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Abstract

Intensity modulation direct detection (IMDD) transmission scheme has been the 

mainstay in optical communication ever since semiconductor lasers were put to use as the 

choice transmission sources. With the development of new improved laser types, this 

method will continue to dominate the third generation light wave networks where bit 

rates have steadily risen beyond lOGbps mark. The main attraction of this scheme lies in 

its simplicity. With EDFA amplifiers providing a cost effective solution to the attenuation 

problem, long haul network capacity under the scheme has greatly increased.

At the design stage of such systems, it is essential to accurately predict the 

behavior of each system component right from the laser transmitter up to the optical 

receiver under custom specific operating conditions and laser diodes are one of the key 

components for a wide range of light wave communication systems. For this purpose, 

computer-aided simulation techniques based on behavioral models of laser diodes have 

been developed and validated for a variety of applications [4-8].

A ‘representative’ behavior model, which closely approximates the device’s 

actual physical model, is essential to the system designer. Unfortunately, the component 

vendor or manufacturer may not be able to provide all the information needed to predict 

such behavior. The only information that can be made available, are certain measured 

variables over a specified measurement range. The designer therefore, needs a tool to
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effectively convert this data into a useful model with sufficiently accurate parameters for 

predicting behavior.

As the complexity of the model increases, more detailed knowledge of the laser is 

required and the computation time for system performance calculation increases. While 

sophisticated models provide considerable insight into important characteristics of the 

lasers, for system simulation purposes a relatively simple model is often adequate. In this 

thesis we will propose a very robust and efficient procedure for estimating the modal 

parameters and go on to propose a complete solution to the OD laser model extending to 

such domains as the below threshold dynamics and temperature effects.
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Chapter - 1

Introduction

The zero-dimensional rate equation model has been preferred for estimating laser 

system performance, in many literature, as it is independent of the structural parameters 

of the device (which are generally not available from the vendor) and its time- 

dependence makes it easy to associate and solve, with the time varying transmission 

signal input. A few variations and modifications of these equations have been presented. 

The behavioral models based on rate equations, however, require a number of modal 

parameters [1], which are not readily accessible to system designers. Without any doubt, 

the precise knowledge of these parameters is a prerequisite for the accurate prediction of 

the laser performance. There have been considerable development in new laser structures 

(e.g. DFB, DBR etc.) over the years; the basic physical interpretation however, remains 

the same, that the rate equations fundamentally describe the interaction between the 

carrier density and the photon density in the laser cavity.

1.1 Review of previous work

Efforts have long been underway to develop a behavior model, which on one hand 

is accurate enough to describe the device’s physical behavior and at the same time, 

practical enough for the designer to work with for a variety of applications. The main
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difficulty is that if the model is very accurate, it carries too many unknowns, making it 

cumbersome to handle and time consuming to solve for, likewise, if the model is simple 

enough to be resolved, it may overlook some key physical characteristics. We end up 

with solutions that would work on some devices while fail to predict the behavior of 

others, or on the other hand if the predicted behavior is accurate, the extraction procedure 

is sensitive to initial estimates or time intensive.

The two most significant achievements in this direction are by J.Cartledge etal.[l] 

and L.Bjerkan etal. [2] who have used contrasting techniques for estimating rate equation 

parameters and then using these parameters to estimate the behavior. Both authors have 

used the steady state L-I characteristics and the small signal AM-frequency response data 

to estimate the parameter values, in their formulations.

In the first case, an all-numerical solution is presented to solve for the nine rate- 

equation parameters with the obvious sensitivity problem for convergence, to the range of 

initial estimates made. The main advantage is that all parameters are self-consistently 

extracted from the same source (i.e. laser). In the latter case [2], the authors have 

presented a modified rate-equation model by combining various parameters and treating 

them as lumped unknowns. The techniques for estimating these parameters is part 

analytical, part numerical. Although, the method is simple and has reduced the total 

number of parameters to be extracted, at the same time, the data requirement needed to 

determine the complete set has increased, some of which is not available for most 

commercial lasers, most significantly, the below threshold experimental data of the Ll- 

response, to compute spontaneous emission coupling parameter. Secondly, signal 

dispersion from a coupled fiber or laser spectral measurements were used in the process 

with considerable difference in the extracted parameter values computed from either 

source. This raises questions about the self-consistency of the data, as fiber being a 

different medium than laser, while the optical spectral measurements were not consistent 

with theoretical measurements, for all the tested devices.
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1.2 Scope of this report

This work closely follows the work done in [2], with a few critical exceptions. We 

hope to present a workable model not only for the above threshold operating conditions 

but also provide for lasers, pre-biased below threshold, something, which the previous 

methods have not attempted. This is an important objective, owing to the fact that high 

temperature sensitivity of many lasers prevents them from being operated too close to or 

above threshold and turn-on delay assumes significance for such devices when gain­

switching schemes are implemented. Secondly, in order to maintain self-consistency in 

the data we would utilize only measurements from the model laser itself, which would 

include the steady state and small signal response measurements alone. Large signal 

measurements are used only as a means of comparison and optimization (if required). We 

would also present parameter estimation techniques, which are uniquely analytical. A 

modified rate-equation model is presented which is different from the one used in [2],

1.3 Thesis Overview

We start off with the description of the physical dynamics that are responsible for 

semiconductor laser behavior under various levels of current injection. Chapter-2 details 

these underlying phenomenon and then goes on to develop the universal rate-equation 

model based on the physical model.

Chapter-3 deals with the steady state solution of the rate-equation model and 

draws on a few results for the most frequented, above-threshold operating conditions, 

based on some reasonable assumptions from the physical model. The second part of this 

chapter then uses these steady state solutions to modify the rate-equation model into a
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form suitable for the extraction of unknown parameters or a combination of parameters. 

This ‘Modified’ rate-equation model forms the backbone of our solver. A discussion on 

incorporating dynamic thermal behavior from steady state temperature related changes is 

included as a prelude for future work.

In Chapter-4, we continue on to solve the universal rate-equations under the small 

signal regime and develop the relationship for small signal IM frequency transfer 

function, which is key to the estimation of parameters. We then formulate analytical 

expressions for the parameters in our modified rate-equation model that are directly 

extracted from the laser small signal response and steady state solution.

Chapter-5 deals with the process of verification of our extraction method by 

testing the model with the laser data from [1] and the simulated results of the ALDS 

simulator both with vastly different response characteristics. It also tests the robustness of 

the method by introducing a degree of variation in the parameter values and observes the 

effect on the simulation results.

We finally conclude with the presentation of some key results drawn from our 

work and the limitations and benefits of using this technique as compared to those 

presented in [1] and [2]. This section will also provide an outline for future research in 

this direction.



Chapter - 2

Laser Rate Equations - Governing physical 
phenomenon of a dynamic response model

2.1 Laser Diodes - Spectrally refined light sources

Laser diodes are small and coherent optical radiation sources of high intensity 

which can be modulated directly at high speed. In fiber optics communication systems a 

number of additional requirements need to be met such as

o Spectral characteristics matching the fiber characteristics 

o Continuous operation up to the temperatures occurring in the transmitter and at

specified optical output powers (typically 5 to lOmW) 

o Stability in spatial and spectral distribution of the laser emission 

o Adequate stability of the principal laser characteristics over long periods of

operation

o A sufficiently simple, i.e. economical fabrication method.

An important measure in fulfilling these requirements is the internal structuring of 

the laser in addition to the external confinement by the two mirror surfaces. This serves to 

confine the electrically pumped region around the p-n junction and the optical cavity to a 

small region in the laser crystal. An essential pre-requisite for continuous operation at and
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above room temperature is the vertical confinement of the charge carriers and the optical 

wave by the 'double hetrostructure’ to an active region usually only 0.1 to 0.2pm thick.

Lateral

Fig.2.1 Spatial confinement of the active region of a laser diode

An important factor as regards the optical stability of the laser diodes is the lateral 

confinement. This compels the laser to oscillate (nearly) in the fundamental mode only 

and prevents higher-order modes from propagating. This prevents such instabilities as 

kinks in the characteristics, large emission noise and the possibility of the far field 

fluctuating as a result of competing modes. It also prevents deformation of the lateral 

gain profile by the stimulated emission itself.

2.2 The physical model

If we consider the laser as a light source, then we need to establish the fact that to 

maintain continuous generation of light (photons), the laser needs a gain medium and



7

some sort of feedback (like an RF oscillator). The gain is provided by the active material 

laser cavity and the facet reflection provides the necessary feedback.

Without going into details of the material properties or the band-gap structure of 

laser cavity, it is suffice to say that in the double hetrostructure of a semiconductor laser 

(e.g. N-p-P), under certain condition of forward bias, free electrons are injected into the 

cavity from both sides. The thermal equilibrium of the free electrons is disturbed and 

more electrons are pumped from the valence band into the conduction band, making the 

conduction band as a reservoir of free electrons (and simultaneously making the valence 

band a reservoir of holes). The capacity of this reservoir increases in direct 

proportionality to the increasing injection level.

The fermi-levels, which define the probability of occurrence of both electrons and 

holes (and in turn the band-gap energy level) within the band structure, are therefore 

shifted from their equilibrium position into the respective valence and/or conduction 

bands. The high-energy electrons in the conduction band can undergo several 

phenomenons.

a. Some recombine with the holes through non-radiative (indirect) recombination, such 

that the energy released in the form of photons is less than the band-gap energy and is 

absorbed without causing any excitement.

b. Others recombine spontaneously (direct transition from conduction to valence band) 

the energy released is equal to or higher than the band-gap energy and can excite 

further electrons from valence into conduction band. At low injection levels, only a 

fraction of these spontaneous recombinations emit photons into the mode of interest 

and the released energy leaves the cavity to contributes to the laser output.
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c. As the injection level is gradually increased, so does the spontaneous recombination, 

which excites more electrons into the conduction band, giving rise to the phenomenon 

called stimulated absorption. Stimulated absorption events create new carriers and are 

also responsible for the disappearance of photons.

d. At sufficiently high levels of injection, these electrons can recombine with the 

valence band holes and in the process release photons having twice the energy with 

the same direction and phase as the absorbed photon energy. Thus, at this stage 

energy amplification takes place and the phenomenon is called stimulated emission. 

Stimulated emission events provide a recombination path for the carriers and are the 

source of new photons.

• « • • • •
CB

VB

• • • • •
4»

♦ • À L

l r 5

hv hv

f> 1 r
/Wk 2hv

#### # $$$$##
(a) (b) (c)

Fig.2.2 Electron transitions between conduction and valence bands 

and the generation of photons, (a) Non-radiative recombination; (b) 

Spontaneous emission (c) Stimulated absorption and emission.

Once stimulated emission is obtained, the gain inside the cavity balances the 

losses (due to absorption from non-radiative recombination mirror reflectivity) and the 

laser is said to have achieved its threshold. Any further increase in the injected current
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directly contributes to the laser light output depending upon the output coupling 

efficiency.

The dynamic response of semiconductor laser can be quite accurately predicted, if 

we can obtain the time response of the photon density in the active region of the laser 

cavity in response to the electrical excitation current injected into the device.

2.3 Developing the rate equation model

Now let us formulate the time dependence of carrier and photon densities inside 

the cavity with the underlying assumption that all perturbations within the cavity are 

uniform everywhere, or, in other words there is no spatial dependence associated with the 

carriers and photons.

When a laser is subjected to a positive voltage across the terminals, current flows 

in and carriers accumulate around the junction of the cavity. In practice, a fraction of the 

injected current reaches the cavity and the leakage carriers are defined by the 'internal 

quantum efficiency’ (77,.). For the DH active region, the rate of change in carrier density is

The injected current provides the generation term above (Gg), while the various

recombination processes (as well as carrier leakage) which reduces the carrier density in 

the conduction band, contribute to the recombination term (Rr). A portion of the injected

— carriers cross the interface and are confined within a narrow width ld’ of the cavity.
<1
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Thus the rate of injection is given by

G s qd
Or

qV

1

Where ‘V’ is the volume of the active region. The recombination process must encompass 

all the possible mechanisms discussed earlier. Therefore, combining spontaneous 

emission rate, non-radiative recombination rate and the stimulated emission rate

7? — Rn + R„r + /?,r sp nr st

Where

¿'st st (emission) lxst (absorption)

We have neglected the leakage term in the above relation assuming that the lateral 

and/or transverse potential barriers are sufficiently high. The first two terms describes the 

natural decay process of carriers within the cavity, which is governed by the spontaneous 

emission ‘carrier lifetime' (rN )

The stimulated recombination term requires the presence of photons inside the 

cavity. In the absence of photons the carrier rate equation is simply the sum of 

spontaneous recombination and the non-radiative recombination rates

Given that
t

N - noe
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Where n0 is the original carrier density before injection. Since each term on the RHS

depends upon the existence of carriers, the natural decay of carriers can actually be 

expressed as a power series expansion of the carrier density.

Rr = — = BN2 +(aN + CN3)

Where ‘B’ is the bimolecular recombination coefficient and defines the spontaneous 

recombination rate. Our carrier rate equation now becomes

dN I „ N 
dt h qV s‘ rN

Rsl represents the photon-stimulated net electron-hole recombination, which

generates more photons. This is thus a sain process for photons facilitated by the injected 

current. As illustrated in the figure, the net effect of the upward and downward electronic 

transitions, corresponding to the stimulated absorption and emission of photons, 

respectively, is shown to be a growth of photon density from an initial (or incoming) 

value of ‘ S, ’ to an outgoing value of ‘ So ’ with increment ‘ AS as it passes through a 

small length ‘ AL ’ of the gain medium (active region or laser cavity).

S„=S,+AS

Let ‘g’ be the gain per unit length inside the cavity. The cavity volume occupied 

by the photons is much larger than the active region volume occupied by the electrons 

and there is a partial overlap between the active region and the photon field (which is true 

in practice) defined by the 'gain confinement factor' (T).
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We can also describe this photon growth as

S, + AS = S exp(TgAL)

◄-------------------------------- ►

AL

Fig 2.3 The simplified laser cavity gain model

If ‘ vg ’ is the group velocity of photons,

AL = vg Az

If the cavity length is sufficiently small, then we can make the following approximations.

exp(rgAL) ~1 + TgAL

Thus,

AS = TgALS = Vgv^tS

And

st-gen
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Photon generation from spontaneous emission is random and the contribution is 

assumed equally likely for all possible optical modes within the laser cavity. This implies 

that a small portion of these spontaneously emitted photons are in phase with the mode of 

interest and contribute to the gain. This contribution from spontaneous emission is

dS

dt sp-gen.

=r/»,, = rp—

Where, we define ‘ f3 ’ as the factor that determines the fraction of spontaneous emission 

photons into the lasing mode.

Photon loss occurs within the cavity due to optical absorption and scattering out 

of the mode, and it also occurs at the output-coupling mirror where a portion of the useful 

mode is usually coupled to some medium (such as fiber). We can characterize the net loss 

by a photon (cavity) lifetime lTp\ Analogous to the carrier decay, the photon lifetime 

defines the photon decay and is quantified by.

111/ X^+^=v‘(al+aJ

Where ‘ <z, ’ and ‘ am ’ characterize the internal cavity loss and mirror loss respectively.

Thus, the net loss of photons from the cavity, is given by

dS

dt loss

We can now formulate our photon rate equation.
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dS_
dt

= rvgs-—+r/3—

The stimulated emission term in the carrier rate equation can now be defined as

Rst =vg8$

Note that the gain confinement factor is not included since the electrons lie within 

the active region and there is no need to account for an overlapping field as in the case of 

photons. The carrier rate equation is thus given by

dN 1 r N 
-r = TJi—r-vgSS-----

For the purpose of behavior modeling the internal quantum efficiency is generally 

neglected, as it does not affect the overall response function of the laser. Therefore,

dN I „ N

Now, as the carrier density increases with increasing injection level, the gain in 

the cavity increases, however, the laser will not be able to sustain a stimulated emission 

of photons unless this gain overcomes all the cavity losses including mirror losses.

If we consider the excess electrons in the conduction band as a source of photons 

inside the cavity, then it will be easy to understand that a sufficient level of electron 

buildup is required before we have positive gain inside the cavity. This minimum level is 

called the ‘transparency level'. Thus, when the carrier injection is high enough to create a 

quasi-Fermi level separation exceeding the band gap, we have positive gain.
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Eg <hv<hEf

The rate of increase in gain with increasing carrier density is characterized by 

'differential gain'. For all practical purposes this is assumed to be a constant device 

parameter, however, more realistically it decreases on a logarithmic scale. Total cavity 

gain as a function of carrier density can now be approximated as a straight line

The total gain variation {dg ) can be explained by assuming it is affected by both carrier 

and photon density, such that

dg = adN - apdS

This indicates that gain is directly proportional to an increase in carrier density while it 

decreases with an increase in photon density. In terms of total gain this inverse 

proportionality to photon density is expressed as

g(N,S)~
1

1 + £S

1 + sS

From which we can obtain

dg ~dg = g0 

dN dN 1 + fiS

For simplicity, we have neglected the differential gain component due to variation 

in photon density, since this component is very small. Our model is a behavior model, 

which will generally work in the linear region of the laser operation above threshold.
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Thus the partial derivative of gain with respect to carrier density represents the total gain 

variation for all practical purposes. The universal OD coupled rate equation model for 

single operating mode, can now be completely represented as follows

dS YSo{N-Nt)S S ^oN----_ _o_0_\---------T_±---------+ YR-----  (2.1)
dt 1 + fiS1 Tp rN

dN _ I g0(N-NT)S N 

dt qV 1 + eS tn

The parameters that define the intrinsic properties of the laser in this model are 

listed in table 2.1.

Description Symbol Unit

Active region volume V COT3

Gain confinement factor r au

Gain slope constant go cm3 ! s

Differential quantum efficiency Vd au

Average photon lifetime Tp s

Carrier lifetime s

Transparency carrier density nt COT-3

Gain compression factor e COT3

Spontaneous emission factor p au

Table 2.1
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The parameters represent various structural characteristics of the laser cavity and 

in turn are reflected in the device performance curves to varying inputs. It is very difficult 

to uniquely determine all these parameters as have been evident in the previous works 

[1],[2]. We will however, try to isolate some of these parameters and for those which 

cannot be isolated, a lumped parameter will be estimated from the performance 

characteristics of the device alone.

2.4 Representation of refractive index modulation effect

Current modulation of the active region results in the modulation of both the 

photon density and the carrier density. The modulation of the carrier density modulates 

the gain, however, it also modulates the index of the active region (na). This is 

equivalent to altering the length of the cavity and as a consequence, the resonant mode 

shifts back and forth in the frequency. This frequency modulation (FM) is desirable only 

if we want to dynamically tune the laser, but for intensity modulation (IMDD) 

applications, this phenomenon is undesirable noise at the output of modulated light 

spectrum as it broadens the linewidth.

The optical energy of a diode laser propagates in a dielectric wave-guide mode, 

which is confined both transversely and laterally, defined by a normalized transverse 

electric field profile £/(x,y). In the axial direction this mode propagation can be 

represented by a time-space varying electric field

E = e\EQ\U (x,y}ei^t-0^ (2.3)

The complex propagation constant includes the incremental transverse modal gain and 

incremental modal loss terms found from the weighted averages of the gain and loss.
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Fig.2.4 Laser cavity with active and passive regions together with the 

mode profde

The real part of the propagation constant is given by

Inn
“T (2.4)

Most laser cavities can be divided into two general sections: an active section of 

length La and a passive section of length Lp with zero gain (figure-2.4). The 

propagating mode is reflected by end mirrors with amplitude reflection coefficients r, 

and r2 respectively, to provide a resonant cavity.

In order for the gain in the active region to reach threshold, the gain in the active 

section must be increased to a level where all the mirror and cavity losses are
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compensated and the electric field exactly compensates itself after one round trip in the 

cavity.

E(z = 2L) = E(z = Q)

^1 —

Eo E»
F F

z=Q z=L

Fig.2.5. A schematic of the cavity representing the boundary 

condition for threshold

By introducing the mode reflection coefficients at the two boundaries we implement the 

boundary condition for threshold.

F _ F

e' = rYE0e2(s~a)L

. Tf _ r r J?• • ^0 “ /l/2r'0e

And
rir2e2(g-a}L = 1
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In the case of a 2-section cavity, this can be represented as

ri r2 exp(- 2 La )exp(- 2jfiptll Lp) = 1

For this equation to be valid, the real part of the propagation constant must be equated as

PathLa+PP,hLp=m7r

Making substitution from equation (1.4) above

4 =—fcA +n L ]
m

Or

= P-5)

In this relation, the refractive index is a function of both wavelength and carrier 

density, thus the effect of variation of both has to be accounted. If we have the two 

variables as

N = N0+AN and yl = A0+A2

Then

n(A, N) = n(A0, No) +f^- zU + AW

If we take the differential of equation (2.5) and include the above variations, then the first 

term of this differential is given by

A(ma) = Avna + v
dn„ . dn„ ... 
—-Ay+—-AN 
dv dN
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If we define the group refractive index as

_ _ dnn = n + v— 
g dv

Then

A(m ) = Aiwm + v^-NN
V a! ga

For the passive section
A(mp)=Amgp

Equating the original differential equation to zero

AwSA + AmgpLp + vngaLa ^NN = 0

Av = __
n L in L dNga a "gp^p

Defining the transverse gain confinement factor for the active cavity as

n Lp = ga a
n L +n Lga a gp p

We get

At? = -r u^-AN
z dN

Av = -r2^^A/V 
z A, dN

(2.6)

Where v is the group velocity.
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The change in effective propagation index can be related to the change in active material 

index through the relation

An = F An

dn _ dn 
~dN~ xy~dN

Making this substitution in equation (2.6)

Av = -Tzr ^-^-AiV 
A dN

TV dn
Au =------L_jla2V (2.7)

2 dN

From our previous discussion of mode propagation inside a cavity, we know that the 

imaginary part of the propagation constant is proportional to the cavity gain.

8 =
4/zn,.~r

Where n, is the imaginary part of the refractive index.

dg _ 4# dn, 
~dN ~dN

We now define the llinewidth enhancement factor’ as the ratio of the rate of change of 

real and imaginary refractive indices with respect to a change in carrier density.
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dnldN _ 4jt dn/dN 
dnjdn A dgldN

dnReplacing —- in equation (2.7) with the above, we get the frequency shift in response to 
dN

changes in carrier density

Av = —IV-^-AN 
4tf s dN

Av = -^-TveaAN 
4tt g

(2.8)

Where a is the differential gain coefficient.

Now taking the photon density rate equation we solve for the difference between gain and 

loss terms.

_L_dS
5 dt

-r/3 N

Stn

The carrier density and gain are clamped at threshold and we can approximate this gain 

around threshold.

Where we have neglected the gain component due to the photon density as photon 

density is still very small around threshold.

+ T'v.a(N-N = l_dS~

S dt
-r/3

N
Stn
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We can neglect the spontaneous emission term above threshold, on the RHS of the 

equation, and can approximate the first term as

Therefore

rv,a(w-jv,J =
S dt

From equation (2.8), we can now define the frequency shift in terms of the photon

density, using the above relation

Av =
a
4# S dt

Or

a aAv =— 
47t

l_dP_

P dt
[Since S P ]

We can directly compute the phase rate equation from equation (2.8)

2Av = a^YS,(N-N,i)

= (2.9)

Once the linewidth enhancement factor is known the phase rate equation can be 

used to compute the laser’s dynamic frequency chirp at different bias levels subject to the 

injected current. This provides a useful insight into the spectral stability of the device and 

limitation for the modulation frequency.



Chapter-3

‘Modified’ Rate Equations and a Simplified 
model for Temperature Induced Behavior

3.1 Steady state solution of the rate equations

The solutions of the rate equations for DC excitation are well documented. This 

section will outline few of the results of this solution together with developing a 

functional relationship of the steady state photon density with the DC bias current, 

through an analytical expression.

Under steady state conditions, the rate of change in carrier and photon densities is 

zero and we can apply this simplification to our rate equation models, given that

— = 0, N^O And — = 0, S*Q
dt dt

With these formulations we can write the steady-state representation of rate equations 

(2.1) and (2.2).

25
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rgo(Af0-ArrX

1 + éSo
_j?o.+r^^ = o

Tp Tn

Idc _ gM> Nt)S0 _ No _q 

qV 1 + £SO tn

The steady state photon density from above, is given by

SDC = s„ l rgo(Ar,-jvJ
Tp 1 + £S0

If we consider the above threshold region of operation, the steady state carrier 

density is plugged to its threshold value and the stimulated emission is dominant in the 

cavity such that the below threshold spontaneous emission into the lasing mode is 

negligibly small. Thus, under these assumptions

¿0 ^So^TH Nr)S0 _ g 
tp 1 + eS0

We neglect the gain compression term in the denominator, as its effect is very small

rg,(Jv„-wr)=-i-
TP

(3.1)

This equation is consistent with our previous assumptions when describing the 

physical model of the semiconductor laser. Above threshold, the gain inside the cavity 

exactly equals the total cavity loss and is thus inversely related to the average photon 

lifetime, which defines the natural decay rate of the photons. Here, the use of a space-
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independent model is justified as the implied assumption of equation (3.1) is in 

neglecting spatial dependence and assuming uniform field throughout the active region.

The DC component of the injected current can now be defined as the threshold 

current if we assume the photon density to be zero and plug this in to the carrier rate 

equation (2.2)

tn
(3.2)

Above threshold, the assumption of zero photon density is no longer applicable 

since the stimulated emission term is dominant and the photon density grows to its steady 

state value. The above-threshold steady state carrier rate equation (with S 0), is given as

I sM,-nt)s n„ q 
qV 1 + £Sq tn

___8 o foo Nt )S ~ ITH _

qV 1 + £SO qV

N I. . iXTH — lTH

Making substitutions from equation (3.1) above

FrP qV qV

qV
(3.3)
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Now, if we have defined the DC injection current as

I DC ~ ^TH + /.

Sn Hl
qV

Where ‘ 1B ’ is the above-threshold DC current component. This steady state relationship 

of the laser is represented by the L-l characteristic.

Fig. 3.1 Typical steady-state L-l characteristic of a semiconductor laser

This is typical of most characteristics provided for commercially available 

devices. Note in particular the absence of any apparent photon density below the 

threshold point indicating absence of any spontaneous emission. However, in reality, a



very small level of light output is available below threshold, which is not represented by 

the LI characteristics.

3.2 Spontaneous emission and its effects on steady state 
characteristics

In any semiconductor laser, the threshold current ITH is required to obtain the 

threshold carrier density, which is effectively clamped at this level for 1 >ITH . Thus any 

injected electron in excess of the threshold current must contribute to the stimulated 

emission and the emitted power becomes proportional to 1 - ITH. Below threshold, the 

laser emits spontaneous emission just like the usual LED. The total spontaneous emission 

power is given by [3].

hv
I

Where t]R is the radiative efficiency of the device. This is the power, which is available 

for all the laser modes below threshold. The below threshold region can be approximated 

by neglecting the stimulated emission term in photon rate equation above, and solving for 

S again under steady state condition, which gives:

N
S = V/3—Tp

N

The output power through one laser facet is proportional to S and is given as [1]
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Here V p = — and aM is the mirror loss of the laser. On simplification, we obtain

a, = n,n. hv
pi (3.4)M

am y

is the internal cavity loss.

~^StH ~ —
vgtp

Given that

T(. tM

The spontaneous emission has a low efficiency so that considerable optical power 

is emitted only after I > 1TH . Without the spontaneous emission, an absolutely abrupt 

transition at threshold would occur; however, due to the spontaneous emission term, one 

obtains an amplified spontaneous emission even below threshold, which depends on the 

amount of this emission in the lasing mode.

At threshold, the spontaneous emission clamps as the carrier density clamps since 

spontaneous emission rate (RSP) depends upon N. Thus as current increases above 

threshold, the spontaneous emission noise remains constant at this value.

If we consider negligible feed back into the laser cavity then the feedback factor is 

unity and we can represent the output efficiency in terms of the cavity and mirror losses.

?o =
aM
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Where rj0 is the output efficiency of the laser. The spontaneous output power is now 

given by

(3.5)

This also inherently explains the dependence of differential slope on the 

spontaneous emission factor. Higher the spontaneous emission captured by the lasing 

mode near threshold, less photons will be contributed towards stimulated emission (and 

in turn the output power) above threshold, thereby effectively decreasing the slope 

(remember, the internal efficiency for spontaneous emission is very small).

Fig.3.2 The effect of spontaneous emission on the differential quantum

efficiency and in turn the slope

For DFB and DBR lasers, which by their very design are single mode lasers, this 

would be more apparent, since the mode suppression ratio (MSR) in these devices is 

much higher than their simple FP structure counterpart.
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The L-I curve near threshold, which is approximated as a discontinuous change in 

the L-I slope, is more accurately a ‘knee’ in the curve. This knee becomes softer for 

smaller devices (as indicated by the dashed curve in figure-3.2), due to the higher 

spontaneous emission rate in the lasing mode.

If non-radiative recombination is negligible, then as ) —> 1, the threshold

current reduces to zero. In such a “threshold-less” laser, all injected current is funneled 

into the lasing mode and we have maximum coupling of spontaneous emission into lasing 

(true for a LED). Thus the depth of the threshold of a laser governs the amount of 

spontaneously generated power that could couple into the lasing mode. For smaller 

devices where coupling is stronger, we have smaller values of threshold current together 

with a softer ‘knee’ in the L-I characteristics.

3.3 A ‘modified’ rate equation model

We will now redefine the rate equations in such a way so as to reduce the total 

number of unknowns and will later show them to be self-consistently extractable from the 

steady state and small signal device measurements alone.

The two variables in the coupled rate equations are the carrier and photon 

densities and we can replace these variables with any other set of variables so that the 

transformation is valid as long as the process maintains the balance of terms in the 

original model. Through a proper combination of rate equation parameters, we develop a 

modified rate equation model in terms of lumped parameters, which constitute new but 

measurable combination of unknowns (Appendix-A).
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â(q(N'^-T 'Ip-u —

(3.6)
dt (l + abcTpPt,

(3.7)

(3.8)

Where

qV Sq
b =

£

The other three remaining unknowns are “r/‘, “rw”and Thus we have

reduced the total number of unknown parameters in the rate equation, from 9 to 6. We 

will now show that these parameters (or combination of parameters) are extractable from 

the steady state L-I characteristics and the small signal AM-response of the laser.

In formulating the modifications above we have invoked the assumption of 

uniform field distribution and in turn uniform carrier and photon density distribution 

across the active region of the laser. We also maintain that once threshold is achieved, 

the carrier density will remain clamped to its threshold value under steady state.

In the modified rate equations, it is important to note that the carrier density - 

volume product is shown in brackets, this is so because this product and not the carrier 

density alone, is used as a variable for solving the rate equations. Thus by combining the 

volume parameter with the carrier density, we, on one hand are able to eliminate this



34

parameter from the computation and on the other hand offer no significant modifications 

to the rate equation so as to affect the results.

3.4 Incorporating thermal effects

Temperature changes can be very detrimental to the operational stability of a 

laser. Rise in internal temperature may cause a drift in the operating wavelength and the 

¿/-characteristics change. It is interesting to note the temperature dependent behavior of 

the steady state ¿/-curves for a typical laser model as shown in figure-3.3. When the 

device temperature increases, the L-I curve shifts outwards with an increase in threshold 

current. Both threshold current and internal efficiency are altered due to an increase in 

temperature, depending upon their respective characteristic temperatures.

Fig. 3.3 L-I curves as a function of temperature
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There are no practical means to accurately measure the cavity temperature; only 

an estimate can be made based on the casing temperature. Typically, a cavity temperature 

will be 15-20% higher than the casing temperature. Available data that can be used to 

model thermal related behavior is thus from the steady-state behavior.

Thermal changes are very slow to set in as compared to the electronic transitions 

in the cavity. The thermal process time constant is in the range of a few hundred 

nanoseconds to several milliseconds [14], whereas the time constants of optical and 

carrier processes are in the order of nanoseconds. It is therefore difficult to incorporate 

the thermal effects directly into the time domain laser model, especially for the static 

state simulations. Thus, instead of incorporating thermal dynamics into our model we 

propose to predict behavior at any particular temperature assumed constant at that point 

in time and predicting behavior there of.

The strong thermal dependence can be attributed to many mechanisms. While 

auger recombination and optical losses can play a role in thermal behavior, the majority 

of affects during static or continuous wave operation are due to the temperature 

dependent laser gain and carrier leakage out of the active region.

Spatial hole burning due to carrier density changes, from temperature, can lead to 

further reduction of the injection efficiency. It is widely known that differential gain 

decreases with an increase in temperature and this dependence plays a dominant role in 

determining the thermal sensitivity of threshold current. The optical gain required to 

achieve lasing, has to compensate for the optical loss, which increases with increasing 

temperature, but to reach a higher gain, a higher carrier density is required. The carrier 

density dependence is introduced via the transparency carrier density using the same 

exponential function [12].
f

Nt (T) = Nto exp
v

A?"
T.j
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Where T4 is the characteristic temperature.

All these interdependences are summarized through the bulk-cavity gain expression used 

in the standard rate-equations
AT /

G = rgoe
AT A

N-NTeT2

The discussed mechanisms affect the static LI characteristics. The temperature 

related change observed in the steady state response indicate that the threshold current of 

the device increases (largely due to the auger affect), the external quantum efficiency 

decreases and the gain decreases at a higher rate, at higher output powers. We neglect 

auger recombination effects in determining the various parameters, which are computed 

from measurements taken at room temperature; hence, we also neglect the slight changes 

to such parameters as carrier and photon lifetimes, based on our assumption that 

information on gain, threshold current and external slope efficiency are sufficient to 

model steady state output characteristics due to temperature changes and that we can 

allow for reasonable margin of error in our estimated parameter values and still able to 

predict an accurate behavioral response.

By neglecting the effects of spatial hole burning, we can assume that the threshold 

current is simply a function of temperature. This empirical relation was first proposed by 

Panakov [13].

TH(l)/ (3.9)

We introduce this temperature dependence in the above-threshold steady state output 

power-injection current equation
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~ We

frl
I -I e'' 0'1 lTH(0)c

J

On comparison with our revised rate-equation model, we can observe that

1
Ve = _ 

c

For the time being, we have ignored the thermal dependence of the external 

quantum efficiency. The change in this equation from the original relationship at room 

temperature is the decrease in out put power for the same level of injection current, 

implying an increase in leakage and cavity loss. If we thus, choose to decrease the 

injection current while maintaining the same threshold level then the effect should 

effectively be the same

Po ~ E& 2e 2 77/(0) (3.10)

This implies that in order to maintain the same slope, the differential quantum efficiency 

need to be factored by the same multiplier as the threshold current.

P.Mena etal [5] has shown that by simply introducing the temperature related 

threshold offset current in the rate equation model we can predict the change in steady 

state response in VCSLs and the large signal dynamics due to a change in temperature 

without taking into account the thermal dependence of the differential quantum 

efficiency.
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Fig.3.4 Typical Ll-curves for a 10-well, strained quantum well laser

This may be true for the small VCSL cavity lengths but would not produce the 

same results with edge emitters as the external slope efficiency in edge emitting lasers 

exhibit a different thermal profile than that of threshold current. Thus the effect of slope 

changes in these devices cannot be ignored.

The gain changes due to temperature mainly determine the decrease in the 

external quantum efficiency and the increased compression at higher powers. It is 

observed from the Ll-characteristics of many MQW and FP lasers that the thermally 

induced slope change occurs only at a particular casing temperature and not before. This 

behavior indicates the existence of a ‘threshold’ for the temperature dependent decrease
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in the external slope efficiency of the laser. Figure-3.5 shows a typical example where the 

temperature threshold of the slope lies somewhere just below 70°C.

Based on a similar approach as [5], we can predict the change in large signal 

behavior from temperature affects by using equation (3.10) but instead of a scalar thermal 

offset we introduce the exponential dependence of the threshold current to reduce the 

effective value of the injected current in the rate equation model. We do not ignore the 

temperature dependence of external slope efficiency as this information is built in our 

‘modified’ model together with the threshold current, and can be used to predict the 

behavior of the steady-state ¿/-curves at higher temperatures.

Here, we propose that the thermal ‘threshold’ of the external slope can be 

predicted based on the characteristic temperature of the threshold current. As long as the 

temperature difference between room temperature and next higher temperature level is 

less than this characteristic temperature, the differential quantum efficiency of the laser 

will not have a thermal dependence, the external slope will effectively remain unchanged 

and equation (3.10) will be valid for all above threshold injection levels.

As described earlier, the same results are obtained in terms of output power if we 

introduce these changes in injection current and parameter c, in the modified rate 

equation. But now, we also have the added advantage of predicting the device’s large 

signal dynamic response to reflect the affects from temperature change.
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5{q(NV)-IT„r„')P + ~ ( '

dP- + «
dt

l + abce' r°'

¿(M=—
dt q

aïr {NV)~
ITUTH N

AT
l + abce^ T°JrpP

AT

<1 )

When the temperature difference becomes equal to or exceeds the threshold 

current characteristic temperature, the external slope starts to decrease with increasing 

temperature and equation (3.10) is no longer valid. However, with a slight modification 

to the multiplying factor of parameter cin the rate equations, we can estimate the 

temperature dependent behaviors of the external quantum efficiency. The slope’s thermal 

‘threshold’ lies at the temperature where

Ar = r0 

^|r =^0)

Or c|r = 0.36c for all AT > To

Thus by using a constant factor based on the ‘threshold’ temperature, with 

parameter c, we can estimate slope variations for all higher temperatures while 

maintaining the same thermal dependence of the injected current in the rate equations. 

The steady state changes due to temperature with the above modifications are given by

Po =2.1l82qE Ie
at
To -I For &T>T0
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Whereas the large signal changes can be accounted for by bringing this dependence in the 

rate equations as before

dt

a(q(NV}-ITKT„)P + ~ 
____________________  Tp

(l + Q.36cab tpPq )
+ fi(NV

tp
Q

0.36c tptn ?

aTr (nv)--TH^N

^. + Q36cabTPP}
±0.36,PJ2txl

We have presented a new method of introducing temperature related affects in the 

behavior of the laser from steady-state ¿/-curves at a minimum of two operating 

temperatures by using only the characteristic temperature of threshold current as the 

required parameter. The accuracy of estimate on this parameter is critical to the 

prediction of output at higher temperatures and if we continuously measure the external 

temperature, we can use this method to dynamically determine the output power even 

under CW operation.

In order to determine the wavelength chirp due to a change in temperature, the 

original phase rate equation is still a valid model, since the thermally induced increase (or 

decrease) in the carrier density is reflected in the variable (NV) in equation (3.8), which is 

reproduced here

We are able to account for all thermal effects within the linear region of operation 

above threshold, in the modified rate equations without introducing any complexity to the 

original model or imposing additional input data requirement.
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3.4.1 Results from a commercial laser

We applied our thermal model to a Mitsubishi InGaAsP MQW-FP 1310nm laser 

(ML7xx8 series) where the steady state data at different temperatures was made available 

from the device data sheets. A set of parameters were arbitrarily selected to produce the 

desired output power, which are listed in table-3.1

Threshold current ZrH =5mA

Characteristic temperature for threshold current To = 65° C

Temperature ‘threshold’ for external slope Tth = 40° C

Parameters Unit Value
ps 2.0

ns 0.1

b ps 8.5

c A/W 1.9

a GHz2 / mA 250

/?(lxl0’4) 0.44

Table-3.1

The characteristic temperature and the slope threshold temperature were based on data 

collected from the LZ-curves only at two initial operating temperatures (25° C and 50° C) 

and the response at higher temperatures was then generated by the model.
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Fig. 3.5 A comparison of the output power estimated from the thermal 

model at different temperatures with actual device measured data

Note that for the measured temperatures, no change in slope was encountered but 

the model predicted the slope change at higher temperatures. The comparative results are 

shown in figure-3.5.

The large signal dynamics typically exhibit a reduced transient peak with 

increased damping and smaller resonance at higher temperatures. Simulations were 

carried out at 50° C and 70° C as shown in figure-3.6(a). A comparison with the results 

from a two-dimensional thermal model of a DFB-MQW laser, from a rigorous rate- 

equation modulation is shown in figure-3.6(b) and the dynamics are observed to be very 

much similar in both cases.
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(a)

Fig. 3.6 Similarity in large signal dynamics for single mode FP and 

DFB lasers (a) results from the Mitsubishi ML7xx8 series and (b) 

simulation of a MQW-DFB laser using a 2D standing wave model

In our analysis, we have ignored the affect of temperature on the modal 

parameters of the laser, as the steady state and large signal dynamics are directly modeled 

through the injection current and differential slope parameter. Thus, there is no apparent 

linkage of the introduced thermal affect to the small signal parameters, which are used to 

extract the intrinsic laser parameters in the first place and this implies that the affects are 

not depicted in the small signal response of the device.



Chapter-4

A Procedure For Extracting Rate Equation 
Parameters From Response Characteristics

4.1 Small signal analysis

Consider the application of an above threshold dc current Zo, superimposed with 

a small ac current /,. Under steady state conditions the laser’s carrier and photon density 

would respond similarly. Thus we can represent these in complex frequency domain 

notations

/ = z0 + /, exp(ytyf)

5 = 50+5) exp( ytyf)

N = No + A, exp(y'iyf)

Making the assumption that:

E Gain can be approximated as a straight line over the perturbation

2. The dc current is sufficiently far above threshold

3. Spontaneous emission is comparatively very small.

45
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We analyze the rate equations by assuming that dynamic changes in the carrier and 

photon densities away from their steady state values are small. Taking the differential of 

both rate equations we can accommodate small signal responses of one variable in terms 

of a perturbation to another.

d

d
dN

dt

dS_

dt
d
rrgo(jv - wr)sl

1 + fiS -d
's'

_?r_
+ d

g,(N-NT}S

(4.1)

qV 1 + £S

“I ' N~
-d

j -TN.
(4.2)= d

Solving for equation (4.1), we have

A (ds ) = (i + £S,)4rH^-^r)s]-rg„(wo-wJsoj[i+ts] __>_ds+ rp_dN 

dt (l + £S0 ) Tp

Where the Carrier density, photon number and gain, outside the derivative are the steady 

state values and will be designated here as No, So and g0 respectively, is defined as 

the ‘differential carrier lifetime’ and has a carrier density dependence of the form

— « A + 2BN+3CN2
"AN

Where ‘C’ is the auger recombination rate coefficient, ‘B’ is the bimolecular 

recombination rate coefficient and A’ represents the non-radiative recombination 

coefficient. At normal (low) temperatures, the auger recombination is negligible and we 

recognize that for the best laser material the recombination at threshold is dominated by 

the spontaneous (bimolecular) recombination.
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d _ (l+iMrg.^o -A7Ms]+Mr«(w-Wr)I)-r«„0v„-N^ds
*m = ra5

—dS+^-dN
' &N

d(d£) ^^«-^sM-N^+d+iS^rg^dN l^r/^,,
dt (l + iSo)2 TP

>«=^ Y 
dt (1 + fiSo)

^s+.rs°5°
(l + £S0)

1 YB 
dN-—dS+—dN

&N

Combining like terms on the RHS together, we have

y8o(no-nt)
. (I + sSq)2

J_
*7

rgoso , yb 
(l + fiS0)

dN (4.3)

Solving for equation (4.2) in a similar manner

4w=
dt

' 1 "
di +

g«(Na~NT)
dS + Sq$o 1

_<7V_ (1+iS,)2 . (l + sSo)
(4.4)

Now, lets make the following associations

, = r8o(jvo-Arr) i 
(H-sS„)2

c_ rg„50 | rp 
(l + £Sq )
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r = goOVo-^r) 
(l + ^o)2

p _ 8qSq_____
(l + £S0)

We can now write equations (4.3) and (4.4) in simple matrix notations

d ~dS’ 'A b' ~dS~ diH-----
'o'

dt _dN_ c D dN_ 1

di "l" '-A -B~ ~dS~ d+ —
~dS~

qV 0 -C -D dN_ dt dN

Based on our previous assumptions, we have solutions of the form

dS = Sl expfjax') 

dN = Nl exp(yTyr) 

di = /, exp(y'atf)

Setting — —» jco and rearranging

'l" ~-A + jco -B 's;
0 -C -D + jco .Ni.

The determinant of the matrix is given by

-A + jco 
-C

-B
-D + jco
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A = AD-BC-(A+D}jû)-Ct)2

We now use Crammer’s rule to solve for the photon density.

1 1 o

-B

-D + jco

qV A

-D + jco 

qV A
S,

If we describe the modulation response as a 2-parameter transfer function

con
A a>0 - (û2 + jcay

Then

-D + jco 
qV co2

H(o>)

Where ffi>02 = Resonant frequency;

y = Damping coefficient

Thus, by comparison we have

co2 = AD - BC

con 'rgo(No-NT) H
< (l + fiSo)2 TP/

80S0_____1
(l + £50)

rgoso , 
t(l + £So)

y

- a.v y
sM,-yT)

(l + <So)’ .



50

Q)o =
2 rgo2so(No-NT) rgo(Aio-7vr) t goso t 1 t TgoX^o-^) 

(l + fi50) iAAf(l +^o) rp(l+£50) (l + ^o)
r&oQVo-^r)

7an(1 + £5o)2

6902 = g«S«
Tp (l + SS0 )

(l I 1
¿W (l + £S0)2 7azvtp

(4.5)

y~-A-D

y=— (4.6)

4.2 Frequency response measurements and significance of 
measured parameters

In understanding the dynamic behavior of the laser, the variation in resonant 

frequency and damping factor provides useful insight into the intrinsic device parameters, 

which control the device behavior. These parameters can be easily obtained by fitting the 

small signal transfer function to the measured small signal response from a 

monochromator, given that the device operating frequency lies within the measurement 

range of the instrument. These experimental procedures and results are well documented 

[1],[2] and need not be detailed further. We will therefore restrict ourselves in the 

utilization of the extracted parameters of resonant frequency and damping coefficient, for 

computing (or estimating) the final rate equation parameters essential for large signal 

behavior modeling. The typical transfer function for the normalized small signal 

frequency response is shown in figure-4.1



51

SMALL SIGNAL RESPONSE AT DIFFERENT BIAS CURRENTS

Fig.4.1 Variation in small signal response transfer function with 

changing bias current

With the increase in bias current, the response becomes more flat with the 

resonance frequency shifting forward. However, the resonant frequency is slightly higher 

than the peak response frequency and is described through the following relationship

co,,1 =a)02 -0.5/2

The resonance is damped at very low and high output powers. Beyond the strong 

resonance, the transfer characteristics degrade significantly. Thus effective modulation of 

the output power can only be achieved over a modulation bandwidth approximately 

~ a)0. The modulation bandwidth of the laser can be steadily enhanced by increasing the 

output power, but is practically limited by:

a) Increased damping of the resonance at high powers
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b) Thermal effects

c) High-power mirror facet damage

For a well-defined response curve at moderate bias levels, the peak frequency is 

quite well defined and from the transfer function relation of and the above

equation, the two variables can be easily extracted. There are several techniques, which 

could be used to measure frequency response accurately, each with its own associated 

problems. For standard laser diode chips, the device capacitance will dominate the 

frequency response at frequencies 10-20GHz needed to find the relevant laser parameters. 

The details of these measurement technique are beyond the scope of this report, however, 

we will describe a more recent ‘Frequency Subtraction’ method employed and its 

apparent advantages.

In frequency-subtraction method, the frequency response measurement just above 

threshold is subtracted from the frequency response measurement well above threshold. 

This eliminates all those measurement and device parameters, which do not vary with 

bias, leaving only the intrinsic response of the laser. Here it is assumed that the parasitic 

components of the laser are not power dependent. The subtracted response is given as:

Atf(<y) = 101og xO)022 -d)2+jo^2 
(0QX2-a)2 + jayx <y022

Where in this case we have four instead of two variables to fit the response curve. The 

typical subtracted frequency response is shown in figure-4.2 with the prominent 

maximum and minimum of the curve at the two ends of the measured frequency range.
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SMALL SIGNAL FREQUENCY RESPONSE SUBTRACTION

Fig.4.2 Typical Transfer function from frequency response subtraction 

at bias points close to threshold and well above threshold

Rewriting the double-pole modulation transfer function as the product of two single-pole 

transfer functions

<un O)n

A to02 -co2 + j(OY

The roots of this function in the complex frequency plane are given by:

s L
21,2 ± j(OOSc

Where

o>2osc =o)20-Q.5y2



54

In some treatments, (OQ is, by definition, set equal to (i)osc and the damping factor 

is set equal to 0.5/, to comply with the natural roots of the transfer function. The 

problem with making this equality is that the oscillation frequency (û)osc ) becomes zero 

at high output powers. The standard definition (with ty0) allows us to use the transfer

function for small signal response at all powers (except for very small output powers). As 

for the damping factor, the alternate definition proves to be a better way to extract this 

parameter.

4.3 A Procedure For Parameter Extraction

In this section we will use the results previously derived from steady state and 

small signal analysis of the laser and systematically use these to predict reasonable 

estimates of the laser rate equation parameters for our modified model. The purpose here 

is not to find the ‘exact’ value of the parameters, but rather, to obtain values, which can 

accurately predict the behavior.

4.3.1 Differential quantum efficiency (tjd)

The differential quantum efficiency can be computed by solving the rate 

equations simultaneously at steady state using the following expression for photon 

density in terms of output power.

S(t) =
2Ttp

Vr]Dhv
P(t)

From equation (3.3)

So =
gV
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Where we have assumed

Making substitution for photon density

I 2P Ith , 0 

¿/V VrjDhv qV

After some algebra, we get

2qP
’1d~ {hv)(l-lT„} (4.7)

The frequency term in the denominator can be approximated from the laser­

operating wavelength, which is available with device data. All other terms are known 

from the characteristic L-I curve. It is evident from the above relation that the differential 

quantum efficiency defines the slope of the L-I curve at the point of measurement of 

output power. However, it has been observed that this slope may change for devices 

operating at too high injection levels or with high ‘spatial hole burning’ effects, as in the 

case of DFB or DBR lasers with 1/4/1 phase shift in grating pitch. In such cases, this 

parameter will not be constant but vary with changing injection current and would have 

to be computed at every operating point.

4.3.2 Spontaneous emission coupling factor (0)

We have used fi independently as a parameter as we will derive an expression 

for estimating its value directly from an analytical relationship of spontaneous emission 

at threshold. Spontaneous emission is of significance only below (and at) threshold levels 

of injection current. For commercial single mode lasers, this is reported negligible as 

indicated by their L-l characteristics. Here, however, we assume that this spontaneous 

emission is not zero.
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For lasers operating below threshold, the output power close to threshold is the 

fraction of the total spontaneously generated power, since mode suppression ratio for 

single mode lasers is high and most of the photon resources will be employed by the 

lasing frequency having the lowest threshold gain requirement. Thus the total 

spontaneously emitted ‘output’ power near threshold is in fact, the power that couples in 

to the mode of interest, or the lasing mode of the laser.

Po < ^th ) — fiPsp (4.8)

By definition [3]

PSP =WR(hv)- (l<lth}
q

a = P-SP _ F Snsp
" - n 7

SP WR~
q

Where

Psp ~
rvggnSp

V
and Psp=Wr qV

Close to threshold

In the above equation for spontaneous emission factor, nsp is the ‘population inversion

factor’. Substituting for the spontaneous emission power, we obtain the relationship for 

the coupling factor.

?SP

^vggth ~~~
L p
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The spontaneous emission factor near threshold can be approximated by

P =
nSP(hv}

TpPsp

Substituting this value in the equation (4.8) for output power below threshold, we have

After comparing with equation (3.5), we get

hv Ol nsp(hv} 
-2q TP

P- 2qn.SP

Near threshold, we have the following approximations

^=1 [Since we assume at threshold = ^~, and] 
tn qV

[Where r]D is the differential quantum efficiency]

Thus

P =
2qnSP

ITH^P^D
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The population inversion factor nSP ranges from 1-2, however for typical devices

its value ranges between 1.5-2. For 1300nm InGaAsP lasers, the estimated value at room 

temperature is ~ 1.7. For all practical purposes, the value can be assumed to be the 

midpoint value; this would minimize the error of our estimation. Also, since the only 

other unknown parameter in the expression is the photon lifetime (rF), this value can be 

adjusted below 1.75 if the method used to calculate photon lifetime inherently 

underestimates it or, this value can be adjusted above 1.75 if the photon lifetime is known 

to be overestimated.

4.3.3 Lumped parameter of gain slope constant and cavity volume

The gain slope constant ‘ g0 ’, active region volume ‘ V and the gain confinement

factor ‘ T ’ are lumped together as a single unknown in the modified rate equation model. 

This lumped parameter can be directly obtained from the small signal resonant frequency 

‘ a>0 ’ together with the steady-state L-I behavior at the given DC bias level. We know that 

the photon density is related to the output power from one facet of an AR coated device.

S(t) =
2TrP

VrjDhv
P(f)

In equation (4.5) except for the first term on the RHS, all other terms collectively 

contribute only 2%-5% of the actual value of the function, assuming this contribution to 

be very small we can neglect these terms and approximate the function as

 8qSq (4.9)
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Where we have kept only the first term from the original expression, which is dominant 

in the linear region, using the approximation 1 + eS0 = 1. Substituting the value of So 

above, we have

2 = go_x2Tr^ 

rP VrjDhv

(o„
^rgp^o % g 
VrjDhv q

Q)n
qy qDhv

(4.10)

From equation (4.7), we have

2P0q

rjDhv

Substituting this expression in equation (4.10) gives us

- _ rgo ^o2
qy ~ i-Ith (4.11)

The above equation indicates a linear relationship between above threshold 

injection current and the square of resonant frequency. However, close to threshold there 

is a non-linear variation in and the parameter ‘ a ’ can achieve very high values. There

is a very slight drift in the parameter value for injection levels sufficiently above 

threshold as the linear relationship of the above equation becomes valid, but nonetheless,
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it remains uniform. For accuracy, the parameter ‘ a ’ need to be computed at every new 

bias, separately.

4.3.4 Spontaneous emission carrier lifetime (tn )

Rewriting equation (4.6) for the small signal damping coefficient

1 1 80S0 1Y =------------- 1------- 1—sly... u—J---------
Tp (l + ¿50 ) Tp (l +

Where, at steady state we have assumed rgo(No-NT)~ 1
(l + £S0 ) Tp

£S.
Y = —-,—-—7 +

Tp (l + £Sq ) (l + ) T&X
0 , So^Q . 1

r=—+goso+— (l + fiS0«l) (4.12)

It was shown in chapter-3 that

£S0=TP—x^-x-2P°q
g0 QV riDhv

(4.13)

Solving with equation (4.10)

„ £ i
^0 ~ *>0

go
(4.14)
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Making substitutions from equations (4.9) and (4.14) in equation (4.12) above

£ 2 2 1 
7 =—*><> +rPa0 + —

So AN

2 1 
<y0 +—— + Tp 

So J
(4.15)

Similar to the standard equation of a line (considering linear functional 

relationship between the two small signal parameters) the expression is used to directly 

compute the differential carrier lifetime “ ” from small signal IM frequency response

measurements at a minimum of two bias points. The effective (differential) lifetime 

depends on the local slope of the spontaneous emission rate.

Tn oc
R_
N

TN(eff)
dR

dN

The dependence of total carrier lifetime, on carrier density has been expressed as

— = AN + BN2 + CN3 (4.16)

From this relation we can directly compute the expression of differential lifetime, 

which appears, in our small signal analysis discussed earlier. Taking derivative of both 

sides of the equation

A + 2BNth + 3CNPf
TH
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The value for the total carrier lifetime can be evaluated at threshold as the carrier 

density is clamped to its threshold value. Therefore, dividing throughout by “N” in 

equation (3.16), we have the expression for total carrier lifetime (at threshold).

1
T

A + BNth + CN p
N TH

Unless the laser is pumped too hard, the auger recombination is negligible since it 

is related to the temperature gradient of the cavity and for low injection levels, its affect 

is small enough to be neglected. If the non-radiative recombination in the cavity is 

minimal (which is true close to threshold), then the only other parameter of significance 

is the bi-molecular recombination, which also defines the spontaneous emission coupling 

in the lasing mode. This argument is especially valid for short wavelength lasers. With 

these underlining assumptions, the above equations are reduced to the forms

1 1

TH

~ bnth And
A2V TH

« 2BNth

Thus the total carrier lifetime is approximately, twice that of the differential carrier 
lifetime.

4.3.5 Average photon lifetime and lumped gain compression parameter

From the previously derived equation (4.11), we know the following approximation

= £go
qv

^th )
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1

,.,2 _ ^So^TH (l I'm )
Ci/ß —

qy iTH

We add and subtract
TNTP

from the RHS of the equation to yield

•■rgANTH-NT}~±-

< tntp > ^TH TP -

From this relation, we can compute the minimum value of photon lifetime, by setting the 

term YgQNTTp equal to zero.

6>n =
(i-'w)

\Sn^p y TH

I min

Ith

^0 ?TH

1
a ^N^TH

The best possible value for photon lifetime can be based on the ‘optimum design 

concept’ of the laser, assuming off course, that the laser is optimally designed for the 

application. Given the flexibility to adjust every cavity parameter, the optimization 

procedure would inevitably produce a design with unity mirror reflectivity and zero 

cavity length, since this design eliminates internal loss and creates the smallest possible 

mode volume. Practical designs however, are achieved when L —> 0 and R 1.

The knee of the gain curve (where g/J = dg/dJ) defines the optimum operating 

point for many design constraints and the threshold gain is placed closed to this point on
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the curve (Appendix-B). The gain-carrier density relationship has been described either 

by an approximate linear function (which is used for most bulk lasers), or a more accurate 

logarithmic function. If we limit ourselves to positive gains (g > 0) only, this equation 

can be approximated as

8 = Soln
N , \int y

(4.17)

Where g0 is the familiar differential gain coefficient. Assuming that the threshold lies at 

the knee of the gain curve as described above, then the threshold carrier density is given 

by

= eNT

Bringing this dependence directly into our gain approximation used in the standard rate 

equation
g = g<,(N-NT)

^8o(^th Nt)~
tp

Which is valid for all above threshold biases

- = rg„fwra-^L

— = rg07vra| —
e
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i = (0.632)rgo^r„
TP tn

N I
Using the assumption for threshold condition —- ~

tn qV

i = (O.632)r?oi^-r„
2-p qV

— = (0.632)a/wr„
TP

[Where a = ^-]

1.582

a^TH
(4.18)

Including the constraint of maximum differential gain for high-speed lasers, as 

described in Appendix-B, we move down the curve towards transparency, to obtain the 

maximum estimated photon lifetime corresponding to the maximum (optimum) cavity 

length.

?p opt

1.8984
aITH

(4.19)

Either equation (4.18) or (4.19) can be used to estimate this parameter without 

causing any significant change in behavior. However, assuming that the laser is designed 

for high-speed data applications, the latter gives a better estimate for the model. Equation 

(4.14) implies a straight line relationship between the small signal parameters and 

“a)Q ’’and the slope of this line gives us the sum of the two required parameters.
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K = 4?r2 —+*>
So J

This slope would effectively give us the range within which the average photon 

lifetime above threshold would exist for any particular laser. After substituting this value 

of tp in the ‘K-factor’, we can directly compute the remaining parameter

4.4 Large signal analysis

To determine the dynamic response of the laser for large-signal inputs we need to 

solve the rate equations iteratively using a numerical solver with a small increment of 

time At in place of dt. We use a regulation step input current pulse for the simulation, 

mainly for two reasons. First, it is easier to implement in to the program’s sub-routine, 

secondly, since we are not making comparison with any measured signal, we are 

avoiding all the noise sources extraneous to the laser (e.g. due to the mounting fixture 

etc.), which might interfere with the response. Also, an instantaneous transition of current 

pulse will include all the frequency harmonics and the prominent ‘ringing’ affect at the 

output can be easily related to the small signal parameters of resonant frequency and 

damping coefficient. A variable 2nd order and 3rd order Runge-Kutta method is employed 

to solve these equations. We carry out the analysis for the following two bias conditions.

a. Lasers pre-biased above threshold.

b. Lasers pre-biased below threshold.

The reason for this differentiation is based on the fact that below threshold 

information for the laser is not built into our rate equation model and the dynamics are 

vastly different under the two bias conditions, for different laser types. Firstly, turn-on 

delays are avoided once the laser is subjected to an above threshold initial bias before the
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application of input (signal), secondly, all the modal parameters are relatively fixed once 

threshold is achieved, below threshold, the governing relationships for the parameters are 

no longer valid and there is no means to model the unique below-threshold dynamics on a 

case-to-case basis. For example, the rate equation model does not explain the observed 

difference in peak amplitudes of the response [2] when the laser is ‘cold’ started with 

zero (or less than threshold) initial bias. Here, we attempt to account for these behavior 

by modifying the related modal parameter in our model under the two cases.

4.4.1 Case (a) - Above threshold bias condition

It can be shown that for lasers biased above threshold, the turn on delay is 

negligible. Considerable optical power is emitted only after I > ITH . Beyond threshold 

the stimulated emission accounts for the nearly uniform transition without delay.

If the laser is always kept above threshold, the carrier density does not change by 

a large amount due to carrier clamping, even during large transients. Thus, the 

assumptions made under small signal analysis remain valid under the large signal regime.

With a greater-than-threshold initial bias, the carrier density is already clamped at 

its final (average) value and any additional current from the input simply tends to 

oscillate the carrier profile about this mean. The phenomenon as shown in figure-4.3 is 

for a DFB laser for bias currents of 30mA to 50mA with a (above-threshold) pre-bias 

level of 20mA before applying the input. The initial rate of change defines the carrier 

lifetime inside the cavity.
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Fig.4.3 Variation of the carrier density in response to a range of step

input signals for a laser biased around 20mA (Ithreshold-8mA)

We can approximate the net change in carrier density to be negligible (since this 

variation is vary small compared to the absolute value). For lasers with operating point 

above threshold, the large signal variations in the excess carrier density would always 

start from the same initially clamped threshold value, whose absolute value would be 

much higher than the changes in the density profile itself. Thus, the choice of carrier 

lifetime (differential or total) in the model would have little or no affect on the output.

4.4.2 Case (b) - Below threshold bias condition

Turn-on delay of the laser depends on the absolute change in the carrier density 

inside the cavity, which in turn relates to the decay rate of the carrier (to produce
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photons) defined by their lifetime, thus, smaller the lifetime, smaller would be the total 

carrier build up.

This difference in carrier density would however, not affect the steady state 

N Nphoton density value, as — or----  terms in the rate equation would be the same since

the difference in life time values would be compensated by the proportionate difference 

in the carrier density values.

Fig.4.4 Variation of the carrier density in response to a range of

step input signals for a laser with zero initial injection current

When the laser is at zero injection level prior to the application of the input, the 

addition to the carrier density in conduction band is supposedly zero (off course there are 

small changes in the carrier population always taking place, not attributed to the injected
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current and not accounted for). If a step input is applied to the laser the ‘additional’ 

carrier density due to this input, starts to build up almost linearly until it is clamped when 

the laser reaches threshold.

Figure-4.4 shows the comparison between the carrier density profiles for each 

level of injection current for the same DFB laser, the average density in the cavity is 

around 4.43x1018 carriers per unit volume, at nearly all bias levels and there is not much 

difference between the initial slopes of the curves except for the bias level close to 

threshold.

Most device operating points are kept well above threshold to avoid noise 

interference due to mounting fixture capacitances and other non-linearities near 

threshold. Thus, we can assume an average value of the initial rate of change in carrier 

density based on the final (average) value of the carrier density, which is the ‘clamped’ 

steady state value.

As a first approximation to estimate the turn-on delay, we can calculate the initial 

slope of the carrier density and draw a straight line up to the threshold value . Using 

the carrier rate equation and assuming no significant photon build-up

dN I N

If there is some initial current (say /,), then the spontaneous emission term under steady 

state can be set equal to

N

N Sponl
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Thus the initial slope is

AN
At

1-1, NTH-Ni

t=0 iV

. _iV(NT„-N,)
I J —

qVjN^-N,) tn 
I-L T„

Now, we know that around threshold
N I1NTH _ 1TH

Tn qV

Thus, using the same dependence for any intermediate carrier density level (assuming 

that the non-radiative recombination is minimal)

tn qV

Hence, by substitution

(¿TH Ij )
(/-/,)

If the initial injection current and carrier density are both assumed zero, then

, .qvM
IJ —

I

lTH¿d ~
I NlTH _ iyTH
QV TN
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Note that the tum-on delay, for both cases, is dependent on the total carrier 

lifetime and not the differential lifetime of the laser. Thus, if the laser starts from a below 

threshold bias, the absolute change in carrier density is quite significant and the 

spontaneous emission (total) carrier lifetime would be required to predict tum-on delay.

Below threshold, spontaneous emission contribution is the only source of photon 

build-up inside the cavity and the above threshold transients are directly linked to the 

amount of photons made available from spontaneous emission, before the laser starts 

lasing.

We already have estimation for carrier lifetime. Without altering other parameters 

(whose change in values have little or no affect on the response), intuitively, if we are 

able to account for the below threshold contribution from lasing mode spontaneous 

emission alone, we should be able to predict the response. However, there is no way of 

knowing the exact profile of these contributions. Since all below-threshold contributions 

add on to the cumulative photon build-up to threshold, we can assume a constant amount 

of photon emission, which is an average value of the total contribution. This 

approximation can be made by empirically introducing a multiplier in the rate equation, 

such that

A.

Where “ m " is generally of the order of 10-5 and is based on the solver time steps 

and the estimated value of at threshold. The validity of this method is tested on the 

ALDH model and shows very good results with a quarter-wave shifted DFB laser 

(chapter-5).



Chapter 5

Model Testing and Verification

5.1 Measurements

To validate the parameter extraction procedure, we have utilized data from two 

different sources. To avoid experimental errors and to provide common grounds for 

comparison of results we have used data that has already been validated by other models 

or methods. In the first case, we used fitted values of resonant frequency and damping 

coefficient obtained from measured small signal response of a MQW-DFB chip-on- 

carrier laser mounted in a butterfly package and having a threshold current of 18mA. The 

configuration had a mount-limited bandwidth of 2.5Gbps and an operating wavelength of 

1550nm as reported in [1].

This laser is designated here as ‘laser-A’. It is shown to provide excellent results 

from simulations using the numerical optimization routine by J.Cartledge etal. and is 

claimed to produce a sum of squared errors of 10~12, which is quite accurate. The same 

data has been used to compute parameters as described above. Here, we will compare the 

results from the two methods. We also compare the computed parameters from the two 

methods to show the relative margin of difference and the similarity at different bias 

points. Laser-A thus provides us with a testing platform to compare the parameter

73
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extraction method with another documented method and at the same time evaluate 

response results from two essentially similar models.

In the second case we employ a more rigorous verification method. Here we will 

use the Advanced Laser Diode Simulator (ALDS) (courtesy Apollo Photonics Inc.). This 

simulator is based on a physics-based quasi-3D model which is fundamentally different 

from the OD behavioral models used for the parameter extraction, yet it generates the 

steady state and small signal data similar to the commonly measured data available from 

most vendors and also carry out large signal simulations based on pre-defined structural 

parameters that are fed into the model. This type of simulation is a very useful alternate 

to actual measurements from real devices, as the results are free from extraneous noise 

interferences and produces a behavioral response that can be traced back to the device’s 

physical characteristics such as cavity length, volume, thickness etc., which are treated as 

fixed input constants instead of unknowns. Furthermore, the results will demonstrate 

shortcomings of a simple OD model in comparison with a much more complex 3D model

For the purpose of verification, we have used an AR-coated index-coupled 

quarter-wave shifted InGaAsP/InP DFB laser, having an active cavity length of 300 pm, 

a threshold current of 23.8mA and an operating wavelength of 1658.3nm. The model 

laser is designated as ‘laser-B’. Some problem is encountered with spatial hole burning 

effects, which become prominent for bias currents well above threshold and tend to 

increase the slope of the ¿/-curve within the linear operating region.

5.2 Procedure for comparison and verification

Our method of parameter extraction derives directly from the small signal and 

steady-state parameters; therefore the model would invariably give accurate reproduction



75

of these two characteristic behaviors. The main test of the method lies in predicting 

response to large signal inputs.

From the measured values of injected current and output power, we directly 

determine the threshold current and parameter ‘c’ using 2-parameter curve fitting 

through implementing the polyfit function in Matlab. Alternately, we can also compute 

the two unknowns from the 2-point form equation of a straight line. Using the same 

straight-line approximation on the square of resonant frequency and damping coefficient, 

we obtain the differential carrier lifetime and the 'K-fact or ’slope, which gives us the sum 

of the average photon lifetime and parameter ‘b ’.

The total spontaneous emission carrier lifetime is simply twice the differential 

lifetime. From the optimum design constraint for high-speed lasers, we predict the 

optimum probable value for the photon lifetime (and in turn the cavity length) at different 

bias currents and using the computed value of the K-factor, determine the parameter ‘b ’.

Parameter ‘ a ’ is obtained from the resonant frequency and the injected current 

above threshold as per equation (4.11), while the spontaneous emission coupling factor is 

computed directly from the values of photon lifetime, threshold current and differential 

slope efficiency with an estimated population inversion factor of 1.75.

5.3 Comparisons in ‘Laser-A’

A set of measurements at different bias conditions has been provided in [1], which 

here are assumed accurate for the sake of comparison. A frequency response subtraction 

process, (as discussed in chapter-4) has been used to extract the small signal response 

parameters at any particular input bias point.
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The small signal transfer function used here for the curve fit is

H(o)) =
Z

Z-0)2 + jO)Y

Where ‘Z’ and ‘Y’ are the functions of the device resonant frequency and damping factor, 

given by

Damping factor T = Y

Square of resonant frequency 0)^

The frequency responses for different bias currents were measured using light 

wave component analyzer (HP8703A). An intensity modulation response, at bias currents 

of 23mA was subtracted from an IM response at 35mA bias current and another at 45mA 

bias current. Sum-of-squared-errors criterion was used to fit the curves so obtained, to the 

transfer function given above, minimized over the four variables (from the two subtracted 

responses) using a quasi-Newton method and a finite difference gradient. The results of 

this minimization were not found to be sensitive to initial estimates.

Parameters Bias current (nu40
25 30 35 40 45 50

PjmW) 0.56 0.97 1.36 1.73 2.16 2.55
^(xlO9 sec-1) 12.16 16.96 21.87 25.91 30.35 35.12
ZJxlO20//?) 8.96 14.79 20.52 26.03 31.00 35.71
co2 (xlO20 Hz2) 8.22 13.35 18.12 22.67 26.4 29.54

Table-5.1
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Table.5.1 lists the values of measured small signal response parameters at 

different bias currents, the exact value for the square of resonance frequency as per the 

given relation is also computed and shows an increasing departure from the approximate 

value with increasing bias levels.

5.3.1 Discussion on extracted parameters in [1]

The minimization for the numerical optimization method of [1], is reportedly over 

the original nine rate equation parameters to simultaneously yield the measured values 

above. The values of the parameters so obtained show a weak dependence on the bias 

current which has been attributed to experimental uncertainty. The minimization routine 

finds a local minimum with a sum of squared errors of around 10”12, which is considered 

quite accurate.

However, the minimization over all the nine parameters was found to be very 

difficult and the results indicated that a single set of rate equation parameters does not 

simultaneously satisfy the given constraints with sum of squared errors as high as 10”2. 

This implied that the initial estimates had to be chosen very carefully in order the 

minimization to converge.

The parameters, ‘ ’ (gain compression factor), ‘ V ’ (active cavity volume), and 

‘ g0’ (gain slope constant) had shown the most variation during the 25mA to 50mA

transition of the input bias. All other parameters exhibited only a slight adjustment. Also, 

the initial estimates are very close to the minimized values of the parameters indicating 

the sensitivity of the process. For the purpose of comparison table-5.2 lists the parameters 

for our modified model from the originally computed parameters in [1].
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Parameters Initial
Estimates

Bias Current (mA)

25 30 35 40 45 50

a{pHz2 ! mA) - 128 125 120 122 116 115
&(xlO'I2.s) - 11.10 9.81 9.31 8.71 8.64 8.76
c(A/W) - 12.49 12.49 12.49 12.49 12.49 12.49
Tp(x10"125) 1.0 0.78 0.79 0.79 0.8 0.8 0.81

1.0 0.74 0.75 0.76 0.77 0.78 0.79
//(xlO-4) 1.0 1.01 1.00 1.00 1.00 1.00 1.00
w(xlOI8cm-3) 4.4 4.44 4.35 4.36 4.39 4.43 4.49
s(xl014c/w'3) 10.0 4.5 7.44 10.27 12.82 15.52 18.24
ITH(xiO~3A) 18.0 18.0 18.0 18.0 18.0 18.0
P,(xl0'3w) 0.56 0.97 1.36 1.73 2.16 2.55

Table-5.2

Parameter ‘ b ’ as obtained from the numerical optimization, show a steep decline 

from its initial value to the final value at 50mA with a variation of nearly 20% to the base 

value at 25mA bias current. Parameter ‘ a ’ on the other hand varies a bit erratically over 

the bias range, these variations may be attributed to the adjustment mechanism of the 

minimization subroutine to find a local minimum on or around the initial estimate.

The large signal response simulations using the parameters at 35mA and 50mA 

have shown quite identical results as reported in [1]. The sufficiently large difference in 

values of the parameters over the entire range of injection current shows that we have a 

reasonably good margin of error in estimating parameters ‘ a ’ and ‘ b ’ as compared to 

determining uniquely optimized solutions to the nine parameters of the original rate 

equations, as is the case in [1].
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5.3.2 Estimation of parameters using the proposed method

From the measured values of injected current and output power we directly 

determine the threshold current and parameter ‘ c ’ using 2-parameter curve fitting. The 

fitted value of threshold current stands at 17.9mA and the output slope efficiency at 

0.198. Both these values are very close to the reported values.

Arbitrarily selecting a range of measurement within the linear operating region 

above threshold, we use the same straight-line approximation on the square of resonant 

frequency and damping coefficient to obtain the differential carrier lifetime and the iK- 

factor ’slope, which gives us the sum of the average photon lifetime and parameter ‘h ’. 

The total spontaneous emission carrier lifetime is set as approximately twice the 

differential lifetime. Under the optimum design constraint (Appendix-B), we predict the 

optimum probable value for the photon lifetime (and in turn the cavity length) at different 

bias currents and using the computed value of the K-factor, determine the parameter ‘b

Parameter ‘ a ’ is obtained from within the selected range of resonance frequency 

and the injected current above threshold from approximated solution of equation (4.9), 

while the spontaneous emission coupling factor is computed directly from the computed 

parameters with an estimated population inversion factor of 1.75. The parameters so 

obtained are listed in table.5.3.

The relationship between the resonance frequency and above threshold injection 

current is sub-linear. However, the relationship between the square of resonance 

frequency and current is very much linear as shown in figure-5.1, and this forms our basis 

for estimation of parameter ‘ a ' over a range of measured values at different injection 

levels.
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Parameters Initial
Estimates

Bias Current (mA)

25 30 35 40 45 50

a{pHz2 //nA) - 117 111 107 103 98 92
h(xl0"12j) - 9.15 9.07 9.01 8.96 8.88 8.78
c(A/W) - 12.59 12.59 12.59 12.59 12.59 12.59
Tp (xl0~12 i) - 1.36 1.43 1.49 1.55 1.63 1.73
^(xio^s) - 0.66 0.66 0.66 0.66 0.66 0.66
^(xlO-4) - 1.16 1.1 1.06 1.02 0.97 0.91
/„(jlO-’A) 17.9 17.9 17.9 17.9 17.9 17.9
pJxlO-3^) 0.56 0.97 1.36 1.73 2.16 2.55

Table-5.3

Fig. 5.1 Plot showing the near linear relationship between the square of
resonance frequency and injection current



81

The measured and calculated values of the damping coefficient are shown in 

figure-5.2, to verify the self-consistency of the method. Except for very small 

discrepancies at 40mA and 50mA bias currents, the computed data compares well with 

the measured small signal parameters. The procedure involves solving equation (4.5) and 

equation (4.6) from the estimated parameter values and comparing the results with the 

measured small signal parameters.
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Fig. 5.2 Comparison of measured and calculated values of the damping
factor (small signal parameter) at different bias currents.

Resonance frequency as a function of the damping coefficient gives us a K-factor 

of approximately 0.415ns and the measured value is 0.4ns, whereas the value computed 

through the numerical approximation method of [1] is reported at 0.49ns. Figure-5.3 

shows this comparison at different bias levels. The slope of the line joining the data 

points gives us the K-factor. The same procedure is adopted here as described earlier.



82

40 r

35-

n' 30- 
I 
0

* 25

'5.
E

15-

*** Measurements. 

OOO Computed values

10L
10 15 20 25

Square of resonance frequency (GHz.2)
30

Fig. 5.3 Measured and computed values of the K-factor

5.3.2 Comparison of results from the two methods

The computed parameter ‘a ’ is lower than that estimated in [1], but since the 

absolute value of this parameter is the maximum of the lot (of the order of 1x1023), the 

difference is not found to be significant for the purpose of characterizing behavior.

Since we have used a linear relationship to compute this parameter, we can 

therefore predict (and observe) a near uniform drift with increasing injection current, on 

the other hand the values computed from the numerical optimization have a non-uniform 

drift with obvious kink at 40mA. The important similarity to note is that in both cases the 

value decreases with increasing injection levels.



83

2

<1.8
CM*N
«? 1-6

H 1.4 
co

£ 1.2 ©
E

1 1 ©
| 0.8

2
£ 0.6

IS 0.4
E
£
8 0.2

-
***

ooo
J.Cartledge etal. [1] 
Proposed method

-

+

-

* Hu 3
- 0

o ■
(

- -

- -

- -

-

-------------------1
30 35 40

Bias current (A)
45 5025

Fig.5.4 A comparison between computed values of ‘a ’from the two 

methods, the values are decreasing with increasing bias in both cases.

Figure-5.5 shows the total carrier lifetime, which is twice the differential lifetime, 

computed from the small signal response, and based on the assumption that there is no 

auger recombination present. The values so obtained are slightly lower than those 

reported in [1]. This difference affects the turn-on delay in both cases when we go on to 

compare large signal response for the laser with zero bias or when biased below threshold 

before the application of the signal. A very slight drift in this parameter values from [1] 

indicates a near uniform carrier lifetime at all injection levels.
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Fig. 5.5 The absolute difference between the computed values of carrier 
lifetimes may be small but it affects the turn-on delay of the laser, when it 
is pre-biased below threshold

Figure-5.6 shows the differential slope efficiencies from the two methods. As 

indicated earlier, the two values are very close to each other and this may not be of 

concern at bias points close to threshold (above threshold) but if the large signal input, 

especially, a step input forces the bias well above threshold or if the operating point of 

the laser lies sufficiently above threshold, then the departure due to the difference in 

slope becomes very obvious. These measurements made are within the constraints of the 

linear operating region above threshold on the ¿/-curve, this parameter thus needs to be 

computed as point slope in the event of effects such as spatial hole burning or tendency of 

the gain to reach saturation
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Fig. 5.6 External slope efficiency in comparison with the reported values 
in [1]. The values remain the same throughout the linear operating region 
above threshold

The biggest difference amongst corresponding parameters is observed for the 

photon lifetime (figure-5.7), the computed values are around 1.5ps whereas the optimized 

values from [1] are less than lps. The latter would imply a cavity length which is 

physically very difficult to achieve in terms of fabrication, at higher bias levels however, 

this value approaches 2ps.

The increase in photon lifetime with bias current is consistent with the device 

physical behavior, where the lifetime is very high below threshold but drops sharply as 

the laser reaches its threshold point. Above threshold, it increases only slightly with 

increasing input powers. Since the computed lifetime is dependent on the parameter ‘a’, 

the drift is caused by the changing value of this parameter given that the carrier lifetime
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and threshold current in the relation, are both constant. Large signal analysis will show 

how the difference between the parameters affects the response curve.
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Fig. 5.7 The computed values of photon lifetime are nearly twice that of 
those reported in [ 1 ] with a higher degree of change with increasing bias

Once the photon lifetime is determined, the K-factor from the small signal 

response would yield parameter ‘b ’ which remains nearly uniform at all bias levels 

(figure-5.8). Note that at low injection levels, the reported value of this parameter from 

[1] is slightly higher than the computed value from the proposed method, but it soon 

adjusts to this value for higher injection currents.
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Figure-5.9 shows the comparison for the spontaneous emission-coupling factor. 

We would expect the computed value to change sharply with higher bias, due to the large 

drift in the average photon lifetime; however, we observe only a slight decrease in value 

and very close to the reported value at all injection levels.

The analysis in extracted parameter values from the two methods show expected 

differences, some greater than others, but the important conclusion that can be drawn 

from this is that there is a certain degree of correlation between the computed values from 

the two procedures. Irrespective of the individual differences, the unique combination of 

parameters from both methods within the rate equation model should be able to produce 

comparable results for large signal response in order to lend credibility to the 

effectiveness of our proposed methodology.

5.3.3 Comparison of large signal response simulations

For the above threshold condition, first the laser is pre-biased at 35mA and a dc 

input current of 10mA is applied over and above the initial bias to observe response to the 

small step input. The parameters were computed at the bias current of 35mA.

The simulated behavior compares well with that obtained from using the reported 

parameter values of [1]. Carrier lifetime estimates only slightly affect the response 

(figures-5.10 and 5.11). The difference becomes even more insignificant as the laser is 

driven strongly to higher bias levels as shown in figure-5.12. Here the laser is pre-biased 

very close to threshold (20mA), not withstanding mounting fixture noise affects, and 

subjecting the device to a dc input of 45mA over and above the initial bias. The 

simulation results from the two methods are quite identical.
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Fig. 5.10 Response to a step input current pulse of 35-45mA, with 

differential carrier lifetime as modal parameter

Time (ns)

Fig. 5.11 Response to a step input current pulse of 35-45mA, with total 

carrier lifetime as modal parameter
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Fig. 5.12 Response to a step input current pulse of 20-65mA, with 

differential carrier lifetime as modal parameter

The comparison in frequency chirp from the two methods at 35mA show 

somewhat dissimilar results, but the absolute difference in frequency is within 1GHz. For 

a strongly driven case the results are much more identical. (Figure-5.13). The parameter 

of line width enhancement factor is obtained from the results presented in [1].
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The steady-state LI- curve points obtained from the large signal simulations are 

compared with the measured output power at different bias points as shown in figure- 

5.14, observe the very slight difference at higher bias due to the small difference in slope.

Fig.5.14 Measured output power above threshold compared with

computed values from large signal analysis at different bias levels

5.3.5 Test for robustness

To test our model for robustness in terms of the range of parameters over which 

the output response would be good, we can vary each parameter individually and then 

observe the affect on the behavior. But this may not be a realistic approach. The reason 

being that our procedure is entirely analytical in nature and there are no ‘initial 

estimates’, all the computed parameters are linked to one another through well-defined



93

functional relationships; thus, causing a change in the value of one parameter would 

invariably cause a change in the others.
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Fig.5.15 Step response to an input of 20-50mA but with parameters

computed at 25mA bias and 50mA bias currents respectively

We have observed in the preceding comparisons that there is sufficiently 

significant variation in the parameter values over the entire range of laser bias current 

levels. Thus the best way to test the method would be to check the response at one 

extreme end of the bias point using the parameters computed at the other extreme end of 

bias or vice versa.

We bias the laser close to threshold (20mA) and apply a step input of 30mA over 

and above this level, but with one exception. The response at two parameter sets is from
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different bias levels but come from the same extraction process. In the first step, the 

parameters computed at a bias current of 25mA are used and the response generated. In 

the second step, the parameters computed at 50mA are used and the response is 

generated. A comparison is shown in figure-5.15.

At higher bias levels, the parameters produce a stronger ‘ring’ in the response as 

well as a slight drift in resonance frequency, which tends to decrease. Other than this, the 

two functions are similar. It is important to note that the variation observed here is for the 

worst-case scenario, the parameters for a particular bias point can be extrapolated from 

the computed parameters at some other bias levels and would fall within the acceptable 

limits since the drift in parameters would follow a more or less linear path.

5.4 Comparisons in ‘Laser-B’

In the second example, we only use “measured” values above threshold within a 

small range of bias currents and for higher values of injected current we extrapolate to 

obtain parameters. Backward extrapolation was limited due to unstable results of small 

signal parameter measurements close to threshold.

The measured and calculated values of damping coefficient show good 

conformance in the selected bias range (Figure-5.16). The measured small signal 

parameters and the corresponding computed rate equation parameters are listed in table- 

5.4 and table-5.5 respectively.
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Parameters Bias current (mA)
40 45 50 55 60 65

P^mW) 2.5 3.3 4.16 5.0 5.83 6.67
y, (xlO9 sec-1) 2.66 3.0 3.34 3.66 4.0 4.32

(rf(xlO™Hz2) 7.64 9.87 11.94 14.21 16.17 18.25

Table 5.4
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Parameters

Bias Current (mA)

40 45 50 55 60 65

a(GHz2 / mA) 47.2 46.5 45.6 45.5 44.7 44.3
Z?(xlO"12 j) 0.026 0.025 0.022 0.022 0.019 0.018
c(A/W) 6.41 6.41 6.41 6.41 6.41 6.41
rP(xlO-12 j) 1.3 1.32 1.35 1.35 1.374 1.385
tn (xlO-9 s) 1.37 1.37 1.37 1.37 1.37 1.37
X^io-4) 0.434 0.428 0.418 0.418 0.41 0.407

(xlO-3 a) 23.8 23.8 23.8 23.8 23.8 23.8
7>1(x10"3W’) 2.5 3.3 4.16 5.0 5.83 6.67

Table 5.5

For large signal simulations, the laser was pre-biased at 25mA (only slightly 

above the threshold value) and step inputs of 25mA and 75mA were applied over and 

above the bias point, to observe behavior. A strong resonance and comparatively weak 

damping is predictably expected in both cases.

The simulation and measured results compare very favorably in the first case 

(25mA step input), however the more complex ALDS model seems to depict a relaxation 

in the resonance with the passage of time which is not observed for our simple 0D- rate 

equation model (figure-5.17).
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Fig.5.17 Measured (ALDS simulated) and computed response to step 

input from 25mA to 50mA

This may be attributed to the fact that no structural parameters are included in the 

model and as a result no spatial phenomenon can be accounted for which might be 

available from the ALDS simulator. This shows one particular drawback of using a 

simpler model.

In the second case (75mA step input), the output was found to be slightly less then 

the measured response due to change in slope of the Ll-curve attributed to spatial hole 

burning (figure-5.18(b)). Since the initial parameter set (measured at 50mA) is used to 

generate response, change in slope is not reflected by the output, which explains the 

disparity in results shown in figure-5.18(a).
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(b)

Fig.5.18 (a) Difference in output (bias from 25mA to 100mA) due to

change in slope (b) Measured and computed Ll-curves using the 

parameters measured at 50mA. Observe the difference in slope at higher 

bias levels
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If the parameters are computed at the maximum bias level obtained from the 

referencing input signal then any changes in slope will be automatically taken into 

account by the computed parameter c, measured at that injection level, as the 

information will be available from the ¿/-curves as long as it is within the available 

measurement range. In this case though, by adjusting the parameter c slightly above its 

computed value (slope increased from 0.417 to 0.47) to approximate the measured power, 

we are able to match the results from the ALDS simulator as shown in figure-5.19, again, 

without using any optimization routine. The relaxation of the resonant frequency with 

time is still present as in the previous case, but the results are accurate enough to account 

for the greater part of the response variations.

Fig. 5.19 Comparison of simulated response and ALDS generated output 

to a step input of 25mA- 100mA for parameter set computed at 100mA bias
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5.4.1 Analysis for below-threshold bias

In chapter-4, we have proposed a simple method of predicting response of below- 

threshold biased lasers, by modifying only two of the modal parameters. We estimate the 

total carrier lifetime based on the assumption that only bimolecular recombination is of 

significance close to threshold, as it also defines the spontaneous emission coupling in the 

mode of interest. With negligible auger and non-radiative recombination effects, the 

carrier lifetime simply becomes

L ~ 2t

Similarly, the spontaneous emission factor is a fraction multiple of the estimated value at 

threshold assuming this to provide the average contribution to the lasing mode below 

threshold. Since the turn-on delay for laser with below-threshold bias is directly related to 

the absolute change in the carrier density which in-tum is defined by the total carrier 

lifetime, we should be able to predict the governing large signal response if our estimate 

for the lifetime and the below-threshold spontaneous emission contribution is accurate 

enough.

For laser-B, in order to test for turn-on delay estimations we again generate a step 

input response from the ALDS for both 50mA and 100mA biases as was the case earlier, 

but this time, we have zero initial bias before the application of input, thus the generated 

response for the quarter-wave shifted DFB (simulated) laser includes the maximum turn­

on delay. A comparison of the ALDS generated response with our model is shown in 

figure-4.20. The comparison in response is much improved from that reported in [2]. A 

slight difference in turn-on delay is observed as would be expected as a result of the 

approximations made.
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Fig.5.20 Computed response (a) at 50mA and (b) at 100mA, from zero 

initial bias showing the comparison of maximum tum-on delay and the 

peak transient
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Here, we have shown that the 0D rate equation behavior model can be used to 

predict the effects of below threshold dynamics of the laser, if we can accurately predict 

the spontaneous emission contributions below threshold and the total carrier lifetime, 

these two parameters alone would be sufficient to account for the turn-on delay and the 

above threshold transients in the response, which have previously been un-accounted for 

([1]» [2]) in the rate-equation models.



Chapter-6

Conclusion

In this thesis we have presented a new method of parameter extraction from the 

OD rate equation behavior model of a single mode semiconductor diode laser. The model 

itself has been modified to reduce the total number of extractable unknowns. Some of the 

parameters have been combined to represent a new set of measurable quantities. The 

transformation allows us to use only steady state ¿/-characteristics and the small signal 

parameters of resonant frequency and damping coefficient as inputs to completely 

characterize the large signal behavior.

The approach used in this work is similar to the one presented in [2], however, the 

proposed method is found superior in its ability to rely solely on the measured data of the 

DUT without requiring information of the frequency spectrum or the dispersion through a 

coupled fiber. Additionally, all the parameters are shown to be estimated only from above 

threshold measurements. In comparison with the numerical optimization method 

presented in [1], the proposed method has lesser degree of freedom with the estimations 

but does not suffer from the problems of initial value sensitivity or long computation 

time. Comparisons of the large signal response have shown that results from both 

methods are nearly identical in behavior despite the obvious differences in the computed 

parameters.

103
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There are a couple of firsts in our work. We have for the first time, proposed a 

method to predict the spontaneous emission coupling factor into the lasing mode, only 

from above-threshold analysis. We have also correlated the behavior of a below-threshold 

biased quarter-wave shifted DFB laser directly to the modal parameters of spontaneous 

emission factor and carrier lifetime, where the latter is estimated from the small signal 

response alone. We have for the first time shown that a 0D behavior model can be used to 

predict turn-on delay and transients under the given bias conditions.

We have for the first time presented a complete thermal model of the edge-emitter 

laser, based on the proposed modified rate equation model, which encompasses all the 

thermal effects but requires only threshold current characteristic temperature as additional 

data which is readily available from the Lf-characteristics.

In summary, a complete behavioral model has been investigated which shows to 

require less device data as input, is as accurate as its more complex counterparts, very 

fast in execution and covers all aspects of possible operating conditions.

6.1 Future research direction

This thesis has shown that a simple 0D model can go a long way towards 

comprehensive characterization of semiconductor lasers. This needs to be extended to 

include extraneous affects on the behavior such as noise and jitters. Moving away from 

the single mode operation, multimode lasers might be considered as possible candidates 

for modeling using a similar approach. Although, the proposed method is shown to be 

accurate, we cannot ignore the spatial affects inside the cavity, which affect the behavior. 

There is thus a need to use this approach in correlation with high-level models to develop 

a more representative model but with less complexity.
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Appendix - A

Derivation for the ‘Modified’ Rate Equation 
Model

Reproducing the rate equations from the ‘universal’ time domain model

JS _Vg0(N-NT)S S ir^N 

dt (l + £5) Vp

dN_ = J____g0(N-NT)S N

dt qV (l + £5) Tn

ii- = a^-Tg„(N-N,h) 
at Z

(A-l)

(A-2)

(A-3)

Solving for equation (A-l), we multiply and divide the first term on the RHS by qV

^-(N-NT)qVS
dS _ qVK T> __S_ + r^^L

dt (l + iS)
(A-4)

Under steady state conditions neglecting all space dependent effects, we can approximate

rscM-AV)“—
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■ ■nt=n0-
^go^p

NtV = N0V -
^So^P^N

Multiply and divide the first term on RHS by tn

NtV = N0Vtn (A-5)V

^g0^N

At threshold current, the following relationship holds

Ap _ Ij-H 

Tn qV

Therefore, expressing in terms of threshold current in (A-5)

1 Vt VNTV= ™ N v
QV ^'go^p'^N

ntv =
Tg'Pp'tlA

IfH qV

Making the appropriate substitutions in equation (A-4), from above, we have

rg0
dS_

dt

qV
qNV- ^TH^N qv

ygM .
(l+fis)

-A+r/?A (A-6)
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Photon density from one facet of a single facet HR-coated device can be expressed in 

terms of output power by the following relationship

5(i) =
2rrP

Vr]Dhv
P(t) (A-7)

Replacing 5(i) with the above relation in (A-6) (except the gain compression term in the 

denominator), we have

dt

r2YTPPy

VqDhv

qV
qNV + qy

(1 + £S)

Y 2VrPPy

VrjDhv 2rVPP
VTIDhVTf.

+r/^

2rrP Ì JP_ ( 2rrPp) qv

dt (y^pàvj

qNV ITH tn +

(l + iS)

qy
2TP N

+rp—
Vr]Dhv

r^o

After cross multiplication, we have

dP
dt

rgpP
qv ,

dP _ V qy 
dt

dP_

dt

qNv-iTHrN +

(1+sS)

{qNV IthTn)

(1 + iS)

qV

-- + /3NV
fjphv

\2tptn

p p
P + —r------------- + /SW

Tp^ + fiS) Tp
rjDhv

\2tptn

(1 + £S)
p~—+/?(wv

fjphv' 

2tptn>
(A-8)
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Solving for equation (A-2) in a similar manner, we multiply throughout by V

(NV)

dt' q (l + £$) Tn

Making the appropriate substitutions for steady-state approximations stated above

W
80 (W)-J qV

(iW)
(l + eS)

Ith^n

9 J
N

Again representing photon number in terms of output power

So (NV)-
^TH^N qv

(l + fiS)

Y 2rrpPy
(NV)

qVqDhv V____q J qDhv p (NV)
(l + £S) tn

(A-9)

Multiplying both sides of equation (A-7) by “f ”, we have

£S =
2éTTp p 

VrjDhv

VriDhv qg„



Ill

£$ = Tp £ rrg° r 2Pq 
go qV rjDhv

Thus, equations (A-8) and (A-9) can now be written as

JP
dt

qy
l(9(WV)-irar„)+ —
1 TP

1+ ^p£so^q_p 
goqV^Dhv >

P-JL+p(uv JJDhv 
2TpTN )

d_

dt

yg02q?P (+ 2 
qVthhvV q ) nDhv r (NV)

I + £TPrgo2q p 
, goqVvDhv }

Through a proper combination of the parameters in the modified rate equations above, we 

can rewrite our rate equation model in terms of lumped parameter set.

Where

JP
dt

a(q(NV)- 1th '

(l + ahcTFP0)

a = Jlo
qy

act, (NV)-

._Z.+xavU

J r 

<7 )
C+ —

CTpTN y
(A-10)

(l + a&cTpP) T„
(A-ll)

c=^
rjDhv
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The other three remaining unknowns are “rF“, ’’and Thus we have reduced

the total number of unknown parameters in the rate equation, from 9 to 6. These 

parameters (or combination of parameters) are extractable from the steady state L-l 

characteristics and the small signal AM-response of the laser. The uncoupled phase rate 

equation (A-3) can also be modified to be represented in terms of the parameters defined 

above.

Multiply and divide RHS of the equation by ‘qV’

N.,
dt 2 qV

q(NV)-qVTN^-
'N J

Expressing the carrier density at threshold in terms of threshold current

^ = «4% MM
dt 2 qv

d£

dt
(A-12)

Equation (A-12) gives the modified phase rate equation and can be used directly to 

determine the frequency chirp.



Appendix - B

Design constraints for optimum operating 
point on the gain curve

Semiconductor laser designs for optical communication applications are focused 

around minimizing laser current using the adjustable parameters of the cavity combined 

with the intrinsic properties of the material used. For many laser designs, the knee of the 

gain curve defines the constraint for optimum operation characteristics and the threshold 

gain is placed closed to this point on the curve.

Fig.Bl Plot of material gain vs. volume current density
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The following current density-gain equation shows this relationship

S = Soln J + Js 
\JT + J s

[Where “J” is the current density]

If the linearity parameter (Js) is zero (for positive gains), the solution is given by

J op, = eJT And Sop, = So

j A Jv
< S J

eJT

So^z

The width “ L ” is used because “ Jv ” is current per unit volume.

Fig.B2 Plot of calculated current-to-gain conversion 

factor as a function of material gain for three GaAs based 

active materials
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The intrinsic gains of laser materials follow a typical profile with respect to the

carrier density and in turn the input current. Figure-B2 is a plot of — as a function of 
8

material gain for three ‘GaAs’ based active materials which are the most commonly used 

material in semiconductor lasers. [3]

It can be observed from the above plots that as we move away on either side of

the minimum of the curves, the value of the ratio — increases significantly, indicating 
8

an increase in the threshold current. As we move to the right of this curve we are 

approaching smaller and smaller cavity lengths (which indicates smaller photon lifetime) 

and as we move away to the left of the minimum towards the transparency value, the 

cavity length increases (and so does the photon life time). It is clearly evident where the

minimum — occurs and how broad this minimum is, which can be summarized as 
8

follows

Active

Materials V o /min
Material Gain

InGaAs QW 1.4 mA/fjm2 1250 cm’1

GaAsQW 2.9mA/jjm2 1450 cm’1

Bulk GaAs 3.8 mA/jum2 1000 cm’1

Table BI
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The graphs indicate that the penalty for operating too close to transparency is too 

high (in the form of very high threshold current). On the lower side of the gain the 

variation in slopes are nearly identical on all three materials.

Although the above values correspond to the lowest value of the ratio, the 

threshold gain can be selected anywhere within approximately 20% of this lowest value 

without too big a compromise on the threshold current.

For lasers that are designed for high speed applications, in addition to minimizing 

the laser current, we also want to maximize the differential gain in order to enhance the 

relaxation resonance frequency as indicated by the relation

 8qSq

Material Gain (1/cm)

Fig.B3 Plot of current-to-gain conversion factor and

differential gain as function of material gain for 

InGaAs/GaAs Q W laser
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However, the maximum differential gain occurs at transparency, which is far from 

ideal for minimizing the threshold current. Thus a trade off exists between obtaining low 

threshold current and high differential gain.

In the case of InGaAs/GaAs MQW laser, reducing the threshold material gain 

from 2000 cm'1 to 1000 cm'1 has little effect on the threshold current, while it increases 

the differential gain by nearly a factor of 2. Decreasing the material gain below 500 cm"1 

leads to large increase in threshold current without much increase in differential gain. 

Thus a reasonable compromise operating point exist somewhere in the range 500- 

1000 cm"1. This range lies at around 20% of the lowest value of J/g as described earlier. 

This constraint serves as a good figure of merit for estimation purposes.

Since the minimum point on the curve is well defined by the natural logarithmic 

function, and is nearly the same for all the device materials, we can approximate the 

optimum operating point for the high-speed laser by shifting towards the lower material 

gain within 20% of this minimum point on the curve. This will give us the best possible 

cavity length for the laser corresponding to the highest differential gain with lowest 

threshold current. Thus, irrespective of the type of material, an estimate can be made on 

the optimum value of photon lifetime without straying too far away from the actual value.

Also, it can be observed from the current-to-gain curves, that the lower bottom- 

left part of the curve for the three materials described above, are nearly identical, giving 

some credibility to the estimates for lasers made from these material. The gain relation is 

also described in terms of the carrier density by either an approximate linear relationship 

(which is used for most bulk lasers), or a more accurate logarithmic relationship.

' N + Ns '

< "I" NS )
8 = So In
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In this equation g'o is an empirical gain coefficient and Ns is a shift to force the 

natural logarithm to be finite at N = Q, such that the gain equals the un-pumped 

absorption. However, if we limit ourselves to positive gains (g > 0), the above equation 

can be approximated as

Where g0 is the familiar differential gain coefficient.

Fig.B4 Modal gain verses injected carrier density

Here the knee on the curve of carrier density corresponds to the minimum — value 
g

described earlier.


