the source term S (= S„ + S ♦) p n s c p p
is linearized with Sc > 0 and Sp < 0. This source term 

linearization assumes that <J»p prevails over the entire 

control volume. The flux represent the total flux across 

the interface i, where i=n,s and are obtained from the 

integration of /Jrdr. Now, integrating the continuity 

equation for a one-dimensional incompressible flow, one

obtains:

Fn - Fg = 0 (18)

where F„ = pVr and F„ is similar. Multiplying equation n n n s
(18) by </>p and subtracting it from equation (17) the final 

discretization is obtained. The coefficients of equation 

(15) with the power law scheme (Patankar, 1980) are then
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equal to:

aN = Dn MAX [0,1 - 0.1 ABS(Pn)5] + MAX [-Fn,0]

ac = Do MAX [0,1 - 0.5 ABS(P )5] + MAX [F ,0] 
o s s s

aP = aN + aS " SP rpAr (19)

r r r r F.
b = SC Dn = («")"’ Ds = (6r)S ' and Pi = D

OS 1

where P.. is the Peclet number which represents the relative

amount of convection to diffusion. The coefficients a^, and 

as are seen to represent the convection and diffusion across 

the control volume faces. The power law scheme is used so 

that false diffusion is minimized in highly convective flows 

(Patankar, 1980).

The discretization of the partial differential 

equation leads to a set of algebraic equations over the

calculation domain. The method of solution of the set of

algebraic equations is important to the speed and accuracy

of the numerical solution. The method chosen is the Thomas

algorithm, also called the Tri-Diagonal Matrix Algorithm 

(TDMA). This solver can be used whenever the non-zero 

elements of the matrix to be solved align themselves on the 

diagonals of the matrix. The Thomas algorithm is well 

documented (see Smith (1985) or Patankar (1980) for example) 

so the details of it will not be given here.

Convergence and stability analysis for the control

volume formulation is difficult at best. The difference
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scheme is nonlinear because of the nonlinear source and sink 

terms that appear in the turbulence model equations. The 

convergence of the difference scheme and the stability of 

the solver will be discussed briefly.

Since the difference scheme is nonlinear, it has to 

be linearized somehow for a convergence analysis. Equations 

(12) and (13) are elliptic partial differential equations. 

Assuming that convection is negligible (for example, there 

is no convection in a fully-developed pipe flow), the 

control volume formulation reduces to a central difference 

approximation of the second derivative. Hence, the 

convergence analysis is done based on a type of Laplacian 

equation,

+ nonlinear terms)

Smith (1985) determined that for Poisson’s equation 

with f=f(r), and a central difference approximation to the 

second derivative, the maximum error on the domain is

max (ABS(e^)) * a2 h2

where 0 s r s a, h = Ar, and 1s the maximum of all fourth 

partial derivatives of <J>. This result proves the 

convergence of the central difference scheme for Poisson’s 

equation because as h approaches zero the truncation error 

approaches zero. Of course, this result is not entirely 

valid for the nonlinear turbulence equations with nonlinear



104

coupling.

Smith (1985) proves that the Thomas algorithm is 

stable with no growth of the rounding errors if:

1. ap,ag, and aN are all greater than zero,

2. ap > ag(i-1)+ aN(i+1) for i=1,2,..,N-1 

with ag(0) = aN(N) = 0,

3. ap > ag(i) + aN(i) for i=1,2,..,N-1 

with ag(N-1) = aN(1) = 0,

where there are N nodes. Conditions 1 and 2 ensure that the

forward elimination is stable while conditions 1 and 3

ensure that the back substitutions are stable.

What this means practically is that Sp must be 

negative and Sc positive when the source term is linearized. 

This is not, however, a problem because most physical 

systems behave in this manner (Patankar, 1980).

The convergence criteria is based on the sum of the

residuals over the calculation domain becoming small. That

is, the left hand side of equation (15) minus the right hand

side should sum to a remainder close to zero at each nodal

point. The convergence criteria is specifically that the

sum of all the remainders for each control volume over the 
_q

calculation domain is small (<10 ).

This finite difference scheme is implemented in the 

FORTRAN Code listed in Appendix E.
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3.3 Evaluation of the k-e Model of Turbulence with the

Experimental Data from a Conical Diffuser Flow

There are several modifications and variations to the

k-e model constants in the literature. A number of these

are summarized and evaluated in Nagano and Hishida (1987) or 

Patel et al (1984) with most of the models giving similar 

results. Three of the more recent models will be considered 

here, those being Nagano and Tagawa (1990)[NT], Lai et al 

(1989) [LSH], and Hoffmann (1975) [HOF]. These three were 

chosen for the following reasons. The NT model was chosen 

because it incorporates ideas developed from experimental 

data along with a significant modification first proposed by 

Hanjalic and Launder (1980). LSH was chosen because they 

obtained good results for the mean velocity field in the 

eight degree conical diffuser flow of Trupp et al (1986). 

HOF was chosen because the set of constants in this model is 

quite different from any of the other models. The model 

constants and damping functions of these three models are

summarized in Table 3.1.

Recently, there has been good k-e prediction of the 

mean velocity for the eight degree conical diffuser flow 

(Lai, So, and Hwang, 1989). Lai et al, however, do not show 

any results for the turbulence field. For this reason, the
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objective of this chapter is to evaluate the k-e model of 

turbulence in terms of how well it can predict the 

turbulence field in the severe adverse pressure gradient 

diffuser flow. The approach to this is similar to that of 

Mansour et al (1989) in that experimental data will be used 

to evaluate the model. In the case of Mansour et al, the 

data came from their numerical simulation of a channel flow.

There have been modifications suggested to the basic 

high Reynolds number k-e model to take into account the 

effects of an adverse pressure gradient. The difficulty in 

these flows seems to be related to relative rates of

production and destruction in the e-equation. In a 

fully-developed pipe flow the production of kinetic energy 

is simply -uv(8U/3r) where 3U/3r is the rotational strain. 

In adverse pressure gradient flows the irrotational strain 

starts to play an important role in balancing the two 

equations, specifically in the e-equation (Patel et al, 

1984). Hanjalic and Launder (1980) add a second constant to 

the e production, C£1 to help account for this. This leads

to their modified e production of

- C <u2-v2)

where C£1 = 3.1C£1. This added e production is critical for

balancing of the two equations, as will be shown.

The effects of the relative rates of production and
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destruction of e will be discussed following a brief 

examination of the kinetic energy equation. The kinetic 

energy equation (equation 12) has only one modeled term, the 

kinetic energy diffusion. As a first step in the evaluation 

of the k-e model, this term is examined. In Figures 3.2, 

3.3, and 3.4 at the stations x=30, 42, and 66cm respectively 

in the conical diffuser, the modeled and experimental radial 

kinetic energy diffusion are compared, where the modeled 

diffusion is calculated directly from the experimental data. 

The modeled term shows general agreement but in the vicinity 

of the wall the models of NT and Nagano and Hishida (1987) 

[NH] are too large in absolute value. The modification by 

NT of a^=l.4 from the Nagano and Hishida (1987) model where 

<7^=1.0 is a significant improvement. The LSH model shows 

better agreement in the first few stations adjacent to the 

wall because their f is substantially smaller than that ofr4
NT and NH in this region. Away from the wall, / approaches 

unity for all models and has no direct effect on the 

calculations. In the region away from the wall, the NT 

model is superior to the other models because of their 

using ak=1.4 rather than the usual <7^=1.0.

The eddy viscosity also plays an important role in 

the production of kinetic energy. Since the Reynolds 

stresses are modeled through the Boussinesq definition of 

the eddy viscosity, the production is implicitly modeled.
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The NT modeled production is calculated directly from the

experimental data and is shown with the other terms of the

exact kinetic energy budget (equation 8) in Figures 3.5,

3.6, and 3.7 at the same three diffuser stations. It can be

seen that the modeled production is much too large at all

three stations. Part of the problem may be from the J used

in the models. Figures 3.8, 3.9, and 3.10, again for x=30,

42, and 66cm respectively show what the experimental /

should be from the equation

f - ----- ~uv_______  e— (20)
CfdU/dr + av/3x] .2H K

The model of LSH is in better agreement with the data

than the other models near the wall. All of the models

approach unity as the distance from the wall increases while 

the experimental data goes to values between 0.2 and 0.4. 

Hence, these models should not show good agreement with the 

experimental turbulence field if these f damping functionsr*
are used. The damping function of NT is similar to that of 

Nagano and Hishida (1987) while the damping function of HOF 

is similar to that first proposed by Jones and Launder 

(1972).

If the dissipation rate is then used as the closing 

term for the modeled kinetic energy equation, it is 

necessary for it to be much larger than the experimental 

dissipation rate. However, if the experimental production
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is used instead of the modeled production the calculated

"closing term dissipation" is much closer to the

experimentally measured dissipation rate. This is shown i n

Figures 3.11, 51.12, and 3.13, again for x=30, 42, and 66cm

respectively. In these figures, the experimental

dissipation rate is compared with the dissipation rate 

required to close equation (12) given the different models 

kinetic energy diffusion rates. This closing term 

dissipation rate can then be interpreted as the dissipation 

rate required to keep the kinetic energy at the experimental 

level. In the wall region at x=30 and 42cm, the dissipation 

required to close the modeled kinetic energy equation is 

larger than the experimental dissipation, while at x=66cm 

the required dissipation is smaller on the average. In the 

core region, the scatter is around the experimental e so

conclusions are difficult to make.

If all of the terms in the modeled kinetic energy 

equation are moved to the left hand side of the equal sign, 

the right hand side should sum to zero. Of course, with 

experimental data some scatter occurs and there will be a 

remainder. Figures 3.14, 3.15, and 3.16 show the remainder 

for the kinetic energy equation. Generally, there is quite 

a large degree of scatter, as in Figures 3.11, 3.12, and 

3.13. The most important region, however, is the wall 

region because poor prediction in this region is likely to
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cause poor prediction away from the wall. At x=30cm, the 

remainder in the wall region is on the production side of 

the balance. This implies that the kinetic energy should 

become larger if the dissipation remains the same. The same 

type of remainder occurs at x=42cm except that the remainder 

is on the order of magnitude of the production term. At 

x=66cm, the remainder term is on the destruction side in the 

wall region, meaning that the kinetic energy will become 

smaller to balance the two equations if the dissipation rate 

is held at the experimental level.

In order to see what the possible effect the 

e-equation could have on the kinetic energy field, the 

remainder of the e-equation is also examined with the 

experimental data. Figures 3.17, 3.18, and 3.19 show the 

remainder of the NT and LSH models along with the terms of 

the LSH e-equation at the same three diffuser stations. In 

the wall region at x=30cm the remainder is on the production 

side for r/R>0.8. This implies that if the kinetic 

energy does not vary from the experimental values, e should 

increase. Recalling Figure 3.11, this is exactly what is 

required of the “closing term dissipation" if the kinetic 

energy is to remain at the experimental levels. Hence, a 

reasonable prediction of k at x=30cm is possible when both 

equations are solved with the experimental production given.

The same is not true for x=42cm. Recalling Figure
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3.12, it is necessary for c to increase over the 

experimental levels in the wall region. Figure 3.18 shows 

that the opposite should occur. In the wall region, the

remainder term is on the destruction side of the balance.

Hence, poor prediction of k at x=42cm is expected when both 

equations are solved simultaneously and the experimental 

production is given. At x=66cm, the remainder is also on 

the destruction side near the wall, as shown in Figure 3.19, 

but recalling Figure 3.13, this is what is required. Hence 

reasonable prediction of k at x=66cm should be expected.

In order to examine the above discussion further, 

both equations are solved simultaneously with the 

finite-difference method described previously. To do this 

effectively the equations are solved one-dimensional 1y with 

all axial gradients given as input. As well, the 

experimental production rates are given along with the mean 

velocity field. Axial diffusion is neglected. The boundary 

conditions are: 3k/3r = 0 and 6e/3r = 0 at the centreline. 

At the wall special precautions are taken. In order to 

avoid errors in interpolating the experimental production 

and the axial gradients near the wall, k and e are given at 

the first experimental point adjacent to the wall.

Figures 3.20, 3.21, 3.22, and 3.23 show the results 

for the kinetic energy in the fully-developed pipe flow at 

the inlet of the eight degree diffuser, and at x=30, 42, and
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66cm the diffuser flow respectively. Figures 3.24, 3.25, 

3.26, and 3.27 show the results for the dissipation rate at 

the same stations. The Nagano and Tagawa (1990) model shows 

good agreement with the experimental kinetic energy in 

Laufer’s (1954) fully-developed pipe flow, which is similar 

to the present flow. They show a slight over-prediction of 

the kinetic energy and a slight under-prediction of the mean 

velocity at the centreline of the pipe. Since the mean 

velocity field and production are invariant in the present 

calculations, the kinetic energy rises above the 

experimental values near the centreline because the 

dissipation rate is moderately small. There is good 

agreement near the wall, however, for both variables. No 

conclusions can be made about the near wall region because 

the first experimental point is not close enough to the

wal 1.

This shows one of the potential problems with this 

type of calculation. Because of the strong coupling between 

the equations, small changes in one variable can lead to 

substantial changes in the other variable (Patel, Rodi, and 

Scheuerer, 1984). Since the velocity field is invariant in 

this situation, all of the changes in one variable are 

amplified in the other variable in order to balance the 

equations. Even though the equations are over specified 

with the present method, evaluation of the model is still
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possible.

At x=30cm the agreement with the experimental data is 

reasonable with the model of NT, although in the core region 

the error is high. The models of LSH and HOF show a poor 

agreement The kinetic energy shows a strong dependence on 

the value of C£1 used in the e-equation and this could be 

why LSH and HOF show poor agreement. When C£1 is changed to 

1.OC£1 in the NT model, the results are similar to those of 

LSH and HOF. On the other hand, when C£1 = 3.1C£1, as 

recommended by of Hanjalic and Launder (1980) the kinetic 

energy is in better agreement with the experimental kinetic 

energy. Increasing this constant increases e near the wall, 

while decreasing it in the core region and lowering k in 

both regions. The solution is quite sensitive to C£1 as 

shown in Figure 3.21.

At x=42cm the agreement is poor as expected with even 

C£1 = 3.1C£1 having little effect. Figure 3.25 shows the 

cause of the poorly predicted kinetic energy. Clearly, e is

too small near the wall which causes k to become far too

large. The exception to this is HOF where the vastly 

different constants cause e to rise above the experimental 

£. However, the HOF k values are again similar to LSH. At 

x=66cm the prediction of k is excellent with NT and good in 

the wall region with LSH. Clearly, e decreases enough for k 

to be predicted well, as shown by the direct calculations
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from the experimental data. Of note, however, the program 

code did not converge with HOF or with NT with = 3.1C£1.

In order to examine whether the solution was

numerically correct the effect of the various boundary 

conditions are examined. The effects of varying the 

specified k and e values at the first nodal point from the 

wall was negligible. Increasing the £ value 1000% lead only

to a 22% decrease of the centreline value of k and either

halving or doubling the k value lead to only a 5% change in 

the centreline value of k. Hence, using the first 

experimental measuring station from the wall as the first 

nodal point with the previously stated boundary conditions

was valid.

In order to examine grid independence, a Lagrangian 

curve fit was applied to the experimental nodal points in 

order to interpolate the given axial gradients, Reynolds 

stresses, and mean velocities between the experimental 

stations. Grid independence was achieved with the

experimental number of measurement points, generally about

20 nodes at each axial station. Identical solutions were

obtained with twice as many grid points.

For these calculations no under-relaxation was

required and convergence was rapid, usually less than 100 

iterations. The convergence criterion was that the residual

sum of the algebraic equations (equation 15) over the domain
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~8for each model equation be less than 10 . There was

generally four significant figures of accuracy when the 
-4residual reached 10 . The program execution time on a

33MHz 80386 computer with an 80387 math co-processor was

less than one minute for these one-dimensional calculations.

In order to calculate both k and e with the

finite-difference scheme, along with the production, 

modifications had to be made to the Reynolds stresses.

Bradshaw (1967) was the first to note that the structural

coefficient a^ = -uv/k was approximately constant for all

pressure gradients. Shown in Figure 3.28, 3.29, and 3.30
— ~2are plots of -uv versus q (=2k) for the same three diffuser 

stations. Bradshaw determined a^O.30. In order to use 

this method directly, the functional form of the shear 

stress is -uv = a^+b with a1 and b determined by curve 

fitting the experimental data. The values at x=30, 42, and 

66cm are shown in Table 2 with a1 generally about 0.28 and b 

* -0.2. With this functional form the shear stress can be

closely represented as shown in Figures 3.28, 3.29, and

3.30. Also shown on these figures is -uv = /^(a^+b) where

the LSH damping function is used, as will be mentioned

below. With this, unrealistically low shear stresses occur.

The reason for using this is shown shortly.
~o 2Modeling (u -v ) is also required, as the usual k-e

model for this term poorly represents the data (Polak and
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Turan, 1991). Hanjalic and Launder (1980) recommend 
2 2(u -v )=0.33k. Plotted in Figures 3.31, 3.32, and 3.33 are 
2 2 ~~2(u -v ) versus q again for the same three diffuser

stations. If the functional form of the difference between 
2 2the two normal stresses is (u -v ) - a2k+c, a reasonable 

representation can be obtained. The results of

curve-fitting the experimental data are shown in Table 3.2. 

It is observed that ag decreases from 0.8 to 0.45 in the 

flow direction with c increasing from -0.45 to -0.17. At

x=66cm the data does not fall onto one line but the best 

average is used. This may be due to the diffuser end

effects.

With the above approximations for the turbulence 

stresses, a better approximation for the production of k and 

e can be obtained as compared with the usual k-e models. 

With -uv damped with the LSH f„»the production of k using 

the experimental data is shown in Figures 3.34, 3.35, and

3.36. This yields an under-prediction of the production due 

to the damping of -uv.

With a more accurate production thus determined, k, 
__ 2 2e, uv, and (u -v ) are calculated with the finite-difference 

scheme. The boundary conditions are identical to those used 

in the previous calculations. The results for the three 

diffuser stations with the NT model are shown in Figures

3.37, 3.38, and 3.39 for k and Figures 3.40, 3.41, and 3.42
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for e. The results are at least an order of magnitude too 

large with both the modified Reynolds stress and the usual 

k-e model Reynolds stress. The modified model yields much 

better results than the usual model, however.

To possibly rectify this problem is adjusted. As 

it was increased the final solution improved, as shown in 

Figures 3.37-42, but not enough to be even as good as the 

results shown in Figures 3.20-27. Eventually a value of 

was obtained that caused the solution to diverge. The 

divergence was caused by either k or e becoming negative. 

For example, at x=42cm the value of that caused

divergence was 3.88837C£1 while if Cg1=3.88836Ce1 the 

solution converged with the value of k at the centreline 

equal to 15.22 (This value of is initial conditions

dependent, but the final converged solution is not. All of 

the calculations and results presented here have 

experimental k and e for initial conditions). Table 3.3 

shows the various values of the centreline kinetic energy 

obtained from the different values for C’^, at the three 

diffuser stations. It is believed that the nonlinearity of 

the two partial differential equations causes this effect 

along with possibly that the equations are over-specified. 

Because of this, an acceptable solution for k and e cannot 

be obtained when the Reynolds stresses (or production) are

calculated.
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Figures 3.43-48 show the k and e fields just one 

iteration prior to divergence. Also, included in Figures 

3.43, 3.44, 3.46, and 3.47 for x=30 and 42cm, are the 

partially converged solutions for k and e with C’^ = 2.5 C£^ 

at the point where these solutions are at their minimum. It 

appears that divergence is caused by a local imbalance in 

the production and destruction of the two equations which in 

turn causes either variable to become negative.

3.4 Conclusions

It is concluded based on the calculations with the

experimental production rates, that the k-e model of 

turbulence can yield reasonable predictions for the kinetic 

energy in the severe adverse pressure gradient flow of an 

eight degree conical diffuser. The production term in both 

equations must be modified though. An accurately predicted 

shear stress is crucial for good prediction. Also, the 

irrotational portion of the e-equation production 

significantly affects the balance between the two equations. 

The modification by Hanjalic and Launder (1980) incorporated 

by NT is a significant improvement.

The usual shear stresses and normal stresses

calculated by the k-e model are in poor agreement with the 

experimental data (Polak and Turan, 1991). Improvements can
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be made by using Bradshaw’s structural coefficient a^ = -uv/k

=0.30 and by the recommendation of Hanjalic and Launder 
2 2(1980) that (u -v )/k = a2 =0.33. The values for a2 in the 

present flow examined do not agree with their a2, and are 

approximately twice as large. The reason for the poor 

representation of uv is due to inaccurate damping functions 

f which do not represent the experimental data. The 

damping function of LSH represents uv reasonably near the 

wall, which possibly explains why they obtained a reasonable 

prediction of the mean velocity field. Like the other 

damping functions, the LSH f is in poor agreement with the 

data in the core region.

The vastly different model constants of HOF 

significantly affect the calculation of e, but do not show 

an improved prediction of k. The model, in fact, did not 

converge at the last station, x=66cm. The best model in 

this evaluation is that of NT because of enhanced

irrotational terms in the e-equation production. The 

modification of a^=1.4 is also an improvement.

With the poor prediction of the data at x=42cm, it 

appears that may need to have a functional form

dependent on the pressure gradient rather than being 

constant. Other constants in the model may need to be 

dependent on the pressure gradient as well. LSH make an 

improvement in this regard by including pressure gradient
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dependence in their J damping function.

With the method used here, the equations may be

over-specified causing small imbalances in the model 

equations to have a significant effect on the solution. 

These effects are small when the Reynolds stresses are 

given, but poor results occur when they are calculated. 

Hence, this type of calculation is only useful for 

evaluation purposes, but is not of much use for prediction 

purposes if the a mean velocity field has been assumed.
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3.2. Comparison of modeled and experimental kinetic energy
diffusion rates at x=30cm: □ experimental, <> NT, A LSH,
+ Nagano and Hishida.



123

ga
in
 [m

 /
s3

] l
os
s

3.3. Comparison of modeled and experimental kinetic energy
diffusion rates at x=42cm: □ experimental, ❖ NT, a LSH,
+ Nagano and Hishida.
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3.4. Comparison of modeled and experimental kinetic energy
diffusion rates at x=66cm: □ experimental, o NT, a LSH,
+ Nagano and Hishida.
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3.5. The terms of the exact kinetic energy equation at
x=30cm: □ advection, a kinetic energy diffusion,

O dissipation, X production, V viscous diffusion. The NT
modeled production is much larger than the experimental
production.



126

ga
in

 
C
m

 /s
 ] 

lo
ss

3.6. The terms of the exact kinetic energy equation at
x=42cm: □ advection, A kinetic energy diffusion,

<> dissipation, x production, V viscous diffusion. The NT
modeled production is much larger than the experimental
production.
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3.7. The terms of the exact kinetic energy equation at
x=66cm: □ advection, A kinetic energy diffusion,
O dissipation, X production, V viscous diffusion. The NT

modeled production is much larger than the experimental
production.
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3.8. Comparison with model damping function / with ther*
experimental data at x=30cm: + LSH, □ NT and Nagano and 
Hishida, A HOF and Jones and Launder, O experimental 
(equation (20)).
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3.9. Comparison with model damping function / with the 
experimental data at x=42cm: + LSH, □ NT and Nagano and
Hishida, A HOF and Jones and Launder, O experimental 
(equation (20)).
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3.10. Comparison with model damping function / with the 
experimental data at x=66cm: A LSH, □ NT and Nagano and 
Hishida, ❖ HOF and Jones and Launder, + experimental 
(equation (20)).
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3.11. Comparison of experimental e with the closing term e 
(experimental production is given) at x=30cm:
□ experimental, + experimental closing term, A L8H, O NT.
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3.12. Comparison of experimental e with the closing term c 
(experimental production is given) at x=42cm: 
□ experimental, + experimental closing term, A LSH, o NT.
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3.13. Comparison of experimental e with the closing term e 
(experimental production is given) at x=66cm: 
□ experimental, + experimental closing term, A LSH,NT.
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3.14. Remainder of the modeled kinetic energy equation at
x=30cm (experimental production is given) at x=30cm:
□ experimental remainder, O NT, A LSH, x production,
V dissipation.
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3.15. Remainder of the modeled kinetic energy equation at
x=30cm (experimental production is given) at x=42cm:
□ experimental remainder, <> NT, A LSH, X production,
V dissipation.
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3.16. Remainder of the modeled kinetic energy equation at
x=30cm (experimental production is given) at x=66cm:
□ experimental remainder, O NT, A LSH, X production,
V dissipation.
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3.17. Remainder of the e-equation at x=30cm (experimental
production is given) and the terms of the LSH e-balance at
x=30cm: X destruction, production, □ advection,
+ e-diffusion, V NT, A LSH.
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3.18. Remainder of the e-equation at x=42cm (experimental
production is given) and the terms of the LSH e-balance at
x=30cm: X destruction, production, □ advection,
+ e-diffusion, V NT, A LSH,
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3.19. Remainder of the e-equation at x=66cm (experimental
production is given) and the terms of the LSH e-balance at
x=30cm: X destruction, O production, □ advection,
+ e-diffusion, 7 NT, A LSH,
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3.20. Comparison of the experimental kinetic energy with 
the model calculations in the fully-developed pipe flow 
(one-dimensional; production and mean velocity given): 
□ experiment, + NT, A LSH, <> HOF.
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3.21. Comparison of the experimental kinetic energy with 
the model calculations at x=30cm (one-dimensional; 
production, axial gradients and mean velocity given): 
□ experiment, V NT, O LSH, A HOF, + NT with C^ = 1 .0Ce1 , 
X NT with C^=3.1C€1 .
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3.22. Comparison of the experimental kinetic energy with 
the model calculations at x=42cm (one-dimensional; 
production, axial gradients and mean velocity given): 
□ experiment, 7 NT, O LSH, A HOF, + NT with Cei=1-ocei’ 
X NT with C^=3.1Ce1 .
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3.23. Comparison of the experimental kinetic energy with 
the model calculations at x=66cm (one-dimensional; 
production, axial gradients and mean velocity given):
□ experiment, A NT, <> LSH, + NT with C’ =1.0C ..

C I £ I
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3.24. Comparison of the experimental e with the model
calculations in the fully-developed pipe flow
(one-dimensional ; production and mean velocity given):
□ experiment, + NT , <> LSH, A HOF.
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3.25. Comparison of the experimental c with the model
calculations at x=30cm (one-dimensional; production, axial
gradients and mean velocity given): □ experiment, V NT,
O LSH, A HOF, + NT with C’1=1.OC£1, X NT with céi=3-1cei-
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3.26. Comparison of the experimental e with the model
calculations at x=42cm (one-dimensional; production, axial
gradients and mean velocity given): □ experiment, 7 NT,
O LSH, A HOF, + NT with C’^I.OC^, X NT with C^1=3.1C£1.
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3.27. Comparison of the experimental e with the model 
calculations at x=66cm (one-dimensional; production, axial 
gradients and mean velocity given): □ experiment, A NT, 
O LSH, + NT with C’1=1.OC£1.
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— 23.28. -uv versus q at x=30cm: □ experimental,
O 0.28k-0.25, + f (0.28k-0.25) (LSH f).

K H
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3.29. -uv versus q at x=42cm: 
O 0.26k-0.18, + f (0.26k-0.18) (LSH /„).

□ experimental,



150

— 2
3.30. -uv versus q at x=66cm: □ experimental,

O 0.28k-0.25, + i (0.28k-0.25) (LSH / ).
« r*
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3.31. (u2-v2) versus q2
+ 0.80k-0.45.

at x=30cm: □ experimental,
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2 2 2 3.33. (u -v ) versus q 
+ 0.45k-0.17.
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3.34. Comparison of experimental turbulence kinetic energy
production with modified k-e production based on Bradshaw’s
structural coefficient a1 at x=30cm: □ experimental,
O modified.
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3.35. Comparison of experimental turbulence kinetic energy
production with modified k-e production based on Bradshaw’s
structural coefficient a1 at x=42cm: □ experimental,
<> modified.
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3.36. Comparison of experimental turbulence kinetic energy
production with modified k-e production based on Bradshaw’s
structural coefficient a1 at x=66cm: □ experimental,
O modified.
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3.37. Comparison of computed values of k versus the 
experimental values for different Reynolds stresses at 
x=30cm: □ experimental, X NT model, v NT with modified 
Reynolds stresses, O NT with modified Reynolds stresses and
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3.38. Comparison of computed values of k versus the
experimental values for different Reynolds stresses at
x=42cm: □ experimental, X NT model, A NT with modified
Reynolds stresses, V NT with modified Reynolds stresses and
C’.,= 3.88836C£1 .
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r/R, , local

3.39. Comparison of computed values of k versus the
experimental values for different Reynolds stresses at
x=66cm: □ experimental, A NT, O NT with modified Reynolds
stresses and 0’^ = 2.3Ce1.
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3.40. Comparison of computed values of e versus the
experimental values for different Reynolds stresses at
x=30cm: □ experimental, X NT model, V NT with modified
Reynolds stresses, <> NT with modified Reynolds stresses and
C;i= 3.175Ce1.
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3.41. Comparison of computed values of e versus the
experimental values for different Reynolds stresses at 
x=42cm: □ experimental, v NT model, A NT with modified 
Reynolds stresses, X NT with modified Reynolds stresses and 
C^= 3.88836Ce1 .
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3.42. Comparison of computed values of e versus the
experimental values for different Reynolds stresses at
x=66cm: □ experimental, A NT, O NT with modified Reynolds
stresses and C^ = 2.3C£1.
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3.43. Comparison of partially converged solutions of k 
versus the experimental values for different Reynolds 
stresses at x=30cm: □ experimental, + NT with modified 
Reynolds stresses (1 iteration), A NT with modified Reynolds 
stresses and C£1 = 3.175C£1 (8 iterations).
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3.44.
versus
stresses
Reynolds
Reynolds

Comparison of partially converged solutions of k
the experimental values for different Reynolds

at x=42cm: □ experimental, O NT with modified
stresses (2 iterations), + NT with modified

stresses and C’^ 3.88836Ce1 (7 iterations).
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r/Rlocal

3.45. Comparison of partially converged solutions of k 
versus the experimental values for different Reynolds 
stresses at x=66cm: □ experimental, + NT with modified
Reynolds stresses and C£1 = 2.3C£1 (15 iterations).
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3.46. Comparison of partially converged solutions of e
versus the experimental values for different Reynolds
stresses at x=30cm: □ experimental, + NT with modified
Reynolds stresses (1 iteration), A NT with modified Reynolds
stresses and C’^= 3.175C£1 (8 iterations).
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3.47. Comparison of partially converged solutions of e
versus the experimental values for different Reynolds
stresses at x=42cm: □ experimental, O NT with modified
Reynolds stresses (2 iterations), + NT with modified
Reynolds stresses and C£1 = 3.88836C£1 (7 iterations).
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3.48. Comparison of partially converged solutions of c
versus the experimental values for different Reynolds
stresses at x=66cm: □ experimental, + NT with modified
Reynolds stresses and C^= 2.3Ce1 (15 iterations).
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Table 3.1 k-e Model Constants and Functions

Name '1 Cel Ce2 Cc1 % 0 €
NT

Rt
1.0 1.45 1.90 2.5 1 .4 1.3

LSH 1- exp[-C3y+|1-C5A|] 1 .0 1 .35 1.80 1 .0 1.3

HOF exp[-1.75/(1+Rt/50)] 1.0 1 .81 2.00 2.0 3.0

% /2 C3 C5
NT 0.09 {1-0.3exp(-Rt2/42.25)}[1-exp(-y+/6)]2

LSH 0.09 1-(2/9)exp[-Rt2/36] 0.01113 4.372

HOF 0.09 1-0.3exp(-Rt2)
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Table 3.2 Curve-fit values for Bradshaw’s Structural 
Coefficents

x(cm) a1 b a2 c

30 0.28 -0.25 0.80 -0.45
42 0.26 -0.18 0.70 -0.45
66 0.28 -0.25 0.45 -0.17
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Table 3.3 Values of and thier corresponding centreline 
kinetic energy values.

x=30cm x=42cm x=66cm

C£1 kcl Ce1 kcl Cel kcl
2.5 23.76 2.5 27.13 2.5 di v.
3.1 16.40 3.5 19.92 2.0 27.56
3.15 15.63 3.8 16.42 2.2 27.32
3.17 15.31 3.85 15.75 2.3 27.17
3.175 15.23 3.888 15.22 2.4 di v.
3.176 di v. 3.889 di v.
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Appendix A

Samples of Townsend’s (chapter 2, equations 11 and 

12) and McDonald’s (chapter 2, equation 16) formulations in 

flows #0142 and #0143. The stations shown are listed in 

their corresponding figure captions, along with the 

curve-fit coefficients for the linear shear stress 

approximation (chapter 2, equation 16a). The McDonald slip 

velocity is given relative to Townsend’s.
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A.1 McDonald (a=0.275, 7=0.559, U =U (T)-2.2), Townsend,S S
and the Log Law at x=1.049m in flow #0142. Ug(T) is
Townsend’s slip velocity non-dimensionalized with u*.
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A.2 McDonald (a=0.01, 7=0.50, U =U (T)-5.5), Townsend, and s s
the Log Law at x=1.813m in flow #0142. U (T) is Townsend’s s
slip velocity non-dimensionalized with u*.

log y+
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A.3 McDonald (a=0.40, 7=0.424, U =U (T)-2.4), Townsend, ando o
the Log Law at x=0.573m in flow #0143. Ug(T) is Townsend’s 
slip velocity non-dimensionalized with u*.

A.4 McDonald (a=0.112, 7=0.146, U =U (T)-4.0), Townsend,s s
and the Log Law at x=1.813m in flow #0143. U (T) is S
Townsend’s slip velocity non-dimensionalized with u*.



179

Appendix B

Samples of Perry’s and Kader and Yaglom’s half-power 

law and Kader and Yaglom’s velocity defect in the eight 

decreasing adverse pressure gradient flows. For reference, 

the Log Law (x=o.41, b=5.0) is shown with only Kader and 

Yaglom’s half-power law and defect at several of the 

stations. Perry’s slip velocity is always larger than Kader 

and Yaglom’s in the flows examined here, and is therefore 

always above Kader and Yaglom’s half-power law.
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B.1 Kader and Yaglom’s half-power law and velocity defect 
along with the Log Law in flow #0142 at x=0.382m.

B.2 Kader and Yaglom’s half-power law and velocity defect
along with the Log Law in flow #0142 at x=1.049m.
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B.3 Kader and Yaglom’s half-power law and velocity defect 
along with the Log Law in flow #0142 at x=1.813m.

B.4 Kader and Yaglom’s half-power law and velocity defect
along with the Log Law in flow #0143 at x=0.573m.
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B.5 Kader and Yaglom’s half-power law and velocity defect 
along with the Log Law in flow #0143 at x=1.813m.

B.6 Perry’s and Kader and Yaglom’s half-power laws, Kader
and Yaglom’s velocity defect in flow #5000 at station 9.
Perry’s half-power law is always above Kader and Yaglom’s.
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B.7 Perry’s and Kader and Yaglom’s half-power laws, Kader 
and Yaglom’s velocity defect in flow #5100 at station 5. 
Perry’s half-power law is always above Kader and Yaglom’s.

B.8 Kader and Yaglom’s half-power law velocity defect in
flow #5100 at station 2.
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B.9 Perry’s and Kader and Yaglom’s half-power laws, Kader 
and Yaglom’s velocity defect in flow #2900 at station 5. 
Perry’s half-power law is always above Kader and Yaglom’s.

B.10 Perry’s and Kader and Yaglom’s half-power laws, Kader
and Yaglom’s velocity defect in flow #2900 at station 8.
Perry’s half-power law is always above Kader and Yaglom’s.
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B.11 Perry’s and Kader and Yaglom’s half-power laws, Kader 
and Yaglom’s velocity defect in flow #1100 at station 12. 
Perry’s half-power law is always above Kader and Yaglom’s.

log y+
B.12 Perry’s and Kader and Yaglom’s half-power laws, Kader
and Yaglom’s velocity defect in flow #1200 at station 9.
Perry’s half-power law is always above Kader and Yaglom’s.
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Appendix C

The experimental data for the nine flows examined 

here are shown on half-power coordinates. For clarity, not 

all stations are shown.
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n/n 
n/n

C.1 Half-power flow development in flow #1100.

C.2 Half-power flow development in flow #1200.
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ir 
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u

C.3 Half-power flow development in flow #2900.

C.4 Half-power flow development in flow #5000
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n/n 
n/n

C.5 Half-power flow development in flow #5100.

C.6 Half-power flow development in flow #0142.
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n/n 
n/n

C.7 Half-power flow development in flow #0143.

C.8 Half-power flow development in the eight degree conical
diffuser flow.
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C.9 Half-power flow development in flow #0141.
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Appendix D

The modified Nakayama and Koyama (chapter 2, equation 15a) 

and modified Kader and Yaglom velocity defect (chapter 2, 

equation 26) constants in the eight degree conical diffuser.

x (cm) B^b,
b1

(t)b2
b2 % C

3 0.70, 0.235 1.00085 1 .04
6 1.15, 0.02 1.0014 1.24
9 1.80, 0.05 1.0045 1.50

12 1.10, 0.47 1.0050 1.65
15 0.91 , 0.54 1.0041 2.117
18 0.65, 0.93 1.0042 2.30
21 0.41 , 1.095 1.0043 3.13
24 0.33, 1.11 1.0038 3.74
27 0.33, 1.15 1.0035 3.85
30 0.31 , 1.185 1.0040 4.395
33 0.19, 1.50 1.0044 5.00
36 0.25, 1.267 1.0048 5.50
39 0.14, 1.65 1.0067 6.05
42 0.22, 1.283 1.0053 6.79
45 0.12, 1.647 1.0077 7.15
48 0.18, 1.37 1.0053 7.94
51 0.043 ,2.148 1.0084 8.65
54 0.057 ,1.98 1.0088 9.42
57 0.041 ,2.08 1.0087 10.20
60 0.036 ,2.21 1 .020 11.23
63 0.032 ,2.31 1 .015 12.05
66 0.021 ,2.50 1.020 13.10
69 0.013 ,2.81 1 .013 13.60
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Appendix E

Program Codes to Solve the k and e Equations 
with Given Velocity Field

A brief discussion is given below for each of the 

subroutines in the program codes KEPSILON and GRDVEL, 

followed by the actual hard copy listing of the two codes 

and a sample input data file (VELPRD30.DAT).

The program code KEPSILON starts with the input of 

data, followed by the calculation loop of k, e, and t^. 

Lastly, k and £ are printed to the file KEPSILON.OUT.

SUBROUTINE MAIN: This is the main body of the

program. Its primary functions are to control the flow of 

the program, input and output data, and to determine when 

convergence has been obtained.

SUBROUTINE GRID calculates all of the various lengths 

that are required to define the grid shown in Figure 3.1. A

nonuniform mesh is used.

SUBROUTINE CALCKE calculates the coefficients and

source terms for the kinetic energy equation using the 

power-law scheme. Under-relaxation is employed to enhance 

convergence with the following modification to the

difference scheme:

ap = ap/a and b = b + (1 - a)ap<f>p/a
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SUBROUTINE CALCDE calculates the coefficients and 

source terms for the dissipation rate equation using the 

power-law scheme.

SUBROUTINE PRINTT is used to output any array in the 

program to the output file.

SUBROUTINE PROPS calculates the eddy viscosity from 

the Kolmogorov-Prandtl relation.

SUBROUTINE LNSOLV contains the TDMA solver discussed

in section 3.2.

SUBROUTINE UVEL calculates the mean streamwise 

velocity field in the eight degree conical diffuser with the 

modified Nakayama and Koyama and modified Kader and Yaglom 

velocity defect. Near the wall, a modified Rannie equation

is used.

SUBROUTINE INTERP uses a Lagrangian polynomial to 

interpolate the experimental data between the experimental

stations.
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oo
 

oo
o 

oo
oo

oo

PROGRAM KEPSILON

CALCULATES K AND EPSILON FOR GIVEN VELOCITY FIELD 
AND TURBULENCE PRODUCTION

----declare variables---------

REAL*8 RIN,ROUT,DRNP,DRPS,R,RC,DR,RAD,SNS,ALPHA 
REAL*8 DE,KE,U,V,VSCSTY,DENSTY,EDYVIS,PROD,ADV,

1 UCL,USTAR,NU,RHO,DUDX,DUDR,DVDX,DVDR,DKDX,DEDX
REAL*8 SIGMAK,SIGMAE,CMU,CE1,CE2,C3,F1,F2,F3,FMU,C4,C5 
REAL*8 AP,AS,AN,B,SORCE,SC,SP,GREAT,PI
REAL RESORE,RESORK,SORMAX,URFK,URFD,URFEV,DUM1 
INTEGER NJ,NJP1,NJM1,JSTEP,JSTP1,JSTM1,XY,NUMSTP 
INTEGER MAXNJ,JMON,MAXIT,PRNNUM,NSWPK,NSWPD,NITER 
INTEGER JJ,NJ2,NI
CHARACTER*18 HEADU,HEADV,HEADK,HEADD 
CHARACTER*80 DUM 
CHARACTER*1 CHCK 
CHARACTER*12 FILENM
COMMON/PRMTVE/DE(500),KE(500),U(500),V(500),

1 EDYVIS(500),
1 VSCSTY,DENSTY,GREAT,PI,USTAR,RHO,UCL,DUDX(500),
1 DUDR(500),DVDX(500),DVDR(500),DKDX(500),
1 DEDX(500),
1 PROD(500),ADV(500),ALPHA
COMMON/TURB/CMU,CE1,CE2,C3,SIGMAK,SIGMAE,FMU,F1,F2,

1 F3,C4,C5
COMMON/PROB/NSWPK,NSWPD,URFK,URFD,URFEV,SORCE,RESORK,

1 RESORE
COMMON/GEOM/RIN,RAD,NJ,NJP1,NJM1,NUMSTP,JSTEP,JSTP1,

1 JSTM1,
1 SNS(500),DRNP(500),DRPS(500),R(500),RC(500),XY,
1 MAXNJ,
COMMON/CVFORM/ASC 500),AN(500), AP(500),B(500),SP(500) 

----input grid information

MAXNJ=500 
DO 333 J=1,MAXNJ

U(J)=O.
V(J)=O.
DUDX(J)=O.
DUDR(J)=0.
DVDX(J)=O.
DVDR(J)=O.

333 CONTINUE

when changing the size of the arrays (maxni,maxnj) 
do not
forget to change array size in Insolv subroutine 

GREAT=1.0E+30 
PI=3.141592654
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OPEN (1,FILE=’KE_GRID.DAT’,STATUS=’OLD’)
READ (1,*) 
WRITE(*,*) 
READ (1,*) 
WRITE(*,*) 
READ (1,*) 
WRITE(*,*)

RAD
RAD
MAXIT,SORMAX,PRNNUM,JMON 
MAXIT,SORMAX,PRNNUM,JMON 
NSWPK,NSWPD,URFK,URFD,URFEV 
NSWPK,NSWPD,URFK,URFD,URFEV

CLOSE (1,STATUS=’KEEP’)

oo
oo

oo
oo

 
oo

oo
oo

oo
oo

 
oo

oo
oo

o 
oo

o

------ turbulence model constants
-------- NT Model-------

CMU=0.09
CE1=1.45 
CE2=1.90 
SIGMAK=1.4 
SIGMAE=1.3 
F1=1.0

-------- LSH Model-------
CMU=0.09 
CE1=1.35 
CE2=1.8 
SIGMAK=1.0 
SIGMAE=1.3 
F1 = 1 .0 

C3=0.01113 
C4=0.5 
C5=4.372

-------- Hoffmann Model----------
CMU=0.09 
CE1=1.81 
CE2=2.00 
SIGMAK=2.0 
SIGMAE=3.0 
F1=1.0

—generate grid------

OPEN ( 7,FILE=’KEPSILON.OUT’,STATUS=’UNKNOWN’)
WRITE (7,*)
WRITE (7,*) ’ OUTPUT DATA FILE FOR k-epsilon PROGRAM’ 
WRITE (7,*)

input velocity fields and initial guesses

C
C
C

OPEN (1,FILE=’30GV.OUT’,STATUS=’OLD’)
OPEN (1,FILE=’VELPRD30.DAT’,STATUS=’OLD’) 
OPEN (1,FILE=’VLPRD303.DAT’,STATUS=’OLD’) 
OPEN (1,FILE=’VLPRD306.DAT’,STATUS=’OLD’) 
OPEN (1,FILE=’VLPRD305.DAT’,STATUS=’OLD’) 
OPEN (1,FILE=’VELPRD42.DAT’,STATUS=’OLD’) 
OPEN (1,FILE=’VLPRD422.DAT’,STATUS=’OLD’) 
OPEN (1,FILE=’VLPRD423.DAT’,STATUS=’OLD’)

OPEN (1,FILE=’VELPRD66.DAT’,STATUS=’OLD’)
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C
READ (1,*) NJ
WRITE(*,*) NJ
DO 5 J=1,NJ

READ (1,*) JJ,R(JJ),U(JJ ) ,V(JJ),KE(JJ),DE(JJ)
5 CONTINUE

C
READ (1,*) NJ
WRITE(*,*) NJ
DO 8 J=1,NJ

READ (1,*) JJ,DUDX(JJ),DUDR(JJ),DVDX(JJ),DVDR(JJ)
C READ (1,*) JJ,DUDX(JJ),DVDX(JJ),DUDR(JJ),DVDR(JJ)

8 CONTINUE 
C

READ (1,*) NJ
WRITE(*,*) NJ
DO 9 J=1,NJ

READ (1,*) JJ,PROD(JJ),DKDX(JJ),DEDX(JJ)
9 CONTINUE 

C
READ (1,*) NJ2
READ (1,*) UCL,USTAR,NU,DENSTY
READ (1,*) ALPHA 

C
READ(1,*) NJ
DO 19 J=1,NJ

READ(1,*) JJ,ADV(JJ)
19. CONTINUE

READ(1,*) NJ
WRITE(1,*) NJ 

C
CLOSE(1,STATUS=’KEEP’)
IF (NJ.EQ.NJ2) WRITE(*,*) ’input complete’
IF (NJ.EQ.NJ2) WRITE(7,*) ’input complete 

1 VELPRD30.DAT’
C

VSCSTY-NU*DENSTY
PHO=DENSTY

C
CALL GRID 

C 
C
C DO 891 J=1,NJM1
C IF (J.NE.NJM1) KE(J)=2.*KE(J)
C IF (J.NE.NJM1) DE(J)=2.*DE(J)
C 891 CONTINUE
C

IF (NJ.GT.MAXNJ) STOP
WRITE(*,*)
WRITE(*,*) ’ NJ ’,NJ 

C
EDYVIS(1)=DENSTY*CMU*KE(1)*KE(1)/DE(1)
EDYVIS(NJ)=0.
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oo

o

DO 13 J=2,NJM1
EDYVISi J)=DENSTY*CMU*KE(J)*KE(J)/DE(J)

13 CONTINUE

DO 6 1=1,20 
CALL PROPS

6 CONTINUE

----- print out initial data and grid information

HEADU=’ U-VELOCITY FIELD ’
HEADV=’ V-VELOCITY FIELD ’
HEADK=’ KINETIC ENERGY ’
HEADD=’ DISSIPATION RATE ’

CALL PRINTT(NJ,MAXNJ,R,U,HEADU)
CALL PRINTT(NJ,MAXNJ,R,V,HEADV)

----- main calculation loop---------

RESORE=0.0 
RESORK=0.0 
WRITE (7,1110) JMON 
WRITE (*,1110) JMON 
NITER = 0 
CHCK=’Y’

200 CONTINUE
NITER=NITER+1

CALL PROPS 
CALL CALCDE 
CALL CALCKE

IF (MOD(NITER,100).EQ.O) WRITE (7,1100) NITER,RESORK,
1 RESORE,KE(JMON),DE(JMON),EDYVISiJMON)
IF (MOD(NITER,1).EQ.0) WRITE (*,1100) NITER,RESORK,

1 RESORE,KE(JMON),DE(JMON),EDYVIS(JMON)
IF (MOD(NITER,PRNNUM).NE.0) GO TO 300 
CALL PRINTT(NJ,MAXNJ,R,KE,HEADK)
CALL PRINTT(NJ,MAXNJ,R,DE,HEADD)
WRITE (7,1110) JMON
WRITE (*,1110) JMON 

300 CONTINUE
C------ termination tests-------

SORCE=AMAX1(RESORK,RESORE)
C IF (NITER.EQ.75.AND.SORCE.GT.1.0E05*SORMAX) GO TO 400

IF (NITER.EQ.MAXIT) GO TO 400 
IF (SORCE.GT.SORMAX) GO TO 200

400 CONTINUE
C------ final operations-------

WRITE(7,1100) NITER,RESORK,RESORE,KE(JMON)
1 ,DE(JMON),EDYVISiJMON)
CALL PRINTT(NJ,MAXNJ,R,KE.HEADK)



199

CALL PRINTT(NJ,MAXNJ,R,DE,HEADD)
1110 FORMAT(/,’ The monitoring location is’,13,//

1,’ iteration Res.Sor.KE Res.Sor.DE KE(jmon)
1 DE(jmon)
2 EDYVIS’)

1100 FORMAT(2X,15,4X,5(E11.4,2X))
CLOSE (7,STATUS=’KEEP’)

STOP
END

------ subroutine grid generates the necessary geometric
quantities—

------ for a Practice B type of grid (Patankar chapter 4)—

O
O

O
Q

O 
Q

O
O

 
Q

Q
O

SUBROUTINE GRID

------ declare variables-------

REAL*8 RIN,ROUT,DRNP,DRPS,R,RC,DR,RAD,SNS,ALPHA 
INTEGER NJ,NJP1,NJM1,JSTEP,JSTP1,JSTM1,XY,NUMSTP 
INTEGER MAXNJ,JMON,MAXIT,PRNNUM,NSWPK,NSWPD,NITER 
COMMON/GEOM/RIN,RAD,NJ,NJP1,NJM1,NUMSTP,JSTEP,

1 JSTP1,JSTM1,
1 SNS(500),DRNP(500),DRPS(500),R(500),RC(500),
1 XY,MAXNJ,

------ calculate geometric quantities-------

IF (NJ.GT.MAXNJ) WRITE(*,*) ’ ARRAY OVERFLOW - 
1 INCREASE MAXNJ’
IF (NJ.GT.MAXNJ) RETURN

NJP1=NJ+1
NJM1=NJ-1

SNS(1)=(R(2)-R(1))/2 
DO 7 J=2,NJM1
SNS(J)=(R(J+1)-R(J))/2+(R(J)-R(J-1))/2 

7 CONTINUE
SNS(NJ)=(R(NJ)-R(NJM1))/2

RC(1)=SNS(1)
DO 9 J=2,NJM1

RC(J)=R(J) + (R(J+1)-R(J))/2 
9 CONTINUE

RC(NJ)=R(NJ)

DRPS(1)=0.0 
DRNP(NJ)=0.0 
DO 20 J=1,NJM1

DRNP(J)=R(J+1)-R(J)
DRPS(J+1)=DRNP(J)

Res.Sor.DE
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oo

 ooo
o o 

o 
oo

o 
o 

o oo
o

20 CONTINUE

RETURN
END

------ subroutine for printing output-------

SUBROUTINE PRINTT(NJ,MAXNJ,R,PHI.HEAD)

REAL*8 R.PHI
INTEGER START,END,NJ,MAXNJ 
CHARACTER*18 HEAD 
DIMENSION PHI(MAXNJ),R(MAXNJ)

WRITE (7,10)
WRITE (7,11) HEAD 
START=1

------ main printing loop-------

DO 110 J=NJ,1,-1
WRITE(7,13) J,PHI(J),R(J)

110 CONTINUE
------ format statements-------
10 FORMAT (’ ’,///)
11 FORMAT (1X,30(’-’),A18,30(’-’)/)
13 FORMAT(1X,13,1X,1(E12.4,1X),F9.5)

RETURN
END

------ subroutine calcke calculates the kinetic energy
------ of turbulence field from the PDE for ke--------

SUBROUTINE CALCKE

------ declare variables-------

REAL*8 PR0D2,UV,U2,V2,W2,U2MV2,RT
REAL*8 ZERO,DIFF,DFN,DFS,EFVISN,EFVISS,FN,FS
INTEGER NJM2
REAL*8 RIN,ROUT,DRNP,DRPS,R,RC,DR,RAD,SNS,ALPHA 
REAL*8 DE,KE,U,V,VSCSTY,DENSTY,EDYVIS,PROD,ADV,

1 UCL,USTAR,NU,RHO,DUDX,DUDR,DVDX,DVDR,DKDX,DEDX
REAL*8 SIGMAK,SIGMAE,CMU,CE1,CE2,C3,F1,F2,F3,FMU,C4,C5 
REAL*8 AP,AS,AN,B,SORCE,SC,SP,GREAT,PI 
REAL RESORE,RESORK,SORMAX,URFK,URFD,URFEV 
INTEGER NJ.NJP1,NJM1,JSTEP,JSTP1,JSTM1,XY,NUMSTP 
INTEGER MAXNJ,JMON,MAXIT,PRNNUM,NSWPK,NSWPD,NITER 
CHARACTER*18 HEADU,HEADV,HEADK,HEADD 
CHARACTER*80 DUM
CHARACTER*1 CHCK
COMMON/PRMTVE/DE(500),KE(500),U(500),V(500),
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1 EDYVIS(500),
1 VSCSTY,DENSTY,GREAT,PI,USTAR,RHO, UCL,DUDX(500),
1 DUDR(500),DVDX(500),DVDR(500),DKDX(500),DEDX(500),
1 PROD(500),ADV(500),ALPHA
COMMON/TURB/CMU,CE1,CE2,C3,SIGMAK,SIGMAE,FMU,F1,F2,

1 F3,C4,C5
COMMON/PROB/NSWPK,NSWPD,URFK,URFD,URFEV,SORCE,RESORK,

1 RESORE
COMMON/GEOM/RIN,RAD,NJ,NJP1,NJM1,NUMSTP,JSTEP,

1 JSTP1,JSTM1,
1 SNS(500),DRNP(500),DRPS(500),R(500),RC(500),
1 XY,MAXNJ,
COMMON/CVFORM/AS(500), AN (500),AP(500),B(500),SP(500)

NJM2=NJM1-1
ZERO=0.000000000000000
DO 2 J=2,NJM1

------ calculation of areas and volume-------

AREAN=RC(J)
AREAS=RC(J-1)
VOL=SNS(J)

------ calculation of the convection terms-------

FN=(((R(J+1)-RC(J))*V(J)+(RC(J)-R(J))
1 *V(J+1))/DRNP(J))*AREAN*DENSTY
FS=(((R(J)-RC(J-1))*V(J-1)+(RC(J-1)-R(J-1))

1 *V(J))/DRPS(J))*AREAS*DENSTY
FN=O.
FS=O.

oo
oo

oo
oo

 o 
oo

oo
oo

 
oo

o 
oo

o

---- —calculation of the diffusion terms-------

uniform grid in axial direction, non-uniform in radial 
EFVISN=VSCSTY+((R(J+1)-RC(J))*EDYVIS(J)/SIGMAK+

1 (RC(J)-R(J))
1 *EDYVIS(J+1)/SIGMAK)/DRNP(J)
EFVISS=VSCSTY+((R(J)-RC(J-I))*EDYVIS(J-1)/SIGMAK+

1 (RC(J-1)-R(J-1))
1 *EDYVIS(J)/SIGMAK)/DRPS(J)

DFN=EFVISN*AREAN/DRNP( J)
DFS=EFVISS*AREAS/DRPS(J)

------ source term 1inerarization-------

NT Model
RT=KE(J)*KE(J)/(VSCSTY/DENSTY*DE(J))

FMU=(1.-EXP(-(RAD-R(J))*USTAR*DENSTY/ 
1 VSCSTY/26.))**2
FMU=FMU*(1.+4.1/(RT**O.75))
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C LSH Model
FMU=1.-EXP(-C3*(RAD-R(J))*USTAR*DENSTY/VSCSTY*

1 DABS(1.-C5*ALPHA*VSCSTY/DENSTY/(USTAR**3.))) 
Hoffmann Model

FMU=EXP(-1.75/(1.+RT/50.))

UV=-EDYVIS(J)/DENSTY*(DUDR(J)+DVDX(J))
U2=2.*EDYVIS(J)/DENSTY*DUDX(J)-2./3.*KE(J)
V2=2.*EDYVIS(J)/DENSTY*DVDR(J)-2./3.*KE(J)
UV=O.26*KE(J)-0.25
FMU=2.*FMU
IF (FMU.GT.1.0) FMU=1.0 
FMU=1.
UV=FMU*(0.28*KE(J)-0.25)
U2=1.06*KE(J)-0.3 
V2=0.34*KE(J)-0.18 
U2=1.06*KE(J)
V2=0.34*KE(J)
U2MV2=0.45*KE(J)-0.

PR0D2=-UV*DUDR(J)-(U2-V2)*DUDX(J)
PR0D2=-UV*(DUDR(J)+DVDX(J))-U2MV2*DUDX(J)

SP(J)=-DENSTY*DE(J)
SC=DENSTY*PROD(J)
SC=PR0D2*DENSTY

SP(J)=SP(J)-DMAX1(+DENSTY*(U(J) *DKDX(J)+
1 KE(J)*DUDX(J)),ZERO)
SC=SC+DMAX1(-DENSTY*(U(J)*DKDX(J)+

1 KE(J)*DUDX(J)).ZERO)
SPCJ)=SP(J)-DENSTY*DMAX1(-ADV(J),ZERO) 
SC=SC+DENSTY*DMAX1(+ADV(J),ZERO)

------ calculate CV Formulation coefficients-------
------ using the power-law scheme--------

O
O

O
O

 O O 
O

O
O

O
O

O
O

 
O

 O O
 OO 

O
O

O
O

O
O

O
O

O
O

 O
 OOO

AN(J)=DFN*DMAX1(ZERO,(1.-0.1*DABS(FN/DFN))**5.)+ 
1 DMAX1(-FN,ZERO)
AS(J)=DFS*DMAX1(ZERO,(1.-0.1*DABS(FS/DFS))**5.)+ 

1 DMAX1(FS,ZERO)

B(J)=SC*VOL*0.5*(RC(J)+RC(J-1))
SP(J)=SP(J)*VOL/KE(J)*0.5*(RC(J)+RC(J-1))

2 CONTINUE

---- modify for north and south Dirichlet boundary

AN(2)=0.
AS(2)=0.
B(2)=KE(1)
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AP(2)=1.

ANCNJM1)=0.
AS(NJM1)=0.
B(NJM1)=KE(NJM1)
AP(NJM1)=1.

RESORK=0.0

------ source residual calculations-------

DO 40 J=2,NJM2

AP(J)=AN(J)+AS(J)-SP(J)
RSIDUL=AN(J)*KE(J+1)+AS(J)*KE(J-1)+B(J)-AP(J)*KE(J) 
RESORK=RESORK+ABS(RSIDUL)

------ under-reTaxation--------
AP(J)=AP(J)/URFK
B(J)=B(J)+(1.-URFK)*AP(J)*KE(J)

40 CONTINUE

------ call the line solvei--------

oo
o oo

oo
 o ooo

 o o o
 ooo

 o 
oo

DO 10 K=1,NSWPK 
CALL LNSOLV(KE)

10 CONTINUE

RETURN
END

---- subroutine calcde calculates the dissipation rate of
---- turbulence kinetic energy from the PDE for epsilon—

SUBROUTINE CALCDE

------ declare variables-------

REAL*8 UV,U2,V2,W2,PR0D2,INTMED,U2MV2,RT 
REAL*8 ZERO,DIFF,DFN,DFS,EFVISN,EFVISS,FN,FS 
INTEGER NJM2
REAL*8 RIN,ROUT,DRNP,DRPS,R,RC,DR,RAD,SNS,ALPHA 
REAL*8 DE,KE,U,V,VSCSTY,DENSTY,EDYVIS,PROD,ADV,

1 UC L,USTAR,NU,RHO,DUDX,DUDR,DVDX,DVDR,DKDX,DEDX
REAL*8 SIGMAK,SIGMAE,CMU,CE1,CE2,C3,F1,F2,F3,FMU,C4,C5 
REAL*8 AP,AS,AN,B,SORCE,SC,SP,GREAT,PI
REAL RESORE,RESORK,SORMAX,URFK,URFD,URFEV 
INTEGER NJ,NJP1,NJM1,JSTEP,JSTP1,JSTM1,XY,NUMSTP 
INTEGER MAXNJ,JMON,MAXIT,PRNNUM,NSWPK,NSWPD,NITER 
CHARACTER*18 HEADU,HEADV,HEADK,HEADD
CHARACTER*80 DUM 
CHARACTER*1 CHCK
COMMON/PRMTVE/DE(500),KE(500),U(500),V(500),
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1 EDYVIS(500),
1 VSCSTY,DENSTY,GREAT,PI,USTAR,RHO,UCL,DUDX(500),
1 DUDR(500),DVDX(500),DVDR(500),DKDX(500),
1 DEDX(500),
1 PROD(500),ADV(500),ALPHA
COMMON/TURB/CMU,CE1,CE2,C3,SIGMAK,SIGMAE,FMU,F1,F2,

1 F3,C4,C5
COMMON/PROB/NSWPK,NSWPD,URFK,URFD,URFEV,SORCE,RESORK,

1 RESORE
C0MM0N/GE0M/RIN,RAD,NJ,NJP1,NJM1,NUMSTP,JSTEP,JSTP1,

1 JSTM1,
1 SNS(500),DRNP(500),DRPS(500),R(500),RC(500),XY,
1 MAXN J,
COMMON/CVFORM/AS(500),AN(500),AP(500),B(500),SP(500)

NJM2=NJM1-1
ZERO=0.00000000000000
DO 2 J=2,NJM1

------ calculation of areas and volume-------

AREAN=RC(J)
AREAS=RC(J-1 )
VOL=SNS(J)

------ calculation of the convection terms-------

FN=(((R(J+1)-RC(J))*V(J)+(RC(J)-R(J))
1 *V(J+1))/DRNP(J))*AREAN*DENSTY
FS=(((R(J)-RC(J-1))*V(J-1)+(RC(J-1)-R(J-1))

1 *V(J))/DRPS(J))*AREAS*DENSTY
FN=O.
FS=O.

O
O

Q
 

Q
O

O
 

O
O

O
O

O
O

 
O 

O
O

O
------ calculation of the diffusion terms-------

uniform grid in axial direction, non-uniform in radial 
EFVISN=VSCSTY+((R(J+1)-RC(J))*EDYVIS(J)/SIGMAE+

1 (RC(J)-R(J))
1 *EDYVIS(J+1)/SIGMAE)/DRNP(J)
EFVISS=VSCSTY+((R(J)-RC(J-I))*EDYVIS(J-1)/SIGMAE+

1 (RC(J-1)-R(J-1 ))
1 *EDYVIS(J)/SIGMAE)/DRPS(J)

DFN=EFVISN*AREAN/DRNP(J)
DFS=EFVISS*AREAS/DRPS(J)

------ calculate the net source terms-------

INTMED=KE(J)*KE(J)*DENSTY/(VSCSTY*DE(J))
C NT Model

IF (INTMED.LT.20.) THEN
F2=1.-0.3*EXP(-INTMED*INTMED/(6.5*6.5))
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oo
 

o oo 
oo

 oo 
oo

oo
oo

oo
oo

o oo
o oooo

oo
oo

oo

F2=F2*(1.-EXP(-(RAD-R(J))*USTAR*DENSTY 
1 /VSCSTY/6.))**2.
ELSE
F2=(1.-EXP(-(RAD-R(J))*USTAR*DENSTY 

1 /VSCSTY/6.))**2
ENDIF

LSH Model
F2 = 1.-2./9.*EXP(-INTMED*INTMED/36.)

Hoffmann Model
F2=1.-0.3*EXP(-INTMED*INTMED)

NT Model
RT=KE(J)*KE(J)/(VSCSTY/DENSTY*DE(J))
FMU=(1.-EXP(-(RAD-R(J))*USTAR*DENSTY/VSCSTY/26.))**2 
FMU=FMU*(1.+4.1/(RT**O.75))

LSH Model
FMU=1.-EXP(-C3*(RAD-R(J))*USTAR*DENSTY/VSCSTY*

1 DABS(1.-C5*ALPHA*VSCSTY/DENSTY/(USTAR**3.)))
Hoffmann Model

FMU=EXP(-1.75/(1.+RT/50.))

UV=-EDYVIS(J)/DENSTY*(DUDR(J)+DVDX(J))
U2=2.*EDYVIS(J)/DENSTY*DUDX(J)-2./3.*KE(J)
V2=2.*EDYVIS(J)/DENSTY*DVDR(J)-2./3.*KE( J)
UV=O.26*KE(J)-0.25
FMU=2.*FMU
IF (FMU.GT.1.0) FMU=1.0 
FMU=1.
UV=FMU*(O.28*KE(J)-0.25)
U2=1.06*KE(J)-0.3 
V2=0.34*KE(J)-0.18 
U2=1.06*KE(J)
V2=0.34*KE(J)

U2MV2=0.45*KE(J)-0.

PR0D2=-UV*DUDR(J)-2.5*(U2-V2)*DUDX(J)
PR0D2=-UV*(DUDR( J)+DVDX(J))-2.30000*U2MV2*DUDX(J) 
PR0D2=-UV*DUDR(J)-U2MV2*DUDX(J)

SP(J)=-DENSTY*CE2*F2*DE(J)*DE(J)/KE(J)
SC=+DENSTY*CE1*DE(J)/KE(J)*ADV(J)
SC=+DENSTY*CE1*DE(J)/KE(J)*PROD(J)

SC=+DENSTY*CE1*DE(J)/KE(J)*PR0D2

SP(J)=SP(J)-DMAX1(+DENSTY*(U(J)*DEDX(J)+
1 DE(J)*DUDX(J)),ZERO)
SC=SC+DMAX1(-DENSTY*(U(J)*DEDX(J)+

1 DE(J)*DUDX(J)),ZERO)

------ calculate CV Formulation coefficients-------
------ using the power-law scheme--------

AN(J)=DFN*DMAX1(ZERO,(1.-0.1*DABS(FN/DFN))**5.)+
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1 DMAX1(-FN,ZERO)
AS(J)=DFS*DMAX1(ZERO,(1.-0.1*DABS(FS/DFS))**5.)+

1 DMAX1(FS,ZERO)

B(J)=SC*VOL*0.5*(RC(J)+RC(J-1))
SP(J)=SP(J)*VOL/DE(J)*0.5*(RC(J)+RC(J-1 ) )

2 CONTINUE

------ modify for north and south Dirichlet boundary-------

AN(2)=0.
AS(2)=0.
B(2)=DE(1)
AP(2)=1.

AN(NJM1)=0.
AS(NJM1)=0.
B(NJM1)=DE(NJM1)
AP(NJM1)=1.

RESORE=0.0

------ source residual calculations-------

DO 40 J=2,NJM2

AP(J)=AN(J)+AS(J)-SP(J)
RSIDUL=AN(J)*DE(J+1)+AS(J)*DE(J-1)+B(J)-AP(J)*DE(J) 
RESORE=RESORE+ABS(RSIDUL)

------ under-relaxati on--------
AP(J)=AP(J)/URFD
B( J)=B(J) + (1.-URFD)*AP(J)*DE(J)

40 CONTINUE

------ call the line solver--------

DO 10 K=1,NSWPD 
CALL LNSOLV(DE)

10 CONTINUE

RETURN
END

------ subroutine props calculates the turbulent (or eddy)oo
o o 

oo
o o o 

o oo
o o 

oo
o oo

oo

viscosity
C------ from the Kolmogorov-Prandtl relation
C

SUBROUTINE PROPS 
C
C------ declare variables-------
C
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oo

oo
 o o 

oo
oo

oo
o 

oo

REAL*8 RT,OLD
REAL*8 RIN,ROUT,DRNP,DRPS,R,RC,DR,RAD,SNS,ALPHA 
REAL*8 DE,KE,U,V,VSCSTY,DENSTY,EDYVIS,PROD,ADV,

1 UCL,USTAR,NU,RHO,DUDX,DUDR,DVDX,DVDR,DKDX,DEDX
REAL*8 SIGMAK,SIGMAE,CMU,CE1,CE2,C3,F1,F2,F3,FMU,C4,C5 
REAL*8 AP,AS,AN,B,SORCE,SC,SP,GREAT,PI
REAL RESORE,RESORK,SORMAX,URFK,URFD,URFEV 
INTEGER NJ,NJP1,NJM1,JSTEP,JSTP1,JSTM1,XY,NUMSTP 
INTEGER MAXNJ,JMON,MAXIT,PRNNUM,NSWPK,NSWPD,NITER 
CHARACTER*18 HEADU,HEADV,HEADK,HEADD
CHARACTER*80 DUM 
CHARACTER*! CHCK
COMMON/PRMTVE/DE(500),KE(500),U(500),V(500),

1 EDYVIS(500),
1 VSCSTY,DENSTY,GREAT,PI,USTAR,RHO,UCL,DUDX(500),
1 DUDR(500),DVDX(500),DVDR(500),DKDX(500),
1 DEDX(500),
1 PROD(500),ADV(500),ALPHA
COMMON/TURB/CMU,CE1,CE2,C3,SIGMAK,SIGMAE,FMU,F1 ,F2,

1 F3,C4,C5
COMMON/PROB/NSWPK,NSWPD,URFK,URFD,URFEV,SORCE,RESORK,

1 RESORE
COMMON/GEOM/RIN,RAD,NJ,NJP1,NJM1,NUMSTP,JSTEP,JSTP1,

1 JSTM1,
1 SNS(500),DRNP(500),DRPS(500),R(500),RC(500),XY,
1 MAXNJ,

DO 20 J=2,NJM1 
OLD=EDYVIS(J)

NT Model
RT=KE(J)*KE(J)/(VSCSTY/DENSTY*DE(J))
FMU=(1.-EXP(-(RAD-R(J))*USTAR*DENSTY/VSCSTY/26.))**2 
FMU=FMU*(1.+4.1/(RT**0.75))

LSH Model
FMU=1.-EXP(-C3*(RAD-R(J))*USTAR*DENSTY/VSCSTY*

1 DABS(1.-C5*ALPHA*VSCSTY/DENSTY/(USTAR**3.)))
Hoffmann Model

FMU=EXP(-1.75/(1.+RT/50.))

EDYVISÍ J)=URFEV*DENSTY*CMU*FMU*KE(J)*KE(J)/DE(J)
1 +(1.-URFEV)*OLD

20 CONTINUE

RETURN
END

--- this subroutine solves the set of algaebraic equations
------ using an ADI Routine--------

SUBROUTINE LNSOLV(PHI)
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oo

o 
oo

o 
a 

a 
a

-------------declare variables-------------

REAL*8 PHI,Q,M
REAL*8 RIN,ROUT,DRNP,DRPS,R,RC,DR,RAD,SNS,ALPHA 
REAL*8 AP,AS,AN,B,SORCE,SC,SP,GREAT,PI 
REAL RESORE,RESORK,SORMAX,URFK,URFD,URFEV 
INTEGER NJ,NJP1,NJM1,JSTEP,JSTP1,JSTM1,XY,NUMSTP,NJM2 
INTEGER MAXNJ,JMON,MAXIT,PRNNUM,NSWPK,NSWPD,NITER,N JM3 
COMMON/GEOM/RIN,RAD,NJ,NJP1,NJM1,NUMSTP,JSTEP,JSTP1,

1 JSTM1,
1 SNS(500),DRNP(500),DRPS(500),R(500),RC(500),XY,
1 MAXNJ,
COMMON/CVFORM/ASÍ 500),AN(500),AP(500),B(500),SP(500) 

DIMENSION PHI(MAXNJ),M(500),Q(500)

------ TDMA south to north-------

NJM2=NJ-2
M(2)=AN(2)/AP(2)
Q(2)=B(2)/AP(2)
DO 20 J=3,NJM1
M(J)=AN(J)/(AP(J)-AS(J)*M(J-1))
IF (J.EQ.NJM1) M(J)=O.
Q( J)=(B(J)+AS(J)*Q(J-1))/(AP(J)-AS(J)*M(J-1))

20 CONTINUE
PHKNJM1 )=Q(NJM1 )
DO 30 J=NJM2,2,-1

PHI(J)=M(J)*PHI(J+1)+Q(J)
30 CONTINUE

------ TDMA north to south-------

M(NJM1)=AS(NJM1)/AP(NJM1)
Q(NJM1)=B(NJM1)/AP(NJM1)
DO 25 J=NJM2,2,-1
M(J)=AS(J)/(AP(J)-AN(J)*M(J+1))
IF (J.EQ.2) M(J)=O.
Q(J)=(B(J)+AN(J)*Q(J+1))/(AP(J)-AN(J)*M(J+1))

25 CONTINUE
PHI(2)=Q(2)
DO 35 J=3,NJM1
PHI(J)=M(J)*PHI(J-1)+Q(J)

35 CONTINUE

RETURN
END



209
oo

oo
 

o o 
oo

oo

PROGRAM GROVEL

calculate the grid and velocity field for 
diffuser

REAL*8 LENGTH,RIN,ROUT, U, V, DX, DR,VSCSTY,DENSTY
* ,DUDX,DUDR,DVDX,DVDR,PROD,DKDX,DEDX,KE,DE 
REAL*8 SEW,SNS,DXPW,DXEP,DRNP,DRPS,X,R,RC

* ,UCL,USTAR,NU,RAD,RHO,ALPHA,RR(180)
REAL*8 B1,B2,C,D,TS
REAL*8 DUM1
INTEGER NI,NJ,NIP1,NIM1,NJP1,NJM1,JSTEP,NUMSTP

* ,JSTP1,JSTM1,MAXNI,MAXNJ,M,NJNJ,NJ2,NJM2 
CHARACTER*20 ENDDAT
CHARACTER*-! 2 FILENM
COMMON/VEL/U(180),V(180),DUDX(180),DVDX(180),

* DUDR(180),DVDR(180),KE(180),DE(180),
* PROD(180),DKDX(180),DEDX(180)
COMMON/BC/LENGTH,RIN,ROUT,UCL(26),USTAR(26),VSCSTY,NU

* ,DENSTY,RHO,ALPHA(26)
COMMON/GEOM/NI,NIP1,NIM1,NJ,NJP1,NJM1,NUMSTP,

1 JSTEP,MAXNI,
* MAXNJ,JSTP1,JSTM1,SEW(26),SNS(180),DXPW(26),DXEP(26),
* DRNP(180),DRPS(180),X(26),R(180),RC(180)
C0MM0N/EMP/B1(26),B2(26),C(26),TS(26),D(26)

MAXNI=26
MAXNJ=180

DO 667 J=1,MAXNJ 
U(J)=O.
V(J)=O.
DUDX(J)=O.
DVDX(J)=O.
DUDR(J)=O.
DVDR(J)=O.
PROD(J)=0.
DKDX(J)=O.
DEDX(J)=O.
KE(J)=O.
DE(J)=O.
RC(J)=O.
R(J)=O.

667 CONTINUE

-----input all appropriate data---------

0PEN(1,FILE=’GRID_VEL.DAT’,STATUS=’OLD’) 
READ(1,*) JSTEP,NUMSTP,LENGTH,RIN,ROUT 
READ(1,*) VSCSTY,NU,DENSTY
RHO=DENSTY
NI=NUMSTP+1
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QOO

DO 10 1=1,NI
READ(1,*) M,UCL(M),USTAR(M),ALPHA(M)
READ(1,*) M,B1(M),B2(M),C(M),D(M),TS(M)

10 CONTINUE
READ(1,*) ENDDAT 
CLOSE(1,STATUS=’KEEP’)
WRITE(*,*) ENDDAT

OPEN(1,FILE=’VELPRD30.DAT’,STATUS=’OLD’)
READ (1,*) NJNJ 
WRITE(*,*) NJNJ 
DO 105 J=1,NJNJ
READ (1,*) JJ,RR(JJ),U(JJ),V(JJ),KE(JJ),DE(JJ)

105 CONTINUE

READ (1,*) NJNJ 
WRITE(*,*) NJNJ 
DO 106 J=1,NJNJ
READ (1,*) JJ,DUDX(JJ),DUM1,DVDX(JJ),DVDR(JJ)

106 CONTINUE

READ (1,*) NJNJ 
WRITE(*,*) NJNJ 
DO 107 J=1,NJNJ
READ (1,*) JJ,PROD(JJ),DKDX(JJ),DEDX(JJ)

107 CONTINUE

READ (1,*) NJ2

CLOSE (1,STATUS=’KEEP’)
IF (NJNJ.EQ.NJ2) WRITE(*,*) ’input complete’

--------- calculate grid for interpolations---------

CALL GRIDI(NJNJ,RR)
WRITE(*,*) ’ NJ=’,NJ,NJNJ 
DO 443 J=NJNJ,1,-1

DUDX(2*J-1)=DUDX(J)
DVDX(2*J-1)=DVDX(J)
DVDR(2*J-1)=DVDR(J)
PR0D(2*J-1)=PROD(J)
DKDX(2*J-1)=DKDX(J)
DEDX(2*J-1)=DEDX(J)
KE(2*J-1)=KE(J)
DE(2*J-1)=DE(J)
V(2*J-1)=V(J)

443 CONTINUE

CALL INTERP(MAXNI,MAXNJ,NJ,NJNJ,R,RR,V,RC)
CALL INTERP(MAXNI,MAXNJ,NJ,NJNJ,R,RR,DUDX,RC) 
CALL INTERP(MAXNI,MAXNJ,NJ,NJNJ,R,RR,DVDX,RC) 
CALL INTERP(MAXNI,MAXNJ,NJ,NJNJ,R,RR,DVDR,RC) 
CALL INTERP(MAXNI,MAXNJ,NJ,NJNJ,R,RR,PROD,RC)
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ÜÜÜOÜÜOOÜ
 

üüüüü

CALL INTERPiMAXNI,MAXNJ,NJ,NJNJ,R,RR,DKDX,RC) 
CALL INTERPi MAXNI,MAXNJ,NJ,NJNJ,R,RR,DEDX,RC) 
CALL INTERPi MAXNI,MAXNJ,NJ,NJNJ,R,RR,KE,RC)
CALL INTERPi MAXNI,MAXNJ,NJ,NJNJ,R,RR,DE,RC)

OPEN(8,FILE=’C:\GREG\GV1.PRN’,STATUS=* UNKNOWN’) 
DO 444 J=1,NJ
WRITEÌ8,*) Ri J),KE(J),DE(J)

444 CONTINUE
CLOSE(8,STATUS=’KEEP’ )

-------- calculate U, dU/di----------

CALL UVEL
DO 333 J=2,NJM1
DUDRiJ)=(U(J+1)*DRPS(J)**2.+(DRNPiJ)**2.- 

1 DRPSiJ)**2.)*U(J)-U(J-1)*DRNP(J)**2.)/
1 (DRPSiJ)*DRNP(J)*(DRNPiJ)+DRPS{J)))

333 CONTINUE

output all appropriate data

FILENAME=Grid_Vel_[numstp][jstep].OUT 
FILENM=’30GV.OUT’
OPEN(7,FILE=FILENM,STATUS=’UNKNOWN’)

C

C

NJM2=NJ-2 
WRITEÌ7,*) NJM1 
DO 205 J=1,NJM2
WRITE(7,55) J,R(J ) ,U(J),V(J),KE(J),DE(J)

205 CONTINUE
WRITE(7,55) NJM1,R(NJ),U(NJ),V(NJ),KE(NJ),DE(NJ)

WRITEÌ7,*) NJM1 
DO 206 J=1,NJM2
WRITE(7,56) J,DUDX(J),DUDR(J),DVDX(J),DVDR(J)

206 CONTINUE
WRITE(7,56) NJM1,DUDX(NJ),DUDR(NJ),DVDX(NJ),DVDR(NJ)

C
WRITEÌ7,*) NJM1 
DO 207 J=1,NJM2
WRITE(7,57) J,PRODiJ),DKDX(J),DEDX(J)

207 CONTINUE
WRITE(7,57) NJM1,PRODiNJ),DKDXiNJ),DEDX(NJ)

C
WRITEÌ7,*)
WRITEÌ7,*)
WRITE(7,*)
WRITEÌ7,*)

NJM1
UCL(11),USTARi11),NU,DENSTY 
ALPHAÌ11)
NJM1

C

C
CLOSE (7,STATUS=’KEEP’)
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55 FORMAT(’ ’,I3,5(’,’,F10.5))
56 FORMAT(’ ’,I3,4(’,’,F10.5))
57 FORMAT(’ 

STOP
END

’,I3,3(’,’,F10.5))

O
Q

O 
O

O
O

O
O

Q
O

 
O

O
O

--------- subroutine grid----------

SUBROUTINE GRID1(NJNJ,RR)

------ subroutine grid generates the necessary geometric
quantities—

------ for a Practice A type of grid (Patankar chapter 4)—

------ declare variables-------

REAL*8 LENGTH,RIN,ROUT, U, V, DX, DR,VSCSTY,DENSTY
* ,DUDX,DUDR,DVDX,DVDR,PROD,DKDX,DEDX,KE,DE 
REAL*8 SEW,SNS,DXPW,DXEP,DRNP,DRPS,X,R,RC

* ,UCL,USTAR,NU,RAD,RHO,ALPHA,RR(180)
INTEGER NI,NJ,NIP1,NIM1,NJP1,NJM1,JSTEP,NUMSTP

* ,JSTP1,JSTM1,MAXNI,MAXNJ,M,NJNJ,NJ2,JJ,JJP1 
COMMON/BC/LENGTH,RIN,ROUT,UCL(26),USTAR(26),VSCSTY,NU

* ,DENSTY,RHO,ALPHA(26)
COMMON/GEOM/NI,NIP1,NIM1,NJ,NJP1,NJM1,NUMSTP,

1 JSTEP,MAXNI,
* MAXNJ,JSTP1,JSTM1,SEW(26),SNS(180),DXPW(26),DXEP(26),
* DRNP(180),DRPS(180),X(26),R(180),RC(180)

------ calculate geometric quantities-------

NJ=2*NJNJ-1
IF (NI.GT.MAXNI) WRITE(7,*) ’ ARRAY OVERFLOW -

1 INCREASE MAXNI’
IF (NJ.GT.MAXNJ) WRITE(7,*) ’ ARRAY OVERFLOW -

1 INCREASE MAXNJ’
IF (NI.GT.MAXNI.OR.NJ.GT.MAXNJ) RETURN

NIP1=NI+1 
NIM1=NI-1 
NIM2=NI-2 
NJP1=NJ+1 
NJM1=NJ-1 
JSTP1=JSTEP+1 
JSTP2=JSTEP+2 
JSTM1=JSTEP-1 
NJNJM1=NJNJ-1

DX=LENGTH/FLOAT(NUMSTP)
X(1)=0.0 
SEW(1)=DX/2.
DO 5 I=2,NIM1
X(I)=X(1-1)+DX
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SEW(I)=DX 
5 CONTINUE

X(NI)=X(NIM1)+DX 
SEW(NI)=DX/2.

oo
 

o 
o 

oo
 

oo
 

o 
oo

SNS(1)=(RR(2)-RR(1))/2.
DO 25 J=2,NJNJM1
SNS(J) = (RR(J+1)-RR(J))/2.+(RR(J)-RR(J-1))/2. 

25 CONTINUE
SNS(NJNJ)=(RR(NJNJ)-RR(NJNJM1))/2.

RC(1)=SNS(1)
DO 9 J=2,NJNJM1
RC(J)=RR(J)+(RR(J+1)-RR(J))/2.

9 CONTINUE
RC(NJNJ)=RR(NJNJ)

R(1)=RR(1)
DO 17 J=1,NJNJM1

JJ=2*J
JJP1=JJ+1
R(JJ)=RC(J)
R(JJP1)=RR(J+1)

17 CONTINUE
WRITE(*,*) ’ RADIUS=’,R(NJ)

SNS(1)=(R(2)-R(1))/2.
DO 26 J=2,NJM1
SNS(J)=(R(J+1)-R(J))/2.+(R(J)-R(J-1))/2. 

26 CONTINUE
SNSCNJ)=(R(NJ)-R(NJM1))/2.

RC(1)=SNS(1)
DO 29 J=2,NJM1
RC(J)=R(J)+(R(J+1)-R(J))/2.

29 CONTINUE
RC(NJ)=R(NJ)

DRPS(1)=0.0 
DRNP(NJ)=0.0 
DO 20 J=1,NJM1

DRNP(J)=R(J+1)-R(J)
DRPSÍJ+1)=DRNP(J)

20 CONTINUE

DXPWd )=0.0
DXEP(NI)=0.0
DO 10 1=1,NIM1
DXEP(I)=X(1+1)-X(I)
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DXPW(I+1)=DXEP(I) 
10 CONTINUE

RETURN
END

oo
oo

 
oo

 
oo

 
oo

oo
oo

o oo
oo

o

subroutine uvei

SUBROUTINE UVEL

-- subroutine uvel calculates the velocity field for
the conical

-- diffuser flow using the empirical correlations that
fit the

-- experimental data as closely as possible.--------

REAL*8 LENGTH,RIN,ROUT, U, V, DX, DR,VSCSTY,DENSTY,KE,DE
* ,DUDX,DUDR,DVDX,DVDR,DELU,DELUP,PROD,DKDX,DEDX 
REAL*8 SEW,SNS,DXPW,DXEP,DRNP,DRPS,X,R,RC

* ,UCL,USTAR,NU,RAD,RHO,ALPHA,RRR 
REAL*8 B1,B2,C,D,TS,T,KSTAR,NKA,TAU,UKY,UNK 
REAL*8 UG(7),XX,DD,FF(7),RD1,RD2,YPLUS 
INTEGER NI,NJ,NIP1,NIM1,NJP1,NJM1,JSTEP,NUMSTP

* ,JSTP1,JSTM1,MAXNI,MAXNJ,M,CHECK,NJNJ,NJ2,I 
COMMON/VEL/U(180),V(180),DUDX(180),DVDX(180),

* DUDR(180),DVDR(180),KE(180),DE(180),
* PROD(180),DKDX(180),DEDX(180)
COMMON/BC/LENGTH,RIN,ROUT,UCL(26),USTAR(26),VSCSTY,NU

* ,DENSTY,RHO,ALPHA(26)
COMMON/GEOM/NI,NIP1,NIM1,NJ,NJP1,NJM1,NUMSTP,

1 JSTEP,MAXNI,
* MAXNJ,JSTP1,JSTM1,SEW(26),SNS(180),DXPW(26),DXEP(26),
* DRNP(180),DRPS(180),X(26),R(180),RC(180)
C0MM0N/EMP/B1(26),B2(26),C(26),TS(26),D(26)

1 = 11
RAD=O.O72 
IF (I.EQ.1) THEN

U(1)=UCL(1)
U(NJ)=0.0
V(1)=0.0
V(NJ)=0.0

calculate inlet profile (f.d.pipe flow)

VAN DRIEST
UG(1)=0.0
UG(2)=0.2029225757
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UG(3)=-0.2029225757 
UG(4)=0.3707655928 
UG(5)=-0.3707655928 
UG(6)=0.4745539562 
UG(7)=-0.4745539562

C
DO 10 J=2,NJM1
YPLUS=(RAD-R(J))*USTAR(1)/NU 
IF (YPLUS.LE.60.0) THEN
DO 11 M=1,7

XX=YPLUS*UG(M)+YPLUS/2.
DD=(1.-EXP(-XX/26.))
FF(M)=2./(1.+SQRT(1.+4.*0.40*0.40*XX*XX*DD*DD))

11 CONTINUE
U(J)=YPLUS*USTAR(1)*(0.2089795918*FF(1)+

1 n 1 qoq 1
1 ’ (FF(2)+FF(3))+0.1398526957*(FF(4)+FF(5))+
1 0.06474248308*
1 (FF(6)+FF(7)))

U(J)=U(J)*1.03871 
ENDIF

C LOG LAW
IF (YPLUS.GT.60.0.AND.YPLUS.LE.128.59) THEN
U(J)=USTAR(1)*(1./0.41*DLOG(YPLUS)+6.0)

ENDIF
C COLES WAKE FUNCTION

IF (YPLUS.GT.128.59) THEN
RD1=1.-R(J)/RAD
WAKE=1.+SIN((2.*RD1-1.)*3.141592654/2.)
U(J)=USTAR(1)*(1./0.41*DLOG(YPLUS)+6.0)+(0.83-

1 1./0.41*USTAR(1)/UCL(1))*WAKE
ENDIF

10 CONTINUE

ELSE

------ calculate U for the diffuser flow-------

U(1)=UCL(I)
U(NJ)=0.0 
V(1 )=0.0 
V(NJ)=0.0

DO 210 J=2,NJM1
YPLUS=(RAD-R(J))*USTAR(I)/NU

IF (YPLUS.LE.0.0) THEN 
U(J)=0.0 
V(J)=0.0

ELSE
C KY VISCOUS SUBLAYER AND BUFFER

IF(YPLUS.LE.30.0) THEN
U(J)=USTAR(I)*D(I)*TANH(YPLUS/D(I))

ENDIF

o 
a 

a
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O 
O 

O 
oo

 o
o 

oo NAKAYAMA AND KOYAMA 
NKA=NU*ALPHA(I)/(USTAR(I)**3.)
KSTAR=(0.4+0.6*NKA)/(1.+NKA)
TAU=1.+NKA*YPLUS
T=SQRT((1.+2.*TAU)/3.)
UNK=USTAR(I)/KSTAR*(B1(I)*T**B2(I)*(T-TS(I))

1 +DLOG((TS(I)+1.)*(T-1.)/((TS(I)-1.)*(T+1.))))

KY VELOCITY DEFECT
UKY=UCL(I)-USTAR(I)*(C(I)*SQRT(1.+ALPHA(I)

1 *RAD/(USTAR(I)**2))*((1.-(RAD-R(J))/RAD)**2.))

IF(YPLUS.GT.30.0.AND.J.GE.19) U(J)=UNK 
IF(YPLUS.GT.30.0.AND.J.LE.18) U(J)=UKY

ENDIF
210 CONTINUE

ENDIF

RETURN
END

----------subroutine interp----------

SUBROUTINE INTERP(MAXNI,MAXNJ,NJ,NJNJ,R,RR,PHI,RC)

INTEGER MAXNJ,NJ,NJNJ,NJM4,NJNJM1,I,JJJ,K,MAXNI,NJM1 
REAL*8 RR(MAXNJ),R(MAXNJ),PHI(MAXNJ),RC(MAXNJ)
REAL*8 C2,P2,L,X0,X1,X2,E,F,G,Z1(2)

C2(L,X0,X1,X2) = (L-X1)*(L-X2)/(X0-X1)/(X0-X2) 
P2(L,X0,X1,X2,E,F,G) = C2(L,X0,X1,X2)*E +

1 C2(L,X1,X2,X0)*F+
* C2(L,X2,XO,X1)*G

1 = 11
NJM4=NJ-4
NJM1=NJ-1

DO 101 J=1,NJM4,2 
XO=R(J)
X1=R(J+2)
X2=R(J+4)
E=PHI(J)
F=PHI(J+2)
G=PHI(J+4)
PHI(J+1)=P2(R(J+1),XO,X1,X2,E,F,G)

101 CONTINUE
PHKNJM1 )=P2(RC(NJM1 ) ,X0,X1 ,X2, E, F,G)

RETURN
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Sample Data File: ’VELPRD30.DAT’

21
21 0.072 0.0000 0.0000 0.0000 0.00
20 0.070 3.5744 0.1424 2.2811 230.87
19 0.069 3.9188 0.1795 2.6427 238.20
18 0.068 4.2275 0.1878 2.9301 249.12
17 0.066 4.8123 0.2044 3.5020 255.07
16 0.064 5.3888 0.2119 3.9387 268.86
15 0.062 5.9696 0.2212 4.3447 273.52
14 0.060 6.5579 0.2238 4.6224 275.87
13 0.057 7.4562 0.2313 4.8859 263.85
12 0.054 8.3729 0.2329 4.9337 243.82
11 0.051 9.3066 0.2398 4.8984 215.27
10 0.047 10.5994 0.2219 4.4829 183.98
9 0.042 11.7533 0.1933 3.7275 136.68
8 0.037 12.7769 0.1663 2.9076 95.32
7 0.032 13.6701 0.1408 2.2431 60.60
6 0.027 14.4330 0.1166 1.7391 35.49
5 0.022 15.0655 0.0934 1.4433 27.22
4 0.017 15.5676 0.0711 1.1609 21 .64
3 0.012 15.9394 0.0494 0.9786 17.81
2 0.007 16.1809 0.0282 0.8315 15.86
1 0.000 16.3000 0.0000 0.7685 13.88

21 0.0000 0.0000 0.0000 0.0000
20 63.0825 -825.3481 6.1165 -■42.8035
19 12.8659 -326.5261 5.9300 --22.6820
18 6.3155 -303.2284 4.2877 -8.2667
17 2.6843 -290.3393 3.5357 -6.0346
16 0.7527 -289.3208 3.2914 -4.2018
15 -0.6091 -292.2716 3.2492 -2.9857
14 -1.6463 -296.2721 3.0030 -1.7959
13 -2.7630 -302.4953 2.8324 -1.5105
12 -2.4212 -308.4030 2.3826 -1.4248
11 -5.4428 -316.3606 2.0695 0.5994
10 -10.6513 -282.1216 1.2718 5.0317
9 -10.1821 -217.7531 0.6962 5.5598
8 -9.7659 -191.6811 0.3602 5.2479
7 -9.4027 -165.6092 0.1200 4.9753
6 -9.0925 -139.5372 -0.0357 4.7430
5 -8.8353 -113.4652 -0.1224 4.5498
4 -8.6311 -87.3932 -0.1502 4.3976
3 -8.4799 -61.3213 -0.1362 4.2833
2 -8.3818 -35.2493 -0.0885 4.2095
1 0.0000 0.0000 0.0000 0.0000

21 0.00 0.00 0.00
20 200.354 3.9262 -382.4
19 255.202 3.3528 -416.0
18 295.886 2.8372 -480.1
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17 391.169 1.8288 -481.4
16 434.304 1.1199 -541.2
15 463.712 0.4818 -518.5
14 455.067 0.3267 -505.0
13 421.115 0.3237 -388.3
12 357.929 0.3824 -245.3
11 301.571 0.4347 -111.2
10 223.443 0.5931 -59.11
9 168.072 0.8463 120.03
8 128.473 1.2857 182.29
7 98.074 1.8603 203.97
6 68.018 2.4885 208.27
5 41.326 2.4320 126.71
4 18.119 1.8589 42.96
3 6.583 1.2646 9.32
2 2.538 0.7918 1.05
1 0.000 0.3484 0.66

16. 3,0.272,0. 000016,1.204
129.


