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ABSTRACT

A small amount of polymer additives can cause substantial reduction in the energy dissipation and friction loss of turbulent flow. The prob-
lem of polymer-induced drag reduction has attracted continuous attention over the seven decades since its discovery. However, changes in
research paradigm and perspectives have triggered a wave of new advancements in the past decade. This review attempts to bring researchers
of all levels, from beginners to experts, to the forefront of this area. It starts with a comprehensive coverage of fundamental knowledge and
classical findings and theories. It then highlights several recent developments that bring fresh insights into long-standing problems. Open

questions and ongoing debates are also discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5129619

I. INTRODUCTION

In 1883, Reynolds reported his historical experiments on the
transition to turbulence in pipe flow:' as fluid velocity increases, its
trajectories in the flow change from a steady linear pattern (laminar
flow) to a dynamic and sinuous one (turbulence). Dimensional anal-
ysis leads to the conclusion that for the same type of flow setup, the
transition, as well as the whole flow behaviors, would depend solely
on one nondimensional parameter, later known as the Reynolds
number,

Re = %Ul, (1)

where p and # are the fluid density and viscosity (to be specific,
dynamic viscosity as against the kinematic viscosity #/p), respec-
tively, and U and [ are the characteristic velocity and length scales
of the flow, respectively. The laminar-turbulent (L-T) transition is
marked by sharp changes in flow statistics. Most notably, the fric-
tion factor rises abruptly. In the turbulent regime, friction loss is
significantly higher than that of a laminar flow when compared at
the same Re. Techniques for friction drag reduction (DR) are thus of
significant practical interest.”’

Polymer additives have long been known as highly potent drag-
reducing agents. In 1948, Toms' reported that dissolving a minute

amount [O(10) wppm—parts per million by weight] of poly(methyl
methacrylate) (PMMA) into monochlorobenzene can substantially
reduce the friction drag, compared with that of the pure solvent, in
a high-Re pipe flow. Similar observations were subsequently made
in a wide variety of polymer-solvent pairs and, under certain cir-
cumstances, the percentage drop in friction drag can be as high as
80%.”° The ubiquity of DR across different chemical species shows
the effect to be purely mechanical, caused by the coupling between
polymer dynamics and turbulent flow motions rather than any spe-
cific chemical interaction. The most effective drag-reducing polymer
molecules are linear long chains with flexible backbones,”* although
rigid polymers are also known to cause DR.”"’

The phenomenon of polymer-induced turbulent DR has been
continuously studied for seven decades since its discovery, and find-
ings were extensively reviewed in the literature. The classical review
by Virk® is a comprehensive and well-organized account of major
experimental observations up to that time, especially flow statistics
and their parameter dependence. Later availability of new research
tools, in particular, direct numerical simulation (DNS)'" and parti-
cle image velocimetry (PIV),”"” allowed the access to detailed flow
and polymer stress fields, which has led to significant new dis-
coveries in the past two decades. Many of those advances were
covered in more recent reviews by Graham'’ and by White and
Mungal."
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Despite a long history of research, this area has witnessed a
wave of recent advances that pushed the boundaries of our knowl-
edge. These developments, which mostly occurred over the past 10
years, were largely triggered by the shift of focus from ensemble
flow statistics of turbulence to its dynamical heterogeneity, inter-
mittency, and transitions between different flow states. Significant
breakthroughs have been made in areas of long-standing difficulty,
which is the primary motivation for this review. These newest devel-
opments will be covered in Sec. I1I. Established phenomenology and
classical theories will still be reviewed in Sec. II to present a self-
contained overview. Note that separation between Secs. II and III
is not strictly chronological. A number of very recent and interest-
ing contributions are covered in Sec. II for their better conceptual
alignment with the more established framework of study.

Finally, as is the case in any other review, the current work is
inevitably limited by the author’s scope of knowledge and expertise.
Although every effort has been made to stay neutral and objective
when describing previous findings and observations, interpretation
and discussion naturally reflects my own opinion. The reader is
advised to consult a number of earlier reviews for more balanced
viewpoints.” """’

Il. FUNDAMENTALS

This section starts with an introduction to the basic concepts,
terminology, and theoretical foundation in polymer DR (Sec. IT A).
I attempt to take a pedagogical approach and write for the broadest
readership possible, which I believe is necessary for the interdisci-
plinarity of this area. It is indeed an unusual marriage between two
otherwise distant fields of physics, i.e., flow turbulence and polymer
dynamics. Consequently, it is rather rare for a beginner to have prior
exposure to both fields. After that, Sec. II B will summarize major
transitions between flow regimes and phenomenological observa-
tions in each regime. Classical understanding and theories will be
reviewed and discussed in Sec. II C.

A. Basic concepts and background knowledge

1. Flow geometry and setup

The most studied flow geometries are pipe and channel (Fig. 1)
flows where the flow is driven by a pressure difference between the
inlet and the outlet. The flow can be set up either with a fixed average
pressure gradient (where the flow rate is allowed to vary) or with a

y Newtonian Turb.
% I W Laminar

= Polymeric Turb.

I |
FIG. 1. Drag reduction in turbulent channel flow under a constant pressure gradient
(thus, the same wall shear stress).

scitation.org/journal/phf

fixed bulk average velocity Uy, (where the pressure drop is allowed
to vary). (Hereinafter, bulk average refers to an average over the
volume of the flow domain.) The latter seems to be more common
in experiments while the former is more often seen in simulations,
although with exceptions. When the bulk velocity is the controlled
variable, it becomes the natural choice of the characteristic velocity
U in the Re definition [Eq. (1)]. When the average pressure gradi-
ent is held constant, time-averaged velocity is available only ex post
facto. Otherwise, a velocity scale can be deduced from the applied
pressure gradient, e.g., using the laminar flow velocity generated
from the same pressure gradient. For the characteristic length /, the
pipe diameter or half (occasionally, full) channel gap height is the
common choice.

Other flow setups often used include plane Couette (flow
between two parallel plates driven by their relative velocity instead
of pressure gradient),® boundary layer (flow generated near the
solid surface when a uniform bulk flow is moving over a stationary
plate),”” and duct (pressure-driven flow in a straight conduit with
uniform square or rectangular cross sections) flows.”’

2. Definition of drag reduction

Friction loss is measured by using the Fanning friction factor
C¢ defined as™!

Tw

Cr=——,
%PUaZVg

2
where 7y is the average wall shear stress [subscript “w” indicates
quantities at the wall(s)] and (1/2)p Uazvg is the average fluid kinetic
energy per volume. At steady states,

APA cross section = TwAwall (3)

is a balance of the flow’s driving force (left-hand side—LHS), pro-
vided by the average pressure drop

AP = Piplet = Poutlet> (4)

and resistance due to wall friction (right-hand side—RHS). Areas of
the flow cross section and the walls, Across section @and Ay, can be cal-
culated from the flow geometry, which, combined with Egs. (2) and
(3), leads to the specific forms of the definition in pipe and channel
flows as follows:

1(D AP
Cipie = —(—)( ) )
pip! 4\ L %PUZ
(D and L are the pipe diameter and length, respectively) and
H AP
C channel = | 7~ 6
£, channel (L)(;pUZ) (6)

(H and L are the channel half height and length, respectively). Note
that AP/L is the average pressure gradient.
The level of drag reduction is quantified by
Ci— Cin
C

DR% = x 100%, (7)
where Csy is the friction factor of a reference flow of a benchmark
Newtonian fluid (“N” stands for “Newtonian”). The definition is
straightforward when the solution is dilute enough that its shear vis-
cosity is still constant and is indistinguishable from that of the pure
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solvent. Turbulent flow of the solvent, which presumably is a New-
tonian fluid, in the same flow geometry and with the same pressure
drop or flow rate, is a natural choice of the reference flow. When
compared at the same flow rate (same U.yg), DR is reflected in the
decrease in pressure drop. Likewise, when compared at the same AP,
DR is reflected in the increase in flow rate (Fig. 1).

At higher polymer concentrations, the solution viscosity is no
longer constant and decreases with shear rate j, which is known as
the shear-thinning effect. Its value at the zero-shear limit,

1o = limn(j), ®)
y—0

is usually considerably higher than the solvent viscosity. In such
cases, it is common to define the benchmark fluid as a hypothetical
Newtonian liquid having the same viscosity as the polymer solution
shear viscosity #(jw), corresponding to the average shear rate mea-
sured at the walls jw (see, e.g., the work of Warholic, Massah, and
Hanratty,22 and Ptasinski et al.”’). This is to ensure that any reduc-
tion of the friction factor caused by shear thinning, i.e., reduction of
viscous shear stress resulting from the lowering viscosity, is not con-
sidered. Rather, DR% should only include the reduction of turbulent
friction loss. Lumley’ insisted a more stringent criterion which uses
the pure solvent, whose viscosity is lower than or at best equal to that
of the polymer solution, as the benchmark fluid.

3. Turbulent inner layer: Scales and flow
characteristics

Flow statistics of wall turbulence are often reported in nondi-
mensionalized quantities using the so-called viscous scales or turbu-
lent inner scales.”* The practice is very common in the DR literature
but can be confusing to beginners. At its heart, it is rooted in the
separation of scales between turbulence in the bulk flow and that in
near-wall layers.

For Newtonian flow, Re [Eq. (1)] is the only dimensionless
parameter in the governing equations if U and [, sometimes called
the outer scales, are used to nondimensionalize all flow quantities.
When the flow is turbulent, boundary layers develop near the walls,
within which it is expected that the most relevant scales are not those
of the bulk flow (U and I), but scales derived from flow quantities at
the wall, with wall shear stress

Tw = ﬂj’w» (9)
where
. _dUn
Yw = T > (10)
Y =y

being the only choice available. Note that in this paper, spatial axis
labels are assigned according to the commonly accepted convention
in wall turbulence (also marked in Fig. 1):

e x:streamwise direction, aligned with the mean flow;

e y: wall-normal direction, perpendicular to the wall; and

o z: spanwise direction, aligned with the vorticity of the lami-
nar shear flow.

Here, y. is the position of the wall, Uy is the mean velocity
profile

Un(y) = (vx(x.3,2.1)), (11)

scitation.org/journal/phf

and (-) indicates ensemble average, which, in wall turbulence, is
averaged over homogeneous directions, x and z, and time ¢.

Combining 7, with fluid properties p and #, the only velocity
and length scales to be derived, i.e., the turbulent inner scales, are
the friction velocity

Ur = — (12)
and viscous length scale
I, = —. (13)

The latter is also colloquially known as the “wall unit.” The friction
Reynolds number

ol
Re; = pu

(14)

is defined based on friction velocity and the flow geometric length
scale [ (instead of I,, which would give the same trivial value of 1 for
all cases). Comparing Eqs. (13) and (14), it is clear that

1
Rer = —, (15)
Iy
i.e., the number of wall units in the flow domain size I (see Fig. 1).
Combining Eqgs. (12) and (14), we get Re; = | /pTwl/#. For flow under
the constant-AP constraint, Ty is constant [see Eq. (3)], and thus, Re,
is constant and predetermined.
Quantities nondimensionalized with inner scales are marked
with the superscript “+,” e.g.,
U
Uh = oo (16)
Ur
When discussing near-wall turbulence using the inner scales, it
is also customary to use the wall coordinate in the wall-normal
direction,

= s 1
y L (17)

which measures the distance from the wall in wall units (Fig. 1).

At sufficiently high Re, many flow quantities scale with the
inner scales up to |y — yw| ~ O(0.1)I. These regions are collectively
called the turbulent inner layer and, correspondingly, the bulk of
turbulence beyond the near-wall region is called the outer layer. The
best known example of the success of the inner scaling is the von
Kéarman law of wall,” which shows that for different flow geome-
tries and for vastly different Re, the near-wall mean velocity profile of
Newtonian turbulence follows a universal logarithmic relation when
scaled in inner units:

Up=A"Iny" +B" (5" 230), (18)

where A" and B* are constants believed to be universal among
Newtonian wall flows, with some small variations between different
sources. Pope™ found that literature values are within 5% variation
of A* = 2.44 and B* = 5.2. DNS data from the work of Kim, Moin,
and Moser”” were best fit by A* = 2.5 and B* = 5.5. The logarithmic
profile is found to hold over most of the near-wall region from y*
~ 30 up to |y — yw| ~ 0.3, which is often called the “log-law layer.” In
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Fig. 2, a clear logarithmic dependence is observed in the water case 30
aty" 2 30. The polymeric cases will be discussed in Sec. II B 2.

In regions closest to the wall, viscous dissipation dominates and
the mean velocity follows,

T T T T T T T T T
. water

o 0.25ppm (c;= 100 ppm) - %DR = 14
A 1.25 ppm (c;= 100 ppm) - %DR=19
& 2.0 ppm (¢;= 100 ppm) - %DR =27
. 1.25 ppm (€;= 50 ppm) - %DR =33
y+= Ut

25

T T T T

Un=y" (" 55). (19)

This region is called the “viscous sublayer,” and Eq. (19) is sketched
in Fig. 2 as a curved solid line. Between y* ~ 5 and y* »~ 30 is a tran-
sition region called the “buffer layer.” In addition to flow statistics,
inner scales are also found to describe flow structures well: e.g., the
average spacing between near-wall velocity streaks (again, for New- > 15
tonian flow) is found to be around 100 wall units for various flow
conditions.”*

20

LI S B S S B B B R

4. Experimental systems and parameters 10

Experimental parameters include the flow geometric size (pipe

diameter or channel height), flow rate, and polymer solution prop- )
. . . 3050 95

erties. The latter include the polymer and solvent species, poly-
mer molecular weight, and concentration. Although a variety of
polymer-solution pairs have been tested especially in earlier years, 378 (a )
after it was established that DR depends only on the mechan-
ics of polymer molecules, aqueous solutions of flexible hydrophilic 0 el e e
polymers, such as poly(ethylene oxide) (PEO) and polyacrylamide 1 10 + 100 1000
(PAM), have become the most widely used systems for fundamental y
research.”®"*’ More rigid bio-based polymers, in particular polysac- 60 T
charides such as scleroglucan and xanthan gum (XG), are also I
often studied.”’ * Typical concentrations are in the range of O(10)-
0O(100) wppm. For most drag-reducing polymers, O(100) wppm is
sufficient to observe a substantial increase in the zero-shear viscos- 50 /
ity and clear shear-thinning. A shear viscosity vs shear rate curve ;938? (=500 ppm)-%DR=69 /'
needs to be measured for the proper calculation of DR%, which, as — - - Virk’s asymptote e
discussed in Sec. I A 2, requires the #(}w) value for each flow con- ol ‘4'.
dition. Most of those molecules have very high molecular weights, L -
0(10°) Da, corresponding to over 0(10% repeating units, or higher. r &

[T SR S (N N SN SRR YN Y TN TN SO SHN N U SN S S A S

water ’
1.26 ppm (¢;=200 ppm)-%DR =38 /
3 ppm (c;=500 ppm)-%DR=55 ’

13 ppm (¢;=500 ppm)-%DR =64

= > > 0 o

5. DNS: Constitutive models and physical basis 530k ’

a. Introduction: DNS and constitutive equations. Ever since its - com A o°
first successful implementation by Sureshkumar, Beris, and Han- /2 - . 00
dler,'" DNS has become an indispensable tool in DR research which 20 L Jh e et |
complements experiments with fully detailed and time-resolved flow - el ot 1
field data as well as direct access to polymer conformation and e
stress fields. In DNS, the time-dependent Navier-Stokes (N-S) equa- L §? -
tion (momentum and mass balances) is numerically solved and 10
the polymer stress contribution to momentum balance is modeled ( b)
with a viscoelastic constitutive equation. Sureshkumar, Beris, and
Handler'' adopted the FENE-P constitutive model (FENE-P stands [ .
for finitely extensible nonlinear elastic dumbbell model with the 01 — “'10 T 1000
Peterlin approximation),”® whereas Oldroyd-B and Giesekus models y*
have also been occasionally used in later studies.”” "’

All three models treat polymer molecules as elastic dumbbells—
two beads or force points connected by a spring force [Fig. 3(b)].

FIG. 2. Mean velocity profiles U, (y*) from channel flow experiments (Re ~ 2
x 10* based on bulk velocity and water viscosity): (a) LDR [the lowest straight solid
line shows the von Karman law—Eq. (18); numbers annotate the lower-bound y*

This effectively reduces the chain conformation into its end-to-end position for the logarithmic relation]; (b) HDR and MDR [the dotted-dashed line
vector Q, which describes the orientation and extension of the chain shows the Virk MDR profile—Eg. (58)]. The first ppm number of each case is
and ignores all internal degrees of freedom. (In this paper, boldface the polymer concentration in wppm measured in the test section. [Reprinted with
symbols indicate vectors or tensors.) Both Oldroyd-B and Giesekus permission from M. D. Warholic, H. Massah, and T. J. Hanratty, “Influence of drag-

reducing polymers on turbulence: Effects of Reynolds number, concentration and

models use the Hooke’s law for the spring force: i.e., the force is mixing,” Exp. Fluids 27, 461-472 (1999). Copyright 1999 Springer Nature.]

proportional to the chain extension |Q|. (Hereinafter, || denotes the

Phys. Fluids 31, 121302 (2019); doi: 10.1063/1.5129619 31, 121302-4
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FIG. 3. Models for flexible polymer chains: (a) an unstretched polymer chain in a
6-solvent or at an ideal chain condition (curve) and Nk-step random walk repre-
sentation (freely joined chain—FJC) with step size L; (b) FENE dumbbell model in
unstretched (left) and fully stretched (right; with infinite force f.) states. The FJC
model tracks the motion of Ny + 1 equispaced markers on the chain and neglects
the detailed conformation between markers. Orientation of each Kuhn segment is
uncorrelated with other ones. The FENE dumbbell model tracks the motion of two
ends of the chain and neglects all internal conformation. The spring force models
the entropic resistance of the chain to stretching. An accurate spring-force law can
be derived from the free energy of a stretched FJC, to which the FENE spring force
[Eq. (21)] is an approximation.**

2 .
L*-norm of a vector, i.e.,

Ql=vQ-Q (20)

.) This is clearly unrealistic at the limit of large deformation since
polymer extension is bounded by its contour length, whereas a
Hookean spring can be stretched infinitely. In a FENE dumbbell, the
spring force depends nonlinearly on |Q|,

fFENE _ H;Q
1 - (|Ql/Qmax)’

where H; is the spring force constant and Qmax is the upper limit
of |Q|: Qmax equals the chain contour length. It is easily verifi-
able that the force diverges as |Q| — Qmax, which ensures the
upper-boundedness of |Q| [Fig. 3(b)].

The mechanical model behind FENE-P is clearly physically
sounder and most closely represents the drag-reducing fluids of con-
cern: ie., dilute solutions of flexible polymers. Indeed, without the
finite extensibility constraint, the Oldroyd-B model fails to predict
shear-thinning and erroneously predicts infinite extensional viscos-
ity at a finite extension rate. The Giesekus model incorporates inter-
actions between Hookean dumbbells, making it a natural fit for more
concentrated solutions. As a result, FENE-P has been by far the
most widely adopted model in the DNS of viscoelastic turbulence.

@1
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Meanwhile, limited comparisons between constitutive models found
in the literature did not show any significant difference in their
physical results.””** The following discussion will thus focus on the
FENE-P model.

b. FENE-P: Basic concepts and assumptions. Here, we briefly
go over a few basic concepts in polymer physics in relation to dilute
solutions,”* which will be mentioned repeatedly in this review. It
is followed by a very brief introduction to the physical basis of the
FENE-P model and its associated approximations.””"

Ideal chain and solvent conditions. An ideal chain model
neglects nonbonded interactions, such as van der Waals (vdW) and
electrostatic interactions, between chain segments.”* Obviously, real
chain segments at least experience close-range steric repulsion and
longer range vdW attraction. The latter is tunable through sol-
vent effects. For a given polymer-solvent pair, the temperature at
which the repulsion and attraction balance each other is called the
0-temperature Ty. Polymer chains under this 6-solvent condition
effectively behave like ideal chains. At T > Ty, known as the good-
solvent condition, the polymer-solvent interaction is more favorable,
allowing polymer chains to swell and become more exposed to sol-
vent molecules. This can be described as an effective reduction in
the intersegmental attraction. Likewise, at T < T, polymer chains
contract, which is called the poor-solvent condition.

Dilute solution. A polymer solution is considered dilute when
individual polymer chains are so far apart from one another that
their interactions can be neglected. At equilibrium, polymer chains
take a random coil conformation [see Fig. 3(a)], which is statistically
most probable—i.e., having highest entropy. At the infinitely dilute
limit, each coil is effectively isolated from the rest. With increasing
polymer concentration Cp, the average distance between coils short-
ens. Upon a critical concentration level C;, this distance becomes
shorter than the coil diameter and different coils start to penetrate
into the space occupied by one another. This so-called overlap-
ping concentration is traditionally regarded as the upper bound of
the dilute regime.’ Recent experiments showed that, in both shear
and extensional flows, the polymer relaxation time Ay—i.e., the
time scale for an extended polymer chain to retract to its equilib-
rium coil conformation—starts to increase with C,, well before C is
reached.”"" For polystyrene in both 6- and good-solvent conditions,
concentration-dependence was found at C, as low as O(1072)C; .
For a molecular weight of ~7 x 10° Da studied in the work of Del
Giudice, Haward, and Shen,"” C; was estimated at ~5 x 10° wppm
in a 0-solvent and even lower in a good solvent. This indicates
that under flow conditions, considerable interchain interactions may
start to exist at Cp < 100 wppm, which covers most DR systems. One
plausible explanation is that, as polymer molecules are extended by
the flow, each chain would span a larger volume than an equilibrium
coil.”

Physical basis and assumptions of FENE-P. FENE-P can be
derived for polymer chains from a molecular mechanics approach
by considering the free energy of stretching polymer chains in
dilute solutions, with the following few assumptions and approxi-
mations:”*

o The free energy of chain extension derived assuming ideal
chain conformation leads to a force law f(Q) in the form of
an inverse Langevin function.
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o The inverse Langevin force law can be approximated by a
mathematically simpler empirical form of Eq. (21).

e A mathematical Peterlin approximation is introduced to
allow the closure of the constitutive model.

As such, FENE-P is an idealized and approximate model for drag-
reducing polymer solutions. The validity of and errors from these
simplifications depend on the specific polymer type and solvent con-
ditions. There has not been much effort among DNS researchers
in establishing the connection between FENE-P and realistic drag-
reducing polymer solutions, which is one of the areas open for future
research (see the discussion in Sec. I'V). Existing DNS studies, in a
way, can thus be viewed as describing the DR behaviors of a generic
type of “FENE-P polymer” solutions.

c. Polymer conformation tensor. Numerical solutions from
DNS contain the time-resolved three-dimensional (3D) turbulent
velocity v(r, t) and pressure p(r, t) fields (r denotes 3D spatial coor-
dinates and t is time). Constitutive models such as FENE-P solve for
the nondimensionalized polymer conformation tensor

a(r,t) =

(QQ) (22)

field, from which the polymer stress contribution 7}, can be calcu-
lated. [Here, kg is the Boltzmann constant, T is the absolute tem-
perature, and (), again, denotes an ensemble average—in the case
of Eq. (22), it is the average over all individual polymer molecules at
the local flow region of (r, t). Symbol C is sometimes used instead of
« in the literature.] Note that the xx-, yy-, and zz-components of the
(QQ) tensor are (Q}), (Q}), and (Q2), respectively. Thus, the trace
of the « tensor

tr(a) = Z i =

is the nondimensional mean square end-to-end distance of polymer
chains and a common measure of chain extension.

%) (23)

d. DNS parameters based on the FENE-P constitutive model.
Dimensional analysis of the governing equations leads to four
nondimensional parameters (compared with only one in the case of
Newtonian fluids) that fully define the system.

Reynolds number. Re is the same as that in Eq. (1), except that
p and # are now the density and zero-shear viscosity #o [Eq. (8)] of
the polymer solution.

Viscosity ratio. f3 is defined as the ratio of the solvent viscosity
to that of the solution

B= Hs _ _Ms (24)
o Hs+1p
(subscripts “s” and “p” represent solvent and polymer contributions,
respectively). Of course, § = 1 is the pure Newtonian fluid limit and
B decreases with 1ncreasmg polymer concentration. Typical DNS
studies use 8 > 0.9.'

Weissenberg number. Wi is defined as the product of polymer

relaxation time Ay and a characteristic shear rate of the flow j,

Wi = g, (25)
in which, for elastic dumbbell models,”®
{
Ay = 26
" (26)
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and ( is the friction coefficient of a single bead in the dumbbell: i.e.,
each bead experiences a viscous drag force from the surrounding
solvent

fdrag C(Ub - v(rb)) (27)

which is proportional (and opposite) to its relative velocity—defined
as the difference between bead velocity v}, and the solvent velocity at
the bead location v (ry,). Note that ™" has the unit of time: Eq. (25)
can be interpreted as

A _ time scale of polymer chain relaxation

Wi = (28)

y—l " time scale of chain deformation by the flow’
Higher Wi indicates slower relaxation compared with the flow defor-
mation scale, resulting in stronger “memory effect” in the fluid
and thus stronger elasticity. A purely viscous fluid would respond
instantly to flow deformation and thus has Wi = 0. In DNS, the
mean shear rate measured at the wall j, is the most common choice
for the characteristic shear rate. With the advancement of numerical
methods, Wi up to O(100) has been reported in latest studies."**’
Finite extensibility parameter. b, sometimes also denoted as
L,
(29)

kB T
enforces the finite extensibility of the FENE dumbbells—comparing
Egs. (23) and (29), it is clear that

tr(a) < b. (30)

On the other hand, since the equilibrium solution of the FENE-P
equation is

b
eqq=|——1|0 31
%ea ( b+ 5) (31)
where § is the identity tensor—i.e.,
1 (izi
o={0 =1, (32)
0 (i+j)
the mean square end-to-end distance at equilibrium is
keT kT 3b  3ksT
—tr(ae — 33
(Qu) = o) = g5 = Ty .

« »

and the last “~” relation is because, for flexible polymers, b > O(1).
Comparing Egs. (33) and (29), one can write

b Qhax

30 (Q)

i.e., \/b/3 is the ratio between the polymer extension when fully
stretched and that at equilibrium. Earlier DNS studies have used b
as low as 100, but b = 0(10°)-0(10%) are commonly seen in the later

. 11,43,44,46
literature. ’

(34)

e. Connection with experimental parameters. Let us now
examine the relationship between model and experimental param-
eters for polymer solutions. Flow parameters are straightforward
and thus not discussed. Note that in the definition of Wi [Eq. (25)],
j is a flow parameter and only Ay depends on the polymer solution

Phys. Fluids 31, 121302 (2019); doi: 10.1063/1.5129619
Published under license by AIP Publishing

31,121302-6


https://scitation.org/journal/phf

Physics of Fluids REVIEW

used. The following discussion covers the effects of polymer solution
properties—polymer and solvent species, polymer concentration,
and molecular weight—on 3, Ay, and b.

Effects of polymer concentration. For a dilute solution in the
strict sense (i.e., no interchain interactions), polymer concentra-
tion affects the governing equations only through the § parameter.
Solving FENE-P for a simple shear flow, one can get the polymer
contribution to viscosity at the  — 0 limit

(35)

NavksTAu (b
fp = Cpi( )

M, b+5
(M, is its molar mass, and Nay is the Avogadro constant). Once
the polymer and solvent species as well as polymer M,, are deter-
mined (i.e., Ax, b, and My are fixed), 7, is proportional to polymer
concentration C,. Since

flp

1-f=——,
s + 1p

(36)
and for a very dilute solution (C, — 0 limit), 77, < s, we get 1 — 8
~ fp/ns o< Cp. Meanwhile, as discussed in Sec. II A 5 b, recent
evidence suggested that at concentrations relevant to DR systems,
interchain interactions may not be negligible at all. In this case,
concentration would also affect Ay: higher C, — higher Ax.

Effects of polymer molecular weight. Effects of M, or, more
accurately, chain length are illustrated with a scaling argument for
polymer conformation.””” Without getting into the full complex-
ity of solvent effects, the discussion here will be limited to the 6-
solvent (ideal chain) condition as a simple demonstration. Effects
of changing solvent conditions will be briefly discussed below but
only at a qualitative level. In addition, the analysis here assumes true
diluteness with no interchain interactions.

As sketched in Fig. 3(a), if we move along the contour of a
flexible chain over a sufficiently long distance or arc length (long
compared with the persistence length of the chain), in the absence
of intersegmental interactions (ideal chain assumption), the orien-
tation of the local segment would be decorrelated from that of the
starting point. It is thus always possible to map the chain into a ran-
dom walk or freely jointed chain (FJC) model in which each step
covers a sufficiently large number of repeating units that directions
of successive steps are uncorrelated. The step size Lx of this FJC
is commonly termed the “Kuhn length.” For ideal chains, there is
no energetic effect associated with changing chain conformation.
Random coils are preferred at equilibrium solely because the confor-
mational entropy would be lower with an increased chain extension.
It can be shown that the “entropic force” pulling the chain ends
together is equivalent to an elastic force with spring constant

 3ksT
NI’

(37)

N

which is the rationale for the elastic dumbbell model [Fig. 3(b)].
For a given polymer chemical species, the number of Kuhn
steps Nx oc My. Note that Ay is proportional to the ratio between

( and H; [Eq. (26)]. Other than Hs, { also depends on Ny, which
follows the Zimm scaling

{~ WSLKNI% (38)
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in a dilute solution with a 8-solvent. [The “~” sign indicates that
the two sides differ only by an O(1) constant prefactor.] Combining
Egs. (37) and (38) with Eq. (26),

Ast ~ kZT LLN;. (39)
For the b parameter, since
Qmax = NxLx (40)
and, in a 0-solvent,
{Qeq) = NkLi, (41)
from Eq. (34), we have
b~ Nk. (42)

Experimentally, parameters for the FENE-P model are obtained
through fitting with rheological measurements and both scalings
of iy oc M)
conditions."”"*

Effects of the solvent species. The solvent affects the FENE-P
model in two aspects. The first is the solvent-polymer interaction,
which influences chain conformation. For instance, compared with
the 0-solvent condition discussed above, a good solvent allows poly-
mer molecules to expand at equilibrium, which, according to the
Flory theory,”* changes the scaling of Eq. (41) to

and b o< M, have been observed under certain

6
(ng, g.s.> ~ Né L%{, (43)

and thus, the Q2ux/ (Qﬁq) ratio must be reduced—so does b. Expan-
sion of the polymer coil also changes the elastic force and thus Ax.
The second is solvent viscosity #s which directly controls the friction
coefficient { [Eq. (38)] and thus Ay.

Effects of the polymer species. This is, of course, also included
in the solvent-polymer interaction factor discussed above. In addi-
tion, changing chain mechanics directly affects the Kuhn length Lk.
Increasing chain rigidity means more backbone carbon atoms must
be represented by each Kuhn segment (higher Lx). When compared
at the same contour length Quax [Eq. (40)], it means that the total
number of Kuhn segments Nx must drop. The combined results are
higher Ay and lower b. This is, of course, assuming that the chain is
still flexible enough to be modeled by FENE-P.

f. Artificial diffusion (AD) in DNS. Constitutive models for
viscoelastic polymer fluids, such as FENE-P, do not have a diffu-
sion term. Such purely convective partial differential equations are
prone to numerical instability at high Wi. If pseudospectral meth-
ods are used for DNS, the only viable option for numerically stable
solutions is to artificially introduce a diffusion term. In the case of
FENE-P, the term

2
44
ScRev * (44)

is added to the RHS of the Oa/0t dynamical equation. The Schmidt
number Sc is defined as the ratio of kinematic viscosity #/p to poly-
mer stress diffusivity—the artificial diffusivity of the transport of the
a tensor. Lower Sc corresponds to higher AD.

The practice of applying AD to viscoelastic DNS was first intro-
duced by Sureshkumar and Beris” who made the case that the
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numerical solution would converge to the accurate solution with
mesh refinement, if the magnitude of AD is kept small and scales
with the mesh size: 1/Sc ~ 8x*/8t as 8x ~ 8t — 0, where dx and
Ot are the characteristic mesh size and time step, respectively.' "’
A few finite-difference methods developed later can minimize and,
in some cases, completely avoid the need of AD.”*”"" Application
of AD was prevalent in earlier years of DNS research and is still
widespread among researchers. For the most part, the results repre-
sent the physical system reasonably well if the choice of Sc is carefully
tested. Indeed, many meaningful insights were extracted from DNS
studies using AD. The reader is referred to the work of Min, Yoo,
and Choi”’ and Yu and Kawaguchi” (and to some extent, the work
of Dubief et al.’') for detailed comparative studies on the effects
of AD.

The topic is brought up here because of the recent discovery of
flow states where flow instabilities (not to be confused with numer-
ical instabilities) are driven, at least in part, by polymer elasticity
(which will be the focus of Sec. III B). Numerical schemes using
AD are known to have difficulty with this particular class of flow
states because AD smears the polymer stress field at regions with
steep stress gradients, which are crucial for those elastic flow instabil-
ities.”” For channel flow at Re, = 84.95, Sid, Terrapon, and Dubief 5
reported that Sc < O(10) [typical pseudospectral methods require Sc
< 0(0.1) for stability] would completely eradicate those flow instabil-
ities in the solution and even higher Sc affects its accuracy. However,
at a comparable Re;, Lopez, Choueiri, and Hof ' were able to cap-
ture those flow instabilities with Sc = 0.5 but only at a very high
b =40 000. Since AD is not a physically meaningful quantity, in this
review, it will only be mentioned when the physical interpretation of
results is expected to be affected.

6. Vortex identification

Vortex is an instrumental concept for understanding turbu-
lent dynamics. A vortex identification criterion would turn a fully
resolved 3D instantaneous velocity field v(x, y, z) into a quantifiable
and visualizable measure of vortex strength or intensity as well as its
spatial distribution. This topic is not directly relevant to DR, but it is
necessary to understand many flow visualization images from DNS.

At first glance, additional vortex identification criteria seem
redundant as one would intuitively resort to the vorticity field

W=V X, (45)

in which a streamwise (x-aligned) vortex will show as a region with
large w. magnitude. The necessity for quantitative criteria beyond
vorticity becomes clear in the example of a simple shear flow: v, = yy
and vy = v, = 0, where w, = —j (proportional to shear rate) even
though there is no vortex at all. A vortex identification criterion must
effectively differentiate swirling and shear flow motions.

The topic of vortex identification has been widely studied. Here,
one of the most widely used method, the Q-criterion,”® is used as an
illustrative example. From the velocity field, the rate of strain

S=-(Vou+ V'vT) (46)

| =

and vorticity tensors

Q= (V’v - V'UT) (47)
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can be calculated, and the scalar identifier is defined as
1
Q= E(IIQIIZ— 1S[%), (48)

where || - | is the Frobenius tensor norm: e.g., [Q] = /¥ ¥; QIZJ In

the simplest interpretation, Eq. (48) measures the difference between
the magnitudes of fluid rotation || and strain ||$|*. The sign of Q
reflects the local flow type—i.e.,

>0 rotation
Q{=0 shear , (49)

<0 extension

and the magnitude measures the strength of rotational or exten-
sional motion. Vortices are defined as regions dominated by strong
rotation with Q > Qureshold- In flow field visualization, it is common
to use the isosurfaces of Q = Qthreshold a5 a graphical representation of
vortices. The choice of the threshold value Qgyeshola depends on the
flow field and is somewhat arbitrary. An approach for its systematic
determination has been recently used in the work of Zhu et al.”” and
Zhu and Xi,”* which was adapted from a similar approach for flow
structure analysis by Lozano-Durén, Flores, and Jiménez.”’

There are quite a few other options for vortex identification.
Nearly all of them, like the Q-criterion, turn the v field into a
scalar field that indicates the flow type and strength. For instance,
the A»-criterion by Jeong and Hussain®’ calculates the A, quantity
from the velocity gradient tensor, in which A, < 0 corresponds to
rotational flow regions. These criteria differ mathematically, but in
complex turbulent flow fields, the results are practically equivalent.
The reader is referred to the work of Chakraborty, Balachandar, and
Adrian®' and Chen et al.* for detailed comparisons.

B. Phenomenology: Different stages of DR

The framework of DR phenomenology, in terms of the tran-
sitions between different flow regimes based on flow statistics, had
been mostly established by the time Virk” wrote his influential
review. Meanwhile, since the late 1990s, direct access to turbulent
flow structures and polymer conformation field enabled by PIV and
DNS has fueled a wave of new observations, which greatly deepened
our understanding of the dynamics within each regime. One key
recent addition to the framework was the differentiation between
low- and high-extent DR (LDR and HDR) first brought to light by
the experiments of Warholic, Schmidt, and Hanratty.”” LDR and
HDR were later shown to be two distinct flow stages driven by
different DR mechanisms’’ (see Sec. I1 B 2 d).

An overview of different regimes of DR behaviors in the Re-
Wi parameter space is sketched in Fig. 4. Numerical simulations
typically explore the parameter space along horizontal lines—i.e.,
increasing Wi with fixed Re, during which a series of transitions are
typically observed, including the onset of DR, LDR-HDR transition,
and maximum drag reduction (MDR). In relation to MDR, LDR
and HDR are collectively called intermediate DR, which was indeed
viewed as one homogeneous stage until the work of Warholic,
Schmidt, and Hanratty.”” We will call the regime before the onset
the preonset stage.

Experiments performed in the same flow apparatus and with
the same polymer solution would see both Re and Wi increasing with
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FIG. 4. Different regimes of drag reduction behaviors in a Re-Wi parameter space
(i.e., fixed 3 and b—same polymer solution and different flow conditions). Regime
boundaries are sketched to reflect numerical and experimental findings of Zhu
etal.°” Li, Xi, and Graham,®® and Choueiri, Lopez, and Hof.** MDR boundary and
those of other regimes near the L-T transition are less understood and are shown in
dashed lines. An experiment of increasing flow rate in a fixed flow apparatus with a
given polymer solution will follow a line of constant Re/Wi (dotted); decreasing / or
increasing 7 or A decreases the slope of these experimental paths [see Eq. (50)].

flow rate [Egs. (1) and (25)], but their ratio

o 2
(D E
Wi nu J\ y nAn

would be constant. (Here, j = U/l is taken as the characteristic shear
rate without loss of generality: for the same flow type, any choice of
7 oc U/L) In Fig. 4, such data points would follow an inclined line
with zero-intercept (whose slope depends on polymer solution prop-
erties and flow geometric size), which is termed an experimental
path by Li, Xi, and Graham®’ and Li and Graham."’

1. Onset of DR

DR does not occur immediately upon introducing polymers.
Rather, at a sufficiently low fluid elasticity (low Wi), flow statistics
are indistinguishable from those of the Newtonian benchmark. For
the given Re, there is a critical onset Wi, hereinafter denoted by
Wionset, above which DR becomes discernible. The existence of this
threshold is not surprising, considering that at the molecular level,
polymer chains in a dilute solution are coiled at equilibrium and
they unwind rather abruptly under increasing velocity gradient—
the so-called “coil-stretch” (C-S) transition.”” In the case of FENE
dumbbells in a uniaxial extensional flow, the C-S transition occurs
when the Weissenberg number

Wi™ = Aye (51)

reaches 1/2 (¢ is the extension rate).”

The rheological consequence of the C-S transition is substan-
tial, including, e.g., a drastic increase in the extensional viscosity of
the solution. It is thus expected that for DR, Wignset = O(1). For Wi
defined based on the wall shear rate jy, the onset is observed in the
range of 5 $ Wigneet $ 10 in DNS, with small variations between dif-
ferent Re’****°" and, possibly, different numerical settings.'"”"**
The number is higher than the expected O(1) magnitude because ;"
is not the time scale directly associated with DR. Indeed, dynamics

scitation.org/journal/phf

within the viscous sublayer, which j,, directly measures, is incon-
sequential as far as polymer-induced DR is concerned.”” Should
we have a full grasp of the complex polymer-turbulence dynamics, a
time scale of turbulent motion most relevant to DR, g, would be
identified and the corresponding Wi = Ax/7qow must be O(1). (Rig-
orously speaking, this should be called Deborah number De—see the
De vs Wi discussion of Poole.”") This Ax/Tfows although it differs
from the mean-flow definition Wi = Ayjw by one order of magni-
tude (estimated by comparing their onset magnitudes), is expected
to be proportional to the latter.

At least in a region immediately after the onset, DR is primar-
ily contributed by polymer effects in the buffer layer,”"”'*”" where
turbulence is dominated by streamwise vortices.”* Li, Sureshkumar,
and Khomami'* noted that the root-mean-square (rms) streamwise
vorticity fluctuations

U
Wy rms = (w1/62> (52)
--apostrophe denotes the fluctuating component, i.e.,

w=(w)+w (53)
--in the buffer layer of Newtonian turbulence is @} = O(0.1) .
Thus, Wi defined as Ay wx,rms would be smaller than Axj by a factor
of O(10). The onset threshold in the latter definition, as noted above,
is 5-10, which leads to (Ay@Y s )onset = O(1). Of course, w;;llm is
only one of many plausible choices for 7q,y. How to choose this time
scale and, ultimately, how to predict the onset depend on one’s inter-
pretation of the DR mechanism, which itself is up for debate. Amore
detailed discussion is deferred to Sec. I C.

2. Intermediate DR: LDR vs HDR

a. Mean flow. After the onset, DR increases with fluid elas-
ticity (usually by increasing polymer concentration or molecular
weight in experiments and increasing Wi or b in DNS). Figure 2
shows typical mean velocity profiles for various levels of DR% in
channel flow experiments performed at a constant flow rate.”” With
the bulk velocity U,y fixed, Re; decreases with DR% from ~1000 at
the Newtonian (water) limit to <200 at highest DR levels. For the
Newtonian (water) case, a pronounced log-law relation closely fol-
lowing the von Kérmdan asymptote [Eq. (18)] is found at y* 2 30.
With increasing polymer concentration, the profile is elevated. Since
the profiles are scaled by the friction velocity [Eq. (12)], higher
Uy, indicates lower 7, and thus higher DR%. Up to DR% ~ 30%
[Fig. 2(a)], the increase in Uy, is caused by its higher slope in the
buffer layer, which also thickens with DR%. Note that the lower
limit of the log law layer increases from y* ~ 30 to ~95 as DR%
rises to 33%. The logarithmic relation itself still follows the same
slope (A" = Afew = 2.5) but with higher intercepts (B*) as a
direct result of the velocity gain in the buffer layer. At DR% > 35%
[Fig. 2(b)], the profile lifts up across the channel and the slope is
substantially higher in regions where the von Karman slope used to
dominate (in Newtonian and LDR cases). Based on this clear dif-
ference in the shape of Un (y*), Warholic, Massah, and Hanrattyzz
divided DR into two regimes, LDR and HDR, roughly around the
DR% =~ 30%-35% line. This distinction was later confirmed in a
large number of experimental and DNS studies of different flow
geometries, 12233343:4452.57.72-75
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b.  Fluctuations. Fluctuating velocities in transverse (per-
pendicular to the mean flow—i.e.,, y and z) directions decrease
with 1ncreas1ng DR%, and so does the Reynolds shear stress
(RSS)H 22,23,33,43,

—(vy "), (54)

+
TRxy = y

This is consistent with an intuitive general picture that, with DR,
turbulent fluctuations are suppressed and turbulent motions are
weakened, leading to less momentum redistribution to transverse
directions and more efficient streamwise momentum transport.

Significance of TR, is evident once we write out the transport
equation for turbulent kinetic energy (TKE),”***”*

Ok

k ko k
otV T =P € - (55)
where
k= % > (o) (56)
i=x,),Z

is the TKE and T* is the total TKE flux. The production rate of TKE

7)k _ —(’U/U’ dUm dUm
= XUy

Yoy Ty &7

is generally positive and correlates directly with RSS—reduction of
TR xy thus suppresses turbulence generation. The €X term measures
the rate at which TKE converts to heat via viscous dissipation. It
is always positive (feé is negative—i.e., net loss of TKE), which is
a reflection of the second law of thermodynamics. Finally, e{; is the
rate of TKE conversion to the elastic energy stored in stretched poly-
mer chains, which, in theory, can be either positive (loss of TKE) or
negative (gain of TKE).

Observations about streamwise velocity fluctuations v} s are
more conflicted. In the experimental vy (y") profiles of Warholic,
Massah, and Hanratty,ll it was found that at LDR, with increasing
DR%, vy decreases within the viscous sublayer but increases mod-
erately in buffer and log-law layers. The overall shape of the vy s
profile still resembles that of Newtonian flow, which has a sharp peak
near the wall. The peak position is at y* ~ 15 for Newtonian turbu-
lence, and for LDR, it gradually shifts away from the wall but still
stays in the buffer layer. At HDR, vyt decreases with increasing
DR% across the entire flow domain. The overall profile takes a much
flatter shape. A similar decline of vy, at HDR was found in DNS
by Min, Choi, and Yoo’? and Dallas, Vassilicos, and Hewitt™ (see
Fig. w) but not in many other DNS studies” 7708737077 __pather,
thelr Vyhems continues with the same trend as LDR. Dallas, Vassilicos,
and Hewitt’” attributed the failure of the other studies in capturing
the sharp drop of vy, at HDR to the numerical artifact of using AD
in the DNS (Sec. IT A 5 f).

Remarkably, two recent experimental reports from the same
group (Ghaemi and co-workers)”””” using different polymers
showed both types of behaviors. For PAM, which is a flexible
polymer, the behavior is consistent with that found by Warholic,
Massah, and Hanratty"l (and thus with that of Dallas, Vassilicos,
and Hewitt”> and Min, Choi, and Yoo’ ) but for XG, which is more
rigid, the vt (") profiles at HDR remain similar in shape as the
Newtonian and LDR cases. Similar vy, (y*) behaviors can also be
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FIG. 5. rms streamwise velocity fluctuation v, profiles from DNS at Re = 4250
(based on bulk velocity), g = 0.9, b = 14400, and varying Wi. Case N2 is New-
tonian (Re, = 181), A and B are LDR, D and G are HDR, and H is MDR (Re,
= 107.8). [Reprinted with permission from V. Dallas, J. C. Vassilicos, and G. F.
Hewitt, “Strong polymer-turbulence interactions in viscoelastic turbulent channel
flow,” Phys. Rev. E 82, 066303 (2010). Copyright 2010 American Physical Society.]

seen in XG solutions measured by Escudier, Nickson, and Poole. 78
As discussed in Sec. II A 5 f, one known spurious effect of AD is
its suppression of flow instabilities (or, loosely speaking, turbu—
lence”) that are driven, in part or in whole, by fluid elasticity."’
(By contrast, turbulence, in the conventional sense, is driven by fluid
inertia and suppressed by polymers—see the more detailed discus-
sion in Sec. III B.) In a way, DNS with AD can be viewed as a virtual
experiment in which turbulent states that are elastic in nature are
filtered. The lack of nonmonotonic vy, (y*) behaviors (as shown
in Fig. 5) between LDR and HDR in those simulations, as well as
in rigid polymer experiments, suggests that the drastic decrease and
flattening of vy tne(y*) could be associated with those elastic tur-
bulent states, which may appear at HDR. Meanwhile, all other key
features of HDR, including its characteristic behaviors of U, and
—(vy"vy") profiles as well as distinct flow structures (shown below),
are still captured, indicating that turbulence driven by elasticity is
not a necessary condition for the transition to HDR. Of course, this
is so far only an educated guess—further research is needed for its
validation.

Further complicating this issue, most DNS studies compared
different DR% cases at the same pressure drop (thus same 7 and
Re;), whereas experiments such as the work of Warholic, Mas-
sah, and Hanratty,l together with both aforementioned DNS cases
reporting the v/ (y") behaviors of Fig. 5,”°7* compared cases at
the same flow rate (thus decreasing Re; with increasing DR%). This
divide could also partially account for the differences in the observed
Vyems Magnitudes: even for Newtonian flow, vy goes down with
decreasing Re;.”

c. Flow structures. Near wall turbulence is populated and, in
many ways, sustained by flow structures with well-recognizable pat-
terns [Fig. 6(a)]. The existence and importance of those so-called
“coherent structures” are well documented in the literature.”"' "’
The best-known conceptual model involves streamwise vortices and
velocity streaks. They are the characteristic structures in the buffer
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FIG. 6. Flow field visualization from DNS for (a) Newtonian and (b) Wi = 80 and
DR% = 57% cases (Re, = 84.85, = 0.97, and b = 5000). Isosurfaces show con-
stant vy (light/green) and Qop (dark/red; Qyp is the 2D variant of Q calculated in the
yz-plane, which identifies x-aligned vortices—see the work of Xi®’ for details). The
same isosurface levels are used. Upward folds (or pleats) correspond to regions
with the ejection of slower near-wall fluids—i.e., low-speed streaks. (Reproduced
with permission from L. Xi, “Nonlinear dynamics and instabilities of viscoelas-
tic fluid flows,” Ph.D. thesis, University of Wisconsin-Madison, 2009. Copyright
2009.)

layer where TKE production is the highest.”""”***" Those vortices

align in the direction of the mean flow. Neighboring vortices often
rotate in opposite directions, which creates stripes of either slower
fluid near the wall being washed up or faster fluid closer to the bulk
flushed down, forming low and high speed velocity streaks. (Such
events are also referred to as “ejections” and “sweeps,” respectively,
in the turbulence literature.*)

Availability of invariant solutions to the N-S equation enables
the a priori study of isolated coherent structures that are otherwise
braided into the complexity of full scale turbulence in DNS.” '
They are fully nonlinear solutions corresponding to the “exact”
forms of specific coherent structures, also known as exact coher-
ent states (ECSs). The earliest-known form of ECS consists of a
pair of staggered streamwise vortices separated by sinuous veloc-
ity streaks,” which corresponds directly to buffer layer structures.
(See Fig. 7. Note that at Re; = 44.2, the buffer-layer thickness is
comparable to half channel height.)

Earlier attention on polymer DR effects was focused on the
buffer layer, which was thought to be the primary region for DR.
It was later known that this presumption is only valid for LDR
where increase in the Uy (y") slope is limited to the buffer layer
(Fig. 2). Indeed, until the study by Warholic, Massah, and Han-
ratty,”” the whole intermediate DR stage was thought to follow the
LDR-type behavior. Based on this belief, Virk”* proposed his well-
known three-layer model, in which DR only occurs in the buffer
layer and both the viscous sublayer and log-law layer remain unaf-
fected. Polymers cause turbulence to be suppressed in the buffer
layer, leading to the enlargement of its thickness. Effects of poly-
mers on buffer layer structures have thus been most extensively
studied.

REVIEW scitation.org/journal/phf

FIG. 7. Exact coherent state (ECS) solution in a Newtonian channel flow at
Re, = 44.2. Flow fields at two sides of the center-plane are mirror images. For
each side, the solution contains a pair of staggered counter-rotating streamwise
vortices (dark tubelike isosurfaces of Qyp). Contours on the slices show the distri-
bution of streamwise velocity vy (light for high velocity). For the bottom side, the
left and right vortices swirl counterclockwise and clockwise, respectively, which
washes up the slower fluid near the wall to form a low-speed streak in between
(an “ejection” event). [Reprinted with permission from W. Li and M. D. Graham,
“Polymer induced drag reduction in exact coherent structures of plane Poiseuille
flow,” Phys. Fluids 19, 083101 (2007). Copyright 2007 AIP Publishing LLC.]

Earlier dye experiments were able to visualize velocity streak
patterns. It was found that the average spacing between low-speed
streaks increases with rising DR%, from 100 wall units in the New-
tonian limit to over 200 wall units at high levels of DR.”%” In DNS,
the spanwise correlation length from velocity spatial autocorrelation
functions was also found to increase with DR%.'"”* Later appli-
cation of PIV allowed a more detailed view of velocity patterns,
which showed that not only do the streaks grow wider, but they,
especially at HDR, also extend along the flow direction for much
longer distances without interruption and their contours become
smoother and not as rugged.”'” This was again widely confirmed
in DNG*%7773:80.95 [see Fig. 6(b)]. In particular, Li, Sureshkumar, and
Khomami’’ reported that the streamwise length scale of coherent
structures can increase by over tenfold between LDR and HDR.

For vortices, DR is accompanied by the weakening of their
strength and reduction of their density.”””"””"** The attenuated
vortices dilate in their transverse scales, raising the wall-normal posi-
tions of vortex axis lines, where turbulent fluctuations are strongest,
away from the wall. This is reflected in the outward shift of the peaks
in 7 xy, velocity fluctuations, and vorticity proﬁles.ll‘zz'”‘ $3,52,57,72,75
Numerical investigation of viscoelastic ECS solutions rendered
direct evidence that polymers weaken those coherent structures
and eventually cause their extinction.””*"”*”" Not surprisingly, DR
is also observed in those solutions and the observed flow statis-
tics (mean and fluctuating velocities) are consistent with the LDR
behaviors discussed above.

The picture described so far targets the explanation of tur-
bulence suppression and enlargement of the buffer layer, which is
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largely guided by the presumption of the Virk three-layer model.
The model, despite its conceptual appeal (for its simplicity), is not
consistent with later findings. An obvious miss is the HDR behaviors
of the Uy, (y") profiles. This suggests that structural insights summa-
rized above are likely only accurate for LDR. Physical understanding
of HDR requires the study of coherent structures at higher y* which
are, foreseeably, much more complex. Not much progress was made
until fairly recently when new tools for the extraction and analy-
sis of those structures have emerged.”*” Details are discussed in
Sec. [11 C.

d. Two stages of DR with two mechanisms. Despite the com-
mon practice among researchers to use DR% = 30%-40% as an
empirical threshold for the inception of HDR, sharp changes in flow
statistics between LDR and HDR indicate that it is a qualitative tran-
sition between two stages of DR likely underlain by different mech-
anisms. There is thus no reason for it to be tied with any particular
magnitude of DR%. In the absence of a presumed mechanism for the
transition, the critical Wirpr-#pr, and thus corresponding DR%, of
the transition can generally depend on Re, polymer solution proper-
ties, and flow geometry. (This opinion also seems to be shared by
White, Dubief, and Klewicki.‘)”) Indeed, the LDR-HDR transition
was observed in DNS at DR% as low as #15% at a low Re and in
small flow domains."’

A systematic investigation of the LDR-HDR transition using
DNS was recently reported by Zhu et al.”” It concluded that the pri-
mary difference between LDR and HDR is the region, i.e., the span
of the wall layer, influenced by DR effects. At LDR, DR effects are
mostly contained in the buffer layer, although the layer does thicken
with DR%. This stage of DR is relatively better understood, per the
discussion above, and the Virk three-layer model still captures some
essential elements. [The model’s depiction of buffer layer dynamics
and its Uy, (y") profile, however, is not accurate—see Sec. I1 B 3.] At
HDR, DR effects are felt across nearly the entire domain, with the
viscous sublayer being the only exception. This, of course, includes
the key observation that the Uy, (y") profile changes its shape in the
(what used to be) log-law layer. In addition, DR effects are more
directly measured by the RSS. In Fig. 8, 7g,, measured at a posi-
tion within (y* = 25) and one outside the buffer layer [y = 0.6H or
y" = 0.6Rey; recall Eq. (15)] is plotted against DR% for three dif-
ferent Re. The contrast is clear. Within the buffer layer [Fig. 8(a)],
DR is continuous across the whole range of DR% and 73 ,, drops
consistently starting from the onset (DR% = 0). Outside the buffer
layer [Fig. 8(b)], g, nearly fully retains its Newtonian magnitude
until DR% ~ 20% where it starts to descend, indicating that turbulent
dynamics at larger y* remains minimally impacted until this thresh-
old. Note that the transition point DR% ~ 20% is, again, much lower
than the commonly cited 30%-40% threshold for all three, albeit rel-
atively low, Re tested. The conclusion that the RSS at higher y* is
only suppressed at HDR can be verified in the 7r x, profiles from
various previous studies, using different experimental techniques or
numerical algorithms, where the LDR profiles are suppressed only
in the buffer layer and stay close to the Newtonian profile at higher
y", but the HDR profiles are suppressed nearly anywhere except the
y+ <5 region.l“‘ll‘sli“

In addition to Up,(y") and 7g , sharp transitions at higher y*
were also found, by the same study,” in polymer shear stress and,
more interestingly, energy spectra (which measure the distribution
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FIG. 8. Variation of the Reynolds shear stress 7 ,,, with increasing DRY% at

(@) y* =25and (b) y = 0.6H in channel flow DNS results with varying Wi (8 = 0.97,
b = 5000). [Reprinted with permission from Zhu et al., “Distinct transition in
flow statistics and vortex dynamics between low- and high-extent turbulent drag
reduction in polymer fluids,” J. Non-Newtonian Fluid Mech. 262, 115-130 (2018).
Copyright 2018 Elsevier.]

of TKE over different length scales). Changes in the latter showed
that, at LDR, polymers suppress turbulent fluctuations and redis-
tribute energy toward large scales at all y* positions, while at HDR,
there is a sharp increase in this effect at higher y*, where the von
Karman law used to dominate. Disappearance of the inertia-
dominated layer (i.e., the log-law layer—see Sec. IT B 3) was also
regarded by White, Dubief, and Klewicki’ as the sign of HDR based
on a mean momentum balance analysis.

Comparing the flow structures of Newtonian/LDR [Fig. 6(a)]
and HDR/MDR [Fig. 6(b)] flows, not only are the vortices attenuated
in the latter case, but vortex distribution is also more localized, as
the small number of remaining vortices tend to appear in conglom-
erates. Zhu et al.”’ quantitatively analyzed the degree of localization
at different regimes of DR and found that the localization starts at
the LDR-HDR transition.

Sharp transitions in flow statistics and structures suggest the
presence of two separate mechanisms for DR. The first sets in at the
onset of DR and, by all accounts, is a general weakening of vortices
whose effects are largely concentrated in the buffer layer. The second
is triggered at the LDR-HDR transition, which suppresses turbu-
lent momentum transport at higher y* and extends DR effect across
most of the domain height. The distinct changes in what used to be
the log-law layer suggest an underlying shift in the coherent struc-
ture dynamics in that region. A plausible hypothesis was proposed
by Zhu et al.”” and clear supporting evidence became available with
a newest vortex tracking technique,5 4% which will be discussed in
Sec. 111 C.

3. Maximum drag reduction (MDR)

a. Basic observations. Figure 2 shows DR% increases with
increasing fluid elasticity (in their case by increasing polymer
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concentration). This trend is eventually bounded by an upper limit
call the MDR asymptote—an “ultimate” flow regime where certain
forms of turbulence still persist and the friction drag has converged
to a level between the magnitudes of Newtonian turbulence and
laminar flow. The phenomenon of MDR was first reported by Virk
et al” Tt was subsequently found, contrary to intuition, that
the MDR limit is universal—flows of different polymer solutions
(changing polymer species, molecular weight, or concentration) or
different geometric size [ would converge to the same MDR asymp-
tote.”” That is, DR% of various MDR flow states depends solely on
their Re, even when they have different Wi, 3, or b (using FENE-P
parameters introduced in Sec. IT A 5 d).

The Re-dependence can be completely wrapped into turbulent
inner scales [note from, e.g., Eq. (15) that inner scales depend on
Re] and the rescaled mean velocity profile in “+” units appears to
be universal for MDR under different conditions. Virk and Baher'"
and Virk”™ used a logarithmic relation, same in form as Eq. (18) but
with different constants, to fit various experimental MDR data. The
resulting universal profile

U virk = 11.7Iny" = 17.0 (58)

has a markedly higher slope and seems to well approximate exper-
imental profiles for most of the flow domain (i.e., no longer con-
fined to a near-wall layer). Note that the two highest DR cases
(DR% > 60%) in Fig. 2 are closely approaching the Virk profile
(dotted-dashed line).

b. Validity of the logarithmic relation. Equation (58) has long
been seen as a gold standard for MDR, but its validity was recently
challenged. Taking derivatives of both sides of Eq. (18), one obtains

+dUn

A" = ,
y dy+

(59)

which is the local slope value in the logarithmic relation. A true log
law will show a region of nearly constant A*. White, Dubief, and
Klewicki'"' calculated the log-law slopes of Us,(y*) profiles from
several recent experimental and DNS studies and concluded that, for
HDR cases, a well-defined wall layer (y" range) with a logarithmic
relation is, in their word, “eradicated.” For cases with DR% > 60%
(both experimental and numerical, Re; < 200), where the U (y*)
profile appears very close to the Virk MDR profile [Eq. (58)], the
log-law slope A™ does not show any clear plateau, near 11.7 [as
implied by Eq. (58)] or elsewhere. Rather, its magnitude rises up
at low y*, reaches its peak within 20 < y* < 30 and then drops
steeply. The peak magnitude is, nonetheless, comparable to (but
not the same as) 11.7. Later experimental measurements in bound-
ary layer flow by Elbing et al.”* led to largely similar results that
for their MDR-like case (DR% = 64.8%), the Uy, profile does not
show a logarithmic region anywhere near A* = 11.7. For HDR (their
DR% = 53% case), a roughly constant A" region is found at y*
2 200 with a magnitude higher than 2.5 (Newtonian level) but much
lower than 11.7 (Virk level), which is consistent with the depiction of
HDR by Warholic, Massah, and Hanratt}fu (i.e., still logarithmic but
higher slope). The missing logarithmic region in the work by White,
Dubief, and Klewicki'’' at HDR was likely caused by the relatively
low Re analyzed there. Indeed, in a more recent study by the same
authors™ (shown in Fig. 9), DNS channel flow data of Re; up to 1000
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FIG. 9. Logarithmic slope function profiles A*(y*) [Eq. (59)] of (a) LDR (DR% =
30%-35%) and (b) HDR (DR% = 59%-62%) cases with Re ranging from 186 to
1000, all from DNS of channel flow. Flat lines show the logarithmic slopes of A*
= 2.5 (solid) for the Newtonian von Karméan law and 11.7 (dotted-dashed) for Virk
MDR. A clear plateau of A" ~ 2.5 is found in the log-law layer at LDR, whereas
at HDR the plateau lifts to higher magnitude and is not discernible at the lowest
Re (x). A plateau at A* = 11.7, expected per Eq. (58) for MDR, is not seen in any
case. [Reproduced with permission from C. M. White, Y. Dubief, and J. Klewicki,
“Properties of the mean momentum balance in polymer drag-reduced channel
flow,” J. Fluid Mech. 834, 409-433 (2018). Copyright 2018 Cambridge University
Press.]

were included and, at HDR, a quasiflat region in the A" profile can
be spotted at y* > 200 (where 2.5 < A" « 11.7). Nevertheless, for
MDR, conclusions of those studies are unanimous that a rigorously
logarithmic profile with A" anywhere close to 11.7 [Eq. (58)] is not
found.

Recall that for Newtonian turbulence, the von Karman law of
wall was deduced from the following scaling argument:**

o In the turbulent inner layer, the bulk flow rate and geome-
try are no longer relevant and the mean velocity gradient is
determined by inner scales (Sec. IT A 3) only as follows:

vy, 1 ., .
»=—A"0") (60)
dyt oyt 4

[A*(y") is an undetermined nondimensional function uni-
versal to different flow conditions.].

o At sufficiently high y* (well above the viscous sublayer but
still within the inner layer), viscosity effects vanish and the
flow is dominated by inertia—it is thus postulated that A*
is a constant [because y* depends on viscosity through the
definition of ,—Eq. (13)].

Integration of Eq. (60) with a constant A* leads to Eq. (18), and
the numerical values of A* and B* are determined from fitting with
experiments and DNS. Since Uy, (y*) profiles at MDR are nearly
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the same for different Re, i.e., inner scales are still very much rel-
evant, the loss of a logarithmic layer at MDR is likely associated
with the elimination of the inertia-dominated layer in near-wall
turbulence.

The finding that a well-defined A™ = 11.7 logarithmic layer is
not found at any y* position and any stage of DR is in direct con-
trast to one of the key elements in Virk’s three-layer model, which
postulates that the Virk MDR logarithmic profile [Eq. (58)] should
appear even in the intermediate DR regime but only in a limited
region. According to the model, before MDR, Uy, (y*) would fol-
low the Virk profile within the enlarged buffer layer or, as termed
by Virk, the “elastic sublayer” until its crossover to a logarithmic
dependence with the von Kirman slope.””” The model not only
misses the increased slope in the log law layer at HDR, but it
is also clear from Fig. 9 that, at both LDR and HDR, the buffer
layer profile does not follow the Virk logarithmic relation. Indeed,
it appears that it is the reduction and elimination of the inertia-
dominated log-law layer, rather than the generation and expan-
sion of an elastic sublayer, that drives the transition to HDR and
MDR.”

c¢. Fundamental attributes of MDR. Mechanistic understand-
ing of MDR remains the most coveted target in this area, which
is not surprising considering its mysterious nature. It is common
practice among researchers to use the Virk profile [Eq. (58)] as an
identifying trait of MDR: a flow state would be considered MDR
if its Uy (y") profile matches the Virk profile. However, let us be
reminded that Eq. (58) is based on empirical fitting to a somewhat
arbitrarily chosen functional form: (1) there is no a priori physical
argument for a logarithmic relationship other than a simple anal-
ogy to the von Karman law [Eq. (18)]; (2) coefficients in Eq. (58) are
empirically determined from experimental data. Latest examination
of A" reviewed above further shows that (1) a logarithmic relation-
ship is probably inaccurate and (2) comparing Uy, (y*) profiles in
semilog coordinates (such as Fig. 2) can be misleading: nonloga-
rithmic profiles are not sufficiently distinguished from logarithmic
ones.

Therefore, research of MDR must go beyond this fixation on
the Virk logarithmic profile of Eq. (58) and qualitative traits must be
considered.””'"” In particular, any complete theory for MDR must
consistently explains its three key attributes.

Existence: Why does there have to be an upper bound for DR
at all? If polymers cause DR by suppressing turbulence, why
can they not take the flow all the way to the laminar state?
This question requires fundamental insights into the turbulent
self-sustaining mechanism at MDR.

Universality: Why is the upper bound universal for different
polymer solution properties and for different flow geometric
dimensions? MDR occurs at the limit of high DR where polymer
effects are strongest—it is counter-intuitive that this state, or at
least the mean flow statistics thereat, is not affected by changing
polymer properties.

Magnitude: Although Eq. (58) may not have used the most
appropriate functional form, it is still undeniable that Uy, mag-
nitudes at MDR are quantitatively close to the Virk profile. Why
would DR converge to that particular magnitude? This ques-
tion must be included because, as discussed below, there are
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possibly multiple flow states that address the previous two points
and they cannot all be MDR.

A complete answer remains elusive. However, substantial
progress has been made in the past decade, which will be reviewed
in Sec. I1I.

C. Mechanistic understanding

Most theoretical attempts at DR predated the discovery of the
LDR-HDR transition.”” Their focus was thus on explaining why
polymers cause DR and how to predict the onset of DR based on
the supposed mechanism. Efforts were also made to address MDR
but success has been limited. Because the LDR-HDR transition was
not considered a qualitative transition involving different DR mech-
anisms until Zhu et al.,”” earlier theories covered in this section were
all directed at the first DR mechanism: i.e., the one responsible for
the onset of DR and LDR. Recent developments of new theoreti-
cal frameworks and research methodology have led to a series of
mechanistic insights into HDR and MDR, which will be discussed
in Sec. I11I.

1. Polymer-turbulence interactions

At first glance, the notion of polymer addition causing reduced
friction is counter-intuitive to most, as polymers are typically asso-
ciated with higher viscosity. It should be clear by now that drag-
reducing polymer solutions are often too dilute to have significant
viscosity increase and, when they do, the definition of DR explic-
itly corrects for the viscosity change (Sec. II A 2). The term DR here
is thus referring not to any change in the viscous shear stress but
to the reduction of the extra stress attributed to turbulent motion—
i.e., the Reynolds stress—as a consequence of turbulence-polymer
interactions.

To cause DR, polymer molecules have to, one way or another,
suppress turbulent motion. Availability of detailed polymer con-
formation (and, consequently, stress) field information—thanks to
extensive DNS efforts in the past two decades—has provided direct
evidence in this regard. Earlier experiments have shown, by inject-
ing polymers to different wall positions, that DR becomes substan-
tial when polymers reach the near-wall region covering the buffer
layer and lower log-law layer.'””'"* The buffer layer is also where
turbulence production peaks in Newtonian flow and where signifi-
cant reduction in RSS is observed when drag-reducing polymers are
added. (For the latter, we now know it only applies to LDR.”) Inves-
tigation of polymer effects on buffer-layer turbulence was thus the
focus of earlier DNS studies.

It is now generally agreed that, within the buffer layer,
polymers reduce turbulent intensity by opposing its dominant
flow structure—streamwise vortices. Polymers alter fluid dynam-
ics through an additional term in the momentum balance, which
can be described as a polymer force. Multiple DNS studies have
showed that, in transverse directions (i.e., in the plane of rota-
tion of streamwise vortices), the polymer force counters velocity
fluctuations. Direct inspection of flow field visualization images
indicated that the effect is strongest immediately next to the vor-
tices.””*'”” Numerical computation of ECS solutions allowed those
vortices to be isolated in a static form from the complex and dynam-
ical backdrop of turbulent fluctuations. Investigation of polymer
effects on ECS confirmed the same mechanism.”*”” A later study by
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Kim et al.'” constructed statistical representations of characteris-
tic near-wall vortices through conditional sampling—extracting and
averaging local flow structures that satisfy certain prescribed con-
ditions.'”” Their results reaffirmed that counter-rotating streamwise
vortex pairs are the most significant structures in the buffer layer
and the key conclusion of polymer forces counteracting those vor-
tices, deduced previously from arbitrarily selected images in DN, is
statistically verifiable.

As streamwise vortices lessen in their intensity, they also dilate
laterally, which leads to increased spacing between vortices and the
lift of vortex axes away from the wall. Since velocity streaks are
created between counter-rotating vortices, increased vortex separa-
tion is reflected in the enlargement of near-wall streak spacings (see
Sec. II B 2 ¢). Meanwhile, upward shift of vortex axes is reflected
in profile peaks of fluctuating quantities, such as vy, and Tr
moving away from the wall (Fig. 5). It also directly accounts for the
apparent thickening of the buffer layer.

Suppression of vortex motion reduces the strength of velocity
streaks in between, as measured by their velocity fluctuation inten-
sity. This explains the lowering RSS magnitude. To see this, note that
low-speed streaks have negative v, and positive vy, whereas high-
speed streaks have positive vy and negative v,—both contribute to
higher —(vyv;). Lowering RSS then contributes less to TKE produc-
tion [see Eq. (57)], which leads to an overall flow with less fluc-
tuations and more momentum retained in the mean flow. Thus
far, a convincing depiction of DR mechanism, at least applicable
to LDR, has arisen. The situation of HDR is different, where the
dominant structures are more complex and DR is no longer solely
attributable to an enlarged buffer layer. Study into this second stage
of DR has been rather limited and occurred very recently, which will
be discussed in Sec. 111 C 1.

2. Classical theories: An introduction

Distilling a simple quantitative theory from the above
micromechanical depiction of polymer-turbulence dynamics is not
straightforward. There has been a long-standing debate between
viscous and elastic interpretations of the polymer DR mechanism.
Both theories are built on the common foundation of energy cas-
cade in which turbulence is conceptualized to consist of a hier-
archy of eddies of different sizes superimposed on one another
in the same flow region. TKE is produced at the largest eddies,
whose sizes are comparable to that of the flow domain, and “cas-
cades” toward successively smaller eddies as larger ones erupt, until
it reaches the lower end of the spectrum—the Kolmogorov scale—
where the length scale is small enough for viscous dissipation to
dominate. Experimental and numerical measurements have consis-
tently shown, through energy spectra or Karhunen-Loéve (KL) anal-
ysis, that small scale structures are most susceptible to suppression
by polymers.'>”" %1% Indeed, both viscous and elastic interpreta-
tions consider polymers to truncate or disrupt the energy cascade at
a certain scale larger than the Kolmogorov scale.

a. Viscous mechanism. The viscous theory was proposed by
Lumley,”"” which postulates that the energy cascade is truncated
at a larger minimal length scale because of the viscosity increment
caused by polymer additives. The smallest length scale in the energy
cascade, i.e., the dissipative scale, of Newtonian turbulence is called
the Kolmogorov length scale Iy,
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which depends on the fluid viscosity as well as density and
e—the rate of energy dissipation per unit mass of the fluid.”*
Since drag-reducing polymers often have minimal impact on the
shear viscosity of the solution, the higher viscosity responsible for
shifting the turbulent dissipation length scale can only be inter-
preted as its extensional viscosity #*', which, for viscoelastic dilute
polymer solutions, can be much higher than their shear viscos-
ity n. Indeed, for drag-reducing polymer solutions, the Trouton
ratio

Tr

ext
T (62)
n

can be as high as o(10%).1101

The relevance of extensional viscosity is clear considering the
kinematics of turbulence in the near-wall region, where strong
but transient extensional motions are constantly being gener-
ated near vortices. Polymer molecules become locally aligned and
highly stretched in those extension-intensive spots. Strong retrac-
tive forces of stretched polymer chains provide the resistance to
extensional flow motion, which causes the suppression of vortex
dynamics.

For dilute solutions of drag-reducing polymers in uniaxial
extensional flow, as Wi [Eq. (51)] increases, its Tr undergoes a
sharp upsurge from the Newtonian value of 3 to several orders of
magnitude higher, as a result of the abrupt C-S transition.’ For
FENE-P, Wi™ = 1/2 is the critical magnitude for this steep transi-
tion.”® At lower Wi, there is no appreciable change in %, and thus,
no DR is expected. Therefore, an inherent implication of the vis-
cous mechanism is that the onset of DR is associated with a critical
Wi independent of polymer concentration in so far as the solution
is still dilute. The latter is because in a dilute solution the C-S tran-
sition of each individual polymer chain is not affected by the pres-
ence and state of other chains. For a given polymer-solvent pair and
given molecular weight, the relaxation time Ay is determined, which
means that the onset of DR is determined by the flow time scale
dropping below a critical value (i.e., Ay/Taoy higher than a critical
value)—the so-called “time criterion.””'>'"”

After the onset, as Wi or polymer concentration continues to
increase, #™ increases and the energy cascade is further truncated at
larger scales as the dissipative scale increases. The effect will eventu-
ally be bounded—i.e., MDR is reached—when I3 becomes compara-
ble to the largest scale of the flow which must be the geometric length
scale L. This idea is in line with Virk’s three-layer model’* which pre-
dicts MDR as the limit where the enlarged buffer layer is restricted
by the flow geometric size. Since this geometric constraint is inde-
pendent of polymer properties, it offers a simple explanation for
the universality of MDR, but the mechanism sustaining turbulence
thereat remains unspecified.

b. Elastic mechanism. The conceptual framework of the elas-
tic theory for DR was constructed by de Gennes and co-worker' '
through their scaling theory for polymer dynamics within the tur-
bulent energy cascade. Sreenivasan and White'"” further elucidated
the theory and incorporated the effects of flow heterogeneity for DR
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prediction in pipe flow. Differences between the viscous and elastic
interpretations of the DR mechanism originate from their underly-
ing molecular assumptions. While the viscous mechanism assumes
polymer chains to be highly stretched (past the C-S transition) to
display a substantial extensional viscosity increase, de Gennes con-
sidered this scenario unlikely, especially immediately after the onset.
He thus postulated that polymer chains are only partially stretched
and the deformation is transient in nature. The level of deformation
is not sufficient to cause a significant increase in extensional viscos-
ity, but the elastic energy stored in individual stretched chains can
add up. DR is expected when the elastic stress becomes comparable
to or higher than Reynolds stress —p{v’v"). (Equivalently, since this
is a scaling argument, it could also be a comparison between elastic
energy and TKE.)

As TKE flows toward smaller scales in the energy cascade, the
corresponding time scale also decreases. There is thus a critical scale
r* above which polymers remain undeformed (i.e., An/7+« equals a
critical Wi or, rigorously, De magnitude). For r immediately below
r*, polymer chains are stretched but the elastic stress is small in com-
passion with the Reynolds stress. Polymers are progressively more
stretched at smaller scales. At another critical scale r**, the elastic
stress starts to exceed the Reynolds stress and the energy cascade
is presumed to be disrupted. The entire spectrum is divided into
three regimes: at r > r*, polymer chains are unaffected by turbu-
lence; atr* > r > r**, polymers are stretched but not strongly enough
to impact the flow; and at r < r**, polymers disrupt the energy
cascade.

Although r* is determined by a time-scale criterion and
thus independent of concentration, r** is determined by stress or
energy—quantities proportional to concentration. In the energy cas-
cade, smaller length scales are associated with lower magnitudes of
TKE or Reynolds stress. When either the polymer concentration is
lower or polymer chains are less stretched, the accumulated elastic
energy or stress from all chains is lower. It would thus intercept the
turbulent cascade at a smaller r**. If r** < I[j—the smallest scale in
the cascade—turbulence is unaffected at all scales. The onset of DR
happens through increasing concentration or increasing Wi (which
determines the level of stretching) until r** is raised above Ig. It is
thus obvious that a higher Wignet would be required when the poly-
mer concentration Cp, is lower. Compared with the viscous mecha-
nism, this concentration-dependence of the onset is a distinguishing
feature of the elastic mechanism.

Prediction of MDR from the elastic theory is not obvious.
Sreenivasan and White'"” fitted various experimental data points at
the margin of MDR (where the flow just reaches MDR) to the the-
ory and found that both r* and r** are in the order of magnitude
of the flow geometric size I—i.e., even the largest eddies, which are
least effective at stretching polymers, can generate sufficient elas-
tic stress for themselves to be disrupted. The study, however, did
not address the asymptotic convergence of the flow with further
increasing elasticity.

3. Discussion: Viscous vs elastic theories

The Lumley vs de Gennes debate remains one of the most
important outstanding problems in this field. The gap between the
fairly detailed knowledge, at least for LDR, of polymer-turbulence
interactions (Sec. II C 1) and a conclusive predictive theory
underscores the complexity of the DR phenomenon.

REVIEW scitation.org/journal/phf

a. Experimental and numerical evidence. Both theories have
found supporting evidence but none seems sufficient for an
unequivocal conclusion. Virk® noted that for PEO solutions of dif-
ferent concentrations, the onset occurs at the same well-defined Re.
and concluded that the wall-shear rate j., of the onset is independent
of concentration for a given polymer (given Ay ), which is in line with
the time criterion. Concentration independence was also reported by
Berman'' for both PEO and PAM, who further adjusted polymer
relaxation time Ay by adding glycerol to change the solvent viscos-
ity [see Egs. (26) and (38)] and found that the onset wall shear rate
pw is inversely proportional to Ay: i.e., Wionset is constant. On the
other hand, data showing sensitivity of the onset to concentration
were also reported, most notably by Nadolink.'"”

DNS seems naturally suited to test the concentration depen-
dence of the onset as it avoids experimental complexities such as
polymer polydispersity, concentration inhomogeneity, and degra-
dation.” So far, the only DNS study with a direct comparison
between Wionset of different concentrations was the study by Xi
and Graham,"” in which 8 = 0.97 and 8 = 0.99 (a roughly three-
fold difference in concentration) have nearly identical Wioneet. The
study used highly constrained domain size (motivation will be dis-
cussed in Sec. 11T A 1) and low Re (Re; = 84.85). Concentration
dependence of Wigneet at more realistic flow conditions has not
been tested. Indeed, accurate determination of Wionser requires a
number of extended simulation runs near the onset point. Long
simulation time is required in each run for lower uncertainty in
time-averaged flow quantities in order to discern potential changes
in DR%. The overall requirement for computational resources is
nontrivial.

As to the underlying molecular assumptions, DNS has con-
sistently shown that at the onset, average tr(a) $ O(0.1)b, which is
nowhere close to full extension.””*”>*"%*”* This is often quoted as
evidence in support of de Gennes’s argument for an elastic mech-
anism. However, one must also consider the spatial variation and
transient nature of turbulent flows—the extent of stretching can vary
vastly between different regions. Indeed, Brownian dynamics simu-
lation of FENE dumbbells in turbulent channel flow has shown that
even at low Wi [O(1) based on ], a small portion of the chains
is highly stretched in regions with strong local biaxial extension.'"®
Therefore, despite the low overall stretching near the onset, high
extensional viscosity is still possible at certain spots as a result of
the transient occurrence of strong local extension. In this sense, the
extensional viscosity in the Lumley theory should be not interpreted
as a domain average.

b. Further DNS evaluation. DNS results have been interpreted
in both theoretic frameworks. Sureshkumar, Beris, and Handler'’
tested a very low finite extensibility parameter b, which suppresses
extensional viscosity, and found no DR for Wi up to 50. This seem-
ingly provides direct evidence in support of the viscous mecha-
nism. However, it is unclear how a low b magnitude may inter-
fere with an elastic mechanism. Indeed, the specific influence of
polymer elasticity on turbulence is not even specified in the elastic
theory.

A common practice in DNS is to inspect the TKE balance
[Eq. (55)] and infer a mechanism based on profiles of different terms
in the TKE budget. For the elastic conversion rate ef, profiles, Min

et al.,”® Min, Choi, and Yoo,”” and later Dallas, Vassilicos, and
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Hewitt’” have all observed a three-layer distribution at LDR: e]; is
positive (i.e., polymers suppress turbulence) in the viscous sublayer,
becomes negative (i.e., elastic energy feeds turbulence) in a small
region around y* ~ 10-15, and then turns positive again at higher
y". The initial interpretation by those authors was that the polymer
chains are stretched by the mean shear immediately near the wall
and release the elastic energy back to the flow in the buffer layer.
(Recent developments indicated that the second layer with nega-
tive ef, is likely caused by a new state of turbulence; see Sec. III B.)
At HDR and MDR, the third layer disappears and the second layer
expands across the domain.

Treating the dynamical DR mechanism as a problem of 1D
(y-direction) transport of averaged TKE budget terms is relatively
simplistic. It neglects, once again, the spatial variations of flow pat-
terns and polymer stretching. There is also no direct information on
the dynamical sequence of events: e.g., the notion of polymers mov-
ing to the buffer layer after getting stretched at the wall is mostly
a speculation. In addition, between negative and positive e’f), it is
unclear which one is more relevant to DR. Therefore, the overall
proposed scenario for an elastic mechanism based on TKE budget
analysis is more of a presumption than a conclusion.

c. Relationship and distinctions. The viscous and elastic theo-
ries are also not as diametrical as their names might suggest. It is not
a debate of whether DR is caused by viscosity or elasticity. Rather,
both mechanisms require a certain level of elasticity—a purely vis-
cous Newtonian fluid would not cause DR under the viscous mecha-
nism. One may even argue that they are partially reconcilable. Under
the viscous mechanism, polymer feedback to turbulence is almost
instant: polymer molecules are extensively stretched in extensional
flows as they resist such deformation at the same time. During this
process, TKE is converted into elastic energy stored in the stretched
chains. This could also be one possible scenario for the generation of
elastic energy or stress in the elastic theory since the latter does not
specify the detailed mechanism for the polymer-turbulence interac-
tion. Of course, the lack of details also allows the elastic theory to be
more plastic. For instance, it may also be interpreted in terms of the
“memory effect” of viscoelastic fluids—polymers store elastic energy
at one place and release it at another (as in the case of the TKE budget
analysis discussed above).

The fundamental division between these two theories is not on
how polymers interact with turbulence, which is not explicitly spec-
ified in the elastic mechanism, but on how such interactions are
felt by turbulence and cause DR. In the viscous mechanism, poly-
mer effects are solitary and instant. As long as one local extensional
flow spot is suppressed, DR, no matter how small, will occur. DR
increases as more local flow regions become suppressed. Overall, this
mechanism only requires localized C-S transition and thus depends
solely on Wi (i.e., the time criterion). In the elastic mechanism, poly-
mer effects are collective. DR is only observed when the total elastic
energy exceeds a certain threshold. The onset thus depends on both
Wi and concentration.

d. Explanation of MDR. Neither theory offers a complete
account for MDR. Both fall short of portraying a turbulence self-
sustaining mechanism at MDR, which is essential for the question of
MDR “existence” (Sec. II B 3 c). The viscous theory considers tur-
bulence to be suppressed beyond the increased dissipative scale g,
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which leads to an enlarged viscous sublayer. At the limit of MDR,
Iq becomes comparable to I, which would predict near complete
laminarization. The elastic theory only compares the magnitudes
of turbulent and elastic energies (or, equivalently, stresses) without
specifying the specific dynamics. At r < r**, it can be interpreted
as either elastic energy quenching turbulence or replacing it as the
new driving mechanism for instability. The latter possibility is raised
here because of a series of recent studies of turbulent states driven by
elasticity, which will be discussed in Sec. 111 B.

Warholic, Massah, and Hanrattyll observed in their channel
flow experiments that T x, effectively vanishes at MDR. The deficit
left behind in the shear stress balance must have been replaced by
polymer shear stress. Since RSS is related to TKE production, it
was inferred that at MDR, the conventional mechanism for turbu-
lence generation is suppressed and turbulence must be sustained by
elasticity. This finding is not supported by later experimental and
numerical observations, all of which showed that although 7 x, at
MDR is typically significantly lowered compared with its Newto-
nian magnitude, it remains finitely nonzero.””*”> Nevertheless, the
magnitude of polymer shear stress exceeding that of RSS is at least
consistent with the presumption of the elastic theory.

For “universality,” an explanation is readily available from the
viscous mechanism in which MDR is considered a flow state where
turbulence is suppressed and polymer effects are no longer impor-
tant. It poses more challenge for the elastic theory since elastic
energy inherently depends on polymer properties.

Finally, neither theory provides a quantitative prediction for
the velocity “magnitude” at MDR. In a related development, L'vov,
Procaccia, and co-workers have proposed a model for the mean
velocity profile incorporating a number of empirical approxima-
tions.""”"*" One notable approximation that allows the coupling of
polymer effects into the mean flow prediction involves the definition
of an “effective viscosity” 7T () (which, inevitably, must vary with

P
y) relating the polymer shear stress to the mean shear rate

e dUm
Tpay = Wpff(y)% (63)

and the assumption that it grows linearly with wall distance |y — yw|
outside the viscous sublayer. The model predicts DR that increases
with the 42" magnitude. Its solution at TRy = 0 gives a Up(y*)
profile agreeing with the Virk logarithmic profile [Eq. (58)].

This development is sometimes characterized in the literature
as a viscous theory for DR, which is not entirely accurate. The
effective viscosity qfff(y) is not a molecular viscosity in Lumley
sense as it includes effects beyond molecular momentum trans-
port. Indeed, it is an empirical model function lumping together
the effects of polymer-turbulence dynamics, without specifying the
nature of those interactions. It is thus more appropriate to be cat-
egorized as a phenomenological model than as a theory. Its MDR
prediction builds on the assumption that turbulence is completely
quenched (zero Tg,xy), which is what the viscous theory would pre-
dict. On the other hand, polymer shear stress 7, (through the
effective viscosity function) is high, which prevents the mean veloc-
ity from going back to the laminar value. The source of 7}, is not
specified. Thus, the model does not necessarily preclude the elas-
tic mechanism which also predicts the polymer stress to exceed the

*

Reynolds stress at r < r**.
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I1l. RECENT ADVANCES

Section I1 is intended to provide an overview of the major phe-
nomenology and fundamental understandings of DR that have been
more established over the decades. There are evidently many out-
standing gaps in those understandings, most notably in the HDR and
MDR regimes, where progress has historically been limited. Several
new developments and breakthroughs on these fronts have taken
place over the past 10 years. These developments show significant
breakaway from the established approaches in this field and, as such,
bring forward new lines of thought in the mechanistic inquiry of DR.
They will be reviewed in this section.

A. A dynamical framework for DR research

In the classical approach of wall turbulence research, flow
quantities are often averaged over homogeneous (streamwise and
spanwise) directions and over time. The results are typically pre-
sented using profiles of mean velocity, rms velocity fluctuations, and
Reynolds stress. Balances of shear stress and TKE are also com-
monly studied. Theoretical analysis would thus focus on turbulent
transport between different wall layers and neglect both spatial inter-
mittency and temporal intermittency. Earlier discussion of the vis-
cous mechanism for DR has already shown some limitations of this
perspective. In particular, it seems that the Lumley theory can bet-
ter explain DNS results if the characteristic extensional viscosity is
interpreted as the transient local magnitudes of # at regions of
strong deformation, rather than its ensemble average. A number of
studies from the past decade have revealed significant new insights
hidden in the dynamical intermittency, which prompted a wave of
developments in DR research. A recent review by Graham'® specifi-
cally focused on intermittency, dynamical systems, and MDR, which
covered many of the, of course, earlier developments in this wave.

1. Minimal flow unit (MFU)

Coherent structures are spatially and temporally recurrent
structural patterns in a turbulent flow field. Spatial patches show-
ing such patterns, such as well-defined vortices and streaks, can be
clearly identified in DNS and experimental flow visualization results.
Those patterns do not strictly repeat themselves but share many
similarities. To a first approximation, the flow field of near-wall tur-
bulence can be viewed as an ensemble of individual structural units,
each evolving through its own life cycle. Although no pairs of such
units are identical at any given moment, all units are statistically
equivalent.

These so-called minimal flow units (MFUs) can be numeri-
cally isolated by constraining the periodic simulation domain to
the smallest size that still sustains turbulence. For Newtonian flow,
Jiménez and Moin”’ pioneered this idea and found that a MFU
reflects the correct length scales of coherent structures: e.g., its span-
wise domain size L ~ 100 is comparable to the well-established
characteristic near-wall streak spacing.””*® At their relatively low
Re; (100-200), flow structures captured in a MFU resemble that
of the ECS (Fig. 7)—for a significant portion of time, the MFU
contains one low-speed streak straddled by staggered streamwise
vortices. Unlike ECS which is stationary, the MFU approach cap-
tures the dynamical life cycles of such structures. Remarkably, time-
averaged flow statistics of a MFU also quantitatively agree with those
of large-scale turbulence.

REVIEW scitation.org/journal/phf

The approach was extended to viscoelastic turbulence more
recently by Xi and Graham."' It was found that the domain size
of a MFU increases with increasing Wi and DR%, which resonates
with the observation of increased streak spacings accompanying DR.
At a low Re; = 84.85 and for Wi up to 29 tested (under constant
B = 0.97 and b = 5000), viscoelastic MFUs are still dominated by
streamwise vortices and streaks. However, the study reported strong
intermittency in instantaneous wall shear rate j, magnitudes, which
also seems to correlate with variations in turbulence strength. Espe-
cially at higher levels of DR%, instants with significantly lower wall
shear rate are frequently observed, during which vortex strength,
as measured by the Q quantity [Eq. (48)], experiences multifold
decreases.

2. Phenomenology: Active and hibernating turbulence

a. The concept. These low-shear events are later known as
“hibernating turbulence,” a term coined by Xi and Graham'’' in
their immediate follow-up study. They discovered that dynamics
in a MFU undergoes clear transitions between distinct phases with
strong (active turbulence) and weak (hibernating turbulence) tur-
bulent activities (Fig. 10). By following the time series of com-
mon indicators of turbulent activities such as wall shear stress and
TR,xy» hibernating turbulence can be identified as distinct inter-
vals during which those quantities drop to uncharacteristically low
magnitudes.

25 —
—avg Newtonian

o0 —avg Wi=29
~~Viscous sublayer b

FIG. 10. Flow statistics and structures around a typical hibernating interval in a min-
imal flow unit (MFU) (Re, = 84.85, Wi =29, 8 =0.97, b =5000): (top) instantaneous
mean velocity profiles; (bottom) flow structures during representative moments.
Moments (i)—(v) are chronologically ordered and cover the transition from active
(i), to hibernating (ii-iv), and finally back to active (v) phases. Instantaneous wall
shear stress at the nearest wall is used to define inner scales and quantities so-
nondimensionalized are marked with an asterisk. Time average Newtonian and
Wi =29 profiles are shown in solid lines. Isosurfaces show constant vy (light/green)
and Q [dark/red, Eq. (48)]; the same isosurface levels are used for both images.
[Reprinted with permission from L. Xi and M. D. Graham, “Active and hibernating
turbulence in minimal channel flow of Newtonian and polymeric fluids,” Phys. Rev.
Lett. 104, 218301 (2010). Copyright 2010 American Physical Society.]
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Although such events are more often observed at higher Wi
and higher DR%, viscoelasticity is not a prerequisite. In Newtonian
turbulence, the instantaneous wall shear stress or Tr x, can be seen
fluctuating around its time-average value for most of the time, but
occasionally [every O(1000)!/U on average at Re; = 84.85], the sig-
nal drops significantly as the flow enters the hibernating phase. It
would bounce back to the normal level (active phase) after spend-
ing O(100)//U in hibernation. Hibernating events are rather rare at
the Newtonian limit where the time-average flow quantities almost
entirely reflect characteristics of active turbulence. Its frequency
stays low until well after the onset of DR but rises steadily after a
higher critical Wic. For the only case so far where direct comparison
has been made, Wic for the increase of hibernating frequency coin-
cides with that of the LDR-HDR transition Wi pr-HDR, as observed
in the work of Xi and Graham."’ At the highest Wi = 29 reported,
the average duration of active intervals drops by one order of magni-
tude to O(100)I/U, while, interestingly, that of hibernating intervals
remain nearly unchanged from the Newtonian limit.

The term “hibernating” turbulence was thus intended as a
metaphoric reference to its most notable dynamical trait that the
flow enters a state of weak activities for an extended time interval
but will eventually “revive” by itself to normal activity. Indeed, flow
fields during hibernation show drastically weaker vortex structures.
At moment (iii) of Fig. 10, Q values are so low across the domain
that no isosurface can be found at the prescribed level, whereas
clear large vortices are found at active turbulence—moment (v)—
using the same Q level. A velocity streak is still observed, but its
strength is markedly lower. In comparison, streaks in active tur-
bulence [moment (v)] induce stronger distortion on the velocity
isosurface and are also clearly wavier in the flow (x) direction.

b. Proposed link to MDR. Figure 10 shows the instantaneous
mean velocity profiles for moments before (i), during (ii-iv), and
after (v) a representative hibernating interval. [For instantaneous
profiles, inner units—see Eqs. (12) and (13)—are defined using the
wall shear stress of that moment at the nearest wall, with no average
between walls or over time. They are thus marked with “x” instead of
“+.”] Time average profiles for Newtonian and viscoelastic (Wi = 29)
cases are also shown: the former follows closely the von Karméan
log law at y* > 30 and the latter is lifted with a raised slope. Pro-
files of active turbulence [(i) and (v)] imitate Newtonian and LDR
profiles—they appear roughly parallel to the von-Karman asymptote
in the log-law layer, although with larger fluctuations than time-
average profiles. Profiles deep in hibernation [(iii) and (iv)], strik-
ingly, appear close to MDR. Moment (ii) is transitional and thus less
raised.

Quantitative agreement with the Virk asymptote should not be
generalized considering the intermittent nature of the dynamics—
no two hibernating events are identical and the Uy, (y*) profile rises
to different levels at different instances of hibernation. Neverthe-
less, qualitative similarity to MDR is hard to ignore. Regardless of
the magnitude, the profile shape is unequivocally different between
active and hibernating phases with the latter always showing a more
lifted silhouette characteristic of HDR and MDR. In a later study,
Xi and Graham'*’ showed that flow statistics between active and
hibernating phases are statistically differentiable. Other than mean
velocity, Reynolds stress (7r .y and rms velocity fluctuations) pro-
files are significantly more suppressed at hibernation across nearly
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the entire domain, which is, again, similar to MDR. Finally, the dis-
tinct patterns of turbulent structures observed during hibernation,
including weak vortices and straightened streaks, are also consistent
with flow visualization at HDR and MDR.””*”"7*%0°

Above all, the clearest connection is the insensitivity of hiber-
nating turbulence to polymer properties, which is obviously reminis-
cent of the universality of MDR. As mentioned above, the average
duration of an active interval drops for one order of magnitude
from the Newtonian limit to Wi = 29. Within the same range, the
average duration of a hibernating interval is nearly invariant with
increasing Wi. Xi and Graham'*' performed a numerical experi-
ment in which polymer stress is suddenly turned off (i.e., switch-
ing to Newtonian dynamics) at different points during the cycle in
Fig. 10. It was found that at moment (i), which is immediately before
the system pivots toward hibernation, removing polymer stress pre-
vents upcoming hibernation altogether. However, once hiberna-
tion has started, turning off polymer stress does not stop the flow
from slipping deeper into hibernation. Transition between these two
behaviors is rather sharp—there appears to be a turning point after
which the flow is on its path to hibernation and polymer stress is
no longer relevant. Therefore, polymers can suppress active turbu-
lence, shorten its duration, and allow hibernation to occur more
frequently, but hibernating turbulence itself is largely unaffected by
polymers.

This is explained by the substantially reduced polymer exten-
sion during hibernation, as a result of its weaker turbulent inten-
sity. Indeed, during hibernating intervals, nearly all polymer stretch-
ing can be attributed to the mean shear of the flow and polymer
stretching in transverse directions, which can only come from tur-
bulence, becomes negligible.'”” Overall, the level of polymer exten-
sion anticorrelates with the level of DR: moments with higher DR
(lower drag) show less polymer stretching. This would be counter-
intuitive from the classical ensemble-average perspective of turbu-
lence, where higher DR is associated with higher polymer stress
(required for suppressing turbulence), and can only be interpreted
in the dynamical framework of active-hibernating intermittency.

c. Further evidence. Intermittency between active and hiber-
nating turbulence has been reported in a number of later studies
from different researchers. Pereira et al.'” reported a similar inves-
tigation of Couette flow where the key observations are all well
consistent with the channel flow findings of Xi and Graham.'*"'**
Similar findings were also reported in pipe flow by Lopez, Choueiri,
and Hof"" for their low to moderate Wi regime (their highest Wi
results are in a different regime to be discussed in Sec. III B). The
existence of hibernating turbulence in Newtonian flow was repeat-
edly confirmed,'”* """ mostly at Re close to the L-T transition, where
these states are more frequently visited. Conditionally averaged flow
statistics and structures in those hibernating intervals again clearly
resemble MDR observations.

Tamano, Graham, and Morinishi'’ reported a DNS study of
viscoelastic boundary layer flow, where the streamwise direction
is no longer spatially homogeneous and temporal intermittency is
reflected in the downstream spatial variation of flow quantities. They
observed that regions with higher DR show lower polymer stretch-
ing and vice versa, which is consistent with the same anticorrelation
in the temporal dynamics of Xi and Graham:'** in particular, note
the strong similarity between Fig. 13 from the work of Tamano,
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Graham, and Morinishi'’ and Fig. 30 from the work of Xi and Gra-
ham.'”” They also performed a numerical test similar to that in the
work of Xi and Graham'** by turning off polymer stress after a cer-
tain downstream position with low drag and found that the low drag
state can survive a substantial distance further downstream without
polymer stress, which reaffirms the conclusion that polymer stress is
not important within the hibernating phase.

d. Connecting MFU dynamics with large-scale turbulence. Fol-
lowing the discussion in Sec. III A 1, MFU can be mapped to realistic
large-scale flows by invoking the ergodicity hypothesis of turbu-
lence,"” which postulates that both temporal and spatial statistics
are equivalent to ensemble statistics. In this sense, temporal inter-
mittency in a MFU would map to spatial intermittency in a larger
domain. A single structural unit can experience active and hibernat-
ing phases at different times. If a larger flow domain is viewed as a
jigsaw assembled by such units, at any moment, some units will be
caught at the active phase and some in hibernation. Their propor-
tions should reflect the time share of each phase in a single unit. Of
course, this would be neglecting any correlation between individual
units, which is a nontrivial assumption (see Sec. I1I C).

This view was adopted by Kushwaha, Park, and Graham'”*
and Wang, Shekar, and Graham'”’ for Newtonian and viscoelas-
tic flows, respectively. They divided DNS flow fields of an extended
domain into active and hibernating patches based on magnitudes
of local velocity gradient in the buffer layer. Conditionally aver-
aged flow statistics of these two categories compare well with MFU
results. Conditional average was also applied to large-scale experi-
mental measurements based on local wall shear stress,'””'** which
again confirmed the same picture. Kushwaha, Park, and Graham'”*
showed that conditional averages of active and hibernating turbu-
lence based on temporal intermittency and spatial intermittency
analysis are consistently alike.

3. DR from a dynamical systems perspective

a. Solutions in the state space. From a dynamical system per-
spective, turbulent dynamics obtained from a MFU can be viewed as
a chaotic dynamical trajectory in a state space governed by numer-
ous invariant solutions such as ECS [see Fig. 11(a) for a simple
case].””"""1%? Other than the laminar state, none of those solutions
are linearly stable. All known ECS solutions are saddle points in the
state space, having both stable and unstable directions (stable and
unstable manifolds). (An illustrative visualization of how invariant
solutions and their unstable manifolds guide the dynamics of turbu-
lence in a MFU was shown in Fig. 9 from the work of Gibson, Hal-
crow, and Cvitanotié.m) For Newtonian turbulence close to the L-T
transition (low Re), dynamics in the “kernel” of strong turbulence is
dominated by the so-called upper-branch (UB) ECS solutions, %
while hibernating intervals appear to be intermittent escapes from
the kernel.

Since hibernating turbulence (1) shows distinctly weak tur-
bulent activities and (2) exists in both Newtonian and viscoelastic
flows, for its origin, one would first look for solutions representing
weak turbulent states in Newtonian flow. In canonical flow types,
transition to turbulence follows a nonlinear mechanism and requires
finite-amplitude disturbances. (For channel flow, a linear instabil-
ity of the laminar state does occur at Re; » 107.4, which leads to
a new solution called the Tollmien-Schlichting or T-S wave. "’
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FIG. 11. State-space dynamics of active-hibernating-bursting (AHB) cycles and
relevant solution objects: (a) schematic representation [Reprinted with permission
from Zhu et al., “Transient dynamics of turbulence growth and bursting: Effects
of drag-reducing polymers,” J. Non-Newtonian Fluid Mech. 266, 127-142 (2019).
Copyright 2019 Elsevier.] and (b) numerical results of viscoelastic flow projected on
a T;{xy profile peak vs buffer-layer U (y*) logarithmic slope 2D plane [Reprinted
with permission from L. Xi and X. Bai, “Marginal turbulent state of viscoelastic
fluids: A polymer drag reduction perspective,” Phys. Rev. E 93, 043118 (2016).
Copyright 2016 American Physical Society.]. In (b), the solid blue line is a trajec-
tory initiated from the edge state and ending at the turbulence kernel; the vertical
dashed line marks Ay,, = 11.7. The boundary between laminar and turbulent
basins, i.e., the edge of chaos (EoC), is formed by the stable manifold of the edge
state (ES).

Since Rer it ~ 44.7 for the L-T transition is much lower,"* a non-
linear mechanism is the only pathway for the transition at Re;
$ 107.4. Without further complicating the discussion, the linear
instability scenario will not be discussed which does not exist in
pipe or Couette flows.) Therefore, the state space has at least [addi-
tional solution(s) may exist; see Sec. III B] two basins of attrac-
tion: laminar and turbulent regions. The ridge separating them can
thus be considered the most marginal or weakest form of turbu-
lence. This so-called “edge of chaos” (EoC) can be numerically com-
puted, noting that trajectories above and below the ridge divert to
opposite basins, through repeated bisections.'””'* For the relatively
low Re studied so far, dynamics along the EoC converges to an
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asymptotic solution called the edge state (ES) [Fig. 11(a)], which
often appears as a quasiperiodic [Fig. 11(b)] or nonperiodic oscil-
latory (with varying period length) trajectory itself.'””'*' The ES has
only one unstable direction,”” which means for an N-dimensional
system (N being the number of degrees of freedom), its stable
manifold spans an (N — 1)-dimensional subspace and forms the
separating surface between the two basins—i.e., the EoC. Lower-
branch (LB) ECS solutions with one-dimensional unstable mani-
folds have been found and are believed to be the key constituents
of the ES."*»'**

Xi and Graham'*® computed the ES for viscoelastic channel
flow whose flow structure and mean velocity profile turn out to
be remarkably similar to hibernating turbulence. Most importantly,
mean flow of the ES was found to be insensitive to viscoelasticity—
from Newtonian flow to Wi = 28, the profiles seamlessly overlap
with one another. The collapsed profile at Re; = 84.85 happens to
align with the Virk profile [Eq. (58)], although this agreement can-
not be generalized to higher Re.'”” This insensitivity, same as the
case of hibernating turbulence, is again caused by the lack of polymer
stretching in this weak turbulent state, where the flow kinematics is
dominated by shear rather than extension or rotation.'””

b. Active-hibernating-bursting (AHB) cycles. The proposed
dynamical scenario is sketched in Fig. 11(a). For Newtonian flow, a
turbulent trajectory would spend most time sampling a well-defined
kernel region of strong (active) turbulence formed by UB solutions.
Occasionally, it may hit certain points of exit in the kernel region and
embark on excursion toward the laminar state, only to be blocked
by the EoC. The trajectory will then travel along the EoC until it
reaches the vicinity of the ES, where it will be pivoted toward the
unstable direction of the latter and start its return journey. Dur-
ing the excursion, the flow spends substantial time in regions with
very weak turbulence, which is reflected as a hibernating interval
in DNS.

Signs of such cycles can be spotted in earlier DNS studies. For
instance, Min, Choi, and Yoo'” obtained their viscoelastic solutions
by suddenly switching on viscoelasticity from a Newtonian solu-
tion. After leaving the Newtonian kernel, all solutions (different Wi)
can be seen approaching the same low-drag (drag coefficient close
to but higher than the laminar magnitude) asymptotic state and
staying in its vicinity for O(10*)l/U, before bouncing backward to
their corresponding viscoelastic kernels. Interestingly, the simula-
tion domain used in that study is much larger than MFUs where
dynamical cycles involving active and hibernating states were later
more systematically studied.'’>'”"*»!**

The connection of LB ECSs (which, as discussed, are believed
to dominate the ES) to hibernation is supported by their direct com-
parison with conditionally averaged hibernating events in extended
flow domains from both experiments and DNS.'””'* Furthermore,
Pereira, Thompson, and Mompeanlr and Kushwaha, Park, and
Graham'** found that the frequency of hibernation in Newtonian
channel flow increases with decreasing Re, which is consistent with
the common belief that active turbulence and hibernating turbu-
lence are organized around UB and LB ECSs, respectively—solutions
on the two branches are closer, and thus, the transition frequency
becomes higher—as Re decreases toward the bifurcation point.
With increasing Re, hibernation becomes rare, which only becomes
unmasked when Wi is higher.'”
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Returning through the unstable manifold of the ES often leads
to a strong overshoot of turbulent intensity—a bursting event—
before it settles back to the active kernel [Fig. 11(a)]. The term
“bursting,” although prevalent in the turbulence literature, is not
unequivocally defined and interpretation varies depending on the
context. Here, it refers to events marked with a strong sharp increase
in TKE. These events are strongly nonequilibrium in nature (as
opposed to quasi-steady-state solutions like ECS). Their importance
in the turbulence self-sustaining cycle was pointed out by Jiménez
et al”’" In time series showing hibernating intervals, a strong
burst of TKE, as well as other quantities associated with turbu-
lence intensity, usually follows hibernation.'*"'** Pereira, Thomp-
son, and Mompean'~’ showed similar observations. They made
the differentiation between “strong” and “moderate” active states,
which, in our terminology, roughly correspond to bursting and
active phases. Kushwaha, Park, and Graham'”* conditionally aver-
aged instances of hibernating intervals by aligning them at their end
points. The result clearly showed that, statistically, hibernating inter-
vals are often followed by strong overshoots of wall shear stress—i.e.,
“bursting.”

Zhu et al.”* systematically studied the nature of bursting events
and showed that trajectories following the unstable manifold of the
ES en route to the turbulent kernel demonstrate well-defined burst-
ing behaviors. It starts with quick intensification and lift up of near-
wall vortices, which results in a sharp rise of the RSS [and thus TKE
production—see Eq. (57)]. These primary vortices then undergo
swift rupture, generating countless much smaller but intense vortex
pieces as their debris, which is accompanied by TKE quickly reach-
ing its peak. Viscous dissipation then stabilizes the flow and regulates
the fluctuations into larger vortices typical of the kernel of active
turbulence. Park, Shekar, and Graham'** also showed that strong
bursting events in a MFU are closely aligned with the unstable mani-
folds of a class of LB solutions likely sitting on the ES."”” The scenario
depicted above resonates well with the earlier KL analysis of MFU
solutions by Webber, Handler, and Sirovich.'*! They showed that
at the early stage of a bursting event (they used the term “entropy
event”), the representational entropy between modes reaches min-
imum, which indicates that TKE is contained in a few large-scale
modes—i.e., the primary vortices. A quick rise in entropy soon fol-
lows, which corresponds to the later rupture of primary vortices and
redistribution of TKE between a wide range of scales.

DNS trajectories of active-hibernating-bursting (AHB) cycles,
projected to a two-dimensional (2D) plane, are shown in
Fig. 11(b).""”” A numerically computed ES solution is also shown,
which appears as a quasiperiodic orbit located between the laminar
state and turbulent kernel. Starting from the ES and with minimal
disturbances [see the solid blue line in Fig. 11(b)], instabilities would
grow and lead to a strong bursting event (overshoot) before the flow
decays to the turbulent kernel. Afterward, occasional escapes and
excursions, i.e., hibernating events, are observed, during which the
flow visits regions close to the ES. Bursting is typically observed after
those visits, which is reflected in increased Tf{,xy, but not necessarily
in AJ;. [AJs is the logarithmic slope calculated, according to Eq. (59),
from instantaneous Uy, (y™*) profiles at y* = 25, which is a mean flow
quantity not directly tied to instantaneous turbulent intensity.]

A more detailed state-space visualization can be found in
Fig. 11 from the work of Park and Graham'*” and Fig. 9 from the
work of Park, Shekar, and Graham.'*’ Although those authors did
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not directly compute the ES, they showed that hibernating turbu-
lence corresponds to intermittent visits to the vicinity of a class of LB
solutions believed to be part of the ES, all having only one unstable
dimension. Park, Shekar, and Graham'*® also noted that although
hibernation is a necessary precursor to strong bursts, not every
hibernating interval is followed by clear bursting. This is not surpris-
ing considering the intermittent nature of the dynamics: not every
hibernation trip reaches close proximity to the ES. The returning
trajectory is only expected to follow the unstable manifold closely,
which leads to strong bursting, if it gets very close to the ES during
hibernation.

c. Theory for MDR and HDR. We are now ready to discuss the
effects of polymers on this AHB dynamical cycle from which a new
theory for explaining MDR will arise. AHB cycles exist in both New-
tonian and viscoelastic flows, but at high Wi, the time scale for active
turbulence is severely reduced and the frequency of hibernation,
whose drag is substantially lower, is raised. Although this could also
increase the frequency of bursting, whose drag is even higher than
active turbulence, Zhu et al.”* showed that polymers can suppress
the strongest form of bursting and reroute the dynamics to avoid
vortex rupture and intense fluctuations. The net outcome is that
both time-averaged flow quantities and statistically dominant flow
structures will be increasingly represented by hibernation, which, as
discussed in Sec. III A 2, shows key characteristics of MDR. It was
thus postulated that at sufficiently high Wi, active intervals will be
very short so that hibernation becomes predominant. This is when
the overall flow converges to MDR.

A simple yet quantitative mathematical model was derived, by
Xi and Graham,'” based on this conceptual picture, assuming that
(1) at Wi higher than a critical value Wi, polymer chains are per-
sistently stretched in active turbulence where polymer stress grows
exponentially with time; (2) finite extensibility of polymer chains
is neglected; (3) the polymer stretching rate at active turbulence is
independent of Wi; and (4) active turbulence is suppressed once the
nondimensional polymer stress reaches a threshold value St. It leads
to a simple expression for the duration of active intervals

In St
Wizl - wi!

which fits perfectly with DNS data at the high-Wi end. (At lower Wi,
Tact is independent of Wi.) For Re; = 84.85 used in that study, the
fitting yields Wic = 17.36, which is a stunning agreement with the
observed value of Wic ~ 18 (where T, starts to decline). At the limit
of Wi — oo, the model predicts Tact # 1271/U, significantly below
the average duration of hibernation Thi, » 200l/U, which affirms
the postulation that MDR is a flow state where hibernation becomes
statistically dominant.

The overall picture is depicted in Fig. 12. Intermittent AHB
transition cycles occur in both Newtonian and viscoelastic flows,
only that in the former they are rare and active turbulence lasts for
long periods. After the onset of DR, polymers are stretched at regions
of strong flow motion (e.g., local extensional spots), which leads
to an overall weakening of vortex structures at active turbulence
(and, presumably, during bursting as well), following the mechanism
described in Sec. II C 1. The stretching is likely transient in nature
and polymer stress never grows to St, the level required to disrupt
active intervals. At Wi > Wic (>Wioneet), polymer stretching in active

Tact = (Wi> Wi), (64)
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FIG. 12. Polymer-turbulence dynamics in active-hibernating-bursting (AHB)
cycles—a schematic based on findings in the work of Xi and Graham,**'?" Xi
and Bai,'”” and Zhu et al.**

turbulence becomes persistent and polymer stress keeps ramping
up until active turbulence is quenched, which triggers early exit to
hibernation. During hibernation, polymer chains recoil and polymer
effects are minimal, but, because of the unstable nature of hiberna-
tion (both ES and LB solutions have unstable directions), instability
will still grow, which is often followed by a bursting event before the
start of a new active interval.

Further increasing Wi continues to reduce Tt and increase the
statistical weight of hibernating turbulence (which remains mostly
unaffected). At MDR, some form of strong turbulence (bursting or
active turbulence) must still exist and appear intermittently because
polymers do not stabilize hibernating turbulence. Indeed, Zhu
et al.”* found that as the flow leaves the ES, polymer effects remain
small during the initial growth of instability (intensification and
lift up of primary vortices) and only become significant in later
stages of bursting (rupture of primary vortices), which occurs ~50
— 701/U after the initial instability. This is the same order of mag-
nitude as the »1271/U prediction of Eq. (64) at the Wi — oo limit.
The prediction is higher by a factor of ~2, which is not unexpected
considering the assumptions behind Eq. (64), especially the neglect
of finite extensibility. It is thus inferred that bursting/active phases
are terminated almost immediately after polymers are stretched.
Thus, the only form of strong turbulence remaining at MDR
would be the budding stage of instability before polymer stress is
significant.

The theory essentially links MDR to a class of fundamentally
Newtonian flow states associated with the L-T transition, in which
polymer elasticity is not important. This is supported by the obser-
vations of White, Dubief, and Klewicki”’ who compared the mean
velocity and RSS profiles between MDR and transitional states in
Newtonian boundary layer flow (from the work of Wu and Moin'*")
and found remarkable similarities. The main difference, as they
noted, is that at MDR, such transient states are stabilized. Accord-
ing to the current theory, this “stabilization” is more accurately
described as an intrinsically intermittent process—viscoelasticity
does not make hibernation more stable per se but keeps driving the
flow back to hibernation to make it statistically more persistent.
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Compared with classical attempts, this theory takes a unique
dynamical perspective and explains the transition to MDR in terms
of a shifting dynamical balance between flow states. By offering a
consistent explanation for two of the three key attributes of MDR,
as outlined in Sec. II B 3, it represents a major step forward toward
solving this mystery. For the “existence” attribute, the theory postu-
lates that MDR is a form of turbulence dominated by weak streaks
and vortices (hibernation) with intermittent short-lived eruptions
of stronger activities (bursting/active turbulence). The flow does
not return to the laminar state because of the insensitivity of the
ES and EoS to polymer effects—polymers cannot remove the bar-
rier between turbulent and laminar basins. For the “universality”
attribute, the explanation is obvious: hibernating turbulence, which
presumably dominates MDR, is a class of fundamentally Newtonian
flow states. It does not rely on viscoelasticity to exist and does not
seem to be affected by the latter either. Polymers only unmask those
states by compressing active intervals. The question regarding the
“magnitude” of MDR remains open, which we will discuss shortly
below.

The transition from vortex weakening by transiently stretched
polymers (first DR mechanism at Wigneet < Wi < Wic) to the suppres-
sion of active turbulence by persistently stretched polymers (second
DR mechanism at Wi > Wic) also offers an explanation for the LDR-
HDR transition, where a second mechanism is needed to explain the
sharp differences between the two regimes. So far, the coincidence
between Wic and the LDR-HDR transition has only been shown for
one parameter setting (Re, 3, and b combination). More research is
still required to establish this link.

4. Limitations and remaining gaps

Despite its great promise, this theoretical framework based
on ABH cycles still has a few gaps to fill. Developments in
more recent years (after the study by Xi and Graham'*' in 2010)
have revealed encouraging new directions, which will be discussed
in Secs. III B and III C. The answers, however, are far from
complete.

a. Quantitative magnitude of MDR. The theory falls short of
offering a mean flow prediction for MDR and cannot fully explain
the quantitative magnitude of the Virk profile [Eq. (58)]. Although
Virk-like profiles are often observed both during hibernation and at
the ES, it is not always generalizable—other instances of hiberna-
tion or ESs at other parameters may differ from the asymptote. The
intrinsic difficulty again stems from the dynamical nature of the the-
ory, in which MDR is determined by not necessarily one state but the
statistical ensemble of many. Since the ES is not altered by polymer
elasticity,“”““ it is reasonable to anticipate that, near the ES, there
is a band of the state space within which turbulence is too weak to
be influenced by polymers. Mean flow at MDR, based on this theory,
would be determined by the average of those states weighted by their
sampling frequency during hibernation.

b. Asymptotic convergence. Direct numerical evidence for the
dynamical theory was only obtained for limited Wi. For Xi and Gra-
ham'”"'** with their parameter settings, it is up to Wi = 29. At higher
Wi, their DNS trajectories return to the laminar state after finite time
periods, which is inconsistent with the expectation of MDR as an
asymptotic state of self-sustaining turbulence. The theory builds on
the immutability of the EoC and ES—these solutions are required
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to block any laminarization attempt as they are asymptotically and
dynamically approached by the flow trajectory. This immutability
is postulated based on the insensitivity of ES mean flow quantities
to viscoelasticity. The observed laminarization at higher Wi appar-
ently suggests that the L-T boundary (EoC and ES) becomes some-
how penetrable. Although this does not necessarily contradict the
immutability of the ES mean velocity, it is at odds with the predicted
asymptotic dynamics at MDR.

There are two very different, but possibly coexisting, explana-
tions for the premature laminarization. One is the small domain
size used in those MFU studies. Wang et al.'*" later reported that
the maximum Wi for sustained turbulence is limited by the domain
size—in particular, as L increases from 360 to 1000, the highest tur-
bulent Wi increases from 29 to 90 (same Re;, 3, and b as those in
the work of Xi and Graham'”"). Intermittency between active and
hibernating states, similar to that in MFU, was also observed in their
larger domains. Nevertheless, the asymptotic behavior of MDR was
still not truly captured—although their Wi = 90 case has DR% close
to 60% and its Uy, (y") profile is comparable to the Virk profile
of Eq. (58), further increasing Wi would still cause laminarization.
Indeed, in other studies with larger domain sizes (L; up to 4000),
laminarization was also observed at sufficiently high Wi.””**”* The
other possible explanation emerged very recently. It was found that
under similar flow parameter settings, a new class of turbulencelike
instabilities, driven at least in part by polymer elasticity, exist at high
Wi As discussed in Sec. I A 5 f, turbulence driven by elastic-
ity is very difficult to capture in DNS when AD is used,””” which
was the case in all above-quoted studies. In this explanation, the
eventual extinction of lasting turbulence, in the conventional sense,
at high Wi is real, but the newly emerged “turbulent” states would
keep the flow from laminarization. Further discussion is deferred to
Sec. [11 B, after those states are introduced.

¢. Dynamics at higher Re. The state-space depiction illustrated
in Fig. 11(a) is based on numerical invariant solutions and DNS at
fairly low Re, typically Re ~ 0(10%) or Re; < O(10%) and not very
far above Reit for the L-T transition. Extension of this scenario to
higher Re, where experiments are typically conducted (Re; 2 103),
is nontrivial. The complexity of the state space is expected to grow
explosively with increasing Re because of the rapid bifurcation of
existing solutions and emergence of new ones.'””'*""'** In addition,
most known ECS solutions depict streak-vortex structures (Fig. 7)
representative of turbulence in the buffer layer, which, at higher Re,
accounts only for a very small portion of the flow domain. Structures
at higher y* are vastly more complex,””'"’ most of which are not
included in the current framework of dynamical systems. (Recently,
Shekar and Graham'" reported the first class of ECSs resembling
hairpin vortices, which are involved in log-law layer dynamics.)
Understanding polymer effects on those structures is particularly
relevant to the study of HDR and MDR, where, as reviewed above,
DR reduction effects are felt well beyond the buffer layer.

Overall, the state-space picture of higher Re and higher y*
is rather murky at the moment. It is unclear whether any sim-
ple dynamical theory can still formed in a similar bottom-up
fashion—from invariant solutions and MFU trajectories. An alter-
native approach is to extract and analyze flow structures a posteriori
from the DNS data of realistic flow conditions. Recent efforts on that
front will be discussed in Sec. I1I C 2.
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d. Dynamics in extended flow domains. MFU allows direct
access to the temporal evolution of isolated structures but neglects
correlations between different structural units. Dynamics in a MFU
can be mapped to large-scale turbulence citing ergodicity and
spatial-temporal equivalency, as did by Wang, Shekar, and Gra-
ham,"*" which, however, still precludes interactions between struc-
tures. For turbulence in larger flow domains, the generation, growth,
spreading, and demise of each unit structure are inevitably coupled
with the dynamics of other structures nearby and, possibly, far away.
For example, Lopez, Choueiri, and Hof 10 reported that with increas-
ing length of their simulation domain (pipe geometry), although a
transition from temporal intermittency to spatial intermittency was
indeed observed, the latter cannot be accurately depicted as a statis-
tical ensemble of different states in the temporal trajectory. Rather,
with sufficient domain length, highly localized turbulent patches
would form, which is a clear sign for interstructural correlation. In
a separate example, Zhu et al.”’ found that spatial localization of
vortex structures is one of the key characteristics of HDR, which
again would not occur without interaction between structures. A
detailed analysis of such dynamics in the complex backdrop of tur-
bulence appears daunting, for which latest development in vortex
analysis methodology, discussed in Sec. I1I C 2, can be particularly
instrumental.

B. Elasticity as a driving force for turbulence

Conventional turbulence, e.g., as in a Newtonian fluid, is driven
by inertial effects. Adding drag-reducing polymers damps those tur-
bulent motions and coerces the flow to a state of less disorderness
and, consequently, less drag. This has been the storyline dominat-
ing DR research for decades and has also been the narrative of
this review thus far. Other than inertia, in polymer solutions, fluid
elasticity provides an additional source of nonlinearity in system
dynamics, which, in principle, could also drive (instead of damping)
flow instabilities. Such elastic instabilities are more likely to occur
as Wi increases. For this reason, it has been long speculated that
MDR is formed by flow instabilities that are more elastic in nature.
The report of vanishing RSS (and thus large polymer shear stress) at
MDR by Warholic, Massah, and Hanratty ~ further fueled such spec-
ulations. On the other hand, DR is still a high-Re phenomenon—it
is equally possible that stronger conventional turbulence driven by
fluid inertia prevails over any potential elastic instability. Indeed,
solid evidence for the relevance of such instabilities, driven at least
in part by elasticity, to DR only emerged very recently: the first and
so far only established case is the so-called elastoinertial turbulence
(EIT) reported by Samanta et al.'"’

1. Background

a. Historical context of elastic instability research. It has been
widely known that viscoelastic polymer fluids can display instabil-
ities that are driven either purely or in part by elasticity. Purely
elastic instabilities can occur at the limit of vanishing Re (i.e., the
inertia-less limit)."””''*> Many earlier studies focused on polymer
melts for rheometry and polymer processing applications. There has
also been substantial research of dilute solutions of long-chain (i.e.,
drag-reducing) polymers in, e.g., microfluidics, where, because of
their small geometric dimensions, Re is too low to generate tur-
bulence and elastic instabilities are explored for the purpose of
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promoting fluid mixing. The best understood type of elastic insta-
bilities occur in flows with curved streamlines, such as Taylor-
Couette flow—shear flow in the annular space between two
coaxial cylinders with relative rotation.'”® The mechanism of this so-
called “hoop-stress” instability involves the coupling between poly-
mer normal stress and streamline curvature.”””"” Flow instabilities
typically manifest as secondary and often oscillatory flow patterns,
which cause increased drag compared with stable laminar flow. In
a rotating parallel-plate setup, Groisman and Steinberg' ™ observed
a particular type of instability showing chaotic flow patterns. This
instability was shown to exist at arbitrarily low Re, indicating its
purely elastic nature. The term “elastic turbulence” was coined to
describe this turbulencelike instability that does not rely on inertia.

Elastic instabilities also occur in flow around a stagnation
point, where the streamlines make sharp turns, such as cross-slot
flow.'”'*" One mechanism for those instabilities is the coupling
between the incoming convection of polymer stress and fluctuations
in the width of the so-called “birefringent” strand—a thin sheet of
fluids carrying highly stretched polymers, which initiates from the
stagnation point but extends far downstream.'*’

b. Dual origin for flow instabilities. Mathematically, flow
instabilities stem from the nonlinear relationship between the stress
and rate of strain, which is found in both fluid inertia (measured by
Re) and elasticity (measured by Wi). Combining these two effects
can also give rise to new types of instabilities. Such inertio-elastic
instabilities (IEIs) were found in a variety of flow geometries. In
a microfluidic planar contraction-expansion flow, Rodd et al.'®’
observed that the instability secondary flow pattern varies between
different Re-Wi combinations: instabilities occurring at finite Re
(i.e., IEI) are notably different from those at the purely elastic (van-
ishing Re) limit (both at high Wi). In a cross-slot flow, Burshtein
et al."** showed that instability around the stagnation point morphs
from an inertia-dominated form to an elasticity-dominated form by
raising Wi at constant finite Re.

According to their physical origin, flow instabilities in vis-
coelastic fluids can be categorized into the following three major
types:

elasticity-driven instability (EDI): often called purely elastic or
inertia-less instabilities in the literature, which are driven entirely
by elasticity and can occur at the Re — 0 limit;

inertia-driven instability (IDI): instabilities that would also
occur in a Newtonian flow at sufficiently high Re; and

inertio-elastic instability (IEI): instabilities where both inertia
and elasticity are essential and both Re and Wi need to reach
critical threshold values.

These different instabilities were systematically explored in the
Re-Wi parameter space by Rodd et al.'”’ (see Fig. 15 in their work)
and Burshtein et al.'** (see Fig. 13 in their work). A generic overview
of possible flow states at different Re-Wi regimes is illustrated in
Table L.

c. Elastic instabilities in parallel shear flows. Canonical tur-
bulent flow types are all parallel shear flows whose mean flow has
straight streamlines. Instability mechanisms reviewed above clearly
do not apply. Indeed, common viscoelastic parallel shear flows, such
as Couette, channel, and pipe flows, are known to be linearly stable
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TABLE I. lllustrative layout of possible flow states at different parameter regimes. (The actual parameter-space layout varies between specific flow types.)

Inertia-driven

Re > Reeri turbulence (IDT)

Elastoinertial

IDT with DR turbulence (EIT)

Laminar flow/inertia-driven

Laminar flow/IDI/inertio-elastic

< )

O(1) 5 Re < Reri inability (IDT) instability (TET) IEVEIT

. Laminar flow/elasticity-driven EDI/elasticity-driven
Re «O(1) Laminar flow instability (EDI) turbulence (EDT)

Wi O(1) Wiz O(1) Wi > 0(1)

at the inertia-less (or purely elastic, i.e., Re — 0) limit."”'** Atten- narrower concept of turbulence which must satisfy a certain set of
tion has thus been turned to possible nonlinear mechanisms for criteria, such as the seven characteristics put forth by Tennekes and
instability. Lumley.'® Without getting into the philosophical debate about what

A linear instability can be triggered with infinitesimal distur-
bances, whereas a nonlinear instability requires a finite-amplitude
disturbance—one that exceeds a certain threshold magnitude. A
classic example for the latter is the L-T transition in Newtonian
fluids: for pipe flow, it typically occurs at Recic ~ 2100 (defined
based on bulk velocity) with finite-amplitude disturbances but can
be delayed to much higher Re if disturbances are well controlled and
minimized.”' It has been speculated that elastic instability in parallel
shear flow could follow a similar scenario along the Wi axis."” Evi-
dence for such a nonlinear transition to purely elastic [Re < 0(1072)]
instability was shown by Pan et al.'*® in microfluidic (~100 ym) open
channel flow.

DR flow systems can no longer be considered inertia-less. At
finite Re, Zhang et al.'®” performed a nonmodal linear stability anal-
ysis, which studies the transient growth of specific modes of dis-
turbances via linear mechanisms. They found that a streak mode
disturbance becomes transiently amplified with increasing Wi,
although it does still eventually decay over time. The mechanism,
however, is probably unrelated with any of the later found IEIs, as
the amplification is caused by stronger turbulence production while
conversion to polymer elastic energy still acts as a suppressing force
for the growth of TKE [see Eq. (55)]. Several types of IEIs in vis-
coelastic pipe and channel flows were reported in latest studies, and
at least some of them are linear in nature.'*”"°*' In particular,
the so-called elastoinertial turbulence (EIT), discovered and named
by Samanta et al,'’ has brought significant developments to the
understanding of DR, which is the focus of this section.

d. Further notes on the terminology. Fundamentally, EIT is a
type of flow instability that is driven at least in part by fluid elasticity
and likely of inertio-elastic nature. The latter statement is because
so far EIT has only been reported for finite Re, but without a clear
mechanistic understanding, the possibility of it being purely elas-
tic cannot as yet be ruled out. Samanta et al.'"*" invoked the word
“turbulence” to describe this instability likely to reflect its chaotic
flow patterns, much like “turbulence” as in “elastic turbulence” in
the work of Groisman and Steinberg.]3 ? In addition, in the context
of DR, EIT is viewed as a new state of turbulence that emerges at
high levels of polymer elasticity. Some may frown upon such a loose
reference to the term “turbulence,” especially if they subscribe to a

counts as turbulence, the term EIT is used here simply to follow its
wide adoption in the recent literature.

On the other hand, one may also encounter the term “elas-
toinertial turbulence” being used for flow states of entirely different
natures. For example, Gillissen'”’ used it to describe a 2D viscoelas-
tic decaying homogeneous isotropic turbulence, even though the
fluctuations are fueled solely by inertia and elasticity plays a sup-
pressing role. To clarify, in this review, as well as in much of the
DR literature, EIT refers to a specific category of instabilities that
are (1) driven by both inertia and elasticity, (2) showing turbulence-
like chaotic flow patterns, and (3) self-sustaining in time. In DNS,
the first criterion can be unequivocally determined by examining
the TKE balance equation (55): elasticity becomes a driving-force
for instabilities if and only if e]; <0 (ie., —e’; > 0).

Likewise, EDIs showing turbulencelike chaotic flow patterns
will be termed elasticity-driven turbulence (EDT), whereas conven-
tional turbulence sustained by inertial instability will be referred
to as inertia-driven turbulence (IDT). Many in the literature called
the latter “Newtonian turbulence” because the turbulence gener-
ation mechanism stays the same, at least qualitatively, as that in
Newtonian flow, only that in viscoelastic flows, turbulence is atten-
uated by DR polymers. That term is a bit ambiguous and even
misleading since it may be misconstrued as turbulence of Newto-
nian fluids only. In Table I, EDT and EIT are marked at high-Wi
regimes as a representative scenario. In reality, whether and when do
these turbulencelike instabilities occur depends on the specific flow

type.

2. Phenomenology

a. Transitions between different types of turbulence. Samanta
et al.'” measured the Reyy for the L-T transition in Newtonian
(water) and viscoelastic (aqueous solution of PAM with the same
molecular weight and varying concentration C, up to 500 wppm)
fluids in pipe flow. At the same pipe diameter, they found that
Recri; initially increases with Cp—i.e., drag-reducing polymers delay
the transition, which is intuitive considering their role in resisting
turbulent motion. At higher Cp, however, Re.i starts to decrease
and eventually drops well below the value of Newtonian flow—the
so-called “early turbulence” phenomenon. Both delayed'”' ' and
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174,175 tes . . .
early transitions have been previously reported in various stud-

ies, which seemed conflicting at first. Observing both behaviors in
the same system (same polymer-solvent pair and same flow setup)
with varying C, suggests that these are two coexisting transition
pathways determined by the level of fluid elasticity.

Choueiri, Lopez, and Hof * later conducted a more compre-
hensive investigation of flow behaviors in a Re-C,, parameter space,
as shown in Fig. 13. The boundary between laminar (white) and tur-
bulent (shaded) regions, i.e., Reqit, clearly varies nonmonotonically
with Cp, with a peak at Cp arit 25 wppm. For Cp, < Cpcrit, increasing
Re at constant C, would see the occurrence of localized turbulent
patches, the so-called “puffs” and “slugs,”’”® before IDT (the authors
labeled it as “Newtonian turbulence” in the figure) fills the entire
domain. This transition sequence is identical to that in Newtonian
flow except that Recir becomes higher with increasing Cp. For C,
> Cpait> the transition directly enters, without discernible struc-
tural localization, a new type of turbulence, which is presumed to
be EIT.

If we instead explore the parameter space horizontally (ie.,
along constant Re lines), for Re between ~2300 (Newtonian Recrit)
and ~3600 (highest point of the L-T borderline, found at Cp i),
as Cp increases, the flow would laminarize first before reentering
the turbulence zone. Choueiri, Lopez, and Hof** also performed
a test where C, was ramped up at a slow pace with Re controlled
at 3150. The Newtonian limit shows well-developed IDT with a
friction factor following the Blasius correlation.”* Within IDT, the
friction factor drops sharply with increasing Cp. After C;, reaches
the approximate range of 15 wppm to 20 wppm, the flow becomes
intermittent and consists of extended quiescent regions separated
by occasional bursts of turbulent activities. For a window around
Cp ~ 20 wppm, the friction factor matches that of the Virk MDR
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FIG. 13. Different regimes of turbulent pipe flow behaviors in a Re-C, parame-
ter space, based on the friction factor and spatiotemporal patterns of streamwise
velocity measured by PIV. Thin lines show constant levels of the characteristic
shear rate y = 8U.y/D. The term “Newtonian turbulence” in the plot corre-
sponds to IDT in our terminology. [Reprinted with permission from G. H. Choueiri,
J. M. Lopez, and B. Hof, “Exceeding the asymptotic limit of polymer drag reduc-
tion,” Phys. Rev. Lett. 120, 124501 (2018). Copyright 2018 American Physical
Society.]
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asymptote. This stage is strongly reminiscent of the high intermit-
tency between hibernating turbulence and active/bursting phases
reported by Xi and Graham'*"'** and Zhu et al.”* (see Secs. 111 A 2
and III A 3). Like those earlier simulations, the flow relaminar-
izes at Cp 2 20 wppm. Turbulence, however, returns at C, 2 45
wppm. The friction factor later converges again to the Virk MDR
asymptote at C, ~ 60 wppm and stays nearly constant with further
increasing Cp.

Although the two regimes of C, ~ 20 wppm and C, 2 60
wppm share nearly the same friction factor, and thus DR%, and
both agree with the Virk asymptote, the fact that they are sepa-
rated by a laminar window clearly indicates two distinctly different
stages of turbulence. Spatiotemporal patterns of streamwise veloc-
ity also appear different between them. Although both show smooth
elongated streaks, the former (IDT with intermittency) also shows
sporadic bursts of strong turbulence whilst the latter (presumed EIT)
does not. Since the latter stage is the asymptotic limit of high elastic-
ity, the authors proposed, same as Samanta et al.,'" that EIT is the
ultimate MDR state.

Lopez, Choueiri, and Hof *° performed DNS of pipe flow to
complement the above experiments.”* The study focused on one
Re and explored different regimes by adjusting Wi. Several simu-
lation domain lengths were tested: in all cases, IDT is quenched and
the flow laminarizes at sufficiently high Wi. Consistent with earlier
studies,”””'** the observed laminarization is always preceded by a
regime of high intermittency in IDT. The intermittency is temporal
in shorter domains and resembles the AHB cycles in MFUs,> "1
but given sufficient domain length, it becomes spatial and takes the
form of localized turbulence separated by laminarlike regions. The
localized structures appear first as slugs and, at higher Wi, change to
puffs before laminarization. This is strongly reminiscent of the L-T
transition where the same group of structures appear but in an oppo-
site order: with increasing Re, it is laminar —puffs —slugs —space-
filling IDT. Events leading up to laminarization with increasing
Wi were thus dubbed “reverse transition” by the authors."”** In
another agreement with the work of Xi and Graham,” DR con-
verges to an asymptotic level in a small window of Wi immediately
before laminarization. This asymptotic DR level gets higher as the
domain length increases, and in the longest domain reported (50D),
where slugs and puffs occur, it agrees with the Virk MDR. At a very
high finite extensibility parameter b = 40000, the study reported
a second stage of turbulence with clearly different flow structures,
which was believed to be EIT. The same as experiments at compa-
rable Re, it occurs after a window of laminarization. (AD was used
in the study which may affect the existence boundary of EIT—see
Sec. [T A51)

Back to the parameter space (Fig. 13), with increasing Re,
both the window of laminarization and that of turbulence local-
ization (puffs and slugs) shrink and eventually vanish, after which
the transition from IDT to EIT and the ultimate convergence to
MDR become a continuous process, as typically observed in the
literature. The boundary of the MDR regime, which the authors
presumed to be complete EIT, can be determined based on the
friction factor magnitude. However, for the regime immediately
preceding MDR, which is labeled “EIT dominant” in Fig. 13, its
underlying turbulent dynamics is harder to determine using only
experimental means. Choueiri, Lopez, and Hof** also referred to
it as a “coexistence phase,” which is probable. Recent DNS by Zhu
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et al.” reported the observation of EIT-like structures in a thin near-
wall layer while the rest of the channel is populated by typical IDT
structures.

b. Characteristics of flow and polymer conformation fields. The
most compelling evidence for EIT being a different state of turbu-
lence is its distinctive flow structures observed in DNS, which was
first reported in the work of Samanta et al.'*” and confirmed by a
number of studies.”**'”""'"” A typical image is shown in Fig. 14,
In contrast to IDT (see Figs. 6, 7, and 10), where vortices in the
buffer layer align in the streamwise direction (their downstream
head may lift up), vortices at EIT align spanwise. They appear in
two characteristic sizes with larger rolls separated by thinner threads.
The polymer conformation field features distinct thin tilted sheets
of high polymer extension [large tr(«)]—bright stripes in the color
contours shown on the side panel of Fig. 14. This also differs from
IDT where structures of polymer conformation align closely with
VOl‘tices.; 1,66,106

Recent DNS of Sid, Terrapon, and Dubief  found flow states
with similar spanwise vortices and tilted tr(a) sheets in an xy-2D
channel (i.e., no spanwise dependence), which strongly indicates
that the underlying instability for EIT is intrinsically 2D. EIT in
3D DNS appears more like the 2D instability as Wi increases, pre-
sumably because 3D structures of IDT, especially those of active
turbulence, become increasingly suppressed at higher Wi. Impor-
tance of 2D instability in EIT was further confirmed by Shekar
et al.'”” who found its velocity spectrum to be dominated by
spanwise-independent modes.

3. Origin of instability

a. Elasticity for instability. It is clear that EIT is a new type
of turbulence following a different self-sustaining mechanism. Evi-
dence for an elastic mechanism is abundant. Both experiments and
DNS have shown that EIT can exist at Re well below the Regi: for

64,147,178

the Newtonian L-T transition —to see this, compare the L-T

FIG. 14. Visualization of a typical EIT flow state: isosurfaces show vortices, in the
bottom half of the channel only, using the Q criterion; color contours on the side and
cross-sectional panels show tr(c)/b. (Courtesy of Lu Zhu based on data reported
in the work of Zhu.'”")
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borderline in Fig. 13 between the Newtonian and high C, limits.
Early occurrence of turbulence indicates that an additional source
for flow instability must at least supplement, and possibly over-
ride, the classical inertia-driven mechanism, which in viscoelastic
fluids can only come from elasticity. In addition, Samanta et al.'’
tested the laminar-EIT transition with different pipe diameters [for
the same polymer solution and same pipe diameter, Re and Wi
are directly correlated—see Eq. (50)] and found that the transition
occurs at the same critical Wi for different Re.

Direct measure of the instability driving mechanism is given
in the TKE balance [Eq. (55)], which can only be evaluated in
DNS. Turbulence generation from inertial and elastic mechanisms
is measured by the production P* and elastic conversion eg terms,
respectively. In IDT, polymers suppress TKE and thus —e]; < 0.

For elasticity to become a driving force for turbulence —ef, must
turn positive. In this sense, EIT was found in earlier DNS studies
by Min et al.,”® Min, Choi, and Yoo,”” and Dallas, Vassilicos, and
Hewitt.”” As discussed above (Sec. 1T C 3 b), positive —ef, appears
in a thin slab around y* ~ 10-15 at LDR, which expands across
most of the domain at MDR and at least some HDR cases. Positive
—e}li was also observed in the transient development of an oblique
mode disturbance in the nonmodal linear stability analysis of
Zhang et al.'”’

The experimental discovery of EIT prompted a more system-
atic study by Dubief, Terrapon, and Soria,"* where —ef, at EIT (as
identified by its characteristic spanwise vortices) was found to be
positive for all y* > 8. P* s still positive, but its magnitude depends
on Wi. For Re; ~ 130, P* is comparable to 765 at Wi = 96, but at
Wi = 720, it becomes insignificant, suggesting a diminishing role of
inertia in EIT with increasing Wi. Similarly, at Re; = 84.85, Sid, Ter-
rapon, and Dubief"’ noted that even within in the broadly defined
EIT regime, flow structures in their 3D simulation evolve with Wi.
At Wi = 40, streamwise vortex structures typical of IDT appear
intermittently and can often been seen blended with the spanwise
rolls of EIT. They then claimed that those structures vanish in their
Wi =100 case where the 3D EIT solution more closely resembles the
2D one.

This brings up the possibility that the so-called EIT may be a
combination of an underlying 2D instability, which could also be
driven purely by elasticity (i.e., EDT), and an ensemble of inter-
mittently occurring IDT states. The latter become less important at
high Wi. Note that Samanta et al."*” proposed the term EIT prior to
any knowledge of its instability mechanism. It was chosen mainly
because inertial effects were presumed to be relevant at the high
Re where they are found. A purely elastic mechanism, which of
course awaits further validation, would not contradict that original
study.

b. Linear vs nonlinear instability. The laminar-IDT transition
is nonlinear and Regitipr would increase when disturbances are
reduced. In the Newtonian pipe flow of Samanta et al.,'"’ remov-
ing the imposed external perturbation delays the transition from
Regiyipr ~ 2000 to ~6500. Meanwhile, for the laminar-EIT tran-
sition, which is dominant at C, > Cpcit, they showed that the
unperturbed and perturbed transitions occur at the same Recrit grt-
This clearly indicates a linear instability mechanism whose Recriterr

is unaffected by the disturbance magnitude. At C, < Cpuit, both
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transition pathways can coexist in a certain range of C,. Reduc-
ing disturbances would cause the laminar-IDT border to retreat to
higher Reuitipr and expose more of the laminar-EIT border (see
Fig. 13). Indeed, Samanta et al'” did find that at one lower Cps

i . perturb perturb
where the perturbed transition is delayed (Recm,P > Recrit‘Newt_)

as expected from the laminar-IDT pathway, removing the external
unpert. R perturb
crit, p ecrit, p

<Rely e;' < Regrl;i;r;ﬂ‘. This Re?ﬁie;' is presumably the laminar-EIT
border Regiterr normally hidden behind the laminar-IDT border
RegritipT when sufficient disturbances are present.

In DNS, however, finite-amplitude disturbance is required to
trigger EIT from the laminar state.””'”*'”” Recent evidence also indi-
cates a dependence on the specific form of disturbance.'”” Both
observations contradict the experimental conclusion that EIT is a
linear instability.

Two latest stability analysis studies also pointed toward oppo-
site directions. The first, by Garg et al.,'*® found a linear instability
in viscoelastic pipe flow at finitely large Re [>0(10?) and depends on
polymer properties]. It was a 2D linear stability analysis in the lon-
gitudinal plane (spanned by axial and radial directions), the same
plane on which 2D EIT solutions are found (spanned by streamwise
and wall-normal directions). Unlike the more commonly studied Re
— 0 limit, which as discussed above (Sec. III B 1) is linearly stable
for viscoelastic parallel shear flow, the study found that at higher Re,
a single unstable mode emerges in the laminar state. The instabil-
ity consists of a streamwise array of spanwise rolls and neighboring
vortices rotate in opposite directions, which resembles the train of
spanwise vortices found in EIT. The structure is, however, localized
in a layer adjacent to the pipe axis, whereas EIT structures are known
to originate from the walls. A similar instability was also reported in
channel flow.'"

The second, by Shekar et al.,'”” performed linear stability anal-
ysis in viscoelastic channel flow at the dominant wavenumbers of
the EIT solution. The laminar state was found to be linearly sta-
ble. However, the least stable eigenmode appears strikingly similar
to the corresponding Fourier mode (same wavenumbers) of EIT.
Slow decay of this mode makes it susceptible to nonlinear amplifi-
cation of finite-amplitude disturbances. The most-amplified mode
again closely resembles the same Fourier mode of EIT. The study
further connected EIT to the Tollmien-Schlichting (T-S) wave, a
self-sustaining TW solution to the N-S equation in channel flow,
which, for Newtonian flow, stems from a linear instability of the
laminar state at Re; ~ 107.4."°%"*7!*! The bifurcation is subcritical
and the solution extends to much lower Re (down to Re; ~ 75 at
the wavenumbers studied by Shekar et al. 179), where finite-amplitude
disturbance would be required for it to be triggered (i.e., nonlinear
instability). For comparison, however, EIT has been found at Re; as
low as 40"

The study computed fully nonlinear T-S wave solutions for vis-
coelastic channel flow, where sheets of high polymer extension, a sig-
nature structure of EIT (Fig. 14), were observed. They are generated
by near-wall stagnation points in the T-S wave, in a manner similar
to the formation of a birefringent strand in cross-slot flow.'** This
offers an explanation for an otherwise peculiar structural feature of
EIT. Unlike the linear instability of Garg et al,'"" polymer sheets
in T-S wave are localized near the walls. However, Shekar et al.'”’
were not able to find direct overlap between T-S wave and EIT in the

perturbation exposes a new transition point Re and

scitation.org/journal/phf

parameter space—the latter exists at much higher Wi than the for-
mer. Therefore, any specific dynamical connection between the two,
if existent, likely involves additional nonlinear mechanisms. Gener-
alization to other flow types is also a challenge. For example, T-S
wave is not found in pipe flow which is believed to be linearly stable
for all Re."**!7°

4. Discussion: Implications for MDR

Discovery of EIT not only provides direct proof for the exis-
tence of instabilities in parallel shear flow that are (fully or partially)
elastic in nature, but it also reconciles the seemingly conflicting
observations of both delayed turbulence and early turbulence in
drag-reducing polymer solutions. Furthermore, it brings new per-
spectives and raises new questions for the MDR problem, espe-
cially in light of the major knowledge gaps in the dynamical systems
framework (Sec. IIT A 4). Considering this latest development, three
possible scenarios are discussed here for the asymptotic limit of high
polymer elasticity.

a. Scenario I: EIT is the single form of instability underlying
MDR. This is the most straightforward possibility and also seems to
be the opinion held by most researchers. Experimental and numer-
ical findings reviewed above seem to demonstrate that, at least at
the relatively moderate Re examined, EIT is the ultimate state of the
high polymer elasticity limit. This is the conclusion from the work
of Choueiri, Lopez, and Hof,** as shown in the parameter space
of Fig. 13 and also supported by the diminishing presence of IDT
structures with increasing Wi."” The dynamical AHB cycle, in its
originally proposed form described in Sec. III A 3, was clearly also
observed in those studies but only for a limited window of C, or
Wi, which eventually gives way to EIT—a self-sustaining process
itself."*"* This addresses the question of the “existence” of MDR (see
three attributes of MDR in Sec. II B 3 ¢). In addition, mean veloc-
ity of EIT seems to follow the Virk MDR asymptote,'**"""'"* in
accordance with the “magnitude” attribute of MDR.

However, it would appear inexplicable for a flow instability,
which relies on elasticity, to be independent of polymer solution
properties—the attribute of “universality” is a conspicuous gap to
fill. The scenario will also have difficulty with the experimental
observation that solutions of rigid polymers, which, under FENE-P,
would be described by a very low b parameter [Eq. (34)] and pre-
sumably cannot support EIT, are bounded by the same Virk MDR
asymptote.'“‘l‘“

b. Scenario II: EIT is a phenomenological reflection of a new
form of the AHB cycle. This scenario interprets the term EIT in
the existing literature not as a reference to a single form of flow
instability but as an imprecise umbrella term encompassing many
flow states with varying extent of elastic effects. Indeed, DNS
results do show the presence of different amounts of IDT structures
blended with spanwise rolls in 3D flow states generically described
as EIT.""7"% Tt is highly possible that the complex appearance of
3D EIT simply reflects a statistical ensemble containing both states
dominated by IDT and those belonging to a “pure” form of EIT—
the latter is likely the corresponding 2D EIT.”'**'”” The 2D form
could also be purely elastic (i.e., EDT) rather than elastoinertial,
considering that the magnitude of average TKE production P* in
3D EIT diminishes with increasing Wi.'”* In this case, the observed
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inertial characteristics would be solely attributed to the intermittent
occurrences of IDT.

In this scenario, intermittent AHB cycles are likely still
involved, except that their specific dynamics has to change at higher
Wi. The original theory, discussed in Sec. III A 3 and depicted in
Fig. 11, would still be valid but only up to a certain Wi. At suffi-
ciently high Wi, the EoC, which is originally in charge of shield-
ing the flow from laminarization, becomes penetrable. EIT in its
pure form (or EDT if it is purely elastic) takes over to keep turbu-
lence self-sustaining (i.e., prevent laminarization). In 3D flow, IDT
still grows intermittently to initiate the active phases of turbulence,
which would be quickly suppressed by polymers. The destruction
of EoC and emergence of EIT/EDT do not always coincide, which
would explain the appearance of a laminar window at lower Re
(Fig. 13).

The scenario’s reliance on intermittency does not necessar-
ily contradict the seeming convergence to an “EIT” state observed
by Choueiri, Lopez, and Hof.** (Indeed, flow structures observed
in both experiments and DNS do not strictly converge with C, or
W1."°%*) The observed “converged EIT” state could be an evolving
dynamical cycle between IDT and EIT/EDT, only that variations
between states are difficult to detect from streamwise velocity pat-
terns, which are relied on in experiments for flow state determina-
tion. The lack of apparent bursting in velocity patterns also does not
preclude the existence of active IDT, since under polymer stress the
flow can bypass the strongest form of bursting and energy eruption
en route to active turbulence.”

For the attributes of MDR, this scenario again offers explana-
tion for “existence” but with a self-sustaining mechanism that is
more dynamical in nature. The challenge with “universality” still
exists, similar to the previous scenario, but there appear to be more
avenues for its explanation. For example, because the intermittent
occurrence of active turbulence keeps the flow from fully reach-
ing the pure form of EIT/EDT, its mean flow is not the same as
that of the latter but determined by the dynamical balance between
EIT/EDT and IDT. Both EIT/EDT and IDT statistics could change
with increasing Wi. How do their dynamical average stays con-
stant at the Virk level would be the key to addressing both the
“universality” and “magnitude” of MDR.

c. Scenario III: EIT is only important at low Re and/or in small
domains. This scenario assumes that IDT would not be terminated
by polymer effects and replaced by EIT, if higher Re or larger flow
domains are used. It will only be suppressed to a weaker form in
which polymer effects are minimal—i.e., the theory for MDR based
on AHB cycles still holds. Compared with previous scenarios, here,
EIT is no longer a part of the self-sustaining process of MDR, which
thus easily addresses its “universality.”

Existing knowledge of EIT and its related transition sce-
nario was based on studies at fairly low Re (in turbulence stan-
dards) where the total thickness of the wall-normal layer, from
the wall to the channel center, equals Re; < O(100) wall units.
This limits IDT to primarily buffer-layer structures, such as stream-
wise vortices, and only some lower log-law layer structures, while
leaving out structures of the upper log-law and outer layers.
Complexity of turbulent structures and dynamics increases with

5% 1t is thus possible that structures at higher y* are not
affected by polymers in the same way as low-Re IDT and their
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self-sustaining cycles are not completely disrupted by polymer
elasticity.

From a scaling argument, since the log-law layer extends from
~30 wall units to ~O(0.1) (Sec. IT A 3), it is not fully developed and
the inner and outer layers are not completely separate unless /I,
= Re; > 0(100). Indeed, in Newtonian flow, the mean velocity
profile does not even fully collapse on to the von Kdrman law
[Eq. (18)] until Re; 2 400.°%”" AtRe; > 5000, a secondary peak would
arise at higher y* in the vyt profile, reflecting the emergence of
new structures not captured at lower Re,.'" Large-scale coherent
structures at high Re; have attracted much interest among turbu-
lence researchers in recent years. One example is the so-called very-
large-scale motions (VLSMs), multiple packets of strong turbulent
structures organized into higher-order patterns, which are typically
studied at the Re; ~ O(10%) regime.'*” Another example is the tall
attached structures studied by Lozano-Duran, Flores, and ]iménez,”
which originate from the buffer layer but can extend across the entire
channel height at Re; ~ 2000.

Although the TKE production rate peaks in the buffer layer for
all Re, at higher Rey, the log-law and outer layers are larger in vol-
ume. It was thus estimated that at Re; ~ 4200 their accumulated
contribution to TKE production exceeds that of the buffer layer.*
Whether EIT can still overtake IDT in high-Re regimes where vastly
different coherent structures are at play is anything but certain.

Domain size constraints, especially in the streamwise direction,
could also be a factor. We know that, in the streamwise direction,
the velocity correlation length and minimal domain size required
for self-sustaining IDT increase rapidly with Wi and DR%.*""*'*°
It is well possible that in a highly extended domain beyond the
current computational power, IDT, in a form with strong spatial
intermittency (i.e., puffs separated by large laminarlike regions'),
can persist to higher Wi. The flow may eventually laminarize if the
“reverse transition” hypothesis'*"* is proven accurate. However, as
long as this ultimate Wi for laminarization is too high to be prac-
tically relevant, spatially localized turbulence would appear as the
asymptotic state. Obviously, domain size is only meaningful in sim-
ulation, which is however the only way the nature of instability (IDT,
EIT, or EDT) can be unambiguously determined. Experimentally, it
is inferred from flow patterns, which is how Fig. 13 was obtained.”’
For this reason, the above discussion of the domain size factor is of
general relevance.

C. Dynamical analysis of coherent structures
in extended domains

Recent progress reviewed in Secs. III A and III B builds on a
shift of focus from ensemble average quantities to spatiotemporal
intermittency. Numerical simulation played a pivotal role in those
developments. MFU-based DNS is the most common approach
for tracking the temporal evolution of individual structures, which
is complemented by the direct computation of invariant solutions
(ECS). Although many DNS studies reviewed in Secs. IIT A and I11 B
were not performed in domains that are strictly minimized, they are
still sufficiently constrained that dynamical evolution of structures
is reflected in the time series of domain-average quantities. For DNS
in more extended domains, patches of different flow states can be
analyzed by invoking the equivalency between temporal intermit-
tency and spatial intermittency, as in the work of Wang, Shekar, and
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Graham.'”’ This naive approach views the dynamical life cycles of
turbulent structures as statistical sampling of individual flow states
in an ensemble, without any correlation or interaction between
structures. Such a correlation becomes increasingly important at
higher Wi, which is evident from the localization of vortices
and their organization into slugs and puffs.”*”" This dynamics is
excluded in MFU but fully captured in DNS in extended domains.
Effective extraction of such information from complex turbulent
flow fields is a nontrivial challenge.

In the area of DR, two major approaches were most used in
the literature to analyze coherent structures in large-scale turbulent
flow fields. One is KL analysis or proper-orthogonal decomposition
(POD),””>"*1% which decomposes velocity fields into orthogonal
spatial modes—a basis set for velocity fields. None of the modes
directly represent any real occurring coherent structure, but the
leading modes can be viewed as the most important constituents
(in terms of the amount of kinetic energy contained) of statistically
representative structures. Wang et al.""* extended the analysis to
also include the polymer conformation field in the decomposition.
Another approach is conditional sampling, which finds the statistical
representation of local flow fields around a predefined event of inter-
est. The event can be the occurrence of streamwise vortices, in which
case patches of flow fields around qualifying vortices are aligned at
their center axes and statistically averaged.'””'"” It can also be high
streak intensity, such as in the work of Kim et al."" in which patches
are selected based on the detection of strong eruption (vy <0, vy' >
0) events making largest contributions to the RSS [Eq. (54)]. Com-
pared with KL analysis, conditional sampling is a local approach
with no direct tie to the imposed simulation domain. Its results thus
connect more closely with individual coherent structures. However,
its outcome is inevitably influenced by the subjectivity in choosing
the selection condition for the event.

Those earlier approaches generate statistical representations of
coherent structures and neglect their individuality. Recent attention
to spatiotemporal intermittency calls for the capability to extract
the real instances of individual structures and trace their tempo-
ral evolution in complex flow fields. The first step, i.e., extraction
of structural instances, is static and recently made possible by a
method called VATIP (vortex axis tracking by iterative propaga-
tion).” This section takes the mechanism of LDR-HDR transition
as a case study for illustrating the application of VATIP in vor-
tex conformation analysis. Future work of extending VATIP for
dynamical analysis (the second step listed above) is also briefly
discussed.

1. Case study: Vortex regeneration mechanism
for HDR

Distinctions between LDR and HDR were thoroughly stud-
ied by Zhu et al.”’ and discussed in Sec. Il B 2 d. The LDR-HDR
transition is marked by sharp changes in a variety of flow statistics
and believed to have its roots in the localization of vortex struc-
tures. Understanding the origin of localization requires the analysis
of individual vortex objects and, when possible, their dynamics and
interactions.

Zhu et al.”” proposed a mechanistic explanation citing the con-
ceptual framework of vortex regeneration mechanisms summarized
by Schoppa and Hussain.'** In this framework, new turbulent vor-
tices are continually generated from existing ones following two
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distinct pathways. The first, the streak-instability pathway, is an
extension of the classical conceptual model for the turbulent self-
sustaining process by Waleffe."” Counter-rotating streamwise rolls
(straight vortices) generate low speed streaks in between. Adding
streamwise sinuous perturbations can trigger the so-called “streak
breakdown”'"’ —strong instabilities leading to streak intensification
and vortex growth. Those vortices have a strong tendency to lift
up—a process in which the downstream end of a vortex pivots away
from the wall and extends vertically into higher y" regions. Lifted
vortex heads are often swung sideways by local transverse flows
and many form the so-called “hairpins”—Q-shaped vortices whose
downstream head, the arch in €, is lifted up while both streamwise
legs extend upstream and stay closer to the wall.”"'"" Rapid lifting
and growth of vortices ends with their sudden eruption—a bursting
phase (Sec. I1I A 3 b), which was studied in detail by Zhu et al.”* The
resulting fragments and intense fluctuations can spread and trigger
new streak instability elsewhere to start the next cycles. An example
displaying part of the process is shown in Fig. 15(a). A vortex tube
marked with “A” merges with a nearby vortex to form a crescent at
T = 8, which lifts up and grows into a full hairpin (T = 36) and then
bursts (T = 40) into fragments (not shown), leaving only one leg in
its residue (T = 48).

Zhu et al.”’ proposed that strong polymer effects can block this
cycle by suppressing vortex lift up. In a separate study, Zhu et al.”*
also found that polymers can subdue bursting and suppress the
production of high-intensity fluctuations. Without lifting and burst-
ing, vortices are stabilized in the streamwise direction, which allows
them to be extensively elongated, as clearly shown in the conditional
eddies at HDR obtained by Kim et al.'” It would also disrupt the
streak-instability pathway and expose the second so-called “parent-
offspring” pathway to dominate regeneration cycles. In the latter, as
illustrated in Fig. 15(b), vortices are successively generated in close
proximity to form a chain—new “offspring” vortices are generated
at the tip of an existing “parent,” in the shear layer between the par-
ent and the wall. Obviously, this mechanism is intrinsically more
local than the other. Both pathways exist in Newtonian flow, but at
high Wi, the parent-offspring one becomes more prominent, lead-
ing to the apparent clustering and localization of vortices. Apply-
ing the VATIP algorithm (discussed below), Zhu and Xi”® showed
that the suppression of vortex lift-up coincides with the LDR-HDR
transition, which presents a compelling depiction of the second DR
mechanism required for its explanation (see Sec. I1 B 2 d).

This explanation is compatible with the earlier theory based
on AHB cycles (Sec. III A 3) as vortex lift up is part of the burst-
ing and active phases and its suppression leads to higher presence
of hibernation. It, however, goes one step further and explains the
vortex localization mechanism, which requires interactions between
vortices not considered in the AHB framework.

2. Vortex conformation analysis by VATIP

The above mechanism was proposed based on direct anecdo-
tal inspection of visualized flow field images (Fig. 15), which is too
often relied on in turbulence research. Reliable conclusions cannot
be reached without the objective and quantitative analysis of vortex
conformation and dynamics. Although methods for vortex identifi-
cation, i.e., derivation of quantitative indicators for vortex regions—
such as Q, have been extensively studied (Sec. IT A 6), they only tell
if a region belongs to any vortex without identifying which regions
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constitute the same well-defined vortex, which is thus not adequate
for vortex conformation analysis.

Each vortex has an axis of rotation which fully describes its
topological shape and instantaneous conformation. An axis-line is
formed by connecting the center of rotation—the axis-point—on
each cross section of the vortex tube, which can be defined as the
2D maximum of Q (or any other indicator of vortex strength) on
the plane. For linear streamwise vortices, grouping axis-points into
axis-lines is relatively straightforward through a so-called “cone-
detective” procedure by Jeong et al'”* Axis-lines so extracted
provide the reference points for aligning streamwise vortices,
which attracted much attention in earlier turbulence research, for
conditional sampling,'*”'*"**

REVIEW scitation.org/journal/phf

FIG. 15. Instances of different vortex
regeneration pathways at Re, = 86.15:
(a) streak-instability mechanism (New-
tonian) and (b) parent-offspring mecha-
nism (Wi = 96, 8 = 0.97, b = 5000). Iso-
surfaces show Q = 0.7Qms. [Reprinted
with permission from Zhu et al., “Distinct
transition in flow statistics and vortex
dynamics between low- and high-extent
turbulent drag reduction in polymer flu-
ids,” J. Non-Newtonian Fluid Mech.
262, 115-130 (2018). Copyright 2018
Elsevier.]

As discussed in Sec. II C 1, existing studies on polymer-vortex
interaction were mostly limited to streamwise vortices with few
exceptions.””'*'"”> Understanding how complex vortices found at
higher y*, such hairpins, are affected by polymers is essential for
understanding DR at higher Re. As shown in Fig. 16, even at a fairly
low Re; = 172.31, hairpin vortices are prevalent especially in New-
tonian and LDR cases. Kim et al."” extracted representative hair-
pin vortices using conditional sampling and studied their transient
development with DNS. Their approach is akin to in vitro experi-
ments in the sense that model hairpins are studied in isolation from
their “living” environment. The new VATIP algorithm, developed
by Zhu and Xi,” is capable of extracting axis-lines of general 3D
vortices, including hairpins, from near-wall turbulence “in vivo.”

FIG. 16. Instantaneous vortex configurations of (a) New-
tonian, (b) Wi = 20 (LDR), (c) Wi = 80 (HDR) cases at
Re; = 172.31, = 0.97, and b = 5000. Isosurfaces show
Q = 0.4Qms for bottom half of the channel only. Color
shades map to wall-normal position: 0 and 1 for the wall
and channel center, respectively. A selected box is enlarged
in each case, in which axis-lines identified by VATIP?® are
shown with circular dots: orangel/light for axis-points on the
yz plane and blue/dark for those on the xy or xz plane.
[Reprinted with permission from L. Zhu and L. Xi, “Vortex
dynamics in low- and high-extent polymer drag reduction
regimes revealed by vortex tracking and conformation anal-
ysis,” Phys. Fluids 31, 095103 (2019). Copyright 2019 AIP
Publishing LLC.]
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VATIP borrows the cone-detective idea from Jeong et al. 2 but
extends the search to all three dimensions to capture vortices with
nonlinear and branched shapes. Without getting into the details,
the algorithm appears like the video game “snake,” where growing
axis-lines keep looking for new axis-points to “swallow” (i.e., con-
nect to). If no more eligible axis-points are found in their growing
direction, the propagating ends turn to the next search direction.
Iteration between different search directions continues until none
of the axis-lines can grow further. The method reliably captures all
known types of vortices generated by a no-slip wall, including both
symmetric and asymmetric hairpins. This is clearly shown in Fig. 16
where axis-lines extracted by VATIP (colored dots) faithfully repro-
duce the contour shapes of all vortices (gray tubes) from Newtonian
flow to HDR. Extracted axis-lines can be classified based on their
topologies into categories such as streamwise vortices, hairpins, and
branches. (It, however, may not work as well with structures hav-
ing no direct interactions with the wall, which typically occur at
much higher y* than those studied so far for DR*”'*’—see detailed
discussion in the work of Zhu and Xi.™)

Application of VATIP to DNS data at different regimes of DR
allows a comprehensive investigation of polymer effects on vortex
conformation (Fig. 16).”* The results show that although stream-
wise vortices can be found either lying flat or lifted up, hairpins
and hairpinlike vortices are almost always lifted, which supports
the above postulation that hairpins are formed from the lift up
of streamwise vortices. At LDR, vortex intensity is reduced, but
their distribution pattern and conformation statistics remain largely
unchanged from Newtonian flow. At HDR, the number of lifted vor-
tices declines sharply. Suppression of vortex lift up interrupts the
generation of hairpins and hairpinlike vortices. It also reduces the
turbulent momentum flux between buffer (streamwise vortices) and
log-law (lifted and hairpin vortices) layers, which would explain the
changing flow statistics in the log-law layer between LDR and HDR.
Overall, the results are consistent with the proposed mechanism in
Sec. [II C 1.

The current analysis is static. It shows, within any frozen instant
of turbulence, what is the state and conformation of each vor-
tex, without establishing the temporal connection between vortices
found at different instants. Expansion of the VATIP framework
to cover temporal dynamics is foreseeable. For instance, a recent
method for temporal coherent structure analysis by Lozano-Duran
and Jiménez'”' may be adapted to the axis-lines extracted by VATIP.
This would open the door for the detailed, quantitative, and in
situ analysis of vortex life-time dynamics in realistic extended flow
domains.

IV. SUMMARY AND OUTLOOK

For over 70 years, turbulent drag reduction by polymers has
remained an active area of research, as new approaches and new
discoveries continue to emerge. The past decade (2010s) has wit-
nessed a surge of interesting developments in the fundamental
understanding of DR. Many of them have challenged the estab-
lished line of thought and brought significant progress in answering
some of the most puzzling questions—in particular, the nature of
MDR. A central theme among those latest advances is to go beyond
the ensemble statistics of fluctuating turbulent flow fields and
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study the dynamical evolution and intermittency of coherent flow
structures.

The current review covers both classical contributions and
recent developments in the fundamental inquiries into polymer
DR. The ultimate target is the mechanistic understanding of transi-
tions between different turbulence regimes, and the status of current
research is summarized briefly as follows:

Onset of DR:  This problem is equivalent to understanding the
mechanism of polymer DR that leads to LDR. Great strides have
been made in deciphering the interactions between polymers
and turbulent flow structures, thanks to the advancement of
numerical simulations over the past two decades. It is well estab-
lished now that polymers can counteract and suppress stream-
wise vortices—dominant structures in turbulent buffer layer
where the onset is believed to occur (Sec. II C 1). However,
the debate of whether such effects should be wrapped theoret-
ically as a viscous (Lumley) or elastic (de Gennes) mechanism of
polymers remains unsettled.

HDR: Historically, HDR has received much less attention
because of its later discovery but also because it is often pre-
sumed to be simply a precursor of MDR. There is certainly
justification for this argument. Most notably, HDR is marked
by the expansion of DR effects from a limited region (buffer
layer) to nearly the entire channel.””” Increasing length scale
of drag-reduced turbulence to the scale of flow geometry is
also central to several theories for MDR.”'>”*'"" On the other
hand, if the nature of MDR is indeed at least partially elas-
tic (Sec. III B), as believed by many, the fact that the LDR-
HDR transition can be observed without EIT (or EDT)”” would
indicate the decoupling between HDR and MDR. This transi-
tion reflects the start of a second DR mechanism, in relation to
the first mechanism at the onset of DR. This new mechanism
has been explained in terms of changing vortex regeneration
mechanisms in recent studies.”””* Despite some strong evidence
from vortex conformation analysis (Sec. III C), further investi-
gation, such as temporal analysis of vortex lifetime cycles, is still
needed.

MDR: This long-standing mystery finally seems to have opened
up a few cracks. A complete theory must consistently address
three attributes of MDR: existence (self-sustaining mechanism),
universality (insensitivity to changing polymer solutions and
domain size), and magnitude (empirical Virk profile). Two dif-
ferent but interconnected streams of developments occurred in
the past decade. The first is the theoretical framework based on
AHB cycles (Sec. 111 A 3). It offers a straightforward explanation
for “universality.” As for “existence,” a plausible self-sustaining
mechanism is proposed but so far cannot be fully reconciled
with numerical observations (Sec. I1I A 4). The second builds on
the discovery of new flow states driven by polymer elasticity—
EIT (or possibility EDT). For the “existence” attribute, it offers
a self-sustaining mechanism backed by experimental evidence.
However, how to address the “universality” attribute remains an
open question. Both streams fall short of a quantitative theory
for the “magnitude” of MDR.

In addition to the outstanding questions summarized above,
many research opportunities lie in areas that have been under-
explored so far.

Phys. Fluids 31, 121302 (2019); doi: 10.1063/1.5129619
Published under license by AIP Publishing

31, 121302-32


https://scitation.org/journal/phf

Physics of Fluids

A. High Re

Existing understanding and knowledge are mostly based on
numerical simulations at fairly low Re. There have been some lim-
ited attempts at DNS at higher Re: the highest, to my knowledge, is
Re; = 1000 in the work of Thais, Gatski, and Mompeanf(’ and Pereira
et al.'”® However, in-depth analysis of coherent structures, flow
states, and dynamical intermittency has been performed mostly at
Re; ~ 0(100), where the state space is relatively simple. As discussed
in Sec. III B 4 ¢, new families of coherent structures would emerge
at higher Re, which brings new turbulent self-sustaining dynamics
into the picture. Those complex structures are unlikely to follow
the same interaction mechanism with polymers as streamwise vor-
tices (described in Sec. II C 1). Both frameworks for MDR, based
on AHB cycles and EIT, respectively, need to be reexamined for
higher Re. The newly developed VATIP algorithm, for its capability
of processing complex 3D vortex structures, could be instrumental
(Sec. 111 C 2).

B. Connecting numerical models with realistic
polymer solutions

Numerical investigation has been overly reliant on “FENE-P
polymers,” which (recall Sec. IT A 5 b) is only an idealized model
with substantial simplifications. There has not been much effort
in quantitatively connecting simulation models with experimen-
tal drag-reducing solutions. Understanding which polymer-solvent
combinations are more accurately modeled by FENE-P and how do
model parameters map to realistic experimental systems is essential
for making chemically specific predictions from DNS, which are of
practical interest for the selection and design of drag reducers. It is
also important for interpreting simulation results through the prac-
tical lens. For instance, Wi = 500 and b = 10* map to what molecular
weight and shear rate for a given polymer? What parameter ranges
are practically relevant? Discussion in Sec. II A 5 e provides the the-
oretical basis for the determination of materials properties in FENE-
P. In practice, parameters are more often obtained by fitting with
experimental rheology data,”” and parameters from the best fit do
not always match theoretical expectations.'”

C. DR by rigid polymers

Comparison between flexible and rigid polymers is intriguing.
Although both seem to be bounded by the same MDR asymptote,
the transition patterns before reaching MDR are totally different.
Based on this difference, Virk dubbed them type A (flexible) and
type B (rigid) drag reducers.'™'” Streamwise velocity fluctuation
patterns from flexible and rigid polymers also appear to differ’””
(Sec. II B 2 b). Since FENE-P is a model for flexible (type A) poly-
mers, insight into DR by rigid (type B) polymers is limited. Mean-
while, rigid polymers also provide a reference system where signifi-
cant DR is achievable, but elastic instabilities are not expected, which
can help us separate the roles of different mechanisms in DR.

D. DR by surfactants

Surfactants are also highly potent drag reducers. They assem-
ble into cylindrical “wormlike” micelles—long chain structures
held together not by covalent bonds but through intermolecular
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(vdW and electrostatic) interactions. Wormlike micelles can be
viewed as “living” polymers: they would break in regions with strong
turbulence but can reassemble once external strain is removed.
Experiments have shown that surfactant DR systems can exceed
the Virk MDR asymptote, """ which indicates a different mech-
anism of DR, at least in that regime. This could be related to the
“living” nature of the microstructure, or to the formation of higher-
order assemblies such as shear-induced structures.””””’" Fundamen-
tal understanding is rather limited.

E. Flow-induced scission of polymer chains

Long-chain polymers are subject to mechanical degradation
in strong turbulence, which is responsible for the gradual loss of
their drag-reducing capacity.”’” This effect is not considered in cur-
rent numerical models. Quantitative prediction of chain scission
is, however, of practical significance. Any model for chain scission
would be similar to those for surfactants as living polymers, less
the reassembly part. One idea to combat flow-induced scission is to
use supramolecular chemistry,”” where smaller polymeric building
blocks are jointed together through noncovalent interactions to form
much longer chains. The noncovalent bonding sites would break in
strong flow, but, like surfactants, they can reconnect afterward.
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