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A cantilever beam analogy for quantifying higher mode effects in multistorey buildings 

by 

Lydell Wiebe1 and Constantin Christopoulos2 

Summary 

This paper examines higher mode effects in systems where the ductile mechanism for seismic 
design is the base moment-rotation response. The modal properties of flexural and shear beams 
with uniform mass and elasticity and with a variable amount of base rotational restraint are de-
rived. As the base fixity is released, the first mode becomes the rigid body rotation of the beam 
about the base, but the higher modes change much less, particularly for the shear beam model. 
Most response quantities that are of interest in the seismic design of typical mid-rise buildings 
are controlled by the first two lateral modes, except at locations along the height where the sec-
ond mode contributes little. However, the third and higher lateral modes are more significant for 
high-rise buildings. 

Based on the theory of uniform cantilever shear beams, expressions are developed that avoid the 
need for a modal analysis to estimate the overturning moment, storey shear, and floor accelera-
tion envelopes. Considering the measured response from shake table testing of a large-scale 
eight-storey controlled rocking steel braced frame, the proposed expressions are shown to be of 
similar or better accuracy to a modified modal superposition technique, which combines the 
higher-mode response from an elastic modal analysis with the response associated with achiev-
ing the maximum base overturning moment according to an inverted triangular load distribution. 
Since the proposed method uses only parameters that are available at the initial design stage, 
avoiding analysis of a structural model, it is likely to be especially useful for preliminary design. 

Keywords: higher mode effects, dynamic amplification, capacity design, self-centering sys-
tems, controlled rocking steel braced frames, reinforced concrete shear walls 

INTRODUCTION 

Capacity design, first proposed by Park and Paulay [1], attempts to make the seismic force de-
mands on a structural system independent of the ground motion intensity. A nonlinear mechanism 
is specified by the designer and is proportioned to have a certain strength, which may be deter-
mined using various force-based [e.g. 2] or displacement-based [e.g. 3] approaches. Once the 
mechanism has been designed, all other elements of the structural system are designed to elas-
tically resist the maximum forces that are consistent with the nonlinear mechanism at its maximum 
deformed state, with due consideration of strain hardening of steel, material overstrength, system 
overstrength, and appropriate factors of safety. By doing this, the intent is that an increase in the 
ground motion intensity will increase the deformation demand on the nonlinear mechanism, but 
will not significantly increase the force demand on the other elements of the structural system, 
especially those that ensure the integrity of the vertical load carrying system. 
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Whereas the intent of capacity design is to limit the structural forces by forming a nonlinear 
mechanism, higher mode effects work against this by increasing the structural forces even after 
that mechanism has formed. Higher mode effects are known to be particularly significant for re-
inforced concrete (RC) walls, where the nonlinear mechanism is intended to be the formation of a 
plastic hinge at the wall base, because a wall with a base rotational joint has multiple lateral force 
distributions that satisfy its boundary conditions but that produce larger forces along the height 
than a first-mode distribution. These higher mode effects were first identified by Blakeley et al. 
[4], and studies since then have demonstrated this behaviour through more refined numerical 
modelling [5-11]. Higher mode effects have also been observed in shake table tests of reinforced 
concrete walls [12-14]. An extensive bibliography on research regarding higher mode effects on 
shear forces in reinforced concrete walls has been provided by Rutenberg [15]. 

Many recommendations have been made for adapting modal analysis tools to quantify higher 
mode effects in RC walls. Eibl and Keintzel [16] introduced the concept of modal limit forces, 
which are the maximum forces that could be developed in each mode with elastic-perfectly-plastic 
yielding, and proposed designing for the square-root-of-the-sum-of-squares (SRSS) combination 
of the lesser of the modal limit force and the elastic demand for each mode. For simplified dynamic 
analysis, they developed an approximate expression to calculate the base shear by combining the 
modal limit force in the first mode with the elastic force in the second mode. Keintzel [17] later 
compared the modal periods and displaced shapes for flexural cantilevers with varying base rota-
tional stiffness, concluding that the properties of the higher modes are not sensitive to the base 
rotational restraint and thus the elastic modal properties can be used to estimate the influence of 
higher modes in the nonlinear range. Priestley and Amaris [8] adapted this procedure by calcu-
lating the first-mode properties using the direct displacement-based design lateral force distribu-
tion while using the elastic properties of the higher modes, and Priestley et al. [3] developed an 
approximation to these envelopes that does not require modal analysis. Panagiotou and Restrepo 
[13] suggested that the higher mode effects are mostly due to the second lateral mode. Accord-
ingly, they proposed a modal combination of the reduced first-mode envelopes of shear and 
moment with envelopes that are based on a polynomial approximation to the elastic second-mode 
shape. 

Other researchers have considered the influence of stiffness reductions in the structure. Kowalsky 
[18] proposed Effective Modal Superposition for bridge design, where the properties of the higher 
modes are calculated using the secant stiffness of elements at the maximum expected displacement 
and combined using an SRSS approach. Sullivan et al. [19] proposed combining the first-mode 
forces that reach the base overstrength moment with higher-mode forces based on Transitory In-
elastic Modes (TIMs), which are found by modelling all plastic hinges as pins. Pennucci et al. [20] 
found that a similar approach worked well for tall RC walls with varying degrees of coupling. That 
study also presented a simplified Weighted Capacity Design approach that did not require modal 
analysis, but instead calculated design envelopes at key points along the structural height based on 
a combination of closed-form solutions for flexural beams with fixed and pinned bases. 

Recently, other systems have been proposed that also rely on a nonlinear base moment-rotation 
response to limit the seismic forces. Controlled rocking systems allow part of the structure to lift 
off the foundation in response to lateral loads, resulting in a nonlinear response that is controlled 
using post-tensioning or supplemental energy dissipation. Recent studies of controlled rocking 
steel braced frames have demonstrated that the peak seismic forces for frame members are 
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strongly influenced by higher mode effects [21-25]. These effects must be considered, either by 
designing to resist them elastically [21-23], or by mitigating them using multiple mechanisms 
[24-25]. 

The purpose of this paper is to investigate the influence of base fixity on the modal properties of 
cantilever-type structures, to examine the relative influence of the higher modes on key response 
parameters, and to derive a simple way to estimate seismic design forces in systems with a non-
linear base moment-rotation response. Unlike previous studies, the modal properties of cantile-
vered beams with uniform mass and elasticity are derived for both flexural and shear beams, and 
the base rotational restraint is taken as variable, allowing the influence of this parameter on key 
performance indices to be studied using a response spectrum analysis approach. The modal 
equations for a shear beam are used to develop design equations for controlled rocking steel braced 
frames. By using the nondimensional modal properties of a cantilever shear beam, the proposed 
equations remove the need for the designer to conduct a modal analysis, and thus these equations 
are intended to be usable for preliminary design before a structural model can be developed. The 
proposed equations are compared to results from shake table testing. Although this part of the 
paper focuses on controlled rocking steel braced frames, it is also expected to apply to other sys-
tems with primarily shear-type deformations and a nonlinear base moment-rotation response. 

ANALOGY TO CANTILEVER BEAMS WITH DISTRIBUTED MASS AND ELASTICITY 

As shown in Figure 1, the response of a lateral load resisting system may be dominated by flexur-
al-type deformations (e.g. slender reinforced concrete shear wall) or by shear-type deformations 
(e.g. mid-rise steel concentrically braced frame). A seismic force resisting system that is fixed at 
the base may lose rotational stiffness at times during seismic loading, whether by rocking at the 
base of a controlled rocking system, or by forming a plastic hinge at the base of a reinforced 
concrete shear wall. As the system vibrates, the base rotational restraint fluctuates in a range be-
tween a fixed condition and a pinned condition. The incremental response at each time instant is 
subject to the structural properties and boundary conditions at that instant.  

A medium- to high-rise structure with this kind of behaviour can be generalised by considering the 
cantilever beam with uniform mass and elasticity that is shown in Figure 2a. According to Timo-
shenko beam theory [26], each section of the beam (Figure 2b) develops flexural curvatures (  in 
Figure 2c) and shear strains (  in Figure 2d), and the flexural curvatures accumulate to produce a 

rigid-body flexural rotation (  in Figure 2e). Timoshenko assumed that the rate of change of 
deformation over the height, zx  , is given by: 

   zx  (1) 

The mass of a building is typically distributed nearly uniformly over the height and does not rotate 

flexural-type
deformations

shear-type
deformations

 
Figure 1  Systems with flexural-type and shear-type deformations 
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about an axis in the horizontal plane. Although the stiffness of most real buildings varies over the 
height, uniform stiffness is assumed in order to focus on the effects of the base rotational stiffness. 
With these assumptions, Timoshenko beam theory [26] can be simplified to two equations for two 
bounds of behaviour. First, if shear deformations are small relative to flexural deformations, 0  
and Eq. (1) can be written as Eq. (2), which is the equation of motion for a flexural beam [27]. 
Second, if flexural deformations are relatively small, Eq. (3) can be developed as the equation of 
motion for a shear beam. Although the following discussion considers only these extremes, it 
could be extended by considering combinations of flexural and shear beams [e.g. 28]. 

     02244  txAzxEI   (2) 

      02222  txGzx   (3) 

In Eqs. (2)-(3), t  is time, E  is the modulus of elasticity of the beam, I  is its second moment of 
area about the axis of bending,   is its mass density (kg/m3 in SI units), A  is its cross-sectional 

area, G  is its shear modulus, and   is a sectional constant that accounts for the non-uniform 
distribution of shear stresses on the section. 

Solution to modal equations for flexural beam 

Following classical techniques [27], the solution to the equation of motion for both the flexural 
beam and the shear beam is assumed to be of the form: 

      tqztzx nnn ,  (4) 

where  tzxn ,  is the displacement in mode n ,  zn  is the n th mode shape and  tqn  describes 

the response of mode n  over time in displacement units. Figure 2 shows the boundary conditions 
and their sign conventions: the top is free and the base has a linear rotational spring with stiffness 

rk . For a flexural beam, the base rotational restraint results in the following boundary condition: 

    00 nnr EIk    (5) 

where the prime symbol denotes a derivative with respect to z . The modal constant, n , is de-

fined for mode n  of a flexural beam as: 

(b) undeformed(a) x

dz

H

z

M +          dz∂ M
∂ z

V +         dz∂ V
∂ z

∂x
∂z

ρdz ∂2x
∂t2

M
V

(c) flexural deformation

γ

θ

rotational spring
stiffness = kr

(d) shear deformation

φdz

(e) rigid-body rotation

Figure 2  Beam with uniform mass and elasticity: (a) overall view; (b) undeformed section; (c) flexural 
deformation; (d) additional shear deformation; (e) additional rigid body rotation 
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 EIAnn  24   (6) 
A non-dimensional rotational restraint parameter is defined for the flexural beam as: 

 EIHkR rf   (7) 

The mode shape can then be solved from Eq. (2) with an arbitrary constant nC  as: 

    zAzAzzCz nnnnnnnn  sinhsincoscosh sinh,sin, 
 (8) 

where sin,nA  and sinh,nA  are: 

     HHHRHHHA nnnfnnnn  sinhsinsinh2coshcossin,   (9) 

     HHHRHHHA nnnfnnnn  sinhsinsinh2coshcossinh,   (10) 

and where the frequency equation is given by: 

             0sinhcoscoshsincoshcos1 nnnnnnn  HHHHRHHH f   (11) 

Table 1 gives the values of Hn  that satisfy Eq. (11) with a fixed base ( fR ) and a pinned 

base ( 0fR ). These values and the mode shapes given by Eq. (8) are equivalent to the expres-

sions developed by Young and Felgar [29] for these limiting cases of base rotational restraint, but 
these expressions also encompass the full range of intermediate restraint conditions. The modes 
associated with 0fR  are the TIMs [19] for a flexural beam with uniform mass and stiffness. 

Solution to modal equations for shear beam 

The shear force in the shear beam, nV , is found by taking   in Eq. (1) as constant over the height 

and equal to    tqH nn  because the shear at the tip is zero: 

         tqHzxGAtzGAtzV nnnnn   ,,  (12) 
The base rotational restraint boundary condition can be written by using Eqs. (4) and (12) to in-
tegrate the shear force diagram over the height and equating this to the moment in the spring: 

       HkdzHzGA nr

H

nn  0  (13) 

The modal constant, n , is defined for mode n  of a shear beam as: 

Table 1  Frequency parameters Hn for cantilever beams with fixed and pinned base conditions 

 flexural beam shear beam 
mode fR  0fR  vR  0vR  

1 1.8751 0.0000 1.5708 0.0000 
2 4.6941 3.9266 4.7124 4.4934 
3 7.8548 7.0686 7.8540 7.7253 
n    212 n   1n    212 n    212 n  
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 Gnn  22   (14) 
The non-dimensional rotational restraint parameter is defined for the shear beam as: 

 GAHkR rv   (15) 

The mode shape can then be solved from Eq. (3) as: 

   zCz nnn  sin  (16) 

where nC  is an arbitrary constant and where the frequency equation is given by: 

     01sincos  vnnn RHHH   (17) 

Table 1 lists the values of Hn  that satisfy Eq. (17) for the fixed base ( vR ) and pinned base 

( 0vR ). The modes associated with 0vR  are the TIMs [19] for a shear beam with uniform 

mass and stiffness. 

Modal displacements, shears, and moments 

Figure 3 plots the properties of the first three modes of a cantilevered flexural beam for a range of 
nondimensional rotational restraint coefficients. The first column of plots shows the displaced 
shape nn  for the flexural beam, which does not depend on how the mode shape is normalized 

because the modal participation factor is defined as: 

 
 

 

H

n

H

n

n

dzz

dzz

0

2

0




 (18) 

This assumes a uniform mass distribution. The normalised modal shear force is defined as: 

      
 tEIq

HtzV
zHzV

n

n
nn

3
3 ,

 
 

(19) 

The second column of Figure 3 shows  zVnn  for the flexural beam, which is related to shear 

forces and is independent of both the normalization of the mode shape and the numerical values of 
the mass and stiffness of the beam. Similarly, the normalised modal moment  zM n  is defined as: 

      
 tEIq

HtzM
zHzM

n

n
nn

2
2 ,

 
 

(20) 

The third column of plots in Figure 3 shows  zM nn  for the flexural beam. 

Similarly, Figure 4 shows the modal properties of a shear beam. Eq. (12) is used to define  zVn  

for a shear beam as: 
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         
 tGAq

HtzV
HzHzV

n

n
nnn 


,


 

(21) 

The normalised modal moment  zM n  is found by integrating the shear force diagram: 

            
 tGAq

tzM
HzHzHzM

n

n
nnnn 


,


 

(22) 

Figure 3 and Figure 4 show that the displaced shape in each mode is not greatly affected by the 
amount of moment restraint at the base for either type of beam. As the base moment restraint is 
released, the first mode becomes the rigid body rotation of the beam about its base, and the shear 
and bending moment diagrams approach zero. However, the sectional forces for the higher modes 
do not approach zero as the restraint is released. For the flexural beam in the second mode, the 
shear forces reduce and the point of zero shear shifts downward, increasing the shear at some 
locations. Similarly, the bending moment diagram of the flexural beam in the second mode is 
generally reduced by releasing the base fixity, but the moments increase at some locations because 
of the changing location of contraflexure. Similar changes occur in the third and higher modes. For 
the shear beam, the sectional forces are less affected by the degree of base fixity than for the 
flexural beam. The shears near the base increase slightly as the restraint is released, while the 
bending moments reduce appreciably only in the lower half of the beam. 

−2 0 2 −10 0 10 −6 0 6

−2 0 2 −100 0 100

−300 0 300

−20 0 20

−2 0 2 −30 0 30

displacement shear moment

mode 1

mode 2

mode 3

Γnφn ΓnMn

rotational restraint:

pinned

Rf =
Rf =
Rf =
Rf =

10000 (fixed)
10
1
0.0001 (pinned)

fixed

pinned fixed

pinned fixed

ΓnVn  
 

Figure 3  Properties of the first three modes of flexural beams with varying base fixity 
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Modal periods 

A nondimensional period is defined for the flexural beam as: 

   A

EI

H

T

H
T n

n

nf 


22

2


 
(23) 

and for the shear beam as: 

 




 G

H

T

H
T n

n
nv 

2

 
(24) 

where nT  is the period of mode n , which is calculated using Eqs. (6) and (11) for the flexural 

beam, and Eqs. (14) and (17) for the shear beam. Table 2 gives nfT  and nvT  for the first three 

fixed-base modes, together with formulae that are accurate to three significant figures for the 
higher modes with 3n ; Young and Felgar [29] developed equivalent expressions for flexural 
beams, but not for shear beams. The ratios of the higher-mode periods to the first-mode period are 
also given. Figure 5 shows how the periods are affected by the base rotational restraint. For both 

pinned fixed

pinnedfixed

pinned fixed

−2 0 2 −4 0 4 −1.5 0 1.5

−2 0 2 −4 0 4

−4 0 4

−1.5 0 1.5

−2 0 2 −1.5 0 1.5

displacement shear moment

mode 1

mode 2

mode 3

Γnφn ΓnMn

rotational restraint:

Rv =
Rv =
Rv =
Rv =

10000 (fixed)
10
1
0.0001 (pinned)

ΓnVn  
Figure 4  Properties of the first three modes of shear bams with varying base fixity 
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system types, the first-mode period becomes unbounded as the base fixity is released. The high-
er-mode periods elongate but are bounded. For the flexural beam as the base becomes pinned, the 
second-mode period increases by 43% relative to the fixed-base period, while the third-mode pe-
riod increases by only 23% and the higher modes have successively less change in period as the 
base fixity reduces. The periods of the higher modes of the shear beam are less affected by the base 
rotational restraint than they are for the flexural beam: none of the higher-mode periods of the 
shear beam increases by more than 5% as the base rotational restraint is released. 

RELATIVE MODAL INFLUENCES ON NONLINEAR SEISMIC RESPONSE 

Modal contributions to seismic response 

The incremental nonlinear dynamic response of a structure at each instant is governed by the 
boundary conditions that apply at that time. As a structure with a nonlinear base moment-rotation 
response is driven further into its nonlinear range, less of the total response will occur in the 
fixed-base condition. Pennucci et al. [20] have proposed a capacity design procedure that is based 
on a weighted combination of modal responses assuming a fixed base and a pinned base. To fur-
ther investigate the expected nonlinear dynamic response of multistorey buildings, the following 
section uses the modal properties that were developed above to show how the relative contribution 
of each mode to various response quantities is affected by the base rotational restraint.  

The effective modal mass in each mode is defined as: 

Table 2  Nondimensional periods of fixed-base cantilever beams

 flexural beam shear beam 

mode nfT  nff TT1  nvT  nvv TT1  

1 1.7870 1.0000 4.0000 1.0000 
2 0.2852 6.2669 1.3333 3.0000 
3 0.1018 17.5475 0.8000 5.0000 

n   212

8

n
  

4250.1

12 2n
 

12

4

n
 12 n  

0.0
104 102 1 10-410-2

1.0

2.0

flexural beam shear beam

period
of mode n

fixed-base period
of mode n

mode 1

mode 2
mode 3

mode 2
mode 3

mode 1

rotational restraint, Rf

(pinned)(fixed)
104 102 1 10-410-2

rotational restraint, Rv

(pinned)(fixed)

R  
 

Figure 5  Effect of base fixity on modal periods of flexural and shear beams 
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  
H

nnn dzzAM
0

* 
 

(25) 

Given that the sum of effective modal masses is equal to the total mass [27], the contribution from 

each mode to the effective modal mass is calculated as    
H

nn dzzH
0
  and plotted in Figure 6a. 

With a fixed base condition, the first mode contributes more than 60% of the total effective mass 
for the flexural beam, and more than 80% for the shear beam. The second mode contributes almost 
20% for the flexural beam and almost 10% for the shear beam, and the higher modes contribute the 
remainder. As the base fixity is released, the contribution of the first mode to the total mass in-
creases slightly for the flexural beam and decreases slightly for the shear beam. For both beams, 
the first mode of the pinned-base beam contributes about 75% of the total mass and the second 
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104 102 1 10-410-2

(pinned)(fixed)
104 102 1 10-410-2

(pinned)(fixed)
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50%

100%

0%
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0%
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100%
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100%

0%
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100%

0%

50%

100%

0%

50%

100%

0%

50%

100%

0%

50%

100%

0%

50%

100%

0%

50%

100%

R
rotational restraint, Rf rotational restraint, Rv

cumulative
contribution
to response

effective modal mass effective modal mass

roof displacement roof displacement

base moment base moment

midheight moment midheight moment

base shear base shear

midheight shear midheight shear

mode 1
mode 2
mode 3

flexural beam shear beam

(a)

(b)

(c)

(d)

(e)

(f )

 
Figure 6  Cumulative modal contributions to (a) effective modal mass; (b) roof displacement; (c) base 
moment; (d) base shear; (e) midheight moment; (f) midheight shear. All parts except (a) assume the rela-
tive spectral shape of Figure 7. 
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mode contributes about 15%. 

For the other response parameters that are considered in Figure 6, the relative contribution of each 
mode depends on the relative values of the response spectrum at each modal period. This effect is 
approximated within a nondimensional framework by considering a typical acceleration design 
spectrum based on ASCE 7-10 [2], where the relative spectral accelerations, aS , are: 

 








2

2

21

1

nTS

nTS
S

D

nD
a

 
(26) 

where 1DS  is a nondimensional spectral acceleration parameter and nT  is given in Eqs. (23)-(24). 

As shown in Figure 7, Eq. (26) assumes that the first mode is in the constant velocity region of the 
design spectrum, the second mode is at the corner of the constant velocity and constant accelera-
tion regions, and the third and higher modes are in the constant acceleration region. If the sec-
ond-mode period is in the constant acceleration region (i.e. STT 2 , where ST  is the corner pe-

riod shown in Figure 7), this assumption overestimates the influence of all higher modes. If the 
second-mode period is in the constant velocity region (i.e. STT 2 ), this assumption underesti-
mates the influence of some higher modes, although it may still overestimate the influence of those 
modes that fall on the initial ascending branch of the design spectrum. If the first-mode period is in 
the constant displacement region (not shown in Figure 7), the higher modes will contribute rela-
tively more to the overall demand, as has also been noted by Sullivan [30]. 

The contribution of each mode to displacements is calculated as 2
nann S  , the contribution to 

shear forces is calculated as 2
nann SV  , and the contribution to bending moments is  calculated 

as 2
nann SM  . The total contribution of the first N  modes is calculated as the square root of 

the sum of the squares of the contributions from those modes. For each response quantity in Figure 
6, the cumulative contribution of the first N  modes is shown, rather than the contribution of any 
individual mode. All results are normalised by the total contribution from the first ten modes, and 
all results assume that Eq. (26) describes the relative spectral ordinates of all modes. 

Figure 6b examines the contribution of each mode to the roof displacement. The first mode con-
tributes more than 99% of the total roof displacement for both the flexural beam and the shear 
beam, regardless of the amount of rotational restraint at the base. 

Figure 6c shows the relative importance of each mode to the base moment. For the flexural beam 

T1T20 TS

period

spectral
acceleration

typical design spectrum shape (ASCE 7-10)

assumed spectral shape

ascending
branch

descending
branch

 
Figure 7  Assumed shape of acceleration spectrum 
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with a fixed base, the first mode contributes 87% of the total base moment, with almost all of the 
remainder coming from the second mode. As the base restraint is released, the moment contributed 
by all modes approaches zero, but the first mode contributes relatively more to the total. The base 
moment of the shear beam is almost entirely due to the first mode for any base restraint condition. 

Figure 6d shows that the higher modes are relatively more significant for the base shear. The 
second mode contributes more than the first mode to the base shear of the flexural beam with a 
fixed base, and as the rotational restraint is released, the second mode dominates the response even 
more. For the shear beam, although the first mode contributes 94% of the base shear when the base 
is fixed, the second mode dominates the response as the rotational restraint at the base is released. 

Considering the moment at mid-height (Figure 6e), the first mode contributes only 65% of the total 
when the base of the flexural beam is fixed, and as the system approaches the pinned base condi-
tion, the total mid-height moment is generated almost entirely in the second mode. For the shear 
beam, the first mode contributes more of the total if the base is fixed, but the second mode comes 
to dominate the response as the base fixity is released. 

The shear at mid-height is an example of a case where the third mode contributes significantly to 
the response, as shown in Figure 6f. In the fixed condition for the flexural beam, the third mode 
adds 12% to the shear computed from the first two modes only. As the base restraint is released, 
the second and third modes increase in relative contribution, while the contribution from the first 
mode approaches zero. The third mode is less significant for the response of the shear beam. 

For all of these parameters, the modal mass does not give a good indication of the relative im-
portance of the modes: compared to what would be expected based on the relative modal masses, 
the higher modes contribute much less to the roof displacement and the base overturning moment, 
but they contribute much more to the base shear and the moments above the base. The higher 
modes would be even more significant if the second mode were in the constant velocity region of 
the assumed spectrum (Figure 7), or if the first mode were in the constant displacement region. 

ACCOUNTING FOR HIGHER MODE EFFECTS IN DESIGN 

The equations that were derived above can be adapted into a theory-based capacity design method 
for structures where the ductile mechanism is a base rotational hinge. A lateral force distribution 
that is consistent with the deformation profile of the system in the nonlinear range is assumed to be 
limited by the rotational hinge, while additional contributions are assumed based on the 
pinned-base higher modes that were discussed above. This approach is conceptually equivalent to 
the Transitory Inelastic Modes approach of Sullivan et al. [19], but unlike that study, the following 
section considers a simple idealized system for which closed-form equations can be derived. By 
using the modal properties of the idealized system, the proposed method removes the need for the 
designer to conduct a modal analysis of a structural model, and therefore the method is likely to be 
most useful for preliminary design. The following derivations are based on the assumptions that 
the structure behaves like a uniform shear beam above the base and that the peak response in the 
higher modes occurs when the base has a low rotational stiffness. Systems that cannot be char-
acterised in this way would require approximate numerical methods or alternative mathematical 
derivations, such as for a flexural beam or a combined shear-flexural deformation mode.  
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Included modes and modal periods 

Based on Figure 6, the first two lateral modes are likely to govern most response quantities of 
interest, but the third mode may also be significant at locations where the contribution from the 
second mode is small. Therefore, using the ratio of modal periods of a shear beam from Table 2, 
the response of a structure that behaves like a shear beam (typical low- to mid-rise buildings) may 
be computed using only the first three lateral modes if: 

 STT 31   (27) 

where 1T  is the period of the first mode and ST  is the corner period of the acceleration spectrum, 

calculated according to ASCE 7-10 [2]. This assumes the spectral shape of Figure 7, which is not 
conservative for high-rise structures where the second-mode period is on the descending branch of 
the design spectrum or the first-mode period is in the constant displacement region. The re-
quirement of Eq. (27) would be relaxed for a flexural beam, since the modes are spaced further 
apart (Table 2). If Eq. (27) is not satisfied, the following derivation should be extended to include 
additional modes. For the first design iteration, 1T  is typically estimated using an empirical 
equation from the building code. The higher-mode periods are not known until a design has been 
developed, but these periods can be estimated for any structure that is characterised by a shear 
beam with uniform mass and elasticity as 312 TT   and 513 TT  . These expressions give re-

sults that are generally less conservative than using the higher-mode periods from a modal analysis 
with fixed base conditions, since the second- and third-mode periods are expected to be less than 

31T and 51T , respectively, if the structure behaves like a flexural beam rather than a shear beam 
(see Table 2). The fixed-base periods are used even in the nonlinear range because the high-
er-mode periods of a shear beam do not vary appreciably with the base rotational restraint (see 
Figure 5). The validation presented later suggests that reasonable design envelopes are obtained 
using these simplified period estimates, rather than the periods from modal analysis, likely because 
the higher-mode periods are in the constant acceleration region of the spectrum. 

First-mode envelopes 

The nonlinear mechanism considered in this paper is associated with a maximum expected base 
overturning moment, max,bM . This moment is greater than the rocking moment of controlled 

rocking systems because it includes the effects of post-tensioning elongation and strain hardening 
of any yielding devices that cross the base rocking joint, and it is also greater than the yield mo-
ment of reinforced concrete walls because of strain hardening of reinforcing steel. The plastic 
mechanism is assumed to develop due to the first-mode actions alone, as other researchers have 
also assumed [e.g. 19]. In this study, the deformed shape of the first mode is taken from the 
pinned-base structure, for which all significant first-mode deformation is due to the base rotation, 
resulting in an inverted triangular lateral force distribution. Alternative force distributions were 
also considered but found to be more complicated mathematically without a significant im-
provement in accuracy. If the total tributary mass of gWtrib  is distributed uniformly over the 

height H , then the total accelerations in the first mode that are associated with max,bM  are: 
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where z  is the height above the base. The associated shear force envelope is given by: 
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(29) 

Similarly, the first-mode overturning moment envelope is: 
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(30) 

These envelopes are plotted in Figure 8. 

Higher-mode envelopes 

For each of the higher modes, the following derivation uses the five-percent-damped acceleration 
spectrum. Further study may refine this assumed damping value or show that systems with energy 
dissipation distributed over the height can benefit from increased damping in the higher modes. 

Using Eq. (4), the total acceleration in mode n  is: 

      tAztza nnnn  ,  (31) 

where  tAn  is the total acceleration of the SDOF system with the properties of mode n . The 

spectral displacement at a period of nT  and with the damping of mode n ,  nd TS , is related to the 

pseudo-spectral acceleration,  na TS , by: 

    ndnna TSTS 2 (32) 
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Figure 8  Shapes of modal contributions: (a) acceleration; (b) storey shear; (c) overturning moment 
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This is approximately equal to the maximum absolute value of  tAn , except for long periods or 

large damping [27]. 

Evaluating Eq. (18) for the mode shape  zn  of a shear beam that is given in Eq. (16): 

 
 

 HHC

H

nnn

n
n 


2sin2

cos14





 

(33) 

where Hn  is given for pinned-base and fixed-base shear beams in Table 1, and where nC  is an 

arbitrary constant that also appears in the numerator of  zn . 

Using the mode shape from Eq. (16) together with Eq. (33), the maximum acceleration profile 
along the height of the structure in mode n  can be found from Eq. (31) as: 
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(34) 

Table 3 simplifies Eq. (34) using Hn  for the second and third pinned-base shear beam modes 

from Table 1. Eq. (34) is plotted in Figure 8a for the second and third modes. For each mode n , the 
plot is normalised by the maximum value of  zan max,  over all values of z . The equations in Table 

3 and the shapes in Figure 8a assume a shear beam with uniform mass and stiffness, but no as-
sumptions regarding the spectral shape or modal periods are necessary. 

In a similar manner, using Eqs. (12), (14), (16), and (21), and replacing AH  with gWtrib , the 

contribution of each higher mode to the shear force envelope can be shown to be: 
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(35) 

Table 3 simplifies Eq. (35) using Hn  for the second and third pinned-base shear beam modes 

from Table 1, and these equations are plotted in Figure 8b. For each mode n , the plot is normalised 
by the maximum value of  zVn max, . 

Similarly, it can be shown that the maximum overturning moment in mode n  is: 
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(36) 

Table 3 simplifies Eq. (36) by using Hn  for the second and third modes from Table 1, and these 

equations are plotted in Figure 8c. For each mode n , the plot is normalised by the maximum value 
of  zM n max, . 

Because each modal contribution in Figure 8 is normalised by the maximum value in that mode, 
Figure 8 does not represent the relative contributions of the different modes. 
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Combination of modal envelopes 

To combine the modal contributions from Table 3, the peak forces are assumed to develop in the 
first mode and to remain nearly constant while the higher modes oscillate. Based on this assump-
tion, the design storey shears and overturning moments are taken as the sum of the respective 
absolute values from the first mode with the square root of the sum of the squares (SRSS) from the 
higher modes. The SRSS method is used for its simplicity and because the modal periods of a 
cantilever beam are well separated. Including the first-mode effects under the square root was 

Table 3  Summary of modal contributions to design envelopes
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Notation: max,bM = overstrength base overturning moment, z  = height above base, H  = total height, 

gWtrib  = total tributary mass, PGA  = peak ground acceleration,  TSa  = spectral acceleration at pe-

riod T , where the elastic first-mode period is 1T  and the second- and third-mode periods for the 

pinned-base beam are assumed to be 3/1T and 5/1T , respectively.
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found to be unconservative for the controlled rocking steel braced frames that were considered. 
When three modes are used, these combinations are written as: 

          2max,3
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(37) 
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(38) 

To calculate the design peak floor accelerations, a combination similar to Eqs. (37)-(38) gives an 
acceleration of zero at the base, where the peak acceleration must equal the peak ground acceler-
ation. Pozzi and Der Kiureghian [31] have explained this by showing that the peak accelerations 
near the base are dominated by the rigid response of the structure, which is not captured when only 
the first few modes are used. To correct for the error associated with truncating the higher modes, 
they proposed a modification of the complete quadratic combination (CQC) method. Their pro-
posal is simplified for this capacity design method, so as to combine the modal contributions in a 
way that is consistent with what was suggested for the shear force and overturning moment en-
velopes. Thus, the peak floor acceleration at each level is estimated as: 
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(39) 

The residual acceleration envelope associated with the truncated higher modes,  zar max, , is cal-

culated using the following equation, which is derived by Pozzi and Der Kiureghian [31]: 
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where  tag  is the horizontal ground acceleration and N  is the number of modes that are con-

sidered directly when computing the acceleration envelope (e.g. three in Eq. (39)). Based on the 
assumed properties for the first three modes that were described above, the terms in Eq. (40) are 
found from the acceleration profiles in Table 3. Taking the maximum absolute value of Eq. (40) 
gives the maximum residual acceleration envelope associated with the truncated higher modes: 
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(41) 

where PGA is the peak horizontal ground acceleration. Eq. (41) is plotted in Figure 8a, normal-
ised by the maximum value of  zar max, . As noted earlier, Figure 8a does not represent the relative 

contributions of the different modes. Because Eq. (41) was developed by assuming that the first 
three modes are included in Eq. (39), it must be modified if a different number of modes is used. 

VALIDATION OF PROPOSED DESIGN EQUATIONS FOR CONTROLLED ROCKING 
STEEL BRACED FRAMES 

Comparison with shake table testing 

Figure 9a shows a schematic of a 30% scale model of an eight-storey controlled rocking steel 
braced frame that was tested on a shake table [24-25]. The frame was scaled from a design for an 
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eight-storey building in Vancouver. Post-tensioning and friction energy dissipation were provided, 
resulting in the theoretical base moment-rotation response that is shown in Figure 9b. The 
first-mode period of the structure was measured as 0.49 s using low-amplitude testing that did not 
cause base uplift. Figure 9c shows the recorded table accelerations for three records where the 
higher modes had a relatively significant influence on the response, and Figure 9d shows the as-
sociated response spectra. The design spectrum for the Vancouver site is shown for reference. 
Both the design spectrum and the ground motions were scaled to satisfy similitude requirements. 
The 19 ground motions that were used for testing are described by Wiebe et al. [24-25]. 

For the three ground motions that are shown in Figure 9c, Figure 10 compares the measured peak 
overturning moments, storey shears, and floor accelerations to the values calculated using the 
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Figure 9  Shake table test structure: (a) schematic; (b) theoretical base moment-rotation response; 
(c) recorded table accelerations; (d) 5%-damped acceleration spectra of recorded table accelerations 
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proposed method. These calculations use the response spectra of the recorded ground motions with 
5% damping because this was consistent with the measured response [32]. The maximum base 
moment is taken as the value that was measured during each test, whereas for capacity design 
purposes, it would be taken as the maximum expected overstrength base moment. The initial pe-
riod was taken from the experimental results, but no modal analysis was required for the proposed 
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Figure 10  Envelopes for records ENA-1, MCE-3, and INC-200%: (a) overturning moment; (b) storey 
shear; (c) floor acceleration 
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method. For comparison, a modified modal superposition (MMS) approach based on the recom-
mendations of Priestley and Amaris [8] is also shown. In this method, the first-mode demands are 
calculated in the same way as above, assuming an inverted triangular distribution of forces to reach 
the maximum measured base overturning moment, but the higher-mode contributions are calcu-
lated from an elastic modal analysis of a simple model that was made in SAP2000 [33] and used 
for design [32]. The first-mode period of this model was 0.44 s, compared to a measured period of 
0.49 s. The first three modes are used, accounting for 98% of the mass participation, together with 
the 5% damped spectra of the measured ground motions. As recommended by Priestley and 
Amaris [8], the modal contributions to overturning moment in the top half of the structure are 
combined using the SRSS and multiplied by 1.1, while the moment envelope in the bottom half is 
taken as linear from the estimate at the fourth storey to the known maximum base overturning 
moment. The modal contributions to storey shears are combined using the SRSS, and the same 
assumption is also used to calculate an acceleration envelope. 

Figure 10a shows that the proposed method captures the shape of the overturning moment enve-
lope reasonably well. Although this method calculates the peak overturning moment over the 
height to within 5% for record ENA-1, which had particularly strong higher mode effects because 
of its high-frequency content, the method is conservative by more than 20% for the other two 
records that are shown. The MMS method is more conservative and less accurate than the pro-
posed method in the upper half of the frame for each of the three tests that are shown, but the MMS 
method is less conservative than the proposed method in the lower half of the frame, making it less 
accurate for record ENA-1 but more accurate for the other two records. Table 4 gives the ratio of 
the maximum calculated overturning moment over the height to the maximum measured moment 

Table 4  Ratios of estimated to measured response parameters

 
Maximum Overturning   

Moment over Height 
First-Storey Shear Peak Floor Acceleration 

ground motion 
proposed 
method 

modified modal 
superposition 

proposed 
method 

modified modal 
superposition 

proposed 
method 

modified modal 
superposition 

SLE-1 1.00 1.00 1.32 1.21 0.93 0.72 
SLE-2 1.00 1.00 1.28 0.88 1.07 0.57 
DBE-1 1.00 1.00 1.18 1.62 0.73 0.91 
DBE-2 1.00 1.00 1.31 1.45 0.98 0.93 
DBE-3 1.00 1.00 1.15 1.07 0.92 0.77 
CAS-1 1.11 1.00 1.20 0.99 0.99 0.71 
CAS-2 1.09 1.26 1.05 1.67 0.81 1.10 
ENA-1 0.95 1.05 1.03 1.41 1.12 1.20 
ENA-2 1.42 1.69 1.06 1.55 1.01 1.19 
MCE-1 1.00 0.95 1.31 1.69 0.81 0.86 
MCE-2 1.36 1.10 1.22 1.24 1.02 0.87 

INC-25% 1.00 1.00 1.22 1.14 1.06 0.83 
INC-50% 1.10 1.00 1.01 0.99 0.78 0.66 
INC-75% 1.17 0.95 1.13 1.17 0.90 0.78 

INC-100%   
(= MCE-3) 

1.24 1.16 1.11 1.32 
1.01 0.97 

INC-125% 1.33 1.25 1.31 1.53 1.11 1.05 
INC-150% 1.22 1.37 1.18 1.65 1.15 1.25 
INC-175% 1.38 1.43 1.24 1.56 1.08 1.07 
INC-200% 1.45 1.46 1.17 1.43 1.28 1.20 

mean 1.14 1.13 1.18 1.34 0.97 0.92 
st. dev. 0.15 0.20 0.10 0.26 0.12 0.19 
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for all 19 ground motions that were tested. The proposed method, which does not require a modal 
analysis, is only slightly more conservative than the modified modal superposition (average of 
1.14 compared to 1.13), with a slightly smaller sample standard deviation (0.15 compared to 0.20). 

For the three records that are shown in Figure 10b, the proposed method captures the shape of the 
experimentally measured shear force envelopes well, including the relative reduction that occurs 
below midheight of the frame. The peak first-storey shear is captured to within 3% for record 
ENA-1, and within 17% for the other two records. The MMS method also captures the reduction in 
shear near midheight, but the first-storey shear is overestimated by more than 32% for all three 
records shown because it is based on the fixed-base modes (see Figure 3 and Figure 4). Even when 
considering ground motions where the higher modes have relatively less effect, Table 4 shows that 
the proposed method captures the first-storey shear more accurately than the MMS method (av-
erage error of 18% on the conservative side, compared to 34%) and with a reduced sample 
standard deviation (0.10 compared to 0.26), while also avoiding the need for a modal analysis. 

The estimated acceleration envelopes have a more complex shape than the other envelopes be-
cause the higher modes contribute more significantly to this parameter. For records ENA-1 and 
MCE-3, the acceleration envelopes computed using the proposed method are accurate to within 
30% at all levels, while those calculated using the MMS method are within 37% at all levels, with 
both methods overestimating the accelerations at some levels and underestimating them at others. 
The error is similar for record INC-200% at all levels except the top, where both methods over-
estimate the peak acceleration. Even though the peak floor accelerations are not computed very 
accurately at individual levels, Table 4 shows that both methods capture the peak floor acceleration 
at all levels to within 8% accuracy on average. 

Comparison with nonlinear time history analyses 

Additional validation has been completed using nonlinear time history analyses of controlled 
rocking steel braced frames with two, six, and 12 storeys [34]. The frames were designed using a 
performance-based approach and were subjected to a suite of 44 records at the Maximum Con-
sidered Earthquake (MCE) level. The acceleration, shear force, and overturning moment enve-
lopes were estimated using the method proposed here. To conservatively estimate the influence of 
the higher modes, the acceleration spectrum in Table 3 was taken as one standard deviation above 
the median of the ground motion suite. For the six- and 12-storey frames, the estimates of all three 
response quantities were generally one standard deviation above the median response, to within 
about 10%. However, the equations presented here overestimated the peak shears and overturning 
moments for the two-storey frame during all 44 ground motions. This unnecessary conservatism is 
because the mass is not uniformly distributed over the height for such a low-rise structure. Similar 
accuracy was found when considering the peak floor accelerations [32]. 

CONCLUSION 

Higher mode effects work against the goal of capacity-based seismic design by allowing peak 
seismic forces to increase even after a nonlinear mechanism has formed. To study the response of 
the structures that are most influenced by higher mode effects, an analogy was made to a cantilever 
shear or flexural beam with a variable amount of base rotational restraint. Solving for the modal 
properties of these beams showed that the first mode changes significantly as the base condition 
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changes from fixed to pinned, but the higher modes are less affected: the periods of the higher 
modes elongate, but this elongation is bounded, is small for the shear beam, and decreases with 
increasing mode number for the flexural beam. The modal shear force and overturning moment 
diagrams change with the amount of base fixity, so the fixed-base modes may not capture the real 
higher-mode response. Assuming that the first mode is in the constant velocity region of a typical 
design spectrum while the higher modes are in the constant acceleration region, most response 
quantities of interest are controlled by the first two lateral modes only, regardless of the base fixity, 
except at locations along the height where the second mode contributes little. 

Using the analogy of a uniform cantilever shear beam, closed-form expressions were developed to 
estimate the modal overturning moment, storey shear, and floor acceleration envelopes, using only 
the tributary weight, structural height, acceleration spectrum, and an estimate of the first-mode 
period. These expressions can easily be implemented in a spreadsheet, allowing a designer to es-
timate the system forces for preliminary design without conducting any modal analysis. Relative 
to the envelopes that were measured during large-scale shake table testing of a controlled rocking 
steel braced frame, the proposed method was of similar or better accuracy to a modal superposition 
approach, but it avoided the need for modal analysis of a structural model. Nonlinear time history 
analyses of other designs have further confirmed the validity of the proposed approach [34]. 
Although the analogy in this paper to a beam with uniformly distributed mass is not appropriate for 
low-rise buildings, higher mode effects are not generally significant for these structures. 

This paper was developed as part of a study of controlled rocking steel braced frames. Although it 
is expected to apply to other systems that rely on a nonlinear moment-rotation response at the base 
to limit the peak forces, further analysis is required to verify this. Future work will also extend the 
expressions that have been developed based on the properties of cantilevered shear beams to en-
compass the spectrum between shear and flexural beams. 
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