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ABSTRACT
Bottom-up prediction that links materials chemistry to their properties is a constant
theme in polymer simulation. Rheological properties are particularly challenging to
predict because of the extended time scales involved as well as large uncertainty in
the stress output from molecular simulation. This review focuses on the application
of molecular simulation in the prediction of such properties, including approaches
solely based on molecular simulation and its integration with rheological models.
Most attention is given to the prediction of quantitative properties, in particular,
those most studied such as shear viscosity and linear viscoelasticity. Studies on the
fundamental understanding of rheology are referenced only when they are directly
relevant to the property prediction. The review starts with an overview of the ma-
jor methods for extracting rheological properties from molecular simulation, using
bead-spring chain models as a sandbox system. It then discusses materials-specific
prediction using chemically-realistic models, including systematically coarse-grained
models that allow the mapping between scales. Finally, integrating molecular simu-
lation with rheological models extends the prediction to highly entangled polymers.
Recent development of several multiscale predictive frameworks allowed the success-
ful prediction of rheological properties from the chemical structure for polymers of
experimentally relevant molecular weights.

KEYWORDS
polymer melts; rheology; viscoelasticity; plateau modulus; dynamic moduli; shear
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1. Introduction

Synthetic polymers are ubiquitous in our industrialized society. These materials are
cost-effective, light-weight, easy to process, and, most importantly, highly customiz-
able – properties of polymer materials can be easily modified by adjusting their for-
mulations or processing conditions. The richness of polymer behaviors and properties
stems from the wide spectrum of length scales in its microstructure. As a result, simple
changes in the chemistry of individual monomers, their ordering in the chain sequence
(copolymers, tacticity, etc.), connection topology of different pieces of a polymer (lin-
ear, branched, etc.), arrangement of chain segments (crystalline vs. amorphous), overall
molecular size, and what they are mixed with (blends, composites, etc.) can all lead to
drastic and often unpredictable changes in material properties. Take polyethylene for
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example: introduction of a very low density of long-chain branches to linear polyethy-
lene (less than one branch per 2× 104 backbone carbons or less than one branch per
six chains) causes an over six-fold increase in its shear viscosity [1].

Computer simulation plays a vital role in our understanding of the complex dy-
namics in polymer materials and, ultimately prediction of their properties a priori.
(For a general overview of simulation techniques for polymer systems, the reader is
referred to review articles by Glotzer & Paul [2] and Paul & Smith [3].) The wide span
of length and time scales in polymer materials is also the biggest obstacle in their
simulation. For instance, nowadays, the duration of a typical atomistic (using models
retaining most chemical details, including the chemical structure of monomers) molec-
ular dynamics (MD) simulation run, for a simulation domain of ≈ (5 nm)3, falls into
the O(10)−O(100)ns range, whereas the dynamics of long-chain polymers can easily
reach macroscopic times scales (seconds or minutes).

This obstacle is felt across all aspects of polymer simulation, starting from the gen-
eration of a computer representation of a realistic polymer configuration (e.g., as an
initial condition for MD). For long-chain polymers, the time scale to fully equilibrate
the chain conformation, i.e., the longest polymer relaxation time, is well beyond the
reach of brute-force MD. For this reason, the development of methods for polymer
structure generation has remained an active area of research after more than three
decades [4–9]. For dynamical properties and phenomena, the limited time scale acces-
sible by MD is a more direct challenge. A classical problem widely studied by molecular
simulation is the diffusion of small penetrant molecules in an amorphous polymer ma-
trix [10–12]. Even for the smallest gas or liquid molecules, direct prediction of their
diffusivity by MD can still be prohibitively expensive, owing to the large time scales
of the physical process. Advanced sampling or modeling approaches must be coupled
with molecular simulation to overcome the challenge [13–16].

The current review focuses on the rheological properties of polymers. The molecular
process behind material rheological responses is polymer relaxation, which, in essence,
is the diffusion of polymer chains in a matrix made of other polymer chains. With
this perspective, it becomes clear that the problem involves substantially longer time
scales than the aforementioned problem of small-molecule diffusion in polymers. For
this reason, computing the rheological properties of viscoelastic polymers, even in the
case of highly simplified coarse-grained (CG) models, is a daunting task. Moreover,
rheological quantities calculated from MD simulation are prone to errors and large
uncertainty. For atomistic molecular models, direct prediction of the linear viscoelas-
ticity of long-chain polymers is still beyond reach. Recent advancement in systematic
coarse-graining techniques as well as the development of increasingly accurate meso-
scopic rheological models offer new solutions to these challenges, which can be used to
extend the reach of atomistic molecular simulation. Several such multiscale predictive
modeling frameworks have been proposed in recent years. The success seen so far in
those efforts brings hope that the reliable rheological prediction of practical polymer
materials through computer simulation is getting close to reality.

Note the difference between rheological property prediction (focus of this review)
and the development of theories and models in rheology per se – the latter has been
the subject of a number of review articles over the years [17–21]. This review concen-
trates instead on the application of molecular simulation in the ab initio rheological
property predictions, either by itself or as part of an integrated predictive framework,
and highlights the strengths and limitations of existing approaches. The phrase “ab
initio”, in this context, describes a systematic bottom-up prediction strategy that uses
information from the “very beginning” – i.e., material chemical structure and makeup
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(at the level of atomistic molecular models) – to predict its macroscopic properties that
are directly verifiable in experiments. (This is not to be confused to its meaning in “ab
initio molecular dynamics” which refers to the direct computation of intermolecular
potentials at the quantum mechanics level). This usage of the term is the same as in
Padding & Briels [22]. The review focuses on the prediction of quantitative properties
that can, eventually, be directly compared with standard measurements from exper-
imental rheometry. For this reason, much coverage is given to steady-shear rheology
and linear viscoelasticity. Progress in the fundamental understanding, such as chain
conformation statistics under more complex flow types, is not discussed in detail and
only referenced when needed. A more detailed discussion of the review’s limited scope
is given in section 4.

The review is organized as follows. Section 2 focuses on approaches based solely on
MD. It starts with an overview of the major techniques for extracting rheological prop-
erties from MD simulation, using the most-studied bead-spring chain model system as
a sandbox case (section 2.1). Major difficulties and challenges in each approach and
strategies for their mitigation will also be discussed. Applications of these techniques in
the MD simulation of chemically-realistic models – i.e., models that represent specific
polymer species – are discussed in section 2.2, starting with force-field based atomistic
models (section 2.2.1) where direct MD prediction is only possible for a very limited
range of systems. Systematic CG approaches that allow access to larger length and
time scales are then discussed in section 2.2.2, with an emphasize on their application
in predicting the rheological properties of long-chain polymers. Section 3 extends the
discussion to integrated frameworks that combine molecular simulation with rheologi-
cal models, including the Rouse model for unentangled polymers (section 3.1) and tube
and slip-link (slip-spring) models for entangled ones (section 3.2). Invoking rheological
models helps to either reduce the uncertainty in the data or project the prediction to
longer time scales (for long and highly-entangled chains). The paper is concluded with
a summary and outlook discussion in section 4.

2. Direct prediction from molecular dynamics

2.1. The bead-spring chain model as a sandbox: overview of major MD
approaches

The seminal work by Kremer and Grest [23] established a CG model for a generic
polymer (i.e., without specifying its chemical species) which is still widely used to this
day. In this model, often referred to as the Kremer-Grest (KG) model in the literature,
a polymer chain consists of multiple Lennard-Jones (LJ) particles or beads – point-
force sites interacting with the LJ pairwise potential [24]. Each bead is considered a
repeating unit or, loosely-speaking, “monomer” of this model chain. Chemical con-
nectivity between these beads is enforced by the finitely-extensible nonlinear elastic
(FENE) spring potential [25]. (Monomers and FENE bonds in the KG model do not
map one-to-one to repeating units and chemical bonds in any real polymer. Because
of the flexibility of FENE bonds, each CG bead would instead represent a blob con-
taining many realistic chemical repeating units. The FENE bond potential becomes a
reasonable model for describing the bead-bead distance statistics only at sufficiently
high levels of CG – when each bead represents a chain segment much longer than the
Kuhn length of the polymer [26].) Although variations can be introduced to the inter-
particle potentials to account for the effects of different chemical types (e.g., adding
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angle potentials between consecutive FENE bonds to model the bending rigidity of
the chain [27]), this model does not offer any direct representation of the chemical
structure and thus cannot make ab initio predictions for specific polymer species. It,
however, captures the universal aspects of chain structure such as the length and archi-
tecture of the chain. (Such universality is only relevant at scales much larger than that
of the Kuhn monomers. At small scales, both chain statics and dynamics are strongly
affected by the specific chemical structures, as demonstrated by the recent work of
Takahashi et al. [28].) For linear chains, it successfully captures the full range of dy-
namics from the Rouse dynamics at the short-time limit to – in the case of entangled
polymers – reptation at long time [23]. Mutating the bead connection topology can
easily adapt the model for other molecular architectures such as branched, crosslinked,
and ring polymers [29–32]. Because of its simplicity and lower computational cost, the
FENE chain model is often used as a sandbox for the development and proof-of-concept
demonstration of simulation techniques. Major approaches for computing rheological
quantities from MD were all initially applied to the FENE chains before their adaption
to more complex and chemically-realistic models.

2.1.1. Non-equilibrium molecular dynamics (NEMD) approach

The most intuitive approach is to construct virtual “experiments” in computer simu-
lation that reflect the actual experimental setup. For shear rheology, a planar Couette
flow can be simulated using the SLLOD equations of motion [33] coupled with a bound-
ary condition that properly describes the shear deformation, with the Lees-Edwards
sliding-box boundary condition [34] being the most common choice for homogeneous
shear flow [35]. Since the early work of Kröger et al. [36], a number of studies have
simulated the steady shear flow of FENE chains using NEMD and studied their steady
shear viscosity, normal stress coefficients, and flow-induced chain alignment [37–39].
Shear viscosity of the model displays the typical behavior of polymer melts, which
starts with a constant magnitude (the Newtonian plateau) at low shear rates γ̇ and
crosses over to a power-law decay

η(γ̇) ∝ γ̇−n (1)

(the shear-thinning region) at higher γ̇. The power-law exponent n varies between
studies (0.40 to 0.42 for N = 50 in ref. [37], 0.60±0.10 for N =10 to 400 in ref. [38], and
0.89 for N = 400 in ref. [39], N being the degree of polymerization – i.e., the number
of beads in a chain) but all predictions fall into the experimentally observed range
of 0.4 to 0.9 [40]. The crossover point shifts to lower γ̇ with higher N , which reflects
the increasing relaxation time of longer chains. Note that for a given chain length,
the time required for the shear stress to reach the steady state decreases with γ̇ [41].
The computational cost is thus higher at the low γ̇ end and it becomes increasingly
difficult to capture the Newtonian plateau for longer chains [37–39].

Extension to small-amplitude oscillatory shear (SAOS) seems straightforward by
imposing a sinusoidal shear strain

γ(t) = γ0 sin(ωt) (2)

to the simulation cell, where γ0 is the strain oscillation amplitude and ω is the angular
frequency. For viscoelastic fluids, the shear stress output time series will oscillate at
the same frequency but with a phase shift (to the left – i.e., earlier time) δ ∈ [0, π/2]
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(δ = 0 and π/2 correspond to the purely elastic and viscous limits, respectively).

σxy =σxy,0 sin(ωt+ δ)

=γ0

(
G′ sin(ωt) +G′′ cos(ωt)

) (3)

where

G′(ω) ≡ σxy,0
γ0

cos (δ) (4)

G′′(ω) ≡ σxy,0
γ0

sin (δ) (5)

are the storage (elastic) and loss (viscous) modulus, respectively and the phase angle

δ = arctan

(
G′′

G′

)
(6)

[42]. For polymers modeled by FENE chains, NEMD oscillatory shear simulation was
first performed by Hernández Cifre et al. [43] (for N = 5 to 70) and then by Vladkov
& Barrat [44] (for N = 10 and 20). The method was shown to generate robust results
that agree well with theoretical predictions (at least in the parameter ranges tested).
However, it is also computationally demanding as NEMD simulation needs to be per-
formed for every frequency level and a large number of oscillation periods are required
at each frequency for reliable statistics (100 periods at each frequency in ref. [43]).
The latter requirement makes it costly to capture the low-frequency (i.e., long pe-
riod) regime. It is for this reason that results are typically only reported for fairly
short chain lengths and relatively small frequency ranges with ω spanning less than
3 decades. In ref. [43], because ω only reached 10−2 (in LJ reduced units [45]) at the
lower limit, the terminal scaling of G′ ∝ ω2 and G′′ ∝ ω, according to the Rouse model
prediction [46], was only observed at the shortest chain length of N = 5. In addition,
since all these chains are below the critical chain length Nc for entanglement (which,
for FENE chains, is O(100) but depends on the method of measurement [38,47,48]),
the rubbery plateau of reptation dynamics has not been captured.

Kremer and coworkers [47,49] have used a different NEMD approach that extracts
the linear viscoelasticity from a volume-conserving elongational step-strain, i.e.,

Lx = λ−
1

2L (7)

Ly = λ−
1

2L (8)

Lz = λL (9)

where L is the original cubic box length at equilibrium. Assuming affine deformation,
the stress relaxation modulus, defined as

G(t) ≡ σxy(t)

γ0
(10)

(where σxy(t) is the transient shear stress response after an infinitesimal step shear
strain γ0 imposed on the equilibrium configuration), can be related to the normal
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Figure 1. Stress relaxation modulus G(t) scaled by the plateau modulus G0
N of semi-flexible FENE bead

spring chains (with bending potential imposed for each bond angle θ – Ubend(θ) = kθ(1 − cos θ)): (a) results

from the Green-Kubo relation of different chain lengths N and (b) comparison between the Green-Kubo (“un-
perturbed”) and the step-strain elongation NEMD (eq. (11)) approaches (ε̇ is the extension rate; τe and τR are

the Rouse relaxation times of an entanglement strand and of the entire chain, respectively). Each simulation

cell contains nchain = 1000 chains and a moving average over 100 time steps (1 LJ time unit) was applied to the
σxy(t) signal before the stress autocorrelation function (SAF) calculation. The t < τe region, i.e., relaxation

within entanglement strands, shows typical Rouse dynamics with the scaling of G(t) ∝ t−1/2. The plateau
modulus (reptation regime) is noticeable at N = 500 and becomes pronounced at N = O(1000). The terminal

relaxation regime for the two higher N is not captured because of the limited time range available. (Reprinted

from ref. [49], with permission of AIP Publishing.)

stress output of the step-elongation simulation via

G(t) =
σzz(t)

λ2 − 1
λ

(11)

where σzz(t) is the time-dependent normal stress following the step-strain [42]. The
deformation needs to be small to remain in the linear response regime (i.e., λ close to
unity). Figure 1(b) [49] compares G(t) from this NEMD approach (eq. (11)) with that
from the equilibrium MD approach (eq. (12) below, which is rigorously in the linear
regime): the finite-size elongational strain causes the G(t) to be underestimated in
the Rouse regime: t < τe. (The equilibration time τe marks the crossover between the
short-time Rouse dynamics within entanglement strands and the long-time reptation
dynamics of the whole chains.) For the reptation/plateau regime, results from the two
approaches agree excellently. The relaxation modulus contains the full information
of the material viscoelasticity in the linear regime, from which the zero-shear-rate
viscosity η0 and dynamic moduli G′ and G′′ can be calculated (see section 2.1.2 below).

2.1.2. Equilibrium MD or Green-Kubo approach

2.1.2.1. Overview of the method. In the limit of linear response, transport prop-
erties are related to the time correlation function of the equilibrium flux fluctuations
through the Green-Kubo relation [50]. In the case of shear rheology, this means G(t)
is proportional to the autocorrelation function of the shear stress

G(t) =
V

kBT
〈σxy(t0)σxy(t0 + t)〉t0 (12)

(t is the time lag, 〈·〉t0 indicates average over different time origins t0, kB is the Boltz-
mann constant, and V and T are the system volume and temperature, respectively).
Because of the equilibrium nature of this approach, for shear viscosity, only its zero-
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shear-rate limit value is available [42]

η0 ≡ lim
γ̇→0

η(γ̇) =

∫ ∞
0

G(t)dt. (13)

Xu et al. [51] used this approach to calculate the zero-shear-rate viscosity of FENE
chains with N = 10 to 50 and the resulting η0 (from eq. (13)) compares well with the
extrapolation of the η(γ̇) profiles (in their earlier study with the NEMD approach [37])
to the γ̇ → 0 limit. Excellent agreement was also found between the Green-Kubo result
of ref. [52] and the NEMD result of ref. [36].

In addition to η0, the dynamic moduli G′ and G′′ can be calculated from G(t) using

G′(ω) = ω

∫ ∞
0

G(t) sin(ωt)dt (14)

G′′(ω) = ω

∫ ∞
0

G(t) cos(ωt)dt. (15)

[42]. Compared with the NEMD approach, the Green-Kubo approach only requires one
equilibrium MD (EMD) run from which the dynamic moduli over the entire spectrum
of frequency can be calculated. This approach was first adopted by Sen et al. [52]
for FENE chains with N = 20 to 120, which was followed by a number of studies by
different researchers, with recent studies reaching chain length N up to 2000 [49,53–55].

2.1.2.2. Uncertainty and noise caused by stress fluctuations. A well-known
difficulty of the Green-Kubo approach is that the obtained G(t) profiles are loaded
with strong noises, which, if not properly treated, can often obscure the main signal
and, in some cases, lead to incorrect conclusions. The primary cause is the strong
stress fluctuations in MD simulation which are intrinsic to any microscopic simulation
cell. This is further compounded by the fact that the autocorrelation function of any
finite time series always has larger uncertainty at the large-time-lag end, because of
the diminishing number of independent sample pairs: in the case of the stress auto-
correlation function (SAF) calculation (needed for G(t) via eq. (12)), the number of
statistically-independent σxy(t0) and σxy(t0+t) pairs decreases with increasing t. This
poses great challenges for the determination of the plateau modulus G0

N . Entangled
melts of linear polymers are typically very soft and the G0

N magnitude is usually much
lower than the fluctuations in the G(t) profile: e.g., in the EMD simulation of Likhtman
et al. [54], G0

N = O(10−2), 4 orders of magnitude lower compared with G(0) = O(100)
(note from eq. (12) that G(0) = (V/(kBT ))〈σ2

xy〉, proportional to the stress fluctuation
magnitude squared). The plateau, if existent, occurs at the long time limit where the
noise in SAF is largest. It is indeed common to see the G(t) signal buried by noises in
that regime. In general, G0

N obtained from the Green-Kubo approach, without proper
treatment of the noise, is often subject to large uncertainty and errors. Likewise for
the entanglement strand length Ne, which is often derived from the plateau modulus
via

G0
N =

4

5

νkBT

Ne
(16)

(where ν is the monomer number density) according to the tube theory [46].
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It is for this reason that earlier studies using the Green-Kubo approach often con-
tained unreliable results. The initial work by Sen et al. [52] reported the observation
of plateaus in both G′(ω) and G′′(ω) profiles for N & 80. The estimated Ne based on
the observed stress plateaus is 28 which is close to Ne ≈ 30 estimated from τe iden-
tified on the segmental mean-square displacement (MSD) curve [47]. It is however at
least a factor of 2 lower than the N ≈ 80 estimate from the plateau modulus measured
from the step-strain elongation NEMD simulation [47], which should be closer because
both the Green-Kubo and step-stain elongation approaches estimate Ne from G0

N – see
fig. 1(b). Later studies at similar or even longer chain length, as discussed below, were
not able to reproduce these observations. (In addition, Masubuchi & Uneyama [56] re-
cently compared MD results using the FENE bead-spring chain model from different
researchers and found that the chain diffusivity data from Sen et al. [52] do not match
those of other studies even for much shorter – unentangled – chains.) For a similar
chain length of N = 100, Lee & Kremer [55] reported a plateau in the G(t) profile from
which the estimated Ne = 96. This result, again, was later found to be an artifact of
the large noise-to-signal ratio and the improper treatment thereof. The reported G0

N in
Lee & Kremer [55] was at the same order of magnitude as the fluctuations in the G(t)
signal (moving average was applied to the σxy(t) signal before eq. (12) was invoked). It
was later shown that after the noise is properly filtered (discussed below), G(t) is still
slowly decaying with t in the time range originally identified as the plateau [57,58].

Indeed, Zhou and Larson [53] and Likhtman et al. [54] showed that a well-defined
stress relaxation plateau does not appear even for much longer chains. For flexible
FENE chains with N = 100 (close or equal to refs. [52,55]), the relaxation dynamics
nearly completely follows the Rouse dynamics. Entanglement effects become obvious
for N & 200 where G(t) deviates from the Rouse scaling of t1/2 but a strict plateau
does not appear for N up to 350 tested in ref. [54]. It was thus concluded that for the
level of chain length (N = O(100)), G0

N and Ne cannot be directly measured from rhe-
ological data alone and theoretical models must be invoked. By fitting the MD results
with the slip-spring model [59] (further discussed in section 3.2.2) and calculating its
G0
N prediction at the N →∞ limit, Likhtman et al. [54] estimated Ne = 51.5, which

is closer to but still lower than the step-elongation result of ref. [47]. Likhtman and
Sukumaran [57] further predicted that the stress relaxation plateau cannot be clearly
identified in G(t) for chain length N < O(10)Ne (which is consistent with experimen-
tal observations [60]). For flexible FENE chains, this means N & O(1000) would be
required for the reliable extraction of G0

N from the G(t) profile.
A major hurdle to the direct computation of G0

N from MD is thus the difficulty of
generating the required amorphous chain structures. Not only does the chain length
N has to reach at least O(1000), a large number of these chains must also be packed
into the simulation cell to minimize the correlation between the periodic images of
the chains. This became possible only recently with the the latest algorithmic devel-
opments for efficient amorphous chain equilibration [8,9]. For a semi-flexible FENE
bead-spring model, Hsu & Kremer [49] calculated G(t) using the Green-Kubo ap-
proach for N =500, 1000 and 2000 and all three cases give nearly the same Ne ≈ 28
(fig. 1(a)). (Ne decreases with chain rigidity – thus the lower value here than those
quoted above for flexible FENE chains.) For this semi-flexible chain model, a stress
plateau is discernible at N = 500 (> 10Ne) and can be unambiguously identified for
N > 1000.

2.1.2.3. Noise reduction methods. Through these trials and errors, various tech-
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niques and protocols have been tested for reducing the noise and improving the re-
liability of the outcome. The ultimate way to reduce the uncertainty in a statistic
is to increase the size of the sample. In MD simulation, this means prolonging the

simulation run, enlarging the system size (stress fluctuation ∝ N−1/2
p where Np is the

number of particles in the system), and/or using more independent samples. For the
last one, an easy step to take is to average the SAF between all shear components of
the stress tensor

G(t) =
V

3kBT
(〈σxy(0)σxy(t)〉+ 〈σxz(0)σxz(t)〉+ 〈σyz(0)σyz(t)〉) (17)

thanks to the isotropy of the EMD system [49,55]. This, however, only increases the
sample size by a factor of 3, which alone is not sufficient to address the noise reduction
challenge. For increasing simulation time, Vladkov & Barrat [44] estimated (assuming
Gaussian statistics of the stress fluctuation) that reducing the relative uncertainty
of the SAF at the large-time-lag limit to a manageable level of 10% would require
a simulation length of 106τc, where τc is the correlation time of the σxy(t) signal. If
τc equals the longest relaxation time of the – in their case unentangled – chains τR

(the Rouse time), the required simulation length would be prohibitive. (The situation
would be worse for entangled polymers whose relaxation times are longer than τR.)
This conclusion was challenged by Sen et al. [61] who argued that stress fluctuation is
dominated by short-time bond vibrations. As least for a short unentangled melt with
N = 80, τc ∼ 10−4τR. A much shorter simulation time of ∼ 100τR would thus suffice.
Large noise in the SAF function 〈σxy(0)σxy(t)〉 was still found at the large-time-lag
end which can be effectively reduced by applying a running or moving average filter
to the 〈σxy(0)σxy(t)〉 signal (with the window size growing linearly with the time lag).
Moving average was shown to have no discernible effect on the integral of the SAF
(i.e., η0; see eq. (13)).

Other than filtering the SAF, moving average has also been tested on the original
stress signal σxy(t) (which is equivalent to the moving average of the SAF using a
triangular window function [62]). This treatment reduces the SAF magnitude at the
short time end but does not affect the plateau magnitude for a wide range of average
window sizes [55]. (As reviewed above, despite the significant reduction in the noise, the
remaining uncertainty in that study was still too large for the correct identification of
a stress relaxation plateau or, indeed, the lack thereof [57,58].) For strongly entangled
polymers, Hsu & Kremer [49] were able to produce a clear stress relaxation plateau
with a noise level significantly lower than the signal (i.e., G0

N ; see fig. 1(a)) by combing
the moving average in σxy(t) with a significantly enlarged system size: a total of
nchain = 1000 chains with N up to 2000 (compared with nchain = 100 and N =
100 in ref. [55]). In addition to averaging over all shear components (eq. (17)), the
study also averaged over O(10) independent simulation runs to eliminate the potential
dependence on the initial polymer configuration.

Ramı́rez et al. [62] adapted a multiple-tau correlator algorithm widely used in the
processing of dynamic light scattering data [63] to MD simulation applications, which
is able to calculate the autocorrelation function of any time series with noise filtering on
the fly. (Time correlation without filtering is also possible.) During the MD simulation,
the algorithm keeps multiple levels of the time series data (in a “data” array) and the
calculated correlation function values (in a “correlation” array). At the first level, the
data array stores the original time series for a short time period and the correlation
array stores the correlation function at smallest time lags. At higher levels, the data
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array contains moving-averaged time series (window size increases with the level rank)
that cover longer time periods, and the correlation array stores the correlation function
at larger time lags. The outcome is thus equivalent to applying moving average to the
original time series with a hierarchy of window sizes and the correlation function uses
moving averages over smaller windows for small time lags and averages over larger
windows for larger time lags. For application to the SAF and Green-Kubo approach
for G(t), the algorithm has been shown to effectively smoothen the result especially at
large time lags – i.e., the entangled regime – with a moderate simulation system size
(N ∼ O(100) and nchain ∼ O(100)) [54,57].

Other noise-reduction approaches have been reported in applications using atomistic
molecular models, which will be discussed in section 2.2.1. In addition to filtering the
MD data during postprocessing, rheological models have also been used to circumvent
the stress fluctuation problem, which will be discussed in section 3.

2.1.3. Probe rheology approach

Both NEMD and Green-Kubo approaches focus on the bulk properties of the material
and extract its viscoelasticity from the stress signal calculated from the entire simula-
tion cell. By contrast, the probe rheology approach, which is inspired by the experi-
mental technique of microrheology [64,65], is local in nature and extracts the material
viscoelasticity by tracking the dynamics of solid particles immersed therein [66–69].
There is a similar distinction between equilibrium and non-equilibrium techniques
in probe rheology. In the equilibrium approach, commonly termed passive rheology,
particle motions are driven by thermal fluctuations, whereas in the non-equilibrium
approach – active rheology – an oscillatory external force is imposed on the probe par-
ticle whose average position is maintained by an additional harmonic trap potential.

For a solid particle moving in a viscoelastic medium, the equation of motion (EoM)
can be written as a generalized Langevin equation (GLE) [26]. Dynamic moduli of
the medium, G′ and G′′, are related to the friction coefficient in the drag force term
via the generalized Stokes-Einstein relation (GSER) [70,71]. The resulting GLE in the
frequency domain relates G∗ to the amplitude and phase lag of the particle position
oscillation (in the active rheology approach) or to the Laplace transform of the particle
MSD curve (in passive rheology) [66,69]. Khare and coworkers [66,69] demonstrated
the importance of including the particle and medium inertia in the GSER without
which the predicted G∗ would be incorrect and even unphysical at higher frequencies,
especially in the case of G′. Comparison was also made with the NEMD and Green-
Kubo approaches. It was found that G′ and G′′ calculated from the NEMD and Green-
Kubo approaches agree well with each other. Both the active and passive rheology
results agree with these bulk approaches within a limited window of ω.

A detailed analysis of the acceptable ω range was provided in ref. [69]. The lower
bound of ω is determined by the distance over which the perturbation wave (caused
by the particle motion) can penetrate into the surrounding medium. The penetration
length increases with decreasing ω and for a sufficiently low ω, the perturbation wave
can travel across the polymer medium and reach the periodic image of the particle,
causing hydrodynamic interaction between the periodic images, which is not accounted
for in the current formalism. For entangled polymers, to capture ω down to 1/τd (τd

is the disentanglement time – the longest relaxation time of entangled chains), the
dimension of an adequate simulation cell (that prevents hydrodynamic interaction
between images) is estimated to scale with N3. The upper bound of ω is determined
by the requirement that the probe particle size must be smaller than the perturbation
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wavelength to avoid ballistic particle motion (again beyond the range of applicability
of the current formalism). Meanwhile, the particle size must also be large enough for
the polymer medium to be considered a continuum (> Rg – the polymer chain radius
of gyration – for unentangled polymers and & O(1)dT – the confining-tube diameter –
for entangled polymers) [72,73]. All these constraints make it extremely challenging to
obtain G∗ over a wide frequency spectrum. For the same system size of ≈ 2.87× 106

beads, the probe rheology approach is reasonably accurate for about two dedaces of
frequencies for short N = 20 chains [66], whereas for N = 80 chains, which are at most
marginally entangled, the acceptable frequency range drops to about one decade [69].
In addition, the probe particle in MD simulation is modeled as a bundle of LJ beads
and thus not strictly spherical. The choice of its effective diameter also affects the
results and the most accurate choice seems to depend on the particle size itself [69].

These challenges, together with its more complex mathematical framework, seem to
make the probe rheology approach a less appealing alternative to the bulk approaches
discussed above. However, there is a unique advantage in its access to the spatial
variations of materials properties, which is important for heterogeneous materials, such
as polymer nanocomposites, micro-phase-separated block copolymers, and polymers
near interfaces, especially in terms of establishing the relationship between the material
microstructure and its local viscoelasticity.

2.2. Chemically specific models

The previous section reviewed major approaches for computing rheological properties
of viscoelastic polymer melts from MD simulation, all using FENE bead-spring chains
as a sandbox. The model was proposed as a minimalist representation of polymer
chains containing generic features (at large scales) common to all polymers – chem-
ical connectivity between monomers, entropic attraction between consecutive chain
segments, and non-crossability between different segments – without specific corre-
spondence to any real chemical structure. Comparison with experiments is possible if
experimental data are available for mapping generic model parameters to specific poly-
mer species. For example, one may obtain the molecular weight of the polymer segment
represented by one bead by dividing the experimentally measured entanglement strand
molecular weight Me,exp – from G0

N using eq. (16) – by the model entanglement strand
length Ne,KG. Alternatively, the critical molecular weight/chain length for the onset
of entangled behaviors (identified as a crossover point on the chain-length dependence
of dynamical properties such as viscosity) Mc,exp/Nc,KG can also be used [38]. Recent
study by Takahashi et al. [28] further showed that using the information at Nc for
parameterizing the KG model can faithfully capture the statics and dynamics of much
longer chains. Nevertheless, the model cannot make any truly ab initio prediction:
from chemical structure to rheological properties without experimental input (other
than the experimental data required for force field parameterization, which generally
come from common small-molecule benchmark compounds rather than the specific
polymer of interest). MD prediction based on models constructed to represent specific
chemical structures is reviewed here.

2.2.1. Force-field based atomistic models

Force fields for atomistic molecular models have been built for a wide range of chemical
species by fitting the interaction energy profiles between atoms, calculated from quan-
tum mechanics, to empirical potential energy formulae for bond, bond angle, torsion
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angle, etc. interactions [74–77]. The excluded-volume and van der Waals interactions
are normally described with the LJ model which is often parameterized to match the
results from molecular simulation with experimental structural and thermodynamic
properties, such as density, heat of evaporation, and vapor-liquid equilibrium data.
These models allow the direct mapping between a given chemical structure to a spe-
cific model, atom by atom. (Models that map every atom into one interaction site is
called all-atom or explicit-atom force fields. Some force fields, such as TraPPE [77],
group all H atoms to its host C atom and treat, e.g., each CH2 group as one interaction
site. They are called united atom – UA – models.) Combining these atomistic models
with the MD methods reviewed above can thus, in theory, directly predict rheological
properties for any given polymer species, subject to the accuracy and availability of
atomistic force fields. In practice, however, the range of applicability is severely limited
by both the larger computational cost and the larger stress fluctuations in atomistic
simulations.

2.2.1.1. Shear viscosity. Application of NEMD and Green-Kubo approaches for
the shear viscosity of simple fluids predated most common general-purpose force fields
used nowadays [78]. Increasing model complexity, brought by the explicit represen-
tation of each atom, leads to higher uncertainty in the results. Hess [79] compared
a simple LJ fluid with short-range interactions with molecular water models (SPC
and SPC/E [80]) and found that the EMD prediction of the shear viscosity, using the
Einstein relation

η0 =
1

2

V

kBT
lim
t→∞

d

dt

〈(∫ t0+t

t0

σxy(t
′)dt′

)2
〉
t0

(18)

(a reformulation of the Green-Kubo relation – eqs. (12) and (13)), contains larger
uncertainty for molecular liquids. Prediction using atomistic models is sensitive to
force-field settings. In particular, including long-range electrostatic interactions was
found to be important.

As computer power grew over the decades, shear viscosity of larger and more
complex molecules became within reach. Because of their simple molecular structure
(which permits the usage of simple UA models) and wide availability of experiment
data, alkanes have been extensively studied for viscosity prediction by MD. Daivis
and Evans [81] extended the idea of eq. (17) and showed that by taking the traceless
symmetric part of the stress tensor, six different SAFs, from the same EMD simula-
tion, can be included in the average to improve precision. Mondello and Grest [82]
extended this treatment to the Einstein relation and showed that its result matches
that of the Green-Kubo relation. Comparison between a UA (TraPPE [77]) and all-
atom [83] force field for alkanes was reported by Payal et al. [84]. They found that the
former estimates the shear viscosity within 20 % to 30 % of the experimental values
whereas excellent agreement with experiments was found in the latter (all-atom) case.
Shear viscosity of long-chain polymers has been reported recently with the NEMD
approach [85,86]. In particular, Cho et al. [86] studied the shear flow of an entangled
polyethylene C400H802 melt with an UA model and reported shear viscosity for over 4
decades of shear rates: from the Newtonian plateau (η0) to the shear-thinning power
law region.

As far as shear viscosity is concerned, NEMD has the advantage over EMD ap-
proaches in terms of computational cost. Both Green-Kubo and Einstein relations
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Figure 2. The truncated Green-Kubo integral for shear viscosity eq. (19) as a function of the integration

upper limit t′ for a molecular model of ethanol at 298 K. Three independent trajectories are shown in different
colors. The black line in the middle shows average over these trajectories. Large uncertainty is observed between

independent trajectories after O(100)ps. (Reprinted with permission from ref. [87]. Copyright (2015) American
Chemical Society.)

require extended simulation runs to overcome the statistical uncertainty caused by
stress fluctuation, which is only aggravated for molecular fluids. The advantage of
equilibrium approaches is their ease of implementation. In addition, many other equi-
librium properties of interest can be calculated in the same run [82].

Since the Green-Kubo approach for η0 (eq. (13)) requires the integration of G(t)
to infinity, the finite-time truncation of the integral is an inevitable source of error.
Hess [79] thus argued that the Einstein relation would be more reliable, although
other studies found little noticeable difference between the two [82,88]. To evaluate
the magnitude of this uncertainty, the finite time truncation of eq. (13)

η0(t′) =

∫ t′

0
G(t)dt (19)

can be calculated for different integration upper limit t′ values (fig. 2). It was found that
instead of converging to a steady value, the integral displays increasing uncertainty at
higher t′ [84,87,88]. Indeed, the value obtained from a certain intermediate time range
(≈ 100 ps in fig. 2), where the curves have already flattened but statistics in the SAFs
are still sufficient, is often closer to the average value than the long-time limit is. This
indicates that the loss of accuracy caused by the truncation is much smaller than the
statistical uncertainty in the SAF calculation at large time lags. This uncertainty is
reduced after averaging over a number of independent MD trajectories.

A recent method proposed by Zhang et al. [87] takes advantage of the higher accu-
racy at the low-t′ end and predicts the long-time plateau value of the integral (eq. (19))
by fitting its values to an empirical double-exponential approximation [79,89]

η0(t′) = AατI

(
1− e−t′/τI

)
+A(1− α)τII

(
1− e−t′/τII

)
(20)

where A, α, τI, and τII are model parameters. The running integral η0(t′) is calculated
with eq. (19) from multiple independent simulation runs (from different initial config-
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urations) and the diverging standard deviation between them is fitted to a power law
function

sη0(t′) = At′b (21)

from which parameter A in eq. (20) is obtained. The t′ value at which the standard
deviation sη0(t′) (as a measurement of uncertainty) exceeds 40 % of the average is
recorded as a cutoff. Independent η0(t′) profiles before the cutoff are averaged and
used to fit eq. (20) (data points at different t′ are weighted by 1/t′b) to obtain the
remaining model parameters. Shear viscosity is then predicted from the t → ∞ limit
of eq. (20). The method was applied to simple liquids with viscosity ranging from
O(1)cp to O(100)cp and its predictions agreed well with experiments [87]. Extension
of this approach to polymer chain molecules, especially in the entangled regime, will
likely require a different convergence profile (than eq. (20)) because of their different
relaxation characteristics.

2.2.1.2. Linear viscoelasticity. The full spectrum of linear viscoelasticity, rep-
resented by G∗(ω) or G(t), is intrinsically more demanding to compute than shear
viscosity. (For η0 using eq. (13), positive and negative noises in the G(t) signal can-
cel over a long-time integration, whereas for G∗(ω) – eqs. (14) and (15) – accuracy
at all frequencies is required.) For long-chain polymers, calculation of these quanti-
ties at the all-atom level, using either equilibrium or non-equilibrium approaches, is
still computationally prohibitive even today. Earlier studies mostly simulated short
unentangled chains using UA models and focused on the dynamics in the short-time
(high-frequency) limit. Rheological models were used to extend the prediction to longer
times (see section 3). Harmandaris et al. [90] used the Green-Kubo approach to com-
pute G(t) only for short-chain (C24) UA polyethylene and for very short time lags (up
to O(10)ps). The Rouse model was invoked to extend the prediction to longer times
(see section 3.1). Byutner & Smith [91] used the same approach for a UA polybutadiene
C114 to compute G′ and G′′ for the ω > O(10−5)ps−1 region (fig. 6), within the glassy
regime and part of the Rouse regime, and the results agreed well with experimental
measurements of much longer (entangled) chains.

In recent years, atomistic simulation of viscoelastic behaviors of asphalt has received
much attention. Asphalt is a complex mixture of up to millions of organic compounds
of three major types – asphaltenes, saturates, and resins (aphthene and polar aromat-
ics) [92,93]. In molecular simulation, asphalt is typically modeled by a small group of
representative compounds: e.g., the recent model of Li & Greenfield [94] contains 12
compounds with molecular weight up to ∼ 900 Da. Khabaz & Khare [95] used NEMD
to calculate the shear viscosity, dynamic moduli, and creep compliance of that model.
It was found that the time-temperature superposition (TTS) principle [96] was appli-
cable to the system with consistent shift factor αT values obtained from different rheo-
logical properties. Applying TTS allowed the construction of G′ and G” master curves
spanning over 6 decades of frequencies while the original NEMD results only covered
slightly over one decade at each temperature level. For the Green-Kubo approach,
Masoori & Greenfield [97] observed enormous stress fluctuations in the atomistic MD
of the asphalt model: a simple 100-step (0.1 ps) moving average is not adequate to
yield meaningful results. To counter the spectral leakage effect, which occurs during
the Fourier transform of G(t) (to obtain G∗(ω); see eqs. (14) and (15)) over a finite
integration window, an exponentially decaying window function was applied by the
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Figure 3. A low-level coarse-graining (CG) mapping scheme for polystyrene. Two types of CG beads (super-

atoms) are used: type A (red) for the carbon backbone segment and type B (blue) for the benzene ring; thick

dashed lines represent the CG bonds between bead types A and B. (Reprinted with permission from ref. [98].
Copyright (2009) American Chemical Society.)

authors to force the vanishing of G(t) within the window. (It was later compensated
for in the frequency domain G∗(ω) – adapting the method to entangled polymers with
drastically different relaxation profiles may require a different approach). This measure
was used together with window average in the time domain (G(t)) and the removal
of unphysically low stress values in the frequency domain (G∗(ω)) to obtain the best
noise reduction in the dynamic moduli and phase angle δ.

2.2.2. Systematic coarse-graining

Atomistic molecular models retain all degrees of freedom (DoFs) of the physical system
and are thus computationally most demanding. To fully capture the whole spectrum
of polymer dynamics (which, as discussed above, spans a wide range of scales), a
hierarchical modeling approach becomes an inevitable choice [99], which uses the more
detailed models to capture the small scales and coarser models for larger scales. The
whole spectrum of dynamics will be recovered if pieces of information from different
levels are consistently stitched together.

A CG molecular model reduces the computational cost by projecting the molecular
structure to much fewer DoFs, in which each CG bead (interaction site in the model)
represents multiple atoms – from a functional group or fragment in a repeating unit
for low-level models (fig. 3) to a large polymer chain segment in high-level ones. The
CG potential (or force field) is parameterized to reflect the specific chemical structure
it is representing, which can take both bottom-up and top-down strategies (and some-
times a combination of the two). The latter approach is much like the parameterization
of non-bonded interaction terms in classical atomistic force fields (see, e.g., ref. [76]),
which determines the interaction parameters between CG beads by matching the model
prediction with experimental thermodynamic data. One well-known such example is
the CG MARTINI force field [100]. Meanwhile, the bottom-up approach constructs CG
potentials by systematically pipelining information from detailed models at the atom-
istic level, which thus allows the ab initio prediction of materials properties without
additional experimental input.
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2.2.2.1. Construction of the CG potentials. Major strategies for the systematic
bottom-up CG process have been extensively reviewed in the literature [101–106]. For
bonded interactions between chemically-connected CG beads, Boltzmann inversion
(BI) is among the most widely-used approaches: e.g., the bond stretching potential
UCG

bond(rCG
bond) between two connected CG beads is obtained by inverting the Boltzmann

distribution function of the CG bond length rCG
bond

UCG
bond(rCG

bond) = −kBT lnP (rCG
bond) (22)

where rCG
bond is measured by the distance between the CG bead centers in an atomistic

benchmark simulation (usually using shorter chains and a smaller simulation cell) and
P (rCG

bond) is its distribution from the benchmark run. Bond angle and torsion angle
(dihedral) interactions (if present in the CG model) are similarly obtained. Non-bonded
interactions are often optimized to match the structural or thermodynamic properties
of the atomistic benchmark simulation, using methods such as iterative Boltzmann
inversion (IBI) or inverse Monte Carlo (IMC). Both IBI and IMC iteratively update
the pairwise interaction UCG

pair(r) until the chosen property converges to the atomistic
result. Take the IBI approach for matching the bead radial distribution function (RDF)
g(r) for example. During each iteraction,

UCG
pair,i+1(r) = UCG

pair,i(r) + kBT ln

(
gCG
i (r)

gCG
ref (r)

)
(23)

where UCG
pair,i(r) and UCG

pair,i+1(r) are the pairwise potential at the i- and (i + 1)-th

iteration step, respectively, gCG
i (r) is the RDF obtained in the i-th step simulation

using UCG
pair,i(r), and gCG

ref (r) is the reference RDF (from the atomistic benchmark). The
method can be modified to add additional target properties, such as thermodynamic
properties, for their simultaneous optimization [107]. In addition to these potential-
based approaches, the CG force field can also be optimized to match forces on the CG
beads with those of the atomistic benchmark [108,109].

Systematic CG approaches face challenges such as the limited transferability of CG
potential parameters between thermodynamic states: parameters obtained at one state
may not be accurate for another. Also, different properties are not always consistently
predicted.

2.2.2.2. Mapping of the dynamics. For predicting dynamical properties such as
diffusivity, heat conductivity, and, in the context of this review, rheological properties,
an important factor not to be overlooked is the artificial acceleration of the dynamics at
the CG level [110,111]. The reduction of DoFs in the CG process reduces the ruggedness
of the potential energy surface and causes a sharp decrease of the intermolecular
friction (compared with the original atomistic system), which leads to the unphysical
speed-up of molecular motions. Additional measures are required to counter this effect.

2.2.2.2.1. Time rescaling. At lower levels of CG, a simple workaround is to apply a
time rescaling factor obtained heuristically by matching the diffusivities from the two
model levels [110]. Although there is no guarantee that different dynamical processes
in the system scale by the same factor, the agreement between the CG and atomistic
MSD curves does extend beyond the diffusive regime (where the fitting is performed) to
much of the short-time subdiffusive regime. Harmandaris & Kremer [112] constructed
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a CG model for polystyrene that maps each repeating unit to two CG beads with
BI (fig. 3). It was found that the same scaling factor is able to match both the MSD
and end-to-end vector autocorrelation function between the CG and atomistic models:
indicating a consistent level of CG-induced acceleration between chain diffusion and
conformational relaxation dynamics [98]. The time scaling factor is a function of chain
length but converges to a plateau at the long-chain limit, which allows its estimation
using a moderate chain length at the atomistic level for the CG simulation of long
chains [113]. For structurally or dynamically heterogeneous systems – such as mixtures,
composite materials, or polymers near Tg – or for non-equilibrium dynamics, a single-
value scalar factor may no longer be applicable [113]. In an ethylbenzene-polystyrene
binary mixture, it was found that the scaling factor for the polymer is over one order
of magnitude higher than that of the solvent [110].

2.2.2.2.2. Friction coefficient. At higher levels of CG (in which many repeating units
map to each CG bead), explicitly introducing the friction drag and – by the fluctuation-
dissipation theorem [26] – random forces into the EoM becomes necessary. These forces
can be either pairwise, as in dissipative particle dynamics (DPD) [114], or between the
CG beads and a background medium, as in Brownian dynamics (BD) [115]. Maurel
et al. [116] built a CG DPD model for cis-1,4-polybutadiene using a UA model as
the benchmark. Each DPD bead maps to 5 repeating units (20 backbone carbons)
and the CG potentials (conservative force in DPD) were generated through the IBI
approach (for both bonded and non-bonded interactions). A pressure correction term
to the non-bonded interaction (proposed by Reigh et al. [117]) was found necessary
to reproduce the correct thermodynamic state. The friction coefficient was left as
a free parameter and chosen somewhat arbitrarily: the dynamics of the model thus
does not map directly to the experimental system. The relaxation modulus G(t) was
computed from the DPD trajectory with the Green-Kubo approach using the Ramı́rez
et al. [62] multiple-tau correlator algorithm for the SAF. The longest chain studied
was C800 (≈ 4Ne; Ne was estimated from the primitive path analysis [48] – see below
in section 3.2.1), for which no clear stress plateau was observed. This is consistent with
the earlier discussion that a clear-cut stress plateau would not occur for N < O(10)Ne

(see section 2.1.2).
Several efforts have been made to systematically extract the lost friction from the

DoFs eliminated in the CG process. Using a model binary LJ fluid mixture as the
benchmark, Shell [118] showed that his relative-entropy formalism (that the relative
entropy between the CG and reference systems is the fundamental quantity to min-
imize in a rigorous hierarchical modeling framework [119]) consistently retains the
thermodynamic and dynamic properties of the liquid. For molecular liquids, friction
force parameterization has been developed in the framework of the force-matching CG
strategy [108,109]. These methods, however, were so far mostly demonstrated in non-
polymeric simple liquid model systems. Izvekov & Voth [120] used the force-velocity
and velocity-velocity time correlation functions in the atomistic benchmark simulation
to obtain the friction coefficients in the GLE for the CG system. Diffusion coefficient
of methanol computed from the CG BD accurately reflected the all-atom result. In
another approach developed by Markutsya & Lamm [121], which is more efficient for
complex liquids and mixtures containing many different CG bead types, the friction
coefficient in the Markovian Langevin equation (which, compared with the GLE, ne-
glects the memory effect in the friction coefficient by assuming its faster decay than
the time scale of bead motion) is extracted from the fluctuations of interaction forces
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Figure 4. Schematic of an entanglement (bond-crossing) event detected by the TWENTANGLEMENT al-
gorithm [122]. A crossing point ~X is recorded, which is allowed to move along both bonds. Calculation of the

bond energies of the intersecting bonds considers the stretched/kinked contour length, until disentanglement
is detected. (Reprinted from ref. [124], with the permission of AIP Publishing.)

between CG beads. (Force fluctuations are recorded in the same atomistic benchmark
simulation used to compute the average forces for the CG potential). The method was
tested on the pure TIP3P water model [80] and a glucose in TIP3P water solution.
Compared with conventional CG MD (i.e., without friction and random forces), which
overestimates the molecular diffusivity by one order of magnitude, the BD simula-
tion with friction coefficients derived from this approach agrees excellently with the
atomistic benchmark.

2.2.2.2.3. Non-crossability – preserving the chain topology. For polymers, Padding
& Briels [22,122–124] have developed a hierarchical modeling framework for the pre-
diction of their rheology and dynamical behaviors. It builds CG mesoscopic models
for long entangled polymers following an ab initio paradigm – completely bottom-up
using the atomistic simulation as the only source of information.

A new element introduced in the model, compared with other systematic CG ap-
proaches, is the explicit treatment of the entanglements between CG bonds. In their
framework, the term “entanglement” is taken at its face value: topological cross-
ing (more accurately, attempted crossing) of bonds that results in their intertwine-
ment. Explicit inclusion of entanglements in the EoM is necessary to enforce the
non-crossability between polymer chains at high levels of CG, which they referred
to as CG stochastic dynamics (CGSD), in comparison to CGMD at lower levels of
CG [22]. CG potentials soften with the increasing CG level. For CGMD (e.g., the
example of fig. 3), in which each bead acts as a “superatom” grouping a limited num-
ber of real atoms (typically less than 5 backbone carbons plus other atoms attached
thereon), their interactions are still hard enough to prevent unphysical chain cross-
ing. For dynamic mapping of these models, a time rescaling approach would suffice in
most homogeneous systems. For CGSD, each bead represents a “blob” containing a
large chain segment and their potentials become too soft to preserve the topological
non-crossablilty between chains. Models at this level typically require the explicit con-
sideration of friction, and thus random, forces in the EoM, thus the word “stochastic”
in its the name.

A so-called “TWENTANGLEMENT” algorithm was proposed for bond crossing
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detection [122] (fig. 4). Once detected, the algorithm adds a crossing point that alters
the dynamics of the four beads involved in the two crossing bonds. The crossing point
is allowed to glide along the bonds. The potential energies of the entangled bonds are
calculated using the now kinked bond contour length

Li,i+1 = |~Ri − ~X|+ | ~X − ~Ri+1| (24)

where Li,i+1 is the bond length between the i- and (i + 1)-th atoms, with position

vectors ~Ri and ~Ri+1, and ~X is the position vector of the crossing point. This energy
contribution prevents the phantom crossing of the bonds. The normal bond settings
will be restored once disentanglement is detected. (A conceptually similar method for
preventing bond-crossing in BD simulations was reported, at around the same time, by
Kumar & Larson [125]. Compared with the TWENTANGLEMENT algorithm, it does
not directly account for the changing potential after entanglement. Instead, it adds a
repulsive potential between bonds that prevents entanglement from ever happening.)

CG potentials were built for polyethylene through BI, in which each bead maps to
20 backbone carbon atoms. (For the same 20 carbon per bead mapping, ref. [116], dis-
cussed above, did not detect chain crossing – using the method of Goujon et al. [126]
– and thus found no need for additional topology preservation measures. This dis-
crepancy may be attributed to the difference in backbone rigidity between cis-1,4-
polybutadiene and polyethylene.) Friction coefficients, used in the CG BD simulation,
were systematically extracted from the random force autocorrelation function using a
probe-bead method later introduced into the framework [123]. In this method, a group
of atoms in the atomistic benchmark represented by a CG bead (one “blob”) are fixed
by a constraining force, which balances the random forces from (1) interactions with all
other atoms and (2) coupling with the thermostat (heat bath). The two contributions
are separated based on a cutoff frequency determined from the CG potential of mean
force profiles. Contribution (1) goes into the friction coefficient parameterization.

Other than the atomistic force field, the resulting model does not contain any ad-
justable parameter that is not determined a priori. It accurately predicts (compared
with experimental values) the shear viscosity and diffusivity of polyethylene for chain
lengths up to C1000, including both unentangled and entangled cases. The G(t) was
computed with the Green-Kubo relation and a stress plateau seems to appear at C400

(in the midst of strong noises). The entanglement strand length and plateau modulus
were both accurately predicted. Application to the non-equilibrium simulation of both
steady and transient shear flows was also reported [124] and the results agreed with
available experimental data.

3. Integration with rheological models

The biggest challenges in the prediction of polymer rheology by molecular simulation,
including the large uncertainty caused by the intense stress fluctuations and the ex-
ploding time scales of long-chain dynamics, can be circumvented when molecular sim-
ulation joins forces with appropriate rheological models for an integrated multiscale
predictive framework. In these approaches, molecular simulation is used to provide
materials-specific information to complement generic rheological models. Model-based
predictions are always smooth (free from noise) and the time scales they can reach
are not as limited by computational resources as they are by the model’s range of
applicability. Of course, prediction reliability is necessarily limited by the accuracy
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of the rheological models themselves. For example, both the Rouse and tube models
take a mean-field approach that describes the relaxation of a probe chain submerged
in a continuous background formed by all surrounding chains. Correlation between
the relaxation dynamics of different chains cannot be straightforwardly accounted for.
Such effects are more clearly observed in bidisperse mixtures containing chains of two
different lengths, where the cross-species correlation between the segmental orienta-
tions of the two chain types was found to decay over the relaxation time of the longer
chains [127]. Continued development and improvement of rheological models are the
key to the prediction accuracy of all approaches discussed in this section.

3.1. Unentangled dynamics: the Rouse model

The Rouse model is widely used for the dynamics of unentangled polymer melts. It
describes the dynamics of a probe chain, modeled as a string of beads connected by
Gaussian (compared with FENE in the KG model) springs, submerged in a viscous
medium representing the collective effects of all surrounding chains [17,46]. In addition
to its highly-simplified representation of the molecular structure, the model also mostly
neglects non-bonded monomer-monomer interactions including the excluded-volume
and hydrodynamic interactions. Interactions between the non-bonded monomers in
the probe chain are completely neglected, whereas its interactions with surrounding
chains are described through its Brownian motion in the medium. Bead coordinates
of the model chain are projected to a set of normal modes and each mode relaxes
exponentially with its own relaxation time. The stress relaxation modulus G(t) can be
correspondingly decomposed into a spectrum of relaxation modes

G(t) =
νkBT

N

N∑
p=1

exp

(
−2t

τp

)
(25)

where ν is the number density of the beads, p is the Rouse mode index, and τp = τ1/p
2

is the relaxation time of the p-th mode (τ1 is the relaxation time of the slowest mode
which is the Rouse time τR.).

Molecular simulation data can be used to parameterize the Rouse model for rheo-
logical prediction. For the CG simulation of bead-spring chain models, time-dependent
Rouse modes can be directly calculated knowing the coordinates of each bead. Vladkov
& Barrat [44] explored this Rouse mode analysis (RMA) as an alternative approach
for computing linear viscoelasticity (of the KG FENE chain model) that avoids the
strong noise and uncertainties found in direct MD results. The obtained Rouse modes
were used to calculate the equilibrium stress, which, through the Green-Kubo relation,
produces G(t) and thus η0, G′, and G′′. For two different chain lengths (N = 10 and
20), the RMA prediction consistently underestimated (compared with the Green-Kubo
result from direct MD) η0 by the same error magnitude. It was thus inferred that RMA
preserves the stress contribution from chain connectivity (the “polymer” contribution)
but leaves out that of monomer-monomer interactions (the “non-polymer” contribu-
tion). The latter is associated with individual beads and thus independent of chain
length. The missing contribution is from time scales below the relaxation time of the
(N − 1)-th Rouse mode τN−1 and can be effectively compensated by adding∫ τN−1

0

V

kBT
〈σxy(t)σxy(0)〉dt (26)
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(cf. eq. (12)) to the RMA prediction, where σxy is from direct EMD. For the dy-
namic moduli, the RMA can closely reproduce G′ compared with NEMD results but
it underestimates G′′ especially at the high frequency end. A correction was similarly
introduced in which the short-time part of the G(t) profile from direct EMD was fitted
to an empirical expression and the correction terms to G′ and G′′ were obtained from
the resulting G(t) expression using eq. (15).

For atomistic polyethylene (C20 to C150; UA model), Harmandaris et al. [128] calcu-
lated the autocorrelation functions of the Rouse modes from MD and, by fitting these
autocorrelations to an exponential decay function, extracted their relaxation times τp.
Equation (25) was then invoked to calculate G(t). For two chain lengths (C46 and
C90) where experimental data were found, the Rouse prediction underestimated η0 by
0.6 cp to 1.0 cp. In a later study by the same authors [90], relaxation dynamics of the
same polyethylene model (C24 and C78) was investigated with an NEMD approach.
Pre-strained polymer configurations subject to a steady-state extensional deformation
was generated with an end-bridging Monte Carlo (EBMC) algorithm [5] and their
relaxation to equilibrium was simulated with MD. RMA was used to extract the re-
laxation time spectrum τp from the stress relaxation of the pre-strained conformation
– which takes only half of the time compared with equilibrium MD – and G(t) is again
obtained from eq. (25). Direct computation of G(t) from EMD was also performed for
the C24 case in the short-time-lag (t . O(10ps)) limit. The RMA profile appeared to
extend continuously from the EMD one within statistical uncertainty. However, sta-
tistical noises at the end of the GEMD(t) profile (t ≈ 40 ps) span over a wide range of
O(106) ∼ O(108)Pa and the GRMA(t) magnitude at the same time lag was closer to the
lower bound of the fluctuations than to the mean. This observation is still consistent
with the conclusion of ref. [44] that RMA without correction underestimates the re-
laxation stress. Padding & Briels [123] used a more detailed expression for G(t) (than
eq. (25)). It explicitly incorporates the normal coordinates of the Rouse modes into the
prefactors of the relaxation modes. Each mode decays with time following a stretched
exponential function. The normal coordinates and relaxation times of Rouse modes
were extracted from their CGSD model of polyethylene. The prediction was extended
to the entangled regime (t > τe) by invoking the original tube model [46], which was
fused with the Rouse expression by requiring the continuity of G(t) at t = τe. The
plateau modulus G0

N predicted from the combined models is close to (but lower than)
the results of direct BD (calculated with the Green-Kubo relation).

Existing attempts of invoking the Rouse model to assist with rheological prediction
seem to consistently underestimate the relaxation modulus, likely caused by its sim-
plifications. Although remedies have been proposed (in ref. [44]) to correct for the lost
information at the sub-Rouse small scales (t < τN−1), it likely does not account for
all its errors. Notably, Masubuchi et al. [129] recently reported that both the FENE
bead-spring model and all-atom models deviate from the Rouse dynamics starting
from the second mode (p = 2).

3.2. Entangled dynamics: tube and slip-link/-spring models

The dynamics of polymer chains undergoes a distinct transition upon a critical chain
length marked by, among many others, a sharp turn in the η0 vs. N relationship (from
η0 ∝ N to η0 ∝ N3.4) and the emergence of a stress relaxation plateau in the G(t)
profile. This is caused by the topological constraints imposed by the non-crossability
of polymer chains, commonly described as “entanglements”, which drastically slow

21



Figure 5. Primitive paths (PPs) extracted from an all-atom polyisoprene model using the Z1 code [132]: (a)

the original chain (light/green) and PP (dark/blue) of an individual polymer molecule; (b) all PPs in a cell

shown with the original chains; and (c) PPs only. Different colors are for different chains. Kinks in the PPs
represent points of entanglement. (Reprinted from ref. [133], with permission from Elsevier.)

down the chain relaxation dynamics. Capturing the dynamics of polymer chain in
this regime using brute-force MD, even with state-of-the-art CG techniques, would
be an endless chase as the longest relaxation time τd ∝ N3.4. Rheological models
for entangled polymers become a necessary bridge that connects short-time molecular
simulation to long-time dynamics.

3.2.1. Extending molecular simulation with tube models

Since its inception circa five decades ago [130,131], the tube theory has remained the
most popular description of entangled polymer dynamics as it offers a reasonable bal-
ance between conceptual simplicity and predictive capability. It takes a mean-field
approach and treats the topological constraints imposed by all other chains surround-
ing a probe chain as a confining potential, which restricts its lateral motions and forces
its relaxation to the longitudinal direction. The potential contour has the shape of a
curvilinear tube and its axis, where the confining potential reaches its minimum in
each cross-sectional plane, is termed the “primitive path (PP)” (fig. 5 & fig. 7(a)).
The one-dimensional diffusion of the chain along the tube can be solved to give an
η0 ∝ τd ∝ N3 scaling which falls short of the 3.4 exponent found experimentally [46].
Inaccuracy of the original tube model led to the introduction of numerous modifi-
cations and improvements over the years [17,18]. Two most notable additions to the
model are (1) contour length fluctuations (CFL; segmental displacements at both ends
of the tube which lead to the fluctuations in the tube contour length) and (2) con-
straint release (CR; disentanglement of surrounding chains causes changes in the tube
boundary itself).

3.2.1.1. Primitive path analysis. The primitive path (fig. 5), according to the
original concept of Edwards [134], is obtained when the probe chain is contracted,
with its both ends tethered, in a forest of line obstacles (representing the topological
constraints imposed by all its surrounding chains) while preserving all non-crossablilty
constraints with those obstacles. Several computer algorithms have been developed to
extract the PPs from the polymer configurations obtained from molecular simulation.

The first such algorithm, developed by Everaers and coworkers [48,135], takes an
energy annealing approach. It performs energy minimization with all chain ends fixed
in space and all intramolecular non-bonded interactions switched off. This allows the
bond forces to contract the chains to their minimal contour lengths, subject to the
topological constraints imposed by other chains since intermolecular interactions are
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still kept on. The resulting PPs, represented by the contracted bead-spring chains, are
mapped to a freely-jointed chain (FJC) model to extract the entanglement statistics.
Consider each PP an (N/Ne)-step random walk with step length dT (tube diameter
measured by the end-to-end distance of entanglement strands):

〈R2〉 =
(
N
Ne

)
d2

T

〈Lpp〉 =
(
N
Ne

)
dT

⇒
{
dT = 〈R2〉

〈Lpp〉
Ne = N 〈R2〉

〈Lpp〉2
(27)

where 〈Lpp〉 and 〈R2〉 are the ensemble-average contour length and square end-to-end
distance of the PPs (the latter is the same as the square end-to-end distance of the
original chain, whereas 〈Lpp〉 < L – the contour length of the original chain).

Two other algorithms were developed shortly after: the Z1 code by Kröger [132]
and the CReTA algorithm by Tzoumanekas et al. [136]. These two are very similar in
their approaches and both are based on geometric minimization, which simultaneously
minimizes the contour lengths of all chains with their ends held fixed and all topo-
logical constraints preserved. Geometric minimization is several orders of magnitude
faster than energy annealing [137] and can be used to extract the full distribution
of entanglement strands. The PPs obtained are piecewise linear lines and the kinks
between line segments represent points of entanglement. The entanglement points can
be mapped to the original chains, allowing the direct identification of individual entan-
glement strands thereon. (For the energy annealing approach, whose resulting PPs are
not line representations but bead-spring chains, Shanbhag & Larson [138] have pro-
posed a method to identify the entanglement points based on the relative positioning
of neighboring beads.)

The individual entanglement strand length measured this way (N indv
e ) is within

the same order of magnitude of but differs substantially from the value estimated
with eq. (27). This indicates that PPs are not strictly FJCs and the orientations of
consecutive strands/segments are correlated. Estimation from eq. (27) should thus be
interpreted as the Kuhn length of the PPs (NKuhn

e ). Using a theoretical argument
based on the phantom network model for rubber elasticity, Everaers [139] showed that
the two measurements are related by

NKuhn
e =

N indv
e(

1− 2
f

) (28)

where f is the functionality of the elastic junctions – number of strands connected to
each junction point. For entanglements between two chain segments, f = 4, leading to
NKuhn

e = 2N indv
e (which is consistent with multiple simulation findings using both CG

and atomistic models). It was further argued that NKuhn
e is the correct value to use for

calculating the plateau modulus with eq. (16). Establishing such a relation between
Ne values from different measurements is important not only for the interpretation of
rheological models but also for their application in the ab initio prediction of rheo-
logical properties. For the latter, both the tube (section 3.2.1) and slip-link/-spring
(section 3.2.2) models are being used as a bridge between chemically-specific molec-
ular models and the long-time relaxation dynamics of entangled polymers. Accurate
determination of Ne is essential for prediction reliability. Indeed, Ne is still chosen with
some level of arbitrariness in many studies.

Comparison between different PP analysis methods have been extensively discussed
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Figure 6. Dynamic moduli G′ and G′′ of polybutadiene (PBD; molecular weight Mw = 1.3× 105 Da; 298 K):

comparison between experiments (circles) and MD simulation/tube model predictions (lines; using the Byutner
& Smith procedure [91]). The MD simulation used short unentangled PBD chains (C114; Mw ≈ 1540 Da) and

covers the glassy regime (high ω) in the plot; the Milner & McLeish [141] tube model was used to extend

the prediction to lower frequencies (parameterized by the MD simulation – see section 3.2.1). (Reprinted with
permission from ref. [91]. Copyright (2002) American Chemical Society.)

in the literature: see discussion in ref. [136], a comparative study by Shanbhag &
Kröger [137], and the review article by Tzoumanekas & Theodorou [140]. Application
of PP analysis in nonlinear shear flow was also reported [85], offering important insight
for the development of rheological models for strongly non-equilibrium flows.

3.2.1.2. Multiscale predictive frameworks built on tube models. Byutner &
Smith [142] proposed a comprehensive framework that fuses together the Davidson-
Cole model for glassy dynamics [143] (short time/high frequency), Rouse model for
the relaxation of entanglement strands (intermediate time/frequency), tube models for
reptation (long time/low frequency) to predict the whole spectrum of linear viscoelas-
tic behaviors of entangled polymers. Various theoretical and, sometimes, empirical
relations were invoked to minimize the number of model parameters to only three,
all of which can be extracted from the atomistic MD simulation of short unentangled
chains: (1) the Rouse time τR was calculated from that of the shorter reference chains
in atomistic MD

τR = τR, ref

(
N

Nref

)2

(29)

(assuming constant monomer friction coefficient with increasing N ; τR, ref was cal-
culated from the reference chain diffusivity through its MSD); (2) the entanglement
strand length Ne (and plateau modulus via eq. (16)) – not directly available from
short-chain simulations – was estimated using a scaling argument linking the tube di-
ameter with the packing length [144], which eventually connects Ne to the mean-square
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end-to-end distance 〈R2〉

Ne =

(
K

ν

)2( N

〈R2〉

)3

(30)

〈R2〉 = C∞Nl
2
b (31)

(ν = ρ/M0 is the number density of backbone bonds; ρ is the density and M0 the
molecular weight per bond; K is the prefactor in the scaling argument – empirically
found from experimental data and constant at a given temperature for a wide variety
of polymers; lb is the backbone bond length; C∞ is the Flory’s characteristic ratio
estimated by extrapolating values of shorter chains from MD to the N → ∞ limit);
and (3) the glassy modulus G∞ is calculated from

G∞ =

(
π√
8

)
νkBT (32)

for which the high-frequency extension to the Rouse model by Marvin (which relates
G∞ to the relaxation time in the glassy regime) [145,146] and the relation by Benallal
et al. [147] (which estimates the glassy relaxation time from τR) were invoked.

The atomistic benchmark system was a UA model for polybutadiene (PBD) with
a microstructure that mixes cis-, trans-, and vinyl monomers [148]. The chain length
was C114. Models (Davidson-Cole, Rouse, and tube) parameterized by this short-chain
simulation were used to predict the linear viscoelasticity of a much longer chain C9140.
For the reptation regime, the original Doi & Edwards tube model [46] was compared
with two later models that include CLF: modified Doi & Edwards [149] and Milner
& McLeish [141] models. Comparison with experimental results showed that CLF is
required to correctly capture the relaxation dynamics in the reptation regime and the
Milner & McLeish model provides the best overall agreement with experiments in both
the plateau and terminal relaxation zones. In a follow-up study [91], they replaced the
model predictions in the high-frequency (glassy and upper Rouse) regime with direct
MD results (of the long chain system) using the Green-Kubo approach and integrated
the MD profile with the Milner & McLeish model prediction for lower frequencies.
Excellent agreement with experiments was found (see fig. 6).

A more detailed approach has been developed by Stephanou, Mavrantzas, and co-
workers that avoids the need of semi-empirical relations for tube model parameteriza-
tion by directly retrieving the information from MD. It starts from the fundamental
relation of any tube model that

G(t) = G0
NΨ(t) (33)

where Ψ(t) is the average fraction of the chain PP that is still contained in the original
tube (of t0) after a time period t has elapsed. It is calculated from

Ψ =
1

L

∫ L

0
ψ(s, t)ds (34)

where s is the arc-length coordinate of a chain segment along the contour of its PP
and ψ(s, t) is the segmental survival function – the probability that segment s is
still in the original tube after time t. Different tube models differ by the form of the
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Figure 7. Schematics of (a) a polymer chain (solid/orange), its confining tube, and primitive path (PP;
dashed/blue); and (b) a blowup view of a chain segment showing the reconstruction of the confining tube

(cylinders) and the computation of the segmental survival function ψ(s, t) using the Stephanou et al. [150]

method. The blue/dashed line represents a small part of the PP at t0. For each entanglement strand (segments
between kinks), a cylinder of diameter dT is constructed around its PP. After time t, the PP moves to new

positions (solid/black line) and a fraction of it is found out of the original tube. Statistics of PP segments

staying inside versus escaping the original tube are recorded to compute ψ(s, t). (Reprinted from ref. [150],
with the permission of AIP Publishing.)

ψ(s, t) function, which, for the most part, describes the one-dimensional transport of
segments along the tube contour. In the original Doi-Edwards model, an analytical
expression for ψ(s, t) is available [46]. More complex models describe the dynamics of
ψ(s, t) through a one-dimensional (along the PP contour) diffusion or reaction-diffusion
partial differential equation (PDE).

Stephanou et al. [150] proposed a method that allows the direct computation of
ψ(s, t) from MD trajectories (fig. 7). It starts by applying the Z1 code [132] to convert
the molecular configurations of each image into PP configurations. For t0, the confin-
ing tube for each molecule is modeled as a piecewise cylindrical pipe around its PP
with diameter dT (computed either from the segmental MSD curve or the temporal
PP fluctuations in the transverse directions). After time t, each PP segment is exam-
ined to check if it is still contained in the original tube. The probability of segment
retention is averaged over all molecules and over different time origins. Applying this
method to the atomistic MD data of weakly-entangled chains (this requirement differs
from the earlier Byutner & Smith approach where the benchmark simulation can be
of unentangled chains) provides the direct MD measurement of ψ(s, t) for the system.
This ψ(s, t) profile is used to parameterize the chosen tube model to match the model
prediction (solution of the ψ(s, t) PDE) with the MD result. At this step, the mathe-
matical formulation of the model (the PDE problem) can be adjusted and improved to
better describe the observed dynamics from MD, before it is used for prediction. The
optimized model can then be solved for the ψ(s, t) of much longer highly-entangled
chains and their linear viscoelasticity can be predicted [151,152]. Invoking a few simple
scaling relations can reduce the required model parameters to only the entanglement
time τe (available from the segmental MSD) and strand length Ne (NKuhn

e calculated
from the PP configurations was used [150]). The latter is again related to G0

N via
eq. (16).
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The method has been applied to monodisperse polyethylene, cis-, and trans-1,4-
polybutadiene (PBD) [151] and for the latter two, bidisperse PBD was also stud-
ied [152]. For the Leygue et al. [153,154] tube model evaluated in both studies, im-
provements in the model formulation were proposed that led to better agreement in
ψ(s, t) between the model and MD. Comparison with experiments was also made with
generally good agreement, although the prediction was found to be sensitive to model
parameters and the revised tube models, which better predict ψ(s, t), do not always
improve the prediction of linear viscoelasticity [151]. This, however, could as well re-
flect the inadequacy of the models per se rather than that of the multiscale prediction
strategy. The model prediction used for comparison with experiments in ref. [152] was
not strictly ab initio since tube model parameters were extracted from experiments
rather than from atomistic simulation (because the experimental polymer contains
both cis- and trans- monomers and thus does not exactly match the MD).

Another multiscale framework that connects atomistic MD, CGMD, tube theory,
and continuum mechanics for the prediction of macroscopic viscoelastic behaviors of
polymers was developed by Liu and coworkers [106,133]. Atomistic MD with the COM-
PASS (all-atom) force field [76] of short chains was used as the benchmark. In the case
of cis-polyisoprene studied, a total of nchain = 100 chains, each with 10 repeating
units, were used. The CG model maps each unit (4 backbone carbons) to one CG
bead (superatom) using IBI. A time rescaling factor was determined by matching the
velocity autocorrelation functions between the two model levels. The CG model was
then used for the simulation of entangled chains from which PPs were analyzed us-
ing Kröger’s Z1 code [132]. The CGMD and PP results were used to parameterize
a constitutive model derived in their earlier work [155] based on the tube model and
affine-deformation assumption, in which the stress tensor dynamics can be determined
knowing the tube parameters (tube diameter, PP contour length, and Mittag-Leffler
exponent – the last one was not systematically extracted and was set to unity in the
study) and the chain statistics and dynamics from CGMD (Kuhn length, chain diffu-
sivity, τd). Having a constitutive equation at the continuum level lifts the restriction
of linear deformation – it can be solved for general nonlinear deformations (provided
that changes in tube parameters under deformation are properly modeled) using the
finite-element method. The approach was applied to polyethylene and polyisoprene
with good agreements with experiments.

3.2.2. Extending molecular simulation with slip-link/-spring models

In slip-link models, topological constraints between entangled chains are conceptu-
alized by analogy with a polymer network. Unlike a chemically crosslinked polymer,
where the constraints are permanent and fixed, physical constraints between entangled
chains are not attached to a particular atom or monomer in the chain sequence. Each
such constraint is modeled as a slip link – a virtual ring that holds two chain segments
together by restraining their lateral movement while still allowing them to wiggle their
way out. The link is destroyed each time one of the chains escape the constraint and a
new link is created when a chain’s end reaches another chain. The idea was pioneered
by Hua and Schieber [156] and a number of models of this type have been developed
over the years [157–160].

As a conceptual cousin to slip-link models, slip-spring models attach each link, which
now only holds one chain, to an elastic spring and allow the links to move stochastically
along the chain. Slip-spring models can be of a separate-chain type, in which the other
end of the spring is attached to a fixed anchor point (see the Likhtman model [59]
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Figure 8. Schematic of the separate-chain slip-spring model of Likhtman [59]. Solid circles represents polymer

beads (~ri) and light-colored springs are the backbone bonds. Dark-colored springs constrain slip-links (loops; ~sj)

to fixed anchor points (crosses; ~aj). The slip-links move along the chain contour following stochastic dynamics.
(Reprinted with permission from ref. [59]. Copyright (2005) American Chemical Society.)

in fig. 8 for example), or a multi-chain type, in which the other end of the spring is
attached to another link, generally on a different chain – thus many chains must be
simulated in the same cell (see the Theodorou model [161], illustrated in fig. 9, for
example.) (It needs to be emphasized that the Theodorou model builds on a string
of developments of multi-chain slip-spring models by a number of earlier researchers
including Chappa et al. [162], Uneyama & Masubuchi [163], Langeloth et al. [164], and
the so-called TIEPOS scheme by Ramı́rez-Hernández et al. [165,166]. This particular
model is singled out here because of its integration into a recent multiscale prediction
framework that connects atomistic molecular models with entangled dynamics, which
is discussed below.)

In addition to the slip-link vs. slip-spring and separate-chain vs. multi-chain distinc-
tions, variations also exist between these models in other aspects, such as the specific
rules for the movement, creation, and elimination of links. These models have been ex-
tensively discussed in a number of recent reviews [19–21]. The focus here is not on the
models per se but on their application as an add-on tool for enhancing the capability
of molecular simulation to predict the rheological properties of polymer.

Compared with tube models and earlier slip-link models, Likhtman’s slip-spring
model [59] stands out in its detailed treatment of sub-entanglement dynamics (i.e., at
scales smaller than Ne), which is important for weakly-entangled systems where the
stress plateau is still not dominant. In the model (fig. 8), a polymer molecule is still
described as a bead-spring chain. A number of links are added to different positions on
the chain. Each link is constrained to an anchor point (fixed position in space) with a
spring force, which effectively models the confinement of the chain segments around its
PP with a parabolic potential. The links are allowed to slide along the chain contour
with stochastic dynamics (i.e., under friction and random forces) to model the chain
reptation in the tube – thus the word “slip” in its name. The links are positioned
off-bead : i.e., they are allowed to take any position along the continuous arc-length
coordinate of the chain contour. When a link falls between beads, interpolation is
used to determine its spatial coordinates from its arc-length position. The link spring
force, which tethers the link to its anchor point, is shared between the two neighboring
beads. The model is solved numerically with BD for two sets of EoMs – one for the
beads and the other for the links – and G(t) can be calculated using the Green-Kubo
relation.

The Likhtman model is a separate-chain model: an ensemble of isolated chains are
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simulated separately and each chain only directly interacts with its medium through
slip-link spring forces. To include CR, which is fundamentally a multi-chain effect,
coupling between chains is modeled by imposing binary correspondence between links.
Each time a chain end moves past a link, that link and its corresponding link (on
another chain) are both removed. A new pair of links, registered as a corresponding
pair, are then added to the system: one at an end of a randomly-chosen chain, the
other at a random position of another randomly-chosen chain.

There are three entanglement-related parameters: Ns – spring length, Ne – average
number of backbone bonds between links, and ζs – friction coefficient for the slip-links.
It was noted that as long as ζs � ζ0 (friction coefficient of a polymer bead), results are
not sensitive to its (ζs) value. Meanwhile, for Ns and Ne, it is their combination, rather
than individual values, that is more important. Combinations that give the same G0

N
predict very similar G(t) profiles.

For the FENE bead-spring chain system, the Likhtman model has been used to
predict the linear viscoelasticity of highly entangled polymers based on the simulation
of weekly-entangled ones. As discussed in section 2.1.2, reliable computation of G0

N
requires enormous chain lengths (N & O(1000)) and system sizes. At N = O(100), the
chains are only moderately entangled and the reptation effect is still not dominant.
Slip-link/-spring models were shown to better agree with experiments at N . O(10)Ne

than tube models [167] and thanks to its better handling of sub-entanglement dynam-
ics, the Likhtman model [59] is particularly suitable for extracting information from
weakly-entangled simulation systems. This was later done by Likhtman et al. [54] us-
ing MD data for flexible FENE chains with N up to 350. Since G0

N is not available
from the MD model of weakly-entangled chains, the slip-spring parameters (i.e., Ns,
Ne, and ζs) were set at predetermined values based on those of common polymers.
Instead, parameters of the FENE chain (size and time scale of individual beads) at
the BD level (i.e. slip-spring simulation) were used as adjustable parameters to fit the
G(t) of weakly entangled chains from MD. Simulation of the slip-spring model was
then run at the N →∞ limit to obtain the plateau modulus. The predicted G0

N was
about 25% higher than the value from the step-strain elongation NEMD [47] (i.e., Ne

lower than the latter).
More recently, a bottom-up hierarchical prediction framework was developed by

Theodorou and coworkers [161] in an attempt to connect atomistic molecular mod-
els to the viscoelastic properties of highly-entangled polymer melts. The framework
builds upon a slightly adapted version of a slip-spring model developed by the same
group [168]. Different from the Likhtman model, the Theodorou slip-spring model is
a multi-chain model: coupling between different chains is directly modeled by adding
slip-springs between pairs of links on different chains (rather than between a link and
a fixed anchor point). Therefore, all chains must be included in the same simulation
cell to explicitly account for their interaction through slip-springs. For the slip-spring
simulation, the CG bead-spring chain model for polymers is still updated with BD,
but the slip-link positions are updated with a kinetic Monte Carlo (kMC) approach.
Link positions are on-bead – links can only connect to a discrete number of positions
along the chain marked by the polymer beads – and they are allowed to hop between
nearby beads through Monte Carlo sampling.

Mapping between the atomistic and BD models followed a systematic CG approach.
CG potentials were constructed from the atomistic benchmark with BI and the friction
coefficient of the BD beads was determined by scaling up that of the backbone CH2
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Figure 9. Schematic of a multi-chain slip-spring model of Theodorou et al. [168]. Thicker springs present
backbone bonds and thinner springs represent slip-spring potentials between links (not explicitly drawn) on

different chains. Links hop between beads following a kinetic Monte Carlo algorithm. (Reprinted with permission

from ref. [161]. Copyright (2017) American Chemical Society.)

group at the atomistic level

ζBD,0 =
mBD,0

mMD,0
ζMD,0 (35)

where ζ and m are the friction coefficient and molecular mass, respectively, and the
subscript 0 indicates individual repeating units (bead in BD and CH2 in MD). Single-
unit friction coefficient ζMD,0 can be straightforwardly obtained from MD (from the
relaxation time of the smallest Rouse mode using the Stokes-Einstein law) [128]. De-
termination of the slip-spring settings was less methodical (not entirely ab initio – i.e.,
from atomistic benchmark), but microscopic insight was still taken into account in
most choices. The spring potential has a soft FENE form and the potential parameters
were determined to match the spring-length distribution to dT of the highly-entangled
polymer. (Because of the softness of the interaction, free energy contribution from these
artificially-added interactions is minimized. In the case of dense and stiff slip links,
an expensive free energy compensation term proposed by Chappa et al. [162] would
be required.) The average spacing between consecutive slip-links along the chain was
chosen within the range from the Ne measured with the CReTA algorithm [136] to the
experimental value (the latter is 2.5 times as large as the former, which is consistent
with the aforementioned analysis by Everaers [139] that the experimental value is close
to NKuhn

e and NKuhn
e ≈ 2N indv

e ) and adjusted to match the experimental plateau mod-
ulus. Finally, the slip-link hopping frequency was mostly an adjustable parameter set
to match the chain diffusivity from BD/kMC to that in atomistic MD. For rheological
prediction, the Green-Kubo relation was used to calculate G(t) and the multiple-tau
correlator algorithm [62] was invoked for SAF computation and smoothing. Maxwell
modes were used to fit the long-time region of G(t) (which was also used in ref. [54]
to get a smooth profile for calculating G∗(ω) using eqs. (14) and (15)).

In ref. [161], UA models of entangled polyethylene with C260 and C520 were used
as the atomistic benchmark cases and the BD/kMC model was built for up to C2080.
Both equilibrium and non-equilibrium dynamics were run and extrapolation of the
shear viscosity from non-equilibrium BD to the zero-shear limit matches with the
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Green-Kubo result.

4. Summary and outlook

This review article covers the development of molecular simulation as a tool for the
prediction of polymer rheological properties. Despite much progress made over more
than two decades, challenges still persist especially in two aspects: (1) large uncer-
tainty caused by the strong stress fluctuations in microscopic simulation cells and (2)
intractable time scales for the relaxation of polymer chains, especially in the entan-
gled regime. Direct prediction by molecular dynamics can take either equilibrium or
non-equilibrium approaches. Results from EMD and NEMD have been found to agree
well with one another. The main challenge is to obtain statistically reliable results, for
the whole spectrum of linear viscoelasticity, with reasonable computational time. For
atomistic molecular models, the computational cost is higher and stress fluctuations
intensify – direct MD prediction of the linear viscoelastic behaviors for long chain
polymers remains out of reach.

Mitigating the impact of stress fluctuations requires large simulation system sizes
and noise-filtering techniques. (For molecular liquids described by atomistic models,
combination of multiple noise-filtering techniques is often required.) Systematic coarse-
graining approaches can be used for addressing the time scale challenge, provided that
information on system dynamics, in addition to that of the molecular structure, is
properly pipelined from the atomistic simulation to the CG model. Advancement in
rheological modeling provides an alternative direction to tackle these challenges. For
unentangled chains, the Rouse model has been used to extract the necessary informa-
tion from molecular simulation for reconstructing the dynamics. The stress autocor-
relation function is typically underestimated because of the neglect of intermolecular
interactions – for which a compensation term can be extracted from the short-time
dynamics in MD (see ref. [44]) – as well as other simplifications in the model. For entan-
gled polymers, various forms of tube and slip-link/-spring models have been developed.
Molecular simulation can be integrated with such models to make chemically-specific
predictions for long-chain polymers, by systematically extracting model parameters
from the atomistic simulation.

The ultimate objective is a systematic workflow that connects materials chemistry
– including monomer chemistry, molecular architecture, molecular weight distribu-
tion, and, in the case of mixtures, composition – with experimentally verifiable rhe-
ological properties. The prediction will be ab initio in the sense that information is
extracted from the detailed molecular models and conveyed, in a bottom-up man-
ner, to higher-level models for macroscopic prediction. Several such multiscale in-
tegrated frameworks have already been demonstrated for highly-entangled polymers.
These models either adopt a systematic CG paradigm and impose inter-chain topolog-
ical constraints by explicitly modeling the entanglements between bonds [22,122–124]
or integrate atomistic molecular models with tube or slip-link/-spring models (and
sometimes a CG model in between) to extend the dynamics from unentangled or,
more often, weakly-entangled chains (from MD) to highly-entangled systems compa-
rable to experiments [91,106,133,142,150–152,161]. The level of success reached so far
gives us reasons to be optimistic: reliable ab initio prediction of polymer rheology for
industrially-relevant polymer systems is in sight.

The current review is obviously not all-inclusive. Much emphasis has been put on
linear viscoelasticity and, for nonlinear rheology, only the steady-shear viscosity was
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discussed in more detail. These quantities are not only most frequently studied in
molecular simulation, but also most often measured in experiments for standard rhe-
ological characterizations. The review also focuses on the prediction of quantitative
rheological properties and has skipped many contributions using simulation for the
fundamental understanding of rheological responses and polymer dynamics. For ex-
ample, studies such as those using NEMD to reveal chain conformation and dynamics
in non-linear flows are not covered [41,85,169,170]. Extensional rheology has also been
largely left out, because NEMD simulation of the large-strain regime was limited to
planar extensional flow [170] until fairly recently. In particular, the development of a
generalized Kraynik-Reinelt boundary condition finally enabled the molecular simula-
tion of three-dimensional flows such as uniaxial and biaxial extensions [171], making
the prediction of non-linear extensional rheology a tangible possibility [172].

As to the polymers being studied, much of the focus has been put on monodisperse
linear polymer melts. Extension to polymers with other molecular architectures or
realistic molecular weight distributions (MWDs) seems to be straightforward as far
as molecular simulation is concerned. The challenge is to develop reliable rheological
models for such systems. Modeling the dynamics and rheology of entangled polydis-
perse polymer melts typically involves a mixing rule between the relaxation spectra
of different chain lengths [173,174] (which was considered in the Leygue et al. tube
model [153,154] used for bidisperse polybutadiene in ref. [152]). Meanwhile, Cao and
Likhtman [127] have demonstrated, using the MD simulation of relatively short FENE
bead-spring chains (N = 10 and 100), that the cross-correlation between the relaxation
dynamics of different chains (of either identical or different chain lengths) takes up the
same proportion of the overall relaxation of the system, for both monodisperse and
bidisperse systems of different blend compositions. This finding opens the possibility
for extending the MD prediction from monodisperse systems to general polydisperse
ones. Extending the tube and slip-link models to branched and other complex chain
architectures has been an ongoing progress [19–21,175,176].

Challenges in applying molecular simulation for industrially-relevant polymers also
come from the experimental side. Take low-density polyethylene (LDPE) for exam-
ple. The vast distribution of chain sizes and branching configurations in commercial
LDPE samples makes the experimental characterization of detailed molecular struc-
tures nearly impossible. Rheological prediction of such materials must be made based
on incomplete information, which appears to be an insurmountable obstacle. Read et
al. [177] sidestepped this problem by invoking the Tobita model for the kinetics of
homogeneous free radical polymerization [178] to model the the branching configura-
tion distribution of LDPE. Parameters for the Tobita model were obtained by fitting
with the experimentally measured MWD and the radius of gyration of the molecules.
Tube model parameters were fitted with the linear viscoelastic data. Prediction of
non-linear shear and extensional rheology using the same parameters (with no further
adjustment) successfully captured the experimental results. Although molecular sim-
ulation was not involved in that study, the idea of integrating polymerization kinetics
into the modeling of complex industrial polymers provides new inspirations for the
future development of more comprehensive predictive frameworks based on molecular
simulation.

Finally, the author’s own interest in this area is motivated by a larger effort in
his research group aiming at incorporating molecular simulation into the toolbox for
the selection and design of industrial plasticizers. Plasticizers are particularly impor-
tant for the production of poly(vinyl chloride) (PVC) materials. Classical theories
for explaining the plasticization effect lacks in molecular details [179,180] and can-

32



not provide chemically-specific guidelines. Therefore, a priori prediction of plasticizer
performance is of great interest and can potentially be used to reduce the time and
cost of experimental development. In a recent study from the initiative, a reliable
atomistic molecular model has been developed for the prediction of thermo-physical
and mechanical properties of plasticized PVC [181]. Rheological prediction is part of
the ongoing effort. Extending the existing methods covered in this review to polymer-
plasticizer blends will be a new test to the models themselves. Compared with the
relatively better-known (but still not widely studied) case of polydisperse polymers,
the polymer-plasticizer blends have an additional layer of complexity in the specific in-
teractions between the additive and the host polymer. A better understanding of how
these interactions affect rheology is also a key question to address for the fundamental
molecular understanding of the plasticization effect.
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[27] Kröger M. Simple models for complex nonequilibrium fluids. Phys Rep. 2004;390:453–
551.

[28] Takahashi KZ, Nishimura R, Yamato N, et al. Onset of static and dynamic universality
among molecular models of polymers. Sci Rep. 2017;7:12379.

[29] Zhou Q, Larson RG. Direct molecular dynamics simulation of branch point motion in
asymmetric star polymer melts. Macromolecules. 2007;40:3443–3449.

[30] Duering ER, Kremer K, Grest GS. Structure and relaxation of end-linked polymer net-
works. J Chem Phys. 1994;101:8169–8192.

[31] Zhang S, Xi L. Effects of precursor topology on polymer networks simulated with molec-
ular dynamics. Polymer. 2017;116:143–152.

[32] Halverson JD, Lee WB, Grest GS, et al. Molecular dynamics simulation study of non-
concatenated ring polymers in a melt. I. Statics. J Chem Phys. 2011;134:204904.

[33] Evans DJ, Morriss GP. Nonlinear-response theory for steady planar Couette flow. Phys
Rev A. 1984;30:1528–1530.

[34] Lees A, Edwards S. The computer study of transport processes under extreme conditions.
J Phys C: Solid State Phys. 1972;5:1921–1929.

[35] Todd BD, Daivis PJ. Homogeneous non-equilibrium molecular dynamics simulations of
viscous flow: Techniques and applications. Mol Simulat. 2007;33:189–229.
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