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Abstract

This thesis studies the problem of frequentist model averaging over a set of multiple

ε-support vector regression (SVR) models, where the support vector machine (SVM)

algorithm was extended to function estimation involving continuous targets, instead of

categorical ones. By assigning weights to a set of candidate models instead of selecting

the least misspecified one, model averaging presents a strong alternative to model

selection for tackling model uncertainty. Not only do we describe the construction of

smoothed BIC/AIC model averaging weights, but we also propose a Mallows model

averaging procedure which selects model weights by minimizing Mallows’ criterion.

We conduct two studies where the set of candidate models can either include or not

include the true model by making use of simulated random samples obtained from

different data-generating processes of analytic form. In terms of mean squared error,

we demonstrate that our proposed method outperforms other model averaging and

model selection methods that were tested, and the gain is more substantial for smaller

sample sizes with larger signal-to-noise ratios.
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Chapter 1

Introduction

The issue of model uncertainty leaves practitioners unsure about which single model

among a large number of candidate models to adopt for either classification or re-

gression analysis. Model selection and model averaging are the two dominant and

promising approaches entertained by practitioners who want to reduce the risks as-

sociated with model misspecification. For model selection, the user chooses only one

model as the least misspecified from a set of candidate models based on any of the

selection criteria, each of which may favor different models. In other words, the can-

didate model selected by a criterion is applied a weight of 1, while all others in the set

are assigned a weight of 0. Examples of selection criteria include Akaike Information

Criterion (AIC; Akaike, 1973, 1974), Mallows’ Cp (Mallows, 1973), delete-one cross

validation (Stone, 1974), Bayesian Information Criterion (BIC; Schwarz, 1978), and

so forth.

Model averaging, an alternative to model selection, produces a weighted average

of a set of candidate models with a model averaging criterion by assigning a vector

of nonnegative weights. Barnard (1963) is one of the first papers to introduce the
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concept of model averaging, which was demonstrated with an analysis of airline pas-

senger data. Within the Bayesian paradigm, the user may define the weight of each

prediction based on the posterior probability for a model as long as the corresponding

prior can be drawn. Hoeting et al. (1999) provided both methodological and theo-

retical foundations for the Bayesian model averaging (BMA) approach. On the other

hand, since Bates and Granger (1969) proposed the forecast combination, there has

been significant progress in the literature for the frequentist model averaging (FMA)

where the weights are determined solely by the available data. Hjort and Claeskens

(2003) offer readers a comprehensive review. Notable contributions include Buckland

et al. (1997), Burnham and Anderson (2004), Hansen (2007), Liang et al. (2011),

Hansen and Racine (2012), and Liu and Kuo (2016) to name but a few.

For statistical learning problems, variable and feature selection can facilitate data

visualization and data understanding, reduce training times, and defy the “curse of

dimensionality” to improve the prediction performance of statistical models (Guyon

and Elisseeff, 2003). We are motivated by the implication that model averaging

further reduces the estimation variance, and therefore can be a more promising tech-

nique, provided the bias is controlled. While the use of BMA on machine learning

techniques has received much well-deserved attention, in this thesis we focus on the

application of various FMA approaches to support vector regression (SVR), which is

well-suited to real-world applications that make use of regression modelling, such as

in the fields of biology, finance, neuroscience, and textual analysis. In particular, we

adopt AIC, BIC, and Mallows’ Cp criteria for selecting the model weights and allow

the predictors in our models to be either categorical or continuous.
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The rest of this thesis proceeds as follows. In Chapter 2, we provide the founda-

tions of FMA approaches, which selects the model weights, asymptotic optimality of

our proposed methods, and the introduction to SVR with which our model will be

specified over mixed datatypes. We construct the methodology for the application

of FMA to SVR in Chapter 3 and then examine the finite-sample performance of

the proposed approaches relative to model selection estimators for the various data-

generating processes (DGP) of the analytic form in Chapter 4. Chapter 5 considers

an illustrative example and a comparison of out-of-sample data performance of our

model averaging and model selection methods. Chapter 6 presents concluding re-

marks and brief suggestions for further research which can be carried out on the topic

of our thesis. R codes are attached in the Appendix.
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Chapter 2

Literature Review

2.1 Model Averaging

Consider a researcher who has gathered data concerning academic achievement of

Grade 9 and 10 students in the United States. For each student, he has recorded a

variety of demographic predictors such as state of residence, parents’ income, gender,

race, month of birth, and immigration status, along with the student’s highest Pre-

liminary SAT (PSAT) score for each of the sections. He is interested in assessing the

size of each covariate’s impact on the PSAT score, as well as predicting the students’

performance in the actual SAT test when they are in Grade 11 and 12. He uses a

simple linear model which fits the data well with reasonable parameter estimates, and

decides to estimate the marginal effects of the covariates for the chosen model. How-

ever, suppose there exists another well-fitted linear model with substantively different

estimates of marginal effects as well as different predictions. As all statistical models

are to some extent misspecified, to rely on a single model involves risks; furthermore,

selecting a specific model over several other candidate models can lead to a dilution of

4
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information about effect sizes and prediction, as observed by Hodges (1987). Model

averaging suggests an alternative way around these issues, and it has the potential

to provide superior results compared to model selection as detailed in several papers

(see e.g., Buckland et al. 1997; Hoeting et al. 1999; Breiman 2001; Wasserman 2000;

Burnham and Anderson 2003; Claeskens and Hjort 2008).

For µ = (µ1, . . . , µn)′, a quantity of interest such as conditional mean, variance,

density, or distribution function, define µ̂j = (µ̂1j, . . . , µ̂nj)
′ : j = 1, 2, . . . , K as the

estimator of µ obtained from the jth statistical model Mj, and w = (w1, . . . , wK)′ as

the vector of weights such that

K∑
k=1

wk = 1; 0 ≤ wk ≤ 1 (2.1)

each of which corresponds to the jth model in the unit simplex given by

Hn =

{
w ∈ [0, 1]K :

K∑
k=1

wk = 1

}
∈ RK . (2.2)

Therefore, we obtain a model averaging estimator which is

µ̂(w) =
K∑
j=1

wjµ̂j (2.3)

or a model selection estimator as a special case when we restrict the value of wj to lie

in {0, 1}.

In this section, we first introduce the framework of Bayesian model averaging

(BMA), which is the most common approach for weight specification over a set of

parametric candidate models. Then, we proceed with the principles of frequentist

5
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model averaging (FMA) based upon Kullback-Leibler information, which allows can-

didate models to be nonparametric so that practitioners can estimate an unknown

data-generating process (DGP) that belongs to a rich class of functions when con-

fronted with model misspecification.

2.1.1 Bayesian Model Averaging

Roberts (1965) first suggested a weighted combination of posterior distributions of two

experts or models. Based on this idea, Leamer (1978) presented the basic paradigm

for BMA, pointing out that the founding idea for BMA comes from the uncertainty

associated with model selection. However, BMA was not used as a standard data

analysis tool for decades due to limited theoretical investigations and lack of available

computational power (Hoeting et al., 1999). Draper (1995), Chatfield (1995), and

Kass and Raftery (1995) all review the adverse effects of model uncertainty, and

present BMA as a way of overcoming them.

For the models considered, denoted M1,M2, . . . ,MK , and the input vector x =

(x1, . . . , xpj) ∈ X ⊆ Rpj where pj = dim(Mj), the posterior distribution of µ given x

is

P (µ|x) =
K∑
j=1

P (µ|Mj,x) P (Mj|x) (2.4)

which is an average of the posterior distributions of µ with respect to each model under

consideration, weighted by their posterior model probabilities given x: P (Mj|x) =

wj. Define P(Mj) as the prior probability that the jth model is the true model, given

that one of the K models is true. Then

6
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wj = P (Mj|x) =
P (x|Mj) P (Mj)∑K
k=1 P (x|Mk) P (Mk)

(2.5)

where

P (x|Mj) =

∫
P (x|θj,Mj) P (θj|Mj) dθj (2.6)

is the marginal likelihood of the jth model, θj the corresponding vector of model

parameters, P (θj|Mj) the prior density of θj under the model, and P (x|θj,Mj) the

likelihood function. Within the Bayesian framework, the model averaging estimator

(or posterior mean of µ) is

µ̂(w) = E [µ|x] =
K∑
j=1

µ̂jP (Mj|x) =
K∑
j=1

wjµ̂j (2.7)

and the posterior model variance is

Var [µ|x] =
K∑
j=1

P (Mj|x)
(
Var [µ|x,Mj] + µ̂2

j

)
− E [µ|x]2

=
K∑
j=1

wj
(
Var [µ|x,Mj] + µ̂2

j

)
− µ̂(w)2

(2.8)

where µ̂j = E [µ|x,Mj] (Raftery, 1993; Draper, 1995; Hoeting et al., 1999). We have

BICj = −2 log P
(
x|θ̂j,Mj

)
+ log(n)pj (2.9)

established by Schwarz (1978) such that P
(
x|θ̂j,Mj

)
is the maximum likelihood

estimate of model j, pj = dim (Mj), and therefore the marginal likelihood can be

approximated by P (x|Mj) ≈ exp (−BICj/2).

For the choice of the prior P (Mj), George and McCulloch (1993) and Volinsky

7
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et al. (1997) specify a jth prior model probability as

P (Mj) =

p∏
l=1

π
δjl
l (1− πl)1−δjl (2.10)

where πl ∈ [0, 1] is the prior probability that θl 6= 0, and δjl = 1{Xl is included in Mj}.

If πl is 0.5 for all p predictors, the prior is uniform across the model space; if πl < 0.5

for all l there is a penalty imposed on large models; if πl = 1 all models contain the

variable Xl.

On the other hand, Akaike (1978) maximizes the entropy of the distribution spec-

ified by the likelihoods with respect to P (Mj), defined by P (Mj) = (1− ρ) ρj, where

the value of ρ ∈ [0, 1] maximizes

K∑
j=1

exp (−AICj/2) log P (Mj)

and we use Akaike (1974)’s classical definition of AICj = −2 log P
(
x|θ̂j,Mj

)
+ 2pj.

The marginal likelihood can be approximated by P (x|Mj) ≈ exp (−AICj/2) in the

same way as was done for BIC. Thus Equation (2.5) for the Bayesian model weight

can be written as

wj =
exp (−BICj/2)P (Mj)∑K
k=1 exp (−BICk/2)P (Mk)

, (2.11a)

or wj =
exp (−AICj/2)P (Mj)∑K
k=1 exp (−AICk/2)P (Mk)

(2.11b)

depending on the user’s choice of information criterion.

8
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2.1.2 Kullback-Leibler Divergence and AIC

As reviewed in Section 2.1.1, BMA methodology considers model uncertainty by

setting prior probabilities for a collection of candidate models and the parameters

of each. In addition, it properly accounts for the increasing estimator variability

resulting from not knowing the true model a priori.

On the other hand, BMA typically involves conflicts between many prior opinions

about the parameters of interest. In the frequentist view, we rather seek the “best

approximating model” since we can never perfectly identify the “true” model which

reflects full reality (Burnham and Anderson, 2003).

Kullback and Leibler (1951) provides the definition of “information” in terms

of a distance between reality and its approximation. Consider M0 with a density

function f(x), where the true model has unknown parameter values and the dimension

of parameter space is undefined. We estimate M0 with an approximating model j

with another density function g(x|θ). Then, the Kullback-Leibler (K-L) divergence

I(M0,Mj), the information lost through approximation of M0 using g(x|θ), is defined

as the integral

I(M0,Mj) =

∫
f(x) log

(
f(x)

g(x|θ)

)
dx

=

∫
f(x) log (f(x)) dx−

∫
f(x) log (g(x|θ)) dx

= Ef [log (f(x))]− Ef [log (g(x|θ))] .

(2.12)

Note that the truth is not dependent on sample size n - the form of f(x) is not assumed

a priori, and the candidate models may not be nested. I(M0,Mj) approaches zero

as the jth candidate model loses less information relative to the other candidate

9
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models. Because the truth and therefore the quantity Ef [log (f(x))] are constant

and independent of the candidate models, it is enough to estimate relative expected

K-L information Ef [log (g(x|θ))], which is unknown, to find out which approximation

is the best. The maximum log-likelihood log P
(
x|θ̂j,Mj

)
is a biased estimate of

Ey

[
Ex

[
log
(
g(x|θ̂(y))

)]]

where the inner part of the double expectation is just Ef [log (g(x|θ))] with θ replaced

by its maximum likelihood estimator (MLE) based on model j and target data y

(Akaike, 1973, 1974; Burnham and Anderson, 2004). Subtracting pj as the asymptotic

bias correction term and multiplying the result by −2, we obtain

AICj = −2 log P
(
x|θ̂j,Mj

)
+ 2pj. (2.13)

For a least-squares (LS) estimator with homoskedastic errors e ∼ N (0, σ2) i.i.d.,

AIC can also be expressed as

AICj = n log

(∑n
i=1 ê

2
i

n

)
+ 2pj (2.14)

where
∑n

i=1 ê
2
i is a residual sum of squares (RSS) from the fitted model.

When n is small, AIC tends to select a model with too many parameters (see

Claeskens and Hjort, 2008, Ch. 8.3). To deal with overfitting, Hurvich and Tsai

(1989) suggested the corrected AIC criterion (AICc) that provides a small-sample

bias correction:

AICc,j = AIC +
2pj(pj + 1)

n− pj − 1
(2.15)

10
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and AICc,j converges to AICj as n → ∞. Interested readers may see Cavanaugh

(1997) for a unified mathematical justification of AIC and AICc.

2.1.3 Smoothed BIC/AIC Model Averaging

Contrasted with BMA, the FMA weights are solely determined by data, and there-

fore priors are assumed non-informative, or uniform within the frequentist paradigm.

Based on Equation (2.11a), Buckland et al. (1997) assign smooth BIC (sBIC) model

averaging weights wj given by:

wj =
exp (−BICj/2)∑K
k=1 exp (−BICk/2)

(2.16)

with P (Mj) = 1/K.

From Equation (2.9) we have

BICj = −2 log P
(
x|θ̂j,Mj

)
+ log(n)pj

⇐⇒ exp

(
−BICj

2

)
= P

(
x|θ̂j,Mj

)
exp

(
− log(n)pj

2

)
.

(2.17)

For two models, a and b, both of which contain p predictors, then

wa
wb

=
exp (−BICa/2)

exp (−BICb/2)
=

P
(
x|θ̂a,Ma

)
exp (−log(n)pa/2)

P
(
x|θ̂b,Mb

)
exp (−log(n)pb/2)

=
P
(
x|θ̂a,Ma

)
P
(
x|θ̂b,Mb

)
(2.18)

is simply the likelihood ratio, or the approximation of the Bayes factor for comparing

the two models (Akaike, 1981; Draper, 1995). Moreover, if the odds ratio of priors is

11
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one, then the likelihood ratio is equal to the odds ratio of posteriors of the candidate

models. Similarly, “Akaike weights” for smoothed AIC (sAIC) model averaging are

given by:

wj =
exp (−AICj/2)∑K
k=1 exp (−AICk/2)

. (2.19)

where we substitute BIC with AIC. Burnham and Anderson (2004) state that Akaike

weight works, as “the weight of evidence’ in favor of [model j] as being the actual K-L

best model” conditional on both the data and the full collection of candidate models

(see also Burnham and Anderson, 2003, Ch. 6 for further details).

2.1.4 Mallows Model Averaging

Hansen (2007) proposed an LS model averaging estimator which selects model weights

by minimizing a Mallows model averaging (MMA) criterion. With a random sample

(xi, yi) ∈ X × R : i = 1, . . . , n; dim(xi) = p, we assume a linear model

yi = µi + ei

s.t. µi =

p∑
l=1

θlxil;

E [ei|xi] = 0; E
[
e2i |xi

]
= σ2;

E[µ2
i ] <∞

(2.20)

as well as a sequence of K approximating models, where the jth model contains the

first pj predictors in the ordered set such that 0 < k1 < k2 < · · · < kp. Then candidate

12
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model j is

yi =

pj∑
l=1

θlxil + b(j)i + ei (2.21)

whose approximation error is b(j)i =
∑p

l=pj+1≤p θlxil.

We can express Equation (2.21) in matrix notation as y = Xjθj+bj+e, where y =

(y1, . . . , yn)′,Xj is the n × pj matrix with ilth element xil,θj = (θ1, . . . , θpj)
′,bj =

(b(j)1, . . . , b(j)n)′, and e = (e1, . . . , en)′. Define the LS estimate of θj in all models

j as θ̂j = (X′jXj)
−1X′jy, then µ = (µ1. . . . , µn)′ = µj +bj where µj = Xjθj +bj. The

corresponding estimator of µ from the jth model is µ̂j = Xjθ̂j = Xj(X
′
jXj)

−1X′jy ≡

Hjy. Under Assumption (2.2), the model averaging estimators of µ and θK are

θ̂(w) =
K∑
k=1

wk

θ̂k
0

 (2.22a)

µ̂(w) =
K∑
k=1

wkHky ≡ H(w)y

=
K∑
k=1

wkXk(X
′
kXk)

−1X′ky ≡
K∑
k=1

wkµ̂k

=
K∑
k=1

wkXkθ̂k = X
K∑
k=1

wk

θ̂k
0


= Xθ̂(w)

(2.22b)

where H(w) =
∑K

k=1wkHk is the “implied ‘hat’ matrix” so that tr(Hj) = pj if Xj

has full column rank.

The MMA criterion is

Cn(w) = (y − µ̂(w))′ (y − µ̂(w)) + 2σ2p(w) (2.23)

13
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where p(w) ≡ tr(H(w)) =
∑K

k=1wkpk is the number of nontrivial parameters. We

can write the formula again as

Cn(w) = w′Ê′Êw + 2σ2p′w (2.24)

where Ê = (ê1, . . . , êK) = ((y − µ̂1), (y − µ̂2), . . . , (y − µ̂K)) = ((y − H1y), (y −

H2y), . . . , (y − HKy)) is the n × K matrix whose column j contains the residual

vector ej = (e1j, . . . , enj
)′ from the jth candidate model, and p = (p1, . . . , pK)′. We

use this criterion to select the weight vector

ŵ = argminw∈Hn
Cn(w). (2.25)

The empirical weight vector ŵ can be obtained numerically since no closed-form solu-

tion exists for Equation (2.25). The solution minimizes Cn(w) subject to Assumption

(2.2), and can be obtained by solving a simple quadratic program.

Hansen (2007) proves that the MMA criterion Cn(w) presents an unbiased esti-

mate of the mean squared error (MSE) from the model averaging fit, and is asymptot-

ically optimal in the sense of achieving the lowest MSE in a class of model averaging

estimators. The R package ma is readily available for practitioners’ use (Racine, 2017).

While Hansen (2007) initially assumed that a candidate model is always nested within

the larger models in sequence, the asymptotic optimality of the MMA estimator still

holds even if the candidate models are non-nested, and the model weights lie within

a continuous set. See Wan et al. (2010) for further details.
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2.1.5 Jackknife Model Averaging

Hansen and Racine (2012) proposes an extended version of MMA approach called

Jackknife model averaging (JMA), which allows the regression error of a candidate

model to be heteroskedastic; i.e. we change the homoskedasticity assumption in

Equation (2.20) to E [e2i |xi] = σ2
i so that the conditional variance can be dependent

on xi.

Define µ̃j = (µ̂(−1),j, µ̂(−2),j, . . . , µ̂(−n),j)
′ where µ̂(−i),j =: i = 1, . . . , n is the jack-

knife estimator of µ obtained from the jth model with the ith observation deleted.

We can write µ̂(−i),j = xij(X
′
(−i),jX(−i),j)

−1X′(−i),jy(−i) where X(−i),j and y(−i) are the

matrices Xj and y with the ith row removed; furthermore, we write µ̃j = H̃jy whose

jackknife hat matrix H̃j has 0’s on its diagonal. The leave-one-out residual vector for

µ̃j is then ẽj = y − µ̃j.

Now let Dj = diag(1 − h(j)11 , 1 − h
(j)
22 , . . . , 1 − h

(j)
nn) where h

(j)
ii = xij(X

′
jXj)

−1xij is

the ith diagonal element of the hat matrix Hj for model j. From Li (1987) we show

that

H̃j = Dj(Hj − I) + I

=⇒ (I− H̃j)y = Dj(I−HJ)y

(LHS) y − H̃jy = y − µ̃j = ẽj

(RHS) Dj(y −Hjy) = Dj(y − µ̂j) = Djêj

∴ ẽj = Djêj

(2.26)

Consequently, we can immediately compute ẽj with a simple linear operation. See

also Racine (1997) for the generalization of the relationship in the first line of Equation

(2.26).
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The resulting JMA estimator µ̃(w) is

µ̃(w) =
K∑
k=1

wkH̃ky ≡ H̃(w)y

=
K∑
k=1

n∑
i=1

wkxik(X
′
(−i),kX(−i),k)

−1X′(−i),ky(−i)

=
K∑
k=1

wkµ̃k

(2.27)

and the jackknife estimate of residual sum of squares is

CVn(w) = (y − µ̃(w))(y − µ̃(w))′ = w′Ẽ′Ẽw (2.28)

where Ẽ = (ẽ1, . . . , ẽK) = ((y− µ̃1), (y− µ̃2), . . . , (y− µ̃K)) is the n×K leave-one-out

residual matrix, and Ẽw = (y − µ̃(w)) =
∑K

k=1wkẽk is the JMA residual. Finally,

the JMA or leave-one-out cross-validation choice of weight vector minimizes CVn(w)

over w ∈ Hn:

w̃ = argminw∈Hn
CVn(w). (2.29)

Note that JMA is nearly equivalent to MMA in the presence of homoskedastic

errors. The JMA estimator is asymptotically optimal in the sense of achieving the

lowest possible MSE over the collection of both nested and nonnested linear models,

which include but are not limited to least-squares, ridge regression, local polynomial

kernel regression with fixed bandwidths, k-nearest neighbor estimators, estimators of

additive interaction models, and spline estimators (Hansen and Racine, 2012). Zhang

et al. (2013) show that this asymptotic optimality holds with serial correlation in the

errors, and the method remains valid under model settings involving time-dependent
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data.

2.2 Support Vector Regression

In the exercise of supervised learning or pattern recognition, we find a function which

predicts the values of one or more outputs, using a collection of measured or preset

inputs (Hastie et al., 2009). The support vector algorithm represents a nonlinear

generalization of the Generalized Portrait algorithm Vapnik and Lerner (1963). It is

firmly grounded in Vapnik-Chervonenkis (VC) theory developed by Vapnik (1999), a

sub-branch of statistical learning theory, which provided solid theoretical foundations

for controlling the generalization ability of a learning model given independent (out-

of-sample) data.

Boser et al. (1992) and Cortes and Vapnik (1995) developed support vector ma-

chines (SVM) in the present form. SVMs have been successfully applied to classifi-

cation problems in the fields of OCR (optical character recognition; Schölkopf et al.,

1995; Bahlmann et al., 2002; Niu and Suen, 2012), financial forecasting (Van Ges-

tel et al., 2001; Kim, 2003; Huang et al., 2005; Shin et al., 2005), cancer prediction

(Furey et al., 2000; Guyon et al., 2002; Huang et al., 2017), EEG (electroencephalo-

gram) signal processing (Garrett et al., 2003; Thulasidas et al., 2006; Subasi and

Gursoy, 2010), textual analysis (Drucker et al., 1999; Tong and Koller, 2002; Agarwal

and Sureka, 2015), and so on. Burges (1998) published a comprehensive tutorial on

SVM classifiers.

Vapnik et al. (1996), Drucker et al. (1996), and Müller et al. (1997) also con-

structed an extension of the SVM algorithm for function estimation and time series
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prediction involving continuous target variables. Example applications of the sup-

port vector regression (SVR) method include time series forecasting (Wu et al., 2004;

Chen and Wang, 2007; Lu et al., 2009). It has also been widely used in the field of

bioinformatics (Myasnikova et al., 2002; Long et al., 2011; Sun et al., 2011).

Given a random sample as defined in Section 2.1.4, we aim to find a model with the

corresponding function g(x) = g(x|θ) which maximizes the deviation of the target

variables yi from ε; any errors larger than ε, however, will not be accepted. Consider

a simple linear model that takes the form

g(x) = g(x|θ) = 〈x,θ〉+ b with θ ∈ X , b ∈ R (2.30)

where 〈·, ·〉 denotes the dot product in X , and b is a bias term or “threshold.” We

now describe the SVR method as a convex optimization problem in accordance with

the tutorial by Smola and Schölkopf (2004).

2.2.1 Convex Optimization

As we seek the flattest model minimizing the number of g(xi) which deviate from

yi by greater than ε, we prefer a small θ, thereby minimizing the L2 norm ‖θ‖2

which characterizes model complexity. Assuming there exists a function g which

estimates all sample points within the “hard margin” ε, we write the following convex
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optimization problem given by

minimize
1

2
‖θ‖2

s.t.


yi − g(xi) ≤ ε

g(xi)− yi ≤ ε

(2.31)

However, this case of maintaining a hard margin is not always feasible, so we add

a pair of “slack variables” ξi, ξ
∗
i (Smith, 1968; Bennett and Mangasarian, 1992) to

the constraints in Equation (2.31) instead to adopt a “soft margin” loss function as

follows (Cortes and Vapnik, 1995; Shawe-Taylor and Cristianini, 1998; Vapnik, 1999):

minimize
1

2
‖θ‖2 + C

n∑
i=1

(ξi + ξ∗i )

s.t.


yi − g(xi) ≤ ε+ ξi

g(xi)− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(2.32)

The cost hyperparameter C, which behaves like a traditional regularization parame-

ter, trades off model complexity, or the flatness of g against how many errors larger

than ε are tolerated in the objective function (2.32). Then, we can describe the

so-called ε-insensitive loss function Lε(y, g(x)) as

Lε(y, g(x)) = max {(|y − g(x)| − ε) , 0} . (2.33)
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2.2.2 Dual Problems and Quadratic Programs

From the objective function (2.32), we construct a Lagrange function as well as the

corresponding constraint where we introduce a dual set of Lagrange multipliers. De-

fine the Lagrangian L as

L =
1

2
‖θ‖2 + C

n∑
i=1

(ξi + ξ∗i )−
n∑
i=1

(ηiξi − η∗i ξ∗i )

−
n∑
i=1

αi(ε+ ξi − yi + g(xi))

−
n∑
i=1

α∗i (ε+ ξ∗i + yi − g(xi))

s.t. ηi, η
∗
i , αi, α

∗
i ≥ 0

(2.34)

where ηi, η
∗
i , αi, α

∗
i are Lagrange multipliers, with the partial derivatives of L with

respect to the primal variables (θ, b, ξi) equal to 0 by the saddle point conditions

∂L

∂θ
= θ −

n∑
i=1

(α∗i − αi)xi = 0 (2.35a)

∂L

∂b
=

n∑
i=1

(α∗i − αi) = 0 (2.35b)

∂L

∂ξi
= C − αi − ηi = 0;

∂L

∂ξ∗i
= C − α∗i − η∗i = 0 (2.35c)
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Substituting (2.35) into (2.34) yields the following dual optimization problem given

by

maximize


−1

2

∑n
i,j=1(αi − α∗i )(αj − α∗j )〈xi,xj〉

−ε
∑n

i=1(αi + α∗i ) +
∑n

i=1(αi − α∗i )yi

s.t.
n∑
i=1

(αi − α∗i ) = 0 and αi, α
∗
i ∈ [0, C]

(2.36)

We have eliminated ηi, η
∗
i in Equation (2.35c) by having ηi = C − αi, η∗i = C − α∗i .

From Equation (2.35a) we have

θ̂ =
n∑
i=1

(α∗i − αi)xi

=⇒ g(x) = g(x|θ̂) =
n∑
i=1

(α∗i − αi) 〈xi,x〉+ b.

(2.37)

The parameter estimate θ̂ is a linear combination of the predictors xi. In addition,

the model complexity is independent of the number of predictors p, and is affected

by the number of data points chosen as support vectors. We take advantage of

these characteristics for building a nonlinear extension for our experiment in the next

chapter.

2.2.3 Calculation of the bias term

We compute b by exploiting the Karush-Kuhn-Tucker (KKT) conditions, which state

that the product between dual variables αi, α
∗
i and the constraints in Equation (2.32)
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becomes zero:

αi(ε+ ξi − yi + g(x|θ̂)) = 0;α∗i (ε+ ξ∗i + yi − g(x|θ̂)) = 0 (2.38a)

(C − αi)ξi = 0; (C − α∗i )ξ∗i = 0; (2.38b)

Awad and Khanna (2015) and Basak et al. (2007) illustrate two useful conclusions

following the KKT conditions. First, only random samples whose corresponding αi or

α∗i is nonzero are located outside the ε-insensitive region. Second, we have αiα
∗
i = 0

i.e., at least one of αi and α∗i should be zero, because it is not possible to have the data

point (xi, yi) lie on both the lower and upper boundary. Therefore, the corresponding

constraint in Equation (2.32) will be satisfied with equality, and ξi = 0 since the data

point is within the ε-insensitive region. When αi ∈ (0, C), we have

yi − 〈xi, θ̂〉 − b− ε− ξi = 0

=⇒ yi − 〈xi, θ̂〉 − b− ε = 0

=⇒ b̂ = yi − 〈xi, θ̂〉 − ε

(2.39)

Analogously, ξ∗i vanishes for α∗i ∈ (0, C) , and we also have

〈xi, θ̂〉+ b− yi − ε = 0

=⇒ b̂ = yi − 〈xi, θ̂〉+ ε

(2.40)

Alternatively, we may compute b by solving an interior point optimization prob-

lem, whose solution can converge in O(log n) operations, by searching along the cen-

tral path of the feasible region. See Smola and Schölkopf (2004) and Keerthi et al.

(2001) for further details.
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Chapter 3

Methods

This chapter establishes the nonlinear SVR model, which uses the radial basis function

(RBF) kernel, and the estimation of the target vector using the model selection and

model averaging methods within the frequentist framework described in Section 2.1.

We introduce the detailed specification of the SVR model in Section 3.1. Then we

begin by imposing an equal model averaging weight on all candidate models in Section

3.2. Section 3.3 constructs smoothed AIC and BIC model averaging weights based

on Vapnik’s ε-insensitive loss function which determines the empirical risk for SVR

models. Section 3.4 describes the weight choice criterion for the MMA estimator

given the unknown errors of candidate models, and describes the proof of asymptotic

optimality of the MMA estimator.
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3.1 Model Specification

3.1.1 Nonlinear Mapping with the RBF Kernel

We make the SVR algorithm introduced in Section 2.2 nonlinear by preprocessing

the input vector x onto a higher-dimensional feature space F via some fixed mapping

φ : X −→ F , and construct a linear model in this space given by

g(x|θ) = 〈φ(x),θ〉+ b =

p∑
l=1

θlφ(xl) + b. (3.1)

In other words, linear regression in a higher-dimensional feature space corresponds to

nonlinear regression in the low dimensional input space X ⊆ Rp. We restate the dual

problems in Section 2.2.2 as

maximize


−1

2

∑n
i,j=1(αi − α∗i )(αj − α∗jk(xi,xj))

−ε
∑n

i=1(αi + α∗i ) +
∑n

i=1(αi − α∗i )yi

s.t.
n∑
i=1

(αi − α∗i ) and αi, α
∗
i ∈ [0, C]

(3.2)

and we compute θ̂ and g(x|θ̂) as

θ̂ =
n∑
i=1

(αi − α∗i )φ(xi) and g(x|θ̂) =
n∑
i=1

(αi − α∗i )k(xi,x) + b (3.3)

where k(xi,x) = 〈φ(xi), φ(x)〉. Interested readers are referred to Aizerman et al.

(1964) for the geometrical interpretation of the kernels as inner products in a feature

space.
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Without loss of generality, suppose that the kernel function is bounded in the

input domain X . We choose the radial basis function (RBF) kernel which satisfies

the assumption:

k(xi,x) = exp
(
−γ‖x− xi‖2

)
(3.4)

where γ is a hyperparameter set by the user.

Unlike the formulation in Section 2.2.2, where θ̂ is a linear combination of the

input vector x, the values of coefficients are no longer explicitly given as a result

of a nonlinear transformation. The optimization problem corresponds to finding the

flattest function in the feature space F instead of the input space X .

3.1.2 Conditions for the RBF Kernel

Not only is the RBF kernel depicted in Equation (3.4) translation invariant, i.e.,

k(xi,x) = κγ(xi − x) where κγ(·) = exp (−γ‖ · ‖2), but also it corresponds to a

dot product in some feature space F . We begin with the following theorem, which

characterizes the RBF kernel as admissible:

Theorem 3.1 (Mercer 1909) Suppose k ∈ L∞ such that the integral operator Tk :

L2(X )→ L2(X ),

Tkf(·) :=

∫
X
k(·,x)g(x)dν(x) (3.5)

is positive, where ν denotes a measure on X with ν(X ) <∞ and X is the support of ν.

Let ψj ∈ L2(X ) be the eigenfunction of Tk associated with the nonzero eigenvalue λj

and normalized such that the L2 norm of ψj is one. If ψ̄j is the complex conjugate of

ψj, then k(xi,x) =
∑

j∈N λj
¯ψj(xi)ψj(x) holds for almost all (xi,x) where the series

is absolutely and uniformly convergent for almost all (xi,x).
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Smola and Schölkopf (2004) explain that, according to this theorem, we can write

k(xi,x) as a dot product in F if the following condition holds:

∫
X×X

k(xi,x)g(xi)g(x)dxidx ≥ 0 for all g ∈ L2(X ) (3.6)

Secondly, Smola et al. (1998b) state a necessary and sufficient condition for a

translation invariant kernel:

Theorem 3.2 (Smola et al., 1998b) A translation invariant kernel k(xi,x) is ad-

missible if and only if the Fourier transform

F [k](ω) = (
√

2π)−p
∫
X

exp(−i〈ω,x〉)k(x)dx ≥ 0 (3.7)

Aizerman et al. (1964) and Boser et al. (1992) also confirmed that the RBF kernel

is proper, and a proof based on interpolation theory (Micchelli, 1986) as well as the

theory of regularization networks (Girosi et al., 1993) is given in Smola and Schölkopf

(2004, see Section 7).

3.1.3 Hyperparameter Selection

The estimation accuracy of generalization performance of our SVR model with the

RBF kernel is dependent on an effective setting of hyperparameters ε, C, and γ by the

user. While the implementations of SVR using available packages usually leave the

value of hyperparameters to the user’s discretion, the dependence of model complexity

on all three of these hyperparameters further complicates the issue of selecting optimal

values.

If C is large, we accept a smaller margin, and only minimize the empirical risk
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function in Equation (3.11) when ignoring model complexity (low bias, high variance).

On the other hand, a smaller value of C allows a larger margin and therefore a lower

level of complexity, though estimation accuracy is sacrificed (high bias, low variance).

On the other hand, the hyperparameter γ determines the radius of influence of

support vectors chosen in the model. If γ is too small, we have a very constrained

model in which the radius of influence includes all of the input data points, so that

the complexity of the data is not captured (high bias, low variance); if γ is large, the

radius of influence includes only support vectors themselves, and the model overfits

(low bias, high variance).

Smola et al. (1998a) and Kwok (2001) suggest asymptotically optimal values of

ε which are proportional to the noise variance. The proposal does not reflect that

ε should be smaller for larger sample sizes provided the data has the same level of

noise. Mattera and Haykin (1999) selects C equal to the range of output values,

but the choice does not consider the possible effects of outliers within the input

vector. Cherkassky and Ma (2004) propose analytical selection of C = max(|ȳ +

3σy|, |ȳ − 3σy|) directly from the input values, where ȳ and σy are the mean and

the standard deviation of the target vector, as well as of ε = 3σ
√

log n/n based on

both noise variance and sample sizes. In this thesis we exploit the cross-validation

method suggested by Schölkopf et al. (1999) and Momma and Bennett (2002) for

hyperparameter selection, in spite of its computational intensity compared to other

suggestions. Practitioners can use the function tune in the R package e1071 for

selecting the best γ, C, and ε using cross-validation over a range of values.
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3.2 Nonsmooth Model Weights

We first consider imposing the same nonsmooth model averaging weight w = 1/K

on all candidate models in the collection. First consider a class of the non-nested

candidate models y = Xsθs + e where all Xs : s ∈ {1, 2, . . . , K} are n × ps disjoint

subsets of X, so we make Xs a sequence of independent random variables. Each θs

is a corresponding ps-dimensional vector of unknown parameters. µ̂s, an estimate

of the quantity of interest obtained from model s, is independent because Xs are

disjoint. If µ̂s is unbiased, the expected value of our model averaging estimator

µ̂(w) =
∑K

k=1 µ̂k/K is E[µ̂(w)] = µ. Define vK =
∑K

s=1 Var[µ̂s], and if for some δ > 0

lim
n→∞

1

v2+δn

K∑
s=1

E
[
|µ̂s − µ|2+δ

]
= 0 (3.8)

is satisfied, by Lyapunov’s central limit theorem we have

µ̂(w)− µ→d N

(
0, vK/K

2 =
K∑
s=1

Var[µ̂s]

K2

)
(3.9)

Although the choice of a uniform weight may not be optimal, we are motivated

by the fact that model averaging reduces variance of the resulting estimator, thereby

contributing to a smaller loss, which may be of interest to the reader.
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3.3 AIC and BIC

Let µ̂j = g(x|θj) be the functional form of model j, and let µ̃ = g(x|θ̃) represent the

best candidate model. We can define the loss function, which is the squared error,

L(y, g(x|θj)) = (y − g(x|θj))2 = (y − µ̂j)2 (3.10)

as the quality measure of an approximation. Since we may or may not have the true

model in the collection of candidate models, the learning problem becomes finding µ̃,

which minimizes the prediction risk functional,

R(θj) =

∫
L(y, g(x|θj))p(x, y)dxdy (3.11)

where p(x, y) = p(x)p(y|x) is an unknown joint distribution function generating the

training data such that f(x) =
∫
yp(y|x)dy is the conditional mean obtained from the

output regression function. Equation (3.11) measures the accuracy of the prediction

of the true model made by model j.

Since p(x, y) and therefore R(θj) are not known, we estimate the parameters by

minimizing the empirical risk

R̂(θj) =
1

n

n∑
i=1

(yi − g(xi|θj))2 =
1

n

n∑
i=1

L(yi, g(xi|θj)) (3.12)

By substituting L(yi, g(xi|θj)) with the ε-insensitive loss function Lε(yi, g(xi|θj)), we

obtain the empirical risk for SVR
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R̂ε(θj) =
1

n

n∑
i=1

Lε(yi, g(xi|θj))

≡ 1

n

n∑
i=1

max {(|yi − g(xi|θj)| − ε) , 0}
(3.13)

as well as AIC and BIC given by

AIC∗j = R̂ε(θj) + 2pj
σ2

n
(3.14a)

BIC∗j = R̂ε(θj) + log(n)pj
σ2

n
. (3.14b)

Accordingly, we extend the use of these model selection criteria for the calculation

of sBIC and sAIC model averaging weights according to the following formulae:

w∗j =
exp

(
−BIC∗j/2

)∑K
k=1 exp (−BIC∗k/2)

(3.15a)

w∗j =
exp

(
−AIC∗j/2

)∑K
k=1 exp (−AIC∗k/2)

. (3.15b)

3.4 MMA Estimation for SVR

Since σ2 in Equations (2.23) and (3.14) is unknown, we compute Cn(w) by substitut-

ing σ2 with the sample estimate σ̂2
L = (Y − µ̂L))′ (Y − µ̂L)) /(n − pL) = ê′LêL/(n −

pL) =
∑n

i=1 ê
2
iL/(n−pL), or residual sum of squares (RSS) obtained from the “largest”

dimensional model L ∈ {1, 2, . . . , K}. The R package quadprog solves the quadratic

programming problem shown in Equation (2.23), which minimizes Equation (2.25) as

discussed in Section 2.1.4.
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Assumption (2.2) is based on the premise that all candidates models are equally

competitive, and this restriction is plausible in terms of allowing the data to deter-

mine the relative contribution of each candidate model to the final model averaging

estimator. However, if there is no prior information that all candidate models are

equally competitive, relaxing the restriction that the weights sum up to 1 is likely to

lower the risk (Ando and Li, 2014). Therefore we remove this restriction to admit

more general settings.
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Chapter 4

Simulation Studies

We investigate the finite-sample performance of the selected FMA methods applied

to multiple SVR models using simulated data from several data-generating processes

(DGP) of analytic form. We aim to demonstrate that our FMA methods perform bet-

ter on balance than model selection techniques, as we discussed in previous chapters,

and therefore model averaging can contribute to more precise prediction obtained

from a specific learning framework. Section 4.1 presents the entire structure of data

generation for our simulation studies, followed by a brief description of the frequentist

model averaging and selection methods used for estimation in Section 4.2. The results

of the analysis are provided in Section 4.3.
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4.1 Data Generation

4.1.1 Scenario I

We draw R = 500 Monte Carlo replications from each DGP. For each replication, we

consider three DGPs of sample sizes n = (50, 100, 200, 400) which include a second-

order polynomial, an exponential function, and a sinusoidal function as follows:

DGP1 : yi = xi1+xi2+xi3+xi4+x
2
i1+x

2
i2+xi1xi2+xi1xi3+xi1xi4+xi2xi3+xi2xi4+xi3xi4+ei

DGP2 : yi = exp (xi1 + xi2 + xi3 + xi4 + xi1xi2 + xi1xi3 + xi1xi4 + xi2xi4 + xi3xi4) + ei

DGP3 : yi = sin (2π(xi1 + xi2 + xi3 + xi4 + xi1xi2 + xi1xi3 + xi1xi4 + xi2xi4 + xi3xi4))+ei

where xil : i ∈ {1, . . . , n}; l ∈ {1, . . . , p = 4} are realizations of independent and iden-

tically distributed Unif(−1, 1) random variables. The error ei is distributed N (0, σ2)

and independent of xil. We set σ2, the variance of ei, so that the expected R2 for

the true model would be (1 + σ2)−1 = (0.95, 0.80, 0.50, 0.20), which corresponds to

σ = (0.25, 0.50, 1.00, 2.00) times the standard deviation of the systematic component

of the DGP.

In Scenario I, the candidate models are under-specified, i.e., the collection of

candidate models does not contain the true model. We estimate the following six

models: (a) yi = g1(xi1) + ei, (b) yi = g2(xi2) + ei, (c) yi = g3(xi1, xi2) + ei, (d) yi =

g4(xi1, xi3) + ei, (e) yi = g5(xi2, xi3) + ei, (f) yi = g6(xi1, xi2, xi3) + ei For each of these

six models, we use k = 5-fold cross-validation to tune the hyperparameters over the

ranges of γ, C ∈ 2{−3,−2,1,0,1,2,3}, ε ∈ {0.1, 0.25, 0.5, 1}, and then estimate the models

by the SVR technique using the RBF kernel as outlined above. As k gets larger, there
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are more combinations of the training set and the held-out test set, and we obtain less

biased estimates of yi in exchange for high variance. Although there is no formal rule

for choosing k, k = 5 has been shown empirically as a value to yield error estimates

“that suffer neither from excessively high bias nor from very high variance” in general

(Hastie et al., 2009).

4.1.2 Scenario II

The data generation for Scenario II is similar to that for Scenario I, except that the

collection of candidate models contains the true model which is unlikely to occur

in practice. Thus we set xi4 in the three DGPs for Scenario I to zero, and the

signal-to-noise ratios are set as per Scenario I. We use the same collection of models,

and for each model we use the same cross-validation procedure to tune the required

hyperparameters. Lastly, we average over the obtained six estimates and assign the

weights that minimize the MMA objective function as per Scenario I.

4.2 Methods Used for Estimation

For the estimation of the target vector y = (y1, . . . , yn)′, we consider seven estimators:

(1) Mallows model averaging (‘MMA’), (2) smoothed AIC model averaging (‘sAIC’),

(3) smoothed BIC model averaging (‘sBIC’), (4) nonsmooth model averaging (‘1/K’),

(5) AIC model selection (‘AIC’), (6) BIC model selection (‘BIC’), and (7) Mallows’

Cp model selection (‘Cp’). The sAIC and sBIC weights, which we obtain from AIC∗

and BIC∗ in Section 3.3 respectively, are given by Equation (3.15). For the MMA
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approach, we average the obtained six estimates for (a) − (f) in Section 4.1 by as-

signing them the weight vector ŵ = (ŵ1, . . . , ŵ6) using the MMA criterion outlined

in Section 2.1.4. Particularly, the weights are minimizing Equation (2.23), in which

σ2 is estimated based on residuals from the largest model. Results are summarized in

Tables 4.1 - 4.6, which report the mean relative MSE row normalized such that the

method with the lowest mean MSE has entry 1.00. R2 is higher for smaller values of

σ. MMA, sAIC, sBIC, and 1/K are model averaging methods. AIC, BIC, and Cp are

model selection methods. Mean MMA weights are also available in Tables 4.7 - 4.8.

4.3 Results

In Scenario I, clearly no specific method dominates over the range of sample sizes and

signal-to-noise ratios considered. sAIC and sBIC have higher risk with high signal-to-

noise ratio than the other methods considered. The sAIC model averaging estimator

performs better with the exponential DGP than with the other two. When the noise is

very high, the nonsmooth model averaging estimator can be a simple and näıve choice

with MSE as low as desired for practitioners. However, the model averaging methods

are shown to be no less competitive than the model selection ones. Particularly, when

we consider the range of empirical risk relative to the best performing estimator in

the rows of Tables 4.1-4.3, from a minimax perspective the proposed MMA estimator

is competitive among its peers.

Furthermore, Tables 4.4-4.6 show that the use of MMA can outperform model

selection in small sample settings as per Scenario I, even though the collection of can-

didate models contains the true model. sAIC, sBIC, and nonsmooth model averaging

do not result in predictions as accurate as they do in Scenario I. We also summarize
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the mean MMA weights for both scenarios in Tables 4.7-4.12 as outlined.

Table 4.1: Median Relative MSE, Scenario I, DGP 1

n σ MMA sAIC sBIC 1/K AIC BIC Cp
50 0.25 1.00 2.25 2.23 2.39 1.21 1.20 1.35

0.50 1.00 1.54 1.53 1.58 1.47 1.49 1.66
1.00 1.06 1.00 1.00 1.00 1.39 1.39 1.17
2.00 1.77 1.00 1.03 1.00 1.29 1.34 1.13

100 0.25 1.00 1.88 1.88 1.93 1.13 1.13 1.16
0.50 1.00 1.57 1.57 1.59 1.60 1.88 1.50
1.00 1.00 1.11 1.12 1.11 1.51 1.65 1.20
2.00 1.41 1.01 1.04 1.00 1.40 1.42 1.16

200 0.25 1.00 1.75 1.75 1.78 1.10 1.11 1.10
0.50 1.00 1.57 1.57 1.59 1.66 1.89 1.55
1.00 1.00 1.27 1.28 1.27 1.52 1.89 1.35
2.00 1.11 1.01 1.03 1.00 1.41 1.45 1.14

400 0.25 1.00 1.69 1.69 1.72 1.04 1.04 1.04
0.50 1.00 1.56 1.56 1.57 1.72 1.82 1.67
1.00 1.00 1.34 1.34 1.34 1.54 1.95 1.47
2.00 1.00 1.09 1.11 1.09 1.54 1.64 1.19
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Table 4.2: Median Relative MSE, Scenario I, DGP 2

n σ MMA sAIC sBIC 1/K AIC BIC Cp
50 0.25 1.00 1.37 1.46 1.95 1.45 1.45 1.12

0.50 1.00 1.26 1.28 1.41 1.33 1.29 1.29
1.00 1.01 1.05 1.12 1.00 1.19 1.19 1.21
2.00 1.46 1.13 1.30 1.00 1.31 1.40 1.07

100 0.25 1.00 1.25 1.29 1.90 1.38 1.38 1.05
0.50 1.00 1.33 1.37 1.51 1.43 1.43 1.34
1.00 1.00 1.38 1.38 1.19 1.42 1.42 1.34
2.00 1.41 1.01 1.04 1.00 1.40 1.42 1.16

200 0.25 1.00 1.44 1.49 1.60 1.46 1.47 1.11
0.50 1.00 1.49 1.51 1.47 1.55 1.54 1.62
1.00 1.00 1.41 1.41 1.17 1.43 1.41 1.39
2.00 1.15 1.13 1.12 1.00 1.14 1.18 1.12

400 0.25 1.00 1.51 1.55 1.52 1.54 1.56 1.19
0.50 1.00 1.43 1.45 1.35 1.55 1.53 1.50
1.00 1.00 1.43 1.43 1.25 1.46 1.46 1.41
2.00 1.04 1.04 1.08 1.00 1.11 1.11 1.08

Table 4.3: Median Relative MSE, Scenario I, DGP 3

n σ MMA sAIC sBIC 1/K AIC BIC Cp
50 0.25 1.00 1.58 1.58 1.58 2.00 1.98 2.04

0.50 1.00 1.43 1.43 1.43 1.79 1.79 1.80
1.00 1.00 1.04 1.04 1.04 1.27 1.28 1.25
2.00 1.47 1.00 1.00 1.00 1.17 1.17 1.13

100 0.25 1.00 1.24 1.24 1.24 1.45 1.45 1.45
0.50 1.00 1.21 1.20 1.20 1.40 1.40 1.39
1.00 1.00 1.08 1.08 1.08 1.25 1.25 1.23
2.00 1.19 1.00 1.00 1.00 1.13 1.13 1.10

200 0.25 1.00 1.15 1.15 1.15 1.28 1.28 1.26
0.50 1.00 1.12 1.13 1.12 1.25 1.25 1.23
1.00 1.00 1.08 1.09 1.08 1.19 1.19 1.17
2.00 1.03 1.00 1.00 1.00 1.09 1.09 1.07

400 0.25 1.00 1.11 1.11 1.11 1.19 1.19 1.17
0.50 1.00 1.11 1.11 1.10 1.19 1.19 1.17
1.00 1.00 1.09 1.09 1.08 1.16 1.16 1.14
2.00 1.00 1.02 1.02 1.02 1.08 1.08 1.07
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Table 4.4: Median Relative MSE, Scenario II, DGP 1

n σ MMA sAIC sBIC 1/K AIC BIC Cp
50 0.25 1.01 5.10 5.04 5.49 1.03 1.00 1.14

0.50 1.00 1.96 1.94 2.03 1.23 1.14 2.26
1.00 1.11 1.00 1.01 1.01 1.74 1.86 1.33
2.00 1.92 1.00 1.04 1.00 1.41 1.49 1.18

100 0.25 1.00 6.85 6.79 7.30 1.00 1.00 1.03
0.50 1.00 2.67 2.66 2.78 1.13 1.06 1.43
1.00 1.00 1.30 1.31 1.31 1.92 2.55 1.60
2.00 1.47 1.01 1.04 1.00 1.66 1.75 1.24

200 0.25 1.00 9.93 9.88 10.55 1.00 1.00 1.00
0.50 1.00 3.75 3.74 3.91 1.06 1.04 1.08
1.00 1.00 1.75 1.76 1.77 2.05 2.92 1.27
2.00 1.07 1.01 1.04 1.00 1.80 1.90 1.28

400 0.25 1.00 15.12 15.07 16.03 1.00 1.00 1.00
0.50 1.00 5.49 5.49 5.74 1.03 1.01 1.04
1.00 1.00 2.47 2.49 2.53 1.14 1.30 1.12
2.00 1.00 1.36 1.40 1.37 2.03 2.88 1.64

Table 4.5: Median Relative MSE, Scenario II, DGP 2

n σ MMA sAIC sBIC 1/K AIC BIC Cp
50 0.25 1.00 4.46 3.62 7.24 1.02 1.03 1.03

0.50 1.00 2.31 2.11 2.82 1.38 1.41 1.36
1.00 1.00 1.13 1.24 1.11 1.73 1.77 1.13
2.00 1.70 1.13 1.23 1.00 1.38 1.49 1.13

100 0.25 1.01 5.73 4.85 8.18 1.00 1.00 1.00
0.50 1.01 3.01 2.83 3.61 1.00 1.09 1.04
1.00 1.00 1.58 1.78 1.52 2.69 2.69 1.38
2.00 1.25 1.16 1.25 1.00 1.43 1.45 1.10

200 0.25 1.01 8.11 7.39 10.62 1.00 1.00 1.00
0.50 1.01 4.57 4.53 5.37 1.00 1.01 1.02
1.00 1.00 2.32 2.64 2.27 3.89 4.14 1.48
2.00 1.00 1.29 1.50 1.07 1.72 1.72 1.28

400 0.25 1.00 11.25 10.71 14.31 1.00 1.00 1.00
0.50 1.02 6.45 6.35 7.65 1.00 1.00 1.00
1.00 1.00 3.06 3.38 3.18 1.34 6.05 1.12
2.00 1.00 1.66 2.00 1.45 2.48 2.50 1.42
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Table 4.6: Median Relative MSE, Scenario II, DGP 3

n σ MMA sAIC sBIC 1/K AIC BIC Cp
50 0.25 1.01 5.10 5.04 5.49 1.03 1.00 1.14

0.50 1.00 1.73 1.73 1.74 2.35 2.33 2.34
1.00 1.00 1.03 1.03 1.03 1.30 1.30 1.28
2.00 1.51 1.00 1.00 1.01 1.18 1.18 1.15

100 0.25 1.00 6.98 6.97 6.99 10.17 10.17 9.73
0.50 1.00 2.31 2.30 2.31 3.16 3.17 3.12
1.00 1.00 1.09 1.09 1.09 1.32 1.34 1.31
2.00 1.27 1.00 1.00 1.00 1.15 1.16 1.12

200 0.25 1.00 9.72 9.71 9.74 14.73 14.78 13.84
0.50 1.00 3.02 3.02 3.01 4.34 4.36 4.23
1.00 1.00 1.21 1.21 1.21 1.51 1.52 1.49
2.00 1.07 1.00 1.00 1.00 1.12 1.13 1.10

400 0.25 1.00 10.63 10.61 10.59 16.09 16.11 15.68
0.50 1.00 3.12 3.11 3.09 4.56 4.57 4.50
1.00 1.00 1.43 1.42 1.41 1.83 1.83 1.81
2.00 1.00 1.00 1.00 1.00 1.12 1.13 1.11

Table 4.7: Mean MMA Weights, DGP 1, Scenario I

n σ w̄1 w̄2 w̄3 w̄4 w̄5 w̄6

50 0.25 0.0144 0.0224 0.1172 0.0973 0.1089 0.6398
0.50 0.0204 0.0288 0.1411 0.1132 0.1300 0.5666
1.00 0.0420 0.0434 0.1750 0.1610 0.2047 0.3738
2.00 0.0625 0.0674 0.1850 0.1967 0.2125 0.2758

100 0.25 0.0053 0.0042 0.0691 0.0478 0.0516 0.8220
0.50 0.0080 0.0072 0.0806 0.0511 0.0652 0.7879
1.00 0.0216 0.0203 0.1421 0.1085 0.1235 0.5840
2.00 0.0490 0.0514 0.1909 0.1625 0.1927 0.3536

200 0.25 0.0012 0.0009 0.0207 0.0215 0.0177 0.9379
0.50 0.0027 0.0016 0.0296 0.0181 0.0244 0.9236
1.00 0.0084 0.0010 0.0537 0.0053 0.0543 0.8200
2.00 0.0324 0.0369 0.1438 0.1605 0.1705 0.4559

400 0.25 0.0144 0.0224 0.1172 0.0973 0.1089 0.6398
0.50 0.0204 0.0288 0.1411 0.1132 0.1300 0.5666
1.00 0.0420 0.0434 0.1750 0.1610 0.2047 0.3738
2.00 0.0625 0.0067 0.1850 0.1967 0.2125 0.2758
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Table 4.8: Mean MMA Weights, DGP 2, Scenario I

n σ w̄1 w̄2 w̄3 w̄4 w̄5 w̄6

50 0.25 0.0393 0.0384 0.1902 0.1971 0.1680 0.3670
0.50 0.0569 0.0408 0.2005 0.1886 0.1749 0.3384
1.00 0.0609 0.0461 0.1994 0.1908 0.1739 0.3289
2.00 0.0618 0.0592 0.1805 0.1931 0.1851 0.3204

100 0.25 0.0182 0.0173 0.1713 0.1685 0.1409 0.4839
0.50 0.0202 0.0241 0.1823 0.1683 0.1404 0.4647
1.00 0.0406 0.0253 0.1905 0.1800 0.1640 0.3996
2.00 0.0409 0.0388 0.1875 0.1872 0.1623 0.3834

200 0.25 0.0052 0.0023 0.1519 0.1300 0.0836 0.6270
0.50 0.0095 0.0040 0.1376 0.1442 0.0709 0.6334
1.00 0.0184 0.0014 0.1267 0.1501 0.1033 0.5874
2.00 0.0263 0.0202 0.1426 0.1692 0.1403 0.5014

400 0.25 0.0000 0.0000 0.0975 0.0946 0.0390 0.7689
0.50 0.0031 0.0004 0.0775 0.0878 0.0425 0.7886
1.00 0.0077 0.0044 0.0783 0.0924 0.0608 0.7564
2.00 0.0177 0.0140 0.1357 0.1386 0.0966 0.5974

Table 4.9: Mean MMA Weights, DGP 3, Scenario I

n σ w̄1 w̄2 w̄3 w̄4 w̄5 w̄6

50 0.25 0.0427 0.0257 0.2090 0.1763 0.1986 0.3476
0.50 0.0489 0.0235 0.2037 0.2012 0.2136 0.3092
1.00 0.0435 0.0362 0.2090 0.1880 0.2066 0.3168
2.00 0.0581 0.0432 0.1751 0.2001 0.2340 0.2895

100 0.25 0.0291 0.0214 0.1302 0.1665 0.1733 0.4794
0.50 0.0339 0.0235 0.1321 0.1566 0.1630 0.4910
1.00 0.0297 0.0224 0.1345 0.1693 0.1613 0.4829
2.00 0.0296 0.0217 0.1520 0.1999 0.1630 0.4339

200 0.25 0.0150 0.0012 0.1304 0.1082 0.1165 0.6183
0.50 0.0206 0.0084 0.1621 0.1332 0.1199 0.5558
1.00 0.0229 0.0097 0.1651 0.1412 0.1350 0.5261
2.00 0.0195 0.0119 0.1456 0.1591 0.1360 0.5279

400 0.25 0.0096 0.0038 0.0691 0.0822 0.0945 0.7408
0.50 0.0133 0.0067 0.0076 0.0926 0.0779 0.7337
1.00 0.0126 0.0096 0.0821 0.0908 0.0791 0.7259
2.00 0.0118 0.0068 0.1068 0.0986 0.0656 0.7104
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Table 4.10: Mean MMA Weights, DGP 1, Scenario II

n σ w̄1 w̄2 w̄3 w̄4 w̄5 w̄6

50 0.25 0.0005 0.0003 0.0218 0.0066 0.0095 0.9613
0.50 0.0042 0.0057 0.0577 0.0422 0.0456 0.8445
1.00 0.0243 0.0353 0.1152 0.1281 0.1324 0.5647
2.00 0.0625 0.0667 0.1891 0.2016 0.1991 0.2730

100 0.25 0.0004 0.0001 0.0072 0.0008 0.0022 0.9893
0.50 0.0020 0.0010 0.0186 0.0090 0.0127 0.9567
1.00 0.0106 0.0111 0.0778 0.0533 0.0554 0.7918
2.00 0.0370 0.0382 0.1763 0.1427 0.1648 0.4409

200 0.25 0.0001 0.0001 0.0011 0.0010 0.0008 0.9968
0.50 0.0005 0.0003 0.0064 0.0029 0.0039 0.9860
1.00 0.0030 0.0039 0.0242 0.0182 0.0174 0.9333
2.00 0.0250 0.0250 0.1143 0.1030 0.1302 0.6025

400 0.25 0.0001 0.0002 0.0004 0.0005 0.0004 0.9985
0.50 0.0003 0.0001 0.0009 0.0011 0.0010 0.9966
1.00 0.0005 0.0014 0.0060 0.0085 0.0043 0.9792
2.00 0.0054 0.0103 0.0398 0.0479 0.0315 0.8650

Table 4.11: Mean MMA Weights, DGP 2, Scenario II

n σ w̄1 w̄2 w̄3 w̄4 w̄5 w̄6

50 0.25 0.0008 0.0003 0.0548 0.0491 0.0469 0.8481
0.50 0.0025 0.0045 0.0491 0.1068 0.0552 0.7819
1.00 0.0243 0.0353 0.1152 0.1281 0.1324 0.5647
2.00 0.0551 0.0475 0.1696 0.1916 0.2006 0.3355

100 0.25 0.0000 0.0000 0.0368 0.0370 0.0207 0.9054
0.50 0.0004 0.0010 0.0612 0.0628 0.0343 0.8402
1.00 0.0085 0.0087 0.1064 0.1089 0.0566 0.7109
2.00 0.0383 0.0329 0.1804 0.1757 0.1364 0.4364

200 0.25 0.0000 0.0000 0.0175 0.0158 0.0031 0.9637
0.50 0.0001 0.0001 0.0359 0.0268 0.0145 0.9226
1.00 0.0019 0.0017 0.0448 0.0498 0.0300 0.8718
2.00 0.0118 0.0129 0.1011 0.1089 0.0902 0.6751

400 0.25 0.0000 0.0000 0.0051 0.0029 0.0008 0.9913
0.50 0.0002 0.0001 0.0126 0.0091 0.0034 0.9748
1.00 0.0009 0.0008 0.0170 0.0155 0.0046 0.9613
2.00 0.0050 0.0055 0.0362 0.0466 0.0243 0.8825
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Table 4.12: Mean MMA Weights, DGP 3, Scenario II

n σ w̄1 w̄2 w̄3 w̄4 w̄5 w̄6

50 0.25 0.0225 0.0174 0.1365 0.1271 0.1408 0.5557
0.50 0.0401 0.0261 0.1308 0.1367 0.1548 0.5114
1.00 0.0288 0.0370 0.1590 0.1658 0.1788 0.4306
2.00 0.0464 0.0610 0.1668 0.1900 0.1818 0.3539

100 0.25 0.0097 0.0034 0.0375 0.0375 0.0465 0.8654
0.50 0.0186 0.0036 0.0682 0.0569 0.0592 0.7934
1.00 0.0249 0.0159 0.1071 0.0908 0.1059 0.6553
2.00 0.0262 0.0263 0.1386 0.1404 0.1508 0.5177

200 0.25 0.0020 0.0001 0.0007 0.0017 0.0003 0.9951
0.50 0.0024 0.0002 0.0084 0.0067 0.0082 0.9741
1.00 0.0089 0.0021 0.0284 0.0421 0.0431 0.8754
2.00 0.0107 0.0058 0.0849 0.1014 0.0957 0.7015

400 0.25 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
0.50 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
1.00 0.0000 0.0000 0.0035 0.0002 0.0056 0.9906
2.00 0.0082 0.0020 0.0362 0.0331 0.0357 0.8848
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Chapter 5

Empirical Illustration

We estimate a Mincer (earnings) equation using Wooldridge (2002)’s ‘wage1’ cross-

sectional data with n = 526 observations, which he obtained from the 1976 United

States Current Population Survey. We consider modelling the log of hourly wages

(y = log(wage)) based on a range of commonly used predictors, namely:

(1) x1 = educ : years of education

(2) x2 = exper : years of professional experiences

(3) x3 = female : 1{ith observation is female}

(4) x4 = tenure : years with the current employer.

5.1 Analysis

We treat the four predictors described above as belonging to X, and consider SVR

models which differ in terms of the contents of X. Let d be the order of a polynomial

constructed from each of x1, . . . , x4. When d = 1, X is a n × 4 matrix, and the

number of all possible combinations of the predictors should be K =
∑4

q=1

(
4
q

)
=
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(
4
1

)
+
(
4
2

)
+
(
4
3

)
+
(
4
4

)
= 4 + 6 + 4 + 1 = 15. We also consider a standard linear model

(‘OLS’) defined with the full set of predictors for comparison. The candidate models

are not completely nested in each other as were those generated in Chapter 4, and

the ‘wage1’ data has a binary predictor.

We repeatedly shuffle and split the data into a training set of size n1 = 500 and an

independent test set of size n2 = 26. For each training set, we fit the cross-validated

SVR models, and then we apply the selected model averaging and model selection

methods presented in Section 4.2, as well as the models listed above. Lastly, for each

model fit we compute the mean squared prediction error (MSPE) for the independent

test set given by MSPE =
∑n2

i=1 (yi − µ̂i)2 /n2 where µ̂i refers to an out-of-sample

prediction.

5.2 Results

Table 5.1: Median Relative MSPE

MMA sAIC sBIC 1/K AIC BIC Cp OLS

1.00 1.07 1.07 1.07 1.14 1.29 1.09 1.06

Table 5.2: Median MSPE

MMA sAIC sBIC 1/K AIC BIC Cp OLS

0.1543 0.1643 0.1643 0.1643 0.1763 0.1990 0.1675 0.1641

Table 5.1 shows us similar relative MSPE results as seen in the previous Section

4.3. In particular, the MMA estimator dominates its peers in terms of out-of-sample

prediction error. The other three model averaging estimators outperform model se-

lection methods as well. It is interesting to note that MMA not only achieves an
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improvement in prediction error over the standard least-squares linear model, but

also is compatible with the non-nested candidate models, as well as the binary (cat-

egorical) variable female in the set of predictors.
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Chapter 6

Concluding Remarks

We have applied model averaging to support vector learning models with continuous

target variables within the frequentist framework. Despite its performance, FMA has

not received much interest from practitioners of statistical learning methods compared

to BMA. In particular, recent notable investigations in the model averaging for SVR

focused on the Bayesian approach (Liao et al., 2011; Wang and Liao, 2012; Wang

et al., 2014; Kaneko and Funatsu, 2014). We specified the SVR models with the

RBF kernel which are verified as proper for estimating nonlinear DGPs. We have

established: (1) the näıve nonsmooth model weight w = 1/K, (2) sAIC and sBIC

model weights obtained from from AIC and BIC using ε-insensitive loss function, and

(3) MMA weights, which minimizes Hansen (2007)’s Mallows-type criterion.

We investigated the finite-sample performance of the proposed methods through

Monte Carlo simulation studies. In a completely nonparametric setting where we do

not have the true model as one of the candidate models, the model averaging esti-

mators under consideration performed better than model selection estimators. With

large signal-to-noise ratios, our proposed MMA estimator is especially competitive
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among its peers, and it tends to perform better than other estimators even with

smaller signal-to-noise ratios as the sample size increases. The nonsmooth model

weight is also a feasible choice when we draw a small random sample with a small

signal-to-noise ratio. Furthermore, even when the true model is included in the set of

candidate models, the MMA estimator dominates model selection, which is not likely

to be the case in general.

The construction of new model averaging weights which minimize the absolute

loss, or more specifically the ε-insensitive loss for SVR, would be an interesting ex-

tension. Although the MMA estimator can outperform its model selection peers,

asymptotic optimality on the L1 space does yet have a strong theoretical foundation.

This approach can be extended to the study of FMA for SVM classifiers where Li and

Yang (2002) have already suggested model weights based on maximum likelihood and

in-sample prediction accuracy. Past work on model selection criteria for SVM such

as Claeskens et al. (2008) and Zhang et al. (2016) can also be utilized for sAIC- or

sBIC-type model weights, whose foundations have been better established.

Lastly, we highlight that the marginal effect of each predictor in the model should

be measured more accurately after model averaging, in accordance with the increasing

prediction accuracy. Nevertheless, many popular learning algorithms, including but

not limited to SVM, neural networks, and random forests operate as “black boxes,”

so practitioners usually have limited access to intuitive interpretation. Given the de-

velopment of methods that present highly plausible interpretations of how a learning

system arrives at a prediction (e.g., Layer-Wise Relevance Propagation by Bach et al.

(2015); Ranked SVM by Joachims (2002)), the adoption of model averaging will be

useful for further refinement of such interpretations.
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Appendix A

R Codes

A.1 Assessment of the Finite-Sample Performance

We provide the R code to replicate the Monte Carlo simulations using DGP 1 under

Scenario I, where the set of candidate models do not contain the true model. The

DGP used, and the ranges of SVR hyperparameter values can be modified.

rm(list = ls())

# Initialization

library(e1071)

# library(kernlab) can be used as an alternative; codes for entertaining

# the learning method should be modified accordingly

set.seed(42)

reps <- 500 # Number of replication

n <- 50 # Sample sizes (50, 100, 200, 400)

i <- 1

y <- numeric() # Our Target Variable

dgp <- numeric()

mse.mma.0 <- numeric()

mse.aic.0 <- numeric()
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mse.bic.0 <- numeric()

mse.saic.0 <- numeric()

mse.sbic.0 <- numeric()

mse.mcp.0 <- numeric()

mse.nonsmooth.0 <- numeric()

# The vector of mean model averaging weights for each candidate model

w.mean.mma <- numeric()

w.mean.saic <- numeric()

w.mean.sbic <- numeric()

# The vectors which store the model averaging weights from each replication

B <- numeric()

W.saic.col <- numeric()

W.sbic.col <- numeric()

# Ranges of some values of hyperparameter gamma, C, and epsilon

# Users may add or remove proper hyperparameters they want to tune,

# depending on which kernel function they use.

# Note that expanding the range of hyperparameter values may result in

# excessive computation time.

ranges <- list(gamma = 2ˆ(-3:3), cost = 2ˆ(-3:3),

epsilon = c(0.1, 0.25, 0.5, 1))

write(c("MMA","sAIC", "sBIC", "w=1/K", "AIC", "BIC", "Cp"),

file="res.out",ncol=7)

# Random samples from other continuous distributions may be entertained.

for(count in 1:reps) {

x1 <- runif(n, -1,1)

x2 <- runif(n, -1,1)

x3 <- runif(n, -1,1)

x4 <- runif(n, -1,1)

# DGP 1

dgp <- x1 + x2 + x3 + x4 + x1**2 + x2**2 + x1*x2

+ x1*x3 + x1*x4 + x2*x3 + x2*x4 + x3*x4
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# Users may comment out DGP 1, and instead entertain one

# of the other two DGPs presented below:

# DGP 2

# dgp <- sin(2*pi*(x1 + x2 + x3 + x4 + x1*x2

# + x1*x3 + x1*x4 + + x2*x4 + x3*x4))

# DGP 3

# dgp <- exp(x1 + x2 + x3 + x4 + x1*x2

# + x1*x3 + x1*x4 + + x2*x4 + x3*x4)

# S-N ratios vary over (0.25, 0.50, 1.00, 2.00) times the standard deviation of

# our data-generating processes, whose corresponding Rˆ2 should be

# (0.95, 0.80, 0.50, 0.20).

y <- dgp + rnorm(n,sd=.25*sd(dgp))

# CV for hyperparameter selection

# "cross = 10" in the argument "tune.control" leads to 10-fold CV; "cross = n"

# to leave-one-out CV

search.1 <- tune(svm, y ˜ x1 + I(x1ˆ2), ranges = ranges,

tunecontrol = tune.control(sampling = "cross", cross = 5))

search.2 <- tune(svm, y ˜ x2 + I(x2ˆ2), ranges = ranges,

tunecontrol = tune.control(sampling = "cross", cross = 5))

search.3 <- tune(svm, y ˜ x1 + x2 + I(x1ˆ2) + I(x2ˆ2) + I(x1*x2), ranges = ranges,

tunecontrol = tune.control(sampling = "cross", cross = 5))

search.4 <- tune(svm, y ˜ x1 + x3 + I(x1ˆ2) + I(x1*x3), ranges = ranges,

tunecontrol = tune.control(sampling = "cross", cross = 5))

search.5 <- tune(svm, y ˜ x2 + x3 + I(x2ˆ2) + I(x2*x3), ranges = ranges,

tunecontrol = tune.control(sampling = "cross", cross = 5))

search.6 <- tune(svm, y ˜ x1 + x2 + x3 + I(x1ˆ2) + I(x2ˆ2)

+ I(x1*x2) + I(x1*x3) + I(x2*x3), ranges = ranges,

tunecontrol = tune.control(sampling = "cross", cross = 5))

# Best models are specified based on the lowest generalization error

model.1.1<- search.1$best.model

model.1.2<- search.2$best.model
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model.1.3<- search.3$best.model

model.1.4<- search.4$best.model

model.1.5<- search.5$best.model

model.1.6<- search.6$best.model

# Store all the candidate models in a vector, so that we can

# conduct AIC / BIC / Cp model selection over the set later.

models <- rbind(model.1.1,model.1.2,model.1.3,model.1.4,model.1.5,model.1.6)

# Gives out the number of predictors in each model using support vectors

beta.1 = t(model.1.1$coefs) %*% model.1.1$SV

beta.2 = t(model.1.2$coefs) %*% model.1.2$SV

beta.3 = t(model.1.3$coefs) %*% model.1.3$SV

beta.4 = t(model.1.4$coefs) %*% model.1.4$SV

beta.5 = t(model.1.5$coefs) %*% model.1.5$SV

beta.6 = t(model.1.6$coefs) %*% model.1.6$SV

# The number of predictors in each candidate model.

K <- c(length(beta.1),length(beta.2),length(beta.3),

length(beta.4),length(beta.5),length(beta.6))

residual.mat <- cbind(model.1.1$residuals, model.1.2$residuals,

model.1.3$residuals, model.1.4$residuals,

model.1.5$residuals, model.1.6$residuals)

# Residual sum of squares for each candidate model

RSS <- c(sum((residual.mat[,1])ˆ2), sum((residual.mat[,2])ˆ2),

sum((residual.mat[,3])ˆ2), sum((residual.mat[,4])ˆ2),

sum((residual.mat[,5])ˆ2), sum((residual.mat[,6])ˆ2))

M <- ncol(residual.mat)

# Computing RSS from a full model

# For convenience I set the last model as a full one.

sigsq <- RSS[length(K)] / n
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# Epsilon-insensitive loss function

e.1 <- (abs(dgp.1-fitted(model.1.1))-model.1.1$epsilon)

e.2 <- (abs(dgp.1-fitted(model.1.2))-model.1.2$epsilon)

e.3 <- (abs(dgp.1-fitted(model.1.3))-model.1.3$epsilon)

e.4 <- (abs(dgp.1-fitted(model.1.4))-model.1.4$epsilon)

e.5 <- (abs(dgp.1-fitted(model.1.5))-model.1.5$epsilon)

e.6 <- (abs(dgp.1-fitted(model.1.6))-model.1.6$epsilon)

# If an absolute residual is larger than the pre-defined epsilon, we do ignore it.

e.1 <- sum(e.1*(e.1>0))

e.2 <- sum(e.2*(e.2>0))

e.3 <- sum(e.3*(e.3>0))

e.4 <- sum(e.4*(e.4>0))

e.5 <- sum(e.5*(e.5>0))

e.6 <- sum(e.6*(e.6>0))

E<- c(e.1, e.2, e.3, e.4, e.5, e.6)

R<- E/n # Empirical Risk

# AIC and BIC

AIC <- R + 2*(K)*RSS/n/(n-K)

BIC <- R + log(n)*(K)*RSS/n/(n-K)

# Mallows’ Cp

Cp <- Eˆ2 / sigsq - n + 2*K

# Model selection using AIC, BIC, and Cp

for(v in 1:length(RSS)) {

if(Cp[v]==min(Cp)) {

model.mcp <- models[v,]

}

if(AIC[v]==min(AIC)) {

model.aic <- models[v,]

}

if(BIC[v]==min(BIC)) {

model.bic <- models[v,]

}
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}

# MMA Estimator

require(quadprog)

D <- t(residual.mat)%*%residual.mat

D <- D + diag(1e-5,M,M)

A <- cbind(rep(1,M),diag(1,M,M))

b0 <- c(1,rep(0,M))

d <- -sigsq*K

b <- solve.QP(Dmat=D,dvec=d,Amat=A,bvec=b0,meq=1)$solution

b.col <- as.matrix(b, nrow = 1)

B <- cbind(B, b.col)

# sAIC, sBIC Estimators

w.saic <- exp(-AIC / 2) / sum(exp(-AIC / 2))

w.sbic <- exp(-BIC / 2) / sum(exp(-BIC / 2))

w.saic.col <- as.matrix(w.saic, nrow = 1)

w.sbic.col <- as.matrix(w.sbic, nrow = 1)

if(!anyNA(w.saic.col)) {

W.saic.col <- cbind(W.saic.col, w.saic.col)

}

if(!anyNA(w.sbic.col)) {

W.sbic.col <- cbind(W.sbic.col, w.sbic.col)

}

# MSEs

mse.mma.0[i] <- mean(((b[1]*fitted(model.1)+b[2]*fitted(model.2)+b[3]*fitted(model.3)

+b[4]*fitted(model.4)+b[5]*fitted(model.5)+b[6]*fitted(model.6))-dgp)ˆ2)

mse.saic.0[i] <- mean(((w.saic[1]*fitted(model.1)+w.saic[2]*fitted(model.2)

+w.saic[3]*fitted(model.3)+w.saic[4]*fitted(model.4)

+w.saic[5]*fitted(model.5)+w.saic[6]*fitted(model.6))-dgp)ˆ2)

mse.sbic.0[i] <- mean(((w.sbic[1]*fitted(model.1)+w.sbic[2]*fitted(model.2)

+w.sbic[3]*fitted(model.3)+w.sbic[4]*fitted(model.4)

+w.sbic[5]*fitted(model.5)+w.sbic[6]*fitted(model.6))-dgp)ˆ2)

mse.nonsmooth.0[i] <- mean(((fitted(model.1)+fitted(model.2)+fitted(model.3)
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+fitted(model.4)+fitted(model.5)+fitted(model.6))

/ nrow(models)-dgp)ˆ2)

mse.aic.0[i] <- mean((fitted(model.aic)-dgp)ˆ2)

mse.bic.0[i] <- mean((fitted(model.bic)-dgp)ˆ2)

mse.mcp.0[i] <- mean((fitted(model.mcp)-dgp)ˆ2)

i <- i+1

# We do not consider the replications where the sum of AIC/BIC is so small that the

denominator of sAIC / sBIC model weights approaches 0.

mse.mma <- mse.mma.0[which(!is.na(mse.saic.0))]

mse.mma <- mse.mma.0[which(!is.na(mse.sbic.0))]

mse.nonsmooth <- mse.nonsmooth.0[which(!is.na(mse.saic.0))]

mse.nonsmooth <- mse.nonsmooth.0[which(!is.na(mse.sbic.0))]

mse.aic <- mse.aic.0[which(!is.na(mse.saic.0))]

mse.aic <- mse.aic.0[which(!is.na(mse.sbic.0))]

mse.bic <- mse.bic.0[which(!is.na(mse.saic.0))]

mse.bic <- mse.bic.0[which(!is.na(mse.sbic.0))]

mse.mcp <- mse.mcp.0[which(!is.na(mse.saic.0))]

mse.mcp <- mse.mcp.0[which(!is.na(mse.sbic.0))]

mse.saic <- mse.saic.0[which(!is.na(mse.saic.0))]

mse.saic <- mse.saic.0[which(!is.na(mse.sbic.0))]

mse.sbic <- mse.sbic.0[which(!is.na(mse.saic.0))]

mse.sbic <- mse.sbic.0[which(!is.na(mse.sbic.0))]

# Boxplot comparing the performance of model selection and model averaging

# methods under investigation

boxplot(data.frame(mse.mma, mse.saic, mse.sbic, mse.nonsmooth, mse.aic, mse.bic, mse.mcp

), notch=TRUE, outline=FALSE,

main=paste(formatC(median(mse.mma),digits=4,format="g"),

formatC(median(mse.saic),digits=4,format="g"),

formatC(median(mse.sbic),digits=4,format="g"),

formatC(median(mse.nonsmooth),digits=4,format="g"),

formatC(median(mse.aic),digits=4,format="g"),

formatC(median(mse.bic),digits=4,format="g"),

formatC(median(mse.mcp),digits=4,format="g")),

sub=paste("MSE for DGP, R = ",count,sep=""))
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}

for (j in 1:length(K)) {

w.mean.mma[j] <- mean(B[j,])

w.mean.saic[j] <- mean(W.saic.col[j,])

w.mean.sbic[j] <- mean(W.sbic.col[j,])

}

# Save the results

write(c(median(mse.mma),median(mse.saic),median(mse.sbic),median(mse.nonsmooth),

median(mse.aic),median(mse.bic),median(mse.mcp))

/ min(median(mse.mma),median(mse.saic),median(mse.sbic),median(mse.nonsmooth),

median(mse.aic),median(mse.bic),median(mse.mcp)),

file="res.out",ncol=7, append = T)

write(w.mean.saic, file="res.out",ncol=6, append = T)

write(w.mean.sbic, file="res.out",ncol=6, append = T)
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Akaike, H. (1974). A new look at the statistical model identification. IEEE Transac-

tions on Automatic Control, 19(6), 716–723.

Akaike, H. (1978). On the likelihood of a time series model. Journal of the Royal

Statistical Society. Series D (The Statistician), 27(3/4), 217–235.

56



M.Sc. Thesis - Francis Kiwon McMaster - Mathematics & Statistics

Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econo-

metrics, 16(1), 3 – 14.

Ando, T. and Li, K.-C. (2014). A model-averaging approach for high-dimensional

regression. Journal of the American Statistical Association, 109(505), 254–265.

Awad, M. and Khanna, R. (2015). Support Vector Regression, pages 67–80. Apress,

Berkeley, CA.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., and Samek, W.

(2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise

relevance propagation. PLOS ONE, 10(7), 1–46.

Bahlmann, C., Haasdonk, B., and Burkhardt, H. (2002). Online handwriting recogni-

tion with support vector machines - a kernel approach. In Proceedings of the Eighth

International Workshop on Frontiers in Handwriting Recognition, pages 49–54.

Barnard, G. A. (1963). New methods of quality control. Journal of the Royal Statis-

tical Society. Series A (General), 126(2), 255–258.

Basak, D., Pal, S., and Patranabis, D. C. (2007). Support vector regression. Neural

Information Processing-Letters and Reviews, 11(10), 203–224.

Bates, J. M. and Granger, C. W. J. (1969). The combination of forecasts. OR, 20(4),

451–468.

Bennett, K. P. and Mangasarian, O. L. (1992). Robust linear programming discrim-

ination of two linearly inseparable sets. Optimization Methods and Software, 1(1),

23–34.

57



M.Sc. Thesis - Francis Kiwon McMaster - Mathematics & Statistics

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for

optimal margin classifiers. In D. Haussler, editor, Proceedings of the Fifth Annual

Workshop on Computational Learning Theory, COLT ‘92, pages 144–152, New

York, NY. ACM Press.

Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a

rejoinder by the author). Statistical Science, 16(3), 199–231.

Buckland, S. T., Burnham, K. P., and Augustin, N. H. (1997). Model selection: An

integral part of inference. Biometrics, 53(2), 603–618.

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2), 121–167.

Burnham, K. P. and Anderson, D. R. (2003). Model Selection and Multimodel Infer-

ence: A Practical Information-Theoretic Approach. Springer.

Burnham, K. P. and Anderson, D. R. (2004). Multimodel inference: understanding

AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261–304.

Cavanaugh, J. E. (1997). Unifying the derivations for the Akaike and corrected Akaike

information criteria. Statistics & Probability Letters, 33(2), 201 – 208.

Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. Journal

of the Royal Statistical Society. Series A (Statistics in Society), 158(3), 419–466.

Chen, K.-Y. and Wang, C.-H. (2007). Support vector regression with genetic algo-

rithms in forecasting tourism demand. Tourism Management, 28(1), 215–226.

58



M.Sc. Thesis - Francis Kiwon McMaster - Mathematics & Statistics

Cherkassky, V. and Ma, Y. (2004). Practical selection of svm parameters and noise

estimation for svm regression. Neural Networks, 17(1), 113 – 126.

Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging. Cam-

bridge University Press, Cambridge, United Kingdom.

Claeskens, G., Croux, C., and Van Kerckhoven, J. (2008). An information criterion

for variable selection in support vector machines. Journal of Machine Learning

Research, 9, 541–558.

Cortes, C. and Vapnik, V. N. (1995). Support-vector networks. Machine Learning,

20(3), 273–297.

Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the

Royal Statistical Society. Series B (Methodological), 57(1), 45–97.

Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J., and Vapnik, V. N. (1996).

Support vector regression machines. In M. C. Mozer, M. I. Jordan, and T. Petsche,

editors, Proceedings of the 9th International Conference on Neural Information

Processing Systems, NIPS ‘96, Cambridge, MA. MIT Press.

Drucker, H., Wu, D., and Vapnik, V. N. (1999). Support vector machines for spam

categorization. IEEE Transactions on Neural Networks, 10(5), 1048–1054.

Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., and Haus-

sler, D. (2000). Support vector machine classification and validation of cancer tissue

samples using microarray expression data. Bioinformatics, 16(10), 906–914.

Garrett, D., Peterson, D. A., Anderson, C. W., and Thaut, M. H. (2003). Comparison

of linear, nonlinear, and feature selection methods for EEG signal classification.

59



M.Sc. Thesis - Francis Kiwon McMaster - Mathematics & Statistics

IEEE Transactions on Neural Dystems and Rehabilitation Engineering, 11(2), 141–

144.

George, E. I. and McCulloch, R. E. (1993). Variable selection via Gibbs sampling.

Journal of the American Statistical Association, 88(423), 881–889.

Girosi, F., Jones, M., and Poggio, T. (1993). Priors stabilizers and basis functions:

From regularization to radial, tensor and additive splines. Technical Report AIM

1430 / CBCL 75, Massachusetts Institute of Technology, Cambridge, MA.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.

Journal of machine learning research, 3, 1157–1182.

Guyon, I. M., Weston, J., Barnhill, S., and Vapnik, V. N. (2002). Gene selection

for cancer classification using support vector machines. Machine Learning, 46(1),

389–422.

Hansen, B. E. (2007). Least squares model averaging. Econometrica, 75(4), 1175–

1189.

Hansen, B. E. and Racine, J. S. (2012). Jackknife model averaging. Journal of

Econometrics, 167(1), 38–46.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics.

Springer, New York, NY.

Hjort, N. L. and Claeskens, G. (2003). Frequentist model average estimators. Journal

of the American Statistical Association, 98(464), 879–899.

60



M.Sc. Thesis - Francis Kiwon McMaster - Mathematics & Statistics

Hodges, J. S. (1987). Uncertainty, policy analysis and statistics. Statistical Science,

2(3), 259–275.

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian

model averaging: A tutorial. Statistical Science, 14(4), 382–401.

Huang, M.-W., Chen, C.-W., Lin, W.-C., Ke, S.-W., and Tsai, C.-F. (2017). SVM

and SVM ensembles in breast cancer prediction. PLOS ONE, 12(1), 1–14.

Huang, W., Nakamori, Y., and Wang, S.-Y. (2005). Forecasting stock market move-

ment direction with support vector machine. Computers & Operations Research,

32(10), 2513 – 2522.

Hurvich, C. M. and Tsai, C.-L. (1989). Regression and time series model selection in

small samples. Biometrika, 76(2), 297–307.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceed-

ings of the Eighth ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, KDD ’02, pages 133–142, New York, NY. ACM.

Kaneko, H. and Funatsu, K. (2014). Adaptive soft sensor based on online support

vector regression and bayesian ensemble learning for various states in chemical

plants. Chemometrics and Intelligent Laboratory Systems, 137, 57 – 66.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American

Statistical Association, 90(430), 773–795.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., and Murthy, K. R. K. (2001).

Improvements to Platt’s SMO algorithm for SVM classifier design. Neural compu-

tation, 13(3), 637–649.

61



M.Sc. Thesis - Francis Kiwon McMaster - Mathematics & Statistics

Kim, K. (2003). Financial time series forecasting using support vector machines.

Neurocomputing, 55(1-2), 307–319.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals

of Mathematical Statistics, 22(1), 79–86.

Kwok, J. T. (2001). Linear dependency between ε and the input noise in ε-support

vector regression. In G. Dorffner, H. Bischof, and K. Hornik, editors, Artificial Neu-

ral Networks — ICANN 2001, International Conference Vienna, Austria, August

21-25, 2001. Proceedings, ICANN 2001, pages 405–410, Berlin, Germany. Springer.

Leamer, E. (1978). Specification Searches: Ad Hoc Inference with Nonexperimental

Data. A Wiley-Interscience publication. Wiley.

Li, K.-C. (1987). Asymptotic optimality for Cp, Cl, cross-validation and generalized

cross-validation: Discrete index set. The Annals of Statistics, 15(3), 958–975.

Li, W. and Yang, Y. (2002). How many genes are needed for a discriminant microarray

data analysis. In S. M. Lin and K. F. Johnson, editors, Methods of Microarray Data

Analysis: Papers from CAMDA ‘00, pages 137–140. Springer, Boston, MA.

Liang, H., Zou, G., Wan, A. T. K., and Zhang, X. (2011). Optimal weight choice for

frequentist model average estimators. Journal of the American Statistical Associa-

tion, 106(495), 1053–1066.

Liao, S., Zhao, N., and Zhao, Z. (2011). Bayesian-model-averaging-based model

combining method on regularization path of support vector machines.

Liu, C.-A. and Kuo, B.-S. (2016). Model averaging in predictive regressions. The

Econometrics Journal, 19(2), 203–231.

62



M.Sc. Thesis - Francis Kiwon McMaster - Mathematics & Statistics

Long, N., Gianola, D., Rosa, G. J. M., and Weigel, K. A. (2011). Application of

support vector regression to genome-assisted prediction of quantitative traits. The-

oretical and Applied Genetics, 123(7), 1065.

Lu, C.-J., Lee, T.-S., and Chiu, C.-C. (2009). Financial time series forecasting using

independent component analysis and support vector regression. Decision Support

Systems, 47(2), 115 – 125.

Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15(4), 661–675.

Mattera, D. and Haykin, S. (1999). Support vector machines for dynamic reconstruc-

tion of a chaotic system. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,

Advances in Kernel Methods, pages 211–241. MIT Press, Cambridge, MA.

Micchelli, C. A. (1986). Algebraic aspects of interpolation. In Proceedings of Symposia

in Applied Mathematics, volume 36, pages 81–102. American Mathematical Society.

Momma, M. and Bennett, K. P. (2002). A pattern search method for model selection

of support vector regression. In R. Grossman, J. Han, V. Kumar, H. Mannila, and

R. Motwani, editors, Proceedings of the 2002 SIAM International Conference on

Data Mining, pages 261–274, Philadelphia, PA. SIAM.
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