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Transient dynamics of turbulence growth and bursting:

effects of drag-reducing polymers

Lu Zhua, Xue Baia, Evan Krushelnyckya, Li Xia,b,∗

aDepartment of Chemical Engineering, McMaster Universtiy, Hamilton, Ontario L8S
4L7, Canada

bKavli Institute for Theoretical Physics (KITP), University of California, Santa
Barbara, California 93106-4030, U.S.A

Abstract

The transient process of turbulence development and vortex breakdown from

a marginal flow state dominated by streaky velocity patterns is not only es-

sential for understanding the bypass transition into turbulence, but – in the

context of viscoelastic fluids – also offers unique insight into the dynamics

at high-extent and maximum drag reduction (HDR and MDR). Shooting

trajectories connecting the edge state and following its unstable manifold to

the turbulent basin are generated. In Newtonian flow, the growth of turbu-

lence starts with the intensification of velocity streaks and a sharp rise in

the Reynolds shear stress. It is followed by a quick breakdown into high-

intensity small-scale fluctuations before entering the basin of statistical tur-

bulence. Adding drag-reducing polymers does not affect the initial growth

of turbulence but stabilizes the primary streak-vortex structure. As a re-

sult, the vortex breakdown stage is circumvented. Polymer deformation is

insignificant until the vortex breakdown, after which polymer stress rapidly
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shoots up. At high Weissenberg number Wi, loss of turbulent kinetic energy

through polymer elastic conversion is comparable to viscous dissipation. Be-

yond bypass transition, the transient process studied here closely resembles

the bursting phase of the self-sustaining cycle of turbulence. Our results in-

dicate that at high Wi (i.e., HDR) polymer effects can significantly reduce

bursting by rerouting the trajectory of turbulent dynamics.

Keywords:

laminar-turbulent transition, turbulent drag reduction, viscoelastic fluids,

direct numerical simulation, flow instability

1. Introduction

The transition from a laminar flow to turbulence is accompanied by an

abrupt increase in the friction drag of the flow. Long-chain flexible polymer

additives are known to cause significant drag reduction (DR) even at very

low concentrations [1, 2, 3, 4]. Much progress has been made in the funda-

mental understanding of the DR phenomenon since its initial discovery in the

1940s [5], especially during the past 20 years when tools providing direct ac-

cess to turbulent flow fields, including particle image velocimetry (PIV) [6, 7]

and direct numerical simulations (DNS) [8, 9], became broadly applied. In

particular, although the exact mechanism of DR remains debatable [3], it is

now generally accepted that polymers suppress turbulence by counteracting

the vortical motions therein [10, 11, 12, 13]. Dynamics of viscoelastic tur-

bulence is however a complex multistage process [14]. Its behaviors remain

puzzling in several regimes including that of high DR levels and during the

laminar-turbulent (L-T) transition.
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The level of DR initially increases with polymer-induced elasticity but

eventually saturates into an asymptotic limit [1]. This limit, the so-called

maximum drag reduction (MDR) asymptote, is widely regarded as the most

important unsolved problem in viscoelastic turbulence. Mean velocity at

MDR is insensitive to polymer species, molecular weight, or concentration

and is well approximated by the Virk [1] profile

U+
m = 11.7 ln y+ − 17.0 (1)

(the superscript “+” denotes quantities non-dimensionalized in turbulent

inner scales[15]; further explained below in Section 2). The logarithmic re-

lation was empirically proposed without any physical ansatz, other than fol-

lowing the form of the Prandtl-von Kármán (PvK) log law of Newtonian

turbulence [15]. Recent studies by White et al. [16] and Elbing et al. [17]

closely examined the mean velocity of channel and boundary layer flows us-

ing data from both experiments and Direct Numerical Simulation (DNS),

which clearly showed that at least for the friction Reynolds number Reτ in

the range of O(102 ∼ 103), a pronounced log law region only exists in New-

tonian and low-extent drag reduction (LDR) flows – as the flow converges to

MDR, logarithmic dependence is lost across the domain. Equation (1) ap-

pears close to MDR mean velocity profiles only because any departure from

the logarithmic dependence is not easily detectable by eye in common U+
m

vs. y+ linear-log coordinates (as in fig. 11). It should therefore only be inter-

preted as nothing more than a quantitative estimate for MDR mean velocity:

for a very broad range of Reynolds number Re, it provides a reasonable fit

for the mean velocity data of various polymer solutions and flow conditions.

Qualitative understanding of the existence and universality of MDR are at
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the heart of decoding MDR. The existence of MDR, that polymers are not

able to completely quench turbulence but only push it towards an asymptotic

limit, indicates that there must be a unique mechanism for sustaining turbu-

lence. This is further supported by the observation of distinct flow structures

at MDR compared with those of Newtonian turbulence [6, 7, 18, 19, 20]. Its

universality – for given Re, the same MDR mean velocity is observed for

different polymer solutions – is highly counter-intuitive, as MDR is typically

reached at the limit of strong polymer effects. Earlier theoretical attempts at

explaining MDR are phenomenological or semi-empirical in nature [1, 21, 22]

and have met contradictory evidences as new experimental and numerical

data emerged (see discussion in White and Mungal [3], Xi and Graham [23].)

A consistent mechanistic theory is still missing. It was recognized more re-

cently that the mean velocity profile takes notably different shape way before

MDR [24, 19, 14, 16, 17] and the concept of high-extent DR (HDR) was thus

introduced. The change between LDR and HDR was later shown to be a

qualitative transition marked by sharp changes in several key flow statis-

tics and different vortex distribution patterns, which indicates fundamental

changes in the underlying vortex regeneration dynamics [25].

As to the L-T transition, since polymers can suppress turbulent fluc-

tuations, it is intuitive to expect that the transition will be delayed to a

higher Re compared with Newtonian flow, which was indeed often observed

in experiments [26, 27, 28]. However, early transition was also reported for

certain experimental conditions [29, 30]. This complex dependence on poly-

mers suggests the coexistence of more than one transition pathways. Recent

experiments by Samanta et al. [31] showed that as the polymer concentra-
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tion increases, the origin of the instability driving the transition changes from

inertia – the same transition mechanism as Newtonian flow which is only de-

layed by polymers – to a combination of inertia and elasticity. The latter so-

called “elasto-inertial turbulence (EIT)” can appear at Re much lower than

Recrit ≈ 2100 of the Newtonian pipe flow and shows distinct flow structures

from the coherent structures in inertia-driven turbulence (IDT) [31, 32, 33].

In Newtonian channel flow, the transition to turbulence bypasses the

Tollmien-Schlichting (T-S) wave, which does not appear until Re ≈ 5600 [34],

and is able to occur at a much lower Recrit ≈ 1000 [35] with a higher turbu-

lence growth rate [36, 37]. The process relies on various modes of streak

instability where disturbances on streamwise velocity streaks lead to the

roll-up and lift-up of vortices, which generates three-dimensional turbulence

through a so-called “breakdown” process [38, 39, 40, 41, 42]. Typical practice

for studying the bypass transition in DNS is to superpose certain predefined

disturbances on a two-dimensional base flow and track the transient evolu-

tion of flow structures. For viscoelastic fluids, earlier work largely focused

on the linear stability of the base flow [43, 44, 45, 46] whereas the bypass

transition, either driven by inertia alone (leading to classical turbulence) or

a combination of inertia and elasticity (which leads to EIT), is likely a non-

linear process. Samanta et al. [31] pointed towards a scenario in which these

two pathways coexist in parallel. Although the latter, i.e., the laminar-EIT

transition, is an emerging topic of interest, understanding of the more clas-

sical laminar-IDT pathway is still rather limited in the case of viscoelastic

fluid flows. The only nonlinear DNS study so far, to our best knowledge,

was reported by Agarwal et al. [47], where the development of a localized
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Figure 1: Schematic of the state space of invariant and transient solutions to the Navier-

Stokes equation (based on current understanding). Blue solid line represents the shoot-

ing trajectories of this study. The overshoot magnitude (during moments marked with

“bursting”) is lower when the initial state is more distant from the edge state. Within the

turbulent basin, intermittent excursions towards the laminar-turbulent boundary (“hiber-

nation”) are pivoted back by the edge state dynamics.

perturbation was tracked and polymers were found to suppress the turbu-

lence growth rate and prolong the transition process. In this study, we aim

to further the understanding of the laminar-IDT transition by following the

solution objects directly responsible for the process and quantitatively ana-

lyze the contributes of inertial, viscous, and elastic forces on the turbulence

development.

From a dynamical system perspective, at least at Re not too far above

its critical magnitude for the L-T transition Recrit, there are two basins of

attraction in the solution state space of the Navier-Stokes equation (fig. 1).
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The laminar state is a linearly stable steady state whereas turbulence can

be viewed as a chaotic attractor formed around a number of invariant saddle

points [48, 49]. In the context of L-T transition, one saddle point of particular

interest is the so-called edge state (ES) [50, 51], whose stable manifold forms

the boundary between the basins. Dynamical trajectories initiated from dif-

ferent sides of the boundary head towards opposite directions, following the

unstable manifold of the ES. To trigger turbulence from the laminar state,

the disturbance must be large enough to overpass the L-T boundary. The

importance of the ES in governing the L-T transition was clearly illustrated

in a recent study of the asymptotic boundary layer flow, where the tran-

sient development of turbulence triggered by random noises was found to be

mediated by the ES together with its stable and unstable manifolds [52].

With polymers continuously suppressing turbulence and pushing it into

weaker forms, the ES is of particular interest to DR research since it is the

weakest or most marginal form of turbulence. Numerical solutions of the ES

in viscoelastic flow were only computed recently [53, 54]. Flow structures

of these solutions are strongly reminiscent of those of MDR, which feature

smooth velocity streaks, weak vortices, and a kinematics dominated by shear

motion [54]. In these states, polymer molecules are not sufficiently stretched

and the polymer stress is limited; consequently, flow statistics of the ES

is confirmed to be insensitive to polymer effects. The existence of weak but

self-sustaining turbulent states unaltered by drag-reducing polymers not only

explains the existence of MDR – i.e., why polymers are not able to completely

quench turbulence to the laminar state, it also offers a perfect explanation

to the universality of MDR: these weak turbulence states are intrinsically
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Newtonian whose flow statistics are not affected by polymers. Dynamic con-

vergence towards the ES with increasing polymer elasticity was demonstrated

in DNS solutions of minimal flow units (MFUs), where intermittent quiescent

phases similar to the ES (and thus MDR) were identified in the trajectories

and phenomenologically termed “hibernating” turbulence [55, 23, 56]. As

sketched in fig. 1 with a green line, a turbulent dynamical trajectory spends

most of its time sampling the region near the upper-branch (UB) traveling

wave solutions, which forms the center of strong “active” turbulence. Hiber-

nating turbulence occurs when excursions are made towards the low-branch

(LB) solutions [57], which were know to form the ES [58]. Transition to hi-

bernating turbulence is rare in the Newtonian flow, but polymers are able to

suppress active turbulence and increase the frequency of hibernation, leading

to a flow that increasingly resembles MDR. Taking an ergodic view of turbu-

lent dynamics, this intermittent transition between active and hibernating

intervals in an MFU should be mapped to spatial intermittency between

active and hibernating patches in larger domains, which was confirmed in

recent experimental and simulation studies [59, 60].

The framework constructed so far is solely based on the dynamics around

TW solutions, steady states in moving reference frames, with many transient

components overlooked. In particular, the so-called “bursting” events – in-

termittent but violent eruptions of turbulent activities in near wall flow [61]

– reflect the importance of non-steady-state dynamics in the turbulent self-

sustaining cycle [62]. Non-trivial interaction between turbulent bursting and

polymer additives was observed in experiments [63], but its nature has not

been explored. Interest into bursting events became rekindled as our recent
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study proposed the suppression of bursting by polymers as a key step in the

transformation of turbulent regeneration dynamics at the LDR-HDR tran-

sition [25]. Our results (shown below) will reveal that flow structures and

dynamics following the unstable manifold of the ES closely resemble typical

descriptions of bursting events, offering the first opportunity of studying the

polymer effects thereon. Also missing from the current framework is EIT

which is an additional solution object that shows up at higher Wi and, as

we discuss later, can co-exist with known solutions in fig. 1. The position-

ing of this solution in the state space and its dynamical relationship with

existing ones are unclear as of yet, which is a subject of much future inter-

est. Meanwhile, despite addressing the existence and universality of MDR,

the quantitative origin of the Virk asymptote remains unsolved. Although

the ES mean velocity follows the Virk asymptote in one particular case [53],

departure from the asymptote was observed with changing Re and domain

size [54]. Filling in the aforementioned gaps in the framework is necessary

for a full understanding of the phenomenon.

It becomes clear now that understanding the dynamics surrounding the

ES and its unstable manifold is important for answering many of these ques-

tions, especially the bypass transition via streak breakdown and polymer-

bursting interactions. In this study, we take a non-traditional approach by

focusing not on the turbulence at the statistically-converged stage (SCS;

i.e., turbulent basin) but in the regime near the ES, and focusing not on

the time-averaged statistics but on the transient dynamics. DNS shooting

trajectories are initiated from the ES and their dynamics leading to the tur-

bulent basin are tracked (see the blue line in fig. 1). (We use the term

9



“shooting” to indicate that the time-integration DNS trajectories are de-

signed to shoot from specific initial states and in specific directions, for a

targeted exploration of certain regions in the state space. This usage is sim-

ilar in spirit as the reference of “shooting” in the transition path sampling

method widely used in molecular simulation [64]. This is not to be confused

with the shooting method for numerically solving boundary value problems.)

Traditional approaches for bypass simulation, as reviewed above, rely on

arbitrary perturbation of a base flow. The choice of initial disturbance in-

evitably affects the observations, which complicates any comparison between

studies. Our shooting approach focuses on the turbulence growth from the

ES, which shows well-defined streaky flow patterns typically observed before

breakdown, and along its unstable manifold. This allows direct access to the

solution objects pivotal to various bypass trajectories and offers a benchmark

for understanding the transition dynamics. Similarly, bursting dynamics is

nearly intractable in standard DNS thanks to the chaotic nature of turbu-

lence: no two bursting events are the same and separating them from the

rest of the dynamical cycle is nearly impossible. This study allows the di-

rect comparison of bursting events between Newtonian and viscoelastic flows

along the same trajectories, offering the first such opportunity to investigate

the polymer effects on bursting dynamics.

2. Methodology: formulation and simulation details

We focus on flow in the plane Poiseuille geometry (fig. 2) driven by a

constant mean pressure gradient. The x, y and z coordinates are the stream-

wise, wall-normal and spanwise directions respectively. Lengths are scaled
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Figure 2: The plane Poiseuille geometry.

with the half-channel height l, velocities are scaled with Newtonian laminar

center-line velocity UCL, time is scaled with l/UCL, and pressure is scaled

with ρU2
CL. The no-slip boundary condition is applied at the walls (y = ±l)

and periodic boundary conditions are adopted in x and z directions, in which

the periods are denoted as Lx and Lz.

The conservation equations of momentum and mass are:

∂v

∂t
+ v ·∇v = −∇p+

β

Re
∇2v +

2(1− β)

ReWi
(∇ · τ p), (2)

∇ · v = 0. (3)

Here, the Reynolds number is defined as Re ≡ ρUCLl/η, where ρ is the to-

tal density of the fluid; η ≡ ηs + ηp is the total zero-shear-rate viscosity of

the fluid and s and p represent solvent and polymer contributions respec-

tively. The Weissenberg number is defined as Wi ≡ 2λUCL/l, the product of

the polymer relaxation time λ and the mean wall shear rate. The viscosity

ratio β ≡ ηs/(ηs + ηp) is the ratio of the solvent viscosity to the total zero-

shear-rate viscosity, and 1− β is approximately proportional to the polymer
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concentration in dilute polymer solutions. We can use ρ, η and the mean

wall shear stress τw to define turbulent inner scales, which are more appro-

priate in the near-wall region [15]. Therein, velocity is scaled with the friction

velocity uτ ≡
√
τw/ρ, and the viscous length scale δv ≡ η/ρuτ . Then the

friction Reynolds number is defined as Reτ ≡ ρuτ l/η and the eddy turnover

time is l/uτ . Quantities nondimensionalized with these time-averaged inner

scales are marked with a superscript “+”. Because of the constant mean

wall shear stress, Reτ =
√

2Re and l/uτ =
√

Re/2 (the latter measured in

outer time units – TUs – l/UCL) are both constant. Following earlier stud-

ies [55, 23, 53, 54], for flow fields and statistics near one of the walls at a

given moment, it is more relevant to use the instantaneous wall shear stress

of that wall, τ ∗w, to define the inner scales; quantities scaled in this way are

marked with a superscript “*”.

In eq. (2), the last term on the right-hand side contains the polymer stress

tensor τ p, which is obtained from the FENE-P constitutive equation (finitely

extensible nonlinear elastic dumbbell model with the Peterlin approximation)

[65]:

α

1− tr(α)
b

+
Wi

2

(
∂α

∂t
+ v ·∇α−α ·∇v − (α ·∇v)T

)
=

(
b

b+ 2

)
δ, (4)

τ p =
b+ 5

b

[
α

1− tr(α)
b

−
(

b

b+ 2

)
δ

]
. (5)

Here δ is the Kronecker delta tensor. With Q denoting the end-to-end vector

of polymer molecules, the conformation tensor is defined as α ≡ 〈QQ〉 (〈·〉

represents the ensemble average). The polymer extension is limited by an

upper limit b: max(tr(α)) < b. In total, the system is specified by four

parameters Re, Wi, β and b.
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All simulations reported in this study are performed at a moderate Re =

3600 (Reτ = 84.85). (We consider Re to be low when it is well below Recrit

for the L-T transition and inertia is not sufficient to drive instability; high-

Re refers to the regime where turbulence is fully developed. In this study,

our Re is only slightly higher than Recrit, which is the reason for the word

“moderate”.) Although most experiments are performed at much higher Re,

evidence is abundant that qualitative transitions in viscoelastic turbulence

can all be observed in the regime close to the L-T transition [1, 14, 4]. This

includes the onset of DR, LDR-HDR transition, convergence to MDR, as well

as the direct laminar-MDR transition. Meanwhile, Reτ = 84.85 is too low for

the complete separation between turbulent inner and outer layers. Therefore,

it would be naive to expect the turbulent dynamics and structures to preserve

all features of higher Re. Dynamics at the near-transition regime in a way is

a toy model for realistic experimental systems: it is a miniaturized version

which includes the key components giving rise to these transitions, but many

detailed aspects of the dynamics are left out. By avoiding the complexity at

higher Re, this Re regime is often a good starting point of investigation and is

thus sufficient for this study. On the other hand, computational cost is often

the main factor limiting the Re reached by simulation. Although DNS of

viscoelastic fluids can reach much higher Re, the cost of numerical solutions

for the ES are at least two orders of magnitude higher. ES-initiated shooting

simulation also requires much higher special and temporal resolutions. Our

choice of Re is also a result of practicality. Viscoelastic cases reported in this

study are all for the same β = 0.97 and b = 5000 but cover three different

Wi: 28, 40, and 72.
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The simulation domain used here is L+
x ×L+

z = 720×230. In typical DNS

studies this would be considered an MFU or at least close to an MFU [66, 14].

We are however hesitant to use the term because the dynamics near the ES

shows drastically different and complex dependence on the domain size than

turbulence at the SCS. Recall that the notion of MFU roots in the ergodic

assumption of turbulence, that the temporal statistics of the dynamics in an

MFU are representative of the spatial and ensemble statistics in an extended

flow domain. Therefore at the SCS, although the MFU domain average shows

stronger fluctuations, its average over time is still a reasonable approximation

of that in realistic extended flow domains. Dynamics at the ES are known to

be fundamentally different whose domain size dependence is non-trivial and

nearly intractable: e.g., a slight change in the domain size can cause the ES

to change between quasi-periodic and chaotic fluctuations [54]. This depen-

dence is not an artifact but intrinsically part of the nature of the ES being

the marginal state of turbulence: the form and magnitude of the disturbance

field to trigger turbulence is inevitably specific to each domain. This depen-

dence does not go away until L+
x , e.g., reaches O(104) wall units, which is

much larger than typical extended domains for SCS (O(103) wall units) and

beyond the reach of viscoelastic simulations. At the very large domain limit,

the ES solution, at least in the Newtonian case, becomes spatially localized

to a weak turbulent spot surrounded by nearly laminar surroundings [67, 68].

The particular domain size is chosen here for the availability of ES solutions

in this domain from our previous study [54], on which the current study is

based. If we were to repeat the study in an even slightly different domain,

the results would not compare quantitatively with the current study. Except
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for the domain-size sensitivity, it is also a consequence of the transient na-

ture of this study – turbulence can only be quantitatively compared in terms

of statistics and only at the SCS. A full domain-size dependence investiga-

tion is not possible even for the computationally less expensive Newtonian

case, because of the significantly higher computational cost for ES than DNS

(discussed in [54]) and the lack of representativeness of any single domain

(discussed above). Therefore, in this study, the transient results of the dy-

namics initiated from the ES are only discussed in terms of the qualitative

stages of the transition events. This focus is very different from typical DNS

studies based on quantitative and statistical results.

The viscoelastic DNS code used is custom developed based on Channelflow,

a C++ library for Newtonian DNS [48]. The equation system is integrated in

time with a third-order semi-implicit backward-differentiation-Adams-Bashforth

scheme [69]. For spatial discretization, a pseudo-spectral and finite-difference

hybrid scheme is implemented. The v · ∇α term in eq. (4) is discretized

with a conservative second-order upwind TVD (total variation diminishing)

finite difference scheme [70, 71] whereas a Fourier-Chebyshve-Fourier pseudo-

spectral projection is used for all other spatial derivative terms. It is well

know that a pure pseudo-spectral scheme for eq. (4), which is purely convec-

tive (no diffusion term), would be numerically unstable for high Wi. A com-

mon practice is to introduce an artificial diffusion (AD) term 1/(ScRe)∇2α

(where Sc is the Schmidt number) to the right-hand side of eq. (4) [72].

The magnitude of the artificial diffusivity is typically chosen at 1/(ScRe) =

O(10−2) [8, 73, 74, 75], although a much lower 1/(ScRe) = O(10−4) was used

in our previous studies [14, 55, 23, 53, 54, 25, 76]. Stress diffusion does occur
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in the physical system as a result of the diffusion of polymer molecules them-

selves [77]. However, the molecular diffusivity is several orders of magnitude

lower than the AD required for numerical stability (which is thus omitted in

the physical model of eq. (4)) [78]. Upwind finite difference schemes offer an

alternative that can minimize the effects of this unphysical numerical treat-

ment, in which very often local AD applied to selected grid points (where

unphysical values of tr(α) occur), rather than the entire domain, is sufficient

to stabilize the simulation [79]. Comparing these two approaches, it was

found recently that global AD can suppress turbulent fluctuations driven by

polymer elasticity which become important at the very high Wi limit [33].

In this study, in addition to using an upwind TVD scheme for the convection

term in eq. (4), an implicit time-stepping method for enforcing the upper-

boundedness of the polymer conformation tensor (i.e., tr(α) < b) is also

implemented according to Vaithianathan et al. [78] and Dubief et al. [11].

Numerically stable solutions are obtained without any AD (global or local)

in this study.

For regular DNS (turbulent basin) and edge tracking, the numerical res-

olution remains the same as our previous studies [14, 55, 23, 53, 54]: i.e.,

δ+x = 8.57, δ+z = 5.11, and Ny = 73 Gauss-Lobatto grid points [69] in the y

direction (δy+,min = 0.081 at the walls and δy+,max = 3.7 at the channel cen-

ter). For DNS shooting from the ES, the rapid turbulence growth and strong

overshoot of turbulence intensity (see, fig. 4) require much higher resolution:

δ+x = 3.60, δ+z = 1.80, and Ny = 145 (δy+,min = 0.025→ δy+,max = 2.28). We

have tested multiple resolutions and concluded that the ones reported here

are required to fully resolve the small-scale flow structures observed during

16



Figure 3: Time series of the bulk-averaged TKE of the twin trajectories used in edge

tracking (Wi = 28). Solid and dashed lines are for trajectories on the turbulent and

laminar sides, respectively; round dots indicate the points of bisection (see text).

the transition (fig. 8). Our resolution is also higher than that of recent tran-

sient DNS studies of the transition [47, 80]. The time step size is chosen

considering the Courant-Friedrichs-Lewy (CFL) stability condition, which,

in shooting runs, is δt = 0.004 and δt = 0.005 for the Newtonian and vis-

coelastic cases, respectively. The same time step is used for regular DNS

(SCS turbulence). For edge tracking, δt = 0.02 is sufficient because of its

lower spatial resolution.

The numerical tracking method for computing the ES is shown in fig. 3

in terms of the time series of the bulk-averaged turbulent kinetic energy

(TKE) kb. Hereinafter, the subscript “b” denotes bulk- or volume-averaged

quantities and

k ≡ 1

2
(v′2x + v′2y + v′2z ), (6)

where v′i ≡ vi−〈vi〉 is the fluctuating velocity component. The method follows
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a pair of DNS trajectories starting from initial states that are infinitesimally

close but on different sides of the ES (solid and dashed lines in fig. 3). The

twin trajectories move along the ES and thus overlap for a period of time,

but eventually diverge, upon which repeated bisection is used to obtain a new

pair of infinitesimally-close initial states straddling the ES. The ES is found

by connecting the overlapping parts of the twin trajectories. The method

has been developed and widely used in the study of Newtonian turbulence

and its transition [81, 50, 82, 83] and numerical details for computing the

viscoelastic ES used in this study can be found in Xi and Bai [54].

With the current domain size and parameters, the ES itself is a dynam-

ical trajectory showing nearly periodic cycles of relatively strong and weak

activities (both are weaker than SCS turbulence; the dynamics may become

chaotic in a different domain size – see [54]). The initial state used for all

shooting runs (Newtonian and different Wi) is taken from a moment of rel-

atively strong activity (≈ 120 TUs after the peak kb moment of a period) of

the ES at Wi = 28 and from the turbulent side of the twin trajectories so that

instabilities can be triggered by numerical error alone. This choice of using

the same ES is made so that shooting trajectories of different Wi have the

exact same initial condition and can be directly compared. An obvious issue

of concern is that other than the Wi = 28 case, all shooting runs will have

an initial disturbance caused by the mismatch of polymer conformation field

to the assigned Wi. Its impact is minimal. First, it has been established in

earlier studies that the ES of different Wi (including Newtonian) are nearly

identical [55, 54]. Second, the ES is a saddle point: the shooting trajectory

would stay close to the ES for a substantial period of time, during which
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polymers have sufficient time to extend/retract to fit the new Wi, before

instabilities start to grow. We have tested the effects of this mismatch by

comparing, e.g., the shooting trajectory of Wi = 40 using the Wi = 40 ES as

the initial state, with the one presented in this paper (shooting at Wi = 40

using the Wi = 28 ES as the initial state), and found no meaningful differ-

ence that would change any of our conclusions. One downside, however, is

that shooting trajectories of different Wi would start with different levels of

initial disturbance, which, as illustrated in fig. 1, affects the growth rate and

overshoot magnitude of the trajectory. This does not affect the objective of

this study which focuses on the qualitative stages of transitions. Regarding

the choice of the time moment on the ES for the initial shooting point, it

is necessary to choose one not too close to the bottom of the periodic fluc-

tuations (fig. 3); otherwise, any additional disturbance would likely tip the

dynamics to the other side of the L-T boundary and result in a trajectory

heading towards the laminar state. As long as a moment with sufficient tur-

bulent strength for triggering the turbulence growth is picked, qualitatively

similar results can be obtained and our results do not lose any generality.

3. Results and Discussion

3.1. Overview of the transition dynamics

Time series of the Newtonian and viscoelastic DNS shooting trajectories

are shown in fig. 4. (The results from all three Wi are qualitatively the

same for the time range of interest here – around the initial overshoot and

bursting that lead to the turbulent basin. Here, we present the Wi = 28

case as an example without the loss of generality in our observations.) The
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Figure 4: Time series of the shooting trajectories initiated from the ES: (a) Newtonian;

(b) Wi = 28. The blue solid line (left axis) shows the peak values of the instantaneous

RSS profiles; the green dash line (1st right axis) shows the bulk-average TKE; the red

dotted line (2nd right axis) shows the bulk average of αyy + αzz.
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process of turbulence growth from the ES is qualitatively similar between

the Newtonian and viscoelastic cases. The dynamics stays quiescent for a

few hundred TUs as the system stays close to the ES. A rapid growth stage

follows, starting with a sharp increase in the Reynolds shear stress (RSS). (In

fig. 4, the instantaneous RSS −v′∗x v′∗y is averaged in x and z; the maximum

value of the resulting y-dependent profile, denoted by |〈v′∗x v′∗y 〉|max, is plotted

against t.) In the Newtonian case, the magnitude of |〈v′∗x v′∗y 〉|max at its peak

(marked as moment II) is almost 5 times as large as typical magnitudes of

turbulence at the SCS. During the same period, a strong overshoot is also

observed in TKE but with a slight phase lag of∼ 10 TUs. The peak of TKE is

marked as moment III and as we will discuss below, moments II and III have

drastically different flow structures. After the overshoots, the RSS quickly

drops as the flow enters the SCS where the Newtonian and viscoelastic cases

differ significantly. In particular, the viscoelastic case is marked by strong

intermittency between periods of quiescent dynamics and those with stronger

turbulent intensity, corresponding to hibernating and active turbulence. For

example, a pronounced hibernating period can be identified at 480 . t . 600,

which is followed by a turbulent overshoot at t ∼ 650. Fluctuations in the

SCS of Newtonian turbulence are more chaotic but contained in a smaller

range. Hibernating turbulence can still occur in the Newtonian limit but at

a much lower frequency [55, 23]: no clear hibernating period is captured in

the small time window shown in fig. 4(a).

Similarities between hibernation dynamics and the ES-initiated shooting

trajectories can be observed by comparing with a longer time series of vis-

coelastic turbulence at its SCS (fig. 5). (Note that statistics are taken only
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Figure 5: Time series of the turbulent at the SCS at Wi = 28: the blue solid line (left

axis) shows the peak values of the instantaneous RSS profiles; the green dash line (right

axis) shows the bulk-average TKE kb. Statistics are taken over half of the channel (one

side of the center plane).
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over half of the channel because the dynamics near the two walls are not

always in sync: mirror average between the two sides will smear the inter-

mittent patterns. Half-channel statistics are also used in fig. 10.) A number

of hibernating intervals are identified where the RSS takes a deep dive, e.g.,

around t ≈1400, 1750, 2000 and 2200, and each time the flow comes out of

hibernation, a strong overshoot is observed. Same as the transient growth

in fig. 4, the spikes of TKE appear immediately after those of RSS. This se-

quence of events is a direct consequence of the TKE production mechanism

(discussed below). Overshoots in RSS, TKE, and wall shear stress were also

observed immediately after hibernating intervals in previous studies on the

topic [55, 23] and even in earlier Newtonian MFU studies before the term

hibernating turbulence was coined. For example, Webber et al. [84] noted

the intermittent occurrence of the so-called “entropy events” where the TKE

drops to very low levels before quickly rising to sharp peaks. The observation

here is also consistent with the scenario sketched in fig. 1: the flow intermit-

tently breaks the entrapment in active turbulence (around the UB solutions)

and makes visits to the ES; on its return route, it travels along the direction

of (but, as discussed below, not necessarily very close to) the unstable man-

ifold of the ES and experiences a strong spike in turbulent activities, before

decaying back to active turbulence. Jiménez et al. [62] once argued that the

dynamics of turbulent self-sustaining cycles cannot be completely described

by invariant solutions (both UB and LB ones): strong and quick “bursting”

events, which correspond to spikes observed here and are likely transient in

nature, make an essential component. In light of this, the earlier framework

of active-hibernating transition [55, 23, 4] should now be extended to a three-
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stage cycle consisting of the active turbulence (around the UB), hibernation

(near the ES), and bursting. Since polymers are known to shorten the time

spent at active turbulence and increase the turnover frequency of these in-

termittent cycles [55, 23], understanding how polymers affect the bursting

dynamics will be essential for a full picture of turbulence approaching MDR.

In addition, our recent study proposed that the LDR-HDR transition is a

reflection of changes in the self-sustaining dynamics: a dominant pathway

for vortex regeneration in Newtonian flow relies on bursting for redistribut-

ing disturbances and its suppression by polymers was hypothesized as a key

element driving the transition [25]. The shooting approach used in this study

allows us to avoid the complexity of tracking the intermittent bursting events

at the SGS and directly compare the bursting dynamics between Newtonian

and viscoelastic cases on an equal footing.

Streamwise velocity in the x − z plane at y+ = 24.85 is shown in figs. 6

and 7 for these two cases. The initial state from the ES (fig. 7(a)) shows

one pair of low- and high-speed streaks in the domain. The streaks are

straight in the streamwise direction and weak in magnitude: the velocity

variation between them is small compared with the range of the color map.

For both Newtonian and viscoelastic cases, as instability starts to develop

(moment I, fig. 6(a) & fig. 7(b)), the low-speed streak splits into two. These

streaks further intensify as the RSS increases up to its peak magnitude at

moment II, where streamwise variation becomes clearly visible. Observa-

tions between the Newtonian and viscoelastic cases start to differ at moment

III. In the former (fig. 6(c)&(d)), streak instability quickly breaks down the

structure, leading to a domain filled by small-scale and high-intensity veloc-
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Figure 6: Streamwise velocity distribution at y+ = 24.85 for the Newtonian case: (a)∼(e)

– Moments I∼V. The initial condition is the same as the viscoelastic case shown in fig. 7(a).

The color ranges from black to white for 0 to 1.
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Figure 7: Streamwise velocity distribution at y+ = 24.85 for the Wi = 28 case: (a) initial

condition; (b)∼(f) Moments I∼V. The color ranges from black to white for 0 to 1.
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Figure 8: Vortex configuration of the Newtonian case: (a)–(e) are moments I–V. The

initial condition is the same as the viscoelastic case shown in fig. 9(a). The isosurface of

Q = Qrms is shown, where Qrms is the root mean square of the Q field.

ity fluctuations as it leaves the bursting stage. These fluctuations reorganize

into streaks with the characteristic spanwise streak spacing of ∼ 100 wall

units [85] as the flow enters the center of the turbulent basin (moment V;

fig. 6(e)). By contrast, at high Wi, this breakdown into high-intensity fluctu-

ations is largely avoided and the streaky structure persists through moments

III and IV.

Vortex configuration for the same moments is shown in figs. 8 and 9,

where the Q-criterion for vortex identification is used [86]. Vortex strength

is measured with the scalar field

Q ≡ 1

2

(
‖ Ω ‖2 − ‖ Γ ‖2

)
, (7)
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Figure 9: Vortex configuration of the Wi = 28 case: (a) initial condition and (b)–(f) are

moments I–V. The isosurface of Q = Qrms is shown, where Qrms is the root mean square

of the Q field.
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where

Ω ≡ 1

2

(
∇v −∇vT

)
(8)

is the vorticity tensor and

Γ ≡ 1

2

(
∇v + ∇vT

)
(9)

is the rate of strain tensor; ‖ · ‖ represents the Frobenius tensor norm.

The initial state from the ES shows weak vortices (the root mean square –

RMS – of Q values in the domain, Qrms = 2.37 × 10−4), which are mostly

straight along the streamwise direction and localized at one side of the chan-

nel. Asymmetry and structural localization is typical of the ES in Poiseuille

flow [54]. The growth of instability during the rise of the RSS is similar be-

tween the Newtonian and viscoelastic cases, where the streak intensification

(figs. 6 and 7) is accompanied by the strengthening of the vortices: Qrms

increases to 0.0196 at moment I and 0.38 at moment II in the Newtonian

case. Meanwhile the vortices spread to most of the channel and their shape

becomes distorted in all three dimensions, which is also reflected in the streak

waviness observed in figs. 6 and 7. For the Newtonian case, the streak break-

down corresponds to an abrupt change in the vortex configuration. Within

the 10 TUs between moments II and III, Qrms jumps from 0.38 to 1.104 and

a limited number of relatively large vortices at moment II suddenly explodes

into numerous small-scale but high-intensity vortices filling the entire do-

main. Our finding resonates with the observation by Webber et al. [84] of

the temporally intermittent bursting events in an MFU, which they called

“entropy events”: during these events, TKE is initially contained within very

few flow modes as its magnitude quickly rises; then within a very short pe-

riod of time, TKE is suddenly redistributed to a broad spectrum of scales.
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This again is consistent with the notion that the bursting events come from

trajectories approaching and following the unstable manifold of the ES to an

overshoot in TKE (fig. 1), which happens after excursions towards the ES

(hibernating turbulence). In the viscoelastic case, this sudden breakdown at

moment III (fig. 9(d)) is largely avoided and vortices evolve continuously into

their configuration at the SCS of turbulence. This, together with the obser-

vations in fig. 4 indicates that during the transient development of turbulence

(and, likely, during the bursting events as well) polymers do not noticeably

change the initial growth of instability, which mainly involves the intensifica-

tion of streaks and distortion of vortical structures; however, after the RSS

has reached its peak, polymers stabilize the primary large-scale vortices from

breaking up. By avoiding a strong bursting and its small-scale fluctuations,

redistribution of turbulent disturbances is minimized, which is consistent

with the hypothesized change in the vortex regeneration mechanism during

the LDR-HDR transition by Zhu et al. [25].

State-space trajectories of different solution objects are projected onto

the |〈v′∗x v′∗y 〉|max − A∗25 plane in fig. 10(a), where A∗25 is the value of

A∗ ≡ y∗
∂U∗m
∂y∗

(10)

measured at y∗ = 25. Note that eq. (10) comes from taking the differentials

of both sides of the log-law relationship of the mean velocity

U∗m = A∗lny∗ +B∗ (11)

and A∗ defined in eq. (10) is thus interpreted as the local log-law slope. For

a well-defined log-law region A∗ would be nearly constant with varying y∗,

which is why it is also referred to as the indicator function by White et al.
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Figure 10: State-space projections of solution trajectories onto different combinations

between coordinates: instantaneous RSS profile peak |〈v′∗x v′∗y 〉|max, bulk-average TKE kb,

and the RMS of the Q field Qrms. Statistics are taken over half of the channel on the side

where the initial ES resides. Panel (d) is a blow-up view of panel (c). Labeling (moments

I∼V on the Wi = 28 trajectory) is consistent with fig. 4(b).
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[16]. It is used in our projection as a local measurement of the evolution

of the mean velocity profile in the near wall layer, which may be compared

with the PvK and Virk asymptotes [54]. Transient solutions of Newtonian

and three viscoelastic cases, initiated from the same point on the edge state,

all move along the ES for a segment before deviation, which is expected for

dynamics near a saddle point. After the departure, the RSS quickly rises

but the decline in A∗25 is slow, while different trajectories remain close to one

another. Separation between the trajectories only occurs as the RSS reaches

its peak, after which the drop of A∗25 accelerates as the trajectories spiral into

regions corresponding to their respective basins of SCS turbulence. Notably,

the Virk MDR slope magnitude AVirk = 11.7 falls right within the region

where trajectories with different Wi (including Newtonian) are overlapping

– i.e., before polymer effects on the turbulent dynamics kick in. With in-

creasing Wi, the RSS magnitude at the top of the overshoot decreases (as

expected). The turbulent SCS region also shifts in the lower right direction,

reflecting the lower friction drag. Compared with the Newtonian trajectory,

which concentrates in a small region after reaching the SCS, all viscoelastic

trajectories display much higher levels of intermittency and sample broader

areas (within about the same time span). Frequent occurrence of hibernating

turbulence can be observed in the form of excursions to regions with much

weaker turbulence (lower-right corner). For the higher Wi (40 and 72) cases,

these excursions sample well into the ES region (viewed from this projection).

Similarities between hibernating turbulence and the ES were extensively dis-

cussed in previous studies [53, 54], but, here, their dynamical connection also

becomes clear.
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The same solution objects are projected to other two-dimensional planes,

|〈v′∗x v′∗y 〉|max − kb (fig. 10(b)) and |〈v′∗x v′∗y 〉|max − Qrms (fig. 10(c)), for a com-

prehensive view of the dynamics. In both panels, the initial overshoot is

displayed as large clockwise loops reaching high magnitudes in all three quan-

tities. Having polymers reduces the overshoot magnitude and the impact is

most striking in Qrms, where the peak values reached in all viscoelastic cases

tested are one order of magnitude lower than that in the Newtonian case.

This is consistent with observations in figs. 8 and 9 that the strong burst

of intense turbulence with small-scale fluctuations (moments III & IV) is

clearly circumvented upon the introduction of polymers. After converging

to the SCS turbulence, the Newtonian trajectory is confined in a very lim-

ited region and shows much lower intermittency than viscoelastic ones. The

latter, again, are found to frequently approach the ES during hibernating

periods. Subsequent bursting events (as observed in fig. 5) are more clearly

shown in these projections (especially in fig. 10(d)) as excursions towards the

top-right corner. Time spent within the central region is minimized.

The magnitudes of bursts during these intermittent cycles (|〈v′∗x v′∗y 〉|max

up to ∼ 1.0 and kb up to ∼ 0.004) are nowhere close to the initial overshoots

following the instabilities from the ES. This is because it is very unlikely for

the dynamical trajectories to completely reach the ES during the hibernat-

ing periods. As illustrated in fig. 1, the overshoot magnitude depends on the

proximity of these visits to the ES and its unstable manifold – the strongest

overshoot is reached when the trajectory is initiated right on the unstable

manifold (which is what the shooting trajectories in this study is designed

for). Although during hibernating periods, turbulent structures are remark-
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ably similar to those of the ES [54] and the trajectories seem to repeatedly

cut across the ES area in different panels of fig. 10, these visits are not al-

ways close to the ES in all dimensions. (Note that projection coordinates

used in fig. 10 all measure the instantaneous turbulent fluctuations and lo-

cal velocity gradient.) Indeed, the distance between hibernation and the ES

would be clear in projection quantities involving the mean momentum, such

as the bulk-averaged velocity Ub. For example, at Wi = 28, Ub reaches up

to 0.39 during hibernation whereas its ES value is in the range of 0.61 to

0.62. This is an intrinsic consequence of momentum transport in turbulent

flow: increments in the mean momentum during periods of weak turbulence

rely on viscous forces. In non-dimensional inertial TUs (l/UCL), the time

scale for viscous transport is Re (O(1000) in this study), whereas typical

hibernating periods last no more than a couple of hundred TUs [55, 23].

Therefore, new instabilities will emerge and grow before the mean velocity

is substantially raised, leading to bursting events much less fierce than the

shooting trajectories directly generated from the ES. Other than a dynam-

ical system perspective, this difference can also be understood considering

the budgets of TKE and RSS (discussed below) where the production terms

of both equations are directly proportional to the mean velocity gradient

(eqs. (20) and (24)).

The initial close alignment between trajectories of different Wi indicates

that at least during the early stage of turbulence development the impact of

polymers is limited. Time series of (αyy +αzz)b, which measures the polymer

extension in the y−z plane, is shown in fig. 4(b). Although polymer extension
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in the three-dimensional space is measured by

tr(α) ≡ αxx + αyy + αzz, (12)

previous studies [53, 23] have shown that, even without turbulent motions,

substantial polymer stretching is caused by the mean shear of the flow, re-

sulting in a large αxx contribution to tr(α). Turbulence-induced polymer

extension is more clearly observed when only the αyy and αzz components

are considered. The magnitude of (αyy + αzz)b increases sharply during the

overshoot but only as a reaction to the surge in turbulent intensity: the peak

of (αyy + αzz)b comes ≈ 15 TUs later than moment III. The same dynamics

is observed for the bursting periods following hibernation within SCS turbu-

lence (fig. 5). The implication of this observation is twofold. First, polymer

dynamics does not drive the instability. This is not unexpected as the dy-

namics is constrained to start from the ES whose unstable manifold captures

the inertia-driven pathway for instability and turbulence growth. Second, as

the trajectory leaves the ES in the state space, it travels through a region

with minimal polymer-turbulence interaction before polymer effects become

significant. The latter point is consistent with our earlier speculation that

in addition to the ES, there is a group of states insensitive to polymer addi-

tives (see fig. 1) located in its neighborhood. They collectively form a barrier

between the turbulent basin and the laminar state.

On a final note, earlier MFU studies have established that in a small

box of L+
x × L+

z = 360 × 230, the highest Wi where sustained turbulence

can still be found is 28 [14, 56]. Those studies used an all-pseudo-spectral

algorithm with AD (Sc = 0.5) for DNS, which would quench instabilities

driven by elasticity (including EIT). In the current box (twice as long but
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with the same width), inertia-driven turbulence can sustain (within the time

range observed) at Wi = 40 for certain initial conditions. (Sensitivity to

initial conditions is expected at high Wi given the fractal nature of the L-

T boundary [50, 51].) At the highest Wi reported here (Wi = 72), the

trajectory undergoes a few cycles in the basin of IDT and then appears to

decay towards laminar flow. New instabilities sometimes grow after the decay

period, which leads to EIT. This indicates the co-existence of IDT and EIT

within a certain range of Wi. In addition, for all three Wi reported, EIT-like

flow structures show up alongside the dominant streak-vortex structures in

the basin of IDT (further discussed below). The dynamical landscape in the

presence of both solutions is a subject for future inquiry. For the current

study, we focus on the trajectory connecting the ES with the IDT basin. It

is clear from the comparison of (αyy + αzz)b with other time series in figs. 4

and 5, as well as other evidences presented below, that EIT, or elasticity-

driven instability in general, is not observed until after the overshoot. At

higher Wi, because the IDT basin is no longer an attractor, i.e., the dynamical

trajectories are trapped there only for a finite time period before they escape

and head elsewhere, the boundary separating IDT from the laminar basin

(formed by the ES and its stable manifold – see fig. 1) is what Lebovitz

[87] called a “weak” basin boundary. Our results showed that as far as the

shooting trajectories are concerned, there is no qualitative difference between

the three Wi studied. The highest Wi = 72 is thus included here to show

the Wi effects on the overshoot and bursting process. Lastly, note that this

discussion pertains only to the specific domain size used here – changing

the domain size will change the Wi for each transition. For example, it is
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Figure 11: Mean velocity profiles: (a) time-average profiles for Newtonian and viscoelastic

cases in the SCS; (b) instantaneous profiles for the initial condition and moments I–IV

(as labeled in fig. 4) during the transient development of the Wi = 28 shooting trajectory.

Reference lines are: (dot-dashed) viscous sublayer, (dashed) PvK log law, and (dotted)

Virk asymptote.

clear from earlier studies that the IDT can survive at much higher Wi with

increasing domain size [14, 56].

3.2. Mean velocity development and shear stress balance

The time-averaged mean velocity profile of statistically-converged turbu-

lence (fig. 11(a)) rises from the PvK log law of Newtonian turbulence [88]

U+
m = 2.5y+ + 5.5 (13)

to the Virk asymptote of MDR (eq. (1)) as Wi increases. All profiles overlap

with the viscous sublayer asymptote at y+ . 5

U+
m = y+ (14)

as they should [15]. (At Wi = 72, IDT does not sustain in the current domain

size; therefore the average is taken in a 200-TU window before any sign of its
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Figure 12: Contributions to the mean velocity gradient development according to eq. (17)

(left; “Sum” is the summation of all three contributions) and the log-law slope A∗25 (right)

for Wi = 28, calculated at y+ = 25 near the side of the channel where the initial ES resides.

Horizontal reference lines are added at the 0 mark of the left axis and the AVirk = 11.7

mark of the right axis; the vertical reference line marks the moment when A∗25 = AVirk.

The time axis matches that of fig. 4.

decay.) Instantaneous mean velocity profiles during the transient process of

turbulence development are shown in fig. 11(b) for Wi = 28. (Since the ES

solution is asymmetric [53, 54] with respect to the center plane and so is the

transient trajectory initiated thereat, hereinafter, instantaneous profiles of

the shooting trajectories only show the half channel with stronger turbulent

activity.) At the initial stage, the reduction of Um starts from the channel

center (moment I). As time moves forward, this deficit extends into the near-

wall layer as the profile drops towards the PvK log law.
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The transient development of mean velocity is governed by the Reynolds

equation, which is obtained by taking the x-component of eq. (2), applying

the Reynolds decomposition to all dependent variables, and taking the en-

semble average on both sides. The resulting equation (cast in inner scales

where stress and pressure are scaled with τw and time with η/τw)

∂U+
m

∂t+
=
∂〈τ+xy〉
∂y+

− d〈p+〉
dx+

(15)

shows that the change of Um is determined by the streamwise mean pressure

gradient and the wall-normal gradient of the mean shear stress

〈τ+xy〉 ≡ β
∂U+

m

∂y+
+ 〈−v′+x v′+y 〉+

1− β
Wi
〈τp,xy〉. (16)

Recall the definition in eq. (10): A+ is directly determined by the mean

velocity gradient ∂U+
m/∂y

+ (we use the +-units here instead of the ∗-units

to avoid the complexity of changing scaling between different instants; this

choice does not qualitatively affect any following discussion), whose evolution

is governed by

∂

∂t+

(
∂U+

m

∂y+

)
= β

∂3U+
m

∂(y+)3
+

∂2

∂(y+)2
〈−v′+x v′+y 〉+

(
1− β
Wi

)
∂2〈τp,xy〉
∂(y+)2

. (17)

Equation (17) is obtained by taking the y+ derivative of both sides of eq. (15)

and noting that d〈p+〉/dx+ is constant. The three terms on the right-hand

side (RHS) describe the contributions from the viscous, Reynolds, and poly-

mer shear stresses, respectively. Time series of these terms are shown in

fig. 12 for the transient development period in fig. 4(b). All terms are nearly

zero at the beginning when the dynamics is still following the ES. As de-

viation from the ES starts, the RSS term sharply drops, which drives the

downward fall of A∗25. The polymer shear stress (PSS) term remains close to
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zero until much later (after moment III) and its effect, for the most part, is

to raise the mean velocity gradient. This indicates that not only is polymer

stress insignificant during the initial overshoot, it also mostly plays a dissi-

pative role in the dynamics of growing turbulence. The viscouse shear stress

(VSS) contribution stays positive for the entire process, which also starts

well ahead of the PSS. The net effect of all three terms is negative during the

entire transition process. Interestingly, at the moment when A∗25 = AVirk,

the driving force to bring down A∗25 is nearly the largest.

Instantaneous profiles of the VSS, RSS, and PSS – the three contributions

to the total shear stress (TSS) defined in eq. (16) – of representative moments

are plotted in figs. 13 and 14. The steady-state solution to eq. (15) is

τ+xy = 1− y+√
2Re

(18)

which is shown as a reference line in all panels. The initial state fig. 14(a),

taken from the ES, has a moderate RSS and the VSS is sizeable across the

channel; its PSS is negligible. The evolution of the RSS and VSS is qualita-

tively similar between the Newtonian and viscoelastic cases. As turbulence

starts to develop, the RSS quickly increases and reaches its maximum at mo-

ment II, which is much higher than the magnitude of the steady-state TSS.

(For the Newtonian case, the peak value of moment III is slightly higher in

“+”-units, but moment II is still the highest in “*”-units – see fig. 4.) The

profile also takes a sharper form, resulting in a large (negative) second-order

derivative that quickly suppresses the mean velocity gradient (see eq. (17),

fig. 12 and their related discussion). The RSS starts to decay at moment III.

At moments IV and V, its shape converges to the typical form in steady-

state turbulence which peaks in the buffer layer. The VSS, meanwhile, has
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Figure 13: Contributions to the total shear stress (as defined in eq. (16) and in “+” units)

in the Newtonian case: (a)∼(e) – moments I∼V. The initial condition is the same as the

viscoelastic case shown in fig. 14(a). Black dashed line is the steady-state TSS (eq. (18)).
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Figure 14: Contributions to the total shear stress (as defined in eq. (16) and in “+” units)

in the Wi = 28 case: (a) initial condition; (b)∼(f) – moments I∼V. Black dashed line is

the steady-state TSS (eq. (18)).
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retreated to the near-wall region only. For the viscoelastic case, the PSS re-

mains small until moment IV, where its magnitude exceeds that of the RSS,

whereas at moment V, i.e., within in the SCS, PSS becomes negligibly small

once again.

The role of PSS at MDR is an issue often debated. Warholic et al. [89]

observed a nearly vanishing magnitude of RSS at MDR. Although the PSS

cannot be measured directly in experiments, it was inferred from the shear

stress balance (eq. (18)) that the PSS has filled in the deficit left by the RSS.

It was thus argued that MDR is a state in which the mechanism of sustaining

turbulence in Newtonian flow has been replaced by a polymer-dominated

instability. However, other studies (experimental and numerical) showed

that the RSS does not necessarily vanish and is not always overpassed by the

PSS at MDR [90, 73, 19]. This complexity can be explained now considering

the dynamical cycle of the turbulent SCS – hibernation – bursting depicted

in fig. 1. Based on fig. 14, large PSS only occurs immediately after the

bursting stage. Depending on the relative time spent in different stages, the

time-averaged shear stress profiles may or may not show a PSS larger than

the RSS.

3.3. Budgets of the TKE and RSS

The growth of turbulence as it departs from the ES and the polymer

effects thereon are now quantitatively analyzed through the budgets of the

TKE and Reynolds stress, which can be derived from the equation of motion

(eq. (2)) following the examples of similar equations in Newtonian flow [15].
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The evolution of TKE is

∂k

∂t
+ 〈v〉 ·∇k + ∇ · T k = Pk − εkv − εkp, (19)

where

Pk ≡ −∇〈v〉 : 〈v′v′〉 = −〈v′xv′y〉
d〈vx〉
dy

(20)

is the production of TKE (the second equality holds because d〈vx〉/dy is the

only non-zero component of ∇〈v〉),

εkv ≡
2β

Re
〈Γ′ : Γ′〉 (21)

and

εkp ≡
2(1− β)

ReWi
〈τ ′p : Γ′〉 (22)

are the consumption rates of TKE by viscous dissipation and by conversion

into elastic energy, respectively (Γ′ and τ ′p are the fluctuating components

of the rate of strain (eq. (9)) and polymer stress tensors), and T k groups

all terms contributing to the flux of k transport, which only moves the TKE

spatially but does not convert it to other forms; it therefore will not be further

discussed.

The production of the TKE is the product of the RSS −〈v′xv′y〉 and the

mean shear rate d〈vx〉/dy, which explains why the surge in the RSS during

the turbulence growth process is followed by a strong spike in the TKE. The

evolution of the RSS is governed by

∂〈−v′xv′y〉
∂t

+ 〈v〉 ·∇〈−v′xv′y〉+ ∇ · T R = PR +RR − εRv − εRp (23)
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where

PR ≡ 〈v′yv′y〉
d〈vx〉
dy

(24)

RR ≡ −
〈
p′
(
∂v′x
∂y

+
∂v′y
∂x

)〉
(25)

εRv ≡ −
2β

Re

∑
w=x,y,z

(〈
Γ′xw

∂v′y
∂w

〉
+

〈
Γ′yw

∂v′x
∂w

〉)
(26)

εRp ≡ −
2(1− β)

ReWi

∑
w=x,y,z

(〈
τ ′p,xw

∂v′y
∂w

〉
+

〈
τ ′p,yw

∂v′x
∂w

〉)
(27)

are the production, pressure-rate-of-strain, viscous conversion, and elastic

conversion terms, respectively; T R again is the flux of RSS not discussed here.

According to eq. (24), at a given mean shear rate, the RSS is generated by

wall-normal velocity fluctuations. In the near wall region they are primarily

found between streamwise vortices where velocity streaks are formed by the

upward lifting and downward flushing fluid motions. For this reason, the rise

of the RSS from the ES to moment II is accompanied by the intensification

of the streak structures (figs. 7 and 9).

Figures 15 and 16 show the TKE and RSS budgets for typical moments

of the Newtonian and Wi = 28 cases. The process of the RSS surge (up to

moment II) is qualitatively similar between the Newtonian and viscoelastic

cases, where the production terms dominate both budgets. During this stage

(fig. 15(a) & (b), fig. 16(a), (b), & (c)), the RSS production PR takes a

flatter shape and is larger at around y+ = 40, the location of the primary

steaks and vortices at the ES (see fig. 9(a) and [54]), than in the buffer layer;

whereas the TKE production Pk peaks in the buffer layer – at y+ ≈ 25.

Abrupt changes occur between moments II and III. In the Newtonian case

(fig. 15(c)), magnitudes of both Pk and PR sharply increase. In addition, PR
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Figure 15: TKE and RSS budgets for the Newtonian case: (a)–(e) are moments I–V. The

initial condition is the same as the viscoelastic case shown in fig. 16(a).
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Figure 16: TKE and RSS budgets for the Wi = 28 case: (a) initial condition; (b)–(f) are

are moments I–V. The inset of panel (e) shows the profile of −εkp separately.
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now (moment III) peaks in the buffer layer as well and its profile conforms to

that of Pk, indicating that the high-intensity small-scale flow structures re-

sulting from the breakdown of primary vortices reinforce the RSS generation

(which thus completes a positive feedback loop as the RSS further drives the

TKE production). The TKE viscous dissipation εkv also suddenly jumps to a

comparable magnitude as that of Pk, which eventually tames the fluctuations

and regulates the eddies into the typical coherent structures of the turbulent

SCS. For the RSS budget, εRv is small and PR is counteracted instead by RR.

In the viscoelastic case (fig. 16(d)), the Pk profile at moment III is still

similar in shape as the Newtonian case but its magnitude is much lower and

the peak location is farther away from the wall. By contrast, PR maintains

its flat profile through moment III (in comparison, in the Newtonian case,

the profile changes shape and peaks in the buffer layer – see fig. 15(c)).

Excessive dissipation εkv near the wall, observed in the Newtonian case at

moment III, is also avoided. These observations are consistent with the

main conclusion so far that adding polymers allows the transition to bypass

the strong structural bursting and mark the major difference between the

Newtonian and viscoelastic pathways. The polymer elastic conversion terms

−εkp and −εRp are trivial until moment III, where their magnitudes suddenly

surge. Both terms are negative across the channel: polymer interaction with

the flow reduces both TKE and RSS and suppresses turbulent motion. In

the TKE budget, −εkp becomes comparable to the viscous term −εkv and both

converts mechanical energy from turbulent motions to the internal energy

of the fluids. In the RSS budget, −εRp is the main force for balancing the

RSS production PR and (different from the Newtonian case) RR becomes

48



less important.

At moment IV, all terms retreat to magnitudes close to their SCS levels

(moment V). Interestingly, although −εkp remains negative in most of the

channel, in regions very close to the wall (y+ . 10) it becomes positive

– polymer elastic energy is being converted to the TKE. In other words,

the flow instability is driven, in part, by polymer elasticity. This change in

the −εkp profile, although small, is not trivial. It is accompanied by a clear

change in the flow structure. Direct flow visualization of the same moment

was shown in fig. 9(e). Vortices are more densely populated near the top wall,

whereas at the bottom side (where the ES originally resided) the distribu-

tion is sparse. The image only shows quasi-stremwise vortices typical of IDT.

However, smaller patches of spanwise vortices can also be spotted near the

bottom wall (co-existing with streamwise vortices) if a lower Q level is used

for the isosurface. (They are currently not visible in fig. 9(e) because their

vortical strength is much weaker than that of the dominant IDT vortices.)

These structures strongly resemble the characteristic structure of EIT [31].

Their occurrence is transient and does not last: they have completely van-

ished in moment V. The same observations, i.e., positive −εkp near the wall

and the sporadic and intermittent appearance of EIT-like spanwise vortices

alongside the dominant IDT vortices, are found in all three Wi studied. They

consistently show up on the channel side of the original ES and in the time

period immediately after the bursting – probably as a result of the strong

polymer stretching by the intense turbulent structures at moment III. It was

discussed earlier that at higher Wi, IDT lasts only for a finite time period

and the trajectory may eventually converge to EIT (where spanwise vortices
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fill the domain and quasi-streamwise vortices vanish). The observation here

further adds that even in regimes dominated by IDT, EIT-like structures

can still co-exist with the dominant vortices. The co-existence of EIT and

IDT solutions in the state spaces, as well as the co-existence of two types of

vortex structures in the latter, will be a subject of our continued research.

Finally, it is noted that the initial turbulence development and its overshoot

(moments I, II, & III) remain inertia-driven and are unaffected by EIT-like

structures – the latter appear to be a result of the bursting dynamics rather

than its cause.

4. Conclusions

The transient problem of turbulence growth from the edge state, its subse-

quent bursting event, and the polymer effects thereon are studied through dy-

namical shooting trajectories. In Newtonian flow, the transition starts with

a strong overshoot of the Reynolds shear stress which results from the inten-

sification of the streamwise velocity streams as well as the three-dimensional

distortion of the primary vortices. As the RSS reaches the maximum, streak

instability quickly leads to a breakdown of the primary vortices into a dense

cloud of small but high-intensity eddies, at which the turbulent kinetic en-

ergy rises to its peak. These small-scale fluctuations also result in a sudden

jump in the viscous dissipation rate, which quenches the fluctuations and

regulates the flow into the SCS of turbulence. Introducing drag-reducing

polymers does not affect the initial growth of instability. However, it stabi-

lizes the primary streak-vortex structures and prevents the breakdown into

small-scale eddies. Significant polymer stress and conversion to elastic en-
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ergy are only observed after the peak of TKE, where breakdown would have

happened in Newtonian flow. By design, the shooting trajectories studied

here follow the unstable manifold of the ES and track the development of

inertia-driven instability. Polymers do not alter the nature of this pathway

and only suppress turbulence growth. The lack of polymer effects during the

initial growth of turbulence indicates that near the ES there is a state-space

region where polymers do not suppress turbulence, which is the qualitative

feature of MDR.

A simple dynamical model based on the current knowledge of the state-

space solutions describes the statistically-converged turbulent dynamics as

a three-stage cycle: (1) the flow samples the center of the turbulent basin,

which takes up the majority of turbulence life time in the Newtonian limit

and becomes shortened as polymer influence increases [55, 23]; (2) intermit-

tent escape from the this active turbulence brings the system near the ES –

the so-called hibernating turbulence [55, 23, 54]; (3) as the flow is bounced

back by the ES, it follows its unstable manifold and goes through a similar

overshoot stage – which appears as bursting events – before returning to

active turbulence. Studying the polymer effects on the transient growth of

turbulence not only contributes to our knowledge of the bypass transition

in viscoelastic fluid flows, it also helps us understand the bursting dynam-

ics in viscoelastic turbulence. In particular, the regulation of bursting by

polymers revealed by this study offers a direct explanation for the significant

reduction in disturbance redistribution, which according to Zhu et al. [25]

is a key mechanism for the LDR-HDR transition. The large magnitudes of

polymer shear stress during this process would also explain the conflicting
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observations in previous experimental and numerical studies. Finally, our

results also reveal the co-existence of turbulent states driven by fluid elas-

ticity together with that driven by inertia. The current study focuses on

the transition dynamics into the inertia-driven turbulence. Future research

is required to paint a complete picture of these different types of solution

objects in the state space.
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