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Abstract

Language identification is the task of automatically detect the languages(s) written in a text

or a document given, and is also the very first step of further natural language processing

tasks. This task has been well-studied over decades in the past, however, most of the works

have focused on long texts rather than the short that is proved to be more challenging

due to the insufficiency of syntactic and semantic information. In this work, we present

approaches to this problem based on deep learning techniques, traditional methods and

their combination. The proposed ensemble model, composed of a learning based method

and a dictionary based method, achieves 89.6% accuracy on our new generated gold test

set, surpassing Google Translate API by 3.7% and an industry leading tool Langid.py by

26.1%.
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Notation, Definitions, and Abbreviations

AWS Amazon Web Service

BERT Bidirectional Encoder Representations from Transformers

Bi-RNN Bidirectional Ruccurent Neural Network

CBOW Continnuous Bag of Words

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

NLP Natrual Language Processing

OOV Out-Of-Vacabulary

OOP Out-of-Place

RNN Recurrent Neural Network

SVM Support Vector Machine
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Chapter 1

Introduction and Problem Statement

1.1 Introduction

With the growth of people relying on social media services, a significantly large amount

of data has been generated by users across the world in different languages, where the

textual data made up of chat messages, Internet news and blogs form an important compo-

nent. However, some of this information are of bias and discrimination, and even violence.

More and more people suggest that there is a need to apply Natural Language Processing

(NLP) techniques on such data and filter out the toxic information in order to maintain a

healthy online community for everyone, especially for teenagers. Prior to this, automatic

language identification is regarded as the first step for further NLP tasks in a multilingual

environment such as machine translation, cyber bullying detection and toxicity detection.

Language identification (LID) aims to detect the language(s) given a text or a document

written in one or more languages. LID on monolingual texts is known as a multi-class clas-

sification problem, in which a text is assigned to one of the K classes. This can be estimated

by Eq.1.1 for One-vs-All classification, and Eq.1.2 for All-vs-All (all-pairs) classification
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adapted from Knerr et al. (1990) and Friedman (1996).

f(x) = argmax
i

fi(x) (1.1)

Where fi is the ith classifier for distinguishing class i from all K classes, namely, taking

samples from i as positive and other classes as negative.

f(x) = argmax
i

(
∑
j

fij(x)) (1.2)

Where fij is the classifier distinguishing each pair of class i and j, i.e. taking class i as

positive and class j as negative.

On the contrary, LID on multilingual texts is considered as a multi-label classification

task, where a text can be mapped onto a subset of labels from a larger closed label set (Lui

et al., 2014). Accordingly, one assumption we make in this thesis, is that each text we

process is monolingual.

LID has been studied over decades and is seemed to be addressed properly as its accu-

racy is found to be high from a number of isolated experiments over various unacknowl-

edged datasets with small sets of languages (Hughes et al. (2006); Grothe et al. (2008)).

However, most of the previous work were focused on long texts. Recently while some

researchers turning their attention to LID on short texts, they have noted that it is more

challenging than the long. As Baldwin and Lui (2010) mentioned, LID becomes increas-

ingly difficult as we augment the number of languages and reduce the length of the texts.

Carter et al. (2013) also points that microblogs like tweets that contains a majority of short

posts is challenging even for state-of-the-art LID methods.
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In this work, we present four methods for LID on short texts, three of them are indi-

vidual approaches either based on traditional or learning based methods, and the other one

is an ensemble model integrating fastText and our dictionary based method LKM. These

methods are trained and evaluated on new multilingual datasets we generated from online

resources and real-world experimental data provided by our collaborators TH, as there are

not public datasets meeting our needs. The ensemble model achieves the best performance

compared with the individual models, and even the remarkable classifiers Google Translate

API and Langid.py.

The main contribution of our work is that we have proposed an competitive LID en-

semble model, also implemented and compared the traditional based methods with leaning

based on our task-specific datasets. Noting that our ensemble model is also able to perform

multilingual classification task since we have appended an extra configuration for it. Once

we achieve considerably results on current task, we will move on to the multilingual task

in the future. Due to the convenience in configuration, our ensemble model can be further

developed as an off-the-shelf product to address this kind of issue effectively without any

training work.

1.2 Thesis Structure

The rest of this thesis is structured as follows: we successively review the early and cur-

rent state-of-the-art solutions to LID in Chapter 2, which is categorized into two parts

traditional and learning based solutions. Chapter 3 introduces our own built multilingual

datasets and the four proposed methods, including the main steps of construing the datasets

and technical details of the model architecture. In Chapter 4, we show the detailed im-

plementation and the experimental results, as well as numerical comparisons between our

3
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proposed methods and the industry leading solutions. At the end, we conclude our work

and discuss the future plans of LID on short texts in Chapter 5.

4



Chapter 2

Background and Related Work

Language identification on written texts, also known as language detection and sometimes

as language recognition, is a classification task in NLP (Gottron and Lipka, 2010), which

has been constantly studied over decades. Many solutions have been proposed to this task,

which more specifically, could be categorized into traditional solutions and learning-based

solutions.

2.1 Traditional Solutions

Traditional solutions to LID are originally derived from word-based method, one of them

is called short word-based, which merely uses words up to a certain length to construct

the language model (Grothe et al., 2008). Grefenstette (1995) and Prager (1999) extract

words up to four and five characters separately after tokenized for each language to build

the model. It is noted that common words like determiners, conjunctions and prepositions

could be good hints for detecting a language, and they are all short in most cases. Given

an input text tokenized, tokens captured mostly by the word list of a certain languages,

5
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then this language is taken as the result. Another word-based method called frequent word-

based brings in word frequency referring to the number of occurrences in corpus. It has

been proposed by Souter et al. (1994) and Ludovik et al. (1999) in different work. Souter

et al. (1994) extract the top 100 words for each language from training data to generate

ordered frequency wordlists and 91% accuracy was achieved during the test. He also points

out that its accuracy is highly dependent on the composition and size of the test file, though

this method has advantage in identifying short text and languages of small quantities. The

main limitation of word-based method is a large amount of corpus required to create the

language model during training phase (Brodić et al., 2017)

Going forward, a famous method of generating language model is by n-gram model,

which takes the place of word-based method. An n-gram is a sequence of n character

slicing from a longer string , where n ∈ [1, 2, 3, 4, ..., n]. Generally, special symbols would

be appended at the beginning and ending of the string in order to help with distinction

between prefixes, suffixes and other slices, for instance by underscore character (” ”) and

angel quotes (”<”, ”>”). For example, the word ”hello” would be decomposed into the

following n-grams:

bi− gram(2− grams) : h, he, el, ll, lo, o ,

tri− gram(3− grams) : he, hel, ell, llo, lo.

Cavnar and Trenkle (1994) apply n-gram in LID task by calculating and comparing the

n-gram frequency of profiles via Out-of-Place (OOP) measure shown in Fig.2.1, a rank-

order statistic referring to the distance of an n-gram in one profile to its place in another

profile. They first compute n-gram frequency profiles per language on the training sets,

then compare that from a test file with category profile of each language using OOP, and

6
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finally pick the category with the smallest distance. This solution achieved a 99.8% ac-

curacy on Usenet newsgroup articles written in different languages. One of weaknesses

in their method is that it require inputs to be tokenized, limiting the applicability in cases

where tokenization is difficult. Another similar approach addressing this issue has been

proposed by Dunning (1994) who takes into account byte n-gram rather than character n-

gram introduced above. This approach achieved 92% accuracy on test set with only 20

bytes (about 3 to 4 words in English) and 50K bytes of training, which could be improved

to 99.9% when longer text with 500 bytes were tested, assuming both the training and test

data are encoded in sequences of bytes. However, an challenge would rise in calculation

and comparing steps if the inputs are multilingual.

TH
ER
ON
LE
ING
AND
…

ED
ING
ON
ER
AND
TH
…

Out-of-Place

no-match = max

3

0

2

1

5

sum = distance measure

Test ProfileCategory Profile

most 
frequent

least 
frequent

Figure 2.1: Out-of-Place measure calculation between two profiles (adapted from Cavnar
and Trenkle (1994)).
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Subsequent solutions are mainly derived from training the language model from either

character n-gram or byte n-gram on different classifiers such as naive Bayes, SVM and

Markov models. langid.py, an off-the-shelf LID tool, is trained over a naive Bayes

classifier in combination with a multinomial event model and byte n-gram features (Lui

and Baldwin, 2012). This tool is originally encapsulated and open sourced via Python

package, and also can be utilized in three ways: command-line tool, Python library and

web service. As they suggested, importing Python library is the fastest and least resource-

consuming way to use the tool as command-line tool is weak at processing large amount

data and web service is more preferable by invoking from other programming languages.

It should be noted that a pre-trained model is released along with langid.py, which is

trained on a large amount of corpus in 97 languages from a variety of domains using LD

feature selection (Lui and Baldwin, 2011). In comparison with other four standalone LID

tools, langid.py supports the most languages and generally outperformed them in terms

of accuracy and speed in most test sets. Thus, it has been a state-of-the-art in open source

LID tools used in industry.

2.2 Learning-based Solutions

In recent years, deep learning (DL) techniques have been extensively developed in both

research and industry areas, achieving impressive accomplishment in computer vision (CV)

and NLP areas. Over the past five years, more and more researchers have applied learning-

based solutions to solve textual language identification.

One of the early works on LID involved with neural networks is done by Simões et al.

(2014), who constructed a simple neural network (NN) with only one hidden layer. The net-

work takes an input vector containing values obtained from feature extraction, and outputs

8
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a vector with probability values corresponding to each language. Unlike many simply use

n-gram features for training, they combined trigram features with alphabet features to get

better understanding of the data. The extracted features can be categorized into two levels:

one related with the language alphabets, and the other with the character trigram frequency

information. After defining 10 classes classifying all the used characters in training set

based on morphology as well as Unicode range, the alphabet features are obtained by a list

of empirically defined rules, which then can be used directly while training. The extraction

of trigram features is more conventional, processed by a ready-made tool the Perl module

Text::Ngram (https://metacpan.org/pod/Text::Ngram), then the obtained

values are used for computing their relative frequency. At the end, they merged these

two types of features into a big list and computed it with the training data in the form of

matrix, resulting in the training matrix with 565 different features for each input.

The implementation of this network is based on the logistic function defined by g(z) in

Eq. 2.1, namely playing a role as activation function in each layer.

g(z) =
1

1 + exp(−z)
(2.1)

Backward propagation is also applied for implementing gradient descent algorithm in

order to minimize the cost function and obtain the weight matrices. Rather setting a thresh-

old of accuracy on validation set or the cost, they chose to stop training with a fixed number

of iterations.

The experimental result shows that their model achieves 96% and 97% of accuracy

with 1,500 and 4,000 iterations separately on the test set of 25 languages. Also, the result

proves that adding alphabet features do help to improve the performance of the model by

reducing the trigram features needed, especially for the four Asian languages Traditional

9
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Chinese, Simplified Chinese, Japanese and Korean. Nevertheless, it should be noted that

their solution performs badly on short texts because of the insufficient number of trigrams

selected by language, which is similar to the challenge we tackle.

Kocmi and Bojar (2017) employed a RNN based solution, bidirectional RNN (Bi-RNN)

with only one single hidden layer of GRU cells, to both monolingual and multilingual

language identification tasks. The model takes a fixed window size (normally set to 200)

of characters sliding through each text as input and outputs a probability distribution over

all supported languages. They originally considered several RNN variants like the original

one proposed by Elman (1990), LSTM and GRU. Elman’s RNN is not able capture the

following information within the fixed window size while processing the current input,

which does not fit their setting. Therefore, they turned to a bidirectional RNN, reading the

input from both left-to-right and in reverse simultaneously, whose hidden layer ht at time

step t is computed based on the previous state ht−1 and the future state ht+1 as shown in

Eq. 2.2 & 2.3.

−→
ht = tanh(

−→
Wxt +

−→
V
−→
h t−1 +

−→
b1 ) (2.2)

←−
ht = tanh(

←−
Wxt +

←−
V
←−
h t+1 +

←−
b1 ) (2.3)

where U , V and W are weight matrices, b1 and b2 are bias, and the left and right arrows in-

dicate the direction. Eq. 2.4 shows the output yt is derived from applying softmax function

to ht.

yt = Softmax(
−→
U
−→
h t +

←−
U
←−
h t + b2) (2.4)

Later on, they replaced the tanh unit with GRU proposed by Cho et al. (2014) as tanh is

10
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difficult to train due to its non linearity. Changes to equations above due to replacement

can be found in Cho et al. (2014), which is quite similar. This model is trained on their

own built dataset, as a result, it supports the most languages compared to some famous

LID tools such as Langid.py and CID2. Also, it beats the other in identifying short texts,

achieving 95.0% accuracy on all languages in the test set and 95.5% on common languages

that every model supports.

Similarly, Mathur et al. (2017) explored the use of RNNs on LID tasks, and compared

it with two typical machine learning models Multinomial Naive Bayes (MNB) and Logis-

tic Regression (LR). The utilization of RNNs makes it possible to learn the structure of a

language better to distinguish between the similar ones. Their final model is an ensemble

of 5 RNNs, where each one using a different feature set, ranging from character 2-grams

to 5-grams as well as word unigrams. Since RNNs have problems of exploding and van-

ishing gradients while training for long sequences of input, thus, gated recurrent units are

adopted for the single hidden layer for each RNN. To construct the ensemble model, rather

than manually integrating the models by weights, they trained a LR model to get the final

prediction. This LR takes the outputs from the 5 RNNs as features and is tuned by 5 fold

cross validation to get the final output. The complete training procedure is shown in Fig.

2.2.

One surprising finding of the results is that an individual RNN cannot even outperform

the MNB and LR model with little structure information captured. But they are fought back

by the ensemble of 5 RNNs, exceeding 0.6% of accuracy than the MNB and 0.63% than

the LR model. Although the ensemble model gains the best result on testing, it does not

surpass much than others. The biggest challenge is posed by distinguishing very much sim-

ilar languages, for instance Bosnian, Croatian and Serbian are all in South Western Slavic

11
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Figure 2.2: Training procedure of the RNNs ensemble (source from Mathur et al. (2017)).

language group. These languages share plenty of words in common and cannot be uniquely

identified by simply using n-grams features. Thus, building more deeply structured models

and designing rule based features could be ways to handle this problem.

12



Chapter 3

The Proposed Methods

In this chapter, we will first go through the process of building up our new multilingual

datasets based on online resources and private experimental data. We then present four

different methods for our LID task, which are fastText, BERT, dictionary-based method

and the ensemble model in detail. The experimental results and model comparison will be

showed in Chapter 4.

3.1 Construction of New Multilingual Datasets

TweetLID is a short text dataset released from a shard task about LID organized by Zubiaga

et al. (2016). It consists of 34,984 tweets in 10 classes: Spanish, Portuguese, Catalan,

English, Galician, Basque, Underterm., Multilingual, Ambiguous and Other. Apparently,

there are only 6 languages inside, which is insufficient for our task.

Datasets from Discriminating Similar Languages (DSL) shared task (Tan et al., 2014)

are originally aiming at being benchmark for LID in languages with considerably little

difference, such as Czech and Slovak, Indonesian and Malay, Brazilian Portuguese and

13
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European Portuguese etc. The limitation is that they do not cover as many as we need over

language families.

WiLI-2018 is a new benchmark dataset for monolingual written LID, publicly released

by Thoma (2018). It contains 235,000 paragraphs in total, 1000 paragraphs of 235 lan-

guages, theoretically appropriate in terms of quantity and diversity. However, the minimum

paragraph length is 140 character and the average length is 371 across the whole dataset.

We believe it might be too long for our short text classification task.

In order to address the challenge of LID in short texts, we decide to create our own

datasets. Collaborating with an AI security company (alias TH), we generated two new

multilingual text datasets successively. The first one (named TRAIN ) contains 17,239,085

records in total across 50 languages while the second one (named TEST ) has 152,793

records with 22 languages. TRAIN and TEST were both generated from diverse sources,

mainly made up of open source and real-world experimental data. The language range in

TEST is a subset of that in TRAIN and there is no overlap in data between them. All the

data are encoded in UTF-8.

The majority of TRAIN were extracted from Twitter and Google books Ngrams (4-

grams and 5-grams mainly), the rest of it came from experimental data - chat messages

and short dialogue records owned by TH for research. Twitter and Google books Ngrams

typically contain data dominant in several languages which people speak mostly all over the

world, while some rare languages holding large gap in amount. Thus, we set a threshold for

the amount of upper bound per language in order to keep the data as balanced as possible.

Then we extracted the data and pre-processed following the steps below:

1. Data Cleaning: clean up noise like alias, website addresses and hash tags, and remove

duplicates.

14
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2. Build Confidence Level: give each text a confidence level indicating how trustable it

is to be a true label. There are three models fastText default, an off-the-shelf LID tool

Langid.py and Google Translate API used for predicting the most likely label of

each text with probability.

3. Blend Confidence Level: after checking the labels predicted by the three models, if

all three have the same predictions as the text’s original label, we would certainly tag

it confidence level 100, otherwise we mark it a specific value ranging from 0 to 100

based on blending the predicted probabilities by our rules.

It is worth noted that some of the data from online sources appear to be mislabeled due to

mixed language texts and wrong categorization when publishing, which is the reason why

we bring in confidence level. As a result, we obtained a dataset with each text tagged a

confidence level C ∈ {00, 10, 25, 50, 75, 90, 100} (00 refers to 0), and a full table about the

final distribution of TRAIN is shown in Table 3.1. For the sake of different purposes, we

truncated the TRAIN into smaller subsets by confidence level (e.g. truncate by 00 contain-

ing all data with C over 0, which is exactly same as TRAIN ; truncate by 25 containing data

with C higher than 25 and so on). This led to the generation of seven new subsets named

as TRAIN -C separately. The seven subsets could be used for different purposes, for exam-

ple, if we want to get the cleanest and most trustable dataset, we would take TRAIN-100.

Moreover, TRAIN-00 has the largest amount of data.

The source of data is even more miscellaneous when it comes to TEST. The majority is

made up of experimental data from TH, but consisting of more distributed data compared

to TRAIN, and the rest is from Twitter. The subsequent processing steps are similar to

that of TRAIN. After that, human labeling is also appended to verify the correctness and

availability of the data, which ensures the robustness for the following experiments.

15
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Table 3.1 and Table 3.2 show the distributions of TRAIN-100 and TEST we created.

It should be noted that the distributions are both not balanced in the two datasets with

some languages dominant, especially for the TRAIN, for which we adopt macro average

to evaluate the results, as described in Chapter 4, in order to prevent bias from evaluation

metrics.

16
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Language (code) #Records Percentage(%)

English (en) 1682212 13.833
French (fr) 1234500 10.151
Spanish (es) 1087093 8.939
German (de) 985722 8.106
Russian (ru) 787114 6.473
Chinese (zh) 776704 6.387
Italian (it) 654711 5.384
Thai (th) 555698 4.570
Portuguese (pt) 549058 4.515
Turkish (tr) 498465 4.099
Polish (pl) 472085 3.882
Dutch (nl) 415889 3.420
Japan (ja) 402840 3.313
Korean (ko) 374836 3.082
Arabic (ar) 242015 1.990
Persian (fa) 236621 1.946
Greek (el) 200845 1.652
Swedish (sv) 200068 1.645
Hebrew (he) 189508 1.558
Catalan (ca) 127503 1.048
Finnish (fi) 125490 1.032
Vietnamese (vi) 106204 0.873
Czech (cs) 64285 0.529
Ukrainian (uk) 47426 0.390
Danish (da) 35671 0.293
Hungarian (hu) 26966 0.228
Hindi (hi) 18382 0.151
Norwegian (no) 14922 0.123
Romanian (ro) 13441 0.111
Serbian (sr) 11424 0.094
Indonesian (id) 10318 0.085
Latvian (lv) 5003 0.041
Bulgarian (bg) 4053 0.033
Basque (eu) 3724 0.031

Table 3.1: Distribution of TRAIN dataset, sorted in order of descending in Records.

17
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Language (code) #Records Percentage(%)

Spanish (es) 9665 6.326
Polish (pl) 8785 5.750
Russian (ru) 8534 5.585
English (en) 8387 5.489
Dutch (nl) 8089 5.294
Portuguese (pt) 7793 5.100
Japan (ja) 7639 5.000
Finnish (fi) 7466 4.886
Chinese (zh) 7376 4.827
Vietnamese (vi) 7176 4.697
Thai (th) 7065 4.624
German (de) 6774 4.433
Italian (it) 6759 4.423
Korean (ko) 6738 4.410
Swedish (sv) 6544 4.282
Turkish (tr) 6360 4.162
French (fr) 6194 4.054
Arabic (ar) 5816 3.806
Danish (da) 5531 3.620
Norwegian (no) 5512 3.607
Indonesian (id) 5383 3.523
Hindi (hi) 3207 2.099

Table 3.2: Distribution of the TEST dataset, sorted in order of descending in Records.
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3.2 Learning-based Methods

3.2.1 fastText

fastText is an open source and simple classifier for text classification but also achieves

competitive performance in various NLP tasks. It has two highlighted features introduced

below.

1. Fast training and running: Joulin et al. (2017) carried out experiments showing

that fastText is able to process half a million sentences with 312K classes in less than a

minute, after trained on over a billion words in less than ten minutes with a standard multi-

core CPU. The fast training and running speed is largely owing to its simple architecture

showed in Fig. 3.1. As we can see, it is a linear model with rank constraint and there is

only one hidden layer in between.

Another improvement on running time is the utilization of hierarchical softmax (Good-

man, 2001) and Huffman coding tree (Mikolov et al., 2013b). Generally, while training

on large corpora with the number of classes growing dramatically, the computational con-

sumption of the linear classifier becomes expensive. Mathematically, the computational

complexity is O(Kd) where K denotes the number of classes and d the dimension of text

representation. After apply hierarchical softmax, the computational complexity drops down

to O(dlog2(K)) during training. The hierarchical softmax also has advantage on reducing

the computational complexity at testing in the way of targeting the leaves with maximal

probability when the depth of tree is fixed beforehand.

2. Subword information: Bojanowski et al. (2017) proposed an improved word embed-

ding method which can better capture the morphology and internal information of words,

inspired by skip-gram model (Mikolov et al., 2013b). Each word w is represented as a
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Output

Hidden

𝜒"𝜒# … 𝜒$%# 𝜒$

Figure 3.1: This is the model architecture of fastText for a sentence input with character
N -gram features x1, x2, ..., xN . Then the features are embedded and processed to form the
hidden layer.

bag of n-gram characters. In addition, special boundary symbols < and > are added to the

beginning and the end of words, indicating their own prefixes and suffixes for distinguish

from other words. Also, a word w itself is included in the bag of its n-gram characters.

Assume that we have a word letter and set n = 3, the word would be represented as

follows:

<le, let, ett, tte, ter, er>

and itself

<letter>.

Given a word w, we associate a vector representation v to each n-gram character. A word

can be represented as the sum of its vector representations, allowing us to identify the

Out-of-Vocabulary (OOV) words.
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3.2.2 BERT

Bidirectional Encoder Representations from Transformers (BERT) is an state-of-the-art

approach of pre-training language representations, which is able to train a language un-

derstanding model on large amount unlabeled corpora. Given the language model trained,

we can then use it for some downstream NLP tasks such as text classification, question

answering and automatic speech recognition with simple task-specific fine-tuning work.

Unlike word2vec (Mikolov et al., 2013a) and Golve (Pennington et al., 2014), simply

using numerical vector to represent a word in the corpus, BERT instead works in a contex-

tual way to get the word representations based on surrounding words. For instance, ’can’ in

the sentence ’Can you can a can as a canner can a can?’ has completely different meanings.

The first ’can’ is regarded as a modal auxiliary, the second and fourth ’can’ regarded as verb

and the third and fifth is taken as noun. It does not make sense to just embed a polysemous

word by one single vector representation. Moreover, another key innovation of BERT is

that it implement a bidirectional learning through a Transformer encoder in pre-training

contextual representations. There are some models like ELMo (Peters et al., 2018), ULM-

Fit (Howard and Ruder, 2018) and Generative Pre-training (Radford et al., 2018) also able

to capture contextual representations during pre-training, however, all of them are either

unidirectional or pseudo-bidirectional. This means that they learn the word representations

of each word by the words to its left or right, or simply through a combination of language

models trained via left-to-right and right-to-left.

BERT’s model architecture is composed of a multi-layer bidirectional Transformer en-

coder and is largely identical to the the original one proposed in Vaswani et al. (2017).

The framework of Transformer is built upon Sequence-to-Sequence proposed in Sutskever

et al. (2014), both consisting of an encoder and a decoder, which mainly convert an input
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sequence into an arbitrary output sequence. However, the difference is that Transformer

relies entirely on attention mechanisms, in contrast to Sequence-to-Sequence models made

up of deep neural networks (DNNs) such as Long Short-Term Memory (LSTM), Recur-

rent Neural Networks (RNN) and Gated Recurrent Units (GRU). Replacing of DNNs by

attention mechanisms has been proved to achieve better performance in some sequential

problems. The structure of Transformer is shown in Fig. 3.2.

Figure 3.2: The structure of Transformer (source from Vaswani et al. (2017)).
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The left side is the encoder consisting of N identical layers stacked, where each layer

has two sub-layers and is concatenated to the previous one if there exists. More specifically,

the output of the previous layer is the input of the latter, and the output of the last layer is

the result of the encoder. The right side is the decoder whose structure is similar and also

stacked by the same amount of identical layers, but containing one more attention based

sub-layer. Multi-head attention and fully connected feed-forward networks are the two

innovations of the encoder structure. In multi-head attention, queries (Q), keys (K) and

values (V) are projected h times linearly by another attention called scaled dot-product,

then the resulting outputs are concatenated and projected again to form the final values.

This procedure allows the model to perform parallelly and address the position information

from different subspaces. The structure of multi-head attention is shown in Fig. 3.3 and the

output of it can be calculated by Eq. 3.1.

Multi-Head(Q,K, V ) = Concat(head1, ..., headh)W
O,

where headi = Attention(QWQ
i , KWK

i , V W V
i ).

(3.1)

There are two exact steps to construct a BERT model: pre-training and fine-tuning.

Pre-training is the procedure of generating a language model by training on large amount

unlabeled data on two different tasks: Masked Language Model (MLM) and Next Sentence

Prediction (NSP). In order to get a bidirectional representation, MLM first mask a certain

percentage of the tokens in the input sequence (conventionally 15%), then run the entire

sequence through bidirectional Transformer encoder and lastly predict the masked tokens.

An example of how MLM works is shown below:
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Figure 3.3: The structure of multi-head attention (source from Vaswani et al. (2017)).

Masked Language Model (MLM)

Input: The man was [MASK]1. He wanted to buy a
[MASK]2 of water.
Labels: [MASK]1 = thirty; [MASK]2 = bottle.
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Another task NSP is developed to learn the relationships between sentences from any

monolingual corpus, which could not directly obtained by language modeling. Examples

of NSP are shown below:

Next Sentence Prediction (NSP)

Ex.1:
Input: The man was thirty. He wanted to buy a bottle
of water.
Labels: IsNext.

Ex.2:
Input: The man was thirty. How is the weather today.
Labels: NotNext.

It should be noted that it is fairly expensive to pre-train a language model (generally four

days on 4 to 16 Cloud TPUs) from scratch but handy to utilize the pre-trained ones released

along with the paper (Devlin et al., 2018) as they are trained for language understanding

and compatible with most of the NLP downstream tasks. Thus, we decide to opt for the

pre-trained model and fine-tune the output layer on our task with appropriate data structure.

Fine-tuning is relatively straightforward and inexpensive compared to the pre-training

step. For our LID task, we first pre-process the task-specific inputs and outputs into accept-

able format, load them to BERT and lastly fine-tune all the default parameters passed from

pre-trained model.
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3.3 Dictionary-based Method

Assuming we have a dictionary containing all the words of languages being used all over

the world, then LID problem would be addressed easily and brute-forcedly by simply look-

ing up the input text in the dictionary. Before building up such a huge dictionary, we

first need to construct a dictionary for every single language that maps each word to a

corresponding language. However, many languages share common words (e.g. Japanese

borrows words from Chinese, Indonesia borrows words from English, Danish, Swedish

and Norwegian share words since a long time ago as they are geographically aggregated),

which pose difficulties to LID. One way to solve this problem is bring in a frequency value

to each word per language. We call this idea Look-up Method (LKM) and will introduce it

in detail in the remainder of this section.

3.3.1 Construction of Dictionary

We built two dictionary, Dict1 was generated from the word vectors available in Grave et al.

(2018). We only extracted the words from the word vector for each language, excluding

the 300 dimension vectors, where the words aligned in descending frequency order. Each

word then was mapped to a frequency value F given by

F =
1

R× log(C)
, (3.2)

whereR is the row number of the word and C the total number of words. After that, we

assigned a language code indicator (Robin Cover, 2001) to each word in the same language,

and each dictionary per language is formed as shown in Fig. 3.4.
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{..., ’word’: (language code, frequency value), ...}.

Figure 3.4: Example of the dictionary in a language

Next step is to merge the dictionaries with each other. When the same words with dif-

ferent values (i.e language codes and frequency values) conflicted while integrating into a

large combined dictionary, we reformed the structure of key-value pairs, putting all cor-

responding values together for one single key. After integration, the final dictionary was

constructed in the form of:

{..., ’word’: [(language code 1, frequency value 1),
(language code 2, frequency value 2), ...], ...}.

Figure 3.5: Example of the format in Dict1

The second dictionary Dict2 was built by following the similar steps above, but with

different source available on website Hermit Dave (2018), which is originally generated

from the subtitle corpus OpenSubtitles (2018). The source we utilized were word frequency

lists in over 60 languages, where each list contains mappings from words to frequency

values indicating the number of occurrences in the corpus. By example in English list, the

content is formatted as shown in Fig. 3.6.

We initially extracted 50k words per language in order to have the distribution of lan-

guages balanced, which then proved to be insufficient for certain languages. We finally

took the whole list from each languages to build Dict2. Note that we did not assign fre-

quency value like Equation 3.2 to words in Dict2, but adopted their original frequency

values shown in Fig. 3.6. The final format of Dict2 is exactly same as Dict1 shown in Fig
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you 28787591
i 27086011
the 22761659
to 17099834
a 14484562
it 13631703
and 10572938
that 10203742
... ...

Figure 3.6: Example of word frequency in English list

3.5.

3.3.2 Algorithm

The algorithm of our LKM on language identification is illustrated in Table 3.3. This

method works better in classifying shared words across multiple languages than some tra-

ditional dictionary-based method such as the one proposed in Wang et al. (2015). For

example, original English words ’ok’, ’okay’ and ’hello’ are extensively used in most lan-

guages, original Chinese words ’今’ and ’日’ are now being used by both Chinese and

Japanese. Frequency value is then utilized to solve this issue, distinguishing same words in

different languages by the number of occurrences. Thus, the Top 1 language with highest

value means the word occurs most frequently in it, which could be consider as the most

likely prediction in single label classification. Also, LMK works well on short text. As

long as the words captured in dictionary are rich enough, and the degree of purity with

each language is high enough, LMK would perform presumably good. The performance

of this method is highly relying on the quality of dictionary, where is also the weakness

derived from. The input text is required to be cleaned up and tokenized at the beginning,
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which shows the limitation of this method. Moreover, abbreviation and colloquialism pose

challenge for detecting languages with LKM in such situation
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Algorithm of LKM: Dictionary-Based Method

INPUT: A raw text M
RETURN: (language code, frequency value, not found ratio).
A tuple containing the detected language, the frequency value and the not
found word ratio within Dict2.

STEPS:
0. Initialize the Dict which maps a word to a list of corresponding language
and frequency;
1. Initialize a mapping results ;
2. Initialize a counter notfound to be zero ;
3. Tokenize M into a sequence of words words by space whose length is
words size, ignoring punctuation, numbers and symbols;
4. For each word in words do

if word in Dict.keys then
preds← Dict[word]
normalize(preds)
for each pred in preds do

results[pred[0]].append(pred[1])
else notfound += 1;

5. If results is not empty then
for lang, score in results do

results[lang]← sum(score)/words size
top 1 lang = max(results)

6. return (top 1 lang, results[top 1 lang], not found/words size)

Note:
1. normalize function takes a sequence of language and frequency value pairs
as input and return a normalized frequent value to each detected language.
2. max function returns the language with highest frequency value.

Table 3.3: Algorithm of Dictionary-Based Method on language identification
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3.4 Ensemble Model

In this section, we will show how to integrate fastText and LKM introduced above to form a

ensemble model which combines the advantages of both models for language identification.

To integrate the two models, we first tried the SVM model available in Chang, Chih-

Chung and Lin, Chih-Jen (2011), which turned out to be of low performance as SVM works

better for combining more than three models. Later on, we found a traditional way to in-

tegrate the models by simply setting prediction threshold and logic gate. The threshold of

fastText’s prediction probability is set to 0.85 under multiple experiments and ’notfound’

ratio is limited to 0 since we want to maximize the confidence we have on LKM’s predic-

tion. A clear flow chart of how the ensemble model works is shown in Fig. 3.7.

INPUT TEXT

fastText LKM

fastText’s 
Prediction 

probability < 0.85 
& 

notfound = 0 ?

return fastText result return LKM result

Prediction Prediction

No Yes

Figure 3.7: Work flow of Ensemble Model integrating fastText and LMK for language
identification
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Chapter 4

Implementation and Experimental

Results

In this section, we will first go through the datasets for training and testing in our experi-

ments, then the implementation details about training. The evaluation metrics used will be

introduced as well, followed by the experimental results and comparison of our methods.

4.1 Datasets for Training and Testing

For training and validation, we want to make sure all data in the dataset are 100% truly

labeled, thus we take TRAIN-100 (12,160,796 records) introduced in Chapter 3.1 and di-

vide it into 98% (11,917,580 records) training and 2% (243,216 records) validation set.

For testing, a gold test set TEST (152,793 records) is used for individual test in order to

better assess the generalization capacity of the models. The distributions of TRAIN-100

and TEST are shown in Table 3.1 & 3.2. Also, Table 4.1 clearly demonstrates that the data

in these two datasets are both short texts compared with WiLI-2018 whose average length
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is 371, which exactly fits our case.

Dataset #Records #Labels Avg. Length Std.

TRAIN-100 12,160,796 34 50 58

TEST 152,793 22 28 42

Table 4.1: Statistics for TRAIN-100 and TEST.

Each text in the two datasets associated with its corresponding single language code

label, which is also considered as ground truth. The language codes adopted as labels are

under ISO 639-1 standardized nomenclature (Robin Cover, 2001), where each language is

assign a two-letter lowercase abbreviation (e.g ’English’ as ’en’, ’French’ as ’en’, ’Chinese’

as ’zh’ and ’Portuguese’ as ’pt’). Particularly, fastText requires the input for training to be

formatted in a specific way which is ”__lang.label__ text” as shown in Table 4.2

below.

Input (Lable + Text)

__lang.en__ welcome everybody

__lang.fr__ Bienvenue a tous

__lang.es__ buen clima hoy

__lang.it__ Era meglio se non si iniziava sta guerra

__lang.tr__ cellat

__lang.de__ wie alt bist du

__lang.en__ we will meet there

Table 4.2: Examples of input format for fastText.

(Note: These examples are for explanatory purpose only and
do not reflect real data in above datasets)
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4.2 Implementation

The fastText related experiments are carried out on an Amazon Web Service (AWS) ma-

chine learning instance with 4 vCPUs and 16GB memory. Training and testing on BERT

are more computationally-intensive, so they are carried out on Valohai deep learning man-

agement platform with 32 vCPUs, 488GB RAM and 8 × K80 GPUs with 96GB memory.

fastText

fastText is a computationally-friendly model that can be trained on multi-core CPU effi-

ciently. There are two ways to train it, one is using command line tool and the other is by

importing its Python library binding the complete C++ source code (Facebook Research,

2019). We train fastText by its Python library in order to have some self-defined func-

tions integrated in order to better illustrate the performance with statistical information and

graphs.

We first try the fastText classifier lid.176.bin with default parameters setting available

on their website Facebook Inc. (2019). After obtaining the result, we find it could be

enhanced by customizing the training parameters. Thus, we fine-tune the fastText model

by applying a wide range of parameters, while keeping the rest default. The options we use

for fine-tuning are shown in Table 4.3, where minn and maxn stands for the minimal and

maximal length of character n-grams, dim for the size of word vectors and minCount for

the minimal number of word occurrences.
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Parameters Options

learning rate [0.25, 0.5, 0.8, 0.9]
epoch [6, 8, 9, 10]
minn [1, 2, 3]
maxn [3, 4, 5]

pretrainedVectors [yes, no]
minCount [15, 20, 30, 31]

dim [100, 300]
window size [3, 4, 5]
loss function [’ns’, ’hs’, ’sm’]

Table 4.3: Parameter options for fine-tuning fastText model.

BERT

As pre-training BERT is expensive in resources and time, we instead use the pre-trained

language model BERT-Base, Multilingual Cased released by Google Research (2019) for

our classification task. For fine-tuning, we initial our hyper-parameters learning rate as

0.00002, batch size of training as 256, number of epoch as 3 and warm-up proportion as

0.1. Without using the default deep learning framework TensorFlow released by Google,

we implement the whole experiment in Pytorch version adapted from a third party NLP re-

searchers available on https://github.com/--huggingface/transformers.

4.3 Evaluation Metrics

For classification task, we use confusion matrix shown in Table 4.4 containing True Positive

(TP), False Positive (FP), False Negative (FN) and True Negative (TN) to evaluate the

classification results of each class.
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Prediction Truth: A Truth: Not A
A TP FP

Not A FN TN

Table 4.4: Confusion matrix of example class A.

Also, some conventional metrics for classification task - accuracy, precision, recall, F1-

score, micro and macro average are adopted for evaluation. Typically, accuracy refers to

how close of a measurement to a true or accepted value and is defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
. (4.1)

Precision refers to how reproducible the measurements are and how stable the classifier

is:

Precision =
TP

TP + FP
. (4.2)

Recall, also know as sensitive reflects how complete the results are:

Recall =
TP

TP + FN
. (4.3)

F1-Score is an overall evaluation metric and simply defined as the harmonic mean of

precision and recall:

F1-Score = 2× Precision×Recall

Precision+Recall
. (4.4)

Since we deal with a multi-class classification task, thus we evaluate the performance

from both micro and macro view. Assume that we have K classes (K language classes)
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where K ∈ Z+, precision and recall from micro view are defined as follows:

Micro Avg of Precision =

∑K
i=1 TPi∑K

i=1 TPi +
∑K

i=1 FPi

, (4.5)

Micro Avg of Recall =

∑K
i=1 TPi∑K

i=1 TPi +
∑K

i=1 FNi

. (4.6)

From macro view, precision and recall are defined as:

Macro Avg of Precision =

∑K
i=1 Precisioni

K
, (4.7)

Macro Avg of Recall =

∑K
i=1 Recalli

K
, (4.8)

where Precisioni refers to the precision in class i, Recalli the recall in class i and

i ∈ (0, K].
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4.4 Results and Comparison

Table 4.5 shows a comparison about the performance on validation and test set of the mod-

els we experiment with. Apparently, both learning-based methods, fastText and BERT, per-

form fairly well on validation set, achieving accuracy close to 100% separately. It proves

our fine-tuning on fastText and training on BERT does not cause over-fitting. In terms of

the performance on our gold test set, one surprising finding is that BERT, a state-of-the-

art pre-trained language model in NLP domain, turns out to be the worst model among

four. It is even not able to beat the performance of LKM, a dictionary-based method that

has little knowledge about text representation and sentence structure. One possible reason

is that BERT has little advantage in addressing short text material which does not incor-

porate enough syntactic and semantic information inside. Compared with BERT, another

learning-based method fastText gains 89.6% accuracy and 6% over it. Unlike the bidi-

rectional transformers used in BERT, the meaningful information of the input text, i.e.

morphology and semantic information of words are embedding into vector representations

in fastText, which may attribute to the better result. It is worth noting that simple structure

and traditional word representation approaches seem to work better in the sense of LID in

short text.

The best result on gold test set is achieved by the ensemble model of fastText and

LKM, which is 89.9% accuracy, 0.3% slightly higher than fastText and 5.1% over LKM.

The intention of ensemble model is to combine the advantages of the component models,

achieving a performance to be the best, or at least perform as well as the worst one in the

ensemble. Therefore, we select the best two performing models to build the ensemble. In

addition, it should be noted that fastText and LMK are easier to be integrated together due

to the simple structure compared to BERT, which is another reason of opting for them. The
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result below has proved our assumption of trying model combination.

Model Accuracy
Validation Test

fastText 0.998 0.896
BERT 0.999 0.836
Look-up Method (LKM) N.A. 0.848
Ensemble Model (EM) N.A 0.899

Table 4.5: Performance in accuracy of various models on validation and test set. The results
in this table are calculated under macro metrics and the same for the following results in
this section.

The performance of the models on individual language are shown in Table 4.6. Ap-

parently, the ensemble model is dominant in classifying the individual language correctly,

followed by fastText, LMK and BERT. Specifically, the ensemble model works fairly well

on the 15 out of 22 languages with accuracies above the average 90.0%, and 8 of them

are higher than 95% and accuracy in Korean is even close to 100%. It is obvious that

the biggest challenge comes from identifying Hindi(hi) and Norwegian(no) with accura-

cies of 60.0% and 70.8% separately. Looking back to the training and test sets, we notice

that Danish(da) and Norwegian(no) share a lot of words in common, because they are

geographically-linked and both belong to North Germanic languages. With regard to the

worst result of individual language, Hindi(hi), we note that there exist two different scripts

of ’hi’ in gold test set, Devanagari script and Arabic script, while the latter is the only kind

in training set. Thus, there is no way for models to capture semantic information for one

script in a language but trained on another script for the same language.
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Language fastText BERT LKM Our EM

ar 0.981 0.957 0.916 0.983
da 0.789 0.724 0.773 0.792
de 0.920 0.870 0.874 0.921
en 0.817 0.919 0.866 0.852
es 0.904 0.851 0.871 0.908
fi 0.889 0.821 0.850 0.910
fr 0.923 0.840 0.829 0.915
hi 0.587 0.606 0.554 0.600
id 0.791 0.572 0.685 0.799
it 0.895 0.851 0.871 0.903
ja 0.933 0.928 0.908 0.931
ko 0.997 0.995 0.997 0.997
nl 0.925 0.854 0.874 0.932
no 0.722 0.542 0.561 0.708
pl 0.963 0.865 0.876 0.963
pt 0.915 0.789 0.805 0.903
ru 0.977 0.967 0.945 0.979
sv 0.871 0.768 0.853 0.876
th 0.999 0.992 1.000 0.999
tr 0.967 0.798 0.846 0.965
vi 0.959 0.887 0.912 0.955
zh 0.981 0.986 0.989 0.984

Table 4.6: Performance of individual language in accuracy of various models.
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Comparion with Other Systems

Apart from the results above, we also evaluate the performance of our EM by comparing

its result with other state-of-the-art LID solutions on the same test set, such as Google

Translate API (https://cloud.google.com/translate/) and an off-the-shelf

tool Langid.py mentioned in Chapter 2.

Google Translate is configured a feature of language detection for 104 languages so far,

while Langid.py supports 97 languages. It is surely fair to conduct this comparison on gold

test set because the languages in it are both supported by Google Translate and Langid.py.

Also, we do not employ any changes to these solutions as they are claimed to be ready for

off-the-shelf use.

Table 4.7 shows the comparison result, and obviously, our EM outperforms the other

two advanced solutions by 3.7% and 26.1% separately. More specifically, Table 4.8 demon-

strates the detailed performance on individual language of the them. The accuracy of

Langid.py is almost inferior to the other two across the board, except for Chinese(zh) where

it is equal to Google Translate. The performance of EM and Google keep competitive,

however, EM is still dominant in detecting the languages correctly for most of them. It is

notable that Google is relatively good at identifying languages with shared words such as

’da’, ’no’ and ’sv’, achieving better results compared with EM. Also, the accuracy of ’hi’

is improved to 81.4% by Google, which is 21.4% over than that of EM.

Solution Accuracy

Our EM 89.9%
Google Translate API 86.2%
langid.py 63.8%

Table 4.7: Comparison of benchmark results with other systems in decreasing order.
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Language Our EM Google
Translate API Langid.py

ar 98.3% 90.9% 79.9%
da 79.2% 77.5% 48.3%
de 92.1% 88.7% 71.5%
en 85.2% 86.7% 76.8%
es 90.8% 83.1% 57.4%
fi 91.0% 83.9% 61.8%
fr 91.5% 85.4% 58.9%
hi 60.0% 81.4% 39.5%
id 79.9% 60.5% 21.6%
it 90.3% 86.7% 57.6%
ja 93.1% 95.4% 88.4%
ko 99.7% 99.9% 96.8%
nl 93.2% 88.8% 61.8%
no 70.8% 78.0% 29.1%
pl 96.3% 85.9% 70.2%
pt 90.3% 83.3% 44.8%
ru 97.9% 79.8% 55.7%
sv 87.6% 85.3% 53.7%
th 99.9% 100.0% 99.7%
tr 96.5% 81.4% 52.1%
vi 95.5% 95.7% 81.5%
zh 98.4% 97.1% 97.1%

Table 4.8: Performance of individual language in accuracy of benchmark results.
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Chapter 5

Conclusion and Future Work

In this work, we have proposed four language identification methods on short textual data,

including two learning based methods fateText and BERT, a traditional dictionary based

method LKM and an ensemble model. This ensemble model is composed of fastText and

LKM, and is hard integrated using logic gates and prediction thresholds. The experimental

results show that the ensemble model achieves about 90% accuracy, outperforming the

other three even the state-of-the-art pre-training language model on gold test set created by

us. Moreover, it beats the performance of Google Translate API and an industry leading

tool Langid.py by 3.7% and 26.1% separately, showing its competitiveness to state-of-the-

art solutions on this task.

However, there is still much space for it to get improved. One of its component, LKM,

is proved to be low accurate in predicting some languages from the results. This can be

improved by adding more words into its dictionary. Also, LKM requires the input to be

tokenized, restricting its application into a wide range of user cases. Moreover, the size of

the dictionary in LKM would explode once we increase the supporting languages largely.

Accordingly, We need to rethink the structure of storing the word-frquency pairs, and come
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up with an efficient way to decide the amount of words retained.

Unlike language identification on long texts considered as a ’solved’ task, the task on

short texts is still a challenging problem in NLP. Some issues arise from it happening in

our experiment. Specifically, countries in northern Europe are geographically-linked and

share a number of words in common, posing a big challenge for our model to identify them

accurately. This is more particularly difficult when it comes to short texts that provide little

syntactic and semantic information. In fact, our LKM has already been able to distinguish

languages with same words somehow by its built-in frequency values. And we also notice

expanding the corpus of training for these languages does not help much, because no unique

information of the shared words would be detected during training. Thus, we think further

improvement can be relied on appending rule based or domain based features by languages

specialists or native speakers.

Another challenge related to Hindi(hi) with worst accuracy of 60% comes from the

generic nature of our experiment design. We aim to evaluate the generality of models

by training and testing them on different distribution datasets without data overlapping,

which causes the problem of different scripts of a language individually appearing in either

training or test set. One simple solution to it is enlarging the corpus of the missing script in

LKM’s dictionary.
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