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ABSTRACT
Turbulent flow profiles are known to change between low- (LDR) and high-extent drag reduction (HDR) regimes. It is however not until
recently that the LDR-HDR transition is recognized as a fundamental change between two DR mechanisms. Although the onset of DR, which
initiates the LDR stage, is explainable by a general argument of polymers suppressing vortices, the occurrence of HDR where flow statistics
are qualitatively different and DR effects are observed across a much broader range of wall regions remains unexplained. Recent development
of the vortex axis tracking by iterative propagation algorithm allows the detection and extraction of vortex axis-lines with various orientations
and curvatures. This new tool is used in this study to analyze the vortex conformation and dynamics across the LDR-HDR transition. Polymer
effects are shown to concentrate on vortices that are partially or completely attached to the wall. At LDR, this effect is an across-the-board
weakening of vortices which lowers their intensity without shifting their distribution patterns. At HDR, polymers start to suppress the lift-up
of streamwise vortices in the buffer layer and prevent their downstream heads from rising into the log-law layer and forming hairpins and
other curved vortices. This interrupts the turbulent momentum transfer between the buffer and log-law layers, which offers a clear pathway
for explaining the distinct mean flow profiles at HDR. The study depicts the first clear physical picture regarding the changing vortex dynamics
between LDR and HDR, which is based on direct evidence from objective statistical analysis of vortex conformation and distribution.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5118251., s

I. INTRODUCTION

When a small amount of polymers are added into Newtonian
turbulence, their strong interaction with the flow can significantly
modify turbulent coherent structures, which results in the drastic
reduction of the turbulent friction drag. Polymer-induced turbulent
drag reduction (DR) has been a subject of intense interest in the
literature1–3 due to its significant practical implications for the devel-
opment of flow control techniques for enhanced fluid transportation
efficiency.

In polymeric turbulent flows, the Weissenberg number Wi ≡ λγ̇
(λ and γ̇ are the polymer relaxation time and the characteristic
shear rate of the flow, respectively) measures the level of polymer-
induced elasticity. Polymer effects on turbulent flow statistics are
not noticeable until Wi exceeds a critical magnitude, often denoted

by Wionset, which corresponds to the coil-stretch transition of poly-
mer molecules. After the onset, the level of DR increases with
Wi but eventually converges to an asymptotic upper bound1—the
widely known maximum drag reduction (MDR) asymptote. (At low
enough Re, laminarization was also observed after the flow passes the
Virk asymptote, before another type of instability emerges.4) Before
MDR, distinction is further made more recently between low-extent
(LDR) and high-extent drag reduction (HDR).5 Starting from the
Newtonian limit and with increasing Wi, the flow undergoes a series
of transitions between four different stages of behaviors: preonset,
LDR, HDR, and MDR.6

LDR and HDR were first differentiated because their mean
velocity profiles appear different in shape, which is observed in var-
ious experimental and numerical studies.5,7–9 Recall that Newtonian
turbulent mean velocity profiles display the Prandtl-von Kármán
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(PvK) log law

U+ = 2.5 ln y+ + 5.5 (1)

across most of the near-wall layer (y+ ≳ 30).10 This log-law layer
is connected to the near wall viscous sublayer via a buffer layer at
5 ≲ y+ ≲ 30.11 At LDR, the buffer layer velocity profile rises and its
thickness also increases. Meanwhile, the log-law layer stays parallel
to the PvK log law only with a vertical offset [i.e., the same slope
but larger intercept compared with Eq. (1) owing to the DR in the
buffer layer]. At HDR, however, the slope of the mean velocity pro-
file clearly increases in the log-law layer. This effect was initially
attributed to the quantitative magnitude of DR in earlier studies with
DR% ≈ 35,

DR% ≡ Cf − Cf,s

Cf
× 100% (2)

is the percentage drop of the friction factor Cf; subscript “s” indicates
the solvent, i.e., Newtonian benchmark fluid, often cited as the cut-
off.5 Recent more systematic studies revealed that this transition is
accompanied by a series of sharp changes in flow statistics and may
occur at much lower DR% at lower Re.6,12 Most notably, suppression
of Reynolds shear stress (RSS) is mainly contained in the buffer layer
at LDR which extends across the whole boundary layer at HDR. In
addition, the mean velocity profile was shown to no longer follow a
logarithmic dependence at HDR.13,14 All this evidence indicates that
turbulent DR is a two-stage process with distinct mechanisms. The
first is a localized weakening of turbulence concentrated in the buffer
layer which starts at Wionset. The second is a fundamental change
in turbulent dynamics in the log-law layer that is only triggered at
the LDR-HDR transition. Fundamental understanding of the sec-
ond mechanism (HDR) is very limited, which however has impor-
tant implications in the area of flow control. In particular, existing
nonadditive based DR techniques mainly result in flow statistics
characteristic of LDR.15 Knowing how polymers trigger HDR will
inspire new approaches that elevate the DR outcome to the next
level.

Flow statistics and turbulent dynamics are often conceptual-
ized in the framework of coherent structures such as vortices and
streaks.16–18 These structures are commonly spotted in flow field
images [from flow visualization experiments or direct numerical
simulations (DNS)] and provide a vehicle for describing mecha-
nisms of turbulent self-sustaining processes and momentum trans-
port.19–22 Attempts have also been made to establish the relation-
ship between the mean velocity profile and the underlying coherent
structures.23 For instance, Perry and Marušić24 attributed the loga-
rithmic dependence [Eq. (1)] on the population of highly lifted-up
vortices. For viscoelastic turbulence, it is commonly accepted that
polymer stresses can cause DR by suppressing the motion of vor-
tices,25–29 which offers a convincing explanation for the onset of DR.
Much less is known about the second stage of DR as the LDR-HDR
transition was not considered as a qualitative change in turbulent
dynamics until very recently.12 Quantitative analysis of vortex dis-
tribution revealed that sharp changes in flow statistics coincide with
the start of coherent structure localization, with HDR character-
ized by spotty clusters of vortices separated by laminarlike regions,12

which corroborates the earlier description of the intermittent tran-
sitions between active and hibernating turbulence.30–33 Based on
this, Zhu et al.12 hypothesized that the LDR-HDR transition stems

from a fundamental change in the turbulence regeneration mech-
anism and the two-stage DR process is a reflection of two different
modes of polymer effects on turbulent structures. At lower Wi, poly-
mers cause an across-the-board weakening of vortices and thus the
onset of DR. At higher Wi, they start to suppress the vortex lift-
up and prevent its subsequent bursting events. Since bursting can
lead to the spreading of flow disturbances and trigger streak insta-
bility elsewhere in the domain,34,35 its suppression effectively blocks
this pathway for vortex regeneration and exposes the more localized
parent-offspring mechanism—generation of new vortices at the edge
of existing ones—as the main process for turbulence sustenance at
HDR. Prevention of the vortex lift-up also offers an explanation for
the breaking of the mean velocity log law at HDR.

Like all studies of turbulent coherent structures, although there
is no shortage of anecdotal evidence for this conceptual model, sys-
tematical analysis of changes in vortex configuration without sub-
jective bias is a nontrivial challenge. Conditional sampling has been
an influential tool in the coherent structure analysis of viscoelastic
turbulence, which averages the flow structures extracted based on
events such as velocity ejection28,36 and occurrence of streamwise
vortices.37 Its outcome has significantly contributed to the funda-
mental understanding in this area, especially that of vortex sup-
pression by polymer forces, which causes the transition into the
first DR stage at Wionset (as reviewed above). However, focusing on
the average smears the variation between individual vortex objects
and loses the information on the statistical distribution. Reliance
on the predetermined detection events also limits its representa-
tiveness when studying dynamics involving complex vortex topolo-
gies and motions. Proper-orthogonal decomposition (or Karhunen-
Loève analysis) was also widely used,9,38–40 which is most effective
for quantifying energy distribution between flow modes of differ-
ent length scales, but information on real individual vortices is still
missing. A method that can extract individual realizations of vor-
tex objects and objectively analyze their configurations and topolo-
gies can contribute new insight especially into the second stage of
DR which, as discussed above, may involve more complex vortex
dynamics.

At the conceptual level, this is achieved in a two-step pro-
cess: (1) vortex identification—determining which regions in the
flow field display vortical motions and (2) tracking—grouping these
regions into individual vortex objects. For vortex identification, its
necessity may not be obvious at first sight as one would intuitively
turn to the vorticity field ω ≡ ∇ × v for describing swirling flows.
The limitation of vorticity becomes clear when we consider a sim-
ple shear flow where, despite the absence of any vortex, still it has
a vorticity magnitude proportional to the shear rate. Most com-
monly used vortex identification criteria are based on scalar iden-
tifiers calculated from the velocity gradient tensor ∇v.41–43 Here,
we illustrate with the Q-criterion43 which is used in this study. For
incompressible flow, the Q quantity is defined as

Q = 1
2
(∥Ω∥2 − ∥S∥2), (3)

where ∥⋅∥ denotes the Frobenius tensor norm, e.g., ∥Ω∥
≡
√
∑i∑j Ω2

ij. The strain-rate tensor, S ≡ (∇v +∇vT)/2, and the

vorticity tensor, Ω ≡ (∇v −∇vT)/2, are the symmetric and anti-
symmetric parts of∇v, respectively. Equation (3), on its face, can be
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interpreted as a comparison between the magnitudes of fluid rota-
tion (measured by ∥Ω∥2) and strain (∥S∥2). The magnitude of Q
provides a basis for categorizing flow regions based on their local
kinematics. Regions with large positive Q are dominated by strong
rotation and thus correspond to vortices. Regions with large neg-
ative Q are dominated by strain, i.e., stretching of fluid elements,
which indicates extensional flow. For a strict shear flow, it is easily
verifiable that Q = 0. The reader is referred to Xi and Bai33 for a more
quantitative discussion on the relationship between Q and local flow
type. A similar argument was also adopted by the recent studies of
Pereira et al.44,45 which divided viscoelastic flow fields into regions
with different Q magnitudes. Energy exchanges between these Q
regions were analyzed to understand polymer-turbulence dynam-
ics. The Q-criterion is just one of many vortex identification criteria
available in the literature.42,46–48 Another widely known example is
the λ2-criterion proposed by Jeong and Hussain,46 in which λ2 is the
second largest eigenvalue of the S2 + Ω2 tensor and flow regions with
negative λ2 (similar to the positive-Q situation) are considered to be
dominated by vortex motions. Comparison between different vortex
identification criteria has been widely studied in the literature, and
it is generally agreed that in complex turbulent flow fields, results
from most common criteria are by and large equivalent.49,50 A more
detailed introduction of vortex identification was provided in our
earlier paper.51

Much less development was seen in vortex tracking. Scalar
fields of the identifier, e.g., Q and λ2, can be easily visualized by
rendering its three-dimensional isosurfaces, although care must be
taken in the selection of the threshold level.23,52,53 This makes vor-
tex objects easy to identify by eyes but not by a computer program
for quantitative analysis. A vortex tracking algorithm will enable the
identification of individual vortex objects and quantification of their
location, size, and topology without the subjectivity of human inter-
vention. A classical example is the method of Jeong et al.,41 which
identifies vortex axes—centerlines around which the fluid rotates in
a swirling motion—by stitching together local planar maxima of the
identifier. The extracted axis-lines can be used in conditional sam-
pling studies to align individual vortex objects for averaging.41,54,55

This method was however designed only for (quasi-)streamwise vor-
tices whose axis-lines extend in nearly straight lines aligned with
the mean flow. These vortices are important for the self-sustaining
process of turbulence at least at lower Re56 and DR in the buffer
layer:27 the latter, as reviewed above, is responsible for LDR. Vor-
tices of more complex configuration, such as hairpin vortices with
Ω-shaped axis-lines, are of broad interest to many outstanding areas
of research, including turbulence regeneration at high Re, dynamics
in the log-law layer, and bypass transition to turbulence.18,57,58 In the
case of viscoelastic flow concerned here, complex three-dimensional
vortices are key to the understanding of HDR. Recall that HDR
is marked by qualitative changes in the turbulent statistics of the
log-law layer12 where highly curved vortices are expected to play a
more important role. The mechanism proposed by Zhu et al.12 for
the LDR-HDR transition also requires the understanding of poly-
mer effects on lifted-up vortices, which are again significantly curved
away from the streamwise direction.

Motivated by these, Zhu and Xi51 have recently developed
a new method termed “vortex axis tracking by iterative propaga-
tion” or VATIP. The method borrows the original idea of Jeong
et al.41 of extracting vortex axis-lines by connecting points along

their pathways and introduces an iterative search process to connect
new points for axis-line propagation in all three spatial dimensions.
It has been shown to successfully capture vortices with more gen-
eral three-dimensional configurations, including those with curved
axis-lines, nonstreamwise alignment, or complex branched topol-
ogy. A vortex classification procedure was also proposed in the
same study which sorts vortices identified by VATIP into commonly
observed types, such as quasi-streamwise vortices, hooks, hairpins,
and irregularly branched ones.

The development of VATIP has enabled for the first time sta-
tistical analysis of vortex distribution and conformations. This study
will leverage this new tool to investigate polymer effects on vor-
tex dynamics in different stages of viscoelastic turbulence. Although
much attention has been dedicated to the vortex-polymer interac-
tion in the literature, this is the first time that the statistical distribu-
tion of vortex configuration and topology can be quantitatively ana-
lyzed and compared between different Wi in an unbiased manner.
Special focus is on the LDR-HDR transition, where knowledge of
the dynamics of complex hairpinlike vortices is particularly impor-
tant, and how the changing vortex dynamics may be responsible for
the observed changes in the mean flow. As shown later, our results
lead to extensive evidence for the lift-up suppression mechanism
hypothesized by Zhu et al.12 and, perhaps more importantly, the
first complete description of vortex dynamics that accounts for both
LDR and HDR. This paper is organized as follows: in Sec. II, we will
describe our simulation protocol and provide a brief introduction
to the VATIP algorithm. Results are given in Sec. III A with flow
statistics and highlight their changes between the LDR and HDR
stages. This includes the quadrant analysis of velocity fluctuations
as an indirect measurement of the changes in coherent structures.
Direct visualization of vortex configurations at different stages will
be compared in Sec. III B, where the capability of VATIP in vortex
tracking will also be demonstrated. The extracted vortex axis-lines
will then be statistically analyzed in Secs. III C and III D. After poly-
mer effects on different aspects of vortex dynamics are investigated,
this paper will conclude with a physical description of the vortex
dynamics behind the two DR stages (in Sec. IV).

II. FORMULATION AND METHODOLOGY
A. Direct numerical simulation

DNS in plane Poiseuille flow (the geometry is shown in Fig. 1)
is implemented in this study. The flow is driven by a constant pres-
sure drop and is oriented in the x-direction. The simulation domain
size is Lx × 2l × Lz . Variables in the simulation are nondimension-
alized by the turbulent outer units. That is, lengths are normalized
by the half-channel height l, velocities are normalized by the lami-
nar centerline velocity Uc, pressure is normalized by ρU2

c (where ρ
is the fluid density, i.e., for viscoelastic cases, it is the density of the
polymer solution), and time is normalized by l/Uc.

Governing equations for the polymeric turbulence are summa-
rized as

∂v

∂t
+ v ⋅∇v = −∇p +

β
Re
∇2v +

2(1 − β)
ReWi

(∇ ⋅ τp), (4)

∇ ⋅ v = 0, (5)
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FIG. 1. Schematic of the flow geometry.

and
∂α
∂t

+ v ⋅∇α − α ⋅∇v − (α ⋅∇v)T

= 2
Wi
⎛
⎝
− α

1 − tr(α)
b

+
bδ
b + 2

⎞
⎠

+
1

ScRe
∇2α, (6)

τp =
b + 5
b
⎛
⎝

α
1 − tr(α)

b

− (1 − 2
b + 2

)δ
⎞
⎠

. (7)

In Eq. (4), the Reynolds number Re and the corresponding friction
Reynolds number Reτ are defined as Re ≡ ρUcl/η and Reτ ≡ ρuτ l/η
(uτ is the friction velocity), respectively. The two Reynolds numbers
can be directly related to Reτ =

√
2Re. The Weissenberg number

measures the level of elasticity and is defined as the product of the
polymer relaxation time λ and the mean wall shear rate, i.e., Wi
≡ 2λUc/l. The viscosity ratio β ≡ ηs/(ηs + ηp) is the ratio of the solvent
viscosity to the total zero-shear-rate viscosity of the polymer solution
(subscripts “s” and “p” indicate solvent and polymer contributions
to viscosity, respectively). The contribution of polymers to the flow
momentum is accounted for by the last term on the right-hand side
(RHS) of Eq. (4), where τp is the polymer stress tensor. The finitely
extensible nonlinear elastic-polymer (FENE-P) constitutive equa-
tions [Eqs. (6) and (7)],59 where polymer molecules are treated as
finitely extensible nonlinear elastic (FENE) dumbbells, are adopted
in this study to calculate τp. In FENE-P, α represents the polymer
conformation tensor and is defined as α ≡ ⟨QQ⟩, where Q denotes
the end-to-end vector of the dumbbell. The maximum extensibil-
ity parameter b constrains the length of polymer dumbbells through
max(tr(α)) ≤ b. The last term on the RHS of Eq. (6) (1/(ScRe))∇2α
(Sc is the Schmidt number) is an artificial diffusion (AD) term
(not part of the FENE-P model) introduced for the sole purpose
of maintaining numerical stability. The use of AD is required for
the DNS of viscoelastic fluid flows using pseudospectral methods
(see below). The practice is well studied and established in the
literature.60

The Poiseuille flow implies periodic boundary conditions in
the x- (streamwise) and z- (spanwise) directions, meaning that
all variables are continuous across domain boundaries, e.g., v(Lx,
y, z) = v(0, y, z). In the y- (wall-normal) direction, the no-slip
boundary condition is applied to the parallel walls for the velocity
field, i.e.,

v = 0 at y = ±l. (8)

The original FENE-P equation does not require boundary condi-
tions in the y-direction. Adding AD introduces second-order partial
derivatives and changes the mathematical nature of the equation, for
which wall boundary conditions are now required. We follow the
standard procedure originally proposed by Sureshkumar and Beris60

(and widely used by researchers6,7,29,39,44,61), in which the boundary
values of α are computed at each time step by directly integrating
Eq. (6) in time for grid points at the walls (y = ±l or ±1 after nondi-
mensionalization) without the AD term. These values then provide
boundary conditions for solving the equation, including AD, for
the rest of the channel. The rationale behind this treatment is that
the AD term is not part of the physical model, and by solving the
equation without AD, the solution is at least strictly accurate at the
boundaries. (For the rest of the channel, a small AD is necessary
for numerical stability.) Detailed implementation of this boundary
treatment is provided in the Appendix.

DNS results of two different Re are analyzed with VATIP in
this study. The lower Re case, i.e., Re = 14 845 (Reτ = 172.31), uses
the same dataset previously reported in Zhu et al.12 At this Re, a
clear transition between LDR and HDR is already clearly observable
with all features of the transition captured. In addition, for Newto-
nian flow, this Re is sufficient to produce a pronounced PvK log-law
layer.51 Simulation runs at a wide range of Wi with fixed β and b (see
Table I) have been performed at this Re, including multiple cases in
both LDR and HDR stages. At the higher Re = 80 000 (Reτ = 400),
two viscoelastic cases are simulated. The parameters are so selected
that one is at LDR and the other at HDR. Newtonian flow is also
simulated for both Re. Parameters for the DNS runs reported in this
study are summarized in Table I.

A Fourier-Chebyshev-Fourier pseudospectral scheme is
adopted to discretize all variables in space. The spatial peri-
ods are L+

x × L+
z = 4000 × 800 for all simulations at both Re.

(The superscript “+” represents quantities nondimensionalized with
inner scales—velocities by uτ and lengths by η/ρuτ .) An Nx × Nz
= 440 × 147 mesh is used for the x and z Fourier transforms,
and Chebyshev-Gauss-Lobatto points are used for the Chebyshev
transform in the y-direction. The number of grid points Ny is
adjusted with Re (see Table I): for Re = 172.31, the range of y-
grid spacing δ+

y is 0.022–2.79 (minimum at the walls and max-
imum at the channel center), and for Reτ = 400, it is 0.011–
3.03. The time integration chooses a third-order semi-implicit

TABLE I. Physical parameters and numerical settings of viscoelastic DNS simulations.

Reτ Wi β b Sc δ+
x δ+

z Ny δt DR% Stage

172.31 Vary 0.97 5000 0.3 9.09 5.44 195 0.01 Vary Vary
400 25 0.9 900 0.25 9.09 5.44 473 0.005 16.8 LDR

50 0.9 3600 0.25 41.2 HDR
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backward-differentiation/Adams-Bashforth scheme (BDAB3).62

Different time step sizes are chosen at the two Re (Table I) accord-
ing to the Courant-Friedrichs-Lewy (CFL) stability condition. The
magnitude of the numerical diffusivity 1/(ScRe) [in the AD term of
Eq. (6)] is 2.25 × 10−4 for Re = 172.31 and 5 × 10−5 for Re = 400,
respectively. This is lower than most studies in the literature in which
a numerical diffusivity in the order of O(0.01) is generally found to
be safe.7,60,63,64 A detailed numerical sensitivity analysis at three dif-
ferent levels of numerical diffusivity, and resolution was reported in
Zhu et al.12 and not repeated here. The viscoelastic DNS code used
in this study is custom-developed by expanding the open-source
package for Newtonian DNS ChannelFlow, originally developed by
Gibson65 and later improved and parallelized by Schneider, Hecke
Degering (Schrobsdorff), and co-workers.66

B. VATIP for vortex tracking
The purpose of VATIP is to extract the axis-lines of individ-

ual vortices around which the fluid rotates. If a vortex is defined
as a tube in which the scalar identifier Q exceeds a curtain thresh-
old, the Q magnitude increases from the tube shell inwards and
peaks at the axis. The axis-line preserves the position, size, shape,
and topology of the vortex and is thus particularly instrumental in
vortex analysis. The scalar Q field first needs to be calculated from
the velocity data [Eq. (3)]. To determine the threshold value of Q
for vortex identification, we follow a systematic procedure based on
the so-called “percolation analysis,” which has been extensively dis-
cussed in previous studies.12,51 In short, a very low Q threshold will
over-identify vortex regions and render one interconnected (perco-
lating) vortex structure, whereas at the other limit (high threshold),
vortices will be under-identified with many valid vortices excluded
from the result. The percolation analysis identifies Q values at which
individual vortex objects are just separated apart but are still mostly
preserved. In this study, spatial regions with Q > 0.4Qrms, Qrms being
the root-mean-square (rms) value of Q over the domain

Qrms ≡
√

1
2lLxLzΔT ∫

ΔT

0
(∭ Q2dxdydz)dt, (9)

are identified as vortex regions. Values of Qrms for several repre-
sentative cases (in different flow stages) are provided in Table II.
Notably, Qrms decreases monotonically with increasing DR%, indi-
cating the correlation between vortex weakening and drag reduction.
More detailed results and discussion in this regard are found in our
earlier study.12

Each point on the axis-line is the maximum of Q in the cor-
responding cross-sectional plane of the vortex tube. Depending on
the direction of the vortex segment concerned, the axis-point may

TABLE II. Values of Qrms in representative Newtonian and viscoelastic DNS flow
fields.

Reτ = 172.31 Newt. Wi = 20 Wi = 80

Qrms 0.0325 0.017 0.006 1

Reτ = 400 Newt. LDR HDR

Qrms 0.0305 0.0125 0.004 61

appear as a local two-dimensional maximum in the yz, xz, or xy
plane (for vortex segments aligned in the x, y, or z direction, respec-
tively). Therefore, all two-dimensional local maxima in planes of all
orientations within the identified vortex regions need to be found
and recorded as potential axis-points.

Connecting axis-points that belong to the same vortices to form
axis-lines is the central task of vortex tracking which is illustrated in
Fig. 2. The process starts with yz planes for x-direction tracking. At
each yz grid plane, a new axis-line is initiated from each unassociated
potential axis-point. Existing axis-lines attempt to propagate along
the x direction by finding eligible axis-points in the next plane for
connection. Connection is made if the next axis-point falls within a
cone-shaped region projected from the propagating end of the axis-
line. The size of the cone is determined from the average radius of a
streamwise vortex tube

rv =
¿
ÁÁÀ ∑Nx

i=1 Av,i

π∑Nx
i=1 Nv,i

(10)

[where Nx is the number of x-grid points, i.e., the number of yz-
planes, i is the yz-plane index, Av,i is the total area of vortex regions
on plane i calculated by adding up all areas that satisfy the vor-
tex identification criterion (Q > 0.4Qrms in this study) on the plane,
and Nv,i is the number of separate vortex areas on the plane] and a
base diameter of dmax = 1.4rv is used in this study. This so-called
“cone-detective” idea was first proposed by Jeong et al.41 which
however only focused on streamwise vortices and their algorithm
stops the search after the x-direction search round. In VATIP, the
search continues in the y direction and then in the z direction for
vortices whose axis-lines are no longer confined in the x-direction.
These continued search rounds extend the existing axis-lines in new
directions by connecting axis-points in two-dimensional planes of
other orientations, e.g., for the search in the z-direction, local Q
maxima in xy-planes, which are termed z-axis-points, are added to
the growing axis-lines when they fall into the detection cones (now
pointed toward the z direction; see Fig. 2). Initiation of new axis-
lines is not allowed in these continued search rounds to avoid false
identification (i.e., all axis-lines are initiated in the first round of

FIG. 2. The conceptual plot of the VATIP algorithm. A new point is connected to a
propagating axis-line if it falls within a detection cone. The x-direction search round
looks for local maxima of Q in the yz plane (labeled x-axis-points); the search con-
tinues in other directions after no more x-axis-points can be added. For simplicity,
the plot only sketches a two-dimensional scenario without explicitly showing the
search round in the y-direction. The triangles thus represent the planar projection
of the detection cones.
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x-direction search). However, separate axis-lines are allowed to
merge if the detection cone from the propagating end finds another
axis-line within its range. Consider a hairpin vortex typically
observed in the log-law layer16,18,57 with an Ω-shaped axis configu-
ration, its two legs extend toward the wall and along the x-direction
and will be captured with the first x-direction search round; at the
downstream end, the legs lift up away from the wall (which requires
y-direction search) and merge along the z-direction to form an arc
(which requires z-direction search and axis-line merging). An x −
y − z search cycle would successfully capture such vortices. Many
vortices observed in DNS results, however, do not conform to this
canonical shape, and in order to capture a wider variety of three-
dimensional vortices with complex axis-line topology, the VATIP
algorithm continues to iteratively loop over searches in all three
directions until the number of identified vortices converges.

We use the Q-criterion in our studies, but the VATIP algorithm
can be easily adapted to any other scalar vortex identifier as long as it
maps quantitatively to the intensity of vortical flow. For example, in
the case of the λ2-criterion, one only needs to replace Q in the above
procedure with −λ2. (Minus sign is added because λ2 < 0 indicates
vortices and is thus equivalent to Q > 0.)

VATIP was tested with intentionally generated curved vor-
tices such as hooks and hairpins as well as actual DNS flow fields.
It was shown to successfully capture vortices of all known shapes
and configurations typically observed in near-wall turbulence.12

Note that this section only provides a high-level description of
the key elements of VATIP. The readers are referred to Zhu and
Xi51 for implementation details and further discussions about the
method.

III. RESULTS AND DISCUSSION
A. Flow statistics

By injecting polymers into turbulent flows, the properties of
the flows are significantly changed which leads to a considerable
reduction of the friction drag and increase of the mean flow rate.
In Fig. 3(a), we show the mean velocity profiles of the Newtonian
and three viscoelastic cases (Wi = 20, 48, and 80) at Reτ = 172.31.
For the Newtonian case, the profile closely follows the PvK asymp-
tote [Eq. (1)] at y+ ≳ 50, indicating that the log law layer has been
sufficiently developed at this Reτ = 172.31. For the Wi = 20 case,
the velocity profile lifts up in the buffer layer (20 ≲ y+ ≲ 50) but
stays parallel to the PvK asymptote at higher y+. By contrast, the pro-
files of the Wi = 48 and 80 cases lift up across most of the channel
including what used to be the log-law layer. This observation has
been the most-discussed difference between LDR and HDR in the
literature.5–9,12,67 In our case, it is clear that Wi = 20 belongs to LDR
and Wi = 48 and 80 are well within the HDR regime. The qualita-
tive change in the mean velocity gradient is more clearly seen in the
logarithmic law indicator function [Fig. 3(b)]. Note that any U+(y+)
dependence can be written in the generic form of

U+ = 1
κ

ln y+ + B, (11)

where B is a constant and the indicator function

1
κ
= dU+

d ln y+ = y
+ dU+

dy+ (12)

FIG. 3. (a) Mean velocity profiles (U+ vs y+) and (b) log-law indicator function
(y+dU+/dy+ vs y+) at Reτ = 172.31; horizontal line marks the PvK magnitude of
2.5 [Eq. (1)].

is a constant only if the profile follows a logarithmic dependence. For
Newtonian and LDR (Wi = 20) cases, a clear inflection point with 1/κ
≈ 2.5 shows up at y+ ≈ 50, which is followed by a nearly flat segment
at 50 ≲ y+ ≲ 100—a clear log-law layer. For HDR cases (Wi = 48 and
80), the inflection point disappears and the segment at larger y+ is
no longer flat. This indicates that the log law is no longer valid at the
HDR stage, which is consistent with the finding of White, Dubief,
and Klewicki.13

The mean velocity gradient [which determines the indicator
function—Eq. (12)] is related to velocity fluctuation and polymer
stress through the shear stress balance

⟨τ+
xy⟩ = β

dU+

dy+ + ⟨−v′+x v′+y ⟩ +
1 − β
Wi
⟨τp,xy⟩, (13)

where the three terms on the RHS represent contributions from the
viscous, Reynolds, and polymer shear stresses, respectively (⟨⋅⟩ rep-
resents averages over x, z, and t axes). Under constant mean pressure
gradient, the total shear stress is a constant for given Re and y+

position

⟨τ+
xy⟩ = 1 − y+

Reτ
. (14)

With increasing DR%, the rise of viscous and polymer shear stresses
must be accompanied by the drop of RSS. Recent studies fur-
ther showed that, similar to the change of 1/κ, the suppression of
RSS is contained within and near the buffer layer at LDR and a
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FIG. 4. Shear stress components at y+ = 103.2 plotted against DR% (Reτ
= 172.31), including the Newtonian case (DR%) and viscoelastic cases at
Wi = 8, 12, 16, 20, 24, 32, 48, 64, 80, and 96 (DR% increases monotonically
with Wi with the exception of Wi = 8, which is preonset and nearly overlaps with
the Newtonian case). The lines are guides to the eyes for the LDR (dashed) and
HDR (solid) stages.

significant reduction of RSS at larger y+ is only obvious at HDR.6,12

In Fig. 4, the magnitudes of these shear stress components at y+

= 103.2 (which is well within the log-law layer for the Newtonian
case) are plotted against DR% for DNS results at Reτ = 172.31,
including the Newtonian and viscoelastic cases at ten different Wi
(see the caption of Fig. 4). The LDR-HDR transition occurs at DR%
≈ 20% and Wi ≈ 24, which is marked by a sharp turn in all three
components. Variations in these quantities are mild at LDR, but
for HDR, their DR%-dependencies become steep. The rapid decline
of RSS, in particular, indicates a new stage of turbulence suppres-
sion in the log-law layer which is only initiated at the start of HDR.
Note that the transition point of DR% ≈ 20% is not universal and
at higher Re the critical DR% will be higher. Although earlier stud-
ies widely quoted DR% ≈ 30%–35% as the separation between LDR
and HDR,5,8,29 it was recently established that the transition point
is a function of Re,12 which again shows that the LDR-HDR transi-
tion is more than a quantitative effect of the level of DR% but a shift
between two qualitatively different stages of DR.

Velocity fluctuations at Reτ = 172.31 are inspected with quad-
rant analysis which plots the joint probability density function
(PDF) between the streamwise and wall-normal velocity fluctua-
tions (Figs. 5 and 6). The distribution is typically skewed toward
the second and fourth quadrants (Q2 and Q4), where v′+x and v′+y
have opposite signs and thus contribute positively to the RSS [sec-
ond term on the RHS of Eq. (13)]. The Q2 events, in which v′+x < 0
and v′+y > 0, correspond to the upward movement of the slower
fluids near the wall to larger y+ which causes a local reduction in
the streamwise velocity and is often termed “ejections.” Meanwhile,
the opposite Q4 events are called “sweeps.”21,23 The buffer layer
(Fig. 5) distribution is flatter owing to its stronger streamwise veloc-
ity fluctuations. As Wi increases, the joint PDF contour span shrinks
in the y-direction while expands along the x-direction, which is
consistent with the established observation in the literature that the
wall-normal and spanwise velocity fluctuations are suppressed by
polymers but the streamwise fluctuations are often enhanced.7,8,63,68

FIG. 5. Joint PDF of the streamwise and wall-normal velocity fluctuations at y+

= 25 (Reτ = 172.31).

Suppression of the ejections and sweeps in the buffer layer
reduces the wall-normal momentum fluxes responsible for the high
Reynolds stress.69,70 Note that in the buffer layer, the joint PDF shape
is already clearly modified in LDR, which only continues into HDR.
By contract, at higher y+ (Fig. 6), the transition between LDR and
HDR is sharp. The joint PDF patterns are similar between Newto-
nian and LDR cases, whereas at HDR, it is clearly flattened, indicat-
ing that polymer-induced changes in coherent motions only start at
HDR in that wall region. Our quadrant analysis results are remark-
ably similar to the recent experimental measurement by Moham-
madtabar, Sanders, and Ghaemi9 at comparable or lower Re (Reτ
ranges from approximately 200 to 70 from the Newtonian limit to
the highest DR%).

Observations in flow statistics suggest that the LDR-HDR tran-
sition is underpinned by a sudden shift of the regions or wall layers
where polymer interaction with turbulence is substantial. At LDR,
polymers mainly suppress turbulence in the buffer layer, causing its
enlargement and higher mean velocity gradient, whereas the log-law
layer is left largely intact. This is indeed the essence of the elastic
sublayer theory of Virk.1 The theory, however, does not account for
the occurrence of the second stage of DR—HDR—where polymer
effects on turbulent dynamics begin to substantially alter the log-law
layer. Further evidence for the transitions in flow statistics, as well as
the localization in turbulence distribution at HDR, is found in Zhu
et al.12 and not repeated here. The primary focus of this study is to
investigate the changes in coherent structure dynamics behind these
observations.

FIG. 6. Joint PDF of the streamwise and wall-normal velocity fluctuations at y+

= 100 (Reτ = 172.31).
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B. Vortex conformation and tracking
in instantaneous flow fields

We start with instantaneous images of flow-field vortices and
their axis-line conformations identified by VATIP at Reτ = 172.31.
Vortices are identified with the Q criterion, and the isosurfaces of
Q = 0.4Qrms are plotted in Fig. 7. Although streamwise aligned vor-
tices are seen in all cases especially near the wall, the Newtonian
and LDR cases show strong tendency for vortex lift up, in which
the vortex legs (in the upstream) are initiated near the wall along
the streamwise direction, but its head becomes detached from the
wall in the downstream. Detached vortex segments become distorted
and deviate away from the flow direction. Hairpins are distinct types
of lifted-up vortices with an Ω-shaped contour: a transverse arc at
the downstream end with two streamwise legs extending upstream
toward the wall. At this Re, they are already populating the flow
domain in the Newtonian and LDR cases. The HDR image appears
drastically different with significantly reduced instances of vortex
lift-up, hairpins, and curved vortices. The vortices are more likely to
stick close to the wall and become much more extended in the flow
direction than LDR. This observation is consistent with the earlier
observations in conditional eddies by Kim et al.28 This dominance
of elongated vortex conformation underlines the common observa-
tions of much smoother velocity distribution at HDR with extended
streak patterns.8,39,71,72

VATIP allows us to go beyond direct intuitive visual inspection
and extract vortex conformations without subjective bias. Vortex
axis-points identified by VATIP are shown in Fig. 7 with circular
markers for a smaller region in the domain. It is clear that in all
cases, the axis-lines (connecting all axis-points) obtained by VATIP
successfully capture all visible vortices and well preserve their
size, position, shape, and topology, including both straight (quasi-
streamwise) and curved (e.g., hairpins) vortices. Quasi-streamwise
vortex axis-lines are mainly composed of x-axis-points (which are

local maxima of Q in yz-planes), represented by orange markers.
For significantly lifted-up vortices (including hairpins), mostly seen
in the Newtonian and LDR cases, y- and z-axis-points (blue markers;
local maxima in xz- and xy-planes) must be included. This is a major
improvement of VATIP compared with earlier approaches which
are limited to streamwise vortices.37,41 These y- and z-axis-points
become less important at HDR where streamwise vortices dominate.
Spatial proximity between vortices in the DNS of full steady-state
turbulence makes it difficult to clearly visualize individual vortex
conformations. More isolated vortices of a variety of shapes can
be generated using transient DNS to test the VATIP performance,
which was done by Zhu and Xi51 and not repeated here.

C. Polymer effects on vortex conformation and lift-up
Recall that Zhu et al.12 hypothesized a change of vortex regener-

ation mechanism to explain the LDR-HDR transition. At LDR, sim-
ilar to Newtonian flow, vortices can often be sustained and regen-
erated by streak instability. Specifically, streamwise vortices lift up
to higher wall-normal layers (such as the log-law layer), which gives
rise to complex three-dimensional vortices such as hairpins. Lifted
vortices tend to break up and burst into intense turbulent fluctu-
ations, which can spread across the flow domain and trigger the
instability of streaks elsewhere to generate more streamwise vortices.
(Despite the same self-sustaining mechanism as Newtonian turbu-
lence, DR still occurs at LDR because of the overall weakening of
vortices.) At HDR, this vortex regeneration pathway is suppressed.
Streamwise vortices stay confined closed to the wall (without lift-
ing up) and become elongated by the flow. Instabilities of the shear
layers between these vortices and the wall can generate new vortices
near their ends, which is thus dubbed the “parental-offspring” mech-
anism. In a later study,73 direct evidence was found for the bursting
of vortices following lift up and the effects of polymers causing its
suppression.

FIG. 7. Instantaneous vortex structures of (a) Newtonian,
(b) Wi = 20, and (c) Wi = 80 cases at Reτ = 172.31 identi-
fied by the Q-criterion (only the bottom half of the channel is
shown). The color shade (from light to dark) maps to the dis-
tance from the bottom wall in outer units. Part of the domain
(orange box) is enlarged and shown on the right. Circular
markers are axis-points identified by VATIP: orange (light)
for x-axis-points and blue (dark) for y- and z-axis-points.
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From this hypothesis, one would expect the vortex conforma-
tion to statistically change at the LDR-HDR transition, e.g., lifted
vortices would be less prevalent at HDR. Axis-lines extracted by
VATIP open up the possibility for the statistical analysis of vor-
tex conformations, which offers the opportunity to directly test this
picture. Figure 8 shows the average dimensions of vortices at Reτ
= 172.31, measured by the edge lengths of a minimal cuboid enclos-
ing each vortex. A dashed line is drawn at DR% = 20%, which was
identified earlier as the point of LDR-HDR transition at Reτ = 172.31
based on flow statistics (Fig. 4). This line is provided in all DR%-
dependence plots in this study to provide a reference for identify-
ing the correlation, or the lack thereof (if that is the case), between
changes in flow statistics and vortex structure measurements. The
average streamwise dimension of a vortex l+x [Fig. 8(a)] increases
nearly monotonically with DR%, indicating that vortices become
elongated in the streamwise direction with polymer DR effects. This
is indeed a well-established observation in the literature8,28,29,36 and
consistent with the direct observation in Fig. 7. The trend continues
after the LDR-HDR transition with no notable change in pattern.
Streamwise vortex elongation can be interpreted as the result of vor-
tex stabilization:26,73 when a vortex does not lift up away from the
wall or burst into pieces for an extended period of time, it is con-
tinuously stretched by the flow. Because vortices are in general not
strictly aligned with the x axis, its elongation can also lead to increas-
ing dimensions in the other directions l+y and l+z . This effect seems
to dominate at LDR, where l+y and l+z grow nearly monotonically
(Fig. 8). Due to the increasing stability of vortices, the wall-normal
and spanwise length also increase in the LDR stage. However, this
trend is turned around after the LDR-HDR transition. In Fig. 8(b),
the wall-normal length l+y immediately drops when the HDR stage is
reached, which is consistent with the hypothesis of Zhu et al.12 that
at HDR polymers suppress the lift up of vortices. The lift-up exposes
the downstream end, or the “head,” of the vortex to transverse flows,
which bend the vortex sideways to form spanwise segments of vortex
tubes (such as the arc in an Ω-shaped hairpin vortex) and increase
its dimension in the z direction l+z . Suppression of vortex lift-up
explains the reduction of curved vortices such as hairpins, as shown
in Fig. 7. The spanwise vortex length l+z [Fig. 8(c)] does indeed drop
substantially at HDR. The turning point is slightly delayed compared
with the LDR-HDR transition. This seems to suggest that the start of
HDR is more directly linked to lift-up suppression, which blocks the
transfer of turbulent motions from the buffer layer to the log-law
region, and the reduction of hairpins and spanwise vortex dimen-
sion is a secondary effect. Highly lifted vortices will eventually burst
into intense fluctuations73 which may seed new streak stabilities and

FIG. 8. Average dimensions of the enclosing cuboid of each vortex at Reτ
= 172.31: (a) streamwise length l+x , (b) wall-normal length l+y , and (c) spanwise
length l+z . Dashed line marks the LDR-HDR transition.

lead to turbulence proliferation. Confining the stabilized vortices to
the streamwise direction leads to their prolonged stretching and a
shift in the turbulent regeneration dynamics.

The vortex lift-up can now be quantified by the wall-normal
positions of the head (highest point, typically at the downstream
end) and leg(s)/tail (lowest point, typically at the upstream end) of
the vortices. These positions can be measured from the axis-lines
obtained from VATIP, and the joint PDFs between them are shown
in Fig. 9 for the Re = 172.31 case. The distribution at LDR (Wi =
16 and 20 cases) closely resembles that of the Newtonian case and is
highly concentrated in the buffer layer (y+ < 30). Two concentration
bands extend from the peak distribution there: One along the verti-
cal axis that corresponds to the highly lifted-up vortices (leg/tail y+

min
in the buffer layer but head y+

max well into the log-law layer) and the
other, slightly less populated, along the diagonal that corresponds to
flat-lying vortices that align mostly along the streamwise direction.
The pattern clearly changes at HDR where the vertical band becomes
significantly weakened, and the diagonal band is more pronounced

FIG. 9. Joint PDFs of the wall-normal positions of the head and tail/legs of each
vortex, as measured by the maximum and minimum y+ coordinates of the vortex
axis-line, respectively, at Reτ = 172.31 and different Wi.
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and extends to higher y+. The concentration peak is still found in the
buffer layer but it is now more aligned with the diagonal than the
ordinate. The distribution pattern at Reτ = 400 (Fig. 10) is strikingly
similar, not only qualitatively (i.e., the pivot toward the diagonal)
but also quantitatively. Wall-normal positions and spans of vortices
are well comparable, in inner units, between these two distinctly
different Re, indicating strong scalability of coherent structures at
different DR stages with increasing Re.

From these results, it becomes clear that at LDR, despite an
overall weakening of all vortices, vortex distribution has changed
little compared with the Newtonian limit, whereas the suppression
of vortex lift-up only starts at HDR, which corroborates our earlier
notation that the LDR-HDR transition is a reflection of a new stage
of DR with a distinct mechanism. Earlier studies have suggested
the possibility of lift-up suppression by polymers through direct
flow field inspection or conditional sampling of average eddies.28,55,73

Statistical quantification of vortex lift-up tendency would not have
been possible without the specific information on individual vortex
axis-lines. More importantly, this is the first time polymer-induced
lift-up suppression that is associated with the LDR-HDR transition
by direct evidence. The vortex lift-up is important in the turbu-
lent momentum transfer between different wall layers and widely
believed to be responsible for the PvK log law [Eq. (1)].23,24,69 Its sup-
pression at HDR thus offers a clear pathway to explain the changing
mean flow profile in that regime. Meanwhile, extension of the diag-
onal band indicates the increasing frequency of flat-lying vortices
at higher wall layers, which again supports a change in the log-law
dynamics.

Townsend69 introduced the concepts of “attached” and
“detached” vortices. Attached vortices interact closely with the wall
and were believed to be responsible for the generation and transport
of Reynolds stress and turbulent kinetic energy (TKE). Detached
vortices are found away from the wall, and they were conjectured to
be associated with the dissipation of turbulent activities.24 Lozano-
Durán, Flores, and Jiménez23 classified coherent structures into
attached and detached groups based on their wall positions: struc-
tures with their bottom sticking close to the wall (i.e., y+

min ≤ 20)
were considered to be attached and the others detached. Distinction
was further made based on the wall-normal span of the structures by
the same authors. In particular, “tall-attached” structures that extend
across the channel were believed to be of particular importance in

FIG. 10. Joint PDFs of the wall-normal positions of the head and tail/legs of each
vortex, as measured by the maximum and minimum y+ coordinates of the vortex
axis-line, respectively, at Reτ = 400 and different Wi.

the transport of Reynolds stress. Following the same spirit, we cate-
gorize vortices into four types based on these two metrics of vortex
wall position and wall-normal span, which are both quantitatively
measurable from vortex axis-lines extracted with VATIP. Each type
maps to a region in the y+

max − y+
min coordinates (same as Fig. 9) as

illustrated in Fig. 11. Type I or “attached-flat” vortices are those with
y+

min ≤ 20 and l+y ≡ y+
max − y+

min ≤ 50. Note that the y+
min criterion

measures the proximity to the wall and the l+y criterion measures the
extent of the vortex lift-up. This type thus includes vortices lying flat
in regions very close to the wall without strong lift-up. These vor-
tices are the dominant structures in the buffer layer and are most
frequently spotted in all cases (Fig. 9). Type II or “attached-lifted”
vortices satisfy y+

min ≤ 20 and l+y > 50. These vortices are generated
by wall interaction, but their strong lift-up allows them to efficiently
transport turbulent activities between the buffer and log-law layers.
Type III or “detached-flat” (y+

min > 20 and l+y ≤ 50) and type IV or
“detached-lifted” (y+

min > 20 and l+y > 50) are similarly differenti-
ated by their extent of lift-up, and in both cases, the vortices are
detached from the wall and thus less influenced by the latter. The
cutoff magnitudes of y+

min = 20 and l+y = 50 were arbitrarily chosen
based on the observed distribution patterns in Fig. 9 and our general
experience with vortices in channel flow. We have tested that chang-
ing the cutoff values within a reasonable range (y+

min =20 – 40 and
l+y =35 – 50) would not change the following results in any significant
manner.

It is necessary to clarify here that VATIP, in its current form,
is an intrinsically static approach. It captures vortex instances from
a frozen image of the flow field. Therefore, categorization results
according to Fig. 11 should be interpreted through the lens of ensem-
ble statistics, i.e., for an arbitrarily selected vortex at a random time
moment, what is the probability that it is caught in a configuration
belonging to one of these four types. The method does not provide
direct information on the dynamical lineage of vortices and does not
track the time evolution of vortex configuration. The category label
does not carry over between different times, though a vortex may as

FIG. 11. Schematics of vortex categorization by wall position and lift-up extent: (I)
attached-flat, (II) attached-lifted, (III) detached-flat, and (IV) detached-lifted.
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well evolve into a different type at a future moment. For instance, a
classical streamwise vortex in the buffer layer would be categorized
as type I, but if it lifts up at a later time, it would become type II.

Polymer effects on these vortex types are quantified in Fig. 12
in terms of the percentage of TKE contained in all vortices of type i,

ki% ≡
ki
kt

, (15)

and the percentage of volume occupied by all vortices of type i,

Vi% ≡
Vi

Vt
, (16)

where kt and V t are the total TKE and total volume of the flow
domain, respectively. The ratio between the two

ki%
Vi%

= ki/Vi

kt/Vt
(17)

is the volumetric density of TKE in vortex type i normalized by the
TKE density of the entire domain. Since VATIP only renders an
axis-line, instead of a three-dimensional volume, of each vortex, vol-
umetric statistics of the vortex are calculated within a region around
the axis-line. A square with the edge length of 1.5rv is drawn (in the
vortex cross-sectional plane) around each axis-point (placed at the
center of the square) of the vortex axis-line and regions falling into
these confining squares are counted to that vortex. In the Newto-
nian limit, each type takes up nearly the same share (≈20%) of the
TKE and volume. (The numbers do not add up to unity because
there are regions in the flow domain not allocated to any vortex.)
With increasing DR%, type I (attached-flat) vortices are monoton-
ically suppressed with dwindling shares of TKE and volume. Type
II (attached-lifted) vortices are also nearly monotonically reduced,
but there is a clear turning point at the LDR-HDR transition. The
reduction of type II vortices at LDR can be attributed to the general
weakening of vortices (first mechanism of DR) as well as the smaller
numbers of type I available as its feed. For the latter, types I and
II can be viewed as different stages of the same category of attached
vortices: a type I vortex may develop into a type II as it lifts up later in
its lifetime.24 At HDR, lift-up suppression becomes important (Fig. 9
and more evidence below) which leads to the faster decline of shares
in type II vortices. Polymer effects on detached (types III and IV)
vortices are much subtler. There is a clear increase of TKE shares

FIG. 12. Distribution of TKE and volume between vortices of different types at Reτ
= 172.31: (a) percentage of TKE contained in each type of vortex, (b) percentage of
volume occupied by each type of vortex, and (c) normalized TKE density. Percent-
ages are with respect to the flow domain total. Dashed line marks the LDR-HDR
transition. Error bars smaller than the symbol size are not shown.

of both types at the LDR-HDR transition, whereas the volume share
stays roughly at the same level for all levels of DR. As a result, the
normalized TKE density [Fig. 12(c)] starts to increase after the tran-
sition, i.e., as the flow reaches HDR, the relative intensity (compared
with other vortex types) of detached vortices increases without them
expanding in overall volume. Since the overall turbulent intensity or
the average TKE density of the flow domain kt/V t [denominator in
Eq. (17)] is decreasing with DR%, this simply indicates that detached
vortices are much less susceptible to polymer suppression, compared
with attached ones, in the HDR regime. In addition, attached vor-
tices (types I and II) are much stronger than detached ones with their
TKE density more than 50% higher than the latter. At LDR, normal-
ized density of type IV vortices is close to unity (the domain average
magnitude), making them nearly not differentiable from the turbu-
lent background. This is consistent with observations in Fig. 9 that
this region (IV in Fig. 11) is rarely populated by vortices. The role of
type IV is thus much less significant than the rest, and it is included
in our analysis for completeness only.

Figure 13 shows the TKE share of each vortex type as a func-
tion of y+ for the Newtonian, LDR (Wi = 20), and HDR (Wi = 80)
cases at Reτ = 172.31. Type I represents the flat-lying attached vor-
tices and they are most predominant in the buffer layer, accounting
for 50% of the total TKE in the buffer layer. Detached vortices (types
III and IV) only become important in the log-law layer. Type II,
meanwhile, carries TKE across the wall layers because they originate
from the wall and lift up to upper layers. Compared with the New-
tonian case, at LDR vortex type I is significantly suppressed, which
corresponds to the first stage of the DR effect concentrated mainly
in the buffer layer. Changes in other types are much less significant.
There is a minor reduction in the type II profile within the buffer
layer only, which is consistent with the earlier discussion that at
LDR, type II reduction is a combined effect of general vortex weak-
ening and reduced number of type I. Lift-up suppression becomes
important only at HDR where the reduction of the type II profile in
the log-law region becomes significant (as type I share continues to
drop). Meanwhile, profiles for detached vortices (types III and IV)
are slightly raised.

The same observations are largely preserved at the higher
Reτ = 400 (Fig. 14). Compared with the lower Re case, increasing Re
leads to an overall increase of lifted vortices, both attached (type II)
and detached (type IV). This is consistent with the previous finding
in Newtonian turbulence that lifted-up three-dimensional vortices

FIG. 13. Distribution of turbulent kinetic energy contained in each vortex type of
(a) Newtonian, (b) Wi = 20 (LDR), and (c) Wi = 80 (HDR) cases at Reτ = 172.31.
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FIG. 14. Distribution of turbulent kinetic energy contained in each vortex type of
(a) Newtonian, (b) LDR, and (c) HDR cases at Reτ = 400.

(e.g., hairpins) become more prevalent at higher Re.51 For both Re,
attached vortices (types I and II) are contained within roughly the
same wall layers in inner units: type I is found at y+ ≲ 100 and type
II shows highest TKE at y+ ≈ 30 and its upper end extends close to
y+ ≈ 200. Meanwhile, detached vortices (types III and IV) are less
contained and spread to the highest y+ available at each Re. The
position of peak TKE, however, is still comparable in inner units at
different Re. The effect of increasing Wi and comparison between
different stages of DR remain the same between these two Re.

In summary, analysis of vortices of different types shows that
polymers mainly suppress attached vortices. This effect is confined
to the buffer layer at LDR. Polymer effects on TKE distribution in the
log-law region become important only at HDR because of their sup-
pression of vortex lift-up (evidence in Fig. 9 and also below), which
reduces the turbulent momentum transfer between wall layers and
results in the changing flow profiles in the log-law layer.

D. Vortex shape distribution at different stages of DR
Analysis so far has been focused on the size, wall position,

and lift-up status of vortices without considering their topological
shape. Determination of the latter by a computer code requires a set
of quantitative criteria on the vortex geometry. We will adopt the
vortex classification procedure proposed by Zhu and Xi51 based on
measurements of axis-lines extracted by VATIP. Like before, we will
only recapitulate the approach at the conceptual level here and refer
the readers to Zhu and Xi51 for implementation details. Vortices are
classified into six major types illustrated in Fig. 15 based on quanti-
tative metrics defined in Fig. 16. Criteria for differentiating different
types are summarized in Table III.

The classification is done by a series of binary decisions. First,
it differentiates fragments from substantial vortices by requiring the
streamwise length l+x to be at least 50 for the latter. Second, it identi-
fies quasi-streamwise vortices by measuring the length of the longest
spanwise segment in the axis-line max(l+z,zap). (Spanwise segments
are those consisting of a string of connected z-axis-points.) Those
with max(l+z,zap) < 25 are considered to not have a substantial span-
wise arm to be considered a hairpin or any other branched type. Note
that streamwise vortices that become highly lifted up are still consid-
ered in this class because there is no restriction on wall-normal seg-
ments. Third, the hook type, which can be viewed as an incomplete
hairpin with only one fully developed leg, is identified by counting
the number of x-axis-points in each of the yz-planes Nxap. If more

FIG. 15. Schematic illustrations of major vortex types by shape.

than 80% of the yz-planes spanned by the axis-line has only 1 x-axis-
point, it is determined that the vortex is dominated by one stream-
wise leg. [In Table III, Px(Nxap = 1) represents the percentage of yz-
planes that satisfy the condition of Nxap = 1.] Fourth, the remaining
unsorted groups are either hairpins or irregularly branched vortices

FIG. 16. Definitions of vortex metrics used in the classification of their shapes
(xz-plane projection). Circular and square markers represent x- and z-axis-points,
respectively.
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TABLE III. Vortex classification criteria based on geometric metrics of the axis-line.

Branch

Condition Frag. Stream. Hook A B C Hairpin

l+x < 50 T F F F F F F
max(l+z,zap) < 25 . . . T F F F F F
Px(Nxap = 1) > 80% . . . . . . T F F F F
Px(Nxap>2)
Px(Nxap>1) > 50% . . . . . . . . . T F F F
xCOG,xap < xmid or xCOG,zap < xmid . . . . . . . . . . . . T F F
xmax-Dz > 1.5xCOG,Nxap>1 . . . . . . . . . . . . . . . T F

with some features of hairpins but do not conform to their canonical
Ω-shape. A commonly seen type is a hairpinlike structure with 3 or
more legs. These vortices can be formed when a hairpin is merged
with another vortex in highly crowded vortex packets. The third
leg is considered to be substantial if the number of yz-planes con-
taining more than 2 x-axis-points (intersected by 3 or more legs) is
more than that of those with only 2 (planes intersected by two legs).
These vortices are classified as branch type A. Fifth, the branch type
B (Fig. 15) can be formed when a side arm of the streamwise vor-
tex lifts up and is dragged sideways by the spanwise flow to form an
arc and, sometimes, another leg. It is similar to a hairpin except that
the head or arc of the vortex is not found near the downstream end
but somewhere in the middle. The vortex head is considered to be
significantly away from the downstream end if the x-coordinate of
the center of gravity (COG) of either all x-axis-points xCOG,xap or all
z-axis-points xCOG,xap is upstream of the middle point of the entire
x-span [xmid ≡ (xmax + xmin)/2]. Sixth, branch type C is formed in a
similar manner except that the side arm is stretched by the stream-
wise flow first before lifting up, creating a branch that opens toward
the downstream direction. In this case, the x-coordinate with the
maximum spanwise span Dz is found near the downstream end. The
quantitative criterion is to compare this coordinate xmax-Dz with that
of the COG of the branched portion (i.e., those where Nxap > 1)
xCOG,Nxap>1 multiplied by 1.5. Finally, after removing all irregularly
branched configurations, the rest are considered to be sufficiently
close to the canonical Ω-shape and classified as hairpins.

In summary, after removing the fragments, quasi-streamwise
vortices, and hooks from the pool, the algorithm identifies hairpins
by removing all other branched types with significant deviation from
the canonical Ω-shape. There is obviously some arbitrariness in how
the branch types (A, B, and C) are defined and how the cutoffs are
chosen (i.e., when is a deviation big enough to disqualify a vortex
as a hairpin). Fortunately, at least for this study, this is nothing more
than a taxonomic issue. For practical purposes, none of the trends we
will discuss below show any difference between hairpins and other
branches (types A, B, and C). This is not surprising: within our cur-
rent limited knowledge of vortex dynamics, all these branches seem
to be formed in a similar manner as hairpins. Their existence is
merely an inevitability of the irregular nature of turbulent dynamics.
For this reason, we will use one umbrella term “hairpinlike” vortices
for all these branched structures (including canonical hairpins).

Vortex axis-lines of all these types, at Reτ = 172.31, are shown in
Figs. 17 and 18 for one typical snapshot at LDR (Wi = 20) and HDR

(Wi = 80) each (The “branch” case includes all three types, A, B, and,
C and we make no further attempt to differentiate these groups.) In
both cases, near-wall quasi-streamwise vortices are the most preva-
lent type of vortex structure in the flow field. However, in the LDR
case, a considerable number of curved vortices are observed, includ-
ing many well-defined hairpins [Fig. 17(a)] and other branches

FIG. 17. Axis-lines of vortices of different shapes extracted by VATIP in a typical
snapshot at Reτ = 172.31 and Wi = 20 (LDR): (a) hairpin, (b) hook, (c) branch, (d)
fragment, and (e) quasi-streamwise vortices. Different vortices are represented by
different colors and markers. Viewed from above, the channel and the projection
include vortices at all y positions.
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FIG. 18. Axis-lines of vortices of different shapes extracted by VATIP in a typical
snapshot at Reτ = 172.31 and Wi = 80 (HDR): (a) hairpin, (b) hook, (c) branch, (d)
fragment, and (e) quasi-streamwise vortices. Different vortices are represented by
different colors and markers. Viewed from above, the channel and the projection
include vortices at all y positions.

[Fig. 17(c)]. They are however significantly outnumbered by the
strongly asymmetric hooks (i.e., one-legged hairpins). Observation
in Newtonian flow is similar.51 Indeed, it has been long believed that
complete well-defined hairpins are not the most likely configuration
and incomplete and asymmetric hairpins (hooks) are the norm.16 (A
“forest” of nearly symmetric hairpins were observed in the DNS by
Wu and Moin74 in boundary layer flow, which is different from the
channel flow here.) At HDR, all three-dimensional curved vortices
(hairpins, branches, and hooks) are significantly reduced. This again
is explained by the suppression of vortex lift-up which is required
for their formation. In addition, fragments also become drastically
reduced in the HDR case. Since fragments are often generated in
the aftermath of bursting and can be viewed as the debris of broken
vortices, their reduction at HDR is also consistent with the hypoth-
esis in Zhu et al.,12 i.e., the suppression of vortex lift up prevents its
further bursting and the subsequent generation of small-scale tur-
bulent fluctuations (which can trigger instabilities elsewhere in the
domain), leaving turbulence at HDR to be dominated by a different
vortex regeneration mechanism.

Percentages of vortices of these shape types at Reτ = 172.31 are
plotted in Fig. 19 as functions of DR%. Changes during LDR are

FIG. 19. Number percentage of vortices of different shapes at Reτ = 172.31: (a)
quasi-streamwise, (b) hairpin, (c) hook, and (d) branch vortices. Dashed line marks
the LDR-HDR transition. Error bars smaller than the symbol size are not shown.

relatively small. The fraction of streamwise vortices remains nearly
invariant. Some subtle changes are observed in curved vortices in
a small region after the onset (DR% < 5%): the shares taken by
hairpinlike vortices [panels (b) and (d)] drop slightly, which is com-
pensated by an increase in hooks [panel (c)]. This again shows that
during this first stage of DR, polymers have an across-the-board
vortex weakening effect. It suppresses all types of vortices12,25,26,28

without tipping the balance between them. Changes between hooks
and hairpinlike vortices can be well explained considering that some
of the latter type are turned into hooks as their legs are shortened
and trimmed by the polymer stress, but they remain distinguish-
able from quasi-streamwise ones with their spanwise arc and strong
lift-up angle. Once HDR starts, all these highly curved vortices (hair-
pins, branches, and hooks) decline sharply as the quasi-streamwise
type makes inroads into their shares. This again can be explained
by the suppression of vortex lift-up that generates these curved
three-dimensional vortices during this second stage of DR. Without
lift-up, streamwise vortices are stabilized near the wall and become
elongated over time, as shown in Figs. 8 and 18.

We now revisit the vortex position and lift-up status analysis
(see Fig. 9) but consider vortices of different shapes in separate cat-
egories. Figures 20 and 21 show the joint PDFs of vortex head and
tail/leg(s) positions for quasi-streamwise and hairpinlike/hook vor-
tices for the lower Reτ = 172.31. Distribution patterns are drastically
different between these two categories. For Newtonian flow, quasi-
streamwise vortices are mostly found in the lower-left corner and
belong to the attached-flat class or type I (Fig. 11). Some of them
lift up and form a thin band near the ordinate, i.e., type II attached-
lifted vortices. A diagonal band is also noticeable which corresponds
to type III detached-flat vortices. By contrast, hairpinlike/hook
vortices are predominantly type II (attached-lifted) which originate
from the wall (legs) but lift high up into the upper layers (the head
or arc of the hairpin). At LDR, the contours remain similar to the
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FIG. 20. Joint PDFs of the wall-normal positions of the head and tail/legs of quasi-
streamwise vortices, as measured by the maximum and minimum y+ coordinates
of each vortex axis-line, respectively, at different Wi (Reτ = 172.31).

Newtonian limit for both quasi-streamwise and hairpinlike/hook
vortices. Earlier observation of the decline of TKE shares contained
in types I and II (Figs. 12–14) is thus results of the weakening of
these vortices rather than any fundamental change in their distri-
bution pattern. This starts to change at HDR. For quasi-streamwise
vortices (Fig. 20), the slim vertical distribution band (type II) dis-
appears as HDR starts, which is accompanied by a distinct shift of
the concentration center toward the diagonal. This is a clear indica-
tion that polymers start to suppress the lift-up of these vortices and
stabilize them in the streamwise direction. Expansion of streamwise
vortex distribution to higher y+ (more detached) positions along
the diagonal is comprehensible considering that drag-reducing poly-
mers are known to enlarge the diameter of vortex tubes,6,8,38,63

which inevitably raises the positions of their axis-lines. By contrast,
hairpinlike/hook vortices stay mainly in the type II region for the
whole range of DR (Fig. 21).

Entering HDR does not significantly shift their distribution pat-
tern, despite the substantial reduction in their total count. Since
hairpinlike/hook vortices are products of vortex lift up (generated

FIG. 21. Joint PDFs of the wall-normal positions of the head and tail/legs of
hairpinlike and hook vortices, as measured by the maximum and minimum y+

coordinates of each vortex axis-line, respectively, at different Wi (Reτ = 172.31).

from lifted quasi-streamwise vortices), suppression of lift up directly
reduces the source for their formation. For those that do come into
existence, they maintain their lifted silhouette even at HDR. The dis-
tribution density does decline at HDR, which means the distribution
must spread to a wider area owing to the conservation of proba-
bility. This reflects an enlarged and more homogeneous boundary
layer. The same joint PDFs for the higher Reτ = 400 case are shown
in Figs. 22 and 23. The distribution patterns are again (recall Figs. 9
and 10) strikingly consistent between different Re. Vortices of the
same category are again found in the same wall layer, in inner
units, at the two Re tested. Reduction in vortex lift up at HDR
is consistently observed at both Re. For quasi-streamwise vortices,
the suppression of their lift-up tendency was also observed in the
inclination angles of conditionally sampled eddies.37 However, for
hairpinlike/hook vortices, which are more predominant among
lifted vortices, direct evidence was not previously possible before
their axis-lines can be statistically extracted by VATIP. Since hair-
pins are most likely generated from the lift-up of streamwise vor-
tices, as conjectured by Robinson16 and directly observed in DNS
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FIG. 22. Joint PDFs of the wall-normal positions of the head and tail/legs of quasi-
streamwise vortices, as measured by the maximum and minimum y+ coordinates
of each vortex axis-line, respectively, at different Wi (Reτ = 400).

FIG. 23. Joint PDFs of the wall-normal positions of the head and tail/legs of
hairpinlike and hook vortices, as measured by the maximum and minimum y+

coordinates of each vortex axis-line, respectively, at different Wi (Reτ = 400).

by Zhu et al.,12 it is the suppression of the lift-up process itself,
not that of any particular vortex type, that is important for inter-
rupting the turbulent momentum transfers between the buffer and
upper wall layers and the start of the second stage of DR with distinct
log-law region flow statistics.

IV. SUMMARY AND CONCLUSION
This study focuses on the transition between two distinct stages

of DR: LDR and HDR. Distinction between these two regimes has
been made in the literature for two decades because of their dif-
ferent mean flow profiles.5 However, it was not until recently that
evidence has been established to identify them as two qualitatively
different stages marked by a sharp transition in flow statistics and
vortex configuration.6,12 For a given Re and with the introduction
of drag-reducing polymers, there are two critical levels of Wi where
two separate mechanisms of DR set in. The first is the onset of DR: it
marks the start of the LDR stage where DR effects are concentrated
in the buffer layer. The second is the LDR-HDR transition where DR
effects spread across the log-law layer.

This study leverages the recent development of a new vortex
tracking algorithm, VATIP, which enables the automatic detection
and extraction of vortex axis-lines without subjective inference.51

It allows quantitative and statistical analysis of the size, position,
conformation, and shape of vortices in a turbulent flow field. The
method is applied to flow fields of a wide range of Wi covering from
the Newtonian limit to HDR. Vortices extracted by VATIP are then

classified using two sets of criteria. The first is based on the vortex
position and lift-up status, which identifies three major groups: (1)
type I or attached-flat vortices are closely associated with the wall
with little observable lift-up; (2) type II or attached-lifted vortices
are generated from the wall but lift up to higher altitudes—often
well into the log-law layer; and (3) type III or detached-flat vortices
are similar as type I except that they are found at higher positions
with less interaction with the wall (type IV, as discussed above, is
not as important and omitted here for the simplicity of discussion).
The second is based on vortex shape which categorize vortices into
fragments, quasi-streamwise vortices, hooks (asymmetric or incom-
plete hairpins), and hairpinlike vortices (the latter further includes
canonical hairpins and irregular branches).

Analysis of our DNS results shows that type I (attached-flat)
and type III (detached-flat) vortices are nearly all quasi-streamwise
vortices, whereas type II contains some quasi-streamwise vor-
tices plus the majority of the curved—hooks and hairpinlike—
vortices. Polymers are found to mainly impact attached vortices.
At LDR, this effect is an across-the-board weakening of vortex
strength without shifting their distribution pattern. At HDR, poly-
mers start to suppress the lift-up process of vortices and greatly
reduce the number of curved vortices including hooks, hairpins, and
branches.

A clear conceptual picture thus arises from these observa-
tions. In Newtonian flow, the buffer layer is dominated by flat-lying
streamwise vortices. These vortices are prone to lift-up and as the
downstream vortex head rises into the log-law layers, it is subject to
the impact of transverse flow which can swing and stretch the vor-
tex into a curved contour. Existence of these highly lifted vortices
facilitates the turbulent momentum transport across the wall layers,
which is reflected in the well-known log-law flow statistics.23,24,69 At
LDR, polymers weaken vortex motion and suppress turbulent fluc-
tuations,25,26,28,36 without shifting the overall distribution and bal-
ance between different classes of vortices. As the flow enters HDR,
polymers start to suppress the lift-up of streamwise vortices and
interrupt the generation pathway of curved vortices (hooks, hair-
pins, and branches). Reduction in these highly lifted vortices reduces
trans-wall-layer turbulent momentum transfer, which offers a clear
direction for explaining the changing flow statistics in the log-law
layer at HDR. As vortices become stabilized in the streamwise direc-
tion, they become elongated and more detached from the wall. The
latter makes them less susceptible to polymer effects.

This is, to our knowledge, the first complete depiction of the
vortex dynamics in both stages of LDR and HDR that is based on
direct numerical evidence. It substantiates our earlier hypothesis12

which ties the LDR-HDR transition to a fundamental shift of the
vortex regeneration mechanism. In that scenario, both Newtonian
and LDR turbulence are sustained, to a great extent, by the lift up of
vortices which can later burst into fragments and trigger instabilities
at streaks elsewhere. At HDR, since lift up is suppressed and burst-
ing is minimized,73 vortices are kept at the streamwise direction and
new vortices are more often generated in the immediate vicinity of
existing ones. VATIP analysis results reported in this study are fully
consistent with this hypothesized scenario. Of course, the analysis
is still static—it extracts the conformations of vortices in the flow
field without information on their temporal connection. Therefore,
it does not directly show the formation and evolution of vortices but
rather shows that their conformation statistics match the prediction
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from the hypothesis. A dynamical vortex analysis approach, which
is as yet not available, will be needed for the direct investigation of
vortex regeneration mechanisms.
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APPENDIX: NUMERICAL TREATMENT AT THE WALL
BOUNDARIES FOR THE FENE-P EQUATION

As discussed in Sec. II A, when numerically solving the FENE-
P equation with AD [Eq. (6)], additional boundary conditions are
required at the walls. We follow the procedure of Sureshkumar and
Beris60 and integrate the FENE-P equation in time first without
AD at the walls. Starting from Eq. (6) less the (1/(ScRe))∇2α term,
after taking Fourier transform in the x- and z-directions and dis-
cretization in time with BDAB3, the equation can be rearranged
into

Ϛ
Δt

α̃n+1 =
2

∑
j=0
(− aj

Δt
α̃n−j + bjÑ

n−j
p ) + C̃p, (A1)

where n denotes the index of the current time step, “ ⋅̃ ” indicates
variables in the Fourier-physical-Fourier space (i.e., no transform
yet in the y-direction), and Δt is the time step size. The numer-
ical coefficients Ϛ, aj, and bj of the BDAB3 method are found in
Peyret.62 Np and Cp group the nonlinear and constant terms in
Eq. (6), respectively,

Np ≡ −v ⋅∇α + α ⋅∇v + (α ⋅∇v)T − 2
Wi

α
1 − tr(α)/b , (A2)

Cp ≡
2

Wi
bδ
b + 2

. (A3)

Note that Eq. (A1) is explicit as the solution at the future step α̃n+1

can be calculated directly with information at the current and previ-
ous steps (n, n − 1, and n − 2 steps) only. In the case of FENE-P with
AD [the full Eq. (6)], the time integration equation using BDAB3 is

Ϛ
Δt

α̃n+1 − L̃pα̃n+1 =
2

∑
j=0
(− aj

Δt
α̃n−j + bjÑ

n−j
p ) + C̃p, (A4)

where L̃pα̃n+1 is the discretized AD term,

L̃p ≡
1

ScRe
⎛
⎝
∂2

∂y2 − 4π2⎛
⎝
k2
x

L2
x

+
k2
z

L2
z

⎞
⎠
⎞
⎠

(A5)

is the linear operator in the Fourier-physical-Fourier space, and kx
and kz are wavenumbers in x and z directions, respectively. For each

(kx, kz) pair, Eq. (A4) is a second-order differential equation in y
solved with the Chebyshev-tau method.75 Boundary conditions are
required at both walls (y = ±1), for which we use Dirichlet boundary
conditions with wall values obtained from solving Eq. (A1) at y =± 1.
Full details of the entire numerical method for DNS are found in the
Appendix of Xi.76
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