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Abstract

Flexible polymer additives are known to reduce the energy dissipation and fric-

tion drag in turbulent flows. As the fluid elasticity increases, the flow undergoes

several stages of transitions. Much attention in the area has been focused on

the onset of drag reduction (DR) and the eventual convergence to the maximum

drag reduction (MDR) asymptote. Between the onset and MDR, recent experi-

mental and numerical observations prompted the need to further distinguish the

low- and high-extent drag reduction (LDR and HDR). Fundamental knowledge

of this transition will be important for understanding turbulent dynamics in the

presence of polymers, as well as for inspiring new flow control strategies for ef-

ficient friction reduction. We use direct numerical simulation (DNS) to explore

all these transitions in the parameter space and, in particular, demonstrate that

the LDR-HDR transition is not merely a quantitative effect of the level of drag

reduction, but a qualitative transition into a different stage of turbulence. A

number of sharp changes in flow statistics are found to accompany the transition

and at HDR, turbulence becomes localized with vortices forming clusters. These
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observations suggest that polymer-induced drag reduction follows two distinct

stages. The first starts at the onset of drag reduction, where the coil-stretch

transition of polymers causes an overall suppression of turbulent fluctuations.

The second starts at the LDR-HDR transition, where flow statistics become

fundamentally changed in the log-law layer and turbulence localization is ob-

served. A mechanism is then proposed for the latter based on the changing

vortex regeneration dynamics between LDR and HDR.

Keywords: turbulent flows, viscoelasticity, coherent structures, vortex

regeneration, bursting

1. Introduction

The phenomenon of turbulent drag reduction (DR) caused by polymer addi-

tives is widely known and has been studied extensively in the literature [1, 2, 3].

As a small quantity of polymers is added to a Newtonian liquid, turbulent struc-

tures are modified. The resulting friction drag reduction, measured by5

DR% ≡ Cf,s − Cf

Cf,s
(1)

(Cf,s and Cf are the friction factors of the pure solvent and polymer solution,

respectively), can reach up to 80%. As a result, the mean flow rate under the

same pressure drop increases which considerably enhances the fluid transporta-

tion efficiency. Understanding of this phenomenon has significant practical im-

plications for the development of mechanical flow control schemes and has thus10

gained significant attention since the 1940s.

In viscoelastic fluids, polymer-induced elasticity is measured by the Weis-

senberg number Wi = λγ̇, which is defined as the product of the polymer

relaxation time λ and the shear rate γ̇ of the flow. Below a critical magnitude

of Wi, the mean flow is statistically indistinguishable from that of Newtonian15

turbulence: in most of the boundary layer, both follow the same Prandtl-von

Kármán (PvK) log law [4]
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Figure 1: Schematic of mean velocity profiles (mean streamwise velocity as a function of the

distance from the wall) at different stages of DR.

U+ = 2.5y+ + 5.5 (2)

where the superscript “+” indicates quantities in turbulent inner scales: i.e.

velocities and lengths are scaled by the friction velocity and viscous length scale

or “wall unit” (see definitions in Section 2), respectively. The onset of DR20

typically occurs at Wionset = O(10) [5, 6, 7, 8]. Further raising Wi leads to

increasing levels of DR (see Figure 1), which eventually saturate and approach

an asymptotic upper bound. Rather surprisingly, this maximum drag reduction

(MDR) asymptote is found to be insensitive to the rheological properties of the

polymer solution [1].25

The original theory of Virk [1] postulates that polymer effects concentrate

in the buffer layer, corresponding to 5 . y+ . 30 in Newtonian turbulence

(right below the log-law layer) [9]. Increasing Wi leads to a thicker buffer layer,

now termed the “elastic sublayer” to reflect the polymer effects, but the log

law layer remains unaffected with the same slope and only a larger intercept30

(Figure 1). The elastic sublayer keeps on expanding with increasing Wi until
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MDR is reached where it occupies the whole channel.

Despite the intellectual appeal of its conceptual simplicity, this elastic sub-

layer theory was later proven oversimplified. Experiments by Warholic et al.

[10] revealed that the PvK-like log law is only preserved for low-extent DR35

(LDR) (. 35% in that study) and for high-extend DR (HDR), the slope of

the mean velocity profile in a linear-log plot is ostensibly higher than the PvK

magnitude (Figure 1). This was further confirmed by a number of experimen-

tal and numerical studies [5, 7, 8, 11, 12, 13]. Although often associated with

the quantitative magnitude of DR% in the literature, emerging evidences have40

suggested that the LDR-HDR transition is indeed a qualitative change in the

turbulent dynamics. A recent analysis by White et al. [14] showed that at HDR

U+ does not even strictly follow a logarithmic dependence. In addition, for

minimal flow units (MFUs) and one low Re, Xi and Graham [7] showed that

this change in the shape of the U+(y+) profile can occur at DR% as low as45

≈ 15: DR% > 30 is not required for HDR behaviors. Beyond the mean velocity

profile, changes between LDR and HDR in other quantities are much less doc-

umented. Major observations (in the aforementioned studies) at HDR include

significantly reduced Reynolds shear stress and smooth flow field patterns with

longer streamwise correlation, although direct connections with the LDR-HDR50

transition still need to be established.

MDR is arguably the crown jewel of this field, whose curious nature remains

puzzling in many respects. However, the hitherto over-shadowed problem of

LDR-HDR transition certainly deserves attention in its own right. For one thing,

it has significant practical implication in the area of turbulence control. Existing55

mechanical (non-additive-based) flow control techniques pale in comparison with

polymer-induced DR: both the DR% achieved by these techniques and the shape

of the U+(y+) profile are only comparable to LDR in polymer fluids [15] –

understanding the turbulent dynamics of HDR will be pivotal to break this

ceiling. Meanwhile, the fundamental significance also should not be overlooked.60

Despite the ongoing debate between viscous vs elastic mechanisms [16, 17], it has

been generally accepted that DR is caused by the polymer-turbulence interaction
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and the resulting suppression of vortical structures [18, 19, 20, 21]. This effect

kicks in at the coil-stretch transition of the polymers [8] and corresponds to

the onset of DR. The additional LDR-HDR transition at Wi distinctly higher65

than the onset suggests that there is another change in the underlying polymer-

turbulence dynamics that we do not as yet understand: i.e. DR with increasing

polymer elasticity is a two stage process with a first mechanism being triggered

at the onset and a second mechanism at the LDR-HDR transition. The change

in the U+(y+) profile suggests that the first mechanism mainly acts in the buffer70

layer whereas the second one extends to the log-law layer.

In the recent framework by Xi and Graham [22], turbulent dynamics in

MFUs is classified into two phases: regular strong turbulence that dominates

the Newtonian flow is termed active turbulence and weak nearly two-dimensional

turbulent state is termed hibernating turbulence. The latter occurs in Newto-75

nian flow as well – which was confirmed in experiments [23] and believed to be

intermittent visits towards the laminar-turbulent edge state [24, 25] – with very

low frequency but becomes unmasked at high Wi. Its remarkable resemblance

to MDR prompts the hypothesis that MDR is an asymptotic state where hi-

bernating turbulence becomes the statistical norm. Taking an ergodic view of80

turbulence and neglecting the long-range spatial correlation, the temporal inter-

mittency in MFUs (between active and hibernating periods) should reflect the

spatial intermittency in extended flow domains. This was investigated recently

by Wang et al. [26] who showed that flow-field patches corresponding to active

and hibernating regions can be clearly identified in a large domain and the total85

area of hibernating patches increases as the flow converges to MDR. Interest-

ingly, in MFUs and at least one low Re, the Wi where hibernation frequency

starts to ramp up seems to coincide with that of the LDR-HDR transition [27].

If HDR is indeed triggered by the unmasking of hibernating turbulence, that

would perfectly explain the change in the shape of the U+(y+) profile, as condi-90

tional average studies have revealed that hibernating turbulence has a drastically

steeper U+(y+) profile than active turbulence [26, 27]. This link, however, has

not been tested in larger domains nor for more than one Re. As we will show
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later, the correlation between vortex dynamics in different regions turns out to

be important for understanding HDR, which was not considered in this MFU95

framework.

The purpose of this study is first to systematically investigate the differences

between LDR and HDR in an extensive flow domain (compared with MFU) by

densely sampling the parameter space. In particular, at each Re and in both

LDR and HDR regimes, multiple points need to be included to establish the100

LDR-HDR transition as a qualitative one. A new mechanism will be proposed

for the changing vortex dynamics underlying the transition. The paper is or-

ganized as follows. After introducing our simulation approach in Section 2,

changes in flow statistics at the LDR-HDR transition will first be summarized

in Section 3.1. We will then study and quantify the transitions in flow struc-105

ture (Section 3.2). Our new mechanism for the changing vortex dynamics at

HDR is proposed in Section 3.3.

2. Formulation and numerical details

Direct Numerical Simulation (DNS) of the governing equations in a plane

Poiseuille geometry is performed following the standard procedure first intro-110

duced by Sureshkumar et al. [28]. The geometry of the simulation domain is

shown in Figure 2(a). The flow is driven by a fixed streamwise pressure gradient

orientated in the x-direction. The no-slip boundary condition is applied to the

walls (y-direction) and the periodic boundary condition is applied to both the

streamwise (x-direction) and spanwise (z-direction) boundaries. The periods are115

denoted by Lx and Lz, respectively. By default, all variables are nondimension-

alized by turbulent outer units: i.e., lengths are scaled by the half-channel height

l, velocities by the laminar center-line velocity Uc, time by l/Uc, and pressure

by ρU2
c (ρ is the total density of the fluid). Meanwhile, near-wall quantities

are often represented in inner scales: velocities scaled by the friction velocity120

uτ ≡
√
τw/ρ and lengths by the viscous length scale δv ≡ η/ρuτ , where τw is

the mean wall shear stress and η is the solution viscosity. Then for Re ≡ ρUcl/η,
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Figure 2: Schematics of the (a) flow geometry and (b) FENE-P dumbbell

the friction Reynolds number Reτ ≡ ρuτ l/η =
√

2Re. The y coordinate in the

inner scale y+ ranges from 0 at the wall to y+
CL = Reτ at the channel center-line.

The momentum and mass balance equations are125

∂v

∂t
+ v ·∇v = −∇p+

β

Re
∇2v +

2 (1− β)

ReWi
(∇ · τ p) , (3)

∇ · v = 0. (4)

where the Weissenberg number Wi is the product of polymer relaxation time

λ and the mean wall shear rate, i.e., Wi ≡ λUc/l and β ≡ ηs/η is the ratio of

the solvent viscosity to the total viscosity. The last term on the right-hand-side

of Equation (3) accounts for the polymer effect, where τ p is the polymer stress130

tensor. It is calculated with the FENE-P constitutive equation [29]

α

1− tr(α)
b

+
Wi

2

(
∂α

∂t
+ v ·∇α−α ·∇v − (α ·∇v)

T

)
=

bδ

b+ 2
, (5)

τ p =
b+ 5

b

(
α

1− tr(α)
b

−
(

1− 2

b+ 2

)
δ

)
. (6)

The FENE-P model treats polymer molecules as finitely extensible nonlinear

elastic (FENE) dumbbells, as shown in Figure 2(b). The polymer conformation

tensor is defined as α ≡ 〈QQ〉 , where Q donates the end-to-end vector of135

the dumbbell. The length of the dumbbells is constrained by the maximum

extensibility parameter b: i.e., max(tr(α)) ≤ b.
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Re Reτ δt L+
x L+

z δ+
x δ+

z

3711 86.15 0.01 4000 800 9.09 5.44

7423 121.84 0.01 4000 800 9.09 5.44

14845 172.31 0.01 4000 800 9.09 5.44

Re Ny δ+
y,min δ+

y,max Sc 1/ScRe

3711 97 0.046 2.81 0.5 5.39× 10−4

7423 127 0.038 3.03 0.3 4.49× 10−4

14845 195 0.022 2.79 0.3 2.25× 10−4

Table 1: Numerical settings for production runs.

No. Reτ Wi Sc 1/(ScRe) L+
x × L+

z Nx ×Ny ×Nz

1 86.15 64 0.3 8.98× 10−4 4000× 800 256× 59× 87

2 86.15 64 0.5 5.39× 10−4 4000× 800 440× 97× 147

3 86.15 64 0.75 3.59× 10−4 4000× 800 640× 145× 221

Table 2: Settings of the validation tests.

Figure 3: Three components of the one-dimensional energy spectra against the spanwise wave

number at y+ = 60.
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All variables are discretized with a Fourier-Chebyshev-Fourier pseudo-spectral

scheme. The grid size in the x direction is δ+
x = 9.09 and that in the z direc-

tion is δ+
z = 5.44; the number of grid points in the y direction is 97, 127,140

and 195 for Reτ = 86.15, 121.84, and 172.31, respectively. For the time inte-

gration, we adopt a third-order semi-implicit backward-differentiation/Adams-

Bashforth scheme [30], and the time step is chosen to be δt = 0.01. Numerical

settings used in production runs are listed in Table 1. An artificial diffusion

term 1/(ScRe)∇2α is added to the right-hand side of Equation (5) with the145

Schmidt number Sc = 0.5 for Reτ = 86.15 and 0.3 for Reτ = 121.84 and 172.31.

This term is required for the numerical stability of the pseudo-spectral method

used here and it has been established in the literature that a numerical diffu-

sivity of O(0.01) does not significantly impact the results [8, 11, 28, 31, 32].

The magnitudes of diffusivity 1/ScRe used in this study are all at O(10−4)150

(Table 1). According to Sureshkumar et al. [28], Sureshkumar and Beris [31],

when the numerical diffusivity decreases (by increasing Sc) linearly with the

grid size, the solution converges to that of the original equation. This conver-

gence is validated here for a high-Wi case with proportionally varying resolution

and numerical diffusivity as listed in Table 2. As an example, we present the155

streamwise one-dimensional energy spectra of all three velocity components –

defined as

Eii(kx) =

∫
kz

v̂′∗i · v̂′idkz (7)

(where i = x, y, z is the index for velocity components, “′” indicates the fluc-

tuating component of the velocity field, ·̂ indicates the Fourier transform, and

“∗” indicates the complex conjugate) – in Figure 3. For all cases, results from160

different resolutions and numerical diffusivity magnitudes well collapse onto one

another, indicating that our choice of Sc is sufficient.

The numerical code used for this study is a custom MPI-parallelized code

developed based on the C++ Channelflow package [33]. A Newtonian version

of the code was earlier used for the DNS of Newtonian Poiseuille flow [34]; the165

code was then extended for viscoelastic simulation by integrating the original
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algorithm of Xi and Graham [7].

3. Results and Discussion

Simulations in this study are all performed in the box size of L+
x × L+

z =

4000×800, which is well within the range considered to be an extended domain.170

A series of Wi at each of three different Reτ (86.15, 121.84, and 172.31) are

reported. These Reτ values are closer to the critical magnitude Reτ,crit ≈ 45 for

the laminar-turbulent transition [35] than several recent high-Re viscoelastic

turbulence DNS studies [8, 36]. This choice is deliberate. Previous research

has clearly shown that all key stages of viscoelastic turbulence are observed175

in the near-transition regime [1, 7]: higher Re is not a necessary condition

for the LDR-HDR transition. At lower Re, the turbulent dynamics is more

tractable and also different stages of DR are contained in a smaller parameter-

space region (see Figure 5), both bringing mechanistic understanding within

reach. On the other hand, unlike most previous studies which focused on the180

direct comparison between one LDR and one HDR case, our attention is on the

parametric dependence of the qualitative behaviours. This requires simulations

at a larger number of parameter combinations and keeping the Re at this level

reduces the computational cost per run. (Nevertheless, the computation is still

substantial: for viscoelastic simulation at the highest Reτ = 172.31 and running185

on 32 processors in parallel, the time-stepper proceeds by ≈ 7 time units per

wall-clock hour; each data point, including both equilibration and production

runs, requires 3500 time units, which takes more than 20 days on a state-of-

the-art computing facility.) For the two lower Re, the full transition path from

Newtonian to MDR is captured. For the highest Re, numerical instability starts190

to show up at Wi = 96. Instead of increasing the artificial diffusivity, we decided

to exclude results at higher Wi since Wi = 96 is already well beyond the LDR-

HDR transition. The rheological parameters b and β in all cases are fixed to

be 5000 and 0.97, respectively. Time average results in this section are all

calculated from 20 evenly-spaced snapshots within a total period of 1000 time195
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Figure 4: (a) dependence of the percentage of drag reduction (DR%) on Wi at Reτ = 86.15,

121.84 and 172.31 and comparison with the empirical fitting using eq. (9); (b) linear regression

plot using eq. (10) (data symbols are the same as those in panel (a)).

units, after the DNS solution has reached the statistical steady state.

3.1. Changes in flow statistics

In this section, statistical results are summarized and compared between

LDR and HDR. In Figure 4, DR% as a function of Wi are plotted for three

Reynolds numbers Reτ : 86.15, 121.84 and 172.31. (DR% is defined in Equa-200

tion (1) and the friction factor is defined as

Cf ≡
2τw
ρU2

avg

(8)

where Uavg is the volume average streamwise velocity.) As expected, DR% of

all Re increases with Wi. Interestingly, profiles of three Re nearly overlap until

they get close to the asymptotic plateau. This suggests that the quantitative

dependence of DR% on Wi can be approximated by the same empirical corre-205

lation, as also reported by Housiadas and Beris [37], Owolabi et al. [38]. We

adopt the same formula used by Housiadas and Beris [37]

DR%

DR%MDR
=


0 (Wi < Wionset)

1− 2

1 + exp
(

Wi−Wionset
W

) (Wi ≥Wionset)
(9)

which models a smooth monotonic increase from DR% = 0 at Wionset to DR% =

DR%MDR as Wi → ∞; parameter W adjusts the profile steepness. We set
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DR%MDR = 51.5% which is the average DR% value of our MDR data points.210

Equation (9) is then rearranged to

ln

(
DR%MDR + DR%

DR%MDR −DR%

)
=

Wi

W
− Wionset

W
(10)

from which W and Wionset can be determined with linear regression. The re-

gression line from all our LDR and HDR data points is shown in Figure 4(b).

The data points remain close to the linear line until very high Wi (> 60), in-

dicating that Equation (9) offers satisfactory correlation except in the regime215

near MDR (also seen in Figure 4(a)). Parameters obtained from the regression

– Wionset = 5.76 and W = 23.41 – are very close to the values estimated by Hou-

siadas and Beris [37] (Wionset = 6 and W = 25). The agreement is expected

since Housiadas and Beris [37]’s relation was also based on DNS data over a

broad range of Reτ (which covers our Reτ magnitudes). Note that Equation (9)220

is simply a more general form of the Owolabi et al. [38] model: it reduces to

the latter when Wionset = 1/2 and W = 1. Owolabi et al. [38]’s Wionset was

much lower because there is no one-to-one mapping between the definitions of

Wi in experiments and in DNS. Even after this difference is corrected for, fitting

of our data to the Owolabi et al. [38]’s form is less successful: the additional225

steepness parameter W in eq. (9) is necessary.

Also noteworthy is that the LDR-HDR transition, which occurs at around

DR% = 20% (shown later in Figure 9), is not reflected as any discernible change

of trend in DR%. For the two lower Reτ where high Wi results are available,

DR% eventually saturates to an asymptotic upper limit. In its literal interpre-230

tation, MDR is the limit where DR% saturates with polymer elasticity. We will

therefore refer to this limit as MDR in this paper. Further increasing the Wi

causes the flow to laminarize. Experimentally, MDR should be a self-sustaining

turbulent state where laminarization is avoided. However, re-laminarization at

Wi is often observed in simulation studies [5, 7]. There are several possible235

causes for this discrepancy, including the lower Re and limited domain size used

in simulations. Deterioration of numerical accuracy due to the artificial diffusion

may also play a role at this level of Wi [12]. Nevertheless, the LDR-HDR tran-
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Figure 5: Multi-stage transitions of DR behaviours in the Re-Wi parameter space. Transition

boundaries are drawn according to the B-spline interpolation between the critical Wi of the

transitions at different Reτ . Vertical dashed lines indicate the LDR-HDR transition for each

Reτ .

sition studied here occurs at much lower Wi and none of the major conclusions

of this study should be affected.240

Simulation points reported in this study are summarized in a Re-Wi pa-

rameter space in Figure 5, which is divided into four stages of DR behaviours:

pre-onset (P.O.), LDR, HDR, and MDR. In the current domain, Reτ = 61.28

is the smallest Re to observe sustained turbulence, where introducing polymers

immediately leads to laminarization. At the higher Re, the full transition path245

from Newtonian turbulence to MDR is observed, resonating with the experimen-

tal observation that qualitative transitions in viscoelastic turbulence extends all

the way down to the laminar-turbulent transition regime. Critical Wi’s for the

transitions increases with Reτ , leading to a wider range of Wi being occupied

by each stage. Convergence to MDR occurs at Wi = 80 for Reτ = 86.15 and250

Wi = 128 for Reτ = 121.84. Variation in the onset Wi is almost negligible and

a Wionset ≈ 10 is observed for all cases. The critical Wi for the LDR-HDR

transition is 22, 24, and 28 for Reτ = 86.15, 121.84, and 172.31, respectively.

Current results of Reτ = 86.15 are compared with the MFU simulation of Xi

and Graham [7]. The Reτ = 84.85 of that study is very close to the current value255

and the rheological properties (i.e. β and b) are the same. The only different

13



Figure 6: Mean velocity profiles (U+ vesus y+) for (a) Reτ = 86.15 (b) Reτ = 121.84

setting is the size of the simulation domain L+
x × L+

z which is 4000 × 800 in

the current study and in Xi and Graham [7] L+
x = 360 and L+

z = 140 ∼ 260

depending on the Wi. As a result, the sequence and qualitative behaviours

of different stages of DR are the same between the two domain sizes, but the260

quantitative magnitudes of the critical Wi and DR% for all transitions differ.

In MFUs, the LDR-HDR transition occurs at Wi = 20 with DR% ≈ 15 and

convergence to MDR is found at Wi = 27 and DR% ≈ 26; whereas in the

extended domain, both these transitions are found at higher Wi and DR%. In

a way, the restrictive domain of MFU compresses the transitions into a smaller265

parameter region but still preserves all qualitative aspects.

Figure 6 shows the mean velocity profiles of the Reτ = 86.15 and Reτ =

121.84 cases. The Newtonian profile at Reτ = 86.15 is parallel to the PvK log

law for y+ > 30 but the intercept is slightly higher, because at this lowest Re

the log-law layer is not fully developed. At Reτ = 121.84, the Newtonian profile270

is already very close to the PvK log law and at Reτ = 172.31 (not shown here)

it completely overlaps the latter. Before the onset of DR, viscoelastic profiles

are indistinguishable from the Newtonian ones and thus omitted from Figure 6.

At LDR (Wi = 16 for both Re in Figure 6), the mean velocity profiles rise in

the buffer layer region and remain parallel to the Newtonian case in the log-law275

region. At HDR (i.e. Wi = 32 for Reτ = 86.15 and Wi = 48 for Reτ = 121.84),

the profiles lift up in the log-law layer showing slopes clearly higher than that

14



Figure 7: Reynolds stress profiles (a)Reτ = 86.15 and (b)Reτ = 121.84

of the PvK asymptote. For each Reτ , two profiles are chosen in the MDR stage

(i.e. Wi = 80 and 96 for Reτ = 86.15 and Wi = 128 and 144 for Reτ = 121.84)

to show the convergence of the mean velocity. At both Reτ , the profiles are280

close to but still slightly below the Virk asymptote. Although it is a common

practice in the literature to take the Virk log law as the criterion for identifying

MDR, we note that it is only an empirical correlation for experimental data often

gathered at higher Re than most computational studies. The appropriateness

of the Virk log law is even challenged recently [14]. As stated above, we take285

a literal interpretation and identify MDR as the asymptotic limit of DR with

increasing Wi. The nature and definition of MDR are not the focus of this

study.

Figure 7 shows the distribution of four components (〈v′+x v′+x 〉, 〈v′+y v′+y 〉,

〈v′+z v′+z 〉 and −〈v′+x v′+y 〉) of the Reynolds stress across the channel at Reτ =290

86.15 and 121.84. For both Re and after onset, the streamwise Reynolds
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Figure 8: Deviation of the Reynolds shear stress from the Newtonian case: (a)Reτ = 86.15

and (b)Reτ = 121.84.

stress profiles rise up with increasing Wi while the wall-normal, spanwise, and

shear components are all suppressed. All four components converge as MDR is

reached. In addition to the commonly discussed change of shape in the mean

velocity profile (Figure 6), the LDR-HDR transition can also be clearly iden-295

tified with the changing Reynolds stress profiles as well especially of the xy

shear component. From the bottom panels of Figure 7, it is clear that at LDR

(Wi = 16 for both Reτ ), the suppression of the −〈v′+x v′+y 〉 profile is localized in

the buffer layer – 5 . y+ . 30 and at higher y+ the profile well overlaps with the

Newtonian one. By contrast, at higher Wi (after the LDR-HDR transition), the300

suppression extends across the whole channel. A vertical dashed line is drawn

within the log-law layer as an eye guide to show the reduced magnitude there.

This transition between local and global suppression is more clearly seen when

the deviation of the Reynolds shear stress from the Newtonian case is plotted

in Figure 8.305

Note that in our MDR cases, although −〈v′+x v′+y 〉 is significantly suppressed

by polymers, its magnitude remains finite and differs from the Newtonian value

by no more than one order of magnitude. Vanishing Reynolds shear stress is

often cited in the literature as a key feature of MDR, an argument first made by

Warholic et al. [10] based on their experimental observation. Later experimental310

and numerical observations were not always consistent with this conclusion and
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Figure 9: Correlation between different contributions to the total shear stress (Equation (11))

with varying DR% at (a)y+ = 25 and (b) y+ = 0.6Reτ . In panel (a), lines represent the

linear regression results of all points; in panel (b), dashed lines are for the linear regression

results of LDR and solid lines for HDR.

non-zero Reynolds shear stress is often seen even when the Virk MDR asymptote

is reached [11, 12, 13]. Flow statistics at MDR is not our current focus and we

do not intend to settle this debate in this paper. However, our observations do

indicate that for Reynolds shear stress it is the wall regions of suppression, not315

the magnitude itself, that determines the onset of HDR.

In other components, changes in the Reynolds stress magnitudes (increase

in the streamwise component and decrease in other components) in the log-

law layer all become augmented at the LDR-HDR transition. Notably, it even

results in a clear change of shape of the wall-normal profile: at LDR, same as320

the Newtonian limit, the profiles climb up to a maximum near y+ = 40, followed

by a steady decline at higher y+, whereas at HDR, the profiles stay flat in the

log-law layer.

Qualitative transitions observed in both Figures 6 and 7 indicate that funda-
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mental changes have occurred in the turbulent dynamics of the log-law layer. To325

further tie these transitions to the phenomenological LDR-HDR transition, we

compare the trends of quantity changes using multiple data points in both LDR

and HDR regimes. Note that the Reynolds shear stress is related to the velocity

gradient, which determines the log-law slope of the mean velocity profile, via

the shear stress balance330

〈
τ+
xy

〉
= β

dU+

dy+
+
〈
−v′+x v′+y

〉
+

1− β
Wi

〈τp,xy〉 . (11)

The three components on the right-hand side of Equation (11) are the contri-

butions of the mean viscous shear stress, Reynolds shear stress, and polymer

shear stress to the total shear stress. Figure 9(a) and (b) show the quantitative

correlation between these terms and DR% in the buffer layer (i.e. y+ = 25) and

the log-law layer (y+ = 0.6Reτ ), respectively.In the buffer layer (Figure 9(a)),335

all three terms vary – increase for the viscous and polymer shear stresses and

decrease for the Reynolds shear stress – nearly linearly with DR% between the

DR onset and MDR. Comparing different Re, the viscous shear stress decreases

and the Reynolds shear stress increases as Re increases, which is consistent with

previous observations in Newtonian flows [39, 40]. At higher Re (than those re-340

ported here), the Re-dependence of these shear stress terms is expected to be

weaker according to the previous study of Housiadas and Beris [41]. Interest-

ingly, for these two terms, the slope of the trendlines stays approximately the

same with varying Re, suggesting that despite the significant weakening of tur-

bulence, polymer effects remain qualitatively similar in this layer. Meanwhile,345

the polymer term also shows a Re-dependence but the slope of the trendlines

increases. On the other hand, in the log-law region(Figure 9(b)), clear sharp

transitions are found in all three terms between LDR and HDR. Before the

LDR-HDR transition, variations in these quantities with increasing DR% are

barely existent, but in the HDR regime, a clear trend of either increase or de-350

cline is observed. Re-dependence is still observed but becomes less obvious as

Reτ grows higher, especially in the cases of Reynolds and polymer shear stresses.

The turning point between these two behaviors puts the LDR-HDR transition at

18



Figure 10: (a) The energy spectra (x-x component) of different Wi at y+ = 64 and Reτ =

86.15 and (b) Proportion of energy contained in the large scales(kx ≤ 15).

DR% ≈ 20, a value lower than the experimental transition point of DR% ≈ 35

reported by Warholic et al. [10].This is likely due to our lower Re: note that in355

Figure 9(b) the transition point does shift toward higher DR% as Reτ increases.

We stress here again that LDR-HDR is a qualitative transition in the turbulent

dynamics that is not tied to a particular quantitative magnitude of DR% for

different Re. Observations in Figure 9 are also consistent with our earlier hy-

pothesis that DR is a two stage process with different mechanisms: the first one360

is triggered at the DR onset and takes effect in the buffer layer and the second

one gives rise to HDR in which the log-law layer dynamics becomes affected.

To further inspect the changing flow statistics in the log-law layer, the energy

spectrum of the streamwise velocity Exx (defined in Equation (7)) is calculated

in the log-law layer and plotted in Figure 10(a). As Wi increases, the profile365

is raised at smaller kx and reduced at larger ones. This is consistent with

the observation in previous studies that polymer additives suppress small scale

fluctuations and strengthen energy-containing large-scale structures [10, 42, 43].

The effect becomes apparently amplified in HDR, which is more clearly observed

when we calculate the proportion of energy contained in the 15 leading modes370

Ẽ15
xx =

15∑
k=0

E(k)
xx /

∞∑
k=0

E(k)
xx (12)

and plot it as a function of y+ in Figure 10. As Wi increases, the accumulated
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Figure 11: Characteristic slope of the accumulated energy profile (Figure 10(b)) in the bulk

region of the channel (|y| ≤ 0.5). The solid and dash lines are obtained with linear regression

of the data in the HDR and LDR stages, respectively.

energy contained in the large scales increases, consistent with the increasing

importance of the large-scale turbulent structures. In all cases, the profiles

decrease as they approach the center of the channel. For Newtonian and LDR

cases, the decline is rather steep: the latter is nearly parallel to the former375

for the whole channel. Therefore, LDR preserves the same near-wall turbulent

dynamics typical of Newtonian flow, where the buffer layer is dominated by

recurrent coherent vortical motions and their outward eruptions, the so-called

“bursting” events, generate intense small-scale fluctuations at larger y+ [44].

DR is caused by an across-the-board suppression of turbulent motions extending380

over the entire channel. By contrast, for the HDR cases, profiles are gradually

lifting up in the log-law layer and near the center. This suggests that at the HDR

and MDR stages, polymers become more effective in suppressing the small-scale

fluctuations at high y+, which supports our hypothesis that a second mechanism

is triggered at HDR for DR in the log-law layer. This change of profile shape385

can be shown to correspond exactly to the LDR-HDR transition when we take

the part of each profile in Figure 10 within the bulk of the channel – defined

here as |y| ≤ 0.5, calculate a profile slope using linear regression, and plot this

characteristic slope in Figure 11 versus DR%. It is clear that at LDR, the

characteristic slope is nearly flat with increasing DR% and the slope starts to390
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Figure 12: Normalized profiles of the square root of the trace of the polymer conformation

tensor: (a)Reτ = 86.15 and (b)Reτ = 121.84

increase only in HDR. With increasing Re, the characteristic slope increases

(becomes less negative) at the Newtonian and LDR end: i.e., the profiles of

Ẽ15
xx are flatter near the channel center. This is however a trivial observation.

It is important to be reminded that the characteristic slope is defined in terms

of the wall-normal position in the outer unit – i.e., |y| ≤ 0.5 – and it does395

not correspond to the same wall layer in the inner unit. At higher Re, the

slope reflects more of the turbulent core than the boundary layer. Likewise, the

universal cutoff of kx ≤ 15 used in the definition of Ẽ15
xx is also arbitrary and

affects results from different Re differently. Comparison of the slope in Figure 11

is only meaningful at the same Re and any interpretation of the Re-dependence400

can be misleading.

As for the polymer conformation statistics, we show the normalized profiles

of the square root of the trace of the polymer conformation tensor α at Reτ =

86.15 and 121.84 in Figure 12. This quantity is essentially proportional to

the average end-to-end distance of the polymer chains. As expected, polymer405

extension increases with Wi, but interestingly the trend does not stop in the

MDR stage: i.e., even after the flow statistics have converged, polymer extension

continues to increase. There is also a clear qualitative difference between low

and high Wi, which occurs roughly at the LDR-HDR transition. At lower Wi,

polymer extension is highest at the wall, where the mean shear rate is highest,410
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Figure 13: Instantaneous streamwise velocity in the xz plane at y+ = 20.

and it declines monotonically with y+. At higher Wi, a maximum is found in

the buffer layer between y+ = 10 and 20. A similar change of peak position was

also observed in MFUs [7] and it indicates a qualitative shift in the polymer-

turbulence interaction.

3.2. Turbulence structures415

To unravel the turbulent dynamics behind these changing flow statistics, we

first turn to the flow patterns and vortex structures. We will start with velocity

distributions which have been widely discussed in the literature. We will then

show that the changing velocity patterns are a reflection of a change in the

vortex distribution and topology.420

3.2.1. Turbulence localization: visualization and quadrat analysis

Figure 13 shows the streamwise velocity distribution at y+ = 20 for New-

tonian, LDR, HDR and MDR stages at Reτ = 86.15. The alternating bright
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and dark stripes correspond to the high- and low-speed streaks, typical of near-

wall coherent structures. It is clear that as Wi increases, the length of velocity425

streaks increases while the curvature of the streaks decreases. For Newtonian

and LDR cases, the streaks wiggle around as they extend downstream, whereas

in HDR and MDR, the streaks are wide and straight in shape and wrinkles

become spotty. These changes are reported in various prior experimental and

numerical studies [13, 43, 45, 46].430

Vortices in the flow field are identified by the Q criterion [47, 48], where

Q ≡ 1

2

(
‖Ω‖2 − ‖Γ‖2

)
(13)

is the difference between the Frobenius norms of the vorticity tensor

Ω ≡ 1

2

(
∇v −∇vT

)
(14)

and the rate of strain tensor

Γ ≡ 1

2

(
∇v + ∇vT

)
. (15)

A pure shear flow has Q = 0 and in turbulent flow large positive and negative

Q values correspond to regions dominated by rotational and extensional flows,435

respectively.

Isosurfaces ofQ = 0.7Qrms, whereQrms is the root-mean-square of theQ field

in that domain, are shown in Figure 14 for the same four instants of Figure 13.

As Wi increases, not only is the vortex strength weakened – which can be

judged from the isosurface level (∝ Qrms) and is expected because polymers are440

known to suppress turbulence, but the distribution pattern also seems to have

changed. In the Newtonian and LDR (Wi = 16) cases, the domain is densely

populated by a large number of vortices and the distribution is mostly uniform

in space. From the upstream side (left side), the vortices originate from the

wall (light color) and lift upwards (darker color) as they extend downstream.445

Most of them do not exceed ≈ 300 wall units and despite the low Re, the so-

called “hairpin” vortices are already observed. A symmetric hairpin is developed

when two streamwise vortices lift up at the downstream end and connect via
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Figure 14: Typical snapshots of the vortex structures at Reτ = 86.15 (top view; only vortices

in the bottom half of the channel are shown). Isosurfaces of Q = 0.7Qrms are chosen to

represent the vortex surfaces. The color shade (from light to dark) maps to the wall distance

y+ (from 0 to Reτ ).
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Figure 15: Typical snapshots of the vortex structures at Reτ = 172.31 (top view; only vortices

in the bottom half of the channel are shown). Isosurfaces of Q = 0.7Qrms are chosen to

represent the vortex surfaces. The color shade (from light to dark) maps to the wall distance

y+ (from 0 to Reτ ).

an “arc” in the spanwise direction. More often the hairpin is incomplete or

asymmetric where one of the legs is not clearly developed. By contrast, in450

the case of HDR (Wi = 32) and MDR (Wi = 96), the distribution becomes

clearly heterogeneous where vortices tend to agglomerate: i.e., turbulence is

more localized and regions between those vortex clusters are nearly laminar.

Vortices also become elongated and most remain aligned in streamwise direction.

Indeed, the smooth streak patterns observed in Figure 13 for HDR (and MDR)455

are simply a reflection of the turbulence localization, where the straightened

streaks correspond to the quasi-laminar regions and the spotty wrinkles result

from localized vortex clusters.

Vortex structures at Reτ = 172.31 are also identified by isosurfaces of Q =
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0.7Qrms and shown in Figure 15. Same as the lower Re case, distinct aggregation460

of vortices also occurs at the HDR stage (Wi = 80). Compared with the low Re

case, the major difference is the presence of a considerable number of hairpin

vortices in Newtonian flow, which is commonly observed in the literature at

similar Re levels [49, 50]. These hairpin-like vortices are mostly asymmetric

with one leg extending much longer than the other. Qualitative changes in465

the flow structures and patterns between LDR and HDR have been noticed in

the literature at even higher Re (e.g., Reτ = 395 in Li et al. [13]). Vortex

clustering and localization reported here offer an effective explanation for those

observations. For example, the emergence of larger quiescent regions results

in areas with straight and elongated streaks in velocity contour plots and the470

localized vortical structure corresponds to isolated wrinkles on those streaks (see

fig. 13 here as well as, e.g., fig. 4 of Li et al. [13] and fig. 17 of Housiadas et al.

[43]).

In order to quantitatively analyze the level of turbulence localization at high-

Wi turbulence, we adopt the so-called quadrat analysis [51]. In this algorithm,475

the computational domain is divided into an array of rectilinear cells in the xz

plane. Within each cell,

p ≡ Vturb/Vcell (16)

is the fraction of the volume occupied by turbulence Vturb over the total cell

volume Vcell. Here, turbulent regions are identified as those where Q > 0.7Qrms.

The extent of localization is quantified by the coefficient of variation480

CV =
sp
p

(17)

where sp and p are the standard deviation and the mean of the p values of

individual cells. Obviously, when turbulent distribution is more heterogeneous,

there will be a larger disparity between the p values of different cells, leading to

a larger ratio of its standard deviation to the mean.

Results of this quadrat analysis are presented in Figure 16. Since the choice485

of cell size is arbitrary, we tested multiple sizes to make sure that our conclusions
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Figure 16: The three dimensional quadrat analysis at Reτ = 86.15 and Reτ = 121.84. Two

cell sizes are reported: l+x × l+y = 200× 80 and 50× 32.

do not depend on this artificial parameter; two of the sizes are tested, i.e.,

l+x × l+z = 200 × 80 and 50 × 32, are shown in this figure. It is clear that

the cell size only affects the quantitative magnitude of CV without changing

the qualitative trend of the profiles. At lower Wi (still above the DR onset),490

CV remains at the same level as the Newtonian case. After the LDR-HDR

transition (WiLDR-HDR = 24), this number steadily increases: i.e., turbulence

becomes more localized.

Similar as the case in Figure 11, differences in CV between the two Re

do not lead to any physically meaningful conclusion. Both the cell size and495

the cutoff threshold of Q are arbitrarily chosen parameters with unknown Re-

dependence: comparison is only meaningful at the same Re. We have also

tested a two-dimensional variant of the quadrat analysis, where the xz-planar

average Q values – at the y+ = 25 (buffer layer) and y+ = 0.6Reτ (log-law layer)

planes – are used in place of Qcell in the identification of turbulent regions. The500

results are similar to those of the three-dimensional version shown in Figure 16

(and thus not shown here), which indicates that the clustering of vortices and

turbulence localization are occurring across the domain as the flow enters HDR.
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Figure 17: The root-mean-square of Q with varying DR%

3.2.2. Discussion: relationship with flow statistics

The above observations are consistent with our initial hypothesis that DR505

is a two stage process. At the onset of DR, polymers undergo the coil-stretch

transition and start to suppress all vortical motions. This across-the-board

vortex suppression occurs throughout all stages of DR after the onset. As shown

in Figure 17, the magnitude of Q steadily decreases with increasing DR% in both

LDR and HDR stages. The localization of turbulence, however, only occurs in510

HDR, which could be the second mechanism for DR and responsible for the

qualitatively changes in flow statistics.

The observation of turbulence localization at the transition to HDR res-

onates with the spatio-temporal intermittency between active and hibernating

turbulence discussed earlier [22, 26, 27]. These two concepts are clearly related515

but the distinction between them should not be overlooked. Of course, the

localization and clustering of turbulent vortices open up large regions in the

domain with little turbulent activity. This is consistent with the higher fraction

of hibernating turbulence at high Wi reported in Xi and Graham [27]. On the

other hand, in theory one may as well increase the hibernation fraction with-520

out relying on turbulence localization: i.e., by enlarging the hibernating spots

evenly across the domain. Indeed, turbulence localization requires the cooper-

ation of coherent structures (shown in Section 3.2.3) over longer length scales
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Figure 18: Conditional average mean velocity profiles of active and hibernating regions at

Reτ = 86.15 and Wi = 48. Results from two different cutoff magnitudes Qcutoff are shown in

comparison with the time-average Newtonian and Wi = 48 profiles.

not captured in MFUs (from which the active-hibernating framework was first

proposed). The nature of this cooperation is the focus of Section 3.3, which is525

also central to the understanding of HDR.

On the surface, associating HDR with a higher fraction of hibernating regions

offers a straightforward explanation for the different flow statistics at HDR. To

see this, we need to first make two hypotheses: (1) after the DR onset, polymers

suppress buffer-layer structures in active turbulence, which causes DR there but530

leaves the log-law layer flow statistics largely unaffected and (2) after the LDR-

HDR transition, hibernating turbulence becomes statistically significant. Since

the mean velocity profile in hibernating turbulence is known to have a much

higher slope, not only in the buffer layer but across the channel, its higher

fraction will naturally lead to higher log-law layer slope in the time-average535

profile. To test this, we first divide the domain along the xz plane according to

the comparison between the local y-averaged |Q| magnitude

|Q|y =
1

Reτ

∫ Reτ

0

|Q|dy+ (18)

and a cutoff value Qcutoff: regions with |Q|y > Qcutoff are considered active and

those with |Q|y ≤ Qcutoff hibernating.Conditional average mean velocity profiles
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of these two groups, using two drastically different values of Qcutoff = 0.2Qrms540

and 2Qrms, are shown in Figure 18. Contrary to the first hypothesis above, even

for active regions, the mean velocity profile in the log-law layer has clearly risen

up, showing much higher slopes than the PvK log law. This result indicates

that the binary division into active and hibernating regions while neglecting

any correlations between them is too simplified to explain the phenomenology545

of HDR.

3.2.3. Percolation Analysis

A simple extension of the active-hibernating framework from MFU to an ex-

tended domain would imply that there is no difference in vortex topology within

the active regions between LDR and HDR: at high Wi, polymers only quench550

the turbulent activity in parts of the domain (hibernating regions) while vortex

dynamics in the rest (active regions) are generated from the same instability as

in Newtonian turbulence [7, 27]. Here, however, using the percolation analysis

proposed by Lozano-Durán et al. [52], we discover a fundamental shift in the

vortex topology that accompanies the localization of turbulence.555

Recall the Q-criterion used in Figure 14, the choice of the threshold value

of Q for vortex identification is largely arbitrary. The resulting vortex config-

uration clearly depends on this choice: as Qthreshold increases, fewer and fewer

regions satisfy the criterion, resulting in fewer and smaller vortices being iden-

tified. Vortex configuration with the increasing threshold magnitude, measured560

by the non-dimensional H parameter defined with

Qthreshold ≡ HQrms, (19)

is shown in Figure 19. For each H, interconnected vortices are considered to

form a vortex cluster and coded with the same color in Figure 19. (Vortices

are determined to be connected when at least two grid points, one from each

isosurface, are immediately adjacent to each other.) Identified clusters are then565

ranked according to their volumes and only larger clusters that accumulatively

account for 80% of the total vortex volume in the domain are shown (for the
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Figure 19: Vortex decomposition with increasing H (normalized threshold Q value for vortex

identification; see Equation (19)) in the percolation analysis: (a) Newtonian, Reτ = 86.15

and (b) Wi = 96, Reτ = 86.15. Each interconnected vortex cluster is coded with the same

color.

Figure 20: Percolation diagrams: (a)Reτ = 86.15 (b)Reτ = 121.84. Vertical dashed lines

mark the Qthreshold = 0.7Qrms used in Figure 14.
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H = 0.5 image of the Newtonian case the cutoff is 60%). This is to eliminate

the large number of small vortex fragments to clear the view.

In Newtonian turbulence (Figure 19(a)), at H = 0.2, the threshold is lower570

than even the Q magnitude of the weak rotational motion between vortex cores.

These regions form “tunnels” that connect the main vortex bodies, resulting in

an interconnected network that percolates the domain. As H increases to 0.4

and 0.5, the “tunnels” quickly break and the percolating network decomposes

into separate vortex clusters, marked by different colors. This process is quan-575

tified by the ratio of the volume of the largest vortex cluster Vmax to the total

volume of all vortices identified Vtot and plotted in Figure 20. As shown in

Figure 19(a), at the lowest H all vortices belong to the same cluster and there-

fore Vmax/Vtot = 1. For the Newtonian case, raising H to around 0.5 triggers

a quick collapse of the percolating network into much smaller clusters. Accord-580

ingly, Vmax/Vtot drops sharply since now even the largest cluster is only a small

fraction of the total volume. The ratio stays almost constant as H increases

beyond 1, indicating that individual clusters shrink in size proportionally while

keeping the volume ratio between themselves. Lozano-Durán et al. [52] sug-

gested that the proper threshold for vortex identification should fall within the585

transition between percolating and non-percolating behaviors. Our choice of

H = 0.7 used in Figure 14 is within this range.

The Vmax/Vtot curve for LDR is nearly identical to the Newtonian case. At

HDR, the transition period still centers around H ∼ 0.5 but the decline of

Vmax/Vtot is smoother and the transition extends over a larger range of H. At590

the highest Wi shown in Figure 20 – i.e., 96, the transition starts at H well below

0.1. This indicates that the percolation disintegration evolves into a continuous

process. The corresponding vortex configuration is shown in Figure 19(b). At

H as low as 0.2, a clear vortex cluster dominates the domain and no vortical

structures are found in the laminar-like (hibernating) regions, reaffirming the595

true localization of turbulence. As H increases, no sudden disintegration is

observed, indicating that the vortices in the cluster are closely connected with

strong mutual interaction. The Vmax/Vtot ratio only decreases smoothly because
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the tips of the “tentacles”of the cluster are gradually etched away with higher

H. Disintegration of the cluster is not observed until H is close to O(1) and600

even there the process is progressive with new vortices being shed off with

each increment of H. The large H magnitude required to break the cluster

and the stepwise nature of its disintegration show that the interaction between

vortices in the same cluster is stronger than the “tunnels” between clusters

observed in the Newtonian case. All in all, the percolation analysis reveals605

that the vortex dynamics at HDR becomes qualitatively changed where vortices

are generated and sustained in large clusters with strong mutual interactions,

whereas at LDR the process appears more stochastic. This difference leads to

the apparent turbulence localization.

3.3. Proposed mechanism610

We have so far demonstrated that the LDR-HDR transition is not simply a

quantitative effect of the level of DR, but a qualitative transition likely involv-

ing two different stages of DR mechanisms. The transition is associated with a

range of qualitative changes in flow statistics, behind which turbulent activities

are found to become localized. Although the first mechanism of DR, which sets615

its onset, is well understood as a generic across-the-board weakening and sup-

pression of turbulent fluctuations [13, 19], the nature of the second mechanism,

which drives the LDR-HDR transition, is unknown. Here, we make the first

attempt at its mechanistic understanding by proposing a possible mechanism

that is compatible with currently known observations.620

We start our discussion by revisiting the self-sustaining dynamics of Newto-

nian turbulence. Schoppa and Hussain [53] summarized the vortex regeneration

mechanisms proposed in the literature into two major categories (Figure 21).

The first is what we will refer to as the “streak-instability mechanism”. Upward

ejection of near-wall fluid by streamwise vortices forms low-speed streaks. A625

strictly x-independent streak is stable but as the streak intensifies (i.e., larger

contrast between low- and high-speed streaks), it becomes increasingly suscepti-

ble to x-dependent perturbations, which leads to the so-called streak breakdown
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Figure 21: Vortex regeneration mechanism and polymer effects thereon in (a) LDR and (b)

HDR

and the generation of streamwise vortices. This process is not only important

for understanding the self-sustaining process of near-wall turbulence [54], streak630

breakdown is also a central step in the laminar-turbulent transition [55, 56]. In

the second so-called “parent-offspring mechanism”, a “parent” vortex lifts up

at its head and instability of the shear layer between the vortex and the wall

gives rise to a new “offspring” vortex. In this scenario, the new vortex is gen-

erated immediately next to its parent, implying strong correlation and spatial635

proximity between them. On the other hand, although the streak-instability

mechanism does not require any immediate parent vortex, existing vortices still

influence the generation of new ones. For example, the bursting of existing

vortices generates perturbations that can destabilize streaks elsewhere in the

domain. Obviously, this link between existing and new vortices is indirect and640

not necessarily local, compared with the parent-offspring mechanism. Finally,

we note that this binary categorization is simplistic and there are a number of

different mechanisms within either category. But it suffices for our discussion
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Figure 22: Typical vortex evolution scenarios observed in our DNS at Reτ = 86.15: (a)

streak-instability mechanism (Newtonian) and (b) parent offspring mechanism (Wi = 96).

on the vortex dynamics leading up to HDR.

Both mechanisms are observed in our DNS. In Figure 22, we pick and show645

one typical scenario for each case. Figure 22(a) shows a typical life cycle of

a hairpin vortex following the streak-instability mechanism, which is found in

Newtonian turbulence. At T = 0, a small tentacle-like vortex lifts up from a

packet of streamwise vortices and connects with a neighbouring one at T = 8

to form a hairpin vortex (Vortex A). As this vortex pair evolves from an ini-650

tial parallel configuration to a three-dimensional hairpin, the low-speed streak

sandwiched between them (not shown) twists with the instability. The hairpin

grows from a C-shaped arch (T = 8) to a Ω-shaped structure with its head

lifting up towards the bulk of the flow (T = 36). At T = 40, the arch bursts and

disappears from the view, with only one leg left behind at T = 48. Although655

difficult to show here in an extended turbulent domain, in our recent study [57]

where the vortex growth and bursting process were tracked in an MFU, it was

observed that the bursting of coherent vortices generates strong small-scale fluc-

tuations that quickly propagate across the MFU. Borrowing that knowledge, we

may postulate that the bursting event at T = 40 gives rise to small-scale fluctu-660
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ations that can spread and trigger instabilities in other streaks, thus completing

the vortex regeneration cycle.

The self-sustaining process of Newtonian turbulence includes both streak-

instability and parent-offspring mechanisms. These two processes offer two par-

allel pathways whereby the vortex dynamics can be continuously regenerated.665

Our simulations show that the situation changes at high Wi where the streak-

instability process is rare and the parent-offspring pathway becomes exposed. A

typical scenario is shown in Figure 22(b). Compared with the Newtonian case,

much fewer hairpin vortices are observed at high Wi, which was also reported

by Yarin [58] and was further supported by Kim et al. [59] through their dy-670

namical simulations of counter-rotating pairs of quasistreamwise vortices. These

streamwise vortices often align head-to-tail to form a string (T = 0), which was

also observed by Li et al. [13], Kim et al. [60] at higher Re. In the vortex string,

new vortices are often generated at the upstream end of their parents (e.g., the

births of vortices 4 and 5 at T = 16 and 32), effectively extending the string675

against the oncoming flow. Interestingly, this order of vortex generation – i.e.,

from downstream to upstream, is opposite to the typical observation reported

in Newtonian turbulence, where the offspring is more likely to be generated at

the downstream side of the parent [61], although the reversed order was also

occasionally observed in the Newtonian case [62]. In addition to suppressing680

the formation of hairpins, vortex lift-up or eruption and its subsequent burst-

ing is also prevented. Overall, streamwise vortices are stabilized by the high

polymer elasticity, allowing them to extend to much longer length scales (see

Figures 13 and 14 and also refer to [59, 63, 64]). Not able to burst, the vor-

tices eventually decay and disappear (vortices 1 & 2 at T = 64). This again is685

consistent with observations made in Bai and Xi [57] that polymers are able to

help the flow bypass the bursting of vortices and avoid small-scale fluctuations.

Here, instead of bursting, we only observed a mild and temporary swelling and

proliferation of vortices at T = 64. This regeneration dynamics, that vortices

are more often generated as an offspring of a nearby parent, explains perfectly690

why vortical structures are more localized at high Wi and why vortices within
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Figure 23: Schematic of the definition of the streak lift angle measured at y+ = 20: θ20. Solid

lines represent the contour of streamwise velocity.

the same clusters are strongly correlated (see Figure 19). In addition, the sup-

pression of hairpins and their lift-up and eruption at larger y+ can also explain

the suppressed Reynolds shear stress in the log-law layer. And since bursting is

bypassed, intense small-scale fluctuations are avoided, which is consistent with695

the larger proportion of energy accumulating in large scale structures in the

log-law layer (Figure 10).

After the direct comparison between the vortex regeneration dynamics of a

Newtonian and high-Wi cases, we now need to show that the suppression of

the streak-instability pathway does indeed correlate with the LDR-HDR tran-700

sition. According to [53], the relative stability of a streak is determined by its

“strength”, which basically describes by how much the base flow has been dis-

torted by the upward ejection of the low-speed streak, which creates spanwise

variation or contrast in vx. As sketched in Figure 23, the strength is quantified

locally by the streak lift angle705

θ ≡ arctan

(
|ωy|
|ωz|

)
(20)

where ωy and ωz are the wall-normal and spanwise components of the local

vorticity. The stability of low-speed streaks is measured by their characteristic
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Figure 24: Probability density functions of the characteristic streak lift angle at (a) Reτ =

86.15 and (b) Reτ = 121.84. Vertical lines mark the mean value of each distribution.

lift angle

θc ≡ max (θ20) (21)

at the y+ = 20 plane. Here, regions with v′x ≤ 0 are first identified as the

low-speed streak regions; local maxima along the x direction that fall into these710

regions are collected into the sample pool of θc.

Figure 24 shows the probability density functions (PDFs) of the character-

istic streak lift angles θc collected in each simulation. The solid black line is the

average angle. The decrease of the average angle with increasing of Wi shows

the weakening of the streak lift-up “strength”, which indicates higher streak715

stability and less probability for vortex generation by streak instability. In ad-

dition, the shape of the distribution changes drastically from LDR to HDR.

Before the LDR-HDR transition, the distribution is highly skewed with only
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Figure 25: The mean and skewness of the θc distribution for all three Reτ . The dashed and

solid lines are the linear regression outcomes of the LDR and HDR stages, respectively.

one sharp peak located in the range of 80 and 90 degrees. As Wi increases, the

distribution of θc starts to spread towards the side of lower θc. At HDR, the dis-720

tribution becomes nearly even for a wide range of θc with no distinct peak at the

high θc end. The mean and skewness of the distribution are plotted in Figure 25

against DR% and it is clear that both metrics change sharply at the LDR-HDR

transition (DR% ≈ 20%) (The turn of trend in skewness is not as clear only

at the lowest Re but it becomes sharp at higher ones). Note that a streak is725

considered unstable at θc > 50 for sinuous streak instability [53]. The sharp

change in the distribution at the beginning of HDR indicates a drastic decrease

in the number of streaks eligible for instability, which supports the mechanism

we propose: HDR is a stage where the streak-instability pathway for vortex

regeneration is greatly suppressed, exposing the parent-offspring mechanism as730

the main pathway (Figure 21(b)). Since the latter is known to maintain the

clustering and close interaction between vortices, this mechanism consistently

explains the observed turbulence localization.

4. Conclusions

In this study, DNS simulation of viscoelastic turbulent channel flow is per-735

formed for a large number of parameter combinations at a moderate-Re regime

not far above Recrit. The landscape of the Re-Wi parameter space is explored
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(Figure 5), including the whole range of transitions in DR behaviors. In partic-

ular, we focus on the LDR-HDR transition, which occurs between the DR onset

and MDR. Literature in the area often attributes the transition to a quantitative740

effect of the DR%. However, we show that it is indeed a qualitative transition

of different turbulent dynamics.

Changes in flow statistics are first investigated and the major features of

HDR (compared with LDR) are summarized as follows.

• The mean velocity profile deviates from the PvK log law behavior in the745

log-law layer (Figure 6).

• The Reynolds shear stress is suppressed not only in the buffer layer, but

across the whole channel (except the viscous sublayer) (Figure 7).

• As the Reynolds shear stress becomes suppressed in the log-law layer,

viscous and polymer shear stresses increases (Figure 9; in LDR, these750

changes only occur in the buffer layer).

• The energy spectrum in the log-law layer becomes qualitatively changed

in the log-law layer, with a sudden increase in the energy accumulated in

large scales (Figures 10 and 11).

In summary, unlike at LDR where most DR effects are contained in the755

buffer layer, at HDR these effects extend to the log-law layer. Behind these

apparent changes in flow statistics, the turbulent structure has also changed

fundamentally. At LDR, turbulent vortices homogeneously spread across the

domain, but at HDR they cluster into strongly interacting groups. Turbulence

becomes localized, leaving the regions outside these vortex clusters laminar-like.760

Percolation analysis reveals a fundamentally changed vortex topology at HDR

(Figure 20).

These changes indicate that DR goes through two distinct stages with dif-

ferent mechanisms. The first starts at the onset of DR, where the coil-stretch

transition of polymers starts a generic inhibition of all turbulent fluctuations.765

40



The second mechanism is triggered at the LDR-HDR transition and its origin is

unknown, for which a mechanism is proposed. In Newtonian turbulence, vortex

regeneration cycles include two parallel pathways. The streak-instability path-

way generates new vortices by perturbing streamwise low-speed streaks and the

growth and lift-up of these vortices eventually lead to their bursting, which gen-770

erates small-scale fluctuates that can destabilize another streak. This process

is intrinsically non-local, as the perturbations can spread quickly to other parts

of the domain, and the bursting events can feed the turbulence in the log-law

layer. The parent-offspring pathway generates new vortices immediately next

to an existing one. The vortices are thus clustered and interact strongly with775

one another. Polymers, for its capability of suppressing bursting and stabilizing

streamwise vortices, are able to substantially block the first pathway, leaving the

parent-offspring pathway the main mechanism of turbulence self-sustenance at

HDR. The proposed mechanism offers a consistent explanation for the changes

in flow statistics at the LDR-HDR transition and the localization of turbu-780

lence. Quantitative analysis of streak stability shows that after the LDR-HDR

transition, much fewer streaks are susceptible to instability, which supports the

mechanism.

Admittedly, the binary categorization of vortex regeneration mechanisms

is simplistic and, more importantly, there still lacks sufficient direct evidence785

for the proposed mechanism. The nature of HDR is far from being a solved

problem. For future work, we will further test this hypothesis by systematically

investigating the polymer effects on the vortex regeneration process. This is

difficult to achieve using DNS in statistically steady turbulence (as in this study),

where the chaotic dynamics makes any direct comparison of vortex dynamics790

nearly impossible. Transient processes must be carefully constructed to simulate

the vortex generation and growth dynamics. Results from different Wi can

then be systematically compared for complete understanding. In the case of

streak breakdown, examples of such transient processes can be borrowed from

the existing literature on the Newtonian bypass transition [56]. In particular,795

recent work by Brandt and de Lange [65] offers a neat example of creating
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different vortex configurations from controlled collisions between streaks. In

addition, conditional sampling also offers a convenient way of generating hairpin

vortices [66].
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