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Abstract 

Climate change has widespread impacts on the environment, economy, and municipal 

planning. Thus, generating accurate, high resolution climate predictions could aid in the  

assessment of the impacts of climate change on a local scale. Multi-model ensembles have 

been proven to improve the accuracy of climate prediction, and machine learning 

techniques are a promising tool for temperature downscaling. The thesis investigates 

machine learning and statistical methods in the development of multi-model ensembles for 

climate downscaling. 

Firstly, three neural network algorithms are used to develop multi-model ensembles 

for daily mean temperature downscaling, including Multi-layer Perceptron (MLP), Time-

lagged Feed-forward Neural Network (TLFN) and Nonlinear Auto-Regressive Network 

with exogenous inputs (NARX). The inputs and outputs are the simulated daily mean 

temperatures obtained from six Regional Climate Models (RCMs) collected from the North 

American Coordinated Regional Downscaling Experiment (NA-CORDEX) archive and 

observed daily mean temperatures collected from the Digital Archive of Canadian 

Climatological Data, respectively. A case study of Big Trout Lake in Ontario, Canada is 

carried out as a preliminary study to evaluate the performance of the proposed neural 

network models. The results show that the neural network based ensembles outperformed 

each of the individual regional climate models and generated predictions with smaller 
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fluctuations. 

Secondly, the thesis investigates and compares the applicability and performance of 

machine learning and statistical methods in developing multi-model ensembles for 

downscaling long-term daily temperature. The machine learning methods include Long 

Short-Term Memory (LSTM) networks and Support Vector Machine (SVM) and the 

statistical methods include arithmetic ensemble mean (EM) and Multiple Linear Regression 

(MLR). These ensembles share the same input and output variables with the preliminary 

study. The performance of the proposed machine learning and statistical ensembles are 

evaluated at twelve meteorological stations across Ontario, Canada. The results show that 

multi-model ensembles with machine learning or statistical techniques all performed well 

at downscaling daily temperature, and had similar performance with relatively high 

accuracy. This is the first attempt to apply advanced machine learning techniques and 

compare them with statistical methods in developing multi-model ensembles for 

downscaling in Canadian communities. The results provide a technical basis for applying 

statistical and machine learning methods to generate long-term high-resolution daily 

temperature projections. The generated climate projections will also provide useful 

information to support climate adaptation in Ontario.  
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1. Introduction 

1.1 Background 

The earth’s climate has changed throughout history, and the accelerated rate of 

temperature change in modern history and the impacts of temperature on modern 

infrastructure has led to a need for climate adaptation. According to the IPCC Special 

Report on Global Warming of 1.5°C, observed global mean surface temperature for the 

decade 2006–2015 was approximately 0.87°C higher than the average over the 1850–1900 

period (IPCC, 2018). The increased temperature has dramatic adverse impacts on 

ecosystem, agriculture, water resources, and infrastructure (Calzadilla et al., 2013; Grimm 

et al., 2016; Neumann et al., 2014; Wallach et al., 2016; Wheeler and Von Braun, 2013), 

which have led to significant cultural, economic, and environmental losses (Adger et al., 

2013; Adger et al., 2012; Bouwer, 2013; Stern, 2016). Rising temperatures and climate 

variations have also resulted in an increase in the frequency and intensity of extreme events, 

such as heat waves and droughts (Rahmstorf and Coumou, 2011; Trenberth et al., 2014), 

which have had adverse impacts to public health and ecosystems (Naughton et al., 2002; 

Walther et al., 2002). To better adapt to the changing climate, there is a need for the 

investigation of climate patterns and generation of reliable, long term climate projections. 

In the late 1960s, General Circulation Models (GCMs) were developed to simulate the 

global climate. A GCM is a complex mathematical representation of the major climate 
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system components (atmosphere, land surface, ocean, and sea ice) and their interactions 

(Goosse et al., 2010). Simulating the climate at a global scale is extremely computational 

demanding, thus, GCMs have a low resolution at both spatial and temporal scales, with a 

horizontal resolution of between 150-300 km and a temporal resolution ranging from 

hourly to monthly (Jalota et al., 2018). A number of GCMs have been developed by 

different institutions around the world. They are composed of different atmospheric and 

physical ocean components. For instance, Canadian Earth System Model (CanESM2) was 

developed by the Canadian Centre for Climate Modeling and Analysis (CCCma) (Fyfe et 

al., 2013; Hua et al., 2015). European community Earth-System Model (EC-EARTH) was 

developed by the European EC-Earth consortium and Max Planck Institute Earth System 

Model (MPI‐ESM) was developed by Max-Planck-Institut für Meteorologie from Germany. 

As the resolution of GCMs is too coarse to provide detailed information for impact 

assessment and planning at a local scale, downscaling methods are utilized to bridge the 

gap.  

Dynamical and statistical downscaling are the two main approaches for downscaling. 

Dynamical downscaling uses a Regional Climate Model (RCM) driven by boundary 

conditions from a GCM to derive finer-scale information. RCMs are capable of better 

representing the local landscape and possibly local atmospheric processes. RCMs run on a 

regional sub-domain area and generally have a high-resolution of 10 to 50 km (Leung et 
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al., 2003). Similar to GCMs, RCMs use physical principles to reproduce local climates. 

Thus, they are computationally intensive, which is the main limitation of both GCMs and 

RCMs. Although the resolution of RCMs is higher than that of GCMs, the grid size of 

RCMs is still too coarse for local climate impact studies. Thus, post-processing is required 

to obtain high-resolution information. For instance, statistical methods are used to further 

downscale RCM outputs.  

 

1.2 Objective and Scope  

The objective of this research is to investigate the performance of machine learning 

and statistical methods in developing multi-model ensembles for daily temperature 

downscaling. This entails the following tasks: 

(1) collecting North American Coordinated Regional Downscaling Experiment (NA-

CORDEX) data to provide RCM outputs to feed the proposed models;  

(2) developing three neural network models including Multi-Layer Perceptron (MLP), 

Time-lagged Feedforward Neural Network (TLFN) and Nonlinear Auto-Regressive 

Network with exogenous inputs (NARX) models for daily temperature downscaling; 

(3) evaluating the performance of neural network models using a case study of the Big 

Trout Lake station in Ontario, Canada; 

(4) applying a number of statistical and machine learning techniques including Long Short-
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Term Memory (LSTM) networks, Support Vector Machine (SVM), arithmetic 

ensemble mean (EM), and Multiple Linear Regression (MLR) for developing multi-

model climate ensembles;  

(5) evaluating the performance of machine learning and statistical ensembles for daily 

temperature downscaling at 12 meteorological stations over Ontario, Canada. 

 

1.3 Organization of the Thesis 

The thesis consists of five chapters. Chapter 1 introduces the background and research 

objectives. Chapter 2 provides a review of temperature downscaling and ensemble 

modeling techniques. In Chapter 3, three neural network methods are applied in 

temperature downscaling as a preliminary study. The results of this preliminary study show 

that neural networks perform well for temperature downscaling, which provides a 

foundation for applying other machine learning methods to generate reliable temperature 

downscaling. In Chapter 4, machine learning and statistical methods are investigated and 

compared to develop multi-model ensembles for temperature downscaling. In Chapter 5, 

the main conclusions are summarized and the potential for future research is discussed. 
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2. Literature Review 

This chapter reviews several widely used RCMs, statistical downscaling methods, 

multi-model ensemble techniques and downscaling studies in Ontario. In particular, various 

statistical methods and machine learning methods applied for downscaling are introduced. 

 

2.1 Regional Climate Models  

Various RCMs have been developed to simulate the local scale climate. CanRCM4 and 

CRCM5 are two Canadian regional climate models developed by the Canadian Centre for 

Climate Modelling and Analysis (Ben Alaya et al., 2019). CanRCM4 was developed by 

employing a novel philosophy of coordinating RCMs and GCMs (Scinocca et al., 2016). It 

has a closer association with its parent GCM, the fourth generation of the Canadian 

Atmospheric Global Climate Model (von Salzen et al., 2013). Another Canadian regional 

climate model (CRCM) was developed by the University of Quebec (Martynov et al., 2012) 

and has been widely used for climate simulation (Laprise, 2008; Plummer et al., 2006). 

Different from CanRCM4, CRCM5 represents an independent RCM development and 

application (Scinocca et al., 2016). The horizontal resolution of CRCM5 and CanRCM4 

can be configured with 25km (0.22°) or 50km (0.44°) (Diro et al., 2014). Both two RCMs 

use the same dynamical core, while their physics packages are independent.  

RCMs developed by European institutions have also been commonly used for climate 
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studies, such as the Rossby Centre’s Regional atmosphere model (RCA4) and HIRHAM. 

RCA4 was developed by the Swedish Meteorological and Hydrological Institute 

(Strandberg et al., 2015). It is based on HIRLAM, a numerical weather prediction model 

(Cavazos et al., 2019; Samuelsson et al., 2016) and is generally set up and run at a 

horizontal resolution of 0.44°. Another RCM, HIRHAM, was developed by the Danish 

Meteorological Institute (Lucas-Picher et al., 2012). It is based on the dynamics of 

HIRLAM (Eerola, 2006; Undén et al., 2002) and the physical parameterization schemes of 

ECHAM, a GCM (Roeckner et al., 2003). Given that RCMs are computationally 

demanding, statistical downscaling is used to downscale GCMs and RCMs to finer 

resolutions.  

 

2.2 Statistical Downscaling 

2.2.1 Multiple Linear Regression 

Statistical downscaling refers to using statistical methods to downscale climate data 

from GCMs or RCMs. As it is based on the assumption that statistical relationship between 

large- and small-scale climate variables are stationary, the prediction performance of 

statistical downscaling under changing climate condition would be affected, which leads to 

its main limitation. However, given that statistical downscaling is a data-driven modeling 

process, it is straightforward to implement and is typically computationally less intensive. 
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Linear regression is one of the most commonly used techniques for statistical downscaling. 

Predictors and predictands are fitted with linear regression and the method has been widely 

applied in temperature downscaling (Mahmood and Babel, 2012). Schoof and Pryor (2001) 

applied the least-squares Multiple Linear Regression (MLR) for downscaling daily 

maximum temperature (Tmax) and minimum temperature (Tmin) with synoptic indices set 

as predictors. Huth (2004) applied an MLR model with gridded data and another MLR 

model of principal components to predict the change in daily temperature using 500- and 

1000-hPa heights, as well as 850-hPa temperature. Jeong et al. (2012) developed a 

multivariate multi-site statistical downscaling model based on MLR, which performed well 

in downscaling daily Tmax and Tmin from a 400-km resolution to station scale. Khalili et 

al. (2013) proposed an approach based on MLR and the spatial moving average process for 

downscaling extreme temperatures. The method could accurately describe Tmax and Tmin 

characteristics compared to CRCM. MLR has the simplest model structure and is the least 

computationally demanding downscaling technique. However, the drawback of MLR is 

that the assumption that relationship between the predictors and predictands is linear, which 

is not valid for most downscaling applications (Casson and Farmer, 2014). 

 

2.2.2 Neural Networks  

In the past three decades, machine learning methods have been widely applied in 
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downscaling and have shown promising results. Specifically, Artificial Neural Networks 

(ANNs) and Support Vector Machines (SVMs) are two categories of commonly used 

techniques. The concepts of ANNs were proposed by McCulloch and Pitts (1943), who 

were inspired by the human brain and developed algorithms to emulate its function 

(Tripathi et al., 2006). ANNs have been widely applied in many disciplines due to their 

capability to capture both nonlinear and linear relationships (Cannon and Whitfield, 2002; 

Snell et al., 2000; Tang et al., 2000). Jeong et al. (2011) compared MLR with ANN for 

downscaling Tmax, Tmin, and precipitation, and found that monthly MLR, which was 

calibrated on monthly series, performed better than annual ANN and annual MLR, which 

were calibrated on annual series, respectively. Goyal and Ojha (2012) compared the 

performance of MLR and ANN in downscaling mean monthly Tmax and Tmin from GCM 

outputs, and found that ANN-based models were statistically superior to MLR based 

models. It is still controversial whether neural networks outperform linear regression for 

downscaling (Gaitan et al., 2013; Huth et al., 2008; Miksovsky and Raidl, 2005). 

The Multi-Layer Perceptron (MLP) is the simplest model of ANN, which consists of 

at least three layers of nodes: an input layer, one (or more) hidden layer(s), and an output 

layer. It uses a back propagation algorithm to find the optimal values of weight vectors in 

order to minimize the error between the MLP outputs and target values. Haylock et al. 

(2006) compared statistical downscaling methods including MLP and dynamical 
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downscaling models for downscaling seasonal indices of heavy precipitation, such as mean 

precipitation and precipitation intensity. The results showed that MLP performed the best 

at modeling the inter-annual variability of the indices.  

As MLP does not consider time series effects, more advanced neural networks have 

been further developed based on MLP for solving time series problems, including Time-

Lagged Feed-Forward Network (TLFN) and Recurrent Neural Network (RNN). The input 

layer of TLFN is a memory structure that contains predictors of previous time steps. 

Coulibaly et al. (2005) applied TLFN in predicting daily precipitation, Tmax and Tmin, 

and found that TLFN performed well in prediction these time series. TLFN was also found 

to outperform the Statistical DownScaling Model (SDSM) based on MLR (Dibike and 

Coulibaly, 2006). Instead of incorporating past predictor samples as input, the Nonlinear 

Autoregressive with exogenous inputs (NARX) network, a type of RNN, feeds the 

predicted past values of the exogenous series back to the neural network by a delay line 

(Chen et al., 1990). NARX is suitable for predicting dynamic time series because of its 

long-term dependencies (Wang et al., 2019b). In the past few years, NARX has been widely 

applied in water resource prediction. Kronenberg et al. (2013) applied NARX in predicting 

water balance and NARX outperformed the coupled RNN and distributed watershed model. 

Aribarg et al. (2017) used NARX to predict monthly discharge under the impacts of climate 

change. NARX has shown great performance in time series prediction; however, it has not 
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been thoroughly investigated for climate downscaling.  

Another RNN, Long Short-Term Memory (LSTM) network, has been widely applied 

and proven to perform well in solving time series prediction problems. The LSTM network 

was introduced by Hochreiter and Schmidhuber (1997) to solve the gradient exploding and 

vanishing problems in RNN. LSTM is known to capture long-term dependencies and can 

selectively memorize past information, which provides a strong basis for time series 

prediction. It has been widely used in sequence learning (Sutskever et al., 2014) and 

translation in natural language processing (Wen et al., 2015). In recent years, it has been 

applied for downscaling climate projections. Tran Anh et al. (2019) proposed an LSTM 

model and a Feedforward Neural Network (FNN) model to downscale monthly 

precipitation data from five GCMs obtained from CMIP5 in Vietnam and found that the 

correlation between observed and predicted values of both models was good. The 

correlation coefficient (R) of the LSTM model was above 0.9, while those of FNN ranged 

between 0.60 and 0.85. Misra et al. (2017) compared the LSTM model to Deep Neural 

Network (DNN) and other regression methods, and found that LSTM performed the best 

in downscaling precipitation with CEP/NCAR predictor variables. Mouatadid et al. (2017) 

found that LSTM had high accuracy in downscaling daily mean temperature from 

reanalysis data compared to ANN and extreme learning machine. Salman et al. (2018) used 

single- and four-layer LSTM to predict visibility with intermediate data (temperature, 
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pressure, humidity and dew point) and showed that multi-layer LSTM outperformed the 

single-layer LSTM.  

 

2.2.3 Support Vector Machines 

SVM (Cortes and Vapnik, 1995) is another widely applied machine learning technique 

in downscaling. It implements the structural risk minimization principle, which attempts to 

minimize bounds on the generalization error (Anandhi et al., 2009). Thus, it has excellent 

generalization performance and can avoid getting trapped in local minima, addressing one 

of the weaknesses of neural networks. It can also capture both linear and nonlinear 

relationships between predictors and predictands by using different kernels. On the other 

hand, the limit choice of kernel and the selection of the kernel function parameters are the 

major limitations of SVM. Tripathi et al. (2006) applied SVM in downscaling precipitation 

and SVM was shown to be superior to MLP. Anandhi et al. (2009) downscaled monthly 

Tmax and Tmin using SVM and the results showed that SVM was a feasible downscaling 

technique. Aksornsingchai and Srinilta (2011) studied SVM with Radial Basis Function 

(RBF) kernel and polynomial (POL) kernel, and found that SVM-RBF was the most 

accurate model compared to SVM-POL and MLR in downscaling monthly average rainfall 

and temperature. Duhan and Pandey (2014) found SVM performed slightly better than 

ANN and MLR in downscaling monthly Tmax and Tmin in India. Srinivas et al. (2014) 
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applied SVM to obtain daily Tmax and Tmin with reanalysis data. The results showed that 

SVM performed well at pattern recognition and time series analysis. SVM has been used 

as a traditional method, but it has not been compared with advanced techniques. Now that 

there are many new methods such as the LSTM network and NARX suitable for time series 

prediction, the performance of SVM needs to be re-evaluated. 

 

2.3 Multi-model Ensembles  

As the accuracy of downscaling relies on the input predictors obtained from RCMs or 

GCMs, Multi-Model Ensembles (MMEs) are introduced to post-process RCMs to obtain 

those variables with higher accuracy. MME refers to combining predictions generated by 

different modeling systems (Doblas-Reyes et al., 2005). The concept originated from 

combining multiple subjective forecasters in weather forecasting (Sanders, 1963). It was 

then extended to an objective multi-model prediction system and has been shown to be 

superior to a single model (Clemen and Murphy, 1986). By combining multiple models 

using ensemble techniques, MME was established as a new approach (Harrison et al., 1995). 

The simplest MME is combining all ensemble members and assigning each model with the 

same weight (Hagedorn et al., 2005). More complex methods can also be applied to 

determine the weights of ensemble models (Rajagopalan et al., 2002). Krishnamurti et al. 

(1999) used a linear regression method to determine the weights and found the ensemble 
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outperformed all individual models for weather and hurricane forecasting (Krishnamurti et 

al., 2000). Robertson et al. (2004) developed an MME with weights of GCMs determined 

by an improved Bayesian optimal weighting scheme and the proposed MME outperformed 

the ensemble mean for seasonal prediction. Kharin and Zwiers (2002) found that ensemble 

mean and regression-improved ensemble mean could generate the most skillful forecasts 

in Tropics (30°S–30°N) and extratropics (Pacific–North America sector, 20°–80°N, 180°–

45°W), respectively. Li et al. (2016) found the weighted mean and reliability ensemble 

averaging methods showed better skill in simulating precipitation than the ensemble mean. 

Over the past few years, MME has also been investigated in other areas. Wang et al. (2019a) 

used GCMs as ensemble members and compared eight methods for assigning weights to 

GCMs based on their ability to represent hydrological simulations. Based on these results, 

the ensemble mean was recommended for climate impact studies. The rationale of MME 

performing better than a single model could be explained by the fact that MME includes 

information from all models (Hagedorn et al., 2005). Moreover, given that the performance 

of climate models varies with region and season, MME would be a pragmatic approach to 

generate an optimum forecast for a specific area during a specific period of time (Weigel et 

al., 2008). Particularly, the ensemble mean is the least computationally demanding method. 

However, with the increased application of advanced techniques such as machine learning 

in developing MMEs, the performance of the ensemble mean method needs to be 
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reassessed and compared with those advanced techniques. 

In recent years, machine learning methods have been applied in MME because of their 

strength in capturing nonlinear relationships among different ensemble members. Anderson 

and Lucas (2018) applied random forests and a multi-resolution perturbed parameter 

ensemble to predict high-resolution precipitation. Xu et al. (2019) applied the wavelet 

support vector machine (WSVM), wavelet random forest (WRF) and a traditional method 

(quantile mapping, QM) to downscale the North American multi-model ensemble forecasts 

at a local scale. The results showed that WSVM and WRF could improve the downscaling 

accuracy relative to QM. Wang et al. (2018) compared two machine learning methods 

(random forest and SVM) and two statistical methods (Bayesian model averaging and the 

arithmetic ensemble mean) in developing MME for reproducing monthly temperature and 

precipitation. Machine learning MME has shown to have higher accuracy than statistical 

MME. However, its performance and reliability in temperature downscaling at a higher 

temporal resolution (e.g. daily) have not been investigated. Specifically, advanced machine 

learning methods such as LSTM networks and NARX have not been applied in developing 

MME for temperature downscaling. 

 

2.4 Downscaling Studies in Ontario, Canada  

Over the past five decades, the province of Ontario has suffered from the effects of 
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climate change, including a rise in average temperatures and increase in the frequency and 

intensity of extreme weather events such as flooding and heatwaves. As the most populated 

province with the largest economy in Canada, climate change and extreme weather events 

can have considerable social, economic, and environmental impacts across the province 

(Lemmen et al., 2008). Downscaling research has been carried out to obtain local climate 

information for policymaking in Ontario to better adapt to climate change. Deng et al. (2017) 

proposed a novel method combining the Ensemble Optimal Interpolation and bias 

correction techniques for daily temperature and precipitation downscaling with multiple 

GCMs. Zhai et al. (2018) employed a stepwise clustered downscaling model to downscale 

multiple GCMs projections for the city of Ottawa, Ontario. The projection results all show 

that Ontario will experience significant warming trends over the century (Wang et al., 

2015a; Wang et al., 2015b). Samouly et al. (2018) developed MME based on mean and 

median to simulate monthly temperature in Ontario. The mean ensemble outperformed the 

median ensemble as well as all individual RCMs. However, most previous downscaling 

studies used multiple GCMs as inputs, while RCM outputs with a higher spatial resolution 

have yet to be used for building MME for Ontario. Meanwhile, machine learning methods 

have not been investigated for downscaling climate projections of Ontario. Thus, it is 

necessary to investigate machine learning and statistical methods in development multi-

model ensembles for climate downscaling in Ontario. 
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3. Prediction of Long-term Near-surface Temperature based on NA-

CORDEX Output 

Xinyi Li, Zhong Li, Qianqian Zhang, Pengxiao Zhou and Wendy Huang 

 

Abstract 

Temperature is one of the most important parameters in climate modeling, as it has 

significant impacts on various geophysical processes such as evaporation and precipitation. 

Applying multiple climate models for prediction generally outperforms the use of 

individual climate models, and neural networks perform well at capturing nonlinear 

relationships, which can provide more reliable temperature projections. In this study, three 

neural network algorithms, including Multi-layer Perceptron (MLP), Time-lagged Feed-

forward Neural Network (TLFN) and Nonlinear Auto-Regressive Network with exogenous 

inputs (NARX), were used to develop data-driven models for predicting daily mean near-

surface temperature based on North American Coordinated Regional Downscaling 

Experiment (NA-CORDEX) output. A case study of Big Trout Lake in Ontario, Canada 

was carried out to demonstrate the applications and to evaluate the performance of the 

proposed neural network based models. The results showed that MLP, TLFN, and NARX 

performed well in generating accurate daily near-surface temperature predictions with the 

coefficient of determination (R2) values above 0.84. The three neural network based models 

had similar performance with no significant difference in terms of root mean square error 
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and R2. Neural network based climate prediction models outperformed each of the 

individual regional climate models and generated smoother predictions with less 

fluctuation. This study provides a technical basis for generating reliable predictions of daily 

temperature using neural networks based model. 

Keywords: Neural Networks, Temperature Prediction, Regional Climate Model, NA-

CORDEX, Ontario 

  

3.1 Introduction 

Temperature changes have significant impacts on natural processes and human 

activities (Karl et al., 2009), for instance, biological changes (Parmesan and Yohe, 2003) 

and construction sensibility (Xia et al., 2012). Thus, predicting temperature precisely is of 

vital importance. Multiple climate models, such as Global Climate Model (GCM) and 

Regional Climate Model (RCM), have been developed and can be applied to temperature 

simulations and predictions, which provide support for climate impact analysis (Li et al., 

2016; Thomson et al., 2006; Wagner et al., 2017). These models were developed by 

different institutions and their temperature predictions are not always consistent with one 

another. Although these models have errors in certain processes (e.g., cloud formation), 

they can provide plausible estimations for future variations in climate (Huo and Li, 2012; 

Ragone et al., 2015).  
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Applying dynamic downscaling to drive RCM is computationally costly and time-

consuming (Spak et al., 2007). Moreover, the uncertainties in the modeling system lead to 

an increase in forecast errors with increasing forecast length (Kumar et al., 2012). Using 

statistical methods to post-process multiple RCMs would help to better generate predictions 

with higher accuracy than an individual RCM (Barfus and Bernhofer, 2014; Palmer et al., 

2005). For example, Samouly et al. (2018) used mean and median values of multi-model 

ensembles for monthly temperature predictions, which showed better prediction 

performance than using a single RCM. However, as each model generates a different range 

of predictions and errors, the mean value calculated by allocating the same weight to each 

RCM may not be enough to fully take advantage of each prediction model.  

Artificial neural networks (ANNs), which are more powerful than the regression-based 

techniques, have been widely applied in climate prediction because of their high potential 

for complex, nonlinear and time-varying input-output mapping (Von Storch et al., 2000). 

For instance, ANNs have been widely applied in statistical downscaling for temperature 

and precipitation prediction (Wilby and Wigley, 1997; Wilby et al., 1998). Previous studies 

suggest that using computer-based learning algorithms, such as ANNs, to develop accurate 

prediction models can profoundly reduce the long-term dependency (Caswell, 2014; 

Sfetsos, 2000; Shen and Chang, 2013; Siegelmann, 1997). Moreover, current and future 

temperatures have a close connection with the temperatures of previous days. Incorporating 
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both concurrent and antecedent predictor values as input could improve the accuracy of 

temperature prediction (Coulibaly et al., 2005). Various types of neural networks have an 

internal memory structures that can store information about past variables. Time-lagged 

feed-forward networks (TLFNs) and recurrent neural networks (RNNs) are the two major 

groups of dynamic neural networks that are commonly used in time series analysis 

(Coulibaly et al., 2001a; Dibike and Coulibaly, 2006). A TLFN simply replaces the neurons 

in the input layer of a Multi-layer perception (MLP) with a memory structure. It is less 

complex than the RNNs and has similar capability for processing temporal patterns (Dibike 

et al., 1999). TLFN is an efficient method for downscaling both daily precipitation as well 

as daily maximum and minimum temperature series (Coulibaly et al., 2005). The Nonlinear 

Auto-Regressive Networks with exogenous inputs (NARX) model is a dynamic network 

that has been widely used for time series prediction (Dhussa et al., 2014). It can learn the 

behavior of a system in an effective way. It also converges much faster and generalizes 

better than other networks (Çoruh et al., 2014; Lin et al., 1996). It has been demonstrated 

that NARX is capable of capturing the dynamics of nonlinear complex systems (Chan et 

al., 2015; Diaconescu, 2008). Moreover, NARX performs favorably on long-term 

dependencies (Rahimi et al., 2018). Thus, NARX is particularly useful for time series 

modeling.  

Considering that neural networks perform well at grasping the nonlinear relationships 
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between predictors and predictands, MLP, TLFN, and NARX models will be applied to 

simulate daily mean near-surface temperature and generate predictions basing on multiple 

RCMs. The goal of this study is to develop, validate and evaluate the performance of neural 

networks for daily mean near-surface temperature prediction with multiple RCMs in the 

province of Ontario, Canada. This entails the following: (1) collecting North American 

Coordinated Regional Downscaling Experiment (NA-CORDEX) data to provide inputs for 

the proposed neural network based models; (2) developing MLP, TLFN, and NARX models 

to generate daily mean near-surface temperature; (3) evaluating the performance of MLP, 

TLFN and NARX using a case study of the Big Trout Lake station in Ontario, Canada. 

 

3.2 Methodology  

3.2.1 Multi-layer Perceptron (MLP) 

MLP is a widely-used ANN model which usually consists of an input layer, one or 

more hidden layers, and an output layer (Fig. 3-1). Each layer includes some neurons (Jiang 

et al., 2018). The numbers of neurons in the input and output layers are determined by the 

numbers of elements in the external input array and output array of the network, 

respectively (Osman and Abdellatif, 2016). The number of neurons in the hidden layers are 

determined by the trial and error (Hammerstorm, 1993) for the best performing model. 

Different layers are connected with weights and biases. The connections between the layers 
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allow information flow forward towards the output layer. The neuron network first 

computes the weighted sum of the inputs, z, and feeds z into the neurons in the hidden layer 

(Eq. 3.1). A nonlinear activation function (.)f , is applied to z to get the output a of the 

neuron (Eq. 3.2). The network repeats the same process to the hidden layer (Eqs. 3.3 & 3.4). 

Rectified linear unit (ReLU), conventional sigmoids function, hyperbolic tangent function, 

and logistic function are examples of commonly used activation functions. The ultimate 

goal of training a MLP is to minimize the cost function (Eq. 3.5), which measures the errors 

between observations and predictions for training data. A back-propagation algorithm is 

used to find the minimum cost function using the chain rule of differentiation to calculate 

the partial derivative or gradient of the cost corresponding to the weights (Zhang et al., 

2018). Back-propagation calculates the error-derivative for the weight of each neuron to 

minimize the cost function. 

 

Fig. 3-1 Structure of MLP with one input layer, one hidden layer, and one output layer. 
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where xi is the ith input, aj is the output of the jth neuron; wij and wjk represent the weight 

of jth neuron in the hidden layer and kth neuron in the output layer, respectively; and b is the 

bias. C refers to the cost of the cost function, yk is the predicted output and tk is the observed 

true value. The error-derivative for the weight wjk on the connection from unit k is aj (∂C)/ 

(∂zk). The error-derivative for the weight wij on the connection from unit j is xi (∂C) / (∂zj) 

(Eq. 3.6). (LeCun et al., 2015). Eq. 3.7 shows the partial derivative of the cost function 

corresponding and activation function. 

 

3.2.2 Time-lagged Feed-forward Neural Network (TLFN) 

TLFN is formulated based on MLP and replace the neurons in the input layer with a 
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memory structure, which is sometimes called a tap delay-line, as shown in Fig. 3-2 

(Coulibaly et al., 2005). TLFN uses delay-line processing elements (PEs) by holding past 

samples of the input signal. The output y(n) of TLFN with one hidden layer is shown as Eq. 

3.8 (Coulibaly, 2004). 

 

Fig. 3-2 Structure of TLFN with one input layer, one hidden layer, and a delay-line with 

memory depth of k. (z-1 is an operator that delays the input by one sample). (Dibike and 

Coulibaly, 2006). 

 1 1 2

1 1 0

( ) ( ( ) ) { [ ( ) ] }
m m k

j j o j jl j o

j j l

y n f w y n b f w f w x n l b b
= = =

= + = − + +    (3.8) 

Where m is the size of the hidden layer, n is the time step, jw  is the weight vector for 

the connection between the output layer and the hidden layer, and jlw  is the weight matrix 

for the connection between the hidden layer and the input layer. 1f  and 2f  are the active 

functions at the output layer and hidden layer, respectively. ob  and jb  are the bias terms. 
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The input pattern x(n) has multiple inputs of size p (Eq. 3.9) and X(n) is the combined input 

at time step n, whose delay line with memory depth k (Eq. 3.10). x(n-1) is obtained by 

delaying x(n) by one sample.  

 ( ) ( ) ( ) ( )1 2=( , ,..., )  px n x n x n x n  (3.9) 

 ( ) ( ) ( ) ( ) ,  1 ,  ,  1X n x n x n x n k= −  − +    (3.10) 

 

3.2.3 Nonlinear Auto-Regressive Networks with Exogenous Inputs 

(NARX) 

Networks that use feedback connections, enabling information flow laterally or 

backwards within the network, are called RNNs. NARX is a special type of RNN that 

creates a relationship between the current value of a time series and predicted past values 

of the exogenous series, and the outputs are fed back to the input by a delay line (Haykin, 

1998). As shown in Fig.3-3, the structure of the NARX model is similar to the traditional 

multi-layered perceptron (MLP) model. The NARX model can be expressed as in Eq. 3.11 

(Lin et al., 1996).  

 ( )1 1,..  ., ; ,... , ,t t t dy t t t dxy y y x xf x− − − −=  (3.11) 

where tx  and ty  represent the input and output of the network at time t, respectively. 

(.)f  is a nonlinear function, which can be approximated by a standard MLP network. dx  

and dy  are the time lags for the input and output series (Lin et al., 1998).  
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Fig. 3-3 Structure of NARX with one input layer, one hidden layer, and one output layer  

(z-1 denotes delay for one time step). 

 

3.3 Study Area and Data Collection 

Big Trout Lake in Northern Ontario, Canada was chosen to test the performance of the 

proposed methods. According to Canada’s Changing Climate Report 2019 (Bush et al., 

2019), Northern Canada has warmed and will continue to warm at even more than double 

the global rate. Between 1948 and 2016, the observed changes (°C) in annual temperature 

in Northern Ontario were higher than in Southern. The Big Trout Lake station (53.83°N, 

89.87°W) is located in the far northwestern region of Ontario and south of Hudson Bay. It 

is classified as having a subarctic climate, which includes year-round precipitation, short 
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and cool summers, and long and cold dry winters (Tam et al., 2018), resulting in high annual 

variation in temperature. The average temperature and yearly precipitation of Big Trout 

Lake are -2.7 °C and 609.1 mm. The average monthly temperature ranges from -23.7 to 

16.2 °C. The minimum and maximum recorded temperature of the Big Trout Lake station 

were -47.8 °C (January 1951) and 35.6 °C (July 1955). The highest historical daily 

precipitation occurred in August 1955, reaching 84.1 mm. Considering the region's high 

variation in temperature and climate sensitivity, the Big Trout Lake station was chosen for 

evaluating the performance of neural networks methods. 

The study used daily mean temperature simulation data obtained from six RCMs and 

observation data of the Big Trout Lake station from 1979 to 1989. The six RCMs are each 

driven by different GCM models. They are 1) CanRCM4, CRCM5, and RCA4 driven by 

CanESM2; 2) HIRHAM5 and RCA4 driven by EC-EARTH. 3) CRCM5 driven by MPI-

ESM-LR. The grid resolution for each RCM is 0.44° × 0.44°. The simulated daily mean 

temperature data were downloaded from NA-CORDEX archive (Mearns et al., 2017), a 

branch of the International CORDEX Initiative (Giorgi, 2009; Lucas-Picher et al., 2012). 

The observed temperature data of the Big Trout Lake were downloaded from the Digital 

Archive of Canadian Climatological Data provided by Environment and Climate Change 

Canada (ECCC). 
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3.4 Neural Network Design and Training 

The neural network models in this study were developed with net functions in 

MATLAB (version R2014b). The Levenberg-Marquardt backpropagation algorithm was 

applied for training the models, as it is one of the fastest backpropagation algorithms for 

feedforward networks (Hagan and Menhaj, 1994; Lee et al., 2016).  

Inputs to the neural networks were the simulated daily mean temperature of six RCMs 

while the output was daily mean near-surface temperature observed at the Big Trout Lake 

station. RCM outputs at the closest grid point to the Big Trout Lake station (53.76°N, 

89.84°W) were used as inputs for the prediction models. The first 70% of the dataset 

(January 1979 - September 1986) were used for training the models. Then, the following 

15% of the dataset (September 1986 – May 1988) were used to validate those models, 

which verified the applicability of the model. The last 15% of the dataset (May 1988 – 

December 1989) were used for testing, which assessed the generalization ability of the 

model. The different parameters of each model were adjusted during calibration to obtain 

the best statistical agreement between observed and simulated mean temperature and were 

assessed using mean square error (MSE).  

The structure of the networks used in the study consisted of one input layer, one output 

layer, and one hidden layer. MLP was trained with the number of neurons ranging from 5 

to 20 and the MLP with 12 neurons was selected as it generated the best performing network. 
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Both TLFN and NARX were trained with lag time (time delay) ranging from 1 to 3 days 

and the number of neurons ranging from 5 to 20. The TLFN model with 5 neurons and a 

time lag of 3 days and NARX with 15 neurons and a time lag of 3 days were selected as 

they generated the best performing network. 

Performance of three neural network models was evaluated by comparing predicted 

results with observed temperature values. Statistical criterions, such as root mean square 

error (RMSE) and coefficient of determination (R2), were used for performance evaluation. 

 

3.5 Results and Discussion 

3.5.1  Neural Networks Performance 

3.5.1.1  MLP Performance 

The time-series plot and the scatter plot of the observation and prediction of daily mean 

temperature obtained by MLP are shown in Fig. 3-4 and 3-5, respectively. The time-series 

plot shows that MLP could predict the seasonal pattern of daily mean near-surface 

temperature. RMSE and R2 of testing were 6.537 °C and 0.843, respectively. The small 

RMSE and high R2 values indicates that MLP performed well and could predict mean near-

surface temperature with relatively high accuracy. 

In addition, while the observed temperature of all datasets varied from -38.9 to 26.1 °C, 

MLP could generate predictions ranging from -25.6 to 17.5 °C. For observations ranging 
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from -30 to -16°C, MLP tended to give prediction values of around -20 °C. For observations 

ranging from 12 to 26.1°C, MLP generated prediction ranging from 10 to 17°C, which 

implies that MLP could not capture the extreme values precisely. This may be due to the 

tendency of neural networks sacrificing variance to gain high RMSE. 

 

 

Fig. 3-4 Time series plot of observed and predicted daily near-surface temperature values 

obtained by MLP with 12 neurons. 

 

 

Fig. 3-5 Scatter plots of observed and predicted daily near-surface temperature values 

obtained by MLP with 12 neurons. 
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3.5.1.2  TLFN Performance 

Fig. 3-6 and 3-7 show the statistical performance and time series plot of TLFN with a 

time lag of 3 days and 5 neurons. TLFN had similar performance with MLP and had small 

improvement, with RMSE decreased to 6.363 °C and R2 increased to 0.854. This indicates 

that TLFN is an efficient model for capturing the changing pattern and predicting daily 

mean near-surface temperature. Compared with the MLP model, TLFN generated 

predictions scattered more closely with observations and had a smaller range of temperature 

prediction from -23.9 to 16.5°C. For observations ranging from -30 to -20°C, the 

overestimated prediction errors of TLFN were smaller than MLP. Similar to MLP, TLFN 

did not capture the extreme values well. 

 

 

Fig. 3-6 Time series plot of observed and predicted daily near-surface temperature values 

obtained by TLFN with 5 neurons and a time lag of 3 days. 
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Fig. 3-7 Scatter plots of observed and predicted daily near-surface temperature values 

obtained by TLFN with 5 neurons and a time lag of 3 days. 

 

3.5.1.3  NARX Performance 

Fig. 3-8 and 3-9 show that NARX performs well at generating mean temperature 

prediction and could accurately predict the changes of daily mean near-surface temperature 

with a low RMSE of 6.345 °C and high R2 of 0.856. This suggests that NARX performs 

the most effectively among the three in predicting daily mean near-surface temperature. 

The prediction range generated by NARX was from -25.4 to 15.7°C; the maximum value 

was lower than the predictions generated by MLP and TLFN. From the scatter plot of 

observed and predicted temperatures shown in Fig. 3-9, the points are scattered more 

densely along the diagonal line than MLP and TLFN, indicating that the error of prediction 

and observation values were smaller than that of MLP and TLFN. However, the accuracy 

of NARX for prediction extreme temperature values was similar to MLP and TLFN. 
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Fig. 3-8 Time series plot of observed and predicted daily near-surface temperature values 

obtained by NARX with 15 neurons and a time lag of 3 days. 

 

 

Fig. 3-9 Scatter plot of observed and predicted daily near-surface temperature values 

obtained by NARX with 15 neurons and a time lag of 3 days. 

 

3.5.2  Comparison between RCMs and Neural Networks  

Table 3-1 shows the statistical performance of six RCMs and three neural network 

models for training, validation, and testing. The RMSE of six models ranged from 8.253°C 
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to 9.239°C and the R2 ranged from 0.691 to 0.732. Among the six models, CRCM5 derived 

by MPI_ESM_LR performed the best while CanRCM4 derived by CanESM2 had the 

lowest R2 and the highest RMSE. Neural network based models outperformed each 

individual RCM, with RMSE decreased by approximately 2 °C and R2 increased from 0.7 

to 0.85.  

 

 Table 3-1 Comparison of performance between RCMs and neural networks 

   RMSE(°C)   R2  

GCM RCM training validation testing training validation testing 

CanESM2 

CRCM5 8.682 8.800 8.861 0.717 0.638 0.728 

CanRCM4 9.402 9.124 9.239 0.665 0.617 0.691 

RCA4 9.029 8.709 9.008 0.690 0.653 0.708 

EC-EARTH 

HIRHAM5 8.349 8.411 8.547 0.695 0.659 0.722 

RCA4 9.304 10.475 8.676 0.667 0.565 0.707 

MPI-ESM-LR CRCM5 8.321 9.406 8.253 0.705 0.612 0.732 

Neural 

Networks 

MLP 6.282 6.998 6.537 0.829 0.753 0.843 

TLFN 6.244 6.797 6.363 0.832 0.766 0.854 

NARX 5.966  6.882  6.345  0.849  0.761  0.856  
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Fig. 3-10 shows the time series plot of six RCMs and neural networks of winter 

(January and February) and summer (July and August) 1989 predictions. The observation 

values fall within the range of the RCMs, while the neural networks tended to predict 

temperatures of -20°C and 15°C for winter and summer, respectively, with very little 

variance and fluctuation. For winter, three RCMs driven by CanESM2 predicted relatively 

well with observations aligning closely to the RCMs predicted values. RCA4 driven by 

EC-EARTH performed the worst which tended to overestimate the low temperature and 

underestimated the high temperature in winter. CRCM5 driven by MPI-ESM-LR 

performed well with low error in winter. All RCMs performed better in the summer months 

than in the winter months, with observation values falling between the maximum and 

minimum prediction of 6 RCMs. However, the changing pattern of neural network based 

models was smoother than RCMs with smaller fluctuation. As neural network based models 

generate predictions with smooth variation pattern, they tend to have smaller RMSE and 

higher R2 than RCMs.  
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Fig. 3-10 Time series plot of 6 RCMs and neural networks of (a - c) winter and (d - f) 

summer in 1989. 

 

3.5.3  Comparison of Performance between MLP, TLFN, and NARX  

The RMSE for all three methods ranged from 6.345 °C to 6.537 °C and R2 were above 

0.84, indicating that the three neural networks could provide reliable temperature forecasts 

for Big Trout Lake. The nonlinear transfer function associated with each hidden and output 

node allows ANNs to approximate highly nonlinear relationships without a prior 
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assumption, which leads to relatively high accuracy in prediction.  

In terms of the structure of neural networks, TLFN and NARX were built based on the 

structure of MLP. These two methods incorporate antecedent predictor values as input to 

improve forecasting. Although all three methods had similar performance with no 

significant differences in terms of RMSE and R2, TLFN and NARX had a smaller error in 

prediction than MLP. Thus, incorporating antecedent predictor values as input would 

slightly improve the performance of the neural network. When compared with TLFN, 

NARX not only incorporates previous RCM data into the network but also considers 

previously predicted values. However, the time required to train the NARX model and 

generate predictions was much longer than that of TLFN. As TLFN has similar capability 

to process and predict temporal patterns as RNN while having a less complex structure 

being less computationally demanding, TLFN is recommended for the prediction of 

temperature values in areas where the climate is similar to the study area.. This finding is 

consistent with the results from previous studies on using neural networks for temperature 

predictions (Coulibaly et al., 2001b; Coulibaly et al., 2005). 

 

3.6 Conclusions  

The study investigated the applicability of three neural networks (MLP, TLFN, and 

NARX) for daily mean near-surface temperature prediction using NA-CORDEX 
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simulation output. A case study of Big Trout Lake in Ontario, Canada was carried out to 

demonstrate the applicability and performance of the three models. Daily mean 

temperatures simulated by six RCMs from 1979 to 1989 were applied for training, 

validation, and testing. The temperature values predicted by MLP, TLFN, and NARX were 

compared with the observations from the Big Trout Lake monitoring station. The 

performance of neural network models was compared with six individual RCMs. 

The results show that MLP, TLFN, and NARX are effective methods for predicting 

daily mean temperature. Based on the RMSE and R2, all three methods had similar 

performance, with RMSE ranged from 6.345°C to 6.537°C and R2 above 0.84. It is worth 

mentioning that the differences in prediction performance among these three models were 

not significant in terms of RMSE and R2. Neural-network based temperature prediction 

models outperformed individual RCMs, with RMSE decreased by about 2 °C and R2 

increased from 0.7 to 0.85. Neural network models generated smoother predictions with 

less fluctuation than RCMs. It was also found that MLP, TLFN, and NARX could not 

capture ‘extreme’ values below -20°C accurately. Those values appeared during a similar 

time period each year (i.e., winter). Thus, further work could be done to develop prediction 

models for a seasonal time period which have different temperature range.  
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4. Performance of Statistical and Machine Learning Ensembles for 

Daily Temperature Downscaling 

Xinyi Li, Zhong Li, Wendy Huang and Pengxiao Zhou 

 

Abstract 

Temperature changes have widespread impacts on the environment, economic activity, and 

municipal services. Generating accurate climate prediction at finer spatial resolution 

through downscaling could help better assess the future effects of climate change on a local 

scale. Ensembles of multiple climate models have been proven to improve the accuracy of 

temperature prediction. Meanwhile, machine learning techniques have shown high 

performance in solving various predictive modeling problems which make them a 

promising tool for temperature downscaling. This study investigated the performance of 

machine learning methods (Long Short-Term Memory, LSTM, networks and Support 

Vector Machine, SVM) and statistical methods (arithmetic ensemble mean, EM, and 

Multiple Linear Regression, MLR) in developing multi-model ensembles for downscaling 

long-term daily temperature. A case study of twelve meteorological stations across Ontario, 

Canada was conducted to evaluate the performance of the proposed machine learning and 

statistical ensembles. The results showed that both machine learning and statistical 

techniques performed well at downscaling daily temperature with multi-model ensembles 
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and had similar performance with relatively high accuracy. The R2 of 12 stations ranged 

between 0.756 and 0.820 and RMSE ranged between 4.318°C and 7.063°C. Both machine 

learning and statistical ensembles for downscaling had difficulty in predicting extreme 

values for temperature below -10°C and above 20°C. Since machine learning ensembles 

are computationally demanding, the mean ensemble can be used instead to downscale long-

term daily temperature projections. The results provided a technical foundation for using 

statistical and machine learning methods to generate high-resolution daily temperature 

prediction. 

Keywords: Machine learning, Multi-model Ensemble, Temperature Downscaling, 

Regional Climate Model, Ontario 
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4.1 Introduction 

Temperature changes have widespread impacts on the environment, economic activity, 

and municipal services (Bartos and Chester, 2015; Neumann et al., 2014). As infrastructure 

and agricultural activities are sensitive to temperature thresholds (Gornall et al., 2010; 

Hatfield and Prueger, 2015), it is essential to generate reliable long-term daily temperature 

predictions. Climate models have been developed to obtain accurate results of climate 

predictions. For large spatial climate change, General Circulation Models (GCMs) are 

conducted to simulate the global climate, which has a relatively coarse resolution of 

typically 150–300 km (Kendon et al., 2010). For the practical planning of local issues, 

governments require information on a more local scale. Regional Climate Models (RCMs) 

were then introduced to provide small scale information by increasing the resolution of the 

GCM output in a small, limited area of interest with a typical horizontal resolution of 25 - 

50 km. Although RCMs have a finer spatial resolution than GCMs, it is still too coarse to 

support local climate impact analysis (Wang et al., 2013). Hence, downscaling methods are 

in need to provide climate projection with finer spatial resolution and support local climate 

adaptation.  

To improve the accuracy of downscaling, Multi-Model Ensemble (MME) is used to 

provide reliable climate models inputs for downscaling with higher accuracy. MME is a 

combination of multiple numerical models. It has the potential to provide more information 
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for practical forecasting which would help to decrease the uncertainty of forecasting 

(Kumar et al., 2012). Previous studies have shown that MME outperforms the prediction 

of a single numerical model, which improves the prediction quality and decreases their 

mean square errors (Krishnamurti et al., 2009; Kumar et al., 2012; Mitra et al., 2011). Hence, 

MME applied for downscaling may help to improve the downscaling accuracy as it 

provides more reliable input for downscaling. Because of the outstanding performance of 

MME, it is gaining more popularity and is widely applied in climate prediction and weather 

forecasting (Rozante et al., 2014). Specifically, the weights of multi-models should be well 

considered (Christensen et al., 2010).   

In general, there are two categories of ensemble techniques: statistical and machine 

learning methods. Statistical methods have been widely used in MMEs. The simplest 

method of statistical ensembles is the mean ensemble, which entails merging multi-models 

with equal weights (Hagedorn et al., 2005; Jarsjö et al., 2017; Wallach et al., 2016). The 

mean ensemble outperforms any single model (Hagedorn et al., 2005; Li et al., 2016; Tang 

et al., 2016). Another commonly used MME technique is linear regression (Krishnamurti 

et al., 2000). It was first introduced by Krishnamurti et al. (1999a) and originally applied 

in a seasonal climate forecast. In recent studies, it is also applied in daily precipitation 

forecast (Krasnopolsky and Lin, 2012) and has shown to be an efficient ensemble method 

for temperature and precipitation prediction (Feng et al., 2010). 
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Meanwhile, machine learning techniques have gained a lot of attention because of their 

high performance in solving various predictive modeling problems. For example, the 

Support Vector Machine (SVM) has been applied to obtain temperature and precipitation 

prediction with high accuracy (Devak et al., 2015; Mellit et al., 2013; Pour et al., 2018). It 

is a highly effective model in solving nonlinear problems even with small quantities of 

training data (Zhao and Magoulès, 2012). SVM is a promising alternative to conventional 

methods for statistical downscaling (Tripathi et al., 2006a). SVM is also found to 

outperform Multi-Layer Perceptron (MLP) for short-term daily maximum temperature 

prediction (Radhika and Shashi, 2009). Artificial neural networks (ANNs) have been 

widely applied in climate prediction because of their high potential for complex, nonlinear 

and time-varying input-output mapping. This leads to ANNs being more powerful than the 

other regression-based techniques (Von Storch et al., 2000). ANN models have also been 

utilized in predicting long-range changes in climatological time series in recent decades 

(Tangang et al., 1998). Krasnopolsky and Lin (2012) found that neural network ensembles 

improved upon conservative ensemble and Multiple Linear Regression (MLR) ensemble 

when applied in 24h precipitation forecasts. Furthermore, the temporal resolutions of 

previous studies were generally low. Most models were only validated with a monthly or 

even yearly time step. For instance, Kisi and Sanikhani (2015a, 2015b) found that long-

term monthly temperatures of any site can be successfully estimated by ANNs, Support 
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Vector Regression (SVR) and Gene Expression Programming (GEP) using geographical 

inputs. As climate prediction is a time series problem, time delay should be considered 

(Coulibaly et al., 2005). Thus, methods suitable for temporal sequences processing are 

recommended (Dibike and Coulibaly, 2006).  

More recently, Long Short-Term Memory (LSTM) networks have been proven to be a 

powerful tool in processing long term time series data (Kratzert et al., 2018; Zhang et al., 

2018). LSTM networks are designed to handle sequence dependency, and have been widely 

applied in machine translation (LeCun et al., 2015). Such advanced techniques have great 

potential in climate prediction. However, LSTM networks have not yet been applied to 

long-term daily temperature prediction; they have only been applied in downscaling with 

gridded reanalysis data and weather forecasting. Mouatadid et al. (2017) used gridded 

reanalysis data for downscaling and found that LSTM networks could generalize the daily 

mean temperatures well at different locations and have higher downscaling accuracy than 

MLR and Extreme Learning Machines. For weather forecasting, LSTM networks give 

substantial results with high accuracy (Fente and Singh, 2018).  

The comparison of performance between machine learning and statistical methods are 

in dispute. Some researchers believe their effectiveness and efficiency for building 

predictive models are similar. For example, Sharda and Patil (1992) compared a neural 

network with a sophisticated forecasting method and found that the neural network 
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performed similarly with the conventional forecasting method. Makridakis et al. (2018) 

found the performance of statistical methods in solving univariate prediction problem is 

even better than machine learning methods. On the other hand, some researchers claim that 

machine learning methods perform better at solving predictive problems. Cakir et al. (2013) 

used a multi-layer perceptron to predict the near-surface temperature in Turkey and found 

that MLP performed better than the simple bias-corrected ensemble mean. Wang et al. 

(2018) compared the capacity of four different MME methods including random forest (RF), 

SVM, Bayesian model averaging (BMA) and the arithmetic ensemble mean (EM) in 

reproducing observed monthly rainfall and temperature with 33 GCMs and found that the 

RF and SVM demonstrated a significant improvement over EM and BMA in terms of 

performance criteria. The results also showed that machine learning ensembles could be 

efficient and useful with improved accuracy in reproducing historical climate variables 

(Wang et al., 2018). There is no consensus on which category is better for climate projection. 

Given that machine learning’s effectiveness and efficiency have not been tested or 

compared with traditional statistical ensemble techniques for daily temperature 

downscaling, their performance needs to be further investigated. 

In recent decades, severe rain, ice and wind storms, prolonged heat waves and milder 

winters have become more common occurrences. Climate change has a great impact on 

people across the province of Ontario – especially Northern communities – and all sectors 
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of the economy, which leads to more costs in addressing the impacts of climate change 

(Ministry of the Environment, 2018). To better quantify climate change, reliable climate 

projections at finer resolutions over the domain of Ontario are required, which offers 

information for policymakers in the assessment of the plausible future effects of climate 

change (Wang et al., 2014). Many of the previous studies for Ontario were based on a single 

climate model. For instance, Wang et al. (2013) proposed a downscaling technique based 

on a stepwise cluster analysis method to obtain high-resolution climate projections for the 

City of Toronto. A high-resolution projection of near-surface air temperature over Ontario 

was developed with The Providing Regional Climates for Impacts Studies (PRECIS) 

system (Wang et al., 2014) and was applied to generate future climate projects with 

dynamical statistical approach (Wang et al., 2015). In terms of MME, only multi-model 

mean and median ensembles based on monthly temperature data are generated for climate 

predictions, which outperformed than an individual model (Samouly et al., 2018). Machine 

learning and statistical ensembles for daily temperature downscaling have not been 

thoroughly investigated in Ontario.  

Therefore, the objective of this study is to develop a number of statistical and machine 

learning techniques for establishing climate ensembles and compare their performance for 

downscaling long-term daily temperature. A case study of 12 meteorological stations over 

Ontario will be conducted to evaluate the performance of machine learning and statistical 
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ensembles for daily temperature downscaling. The input is the simulated daily mean 

temperature obtained from six RCM models collected from the North American 

Coordinated Regional Downscaling Experiment (NA-CORDEX) archive, while the output 

is the observed daily mean temperature collected from the Digital Archive of Canadian 

Climatological Data. LSTM networks and SVM are applied to develop machine learning 

ensembles while MLR and EM are used to develop statistical ensembles. This will be the 

first attempt to introduce LSTM networks for building a climate ensemble. It will also be 

the first attempt to compare various ensemble techniques for Canadian communities. The 

results provide technical foundations for using statistical and machine learning methods to 

generate near-surface air temperature projections with high temporal resolution. 

Applications of the developed approach will provide useful information to support climate 

adaptation and social development in Ontario.  

 

4.2 Study Area and Data 

Ontario was chosen as the study area to evaluate the performance of the proposed 

ensembles. Ontario is the second-largest province in Canada, located in the east-central 

area of Canada and covers more than 106 km2. As shown in Fig.4-1, Ontario is bounded by 

Quebec to the east, Manitoba to the west, Hudson Bay and James Bay to the north, and the 

Great Lakes to the south (Wang et al., 2014). The climate in Ontario can typically be 
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considered as humid continental, except for parts of Northern Ontario under the influence 

of Hudson’s Bay, which have a more maritime climate (Perera et al., 2011). In summer, 

temperatures in Ontario can soar above 30°C, whereas in winter they can drop below -40°C 

(Ministry of the Environment, 2011). The annual mean temperature has increased 1.3ºC for 

the Ontario region over the period 1948–2016. The trend is strongest in winter, with an 

increase of 2.0°C, and weakest in autumn, at 1.0°C. Annual precipitation has increased by 

9.7% during the period of 1948–2012, with seasonal trends ranging from 5.2% in winter to 

17.8% in fall (Bush et al., 2019). 

 

 

Fig. 4-1 Locations of the 12 selected meteorological stations 

 

Ontario has made significant progress to address climate change. Using the Paris 

Agreement baseline year, 2005, as a benchmark, the province of Ontario’s total greenhouse 
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gas (GHG) emissions has decreased by 22%. According to A Made-in-Ontario Environment 

Plan released on November 29, 2018, Ontario commits to reducing emissions to 30 percent 

below 2005 levels by 2030 (MECP, 2018). 

 

Table 4-1 Information on selected stations and their corresponding nearest RCM grid 

Station Name 

Short 

Name 

Station RCM grid 

Elevation 

Latitude Longitude Latitude Longitude 

Big Trout Lake BTL 53.83°N 89.87°W 53.76°N 89.84°W 224.1m 

London 

International 

Airport 

LA 43.03°N 81.15°W 42.98°N 81.04°W 278.0m 

Moosonee MUA 51.27°N 80.65°W 51.34°N 80.60°W 9.1m 

North Bay 

Airport 

NB 46.36°N 79.42°W 46.28°N 79.50°W 370.3m 

Ottawa 

International 

Airport 

OMIA 45.32°N 75.67°W 45.40°N 75.76°W 222.2m 

Sault Ste Marie SSMA 46.48°N 84.51°W 46.50°N 84.56°W 192.0m 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

56 
 

 

In this study, twelve representative stations in Ontario were selected to validate the 

performance of the proposed ensembles. These twelve stations are located throughout 

Ontario, as shown in Fig.4-1 and Table 4-1. Among the 12 stations, six stations are in 

Southern Ontario and six are located in Northern and Central Ontario. The observation data 

of these twelve stations were downloaded from the Digital Archive of Canadian 

Climatological Data provided by Environment and Climate Change Canada (ECCC). For 

Airport 

Sioux Outlook 

Airport 

SLA 50.12°N 91.90°W 50.02°N 91.82°W 294.7m 

Timmins Victor 

Power Airport 

TVPA 48.57°N 81.38°W 48.48°N 81.48°W 383.4m 

Toronto Island 

Airport 

TIA 43.63°N 79.40°W 43.64°N 79.50°W 173.4m 

Toronto Pearson 

International 

Airport 

TPIA 43.68°N 79.63°W 43.64°N 79.72°W 76.8m 

Wiarton Airport WTA 44.75°N 81.11°W 44.74°N 81.04°W 114.0m 

Windsor Airport WSA 42.28°N 82.96°W 42.32°N 83.02°W 189.6m 
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the stations located in Northern Ontario, the Big Trout Lake station, Moosonee and Sioux 

Lookout Airport station, the standard deviation (SD) of training and testing set are above 

14°C. The stations located in Southern Ontario have smaller variance with SD ranges 

between 9.759°C and 12.485°C. 

The study used six RCMs for the temperature ensemble. As shown in Table 4-2, the six 

GCM and RCM combinations were developed by different institutions. The grid resolution 

for each RCM is 0.44° × 0.44°. The simulated daily mean temperature data were 

downloaded from the North American Coordinated Regional Downscaling Experiment 

(NA-CORDEX) archive (Mearns et al., 2017), a branch of the International CORDEX 

Initiative (Giorgi, 2009; Lucas-Picher et al., 2012).  

 

Table 4-2 GCM and RCM combinations 

GCM RCM Grid 

Modeling 

Institution 

Institution Full Name 

CanESM2 

CanRCM4 0.44° CCCma 

Canadian Centre for Climate 

Modelling and Analysis 

CRCM5 0.44° UQAM Université du Québec à Montréal 

RCA4 0.44° SMHI 

Swedish Meteorological and 

Hydrological Institute 
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EC-EARTH 

HIRHAM5 0.44° DMI Danish Meteorological Institute 

RCA4 0.44° SMHI 

Swedish Meteorological and 

Hydrological Institute 

MPI-ESM-LR CRCM5 0.44° UQAM Université du Québec à Montréal 

 

4.3 Methodology  

This study investigates the performance of MMEs in predicting daily temperature with 

two representative machine learning methods, which are widely applied in temperature 

downscaling including LSTM networks and SVM, and two statistical methods including 

EM and MLR.  

 

4.3.1  Long Short-Term Memory Networks 

 The LSTM network is a special Recurrent Neural Networks (RNNs) structure that has 

been proven to be stable and powerful for modeling long-range dependencies in various 

previous studies (Graves, 2013; Hochreiter and Schmidhuber, 1997; Sutskever et al., 2014). 

Compared with feedforward neural networks, RNNs allow forward and backward 

connections between time steps, which makes them well suited for processing sequential 

data (Mouatadid et al., 2017). The major innovation of LSTM is the memory cell, in which 

the information is selectively accumulated. The cell is accessed, written and cleared by 
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several self-parameterized controlling gates (Shi et al., 2015). Every time when the memory 

cell has new inputs; the forget gate ft decides whether the past cell status ct-1 will be 

“forgotten”. The output of ft ranges between 0 and 1 where a 1 represents that piece of 

information in the corresponding component of ct-1 will be kept and a 0 represents it will 

be “forgotten”. Information of new inputs will accumulate in the cell if the input gate it is 

activated. The input modulation c
~

t modulates the information of the input gate (Kong et 

al., 2018; Kratzert et al., 2018). The output gate ot controls whether the latest cell state ct 

will be propagated to the hidden state ht  (Kim et al., 2017; Shi et al., 2015).  

 1( )t xf t hf t ff W x W h b −= + +  (4.1) 

 
1( )t xi t hi t ii W x W h b −= + +  (4.2) 

 
1tanh( )t xc t hc t cc W x W h b−= + +  (4.3) 

 
1t t t t tc f c i c−= +  (4.4) 

 
1( )t xo t ho t oo W x W h b −= + +  (4.5) 

 tanh( )t t th o c=  (4.6) 

Where ⊙ denotes element-wise multiplication of two vectors and σ is the logistic 

sigmoid function. The input gate i, forget gate f, output gate o, cell c and cell input activation 

vectors are the same size as the hidden vector h. W is the weight matrix, for instance, Whi 

is the hidden-input gate matrix (Graves, 2013). b denotes the bias vector, for example, bi is 

the input gate bias vector (Donahue et al., 2017). 
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Fig. 4-2 A LSTM memory cell with input, forget, and output gates 

 

4.3.2  Support Vector Machine  

SVM was developed for binary classification and then extended to regression problems, 

which was called Support Vector Regression (SVR) (Drucker et al., 1997; Zhao and 

Magoulès, 2012). The SVM model estimates the regression based on a series of kernel 

functions, which are able to convert the original, lower-dimensional input data to a higher-

dimensional feature space implicitly (Fan et al., 2018). The estimation of the regression 

model could be expressed as Eq. 4.7. 

 ˆ ,y w x b= +  (4.7) 

where w is the vector of feature weights, angle brackets denote a dot product and b is a 

bias term (Li et al., 2009). 

SVR integrates loss function to minimize the prediction error and intends to create a 

boundary to include as many samples for reliability as possible (Wang et al., 2019). 

Following regularization theory (Haykin, 2003), the parameters w and b are estimated by 

minimizing the cost function as shown in Eq. 4.8 (Tripathi et al., 2006b). 
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2 *

1

1
Min : ( )

2

N

i i

i

w C  
=

+ +  (4.8) 

where ξi and ξi
* are positive slack variables which capture the magnitude of residuals 

beyond the prescribed tolerance ɛ and serve to guarantee a solution for all ɛ. C is a 

regularization term that determines the degree of the linear penalty applied to the residual 

excess (Jain et al., 2014). 

Accordingly, Eq. 4.8 is subject to the following constraints:  

 ,i i iy w x b  − −  +  (4.9) 

 *, i i iw x b y  + −  +  (4.10) 

 
* 0, 0i i    (4.11) 

where xi is a data point in the input space X and yi is the corresponding output (Kisi and 

Sanikhani, 2015a, 2015b). 

The commonly applied kernel functions include linear, polynomial, radial basis and 

sigmoid functions. The Gaussian radial basis function (RBF) is one of the most widely used 

kernel functions which could generalize nonlinear functions and have performed well at 

large datasets. The RBF kernel is formulated as follows: 

 
2

( , ) exp( ), 0x x x x   = − −   (4.12) 

where γ is the kernel parameter. Intuitively, γ defines the radius of influence for each 

data point.  
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4.3.3  Statistical Methods 

This study used mean and MLR methods to represent the performance of statistical 

methods in daily temperature downscaling with MMEs. A mean ensemble refers to merging 

all the input models with equal weights, which is known as the EM (Zhang et al., 2015). 

 
1

1
( ) ( )

N

n

n

Y t P t
N =

=   (4.13) 

where Y(t) is an ensemble mean for time t, N is the total number of RCMs and Pn(t) is 

the prediction of the nth RCM for time t. 

MLR has an equation of the form 

 0

1

( ) ( )
N

n n

n

Y t b b P t
=

= +  (4.14) 

where b0 and bn are regression coefficients, and bn is a weighting for model n 

(Krishnamurti et al., 1999b). What differentiates it from the EM is that MLR allocates 

unequal weights to predictors. The regression coefficients are obtained by fitting the 

equation with observations and the Regional Climate Model (RCM) inputs in the training 

set. Then, the fitted values of regression coefficients are applied to downscaling the daily 

temperature in the testing data (Fumo and Rafe Biswas, 2015). 

 

4.3.4  Design and Training of Downscaling Models 

The study used 10 years of RCM daily temperature data and observed daily 
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temperature data to evaluate the performances of ensembles. The first 70% of the dataset 

(1980 - 1986) was used for training the models. The remaining 30% of the dataset (1987 - 

1989) was used for testing the models, which was used to assess the generalization 

capability of the model. Inputs to the ensemble models were the simulated daily mean 

temperature of six RCMs outputs at the closest grid point to 12 meteorological stations. 

While the output was daily mean temperature observed at meteorological stations. The 

information of the 12 meteorological stations and their corresponding closest RCM grid 

points are shown in Table 4-1.  

The structure of LSTM networks used in the study consisted of one input layer, one 

hidden layer, and one output layer. The LSTM network was trained with lag time (time 

delay) ranging from 1 to 7 days and the number of neurons ranging from 10 to 60. Data 

from the Toronto Pearson International Airport station was used to find the best parameter 

suitable for the LSTM ensemble and SVM ensemble. The best parameters of machine 

learning methods were chosen with mean square error (MSE) of observed and simulated 

temperature. The LSTM ensemble structure with 30 neurons and a time lag of 3 days was 

selected as it generated the best performing network for the Toronto Pearson International 

Airport Station. The generalized parameters of the LSTM ensemble and SVM ensemble 

were applied for the other 11 stations.  

The structure of the SVM ensemble used in the study was selected based on the results 
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of 5-fold cross-validation on the training set. SVM with different combinations of C and γ 

were tested to find the optimal parameters. C was set as 0.1, 0.5, 1 and 5 and γ was set as 

0.0001, 0.0005, 0.001, 0.01, 0.1 and 1. The optimal value of the SVM ensemble for C and 

γ were 1 and 0.0001, respectively.  

In terms of the MLR ensemble, the coefficient of each RCM for each station was 

obtained by fitting with the corresponding training data of that station. In the mean 

ensemble, the predicted value was generated by taking the average of six RCM inputs. 

Performances of machine learning and statistical ensembles were evaluated by comparing 

predicted results with observed temperature values. Statistical criteria, such as root mean 

square error (RMSE), coefficient of determination (R2) and the ratio of RMSE to the 

standard deviation (SD) were used for performance evaluation.  

 

4.4 Results and Discussion 

In this study, a total of four statistical and machine learning techniques (LSTM 

networks, SVM, EM and MLR) were used to build the ensembles for downscaling. The 

models were trained using data from 1980 to 1986, and tested using data from 1987 to 1989.  

 

4.4.1  Downscaling Performance of Long Short-Term Memory networks  

Table 4-3 shows the statistical performance of the LSTM ensemble for downscaling. 
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The R2 of 12 stations range between 0.779 and 0.820. The RMSE of 12 stations ranges 

between 4.318°C and 6.540°C. Comparing with the temperature ranges of 12 stations, the 

ratios of RMSE to SD of the corresponding station ranges between 0.426 and 0.471. This 

indicates that the error of LSTM models for 12 stations is relatively small. As shown in Fig. 

4-3 to 4-5, downscaled temperature of LSTM ensembles are closely concentrated around 

the best fit line. The high R2 value and low RMSE value indicate that the LSTM technique 

performs well at building a relationship between daily temperature observation and 

simulation data from the six RCMs, and could predict daily temperature with relatively 

high accuracy. However, for all 12 stations, the R2 of the training dataset is larger than the 

testing dataset and the RMSE of the training dataset is smaller than the testing dataset, 

which indicates that LSTM is prone to overfitting.  

The observation and prediction values scattered more closely at Toronto Island Airport 

station with high accuracy. The temperature has a small variance for that station and 

temperature mostly lies between -10°C and 25°C without extreme low temperatures below 

-20°C. For the Big Trout Lake station, prediction value scattered more tightly for 

temperature above -10°C than temperature below -10°C. This indicates that the LSTM 

ensemble could not predict the temperature below -10°C with high accuracy. That is 

because most of the temperature data are above -10°C and neural networks tend to sacrifice 

variance to gain high RMSE.  
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Table 4-3 Statistical performance of LSTM ensemble 

Station 

RMSE(training) 

(°C) 

RMSE(testing) 

(°C) 

R2 

(training) 

R2 

(testing) 

RMSE/SD 

(training) 

RMSE/SD 

(testing) 

BTL 6.005  6.540  0.842  0.820  0.400  0.426  

LA 4.560  4.961  0.820  0.789  0.430  0.461  

MUA 6.126  6.289  0.813  0.799  0.437  0.452  

NB 5.183  5.784  0.821  0.790  0.426  0.460  

OMIA 4.695  5.465  0.849  0.810  0.392  0.438  

SSMA 4.806  5.378  0.814  0.779  0.434  0.470  

SLA 5.891  6.426  0.828  0.805  0.417  0.439  

TVPA 5.752  6.384  0.816  0.787  0.433  0.465  

TIA 3.985  4.318  0.841  0.817  0.408  0.430  

TPIA 4.460  4.965  0.825  0.790  0.422  0.458  

WTA 4.621  4.930  0.800  0.781  0.454  0.471  

WSA 4.480  4.975  0.830  0.792  0.417  0.460  
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Fig. 4-3 Scatter plots of the first 4 stations for testing datasets 
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Fig. 4-4 Scatter plots of the middle 4 stations for testing datasets 
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Fig. 4-5 Scatter plots of the last 4 stations for testing datasets 
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4.4.2  Downscaling Performance of Support Vector Machine  

Table 4-4 shows the statistical performance of the SVM ensemble for downscaling. 

The R2 of 12 stations ranges from 0.764 to 0.812. The RMSE values are similar to that of 

LSTM ensemble and range from 4.416°C to 6.874°C. The ratio of RMSE to SD of testing 

data ranges from 0.439 to 0.490, which is also similar to the LSTM ensemble and 

demonstrates that SVM performs well at downscaling daily mean temperature. Compared 

to the results of the LSTM ensemble, the downscaled temperature of the SVM ensemble is 

scattered not as closely as the LSTM ensemble around the observation data, especially for 

temperature lower than -10°C.  

As shown in Fig. 4-3 to 4-5, the prediction values scatter closely around observation 

values for temperatures above 0°C, which indicates that SVM models perform well at 

predicting temperature above 0°C. However, for stations with high variance, SVM tends to 

generate downscaled temperature ranges from -20°C to -10°C for observation ranges from 

-30°C to -10°C (the Big Trout Lake station, the Moosonee UA station, the Sioux Lookout 

Airport station, and the Timmins Victor Power Airport station). For other stations, the SVM 

ensemble tends to generate downscaled temperature ranges from -10°C to 0°C for 

temperature ranges from -20°C to 0°C, which demonstrates the SVM ensemble could not 

capture extreme low temperatures well. 
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Table 4-4 Statistical performance of SVM ensemble 

Station 

RMSE(training) 

(°C) 

RMSE(testing) 

(°C) 

R2 

(training) 

R2  

(testing) 

RMSE/SD 

(training) 

RMSE/SD 

(testing) 

BTL 6.540 6.748 0.810 0.810 0.436  0.439  

LA 5.006 5.027 0.778 0.785 0.472  0.467  

MUA 6.801 6.559 0.767 0.781 0.485  0.471  

NB 5.837 5.968 0.771 0.779 0.480  0.475  

OMIA 5.404 5.618 0.799 0.804 0.451  0.450  

SSMA 5.321 5.609 0.772 0.764 0.480  0.490  

SLA 6.517 6.874 0.789 0.782 0.461  0.470  

TVPA 6.478 6.621 0.764 0.772 0.487  0.482  

TIA 4.357 4.416 0.804 0.812 0.446  0.440  

TPIA 4.984 5.104 0.779 0.784 0.472  0.471  

WTA 5.046 5.114 0.757 0.767 0.495  0.488  

WSA 4.970 4.994 0.787 0.789 0.463  0.462  

 

4.4.3  Downscaling Performance of Statistical Methods  

Table 4-5 shows the statistical performance of the mean ensemble for downscaling. The 

R2 of 12 stations ranges from 0.756 to 0.810. The RMSE is a bit higher than those of the 
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LSTM and SVM ensembles, and range from 4.599°C to 7.063°C. The ratio of RMSE to 

SD of testing data ranges from 0.453 to 0.515, which is a bit higher than the LSTM and 

SVM ensemble. However, the difference between mean ensemble and machine learning 

ensemble is not significant. As shown in Fig. 4-3 to 4-5, the downscaled temperature value 

scattered closely and evenly around 45° line for temperatures above 0°C, while for 

observations under 0 °C, the scatter points spread more widely, which indicates that the 

mean ensemble could predict temperature above 0 °C with relatively high accuracy. The 

mean ensemble also tends to overestimate low temperatures.  

 

Table 4-5 Statistical performance of mean ensemble 

Station 

RMSE(training) 

(°C) 

RMSE(testing) 

(°C) 

R2 

(training) 

R2 

(testing) 

RMSE/SD 

(training) 

RMSE/SD 

(testing) 

BTL 7.030 6.966 0.786 0.796 0.468 0.453 

LA 5.287 5.156 0.768 0.781 0.498 0.479 

MUA 7.201 6.843 0.744 0.766 0.513 0.491 

NB 6.156 6.216 0.754 0.768 0.506 0.495 

OMIA 5.681 5.885 0.782 0.795 0.474 0.471 

SSMA 5.691 5.896 0.763 0.759 0.514 0.515 

SLA 6.754 7.063 0.773 0.770 0.478 0.483 
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TVPA 6.797 6.859 0.743 0.756 0.511 0.500 

TIA 4.541 4.599 0.799 0.810 0.465 0.458 

TPIA 5.171 5.153 0.767 0.778 0.490 0.475 

WTA 5.361 5.326 0.746 0.764 0.526 0.508 

WSA 5.116 5.006 0.774 0.786 0.477 0.463 

 

Table 4-6 shows the statistical performance of MLR ensemble for downscaling. The R2 

of 12 stations ranges from 0.757 to 0.809 with the highest and lowest R2. The RMSE is 

similar to that of mean ensemble and ranges from 4.416°C to 7.032°C and the ratio of 

RMSE to SD of testing data ranges from 0.440 to 0.495. Similar to mean ensemble, the 

downscaled temperature of MLR ensemble is also scattered closely and evenly around the 

observation data. It demonstrates that statistical ensembles have similar performance in 

downscaling daily temperature and could generate reliable daily downscaled temperature. 

As shown in Fig.4-3 to 4-5, the scatter points spread more widely for temperature below 

0°C than above 0°C, which implies that statistical techniques could not capture low 

temperatures as precisely as they could for higher temperatures. 

 

 

 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

74 
 

Table 4-6 Statistical performance of MLR ensemble 

Station 

RMSE(training) 

(°C) 

RMSE(testing) 

(°C) 

R2 

(training) 

R2  

(testing) 

RMSE/SD 

(training) 

RMSE/SD 

(testing) 

BTL 6.773 6.954 0.796 0.797 0.451  0.453 

LA 5.048 5.036 0.774 0.782 0.476  0.468 

MUA 6.951 6.637 0.755 0.773 0.495  0.477 

NB 5.943 6.069 0.761 0.769 0.488  0.483  

OMIA 5.524 5.646 0.788 0.798 0.461  0.452  

SSMA 5.333 5.661 0.768 0.757 0.482  0.495  

SLA 6.65 7.032 0.779 0.771 0.470  0.481  

TVPA 6.61 6.721 0.753 0.762 0.497  0.489  

TIA 4.361 4.416 0.800 0.809 0.447  0.440  

TPIA 5.033 5.104 0.773 0.780 0.477  0.471  

WTA 5.051 5.132 0.754 0.761 0.496  0.490  

WSA 5.007 5.044 0.782 0.783 0.466  0.467  

 

4.4.4 Comparison Between the Downscaling Performance of Machine 

Learning and Statistical Techniques 

Tables 4-3 to 4-6 show the statistical evaluation metrics for machine learning and 
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statistical downscaling including R2, RMSE and the ratios of RMSE to SD. For all 12 

stations tested, the performance of machine learning and statistical ensembles are similar, 

with R2 ranging between 0.756 and 0.820, RMSE ranging between 4.318°C and 7.063°C, 

and the ratios of RMSE to SD range between 0.426 and 0.515. 

 

 

Fig. 4-6 A time series plot of ensembles of the Toronto Pearson International Airport 

station in 1987 

 

Fig. 4-6 shows the time series plot of machine learning and statistical ensembles of the 

Toronto Pearson International Airport station in 1987. All ensembles could grasp the 

general increasing and decreasing trend of daily temperature. The observation of 1987 

ranges between -18.7°C and 28.4°C. The downscaled temperature ranges generated by 

LSTM and SVM are [-8.7°C, 23.5°C] and [-9.2°C, 21.8°C], respectively. While for 

statistical ensembles, the downscaled temperature ranges of mean and MLR ensembles are 

[-12.3°C, 23.6°C] and [-13.5°C, 22.9°C], respectively. The downscaled temperature values 
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for all ensembles lie within the range of observation values. The lower bounds of statistical 

ensembles are lower than those of machine learning ensembles. For instance, during the 

end of February 1987, prediction of MLR and mean ensemble are lower than LSTM and 

SVM ensembles. The upper bounds of statistical ensembles are similar to those of machine 

learning ensembles. However, all ensembles could not generate downscaled temperatures 

above 25°C and below -14°C and the variance between daily temperature could not be 

accurately captured by all ensembles. 

Machine learning and statistical ensembles perform well at downscaling daily 

temperature and have similar performance. In terms of R2 and RMSE, machine learning 

ensembles perform slightly better than statistical ensembles. However, it is worth 

mentioning that the difference is not significant. The improved performance of the LSTM 

ensemble can be explained by its ability to learn long-term dependencies in sequential 

datasets. In the case of other ensemble methods, the inputs in the time series are assumed 

to be independent of each other and are not treated as sequential datasets. In contrast, the 

inputs are processed in the sequence in the LSTM ensemble and the outputs are generated 

based on the previous computations. In other words, LSTMs have a "memory" which 

enables them to identify and capture the previously calculated useful information, and pass 

them along to the next iteration. Moreover, the daily temperature has a close connection 

with the temperature of previous days. Incorporating antecedent predictor values could 
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improve the accuracy of temperature prediction (Coulibaly et al., 2005). The slightly 

improved performance of SVM can be explained by the framework and principles of SVM. 

SVM implements structural risk minimization (SRM) (Vapnik, 2013), uses margin-based 

loss function and solves the problem in high dimensional feature space (Al-Anazi and Gates, 

2010; Samui, 2008). Besides, SVM can achieve good generalization by simultaneously 

minimizing both empirical error and model complexity (Yoon et al., 2016). 

Machine learning methods have been proven to outperform statistical methods in many 

fields, for instance, speed prediction for traffic control (Jiang et al., 2016). However, in this 

study, the difference between machine learning and statistical ensembles is not as 

significant as other studies, which is attributed to having the same variable type of input 

and output. The variable type of both the inputs and output is daily mean temperature, 

which is categorized as the same class. Furthermore, the range and distribution of inputs 

and observation values are similar. Previous studies have shown that for univariate 

forecasting, statistical methods such as AutoRegressive Integrated Moving Average 

(ARIMA) outperform machine learning methods (Makridakis et al., 2018).  

In general, statistical ensembles have similar capabilities in processing and predicting 

temporal patterns as machine learning ensembles for downscaling, while having much 

simpler structures and being less computationally demanding and time-consuming. Thus, 

statistical ensembles could be used as a substitute for downscaling daily temperature for 
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those lacking computational resources. Among them, the mean ensemble is recommended 

as it is the simplest ensemble and is capable of generating reliable downscaled daily 

temperature in all stations tested in this study. 

 

4.4.5 Current Difficulties in Predicting Extreme Values  

The reasons for low accuracy in predicting ‘extreme’ values (above 20°C and below -

10°C) is due to two different circumstances: one, when the observation values exceed the 

maximum or minimum values of six RCMs; and two, when the observation value is located 

between the maximum values and minimum values of six RCMs. Samples of RCMs and 

observation from February 1987 and 1988 at the Big Trout Lake station are chosen to 

demonstrate the two circumstances of predicting extreme values as an example. 

 

 

Fig. 4-7 Case 1- observation beyond the maximum and minimum values of RCMs 
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Fig.4-7 shows that the observation values exceed the range of maximum and minimum 

values of six RCMs. The maximum and minimum values of six RCMs range between -

18.2°C and 2.8°C and between -42.4°C and -16.3°C, respectively, while the observation 

value ranges between -30.9°C and -3.3°C. The observation values exceed the minimum 

value of input data for 10 days of the month, particularly between Feb. 20th to 23rd. In this 

case, the ensembles need to generate a downscaled temperature that exceeds the minimum 

value of input RCMs. 

 

 

Fig. 4-8 Case 2 - observation within the maximum and minimum values of RCMs 

 

Fig. 4-8 shows that the observed values lie between the maximum and minimum values 

of the six models. The maximum and minimum values of six RCMs range [-19.0°C, -0.1°C] 

and [-40.0°C, -16.3°C], respectively, while the observation value ranges between -31.3°C 

and -12.6°C. Most of the observation values lie between the maximum and minimum values 

of six RCM inputs. 
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As ensembles are built based on both circumstances, the parameters and the structures 

of ensembles are the same for both cases. Specifically, for the LSTM ensemble, the weight 

of neurons and activate functions are the same for those two cases. For case one, the 

downscaled temperature value should either greater than the maximum value or lesser than 

the minimum value while for case two, the downscaled temperature should be between the 

maximum and minimum value. Thus, machine learning methods and statistical methods 

may have difficulty in identifying the scenario to be case one or two, which leads to low 

accuracy in predicting extreme values. 

 

4.4.6 Performance Comparison among 12 Stations over Ontario  

Fig. 4-9 shows the histogram of training and testing of 12 stations. The distribution of 

training and testing dataset is similar for all stations, which provides a foundation for both 

machine learning and statistical ensembles generating reliable downscaled temperature. 
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Fig. 4-9 Histogram of 12 stations (the blue dotted line represents the range of training 

data) 
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Fig. 4-10 shows the ratio of RMSE to SD of training and testing for LSTM, SVM, mean 

and MLR ensemble. For all four ensembles, twelve stations have similar performance, with 

the ratio of RMSE to SD ranging between 0.426 and 0.515. Moreover, the rank of 12 

stations for all ensembles are also similar. Big Trout Lake station, Toronto Island Airport 

station, and Ottawa International Airport station are the best 3 performers overall, having 

low RMSE to SD ratio values for both machine learning and statistical ensembles. This 

may be because the training data at these three stations are more representative for 

predicting the patterns of the testing period. The Sault Ste Marie Airport station, the 

Wiarton Airport, and the Timmins Victor Power Airport station performed the poorest with 

a high RMSE to SD ratio for all ensembles. Although stations located in Northern Ontario 

tend to have higher variance, the ratio between RMSE and SD shows no significant 

difference with southern stations. Moreover, though the machine learning ensembles were 

calibrated using training data of the Toronto Pearson International Airport station, both 

LSTM ensemble and SVM ensembles perform well across all 12 stations, with a low RMSE 

to SD ratio. The good performance of all four ensembles indicated that both machine 

learning and statistical ensembles are stable and reliable for generating downscaled daily 

temperature. 
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Fig. 4-10 RMSE to SD ratios of machine ensembles and statistical ensembles for 12 

stations 

 

4.5 Conclusions 

This study investigated the performance of machine learning methods (LSTM networks 

and SVM) and statistical methods (EM and MLR) in developing multi-model ensembles 

for downscaling daily temperature in Ontario, Canada. The input used the simulated daily 

mean temperature obtained from six RCMs collected from NA-CORDEX and the output 

was the observed daily mean near-surface air temperature obtained from ECCC. Twelve 

meteorological stations over Ontario were chosen to evaluate the downscaling performance 

of machine learning and statistical ensembles. Data from 1980 to 1989 were used for 

training and testing the ensembles. The results of ensembles were compared with the 
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observation data, and the downscaling performance of ensembles was evaluated by RMSE, 

R2, and ratio of RMSE to SD.  

The study showed that both machine learning and statistical ensembles performed well 

at downscaling daily mean temperature. Machine learning and statistical ensembles had a 

similar downscaling performance with relatively high accuracy. The R2 of 12 stations 

ranged between 0.756 and 0.820, RMSE ranged between 4.318°C and 7.063°C, and the 

ratio of RMSE to SD ranged between 0.426 and 0.515. The high R2 and low RMSE of 12 

stations indicated both machine learning and statistical ensembles could generate stable and 

reliable downscaled daily temperatures. Considering that machine learning ensembles are 

computationally demanding and time-consuming, the mean ensemble could be used as a 

less computationally demanding method for generating downscaled daily temperature and 

developing near/long-term scenarios of regional climate change for the future with similar 

accuracy to machine learning ensembles.  

Machine learning and statistical techniques both have difficulty predicting extreme 

values. Specifically, machine learning ensembles showed a trend for under-estimating the 

high observed temperature above 20°C and an over-estimating trend for the low observed 

temperature below -10°C in both the calibration and validation periods. The relationship 

between observation and RCMs could be divided into two cases: observation lying between 

or exceeding the maximum and minimum value of six RCMs. Ensembles could not 
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recognize which circumstance to apply in downscaling temperature, leading to low 

accuracy in predicting extreme values. Thus, further study should be focusing on solving 

the difficulty of predicting extreme values. 
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5. Conclusions 

This thesis investigated the performance of statistical and machine learning methods 

in generating multi-model ensembles for temperature downscaling. RCM outputs obtained 

from NA-CORDEX were used as inputs for the proposed ensembles.  

Chapter 1 provided background information and Chapter 2 presented a review on 

climate downscaling methods and ensemble modeling techniques. 

In Chapter 3, a preliminary study was carried out to investigate the applicability and 

performance of neural network models for temperature downscaling. Multi-layer 

Perceptron (MLP), Time-lagged Feed-forward Neural Network (TLFN) and Nonlinear 

Auto-Regressive Network with exogenous inputs (NARX) were applied to develop multi-

model ensembles and the performance of the proposed ensembles were evaluated using a 

case study of Big Trout Lake in Ontario, Canada. The results showed that MLP, TLFN, and 

NARX are effective methods for downscaling daily mean temperature and had similar 

performances based on root mean square error (RMSE) and coefficient of determination 

(R2). Neural network based ensembles outperformed individual RCMs and generated 

predictions with smaller fluctuations. The results provide a foundation to further apply 

machine learning based multi-model ensembles for downscaling in larger areas. 

Chapter 4 investigated the performance of statistical and machine learning based multi-

model ensembles for downscaling daily temperature. Two statistical methods (arithmetic 
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ensemble mean, EM, and Multiple Linear Regression, MLR) and two machine learning 

methods (Long Short-Term Memory, LSTM, networks and Support Vector Machine, SVM) 

were chosen for multi-model ensemble development for temperature downscaling. A case 

study of twelve meteorological stations across Ontario, Canada was conducted to evaluate 

the performance of the proposed ensembles. Both machine learning ensembles and 

statistical ensembles have shown high accuracy in downscaling daily temperature and those 

ensembles had similar performance. 

While the downscaling methods introduced in Chapters 3 and 4 performed well for 

daily temperature, there are still some limitations. One limitation is that all proposed 

ensembles have difficulties predicting extreme temperatures outside the range of -10°C to 

20°C. One reason is that neural networks tend to grasp the trend of the majority of data, 

instead of a small portion of extreme events. Considering extreme temperatures appear 

during a similar time period each year (winter and summer), further research could consider 

splitting the dataset based on season and train one ensemble for each season. Bias correction 

could also be employed for improving the prediction of extreme values. Moreover, the 

performance of the ensembles could be further improved by including more input data. 

Given that machine learning methods are data-driven, their performance relies heavily on 

the quantity and quality of the input data. Further research could incorporate more RCMs 

driven by different GCMs and consider other relevant input variables such as daily 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

99 
 

maximum temperature and daily minimum temperature.  

 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

100 
 

References 

Adger, W. N., Barnett, J., Brown, K., Marshall, N., and O'brien, K. (2013). Cultural 

dimensions of climate change impacts and adaptation. Nature Climate Change, 3(2), 

112. 

Adger, W. N., Quinn, T., Lorenzoni, I., Murphy, C., and Sweeney, J. (2012). Changing 

social contracts in climate-change adaptation. Nature Climate Change, 3(4), 330-

333. 

Aksornsingchai, P., and Srinilta, C. (2011). Statistical downscaling for rainfall and 

temperature prediction in Thailand. Paper presented at the Proceedings of the 

international multiconference of engineers and computer scientists. 

Anandhi, A., Srinivas, V. V., Kumar, D. N., and Nanjundiah, R. S. (2009). Role of predictors 

in downscaling surface temperature to river basin in India for IPCC SRES scenarios 

using support vector machine. International Journal of Climatology, 29(4), 583-

603. 

Anderson, G. J., and Lucas, D. D. (2018). Machine Learning Predictions of a 

Multiresolution Climate Model Ensemble. Geophysical Research Letters, 45(9), 

4273-4280. 

Aribarg, T., Kimpan, C., and Supratid, S. (2017, 15-18 Nov. 2017). Use of CMIP3 and 

CMIP5 Climate Models to Simulate Change Discharge in the Chao Phraya River 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

101 
 

Basin. Paper presented at the 2017 21st International Computer Science and 

Engineering Conference (ICSEC). 

Ben Alaya, M. A., Zwiers, F., and Zhang, X. (2019). Evaluation and Comparison of 

CanRCM4 and CRCM5 to Estimate Probable Maximum Precipitation over North 

America. Journal of Hydrometeorology, 20(10), 2069-2089. 

Bouwer, L. M. (2013). Projections of future extreme weather losses under changes in 

climate and exposure. Risk Anal, 33(5), 915-930. 

Calzadilla, A., Rehdanz, K., Betts, R., Falloon, P., Wiltshire, A., and Tol, R. (2013). Climate 

change impacts on global agriculture. Climatic Change, 120(1-2), 357-374. 

Cannon, A. J., and Whitfield, P. H. (2002). Downscaling recent streamflow conditions in 

British Columbia, Canada using ensemble neural network models. Journal of 

Hydrology, 259(1), 136-151. 

Casson, R. J., and Farmer, L. D. (2014). Understanding and checking the assumptions of 

linear regression: a primer for medical researchers. Clin Exp Ophthalmol, 42(6), 

590-596. 

Cavazos, T., Luna‐Niño, R., Cerezo‐Mota, R., Fuentes‐Franco, R., Méndez, M., Pineda 

Martínez, L. F., and Valenzuela, E. (2019). Climatic trends and regional climate 

models intercomparison over the CORDEX‐CAM (Central America, Caribbean, 

and Mexico) domain. International Journal of Climatology. 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

102 
 

Chen, S., Billings, S. A., and Grant, P. M. (1990). Non-linear system identification using 

neural networks. International Journal of Control, 51(6), 1191-1214. 

Clemen, R. T., and Murphy, A. H. (1986). Objective and subjective precipitation probability 

forecasts: some methods for improving forecast quality. Weather Forecasting, 1(3), 

213-218. 

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-

297. 

Coulibaly, P., Dibike, Y. B., and Anctil, F. (2005). Downscaling Precipitation and 

Temperature with Temporal Neural Networks. Journal of Hydrometeorology, 6(4), 

483-496. 

Deng, Z., Liu, J., Qiu, X., Zhou, X., and Zhu, H. (2017). Downscaling RCP8.5 daily 

temperatures and precipitation in Ontario using localized ensemble optimal 

interpolation (EnOI) and bias correction. Climate Dynamics, 51(1-2), 411-431. 

Dibike, Y. B., and Coulibaly, P. (2006). Temporal neural networks for downscaling climate 

variability and extremes. Neural Networks, 19(2), 135-144. 

Diro, G. T., Sushama, L., Martynov, A., Jeong, D. I., Verseghy, D., and Winger, K. (2014). 

Land-atmosphere coupling over North America in CRCM5. Journal of Geophysical 

Research: Atmospheres, 119(21), 11,955-911,972. 

Doblas-Reyes, F. J., Hagedorn, R., and Palmer, T. N. (2005). The rationale behind the 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

103 
 

success of multi-model ensembles in seasonal forecasting — II. Calibration and 

combination. Tellus A: Dynamic Meteorology and Oceanography, 57(3), 234-252. 

Duhan, D., and Pandey, A. (2014). Statistical downscaling of temperature using three 

techniques in the Tons River basin in Central India. Theoretical and Applied 

Climatology, 121(3-4), 605-622. 

Eerola, K. J. H. N. (2006). About the performance of HIRLAM version 7.0. 51, 93-102. 

Fyfe, J. C., von Salzen, K., Cole, J. N. S., Gillett, N. P., and Vernier, J. P. (2013). Surface 

response to stratospheric aerosol changes in a coupled atmosphere-ocean model. 

Geophysical Research Letters, 40(3), 584-588. 

Gaitan, C. F., Hsieh, W. W., Cannon, A. J., and Gachon, P. (2013). Evaluation of Linear and 

Non-Linear Downscaling Methods in Terms of Daily Variability and Climate 

Indices: Surface Temperature in Southern Ontario and Quebec, Canada. 

Atmosphere-Ocean, 52(3), 211-221. 

Goosse, H., Barriat, P.-Y., Loutre, M.-F., and Zunz, V. (2010). Introduction to climate 

dynamics and climate modeling: Centre de recherche sur la Terre et le climat 

Georges Lemaître-UCLouvain. 

Goyal, M. K., and Ojha, C. S. P. (2012). Downscaling of surface temperature for lake 

catchment in an arid region in India using linear multiple regression and neural 

networks. International Journal of Climatology, 32(4), 552-566. 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

104 
 

Grimm, N. B., Groffman, P., Staudinger, M., and Tallis, H. (2016). Climate change impacts 

on ecosystems and ecosystem services in the United States: process and prospects 

for sustained assessment. In The US National Climate Assessment (pp. 97-109): 

Springer. 

Hagedorn, R., DOBLAS‐REYES, F. J., and Palmer, T. (2005). The rationale behind the 

success of multi‐model ensembles in seasonal forecasting–I. Basic concept. Tellus 

A, 57(3), 219-233. 

Harrison, M., Palmer, T., Richardson, D., Buizza, R., and Petroliagis, T. (1995). Joint 

ensembles from the UKMO and ECMWF models. Paper presented at the ECMWF 

Seminar Procedings: Predictability. 

Haylock, M. R., Cawley, G. C., Harpham, C., Wilby, R. L., and Goodess, C. M. (2006). 

Downscaling heavy precipitation over the United Kingdom: a comparison of 

dynamical and statistical methods and their future scenarios. International Journal 

of Climatology, 26(10), 1397-1415. 

Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory. Neural 

Computation, 9(8), 1735-1780. 

Hua, W., Chen, H., Sun, S., and Zhou, L. (2015). Assessing climatic impacts of future land 

use and land cover change projected with the CanESM2 model. International 

Journal of Climatology, 35(12), 3661-3675. 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

105 
 

Huth, R. (2004). Sensitivity of Local Daily Temperature Change Estimates to the Selection 

of Downscaling Models and Predictors. Journal of Climate, 17(3), 640-652. 

Huth, R., Kliegrová, S., and Metelka, L. (2008). Non-linearity in statistical downscaling: 

does it bring an improvement for daily temperature in Europe? International 

Journal of Climatology, 28(4), 465-477. 

IPCC. (2018). Global warming of 1.5°C. Retrieved from https://www.ipcc.ch/sr15/ 

Jalota, S., Vashisht, B., Sharma, S., and Kaur, S. (2018). Understanding Climate Change 

Impacts on Crop Productivity and Water Balance: Academic Press. 

Jeong, D. I., St-Hilaire, A., Ouarda, T., and Gachon, P. (2012). A multivariate multi-site 

statistical downscaling model for daily maximum and minimum temperatures. 

Climate Research, 54(2), 129-148. 

Jeong, D. I., St-Hilaire, A., Ouarda, T. B. M. J., and Gachon, P. (2011). Comparison of 

transfer functions in statistical downscaling models for daily temperature and 

precipitation over Canada. Stochastic Environmental Research and Risk Assessment, 

26(5), 633-653. 

Khalili, M., Van Nguyen, V. T., and Gachon, P. (2013). A statistical approach to multi-site 

multivariate downscaling of daily extreme temperature series. International 

Journal of Climatology, 33(1), 15-32. 

Kharin, V. V., and Zwiers, F. W. (2002). Climate Predictions with Multimodel Ensembles. 

https://www.ipcc.ch/sr15/


M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

106 
 

Journal of Climate, 15(7), 793-799. 

Krishnamurti, T., Kishtawal, C., LaRow, T. E., Bachiochi, D. R., Zhang, Z., Williford, C. 

E., Gadgil, S., and Surendran, S. (1999). Improved weather and seasonal climate 

forecasts from multimodel superensemble. Science, 285(5433), 1548-1550. 

Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., LaRow, T., Bachiochi, D., Williford, E., 

Gadgil, S., and Surendran, S. (2000). Multimodel Ensemble Forecasts for Weather 

and Seasonal Climate. Journal of Climate, 13(23), 4196-4216. 

Kronenberg, R., Barfus, K., Franke, J., and Bernhofer, C. (2013). On the Downscaling of 

Meteorological Fields Using Recurrent Networks for Modelling the Water Balance 

in a Meso-Scale Catchment Area of Saxony, Germany. Atmospheric and Climate 

Sciences, 03(04), 552-561. 

Laprise, R. (2008). Regional climate modelling. Journal of Computational Physics, 227(7), 

3641-3666. 

Lemmen, D. S., Warren, F. J., Lacroix, J., and Bush, E. (2008). From impacts to adaptation: 

Canada in a changing climate. Government of Canada, Ottawa, ON. 

Leung, L. R., Mearns, L. O., Giorgi, F., and Wilby, R. L. J. B. o. t. A. M. S. (2003). Regional 

climate research: needs and opportunities. 84(1), 89-95. 

Li, Q., Wang, S., Lee, D.-K., Tang, J., Niu, X., Hui, P., Gutowski, W. J., Dairaku, K., 

McGregor, J. L., Katzfey, J., Gao, X., Wu, J., Hong, S.-Y., Wang, Y., and Sasaki, H. 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

107 
 

(2016). Building Asian climate change scenario by multi-regional climate models 

ensemble. Part II: mean precipitation. International Journal of Climatology, 36(13), 

4253-4264. 

Lucas-Picher, P., Wulff-Nielsen, M., Christensen, J. H., Aðalgeirsdóttir, G., Mottram, R., 

and Simonsen, S. B. (2012). Very high resolution regional climate model 

simulations over Greenland: Identifying added value. Journal of Geophysical 

Research: Atmospheres, 117(D2). 

Mahmood, R., and Babel, M. S. (2012). Evaluation of SDSM developed by annual and 

monthly sub-models for downscaling temperature and precipitation in the Jhelum 

basin, Pakistan and India. Theoretical and Applied Climatology, 113(1-2), 27-44. 

Martynov, A., Sushama, L., Laprise, R., Winger, K., and Dugas, B. (2012). Interactive lakes 

in the Canadian Regional Climate Model, version 5: the role of lakes in the regional 

climate of North America. Tellus A: Dynamic Meteorology and Oceanography, 

64(1). 

McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous 

activity. The bulletin of mathematical biophysics, 5(4), 115-133. 

Miksovsky, J., and Raidl, A. J. N. P. i. G. (2005). Testing the performance of three nonlinear 

methods of time seriesanalysis for prediction and downscaling of European daily 

temperatures. 12(6), 979-991. 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

108 
 

Misra, S., Sarkar, S., and Mitra, P. (2017). Statistical downscaling of precipitation using 

long short-term memory recurrent neural networks. Theoretical and Applied 

Climatology, 134(3-4), 1179-1196. 

Mouatadid, S., Easterbrook, S., and Erler, A. R. (2017). A machine learning approach to 

non-uniform spatial downscaling of climate variables. Paper presented at the 2017 

IEEE International Conference on Data Mining Workshops (ICDMW). 

Naughton, M. P., Henderson, A., Mirabelli, M. C., Kaiser, R., Wilhelm, J. L., Kieszak, S. 

M., Rubin, C. H., and McGeehin, M. A. (2002). Heat-related mortality during a 

1999 heat wave in Chicago. American journal of preventive medicine, 22(4), 221-

227. 

Neumann, J. E., Price, J., Chinowsky, P., Wright, L., Ludwig, L., Streeter, R., Jones, R., 

Smith, J. B., Perkins, W., Jantarasami, L., and Martinich, J. (2014). Climate change 

risks to US infrastructure: impacts on roads, bridges, coastal development, and 

urban drainage. Climatic Change, 131(1), 97-109. 

Plummer, D., Caya, D., Frigon, A., Côté, H., Giguère, M., Paquin, D., Biner, S., Harvey, 

R., and De Elia, R. (2006). Climate and climate change over North America as 

simulated by the Canadian RCM. Journal of Climate, 19(13), 3112-3132. 

Rahmstorf, S., and Coumou, D. (2011). Increase of extreme events in a warming world. 

Proceedings of the National Academy of Sciences, 108(44), 17905-17909. 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

109 
 

Rajagopalan, B., Lall, U., and Zebiak, S. E. (2002). Categorical Climate Forecasts through 

Regularization and Optimal Combination of Multiple GCM Ensembles. Monthly 

Weather Review, 130(7), 1792-1811. 

Robertson, A. W., Lall, U., Zebiak, S. E., and Goddard, L. (2004). Improved Combination 

of Multiple Atmospheric GCM Ensembles for Seasonal Prediction. Monthly 

Weather Review, 132(12), 2732-2744. 

Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, 

S., Kirchner, I., Kornblueh, L., and Manzini, E. (2003). The atmospheric general 

circulation model ECHAM 5. PART I: Model description. 

Salman, A. G., Heryadi, Y., Abdurahman, E., and Suparta, W. (2018). Single Layer & Multi-

layer Long Short-Term Memory (LSTM) Model with Intermediate Variables for 

Weather Forecasting. Procedia Computer Science, 135, 89-98. 

Samouly, A. A., Luong, C. N., Li, Z., Smith, S., Baetz, B., and Ghaith, M. (2018). 

Performance of multi-model ensembles for the simulation of temperature variability 

over Ontario, Canada. Environmental Earth Sciences, 77(13). 

Samuelsson, P., Jones, C. G., Will´En, U., Ullerstig, A., Gollvik, S., Hansson, U., Jansson, 

E., Kjellstro¨M, C., Nikulin, G., and Wyser, K. (2016). The Rossby Centre Regional 

Climate model RCA3: model description and performance. Tellus A: Dynamic 

Meteorology and Oceanography, 63(1), 4-23. 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

110 
 

Sanders, F. (1963). On subjective probability forecasting. Journal of Applied Meteorology, 

2(2), 191-201. 

Schoof, J. T., and Pryor, S. C. (2001). Downscaling temperature and precipitation: a 

comparison of regression-based methods and artificial neural networks. 

International Journal of Climatology, 21(7), 773-790. 

Scinocca, J. F., Kharin, V. V., Jiao, Y., Qian, M. W., Lazare, M., Solheim, L., Flato, G. M., 

Biner, S., Desgagne, M., and Dugas, B. (2016). Coordinated Global and Regional 

Climate Modeling*. Journal of Climate, 29(1), 17-35. 

Snell, S. E., Gopal, S., and Kaufmann, R. K. (2000). Spatial interpolation of surface air 

temperatures using artificial neural networks: Evaluating their use for downscaling 

GCMs. Journal of Climate, 13(5), 886-895. 

Srinivas, V. V., Basu, B., Nagesh Kumar, D., and Jain, S. K. (2014). Multi-site downscaling 

of maximum and minimum daily temperature using support vector machine. 

International Journal of Climatology, 34(5), 1538-1560. 

Stern, N. J. N. N. (2016). Economics: Current climate models are grossly misleading. 

Nature News, 530(7591), 407. 

Strandberg, G., Bärring, L., Hansson, U., Jansson, C., Jones, C., Kjellström, E., Kupiainen, 

M., Nikulin, G., Samuelsson, P., and Ullerstig, A. (2015). CORDEX scenarios for 

Europe from the Rossby Centre regional climate model RCA4: SMHI. 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

111 
 

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural 

networks. Paper presented at the Advances in neural information processing 

systems. 

Tang, B., Hsieh, W. W., Monahan, A. H., and Tangang, F. T. (2000). Skill Comparisons 

between Neural Networks and Canonical Correlation Analysis in Predicting the 

Equatorial Pacific Sea Surface Temperatures. 13(1), 287-293. 

Tran Anh, D., Van, S. P., Dang, T. D., and Hoang, L. P. (2019). Downscaling rainfall using 

deep learning long short‐term memory and feedforward neural network. 

International Journal of Climatology, 39(10), 4170-4188. 

Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., 

and Sheffield, J. (2014). Global warming and changes in drought. Nature Climate 

Change, 4(1), 17-22. 

Tripathi, S., Srinivas, V. V., and Nanjundiah, R. S. (2006). Downscaling of precipitation for 

climate change scenarios: A support vector machine approach. Journal of 

Hydrology, 330(3-4), 621-640. 

Undén, P., Rontu, L., Jarvinen, H., Lynch, P., Calvo Sánchez, F. J., Cats, G., Cuxart, J., 

Eerola, K., Fortelius, C., and García-Moya, J. A. (2002). HIRLAM-5 scientific 

documentation. 

von Salzen, K., Scinocca, J. F., McFarlane, N. A., Li, J., Cole, J. N. S., Plummer, D., 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

112 
 

Verseghy, D., Reader, M. C., Ma, X., Lazare, M., and Solheim, L. (2013). The 

Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part 

I: Representation of Physical Processes. Atmosphere-Ocean, 51(1), 104-125. 

Wallach, D., Mearns, L. O., Ruane, A. C., Rötter, R. P., and Asseng, S. (2016). Lessons 

from climate modeling on the design and use of ensembles for crop modeling. 

Climatic Change, 139(3-4), 551-564. 

Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, 

J.-M., Hoegh-Guldberg, O., and Bairlein, F. (2002). Ecological responses to recent 

climate change. Nature, 416(6879), 389. 

Wang, B., Zheng, L., Liu, D. L., Ji, F., Clark, A., and Yu, Q. (2018). Using multi-model 

ensembles of CMIP5 global climate models to reproduce observed monthly rainfall 

and temperature with machine learning methods in Australia. International Journal 

of Climatology, 38(13), 4891-4902. 

Wang, H. M., Chen, J., Xu, C. Y., Chen, H., Guo, S., Xie, P., and Li, X. (2019a). Does the 

weighting of climate simulations result in a better quantification of hydrological 

impacts? Hydrol. Earth Syst. Sci., 23(10), 4033-4050. 

Wang, J., Wang, J., Shi, Y., Zhou, H., and Liao, L. (2019b). A Recursive Update Model for 

Estimating High-Resolution LAI Based on the NARX Neural Network and MODIS 

Times Series. Remote Sensing, 11(3). 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

113 
 

Wang, X., Huang, G., Lin, Q., Nie, X., and Liu, J. (2015a). High-resolution temperature 

and precipitation projections over Ontario, Canada: a coupled dynamical-statistical 

approach. Quarterly Journal of the Royal Meteorological Society, 141(689), 1137-

1146. 

Wang, X., Huang, G., Liu, J., Li, Z., and Zhao, S. (2015b). Ensemble Projections of 

Regional Climatic Changes over Ontario, Canada. Journal of Climate, 28(18), 

7327-7346. 

Weigel, A. P., Liniger, M., and Appenzeller, C. (2008). Can multi‐model combination really 

enhance the prediction skill of probabilistic ensemble forecasts? Quarterly Journal 

of the Royal Meteorological Society: A journal of the atmospheric sciences, applied 

meteorology, 134(630), 241-260. 

Wen, T.-H., Gasic, M., Mrksic, N., Su, P.-H., Vandyke, D., and Young, S. (2015). 

Semantically conditioned lstm-based natural language generation for spoken 

dialogue systems. arXiv:1508.01745. 

Wheeler, T., and Von Braun, J. (2013). Climate change impacts on global food security. 

Science, 341(6145), 508-513. 

Xu, L., Chen, N., Zhang, X., Chen, Z., Hu, C., and Wang, C. (2019). Improving the North 

American multi-model ensemble (NMME) precipitation forecasts at local areas 

using wavelet and machine learning. Climate Dynamics, 53(1-2), 601-615. 



M.A.Sc. Thesis – X. Li; McMaster University – Civil Engineering 

114 
 

Zhai, Y., Huang, G., Wang, X., Zhou, X., Lu, C., and Li, Z. (2018). Future projections of 

temperature changes in Ottawa, Canada through stepwise clustered downscaling of 

multiple GCMs under RCPs. Climate Dynamics, 52(5-6), 3455-3470. 

 

 


	Abstract
	Acknowledgments
	Publication List
	Co-Authorship
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	1. Introduction
	1.1 Background
	1.2 Objective and Scope
	1.3 Organization of the Thesis

	2. Literature Review
	2.1 Regional Climate Models
	2.2 Statistical Downscaling
	2.2.1 Multiple Linear Regression
	2.2.2 Neural Networks
	2.2.3 Support Vector Machines

	2.3 Multi-model Ensembles
	2.4 Downscaling Studies in Ontario, Canada

	3. Prediction of Long-term Near-surface Temperature based on NA-CORDEX Output
	Abstract
	3.1 Introduction
	3.2 Methodology
	3.2.1 Multi-layer Perceptron (MLP)
	3.2.2 Time-lagged Feed-forward Neural Network (TLFN)
	3.2.3 Nonlinear Auto-Regressive Networks with Exogenous Inputs (NARX)

	3.3 Study Area and Data Collection
	3.4 Neural Network Design and Training
	3.5 Results and Discussion
	3.5.1  Neural Networks Performance
	3.5.1.1  MLP Performance
	3.5.1.2  TLFN Performance
	3.5.1.3  NARX Performance

	3.5.2  Comparison between RCMs and Neural Networks
	3.5.3  Comparison of Performance between MLP, TLFN, and NARX

	3.6 Conclusions
	3.7 References

	4. Performance of Statistical and Machine Learning Ensembles for Daily Temperature Downscaling
	Abstract
	4.1 Introduction
	4.2 Study Area and Data
	4.3 Methodology
	4.3.1  Long Short-Term Memory Networks
	4.3.2  Support Vector Machine
	4.3.3  Statistical Methods
	4.3.4  Design and Training of Downscaling Models

	4.4 Results and Discussion
	4.4.1  Downscaling Performance of Long Short-Term Memory networks
	4.4.2  Downscaling Performance of Support Vector Machine
	4.4.3  Downscaling Performance of Statistical Methods
	4.4.4 Comparison Between the Downscaling Performance of Machine Learning and Statistical Techniques
	4.4.5 Current Difficulties in Predicting Extreme Values
	4.4.6 Performance Comparison among 12 Stations over Ontario

	4.5 Conclusions
	4.6 References

	5. Conclusions
	References

