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Abstract

Consider a population of m-type individuals labelled by {1, 2, . . . ,m}. Let x =

(x1, x2, . . . , xm) denote the relative frequencies of all types with xi denoting the rel-

ative frequency of type i for 1 ≤ i ≤ m. For a random sample of size 2 from the

population, the probability that the individuals of the sample are of the same type

is given by

H =
m∑
i=1

x2
i .

In this thesis, we focus on the case where x = (x1, x2, . . . , xm) is a random vector.

The quantity H appears in various fields of study. For instance, it is associated

with the Shannon entropy in communication, the Herfindahl-Hirschman index in

economics and known as the homozygosity in population genetics.

In [7], fluctuation theorems for the infinite dimensional case {ϕr(x) : r ≥ 2} defined

as

ϕr(x) =
∞∑
i=1

xri

are considered. In this thesis we present, under a moment assumption, a Central

iv



Limit Theorem (CLT) associated with H and present as examples the Gamma sub-

ordinator case, which is a well known result by Griffiths [10], and the generalized

Gamma subordinator case.
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Chapter 1

Introduction

A subordinator is a very important concept in the study of stochastic processes.

Subordinators are special cases of Lévy processes which are explored into detail

in Section 2.1 of Chapter 2. The representation by subordinators on which this

thesis is based is presented in Section 2.2 of Chapter 2. In this thesis, we focus

on self-normalized subordinators which represent normalized random measures with

independent increments [17]. These notions of subordinators and normalized random

measures with independent increments are rigorously presented in Sections 2.2 and

2.3 of Chapter 2 respectively. The main focus of this thesis is to provide a Central

Limit Theorem for

H =
m∑
i=1

X2
i ,

where (X1, X2, . . . , Xm) is a random vector with
∑m

i=1Xi = 1 and 0 < Xi < 1 for

each i.

Our interest in this statistic stems from its importance in several fields of study.
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In Section 2.4 of Chapter 2, we present some areas of study and their respective

applications of H.

In Chapter 3, we review Central Limit Theorems where we take a look at different

structures of random variables (independent and identically distributed, independent

but not identically distributed, and dependent random variables) and how CLT can

be established in each of these cases.

In Chapter 4, the main results of the thesis are presented. We establish a CLT

for H under a moment condition. Two examples of this result are presented by

considering the Gamma subordinator and the generalized Gamma subordinator.

2



Chapter 2

Subordinators and Related

Concepts

In this chapter, we introduce subordinators in detail. We first introduce Lévy pro-

cesses and present subordinators as a special case of such processes. Examples of

subordinators including the Gamma subordinator, the generalized Gamma subordi-

nator and the stable subordinator are presented. Self-normalized random measures

are briefly discussed. In the final part of the chapter, the homozygosity and some

diversity indices related to H are also presented. The definitions and concepts pre-

sented here are mainly based on [1].

2.1 Lévy Processes

Defintion 2.1.1 (Lévy Process). A stochastic process X = {Xt : t ≥ 0} in Rn

defined on a probability space (Ω,F ,P), is said to be a Lévy process if it satisfies the

3
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following properties:

1. X0 = 0 almost surely, i.e, P(X0 = 0) = 1

2. For any 0 ≤ t1 < t2 < . . . < tn <∞, Xt1 , Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1

are independent.

3. For any s < t, Xt −Xs is equal in distribution to Xt−s.

4. The paths of X are right-continuos with left limits.

Lévy processes may be thought of as an extension of the classical family of random

walks (sums of independent and identically distributed random variables). They are

analogues of random walks in continuous time [1].

2.1.1 Examples of Lévy Processes

Brownian Motion

A (standard) Brownian motion [20] (sometimes called a Wiener process) in Rd is a

Lévy process B = {B(t), t ≥ 0} such that

1. B(0) = 0

2. B(t)−B(s) ∼ N(0, t− s) for 0 ≤ s ≤ t

3. B(t) has independent increments.

It is one of the best known Lévy processes.

4
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Poisson Process

The Poisson process [21] with rate λ > 0 is a Lévy process N = {N(t), t ≥ 0} such

that

1. N(0) = 0

2. N(t) has independent increments

3. The number of events in any interval of length t is Poisson distributed with

mean λt.

2.2 Subordinators

2.2.1 The Lévy-Khintchine Formula

Here, a formula first established by Paul Lévy and A. Ya. Khintchine in the 1930s

is presented. This formula gives a characterisation of infinitely divisible random

variables by giving a representation of their characteristic functions.

Before stating the formula, we first take a look at what infinitely divisible random

variables are.

Defintion 2.2.1 (Infinite Divisibility). A real-valued random variable X is said

to be infinitely divisible, if for all n ∈ N there exist independent and identically

distributed (i.i.d.) random variables Y
(n)

1 , . . . , Y
(n)
n such that

X
d
= Y

(n)
1 + . . .+ Y (n)

n .

5
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Remark. [1] The distribution of a Lévy process has the property of infinite divisi-

bility.

Lévy and Khintchine show the exact form of the characteristic function of an

infinitely divisible random variable is

− logE(eiξ·X) = −il · ξ +
1

2
ξ ·Qξ +

∫
Rd−{0}

(1− eiy·ξ + iξ · y1{|y|<1})Λ(dy) (2.1)

where l ∈ Rd, Q ∈ Rd×d is a positive semidefinite symmetric matrix, and Λ is the

Lévy measure on Rd − {0} satisfying
∫
Rd−{0}min{1, |y|2}Λ(dy) <∞.

Defintion 2.2.2 (Subordinator). A process {τs : s ≥ 0} is called a subordinator if

it has stationary, independent, and non-negative increments with τ0 = 0.

Remark. [1] A subordinator can be defined as a non-decreasing (a.s.) R-valued Lévy

process.

Defintion 2.2.3. A subordinator {τs : s ≥ 0} has no drift (pure-jump) if for all

λ ≥ 0, s ≥ 0, the Laplace transform is given by

E(e−λτs) = exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx)

}
(2.2)

where Λ is the Lévy measure on [0,∞).

The Lévy measure Λ is a measure on R that satisfies:

1. Λ(0,∞) =∞

2.
∫∞

0
min{x, 1}Λ(dx) <∞.

6
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In the remainder of this thesis, we focus on subordinators with no drift.

Now, we give a representation of a subordinator that would be used throughout

this thesis.

Let {τs : s ≥ 0} be a pure-jump subordinator up to time m. Let

Y1 = τ1 − τ0, Y2 = τ2 − τ1, . . . , Ym = τm − τm−1.

We refer to Y1, Y2, . . . , Ym as the increments of {τs : s ≥ 0}. By definition, Y1, Y2, . . . , Ym

are independent and identically distributed and

τm =
m∑
i=1

Yi <∞.

Define

Xi =
Yi
τm
, i = 1, 2, . . . ,m (2.3)

Then the random vector (X1, X2, . . . , Xm) specifies a random discrete probability on

the set of integers {1, . . . ,m} [16].

2.2.2 Examples of Subordinators

Gamma Subordinator

The subordinator {γs : s ≥ 0} is called a gamma subordinator if its Lévy measure is

Λ(dx) = x−1e−xdx, x > 0.

7
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The marginals of the gamma subordinator have the gamma distribution. In particu-

lar, for the Lévy measure specified above, the increments of the gamma process have

the gamma distribution with shape parameter 1. We see that

1. Λ(0,∞) =
∫∞

0
x−1e−xdx diverges to infinity since 1/x is non-integrable in any

interval that includes 0 because it diverges, hence x−1e−x diverges too.

2. ∫ ∞
0

min{x, 1}Λ(dx) =

∫ ∞
0

min{x, 1}x−1e−xdx

=

∫ 1

0

x · x−1e−xdx+

∫ ∞
1

x−1e−xdx

= 1− e−1 + Γ(0, 1) <∞

where

Γ(s, x) =

∫ ∞
x

ts−1e−tdt

is the incomplete gamma function.

Its Laplace transform becomes

E(e−λγs) =
1

(1 + λ)s
.

Generalized Gamma Subordinator

The subordinator {ρs : s ≥ 0} is a generalized Gamma process with scale parameter

one [4, 14] if its Lévy measure is

Λ(dx) = Γ(1− α)−1x−(1+α)e−xdx, x > 0

8
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where α ∈ (0, 1).

We have that,

1. ∫ ∞
0

Γ(1− α)−1x−(1+α)e−xdx = Γ(1− α)−1

∫ ∞
0

x−(1+α)e−xdx

=∞

since
∫∞

0
x−(1+α)dx diverges, so would

∫∞
0
x−(1+α)e−xdx.

2.

∫ ∞
0

min{1, x}Λ(dx)

=

∫ 1

0

x · Γ(1− α)−1x−(1+α)e−xdx+

∫ ∞
1

Γ(1− α)−1x−(1+α)e−xdx

= Γ(1− α)−1

∫ 1

0

x−αe−xdx+ Γ(1− α)−1

∫ ∞
1

x−(1+α)e−xdx

= Γ(1− α)−1 (Γ(1− α)− Γ(1− α, 1)) +
Γ(1− α)−1

α

(
e−1 − Γ(1− α, 1)

)
<∞

Here the Laplace transform is,

E(e−λρs) = exp
{
− s
α

((λ+ 1)α − 1)
}
.

9
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Stable Subordinator

The subordinator {ρs : s ≥ 0} is a stable subordinator with index α ∈ (0, 1] if its

Lévy measure is

Λ(dx) = cαx
−(1+α)dx, x > 0, cα > 0.

Realize that,

1. Λ(0,∞) =
∫∞

0
cαx

−(1+α)dx =∞

2. ∫ ∞
0

min{x, 1}Λ(dx) =

∫ ∞
0

min{x, 1}cαx−(1+α)dx

= cα

∫ 1

0

x−αdx+ cα

∫ ∞
1

x−(1+α)dx

=
cα

α(1− α)
<∞.

Its Laplace transform is given by

E(e−λρs) = exp{−sΓ(1− α)λα}.

Note that a stable subordinator with index α ∈ (0, 1] is a subordinator with zero

drift and Lévy measure as defined above and this is the case we work with in this

thesis.

2.3 Self-Normailized Random Measures

Definitions of a completely random measure (CRM) and a normalized random mea-

sure with independent increments (NRMIs) are given below as introduced by [11].

10
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Let X be a Polish space with the Borel σ-algebra X . Let MX denote the space of

finite measures on (X,X ) endowed with the Borel σ-algebra MX.

Defintion 2.3.1. [25] Let µ̃ be a measurable mapping from a probability space (Ω,F ,P)

into (MX,MX) such that for any A1, . . . , Am in X , with Ai ∩Aj = ∅ for any i 6= j,

the random variables µ̃(A1), . . . , µ̃(Am) are mutually independent. The measurable

map µ̃ is called a completely random measure.

Defintion 2.3.2. [25] Let µ̃ be a CRM such that 0 < µ̃(X) < +∞ almost surely.

The random probability measure p̃ = µ̃/µ̃(X) is called normalized random measure

with independent increments.

From the above definitions, we note that generally, an NRMIs is defined as a

random probability measure obtained by normalizing a CRM with finite total mass

and characterized by some Lévy intensity measure v(ds, dx) = ρ(ds|x)α(dx) [25].

We say v is homogeneous when v(ds, dx) = ρ(ds)α(dx). In this case, the corre-

sponding CRM (NRMI) is referred to as homogeneous CRM (homogeneous NRMI)

[25].

Some examples of homogeneous NRMIs are the Dirichlet process [8], normalized

generalized Gamma process [14] and the normalized stable process [12].

From the above discussions, realize that (2.3) is a self-normalized random mea-

sure.

Remark. [8] Normalizing a Gamma CRM yields a Dirichlet process.

11
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2.4 The Homozygosity and Diversity Indices

For any integer m ≥ 2, the function

H =
m∑
i=1

x2
i , (xi, i in [1, n]) in

{
0 < x1, . . . , xm < 1,

m∑
i=1

xi = 1

}

is very important in various fields of study. For instance, in population genet-

ics, the statistic represents the homozygosity. It is associated with the Shannon

entropy in communication, the Herfindahl-Hirschman index in economics, and the

Gini-Simpson’s index in ecology.

2.4.1 Homozygosity

Homozygosity is a term used in genetics to refer to the situation where a person

inherits the same alleles for a single trait. Diploids typically have two alleles for any

given trait.

Consider a locus with m ≥ 2 alleles. Suppose the frequency of allele i is xi > 0

and let the alleles be placed in decreasing order of frequency so that xi ≥ xj if i < j.

Then for diploids, the fraction of homozygotes expected under the assumption of

Hardy-Weinberg proportions can be defined as [18]

H =
m∑
i=1

x2
i

where
m∑
i=1

xi = 1.

12
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Now, consider the more general setting where we have an infinite number of alleles

at the locus in question. Differently put, take a population of individuals with types

labelled by {1, 2, . . .}. Suppose the frequency of type i for i ≥ 1 is xi > 0 so that

x = (x1, x2, . . .) represents the relative frequencies of all types. For r ≥ 2, the

probability that out of a random sample of size r, individuals in the sample are of

the same type is given by

ϕr(x) =
∞∑
i=1

xri (2.4)

with
∞∑
i=1

xi = 1.

If x follow the one-parameter Poisson-Dirichlet distribution, then ϕ2(x) is known as

the homozygosity of the population in population genetics [7]. For details on the

one-parameter Poisson-Dirichlet distribution and related concepts, see Feng [7]. In

Feng [7], fluctuation theorems for {ϕn(x) : n ≥ 2} are presented. This thesis focuses

on the finite case H.

2.4.2 Herfindahl-Hirschman Index

The Herfindahl-Hirschman Index (HHI), named after economists Orris C. Herfindahl

and Albert O. Hirschman, is a commonly accepted measure of market concentration.

This index is considered as superior to other concentration measures such as the CR4

and CR8 concentration ratios. It has been in use by the U.S. Department of Justice

since 1982 and is the measure of concentration used in governmental merger analysis

[13].

13
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Let xi denote the market share of firm i in the market. Then the HHI is given by

H =
m∑
i=1

x2
i

where m is the number of firms in the industry.

The values of H are in the interval (0, 1] when the market shares are expressed

as fractions and (0, 10000] points when the market shares are expressed as whole

percentages.

Smaller values of HHI indicate a very competitive market (unconcentrated mar-

kets) while larger values indicate a monopolistic market (highly concentrated mar-

kets). An increase in HHI usually means a decrease in competition and an increase

of market power.

Usually, a threshold is set to determine which values of HHI indicate an unconcen-

trated market, a moderately concentrated market and a highly concentrated market.

For instance, according to the Horizontal Merger Guidelines of the U.S. Department

of Justice and Federal Trade Commission, markets are classified into three types:

• Unconcentrated Markets: HHI below 0.15

• Moderately Concentrated Markets: HHI between 0.15 and 0.25

• Highly Concentrated Markets: HHI above 0.25

14
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2.4.3 Simpson’s Index

The Simpson’s index [22] is a measure of the concentration of individuals in an infinite

population.

More formally, consider an infinite population with individuals belonging to one

of m groups, and let x1, . . . , xm be the frequency of individuals in the various groups

with
∑m

i=1 xi = 1. Then the Simpson’s index

H =
m∑
i=1

x2
i

is a measure of the concentration of the classification.

The smaller the value of H, the more diverse or less concentrated the population

is and the larger the value of H, the more concentrated or equivalently, less diverse

the population is.

15



Chapter 3

Central Limit Theorems

The Central Limit Theorem (CLT) is one of the most important and widely used re-

sults in probability theory with many useful applications in most fields. In this chap-

ter, we begin with the classical CLT where we consider independent and identically

distributed (i.i.d.) random variables and then proceed to Feller-Lindeberg theorems

where we present results regarding independent variables that are not necessarily

identical. We conclude with Stein’s method which handles the case of dependent

random variables.

3.1 Classical CLT

LetX1, X2, . . . , Xm be i.i.d. random variables with finite common mean and variance.

Central Limit Theorems associated with this basic structure of random variables are

often referred to as the classical CLT. In the following theorem, we present the

classical CLT.

16
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Theorem 3.1.1 (Classical CLT). Let X1, X2, . . . , Xn be i.i.d. random variables

with E(Xi) = µ <∞ and Var(Xi) = σ2 <∞. If X̄n = n−1
∑n

i=1 Xi, then

Tn =

√
n(X̄n − µ)

σ

d→ N(0, 1). (3.1)

Proof.

Tn =

√
n(X̄n − µ)

σ

=
1√
n

n∑
i=1

(
Xi − µ
σ

)
=

1√
n

n∑
i=1

Yi where Yi =
Xi − µ
σ

Then we have that Y1, Y2, . . . , Yn are i.i.d. with E(Yi) = 0 and Var(Yi) = 1. The

characteristic function of Tn by definition is

ϕTn(t) = E
(
eitTn

)
= E

(
eit

∑n
i=1 Yi/

√
n
)

= E
(
eitY1/

√
n+...+itYn/

√
n
)

= E
(
eitY1/

√
n · eitY2/

√
n · · · eitYn/

√
n
)

= E
(
eitY1/

√
n
)
E
(
eitY2/

√
n
)
· · ·E

(
eitYn/

√
n
)

(indep. of Yi’s)

=
[
E
(
eitY1/

√
n
)]n

(Yi’s are identically distributed)

=
[
ϕY1/

√
n(t)

]n
Observe that

eitY1/
√
n = 1 +

itY1√
n
− t2Y 2

1

2n
+ . . .

17
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Thus

ϕY1/
√
n(t) = E

(
eitY1/

√
n
)

= 1− t2

2n
+ o

(
1

n

)
and

ϕTn(t) =

[
1− t2

2n
+ o

(
1

n

)]n
so that

ϕTn(t) −→ e−
1
2
t2 as n→∞

But e−
1
2
t2 is the characteristic function of the standard normal distribution and the

proof is complete from the continuity theorem. For more on continuity theorem, see

[9].

The two fundamental questions that arise from the classical CLT are:

1. Whether or not CLT still holds when random variables are independent but

not necessarily identical.

2. Whether or not CLT still holds when random variables are not independent.

These fundamental questions are addressed by the works of Lindeberg and Feller

and Stein.

Lindeberg and Feller showed that under some conditions, CLT still holds for

independent random variables that are not necessarily identical. Charles Stein, on the

other hand, developed a sophisticated approach for handling the case of dependent

random variables.

18
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Now, we present concepts and theorems associated with the works of Feller and

Lindeberg in establishing CLT.

3.2 Feller-Lindeberg Theorems

Before presenting the main results of this section, we need the idea of triangular

array of independent random variables which we present as follows.

Suppose X1, . . . , Xn are independent random variables, even possibly identically

distributed, but with their distributions depending on n. For instance, suppose

random variables have the Poisson distribution with mean λn, where λn changes

with n. Then it becomes necessary to have a way of representing these random

variables, and this brings about the idea of triangular array of random variables.

Definitions and results presented in this section are mainly based on [3].

Defintion 3.2.1. For each n ≥ 1, let {Xn1, . . . , Xnrn} be a collection of random

variables defined on a probability space (Ωn,Fn, Pn) such that Xn1, . . . , Xnrn are in-

dependent. Then, {Xn1, . . . , Xnrn}n≥1 is called a triangular array of independent

random variables.

Let {Xn1, . . . , Xnrn}n≥1 be a triangular array of independent random variables.

Then, the sums defined as

Sn =
rn∑
j=1

Xnj, n ≥ 1 (3.2)

are called the row sums.

We are now in a good position to state the Lindeberg Condition which plays a

major role in establishing CLT for row sums.
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Defintion 3.2.2. Let {Xn1, . . . , Xnrn}n≥1 be a triangular array of independent ran-

dom variables with

E(Xnj) = 0, E(X2
nj) = σ2

nj <∞ for all 1 ≤ j ≤ rn, n ≥ 1. (3.3)

Then {Xn1, . . . , Xnrn}n≥1 is said to satisfy the Lindeberg condition if for every ε > 0,

lim
n→∞

s−2
n

rn∑
j=1

E(X2
nj · 1(|Xnj| > εsn)) = 0, (3.4)

where s2
n =

∑rn
j=1 σ

2
nj, n ≥ 1.

In the following example, we show that (3.1) satisfies the Lindeberg condition.

Example 1. Let X1, . . . , Xn be i.i.d. random variables such that E(Xi) = µ < ∞

and Var(Xi) = σ2 < ∞. Define Tn as in (3.1). Writing Tn as the row sum of a

triangular array of independent random variables, we have:

Tn =
n∑
j=1

Xnj,

where Xnj = (Xj − µ)/{σ
√
n}, 1 ≤ j ≤ n, n ≥ 1.

It is clear that E(Xnj) = 0 and E(X2
nj) = 1/n for all 1 ≤ j ≤ n, n ≥ 1. We are

left to show that

lim
n→∞

s−2
n

n∑
j=1

E(X2
nj · 1(|Xnj| > εsn)) = 0,

where s2
n =

∑n
j=1 σ

2
nj =

∑n
j=1

1
n

= 1.
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We have,

s−2
n

n∑
j=1

E(X2
nj · 1(|Xnj| > εsn)) =

n∑
j=1

E

[(
Xj − µ
σ
√
n

)2

· 1
(∣∣∣∣Xj − µ

σ
√
n

∣∣∣∣ > ε

)]

=
n∑
j=1

1

σ2n
E[(Xj − µ)2 · 1(|Xj − µ| > εσ

√
n)]

= n · 1

σ2n
E[(X1 − µ)2 · 1(|X1 − µ| > εσ

√
n)]

= σ−2E[(X1 − µ)2 · 1(|X1 − µ| > εσ
√
n)]

Let Zn = (X1 − µ)2 · 1(|X1 − µ| > εσ
√
n). We have that |Zn| ≤ (X1 − µ)2 and

E(X1−µ)2 <∞. It is also clear that, the probability of Zn approaches zero as n→∞

and hence we conclude that Zn
P→ 0. Now, applying the Dominated Convergence

Theorem, it is concluded that E(Zn)→ 0 and the Lindeberg condition is satisfied.

Next, the main result of this section is presented. This is the Lindeberg CLT for

triangular array of independent random variables.

Theorem 3.2.1 (Lindeberg’s CLT). Let {Xnj : 1 ≤ j ≤ rn}n≥1 be a triangular

array of independent random variables satisfying (3.3) and the Lindeberg’s condition

(3.4). Then,

Sn
sn

d→ N(0, 1)

where Sn =
∑rn

j=1Xnj and s2
n =

∑rn
j=1 σ

2
nj.

Remark. Another way to establish the result of the classical CLT is to observe that,

from Example 1, i.i.d. random variables satisfy the Lindeberg condition and thus the

result follows from the Lindeberg CLT. Clearly, the Lindeberg CLT generalizes the

classical CLT.
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Defintion 3.2.3 (Lyapounov’s condition). A triangular array {Xnj : 1 ≤ j ≤

rn}n≥1 of independent random variables satisfying (3.3) is said to satisfy Lyapounov’s

condition if there exists a δ ∈ (0,∞) such that

lim
n→∞

s−(2+δ)
n

rn∑
j=1

E
(
|Xnj|2+δ

)
= 0, (3.5)

where s2
n =

∑rn
j=1 σ

2
nj

Lyapounov’s condition is a stronger condition than Lindeberg’s condition and it

is often easier to check.

Lemma 3.2.1. Lyapounov’s condition implies Lindeberg’s condition.

Proof. We need to show that

lim
n→∞

s−2
n

rn∑
j=1

E(X2
nj · 1(|Xnj| > εsn)) = 0

whenever

lim
n→∞

s−(2+δ)
n

rn∑
j=1

E
(
|Xnj|2+δ

)
= 0.

Suppose limn→∞ s
−(2+δ)
n

∑rn
j=1 E

(
|Xnj|2+δ

)
= 0. Let ε, δ > 0. Observe that for any

random variable |Xnj| > εsn, we have

X2
nj =

|Xnj|2+δ

|Xnj|δ
≤ |Xnj|2+δ

(εsn)δ
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Thus for any random variable Xnj, we have

E(X2
nj · 1(|Xnj| > εsn)) ≤ 1

εδ · sδn
E
(
|Xnj|2+δ

)
This implies

lim
n→∞

s−2
n

rn∑
j=1

E(X2
nj · 1(|Xnj| > εsn)) ≤ lim

n→∞

1

εδ
s−(2+δ)
n

rn∑
j=1

E
(
|Xnj|2+δ

)
= 0

Hence the Lindeberg condition is satisfied.

Corollary 3.2.1.1 (Lyapounov’s CLT). Let {Xnj : 1 ≤ j ≤ rn}n≥1 be a triangular

array of independent random variables satisfying (3.3) and Lyapounov’s condition

(3.5). Then

Sn
sn

d→ N(0, 1)

where Sn =
∑rn

j=1Xnj and s2
n =

∑rn
j=1 σ

2
nj

The Lindeberg’s condition and Lyapounov’s condition presented are both suffi-

cient conditions for the validity of the CLT. The necessary condition for the CLT is

provided by Feller.

Theorem 3.2.2 (Feller’s Theorem). Let {Xnj : 1 ≤ j ≤ rn}n≥1 be a triangular

array of independent random variables satisfying (3.3) such that

lim
n→∞

1

s2
n

max
1≤j≤rn

σ2
nj = 0 (3.6)
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where s2
n =

∑rn
j=1 σ

2
nj. If for Sn =

∑rn
j=1Xnj,

Sn
sn

d→ N(0, 1),

then {Xnj : 1 ≤ j ≤ rn}n≥1 satisfies the Lindeberg condition.

3.3 Stein’s Method

Stein’s method is a sophisticated technique developed by Charles Stein to quantify

the error in the approximation of a distribution by another distribution in vari-

ous metrics. Initially, Stein’s method was introduced in [24] to estimate the error

in approximating the distribution of sum of dependent random variables of certain

structure by the normal distribution. This method has however been extended be-

yond the normal distribution to other distributions such as the Poisson distribution.

See, for instance, [2] for Poisson approximation using Stein’s method. In this section,

we focus on Stein’s method for normal approximation.

Stein’s method usually deals with bounding the distance between two probability

distributions in a particular metric. To this effect, some useful probability metrics

are introduced and an important relationship between the Kolmogorov metric and

Wasserstein metric is established.

Definitions, concepts and results presented here are based mainly on [5, 19].
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3.3.1 Metrics on Probability Measures

In this section, we review some commonly used metrics on probability measures in

applying Stein’s method. For a comprehensive review of probability metrics, see [23].

Let Ω denote a measurable space. Let µ and ν represent two probability measures

on Ω. We are interested in the family of distance measures known as the integral

probability metrics (IPMs) [15], defined as

dG (µ, ν) := sup
g∈G

∣∣∣∣∫
Ω

g(x)dµ(x)−
∫

Ω

g(x)dν(x)

∣∣∣∣ (3.7)

where G is a class of real-valued bounded measurable functions on Ω.

Given two random variables W and Z, with respective distribution functions

FW (x) and FZ(x), the probability metric takes the form;

dG (W,Z) = sup
g∈G

∣∣∣∣∫ g(x)dFW (x)−
∫
g(x)dFZ(x)

∣∣∣∣ = sup
g∈G

∣∣∣E(g(W ))− E(g(Z))
∣∣∣.

By taking special cases of G in (3.7), different useful probability metrics are

obtained as follows:

1. By letting G = {1[· ≤ x] : x ∈ R} in (3.7), the Kolmogorov metric is obtained.

This is denoted by dK . In this metric, a sequence of distributions converging

to a fixed distribution implies weak convergence.

2. By letting G = {g : R −→ R : |g(x)− g(y)| ≤ |x− y|} in (3.7), i.e. a collection

of 1-Lipschitz functions, in (3.7), the Wasserstein metric is obtained. This is

denoted by dW .
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3. If G = {1[· ∈ A] : A ∈ Borel(R)} in (3.7), the total variation metric is obtained.

This metric is denoted dTV

In using Stein’s method for normal approximation, the Wasserstein metric is

frequently used. The following result shows one of the reasons why this choice of

metric works in the approximation of a given distribution by the normal distribution.

Lemma 3.3.1. If the random variable Z has Lebesgue density bounded by C, then

for any random variable W ,

dK(W,Z) ≤
√

2CdW (W,Z).

Proof. Let ε > 0. Define gx(w) = 1[w ≤ x] and

gx,ε(w) =


1 w ≤ x,

−1
ε
(w − (x+ ε)) x < w < x+ ε,

0 w ≥ x+ ε.

Then we have

E(gx(W ))− E(gx(Z)) = P(W ≤ x)− P(Z ≤ x)

= P(W ≤ x)− E(gx,ε(Z)) + E(gx,ε(Z))− P(Z ≤ x)

≤ E(gx,ε(W ))− E(gx,ε(Z)) + E(gx,ε(Z))− P(Z ≤ x)
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Now,

E(gx,ε(Z))− P(Z ≤ x) = P(Z ≤ x)− 1

ε

∫ x+ε

x

(z − (x+ ε))fZ(z)dz − P(Z ≤ x)

= −1

ε

∫ x+ε

x

(z − (x+ ε))fZ(z)dz

= −1

ε

∫ 0

−ε
uf(u)du where u = z − (x+ ε)

≤ −C
ε

∫ 0

−ε
udu

=
Cε

2

Also, E(gx,ε(W ))−E(gx,ε(Z)) ≤ 1
ε
dW (W,Z) since gx,ε(w) is 1

ε
−Lipschitz by definition.

Thus we have

P(W ≤ x)− P(Z ≤ x) ≤ 1

ε
dW (W,Z) +

Cε

2

Taking ε =
√

2dW (W,Z)/C yields

P(W ≤ x)− P(Z ≤ x) ≤
√

2CdW (W,Z).

Using a similar argument and defining

g∗x,ε(w) =


1 w ≤ x− ε,

−1
ε
(w − x) x− ε < w < x,

0 w ≥ x.
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yields the same upper bound for P(Z ≤ x)− P(W ≤ x). Therefore,

dK(W,Z) ≤
√

2CdW (W,Z).

Lemma 3.3.1 implies that, an upper bound for the Wasserstein metric gives an

upper bound for the Kolmogorov metric. Therefore, a convergence in the Wasserstein

metric implies weak convergence. This is one of the reasons why working with the

Wasserstein metric is not a bad idea. Another reason why the Wasserstein metric

is often used in the normal approximation as opposed to directly working with the

Kolmogorov metric would become clear after the following results.

3.3.2 Basics of Stein’s Method

The following results point out Stein’s idea for normal approximation.

Defintion 3.3.1. A function f : [a, b] → R is said to be absolutely continuous on

[a, b] if, ∀ε > 0, ∃δ > 0 such that

n∑
j=1

|f(yj)− f(xj)| < ε,

whenever {(xj, yj) : j = 1, . . . , n} is a finite collection of mutually disjoint subinter-

vals of [a, b] with
∑n

j=1 |yj − xj| < δ.
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Lemma 3.3.2 (Stein’s Identity). If W ∼ N(0, 1), then

E(f ′(W )) = E(Wf(W )) (3.8)

for all absolute continuous functions f : R −→ R with E|f ′(Z)| < ∞. Conversely,

if (3.8) holds for all bounded, continuous and piecewise continuously differentiable

functions f with E|f ′(Z)| <∞, then W ∼ N(0, 1).

The functional operator defined by

D(f(x)) = f ′(x)− xf(x) (3.9)

is referred to as the characterizing operator of the standard normal distribution.

Stein’s method for normal approximation depends heavily on this characterizing

operator of the standard normal distribution.

The proof of Lemma 3.3.2 is later presented in the section.

Now, consider testing how close the distributions of Z and W are by taking

the difference between their expectations E(g(Z)) and E(g(W )) over some set of

functions g. Then intuitively, we expect E(g(W )) − E(g(Z)) to be close to zero if

the distributions of Z and W are close. Assume one of the random variables, say Z,

has a characterizing operator. In particular, take Z ∼ N(0, 1), then from (3.8) and

(3.9), we know that

E(D(f(Z))) = 0.

In this case, if the distribution of W is close to the distribution of Z, then we expect
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E(D(f(W ))) to be close to zero. Putting these two differences together gives rise to

the Stein’s equation

f ′(w)− wf(w) = g(w)− E(g(Z)). (3.10)

Now, realize that, if for every g ∈ G , there exists f ∈ F such that for all w (3.10) is

satisfied, then we have

dG (W,Z) = sup
g∈G

∣∣∣E(g(W ))− E(g(Z))
∣∣∣ ≤ sup

f∈F

∣∣∣E(f ′(W ))− E(Wf(W ))
∣∣∣ (3.11)

which is obvious by taking expectations on both sides of (3.10).

It is important to note that the solution f of Stein’s equation always exists when

g is 1-Lipschitz.

The following result gives some boundary conditions on the solution of Stein’s

equation (3.10).

Lemma 3.3.3. Let f be the solution of the differential equation

f ′(w)− wf(w) = g(w)− E(g(Z))

1. If g is bounded, then

‖f‖∞ ≤
√
π

2
‖g(·)− E(g(Z))‖∞, and ‖f ′‖∞ ≤ 2‖g(·)− E(g(Z))‖∞.
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2. If g is absolute continuous, then

‖f‖∞ ≤ 2‖g′‖∞, ‖f ′‖∞ ≤
√

2

π
‖g′‖∞ and ‖f ′′‖∞ ≤ 2‖g′‖∞.

Observe from Lemma 3.3.3 and (3.11) that, if g is 1-Lipschitz and if we define

F = {f : ‖f‖∞ ≤ 1, ‖f ′‖∞ ≤
√

2
π

and ‖f ′′‖∞ ≤ 2}, then (3.11) becomes

dW (W,Z) = sup
g∈G

∣∣∣E(g(W ))− E(g(Z))
∣∣∣ ≤ sup

f∈F

∣∣∣E(f ′(W )−Wf(W ))
∣∣∣.

Now, to show that W
d→ N(0, 1), we have to show that the upper bound of

sup
f∈F

∣∣∣E(f ′(W )−Wf(W ))
∣∣∣

is approximately zero so that dW (W,Z)→ 0 and from Lemma 3.3.1, dK(W,Z)→ 0.

As noted earlier, convergence in the Kolmogorov metric implies weak convergence

and so we can conclude W
d→ N(0, 1) whenever dK(W,Z)→ 0.

In Section 3.3.3, various approaches are presented in bounding |E(f ′(W )−Wf(W ))|

using the structure of W .

It should now be clear from Lemma 3.3.3 why it is often better to work in

the Wasserstein metric. Specifically, from item 2 of Lemma 3.3.3, we see that the

solution of Stein’s equation (3.10) f is bounded with two bounded derivatives in

the Wasserstein metric. In contrast, in the Kolmogorov metric, we see from item 1

of Lemma 3.3.3 that, f is bounded with one bounded derivative but is not twice

differentiable.
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The following result is needed to prove Lemma 3.3.2 (Stein’s identity).

Lemma 3.3.4. If Φ(x) is the cumulative distribution function of Z, then the unique

bounded solution fx of the differential equation

f ′x(w)− wfx(w) = 1[w ≤ x]− Φ(x)

is given by

fx(w) = ew
2/2

∫ ∞
w

e−t
2/2(Φ(x)− 1[t ≤ x])dt

= −ew2/2

∫ w

−∞
e−t

2/2(Φ(x)− 1[t ≤ x])dt.

At this point, we have all the necessary results to prove Lemma 3.3.2.

Proof of Lemma 3.3.2. Suppose f is an absolute continuous function with E|f ′(Z)| <

∞. Assume W has a standard normal distribution. Then

E(f ′(W )) =
1√
2π

∫
R
f ′(t)e−t

2/2dt

=
1√
2π

∫ ∞
0

f ′(t)e−t
2/2dt+

1√
2π

∫ 0

−∞
f ′(t)e−t

2/2dt

=
1√
2π

∫ ∞
0

f ′(t)

(∫ ∞
t

xe−x
2/2dx

)
dt+

1√
2π

∫ 0

−∞
f ′(t)

(∫ t

−∞
xe−x

2/2dx

)
dt
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By Fubini’s theorem, we can exchange the order of integral to get

E(f ′(W )) =
1√
2π

∫ ∞
0

(∫ x

0

f ′(t)dt

)
xe−x

2/2dx+
1√
2π

∫ 0

−∞

(∫ 0

x

f ′(t)dt

)
(−x)e−x

2/2dx

=
1√
2π

∫ ∞
0

(f(x)− f(0))xe−x
2/2dx+

1

2π

∫ 0

−∞
(f(x)− f(0))xe−x

2/2dx

=
1√
2π

∫
R
(f(x)− f(0))xe−x

2/2dx

=
1√
2π

∫
R
xf(x)e−x

2/2dx− 1√
2π
f(0)

∫
R
xe−x

2/2dx

=
1√
2π

∫
R
xf(x)e−x

2/2dx

= E(Wf(W ))

Conversely, assume E(f ′(W ) − Wf(W )) = 0 for all bounded, continuous, and

piecewise continuously differentiable functions f with E|f ′(Z)| < ∞. In particular,

we see from Lemma 3.3.4 that, the unique bounded solution fx of the differential

equation

f ′x − wfx(w) = 1[w ≤ x]− Φ(x)

is continuous and piecewise continuously differentiable. Thus we have

0 = E(f ′x(W )−Wfx(W )) = E(1[W ≤ x]− Φ(x)) = P(W ≤ x)− Φ(x).

Thus W has a standard normal distribution.

In the following theorem, we present a summary of our discussion of Stein’s

method to this point.
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Theorem 3.3.1. If W is a random variable and Z has the standard normal distribu-

tion, and we define the family of functions F =
{
f : ‖f‖∞ 6 1, ‖f ′‖∞ 6

√
2/π, ‖f ′′‖∞ 6 2

}
,

then

dW(W,Z) 6 sup
f∈F

∣∣∣E(f ′(W )−Wf(W ))
∣∣∣.

3.3.3 Upper Bound of the Wasserstein Metric

Depending on the structure of W , there are various methods employed in bounding

the Wasserstein metric. Some of these techniques include the dependency graph

approach, method of exchangeable pairs, size-bias coupling among others. In this

section, we explore the dependency graph and method of exchangeable pairs in detail.

Before diving into details on dependency graphs and method of exchangeable

pairs, we present an example that shows how the classical CLT is established in the

Wasserstein metric.

Sum of Independent Random Variables

Theorem 3.3.2. Let E1, . . . , Em be independent random variables with E|Ei|3 <∞,

E(Ei) = 0, and E(E2
i ) = 1. If W = (

∑m
i=1Ei)/

√
m and Z has the standard normal

distribution, then

dW (W,Z) ≤ 3

m
3
2

m∑
i=1

E|Ei|3

and W
d→ N(0, 1).

Proof. Take any f ∈ C ′ with f ′ absolutely continuous, and satisfying ‖f‖∞ 6

1, ‖f ′′‖∞ 6 2, ‖f ′‖∞ 6
√

2/π.
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Let Wi =
∑

j 6=i Ej√
m

= W − Ei√
m

so that Wi and Ei are independent.

Now, E(Wf(W )) = 1√
m

∑m
i=1 E(Eif(W )).

Note that E(Eif(Wi)) = E(Ei)E(f(Wi)) = 0 since Ei and Wi are independent

and E(Ei) = 0.

From this, we have

E(Eif(W )) = E(Ei(f(W )− f(Wi)))

= E(Ei(f(W )− f(Wi)− (W −Wi)f
′(Wi))) + E(Ei(W −Wi)f

′(Wi))

Note by Taylors expansion that

|f(b)− f(a)− (b− a)f ′(a)| ≤ 1

2
(b− a)2|f ′′|∞

So we have

|E[Ei(f(W )− f(Wi)− (W −Wi)f
′(Wi))]| ≤

1

2
|f ′′|∞E

∣∣∣∣Ei · E2
i

m

∣∣∣∣
≤ 1

m
E|Ei|3

and thus

∣∣∣∣∣E(
1√
m

m∑
i=1

Ei(f(W )− f(Wi)− (W −Wi)f
′(Wi)))

∣∣∣∣∣ ≤ 1

m
3
2

m∑
i=1

E|Ei|3

which yields

∣∣∣∣∣E(Wf(W ))− 1

m

m∑
i=1

E(E2
i )E(f ′(Wi))

∣∣∣∣∣ ≤ 1

m
3
2

m∑
i=1

E|Ei|3
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and we have ∣∣∣∣∣E(Wf(W ))− 1

m

m∑
i=1

E(f ′(Wi))

∣∣∣∣∣ ≤ 1

m
3
2

m∑
i=1

E|Ei|3

Also, note that

E(Ei(W −Wi)f
′(Wi)) = E

[
E2
i√
m
f ′(Wi)

]
=

1√
m
E(f ′(Wi))

This implies

∣∣∣∣∣E(
1√
m

m∑
i=1

Ei(W −Wi)f
′(Wi))− E(f ′(W ))

∣∣∣∣∣ =

∣∣∣∣∣ 1

m

m∑
i=1

E(f ′(Wi))− E(f ′(W ))

∣∣∣∣∣
≤ |f

′′|∞
m

m∑
i=1

E|W −Wi|

≤ 2

m
3
2

m∑
i=1

E|Ei|

Combining the results above, we get

|E(Wf(W ))− E(f ′(W ))| ≤ 1

m
3
2

m∑
i=1

E|Ei|3 +
2

m
3
2

m∑
i=1

E|Ei|

≤ 3

m
3
2

m∑
i=1

E|Ei|3 since E|Ei| ≤ (E|Ei|3)
1
3 ≤ E|Ei|3

Therefore

dW (W,Z) ≤ 3

m
3
2

m∑
i=1

E|Ei|3

But

3

m
3
2

m∑
i=1

E|Ei|3 → 0 as m→∞ since E|Ei|3 <∞.
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Hence we conclude that W
d→ N(0, 1).

Dependency Graph

Here, the result obtained under sums of independent random variables (Theorem

3.3.2) is extended to sums of random variables with local dependence.

Defintion 3.3.2. A dependency graph for random variables {Xi}i∈V is any graph

G with vertex set V such that if A, B are two disjoint subsets of V so that there

are no edges between vertices in A and B, then {Xi}i∈A and {Xi}i∈B are mutually

independent.

Defintion 3.3.3 (Dependency Neighborhood). A collection of random variables

{X1, . . . , Xn} is said to have a dependency neighborhoods Ni ⊆ {1, . . . , n}, i =

1, . . . , n, if Xi is independent of {Xj}j 6∈Ni
.

Next, we present a result that gives an upper bound in the Wasserstein metric be-

tween sums of locally dependent random variables and the standard normal random

variable.

Theorem 3.3.3. [19] Let X1, . . . , Xn be random variables with E|Xi|4 <∞, E(Xi) =

0 and Var(
∑

i=1Xi) = σ2. Define W =
∑

i=1Xi/σ. Let the collection (X1, . . . , Xn)

have dependency graph with max degree D − 1. Then for Z ∼ N(0, 1),

dW (W,Z) ≤ 4√
πσ2

√√√√D3

n∑
i=1

E|Xi|4 +
D2

σ3

n∑
i=1

E|Xi|3.
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Exchangeable Pairs

We start with the definitions of an exchangeable pair and and a Stein pair.

Defintion 3.3.4. The ordered pair (W,W ′) of random variables is called an ex-

changeable pair if (W,W ′) =d (W ′,W ), where =d indicates equality in distribution.

Defintion 3.3.5. If (W,W ′) is an exchangeable pair and satisfies the relation

E(W ′ −W |W ) = −λW (3.12)

for some λ ∈ (0, 1), then we call (W,W ′) a λ−Stein pair.

Note from the definitions of an exchangeable pair and Stein pair that E(W ) =

E(W ′) = 0 and E(W 2) = E(W ′2). The following result establishes an upper bound

of the Wasserstein distance between an arbitrary random variable W , not necessarily

a sum, and the standard random variable Z.

Theorem 3.3.4. Suppose (W,W ′) is a λ−Stein pair with E(W 2) = 1. If Z ∼

N(0, 1), then

dW (W,Z) ≤

√
2

π
Var

(
E
(

1

2λ
(W ′ −W )2|W

))
+

1

3λ
E|W ′ −W |3

See [19] for proof.

Exchangeable Pair by Substitution

Generally, an exchangeable pair is constructed using the following procedure:

Let {X1, . . . , Xn} be a collection of random variables and define W = g(X1, . . . , Xn).
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Let {X ′1, . . . , X ′n} be an independent copy of {X1, . . . , Xn}. Let I be chosen uniformly

at random from {1, . . . , n}, independent of {Xi, X
′
i, i = 1, . . . , n}. Define W ′ =

g(X1, . . . , XI−1, X
′
I , XI+1, . . . , Xn). That is, to obtain W ′, replace XI by X ′I in the

definition of W while the other variables remain the same. Then (W,W ′) is an

exchangeable pair.

Note that even though this procedure always yields an exchangeable pair, the

relation (3.12) is not automatically satisfied and must be verified.
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Chapter 4

Main Results

In this chapter, we present the main result of this thesis. We provide a condition un-

der which pure jump subordinators have a finite fourth moment. With this condition,

we establish a CLT associated with H. In the last section, we provide two examples

of the main result. Among these examples is the result obtained by Griffiths [10],

which involves the Gamma subordinator.

4.1 Central Limit Theorem Associated With H

In this section, we state with proof a CLT associated with

H =
m∑
i=1

X2
i

where

Xi =
Yi∑m
j=1 Yj

, i = 1, . . . ,m
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with Y1, . . . , Ym denoting the increments of {τs : s ≥ 0} up to time m.

Lemma 4.1.1. Let {τs : s ≥ 0} be a subordinator with no drift. If
∫∞

0
x4Λ(dx) <∞,

then E(τ 4
s ) <∞.

Proof. Recall that a subordinator {τs : s ≥ 0} has no drift (pure-jump) if for any

λ ≥ 0, s ≥ 0, the Laplace transform is given by

E(e−λτs) = exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx)

}
(4.1)

where Λ is the Lévy measure on [0,∞).

From this definition, the fourth moment of a subordinator with no drift can be

derived by differentiating (4.1) four times and setting λ = 0. We have

E(e−λτs) = exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx)

}
d

dλ
E(e−λτs) = exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx)

}
·
[
−s
∫ ∞

0

(xe−λx)Λ(dx)

]
d2

dλ2
E(e−λτs) =

d

dλ

[
exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx)

}
·
(
−s
∫ ∞

0

(xe−λx)Λ(dx)

)]
=

[
−s
∫ ∞

0

(xe−λx)Λ(dx)

]2

+ exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx)

}
·
[
s

∫ ∞
0

(x2e−λx)Λ(dx)

]
d3

dλ3
E(e−λτs) = 2

(
s

∫ ∞
0

(x2e−λx)Λ(dx)

)(
−s
∫ ∞

0

(xe−λx)Λ(dx

)
+

[
s

∫ ∞
0

(x2e−λx)Λ(dx)

]
exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx))

}
·
[
−s
∫ ∞

0

(xe−λx)Λ(dx)

]
+ exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx))

}
·
[
−s
∫ ∞

0

(x3e−λx)Λ(dx)

]
d4

dλ4
E(e−λτs) = 2

[(
−s
∫ ∞

0

(xe−λx)Λ(dx)

)(
−s
∫ ∞

0

(x3e−λx)Λ(dx)

)
+

(
s

∫ ∞
0

(x2e−λx)Λ(dx)

)2
]
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+

[
s

∫ ∞
0

(x2e−λx)Λ(dx)

]
exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx))

}
·
[
−s
∫ ∞

0

(xe−λx)Λ(dx)

]
+ exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx))

}
·
[
−s
∫ ∞

0

(x3e−λx)Λ(dx)

]
·
[
−s
∫ ∞

0

(xe−λx)Λ(dx)

]
+

[
s

∫ ∞
0

(x2e−λx)Λ(dx)

]
·
[
s

∫ ∞
0

(x2e−λx)Λ(dx)

]
· exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx))

}
+ exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx))

}
·
[
−s
∫ ∞

0

(xe−λx)Λ(dx)

]
·
[
−s
∫ ∞

0

(x3e−λx)Λ(dx)

]
+

[
s

∫ ∞
0

(x4e−λx)Λ(dx)

]
· exp

{
−s
∫ ∞

0

(1− e−λx)Λ(dx))

}

d4

dλ4
E(e−λτs)

∣∣∣
λ=0

= E(τ 4
s )

= s

∫ ∞
0

x4Λ(dx) + 4s2

(∫ ∞
0

x3Λ(dx)

)(∫ ∞
0

xΛ(dx)

)
+ 3s2

(∫ ∞
0

x2Λ(dx)

)2

+ s3

(∫ ∞
0

x2Λ(dx)

)(∫ ∞
0

xΛ(dx)

)2

From the assumptions on Λ, in particular, from
∫∞

0
min{x, 1}Λ(dx) <∞, we have

that
∫∞

0
x4Λ(dx) < ∞ implies

∫∞
0
xkΛ(dx) < ∞ for k = 1, 2, 3. Clearly, E(τ 4

s ) < ∞

whenever
∫∞

0
x4Λ(dx) <∞. This completes the proof.

Note that since
∫∞

0
min{x, 1}Λ(dx) < ∞, E(τ 4

s ) < ∞ implies that up to the

fourth moment of the increments of τs exist. The following theorem is the main

result of this thesis.

Theorem 4.1.1. Let {τs : s ≥ 0} be a subordinator with no drift. If
∫∞

0
x4Λ(dx) <

∞, then there are some a, δ ∈ (0,∞) such that as m→∞,

√
m

a

(
m

m∑
i=1

X2
i − δ

)
d→ N(0, 1).
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Proof. Assume
∫∞

0
x4Λ(dx) <∞.

Using the representation Xi = Yi∑m
j=1 Yj

for i = 1, 2, . . . ,m, we have

m

m∑
i=1

X2
i =

m2

(
∑m

i=1 Yi)
2
· 1

m

m∑
i=1

Y 2
i

=

(
m2

(
∑m

j=1 Yj)
2
− 1

b2
+

1

b2

)
· 1

m

m∑
i=1

Y 2
i where b = E(Yi) 6= 0

=

(
m2

(
∑m

j=1 Yj)
2
− 1

b2

)
· 1

m

m∑
i=1

Y 2
i +

1

b2m

m∑
i=1

Y 2
i

Hence,

m
m∑
i=1

X2
i − δ =

(
m2

(
∑m

j=1 Yj)
2
− 1

b2

)
· 1

m

m∑
i=1

Y 2
i +

1

b2m

m∑
i=1

Y 2
i − δ

where δ = c
b2

, c = E(Y 2
i ).

Notice that(
m2

(
∑m

j=1 Yj)
2
− 1

b2

)
=

(
m∑m
j=1 Yj

− 1

b

)(
m∑m
j=1 Yj

+
1

b

)

=
bm−

∑m
j=1 Yj

b
∑m

j=1 Yj

(
m∑m
j=1 Yj

+
1

b

)

= − 1
b
m

∑m
j=1 Yj

(
m∑m
j=1 Yj

+
1

b

)(
1

m

m∑
j=1

(Yj − b)

)

This implies

m
m∑
i=1

X2
i −δ = −

1
m

∑m
j=1 Y

2
j

b · 1
m

∑m
j=1 Yj

·

(
1

1
m

∑m
j=1 Yj

+
1

b

)
1

m

m∑
j=1

(Yj−b)+
1

b2
· 1

m

m∑
i=1

(Y 2
i −c)
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By the Weak Law of Large Numbers (WLLN),

−
1
m

∑m
j=1 Y

2
j

b · 1
m

∑m
j=1 Yj

·

(
1

1
m

∑m
j=1 Yj

+
1

b

)
= A

P−→ −2c

b3
= ε1

and let ε2 = 1
b2

.

By Slutsky’s theorem, we have that

√
m

a

(
m

m∑
i=1

X2
i − δ

)
≈ ε1 ·

1√
m

m∑
j=1

(
Yj − b√

a

)
+ ε2 ·

1√
m

m∑
i=1

(
Y 2
i − c√
a

)

=
1√
m

m∑
i=1

(
ε2Y

2
i + ε1Yi − ε2c− ε1b√

a

)

where a = Var(ε2Y
2
i + ε1Yi).

Set

Ei =
ε2Y

2
i + ε1Yi − ε2c− ε1b√

a

Then Ei’s are iid with E(Ei) = 0 and Var(Ei) = 1 and we can apply Feller-Lindeberg

CLT to

W =
1√
m

m∑
i=1

Ei

to conclude that W
d→ N(0, 1) as m→∞.

If in particular we have that
∫∞

0
x6Λ(dx) <∞, then we can apply Stein’s method

for Sum of Independent random variables (Theorem 3.3.2) to get

dW (W,Z) ≤ 3

m
3
2

m∑
i=1

E|Ei|3
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where Z ∼ N(0, 1).

As m → ∞, we have dW (W,Z) → 0 and we can conclude that W
d→ N(0, 1).

Realize that unlike the Feller-Lindeberg CLT, applying Stein’s method provides an

additional information in the form of an upper bound of the error between W and

Z. That is, the error between W and Z can be controlled.

4.1.1 Alternate Proof

We give an alternative proof for Theorem 4.1.1 by applying Stein’s method directly.

Proof. Let

W =

√
m

a

(
m

m∑
i=1

X2
i − δ

)
We define a, b, c, δ, ε1, ε2 as in the previous proof. As before, we can write W as

W =

√
m

a

(
m

m∑
i=1

X2
i − δ

)
=

1√
m

m∑
i=1

(
ε2Y

2
i + AYi − ε2c− Ab√

a

)

Let

U =
1√
m

m∑
i=1

(
ε2Y

2
i + ε1Yi − ε2c− ε1b√

a

)
Then realize that U is the sum of independent random variables with E(U) = 0 and

Var(U) = 1, and by Stein’s method for sum of independent random variables, we

have that U is approximately standard normal. This means, as m→∞,

E(Uf(U)− f ′(U)) ≈ 0
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where f is any twice differentiable function satisfying ‖f‖∞ ≤ 1, ‖f ′‖∞ ≤
√

2
π

and

‖f ′′‖∞ ≤ 2.

Note that

|E(Wf(W ))− E(Uf(U))| ≤ |E(Wf(W ))|+ |E(Uf(U))|

≤ |E(W )|+ |E(U)| since ‖f‖∞ ≤ 1

→ 0 as m→∞ since E(W )→ 0 as m→∞.

By Taylor’s theorem,

f ′(W ) = f ′(U) + r

where r = f ′′(Ũ)(W − U), Ũ is between W and U .

Thus

|E(f ′(W )− f ′(U))| = |E(f ′′(Ũ)(W − U))|

≤ 2|E(W − U)| since ‖f ′′‖∞ ≤ 2

= 2|E(W )− E(U)|

→ 0 as m→∞.

So we have

|E(Wf(W )− f ′(W ))− E(Uf(U)− f ′(U))| ≤ |E(Wf(W ))− E(Uf(U))|+ |E(f ′(W )− f ′(U))|

→ 0 as m→∞.

And we get

E(Wf(W )− f ′(W )) ≈ E(Uf(U)− f ′(U)) ≈ 0
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This implies that

E(Wf(W )) ≈ E(f ′(W ))

and we conclude by Stein’s method that W
d→ N(0, 1).

In the remainder of this section, we give examples of Theorem 4.1.1 by considering

the Gamma subordinator and the Generalized Gamma subordinator.

4.2 Examples with some subordinators

4.2.1 Gamma Subordinators

Recall from Chapter 2 that a subordinator {τs : s ≥ 0} is a Gamma subordinator if

its Lévy measure is

Λ(dx) = x−1e−xdx, x > 0.

As an illustration of Theorem 4.1.1, consider (X1, X2, . . . , Xm) ∼ Dir(1, 1, . . . , 1).

Then each Xi is such that

Xi =
Yi∑m
i=1 Yi

where Yi ∼ Exp(1) for i = 1, 2, . . . ,m.

Moreover,
∫∞

0
x4x−1e−xdx = 3! = 6 <∞.
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Using this representation of Xi, we have

m∑
i=1

X2
i =

m∑
i=1

(
Yi∑m
j=1 Yj

)2

=
m∑
i=1

(
Yi

m
m

∑m
j=1 Yj

)2

=
1(

1
m

∑m
j=1 Yj

)2 ·
1

m2

m∑
i=1

Y 2
i

Hence

m
m∑
i=1

X2
i =

m2

(
∑m

i=1 Yi)
2
· 1

m

m∑
i=1

Y 2
i

=

(
m2

(
∑m

i=1 Yi)
2
− 1 + 1

)
· 1

m

m∑
i=1

Y 2
i

=

(
m2

(
∑m

i=1 Yi)
2
− 1

)
· 1

m

m∑
i=1

Y 2
i +

1

m

m∑
i=1

Y 2
i

And we have,

√
m

4

(
m

m∑
i=1

X2
i − 2

)
=

√
m

4

(
m2

(
∑m

i=1 Yi)
2
− 1

)
1

m

m∑
i=1

Y 2
i +

√
m

4

(
1

m

m∑
i=1

(Y 2
i − 2)

)

Note that
m2

(
∑m

i=1 Yi)
2
− 1 =

(
m∑m
i=1 Yi

− 1

)(
m∑m
i=1 Yi

+ 1

)
= −

(
1 +

1
1
m

∑m
i=1 Yi

)(∑m
i=1 Yi −m∑m

i=1 Yi

)

=
−
(

1 + 1
1
m

∑m
i=1 Yi

)
1
m

∑m
i=1 Yi

(
1

m

m∑
i=1

(Yi − 1)

)
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So that

√
m

4

(
m

m∑
i=1

X2
i − 2

)
=
−
(

1 + 1
1
m

∑m
i=1 Yi

)
1
m

∑m
i=1 Yi

· 1

m

m∑
i=1

Y 2
i

(
1√
m

m∑
i=1

(
Yi − 1√

4

))

+
1√
m

m∑
i=1

(
Y 2
i − 2√

4

)

Consider
−
(

1 + 1
1
m

∑m
i=1 Yi

)
1
m

∑m
i=1 Yi

· 1

m

m∑
i=1

Y 2
i

and note that 1
m

∑m
i=1 Yi

P−→ 1 and 1
m

∑m
i=1 Y

2
i

P−→ 2.

Hence
−
(

1 + 1
1
m

∑m
i=1 Yi

)
1
m

∑m
i=1 Yi

· 1

m

m∑
i=1

Y 2
i

P−→ −4

Thus by Slutsky’s theorem,

√
m

4

(
m

m∑
i=1

X2
i − 2

)
≈ −4√

m

m∑
i=1

(
Yi − 1√

4

)
+

1√
m

m∑
i=1

(
Y 2
i − 2√

4

)
=

1√
m

m∑
i=1

(
Y 2
i − 4Yi − (−2)√

4

)

Let Ei =
Y 2
i −4Yi−(−2)√

4
, then E1, E2, . . . , Em are iid (since they are functions of Yi’s)

with E(Ei) = 0 and Var(Ei) = 1. Apply Theorem 3.3.2 and conclude that

√
m

4

(
m

m∑
i=1

X2
i − 2

)
d→ N(0, 1).
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Computation of Variance

It is observed from above that a scale factor of
√

m
4

is used in obtaining a standard

normal distribution. The 4 represents the variance of
√
m (m

∑m
i=1X

2
i − 2) and this

can be derived in at least two ways. Two methods are presented here.

Method I (Slutsky’s Approach)

It is observed that by applying Slutsky’s theorem, we have that

√
m

(
m

m∑
i=1

X2
i − 2

)
≈ −4√

m

m∑
i=1

(Yi − 1) +
1√
m

m∑
i=1

(
Y 2
i − 2

)
=

1√
m

m∑
i=1

(
Y 2
i − 4Yi + 2

)
With this, the variance of

√
m (m

∑m
i=1X

2
i − 2) can be approximated by computing

the variance of 1√
m

∑m
i=1 (Y 2

i − 4Yi + 2).

Now,

Var

(
1√
m

m∑
i=1

(
Y 2
i − 4Yi + 2

))
=

1

m
·mVar(Y 2

i − 4Yi)

= Var(Y 2
i − 4Yi)

= Var(Y 2) + 16 Var(Y )− 2(4) Cov(Y 2, Y )

Here, Y ∼ Exp(1) hence fY (y) = e−y, y > 0
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Computing the first four moments of Y , we have

E(Y ) =

∫ ∞
0

ye−ydy = Γ(2) = 1

E(Y 2) =

∫ ∞
0

y2e−ydy = Γ(3) = 2

E(Y 3) =

∫ ∞
0

y3e−ydy = Γ(4) = 6

E(Y 4) =

∫ ∞
0

y4e−ydy = Γ(5) = 24

Thus

Var(Y 2) = E(Y 4)− E(Y 2)2 = 24− 22 = 20

Var(Y ) = E(Y 2)− E(Y )2 = 2− 1 = 1

and

Cov(Y 2, Y ) = E(Y 3)− E(Y 2)E(Y ) = 6− 2(1) = 4

Putting the results together, we have

Var

(
1√
m

m∑
i=1

(
Y 2
i − 4Yi + 2

))
= 20 + 16(1)− 2(4)(4) = 4
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Method II (Direct Calculation)

Using the fact that (X1, X2, . . . , Xm) ∼ Dir(1, 1, . . . , 1), the variance of
√
m (m

∑m
i=1X

2
i − 2)

can be calculated directly as follows:

Var

(
√
m

(
m

m∑
i=1

X2
i − 2

))
= m3 Var

(
m∑
i=1

X2
i

)

Note that

Var

(
m∑
i=1

X2
i

)
=

m∑
i=1

Var
(
X2
i

)
+
∑
i 6=j

Cov
(
X2
i , X

2
j

)
For (X1, . . . , Xm) ∼ Dir(α1, . . . , αm) we have,

E(X4
j ) =

∫
· · ·
∫
x4
j ·

Γ (
∑m

i=1 αi)∏m
i=1 Γ(αi)

m∏
i=1

xαi−1
i dx1 · · · dxm

=
Γ (
∑m

i=1 αi)∏m
i=1 Γ(αi)

∫
· · ·
∫ m∏

i=1
i 6=j

xαi−1
i · xαj+4−1

j dx1 · · · dxm

=
Γ (
∑m

i=1 αi)∏m
i=1 Γ(αi)

·

∏m
i=1
i 6=j

Γ(αi)Γ(αj + 4)

Γ (
∑m

i=1 αi + 4)

=
(αj + 3)(αj + 2)(αj + 1)αj

(
∑m

i=1 αi + 3) (
∑m

i=1 αi + 2) (
∑m

i=1 αi + 1) (
∑m

i=1 αi)

Similarly,

E(X2
j ) =

Γ (
∑m

i=1 αi)∏m
i=1 Γ(αi)

·

∏m
i=1
i 6=j

Γ(αi)Γ(αj + 2)

Γ (
∑m

i=1 αi + 2)

=
(αj + 1)αj

(
∑m

i=1 αi + 1) (
∑m

i=1 αi)
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E(X2
jX

2
k) =

Γ (
∑m

i=1 αi)∏m
i=1 Γ(αi)

·

∏m
i=1
i 6=j
i 6=k

Γ(αi)Γ(αj + 2)Γ(αk + 2)

Γ (
∑m

i=1 αi + 4)

=
(αj + 1)(αj)(αk + 1)αk

(
∑m

i=1 αi + 3) (
∑m

i=1 αi + 2) (
∑m

i=1 αi + 1) (
∑m

i=1 αi)

Since α1 = . . . = αm = 1 in our case, we have

E(X4
j ) =

24

m(m+ 1)(m+ 2)(m+ 3)

E(X2
j ) =

2

m(m+ 1)

and

E(X2
jX

2
k) =

4

m(m+ 1)(m+ 2)(m+ 3)

From which we have

Var(X2
i ) = E(X4

i )− E(X2
i )2

=
20m2 + 4m− 24

m2(m+ 1)2(m+ 2)(m+ 3)
≥ 0 since m ≥ 1

and

Cov(X2
j , X

2
k) = E(X2

jX
2
k)− E(X2

j )E(X2
k)

=
−16m− 24

m2(m+ 1)2(m+ 2)(m+ 3)
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Now,

Var

(
m∑
i=1

X2
i

)
=

(20m2 + 4m− 24)m

m2(m+ 1)2(m+ 2)(m+ 3)
+

(−16m− 24)m(m− 1)

m2(m+ 1)2(m+ 2)(m+ 3)

=
4m2 − 4m

m(m+ 1)2(m+ 2)(m+ 3)

Finally, we have

Var

(
√
m

(
m

m∑
i=1

X2
i − 2

))
= m3 Var

(
m∑
i=1

X2
i

)

=
4m5 − 4m4

m(m+ 1)2(m+ 2)(m+ 3)

=
4− 4

m

1(1 + 1
m

)2(1 + 2
m

)(1 + 3
m

)
→ 4 as m→∞

4.2.2 Generalized Gamma Subordinators

From Chapter 2, we know that a subordinator {ρs : s ≥ 0} is a generalized Gamma

subordinator with scale parameter one if its Lévy measure is given by

Λ(dx) = Γ(1− α)−1x−(1+α)e−xdx, x > 0.

Now, ∫ ∞
0

x4Λ(dx) =

∫ ∞
0

x4Γ(1− α)−1x−(1+α)e−xdx

=
Γ(4− α)

Γ(1− α)

<∞
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and we can conclude from Theorem 4.1.1 that

√
m

a

(
m

m∑
i=1

X2
i − δ

)
d→ N(0, 1)

for a, δ ∈ (0,∞) as m→∞.
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Chapter 5

Conclusion and Future Directions

5.1 Summary

In this thesis, we presented the importance of the statistic H =
∑m

i=1X
2
i in various

fields of study and established a Central Limit Theorem associated with H under

a moment condition. We assumed Xi, i = 1, 2, . . . ,m is a self-normalized random

measure so that it has the representation Xi = Yi/
∑m

j=1 Yj, where Yi, i = 1, 2, . . . ,m

are the increments of the subordinator {τs : s ≥ 0} up to time m. We showed that

our result obtained includes as a special case the result obtained by Griffiths [10] and

also extends to the generalized Gamma subordinator, which is a new result.

5.2 Future Directions

In our result, we assumed the fourth moment of the subordinator exists. As a result,

subordinators such as the stable subordinators are not included in our result. It may
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be of interest to investigate whether or not this moment assumption can be relaxed

so that our result extends to more classes of subordinators.

In Feng [7], fluctuation theorems are presented for {ϕr(x) : r ≥ 2} (2.4). It may

be of interest to investigate whether Stein’s method could be applied to this infinite

dimensional case.

Apart from CLT, there are other limiting distributions such as the Large Deviation

Principle (LDP). For instance, in [6], large deviation principles are established for the

Fleming-Viot processes with neutral mutation and selection. One may be interested

in establishing LDP for H.
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