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Lay Abstract 

Accurate hydrological models and inputs play essential roles in creating a successful flood 

forecasting and early warning system. The main objective of this research is to identify 

adequately calibrated hydrological models and skillful weather forecast inputs to improve 

the accuracy of hydrological forecasting in various watershed landscapes. The key 

contributions include:  (1) A finding that a  combination of efficient optimization tools with 

a series of calibration steps is essential in obtaining representative parameters sets of 

hydrological models; (2) Simple lumped hydrological models, if used appropriately, can 

provide accurate and reliable hydrological forecasts in different watershed types, besides 

being computationally efficient; and (3) Candidate weather forecast products identified in 

Canada’s diverse geographical regions can be used as inputs to hydrological models for 

improved flood forecasting. The findings from this thesis are expected to benefit 

hydrological forecasting centers and researchers working on model and input 

improvements.  
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Abstract 

The primary goal of this research is to evaluate and identify proper calibration approaches, 

skillful hydrological models, and suitable weather forecast inputs to improve the accuracy 

and reliability of hydrological forecasting in different types of watersheds. The research 

started by formulating an approach that examined single- and multi-site, and single- and 

multi-objective optimization methods for calibrating an event-based hydrological model to 

improve flood prediction in a semi-urban catchment. Then it assessed whether reservoir 

inflow in a large complex watershed could be accurately and reliably forecasted by simple 

lumped, medium-level distributed, or advanced land-surface based hydrological models. 

Then it is followed by a comparison of multiple combinations of hydrological models and 

weather forecast inputs to identify the best possible model-input integration for an 

enhanced short-range flood forecasting in a semi-urban catchment. In the end, Numerical 

Weather Predictions (NWPs) with different spatial and temporal resolutions were evaluated 

across Canada’s varied geographical environments to find candidate precipitation input 

products for improved flood forecasting. 

Results indicated that aggregating the objective functions across multiple sites into a single 

objective function provided better representative parameter sets of a semi-distributed 

hydrological model for an enhanced peak flow simulation. Proficient lumped hydrological 

models with proper forecast inputs appeared to show better hydrological forecast 

performance than distributed and land-surface models in two distinct watersheds. For 

example, forcing the simple lumped model (SACSMA) with bias-corrected ensemble 
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inputs offered a reliable reservoir inflow forecast in a sizeable complex Prairie watershed; 

and a combination of the lumped model (MACHBV) with the high-resolution weather 

forecast input (HRDPS) provided skillful and economically viable short-term flood 

forecasts in a small semi-urban catchment. The comprehensive verification has identified 

low-resolution NWPs (GEFSv2 and GFS) over Western and Central parts of Canada and 

high-resolution NWPs (HRRR and HRDPS) in Southern Ontario regions that have a 

promising potential for forecasting the timing, intensity, and volume of floods. 
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Chapter 1. Introduction  

1.1.  Deterministic and ensemble flood forecasting 

Recent studies indicate that the intensity of summertime convective storms, frequency of 

maximum hourly precipitation, and spatial expansion of heavy precipitation will increase 

in North America (Prein et al., 2017). The combined effect of intense and frequent rainfall 

events, ice jams and snow melts, anthropogenic influences, and landscape changes have 

contributed to locally induced floods in Canada in the past (Bonsal et al., 2019; Khandekar, 

2002; Zhang et al., 2019). Whether due to natural or anthropogenic factors, flooding is 

becoming a chronic natural hazard, and the World Meteorological Organization (WMO) 

encourages a shift from the traditional structural intervention and localized approach to 

basin-wide integrated flood forecasting and early warning systems (FEWS) to minimize 

flood impact (WMO, 2011). 

Operational flood forecasting systems in regional, national, continental and global scales 

have various capabilities depending on the domain and climatic region, hydrologic and 

hydraulic models, rainfall observation and forecasts, Numerical Weather Predictions 

(NWP), verification systems, forecast lead times and frequency, forecast style, etc. 

(Achleitner et al., 2012; Adams and Pagano, 2016; De Roo et al., 2003; Demargne et al., 

2014; Jasper et al., 2002; Maxey et al., 2012; Pappenberger et al., 2008; Unduche et al., 

2018; Zahmatkesh et al., 2019). The forecast style of flooding conveyed to the public, 

stakeholders or internally could be categorical (e.g., minor, moderate or major), 

deterministic (e.g., 100 m3/s of river discharge), or ensemble probabilistic (e.g., 80% 
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chance of flooding) (Adams and Pagano, 2016). Traditional flood forecasting centers 

usually update a certain rainfall-runoff conversion method with experts’ interpretation of 

meteorological outputs to issue categoric flood outlooks. In most hydrological forecasting 

centers, deterministic type floods are issued by forcing a single hydrological model with 

Quantitative Precipitation Forecasts (QPF) obtained from deterministic NWP systems. 

However, many are shifting from deterministic to ensemble-based probabilistic flood 

forecasting due to its advantages of showing the total uncertainties associated with weather 

forecast inputs, hydrological model parameters, and structural complexity (Cloke and 

Pappenberger, 2009). 

Hydrological Ensemble Prediction Systems (HEPS) have improved flood risk management 

by offering longer forecast lead times, making advances in hazard mitigation and decision-

making processes, and networking researchers with managers (Michaels, 2015). There are 

several ways to generate ensembles of flood forecasts. The conventional method is by 

forcing hydrological model(s) with Meteorological ensemble prediction systems (MEPS) 

informed by NWPs to conceptualize the input uncertainties (Abaza et al., 2013; Alfieri et 

al., 2014; Buizza et al., 2005; Calvetti and Pereira Filho, 2014; Fan et al., 2014a; Horat et 

al., 2018; Pietroniro et al., 2007; Thiemig et al., 2015; Zapata and Alberto, 2010; Zsótér et 

al., 2016). Ensembles can also be generated by several realizations of hydrological model 

parameter sets (e.g., using Monte Carlo simulation) in order to capture uncertainties related 

to hydrological model processes such as the initial state of the models and the 

parameterizations (Beven and Freer, 2001; Carpenter and Georgakakos, 2004; 

Georgakakos et al., 2004; Pappenberger et al., 2005). The third and evolving method to 
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generate ensembles is by using multiple hydrological models to realize the uncertainties 

inherited in the model structures that attempt to represent the physical world (Ajami et al., 

2006; Antonetti et al., 2018; Brochero et al., 2011a, 2011b; Seiller et al., 2012, 2017; 

Thiboult et al., 2016, 2017; Velázquez et al., 2011). Even though improvements were made 

in ensemble generation approaches, some challenges exist. The under-dispersivity and bias 

of ensemble NWPs due to their coarse spatial resolutions have been addressed by 

downscaling (Gaborit et al., 2013; Renner et al., 2009) and bias-correction or post-

processing methods (Bourdin et al., 2014; Crochemore et al., 2016; Cui et al., 2012; Fan 

and van den Dool, 2011; Jha et al., 2018). On the other hand, several post-processing 

methods were proposed on ensemble hydrological forecasts instead of ensemble NWPs to 

remove biases and uncertainties (Ajami et al., 2006; Han and Coulibaly, 2019; Hashino et 

al., 2007; Madadgar et al., 2014; Wood and Schaake, 2008). Concurrent with the above 

advancements, the effectiveness of any flood forecasting system depends on the quality, 

accuracy, reliability, and skill of hydrological models and weather forecast inputs. 

1.2.  Hydrological models and weather forecast inputs  

Hydrological models or rainfall-runoff models are used to represent the natural system. 

Physically-based hydrological models are generally formulated using some physically 

measurable parameters and describe multiple components of the basin hydrologic processes 

with conservation of mass, momentum, and energy equations (Beven, 1993; Beven and 

Kirkby, 1979). On the other hand, conceptual hydrological models are designed to 

approximately represent the watershed system by optimizable parameters, state variables, 

and simplified analytical solutions to the governing equations (Nash and Sutcliffe, 1970). 
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In most distinctive terms, hydrological models can be classified into lumped, semi-

distributed, and fully distributed models based on the spatial representation of the 

watershed (Corral et al., 2000; Moradkhani and Sorooshian, 2008; Sitterson et al., 2017). 

Lumped hydrological models have one spatially enclosed catchment upstream of the outlet 

gauging station. In semi-distributed models, the basin is usually discretized into several 

sub-catchments, grids, Hydrological Response Units (HRU) (Kalcic et al., 2015; Sanzana 

et al., 2013) or Group Response Units (GRU) (Kouwen et al., 1993) depending on the type 

of the model structure. Semi-distributed models require an embedded or external hydraulic 

routing component and river networks to route runoff from each sub-basin or grid cell to 

river nodes and the downstream catchment outlet. Fully distributed models are similar to 

grid-based semi-distributed models but allow for lateral transfer of water between each grid 

cell (Haghnegahdar et al., 2014), such as the WRF-Hydro model (Gochis et al., 2018). 

Hydrological models can also be divided into event-based and continuous models based on 

the time frame of the input and output data. Event-based hydrological models are calibrated 

using one or more selected events (e.g., extreme weather periods), in which each event 

usually spans for a few days or weeks, depending on the storm periods and catchment’s 

response times. Event-based hydrological models are mainly used for flood forecasting 

purposes in urban and semi-urban areas. On the contrary, continuous hydrological models 

are set-up based on multiple years of historical meteorological and hydrological time series 

data and are usually applied for hydrological forecasting, water management, and climate 

change impact studies. This model accounts for continuous water and soil-moisture 

contents in surface and sub-surface storage zones. 
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The complex physical processes of some landscapes cannot be easily represented by 

standard hydrological models. Hydrological modeling in Canada has been a challenging 

topic due to the geographical and climatological variations across the large country, and 

the complexity of the watersheds, which include Prairies, wetlands, glaciers, permafrost, 

the Boreal Shield and tile drain. Some unique processes such as rain-snow partitioning, 

frozen ground, the interaction between potholes (wetlands), contributing and non-

contributing drainage networks, orographic corrections, sublimation, and permafrost, 

require proper treatment in the hydrological model structures and parameters. To 

sufficiently account for these processes, some models were designed for specific purposes 

(e.g., UBCWM for mountain hydrology (Fotakis, et al. 2014), CRHM for cold regions 

(Pomeroy et al., 2007)) or to be adaptive in diverse landscapes (e.g., Raven (Craig et al., 

2018), WATFLOOD (Kouwen 1988), or for national scale hydrological modeling (e.g., 

MESH (Haghnegahdar et al., 2014)). 

Hrachowitz & Clark, (2017) discussed complementing modeling philosophies in hydrology 

between distributed and lumped models. Based on their opinion, what is significant in 

hydrological modeling is the way models are implemented because all models can be 

applied at a desired degree of detail, although models would remain, to some extent, 

conceptual. Most importantly, they recommended the use of diverse modeling strategies by 

exploiting available macroscale data with multi-scale model development. Therefore, the 

choice of the models to be implemented for flood forecasting, for example, shall depend on 

the intended purpose, the complexity and scale of the basin, and the type of weather forecast 

inputs available. 
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Once hydrological model(s) are identified for the study area, weather forecast inputs 

obtained from radar nowcasts, Numerical Weather Predictions (NWP), or climate change 

scenario predictions can be forced to the model(s) to produce hydrological predictions with 

varying forecast lengths. NWPs are particularly vital for cascading the inherited uncertainty 

from initial atmospheric conditions and providing short- to long-range flood forecasts 

(Pappenberger et al., 2005). Advances in hydrometeorological research have led to the 

development of various NWP products across the Globe. The types of NWPs depend on 

the scale (Global, Continental, and Regional), forecast length (Long-, Medium-, Short- and 

Very Short-ranges), spatial resolution (Low- and High-resolutions), and characteristics 

(Deterministic and Ensemble). The skill and quality of meteorological variables are 

influenced by the variability of NWP types, which also affect the skill and reliability of 

hydrological forecasts.  

The chaotic nature of the atmospheric system (Lorenz, 1969) and its approximate 

representation by NWP systems created uncertainties in deterministic forecasts (Cuo et al., 

2011). This phenomenon has led to the development of ensemble forecasts. Different 

ensemble NWPs vary by the methods they used to perturb initial conditions (Buizza et al., 

2005).  

Among the variables generated by NWPs, precipitation forecasts have been the main 

challenge in achieving the correct intensity, location, and timing of storms (Cuo et al., 

2011). Mainly, summer precipitation forecasts by mesoscale NWP systems were 

considered to be difficult due to the nature of localized convective thunderstorms 

(Kaufmann et al., 2003). Golding, (2000), highlighted that the quality of precipitation 
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forecasts coupled with the catchment size and response time should be a primary 

requirement for flood prediction systems. 

Real-time forecast data can usually be obtained directly from the providing organizations 

(e.g., ECCC, ECWMF, NOAA) that sometimes archive past forecasts (Bougeault et al., 

2010). Verification of NWPs is typically performed using archived forecast data to examine 

their quality so that skillful NWPs can be identified and recommended for operational flood 

forecasting. Similarly, verification of hydrological forecasts generated by forcing 

calibrated hydrological models with archived NWP inputs has been practiced for evaluating 

the accuracy, reliability, and overall forecast skill using observed discharge data (Alfieri et 

al., 2014, Fan et al., 2014; Zsótér et al., 2016).  

1.3.  Challenges in hydrological model calibration 

Hydrological models attempt to represent the physical processes of the natural system 

through non-linear mathematical formulations containing variables and model parameters. 

Model parameters can be physically measured or estimated through calibration. 

Hydrological model calibration, in simple terms, is a process of adjusting parameters to 

make the output variables (e.g., river discharge, reservoir inflow) as accurate as possible. 

The calibration process or parameter estimation by itself is an Inverse Problem, meaning 

that it is a process of finding causes (parameters) from a known effect (observed discharge) 

(Moradkhani and Sorooshian, 2008). An inverse problem or a model calibration is ill-posed 

because solutions (parameters) are non-unique and non-identifiable (Moradkhani and 

Sorooshian, 2008; Renard et al., 2010; Sun and Sun, 2015) which often lead to uncertainty, 

equifinality (Beven, 1993), and objective function surfaces with multiple local optima 
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(Duan and Gupta, 1992). Rigorous parameterization is a proven method to reduce the 

burden of calibration and validation in hydrological models by limiting the number of free 

parameters as few as possible (Refsgaard, 1997), which indirectly minimizes the ill-

posedness problem. Model inference with Monte Carlo simulation (Moradkhani and 

Sorooshian, 2008) and with prior information (Renard et al., 2010) are some of the solutions 

recommended for the equifinality and uncertainty problems. For enhancing parameter 

identifiability, a sensitivity analysis is an essential step to diagnose and identify the most 

sensitive parameters before calibration (Shin et al., 2013). Identifiability can also be 

improved by an approach proposed by Shafii et al., (2017), by using flow-partitioning-

based criteria as part of multi-objective optimization. Multi-objective optimization in 

model calibration has been advanced over the last decades. Its advantages in finding 

appropriate trade-offs, handling non-uniqueness, non-identifiability, and uncertainty 

problems, and exploring measurement-based (hard data) and information-based (soft data) 

criterion have been well recognized (Duan and Gupta, 1992; Efstratiadis and 

Koutsoyiannis, 2010; Gupta et al., 1998; Seibert and McDonnell, 2002; Tang et al., 2005). 

The above literature discusses problems related to the nature of calibration by itself. The 

challenges in the hydrological model calibration process depend on several other factors 

such as the model type (lumped or distributed; event-based or continuous) and basin type 

(gauged or ungauged; small urban-based or large complex). In distributed hydrological 

models, the discretization of watersheds is critical and affects the calibration process, the 

computational cost, and the quality of outputs (Haghnegahdar et al., 2015). An approach 

proposed by Liu et al., (2016), for example, aims to assist the modeler by providing a priori 
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error metric that quantifies information losses related to routing and changes in land cover 

and soil type during discretization processes. To resolve calibration challenges in ungauged 

basins and improve river flow predictions; Bárdossy, (2007), discussed transferability of a 

lumped hydrological model parameters sets from donor catchments; Pokhrel and Gupta, 

(2010), proposed spatial regularization methods to improve performances in distributed 

hydrological  models; and Razavi and Coulibaly, (2016), proposed a multi-model 

regionalization approach involving lumped models, neural network and inverse distance 

methods.  

Some hydrological models can be used as either a lumped or semi-distributed model based 

on the modeler's decision and the intended purpose. The SACSMA is one of the models 

that has been applied as a both lumped and semi-distributed model for various forecasting 

applications. Kitanidis and Bras, (1980), applied SACSMA as a lumped model for 

analyzing uncertainties in real-time hydrological forecasting. Recently, Leach et al., 2018, 

used it as a lumped model for assessing the effect of near-real-time data assimilation to 

improve hydrological forecasting in urban basins. SACSMA has also been used as a semi-

distributed model for operational hydrological forecasting purposes at the NWS River 

Forecasting Centers (Shamir et al., 2006). It was also adopted for exploring different 

calibration scenarios, and streamflow simulation approach as semi-distributed model 

(Ajami et al., 2004). 

The conventional calibration approach, either in lumped or distributed hydrological 

models, is to calibrate the entire catchment parameters at the basin outlet by minimizing or 

maximizing single or multiple objective functions. An alternative approach to account for 
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interior gauging sites is a multi-site calibration method. Many forms of multi-site 

calibration approaches have been proposed, for example, sequential/hierarchical (Hay et 

al., 2006; Ozdemir et al., 2017; Singh & Bárdossy, 2015), weighted average (Asadzadeh et 

al., 2014; Engeland et al., 2006; Khu et al., 2008; Madsen et al., 2002), and simultaneous 

(Leta et al., 2017; Zhang, et al., 2010). 

The aim of calibrating a continuous hydrological model is to find one set of representative 

model parameters over the entire calibration period by using a single-objective or multi-

objective optimization algorithm. For event-based hydrological models, the calibration is 

generally performed in multiple independent event periods and hence results in multiple 

candidate parameters sets one for each event. In the application of event-based hydrological 

models for peak flow prediction, the question of which calibrated model parameter sets 

should be used can create a practical dilemma. Therefore, novel methods are needed to 

address the uncertainties associated with model parameterization and temporal variations 

of input storm events. 

In general, robust calibration and validation approaches are required to identify optimum 

model parameters and improve hydrological and flood predictions (Krauße et al., 2012). 

1.4.  Scope of the research  

As indicated in earlier sections, successful flood forecasting and early warning systems 

depend on the quality of hydrological models and weather forecast inputs, and the 

characteristics of the watersheds. Without a clear methodology to identify proper parameter 

estimation approaches, skillful hydrological models and forecast inputs, flood forecasters 
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and hydrologists at large, face challenges in obtaining reliable and accurate short- and 

medium-range river flow forecasts in various watershed types. One of the main gaps in 

previous methods in the literature as well as in practical application is that hydrological 

model selection and development focused on calibration and validation performances based 

only on historical observation datasets. The forecast performances of the models should be 

tested with different weather forecast inputs at various forecast lead times. In addition, the 

forecast skill of the hydrological models should be evaluated in various types of watersheds 

with the appropriate weather forecast inputs. Different Numerical Weather Predictions 

(NWPs) have multiple ranges of spatial and temporal resolution, and the hydrological 

forecast quality obtained from these inputs depends on the scale and the type of the 

watershed. Some weather forecasts work well in large basins, and some are useful in 

smaller and urban catchments. The scope of this research focuses on addressing the above 

challenges to benefit operational flood forecasting communauty, future applications in 

flood and early warning systems, and research aiming at improving model development, 

forecast inputs and calibration methods. In this thesis, 

• the necessary evaluation and verification of different calibration approaches, 

multiple hydrological models with diverse model structures, and various high- and 

low-resolution NWPs will be presented; and 

• the candidate hydrological models, model parameter estimation approaches, and 

forecast inputs will be identified and discussed in two different watershed types. 
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1.5.  Research objectives and Thesis outline 

In order to achieve the general goal presented in Section 1.4, four independent studies were 

conducted. The specific objectives of each research are outlined below: 

•  Research objective 1 focuses on formulating and testing an appropriate calibration 

approach for enhancing peak flow prediction at multiple sites in semi-urban 

catchments using event-based hydrological models. The study tries to answer the 

question “in the application of event-based hydrological models, which of the 

calibrated model parameter sets should be used for peak flow prediction?”. 

• Research objective 2 aims at addressing the challenges faced by hydrologists working 

on flood forecasting in large and complex watersheds. Outflows from such basins often 

feed reservoirs. The study applies various evaluation and verification techniques to 

compare structurally varied hydrological models and identify the skillful and reliable 

ones for an improved medium-range ensemble reservoir inflow forecasting in large 

and complex watersheds. In general, it tries to answer the question “can medium-range 

reservoir inflow forecasting be accurately achieved by simple, medium level or 

advanced hydrological models?”. 

• Research objective 3 addresses the challenges in urban and semi-urban catchments 

because flood forecasting is often influenced by the capability of the combined 

hydrological models and weather forecasts to accurately predict floods. The goal is to 

identify a proper combination of skillful hydrological models and weather forecast 

inputs for an improved short-range flood forecasting in semi-urban watersheds. The 

research tries to answer the question “which model-input combination could be 
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identified for enhanced short-range flood forecasting in urban/semi-urban 

catchments?”. 

• Research objective 4 focuses on identifying candidate Numerical Weather Predictions 

for short- and medium-range flood forecasting in Canada’s varied geographical 

landscape. It tries to answer the question, “which weather forecast products provide 

accurate forecast inputs for enhanced flood forecasting? And where?”. 

The thesis is organized into six chapters. This first chapter provided an introduction 

discussing lessons learned from past studies, the challenges, and the general background of 

the research. The second chapter presents an approach formulated for calibrating and 

validating an event-based hydrological model in a semi-urban watershed aiming at 

improving flood forecasting at interior and outlet gauging stations. The third chapter 

evaluates lumped, semi-distributed, and land-surface based hydrological models with 

ensemble weather forecast inputs to enhance reservoir inflow forecasting in a complex 

Prairie watershed. The fourth chapter investigates multiple hydrological models and several 

weather forecast inputs to find an appropriate combination of model and inputs for an 

improved short-range flood forecasting in a semi-urban catchment. The fifth chapter 

compares and verifies several low- and high-resolution NWPs across Canada and identifies 

the best candidates that could improve the prediction of the timing, intensity, and volume 

of floods in large and small watersheds. The sixth and final chapter summarizes the main 

conclusions and contributions of the thesis and provides follow up recommendations for 

future research.  
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Chapter 2. Event-based model calibration approaches for selecting 

representative distributed parameters in semi-urban watersheds 

Summary of Paper 1: Awol, F.S., Coulibaly, P., Tolson, B.A. (2018). Event-based model 

calibration approaches for selecting representative distributed parameters in semi-urban 

watersheds. Advances in Water Resources, 118, 12-27. 

In this research, an event-based calibration approach integrating multi-site, and single and 

multi-objective optimizations is proposed to improve peak flow prediction at interior and 

outlet gauging stations of a semi-urban catchment. Comparison has been performed 

between multi-site simultaneous (MS- S), multi-site average objective function (MS-A), 

multi-event multi-site (ME-MS)) and a benchmark at-catchment outlet (OU) calibration 

methods. 

Key findings of this research study are: 

• The proposed calibration and optimization formulation successfully identified 

representative model parameter sets. 

• The two multi-site approaches (MS-S and MS-A) have better performances than 

multi-event ME-MS and at the catchment outlet OU approach. 

• A comparison between optimized model parameter sets showed that the DDS 

optimization in MS-A approach improved the model performance at multiple 

sites. 
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2.1.  Abstract 

The objective of this study is to propose an event-based calibration approach for selecting 

representative semi-distributed hydrologic model parameters and to enhance peak flow 

prediction at multiple sites of a semi-urban catchment. The performance of three multi-site 

calibration approaches (multi-site simultaneous (MS-S), multi-site average objective 

function (MS-A), and multi-event multi-site (ME-MS)) and a benchmark at-catchment 

outlet (OU) calibration method, are compared in this study. Additional insightful 

contributions include assessing the nature of the spatio-temporal parameter variability 

among calibration events and developing an advanced event-based calibration approach to 

identify skillful model parameter-sets. This study used a SWMM5 hydrologic model in the 

Humber River Watershed located in Southern Ontario, Canada. For MS-S and OU 

calibration methods, the multi-objective calibration formulation is solved with the Pareto 

Archived Dynamically Dimensioned Search (PA-DDS) algorithm.  For the MS-A and ME-

MS methods, the single objective calibration formulation is solved with the Dynamically 

Dimensioned Search (DDS) algorithm. 

The results indicate that the MS-A calibration approach achieved better performance than 

other considered methods. Comparison between optimized model parameter sets showed 

that the DDS optimization in MS-A approach improved the model performance at multiple 

sites. The spatial and temporal variability analysis indicates a presence of uncertainty on 

sensitive parameters and most importantly on peak flow responses in an event-based 

calibration process. This finding implied the need to evaluate potential model parameters 

sets with a series of calibration steps as proposed herein. The proposed calibration and 



Ph.D. Thesis – Frezer Seid Awol  McMaster University – Civil Engineering Department 

 

25 

 

optimization formulation successfully identified representative model parameter set, which 

is more skillful than what is attainable when using simultaneous multi-site (MS-S), multi-

event multi-site (MS-ME) or at basin outlet (OU) approach.  
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2.2.  Introduction 

Hydrological prediction in semi-urban watersheds requires a thorough understanding of the 

physical processes and the integrated response to storm events in partly urbanized and rural 

watersheds. In the last couple of decades, there have been research advances in 

understanding the urban and semi-urban hydrology with new emerging modeling tools. 

However, challenges remain due to the complex rainfall-runoff responses of combined 

urban, rural, and urbanizing areas. Such mixed responses could result in multiple peak 

flows, which increase prediction uncertainty (Fletcher et al., 2013). Consideration of the 

gradual loss of pervious surfaces in semi-urban areas within hydrological models is non-

trivial because this transformation could lead to increased peak flows, and reduced flood 

duration and response time (Miller et al., 2014). Impervious surfaces, on the other hand, 

amplify irregular and periodic flows (Ackerman et al., 2005). Although the research interest 

grows, there are only a few guidelines mentioned in calibrating urbanizing catchments. One 

possible reason is due to the challenges in transferring calibrated land cover parameters 

between catchments (Jacobson, 2011). 

Despite their limitation in setting realistic initial conditions, event-based models are 

conservative in nature in simulating individual flood hydrographs and peak flows and 

provide better flood prediction when compared to continuous hydrological models 

(Tramblay et al., 2012; WMO, 2011). Several event-based models have been used for urban 

and semi-urban catchments. For example, El-Hassan et al., 2013, compared the 

performances of a conceptual HEC-HMS model and physically-based distributed Gridded 

Surface Subsurface Hydrologic Analysis (GSSHA) model in simulating flood events of a 
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semi-urban watershed and showed that the latter performed better. To identify the dominant 

peak flow mechanisms, Kennedy et al., (2013), used the Kinematic Runoff and Erosion 

Model (KINEROS2) in a semi-arid urban environment, while Zhang et al., (2013), applied 

Dynamic Watershed Simulation Model (DWSM) in semi-urban landscape. The effect of 

urbanization on hydrological responses is well studied by using several models, such as 

Catchment hydrological cycle Assessment Tool (CAT) (Miller et al., 2014), Distributed 

Hydrology–Soil–Vegetation Model (DHSVM) (Cuo et al. , 2008), a coupled Conversion 

of Land Use and its Effect at Small regional extent (CLUE-E) and Soil and Water 

Assessment Tool (SWAT) (Arnold et al.,1998; Zhou et al., 2013) model. Event-based 

models were also used to assess their ability to reproduce past extreme, catastrophic flood 

events (Furl et al., 2015; Ogden et al., 2000; Sharif et al., 2013; Sharif et al., 2010). 

The most widely used model for simulating extreme events in urban and semi-urban areas 

is the Environmental Protection Agency’s Storm Water Management Model (SWMM) 

(Huber & Dickinson, 1988; Rossman, 2010). Gironás et al., (2010), studied the effects of 

various urban terrain morphologies on peak flow simulation by the SWMM model. Sun et 

al., 2014, compares two levels of SWMM catchment discretization (macro and micro-scale) 

to examine the degree of parameterizations and uncertainties using GLUE. Some advances 

were made on the calibration strategies of the SWMM. Krebs et al., (2013), and Zhang et 

al., (2013), employed Non-dominated Sorted Genetic Algorithm-II (NSGAII) and its 

revised version (ε-NSGAII), respectively, to optimize representative Low Impact 

Development (LID) scenarios in a small urbanized catchment. Herrera et al., (2006), also 

used NSGA-II with SWMM to analyze the trade-offs between low, medium, and high 
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flows. Barco et al., (2008), utilized a weighted multi-objective function and alternating 

starting points or constraints to optimize coupled GIS/SWMM4 model for the large urban 

catchment. Zaghloul et al., (2001), used Generalized Regression Neural Network to 

improve PCSWMM98 model simulation with inverse calibration technique, which was 

applied in an impervious test area. 

In the application of event-based hydrological models for peak flow prediction, the question 

of which calibrated model parameter sets should be used can create a practical dilemma, 

unlike with continuous models. Despite the above efforts in improving the simulation and 

prediction capabilities of event-based models, novel methods are still required to address 

the uncertainties associated with model parameterization and temporal variations of input 

storm events. Robust calibration and validation approaches are required to identify 

optimum model parameters and improve runoff predictions (Krauße et al., 2012). 

Calibration procedures of hydrological models vary by their intended purpose, 

characteristics of the watershed, and the type and complexity of the models. The traditional 

approach is to calibrate the entire catchment (lumped or distributed) parameters according 

to model predictive performance at the basin outlet assessed via single or multiple 

objectives. Some authors have proposed advancing the single site calibration with a 

sequential/hierarchical approach (Hay et al., 2006; Ozdemir et al., 2017; Singh & Bárdossy, 

2015). While the first authors sequentially calibrate a model’s performance of potential 

evapotranspiration, water balance, and daily runoff, the second authors divided sub-basins 

into two hydrologic response units (HRU) and two further child HRUs based on influential 

parameters such as curve number and hydraulic conductivity. However, the limitation of 
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single site approach in improving runoff simulation at interior sites of a distributed 

catchment has motivated multi-site calibration methods. 

One straightforward and efficient way of calibrating models to a set of distinct events would 

be using all calibration events in a series, yielding a unique parameter set per event, and 

then select the final parameter set as the one that performs best in terms of average 

performance across all the events (in this paper, multi-event multi-site calibration 

approach). However, this could lead to under- or over-estimation of flows for any arbitrary 

event and marks a high compromise in searching parameter sets that satisfies all events at 

once. 

A fairly reasonable and default multi-site calibration approach to consider internal gauges 

is by using a weighted average of performance metrics across the gauging sites (Asadzadeh 

et al., 2014; Engeland et al., 2006; Haghnegahdar et al., 2014; Khu et al., 2006; Khu et al., 

2008; Madsen et al., 2002; Shinma & Reis, 2014; Xia et al, 2002; Zhang et al., 2009). These 

studies applied continuous calibration with different types of models. Haghnegahdar et al., 

(2014), for example, used this approach to calibrate the Canada’s Modélisation 

Environmentale-Surface et Hydrologie (MESH) model (Pietroniro et al., 2007) by 

aggregating the objective function of multiple sites into a single objective and highlighted 

that the method has lower computational cost than other methods involving multi-objective 

optimization techniques. 

As an alternative to the above approach, some authors proposed multi-site simultaneous 

calibration approach to exclusively implement multi-objective optimization technique and 

generate a set of non-dominated calibration solutions (Leta et al., 2017; Zhang et al., 2010). 
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With this approach, objective functions at the interior sites are optimized at the same time, 

and the optimization result shows the tradeoffs between objective functions. Leta et al. 

(2017), applied a multi-site simultaneous calibration in developing SWAT Model for a 

heterogeneous catchment. Zhang et al., (2010), compared three optimization algorithms for 

multi-site simultaneous calibration of the SWAT model. The study highlighted that a multi-

algorithm, genetically adaptive multi-objective method (AMALGAM) outperforms 

commonly used evolutionary multi-objective optimization such as Strength Pareto 

Evolutionary Algorithm 2 (SPEA2) and Non-dominated Sorted Genetic Algorithm II 

(NSGA-II).  The above two studies were applied in continuous calibration approach for 

SWAT model. Other authors also considered multi-site step-wise/cascade (Brocca et al., 

2011; Cao et al., 2006; Wang et al., 2012; Wi et al., 2015; Xue et al., 2016). Brocca et al., 

(2011), for example, used a distributed model with a sequential (step by step) calibration 

procedure to investigate its importance in flood forecasting and argued that the model 

improved peak flow estimation at internal sites. 

To overcome the challenge of high computational cost in iterating through each sub-basin 

of a distributed catchment in multi-objective global search, the adaptation of tools with 

parsimonious characteristics is non-trivial. Asadzadeh & Tolson, (2009) developed a 

promising optimization tool, Pareto Archived Dynamically Dimensioned Search (PA-

DDS), which is the multi-objective version of Dynamically Dimensioned Search (DDS) 

(Tolson and Shoemaker, 2007). PA-DDS has been compared with benchmark algorithms 

of NSGA-II and AMALGAM  (Asadzadeh & Tolson, 2009), ε-NSGAII and AMALGAM 

(Asadzadeh and Tolson, 2013), and NSGAII and SPEA2 (Asadzadeh and Tolson, 2012) 
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and the authors concluded that PA-DDS showed improved performances with limited 

computational cost compared to alternative algorithms. 

Behavioral parameter sets of distributed models should be identified with an efficient 

optimization algorithm to help overcome problems of uncertainty and over-

parameterization.  For example, parameters derived from the calibration process do not 

always give improved performances in a validation period (Beven, 1989; Beven and Freer, 

2001; Brocca et al., 2011; Madsen, 2003). Mediero et al., 2011, claim that the presence of 

multiple acceptable parameter sets not only avoids “equifinality,” but also leads to an 

ensemble of flood event simulations, which provide probabilities. During the calibration 

process, they identified the Pareto solutions and fitted a distribution function to estimate 

bias and confidence intervals of ensembles in the validation period. 

One way of solving the problem associated with distributed catchment parameters is 

through the use of spatial regularization, as demonstrated by Pokhrel & Gupta, (2010). The 

authors used a non-linear transformation to reduce the number of parameters from Ng * Np 

(number of grid cells * number of parameters) to 3*Np by applying an adjustable multiplier, 

power term and additive constant to each prior estimated parameter value. 

The above literature reviews indicate that most of multi-objective optimizations were 

conducted either for continuous distributed and lumped models or for an application other 

than flood prediction in semi-urban watersheds. The objective of this study is to develop 

and test different event-based calibration approaches for enhanced flood prediction in semi-

urban distributed catchments. A second objective is to analyze the spatio-temporal 

parameter variability of calibrated parameter sets to address the uncertainty in event-based 
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parametrizations.  The recent version of Storm Water Management Model (SMWM5) with 

DDS and PA-DDS optimization algorithms is used as calibration tools in this study. Section 

2.3 describes the study area and data. Section 2.3 outlines the methodology including 

details of the model and optimization formulations, whereas the results and discussion are 

provided in Section 2.4. Finally, conclusion is presented in Section 2.5. 

2.3.  Study area and data 

The research is conducted in the Humber River Watershed (Figure 2-1), which is located 

in Southern Ontario, Canada. The catchment area covers 911 km2, and the main Humber 

River drains to Lake Ontario. The distributed catchment is configured by dividing the basin 

into 714 sub-catchments with areas spanning between 4.3 ha (0.043 km2) and 860 ha (8.6 

km2). Humber River watershed is characterized as a semi-urban area with 54% rural, 33% 

urban and 13% urbanizing land covers and is administered by Toronto and Region 

Conservation Authority (TRCA, 2013). The hydrology and drainage patterns of the 

watershed are affected by its distinct topographic regions, which contain four hydrologic 

soil types (A, AB, B, BC, C, and D) (TRCA, 2008). The dual hydrologic soil groups AB 

and BC denote Sandy loam and Silt Loam soil types, respectively (NVCA, 2006). 

Gauge rainfall and discharge measurements were collected from Environment Canada and 

Toronto and Region Conservation Authority. The temporal resolution of received data 

ranges from 5 to 30 minutes for rainfall data and 15 minutes to 1 hour for discharge records 

depending on availability. Ground-based rainfall data were used instead of gridded satellite 

or radar data because of unavailability of sub-hourly high-resolution temporal precipitation 

data in the study area. Niemi et al., (2017), also claimed that on-site gauge rainfall data 
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showed better runoff simulation performance than radar-based data in urbanizing 

catchments. In the Humber River Watershed (Figure 2-1), eleven rain gauges spatially 

distributed across the basin and five river flow gauging stations along the main tributaries, 

including one near the outlet have been used for this study. To separate the base flow from 

direct runoff, a simple straight-line hydrograph separation method is used (Ajmal et al., 

2016; Deshmukh et al., 2013). 

Significant rainfall events in spring periods are screened and selected based on criteria of 

(1) total rainfall amount larger than 20 mm (TRCA & AMEC, 2012), (2) spatial coverage 

and distribution in the watershed (rainfall amounts measured at most of the rain gauges in 

the watersheds), and (3) their consistency with the associated discharge measurement. As 

such, ten calibration events and four validation events were captured in the period spanning 

between 2007 and 2014 (Table 2-2). 
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Figure 2-1: Location of the study area in Humber River Watershed, Southern Ontario. 
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Table 2-1: Description of SMWM5 model parameters 

Parameter 
Codes 

Description Initial range of parameters** 

IM* Imperviousness [%] 0-99 

W* 
Characteristics Width of Overland flow 
[m] 

163-124000 

SP* 
Depression storage in Pervious areas 
[mm] 

1-600 

CN* Curve Number [-] 1-99 
SL* Catchment slope [%] 0.3-4.5 

NI 
Manning's n for overland flow in 
Impervious areas [-] 

0.008-0.025 

DT* Drying time [days] 4-12 

SM* 
Depression storage in Impervious 
areas [mm] 

0.2-5 

NP 
Manning's n for overland flow in 
Pervious areas [-] 

0.08-0.4 

*parameters used in calibration process 
** The initial values of SWMM parameters were collected from the Toronto Region Conservation 
Authority (TRCA and AMEC, 2012) 

 

2.4.  Methods 

2.4.1.  Model setup 

The Storm Water Management Model (SWMM) is a well-established event-based and 

continuous semi-distributed model used to simulate extreme events and peak flows in urban 

and semi-urban watersheds (Huber & Dickinson, 1988; Rossman, 2010). Due to the semi-

urban characteristics of the study area and SWMM’s wide application in operational flood 

forecasting (Randall et al., 2014; Robert et al., 2008), the recent version of SWMM 

(SWMM5) engine within PCSWMM (James et al., 2011) platform is used in this study. 

Curve number method and dynamic wave routing method have been used as an infiltration 

model and routing method respectively. 
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A sub-catchment in SWMM5 is represented by a non-linear reservoir model, where the 

conservation of mass is applied to generate overland flow (Rossman & Huber., 2015). By 

combining Conservation of Mass and Manning’s equation, SWMM5 solves first the depth 

of a pond in sub-catchment (d) and then runoff at each time step using the following 

equations. More detailed information can be obtained from Rossman & Huber., (2015). 

 
𝜕𝑑

𝜕𝑡
= 𝑖 − 𝑒 − 𝑓 − 𝛼(𝑑 − 𝑑𝑠)5 3⁄  (2-1) 

where, 𝛼 =
𝑊𝑆1 2⁄

𝐴 𝑛
 , in which each sub-catchment area (A) can be partitioned into pervious 

and impervious areas using the ‘Percent Imperviousness’ parameter. And the roughness (n) 

will be defined for each partition using the ‘pervious manning’s n’ and ‘impervious 

manning’s n’ parameters. 

𝑖 = rate of rainfall + snowmelt (m/s) 

𝑒 = surface evaporation rate (m/s) 

𝑖 = infiltration rate (m/s) 

𝑑 = ponded depth (m) 

𝑑𝑠= depression storage depth (m) 

𝑊 = sub-catchment width (m) 

𝑆 = sub-catchment slope (-) 

Once d (ponded depth) is solved using equation 2-1 at each time step, the volumetric flow 

rate (Q in m3/s) can be estimated by: 

 𝑄 =
𝑊𝑆1 2⁄

 𝑛
(𝑑 − 𝑑𝑠)5 3⁄  (2-2) 
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Using the Curve Number method (in the current research) as an infiltration method and 

assuming the cumulative precipitation and infiltration at the start of the time step as P1 and 

F1 respectively, the infiltration rate (in m/s) is solved as follows (Rossman & Huber., 2015). 

 𝑓 = (𝐹2 − 𝐹1) ∆𝑡⁄  (2-3) 

where, 𝐹2 = 𝑃2 −
𝑃2

2

𝑃2+𝑆𝑚𝑎𝑥
 

And, Smax =
25400

CN
− 254 , where CN is the curve number and, Smax is the maximum soil 

moisture storage capacity (in mm). 

Finally, the drying time (DT in days) is used to calculate a recovery constant (hr-1), that is 

used to model the depletion and replenishment of the soil moisture storage capacity in the 

wet and dry period, respectively (Rossman & Huber., 2015). 

SWMM5 consists of several physical and hydrological parameters to generate flow 

hydrograph, out of which nine catchment parameters (Table 2-1) are investigated to check 

their sensitivity against peak flow. 714 sub-catchments of Humber River watershed are 

assigned with unique parameter values. In Table 2-1, column three indicates the range of 

initial parameter values for 714 sub-catchments that are collected from previous studies and 

guidelines (CIVICA & TRCA, 2015; James, 2005). Event-by-event calibration and model 

testing are performed with simulation time steps of 15 or 30 minutes depending on input 

data time resolution. For defining the initial wetness of the watershed, the model was run 

for 1 to 2 weeks before each storm event as a ‘warm up’ period. 

The methodology proposed in this study is summarized by a flowchart shown in Figure 

2-2, which breaks down the calibration procedure into a series of phases. Phase 1 is the 
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model setup and calibration/validation data selection phase, which is described above. 

Phase 2 is the sensitivity analysis phase, the purpose of which is to find the most sensitive 

model parameters in semi-urban watersheds such as the Humber River Basin. Phase 3 is 

the spatial and temporal parameter variability assessment that aims to analyze the 

uncertainty associated with event-based calibration and variability of candidate parameter 

sets. In Phase 4, two calibrations steps are introduced. The first one compares four different 

types of calibration approaches and proposes ten individual candidate parameter sets 

obtained from the best optimization approach. The second step tests the candidate 

parameter sets to all calibration events and selects a certain number of parameter sets that 

have higher scores over the entire events and gauging sites. Phase 5 evaluates the candidate 

parameter set(s) in different events to refine the calibration output and select the best 

representative parameter set. The details and methodology associated with each of these 

phases are described sequentially in the following Sections (Section 2.4.2 to 2.4.5). 
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Table 2-2: Events selected for calibration and model testing 

No
. 

Calibration 
Events 

Amount 
of  

rainfall 
(mm) 

Avg. 
Disch
arge* 
(mm) 

Avg. 
Discha

rge* 
(m3/s) 

N
o. 

Validation 
Events 

Amount 
of  

rainfall 
(mm 

Avg. 
Dischar

ge* 
(mm) 

Avg. 
Dischar

ge* 
(m3/s) 

1 19-Aug-05 53.3 30.4 282.4 1 15-May-07 47.1 8.7 81.0 

2 10-Jul-06 66.7 8.7 81.0 2 20-Oct-11 75.6 9.8 90.6 

3 28-May-13 64.5 10.8 100.0 3 5-Sep-14 84.1 8.3 76.8 

4 8-Jul-13 81.9 29.0 269.0 4 29-Nov-11 75.2 15.9 147.2 

5 31-Jul-13 74.5 5.1 47.0      

6 27-Jul-14 29.8 7.3 67.3      

7 20-Aug-09 19.9 6.8 62.7      

8 28-Sep-10 41.4 5.4 50.3      

9 13-May-11 64.2 9.7 90.1      

10 7-May-10 37.6 9.0 83.1      
* Average discharge measured at the outlet (HC003). 
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Figure 2-2: Flowchart of proposed approach for selecting representative parameter set 

in event-based models  
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2.4.2.  Sensitivity analysis 

The sensitivity of different versions of SWMM model parameters has been tested in 

different rural and urban watersheds (Barco et al., 2008; Irvine, et al., 1993). In this 

research, the purpose of sensitivity analysis of SWMM5 model is to identify the most 

sensitive parameters for the study basin. It was conducted by using two methods: 

Regionalized Sensitivity Analysis (RSA) (Spear and Hornberger, 1980) and Cumulative 

Sum of the Normalized Reordered Output (CUSUNORO) (Plischke, 2012). 

Regionalized Sensitivity Analysis (RSA): Also called Generalized Sensitivity analysis or 

Hornberger-Spear-Young-method (Spear and Hornberger, 1980), RSA is used to identify 

the most sensitive parameters by distinguishing behavioral and non-behavioral parameter 

sets for Nash-Sutcliffe Efficiency (NSE), Peak flow Error (PE) and Volume Error (VE) 

model performances. 3500 parameter sets were generated by using Pareto Archived 

Dynamically Dimensioned Search (PA-DDS) (Asadzadeh and Tolson, 2013) optimization 

algorithm. The sensitivity was measured by Kolmogorov–Smirnov test statistics, which 

evaluates the maximum vertical distance between the curves of the cumulative distribution 

function of behavioral 𝐹𝑛(𝑥) and non-behavioral 𝐹𝑛′(𝑥) parameter sets as defined by: 

 𝑑𝑛,𝑛′ = 𝑠𝑢𝑝
𝑥

|𝐹𝑛(𝑥) − 𝐹𝑛′(𝑥)| (2-4) 

Where, 𝑑𝑛,𝑛′ is the maximum vertical distance and sup is the supremum function. 𝑑𝑛,𝑛′ 

(hereafter called RSA index) value ranges between 0 and 1 representing the limit between 

the most insensitive and sensitive parameters, respectively. Most sensitive parameters 

would have a higher maximum vertical distance between the curves of 𝐹𝑛(𝑥) and 𝐹𝑛′(𝑥). 



Ph.D. Thesis – Frezer Seid Awol  McMaster University – Civil Engineering Department 

 

42 

 

Cumulative Sum of the Normalized Reordered Output (CUSUNORO): Initially 

proposed by Plischke, 2012, CUSUNORO is a graphical post-processing method to 

represent the first-order sensitivity index. Its principle is withdrawn from the ideas of 

Contribution to the Sample Mean (CSM) plot (Bolado-Lavin et al., 2009). CSM and 

CUSUNORO are found to be suitable for estimating the main effect, the first-order 

variance-based sensitivity index for cases where there is no direct access to the sampling 

procedure and the simulation model to map input-output relationship (Plischke, 2012). 

Let 𝜋 denote an arrangement of ordered values of input parameters sorted in ascending 

order, i.e, 𝑥𝜋(𝑖) = {𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑛}; hence its corresponding sorted series of outputs 𝑦𝜋(𝑖) 

can be created for all 𝑥. A scaling factor, which resembles the output variance is then 

created using the square root of the sum of squares 𝑠𝑦𝑦 = ∑ (𝑦(𝑖) − �̅�)𝑛
𝑖=1  (Plischke, 2012). 

Finally, the cumulative sum of normalized reordered output is defined as: 

 𝑧(𝑖) =
1

√𝑛. 𝑠𝑦𝑦

∑( 𝑦𝜋(𝑖) − �̅�)

𝑖

𝑗=1

 (2-5) 

The CUSUNORO values, 𝑧(𝑖), can then be plotted against the empirical cumulative 

distribution of input parameters 𝑥𝑖 to visualize the sensitivity of individual parameters on 

the output statistics. 

SWMM5 model parameters (Table 2-1) are considered as inputs, and different performance 

metrics were used as outputs. Input-output mapping is performed externally by using Pareto 

Archived Dynamically Dimensioned Search (PA-DDS) (Asadzadeh and Tolson, 2013). 
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2.4.3.  Spatial and temporal parameter variability 

The primary objective of this section is to address the variability in event-based 

parametrizations in a semi-urban watershed and how it can be quantified by different 

calibration approaches.  Before starting to apply alternative and new methods of calibration 

formulations and optimization algorithms, we perform this exercise using a benchmark 

calibration approach at the catchment outlet involving limited manual and multi-objective 

calibration. The calibration process is described in detail, together with the other proposed 

approaches in Section 2.4.4.1. The outcome assists to formulate and compare alternative 

event-based calibration approaches in reducing the uncertainties. Different 

parameterizations of the SWMM5 model represent several realizations of the physical 

process in the event of extreme spring rainfalls. Ten individual event-based calibrations 

result in ten SWMM5 model parameter sets. The variability of these sets regarding the 

model output, as well as differences of calibrated sensitive parameters among the events, 

was assessed. 

First, the spread of two sensitive model parameters (Imperviousness and Drying Time) in 

each model parameter sets were assessed by developing box plots for different percentile 

values. Parameter values, collected from 714 sub-catchments, were ranked in ascending 

order, and their percentiles were extracted accordingly. The variability of calibrated 

parameters in space can be observed by the degree of the spread. 

Second, the uncertainty of event-based parametrization in a distributed catchment was 

evaluated by analyzing the peak flow response. We re-run the ten model sets for ten 

calibration events by regarding each model sets as an individual model and the peak flow 
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simulation results were extracted. The specific objective of this method is to check how 

variable simulated peak flows are within each model set as well as with the observation at 

multiple interior sites. Various boxplots were used to display standardized peak flow 

variability. The Standardized peak flow is calculated by normalizing the deviation of the 

simulated peak flows from observed peak flow by their standard deviation. 

2.4.4.  Model Calibration 

2.4.4.1.  Event-based Calibration approaches 

Three multi-site event-based calibration approaches are compared with a benchmark ‘At-

catchment outlet’ method to select potential parameters sets in Humber River basin.  The 

calibration parameters in each of these four approaches are the same and are determined 

from the sensitivity analysis described above. 

i)  At Catchment Outlet (OU) 

The conventional calibration approach of many hydrological models is to calibrate the 

entire catchment using a gauging station located at the basin outlet. In this approach, 

calibration to each of the ten events is completed independently.  This calibration method 

is used as a benchmark to compare its results with other considered calibration approaches. 

Limited manual calibration is performed before using the following optimization 

formulation in order to get initialized solutions. 

Single and multi-objective optimization techniques could be used to calibrate distributed 

models at basin outlets. Here, in order to find the best achievable parameter sets, multi-

objective optimization with three different performance metrics (Nash-Sutcliffe Efficiency 
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(NSE) (Nash and Sutcliffe, 1970), Peak flow Error (PE) (Liong et al., 1995), and Volume 

Error (VE) (Niemi et al., 2017) are used to calibrate Humber River Watershed at HC003 

gauging station. This formulation is similar to the one used by Barco et al., (2008), where 

they minimized a weighted objective function summing the total flow volume, peak flow 

rate, and instantaneous flow rate errors (each as percentage). The basic difference is that 

Barco et al., (2008) minimize/maximize a single weighted objective function by changing 

the weights depending on target flow type (e.g., peak flow or volume) whereas the approach 

here gives equal weight to individual objective functions and used a multi-objective PA-

DDS algorithm to identify non-dominated solutions. The exercise is repeated ten times for 

ten calibration events with maximum iteration of 500 set for each optimization. 

The multi-objective target is to maximize NSE and minimize PE and VE at station (a). i.e. 

 𝑂ℎ𝑢𝑚𝑏𝑒𝑟 = {𝑜1 = 𝑁𝑆𝐸𝑎,   𝑜2 = 𝑉𝐸𝑎,  𝑜3 = 𝑃𝐸𝑎} (2-6) 

In which: 

 

𝑁𝑆𝐸 = 1 −
∑(𝑄𝑜,𝑖 − 𝑄𝑠,𝑖)

2

∑(𝑄𝑜,𝑖 − 𝑄𝑜
̅̅̅̅ )

2  

𝑉𝐸 =
|𝑉𝑜 − 𝑉𝑠|

𝑉𝑜
 

𝑃𝐸 =
|𝑄𝑝,𝑜 − 𝑄𝑝,𝑠|

𝑄𝑝,𝑜
 

(2-7) 

where, Qo,i & Qs,i are observed and simulate discharge at each time step, in cubic meter per 

second and 𝑄𝑜
̅̅̅̅  is the average observed discharge; 𝑄𝑝,𝑜 & 𝑄𝑝,𝑠 are observed and simulated 

peak flows respectively; and  𝑉𝑜 & 𝑉𝑠 are the volume of water under observed and simulated 
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flow hydrographs respectively, in million cubic meter. NSE value ranges between –∞ and 

1 with 1 indicating best performance. PE, and VE have values spanning between 0 and ∞ 

and better performing model sets would have values close to 0. The result of the OU 

calibration approach is ten parameter sets (for ten calibration events), with each set being 

made up of the average of non-dominated solutions corresponding to a specific flow event. 

ii)  Multi-Site Simultaneous multi-objective (MS-S) 

Multi-objective optimization techniques have been frequently used to calibrate distributed 

models. A multi-objective optimization algorithm is used to find a feasible set of Pareto-

optimal parameter solutions by minimizing or maximizing the objective function vector. 

i.e.  𝑀𝑖𝑛/𝑀𝑎𝑥   𝑶(𝒑) = [𝑜1(𝑝), 𝑜2(𝑝), 𝑜3(𝑝), … , 𝑜𝑚(𝑝)] where the objective function 

vector 𝑶(𝒑) is comprised of m objective functions or performance metrics (Zhang et al., 

2010). 

Multi-site simultaneous multi-objective optimization was previously considered for 

continuous calibration (Leta et al., 2017; Zhang et al., 2010). In the current study, it is 

applied for an event-based calibration process. In this calibration approach, optimization is 

performed independently for ten individual calibration events. For each event, the model’s 

performance is assessed simultaneously across multiple gauging stations using Nash-

Sutcliffe Efficiency (Nash and Sutcliffe, 1970) performance metrics.  In other words, the 

performance at each site in the study area is assessed by a different objective function so 

that performances at multiple locations are accounted for simultaneously. That is, for the 

five gauging stations in Humber River Watershed (represented by a, b, c, d, and e): 

 𝑂ℎ𝑢𝑚𝑏𝑒𝑟 = {𝑜1 = 𝑁𝑆𝐸𝑎,   𝑜2 = 𝑁𝑆𝐸𝑏 ,  𝑜3 = 𝑁𝑆𝐸𝑐,  𝑜4 = 𝑁𝑆𝐸𝑑 ,  𝑜5 = 𝑁𝑆𝐸𝑒} (2-8) 
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For optimization, Pareto Archived Dynamically Dimensioned Search (PA-DDS) 

(Asadzadeh and Tolson, 2013) algorithm is applied to find the Pareto-optimal parameters 

sets. PA-DDS was used within OSTRICH (Matott, 2005) framework toolkit. The selection 

operation in PA-DDS of non-dominated solutions (Pareto-optimal solution) is performed 

using estimated Hypervolume Contribution (HVC) (Asadzadeh and Tolson, 2013). The 

maximum number of iterations is set as 500 and the perturbation parameter is left as the 

default value of 0.2. Since there are 10 calibration events, 10 PADDS optimization is 

performed to evaluate the objective function values of each solution. 

The result of the MS-S calibration approach is multiple parameter sets or non-dominated 

solutions corresponding to a specific flow event. Then, equal weight is given to each 

objective functions (𝑜1, 𝑜2, 𝑜3, 𝑜4& 𝑜5 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2-8) to find the average of the non-

dominated parameter sets and solutions for each calibration event. 

iii)  Multi-Site Average objective function (MS-A) 

This calibration method is frequently used by several researchers to account for the interior 

sites of a semi- or fully distributed catchment in the calibration process by taking the 

weighted average of multiple objective functions. The objective functions at multiple 

gauging stations are aggregated into a single objective function. Then optimization is 

performed to maximize the aggregated single objective function. 

The five sites of Humber River Watershed are evaluated by their respective Nash-Sutcliffe 

Efficiency index: 

 

𝑁𝑆𝐸 = (𝑁𝑆𝐸𝑎 + 𝑁𝑆𝐸𝑏 + 𝑁𝑆𝐸𝑐 + 𝑁𝑆𝐸𝑑 + 𝑁𝑆𝐸𝑒) 5⁄  

𝑂ℎ𝑢𝑚𝑏𝑒𝑟 = {𝑁𝑆𝐸} 

(2-9) 
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The single-objective function (𝑂ℎ𝑢𝑚𝑏𝑒𝑟) is optimized by using Dynamically Dimensioned 

Search (DDS) (Tolson and Shoemaker, 2007) optimization algorithm within OSTRICH 

framework (Matott, 2005). Similar to the MS-S approach, the MS-A DDS optimization is 

performed independently for 10 individual calibration events and the result is 10 candidate 

parameter sets. In addition, the maximum number of iterations of 500 and perturbation 

value of 0.2 was set. 

With perfect algorithms that converge to true optimal solution/true set of non-dominated 

solutions, MS-A would yield one of the non-dominated solutions generated by solution of 

MS-S formulation. In all practical calibration situations, convergence to true 

optimal/Pareto-optimal set of solutions is not guaranteed and thus all results are 

approximate. The quality of the approximations to the true, but unknown solutions is 

dependent on the algorithm quality (DDS and PADDS) and is also dependent on the 

algorithm computational budget. PADDS and DDS computational budgets in terms of 

number of solutions evaluated in MS-A and MS-S are equivalent and set to 500 and 

replicated 10 times for 10 calibration events. 

The main difference between the MS-A and the MS-S approach is on the optimization 

method. While MS-A is based on a single objective optimization scheme (see Equation 2-

9), the MS-S approach employs multi-objective optimization function (see Equation 2-8). 

In the former MS-A approach, although it involves aggregating several objectives, it is 

based on a single objective calibration process with the help of Dynamically Dimensioned 

Search (DDS) method: i.e. the objective is to maximize a single NSE value which is the 

average NSE of all sites (including at the outlet). Conversely, MS-S approach aims to find 
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a feasible Pareto front by maximizing the objective function vector (rather than a single 

value): in which the vector comprises of NSEs at multiple sites including the outlet.  

In MS-S approach, the non-dominated (Pareto-optimal) solutions are generated by finding 

a tradeoff between individual objective functions using Pareto Archived Dynamically 

Dimensioned Search (PA-DDS) algorithm. At each iteration, MS-S searches for a tradeoff 

of optimum parameters that simultaneously satisfies individual objective functions or 

simultaneously maximizes the performances of each NSEs (interior as well as outlet), 

whereas MS-A searches the best parameters of the whole 714 sub catchments that 

maximize a single NSE value (average of NSEs). 

iv)  Multi-event multi-site calibration (ME-MS) 

This approach involves concatenating the simulated and observed discharge of separate 

events and treating it as a single time series. For the combined multi-event series, the 

performance metrics (NSE) are then computed at each gauging stations. The multi-site 

objective function is basically defined in a similar manner as the previous calibration 

approach (MS-A) (equation 2-9) and thus is also formulated as a single-objective 

optimization problem. One of the differences between ME-MS and the above two (MS-S 

and MS-A) approaches is that ME-MS is applied over all ten events, whereas the others 

performed event by event. The optimization was performed by DDS algorithm with 

maximum iteration of 500. The calibration result is one set of candidate parameter sets that 

are somehow appropriate for all ten flow events. 
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2.4.4.2.  Calibration steps 

In order to identify the best parameters sets across the calibration events, the results of the 

above four calibration approaches described in section 2.4.4.1 are processed and compared 

in the following two calibration steps. 

Step 1:- Select best set of candidate solutions, (e.g., select best calibration approach): 

Each calibration approach generates a set of candidate parameter sets. The calibration 

approach with better performance and score at each calibration event and gauging station 

is selected for the next step. This step comprises of a couple of processes. Initially, we 

calibrate the model to ten individual events (Table 2-2) using MS-S, MS-A, and OU 

approaches. At the end of each optimization or calibration approaches ten candidate 

parameters sets are foreseen for ten flow events. The performance of the final calibrated 

sets of parameters would be different for different optimization formulation. Therefore, in 

the next process we compared the result of these calibration approaches at each individual 

event. Here, since ME-MS approach is formulated by aggregating over ten calibration 

events, it results in one set of calibrated parameters for all events as opposed to the output 

of MS-S, MS-A, and OU approaches, which have ten sets of calibrated parameters. For 

comparison purposes, we re-apply the final calibrated parameter sets of ME-MS to ten 

events so that the results of four calibration approaches could be compared at individual 

events. In addition, comparison is also made at individual gauging stations (five sites). 

Finally, the best calibration approach that performed well at ten calibration events and five 

sites is proposed to the next calibration step. The final outcome of this step is ten calibrated 

parameter sets from one of the calibration approaches. 
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Comparison of calibration approaches is performed using model improvement scale or 

Prediction Error Decrease (PED) in percentage (Coulibaly, 2003) and Taylor Diagram 

(Taylor, 2001). The PED shows the model performance improvement of Multi-site 

simultaneous (MS-S), and Multi-site Average objective function (MS-A) and Multi-event 

multi-site (ME-MS) calibration approaches when compared to the benchmark At-

Catchment Outlet (OU) approach at five gauging stations. Taylor diagram is used to 

precisely quantify and display the pattern similarity and statistics of different calibrated 

model parameter sets and the observation at multiple gauging sites. A revised normalized 

Taylor Diagram is constructed based on Kärnä & Baptista, 2016 by relating normalized 

centered root-mean-squared error with ratio of standard deviation of observed and 

simulated discharge and correlation coefficient through a Law of Cosines. The attributes of 

Taylor Diagram will be able to show the statistical proximity of individual model sets 

derived from two calibration approaches with the observation at five gauging stations. 

Details regarding Taylor Diagram can be found in Taylor, (2001). 

Step 2:- From best approach candidate parameter sets, filter out poor candidates (e.g., select 

top three): 

From the first step, ten candidate parameter sets are produced by the best calibration 

approach. But the performance of each candidate parameter sets in a different calibration 

event is not yet evaluated. In this step, we re-apply each candidate parameter set to all 

events and aggregate performance across the events and sites to score parameter sets. Then 

the most representative parameter sets are chosen based on the highest score. Normalized 

NSE is used to score the performance across the events and sites. Here the performance 
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criterion (NSE) is normalized by using the maximum and minimum values of the candidate 

model parameters sets at each site and event. Then the sum of the normalized NSE over the 

entire calibration events is estimated for each candidate model parameters sets. The top 

three potential model parameters sets with the highest total normalized NSE are registered 

and proposed for model testing and calibration refinement. 

2.4.5.  Validation 

Validation was performed to test and refine the top three model parameter sets selected 

during calibration process using a data set independent of calibration period. We have 

selected four validation events (Table 2-2) that qualify the event selection criteria described 

Section 2.3. This phase is dedicated to select the most representative model parameter sets. 

The model testing and refinement is performed in four new events (Table 2-2). The three 

model sets are evaluated by using Taylor Skill Score (Taylor, 2001) to further corroborate 

the outcome of the previous two-step calibration processes. This score summarizes a Taylor 

diagram and defines a single skill score that measures the correlation coefficient and 

centered root-mean-squared error along with standard deviation (Taylor, 2001). It is 

defined as: 

 
𝑆 =

4(1 + 𝑅)

(
𝜎𝑠
𝜎𝑜

+
1

𝜎𝑠
𝜎𝑜

⁄
)

2

(1 + 𝑅𝑜)

 
(2-10) 

Where: S indicates the Taylor Skill Score; σs is model variance; σo is observed variance; 

R is the model correlation coefficient, and Ro is maximum correlation attainable, here taken 
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as the maximum of model’s correlation coefficient. The skill increases (approaches one) as 

σs and R get closer to σo and Ro respectively. 

2.5.  Results and discussion 

2.5.1.  Sensitivity analysis 

The sensitivity analysis (Figure 2-3) indicates that Imperviousness (IM) is the most 

sensitive SWMM5 parameter to NSE, PE, and VE model performances in Humber River 

watershed. The RSA indexes show that after Imperviousness and Drying time (DT), 

Depression storage in Impervious areas (SM) and Pervious areas (SP) appear to be slightly 

sensitive to the model performances, particularly to Peak flow Error. This result is 

analogous to the plots of Cumulative Sum of the Normalized Reordered Output 

(CUSUNORO) (Figure 2-4). The CUSUNORO plots indicate that Imperviousness (IM) 

followed by Drying time (DT) have the largest first order contribution to NSE, VE, and PE 

as the departure of their cumulative sum of the normalized output from the horizontal line 

(y=0) is considerable. The different direction of CUSUNORO plots for NSE, VE, and PE 

indicates that the contribution of each parameter to the mean and variance and the output 

is positive if above the horizontal and negative if below the horizontal. 

The results of both sensitivity analyses are reasonable for semi-urban areas like Humber 

River watershed, which covers about 50% pervious and 50% impervious areas. The 

rainfall-runoff response is governed by the percentage of imperviousness in the sub-

catchments upstream of the gauging station and recovery time (drying time) of the saturated 

soil in pervious areas of the sub-catchments. In general, Imperviousness and Depression 
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storage are found to be the most sensitive parameters of SWMM model to peak flow and 

volume in urbanizing watersheds, which is also supported by Barco et al., (2008). For 

calibration, the SWMM parameters except Manning’s n are considered as it has relatively 

less impact to NSE and Peak flow in both Impervious and Pervious areas. 

 

Figure 2-3: Output of Regionalized Sensitivity Analysis. Figure displays the sensitivity 

index value of nine SWMM5 parameters for Nash-Sutcliffe Efficiency (NSE), Peak Flow 

Error (PE) and Volume Error (VE). Higher RSA index corresponds to higher sensitivity 

of parameters to the output performance. Description of parameter letter codes (x-axis) is 

presented in Table 2-1.  
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Figure 2-4: Cumulative Sum of the Normalized Reordered Output (CUSUNORO) used as 

first order sensitivity of SWMM5 parameters to three performance metrics (NSE, PE and 

VE). The deviation from the mean (CUSUNORO values or z(i) in Eqn. 5) is plotted 

against the empirical cumulative distribution of input parameters (x-axis). Higher 

deviation from the mean indicates higher sensitivity of parameters to corresponding 

performance metrics. Descriptions of parameter letter codes (for each colored lines of the 

plots) are presented in Table 2-1.  
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2.5.2.  Spatial and temporal parameter variability 

The study assessed the degree of uncertainty in event-based calibration of SWMM5 

distributed model parameters sets that were obtained by an event-based calibration 

processes performed for ten calibration events. The parameter variability (uncertainty) was 

demonstrated by temporal scale (among calibration events) and spatial scale (within 714 

sub-catchments). In Figure 2-5, the spatial variability of the two most sensitive parameters 

(Imperviousness and Drying Time) that are generated by ten calibrated parameter sets is 

shown. The medians and the interquartile ranges (IQR) of the box plots in higher percentile 

imperviousness values show variability between individual calibration events. Lower and 

medium percentiles values of imperviousness have relatively similar medians and IQRs 

among the parameter sets. In general, higher uncertainty is observed among the sub-

catchments with higher imperviousness (>80% Imperviousness). This result can be 

reasonably expected from a semi-urban watershed where high impervious areas highly 

influence the rainfall-runoff response in the time of extreme events. Figure 2-5 also shows 

that pervious areas that have relatively faster recovery time to be in a drying state when 

saturated (<20% Drying Time or less than 5.5 days) shows higher variability or uncertainty. 

Rapid recovery time is often recognized in hydrologic soil group D such as medium and 

coarse sandy soils, which pertains to high rate of water transmission or infiltration 

(Rossman, 2010; NRCS, 2007). 

Figure 2-6 shows the peak flow variability of the ten potential representative SWMM5 

model parameter sets in different calibration events. The uncertainty is expressed by 

standardized peak flow deviation from the observation recorded at multiple gauging 
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stations. The degree of the deviation is quite significant in almost all events and measuring 

stations. The medians and associated IQRs are either above or below the green horizontal 

line (observation), which depicts underestimation and overestimation of peak flows by the 

potential model parameters sets. Outliers were also observed on many occasions. This 

investigation indicates the existence of high uncertainty in reproducing peak flows by the 

majority of model parameters sets. Within each boxplot, it can be seen that only one point 

(one model parameter set) matches (or close to matching) with observed peak flow, which 

is, in fact, the calibrated model parameter set for each event that the boxplot is constructed. 

The results of this variability analysis give an overview of the difficulty in selecting 

representative parameter sets in distributed semi-urban watersheds and the need for a robust 

method of calibration when dealing with event-based model parametrization. 
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Figure 2-5: Box plots showing the spread of the lower, middle three and upper percentile 

values of most sensitive calibrated parameters (Imperviousness-Left and Drying Time-

Right) to illustrate their variability in ten Model Sets (x-axis). Parameter values, collected 

from 714 sub-catchments, were ranked in ascending order. Model parameter sets 

represent different realization of the PCSWMM model in ten calibration events. 
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Figure 2-6: Figure showing Peak Flow variability of model parameter sets. 10 plots are 

constructed for 10 calibration events and each boxplot within a plot corresponds to 

different gauging stations. Individual boxplots are developed from 10 standardized peak 

flows, which are generated by ten different Model Parameter Sets in order to demonstrate 

the variability of different realizations of SWMM5 model. Standardized peak flows are 

calculated by normalizing the deviation of the simulated peak flow from observed peak 

flow by the standard deviation of the simulated peak flow. Green horizontal line along the 

zero y-axis is computed based on observed peak flow.  
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2.5.3.  Calibration Approaches 

The outputs from the four multi-objective calibration approaches presented in section 

2.4.4.1 (MS-S, MS-A, ME-MS and OU) are evaluated in ten individual calibration events 

at five gauging stations. Their performances are compared at each calibration steps 

mentioned in section 2.4.4.2. 

Figure 2-7 and Figure 2-8 present the comparison of calibration approaches for the first 

calibration step. The relative improvement of Multi-site average objective function (MS-

A) and Multi-site simultaneous (MS-S) over the benchmark At-catchment outlet (OU) is 

quantified by the prediction (simulation) error decrease (PED) percentage. The PED (in 

Figure 2-7) shows the improvement of NSE of both MS-A and MS-S approaches when 

compared to OU at five gauging stations. Using either of the multi-site calibration 

approaches improves the model performance by about 28% in the interior sites when 

compared to the conventional at catchment outlet calibration method. Comparing the two 

multi-site optimization methods, aggregating the objective functions over the gauging 

stations (MS-A) gives a fairly better performance than calibrating the multiple sites 

simultaneously (MS-S). With a reference to the benchmark OU calibration, the NSE 

performance metric of MS-A is improved by an average of 43% as compared to MS-S 

where it was improved by only 29%. In fact, only 4 out of 42 calibration events and stations 

show slightly higher NSE performance for MS-S; out of which 3 are at the outlet. At the 

outlet, there are some occasions where the benchmark OU calibration shows improved 

performance over both MS-S and MS-A. This is a reasonable because it is generally easier 

to improve the performance at one location during optimizing. The calibrated parameter 
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sets from Multi-event multi-site (ME-MS) calibration approach is re-applied for each 

calibration event to evaluate and compare its result with the other methods. It is found that 

the performance of ME-MS is significantly lower than both multi-site optimizations as well 

the benchmark calibration approach. Although not shown in Figure 2-7 due to its high 

percentage difference to present in PED metrics with other calibration approaches, the 

comparison is shown in Figure 2-8. 

The performance of the four calibration approaches was tested at six calibration events, and 

statistical comparison is shown by the Taylor Diagram in Figure 2-8. Confirming the model 

comparison using PED metrics in Figure 2-7, the MS-S and MS-A calibration approaches 

have better statistical proximity and pattern with the observation than ME-MS and OU 

methods. The Taylor diagrams indicate that MS-A approach has relatively more confined 

points towards the observation (‘OBS’ black dot and line) and consistently proves to be a 

better calibration approach than MS-S and other methods. The multi-event multi-site (ME-

MS) optimization has more sparse points away from the ‘OBS’ proximity and produces an 

inconsistent performance over the calibration events. 

In general, the calibrated model parameter sets generated by multi-site average objective 

function (MS-A) approach achieved improved model performance (NSE) and statistical 

measures (standard deviation, root mean squared error and correlation coefficient) during 

calibration step-1 and hence selected for calibration step-2. 

Ten calibrated parameter sets generated by MS-A optimization approach were applied 

again to each of the ten calibration events and the results were extracted. Figure 2-9 

demonstrates the normalized NSE performance metrics evaluated at five gauging stations. 
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The summation of the normalized NSE over each gauging sites and calibration events 

indicates that Model parameter Set 5 has the highest performance followed by Model Set 

2 and 3. The result indicates that it is fairly reasonable to represent distributed semi-urban 

watersheds by qualifying model parameter sets generated from multiple even-based 

calibration process. 

With the above results in mind, the DDS algorithm used by MS-A appears to converge to 

a better approximate true solution than the PADDS algorithm employed by MS-S approach. 

One of the key reasons is that MS-S result quality is summarized by precisely the objective 

function being optimized by MS-A.  Another reason is likely that when solving the MS-S 

formulation, PADDS is spending substantial effort to approximate a Pareto-set in five 

dimensions and as such, PADDS is generating candidate solutions from much diversified 

parts of parameter space.  In contrast, DDS is generating candidate solutions concentrated 

in the area of parameter space that leads to a good average objective function value. 
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Figure 2-7: Model Improvement (defined by Prediction Error Decrease in percentage 

(PED *100) ) of Multi-site Simultaneous (MS-S) and Multi-site Average objective 

function (MS-A) calibration approaches when compared with Catchment Outlet (OU) 

approach at five gauging stations and ten calibration events.  



Ph.D. Thesis – Frezer Seid Awol  McMaster University – Civil Engineering Department 

 

64 

 

Event 1 Event 2   

 

 

 
Event 3 Event 4 

 

 

 

 
Event 5 Event 6 

 

 

  

 

Figure 2-8: Comparison of Taylor diagrams showing an event-by-event statistical 

evaluation of simulated flows from four calibration approaches (MS-S, MS-A, ME-MS, & 

OU) evaluated at six calibration events. The Taylor Diagrams summarized three 

statistical performances at five gauging stations for each event. Different colors denote 
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respective calibration approaches while different shapes correspond to different stations 

(gauging sites). Perfect model sets would align themselves closer to the black arc as well 

as point ‘OBS’, which depict agreement with observations.  
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Figure 2-9: Performance ranking of 10 model parameter sets in ten calibration events. Normalized Nash-Sutcliffe Efficiency 

index (NSE) is used to score the performances at each gauging stations with sum over all sites and over all events displayed on 

the right side. Highest score corresponds to best performing model parameter set and vice versa. The heatmap shows the 

Normalized NSE values according to color palette displayed at the bottom side.
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Figure 2-10: Model validation of top three model sets of MS-A approach in different 

events. The Taylor Skill Scores are evaluated at each of the five gauging sites for four 

different events. Most skillful models would have a score of 1 and the least ones have a 

score of 0. 

 

2.5.4.  Validation 

To verify the outcome of the above calibration processes, the top three model parameter 

sets (Model Set 5, 2 and 3) were evaluated at validation events because their performance 

from calibration step 2 are not significantly different (Summation of Normalized NSE: 30, 

32 and 33 in Figure 2-9). The Taylor skill score was used to evaluate these SWMM5 model 

parameter sets at multiple sites and results are presented in Figure 2-10. Based on the 

scores, Model Set 5 appears to be more skillful than Model Set 2 and 3 as its score is close 

to 1 for majority of gauging stations and events. The summation of the Taylor Score over 

the gauges and evens (Sum=16) is the highest. Conversely Model Set 2 and 3 have lower 

scores because Taylor Skill Score penalizes models with little statistical pattern similarity 

and weak correlation with observations. In general, Taylor Skill Score is found to be a 

precise evaluation tool to select skillful SWMM5 model parameter sets that could represent 

the distributed watershed in space and time. 
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2.6.  Conclusion  

A proposed event-based calibration approach integrating multi-site and multi-objective 

optimizations was used to select representative SWMM5 model parameter sets in a 

distributed semi-urban watershed. We compared the performance of four calibration 

approaches in reproducing the desired spring flow responses at interior sites of Humber 

River Watershed. These are Multi-site simultaneous (MS-S), Multi-site average objective 

function (MS-A), Multi-event multi-site (ME-MS) and a benchmark At-catchment outlet 

(OU) calibration approaches. MS-S and OU approaches utilized PA-DDS optimization 

algorithm, whereas the others applied DDS algorithm. 

A spatio-temporal variability of calibrated model parameter sets among different 

calibration events was initially assessed in anticipation of capturing the uncertainty of 

event-based parametrization. The results indicated that there is considerable uncertainty in 

calibrating highly impervious sub-catchments (>80% Imperviousness) and pervious areas 

with rapid recovery time (< 5.5 days of Drying Time). Another remark from the variability 

analysis is the presence of uncertainty in peak flow response by the model parameter sets. 

The uncertainty in reproducing peak flows by the majority of model parameters sets at 

multiple interior sites is a clear indication of a need for a robust calibration approaches in 

event-based distributed models. 

The output from the proposed calibration approaches and steps demonstrated that multi-

site average objective function (MS-A) and multi-site simultaneous (MS-S) calibration 

approaches showed superior performances against the Multi-event multi-site and 

benchmark calibration approaches. The desired flows at interior upstream sites were better 
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reproduced using MS-A and MS-S methods as compared to calibrating using the outlet 

(OU), a finding similar to Leta et al., (2017). 

Most importantly, aggregating the objective functions across multiple sites into a single 

objective function (MS-A) outperformed the multi-site simultaneous (MS-S) approach. 

Individually calibrated model parameter sets from MS-A calibration approach shows 

significant improvement of NSE performance metrics when compared to MS-S at the 

majority of stations. This is also supported by Taylor diagrams, which demonstrated that 

the MS-A approach attained better statistical pattern and amplitude of observed 

hydrographs. Using MS-A method, ten parameter sets extracted from ten individual 

calibration events were cross-tested again at all events in the second calibration step. This 

step was able to identify the top three parameter sets out of ten potential model sets using 

their aggregated normalized NSE estimated at multiple sites. Model parameter sets 5 

followed by 2 and 3 appear to outperform the rest of the model parameter sets. Validation 

was made at four different events to test the statistical performances using Taylor Skill 

Scores. And the result indicates that Model Parameter Set 5, which is calibrated using MS-

A approach, is the most skillful and representative SWMM5 model parameter set in the 

study area. 

In General, using the single objective DDS algorithm in MS-A approach to find the best 

average NSE of five gauging stations in the catchment area is found to be more efficient 

than using the multi-objective PA-DDS algorithm to find non-dominated Pareto-front of 

five NSE performances. 
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The study discovered that a combination of efficient optimization tools with a series of 

calibration approaches is important in finding candidate parameters sets and representing 

distributed catchments by event-based hydrological models. The study takes advantage of 

the DDS and PA-DDS algorithms to select non-dominated solutions and representative 

model parameter sets. Finally, the authors strongly believe that the methods and calibration 

approaches employed in this research can also be applied in other watersheds. An 

interesting result from the study is that averaging/aggregating objective functions during 

calibration provide better simulation output, which can be applied for any cases. 
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Chapter 3. Identification of hydrological models for enhanced ensemble 

reservoir inflow forecasting in a large complex Prairie watershed 

Summary of Paper 2: Awol, F.S., Coulibaly, P., Tsanis, I., Unduche, F. (2019). 

Identification of hydrological models for enhanced ensemble reservoir inflow forecasting 

in a large complex Prairie watershed. Water, 11(11), 2201. 

This research compares lumped, semi-distributed, and land-surface based models with raw 

and bias-corrected ensemble weather forecast inputs to identify the best model for reservoir 

inflow forecast in a large complex watershed. 

Key findings of this research include: 

• Bias-correcting precipitation forecasts for a training period of at least two years 

before the forecast time produced skillful ensemble hydrological forecasts. 

• The lumped models forced with bias-corrected ensemble forecast inputs provided 

better forecast performance than distributed or land-surface models, up to a week 

ahead outlook. 

• The benchmark distributed model was as reliable as the lumped models only up to 

3 days forecast. 

• Overall, the SACSMA with SNOW 17 model emerged as the best model to 

provide accurate and reliable medium-range forecasts in complex watersheds. 
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3.1.  Abstract 

Accurate and reliable flow forecasting in complex Canadian prairie watersheds has been 

one of the major challenges faced by hydrologists. In an attempt to improve the accuracy 

and reliability of a reservoir inflow forecast, this study investigates structurally different 

hydrological models along with ensemble precipitation forecasts to identify the most 

skillful and reliable model. The key goal is to assess whether short- and medium-range 

ensemble flood forecasting in large complex basins can be accurately achieved by simple 

conceptual lumped models (e.g., SACSMA with SNOW17 and MACHBV with SNOW17) 

or it requires a medium level distributed model (e.g., WATFLOOD) or an advanced 

macroscale land-surface based model (VIC coupled with routing module (RVIC)). Eleven 

(11)-member precipitation forecasts from second-generation Global Ensemble Forecast 

System reforecast (GEFSv2) were used as inputs. Each of the ensemble members was bias-

corrected by Empirical Quantile Mapping method using the Canadian Precipitation 

Analysis (CaPA) as a training/verification dataset. Forecast evaluation is performed for 1-

day up to 8-days forecast lead times in a 6-month hindcast period. Results indicate that 

bias-correcting precipitation forecasts using verifying datasets (such as CaPA) for a training 

period of at least two years before the forecast time, produces skillful ensemble 

hydrological forecasts. A comparison of models in forecast mode shows that the two 

lumped models (SACSMA and MACHBV) can provide better overall forecast performance 

than the benchmark WATFLOOD and the macroscale Variable Infiltration Capacity (VIC) 

model. However, for shorter lead-times, particularly up to day 3, the benchmark distributed 

model provides competitive reliability, as compared to the lumped models. In general, the 
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SACSMA model provided better forecast quality, reliability and differentiation skill than 

other considered models at all lead times.  
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3.2.  Introduction 

Prairie watersheds are characterized by several small depressions, potholes and wetlands, 

and poorly connected drainage systems that may or may not contribute to the main river 

system (Fang et al., 2007). They are often featured by their long winter periods, high spring 

snowmelt contribution to annual runoff, deep-frozen soils and rapid infiltration, intense 

rainfall in spring and early summer, lower soil moisture, and evaporation from summer to 

fall (Fang et al., 2007). Relevant methodologies were proposed to assess several aspects of 

the hydrological cycle such as snowpack, spring melt, soil moisture, rainfall frequency, and 

evaporation, in the Canadian Prairie regions (Armstrong et al., 2008; Fang et al., 2010; 

Hayashi and Van Der Kamp, 2000; Shook et al., 2015). The effect of climate, land use, and 

ecosystem change on the hydrological processes of cold and wetland regions were also 

studied (Eum et al., 2017; Hedstrom et al., 2001; Pattison-Williams et al., 2018). Even 

though some efforts were made to formulate the realistic representation of wetland 

processes in hydrological models (Evenson et al., 2016; Gray and Landine, 1988; 

Mekonnen et al., 2014; Pomeroy et al., 2007; Shook et al., 2013), challenges of 

hydrological forecasting and flood predictions in such complex watersheds remain at large. 

Several important works have already been performed for enhancing flood prediction in 

several watersheds: for example, using single or multiple hydrological models (Ajami et 

al., 2006; Antonetti et al., 2018; Brochero et al., 2011; Seiller et al., 2017, 2012; Thiboult 

et al., 2016; Velázquez et al., 2011, 2010; Viney et al., 2009), or feeding ensemble 

numerical weather products to models (Alfieri et al., 2014; Calvetti and Pereira Filho, 2014; 

Fan et al., 2014b; Liechti et al., 2013; Pietroniro et al., 2007; Thiemig et al., 2010; Zsótér 
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et al., 2016). Velázquez et al., (2011), for example, analyzed 16 lumped hydrological 

models with 50-member ensemble weather inputs. They detected that the multi-model 

approach of a grand member ensemble provided more forecast skill and reliability than 

either a single model with meteorological ensembles or multiple models with the 

deterministic forecast at all lead times. Pietroniro et al., (2007), assessed the benefit of using 

Environment Canada’s MESH (Modelisation Environmentale Communautaire-MEC 

Surface and Hydrology) model in the Great Lakes catchment with inputs from 16-member 

ensemble forecast variables supplied by Meteorological Service of Canada (MSC). Fan et 

al., (2014a), suggested the use of local or regional ensemble forecasts instead of low-

resolution global ensemble inputs and data assimilation methods. In their work, they 

applied MGB-IHB distributed model with bias-corrected second-generation Global 

Ensemble Forecast System (GEFS v2) reforecast inputs and suggested that the 

improvements made could address the lack of spread in reservoir inflow forecasts 

especially in early lead times. Using the same hydrological model, Fan et al., (2015), 

evaluated the importance of three sets of ensemble QPFs from the TIGGE (THORPEX 

Interactive Grand Global Ensemble) database in larger basins that have major reservoirs 

and hydroelectric plants. Their verification methods confirmed that the performance of 

hydrological forecasts depends on the quality of each ensemble precipitation products, but 

they also highlighted the improved reliability and robustness of ensemble river flows 

obtained from the combined super ensemble inputs. Abaza et al., (2013), compared 

currently available Canadian meteorological forecasts and concluded that streamflow 

forecasting fed by Regional ensemble prediction systems (EPS) provided higher reliability 
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than the Global EPS followed by their deterministic counterparts, as also supported by Fan 

et al., (2014a). The use of multiple models with the global, regional and local ensemble and 

deterministic inputs has also been implemented in several operational flood forecasting 

centers across the globe (Achleitner et al., 2012; De Roo et al., 2003; Demargne et al., 2014; 

Jasper et al., 2002; Maxey et al., 2012; Florian Pappenberger et al., 2008; Unduche et al., 

2018). 

The main challenge in getting accurate and reliable short- and medium-range flood 

forecasts in large complex watersheds arises from the type of hydrological models, and the 

quality of weather forecast inputs applied. The choice of the models to be implemented for 

flood and streamflow forecasting depends on the intended purpose, the type of forecast 

inputs, and the complexity and scale of the study area (Hrachowitz and Clark, 2017). Given 

the complexity of a prairie watershed in defining wetland and non-wetland physical 

processes and its representation by model structures for a specific application of real-time 

flood forecasting, it is essential to identify the candidate hydrological model(s) from 

multiple diverse potential models. Once the hydrological model or group of models are 

identified, the skill and reliability of hydrological forecasts can be enhanced by feeding 

qualitative ensemble weather forecast into the models.  

The limitations of previous works and the scientific challenges are that 

1) only a few studies were conducted on large and complex Prairie watersheds,  

2) only a lumped model or a distributed model was used independently, for hydrological 

forecasting study. Alternatively, in some cases, the multi-models were only a collection of 

lumped conceptual models,  
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3) identification of best hydrological model was usually based on historical meteorological 

or in some cases, deterministic weather forecast inputs. Evaluation and comparison of 

models based on raw and bias-corrected ensemble precipitation forecasts were not studied. 

As such, the objective of this research is designed to address these limitations and identify 

the best hydrological model from diverse multi-models for short- and medium-range flood 

forecasting in a Canadian Prairie watershed. In this study, four structurally varied 

hydrological models were set up in order to simulate and forecast inflows to the Shelmouth 

Reservoir which is located in Upper Assiniboine River Basin. A mixture of two lumped, 

one distributed and one macroscale land surface models were used in this research. In 

forecast mode, bias-corrected precipitation from second-generation Global Ensemble 

Forecast System (GEFS v2) reforecasts was fed into the four models in order to evaluate 

the reliability, skill, and overall forecast performance of the ensemble reservoir inflows. 

3.3.  Materials 

3.3.1.  Study area 

The Canadian Prairies are mainly located in Saskatchewan, Manitoba, and Alberta 

Provinces. The research is conducted in one of the main Canadian Prairie watersheds, the 

Upper Assiniboine River Basin upstream of the Shelmouth Reservoir, also called Lake of 

the Prairie (Figure 3-1). The catchment area contributing to the reservoir inflow is 

approximately 18,000 km2. While much of the basin is located in Saskatchewan, the 

Shelmouth Reservoir itself is located in the Province of Manitoba. Inflow into the reservoir 

is generated from three major upstream tributaries: the Whitesand River, the Shell Rivers 
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and the main stream of the Assiniboine River. This Prairie watershed which is known to 

have a complex hydrology is characterized by abundant potholes and wetlands, poorly 

interconnected streams and non-contributing areas, long and cold winter periods, deep-

frozen soils and rapid infiltration, high spring snowmelt contribution to annual runoff, 

intense rainfall in spring and early summer, lower soil moisture and evaporation from 

summer to fall (Fang et al., 2007; Unduche et al., 2018). The basin’s topography ranges 

from 250 m a.s.l. at its lowest point to 820 m a.s.l at its highest point, and its annual 

precipitation is approximately 460 mm (Shrestha et al., 2012). The land cover of the basin 

is mostly dominated by cropland, which contributes about 55-58% of the land cover 

(Shrestha et al., 2012). 

 
Figure 3-1: Study area of the Upper Assiniboine River Basin 
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3.3.2.  Data 

3.3.2.1.  Ensemble weather forecast  

An 11-member ensemble data from second-generation Global Ensemble Forecast System 

(GEFS v2) reforecast (Hamill et al., 2013) supplied by National Centers for Environmental 

Prediction (NCEP), hereafter called “GEFSv2” was used as an input to models. The 

GEFSv2 issues forecast once a day in 3 hourly time step up to 8 days lead time with 50 km 

spatial resolution and the next eight days with a lower spatial resolution. For this research, 

daily total precipitation forecasts from Jan 2014 to Dec 2017 were used for the input 

datasets; the first two years used for bias correcting the last two years. Only precipitation 

forecasts were used as forcing data, while other variables were taken from observation 

because the accuracy of flood prediction is highly impacted by precipitation forecasts than 

any other variables (Zsótér et al., 2016). 

3.3.2.2.  Observed Data 

Average daily temperature and precipitation data were obtained from Environment Canada 

for the eleven weather gauging stations that are distributed across the catchment (Figure 

3-1). These data were used as inputs to the hydrological models. The output from the 

hydrological models which is regarded as the simulated reservoir inflow was compared 

with calculated (observed) reservoir inflow in the calibration process. Detail information 

on the reservoir inflow estimation is provided in Section 3.3.2.3, whereas calibration and 

validation will be discussed in Section 3.4.2. In addition to the gauge data, precipitation 

data were also collected from The Canadian Precipitation Analysis (CaPA). The CaPA is 
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developed by statistical interpolation of a background field from short-range precipitation 

forecasts, and observation from radar and ground-based rainfall measurements (Mahfouf et 

al., 2007). The spatial and temporal resolution of CaPA is 15 km and 6 hours respectively. 

For this study, CaPA precipitation data is used for bias correcting global ensemble 

forecasts, which will be further discussed in Section 3.4.3. 

3.3.2.3.  Reservoir inflow 

The study area is the watershed upstream of the Shelmouth Reservoir. There is no flow 

gauge (actual streamflow measurement) at the outlet of the watershed.  At the mouth of the 

reservoir or the Dam section, the outflow is regulated by structural mechanisms such as 

releasing water through the conduits (using gates) and spillways. These releases are 

controlled and measured daily. Therefore, the outflow from the reservoir is a regulated 

outflow measured at the conduits and spillway, and due to this reason, it cannot be directly 

used for calibration. Instead, the reservoir inflow is implicitly considered as the outflow 

from the entire watershed and is used for calibrating the hydrological models. The inflow 

is, in this case, a collection of water from major and minor tributaries that goes into the 

reservoir. The estimated inflow is considered as an “unregulated” discharge observation 

measuring collectively the river flows coming from the tributaries. 

The inflow into Shemouth Reservoir is calculated based on a simple water balance 

equation. Given records of daily reservoir levels, the elevation-area-storage curve of the 

reservoir, and the summation of outflows measured at the spillway and conduit, the water 

balance can be formulated by the equation 3-1. Here, losses (such as evaporation and 
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infiltration) within a day are assumed to be negligible, and lateral inflows are included in 

‘Inflow’ variable. 

 𝐼𝑛𝑓𝑙𝑜𝑤 −  𝑂𝑢𝑡𝑓𝑙𝑜𝑤 =  
𝑑𝑆

𝑑𝑡
 (3-1) 

Where 
𝑑𝑆

𝑑𝑡
 is the change in storage in one-day time difference. The change in storage is 

obtained from the elevation-storage curve by looking at the daily average reservoir levels 

between the first and the second day. The reservoir inflow is calculated daily for practical 

application at Manitoba Hydrological Forecasting Center. 

As described above, the reservoir inflow is regarded as a streamflow measurement of all 

the tributary rivers and streams supplying water to the reservoir. Since the inflow is not an 

actual flow measurement of the suppling rivers, it is prone to some degree of errors. 

However, the calculated reservoir inflow is believed to be the best possible method of 

measuring the “unregulated” watershed outflow. Also, there is uncertainty arising from the 

calculation method. We used a simple water balance equation to calculate the daily inflow, 

only accounting for the daily change in storage and the daily measured regulated reservoir 

outflow. The daily losses (e.g., evaporation and infiltration) are assumed to negligible. Such 

an assumption might contain some uncertainties. However, the uncertainty for daily water 

balance is not believed to be considerable, for example, comparing with monthly water 

balance where such losses cannot be ignored. 

3.4.  Method 

Figure 3-2 shows the methodology adopted in this research. Ensemble weather forecasts 

products from GEFSv2 were collected. Each ensemble member of precipitation forecasts 
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was bias-corrected by the Empirical Quantile Mapping method using CaPA as a verifying 

data (Section 3.4.3). Four structurally various hydrological models were applied in the 

watershed including the benchmark model. Using raw and bias-corrected GEFSv2 

ensemble inputs, the models’ forecasting performances were evaluated and compared in 

hindcast period. 

 

 

Figure 3-2: Illustration of the methodology adopted 

3.4.1.  Hydrological Models 

Four different hydrological models with diverse model structures were applied in the study 

area to meet the research objectives described in Section 3.2. The models applied herein 

are a combination of two lumped models, one distributed and one macroscale land-surface 

based hydrological model. The lumped models are the Sacramento Soil Moisture 

Accounting (SAC-SMA) model coupled with SNOW17 (Anderson, 2006) routine and the 

McMaster University-Hydrologiska Byråns Vattenbalansavdelning (MAC-HBV) (Samuel 
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et al., 2011) model coupled with SNOW17 routine. The third model applied is the 

macroscale land-surface based Variable Infiltration Capacity (VIC) model (Liang et al., 

1994) coupled with a routing module. VIC has been applied in nearby, similar river basins 

for climate change and other hydrological studies (Dibike et al., 2018; Eum et al., 2017, 

2014a, 2014b). The above three models were calibrated and validated in this research. 

As a benchmark, we used the distributed WATFLOOD model (Kouwen, 1988). For this 

study, a calibrated and operational WATFLOOD model was obtained from the Manitoba 

Infrastructure, Hydrological Forecasting Centre. The model has been used by the center to 

provide operational flood forecasting using real-time weather forecast data to issue short- 

and medium-range river forecasts in the Upper Assiniboine River basin and other nearby 

watersheds (Unduche et al., 2018). WATFLOOD is a Canadian Hydrological model 

specifically developed for flood forecasting and watershed simulation. The model is used 

as a primary routing module for the Canadian national hydrological modeling system 

(MESH) (Haghnegahdar et al., 2014). Newman et al., (2017), argues that a calibrated 

hydrological model which has a familiar practical application in local river forecasting 

systems has a better functional capability than reference statistical systems to test models, 

and employs significant water budget interactions is a suitable choice for use as a 

benchmark model. 

For SACSMA and MACHBV models, mean areal daily temperature and precipitation time 

series data were created by using the Thiessen polygon method from eleven meteorological 

gauging stations that are distributed across the catchment. The average catchment elevation 

and latitude of the centroid values were used as an input to the SNOW17 model in addition 
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to precipitation and temperature data. These inputs were used to calibrate and validate the 

two lumped models. 

For the VIC (version 4.2.d) model, daily gridded interpolated precipitation data was 

generated from 11 gauging stations, using a bilinear interpolation technique. Daily gridded 

minimum and maximum temperature data were provided by the Natural Resources Canada, 

which applied a “thin-plate smoothing splines” (ANUSPLIN) method on observations from 

several ground-based stations in Canada to generate long-term daily gridded data 

(Hopkinson et al., 2011; Hutchinson et al., 2009). ANUSPLIN has been used as forcing 

data for the VIC model in several studies (Dibike et al., 2018; Eum et al., 2017, 2014a, 

2014b). Daily average wind speed data performed from the Global Environmental 

Multiscale (GEM) model (Côté et al., 1998). The grid resolution of the VIC model was 

about 1/8 degree. Land cover data is obtained from Moderate Resolution Imaging 

Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) Version 6 data product (Friedl 

and Sulla-Menashe, 2015). Soil data were imported from FAO’s Harmonized World Soil 

Database V 1.2 (FAO et al., 2009). The runoff from the land surface VIC grid cells was 

routed to and along the river networks using the RVIC routing module (Hamman et al., 

2017) based on Lohmann et al., (1996). 

For the WATFLOOD model, gridded interpolated daily precipitation and temperature data 

were used to set up and calibrate the model. The model was set up at a grid resolution of 

approximately 5 km for the Upper Assiniboine River Basin. 
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3.4.2.  Calibration and Validation 

The catchment outflow simulated by the hydrological models is considered as the reservoir 

inflow because the reservoir, located at the very downstream location, collects all water 

from tributary rivers and lateral inflows. During the calibration process, the comparison 

was made between the simulated and the observed daily reservoir inflow time series.  

Dynamically Dimensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007) was 

used to optimize the calibration of SACSMA/SNOW17, MACHBV/SNOW17, and 

VIC/RVIC models. Calibration and Validation of the models were performed with daily 

timesteps from January 2005 to December 2015 with 1-year spin-up periods. 

DDS has been previously compared with other optimization methods, such as shuffled 

complex evolution (SCE) by Tolson and Shoemaker (Tolson and Shoemaker, 2007). In 

their study, the dimensionality and efficiency of DDS, for example, was tested, and the 

authors concluded that DDS provided better results than SCE both with low- and high-

dimensional problems, and is more efficient. DDS has been used to calibrate several 

hydrological models from simple lumped to medium level distributed models (e.g., SWAT 

(Aliyari et al., 2019; Ilampooranan et al., 2019), MESH (Rokaya et al., 2019), CRHM-

AHM (Krogh and Pomeroy, 2019)) to very complicated land-surface based models (e.g. 

WRF-Hydro (Lahmers et al., 2019; Sharma et al., 2019)).  

For lumped models, 10 parameters of SNOW17, 15 parameters of SACSMA, and 12 

parameters of MACHBV were calibrated. The optimizing parameters are presented in 

Appendix A.1, A.2, and A.3 for SNOW17, SACSMA, and MACHBV, respectively. For 

VIC model, the total number of parameters to be optimized and calibrated is increased from 
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the default 13 to 53 including the wetland and routing parameters. The optimizing 

parameters for the VIC model are presented in Appendix A.4. Like the lumped models, the 

simulated reservoir inflow from VIC/RVIC model was compared with daily observed flow 

in the calibration process. 

For all models, a single objective function obtained by a weighted average of two 

performance metrics was used in the DDS optimization. The performance metrics that were 

given equal weight are Kling–Gupta efficiency (KGE) (Gupta et al., 2009), and Peak Flow 

Criteria (PFC) (Coulibaly et al., 2001) as defined below. 

 𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝑎 − 1)2 + (𝑏 − 1)2 (3-2) 

 

 𝑃𝐹𝐶 =
(∑ ((𝑞𝑠,𝑖 − 𝑞𝑜,𝑖)

2
𝑞𝑜,𝑖

2)
𝑛𝑝

𝑖=1
)

1/4

(∑ 𝑞𝑜,𝑖
2)

1/2
 (3-3) 

where 𝑟 is the correlation coefficient between simulated inflow and observed reservoir 

inflow, 𝑎 and 𝑏 are ratios of the standard deviation and mean of simulated inflows to the 

corresponding observed inflow respectively, 𝑞𝑠 and 𝑞𝑜 are the peak simulated and observed 

inflows respectively, and 𝑛𝑝 is the number of peak flows greater than one-third of the mean 

peak flow observed. While KGE values closer to 1 indicate a better model performance, a 

PFC value closer to 0 signifies best peak flow simulation accuracy. 

3.4.3.  Bias correction 

Each of the eleven ensemble precipitation forecasts from the GEFSv2 (Section 3.3.2.1) was 

bias-corrected by the Empirical Quantile Mapping method (Amengual et al., 2012). The 

bias-correction of ensemble forecasts were performed using the reanalysis precipitation 
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product of CaPA as a verifying database. Daily CaPA precipitation time series from 

January 2014 to December 2015 were used to bias-correct ensemble weather forecasts from 

January 2016 to December 2017 (Figure 3-3). That is, 4-years of daily ensemble 

precipitation forecasts were archived first (Jan 2014 - Dec 2017). Then CaPA data was used 

as a training dataset for the first 2-years of ensemble forecasts. Parameters from the quantile 

mapping in the training period were applied to the last 2-years of ensemble forecast time 

series. This step is repeated for each ensemble member to produce a bias-corrected 

ensemble GEFSv2 inputs. 

 
Figure 3-3: The Bias-correction process using the Empirical Quantile Mapping method 

3.4.4.  Hindcast simulation (model update and forecast) 

Hindcast simulation is performed in order to verify the hydrological models in forecast 

mode. The raw and bias-corrected Reforecast GEFS ensemble datasets were fed into the 

four calibrated hydrological models. The focus of the study is to assess the reservoir inflow 

forecast accuracy and skill of the models during the high flood periods. Therefore, 2017 is 

selected for forecast verification, which observes frequent spring and summer floods in the 

area. The hindcast period was from April 2017 to September 2017. Continuous model 

update and forecast were performed during the hindcast period (Figure 3-4). The 
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hydrological models were run with observed meteorological data for at least one year 

before the forecast day in order to preserve and update the model’s state parameters. In 

other words, the observed inputs were supplied to the models up to day-0. Then ensemble 

forecasts were fed to the models for the next eight days, and this model update, and forecast 

continuously every day during the entire hindcast period. 

 
Figure 3-4: Model update and forecast in the hindcast period 

3.4.5.  Ensemble forecast verification 

Outputs from the previous step (model update and forecast) are daily ensemble reservoir 

inflow forecasts from four hydrological models for 1- up to 8-day lead times. The forecast 

skill and reliability of each model’s ensemble reservoir inflow forecasts were evaluated 

using various ensemble verification metrics which are outlined below. 

3.4.5.1.  Mean Continuous Rank Probability Score (𝑪𝑹𝑷𝑺) and Skill Score (𝑪𝑹𝑷𝑺𝑺) 

Mean CRPS measures the error of the commutative probability of the ensemble forecast. 

For infinite number of classes or continuous variables CRPS is calculated as follows 

(Wilks, 2006): Given cumulative distribution function of an ensemble y is P(y) and 

corresponding cumulative probability of observed value x with a step function 1{.} 



Ph.D. Thesis – Frezer Seid Awol  McMaster University – Civil Engineering Department 

 

96 

 

representing 1 for ensemble values greater than observation and 0 otherwise, the CRPS and 

the mean CRPS can be computed by equation 3-4. 

The mean CRPS can be decomposed to mean reliability (𝑅𝑒𝑙𝑖̅̅ ̅̅ ̅̅ ) and potential CRPS 

components, according to Hersbach, 2000. 𝑅𝑒𝑙𝑖̅̅ ̅̅ ̅̅  is directly related to rank histogram but 

provides more information. It measures the reliability of the system by examining whether 

the frequency of observations that falls in any one of ranked bins is equivalent to the other 

bins by taking into consideration the width of the bins in which the rank histograms don’t 

do (Hersbach, 2000). The potential CRPS (𝐶𝑅𝑃𝑆𝑝𝑜𝑡) is the CRPS of a perfect reliable 

system (i.e. when 𝑅𝑒𝑙𝑖̅̅ ̅̅ ̅̅  = 0) or for a deterministic forecast where there is no spread. 𝐶𝑅𝑃𝑆𝑝𝑜𝑡 

is directly related to the spread of the ensembles and the presence of outliers (Hersbach, 

2000). The larger the spread or, the more outliers, the larger the 𝐶𝑅𝑃𝑆𝑝𝑜𝑡. 𝐶𝑅𝑃𝑆, 𝑅𝑒𝑙𝑖̅̅ ̅̅ ̅̅  and 

𝐶𝑅𝑃𝑆𝑝𝑜𝑡 are negatively oriented, meaning a value of zero corresponds to a perfect 

ensemble forecast. Details of the derivation can be found in Hersbach, 2000. 

 

𝐶𝑅𝑃𝑆 = ∫ (𝑃(𝑦) − 1{𝑦 ≥ 𝑥})
∞

−∞

2

𝑑𝑦 

𝐶𝑅𝑃𝑆 =
1

𝑛
∑ 𝐶𝑅𝑃𝑆𝑖

𝑛

𝑖=1

 

𝐶𝑅𝑃𝑆 = 𝑅𝑒𝑙𝑖̅̅ ̅̅ ̅̅ + 𝐶𝑅𝑃𝑆𝑝𝑜𝑡 

(3-4) 

Continuous Rank Probability Skill Score (𝐶𝑅𝑃𝑆𝑆) is a scalar accuracy or performance 

measurement of the forecasting system by evaluating the mean continuous ranked 

probability score (𝐶𝑅𝑃𝑆) of ensembles with relative to a reference forecasting system 
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(Bradley and Schwartz, 2011). It is positively oriented with a perfect score of 1 and is 

calculated by: 

 𝐶𝑅𝑃𝑆𝑆 = 1 −
𝐶𝑅𝑃𝑆

𝐶𝑅𝑃𝑆𝑟𝑒𝑓

 (3-5) 

For the reference forecasting system, we used the climatological ensembles of the last 

twenty-four years of historical daily reservoir inflows. This is practically used by Manitoba 

Hydrological Forecasting Center to issue medium- and long-term ensemble forecasts at the 

site (Muhammad et al., 2018). Pappenberger et al., (2015), discussed the option of using 

climatological observations as an alternative benchmark hydrological ensemble prediction. 

3.4.5.2.  Reliability diagram 

Reliability diagram, also called Attribute Diagram by Hsu & Murphy, (1986), is a measure 

of the accuracy of ensemble forecasts, which plots the observed relative frequency with 

respect to forecasting probability in different bins of the category (Wilks, 2006). It is a plot 

of forecast probability versus observed frequency, and perfect reliability is indicated by a 

curve lying along the diagonal of a reliability diagram (Atger, 1999). 

The CRPS decomposition parameters of Hersbach, (2000), were used to draw reliability 

diagrams in this study. We apply 5% and 95% confidence intervals for the reliability 

diagrams using the bootstrap resampling technique to measure the conditional verification 

pair sample uncertainty. 
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3.4.5.3.  Relative operating characteristics (ROC) and skill score (ROC Score) 

ROC is a powerful metric to measure the probabilistic forecast occurrence of events across 

a range of thresholds (Mason and Graham, 2002). For each threshold, ROC examines the 

correspondence between the forecast and observation by defining the probability of 

detection (hit rate) and the probability of false detection (False alarm rate). ROC curve for 

several thresholds can then be constructed by ‘Hit Rate’ values as ordinate and ‘False 

Alarm Rate’ values as abscissa. A good and skillful forecast produces ROC curve above 

the 45 degrees diagonal but more towards the top-left position indicating high ‘Hit Rate’ 

and low ‘False Alarm Rate’ (Mason and Graham, 2002). ROC shows the discrimination 

skill of the ensemble forecast system (Brown et al., 2010). Discrimination skill indicates 

the ability of the forecasting system to categorize occurrence and non-occurrence of floods 

defined between user-defined probability thresholds (Brown et al., 2010; Mason and 

Graham, 1999).  

A single scalar score can summarize the quality of ROC curves. ROC score is a function of 

the area under the ROC curve (AUC). (Wilks, 2006) formulates a simple equation for ROC 

Score as: 

 𝑅𝑂𝐶 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝐴𝑈𝐶 − 1  (3-6) 

where AUC is the area under the curve of each Relative Operating Characteristics curves. 

A perfect system that has ROC curves close to the top left corner would have a score of 1. 
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3.5.  Results 

3.5.1.  Calibration and validation 

As noted in Section 3.4.2, DDS optimization was used to calibrate parameters of SACSMA 

with SNOW17, MACHBV with SNOW17, and VIC with RVIC models. Among the ten 

years chosen for calibration and validation, the recent five consecutive years (from 2011 to 

2015)  were used to calibrate the models, and the previous five years (2006 to 2010) were 

used to validate the models (Figure 3-5). The reason why we used recent data for calibration 

is that we want to train the models using high consecutive flood periods. Looking at the 

historical time series from 2006 to 2015, the recent five-years are high consecutive flood 

years than the previous five-years. Moreover, it is highly likely that this trend will continue 

past 2016 and the near future due to anticipated climate change impact in the region and 

other similar factors that caused the recent high consecutive flood years. Since the 

challenge of achieving the accurate reservoir inflow forecasting arises particularly during 

flood periods, and the objective of the paper focuses on improving the accuracy of flood 

forecasting in large complex watersheds, the hydrological models were trained/calibrated 

with the recent flood years. 

The performance metrics of the models are summarized in Table 3-1. The KGE 

performance statistics indicate that the SACSMA model outperforms MACHBV followed 

by VIC during calibration as well as validation periods. The lumped models (SACSMA 

and MACHBV) appear to show better performances than the macroscale model (VIC). The 

Peak Flow Criteria (PFC) shows that SACSMA and MACHBV have improved and have 

comparable accuracy in peak flow prediction. VIC model slightly underestimates and 
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delays peak flows occasionally, although it maintains the hydrograph during spring and 

summer high inflow seasons. 

The performance of the models can be seen from the simulated and observed flow 

hydrographs shown in Figure 3-5. Visual inspection shows that all three models 

comparatively capture the pattern of the observed reservoir inflow hydrographs during 

calibration and validation periods; although SACSMA and MACHBV models appear to 

reproduce the peak flows better than VIC. In addition to the visual inspection, the RMSE 

and PBIAS values of each model are displayed in Figure 3-5 to provide more information 

on the hydrographs. It can be seen that SACSMA provided better accuracy and less bias 

during calibration and validation, followed by MACHBV and VIC models in decreasing 

order of performances. 

The calibration of the models was performed in a daily time step, and the optimization 

method (DDS algorithm) used during the calibration was the same for all models. The 

objective function is also the same, which is the average of KGE and PFC. However, there 

are differences in the number of parameters (dimensionality) among the models. Note that 

the lumped models were coupled with SNOW17, hence the total number of the calibrated 

parameters are the summation of individual models’ parameters; for example, SACSMA 

(15) plus SNOW17 (10). As noted in Appendix A.4, the default number of VIC/RVIC 

model parameters was further refined to improve the calibration output and to better 

represent the wetland, landcover, and soil types of the basin. The parameters were refined 

and increased from the default 13 to 53 based on land cover classes and soil mapping units 

(Figure A1). A simple test has been done before refining the parameters by performing the 
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calibration using the default 13 parameters, and the preliminary results were much worse 

(KGE = -2.3, not shown in the results section) than after refining the parameters (KGE = 

0.653). With the default parameters, VIC, as a macroscale land-surface based model, was 

not correctly estimating the water and energy balance equations in a vertical column at each 

grid cell and transferring water between grids and river networks by using the routing 

module (RVIC). After refining, the model significantly improved the water interaction in 

wetland areas, and different land cover and soil tiles and routed the flow to the outlet.  

The message here is that an effort has been made to employ a better calibration approach 

with an efficient optimization algorithm for the advanced model (VIC). As discussed in 

Section 3.4.2, DDS is a competitive and efficient optimization tool that has been applied in 

several distributed and land-surface based hydrological models. Thus, it is safe to say that 

the conclusion (i.e. the improved performance of SACSMA and MAHBV over VIC in the 

calibration outputs) was not limited by the search algorithm. 

Table 3-1: Performance statistics of the three hydrological models from calibration and 

validation. The definition of the abbreviations is presented in Section 3.4.2. 

 Calibration Validation 

 SACSMA MACHBV VIC SACSMA MACHBV VIC 

PFC 0.180 0.174 0.270 0.234 0.231 0.247 
KGE 0.796 0.740 0.660 0.776 0.679 0.653 
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Figure 3-5: Calibration and validation plots of SACSMA with SNOW17, MACHBV with 

SNOW17, and VIC with RVIC models. RMSE: Root-Mean-Square Error, and PBIAS: 

Percent Bias (Yapo et al., 1996) are displayed for each model to provide more 

information in addition to the visual inspection of the time series. 

 

3.5.2.  Model comparison in forecast mode 

3.5.2.1.  Overall forecast quality and skill 

The GEFSv2 ensemble precipitation forecasts were bias-corrected by the Empirical 

Quantile Mapping method using CaPA as a verifying analysis, as described in Section 
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3.4.3. Both raw and bias-corrected GEFSv2 inputs were fed into four hydrological models 

in order to (1) realize the effect of the bias-correction on the output hydrological forecasts, 

and (2) compare the models forecast performance pre- and post-bias correction process.  

Figure 3-6 shows the mean CRPS, which measures the overall probabilistic error of the 

ensemble reservoir inflow forecasts generated by four hydrological models and GEFSv2 

inputs. As expected, the bias-corrected GEFSv2 ensembles significantly outperform the 

raw GEFSv2 inputs regardless of the hydrological models used. The quality of hydrological 

forecasts was much improved by bias-correcting each ensemble precipitation forecast of 

GEFSv2 with CaPA reanalysis data. Figure 3-6 also shows a comparison between the 

forecast quality of the four hydrological models. For all models, the overall forecast quality 

declines as the lead time increases, as expected. It can be seen from the figure that the mean 

CRPS values of the SACSMA model are the lowest followed by MACHBV, WATFLOOD, 

and VIC in ascending order of forecast probability error. Whether using raw GEFSs or bias-

corrected GEFSs as in inputs, the resultant hydrological forecast skill of the two lumped 

models (SACSMA and MACHBV) outperforms the benchmark distributed WATFLOOD 

model and the macroscale VIC model at all lead times. However, the benchmark model 

provides a better skill than VIC and is relatively close to the two lumped models at early 

lead times. 

So far, the models’ ensemble outputs were evaluated based on their overall forecast error. 

In order to add a comprehensive outlook, a reference ensemble forecasting system is used 

to evaluate their skills. 
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Figure 3-7 shows the mean CRPS skill score (CRPSS) of ensemble reservoir inflows 

simulated by the four different hydrological models. It can be seen from the figure that, the 

CRPSS values of the four models have a similar trend as the CRPS depicting that the lumped 

models have better forecast skill than the benchmark and macroscale models. Comparing 

to the reference climatological-based ensembles, SACSMA provides the best quality of 

ensembles at all lead times, followed by MACHBV, WATFLOOD, and VIC. The lumped 

models were competitive throughout the forecast horizon with minor exceptions. For the 

first two to three days, the skill score of the benchmark WATFLOOD is relatively close to 

the lumped models, but the forecast skill gradually deteriorates at later lead times.  



Ph.D. Thesis – Frezer Seid Awol  McMaster University – Civil Engineering Department 

 

105 

 

  

 

Figure 3-6: Mean CRPS of ensemble reservoir inflows generated with Raw (left) and 

Bias-corrected (right) ensemble GEFSv2 precipitation forecasts. 

 

 

 
Figure 3-7: Comparison of reservoir inflow ensembles between four hydrological models 

using CRPS skill score (CRPSS). 

3.5.2.2.  Reliability 

The reliability of the ensemble hydrological forecasts was evaluated by two metrics; using 

the reliability component of CRPS after decomposition of (Hersbach, 2000), and using 

Reliability Diagram.  
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Figure 3-8 shows the components of CRPS after the decomposition method of Hersbach, 

2000. Here, the summation of the reliability (left) and potential CRPS (right) components 

of each hydrological model is the mean CRPS. The reliability and potential CRPS 

components follow the same trend as the mean CRPS and CRPSS. The decomposition 

indicates that the lumped models (SACSMA and MACHBV) were more reliable and have 

less spread and outliers than the benchmark WATFLOOD and macroscale VIC models. 

The reliability component contributes about half of the mean CRPS. The rest comes from 

the potential CRPS. Remarkably, it can be observed that the forecast quality of 

WATFLOOD during the first two or three days comes from the reliability component 

because this value is lower and much closer to the lumped models than the potential CRPS 

component. The overall forecast quality of SACSMA model remarkably remains the same 

up to lead time of day 6, as can be seen from mean CRPS and CRPSS values. This effect is 

mainly due to the potential CRPS component which remains either constant or slightly 

dropped as going from day 1 to day 6. SACSMA model generates ensembles that are less 

spread and have low number of outliers in the first six days forecast as explained by the 

potential CRPS component. The potential CRPS rapidly increased in all models after lead 

time seven, which indicates that the ensemble spread and presence of outliers start to 

significantly rise irrespective of the model type after a seven-day forecast. The sudden rise 

and decline of mean CRPS and CRPSS in most models after day seven maybe due to this 

effect. 
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Figure 3-8: CRPS decomposition components. The left plot shows the reliability 

component, and the right plot shows the Potential CRPS component. Comparison of these 

attributes was made between four hydrological models. 

 

Figure 3-9 shows the reliability diagrams of the hydrological models for forecast lead time 

of day 1, 3, and 5. For a one-day lead time forecast, the reliability curves of SACSMA, 

MACHBV, and WATFLOOD were all reasonably aligned along the diagonal line, which 

indicates that they achieve relatively more reliable forecasts. The conditional observed 

frequency is comparable with the forecast probability with slight exceptions in the very 

lower bin. For day three forecasts, this trend minimally changes, but overall, the reliability 

of the WATFLOOD is not significantly lower than the lumped models. For day five, the 

reliability curve of SACSMA is still close to the diagonal (‘perfect line’), especially on 

higher forecast probabilities. MACHBV is relatively reliable on day five forecast, as shown 

by its diagram. However, the reliability curve of WATFLOOD at day five is away from the 

diagonal line indicating its reliability was progressively declining after day three forecast. 

The reliability of VIC, although relatively moderate at day one, was reduced at day three 
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and five forecasts because it continuously underestimates the forecast. The 90% 

Confidence Intervals (CI) of the reliability diagrams showed that uncertainties in the 

conditional verification pair samples increased in all models as the forecast lead time 

increases. However, the advancement of conditional uncertainty in the forecasts in lumped 

models was not substantial when compared to the benchmark and macroscale models. This 

is because the reliability lines of SACSMA and MACHBV are within the CI bounds most 

of the time, and their CI’s are closer to the diagonal line. Whereas, for VIC, the reliability 

lines are either at the lower or upper level of the CI’s in all cases, and for WATFLOOD 

this occurs on day three lead time. This characteristic indicates that 90% of the cases, the 

reliability diagram attributes of VIC, and sometimes WATFLOOD did not belong to the 

interval where the “true” value of the attributes exists, whereas for the lumped models this 

does not hold. 
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Figure 3-9: Reliability diagrams of ensemble reservoir inflows at three selected forecast 

lead times. Different colors show different model types. The 90% confidence intervals 

were shown in the reliability lines for each model. The inset histograms show the 

frequency of occurrence in each forecast bin.  
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3.5.2.3.  Hit and False alarm rate distribution 

As described in Section 3.4.5.3, ROC displays the hit-rate and false alarm rate of a 

forecasting system at different thresholds. 

Figure 3-10 shows the ROC curves of the models at day 3 forecast lead time. The hit rate 

versus false alarm rates was drawn for varying higher probability threshold levels of 

reservoir inflows because the primary focus of this research is on flood forecasting. 

Simulated ensemble inflows exceeding 75, 80, 85, 90, and 95 percentiles of the observed 

reservoir inflow were taken into consideration. At day three lead time (Figure 3-10), 

SACSMA performed well in attaining the highest true alarm and lowest false alarm rates 

for all probability thresholds as compared to other models, the closest one being MACHBV. 

Forecasting the most extreme flood or flows exceeding 95 and 90 percentile inflows is a 

challenge that most models lack with different levels of forecast skill. The lumped models 

and subtly the benchmark are deemed sufficient to construct ensembles that have good 

discrimination skills to forecast up to 85 percentile reservoir inflow. Although the ROC 

curves stipulate that VIC can, in fact, reproduce 80 percentile flows up to five days ahead 

forecast time other probability thresholds have almost zero skills. 
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Figure 3-10: Relative Operating Characteristic (ROC) curves drawn for probability 

thresholds exceeding 75, 80, 85, 90, and 95 percentile reservoir inflows for three days 

ahead forecast. The four plots are for four different hydrological models. 

 

In Figure 3-11, the ROC Scores of each model, estimated by the average of the area under 

the ROC curves for the considered probability thresholds, are shown. It summarizes the 

performance and discrimination skills of the models’ ensembles for all forecast time 

horizons. The ROC Scores indicate that the forecast skills of WATFLOOD and VIC 

monotonically decrease as the lead time increases, but for the case of SACSMA and 

MACHBV, even though their skill unevenly decline, they have competitive and relatively 
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decent forecast performances. The declining ROC Scores indicate that as the lead time 

increases, the ROC curves (not shown here) progressively approach the diagonal line which 

is the climatological forecast or “zero skill” line (Brown et al., 2010). In general, 

considering all the forecast lead times and probability thresholds, SACSMA appeared to 

have a better discrimination skill more than the others, followed by MACHBV, 

WATFLOOD, and VIC in order of performance. 

 

 

Figure 3-11: The ROC Score measured by the Area Under the ROC Curves of four 

hydrological models. 

3.6.  Conclusion and Discussion 

The objective of this study was to identify hydrological models from a pool of diverse 

model structures that can produce better forecast skill and reliability and provide an 

enhanced short- and medium-range reservoir inflow forecasts in a Prairie watershed: The 

Upper Assiniboine River Basin. A comparison of forecast skill and reliability between the 

selected hydrological models was made using raw and bias-corrected ensemble 
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precipitation forecast products. The best model was selected from two lumped models 

(SACSMA with SNOW17 and MACHBV with SNOW17), a benchmark distributed model 

(WATFLOOD), and macroscale land-surface based model (VIC). Daily total precipitation 

forecasts were collected from an 11-member second-generation Global Ensemble Forecast 

System reforecast (GEFSv2). Each of the ensemble members was bias-corrected by 

Empirical Quantile Mapping method using the Canadian Precipitation Analysis (CaPA) as 

a training/verification dataset. Raw and bias-corrected GEFSv2 precipitation were supplied 

to the hydrological models to evaluate and compare the forecast skill and reliability of the 

ensemble inflow outputs. Forecast evaluation was performed in a 6-month hindcast period 

where daily ensemble reservoir inflow forecasts were issued for 1-day up to 8-days forecast 

lead times. SACSMA, MACHBV, and VIC models were calibrated in the study area by 

comparing simulated and observed inflows into Shelmouth Reservoir while WATFLOOD 

model, which is operationally implemented for the Provincial real-time flood forecasting 

was used as a benchmark. 

Results indicated that simulated ensemble reservoir inflows generated by bias-corrected 

GEFSv2 provided significantly better forecast quality than the raw GEFSv. Even though 

this result is expected, two things are noticed; first, the bias-correction of each ensemble 

members instead of the mean or median provided a consistent and reliable ensemble inflow 

forecast, and second, bias-correcting forecasts using verifying datasets (such as CaPA) for 

a training period of at least two years before the forecast time results in an improved 

hydrological forecast. This method and the improved result can be beneficial for users at 
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operational flood forecasting centers as they would generally prefer less advanced and 

quick post-processing methods. 

All models were supplied with bias-corrected ensemble GEFSv2, and various ensemble 

verification metrics were used to compare the model outputs up to eight days of forecast 

lead times. The overall forecast quality and skill of the models’ results were evaluated by 

using mean CRPS and CRPSS metrics. Results indicated that the two lumped models 

(SACSMA and MACHBV) provided better overall forecast performance than the 

benchmark WATFLOOD and the macroscale VIC models. Although the lumped models 

(SACSMA and MACHBV) were found to be comparable, SACSMA provided enhanced 

forecast skill than MACHBV at all lead-times. For shorter lead-times, particularly up to 

day 3, WATFLOOD provided relatively competitive overall forecast quality as of the 

lumped models.  

The CRPS decomposition by (Hersbach, 2000) was found to be vital to interpret and better 

analyze the overall forecast performance. This decomposition indicated that the modest 

forecast skill of WATFLOOD in the first 2 or 3 days came from the reliability component 

of CRPS. The decomposition of CRPS further indicated that the superior performance of 

SACSMA is due to its ability to generate ensemble inflow forecasts with less ensemble 

spread and low presence of outliers in the first six days of the forecast as explained by the 

potential CRPS component. 

Reliability diagrams of the hydrological models at different lead times provided further 

insight into the forecast skill of the ensembles. At shorter lead times, the reliability 

diagrams of SACSMA, MACHBV, and WATFLOOD indicated that they all achieve 
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relatively reliable forecasts as the conditional observed frequency was comparable with the 

forecast probability. However, after day 5, the reliability of WATFLOOD deteriorated 

while MACHBV and SACSMA, in order of increasing performance, remain within 

reasonable calibration accuracy. The reliability of VIC, although relatively moderate at day 

one, was weak because it continuously underestimated the forecast. 

In order to evaluate the discrimination skill of the ensembles, two threshold-based metrics 

were used to evaluate the hit-rates and false-alarm rates at different higher forecast 

thresholds: Relative Operating Characteristic (ROC) curve and the ROC Score measured 

by the area under the ROC Curves. ROC curves of the models were drawn and compared 

for ensemble reservoir inflows exceeding between 75 and 95 percentiles, with a 5 percent 

increment. For day three forecast, SACSMA and MACHBV models attained highest true 

alarm, and lowest false alarm rates for all probability thresholds with the former slightly 

outperformed the later. As the lead time increases, forecasting the most extreme flows 

exceeding 95 percentile inflows was a challenge for most models. However, the lumped 

models and moderately the benchmark were sufficiently able to generate ensemble inflows 

that have very good skills to forecast inflows exceeding the 85 percentiles. Overall, 

considering all the forecast lead times and probability thresholds, SACSMA provided better 

discrimination skill than the others, followed by MACHBV, WATFLOOD, and VIC in 

order of decreasing performance. 

In general, ensemble inflow forecasts generated by the lumped models offered substantially 

better performances as compared to the benchmark distributed model or the macro-scale 

land surface models. The distributed benchmark model unequivocally provided reliability 
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as good as the lumped models up to three days ahead even though it deteriorates rapidly at 

later lead times. It is anticipated that the forecast performance of the VIC model could be 

improved by increasing the grid resolution of the model, which was set up at 1/8-degree 

horizontal resolution. Overall the SACSMA appeared to generate the most reliable and 

skillful ensemble reservoir forecast inflows for up to a week ahead lead times and should 

be considered as an alternative operational model in the study area. 

The performance of different hydrological models depends on many factors such as the 

scale, the complexity of the basin, the spatial and temporal resolution of the input data, the 

structure of the models, the degree of discretization of the models, and the number of 

parameters to be calibrated, etc. For the models that were applied to this research, these 

factors are interconnected and thus affect their calibration performance jointly. The 

intended purpose of the hydrological models in this study is to simulate and forecast short- 

and medium-range reservoir inflows. Regardless of the structure and degree of 

discretization of the models, the objective is to obtain a time series (hydrograph) implicitly 

at one location, which is considered as the watershed outlet, and no interior locations or 

sites are needed. The way the inputs were supplied to the models depends on the type of 

the model (e.g., lumped, distributed) and the discretization level (e.g., spatially lumped 

catchment, grids, GRUs, HRUs). Hence it can be said that the calibration performance of 

the hydrological models was influenced jointly by the above factors. 

Moreover, there are many references from the literature where lumped models 

outperformed various distributed or land-surface based models. The Distributed Model 

Inter-comparison Project (DMIP) has implemented several hydrological models at eight 
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basins of the River Forecasting Centers in the USA, and the results showed that lumped 

models (particularly SACSMA) provided better performance than distributed (such as 

WATFLOOD, SWAT) and land-surface based models (such as VIC, NOAH) (Reed et al., 

2004). Results from the Model Parameter Estimation Experiment (MOPEX) also 

demonstrated a significantly improved performance of SACSMA comparing to land-

surface based models including VIC and SWAP (Duan et al., 2006; Nasonova and Gusev, 

2007). Maurer et al., 2010, performed a comparative study between SACSMA and VIC 

models, and the results revealed that the former lumped model had an evident better 

calibration performance over the later land-surface model. 

The research is conducted to identify best performing hydrological models for improved 

hydrological forecasting in a specific large complex watershed of the prairie region of 

Canada. The Upper Assiniboine Basin is characterized as a “Prairie” watershed, which is 

known for its complex hydrology due to the presence of potholes. Hence, the study area is 

considered as one example of a complex watershed. The hydrological models have a 

diversified structure (lumped, distributed, and macro-scale land-surface based) and 

implemented to evaluate and select the model that has the best potential for simulating and 

predicting reservoir inflows for such a complex basin. If another kind of complex watershed 

with the same scale is used, it is believed that a similar conclusion would be drawn. The 

previous studies that provided similar conclusions were conducted in various watershed 

landscapes. The MOPEX project was tested in twelve watersheds that have various land 

cover types such as croplands, mixed forests, and natural vegetation in different altitudes 

(Duan et al., 2006; Nasonova and Gusev, 2007). In the DMIP study, the dominant land 
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cover properties of the eight basins were mainly agricultures and forests with varying 

topographies and soil types (Reed et al., 2004; Smith et al., 2004). The comparative study 

of Maurer et al., (2010), was performed in snow-dominated catchments. Overall, the same 

candidate model(s) would highly likely be identified to better simulate and forecast 

medium-range reservoir inflows in other types of complex watersheds with a similar scale 

and characteristics. 

In general, for hydrological forecasting focusing on basin outflows and not interior sites, 

the study indicated that lumped models, particularly SACSMA with SNOW17, provided 

better performance than the distributed or land-surface models in complex watersheds. Not 

only the calibration but also the validation and forecast verification analysis have given the 

superiority in simple models. The verification of hydrological forecasts generated from 

bias-corrected ensemble weather forecast inputs provided enough details of the model’s 

performances for the intended purpose. 
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Appendix A: Brief description of the calibration of models 

A.1.  SNOW17 

The Snow Accumulation and Ablation Model (SNOW17) model was developed by 

(Anderson, 2006) as part of the NWS river forecasting system. It is a conceptual model that 

uses a temperature index to determine energy exchange across the snow-air interface 

(Anderson, 2006). 

Inputs to the model are:  

i. The mean area observed precipitation time series obtained by Theisen Polygon 

method 

ii. The mean area observed temperature time series obtained by Theisen Polygon 

method  

iii. The average elevation of the catchment  

iv. The latitude of the centroid of the catchment 

v. The parameters that were calibrated are listed in Table A- 1. 

The MATLAB version of the source code was used to set up and calibrate the model in the 

study area. 

Outputs from SNOW17 are outflow and Snow Water Equivalent. The outflows are the 

summation of snowmelt and rain. The coupling mechanism of SNOW17 with SACSMA 

and MACHBV models is performed by forcing outflows from SNOW17 into the 

hydrological models. 
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Table A- 1 : SNOW17 model parameters 

No Parameters Description Unit Ranges 

1 SCF Snowfall correction factor – 0.4–1.6 

2 MFMAX 
Maximum melt factor during non-rain periods 
considered to occur on June 21 

mm/6 h/°C 0.5–2.0 

3 MFMIN 
Minimum melt factor during non-rain periods 
considered to occur on December 21 

mm/6 h/°C 0.05–0.5 

4 UADJ 
The average wind function during rain-on-snow 
periods 

mm/mb/°C 0.03–0.2 

5 NMF Maximum negative melt factor mm/6 h/°C 0.05–0.50 

6 MBASE 
Base temperature for non-rain melt factor 
above which melt typically occurs 

°C 0–2.0 

7 PXTEMP1 

Lower Limit Temperature dividing tranistion 
from snow, if temp is less than or equal to 
pxtemp1, all precip is snow. Otherwise it is 
mixed linearly 

°C −2.0 to 0 

7 PXTEMP2 

Upper Limit Temperature dividing tranistion 
from snow, if temp is greater than or equal to 
pxtemp2, all precip is rain. Otherwise it is mixed 
linearly 

°C 1 to 3.0 

8 PLWHC 
percent liquid water holding capacity of the 
snow pack 

– 0.02–0.3 

9 DAYGM Daily melt at snow–soil interface mm/day 0–0.3 

10 TIPM Antecedent snow temperature index – 0.1–0.2 

 

A.2.  SACSMA 

The Sacramento Soil Moisture Accounting (SAC-SMA) model has been used as a lumped 

conceptual model at the National Weather Service (NWS) for operational river forecasting 

purposes. It has also been included within the National Weather Service Hydrology 

Laboratory’s Research Distributed Hydrologic Model (HL-RDHM) by adding several 

processes (Koren et al., 2004). Details description of the lumped SACSMA model can be 

found in (NWS, 2002). 
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In this research, SACSMA was implemented as a lumped continuous model in Upper 

Assiniboine Basin. The MATLAB version of the source code was used to set up and 

calibrate the model.   

For calibrating the model, the following inputs are used: 

i. Outflow (rain plus snowmelt) from SNOW17 

ii. The catchment area of the basin 

iii. Observed catchment outflow estimated by calculated reservoir inflow 

The lists the parameters of the model that were calibrated by DDS optimization are 

presented in Table A- 2. 

Table A- 2: SACSMA model parameters 

No Parameters Description Unit Ranges 

1 UZTWM Upper zone tension water maximum storage [mm] 1–150 

2 UZFWM Upper zone free water maximum storage [mm] 1–150 

3 LZTWM Lower zone tension water maximum storage [mm] 1–500 

4 LZFPM Lower zone free water primary maximum storage [mm] 1–1000 

5 LZFSM 
Lower zone free water supplemental maximum 
storage 

[mm] 1–1000 

6 ADIMP Additional impervious area [-] 0.0–0.4 

7 UZK Upper zone free water lateral depletion rate 
[day-

1] 
0.1–0.5 

8 LZPK Lower zone primary free water depletion rate 
[day-

1] 
0.0001–
0.025 

9 LZSK Lower zone supplemental free water depletion rate 
[day-

1] 
0.01–0.25 

10 ZPERC Maximum percolation rate [-] 1–250 

11 REXP Exponent of the percolation equation [-] [-] 1–5.0 

12 PCTIM Impervious fraction of the watershed area [-] 0.0–0.1 

13 PFREE 
fraction percolating from upper to lower zone free 
water Storage 

[-] 0.0–0.6 
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14 athorn A constant for Thornthwaite’s equation [-] 0.1-0.3 

15 Rq Routing Coefficient      [-] 0.0–1 

 

A.3.  MACHBV 

McMaster University-Hydrologiska Byråns Vattenbalansavdelning (MAC-HBV) is a 

modified version of the lumped conceptual HBV model edited by (Samuel et al., 2011) at 

McMaster University. Detail description of the model can be found in (Bergström Sten, 

1978). MACHBV has been implemented in several Canadian watersheds for flood 

forecasting purposes (Han et al., 2019; Han and Coulibaly, 2019; Leach et al., 2018; Razavi 

and Coulibaly, 2017, 2016).   

The model was calibrated in Upper Assiniboine River Basin in this study. The MATLAB 

version of the source code was used to set up and calibrate the model. The following inputs 

were used for calibration: 

i. Outflow (rain plus snowmelt) from SNOW17 

ii. The catchment area of the basin 

iii. Observed catchment outflow estimated by calculated reservoir inflow 

The lists the parameters of the model that were calibrated by DDS optimization are 

presented in Table A- 3. 

Table A- 3: MACHBV model parameters 

No Parameters Description Unit Ranges 

1 athorn A constant for Thornthwaite’s equation [-] 0.1-0.3 

2 fc Maximum soil box water content [mm] 50-800 

3 lp Limit for potential evaporation [mm/mm] 
0.1*fc-
0.9*fc 
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4 beta 
A non-linear parameter controlling runoff 
generation 

[-] 1–10 

5 K0 
Flow recession coefficient in an upper soil 
reservoir 

[days 1–30 

6 lsuz 
A threshold value used to control response 
routing on an upper soil reservoir 

[mm] 1-100 

7 K1 
Flow recession coefficient in an upper soil 
reservoir 

[days] 2.5-100 

8 cperc A constant percolation rate parameter [mm/day] 0.01-6 

9 K2 
Flow recession coefficient in a lower soil 
reservoir 

[days] 20-1000 

10 maxbas 
A triangle weighting function for modelling a 
channel routing routine 

[days] 1–20 

11 rcr Rainfall correction factor [-] 0.5-1.5 

12 a1 
An exponent in relation between outflow and 
storage representing non-linearity of storage – 
discharge relationship of lower reservoir 

[-] 0.5-20 

 

A.4.  VIC 

The Variable Infiltration Capacity (VIC) model is a Macroscopic Land-surface distributed 

hydrological model. Detail description of the model can be found in (Liang et al., 1994). 

Since VIC computes its energy and water balance equations in a vertical column at each 

grid cells, an external river routing module is required to route runoff and baseflows to the 

edge of each grid cell throughout the river network to the catchment outflow (Lohmann et 

al., 1996). For this purpose, the python version of RVIC routing module (Hamman et al., 

2017) is used in this research. Version 4.2.d of VIC was setup and coupled with RVIC. 

Meteorological forcings to the model are:  

i. Average daily gridded interpolated precipitation data from the ground network,  

ii. Daily gridded minimum, and maximum temperature data from ANUSPLIN, 
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iii. Average daily wind speed from the Global Environmental Multiscale (GEM) 

model. 

Physical inputs are: 

i. Digital elevation model for SNOW elevation bands and flow direction 

computation 

ii. Land cover data from Moderate Resolution Imaging Spectroradiometer (MODIS) 

Land Cover Type (MCD12Q1) Version 6 data product 

iii. Soil data from FAO’s Harmonized World Soil Database (HWSD) V 1.2 

The grid resolution of VIC model setup was about 1/8 degree. At each grid, three elevation 

bands and three soil layers were used in the study area.  

Some of the main processes are described below: 

Snow: Rain-snow partitioning, snow accumulation, and melting are simulated at sub-grid 

level using temperature index method lapsed through the Elevation (SNOW) bands. 

Evaporation: is simulated at each elevation band and land cover type using Penman-

Monteith Approach.   

For this study, the dynamic wetland module was activated to calibrate the wetland 

parameters because, as a Prairie watershed, the area has abundant wetland and potholes, as 

shown in Figure A- 1. The default parameters of the VIC/RVIC model (Table A- 4) were 

further refined to improve the calibration output and to better represent the physical 

characteristics of such a large complex basin. Wetland parameters were refined based on 

the vegetation type in the catchment. Each of the three major land cover classes (Figure A-

1) in the area has been assigned with its own five wetland parameters. Similarly, the six 

soil parameters were sub-categorized into six soil groups based on the dominant and 
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associated soil types of the basin (Figure A- 1). After parameter refining, the total number 

of parameters to be calibrated was increased from the default 13 to 53, including the routing 

parameters. 

  

Figure A- 1: Soil and Land cover tiles discretization for VIC model 
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Table A- 4: VIC/RVIC model parameters 

No Notation Range Unit Definition 

 
Soil 
parameters 

  

1 b 10-5 - 0.4 - Variable infiltration curve parameter  

2 Ds 10-3 - 1 - Fraction of Dsmax where non-linear baseflow begins 

3 Dm 0.1 - 30 
mm/
day 

Maximum velocity of baseflow 

4 Ws 0.5-1 - 
Fraction of maximum soil moisture where non-
linear baseflow occurs 

5 s2 0.3 - 1.5 m Thickness of middle soil moisture layer 

6 s3 0.3 - 1.5 m Thickness of bottom soil moisture layer 

 
Wetland 
parameters 

  

7 bmin_depth 0.01 - 0.3 m Lake depth below which channel outflow is 0. 

8 wfrac 
0.001 - 
0.05 

- 
Width of lake outlet, as a fraction of the lake 
perimeter 

9 depth_in 0.01 - 0.3 m Initial lake depth 

10 rpercent 0.1 - 1 - 
Fraction of grid cell runoff that enters lake (instead 
of going directly to channel network) 

11 lake_depth 0.1 - 1.5 m Maximum allowable depth of lake 

 
Routing 
parameters 

  

12 Vl 0.5 - 3 m/s Flow/Wave velocity 

13 Df 
200 - 
4000 

m2/s Flow diffusion 
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Chapter 4. Identification of combined hydrological models and numerical 

weather predictions for enhanced flood forecasting in a semi-urban 

watershed 

Summary of Paper 3: Awol, F.S., Coulibaly, P., and Tsanis, I. (2019). Identification of 

combined hydrological models and numerical weather predictions for enhanced flood 

forecasting in a semi-urban watershed. Journal of Hydrometeorology, Under Review. 

In this research, twelve hydrological models (lumped and distributed) were first set-up and 

calibrated using historical data. Then models with an improved calibration performance 

were selected for forecast verification. In the verification, four medium- and high-

resolution NWP inputs were used to force selected hydrological models in an attempt to 

identify the best combination of models and inputs to improve flood forecasting in a semi-

urban catchment. 

Key findings of this research include: 

• The lumped model (MACHBV) combined with a high-resolution forecast input 

(HRDPS) provides improved accuracy, economic value, and overall skill of short-

range flood forecasts (1hr-18hr) than any other model-input integration. 

• Distributed models were only competent at forecasting floods in the later hours of 

the day (between 15hr-18hr lead times). 

• There is steady persistence in flood forecasting as the top-ranking models in the 

very recent history will highly likely continue to perform well in the near future.   
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4.1.  Abstract 

This research aims at identifying a suitable combination of hydrological models and skillful 

weather predictions for enhanced short-term flood forecasting in a semi-urban watershed 

using several performance evaluation metrics. Twelve hydrological models were set-up and 

calibrated out of which five models comprised of lumped (SACSMA, MACHBV & PDM, 

all coupled with SNOW17) and distributed (WATFLOOD & SWMM) models were 

selected for forecast verification. Deterministic precipitation forecasts from High-

Resolution Deterministic Precipitation System (HRDPS), High-Resolution Rapid Refresh 

(HRRR), North American Mesoscale Forecast System (NAM), and Rapid Refresh (RAP) 

were collected. Hydrological forecasts from a combination of five models and four forecast 

inputs were verified for 1hr to 18hr lead times in a 6-month hindcast period. Pre-screening 

analysis indicated that whatever the hydrological model, HRRR and HRDPS produced 

better hydrological forecast accuracy than NAM and RAP. A comprehensive verification 

revealed that MACHBV followed by SACSMA models showed better overall forecast skill 

and accuracy. Distributed models were only competent between 15-18h lead times. Overall, 

MACHBV with HRDPS has emerged as the best model-input combination. It captured the 

peak flow magnitude and timing, detected the flood threshold, and appeared economically 

viable at all forecast lead times better than any other model-input combination. Results also 

showed that giving adaptive weights to hydrological models based on recent performances 

provided enhanced combined forecasts while persistently keeping the well-performing 

models.  
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4.2.  Introduction 

Floods are one of the deadliest natural disasters in many regions of the world. In urban and 

semi-urban areas with high population density, flooding has caused the loss of many lives, 

damages to infrastructures, evacuations and temporary homelessness, and large insurance 

and disaster relief spending. In Canada, 2013 was recorded as a catastrophic year as floods 

affected half a million households and caused about $7 billion in damages in the City of 

Calgary and the Greater Toronto Area (ECCC, 2017; Sandink, 2016). Recently, the 2019 

spring flooding has affected thousands of homes in parts of Quebec, Ontario, and New 

Brunswick, including Montreal and the capital city Ottawa (FloodList, 2019; Montreal 

Gazette, 2019; Statistics Canada, 2019). 

A principal way of reducing flood damages in affected areas is by forecasting river flooding 

well ahead of time as part of an early warning system. River flow forecasting can be 

achieved by using historical stochastic analysis (Chen et al., 2019; Chow et al., 1983; 

Georgakakos, 1986; Lardet and Obled, 1994; Lindenschmidt et al., 2019), artificial neural 

networks (Campolo et al., 2003; Chang et al., 2014; Coulibaly et al., 2001b, 2001a, 2000; 

Jeong and Kim, 2005; Thirumalaiah and Deo, 1998) or hydrological and hydraulic models 

(Beven et al., 1984; Chen et al., 2009; Du et al., 2012; Gouweleeuw et al., 2005; Jasper et 

al., 2002; Muhammad et al., 2018; Vieux et al., 2004; Yucel et al., 2015). However, the 

latter have become a popular choice for many provincial flood forecasting centers, and 

national forecasting institutions (Achleitner et al., 2012; De Roo et al., 2003; Emerton et 

al., 2016; Hopson and Webster, 2010; Pappenberger et al., 2008; Thielen et al., 2009; 

Unduche et al., 2018). 
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Various model evaluation techniques should test the ability of hydrological models to 

reproduce and forecast peak flow events before application in operational flood forecasting. 

Researches have been conducted to enhance the prediction skill of hydrological models. 

Data assimilation, post-processing, and uncertainty quantification methods were some of 

the areas of the studies for improving the forecast skill in urban and semi-urban 

environments (Han et al., 2019; Han and Coulibaly, 2019; Leach et al., 2018). A diverse 

multi-model approach was also recommended to enhance streamflow forecasts 

(Hrachowitz and Clark, 2017). Leach et al., (2018), analyzed the added benefit of 

assimilating near real-time data (streamflow, soil moisture, and snow water equivalent) into 

GR4J, HYMOD, MACHBV, and SACSMA models using Ensemble Kalman Filter and 

suggested that the combined assimilation provides better model prediction in an urban 

watershed. Han et al., (2019), investigated the application of Precipitation-Dependent 

Hydrologic Uncertainty Processor (HUP) using HYMOD and GR4H models in a semi-

urban watershed to assess hydrological uncertainty and enhance the overall quality of the 

deterministic forecast. Han and Coulibaly, (2019), also examine the use of Bayesian 

ensemble uncertainty processer (BEUP) to generate probabilistic flood forecasts from 

MACHBV model forced by ensemble weather forecast inputs in the same watershed. The 

authors conclude that BEUP post-processor can capture the main predictive uncertainties 

and enhance flood forecasting skills. Sharma et al., (2019), recently investigate the benefit 

of using diverse hydrological models to improve medium and long-term streamflow 

forecasts using API‐C, HL-RDHM, and WRF-Hydro models and innovative post-

processing methods. 
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Hrachowitz and Clark, (2017), suggested the implementation of diverse hydrological 

models at the required level of details by taking advantage of multi-scale data inputs for 

the intended purpose, flood forecasting, for instance. Comparison and performance 

evaluation of hydrological models with various calibration and validation approaches is 

vital for application in urban and semi-urban flood forecasting. Awol et al., 2018, for 

example, compares traditional and advanced calibration approaches to select appropriate 

SWMM model parameters in a semi-urban watershed. They highlighted the importance of 

using a weighted average multi-objective optimization approach using the Dynamically 

Dimensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007) to improve flood 

prediction in multiple gauging sites. El Hassan et al., (2013), compared the performances 

of HECHMS and GSSHA models in selected historical flood events to assess models’ 

prediction ability for a semi-urbanized watershed. Multi-model techniques have also been 

used to assess their added value in the operational flood forecasting context. Thiboult et al., 

2017, for instance, compared several Early Warning Systems (EWS) by investigating 

different sources of uncertainties from the integration of multiple hydrological models and 

data assimilation techniques. They used the HOOPLA (HydrOlOgical Prediction 

Laboratory) framework (Thiboult et al., 2019), which comprises of twenty lumped 

conceptual hydrological models with many data assimilation scenarios. Similar tools were 

also used by Thiboult et al., (2016) for assessing sources of uncertainty in ensemble 

streamflow forecasting. 

The use of meteorological forecasts from numerical weather prediction models (NWP), 

either deterministic or ensemble, as a driving force to hydrological models is beneficial in 
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providing short-term forecasts and transferring the inherited uncertainty of initial 

conditions (Cloke and Pappenberger, 2009). Due to fast responses to extreme events, 

shorter time of concentration, and flashiness of floods in urban and semi-urban watersheds, 

short-term weather forecast data is required for forcing hydrological models. The 

performance of the subsequent short-term hydrological forecast can then be evaluated for 

reliability, skill, and overall forecast quality. The quality of hydrological forecasts depends 

on the availability and skill of hourly and sub-hourly weather forecasts, particularly for 

urban and semi-urban catchments. Bennett et al., (2014) indicated that hydrological 

forecasts with hourly time steps have better accuracy than daily forecasts; and provides 

more information on the flood hydrographs. As important as the temporal resolution, the 

higher spatial resolution of weather forecasts is crucial for improved short-term flood 

forecasting. Abaza et al., (2013), for example, compared available regional and global 

ensembles, and deterministic meteorological forecasts in Canadian catchments for short-

term hydrological forecasting. They set up HYDROTEL (Fortin et al., 2001) hydrological 

model in catchments ranging between 355 and 5820 km2 areas. The authors found that 

higher resolution regional meteorological forecasts provided better hydrological forecast 

quality and reliability than their global counterparts. They also highlighted that 

deterministic forecasts were as good as the ensemble ones up to 24-hour forecast lead time 

and the effect of ensemble members is only recognized at later lead times. 

Focusing on flash-flood prediction, Horat et al., (2018), assessed forecasting chains 

consisting of European-based deterministic and ensemble NWPs, radar-based real-time 

rainfall input, and an advanced and traditional operational setup of PREVAH hydrological 
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model. Their advanced hydrological model setup was based on Dominant Runoff Process 

(DRP) and a priori parameter estimation with no calibration requirement. They reported 

that the new forecasting chain could produce competitive and better results than the 

traditional approach without the need for an extensive calibration process, desirable in 

ungauged catchments. Their results also showed that deterministic forecasts produce better 

skills for short lead-times up to 24-hours as compared to ensemble forecasts. 

Based on Abaza et al., (2013), and Horat et al., (2018), regional deterministic weather 

forecasts are deemed to be superior to ensembles for very short-term flood forecasting, 

particularly in small urban and semi-urban catchments that have only a few hours of 

response times. Hence, it is crucial to use not only high spatial resolution but also high 

temporal resolution NWPs with sub-hourly, hourly, or sub-daily time-steps for 

hydrological forecasting in a flashy urban and semi-urban catchment.  

Most of the above studies applied multiple hydrological models or multiple NWPs for 

seasonal (monthly), medium-term (up to 15 days), and daily short-term (1 day up to a week 

ahead) hydrological forecasts. Alternatively, in some cases, a single hydrological model 

was used with sub-daily or hourly forecast lead times.  Nonetheless, few studies have 

focused on integrated multiple hydrological models and multiple NWPs in semi-urban and 

urban watersheds for short-term flood forecasting purposes. As such, a comprehensive 

investigation of the combined multi-models and multi-inputs for short-term flood 

forecasting is one of the research gaps that is addressed in this study. 

The primary objective of the study is to identify a proper combination of hydrological 

models and skillful weather forecast inputs for enhanced short-term flood forecasting in a 
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semi-urban watershed. The research will evaluate candidate hydrological models and 

weather forecast inputs using different existing forecast verification metrics based on the 

overall forecast skill, quality, peak flow magnitude, peak flow timing, reliability, and 

economic value. Besides, this study will assess the added benefit of using precipitation 

forecasts from four regional NWPs for forcing hydrological models. The research 

contributes to the verification of NWPs for short-term flood forecasting and the 

identification of potential hydrological models for semi-urban catchments, and thus 

provides findings to operational flood forecasters, and to researchers for further 

investigation to improve forecasting tool and products. 

The paper is structured as follows. Section 4.3 will provide information on the study area, 

the different kinds of data used, and Section 4.4 presents the methodology and details of 

evaluation tools applied. In Section 4.5 the results will be presented and discussed. Finally, 

conclusions are provided in Section 4.6. 

4.3.  Study Area and Data 

4.3.1.  Study Area 

The study area, called Humber River Watershed, is found in Ontario, Canada, and has a 

catchment area of about 911 km2 (Figure 4-1). The catchment is characterized as a semi-

urban as it is covered by 13% urbanizing, 33% urban, and 54% rural area (TRCA, 2013). 

The study area is selected for this research because related studies have been conducted 

recently to improve the flood prediction skill (Awol et al., 2018; Han et al., 2019; Han and 

Coulibaly, 2019) and supplementary data were readily available. 
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Figure 4-1: Study Area of the Humber River Watershed 

 

4.3.2.  Data  

4.3.2.1.  Observed meteorological and river discharge data 

Historical precipitation and temperature data for the meteorological gauges, and river flow 

data for the outlet flow station (shown in Figure 4-1) were received from Environment 

Canada and Toronto Regions Conservation Authority (TRCA). Hourly data were prepared 

to calibrate and validate various hydrological models, which will be discussed in detail in 

Section 4.4.2. 

4.3.2.2.  Weather forecast data 

For this study, regional deterministic weather forecasts inputs were chosen because studies 

indicated that deterministic forecasts provide better hydrological prediction skill up to 24hr 

forecast lead time than global and ensemble forecasts (Abaza et al., 2013; Horat et al., 
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2018). Hence data were collected from two providers: Environment Canada and the 

NOAA. Environment Canada provided the High-Resolution Deterministic Precipitation 

System (HRDPS). Whereas NOAA supplied North American Mesoscale Forecast System 

(NAM), Rapid Refresh (RAP), and High-Resolution Rapid Refresh (HRRR) model. In 

terms of spatial resolution, HRDPS and HRRR (2.5 and 3 km respectively) are finer than 

NAM and RAP (12 and 13 km, respectively). The four deterministic products (Table 4-1) 

have hourly time steps but have different forecast horizons. Archives of these forecasts data 

were collected between June 1st, 2018 to November 30th, 2018. 

Furthermore, HRRR and RAP issues forecast every hour within a day, but NAM and 

HRDPS are only available four times a day. For this research, the precipitation forecast 

variable was only used in a hindcast experiment because researches indicated that it is the 

most significant factor for flood forecasting (Cuo et al., 2011; Zsótér et al., 2016). 
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Table 4-1: Weather forecast products and details (Note: Forecasts of HRRR and RAP are 

available at any hour of a day. For this study four valid times are selected to compare 

them to the other two products) 
 Valid time Forecast lead-times 

HRRR 
3km 

00Z 1h,2h,3h, …,18h 

06Z 1h,2h,3h, …,18h 

12Z 1h,2h,3h, …,18h 

18Z 1h,2h,3h, …,18h 

RAP 
13km 

00Z 1h,2h,3h, …, …,21h 

06Z 1h,2h,3h, …, …,21h 

12Z 1h,2h,3h, …, …,21h 

18Z 1h,2h,3h, …, …,21h 

HRDPS 
2.5km 

00Z 1h,2h,3h, …, …, …, …,48h 

06Z 1h,2h,3h, …, …, …, …,48h 

12Z 1h,2h,3h, …, …, …, …,48h 

18Z 1h,2h,3h, …, …, …, …,48h 

NAM 
12km 

00Z 1h,2h,3h, …,36h,39h,41h, …,84h 

06Z 1h,2h,3h, …,36h,39h,41h, …,84h 

12Z 1h,2h,3h, …,36h,39h,41h, …,84h 

18Z 1h,2h,3h, …,36h,39h,41h, …,84h 

 

4.4.  Methodology 

Figure 4-2 summarizes the methodology employed in this research. First, multiple 

hydrological models that are presumed to be appropriate for short-term river flow 

forecasting are collected and set-up in the semi-urban catchment. The hydrological models 

were calibrated and validated using observed hourly data. Then the best models that showed 

better performances in terms of overall accuracy and peak flow simulation were selected 

for the next step. Since the next stage involves verifying the models in forecast mode, 

weather forecast data are collected to feed into the screened multiple hydrological models. 
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The available regional deterministic weather forecast data were pre-verified using some 

forecast verification metrics in order to filter out those which produce poor hydrological 

forecast skills. This pre-verification stage is to ensure that the best deterministic products 

that are appropriate for semi-urban watersheds are selected before applying a full forecast 

verification. Comprehensive forecast verification is then performed by running the 

screened hydrological models using selected multiple inputs as a driving force in the 

hindcast period. This stage is to find the best hydrological models and input combinations 

that are adequate for semi-urban flood forecasting. It involves identifying competent 

hydrological models based on the overall forecast skill, quality, peak flow magnitude, peak 

flow timing, bias, reliability, and economic value aspects. Finally, the best combination of 

hydrological models and forecast products are selected. As a supplement, simple forecast 

averaging methods were applied in order to find a better forecast combination method, 

which will be discussed in Section 4.4.5. 
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Figure 4-2: Methodology adopted for evaluating and selecting hydrological models and 

high-temporal weather forecast inputs. 

 

4.4.1.  Hydrological models  

An attempt was made to consider potential hydrological models that are relevant for flood 

forecasting purposes and are locally adapted and applied for research and practical 

purposes. The list of models used in this study is provided in Figure 4-2 and will be 

discussed here.  

Hydrological  
SWMM 

WATFLOOD 

SACSMA 

GR4H 

MACHBV 

PDM 
 

Models 
NAM 

IHACRES 

TANK 

WAGENINGEN 

GARDENIA 

MARTINE 
 

Screened 
Multiple models 

Forecast performance, skill 
and quality Evaluation 

Calibration and 
Validation 

Forecast Pre-
Verification 

Selected hydrological 
model and weather 

forecast input 

Weather Forecast Products 
HRRR 

RAP 

NAM 

HRDPS 
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SWMM (Storm Water Management Model) is a popular semi-distributed model developed 

by Environmental Protection Agency (EPA) for urban and semi-urban watersheds (Huber 

and Dickinson, 1988; Rossman and Huber., 2015). Previous related work has been done in 

the Humber River watershed using the SWMM model to investigate the best calibration 

approaches and select representative parameters for enhanced peak flow simulations (Awol 

et al., 2018). Hence, the previous model set-up is used in this study. 

WATFLOOD (Kouwen, 1988) is a Canadian hydrological and routing model developed at 

the University of Waterloo and is specifically intended for flood forecasting, and watershed 

simulation which combines a conceptual Group Response Unit (GRU) distributed 

hydrology and a physically-based routing component (Kouwen et al., 1993). The model 

has been applied for flood forecasting purposes in operational and research centers 

(Muhammad et al., 2018; Unduche et al., 2018), and set-up was available for Humber River 

Watershed and the other Toronto Regions Conservation Authority (TRCA) catchments 

(Kouwen, 2018). For the rest of this paper, SWMM and WATFLOOD are categorized as 

distributed models even though the former is a semi-distributed model. 

A conceptual lumped hydrological model called MACHBV (McMaster University 

Hydrologiska Byråns Vattenbalansavdelning) (Samuel et al., 2011) was initially developed 

by modifying the HBV model (Bergström Sten, 1978). The model has been applied in a 

similar watershed for flood forecasting studies (Han et al., 2019; Han and Coulibaly, 2019) 

and elsewhere tested in Canada (Razavi and Coulibaly, 2017, 2016). In this research, 

MACHBV is coupled with SNOW17 (Anderson, 2006) module. 
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The Sacramento Soil Moisture Accounting (SACSMA) model developed and used by 

NOAA’s National Weather Service (NWS) in river forecasting centers is a conceptual, 

spatially lumped hydrological model that has been applied in several research projects 

(Burnash et al., 1973; Demargne et al., 2014; Seiller et al., 2015; Shamir et al., 2006; 

Velázquez et al., 2010; Vrugt et al., 2006). The model was also implemented in nearby 

urban and semi-urban watersheds to enhance flood forecasting (Dumedah and Coulibaly, 

2013; Leach et al., 2018). In this research, SACSMA is coupled with SNOW17 module. 

The rest of the hydrological models were imported from the HOOPLA (HydrOlOgical 

Prediction LAboratory) framework (Thiboult et al., 2019). The framework comprises of 

multiple lumped conceptual hydrological models, data assimilation modules and 

meteorological forecasting systems that allow users the option of combining different 

module and forecast setups for streamflow prediction studies (Thiboult et al., 2017, 2016). 

Out of the 20 lumped hydrological models that the authors applied in Canadian catchments, 

eight were selected for this study based on their overall performances from the mentioned 

previous studies. The models used here are GR4J (Perrin et al., 2003), NAM (Nielsen and 

Hansen, 1973), IHACRES (Jakeman et al., 1990), PDM (Moore and Clarke, 1981), 

MARTINE (Mazenc et al., 1984), GARDENIA (Thiéry, 1982), TANK (SUGAWARA, 

1979) and WAGENINGEN (Warmerdam and Kole, 1997). Modifications were made to 

these models in order to fit into the calibration strategy employed in this research (see 

Section 4.4.2) in addition to coupling all the models with SNOW17. Also, the hourly GR4H 

model (Bennett et al., 2014) is used instead of GR4J, the original daily version, because all 
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other models are calibrated and simulated with hourly meteorological observed and forecast 

data. 

4.4.2.  Calibration and Validation 

Apart from SWMM and WATFLOOD, all the other hydrological models described above 

were calibrated in the study. As mentioned in Section 4.4.2, the former two models were 

already calibrated in previous studies. However, the calibration of WATFLOOD was based 

on an unsatisfactory land cover map (Kouwen, 2019, Personal Communication). The 

available land cover map (Figure 4-1) was considered as a zoning map, and given how 

crucial impervious area is in urban and semi-urban runoff modeling, the mapping of the 

impervious areas as GRU’s in each grid could only be guessed at. SWMM model was 

calibrated based on a heavily discretized 714 sub-catchments within Humber River 

Watershed. An advanced multi-site calibration approach was required to simulate flood 

events at multiple interior and outlet gauging stations (Awol et al., 2018). 

The Dynamically Dimensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007) 

was used to calibrate all the models. Hourly historical precipitation and temperature data 

were used to run the models and calibrate with hourly observed river flow data. Hence, 

calibration and validation were performed in an hourly time step from Jan 2014 to Dec 

2017 and from Jan 2010 to Dec 2013, respectively. The reason why we used recent years 

for calibration is that we want to train the models for relatively higher consecutive flood 

years (comparing to the validation period). A weighted average of three objective functions 

(Eqn. 4-1) was used to optimize the parameters of each model using a single-objective DDS 

optimization. That is, calibration was performed to maximize the average of the objective 
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functions. These are the Peak Flow Criteria (PFC) (Coulibaly et al., 2001a), Nash-Sutcliffe 

Efficiency (NSE) (Nash and Sutcliffe, 1970), and Kling–Gupta efficiency (KGE) (Gupta 

et al., 2009) which are formulated below.  

 

𝑃𝐹𝐶 =
(∑ ((𝑞𝑠,𝑖 − 𝑞𝑜,𝑖)

2
𝑞𝑜,𝑖

2)
𝑛𝑝

𝑖=1
)

1
4

(∑ 𝑞𝑜,𝑖
2)

1
2

 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜,𝑖 − 𝑄𝑠,𝑖)

2𝑁
𝑖=1

∑ (𝑄𝑜,𝑖 − 𝑄𝑜
̅̅̅̅ )

2𝑁
𝑖=1

 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝑎 − 1)2 + (𝑏 − 1)2 

(4-1) 

Where 𝑄𝑠, 𝑄𝑜, 𝑞𝑠 and 𝑞𝑜 are simulated flow, observed flow, simulated peak flow, and 

observed peak flow, respectively. 𝑟, 𝑎, and 𝑏 are the correlation coefficient between, the 

ratio of standard deviations of, and the ratio of the mean of 𝑄𝑠 and 𝑄𝑜 respectively. 𝑛𝑝 

symbolizes the number of counts where peak flows are above 1 3⁄  of the mean observed 

peak flow. NSE and KGE values closer to 1, and PFC value of 0 indicate better model 

performance and best peak flow simulation accuracy. 

4.4.2.1.  Remarks on Lumped and Distributed models 

• The lumped hydrological models have one spatially enclosed catchment at the outlet 

gauging station. In the distributed models the study area was discretized by several 

sub-catchments (SWMM) or grids and Group Response Units (WATFLOOD).  

• Calibration of lumped models is usually simple and requires less effort to optimize 

a limited number of parameters at the outlet gauging stations. Whereas in distributed 

models, calibration and parameter optimization often requires high computational 
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time and cost. The availability and quality of physical and land surface data for 

distributed models could influence the performance of the calibration or forecast 

output. 

• Due to the above differences, inter-comparisons in multi-model flood forecasting 

could favor the performance of the forecasting skill and reliability to lumped 

models. However, distributed models are still needed to forecast flows at any 

intermediate gauged and ungauged locations within the watershed. 

4.4.3.  Hindcast simulation (model update and forecast) 

Hydrological forecast verification was performed in the hindcast mode for the models that 

are selected during the calibration and validation phase. The hindcast period was chosen 

between June 1st, 2018 to November 30th, 2018, because frequent summer and fall season 

floods were observed, and archives of the four weather forecast products (Table 4-1) were 

available. In the hindcast mode, the selected hydrological models were forced by the 

precipitation forecasts while keeping the historical temperature data assuming that 

temperature is well forecasted and that errors in precipitation forecasts significantly affect 

the streamflow forecasts (Zsótér et al., 2016).  

Before running with forecast data, the models are updated four times a day (at 00Z, 06Z, 

12Z, and 18Z) with observed meteorological data for at least one month for the lumped 

models and one year for the distributed models before each forecast start time. In other 

words, at every forecast time (four times a day for the entire hindcast period), the models’ 

states were continuously updated by running the models up to that time with observed 

meteorological data. Then forecast data were supplied to the models at each forecast time 
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and simulated for 18 hours forecast lead time in an hourly time step. The 18-hour forecast 

horizon is selected because it is the common forecast length that all the weather forecast 

products have, which is suitable for comparison purposes in urban and semi-urban 

catchments where response times are only a few hours. 

4.4.4.  Hydrological and flood forecasting performance evaluation 

The streamflow forecast performances of the screened hydrological models (after 

calibration and validation) forced by the pre-screened weather forecast products were 

evaluated using various verification metrics. These forecast measures can be categorized 

into different forecast attributes based on their practical significance: the overall forecast 

skill, forecast accuracy/quality, ability to forecast the peak flow magnitude, ability to 

acquire the peak flow timing, threshold-based scores to assess reliability and bias, and the 

forecast economic value. Existing evaluation metrics applied in this research are provided 

in Table 4-2, and more details are presented in Appendix B. 
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Table 4-2: Metrics used for comparing the forecast performance, skill and quality of 

hydrological models and inputs 

 Forecast attributes 

 
 

Metrics 

Overa
ll Skill 

Accura
cy 
/Quali
ty 

Peak 
flow 
magnitu
de 

Peak 
flow  
timing 

Threshold-Based (Categorical) 
Reliability/ 
Resolution/ 
Discriminati
on 

Bias 
Economi
c  
Value 

Taylor Skill Score 
(TSS) 

✓       

MAE/RMSE  ✓      
Magnitude Error (SD-

Q) 
  ✓     

Timing Error (SD-T)    ✓    
PFC   ✓     

Precipitation of 
Detection (POD) 

    ✓   

False Alarm Rate 
(FAR) 

    ✓   

Bias Frequency 
(BiasFreq) 

     ✓  

Critical Success Index 
(CSI) 

    ✓   

Economic Value (V)       ✓ 

 

4.4.5.  Simple forecast averaging methods 

The rationale behind this task is that operational flood forecasters and users might be 

interested in combining or averaging the hydrological forecasts generated by multiple 

models or multiple weather forecasts. We tried to identify a simple forecast averaging 

method for the available multiple short-term streamflow forecasts provided by multiple 

hydrological models. Indeed, there are various advanced statistical post-processing and 

averaging methods in the literature (DelSole, 2007; Duan et al., 2007; Gneiting et al., 2005; 

Hopson and Webster, 2010; Sharma et al., 2019). However, we compare two simple 

methods from a practical aspect and the objectivity of this research. The first one is a simple 
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averaging method that gives equal weights to the model’s forecast and henceforward called 

‘EnsMean’ (mean of the ensemble).  

The second one is an adaptive weighted forecast combination method (henceforward called 

‘AdtWeight’) obtained by dynamically changing the weights throughout the hindcast 

period. Here, the weights are dynamically changed at every forecast time (𝑡𝑜) based on the 

recent historical performance of each forecast. Aiolfi and Timmermann, (2006), first 

propose this method and often called the ‘persistence forecasting method.’ This method is 

mainly used in economic/market forecasting (Genre et al., 2013; Jordan et al., 2017; 

Matsypura et al., 2018). 

Ranks are given to each model’s forecast (i) based on the historical Mean Square Forecast 

Error (e2) in a dynamic Tracking Window (𝑡𝑜 to (𝑡𝑜 − ℎ)). The weights (𝑤𝑖) are inversely 

proportional to the ranks and are found by:  

 wi =
Ranki

−1

∑ Ranki
−1N

j=1

 (4-2) 

where: 𝑅𝑎𝑛𝑘 = 𝑓(𝑆𝑡
𝑖 … 𝑆𝑡

𝑁) and 𝑆𝑡
𝑖 = (𝑒𝑡𝑜,𝑡𝑜−ℎ

(𝑖)
)

2

, N is the number of models. 

The combined forecast is then estimated by multiplying each weight (𝑤𝑖) to the 

corresponding model forecast (i) in the forecast horizon (𝑡𝑜 to (𝑡𝑜 + ℎ)). Here h is taken as 

18-hours, which is the length of the forecast lead time. 
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4.5.  Results and Discussion 

4.5.1.  Calibration and Validation 

Calibration and validation were performed using DDS optimization for the lumped 

hydrological models described in Section 4.4.2. The distributed models, SWMM, and 

WATFLOOD were previously calibrated in different studies and were directly selected for 

the next step. These models are also being used (included) in the local operational flood 

forecasting center at Toronto Regions Conservation Authority.  Hence, we will discuss here 

the results of the eleven lumped hydrological calibration and validation performed in hourly 

time step. 

Table 4-3 summarizes the statistical performances of the models using NSE, KGE, and 

PFC metrics. The results show that MACHBV, SACSMA, and PDM are the top three 

models that significantly outperform the other seven lumped models. NSE and KGE 

metrics depict that MACHBV and SACSMA, followed by PDM models, better reproduced 

the hourly observed streamflow data in both calibration and validation periods. Overall, the 

three models consistently achieved improved performance and are hence selected for the 

next phase, where verification using forecast data is performed. 
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Table 4-3: List of models used and their calibration and validation result (Using 

Observed hourly Precipitation & Temperature data). Bold font indicates models selected 

for the forecast verification step. 

 Calibration  Validation 

Models NSE KGE PFC NSE KGE PFC 

SACSMA 0.81 0.82 0.11 0.70 0.62 0.18 
GR4H 0.48 0.63 0.15 0.43 0.55 0.20 
MACHBV 0.802 0.86 0.12 0.71 0.65 0.17 
NAM 0.14 0.32 0.22 0.13 0.3 0.23 
PDM 0.75 0.82 0.14 0.67 0.71 0.18 
IHACRES 0.65 0.76 0.12 0.54 0.68 0.19 
WAGENINGEN 0.49 0.44 0.17 0.48 0.44 0.17 
TANK 0.53 0.74 0.14 0.52 0.59 0.21 
GARDENIA 0.56 0.81 0.14 0.48 0.65 0.19 
MARTINE 0.54 0.74 0.15 0.53 0.64 0.20 
SWMM (Awol et al., 2018) 
WATFLOOD (Kouwen, 2018) 

 

 

4.5.2.  Screening weather forecast inputs 

The hydrological forecasts driven by four deterministic weather forecasts products (Section 

4.3.2.2) are pre-verified in this section to screen the appropriate inputs that result in better 

forecast accuracy in semi-urban catchments. For the rest of this paper, when comparing the 

forecast products, it should be noted that the comparison is based on the hydrological 

forecasts derived from these weather products. 

Figure 4-3 presents the Mean Absolute Error (MAE) of the resultant streamflow forecasts 

from the weather forecast inputs using five selected hydrological models (see Section 

4.5.1). MAE was computed over the 6-month verification period. It can be seen from this 

figure that NAM and RAP have significantly poor forecast accuracies than HRDPS and 

HRRR for a lead time beyond 3h, irrespective of the hydrological models used. The primary 

reason originates from the difference in horizontal spatial resolution. The spatial resolutions 
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of NAM and RAP (12 and 13km) are about 4.5 times larger than HRDPS and HRRR (2.5 

and 3km). Even though the physical configuration and radar reflectivity assimilation cycle of 

RAP and HRRR are similar, the latter is a nested subset of the former (Benjamin et al., 2016). 

Besides, HRRR uses RAP as a boundary condition, whereas RAP uses the Global Forecast 

System (GFS), which has a coarser grid spacing of 28km (Alexander et al., 2017). 

Most importantly, HRRR is preferable for forecasting rainfall events than RAP and NAM 

because it is a Convective-Permitting Model (CPM), which adds value for accurate 

prediction of convective clouds (Clark et al., 2016; Pinto et al., 2015). The results also 

showed that RAP achieved better forecast accuracy than NAM, particularly after 3h 

forecast lead time. Although no direct comparison between the two precipitation forecast 

products was found in literature, some studies comparing NAM and GFS (RAP’s boundary 

condition) highlighted that the later provided skillful short-term forecast (Charles and 

Colle, 2009; Yan et al., 2016).  

The Canadian HRDPS appears to be competitive with the NOAA’s HRRR, as shown in 

Figure 4-3. Their differences seem insignificant in lumped models, but in distributed 

models, HRDPS has a slightly improved forecast accuracy than HRRR. Lumped 

hydrological models (MACHBV, SACSMA, and PDM) take mean spatial average 

precipitation forecasts as an input, whereas distributed models import the forecasts at each 

grid (WATFLOOD) or sub-catchment (SWMM). Due to these differences in discretization, 

lumped models tend to spatially average noises or uncertainties of short-term precipitation 

forecasts better than distributed models. This can be easily seen from Figure 4-3 that 

HRDPS and HRRR show almost equivalent MAEs at all lead times for lumped models but 
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slightly varied MAEs for distributed models. However, more verification metrics are 

needed to compare the two competitive weather forecast products. A more comprehensive 

comparison between HRDPS and HRRR and the five hydrological models are presented in 

the next section. 
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Screening weather forecast inputs 

  

  

 
Figure 4-3: Screening weather forecast inputs by comparing the resulting hydrological 

forecast quality. Four weather forecast inputs (different colors) were fed into the five 

hydrological models (five boxes above) and the MAE at different lead times is estimated. 
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4.5.3.  Comparison of hydrological models in forecast performance 

Five hydrological models are evaluated and compared for their forecast performance using 

two forecast inputs. The following sub-sections provide a comparison from different 

forecast evaluation metrics. 

4.5.3.1.  Overall forecast accuracy and skill 

One of the metrics that evaluate the overall forecast skill of streamflows generated by the 

models is Taylor Skill Score (TSS), which summarizes the Taylor Diagram. Figure 4-4 

presents TSS along with the associated Taylor Diagram to illustrate the statistical 

performances of the hydrographs using HRDPS input. The TSS values indicated that the 

forecast skill of all models declines as the lead time advances from 1h to 18h, which is an 

expected phenomenon of deteriorating weather forecast skills with time. The result 

indicates that MACHBV followed by SACSMA models appears to be more skillful than 

the rest. Notably, the former provides a relatively good statistical pattern and correlation 

with the observation at all lead times compared to the other hydrological models. 

WATFLOOD and SWMM models show similar forecast skill throughout the forecast 

horizon and can be competent with the above two lumped models between 15h and 18h 

forecast lead time. The PDM model provides a poor forecast skill as TSS penalizes 

hydrographs that have low statistical similarity with the observed one. These result outlooks 

can also be seen from the Taylor Diagram, which shows the distribution of the models’ 

performances in a statistical quadrant graph evaluated at each lead time (Each point 

corresponds to each hour of the 18h forecast lead times). Here, most of the points of 
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MACHBV and SACSMA are in closer proximity to the “OBS’ line and dot compared to 

the other models, especially the PDM model. Overall, using HRDPS input, MACHBV and 

SACSMA models (with the former better than the latter) are deemed to be superior for 

short-term streamflow forecasting in semi-urban watersheds, followed by the two 

distributed models (WATFLOOD and SWMM), which have relatively equivalent forecast 

skill. 

So far, the HRDPS precipitation forecast was used as an input to the models. As HRRR 

and HRDPS could be competent at times (Section 4.5.2), the hydrological models were 

also forced with both inputs to get a comprehensive outlook of the resulting streamflow 

forecasts. The rest of this paper discusses the model's forecast performance using the two 

inputs unless otherwise stated. The top plot of Figure 4-5, shows the RMSE to present the 

overall forecast accuracy and quality of the streamflows generated by the models when 

using HRDPS and HRRR inputs and their differences. As can be seen from the RMSEs, 

the model’s performances using HRRR input show similar trends as using HRDPS. 

However, the quality of the forecast hydrographs for all models seems to deteriorate after 

5h forecast lead time when using HRRR. Despite this, MACHBV and SACSMA appear to 

consistently provide better forecast accuracy than the other models regardless of the 

weather forecast inputs used. 
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Figure 4-4: Taylor Diagram and Taylor Skill Score showing the statistical comparison of 

hydrological models at different forecast lead times using HRDPS input. The three 

statistical performance metrics that are displayed in Taylor Diagram are summarized by 

one single score in the Taylor Skill Score as shown in the rightmost plot (A score of one 

corresponds to the most skillful models). 

 

4.5.3.2.  Peak flow magnitude and timing 

Figure 4-5 shows the forecast performances of the peak flow magnitude using Magnitude 

Error (SD_Q) and PFC metrics, and the peak flow timing using Timing Error (SD_T). The 

SD_Q metric shows the total vertical error, and the SD_T metric shows the total horizontal 

error in the rising and falling limbs of forecast hydrographs after separating multiple events 

from time series in the hindcast evaluation period. Applying this to the forecast time series 

of the models using HRDPS and HRRR inputs shows that MACHBV has the lowest 

magnitude error followed by SACSMA model. WATFLOOD and SWMM show relatively 

similar magnitude errors as SACSMA using HRDPS input, which is not the case when 
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using HRRR. Looking at the PFC metric, all models except PDM show similar peak flow 

performances across the lead time with HRDPS input. It appeared that, however, 

MACHBV is rather dominant followed by SACSMA (up to lead time 12h) and 

WATFLOOD (after lead time 12h) when forced by HRRR input. Comparing the two peak 

flow performance metrics, SD_Q can provide a detailed outlook of the elements of 

hydrographs for different forecasting systems and is a useful evaluation tool to diagnose 

events of a time series mimicking the hydrologist’s visual inspection (Seibert et al., 2016). 

MACHBV forecasts provide the least peak flow timing error at all forecast lead times using 

both HRDPS and HRRR inputs (as can be seen by SD_T metric). SACSMA, WATFLOOD, 

and SWMM show relatively equivalent peak flow timing errors at all forecast lead times 

with HRRR input and the first 5hours with HRDPS. The timing of SACSMA’s forecasts 

with HRDPS input was improved at latter lead times and was competitive to MACHBV.  

The difference between HRDPS and HRRR is shown on the right side of each performance 

metric in Figure 4-5 (also in Figure 4-7). The differences in RMSE, SD_Q, and SD_T 

particularly indicate that HRDPS produces improved forecast quality and peak flow 

prediction than HRRR for all hydrological models considered. The improved quality of 

HRDPS might come from the capacity of this product to categorize storm dynamics using 

its deep convection mechanism and its relatively higher grid resolution (Milbrandt et al., 

2016), which is ideal for flood forecasting in the small urbanizing catchment. 
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Figure 4-5: Comparison of forecast performance of hydrological models using different 

metrics that measure peak flow magnitude, timing, overall quality, and accuracy. The 

Models were fed by two competing weather forecast inputs (HRDPS: Left and HRRR: 

Right). The normalized difference between the two inputs estimated at each forecast lead 

time is shown in the rightmost horizontal bar graph. 
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4.5.3.3.  Flood threshold approximation 

The categorical forecast verification metrics and Economic value (Appendix B.3. and B.4, 

respectively) are formulated based on a given flood threshold. Unlike in weather forecasts 

where an occurrence of rain or snow can be defined easily for verification, streamflow 

forecasts requires some information to define flood threshold and sometimes depends on a 

value set by the decision-makers or operational flood forecasters. Since in this study, there 

is no information available for the latter, we assessed an approximate flood threshold. 

Based on the literature, it is most commonly set by estimating a higher percentile flow 

(between 80% and 99%) of historical streamflow data (Weber et al., 2006; Wu et al., 2012; 

Yilmaz et al., 2010). Other advanced methods are also available to define a flood threshold 

(Robson et al., 2017; Thielen et al., 2009b; Weeink, 2010; Wu et al., 2012). In this study, 

we first assumed an initial flood threshold “P” percentile flow of the historical daily 

observed time series between 2009 to 2018 and estimated the verification metrics. Then we 

check the appropriateness of this threshold by estimating the metrics multiple times for a 

range of thresholds above and below the initially set threshold value (P) in order to find the 

approximate cutoff threshold that abruptly affects the metrics. 

An example is shown in Figure 4-6 for POD metrics. From this trial and error method, we 

have found that a 90-percentile flow is roughly a suitable flood threshold that can be used 

to estimate the categorical verification metrics and compare the hydrological models. This 

value is also within a reasonable range of the thresholds used in the above literature. 
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Figure 4-6: Flood threshold approximation: POD (Probability of Detection) versus 

different flow percentiles for different hydrological models. Different colors indicate 

outputs at different forecast leadtimes (1hr to 18hr). 

 

4.5.3.4.  Threshold-based scores 

Figure 4-7 presents four categorical forecast verification scores for the hydrological 

forecasts generated by the hydrological models and weather forecast inputs: these are POD, 
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FAR, BiasFreq, and CSI. POD, FAR, and CSI scores indicate the reliability, discrimination, 

and resolution aspects of the forecast (Table 4-2). The performance of detecting the 90% 

flood threshold is much better experienced in MACHBV than the other hydrological 

models irrespective of the weather forecast product used, which can be seen from the POD. 

Besides, the model not only precisely detects hits but also records minimum false alarms 

because the FAR is significantly lower than the rest of the models for all forecast lead times. 

This is also supported by the CSI score, which indicates that after removing the “Correct 

negatives/rejections” from consideration, the ratio of the number of hits to the total number 

forecasted and observed floods is higher for MACHBV. SACSMA is the next well-

performing model in terms of FAR at all lead times and POD and CSI scores at later lead 

times. WAFLOOD showed competitive performance with SACSMA at the early hours of 

the forecast. These trends are quite similar for both HRDPS and HRRR inputs, with the 

former slightly better than the later. In general, MACHBV with HRDPS input appeared to 

have better reliability, discrimination, and resolution skills in resolving the flood threshold 

at all forecast times. PDM model appeared to show poor categorical forecast verification 

scores. 

In terms of bias, MACHBV and SACSMA appear to show similar, competitive, and 

increasing trend as the forecast lead time advances. The biases in the number of forecasts 

“yes”s over observed “yes”s revealed that MACHBV, WATFLOOD, and PDM models 

have over-forecasting and SACSMA and SWMM under-forecasting behaviors at all lead 

times. These trends are the same for HRDPS and HRRR inputs. However, the bias from 
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HRRR is significantly higher than HRDPS throughout the forecast lead times, regardless 

of the hydrological models applied. 

 

 
Figure 4-7: Same as Figure 6 but with categorical forecast verification metrics or 

threshold-based scores. A 90 percentile of the observed streamflow is set as a flood 

threshold for this research. 
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4.5.3.5.  Forecast Economic Value 

Using the 90-percentile flood threshold (see Section 4.5.3.3), the economic values (V) were 

estimated for the streamflow forecasts generated by the hydrological models forced with 

HRDPS input.  

Figure 4-8 shows the Economic values with respect to different cost-loss ratios at different 

forecast lead times. The results indicate that most users or decision-makers can benefit 

better economic value when using MACHBV at all forecast lead times. SACSMA, 

WATLOOD, and SWMM follow in decreasing order of economic viability. A wide range 

of cost-loss ratio (C/La) with higher economic values exists for MACHBV at al lead times. 

This indicates that 1) several choices are available for users/decision-makers to gain better 

economic value, and 2) different groups of forecasting centers with a variety of cost-loss 

ratios can be beneficial by using the MACHBV model and HRDPS input in semi-urban 

watersheds. PDM is found to be a less economically viable model as the V values were low 

for narrow C/La values.  

The optimum cost-ratio that produces maximum economic values is the same for all 

models, which is about 0.35. This optimum value is approximately equal to the relative 

frequency of occurrences (i.e., optimum C/La or maximum economic value happens when 

𝑟 ≈ �̅�) (Richardson, 2006; Roulin, 2006). Although for all hydrological models, the 

optimum C/La remains the same, the maximum economic values decrease as the lead time 

increases (Zhu et al., 2002). This is expected because the POD and FAR, which are 

elements of economic value (V) (Eqn B-13), decreases and increases respectively as the 

lead time advances (Figure 4-7). 
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For medium- and long-term prediction, probabilistic and ensemble hydrological forecasts 

can add more economic values than deterministic forecasts (Richardson, 2006; Verkade 

and Werner, 2011). Although for very short-term (hourly and sub-daily) prediction, 

deterministic forecasts might be preferable than ensemble forecasts (Horat et al., 2018), 

some literature suggests that adding uncertainty and error information to deterministic 

forecasts could improve the economic values (Roulin, 2006; Verkade and Werner, 2011). 
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Cost-loss ratio (C/La) Cost-loss ratio (C/La) 

 

Figure 4-8: Comparison of hydrological models by their forecast Economic Value (V). V 

is estimated using the deterministic HRDPS weather forecast input and is drawn as a 

function of cost-lost ratio to account for various users and forecast systems. 
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4.5.4.  Ensemble mean vs. adaptive weighted average 

Two simple averaging methods were used to estimate the combined streamflow forecasts 

from all hydrological models driven by HRDPS input (See Section 4.4.5). Comparison 

between ‘EnsMean’ (mean of the ensemble) and ‘AdtWeight’ (adaptive weighted average) 

methods was performed in terms of the overall forecast accuracy and skill of their output. 

Figure 4-9 shows the Taylor Diagram and Taylor Skill Score (TSS) of EnsMean and 

AdtWeight. As a reference, MACHBV model result is presented because so far, it proved 

to have a superior forecast performance. The result shows that AdtWeight has better 

forecast skill than EnsMean and even the best model. In AdtWeight method, a dynamic 

tracking period of 18h is used to estimate the weights of each model forecast at every 

forecast start time based on their last 18h performances. Then the weights are applied to 

the corresponding model forecasts for the next 18h to estimate the average forecast. The 

result implied that dynamically changing the weights based on the recent forecast 

performances of the models improved the combined forecast skill as opposed to just 

averaging (assigning equal weights to) the models’ forecasts. Furthermore, the contribution 

of MACHBV to the performance of the AdtWeight forecast is higher, as can be from the 

closer TSS values between the two. This outcome proves that there is steady persistence in 

hydrological forecasting as the top-ranking models in the last 18 to 24 hours will highly 

likely continue to perform well in the same forecast horizon. 
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Figure 4-9: Taylor Diagram and Taylor Skill Score to show the comparison between 

Ensemble Mean and Adaptive weighted averaging methods. For reference, one model’s 

(MACHBV) output is presented. 

 

4.6.  Conclusion  

This study was conducted to identify the right combination of skillful hydrological models 

and Numerical Weather Predictions (NWPs) for enhanced short-term flood forecasting in 

a semi-urban watershed. Several existing verification metrics were used to evaluate and 

select the best models and inputs. For the research, Humber River Watershed, a semi-urban 

catchment located in Southern Ontario, was used as a study area. Twelve different lumped 

and distributed hydrological models were calibrated and validated using the DDS 

optimization algorithm. A total of five hydrological models were selected for further 

analysis based on their superior calibration performances and previous application in the 
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study area; three lumped models (MACHBV, SACSMA, and PDM, all coupled with 

SNOW17) and two semi-distributed/distributed models (SWMM and WATFLOOD). 

Efforts were made to collect available high- and mid-resolution weather forecast products 

from local, regional, or global sources. As such, four NWP products were collected. These 

are the 2.5km High-Resolution Deterministic Precipitation System (HRDPS) from 

Environment Canada, the 3km High-Resolution Rapid Refresh (HRRR), 12km North 

American Mesoscale Forecast System (NAM), and 13km Rapid Refresh (RAP) from 

NOAA. Precipitation forecasts from these weather forecast products were used as forcing 

inputs to the selected hydrological models. As such, forecast verification for a different 

combination of five hydrological models and four weather forecast inputs was performed. 

Hourly hydrological forecasts were produced four times a day during a 6-month 

verification period and issued up to 18hr forecast lead times.  

The first forecast analysis performed was to screen the weather forecast products that have 

better streamflow forecast performance. The pre-screening revealed that HRDPS and 

HRRR produce significantly better hydrological forecast accuracy than NAM and RAP. 

This finding implied that, for semi-urban watersheds that typically have a short time of 

concentrations and relatively small catchment areas, high-resolution weather products are 

found to be a proper precipitation forecast inputs to the hydrological models. 

In order to identify appropriate flood forecasting models in a semi-urban watershed, the 

five hydrological models were comprehensively evaluated in forecast mode using the two 

fine-resolution precipitation forecast inputs. The evaluation and comparison were based on 

performance measures categorized into four forecast attributes: overall forecast accuracy 
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and skill, peak flow magnitude and timing, categorical or threshold-based scores, and 

economic value. In general, the MACHBV model with HRDPS input appeared to be the 

best model-input combination because it captured the peak flow magnitude and timing, 

detected the flood threshold, and appeared economically viable at all forecast lead times 

better than any other model-input combination. 

Taylor Diagram and Taylor Skill Score results showed that forecasts from MACHBV and 

SACSMA (both with HRDPS input) have better overall forecast skill and accuracy than 

WATFLOOD and SWMM models, which showed similar skills. A similar trend is also 

observed with HRRR input. Overall, MACHBV with HRDPS input provided improved 

skills and statistical pattern proximity with the observation. 

The performance of achieving the peak flow magnitude was tested by Series Distance 

(SD_Q) and Peak Flow Criteria (PFC) metrics. Results indicated that MACHBV’s 

forecasts have the lowest peak flow magnitude error at all lead times regardless of the 

weather forecast inputs, followed by the SACSMA model. Regarding peak flow timing 

error, similar findings were obtained by the SD_T metric. MACHBV with HRDPS input 

was better at forecasting the peak flows on time while other models, to some extent, delay 

or postpone the peak flow times. The Series Distance metrics were found to be useful 

evaluation tools to diagnose and quantify vertical/horizontal errors in the rising and falling 

limbs of forecast hydrographs mimicking a hydrologist’s visual inspection (Seibert et al., 

2016). 

A proper flood threshold was required to estimate categorical forecast verification metrics. 

In this research, we found the approximate threshold by optimizing the resulting matrices 
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using different ranges of thresholds. With this trial and error, we have found that roughly 

the 90% flow of the historical observed time series is a suitable flood threshold that can be 

used to estimate POD, FAR, CSI, and Bias Frequency scores. In general, the threshold-

based verification showed that MACHBV with HRDPS input has better reliability, 

resolution, and discrimination skill in categorizing the flood threshold comparing to the 

other models-input integration. 

The economic values of the hydrological forecasts were assessed between different models. 

Results showed that MACHBV with HRDPS input produced a better economic value to 

the various users/decision-makers followed by SACSMA, WATLOOD, and SWMM, in 

decreasing order of economic viability. 

Comparing the lumped and distributed hydrological models in general, the lumped models 

except PDM outperform the latter, particularly in the first 15hr forecast lead times. 

However, distributed models could be competitive beyond 15hr forecast lead times. 

Lumped models tend to spatially average noises of short-term precipitation forecasts better 

than distributed models. Overall, the MACHBV model appeared to have the highest 

forecast skill, while PDM showed the lowest forecast skill and quality. 

Comparing the two high-resolution weather forecast products, HRDPS and HRRR, the use 

of the former tends to be superior in generating hydrological forecasts with an improved 

forecast skill, quality, and peak flow prediction and timing. HRDPS also generates fewer 

forecast biases than HRRR regardless of the hydrological models used. The enhanced 

quality of HRDPS may be associated with its capacity to categorize storm dynamics in fine 
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grid resolutions using deep convection mechanisms (Milbrandt et al., 2016), which is ideal 

for flood forecasting in small urban or semi-urban catchments. 

Finally, we assessed simple forecast averaging methods for users or operational flood 

forecasters interested in combined forecasts that can be estimated at a low computational 

budget. The results showed that dynamically changing weights based on each model’s 

recent performance improved the combined forecasts better than assigning equal weights. 

Also, results indicated that there is steady persistence in hydrological forecasting as the 

top-ranking models in the very recent history will likely continue to perform well in the 

near future, as also suggested by Aiolfi and Timmermann, 2006. 
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Appendix B: Performance evaluation metrics 

B.1.  Overall Forecast Skill and Accuracy 

Taylor Skill Score (TSS): is a single score used to summarize a Taylor Diagram (Taylor, 

2001). Taylor Diagram measures correlation coefficient, centered root mean square error 

and standard deviation, and presents into one diagram. TSS has been used to evaluate and 

validate different models and approaches (Awol et al., 2018). It is formulated as: 

 

𝑇𝑆𝑆 =
4(1 + 𝑅)

(
𝜎𝑠

𝜎𝑜
+

1
𝜎𝑠

𝜎𝑜
⁄

)

2

(1 + 𝑅𝑜)

 

(B-1) 

where: R, σs and σo are the correlation coefficient between variances of the forecast and 

observation, respectively. Ro is maximum correlation attainable, here taken as the 

maximum of the correlation coefficients of candidate model forecasts. TSS approaches a 

maximum of one when the ratio of the variances of forecast and observation is closer to 

unity and as R approaches Ro. 

Root-Mean-Square-Error (RMSE): is the square root of the variance between forecast and 

observation. It is commonly used to measure the accuracy of a forecast, is scale-dependent, 

and is quite sensitive to large errors (Hyndman and Koehler, 2006). 

Mean Absolute Error (MAE): is the mean of the absolute error between forecast and 

observation (Eqn. B-2). MAE is the deterministic version of the Continuous Rank 

Probability Score (CRPS), which is used to measure errors in ensemble forecasting 
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(Gneiting et al., 2005). Since deterministic forecasts are used in this study, MAE is applied 

to evaluate and compare the average hydrologic forecast error between the forecast outputs. 

 
𝑀𝐴𝐸 =

1

𝑁
∑|𝐹𝑖 − 𝑂𝑖|

𝑁

𝑖=1

 
(B-2) 

B.2.  Model performance on peak flow magnitude and timing 

Peak Flow Criteria (PFC): is a metric that is used to measure the peak flow error of the 

forecast (Coulibaly et al., 2001a), and its formulation is given in Equation 1. PFC has been 

used in streamflow forecasting studies to assess a model’s performance to predict peak 

flows (El-Shafie et al., 2009; García-Bartual, 2002; Han and Coulibaly, 2019). 

Magnitude and Timing Error using Series Distance (SD) method:  

First introduced by Ehret and Zehe, 2011, and later modified by Seibert et al., 2016, a Series 

Distance (SD) metric is an innovative way to quantify the similarity of two hydrographs 

mimicking the visual inspection of a hydrologist. In a Series Distance method, the 

correspondence between the amplitude and timing of observed and modeled hydrograph 

events is diagnosed by constructing a connector, as shown in an example taken from this 

study (Figure B- 1). A single or a combination of high flow events are first separated by 

rising and falling limps in hydrographs preprocessing stage. Then the source of errors in 

matching the amplitude and timing of modelled hydrograph with the observed hydrograph 

will be comprehensively quantified following a successive step such as coarse-graining, 

calculation of connector distances and creating a contingency table (please see Seibert et 

al., 2016, for more details and the code can also be found in Ehret and Seibert, 2016). The 
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error in amplitude corresponds to the error in peak flow magnitude (𝑆𝐷𝑄) and is calculated 

by equation B-3. Similarly, the error in peak flow timing (𝑆𝐷𝑇) is estimated by equation B-

4. 

 
𝑆𝐷𝑄 =

|𝑄𝑜(𝑐) − 𝑄𝑠(𝑐)|

1
2 (𝑄𝑜(𝑐) + 𝑄𝑠(𝑐))

 
(B-3) 

 

 
𝑆𝐷𝑇 =

|𝑄𝑜(𝑡) − 𝑄𝑠(𝑡)|

1
2 (𝑄𝑜(𝑡) + 𝑄𝑠(𝑡))

 
(B-4) 

Where: 𝑄𝑜 and 𝑄𝑠 are observed and modeled/simulated hydrographs, and c is a series 

distance connector between observed and modeled points. 

 

Figure B- 1: Illustration of Series Distance (SD) method for calculating magnitude (Q) 

and timing error (T) for a sample event selected within a timeseries of this study  
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Table B- 1: Contingency table and associated parameters for calculating categorical 

verification metrics and economic value. Detailed definitions of symbols are presented in 

Section B.3 
 Observation  

 
 Flood 

Threshold 
Occurred 

 

 

Yes No ∑ Yes No aa=a/(a+c) 

Forecast 
/action 
taken 

Yes a (hits) b (false 
alarms) 

a+b C+Lu C bb=b/(b+d) 

No c (misses) d (correct 
negatives) 

c+d L=Lu+Lp 0 cc=c/(c+d) 

 ∑ a+c b+d  �̅� 1
− �̅� 

�̅�=(a+c)/(a+b+c+d) 

 

 

B.3.  Categorical(threshold-based) forecast verification 

Since deterministic forecasts were used to force hydrological models, the categorical 

verification method was used instead of a probabilistic method to measure the 

discrimination/reliability/resolution and bias attributes of forecast (Table 4-2). Categorical 

verification metrics are usually applied in weather forecasts but could be applied for 

hydrological forecasts by using the same principle accounting a streamflow threshold as a 

discrete event. A contingency table (Wilks, 2006) is then used to count frequencies of four 

possible cases where a certain flood threshold is equaled or exceeded by the simulated 

streamflow forecasts: these are “Hits = a”, “False alarms = b”, “Misses = c” and “Correct 

rejections = d” (Table B- 1). An approximate flood threshold is determined in this study 

(see Section 4.5.3.3) and used to quantify the following categorical verification used 

metrics. Further details on the metrics can be found in Wilks, 2006. 
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Probability of Detection (POD):- is the fraction of the cases when the flood threshold was 

forecasted by the model and was observed at the same time. A unity value of POD means 

the model forecasts are perfect. POD is expressed using elements of the contingency table 

as follows: 

 𝑃𝑂𝐷 =
𝑎

𝑎 + 𝑐
 (B-5) 

False Alarm Rate (FAR):- is the fraction of occasions when the flood threshold was 

forecasted by the model but did not happen in the actual case. Zero FAR corresponds to a 

better forecast. It is formulated as: 

 𝐹𝐴𝑅 =
𝑏

𝑏 + 𝑑
 (B-6) 

Threat score or Critical Success Index (CSI): is the number of forecasts that is predicted to 

hit the flood threshold divided by all cases where the threshold is forecasted and/or 

observed (Eqn. B-7). It is an often-preferable measure because it removes the “Correct 

Rejections” from the total cases. In a flood forecasting system, counting several non-

exceedance cases is not quite important (Wilks, 2006). A value of one corresponds to the 

best model forecasts. 

 𝐶𝑆𝐼 =
𝑎

𝑎 + 𝑏 + 𝑐
 (B-7) 

Bias Frequency: measures the over-forecasting (>1) or under-forecasting (<1) behavior of 

the forecasting system and is given by the ratio of average forecasted cases over observed 

cases, as shown below (Wilks, 2006).     
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 𝐵𝑖𝑎𝑠𝐹𝑟𝑒𝑞 =
𝑎 + 𝑏

𝑎 + 𝑐
 (B-8) 

B.4.  Economic Value of the model forecast 

The contingency table established above is used to analyze the cost-loss decision model of 

a forecasting system (Richardson, 2006). When the forecaster or decision-maker takes 

action to prevent possible damage, it has an associated cost (C) along with some 

unprotectable/unavoidable loss (Lu) whether the forecasted flood threshold occurred (a) or 

not (b) (refer Table B- 1). On the other hand, if there is no action taken and the flood 

threshold has occurred (c), the decision-maker will incur a total loss, which is the sum of 

avoidable (La) and unavoidable losses (Lu). There will be no loss in the case of “Correct 

rejections” (d). Now, the following expenses (E) of the decision-maker can be derived 

(Richardson, 2006; Verkade and Werner, 2011; Zhu et al., 2002):  

• If there is only climatological information available (the relative frequency of 

occurrences (�̅�) is known but there is no forecast information), the baseline 

(climatological) expense (EC) is to either always protect (�̅�(La+ Lu))  or never protect 

(C+�̅�Lu) whichever is the minimum: 

 𝐸𝐶 = 𝑀𝑖𝑛[�̅�(𝐿𝑎 + 𝐿𝑢), 𝐶 + �̅�𝐿𝑢] (B-9) 

• For an ideal and a perfect forecasting system, whether the flood threshold occurs or 

not, the decision-maker will provide mitigative actions (only for those which occurs) 

with an average expense of: 

 𝐸𝑃 = �̅�(𝐶 + 𝐿𝑢) (B-10)  
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• For a default forecasting system (between the above two boundary conditions), the 

average expense (EF) of the decision-maker can be obtained by connecting the 

forecast-observation rates to the corresponding cost and loss of occurrences and non-

occurrences (Table B- 1): 

 𝐸𝐹 = 𝑎𝑎(𝐶 + 𝐿𝑢) + 𝑏𝑏(𝐶) + 𝑐𝑐(𝐿𝑢 + 𝐿𝑎) (B-11)  

• The economic value (V) of the forecasting system can then be estimated as: 

 𝑉 =
𝐸𝑐 − 𝐸𝐹

𝐸𝑐 − 𝐸𝑃
 (B-12)  

• Substituting and rearranging of equation B-9 to B-12 gives:  

 𝑉 =
𝑀𝑖𝑛(𝑟, �̅�) − 𝑏𝑏(1 − �̅�)𝑟 + 𝑎𝑎(�̅�)(1 − 𝑟) − �̅�

𝑀𝑖𝑛(𝑟, �̅�) − �̅�𝑟
 (B-13)  

Where r is the cost-loss ratio (C/La) (loss here is the avoidable loss), bb is the False 

Alarm Rate (FAR), and aa is the Probability of Detection (POD). 

The maximum economic value (V=1) is obtained when the forecasting system provides a 

perfect and an ideal forecast (when Ef = EP); V can be negative when the system has more 

expenses than the baseline forecasting system (Ec), which is not desirable. The economic 

value (V) of a forecasting system depends on different decision-makers or users that have 

different cost-loss ratios (r) ranging between 0 and 1. Hence, a plot of V versus C/La 

provides a convenient way to find the maximum/optimum economic value of a 

deterministic hydrological forecast and to compare different forecasting systems 

(hydrological models) given the same climatological frequency and decision-maker. 
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Chapter 5. Verification of Numerical Weather Predictions across 

Canada for Hydrologic Forecasting 

Summary of Paper 4: Awol, F.S., Coulibaly, P., and Tsanis, I. (2019). Verification of 

Numerical Weather Predictions across Canada for Hydrologic Forecasting. Weather and 

Forecasting, Under Review. 

This study aims at identifying skillful Numerical Weather Predictions (NWP) in Canada’s 

varied geographic environment for enhanced short- and medium-range hydrologic 

forecasting application. Verification of precipitation forecast products was performed on 

two domains; high-resolution and low-resolution domains. Traditional grid-to-grid, 

emerging precipitation object-based, and timing error metrics were used to compare five 

NWPs at Low-resolution and four NWPs at High-resolution based on the intensity, volume, 

and timing aspects.  

Key findings of this research include: 

• In the Low-resolution domain, GEFSv2 and GFS appeared to be better candidates 

to supply forecast inputs to hydrological models for week ahead outlooks. 

• In the High-resolution domain, HRRR and HRDPS achieved the collective aim of 

matching the timing, intensity, and volume of precipitation forecasts and are hence 

recommended for short-term flood forecasting in urban areas. 

• The timing error approach was able to provide estimates of the average timing 

error and percentage of non-timing errors in the verification period along the 

forecast horizon. 
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5.1.  Abstract 

The skill of hydrological forecasting systems depends heavily on the quality of Numerical 

Weather Predictions (NWPs). In an attempt to identify skillful NWPs in Canada’s varied 

geographic environment, this research performs a comprehensive verification of several 

low- and high-resolution precipitation forecasts from the perspective of identifying the best 

candidate products for enhancing short- and medium-range hydrologic forecasting. As 

such, five NWPs in Low-resolution and four NWPs in High-resolution domains were 

compared in terms of volume, intensity, and timing accuracies at different forecast lead 

times. In addition to existing grid-to-grid and object-based verification metrics, a new 

approach to estimate the timing error is proposed in this study. In the Low-resolution 

domain, GEFSv2 and GFS provided better forecast skills, lower biases, and good qualities 

of precipitation objects for various accumulated precipitation volumes and intensities. They 

also attained the timing of precipitation forecasts better than other products. ECMWF and 

GDPS not only produced higher timing errors but also contributed to a large percentage of 

errors attributed to non-timing aspects (e.g., magnitude). In the High-resolution domain, 

HRRR was the most unbiased and accurate NWP for forecasting higher precipitation 

intensities and a precipitation volume accumulated over multiple hours. If a particular 6hr 

accumulation is intended, HRDPS was superior in forecasting different precipitation 

volumes. Even though NAM showed lower timing errors, it resulted in a large number of 

grids and verification times that have magnitude related errors. For the combined objective 

of timing, intensity, and volume of precipitation forecasts, both HRRR and HRDPS 

performed well. Overall, the verification analysis identified candidate NWPs in various 
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geographic regions, which could be used in operational hydrology particularly for 

forecasting the volume, intensity, and timing of floods. 
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5.2.  Introduction 

Numerical Weather Predictions (NWPs) are essential inputs to hydrological models used 

in river flow and flood forecasts. Typically, Quantitative Precipitation Forecasts (QPF) 

from NWPs are used as a forcing input to hydrological models for simulating and 

forecasting discharges at different lead times in addition to cascading the inherited 

uncertainty from initial atmospheric conditions (Pappenberger et al., 2005).  

Advance in hydrometeorological research has led to the development of various NWP 

products. The types of NWPs depend on the scale (Global, Continental, and Regional), 

forecast length (Long-, Medium-, Short- and Very Short-ranges), spatial resolution (Low- 

and High-resolutions), and characteristics (Deterministic and Ensemble). The skill and 

quality of meteorological variables are influenced by this variability of NWP types, which 

will also affect the forecast skill and reliability of hydrological forecasts. In order to 

increase the performances of NWPs, some systematic improvements have been made. For 

example, the deterministic Global Forecast System (GFS), which is developed by National 

Centers for Environmental Prediction (NCEP), has undergone significant changes through 

time to circumvent problems such as excessive grid-scale precipitation forecasts through 

vertical diffusion shallow convection scheme (Han and Pan, 2011). 

The chaotic nature of the atmospheric system and its approximate representation by NWPs 

create uncertainties in deterministic forecasts (Cuo et al., 2011), which led to the 

development of ensemble forecasts that have different perturbation methods of initial 

conditions (Buizza et al., 2005). Among the Global ensemble products, the ensemble 

National Centers for Environmental Prediction (NCEP) forecasts and the ensemble 
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European Centre for Medium-Range Weather Forecasts (ECMWF) have relatively same 

spatial resolutions, provide medium-range forecasts (up to 16 days), have been operational 

for over a decade, are publicly archived and commonly used. Data from several ensemble 

NWPs across the Globe have been archived in The Observing System Research and 

Predictability Experiment Interactive Grand Ensemble Program (TIGGE) platform 

(Bougeault et al., 2010). Comparison has been made between the TIGGE ensemble NWPs. 

Hagedorn et al., (2012), for example, compared all TIGGE ensemble forecasts and 

highlighted that using the leading four ensemble NWPs (ECMWF, NCEP, ensembles 

forecasts issued by Meteorological Service of Canada (CMC) and UK’s MetOffice) 

provided better performances. Buizza et al., (2005), also compared ECMWF, NCEP, and 

CMC and concluded that ECMWF has a better overall forecast skill followed by NCEP. 

The above two verifications on TIGGE were performed using variables other than 

precipitation. 

Among the variables generated by NWPs, precipitation forecasts have been the main 

challenge, i.e. achieving the correct intensity, location, and timing of storms (Cuo et al., 

2011). Particularly, summer precipitation forecasts by mesoscale NWPs were deemed to 

be difficult due to the nature of localized convective thunderstorms (Kaufmann et al., 

2003). Golding, (2000), suggested that these problems have direct consequences on flood 

forecasting and should be dealt with critically. The author highlighted that the quality of 

precipitation forecast rates coupled with the catchment size and response time should be a 

primary requirement for flood prediction. The above challenges have contributed to the 

development of regional-scale high-resolution NWPs. For example, the North American 
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Mesoscale (NAM) and Rapid Refresh (RAP) developed by NCEP and Regional 

Deterministic Precipitation System (RDPS) provided by Environment Canada issue short-

range deterministic forecasts at grid resolutions of approximately 12 km in North America. 

Even further, very short-range hourly precipitation forecasts from High-Resolution Rapid 

Refresh (HRRR) and High-Resolution Deterministic Precipitation System (HRDPS) were 

made operational at finer resolution (~2-3km) in USA and Canada. 

With the increasing number of various scales of spatial and temporal resolutions of NWPs, 

verification of the forecasts in terms of the hydrological implications is deemed to be 

essential (Cuo et al., 2011). Numerous traditional and innovative verification methods were 

developed including grid-to-grid (Jolliffe and Stevenson, 2011; Wilks, 2006), spatial 

neighborhood (Ebert, 2009; Roberts and Lean, 2008), wavelet-based (Casati et al., 2004), 

and object- or feature-based (Davis et al., 2006a; Li et al., 2015) methods. Wolff et al., 

2014, for example, compares QPFs from GFS and NAM using traditional grid-to-grid, 

spatial neighborhood, and object-based methods over the CONUS (Continental United 

States). They highlighted that more diagnostic features of precipitation forecasts such as 

spatial scale, coverage area, displacement, and angular orientation were resolved by using 

the newer verification metrics, particularly when mid- and course resolution NWPs are 

used. They indicated that the Method for Object-Based Diagnostic Evaluation (MODE) 

tool (Davis et al., 2006a, 2006b) was able to identify the lower performance of NAM 

forecast objects, in which the neighborhood verification method could not show or gave 

otherwise a higher skill score. 
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Yan et al., (2016), evaluated QPFs from Advanced Research-Weather Research and 

Forecasting (WRF-ARW), NAM, and GFS models in a small and high-resolution domain 

over Iowa. Their research was intended to assess the quality of very short-term precipitation 

forecasts (up to 12hr) that can be used as inputs to hydrological models. They found out 

that WRF showed better skill scores and recorded fewer errors in intensity, displacement, 

and areal coverage of identified precipitation systems; NAM poorly performed in the 

verification metrics; significant location errors were observed from late morning to 

afternoon in all models. One of their essential recommendations for hydrological 

application is to give more attention to the location errors as timing might be a factor 

because predicted storms were possibly shifted before or after the localized observed 

storms. The errors and uncertainties of precipitation forecasts are replicated in hydrological 

and flood forecasting (Cuo et al., 2011; Zappa et al., 2011). Ensemble QPFs has been used 

as an input to hydrological models to address issues related to uncertainty (Brown et al., 

2012; Georgakakos and Krzysztofowicz, 2001; Han and Coulibaly, 2019; Mascaro et al., 

2010; Roulin, 2006; Verkade et al., 2017). 

According to Pagano et al., 2014, some of the challenges in operational river forecasting 

and hydrological predictions are: 1) most high-spatial resolution NWPs provide only short-

range forecasts, 2) NWPs with ensemble forecasts have mostly low-spatial resolutions, and 

3) precipitation forecast verifications were usually performed on large scales in which the 

significance to local scale flooding and hydrological studies are negligible. Given the above 

challenges, it is essential that available NWPs should be evaluated at various spatial scales 

and domains in order to identify appropriate NWPs that provides better precipitation 
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forecasts for flood forecasting. This is mainly because river flood forecasting depends on 

catchment size, catchment characteristics, time of concentration, and the spatial and 

temporal resolution of NWPs. Small and urban catchments that typically have shorter times 

of concentration require high-resolution short-range precipitation forecasts, preferably with 

hourly or sub-hourly time steps. On the other hand, NWPs that can issue medium-range 

forecasts are vital for large catchments because response times in these catchments usually 

take from a couple of days up to a week. As such, the quality of the precipitation forecasts 

should be verified at various climatological and physiological domains within the same 

region or continent where the NWPs are developed or issued. In previous researches, only 

a few studies were performed to comprehensively evaluate available NWP products at 

different watershed characteristics specifically intended to improve flood forecasting. 

Canada is a good example where watersheds with a wide range of climatological and 

physical characteristics exist, and numerous Regional and Global NWP products are 

available. It has several watersheds with diverse landscape types ranging from mountains, 

forests, Prairies and water bodies, and agricultures in Western and Central Provinces to 

semi-urban and urban in Southern Ontario (Zahmatkesh et al., 2019). The underlying 

research question is: Which weather forecast products provide better precipitation forecasts 

to enhance flood forecasting across Canada’s varied watershed characteristics? 

Accordingly, the objective of this study is: 

✓ To evaluate and identify better Precipitation forecasts products for  

◦ an improved medium-range flood forecasting in large watersheds, & 

◦ an improved short-range flood forecasting in small urbanizing watersheds. 
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◦ To evaluate precipitation forecasts in terms of volume, intensity, and timing 

error aspects that have direct practical significance in flood forecasting.  

From a hydrological point of view, key contribution from this research is that candidate 

precipitation forecasts products can be used as input to hydrological models to evaluate 

the skill, reliability, and overall quality of flood forecasting. 

5.3.  Study Domains 

To address both the diversity of the Canadian hydro-climatic regions and the various spatial 

and temporal resolutions of NWPs, the selected study areas contain two main domains: 

Low-resolution and High-resolution domains (Figure 5-1). The Low-resolution domain 

covers parts of Western and Central Canadian Provinces (BC, AL SK, and MN), and some 

parts of Northern USA where most of the watersheds are relatively large, often comprised 

of agricultural lands, forests, prairie and wetlands, and transboundary. The High-resolution 

domain covers parts of Southern Ontario where several small urban and semi-urban 

catchments exist. Some flood forecasting studies were conducted in watersheds located in 

the former domain (Muhammad et al., 2018a; Unduche et al., 2018) as well as the later 

domain (Awol et al., 2018; Han and Coulibaly, 2019; Leach et al., 2018). The term “Low” 

is assigned for the former domain to indicate the lower spatial resolution of NWPs that are 

used for the area to issue medium-range forecasts (daily up to a week ahead forecast with 

about 50km horizontal resolution). Similarly, the term “High” is given to the later domain 

to indicate the higher spatial and temporal resolution NWPs that are appropriate for smaller 

urban watersheds where the time of concentration is usually short (NWPs that issue hourly 
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forecasts up to 24 hours with 2-13km resolution). More detail on the type of forecast data 

used is found in Section 5.4.1. 

  
Figure 5-1: Location of study domains  

 

5.4.  Data 

5.4.1.  Forecast data 

In the Low-resolution domain, available NWPs that can issue medium-range precipitation 

forecasts were collected. Table 5-1 presents the detailed features of the products. Ensemble 

forecasts were available from the European Centre for Medium-Range Weather Forecasts 

(ECMWF: 51 members), Global Ensemble Forecast System from National Centers for 

Environmental Prediction (NCEP: 21 members), and the second-generation Global 

Ensemble Forecast System version 2 reforecasts (GEFSv2: 11 members). Deterministic 

forecasts from the Global Deterministic Prediction System (GDPS) and Global Forecast 
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System (GFS) were also collected. The means of the ensemble forecasts were used in this 

study for comparison of performances with the deterministic ones. 

For the High-resolution domain, four Regional and Continental scale NWPs that produce 

hourly forecasts with a relatively higher spatial resolution were collected (Table 5-2). These 

are the High-Resolution Deterministic Precipitation System (HRDPS), High-Resolution 

Rapid Refresh (HRRR), North American Mesoscale Forecast System (NAM), and Rapid 

Refresh (RAP). 

5.4.2.  Verification data 

To verify the precipitation forecasts, two verification datasets were used. In the Low-

resolution domain, the Canadian Precipitation Analysis (CaPA) is used. CaPA is a gridded 

reanalysis product estimated by statistical interpolation of observed precipitation data from 

radar and ground-based rain gauges as well as a background field from short-range 

precipitation forecasts (Mahfouf et al., 2007). CaPA has a spatial resolution of 15 km and 

a temporal resolution of 6 hours. For High-resolution domain, 3km-gridded hourly data is 

created in this study for verification of NWPs. The gridded time series is created by 

interpolating point precipitation data using bilinear interpolation technique. Hourly 

precipitation point data were collected from 18 meteorological stations spatially distributed 

across the High-resolution domain (Figure 5-2). 
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Table 5-1: Numerical Weather Predictions used in the Low-resolution domain 
NWPs type Spatial 

resolution 
Temporal 
resolution 

Forecast 
length 

Providing 
organization 

Reference Archive 
Source 

Notes 

ECMWF Ensemble  ~50km 6 hourly 15 days ECMWF (Molteni et 
al., 1996) 

(Bougeault 
et al., 2010) 

Publicly available version is described 
and used here 

GDPS Deterministic ~33km 3 hourly 10 days Environment 
Canada 

(Mai et al., 
2019) 

CaSPAr1 
 

 

GEFSv2 Ensemble  ~50km 3 hourly 8 days NOAA (Hamill et 
al., 2013) 

ESRL2 Forecast available from 8days to 16days 
at ~100km resolution 

NCEP Ensemble ~50km 6 hourly 16 days NOAA (Toth et al., 
1993) 

(Bougeault 
et al., 2010) 

 

GFS Deterministic ~27km 3 hourly 10 days NOAA (Han and 
Pan, 2011) 

(NOAA, 
2015) 

Forecast available from 10days to 
16days at 12 hourly step 

1  https://caspar-data.ca/ 
2  https://www.esrl.noaa.gov/psd/forecasts/reforecast2/download.html   

 

Table 5-2: Numerical Weather Predictions used in the High-resolution domain 
NWPs type Spatial 

resolution 
Temporal 
resolution 

Forecast 
length 

Providing 
organization 

Reference Archive 
Source 

Notes 

HRDPS Deterministic ~2.5km hourly 48 hours Environment 
Canada 

(Mai et al., 2019) CaSPAr  

HRRR Deterministic ~3km hourly 18 hours NOAA (Pinto et al., 2015) (Blaylock et 
al., 2017) 

 

NAM Deterministic ~12km hourly 36 hours NOAA (Rogers et al., 2009) NOMADS1 Forecast available from 
36h to 84h in 3 hourly step 

RAP Deterministic ~13km hourly 21 hours NOAA (Benjamin et al., 
2016) 

NOMADS  

1  https://nomads.ncdc.noaa.gov/data/  

 

https://caspar-data.ca/
https://www.esrl.noaa.gov/psd/forecasts/reforecast2/download.html
https://nomads.ncdc.noaa.gov/data/


Ph.D. Thesis – Frezer Seid Awol  McMaster University – Civil Engineering Department 

 

209 

 

5.5.  Methodology 

In order to evaluate the forecast accuracy and skill of five NWPs in the Low-resolution 

domain and four NWPs in High-resolution domain, different verification metrics were 

applied. The metrics were used to assess the volume, intensity, and timing error of 

precipitation forecasts. There are several spatial verification methods in the literature. In 

this study, the traditional grid-to-grid and evolving object-based verification methods were 

applied to evaluate the volume and intensity of precipitation forecasts. In addition to these 

metrics, a simple algorithm is developed in this study to estimate the Timing error of 

precipitation forecasts, which will be discussed in detail in Section 5.5.3. 

The verification period for Low-resolution domain NWPs was from 2018-05-01 to 2018-

11-30, in which forecasts were issued daily for 1 day up to 8 days lead times. For NWPs in 

High-resolution domain, the verification period was between 2018-07-01 and 2018-11-30, 

with forecasts issued daily from 1 hour up to 18 hours forecast lead times. For all NWPs, 

forecasts initialized at 00UTC every day were used. Similar initialization time was applied 

by Wolff et al., 2014. The verification periods and forecast horizons are chosen based on 

the availability of archives of all NWPs, which was aligned with the summer and fall flood 

periods. Also, an increasing trend of precipitation intensity and volume were detected in 

the past and will likely continue in these seasons for some parts of North America (Cooley 

and Chang, 2017). 
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For this research, the grid-to-grid and object-based verification metrics are implemented 

using the Model Evaluation Tool (MET), a verification software platform developed at the 

National Center for Atmospheric Research (NCAR) (Brown et al., 2009). 

5.5.1.  Traditional Grid-to-grid Verification  

Several verification metrics have been developed on grid-to-grid comparison of observed 

and forecasted precipitation. The primary concept of these traditional metrics relies on 

developing a Contingency Table (Table 5-3) at different precipitation thresholds and 

forecast lead times. This table is created by using the number of hits, false alarms, correct 

negatives, and misses of forecast-observation (Wilks, 2006). In this study, two metrics are 

used to evaluate the bias and skill of forecasts: Frequency Bias (FBIAS) and Gilbert Skill 

Score (GSS), respectively. 

Table 5-3: Contingency table and associated parameters for calculating traditional 

verification metrics 
 Observation  

Yes No ∑ 

Forecast Yes a (hits) b (false alarms) a+b 

No c (misses) d (correct negatives) c+d 

 ∑ a+c b+d  

 

Frequency Bias (FBIAS) 

Frequency bias measures the “over forecasting: >1” or “under forecasting: <1” tendency of 

a categorical forecast (Wilks, 2006). FBIAS is estimated by the ratio of the average forecast 

(forecasted ‘yes’s) over the average observation (observed ‘yes’s) at particular precipitation 

threshold, and in terms of the elements of Table 5-3: 
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 𝐹𝐵𝐼𝐴𝑆 =
𝑎 − 𝑏

𝑎 + 𝑐
 (5-1) 

Gilbert Skill Score (GSS) 

Gilbert Skill Score, also called Equitable Threat Score, measures the accuracy of forecasts 

by comparing the correctly predicted events with a random chance. It is estimated by 

equation 5-2. In this study, the bias-adjusted GSS is used based on Brill et al., (2009). GSS 

ranges vary from -1/3 to 1, and the value of 1 indicates a perfect forecast. 

 

𝐺𝑆𝑆 =
𝑎 + 𝑎𝑟𝑎𝑛𝑑𝑜𝑚

𝑎 + 𝑏 + 𝑐 − 𝑎𝑟𝑎𝑛𝑑𝑜𝑚
 

𝑎𝑟𝑎𝑛𝑑𝑜𝑚 =
(𝑎 + 𝑏)(𝑎 + 𝑐)

𝑎 + 𝑏 + 𝑐 + 𝑑
 

(5-2) 

 

5.5.2.  Object-based Verification (MODE) 

Method for Object-based Diagnostic Evaluation (MODE) is one of the spatial verification 

techniques used to provide a feature-based comparison between observation and forecasts 

(Davis et al., 2006a). The main procedures in MODE are outlined below, and more details 

on the application can be obtained from Davis et al., (2006b, 2009) and Wolff et al., (2014):  

• Objects (forecast and observation) are identified using two user-defined parameters 

(Convolution Threshold: precipitation threshold, and Convolution Radius: the 

number of grids used to smoothen the thresholded grid data). Various ranges of 

parameters are used in this study to examine the sensitivity to the identified objects' 

attributes.   
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• Different attributes are estimated for the single objects and forecast-observation 

pairs (e.g., Precipitation object area, object count, centroid distance, angle 

difference). 

• Using fuzzy logic and weights assigned to object attributes, the total interest value 

is estimated to merge and match different single and paired objects. In this study, 

the recommended default weights are used for object attributes to calculate the total 

interest value. 

• The output statistics of single, pairs, and matched objects are summarized over the 

verification period. 

5.5.3.  Timing Error estimation 

The motivation to estimate the Timing Error came from identifying the possible cause of 

errors that short- or medium-range range precipitation forecasts inherited. Yan et al., 

(2016), suggested that the cause of location error in precipitation forecasts in some NWPs 

might be due to timing because predicted storms improperly produced before or after the 

localized observed storms. Having this concept, the following approach is proposed to 

approximately find where the shifted forecast event is located along the forecast horizon 

(forecast lead times). More precisely, the objective is to find how many forecast lead times 

the predicted precipitation event is shifted (displaced on the forecast horizon dimension). 

The comparison between forecasted and observed event is made on a grid-to-grid basis in 

the verification period. For a given precipitation threshold and at each lead time (t), the 

average timing error (𝑡𝑒𝑎𝑣𝑔,𝑡) over the whole domain (all grids) and over the verification 

time period is given by: 
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𝑡𝑒𝑎𝑣𝑔,𝑡 =

∑ [∑ 𝑡𝑒𝑖,𝑗,𝑡
𝑁
𝑖=1 ]𝑀

𝑗=1

∑[∑ 1𝑆 ]
 

𝑆 = {𝑖: 𝑡𝑒𝑡,𝑖 ≠ 0} 

(5-3) 

Where N = no. of grids, M = no. of verification time periods, j = current verification time, 

i = current grid point, and 𝑡𝑒𝑖,𝑗,𝑡 (timing error for the current grid point, verification time 

and lead time) is estimated with the simple algorithm given in Figure 5-2. At each grid and 

verification time, the main steps to estimate the timing error at the current lead time are 

(refer the step numbers in Figure 5-2): 

1. Check precipitation threshold (event) criteria (first the observation, then the 

forecast). i.e. check if P > Pthr for both observation and forecast. 

2. Find indexes of lead times that meet the criteria. If the current lead time meets the 

criteria, the timing error is set to zero (𝑡𝑒𝑡 = 0), and iteration will go to the next 

grid. 

3. Find the minimum difference between current lead time and the lead times that meet 

the criteria. The main assumption made here is that, if timing error is found in the 

current lead time and more than one lead time meets the threshold criteria, the 

predicted event is most likely shifted (improperly produced) to the nearest lead time. 

The timing error analysis was performed over 2016 grids and 226 days of verification times 

in the Low-resolution domain for each of the eight days forecast lead times. In the High-

resolution domain, the timing error is analyzed over 1404 grids and 145 days of verification 

times for 1 hour up to 18 hours of forecast lead times. 



Ph.D. Thesis – Frezer Seid Awol  McMaster University – Civil Engineering Department 

 

214 

 

In addition to the average timing error, the percentage of errors other than timing, or in 

other words, percentage of errors that came from magnitude error rather than timing error 

is given in order to give more insight. This percentage is calculated by counting the total 

number of grids and verification times that do not meet the threshold criteria while the 

threshold (event) was observed to occur on those grids and verification times. 
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Figure 5-2: Algorithm to estimate Timing Error, 𝑡𝑒𝑖,𝑖,𝑡 (equation 5-3). Pf and Po are 

forecasted and observed precipitation, respectively. 
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5.6.  Results and Discussion 

5.6.1.  Low-Resolution Domain 

5.6.1.1.  Volume error 

The volume of forecasted precipitation accumulated over time for different NWPs located 

in the Low-resolution domain was evaluated using different verification metrics. Figure 5-3 

shows sample precipitation objects identified for an event on 2018-06-01 for five NWP 

forecasts and CaPA observation using MODE verification. The event was forecasted by the 

NWPs 1 day earlier (Lead time of 1 day). In order to identify the precipitation objects, a 

convolution threshold of 10mm and a convolution radius of 5 grid units were used for 

MODE analysis. As shown in the figure, several single and paired objects were identified. 

It appeared that the objects identified by CaPA observation have a larger area and 

precipitation volume than the forecasted precipitation objects of the NWPs. The objects of 

GEFSv2 and NCEP were somehow matched with one of the observed objects because the 

area, centroid distance, and angle difference attributes were relatively better than the 

NWPs. The precipitation volume forecasts which were equivalent among the NWPs were 

significantly underestimated. Two possible reasons from this sample MODE output are: 

the NWPs capability in accurately predicting an extreme event was low, and the forecasted 

precipitation was probably shifted to the next forecast lead time(s) (presence of timing 

error). In general, the output indicates the need for more verification assessment for such 

an extreme event 
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Figure 5-4 presents the different verification metrics evaluated for daily accumulated 

volume precipitation of 10mm and 20mm exceedance thresholds. Using the traditional 

grid-to-grid method, the Forecast Bias and Gilbert Skill Score showed that GEFSv2 and 

GFS have significantly lower bias and relatively higher forecast accuracy than the other 

NWPs for both accumulated precipitation volumes at all lead times. The forecast bias of 

ECMWF, GDPS, and NCEP drastically decreased beyond two days forecast lead times 

regardless of the precipitation volume threshold. MODE attributes summarized over the 

verification period indicated that the precipitation objects identified by GEFSv2 had the 

lowest angular differences and centroid distance than the other NWPs, for volume above 

10mm. For higher accumulated volume above 20mm, the differences between GFS, NCEP, 

and ECMWF could become insignificant in terms of forecast accuracy, although the former 

was slightly better. In general, GEFS, followed by GFS, provided an improved precipitation 

forecast volume, particularly at higher accumulated thresholds. 
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Figure 5-3: Sample precipitation objects identified on extreme event of 2018-06-01, 

forecasted 1 day earlier (LDT1) on Low resolution domain: MODE parameters: - Conv 

Thresh>=10mm, Conv Radi=5 grid units 
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Figure 5-4: Verification metrics for evaluating different accumulated precipitation 

forecasts of five NWPs in Low-Resolution Domain 

Precip. Threshold >=10mm Precip. Threshold >=20mm 
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5.6.1.2.  Intensity error 

Various intensities of precipitation forecasts were evaluated in the Low-resolution domain 

using different methods. In many hydrological and river forecasting centers that are 

responsible for large catchments and rivers, short-term forecasts up to three days ahead and 

medium-range up to a week ahead are usually issued. The precipitation forecast intensities 

of different NWPs were verified on a 3-days ahead and a week ahead outlook. 

 

3-day ahead outlook Week ahead outlook 

  

  

 
 

 

Figure 5-5: Verification metrics for evaluating different precipitation intensity forecasts of 

five NWPs in Low-Resolution Domain 
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Figure 5-5 presents the grid-to-grid verification metrics of five NWPs estimated for 

precipitation intensities ranging between 5 and 35 mm/day with 5mm/day increments. The 

forecast Bias at 3-day ahead outlook indicated that GEFSv2 and GFS produced lower biases 

for most precipitation intensities. Most NWPs had relatively minimal forecast biases at 

higher intensities above 30mm/day up to 3-day ahead forecast. For a week ahead outlook, 

however, ECMWF, GDPS, and NCEP significantly overestimated the forecast intensities 

while GEFSv2 and GFS maintained smaller forecast Biases. This result was statistically 

significant for GEFSv2 and GFS because the 95% confidence intervals (CI) of their Biases 

were narrow and closer to 1 as compared to former three NWPs, which had wider and 

uncertain CIs for several intensities over the forecast horizon. The forecast Skill (GSS) of 

GEFSv2 and GFS at all considered precipitation intensities appeared to be higher than the 

rest of NWPs for both 3-days and a week ahead outlook, following the similar trends 

observed in their forecast Bias results. As can be seen from the width of the CIs in the GSS 

estimates, the sampling uncertainty has increased from 3-days ahead to a week ahead 

forecast in most NWPs at all precipitation intensities. However, the upper, middle and 

lower points of the CIs in all NWP GSS estimates follow a parallel pattern showing the true 

GSS estimates of GEFSv2 and GFS were still higher than the rest of the NWPs. In general, 

GEFSv2 and GFS were more skillful than the others at 3-days and a week ahead forecasts 

even considering some sample uncertainties. 

Figure 5-6 and Figure 5-7 present the MODE verification metrics outputs of five NWPs 

located in the Low-resolution domain for 3-days ahead and week ahead outlook, 

respectively. Aggregated Centroid Distances and Angle Differences of identified 
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precipitation objects were estimated at different combinations of Convolution Thresholds 

(5, 10, & 15 mm/day) and Convolution Radii (5, 10, 15 grid units). As the intensity 

increased from 5 to 15 mm/day, the quality of the identified forecasted precipitation objects 

decreased in all NWPs. Similarly, as the grid smoothing resolution (Convolution Radius) 

increased, the performances of Centroid Distance and Angle Differences decreased in all 

NWPs. However, the rate of quality degradation was minimum when increasing the radius 

from 5 to 15 grid units as compared to increasing the threshold from 5 to 15 mm/day. 

Reproducing the higher precipitation threshold (above 15mm/day) was a challenge for most 

NWPs as can be seen from the attributes of the identified precipitation objects in 3-days 

and a week ahead forecast (see the Centroid Distance and Angle Difference at 15mm/day 

in Figure 5-6 and Figure 5-7). This challenge can be associated with one of the possible 

reasons why the sample identified objects of an extreme case in Figure 5-3 had low 

qualities. For a 3-days ahead outlook (Figure 5-6), GEFSv2 produced the lowest Centroid 

Distances and Angle differences for a different combination of MODE parameters. Next, 

GFS had relatively better attributes of precipitation objects than the other three NWPs. For 

a week ahead outlook (Figure 5-7), both GEFSv2 and GFS were somewhat competitive in 

terms of the MODE verification metrics. ECMWF and GDPS were relatively weak in 

generating good qualities of precipitation objects at different convolution parameters. 
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Figure 5-6: 3-days ahead forecast skill in terms of precipitation objects features at different 

thresholds and grid smoothing resolution (Convolution Radii (R) (5, 10, 15 grid units) and 

Convolution Thresholds (T) (>=5,>=10,>=15 mm)) 

  

Figure 5-7: Same as Figure 5-6 but for a week ahead forecast 
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5.6.1.3.  Timing error 

Based on the approach discussed in Section 5.5.3, the average timing error of NWP 

forecasts was estimated for a precipitation threshold set between 10mm and 20mm for 1 

day up to 8 days lead times. Figure 5-8 presents the outputs of all NWPs in the Low-

resolution domain. During the first three days forecast (Figure 5-8 top-plot), GFS produced 

the lowest average timing error followed by GEFSv2 and NCEP, which both had similar 

performances regarding the timing aspect. GDPS and ECMWF were poor in achieving the 

timing of the forecasted event in the first five days forecast. However, both NWP appeared 

to be superior at 7 and 8 days forecast lead times. 

The interesting finding from this analysis is that the timing errors of almost all NWPs 

decreased as the forecast lead time increased (see Figure 5-8 top-plot). The opposite trend 

is usually seen on several forecast skill metrics (such as Figure 5-4). The primary reason 

for the decreasing timing error along the forecast horizon is that the source of forecast error 

was developing from performances related to magnitude rather than timing. This can be 

easily seen from Figure 5-8 bottom-plot. The general trend of the Percentage of errors other 

than timing was increasing as the lead time increased. Meaning that as the lead time was 

increasing, there were more grids and verification periods evolving that did not meet the 

event threshold criteria either because they underestimated or overestimated the 

observation. ECMWF, for example, had the highest percentage of magnitude related errors 

in the 7th and 8th day even though it produced the lowest timing error in these lead times. 

Overall, GFS, GEFSv2, and NCEP produced lower timing errors and had a smaller 
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percentage of non-timing errors at all lead times, whereas errors from ECMWF’s forecasts 

were largely attributed to both timing (first five days) and magnitude (all lead times). 

 

 

Figure 5-8: Timing Error analysis outputs for five NWPs located in Low-resolution 

domain. 

 

5.6.1.4.  Summary and discussion 

The key messages from the operational hydrology perspective are: 

• For short-range forecasts up to 3 days ahead, GEFSv2 was superior in providing 

unbiased, accurate and skillful forecasts in terms of the precipitation volume, 
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intensity, and timing. Hence, it is an excellent candidate to provide forecast inputs to 

hydrological models for an improved short-term (up to 3 days lead time) hydrological 

forecasts in relatively larger watersheds. 

• For a week ahead outlook, both GEFSv2, and GFS were productive in forecasting 

different ranges of precipitation intensities and volumes because their forecasts have 

had higher skills, better accuracies, and minimum biases. They also achieved a 

relatively negligible timing error. If either of the two NWP forecasts are used as 

inputs to hydrological models, enhanced performances of hydrological forecasts 

could be acquired for medium-range predictions up to a week ahead. 

The candidate NWPs identified in the low-resolution domain are ensemble (GEFSv2) and 

deterministic (GFS). The mean of the ensemble GEFSv2 was used in this research to 

compare performance with the other NWPs, and its results were promising, as shown 

earlier. The benefit of ensemble-based hydrological forecasting has been proven in the 

literature (e.g., Cuo et al., 2011). Therefore, in addition to the mean of the ensemble, using 

all the ensemble forecasts (11 members) of the GEFSv2 as inputs to hydrological models, 

provides added value (e.g., provides the uncertainty of the system through the spread, the 

quantifies the reliability, issues probabilistic forecasts, etc.) to the medium-range 

hydrological forecasts.  

Before applying low-resolution NWPs to hydrological models, a post-processing method 

is recommended because the spatial scale of the hydrological model is often significantly 

lower than the horizontal resolution of NWPs.  
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5.6.2.  High-Resolution Domain 

5.6.2.1.  Volume error 

Figure 5-9 shows the forecast performances of four NWPs located in the High-resolution 

domain for different forecast accumulation periods. The verification was performed with a 

precipitation threshold of 1mm accumulated over 1hr, 3hr, and 6hrs. Forecast Bias from 

grid-to-grid evaluation and Precipitation object counts from MODE were estimated at 

different lead times. For 1-hour accumulation, RAP forecasts were too unstable because its 

performance highly fluctuated every hour for both traditional and object-based evaluation 

metrics. The reason might be due to problems related to RAP’s hourly data assimilation 

cycle using the coarse resolution and 3-hourly forecasts of GFS as a boundary condition 

(Benjamin et al., 2016), but further study is needed to verify. The instability of RAP was 

not seen at 3hr, and 6hr accumulated forecasts but instead showed relatively biased 

forecasts like NAM. HRRR appeared to be the most unbiased and accurate NWP regarding 

the volume of precipitation forecasts at any accumulation hours, because it had the lowest 

forecast Bias, and its precipitation Object Counts were persistently similar to the observed 

counts at 1, 3, and 6hr accumulation. For HRDPS, although high in an hourly forecast, the 

Biases were minimal and comparable with HRRR in 3hr and 6hr accumulation. 

Figure 5-10 provides the Gilbert Skill Score (GSS) of the NWPs for different amounts of 

precipitation volume thresholds (0.2mm, 2mm, and 5mm) accumulated over 6 hours. 

Results showed that HRDPS had an improved skill in forecasting 6hr accumulated volume 

precipitation better than the others, and this strength can be linked to its lower forecast bias 



Ph.D. Thesis – Frezer Seid Awol  McMaster University – Civil Engineering Department 

 

228 

 

(Figure 5-9). The other NWPs were interchangeably demonstrated to have relatively 

moderate forecast skill, especially for higher 6hr accumulated volumes. 
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Figure 5-9: Forecast Bias (left) and Precipitation objects count (right) of NWPs located in High-resolution domain for a 

precipitation threshold of 1mm accumulated in 1, 3 and 6 hours 

 

Figure 5-10: Gilbert Skill (GSS) of NWPs located in High-resolution domain for a different precipitation threshold volume 

accumulated over 6-hours 
  

1hr acc 3hr acc 6hr acc 
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5.6.2.2.  Intensity error 

Figure 5-11 shows the Gilbert Skill Score (GSS) and Frequency Bias of four NWPs located 

in the High-resolution domain in terms of different precipitation intensity forecasts at 4, 6, 

and 12 hours lead times. Results indicated that HRRR was the most skillful NWP in 

forecasting higher precipitation intensities, particularly at and above 1mm/hr for all forecast 

lead times. The 95% confidence interval of GSS in all NWPs seemed to be similar and 

showed a presence of sampling uncertainties for higher precipitation intensity forecasts. 

Similarly, most NWPs experienced challenges related to the bias for precipitation above 

1.5mm/hr because there were more uncertainties in the “true value” of the Forecast Bias 

along the forecast horizon. However, HRRR provided substantially lower forecast biases 

than the others for most precipitation intensities. This result was statistically significant 

because the 95% confidence interval of the Forecast Bias for HRRR was closer to 1 and 

had narrower width as compared to others. 
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Figure 5-11: Verification metrics for evaluating different precipitation intensity forecasts 

of four NWPs in High-resolution Domain 

 

5.6.2.3.  Timing error 

Figure 5-12 shows the Timing Error analysis results of four NWPs in the High-resolution 

domain. The analysis was performed for a precipitation exceedance threshold (event) of 

1mm/hr. The average timing-error of all NWPs showed a decreasing trend over the forecast 
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horizon, which was also observed in Low-resolution domain (Section 5.6.1.3). However, 

the rationale that was attributed in the Low-resolution domain forecasts (increasing trend 

of non-timing error) could not hold here because the percentage of errors other than timing 

remained more or less steady for most NWPs even though it was unstable. The high 

temporal resolutions of NWPs (hourly) in the High-resolution domain produced fluctuating 

timing error outputs along the forecast lead times, which was also seen for some NWPs in 

other metrics (e.g., Figure 5-9). 

Nevertheless, the timing error analysis produced explicable results in the High-resolution 

domain. The result indicated that NAM had lower average timing error up to 15 hours 

forecast lead times compared to the other NWPs. However, NAM also shared a 

significantly large percentage of errors attributed to non-timing aspects (magnitude errors) 

because a significant number of grids within the domain in the verification period either 

underestimated or overestimated the threshold criteria. HRDPS and HRRR, even though 

had higher timing errors than NAM, lead to a minimal number of grids and verification 

times that had magnitude related errors throughout the forecast lead times. 
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Figure 5-12: Timing Error analysis output for five NWPs located in High-resolution 

Domain 

 

5.6.2.4.  Summary and discussion 

Based on the above results, the following summaries can be drawn from the operational 

hydrological forecasting perspective. 
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• In terms of precipitation volume, hourly forecasts were better achieved by HRRR, 3-

hour cumulated forecasts were produced better by both HRRR and HRDPS, and 6-

hour cumulated forecasts were recognized better by HRDPS. 

• Particularly at higher precipitation intensities (above 1mm/hr), HRRR was found to 

be superior in achieving unbiased and skillful forecasts for lead times of 1hr up to 

18hrs ahead. This finding is essential for forecasting floods produced by intense and 

localized storms. 

• All NWPs were prone to higher timing errors in the first 3hours of the forecast, which 

gradually decreased as the lead time increased. NAM produced lower timing error 

but at the expense of having a significantly large percentage of non-timing errors 

within the domain grids in the verification period. On the other hand, HRDPS and 

HRRR had very less percentages of non-timing related errors in the domain grids 

over the verification period, even though they incurred higher timing error, 

particularly between 5hr to 13hr forecast lead times. The take-home message is that, 

if the particular interest is only in achieving the timing of the flood, caution should 

be taken on identifying the right NWPs because some candidate products (such as 

NAM) that have less timing error are subjected to higher magnitude or volume errors.  

Instead, a collective aim of the timing, intensity, and volume of floods should be 

sought for an enhanced short-range flood forecasting in smaller and urbanizing 

catchments. In this case, HRDPS and HRRR appeared to be the best candidate 

precipitation forecast products to force hydrological models. 
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High-resolution NWPs that are capable of resolving convective processes at the grid or sub-

grid level are beneficial for flood forecasting, especially those induced by summertime 

storms (Milbrandt et al., 2016). HRRR and HRDPS have both high-spatial (2.5-3km), and 

high-temporal (hourly) resolutions, and are grid-level convective-permitting (Pinto et al., 

2015) and sub-grid level deep-convection parameterizing (Milbrandt et al., 2016) models 

respectively. Hence, the use of these NWPs for very-short (1hr to 6hr) and short-range (up 

to 24hr) flood forecasting in urban and semi-urban catchments is paramount. As supported 

in literature, the capacity of NWPs to predict the combined effect of timing, intensity and 

amount of storms as effective as possible is a necessary condition for accurate flood 

forecasting because small errors can lead to significant deviations in the flood hydrograph 

(Jasper et al., 2002). 

5.7.  Conclusion 

The main objective of this study was to identify Numerical Weather Predictions (NWPs) 

that have skillful and reliable precipitation forecasts for an improved medium- and short-

range flood prediction in varied watershed characteristics of Canada. For this purpose, two 

domains were selected based on catchment landscape types, sizes, and the spatial and 

temporal scale of available NWPs. The low-resolution domain covers regions where most 

watersheds are vast (above thousands of km2 areas), have agriculture, forests, and wetlands. 

In this domain, lower spatial resolutions NWPs that issue medium-range forecasts were 

used, including the deterministic GFS and GDPS, and ensemble means forecasts of 

ECMWF, NCEP, and GEFSv2. The high-resolution domain covers smaller urban and semi-

urban catchments, which typically have shorter time of concentrations. In this domain, 
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higher spatial resolution NWPs that issue short-range deterministic precipitation forecasts 

such as HRRR, HRDPS, RAP, and NAM were used. NWPs in Low-resolution domain were 

verified using CaPA for up to 8 days forecast lead times in a 7-month hindcast period. 

Whereas NWPs in High-resolution domain were compared with gridded interpolated 

hourly observed data for 1hr up to 18hr forecast lead times in a 5-month hindcast period. 

This study was intended to assist hydrologists in finding the best candidate precipitation 

forecast products in various scales so that it can be applied in hydrological models to 

forecast the magnitude and timing of floods. As such, the verification of different NWPs 

was performed on volume, intensity, and timing aspects of precipitation forecasts. In 

addition to the traditional grid-to-grid and emerging object-based (MODE) verification 

metrics, a new approach to estimate the average timing error was developed in this research. 

The following conclusions can be drawn from the comprehensive verification of the 

selected NWPs. 

In the Low-resolution domain, GEFSv2 and GFS provided better skill, accuracy, and 

relatively unbiased forecasts for different accumulated precipitation volumes at all lead 

times. GEFSv2 showed good potential in identifying and matching forecast precipitation 

objects. Verification of precipitation intensities ranging between 5 and 35 mm/day was 

made at 3-days ahead and a week ahead outlooks. Results revealed that GEFSv2 and GFS 

maintained lower forecast biases and achieved better forecast skills at both forecast 

outlooks. On the other hand, ECMWF, GDPS, and NCEP significantly overestimated 

forecasts at different precipitation intensities, especially for a week-ahead outlook. By 

using MODE, the quality of identified precipitation objects was estimated for a different 
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combination of convolution parameters (e.g., Threshold: 5, 10, & 15 mm/day, and Radius: 

5, 10, 15 grid units). The collective behavior of all NWPs was that the performances of 

identified objects degraded as the grid smoothing resolution and threshold intensity 

increased, and reproducing the higher precipitation threshold (above 15mm/day) was a 

challenge. Overall, GEFSv2 followed by GFS appeared to be superior in generating good 

qualities of precipitation objects for different MODE parameters, whereas ECMWF and 

GDPS produced poor forecast attributes. The timing error approach was implemented in 

Low-resolution domain for an event threshold criterion of 10-20mm/day. Results indicated 

that GFS followed by both GEFSv2 and NCEP attained better timing of the precipitation 

forecast up to 6 days lead time. The striking result from this analysis was that the average 

timing errors of almost all NWPs decreased as the forecast lead time increased, which was 

opposite to the trends usually observed in other forecast verification metrics. As the lead 

time increased, there were more grids and verification periods that could not meet the event 

threshold criteria because they either underestimated or overestimated the event. 

 Overall, GEFSv2 for 3-days ahead outlook, and both GEFSv2 and GFS for a week-ahead 

outlook appeared to be a proper application of the candidate NWPs in hydrological models 

to enhance short- and medium-range hydrological forecasting in the Low-resolution 

domain of Canada. 

In the High-resolution domain, the volume skill was evaluated in two ways: 1mm 

precipitation threshold accumulated over different periods (1hr, 3hr, and 6hrs), and 

different precipitation volume thresholds (0.2mm, 2mm, and 5mm) accumulated over 6 

hours. Verification results indicated that HRRR appeared to be the most unbiased and 
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accurate NWP in forecasting the precipitation at any accumulation hours. HRDPS showed 

competitive performance as HRRR in 3hr and 6hr accumulation. For different volume 

accumulations in a 6hr period, HRDPS had an improved forecast skill, which could be 

associated with its lower forecast bias. Regarding intensity, NWPs were evaluated for 

different precipitation intensities ranging from 0.1 to 2mm/hr. Results indicated that HRRR 

appeared to be the most skillful and unbiased NWP in forecasting higher precipitation 

intensities, particularly at and above 1mm/hr at all forecast lead times. The timing error 

analysis was performed for an event criteria of 1mm/hr precipitation exceedance. Even 

though NAM produced lower timing error up to 15 hours forecast lead time, it shared a 

considerably large percentage of errors attributed to non-timing aspects (e.g. magnitude 

error). HRDPS and HRRR had instead contributed to a smaller number of grids and 

verification times that have magnitude related errors throughout the forecast lead times. 

Overall, for a collective aim of the timing, intensity, and volume of floods, HRRR and 

HRDPS appeared to be the best candidate precipitation forecast products for an enhanced 

short-range flood forecasting in smaller and urbanizing catchments. 

In general, the timing error approach was able to produce two essential outputs: (1) it could 

find the average timing error of the precipitation forecasts shifted on the forecast horizon, 

and; (2) it could distinguish the percentage of errors attributed to issues other than timing 

or the share of the number of grids and verification times that under- or over-estimated the 

event in the forecast lead time. 
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Future works are anticipated to use identified potential NWPs as inputs into hydrological 

models that are calibrated on selected watersheds from each domain for hydrological and 

flood forecast verification. 
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Chapter 6. Conclusions and Recommendations 

6.1.  Conclusions 

The research presented in this thesis focused on identifying proper calibration approaches, 

skillful hydrological models, and skillful weather forecast inputs to improve short- and 

medium-range flood forecasting in various watershed landscapes. The chapters of this 

thesis provided the required evaluation and verification of different calibration approaches, 

multiple hydrological models with diverse model structures, and various high- and low-

resolution Numerical Weather Predictions, and discussed the identified potential candidate 

models and inputs. The accuracy and skill of candidate hydrological models and forecast 

input products in hydrological forecasting were evaluated in the research. The findings of 

this research are expected to benefit operational flood forecasting centers, future 

applications in flood and early warning systems, and research aiming at improving model 

development, forecast inputs, and calibration methods. The main conclusions of the thesis 

are summarized as follows: 

6.1.1.  Calibration approaches for enhanced peak flow predictions 

• The presence of uncertainties in calibrating highly impervious sub-catchments and 

pervious areas with rapid recovery times as well as reproducing peak flows 

prompts the need for a robust calibration approach. 

• An event-based calibration approach integrating multi-site, and single and multi-

objective optimizations was proposed to find representative distributed model 

parameters in a semi-urban catchment. 
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• The two multi-site approaches (MS-S and MS-A) exhibit better performances than 

multi-event ME-MS and at the catchment outlet OU approach. 

• Using the single objective DDS optimization in MS-A approach is found to be more 

efficient using the multi-objective PA-DDS algorithm in MS-S approach. 

• The study indicated that the combination of efficient optimization tools with a series 

of calibration steps is essential in finding representative parameter sets. 

6.1.2.  Hydrological model identification for large complex watersheds 

• Bias-correcting each member of an ensemble precipitation forecasts using verifying 

datasets (such as CaPA) for a training period of at least two years before the forecast 

time, produced reliable hydrological forecasts in complex watersheds. 

• As indicated by the forecast reliability, accuracy and skill score measures, lumped 

hydrological models (SACSMA and MACHBV), provided better reservoir inflow 

forecast performance than the benchmark distributed (WATFLOOD) and the 

macroscale land-surface based (VIC) model. 

• The forecast performances of lumped models are more evident for up to a week 

ahead forecast (1-day to 8-days). The distributed benchmark model provided 

reliability as good as the lumped models only up to 3-days ahead forecast.  

• The calibration performances of the hydrological models were influenced jointly by 

several factors including the scale, the complexity of the basin, the spatial and 

temporal resolution of the input data, the structure of the models, the degree of 

discretization of the models, and the number of parameters to be calibrated. 
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• In general, for hydrological forecasting focusing on basin outflows and not interior 

sites, the study indicated that lumped models, particularly SACSMA with 

SNOW17, provided better forecast performance than distributed or land-surface 

models in complex watersheds up to a week ahead outlook. 

6.1.3.  Combined hydrological model and input identification for semi-urban 

catchments 

• Based on the calibration performances of twelve hydrological models and previous 

application, five models comprised of lumped (SACSMA, MACHBV & PDM, all 

coupled with SNOW17) and distributed (WATFLOOD & SWMM) models were 

selected for forecast verification.  

• The pre-screening of hydrological outputs from four high- and mid-resolution 

NWPs (HRRR, HRDPS, NAM, & RAP) showed that, for relatively small semi-

urban watersheds that typically have shorter time of concentrations, high-resolution 

weather products (e.g., HRRR, HRDPS) were found to be proper forecast inputs to 

the hydrological models. 

• Comprehensive evaluation based on forecast accuracy, skill, peak flow magnitude 

and timing, threshold-based scores, and economic value attributes has revealed that 

the two lumped models (MACHBV and SACSMA) were superior to the distributed 

models for 1hr to 18hr lead times. The distributed models were only skillful between 

15hr-18hr forecast lead times.    

• The best model-input combination appeared to be the MACHBV-SNOW17 model 

with HRDPS forecast input. This combination captured the peak flow magnitude 
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and timing adequately and detected the flood threshold at all forecast lead times. It 

has also emerged as the most economically viable model-input combination. 

• Giving adaptive weights to hydrological forecasts based on recent (last 18hr-24hr) 

performances provided enhanced combined forecasts while persistently keeping the 

top-ranking models, which would highly likely continue to perform well  (next 

18hr-24hr). 

6.1.4.  Identification of Numerical Weather Predictions (NWP) for enhanced flood 

forecasting 

• In Western and Central parts of Canada (Low-resolution domain), where the 

majority of watersheds are vast and transboundary, GEFSv2, followed by GFS, 

were found to be excellent candidates to provide precipitation forecast inputs to 

hydrological models for an improved short- and medium-range hydrological 

forecasts.  

• For 3-days ahead forecast, GEFSv2, and for a week ahead outlook, both GEFSv2, 

and GFS were very productive in forecasting different ranges of precipitation 

intensities and volumes with less bias, better forecast accuracy, and minimal 

forecast timing error in the Low-resolution domain. 

• In Southern Ontario (High-resolution domain), where abundant catchments are 

small urban and semi-urban, HRRR and HRDPS appeared to be the best candidates 

to provide precipitation forecast inputs to hydrological models for an enhanced 

short-range flood forecasting (1hr up to 18 hr lead times).  
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• If a collective aim of achieving the timing, intensity, and volume of floods is sought 

for, either of the two high-resolution products (HRRR and HRDPS) could offer 

qualitative forecast inputs in urbanizing catchments. 

• Higher intensity forecasts (above 1mm/hr) and 1hr cumulated precipitation forecast 

volumes were more evident with HRRR, whereas 6hr cumulated forecasts were 

recognized better by HRDPS. Both products had shown a competent forecast 

potential in 3hr forecast volumes. 

• The timing error approach was able to provide;  

o the average estimated forecast timing error, which, for example, showed a 

general decreasing trend in the Low-resolution domain as the lead time 

increases, 

o the percentage of non-timing related errors, which, for example, showed an 

increasing trend in the Low-resolution domain as the lead time increases. 
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6.1.5.  General conclusion and contributions  

The general conclusions and contributions of this research from the perspectives of the 

scientific research, engineering application, and universality aspects include: 

• An approach was formulated for calibrating an event-based distributed hydrological 

model. 

• Aggregating or averaging multiple performance metrics during calibration provided 

better simulation output, which can be applied for any cases.  

• The advantage of applying lumped hydrological models in flood and hydrological 

forecasting was demonstrated in two complementary watersheds.  

o A lumped hydrological model (SACSMA) forced with bias-corrected ensemble 

forecast inputs appeared to provide reliable and skillful medium-range 

reservoir inflow forecasts in large complex watersheds.  

o A combination of lumped hydrological model (MACHBV) with high-

resolution Numerical Weather Prediction model (HRDPS) emerged as the best 

model-input integration for enhanced short-range flood forecasting in semi-

urban catchments. 

• The same candidate model(s) would highly likely be identified to better simulate 

and forecast short- and medium-range hydrological forecasts in other types of 

watersheds with a similar scale and characteristics. 

• For operational forecasters focusing on basin outflows and not interior sites, the 

study demonstrated that lumped models are much preferable, economically viable, 
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and computationally efficient than distributed or land-surface based hydrological 

models. 

• For operational forecasters interested in averaging multiple deterministic 

hydrological forecasts with simple and cost-effective methods, the adaptive 

weighting technique can be used to provide an enhanced combined forecast while 

persistently keeping well-performing models. 

• The research identified best candidate NWPs in two main geographic regions of 

Canada, which can be utilized in operational flood forecasting to predict the 

volume, intensity, and timing of floods. 

• Modelers or hydrologists often decide the hydrological modeling time steps based 

on the temporal scale and quality of inputs available. The study showed the 

strengths of high-resolution forecast inputs for different precipitation accumulation 

periods. HRRR was better at 1hr, and 3hr cumulated forecasts, whereas HRDPS 

was better at 3hr and 6hr cumulated forecast volumes. 

• A timing error estimation approach was introduced to find the average timing 

error of forecast variables shifted along the forecast lead times and to assess the 

percentage of errors attributed to non-timing aspects. 

6.2.  Future Work and Recommendations 

Following up on the last study of this thesis (Chapter 5), a hydrological forecast verification 

study using the identified candidate NWPs as inputs into hydrological models that are 

calibrated on selected watersheds is anticipated. Essentially, an integrated or coupled 

meteorological and hydrological forecast verification is advantageous for application-
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focused evaluations, addressing scaling and temporal effect, identifying precipitation 

systems contributing to floods, and exploring different post-processing methods (Cuo et 

al., 2011; Givati et al., 2016; Jasper et al., 2002; Pappenberger et al., 2008; Yucel et al., 

2015). An ensemble-based flood forecasting system using a multi-model and multi-input 

approach is recommended for operational use since its advantage has been demonstrated in 

different studies  (Cloke and Pappenberger, 2009; Demeritt et al., 2007; Pagano et al., 2014; 

Pappenberger et al., 2005). Furthermore, various data assimilation, Bayesian Probabilistic 

Forecasting, and Bayesian Model Averaging methods could be added to a coupled multi-

model and multi-input hydrological forecasting system, although such multi-level 

integration will be computationally intensive especially from the operational river 

forecasting perspective. This computational burden can be minimized through a 

collaboration of operational forecasting centers with academic researchers who usually 

have access to High-performance computing (HPC) systems (e.g., Graham & Cedar HPCs 

of Compute Canada). 

If flow conditions at interior sites of a watershed are desired, the lumped models that were 

identified in the thesis research (SACSMA and MACHBV) could be implemented as a 

semi-distributed model using multiple sub-catchments, a routing module, and a proper 

calibration approach (Ajami. et al., 2004). 

NWPs with ensemble forecasts have mostly low-spatial resolutions. Due to this condition, 

the direct application of ensemble NWPs for short-range flood forecasting in urban and 

semi-urban watersheds has been a challenge (Pagano et al., 2014). Thus, before applying 

low-resolution NWPs to hydrological models, a post-processing method is recommended 
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because the spatial resolution of the hydrological modeling is usually significantly higher 

than the horizontal resolution of NWPs. The Spatio-temporal downscaling approach using 

RainFARM (Rebora et al., 2006), and the Rainfall Post-Processing (RPP) technique (Jha 

et al., 2018; Robertson et al., 2013), are some of the recommended tools that can be applied 

to the ensemble or deterministic NWPs to improve the reliability of flood forecasting in 

urban and semi-urban catchment. Separation of NWP precipitation forecasts based on 

topographic effect (e.g., orographic and non-orographic rainfalls) before inputting in to 

distributed hydrological models was also shown as an alternative method that can be used 

for real-time updating of flood forecasts (Yu et al., 2016). 

The additional exciting research topic would be evaluating different forecast combination 

methods, in addition to the adaptive weighting method used in Chapter 4, to improve 

hydrological forecasting that is based on multi-model and multi-input approaches. 

Moreover, an effective way of defining flood thresholds for categorical forecast verification 

could be assessed, in addition to the method previously mentioned in Chapter 4. 

Finally, operational forecasting centers could benefit from archiving real-time flood and 

hydrological forecasts for continuously evaluating the performance of the flood forecasting 

system. 
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